xref: /freebsd/sys/kern/subr_bus.c (revision a5d223e641705cbe537d23e5c023395a929ab8da)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/conf.h>
34 #include <sys/filio.h>
35 #include <sys/lock.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/poll.h>
43 #include <sys/priv.h>
44 #include <sys/proc.h>
45 #include <sys/condvar.h>
46 #include <sys/queue.h>
47 #include <machine/bus.h>
48 #include <sys/random.h>
49 #include <sys/rman.h>
50 #include <sys/selinfo.h>
51 #include <sys/signalvar.h>
52 #include <sys/smp.h>
53 #include <sys/sysctl.h>
54 #include <sys/systm.h>
55 #include <sys/uio.h>
56 #include <sys/bus.h>
57 #include <sys/interrupt.h>
58 #include <sys/cpuset.h>
59 
60 #include <net/vnet.h>
61 
62 #include <machine/cpu.h>
63 #include <machine/stdarg.h>
64 
65 #include <vm/uma.h>
66 #include <vm/vm.h>
67 
68 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
69 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
70 
71 /*
72  * Used to attach drivers to devclasses.
73  */
74 typedef struct driverlink *driverlink_t;
75 struct driverlink {
76 	kobj_class_t	driver;
77 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
78 	int		pass;
79 	TAILQ_ENTRY(driverlink) passlink;
80 };
81 
82 /*
83  * Forward declarations
84  */
85 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
86 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
87 typedef TAILQ_HEAD(device_list, device) device_list_t;
88 
89 struct devclass {
90 	TAILQ_ENTRY(devclass) link;
91 	devclass_t	parent;		/* parent in devclass hierarchy */
92 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
93 	char		*name;
94 	device_t	*devices;	/* array of devices indexed by unit */
95 	int		maxunit;	/* size of devices array */
96 	int		flags;
97 #define DC_HAS_CHILDREN		1
98 
99 	struct sysctl_ctx_list sysctl_ctx;
100 	struct sysctl_oid *sysctl_tree;
101 };
102 
103 /**
104  * @brief Implementation of device.
105  */
106 struct device {
107 	/*
108 	 * A device is a kernel object. The first field must be the
109 	 * current ops table for the object.
110 	 */
111 	KOBJ_FIELDS;
112 
113 	/*
114 	 * Device hierarchy.
115 	 */
116 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
117 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
118 	device_t	parent;		/**< parent of this device  */
119 	device_list_t	children;	/**< list of child devices */
120 
121 	/*
122 	 * Details of this device.
123 	 */
124 	driver_t	*driver;	/**< current driver */
125 	devclass_t	devclass;	/**< current device class */
126 	int		unit;		/**< current unit number */
127 	char*		nameunit;	/**< name+unit e.g. foodev0 */
128 	char*		desc;		/**< driver specific description */
129 	int		busy;		/**< count of calls to device_busy() */
130 	device_state_t	state;		/**< current device state  */
131 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
132 	u_int		flags;		/**< internal device flags  */
133 	u_int	order;			/**< order from device_add_child_ordered() */
134 	void	*ivars;			/**< instance variables  */
135 	void	*softc;			/**< current driver's variables  */
136 
137 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139 };
140 
141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143 
144 static void devctl2_init(void);
145 
146 #ifdef BUS_DEBUG
147 
148 static int bus_debug = 1;
149 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
150     "Bus debug level");
151 
152 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
153 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
154 #define DRIVERNAME(d)	((d)? d->name : "no driver")
155 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
156 
157 /**
158  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
159  * prevent syslog from deleting initial spaces
160  */
161 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
162 
163 static void print_device_short(device_t dev, int indent);
164 static void print_device(device_t dev, int indent);
165 void print_device_tree_short(device_t dev, int indent);
166 void print_device_tree(device_t dev, int indent);
167 static void print_driver_short(driver_t *driver, int indent);
168 static void print_driver(driver_t *driver, int indent);
169 static void print_driver_list(driver_list_t drivers, int indent);
170 static void print_devclass_short(devclass_t dc, int indent);
171 static void print_devclass(devclass_t dc, int indent);
172 void print_devclass_list_short(void);
173 void print_devclass_list(void);
174 
175 #else
176 /* Make the compiler ignore the function calls */
177 #define PDEBUG(a)			/* nop */
178 #define DEVICENAME(d)			/* nop */
179 #define DRIVERNAME(d)			/* nop */
180 #define DEVCLANAME(d)			/* nop */
181 
182 #define print_device_short(d,i)		/* nop */
183 #define print_device(d,i)		/* nop */
184 #define print_device_tree_short(d,i)	/* nop */
185 #define print_device_tree(d,i)		/* nop */
186 #define print_driver_short(d,i)		/* nop */
187 #define print_driver(d,i)		/* nop */
188 #define print_driver_list(d,i)		/* nop */
189 #define print_devclass_short(d,i)	/* nop */
190 #define print_devclass(d,i)		/* nop */
191 #define print_devclass_list_short()	/* nop */
192 #define print_devclass_list()		/* nop */
193 #endif
194 
195 /*
196  * dev sysctl tree
197  */
198 
199 enum {
200 	DEVCLASS_SYSCTL_PARENT,
201 };
202 
203 static int
204 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
205 {
206 	devclass_t dc = (devclass_t)arg1;
207 	const char *value;
208 
209 	switch (arg2) {
210 	case DEVCLASS_SYSCTL_PARENT:
211 		value = dc->parent ? dc->parent->name : "";
212 		break;
213 	default:
214 		return (EINVAL);
215 	}
216 	return (SYSCTL_OUT_STR(req, value));
217 }
218 
219 static void
220 devclass_sysctl_init(devclass_t dc)
221 {
222 
223 	if (dc->sysctl_tree != NULL)
224 		return;
225 	sysctl_ctx_init(&dc->sysctl_ctx);
226 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
227 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
228 	    CTLFLAG_RD, NULL, "");
229 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
230 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
231 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
232 	    "parent class");
233 }
234 
235 enum {
236 	DEVICE_SYSCTL_DESC,
237 	DEVICE_SYSCTL_DRIVER,
238 	DEVICE_SYSCTL_LOCATION,
239 	DEVICE_SYSCTL_PNPINFO,
240 	DEVICE_SYSCTL_PARENT,
241 };
242 
243 static int
244 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
245 {
246 	device_t dev = (device_t)arg1;
247 	const char *value;
248 	char *buf;
249 	int error;
250 
251 	buf = NULL;
252 	switch (arg2) {
253 	case DEVICE_SYSCTL_DESC:
254 		value = dev->desc ? dev->desc : "";
255 		break;
256 	case DEVICE_SYSCTL_DRIVER:
257 		value = dev->driver ? dev->driver->name : "";
258 		break;
259 	case DEVICE_SYSCTL_LOCATION:
260 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
261 		bus_child_location_str(dev, buf, 1024);
262 		break;
263 	case DEVICE_SYSCTL_PNPINFO:
264 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
265 		bus_child_pnpinfo_str(dev, buf, 1024);
266 		break;
267 	case DEVICE_SYSCTL_PARENT:
268 		value = dev->parent ? dev->parent->nameunit : "";
269 		break;
270 	default:
271 		return (EINVAL);
272 	}
273 	error = SYSCTL_OUT_STR(req, value);
274 	if (buf != NULL)
275 		free(buf, M_BUS);
276 	return (error);
277 }
278 
279 static void
280 device_sysctl_init(device_t dev)
281 {
282 	devclass_t dc = dev->devclass;
283 	int domain;
284 
285 	if (dev->sysctl_tree != NULL)
286 		return;
287 	devclass_sysctl_init(dc);
288 	sysctl_ctx_init(&dev->sysctl_ctx);
289 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
290 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
291 	    dev->nameunit + strlen(dc->name),
292 	    CTLFLAG_RD, NULL, "");
293 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
294 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
295 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
296 	    "device description");
297 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
298 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
299 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
300 	    "device driver name");
301 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
302 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
303 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
304 	    "device location relative to parent");
305 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
306 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
307 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
308 	    "device identification");
309 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
310 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
311 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
312 	    "parent device");
313 	if (bus_get_domain(dev, &domain) == 0)
314 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
315 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
316 		    CTLFLAG_RD, NULL, domain, "NUMA domain");
317 }
318 
319 static void
320 device_sysctl_update(device_t dev)
321 {
322 	devclass_t dc = dev->devclass;
323 
324 	if (dev->sysctl_tree == NULL)
325 		return;
326 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
327 }
328 
329 static void
330 device_sysctl_fini(device_t dev)
331 {
332 	if (dev->sysctl_tree == NULL)
333 		return;
334 	sysctl_ctx_free(&dev->sysctl_ctx);
335 	dev->sysctl_tree = NULL;
336 }
337 
338 /*
339  * /dev/devctl implementation
340  */
341 
342 /*
343  * This design allows only one reader for /dev/devctl.  This is not desirable
344  * in the long run, but will get a lot of hair out of this implementation.
345  * Maybe we should make this device a clonable device.
346  *
347  * Also note: we specifically do not attach a device to the device_t tree
348  * to avoid potential chicken and egg problems.  One could argue that all
349  * of this belongs to the root node.  One could also further argue that the
350  * sysctl interface that we have not might more properly be an ioctl
351  * interface, but at this stage of the game, I'm not inclined to rock that
352  * boat.
353  *
354  * I'm also not sure that the SIGIO support is done correctly or not, as
355  * I copied it from a driver that had SIGIO support that likely hasn't been
356  * tested since 3.4 or 2.2.8!
357  */
358 
359 /* Deprecated way to adjust queue length */
360 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
361 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
362     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
363     "devctl disable -- deprecated");
364 
365 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
366 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
367 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
368 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
369     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
370 
371 static d_open_t		devopen;
372 static d_close_t	devclose;
373 static d_read_t		devread;
374 static d_ioctl_t	devioctl;
375 static d_poll_t		devpoll;
376 static d_kqfilter_t	devkqfilter;
377 
378 static struct cdevsw dev_cdevsw = {
379 	.d_version =	D_VERSION,
380 	.d_open =	devopen,
381 	.d_close =	devclose,
382 	.d_read =	devread,
383 	.d_ioctl =	devioctl,
384 	.d_poll =	devpoll,
385 	.d_kqfilter =	devkqfilter,
386 	.d_name =	"devctl",
387 };
388 
389 struct dev_event_info
390 {
391 	char *dei_data;
392 	TAILQ_ENTRY(dev_event_info) dei_link;
393 };
394 
395 TAILQ_HEAD(devq, dev_event_info);
396 
397 static struct dev_softc
398 {
399 	int	inuse;
400 	int	nonblock;
401 	int	queued;
402 	int	async;
403 	struct mtx mtx;
404 	struct cv cv;
405 	struct selinfo sel;
406 	struct devq devq;
407 	struct sigio *sigio;
408 } devsoftc;
409 
410 static void	filt_devctl_detach(struct knote *kn);
411 static int	filt_devctl_read(struct knote *kn, long hint);
412 
413 struct filterops devctl_rfiltops = {
414 	.f_isfd = 1,
415 	.f_detach = filt_devctl_detach,
416 	.f_event = filt_devctl_read,
417 };
418 
419 static struct cdev *devctl_dev;
420 
421 static void
422 devinit(void)
423 {
424 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
425 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
426 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
427 	cv_init(&devsoftc.cv, "dev cv");
428 	TAILQ_INIT(&devsoftc.devq);
429 	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
430 	devctl2_init();
431 }
432 
433 static int
434 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
435 {
436 
437 	mtx_lock(&devsoftc.mtx);
438 	if (devsoftc.inuse) {
439 		mtx_unlock(&devsoftc.mtx);
440 		return (EBUSY);
441 	}
442 	/* move to init */
443 	devsoftc.inuse = 1;
444 	mtx_unlock(&devsoftc.mtx);
445 	return (0);
446 }
447 
448 static int
449 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
450 {
451 
452 	mtx_lock(&devsoftc.mtx);
453 	devsoftc.inuse = 0;
454 	devsoftc.nonblock = 0;
455 	devsoftc.async = 0;
456 	cv_broadcast(&devsoftc.cv);
457 	funsetown(&devsoftc.sigio);
458 	mtx_unlock(&devsoftc.mtx);
459 	return (0);
460 }
461 
462 /*
463  * The read channel for this device is used to report changes to
464  * userland in realtime.  We are required to free the data as well as
465  * the n1 object because we allocate them separately.  Also note that
466  * we return one record at a time.  If you try to read this device a
467  * character at a time, you will lose the rest of the data.  Listening
468  * programs are expected to cope.
469  */
470 static int
471 devread(struct cdev *dev, struct uio *uio, int ioflag)
472 {
473 	struct dev_event_info *n1;
474 	int rv;
475 
476 	mtx_lock(&devsoftc.mtx);
477 	while (TAILQ_EMPTY(&devsoftc.devq)) {
478 		if (devsoftc.nonblock) {
479 			mtx_unlock(&devsoftc.mtx);
480 			return (EAGAIN);
481 		}
482 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
483 		if (rv) {
484 			/*
485 			 * Need to translate ERESTART to EINTR here? -- jake
486 			 */
487 			mtx_unlock(&devsoftc.mtx);
488 			return (rv);
489 		}
490 	}
491 	n1 = TAILQ_FIRST(&devsoftc.devq);
492 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
493 	devsoftc.queued--;
494 	mtx_unlock(&devsoftc.mtx);
495 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
496 	free(n1->dei_data, M_BUS);
497 	free(n1, M_BUS);
498 	return (rv);
499 }
500 
501 static	int
502 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
503 {
504 	switch (cmd) {
505 
506 	case FIONBIO:
507 		if (*(int*)data)
508 			devsoftc.nonblock = 1;
509 		else
510 			devsoftc.nonblock = 0;
511 		return (0);
512 	case FIOASYNC:
513 		if (*(int*)data)
514 			devsoftc.async = 1;
515 		else
516 			devsoftc.async = 0;
517 		return (0);
518 	case FIOSETOWN:
519 		return fsetown(*(int *)data, &devsoftc.sigio);
520 	case FIOGETOWN:
521 		*(int *)data = fgetown(&devsoftc.sigio);
522 		return (0);
523 
524 		/* (un)Support for other fcntl() calls. */
525 	case FIOCLEX:
526 	case FIONCLEX:
527 	case FIONREAD:
528 	default:
529 		break;
530 	}
531 	return (ENOTTY);
532 }
533 
534 static	int
535 devpoll(struct cdev *dev, int events, struct thread *td)
536 {
537 	int	revents = 0;
538 
539 	mtx_lock(&devsoftc.mtx);
540 	if (events & (POLLIN | POLLRDNORM)) {
541 		if (!TAILQ_EMPTY(&devsoftc.devq))
542 			revents = events & (POLLIN | POLLRDNORM);
543 		else
544 			selrecord(td, &devsoftc.sel);
545 	}
546 	mtx_unlock(&devsoftc.mtx);
547 
548 	return (revents);
549 }
550 
551 static int
552 devkqfilter(struct cdev *dev, struct knote *kn)
553 {
554 	int error;
555 
556 	if (kn->kn_filter == EVFILT_READ) {
557 		kn->kn_fop = &devctl_rfiltops;
558 		knlist_add(&devsoftc.sel.si_note, kn, 0);
559 		error = 0;
560 	} else
561 		error = EINVAL;
562 	return (error);
563 }
564 
565 static void
566 filt_devctl_detach(struct knote *kn)
567 {
568 
569 	knlist_remove(&devsoftc.sel.si_note, kn, 0);
570 }
571 
572 static int
573 filt_devctl_read(struct knote *kn, long hint)
574 {
575 	kn->kn_data = devsoftc.queued;
576 	return (kn->kn_data != 0);
577 }
578 
579 /**
580  * @brief Return whether the userland process is running
581  */
582 boolean_t
583 devctl_process_running(void)
584 {
585 	return (devsoftc.inuse == 1);
586 }
587 
588 /**
589  * @brief Queue data to be read from the devctl device
590  *
591  * Generic interface to queue data to the devctl device.  It is
592  * assumed that @p data is properly formatted.  It is further assumed
593  * that @p data is allocated using the M_BUS malloc type.
594  */
595 void
596 devctl_queue_data_f(char *data, int flags)
597 {
598 	struct dev_event_info *n1 = NULL, *n2 = NULL;
599 
600 	if (strlen(data) == 0)
601 		goto out;
602 	if (devctl_queue_length == 0)
603 		goto out;
604 	n1 = malloc(sizeof(*n1), M_BUS, flags);
605 	if (n1 == NULL)
606 		goto out;
607 	n1->dei_data = data;
608 	mtx_lock(&devsoftc.mtx);
609 	if (devctl_queue_length == 0) {
610 		mtx_unlock(&devsoftc.mtx);
611 		free(n1->dei_data, M_BUS);
612 		free(n1, M_BUS);
613 		return;
614 	}
615 	/* Leave at least one spot in the queue... */
616 	while (devsoftc.queued > devctl_queue_length - 1) {
617 		n2 = TAILQ_FIRST(&devsoftc.devq);
618 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
619 		free(n2->dei_data, M_BUS);
620 		free(n2, M_BUS);
621 		devsoftc.queued--;
622 	}
623 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
624 	devsoftc.queued++;
625 	cv_broadcast(&devsoftc.cv);
626 	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
627 	mtx_unlock(&devsoftc.mtx);
628 	selwakeup(&devsoftc.sel);
629 	if (devsoftc.async && devsoftc.sigio != NULL)
630 		pgsigio(&devsoftc.sigio, SIGIO, 0);
631 	return;
632 out:
633 	/*
634 	 * We have to free data on all error paths since the caller
635 	 * assumes it will be free'd when this item is dequeued.
636 	 */
637 	free(data, M_BUS);
638 	return;
639 }
640 
641 void
642 devctl_queue_data(char *data)
643 {
644 
645 	devctl_queue_data_f(data, M_NOWAIT);
646 }
647 
648 /**
649  * @brief Send a 'notification' to userland, using standard ways
650  */
651 void
652 devctl_notify_f(const char *system, const char *subsystem, const char *type,
653     const char *data, int flags)
654 {
655 	int len = 0;
656 	char *msg;
657 
658 	if (system == NULL)
659 		return;		/* BOGUS!  Must specify system. */
660 	if (subsystem == NULL)
661 		return;		/* BOGUS!  Must specify subsystem. */
662 	if (type == NULL)
663 		return;		/* BOGUS!  Must specify type. */
664 	len += strlen(" system=") + strlen(system);
665 	len += strlen(" subsystem=") + strlen(subsystem);
666 	len += strlen(" type=") + strlen(type);
667 	/* add in the data message plus newline. */
668 	if (data != NULL)
669 		len += strlen(data);
670 	len += 3;	/* '!', '\n', and NUL */
671 	msg = malloc(len, M_BUS, flags);
672 	if (msg == NULL)
673 		return;		/* Drop it on the floor */
674 	if (data != NULL)
675 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
676 		    system, subsystem, type, data);
677 	else
678 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
679 		    system, subsystem, type);
680 	devctl_queue_data_f(msg, flags);
681 }
682 
683 void
684 devctl_notify(const char *system, const char *subsystem, const char *type,
685     const char *data)
686 {
687 
688 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
689 }
690 
691 /*
692  * Common routine that tries to make sending messages as easy as possible.
693  * We allocate memory for the data, copy strings into that, but do not
694  * free it unless there's an error.  The dequeue part of the driver should
695  * free the data.  We don't send data when the device is disabled.  We do
696  * send data, even when we have no listeners, because we wish to avoid
697  * races relating to startup and restart of listening applications.
698  *
699  * devaddq is designed to string together the type of event, with the
700  * object of that event, plus the plug and play info and location info
701  * for that event.  This is likely most useful for devices, but less
702  * useful for other consumers of this interface.  Those should use
703  * the devctl_queue_data() interface instead.
704  */
705 static void
706 devaddq(const char *type, const char *what, device_t dev)
707 {
708 	char *data = NULL;
709 	char *loc = NULL;
710 	char *pnp = NULL;
711 	const char *parstr;
712 
713 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
714 		return;
715 	data = malloc(1024, M_BUS, M_NOWAIT);
716 	if (data == NULL)
717 		goto bad;
718 
719 	/* get the bus specific location of this device */
720 	loc = malloc(1024, M_BUS, M_NOWAIT);
721 	if (loc == NULL)
722 		goto bad;
723 	*loc = '\0';
724 	bus_child_location_str(dev, loc, 1024);
725 
726 	/* Get the bus specific pnp info of this device */
727 	pnp = malloc(1024, M_BUS, M_NOWAIT);
728 	if (pnp == NULL)
729 		goto bad;
730 	*pnp = '\0';
731 	bus_child_pnpinfo_str(dev, pnp, 1024);
732 
733 	/* Get the parent of this device, or / if high enough in the tree. */
734 	if (device_get_parent(dev) == NULL)
735 		parstr = ".";	/* Or '/' ? */
736 	else
737 		parstr = device_get_nameunit(device_get_parent(dev));
738 	/* String it all together. */
739 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
740 	  parstr);
741 	free(loc, M_BUS);
742 	free(pnp, M_BUS);
743 	devctl_queue_data(data);
744 	return;
745 bad:
746 	free(pnp, M_BUS);
747 	free(loc, M_BUS);
748 	free(data, M_BUS);
749 	return;
750 }
751 
752 /*
753  * A device was added to the tree.  We are called just after it successfully
754  * attaches (that is, probe and attach success for this device).  No call
755  * is made if a device is merely parented into the tree.  See devnomatch
756  * if probe fails.  If attach fails, no notification is sent (but maybe
757  * we should have a different message for this).
758  */
759 static void
760 devadded(device_t dev)
761 {
762 	devaddq("+", device_get_nameunit(dev), dev);
763 }
764 
765 /*
766  * A device was removed from the tree.  We are called just before this
767  * happens.
768  */
769 static void
770 devremoved(device_t dev)
771 {
772 	devaddq("-", device_get_nameunit(dev), dev);
773 }
774 
775 /*
776  * Called when there's no match for this device.  This is only called
777  * the first time that no match happens, so we don't keep getting this
778  * message.  Should that prove to be undesirable, we can change it.
779  * This is called when all drivers that can attach to a given bus
780  * decline to accept this device.  Other errors may not be detected.
781  */
782 static void
783 devnomatch(device_t dev)
784 {
785 	devaddq("?", "", dev);
786 }
787 
788 static int
789 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
790 {
791 	struct dev_event_info *n1;
792 	int dis, error;
793 
794 	dis = (devctl_queue_length == 0);
795 	error = sysctl_handle_int(oidp, &dis, 0, req);
796 	if (error || !req->newptr)
797 		return (error);
798 	if (mtx_initialized(&devsoftc.mtx))
799 		mtx_lock(&devsoftc.mtx);
800 	if (dis) {
801 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
802 			n1 = TAILQ_FIRST(&devsoftc.devq);
803 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
804 			free(n1->dei_data, M_BUS);
805 			free(n1, M_BUS);
806 		}
807 		devsoftc.queued = 0;
808 		devctl_queue_length = 0;
809 	} else {
810 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
811 	}
812 	if (mtx_initialized(&devsoftc.mtx))
813 		mtx_unlock(&devsoftc.mtx);
814 	return (0);
815 }
816 
817 static int
818 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
819 {
820 	struct dev_event_info *n1;
821 	int q, error;
822 
823 	q = devctl_queue_length;
824 	error = sysctl_handle_int(oidp, &q, 0, req);
825 	if (error || !req->newptr)
826 		return (error);
827 	if (q < 0)
828 		return (EINVAL);
829 	if (mtx_initialized(&devsoftc.mtx))
830 		mtx_lock(&devsoftc.mtx);
831 	devctl_queue_length = q;
832 	while (devsoftc.queued > devctl_queue_length) {
833 		n1 = TAILQ_FIRST(&devsoftc.devq);
834 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
835 		free(n1->dei_data, M_BUS);
836 		free(n1, M_BUS);
837 		devsoftc.queued--;
838 	}
839 	if (mtx_initialized(&devsoftc.mtx))
840 		mtx_unlock(&devsoftc.mtx);
841 	return (0);
842 }
843 
844 /**
845  * @brief safely quotes strings that might have double quotes in them.
846  *
847  * The devctl protocol relies on quoted strings having matching quotes.
848  * This routine quotes any internal quotes so the resulting string
849  * is safe to pass to snprintf to construct, for example pnp info strings.
850  * Strings are always terminated with a NUL, but may be truncated if longer
851  * than @p len bytes after quotes.
852  *
853  * @param dst	Buffer to hold the string. Must be at least @p len bytes long
854  * @param src	Original buffer.
855  * @param len	Length of buffer pointed to by @dst, including trailing NUL
856  */
857 void
858 devctl_safe_quote(char *dst, const char *src, size_t len)
859 {
860 	char *walker = dst, *ep = dst + len - 1;
861 
862 	if (len == 0)
863 		return;
864 	while (src != NULL && walker < ep)
865 	{
866 		if (*src == '"' || *src == '\\') {
867 			if (ep - walker < 2)
868 				break;
869 			*walker++ = '\\';
870 		}
871 		*walker++ = *src++;
872 	}
873 	*walker = '\0';
874 }
875 
876 /* End of /dev/devctl code */
877 
878 static TAILQ_HEAD(,device)	bus_data_devices;
879 static int bus_data_generation = 1;
880 
881 static kobj_method_t null_methods[] = {
882 	KOBJMETHOD_END
883 };
884 
885 DEFINE_CLASS(null, null_methods, 0);
886 
887 /*
888  * Bus pass implementation
889  */
890 
891 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
892 int bus_current_pass = BUS_PASS_ROOT;
893 
894 /**
895  * @internal
896  * @brief Register the pass level of a new driver attachment
897  *
898  * Register a new driver attachment's pass level.  If no driver
899  * attachment with the same pass level has been added, then @p new
900  * will be added to the global passes list.
901  *
902  * @param new		the new driver attachment
903  */
904 static void
905 driver_register_pass(struct driverlink *new)
906 {
907 	struct driverlink *dl;
908 
909 	/* We only consider pass numbers during boot. */
910 	if (bus_current_pass == BUS_PASS_DEFAULT)
911 		return;
912 
913 	/*
914 	 * Walk the passes list.  If we already know about this pass
915 	 * then there is nothing to do.  If we don't, then insert this
916 	 * driver link into the list.
917 	 */
918 	TAILQ_FOREACH(dl, &passes, passlink) {
919 		if (dl->pass < new->pass)
920 			continue;
921 		if (dl->pass == new->pass)
922 			return;
923 		TAILQ_INSERT_BEFORE(dl, new, passlink);
924 		return;
925 	}
926 	TAILQ_INSERT_TAIL(&passes, new, passlink);
927 }
928 
929 /**
930  * @brief Raise the current bus pass
931  *
932  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
933  * method on the root bus to kick off a new device tree scan for each
934  * new pass level that has at least one driver.
935  */
936 void
937 bus_set_pass(int pass)
938 {
939 	struct driverlink *dl;
940 
941 	if (bus_current_pass > pass)
942 		panic("Attempt to lower bus pass level");
943 
944 	TAILQ_FOREACH(dl, &passes, passlink) {
945 		/* Skip pass values below the current pass level. */
946 		if (dl->pass <= bus_current_pass)
947 			continue;
948 
949 		/*
950 		 * Bail once we hit a driver with a pass level that is
951 		 * too high.
952 		 */
953 		if (dl->pass > pass)
954 			break;
955 
956 		/*
957 		 * Raise the pass level to the next level and rescan
958 		 * the tree.
959 		 */
960 		bus_current_pass = dl->pass;
961 		BUS_NEW_PASS(root_bus);
962 	}
963 
964 	/*
965 	 * If there isn't a driver registered for the requested pass,
966 	 * then bus_current_pass might still be less than 'pass'.  Set
967 	 * it to 'pass' in that case.
968 	 */
969 	if (bus_current_pass < pass)
970 		bus_current_pass = pass;
971 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
972 }
973 
974 /*
975  * Devclass implementation
976  */
977 
978 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
979 
980 /**
981  * @internal
982  * @brief Find or create a device class
983  *
984  * If a device class with the name @p classname exists, return it,
985  * otherwise if @p create is non-zero create and return a new device
986  * class.
987  *
988  * If @p parentname is non-NULL, the parent of the devclass is set to
989  * the devclass of that name.
990  *
991  * @param classname	the devclass name to find or create
992  * @param parentname	the parent devclass name or @c NULL
993  * @param create	non-zero to create a devclass
994  */
995 static devclass_t
996 devclass_find_internal(const char *classname, const char *parentname,
997 		       int create)
998 {
999 	devclass_t dc;
1000 
1001 	PDEBUG(("looking for %s", classname));
1002 	if (!classname)
1003 		return (NULL);
1004 
1005 	TAILQ_FOREACH(dc, &devclasses, link) {
1006 		if (!strcmp(dc->name, classname))
1007 			break;
1008 	}
1009 
1010 	if (create && !dc) {
1011 		PDEBUG(("creating %s", classname));
1012 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
1013 		    M_BUS, M_NOWAIT | M_ZERO);
1014 		if (!dc)
1015 			return (NULL);
1016 		dc->parent = NULL;
1017 		dc->name = (char*) (dc + 1);
1018 		strcpy(dc->name, classname);
1019 		TAILQ_INIT(&dc->drivers);
1020 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
1021 
1022 		bus_data_generation_update();
1023 	}
1024 
1025 	/*
1026 	 * If a parent class is specified, then set that as our parent so
1027 	 * that this devclass will support drivers for the parent class as
1028 	 * well.  If the parent class has the same name don't do this though
1029 	 * as it creates a cycle that can trigger an infinite loop in
1030 	 * device_probe_child() if a device exists for which there is no
1031 	 * suitable driver.
1032 	 */
1033 	if (parentname && dc && !dc->parent &&
1034 	    strcmp(classname, parentname) != 0) {
1035 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1036 		dc->parent->flags |= DC_HAS_CHILDREN;
1037 	}
1038 
1039 	return (dc);
1040 }
1041 
1042 /**
1043  * @brief Create a device class
1044  *
1045  * If a device class with the name @p classname exists, return it,
1046  * otherwise create and return a new device class.
1047  *
1048  * @param classname	the devclass name to find or create
1049  */
1050 devclass_t
1051 devclass_create(const char *classname)
1052 {
1053 	return (devclass_find_internal(classname, NULL, TRUE));
1054 }
1055 
1056 /**
1057  * @brief Find a device class
1058  *
1059  * If a device class with the name @p classname exists, return it,
1060  * otherwise return @c NULL.
1061  *
1062  * @param classname	the devclass name to find
1063  */
1064 devclass_t
1065 devclass_find(const char *classname)
1066 {
1067 	return (devclass_find_internal(classname, NULL, FALSE));
1068 }
1069 
1070 /**
1071  * @brief Register that a device driver has been added to a devclass
1072  *
1073  * Register that a device driver has been added to a devclass.  This
1074  * is called by devclass_add_driver to accomplish the recursive
1075  * notification of all the children classes of dc, as well as dc.
1076  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1077  * the devclass.
1078  *
1079  * We do a full search here of the devclass list at each iteration
1080  * level to save storing children-lists in the devclass structure.  If
1081  * we ever move beyond a few dozen devices doing this, we may need to
1082  * reevaluate...
1083  *
1084  * @param dc		the devclass to edit
1085  * @param driver	the driver that was just added
1086  */
1087 static void
1088 devclass_driver_added(devclass_t dc, driver_t *driver)
1089 {
1090 	devclass_t parent;
1091 	int i;
1092 
1093 	/*
1094 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1095 	 */
1096 	for (i = 0; i < dc->maxunit; i++)
1097 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1098 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1099 
1100 	/*
1101 	 * Walk through the children classes.  Since we only keep a
1102 	 * single parent pointer around, we walk the entire list of
1103 	 * devclasses looking for children.  We set the
1104 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1105 	 * the parent, so we only walk the list for those devclasses
1106 	 * that have children.
1107 	 */
1108 	if (!(dc->flags & DC_HAS_CHILDREN))
1109 		return;
1110 	parent = dc;
1111 	TAILQ_FOREACH(dc, &devclasses, link) {
1112 		if (dc->parent == parent)
1113 			devclass_driver_added(dc, driver);
1114 	}
1115 }
1116 
1117 /**
1118  * @brief Add a device driver to a device class
1119  *
1120  * Add a device driver to a devclass. This is normally called
1121  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1122  * all devices in the devclass will be called to allow them to attempt
1123  * to re-probe any unmatched children.
1124  *
1125  * @param dc		the devclass to edit
1126  * @param driver	the driver to register
1127  */
1128 int
1129 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1130 {
1131 	driverlink_t dl;
1132 	const char *parentname;
1133 
1134 	PDEBUG(("%s", DRIVERNAME(driver)));
1135 
1136 	/* Don't allow invalid pass values. */
1137 	if (pass <= BUS_PASS_ROOT)
1138 		return (EINVAL);
1139 
1140 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1141 	if (!dl)
1142 		return (ENOMEM);
1143 
1144 	/*
1145 	 * Compile the driver's methods. Also increase the reference count
1146 	 * so that the class doesn't get freed when the last instance
1147 	 * goes. This means we can safely use static methods and avoids a
1148 	 * double-free in devclass_delete_driver.
1149 	 */
1150 	kobj_class_compile((kobj_class_t) driver);
1151 
1152 	/*
1153 	 * If the driver has any base classes, make the
1154 	 * devclass inherit from the devclass of the driver's
1155 	 * first base class. This will allow the system to
1156 	 * search for drivers in both devclasses for children
1157 	 * of a device using this driver.
1158 	 */
1159 	if (driver->baseclasses)
1160 		parentname = driver->baseclasses[0]->name;
1161 	else
1162 		parentname = NULL;
1163 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1164 
1165 	dl->driver = driver;
1166 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1167 	driver->refs++;		/* XXX: kobj_mtx */
1168 	dl->pass = pass;
1169 	driver_register_pass(dl);
1170 
1171 	devclass_driver_added(dc, driver);
1172 	bus_data_generation_update();
1173 	return (0);
1174 }
1175 
1176 /**
1177  * @brief Register that a device driver has been deleted from a devclass
1178  *
1179  * Register that a device driver has been removed from a devclass.
1180  * This is called by devclass_delete_driver to accomplish the
1181  * recursive notification of all the children classes of busclass, as
1182  * well as busclass.  Each layer will attempt to detach the driver
1183  * from any devices that are children of the bus's devclass.  The function
1184  * will return an error if a device fails to detach.
1185  *
1186  * We do a full search here of the devclass list at each iteration
1187  * level to save storing children-lists in the devclass structure.  If
1188  * we ever move beyond a few dozen devices doing this, we may need to
1189  * reevaluate...
1190  *
1191  * @param busclass	the devclass of the parent bus
1192  * @param dc		the devclass of the driver being deleted
1193  * @param driver	the driver being deleted
1194  */
1195 static int
1196 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1197 {
1198 	devclass_t parent;
1199 	device_t dev;
1200 	int error, i;
1201 
1202 	/*
1203 	 * Disassociate from any devices.  We iterate through all the
1204 	 * devices in the devclass of the driver and detach any which are
1205 	 * using the driver and which have a parent in the devclass which
1206 	 * we are deleting from.
1207 	 *
1208 	 * Note that since a driver can be in multiple devclasses, we
1209 	 * should not detach devices which are not children of devices in
1210 	 * the affected devclass.
1211 	 */
1212 	for (i = 0; i < dc->maxunit; i++) {
1213 		if (dc->devices[i]) {
1214 			dev = dc->devices[i];
1215 			if (dev->driver == driver && dev->parent &&
1216 			    dev->parent->devclass == busclass) {
1217 				if ((error = device_detach(dev)) != 0)
1218 					return (error);
1219 				BUS_PROBE_NOMATCH(dev->parent, dev);
1220 				devnomatch(dev);
1221 				dev->flags |= DF_DONENOMATCH;
1222 			}
1223 		}
1224 	}
1225 
1226 	/*
1227 	 * Walk through the children classes.  Since we only keep a
1228 	 * single parent pointer around, we walk the entire list of
1229 	 * devclasses looking for children.  We set the
1230 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1231 	 * the parent, so we only walk the list for those devclasses
1232 	 * that have children.
1233 	 */
1234 	if (!(busclass->flags & DC_HAS_CHILDREN))
1235 		return (0);
1236 	parent = busclass;
1237 	TAILQ_FOREACH(busclass, &devclasses, link) {
1238 		if (busclass->parent == parent) {
1239 			error = devclass_driver_deleted(busclass, dc, driver);
1240 			if (error)
1241 				return (error);
1242 		}
1243 	}
1244 	return (0);
1245 }
1246 
1247 /**
1248  * @brief Delete a device driver from a device class
1249  *
1250  * Delete a device driver from a devclass. This is normally called
1251  * automatically by DRIVER_MODULE().
1252  *
1253  * If the driver is currently attached to any devices,
1254  * devclass_delete_driver() will first attempt to detach from each
1255  * device. If one of the detach calls fails, the driver will not be
1256  * deleted.
1257  *
1258  * @param dc		the devclass to edit
1259  * @param driver	the driver to unregister
1260  */
1261 int
1262 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1263 {
1264 	devclass_t dc = devclass_find(driver->name);
1265 	driverlink_t dl;
1266 	int error;
1267 
1268 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1269 
1270 	if (!dc)
1271 		return (0);
1272 
1273 	/*
1274 	 * Find the link structure in the bus' list of drivers.
1275 	 */
1276 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1277 		if (dl->driver == driver)
1278 			break;
1279 	}
1280 
1281 	if (!dl) {
1282 		PDEBUG(("%s not found in %s list", driver->name,
1283 		    busclass->name));
1284 		return (ENOENT);
1285 	}
1286 
1287 	error = devclass_driver_deleted(busclass, dc, driver);
1288 	if (error != 0)
1289 		return (error);
1290 
1291 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1292 	free(dl, M_BUS);
1293 
1294 	/* XXX: kobj_mtx */
1295 	driver->refs--;
1296 	if (driver->refs == 0)
1297 		kobj_class_free((kobj_class_t) driver);
1298 
1299 	bus_data_generation_update();
1300 	return (0);
1301 }
1302 
1303 /**
1304  * @brief Quiesces a set of device drivers from a device class
1305  *
1306  * Quiesce a device driver from a devclass. This is normally called
1307  * automatically by DRIVER_MODULE().
1308  *
1309  * If the driver is currently attached to any devices,
1310  * devclass_quiesece_driver() will first attempt to quiesce each
1311  * device.
1312  *
1313  * @param dc		the devclass to edit
1314  * @param driver	the driver to unregister
1315  */
1316 static int
1317 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1318 {
1319 	devclass_t dc = devclass_find(driver->name);
1320 	driverlink_t dl;
1321 	device_t dev;
1322 	int i;
1323 	int error;
1324 
1325 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1326 
1327 	if (!dc)
1328 		return (0);
1329 
1330 	/*
1331 	 * Find the link structure in the bus' list of drivers.
1332 	 */
1333 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1334 		if (dl->driver == driver)
1335 			break;
1336 	}
1337 
1338 	if (!dl) {
1339 		PDEBUG(("%s not found in %s list", driver->name,
1340 		    busclass->name));
1341 		return (ENOENT);
1342 	}
1343 
1344 	/*
1345 	 * Quiesce all devices.  We iterate through all the devices in
1346 	 * the devclass of the driver and quiesce any which are using
1347 	 * the driver and which have a parent in the devclass which we
1348 	 * are quiescing.
1349 	 *
1350 	 * Note that since a driver can be in multiple devclasses, we
1351 	 * should not quiesce devices which are not children of
1352 	 * devices in the affected devclass.
1353 	 */
1354 	for (i = 0; i < dc->maxunit; i++) {
1355 		if (dc->devices[i]) {
1356 			dev = dc->devices[i];
1357 			if (dev->driver == driver && dev->parent &&
1358 			    dev->parent->devclass == busclass) {
1359 				if ((error = device_quiesce(dev)) != 0)
1360 					return (error);
1361 			}
1362 		}
1363 	}
1364 
1365 	return (0);
1366 }
1367 
1368 /**
1369  * @internal
1370  */
1371 static driverlink_t
1372 devclass_find_driver_internal(devclass_t dc, const char *classname)
1373 {
1374 	driverlink_t dl;
1375 
1376 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1377 
1378 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1379 		if (!strcmp(dl->driver->name, classname))
1380 			return (dl);
1381 	}
1382 
1383 	PDEBUG(("not found"));
1384 	return (NULL);
1385 }
1386 
1387 /**
1388  * @brief Return the name of the devclass
1389  */
1390 const char *
1391 devclass_get_name(devclass_t dc)
1392 {
1393 	return (dc->name);
1394 }
1395 
1396 /**
1397  * @brief Find a device given a unit number
1398  *
1399  * @param dc		the devclass to search
1400  * @param unit		the unit number to search for
1401  *
1402  * @returns		the device with the given unit number or @c
1403  *			NULL if there is no such device
1404  */
1405 device_t
1406 devclass_get_device(devclass_t dc, int unit)
1407 {
1408 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1409 		return (NULL);
1410 	return (dc->devices[unit]);
1411 }
1412 
1413 /**
1414  * @brief Find the softc field of a device given a unit number
1415  *
1416  * @param dc		the devclass to search
1417  * @param unit		the unit number to search for
1418  *
1419  * @returns		the softc field of the device with the given
1420  *			unit number or @c NULL if there is no such
1421  *			device
1422  */
1423 void *
1424 devclass_get_softc(devclass_t dc, int unit)
1425 {
1426 	device_t dev;
1427 
1428 	dev = devclass_get_device(dc, unit);
1429 	if (!dev)
1430 		return (NULL);
1431 
1432 	return (device_get_softc(dev));
1433 }
1434 
1435 /**
1436  * @brief Get a list of devices in the devclass
1437  *
1438  * An array containing a list of all the devices in the given devclass
1439  * is allocated and returned in @p *devlistp. The number of devices
1440  * in the array is returned in @p *devcountp. The caller should free
1441  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1442  *
1443  * @param dc		the devclass to examine
1444  * @param devlistp	points at location for array pointer return
1445  *			value
1446  * @param devcountp	points at location for array size return value
1447  *
1448  * @retval 0		success
1449  * @retval ENOMEM	the array allocation failed
1450  */
1451 int
1452 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1453 {
1454 	int count, i;
1455 	device_t *list;
1456 
1457 	count = devclass_get_count(dc);
1458 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1459 	if (!list)
1460 		return (ENOMEM);
1461 
1462 	count = 0;
1463 	for (i = 0; i < dc->maxunit; i++) {
1464 		if (dc->devices[i]) {
1465 			list[count] = dc->devices[i];
1466 			count++;
1467 		}
1468 	}
1469 
1470 	*devlistp = list;
1471 	*devcountp = count;
1472 
1473 	return (0);
1474 }
1475 
1476 /**
1477  * @brief Get a list of drivers in the devclass
1478  *
1479  * An array containing a list of pointers to all the drivers in the
1480  * given devclass is allocated and returned in @p *listp.  The number
1481  * of drivers in the array is returned in @p *countp. The caller should
1482  * free the array using @c free(p, M_TEMP).
1483  *
1484  * @param dc		the devclass to examine
1485  * @param listp		gives location for array pointer return value
1486  * @param countp	gives location for number of array elements
1487  *			return value
1488  *
1489  * @retval 0		success
1490  * @retval ENOMEM	the array allocation failed
1491  */
1492 int
1493 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1494 {
1495 	driverlink_t dl;
1496 	driver_t **list;
1497 	int count;
1498 
1499 	count = 0;
1500 	TAILQ_FOREACH(dl, &dc->drivers, link)
1501 		count++;
1502 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1503 	if (list == NULL)
1504 		return (ENOMEM);
1505 
1506 	count = 0;
1507 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1508 		list[count] = dl->driver;
1509 		count++;
1510 	}
1511 	*listp = list;
1512 	*countp = count;
1513 
1514 	return (0);
1515 }
1516 
1517 /**
1518  * @brief Get the number of devices in a devclass
1519  *
1520  * @param dc		the devclass to examine
1521  */
1522 int
1523 devclass_get_count(devclass_t dc)
1524 {
1525 	int count, i;
1526 
1527 	count = 0;
1528 	for (i = 0; i < dc->maxunit; i++)
1529 		if (dc->devices[i])
1530 			count++;
1531 	return (count);
1532 }
1533 
1534 /**
1535  * @brief Get the maximum unit number used in a devclass
1536  *
1537  * Note that this is one greater than the highest currently-allocated
1538  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1539  * that not even the devclass has been allocated yet.
1540  *
1541  * @param dc		the devclass to examine
1542  */
1543 int
1544 devclass_get_maxunit(devclass_t dc)
1545 {
1546 	if (dc == NULL)
1547 		return (-1);
1548 	return (dc->maxunit);
1549 }
1550 
1551 /**
1552  * @brief Find a free unit number in a devclass
1553  *
1554  * This function searches for the first unused unit number greater
1555  * that or equal to @p unit.
1556  *
1557  * @param dc		the devclass to examine
1558  * @param unit		the first unit number to check
1559  */
1560 int
1561 devclass_find_free_unit(devclass_t dc, int unit)
1562 {
1563 	if (dc == NULL)
1564 		return (unit);
1565 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1566 		unit++;
1567 	return (unit);
1568 }
1569 
1570 /**
1571  * @brief Set the parent of a devclass
1572  *
1573  * The parent class is normally initialised automatically by
1574  * DRIVER_MODULE().
1575  *
1576  * @param dc		the devclass to edit
1577  * @param pdc		the new parent devclass
1578  */
1579 void
1580 devclass_set_parent(devclass_t dc, devclass_t pdc)
1581 {
1582 	dc->parent = pdc;
1583 }
1584 
1585 /**
1586  * @brief Get the parent of a devclass
1587  *
1588  * @param dc		the devclass to examine
1589  */
1590 devclass_t
1591 devclass_get_parent(devclass_t dc)
1592 {
1593 	return (dc->parent);
1594 }
1595 
1596 struct sysctl_ctx_list *
1597 devclass_get_sysctl_ctx(devclass_t dc)
1598 {
1599 	return (&dc->sysctl_ctx);
1600 }
1601 
1602 struct sysctl_oid *
1603 devclass_get_sysctl_tree(devclass_t dc)
1604 {
1605 	return (dc->sysctl_tree);
1606 }
1607 
1608 /**
1609  * @internal
1610  * @brief Allocate a unit number
1611  *
1612  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1613  * will do). The allocated unit number is returned in @p *unitp.
1614 
1615  * @param dc		the devclass to allocate from
1616  * @param unitp		points at the location for the allocated unit
1617  *			number
1618  *
1619  * @retval 0		success
1620  * @retval EEXIST	the requested unit number is already allocated
1621  * @retval ENOMEM	memory allocation failure
1622  */
1623 static int
1624 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1625 {
1626 	const char *s;
1627 	int unit = *unitp;
1628 
1629 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1630 
1631 	/* Ask the parent bus if it wants to wire this device. */
1632 	if (unit == -1)
1633 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1634 		    &unit);
1635 
1636 	/* If we were given a wired unit number, check for existing device */
1637 	/* XXX imp XXX */
1638 	if (unit != -1) {
1639 		if (unit >= 0 && unit < dc->maxunit &&
1640 		    dc->devices[unit] != NULL) {
1641 			if (bootverbose)
1642 				printf("%s: %s%d already exists; skipping it\n",
1643 				    dc->name, dc->name, *unitp);
1644 			return (EEXIST);
1645 		}
1646 	} else {
1647 		/* Unwired device, find the next available slot for it */
1648 		unit = 0;
1649 		for (unit = 0;; unit++) {
1650 			/* If there is an "at" hint for a unit then skip it. */
1651 			if (resource_string_value(dc->name, unit, "at", &s) ==
1652 			    0)
1653 				continue;
1654 
1655 			/* If this device slot is already in use, skip it. */
1656 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1657 				continue;
1658 
1659 			break;
1660 		}
1661 	}
1662 
1663 	/*
1664 	 * We've selected a unit beyond the length of the table, so let's
1665 	 * extend the table to make room for all units up to and including
1666 	 * this one.
1667 	 */
1668 	if (unit >= dc->maxunit) {
1669 		device_t *newlist, *oldlist;
1670 		int newsize;
1671 
1672 		oldlist = dc->devices;
1673 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1674 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1675 		if (!newlist)
1676 			return (ENOMEM);
1677 		if (oldlist != NULL)
1678 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1679 		bzero(newlist + dc->maxunit,
1680 		    sizeof(device_t) * (newsize - dc->maxunit));
1681 		dc->devices = newlist;
1682 		dc->maxunit = newsize;
1683 		if (oldlist != NULL)
1684 			free(oldlist, M_BUS);
1685 	}
1686 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1687 
1688 	*unitp = unit;
1689 	return (0);
1690 }
1691 
1692 /**
1693  * @internal
1694  * @brief Add a device to a devclass
1695  *
1696  * A unit number is allocated for the device (using the device's
1697  * preferred unit number if any) and the device is registered in the
1698  * devclass. This allows the device to be looked up by its unit
1699  * number, e.g. by decoding a dev_t minor number.
1700  *
1701  * @param dc		the devclass to add to
1702  * @param dev		the device to add
1703  *
1704  * @retval 0		success
1705  * @retval EEXIST	the requested unit number is already allocated
1706  * @retval ENOMEM	memory allocation failure
1707  */
1708 static int
1709 devclass_add_device(devclass_t dc, device_t dev)
1710 {
1711 	int buflen, error;
1712 
1713 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1714 
1715 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1716 	if (buflen < 0)
1717 		return (ENOMEM);
1718 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1719 	if (!dev->nameunit)
1720 		return (ENOMEM);
1721 
1722 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1723 		free(dev->nameunit, M_BUS);
1724 		dev->nameunit = NULL;
1725 		return (error);
1726 	}
1727 	dc->devices[dev->unit] = dev;
1728 	dev->devclass = dc;
1729 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1730 
1731 	return (0);
1732 }
1733 
1734 /**
1735  * @internal
1736  * @brief Delete a device from a devclass
1737  *
1738  * The device is removed from the devclass's device list and its unit
1739  * number is freed.
1740 
1741  * @param dc		the devclass to delete from
1742  * @param dev		the device to delete
1743  *
1744  * @retval 0		success
1745  */
1746 static int
1747 devclass_delete_device(devclass_t dc, device_t dev)
1748 {
1749 	if (!dc || !dev)
1750 		return (0);
1751 
1752 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1753 
1754 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1755 		panic("devclass_delete_device: inconsistent device class");
1756 	dc->devices[dev->unit] = NULL;
1757 	if (dev->flags & DF_WILDCARD)
1758 		dev->unit = -1;
1759 	dev->devclass = NULL;
1760 	free(dev->nameunit, M_BUS);
1761 	dev->nameunit = NULL;
1762 
1763 	return (0);
1764 }
1765 
1766 /**
1767  * @internal
1768  * @brief Make a new device and add it as a child of @p parent
1769  *
1770  * @param parent	the parent of the new device
1771  * @param name		the devclass name of the new device or @c NULL
1772  *			to leave the devclass unspecified
1773  * @parem unit		the unit number of the new device of @c -1 to
1774  *			leave the unit number unspecified
1775  *
1776  * @returns the new device
1777  */
1778 static device_t
1779 make_device(device_t parent, const char *name, int unit)
1780 {
1781 	device_t dev;
1782 	devclass_t dc;
1783 
1784 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1785 
1786 	if (name) {
1787 		dc = devclass_find_internal(name, NULL, TRUE);
1788 		if (!dc) {
1789 			printf("make_device: can't find device class %s\n",
1790 			    name);
1791 			return (NULL);
1792 		}
1793 	} else {
1794 		dc = NULL;
1795 	}
1796 
1797 	dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1798 	if (!dev)
1799 		return (NULL);
1800 
1801 	dev->parent = parent;
1802 	TAILQ_INIT(&dev->children);
1803 	kobj_init((kobj_t) dev, &null_class);
1804 	dev->driver = NULL;
1805 	dev->devclass = NULL;
1806 	dev->unit = unit;
1807 	dev->nameunit = NULL;
1808 	dev->desc = NULL;
1809 	dev->busy = 0;
1810 	dev->devflags = 0;
1811 	dev->flags = DF_ENABLED;
1812 	dev->order = 0;
1813 	if (unit == -1)
1814 		dev->flags |= DF_WILDCARD;
1815 	if (name) {
1816 		dev->flags |= DF_FIXEDCLASS;
1817 		if (devclass_add_device(dc, dev)) {
1818 			kobj_delete((kobj_t) dev, M_BUS);
1819 			return (NULL);
1820 		}
1821 	}
1822 	dev->ivars = NULL;
1823 	dev->softc = NULL;
1824 
1825 	dev->state = DS_NOTPRESENT;
1826 
1827 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1828 	bus_data_generation_update();
1829 
1830 	return (dev);
1831 }
1832 
1833 /**
1834  * @internal
1835  * @brief Print a description of a device.
1836  */
1837 static int
1838 device_print_child(device_t dev, device_t child)
1839 {
1840 	int retval = 0;
1841 
1842 	if (device_is_alive(child))
1843 		retval += BUS_PRINT_CHILD(dev, child);
1844 	else
1845 		retval += device_printf(child, " not found\n");
1846 
1847 	return (retval);
1848 }
1849 
1850 /**
1851  * @brief Create a new device
1852  *
1853  * This creates a new device and adds it as a child of an existing
1854  * parent device. The new device will be added after the last existing
1855  * child with order zero.
1856  *
1857  * @param dev		the device which will be the parent of the
1858  *			new child device
1859  * @param name		devclass name for new device or @c NULL if not
1860  *			specified
1861  * @param unit		unit number for new device or @c -1 if not
1862  *			specified
1863  *
1864  * @returns		the new device
1865  */
1866 device_t
1867 device_add_child(device_t dev, const char *name, int unit)
1868 {
1869 	return (device_add_child_ordered(dev, 0, name, unit));
1870 }
1871 
1872 /**
1873  * @brief Create a new device
1874  *
1875  * This creates a new device and adds it as a child of an existing
1876  * parent device. The new device will be added after the last existing
1877  * child with the same order.
1878  *
1879  * @param dev		the device which will be the parent of the
1880  *			new child device
1881  * @param order		a value which is used to partially sort the
1882  *			children of @p dev - devices created using
1883  *			lower values of @p order appear first in @p
1884  *			dev's list of children
1885  * @param name		devclass name for new device or @c NULL if not
1886  *			specified
1887  * @param unit		unit number for new device or @c -1 if not
1888  *			specified
1889  *
1890  * @returns		the new device
1891  */
1892 device_t
1893 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1894 {
1895 	device_t child;
1896 	device_t place;
1897 
1898 	PDEBUG(("%s at %s with order %u as unit %d",
1899 	    name, DEVICENAME(dev), order, unit));
1900 	KASSERT(name != NULL || unit == -1,
1901 	    ("child device with wildcard name and specific unit number"));
1902 
1903 	child = make_device(dev, name, unit);
1904 	if (child == NULL)
1905 		return (child);
1906 	child->order = order;
1907 
1908 	TAILQ_FOREACH(place, &dev->children, link) {
1909 		if (place->order > order)
1910 			break;
1911 	}
1912 
1913 	if (place) {
1914 		/*
1915 		 * The device 'place' is the first device whose order is
1916 		 * greater than the new child.
1917 		 */
1918 		TAILQ_INSERT_BEFORE(place, child, link);
1919 	} else {
1920 		/*
1921 		 * The new child's order is greater or equal to the order of
1922 		 * any existing device. Add the child to the tail of the list.
1923 		 */
1924 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1925 	}
1926 
1927 	bus_data_generation_update();
1928 	return (child);
1929 }
1930 
1931 /**
1932  * @brief Delete a device
1933  *
1934  * This function deletes a device along with all of its children. If
1935  * the device currently has a driver attached to it, the device is
1936  * detached first using device_detach().
1937  *
1938  * @param dev		the parent device
1939  * @param child		the device to delete
1940  *
1941  * @retval 0		success
1942  * @retval non-zero	a unit error code describing the error
1943  */
1944 int
1945 device_delete_child(device_t dev, device_t child)
1946 {
1947 	int error;
1948 	device_t grandchild;
1949 
1950 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1951 
1952 	/* detach parent before deleting children, if any */
1953 	if ((error = device_detach(child)) != 0)
1954 		return (error);
1955 
1956 	/* remove children second */
1957 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1958 		error = device_delete_child(child, grandchild);
1959 		if (error)
1960 			return (error);
1961 	}
1962 
1963 	if (child->devclass)
1964 		devclass_delete_device(child->devclass, child);
1965 	if (child->parent)
1966 		BUS_CHILD_DELETED(dev, child);
1967 	TAILQ_REMOVE(&dev->children, child, link);
1968 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1969 	kobj_delete((kobj_t) child, M_BUS);
1970 
1971 	bus_data_generation_update();
1972 	return (0);
1973 }
1974 
1975 /**
1976  * @brief Delete all children devices of the given device, if any.
1977  *
1978  * This function deletes all children devices of the given device, if
1979  * any, using the device_delete_child() function for each device it
1980  * finds. If a child device cannot be deleted, this function will
1981  * return an error code.
1982  *
1983  * @param dev		the parent device
1984  *
1985  * @retval 0		success
1986  * @retval non-zero	a device would not detach
1987  */
1988 int
1989 device_delete_children(device_t dev)
1990 {
1991 	device_t child;
1992 	int error;
1993 
1994 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1995 
1996 	error = 0;
1997 
1998 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1999 		error = device_delete_child(dev, child);
2000 		if (error) {
2001 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
2002 			break;
2003 		}
2004 	}
2005 	return (error);
2006 }
2007 
2008 /**
2009  * @brief Find a device given a unit number
2010  *
2011  * This is similar to devclass_get_devices() but only searches for
2012  * devices which have @p dev as a parent.
2013  *
2014  * @param dev		the parent device to search
2015  * @param unit		the unit number to search for.  If the unit is -1,
2016  *			return the first child of @p dev which has name
2017  *			@p classname (that is, the one with the lowest unit.)
2018  *
2019  * @returns		the device with the given unit number or @c
2020  *			NULL if there is no such device
2021  */
2022 device_t
2023 device_find_child(device_t dev, const char *classname, int unit)
2024 {
2025 	devclass_t dc;
2026 	device_t child;
2027 
2028 	dc = devclass_find(classname);
2029 	if (!dc)
2030 		return (NULL);
2031 
2032 	if (unit != -1) {
2033 		child = devclass_get_device(dc, unit);
2034 		if (child && child->parent == dev)
2035 			return (child);
2036 	} else {
2037 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2038 			child = devclass_get_device(dc, unit);
2039 			if (child && child->parent == dev)
2040 				return (child);
2041 		}
2042 	}
2043 	return (NULL);
2044 }
2045 
2046 /**
2047  * @internal
2048  */
2049 static driverlink_t
2050 first_matching_driver(devclass_t dc, device_t dev)
2051 {
2052 	if (dev->devclass)
2053 		return (devclass_find_driver_internal(dc, dev->devclass->name));
2054 	return (TAILQ_FIRST(&dc->drivers));
2055 }
2056 
2057 /**
2058  * @internal
2059  */
2060 static driverlink_t
2061 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2062 {
2063 	if (dev->devclass) {
2064 		driverlink_t dl;
2065 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2066 			if (!strcmp(dev->devclass->name, dl->driver->name))
2067 				return (dl);
2068 		return (NULL);
2069 	}
2070 	return (TAILQ_NEXT(last, link));
2071 }
2072 
2073 /**
2074  * @internal
2075  */
2076 int
2077 device_probe_child(device_t dev, device_t child)
2078 {
2079 	devclass_t dc;
2080 	driverlink_t best = NULL;
2081 	driverlink_t dl;
2082 	int result, pri = 0;
2083 	int hasclass = (child->devclass != NULL);
2084 
2085 	GIANT_REQUIRED;
2086 
2087 	dc = dev->devclass;
2088 	if (!dc)
2089 		panic("device_probe_child: parent device has no devclass");
2090 
2091 	/*
2092 	 * If the state is already probed, then return.  However, don't
2093 	 * return if we can rebid this object.
2094 	 */
2095 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2096 		return (0);
2097 
2098 	for (; dc; dc = dc->parent) {
2099 		for (dl = first_matching_driver(dc, child);
2100 		     dl;
2101 		     dl = next_matching_driver(dc, child, dl)) {
2102 			/* If this driver's pass is too high, then ignore it. */
2103 			if (dl->pass > bus_current_pass)
2104 				continue;
2105 
2106 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2107 			result = device_set_driver(child, dl->driver);
2108 			if (result == ENOMEM)
2109 				return (result);
2110 			else if (result != 0)
2111 				continue;
2112 			if (!hasclass) {
2113 				if (device_set_devclass(child,
2114 				    dl->driver->name) != 0) {
2115 					char const * devname =
2116 					    device_get_name(child);
2117 					if (devname == NULL)
2118 						devname = "(unknown)";
2119 					printf("driver bug: Unable to set "
2120 					    "devclass (class: %s "
2121 					    "devname: %s)\n",
2122 					    dl->driver->name,
2123 					    devname);
2124 					(void)device_set_driver(child, NULL);
2125 					continue;
2126 				}
2127 			}
2128 
2129 			/* Fetch any flags for the device before probing. */
2130 			resource_int_value(dl->driver->name, child->unit,
2131 			    "flags", &child->devflags);
2132 
2133 			result = DEVICE_PROBE(child);
2134 
2135 			/* Reset flags and devclass before the next probe. */
2136 			child->devflags = 0;
2137 			if (!hasclass)
2138 				(void)device_set_devclass(child, NULL);
2139 
2140 			/*
2141 			 * If the driver returns SUCCESS, there can be
2142 			 * no higher match for this device.
2143 			 */
2144 			if (result == 0) {
2145 				best = dl;
2146 				pri = 0;
2147 				break;
2148 			}
2149 
2150 			/*
2151 			 * Reset DF_QUIET in case this driver doesn't
2152 			 * end up as the best driver.
2153 			 */
2154 			device_verbose(child);
2155 
2156 			/*
2157 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2158 			 * only match on devices whose driver was explicitly
2159 			 * specified.
2160 			 */
2161 			if (result <= BUS_PROBE_NOWILDCARD &&
2162 			    !(child->flags & DF_FIXEDCLASS)) {
2163 				result = ENXIO;
2164 			}
2165 
2166 			/*
2167 			 * The driver returned an error so it
2168 			 * certainly doesn't match.
2169 			 */
2170 			if (result > 0) {
2171 				(void)device_set_driver(child, NULL);
2172 				continue;
2173 			}
2174 
2175 			/*
2176 			 * A priority lower than SUCCESS, remember the
2177 			 * best matching driver. Initialise the value
2178 			 * of pri for the first match.
2179 			 */
2180 			if (best == NULL || result > pri) {
2181 				best = dl;
2182 				pri = result;
2183 				continue;
2184 			}
2185 		}
2186 		/*
2187 		 * If we have an unambiguous match in this devclass,
2188 		 * don't look in the parent.
2189 		 */
2190 		if (best && pri == 0)
2191 			break;
2192 	}
2193 
2194 	/*
2195 	 * If we found a driver, change state and initialise the devclass.
2196 	 */
2197 	/* XXX What happens if we rebid and got no best? */
2198 	if (best) {
2199 		/*
2200 		 * If this device was attached, and we were asked to
2201 		 * rescan, and it is a different driver, then we have
2202 		 * to detach the old driver and reattach this new one.
2203 		 * Note, we don't have to check for DF_REBID here
2204 		 * because if the state is > DS_ALIVE, we know it must
2205 		 * be.
2206 		 *
2207 		 * This assumes that all DF_REBID drivers can have
2208 		 * their probe routine called at any time and that
2209 		 * they are idempotent as well as completely benign in
2210 		 * normal operations.
2211 		 *
2212 		 * We also have to make sure that the detach
2213 		 * succeeded, otherwise we fail the operation (or
2214 		 * maybe it should just fail silently?  I'm torn).
2215 		 */
2216 		if (child->state > DS_ALIVE && best->driver != child->driver)
2217 			if ((result = device_detach(dev)) != 0)
2218 				return (result);
2219 
2220 		/* Set the winning driver, devclass, and flags. */
2221 		if (!child->devclass) {
2222 			result = device_set_devclass(child, best->driver->name);
2223 			if (result != 0)
2224 				return (result);
2225 		}
2226 		result = device_set_driver(child, best->driver);
2227 		if (result != 0)
2228 			return (result);
2229 		resource_int_value(best->driver->name, child->unit,
2230 		    "flags", &child->devflags);
2231 
2232 		if (pri < 0) {
2233 			/*
2234 			 * A bit bogus. Call the probe method again to make
2235 			 * sure that we have the right description.
2236 			 */
2237 			DEVICE_PROBE(child);
2238 #if 0
2239 			child->flags |= DF_REBID;
2240 #endif
2241 		} else
2242 			child->flags &= ~DF_REBID;
2243 		child->state = DS_ALIVE;
2244 
2245 		bus_data_generation_update();
2246 		return (0);
2247 	}
2248 
2249 	return (ENXIO);
2250 }
2251 
2252 /**
2253  * @brief Return the parent of a device
2254  */
2255 device_t
2256 device_get_parent(device_t dev)
2257 {
2258 	return (dev->parent);
2259 }
2260 
2261 /**
2262  * @brief Get a list of children of a device
2263  *
2264  * An array containing a list of all the children of the given device
2265  * is allocated and returned in @p *devlistp. The number of devices
2266  * in the array is returned in @p *devcountp. The caller should free
2267  * the array using @c free(p, M_TEMP).
2268  *
2269  * @param dev		the device to examine
2270  * @param devlistp	points at location for array pointer return
2271  *			value
2272  * @param devcountp	points at location for array size return value
2273  *
2274  * @retval 0		success
2275  * @retval ENOMEM	the array allocation failed
2276  */
2277 int
2278 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2279 {
2280 	int count;
2281 	device_t child;
2282 	device_t *list;
2283 
2284 	count = 0;
2285 	TAILQ_FOREACH(child, &dev->children, link) {
2286 		count++;
2287 	}
2288 	if (count == 0) {
2289 		*devlistp = NULL;
2290 		*devcountp = 0;
2291 		return (0);
2292 	}
2293 
2294 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2295 	if (!list)
2296 		return (ENOMEM);
2297 
2298 	count = 0;
2299 	TAILQ_FOREACH(child, &dev->children, link) {
2300 		list[count] = child;
2301 		count++;
2302 	}
2303 
2304 	*devlistp = list;
2305 	*devcountp = count;
2306 
2307 	return (0);
2308 }
2309 
2310 /**
2311  * @brief Return the current driver for the device or @c NULL if there
2312  * is no driver currently attached
2313  */
2314 driver_t *
2315 device_get_driver(device_t dev)
2316 {
2317 	return (dev->driver);
2318 }
2319 
2320 /**
2321  * @brief Return the current devclass for the device or @c NULL if
2322  * there is none.
2323  */
2324 devclass_t
2325 device_get_devclass(device_t dev)
2326 {
2327 	return (dev->devclass);
2328 }
2329 
2330 /**
2331  * @brief Return the name of the device's devclass or @c NULL if there
2332  * is none.
2333  */
2334 const char *
2335 device_get_name(device_t dev)
2336 {
2337 	if (dev != NULL && dev->devclass)
2338 		return (devclass_get_name(dev->devclass));
2339 	return (NULL);
2340 }
2341 
2342 /**
2343  * @brief Return a string containing the device's devclass name
2344  * followed by an ascii representation of the device's unit number
2345  * (e.g. @c "foo2").
2346  */
2347 const char *
2348 device_get_nameunit(device_t dev)
2349 {
2350 	return (dev->nameunit);
2351 }
2352 
2353 /**
2354  * @brief Return the device's unit number.
2355  */
2356 int
2357 device_get_unit(device_t dev)
2358 {
2359 	return (dev->unit);
2360 }
2361 
2362 /**
2363  * @brief Return the device's description string
2364  */
2365 const char *
2366 device_get_desc(device_t dev)
2367 {
2368 	return (dev->desc);
2369 }
2370 
2371 /**
2372  * @brief Return the device's flags
2373  */
2374 uint32_t
2375 device_get_flags(device_t dev)
2376 {
2377 	return (dev->devflags);
2378 }
2379 
2380 struct sysctl_ctx_list *
2381 device_get_sysctl_ctx(device_t dev)
2382 {
2383 	return (&dev->sysctl_ctx);
2384 }
2385 
2386 struct sysctl_oid *
2387 device_get_sysctl_tree(device_t dev)
2388 {
2389 	return (dev->sysctl_tree);
2390 }
2391 
2392 /**
2393  * @brief Print the name of the device followed by a colon and a space
2394  *
2395  * @returns the number of characters printed
2396  */
2397 int
2398 device_print_prettyname(device_t dev)
2399 {
2400 	const char *name = device_get_name(dev);
2401 
2402 	if (name == NULL)
2403 		return (printf("unknown: "));
2404 	return (printf("%s%d: ", name, device_get_unit(dev)));
2405 }
2406 
2407 /**
2408  * @brief Print the name of the device followed by a colon, a space
2409  * and the result of calling vprintf() with the value of @p fmt and
2410  * the following arguments.
2411  *
2412  * @returns the number of characters printed
2413  */
2414 int
2415 device_printf(device_t dev, const char * fmt, ...)
2416 {
2417 	va_list ap;
2418 	int retval;
2419 
2420 	retval = device_print_prettyname(dev);
2421 	va_start(ap, fmt);
2422 	retval += vprintf(fmt, ap);
2423 	va_end(ap);
2424 	return (retval);
2425 }
2426 
2427 /**
2428  * @internal
2429  */
2430 static void
2431 device_set_desc_internal(device_t dev, const char* desc, int copy)
2432 {
2433 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2434 		free(dev->desc, M_BUS);
2435 		dev->flags &= ~DF_DESCMALLOCED;
2436 		dev->desc = NULL;
2437 	}
2438 
2439 	if (copy && desc) {
2440 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2441 		if (dev->desc) {
2442 			strcpy(dev->desc, desc);
2443 			dev->flags |= DF_DESCMALLOCED;
2444 		}
2445 	} else {
2446 		/* Avoid a -Wcast-qual warning */
2447 		dev->desc = (char *)(uintptr_t) desc;
2448 	}
2449 
2450 	bus_data_generation_update();
2451 }
2452 
2453 /**
2454  * @brief Set the device's description
2455  *
2456  * The value of @c desc should be a string constant that will not
2457  * change (at least until the description is changed in a subsequent
2458  * call to device_set_desc() or device_set_desc_copy()).
2459  */
2460 void
2461 device_set_desc(device_t dev, const char* desc)
2462 {
2463 	device_set_desc_internal(dev, desc, FALSE);
2464 }
2465 
2466 /**
2467  * @brief Set the device's description
2468  *
2469  * The string pointed to by @c desc is copied. Use this function if
2470  * the device description is generated, (e.g. with sprintf()).
2471  */
2472 void
2473 device_set_desc_copy(device_t dev, const char* desc)
2474 {
2475 	device_set_desc_internal(dev, desc, TRUE);
2476 }
2477 
2478 /**
2479  * @brief Set the device's flags
2480  */
2481 void
2482 device_set_flags(device_t dev, uint32_t flags)
2483 {
2484 	dev->devflags = flags;
2485 }
2486 
2487 /**
2488  * @brief Return the device's softc field
2489  *
2490  * The softc is allocated and zeroed when a driver is attached, based
2491  * on the size field of the driver.
2492  */
2493 void *
2494 device_get_softc(device_t dev)
2495 {
2496 	return (dev->softc);
2497 }
2498 
2499 /**
2500  * @brief Set the device's softc field
2501  *
2502  * Most drivers do not need to use this since the softc is allocated
2503  * automatically when the driver is attached.
2504  */
2505 void
2506 device_set_softc(device_t dev, void *softc)
2507 {
2508 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2509 		free(dev->softc, M_BUS_SC);
2510 	dev->softc = softc;
2511 	if (dev->softc)
2512 		dev->flags |= DF_EXTERNALSOFTC;
2513 	else
2514 		dev->flags &= ~DF_EXTERNALSOFTC;
2515 }
2516 
2517 /**
2518  * @brief Free claimed softc
2519  *
2520  * Most drivers do not need to use this since the softc is freed
2521  * automatically when the driver is detached.
2522  */
2523 void
2524 device_free_softc(void *softc)
2525 {
2526 	free(softc, M_BUS_SC);
2527 }
2528 
2529 /**
2530  * @brief Claim softc
2531  *
2532  * This function can be used to let the driver free the automatically
2533  * allocated softc using "device_free_softc()". This function is
2534  * useful when the driver is refcounting the softc and the softc
2535  * cannot be freed when the "device_detach" method is called.
2536  */
2537 void
2538 device_claim_softc(device_t dev)
2539 {
2540 	if (dev->softc)
2541 		dev->flags |= DF_EXTERNALSOFTC;
2542 	else
2543 		dev->flags &= ~DF_EXTERNALSOFTC;
2544 }
2545 
2546 /**
2547  * @brief Get the device's ivars field
2548  *
2549  * The ivars field is used by the parent device to store per-device
2550  * state (e.g. the physical location of the device or a list of
2551  * resources).
2552  */
2553 void *
2554 device_get_ivars(device_t dev)
2555 {
2556 
2557 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2558 	return (dev->ivars);
2559 }
2560 
2561 /**
2562  * @brief Set the device's ivars field
2563  */
2564 void
2565 device_set_ivars(device_t dev, void * ivars)
2566 {
2567 
2568 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2569 	dev->ivars = ivars;
2570 }
2571 
2572 /**
2573  * @brief Return the device's state
2574  */
2575 device_state_t
2576 device_get_state(device_t dev)
2577 {
2578 	return (dev->state);
2579 }
2580 
2581 /**
2582  * @brief Set the DF_ENABLED flag for the device
2583  */
2584 void
2585 device_enable(device_t dev)
2586 {
2587 	dev->flags |= DF_ENABLED;
2588 }
2589 
2590 /**
2591  * @brief Clear the DF_ENABLED flag for the device
2592  */
2593 void
2594 device_disable(device_t dev)
2595 {
2596 	dev->flags &= ~DF_ENABLED;
2597 }
2598 
2599 /**
2600  * @brief Increment the busy counter for the device
2601  */
2602 void
2603 device_busy(device_t dev)
2604 {
2605 	if (dev->state < DS_ATTACHING)
2606 		panic("device_busy: called for unattached device");
2607 	if (dev->busy == 0 && dev->parent)
2608 		device_busy(dev->parent);
2609 	dev->busy++;
2610 	if (dev->state == DS_ATTACHED)
2611 		dev->state = DS_BUSY;
2612 }
2613 
2614 /**
2615  * @brief Decrement the busy counter for the device
2616  */
2617 void
2618 device_unbusy(device_t dev)
2619 {
2620 	if (dev->busy != 0 && dev->state != DS_BUSY &&
2621 	    dev->state != DS_ATTACHING)
2622 		panic("device_unbusy: called for non-busy device %s",
2623 		    device_get_nameunit(dev));
2624 	dev->busy--;
2625 	if (dev->busy == 0) {
2626 		if (dev->parent)
2627 			device_unbusy(dev->parent);
2628 		if (dev->state == DS_BUSY)
2629 			dev->state = DS_ATTACHED;
2630 	}
2631 }
2632 
2633 /**
2634  * @brief Set the DF_QUIET flag for the device
2635  */
2636 void
2637 device_quiet(device_t dev)
2638 {
2639 	dev->flags |= DF_QUIET;
2640 }
2641 
2642 /**
2643  * @brief Clear the DF_QUIET flag for the device
2644  */
2645 void
2646 device_verbose(device_t dev)
2647 {
2648 	dev->flags &= ~DF_QUIET;
2649 }
2650 
2651 /**
2652  * @brief Return non-zero if the DF_QUIET flag is set on the device
2653  */
2654 int
2655 device_is_quiet(device_t dev)
2656 {
2657 	return ((dev->flags & DF_QUIET) != 0);
2658 }
2659 
2660 /**
2661  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2662  */
2663 int
2664 device_is_enabled(device_t dev)
2665 {
2666 	return ((dev->flags & DF_ENABLED) != 0);
2667 }
2668 
2669 /**
2670  * @brief Return non-zero if the device was successfully probed
2671  */
2672 int
2673 device_is_alive(device_t dev)
2674 {
2675 	return (dev->state >= DS_ALIVE);
2676 }
2677 
2678 /**
2679  * @brief Return non-zero if the device currently has a driver
2680  * attached to it
2681  */
2682 int
2683 device_is_attached(device_t dev)
2684 {
2685 	return (dev->state >= DS_ATTACHED);
2686 }
2687 
2688 /**
2689  * @brief Return non-zero if the device is currently suspended.
2690  */
2691 int
2692 device_is_suspended(device_t dev)
2693 {
2694 	return ((dev->flags & DF_SUSPENDED) != 0);
2695 }
2696 
2697 /**
2698  * @brief Set the devclass of a device
2699  * @see devclass_add_device().
2700  */
2701 int
2702 device_set_devclass(device_t dev, const char *classname)
2703 {
2704 	devclass_t dc;
2705 	int error;
2706 
2707 	if (!classname) {
2708 		if (dev->devclass)
2709 			devclass_delete_device(dev->devclass, dev);
2710 		return (0);
2711 	}
2712 
2713 	if (dev->devclass) {
2714 		printf("device_set_devclass: device class already set\n");
2715 		return (EINVAL);
2716 	}
2717 
2718 	dc = devclass_find_internal(classname, NULL, TRUE);
2719 	if (!dc)
2720 		return (ENOMEM);
2721 
2722 	error = devclass_add_device(dc, dev);
2723 
2724 	bus_data_generation_update();
2725 	return (error);
2726 }
2727 
2728 /**
2729  * @brief Set the devclass of a device and mark the devclass fixed.
2730  * @see device_set_devclass()
2731  */
2732 int
2733 device_set_devclass_fixed(device_t dev, const char *classname)
2734 {
2735 	int error;
2736 
2737 	if (classname == NULL)
2738 		return (EINVAL);
2739 
2740 	error = device_set_devclass(dev, classname);
2741 	if (error)
2742 		return (error);
2743 	dev->flags |= DF_FIXEDCLASS;
2744 	return (0);
2745 }
2746 
2747 /**
2748  * @brief Set the driver of a device
2749  *
2750  * @retval 0		success
2751  * @retval EBUSY	the device already has a driver attached
2752  * @retval ENOMEM	a memory allocation failure occurred
2753  */
2754 int
2755 device_set_driver(device_t dev, driver_t *driver)
2756 {
2757 	if (dev->state >= DS_ATTACHED)
2758 		return (EBUSY);
2759 
2760 	if (dev->driver == driver)
2761 		return (0);
2762 
2763 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2764 		free(dev->softc, M_BUS_SC);
2765 		dev->softc = NULL;
2766 	}
2767 	device_set_desc(dev, NULL);
2768 	kobj_delete((kobj_t) dev, NULL);
2769 	dev->driver = driver;
2770 	if (driver) {
2771 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2772 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2773 			dev->softc = malloc(driver->size, M_BUS_SC,
2774 			    M_NOWAIT | M_ZERO);
2775 			if (!dev->softc) {
2776 				kobj_delete((kobj_t) dev, NULL);
2777 				kobj_init((kobj_t) dev, &null_class);
2778 				dev->driver = NULL;
2779 				return (ENOMEM);
2780 			}
2781 		}
2782 	} else {
2783 		kobj_init((kobj_t) dev, &null_class);
2784 	}
2785 
2786 	bus_data_generation_update();
2787 	return (0);
2788 }
2789 
2790 /**
2791  * @brief Probe a device, and return this status.
2792  *
2793  * This function is the core of the device autoconfiguration
2794  * system. Its purpose is to select a suitable driver for a device and
2795  * then call that driver to initialise the hardware appropriately. The
2796  * driver is selected by calling the DEVICE_PROBE() method of a set of
2797  * candidate drivers and then choosing the driver which returned the
2798  * best value. This driver is then attached to the device using
2799  * device_attach().
2800  *
2801  * The set of suitable drivers is taken from the list of drivers in
2802  * the parent device's devclass. If the device was originally created
2803  * with a specific class name (see device_add_child()), only drivers
2804  * with that name are probed, otherwise all drivers in the devclass
2805  * are probed. If no drivers return successful probe values in the
2806  * parent devclass, the search continues in the parent of that
2807  * devclass (see devclass_get_parent()) if any.
2808  *
2809  * @param dev		the device to initialise
2810  *
2811  * @retval 0		success
2812  * @retval ENXIO	no driver was found
2813  * @retval ENOMEM	memory allocation failure
2814  * @retval non-zero	some other unix error code
2815  * @retval -1		Device already attached
2816  */
2817 int
2818 device_probe(device_t dev)
2819 {
2820 	int error;
2821 
2822 	GIANT_REQUIRED;
2823 
2824 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2825 		return (-1);
2826 
2827 	if (!(dev->flags & DF_ENABLED)) {
2828 		if (bootverbose && device_get_name(dev) != NULL) {
2829 			device_print_prettyname(dev);
2830 			printf("not probed (disabled)\n");
2831 		}
2832 		return (-1);
2833 	}
2834 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2835 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2836 		    !(dev->flags & DF_DONENOMATCH)) {
2837 			BUS_PROBE_NOMATCH(dev->parent, dev);
2838 			devnomatch(dev);
2839 			dev->flags |= DF_DONENOMATCH;
2840 		}
2841 		return (error);
2842 	}
2843 	return (0);
2844 }
2845 
2846 /**
2847  * @brief Probe a device and attach a driver if possible
2848  *
2849  * calls device_probe() and attaches if that was successful.
2850  */
2851 int
2852 device_probe_and_attach(device_t dev)
2853 {
2854 	int error;
2855 
2856 	GIANT_REQUIRED;
2857 
2858 	error = device_probe(dev);
2859 	if (error == -1)
2860 		return (0);
2861 	else if (error != 0)
2862 		return (error);
2863 
2864 	CURVNET_SET_QUIET(vnet0);
2865 	error = device_attach(dev);
2866 	CURVNET_RESTORE();
2867 	return error;
2868 }
2869 
2870 /**
2871  * @brief Attach a device driver to a device
2872  *
2873  * This function is a wrapper around the DEVICE_ATTACH() driver
2874  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2875  * device's sysctl tree, optionally prints a description of the device
2876  * and queues a notification event for user-based device management
2877  * services.
2878  *
2879  * Normally this function is only called internally from
2880  * device_probe_and_attach().
2881  *
2882  * @param dev		the device to initialise
2883  *
2884  * @retval 0		success
2885  * @retval ENXIO	no driver was found
2886  * @retval ENOMEM	memory allocation failure
2887  * @retval non-zero	some other unix error code
2888  */
2889 int
2890 device_attach(device_t dev)
2891 {
2892 	uint64_t attachtime;
2893 	int error;
2894 
2895 	if (resource_disabled(dev->driver->name, dev->unit)) {
2896 		device_disable(dev);
2897 		if (bootverbose)
2898 			 device_printf(dev, "disabled via hints entry\n");
2899 		return (ENXIO);
2900 	}
2901 
2902 	device_sysctl_init(dev);
2903 	if (!device_is_quiet(dev))
2904 		device_print_child(dev->parent, dev);
2905 	attachtime = get_cyclecount();
2906 	dev->state = DS_ATTACHING;
2907 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2908 		printf("device_attach: %s%d attach returned %d\n",
2909 		    dev->driver->name, dev->unit, error);
2910 		if (!(dev->flags & DF_FIXEDCLASS))
2911 			devclass_delete_device(dev->devclass, dev);
2912 		(void)device_set_driver(dev, NULL);
2913 		device_sysctl_fini(dev);
2914 		KASSERT(dev->busy == 0, ("attach failed but busy"));
2915 		dev->state = DS_NOTPRESENT;
2916 		return (error);
2917 	}
2918 	attachtime = get_cyclecount() - attachtime;
2919 	/*
2920 	 * 4 bits per device is a reasonable value for desktop and server
2921 	 * hardware with good get_cyclecount() implementations, but WILL
2922 	 * need to be adjusted on other platforms.
2923 	 */
2924 #define	RANDOM_PROBE_BIT_GUESS	4
2925 	if (bootverbose)
2926 		printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n",
2927 		    sizeof(attachtime), RANDOM_PROBE_BIT_GUESS,
2928 		    dev->driver->name, dev->unit);
2929 	random_harvest_direct(&attachtime, sizeof(attachtime),
2930 	    RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH);
2931 	device_sysctl_update(dev);
2932 	if (dev->busy)
2933 		dev->state = DS_BUSY;
2934 	else
2935 		dev->state = DS_ATTACHED;
2936 	dev->flags &= ~DF_DONENOMATCH;
2937 	devadded(dev);
2938 	return (0);
2939 }
2940 
2941 /**
2942  * @brief Detach a driver from a device
2943  *
2944  * This function is a wrapper around the DEVICE_DETACH() driver
2945  * method. If the call to DEVICE_DETACH() succeeds, it calls
2946  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2947  * notification event for user-based device management services and
2948  * cleans up the device's sysctl tree.
2949  *
2950  * @param dev		the device to un-initialise
2951  *
2952  * @retval 0		success
2953  * @retval ENXIO	no driver was found
2954  * @retval ENOMEM	memory allocation failure
2955  * @retval non-zero	some other unix error code
2956  */
2957 int
2958 device_detach(device_t dev)
2959 {
2960 	int error;
2961 
2962 	GIANT_REQUIRED;
2963 
2964 	PDEBUG(("%s", DEVICENAME(dev)));
2965 	if (dev->state == DS_BUSY)
2966 		return (EBUSY);
2967 	if (dev->state != DS_ATTACHED)
2968 		return (0);
2969 
2970 	if ((error = DEVICE_DETACH(dev)) != 0)
2971 		return (error);
2972 	devremoved(dev);
2973 	if (!device_is_quiet(dev))
2974 		device_printf(dev, "detached\n");
2975 	if (dev->parent)
2976 		BUS_CHILD_DETACHED(dev->parent, dev);
2977 
2978 	if (!(dev->flags & DF_FIXEDCLASS))
2979 		devclass_delete_device(dev->devclass, dev);
2980 
2981 	device_verbose(dev);
2982 	dev->state = DS_NOTPRESENT;
2983 	(void)device_set_driver(dev, NULL);
2984 	device_sysctl_fini(dev);
2985 
2986 	return (0);
2987 }
2988 
2989 /**
2990  * @brief Tells a driver to quiesce itself.
2991  *
2992  * This function is a wrapper around the DEVICE_QUIESCE() driver
2993  * method. If the call to DEVICE_QUIESCE() succeeds.
2994  *
2995  * @param dev		the device to quiesce
2996  *
2997  * @retval 0		success
2998  * @retval ENXIO	no driver was found
2999  * @retval ENOMEM	memory allocation failure
3000  * @retval non-zero	some other unix error code
3001  */
3002 int
3003 device_quiesce(device_t dev)
3004 {
3005 
3006 	PDEBUG(("%s", DEVICENAME(dev)));
3007 	if (dev->state == DS_BUSY)
3008 		return (EBUSY);
3009 	if (dev->state != DS_ATTACHED)
3010 		return (0);
3011 
3012 	return (DEVICE_QUIESCE(dev));
3013 }
3014 
3015 /**
3016  * @brief Notify a device of system shutdown
3017  *
3018  * This function calls the DEVICE_SHUTDOWN() driver method if the
3019  * device currently has an attached driver.
3020  *
3021  * @returns the value returned by DEVICE_SHUTDOWN()
3022  */
3023 int
3024 device_shutdown(device_t dev)
3025 {
3026 	if (dev->state < DS_ATTACHED)
3027 		return (0);
3028 	return (DEVICE_SHUTDOWN(dev));
3029 }
3030 
3031 /**
3032  * @brief Set the unit number of a device
3033  *
3034  * This function can be used to override the unit number used for a
3035  * device (e.g. to wire a device to a pre-configured unit number).
3036  */
3037 int
3038 device_set_unit(device_t dev, int unit)
3039 {
3040 	devclass_t dc;
3041 	int err;
3042 
3043 	dc = device_get_devclass(dev);
3044 	if (unit < dc->maxunit && dc->devices[unit])
3045 		return (EBUSY);
3046 	err = devclass_delete_device(dc, dev);
3047 	if (err)
3048 		return (err);
3049 	dev->unit = unit;
3050 	err = devclass_add_device(dc, dev);
3051 	if (err)
3052 		return (err);
3053 
3054 	bus_data_generation_update();
3055 	return (0);
3056 }
3057 
3058 /*======================================*/
3059 /*
3060  * Some useful method implementations to make life easier for bus drivers.
3061  */
3062 
3063 void
3064 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
3065 {
3066 
3067 	bzero(args, sz);
3068 	args->size = sz;
3069 	args->memattr = VM_MEMATTR_UNCACHEABLE;
3070 }
3071 
3072 /**
3073  * @brief Initialise a resource list.
3074  *
3075  * @param rl		the resource list to initialise
3076  */
3077 void
3078 resource_list_init(struct resource_list *rl)
3079 {
3080 	STAILQ_INIT(rl);
3081 }
3082 
3083 /**
3084  * @brief Reclaim memory used by a resource list.
3085  *
3086  * This function frees the memory for all resource entries on the list
3087  * (if any).
3088  *
3089  * @param rl		the resource list to free
3090  */
3091 void
3092 resource_list_free(struct resource_list *rl)
3093 {
3094 	struct resource_list_entry *rle;
3095 
3096 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3097 		if (rle->res)
3098 			panic("resource_list_free: resource entry is busy");
3099 		STAILQ_REMOVE_HEAD(rl, link);
3100 		free(rle, M_BUS);
3101 	}
3102 }
3103 
3104 /**
3105  * @brief Add a resource entry.
3106  *
3107  * This function adds a resource entry using the given @p type, @p
3108  * start, @p end and @p count values. A rid value is chosen by
3109  * searching sequentially for the first unused rid starting at zero.
3110  *
3111  * @param rl		the resource list to edit
3112  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3113  * @param start		the start address of the resource
3114  * @param end		the end address of the resource
3115  * @param count		XXX end-start+1
3116  */
3117 int
3118 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3119     rman_res_t end, rman_res_t count)
3120 {
3121 	int rid;
3122 
3123 	rid = 0;
3124 	while (resource_list_find(rl, type, rid) != NULL)
3125 		rid++;
3126 	resource_list_add(rl, type, rid, start, end, count);
3127 	return (rid);
3128 }
3129 
3130 /**
3131  * @brief Add or modify a resource entry.
3132  *
3133  * If an existing entry exists with the same type and rid, it will be
3134  * modified using the given values of @p start, @p end and @p
3135  * count. If no entry exists, a new one will be created using the
3136  * given values.  The resource list entry that matches is then returned.
3137  *
3138  * @param rl		the resource list to edit
3139  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3140  * @param rid		the resource identifier
3141  * @param start		the start address of the resource
3142  * @param end		the end address of the resource
3143  * @param count		XXX end-start+1
3144  */
3145 struct resource_list_entry *
3146 resource_list_add(struct resource_list *rl, int type, int rid,
3147     rman_res_t start, rman_res_t end, rman_res_t count)
3148 {
3149 	struct resource_list_entry *rle;
3150 
3151 	rle = resource_list_find(rl, type, rid);
3152 	if (!rle) {
3153 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3154 		    M_NOWAIT);
3155 		if (!rle)
3156 			panic("resource_list_add: can't record entry");
3157 		STAILQ_INSERT_TAIL(rl, rle, link);
3158 		rle->type = type;
3159 		rle->rid = rid;
3160 		rle->res = NULL;
3161 		rle->flags = 0;
3162 	}
3163 
3164 	if (rle->res)
3165 		panic("resource_list_add: resource entry is busy");
3166 
3167 	rle->start = start;
3168 	rle->end = end;
3169 	rle->count = count;
3170 	return (rle);
3171 }
3172 
3173 /**
3174  * @brief Determine if a resource entry is busy.
3175  *
3176  * Returns true if a resource entry is busy meaning that it has an
3177  * associated resource that is not an unallocated "reserved" resource.
3178  *
3179  * @param rl		the resource list to search
3180  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3181  * @param rid		the resource identifier
3182  *
3183  * @returns Non-zero if the entry is busy, zero otherwise.
3184  */
3185 int
3186 resource_list_busy(struct resource_list *rl, int type, int rid)
3187 {
3188 	struct resource_list_entry *rle;
3189 
3190 	rle = resource_list_find(rl, type, rid);
3191 	if (rle == NULL || rle->res == NULL)
3192 		return (0);
3193 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3194 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3195 		    ("reserved resource is active"));
3196 		return (0);
3197 	}
3198 	return (1);
3199 }
3200 
3201 /**
3202  * @brief Determine if a resource entry is reserved.
3203  *
3204  * Returns true if a resource entry is reserved meaning that it has an
3205  * associated "reserved" resource.  The resource can either be
3206  * allocated or unallocated.
3207  *
3208  * @param rl		the resource list to search
3209  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3210  * @param rid		the resource identifier
3211  *
3212  * @returns Non-zero if the entry is reserved, zero otherwise.
3213  */
3214 int
3215 resource_list_reserved(struct resource_list *rl, int type, int rid)
3216 {
3217 	struct resource_list_entry *rle;
3218 
3219 	rle = resource_list_find(rl, type, rid);
3220 	if (rle != NULL && rle->flags & RLE_RESERVED)
3221 		return (1);
3222 	return (0);
3223 }
3224 
3225 /**
3226  * @brief Find a resource entry by type and rid.
3227  *
3228  * @param rl		the resource list to search
3229  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3230  * @param rid		the resource identifier
3231  *
3232  * @returns the resource entry pointer or NULL if there is no such
3233  * entry.
3234  */
3235 struct resource_list_entry *
3236 resource_list_find(struct resource_list *rl, int type, int rid)
3237 {
3238 	struct resource_list_entry *rle;
3239 
3240 	STAILQ_FOREACH(rle, rl, link) {
3241 		if (rle->type == type && rle->rid == rid)
3242 			return (rle);
3243 	}
3244 	return (NULL);
3245 }
3246 
3247 /**
3248  * @brief Delete a resource entry.
3249  *
3250  * @param rl		the resource list to edit
3251  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3252  * @param rid		the resource identifier
3253  */
3254 void
3255 resource_list_delete(struct resource_list *rl, int type, int rid)
3256 {
3257 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3258 
3259 	if (rle) {
3260 		if (rle->res != NULL)
3261 			panic("resource_list_delete: resource has not been released");
3262 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3263 		free(rle, M_BUS);
3264 	}
3265 }
3266 
3267 /**
3268  * @brief Allocate a reserved resource
3269  *
3270  * This can be used by busses to force the allocation of resources
3271  * that are always active in the system even if they are not allocated
3272  * by a driver (e.g. PCI BARs).  This function is usually called when
3273  * adding a new child to the bus.  The resource is allocated from the
3274  * parent bus when it is reserved.  The resource list entry is marked
3275  * with RLE_RESERVED to note that it is a reserved resource.
3276  *
3277  * Subsequent attempts to allocate the resource with
3278  * resource_list_alloc() will succeed the first time and will set
3279  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3280  * resource that has been allocated is released with
3281  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3282  * the actual resource remains allocated.  The resource can be released to
3283  * the parent bus by calling resource_list_unreserve().
3284  *
3285  * @param rl		the resource list to allocate from
3286  * @param bus		the parent device of @p child
3287  * @param child		the device for which the resource is being reserved
3288  * @param type		the type of resource to allocate
3289  * @param rid		a pointer to the resource identifier
3290  * @param start		hint at the start of the resource range - pass
3291  *			@c 0 for any start address
3292  * @param end		hint at the end of the resource range - pass
3293  *			@c ~0 for any end address
3294  * @param count		hint at the size of range required - pass @c 1
3295  *			for any size
3296  * @param flags		any extra flags to control the resource
3297  *			allocation - see @c RF_XXX flags in
3298  *			<sys/rman.h> for details
3299  *
3300  * @returns		the resource which was allocated or @c NULL if no
3301  *			resource could be allocated
3302  */
3303 struct resource *
3304 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3305     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3306 {
3307 	struct resource_list_entry *rle = NULL;
3308 	int passthrough = (device_get_parent(child) != bus);
3309 	struct resource *r;
3310 
3311 	if (passthrough)
3312 		panic(
3313     "resource_list_reserve() should only be called for direct children");
3314 	if (flags & RF_ACTIVE)
3315 		panic(
3316     "resource_list_reserve() should only reserve inactive resources");
3317 
3318 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3319 	    flags);
3320 	if (r != NULL) {
3321 		rle = resource_list_find(rl, type, *rid);
3322 		rle->flags |= RLE_RESERVED;
3323 	}
3324 	return (r);
3325 }
3326 
3327 /**
3328  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3329  *
3330  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3331  * and passing the allocation up to the parent of @p bus. This assumes
3332  * that the first entry of @c device_get_ivars(child) is a struct
3333  * resource_list. This also handles 'passthrough' allocations where a
3334  * child is a remote descendant of bus by passing the allocation up to
3335  * the parent of bus.
3336  *
3337  * Typically, a bus driver would store a list of child resources
3338  * somewhere in the child device's ivars (see device_get_ivars()) and
3339  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3340  * then call resource_list_alloc() to perform the allocation.
3341  *
3342  * @param rl		the resource list to allocate from
3343  * @param bus		the parent device of @p child
3344  * @param child		the device which is requesting an allocation
3345  * @param type		the type of resource to allocate
3346  * @param rid		a pointer to the resource identifier
3347  * @param start		hint at the start of the resource range - pass
3348  *			@c 0 for any start address
3349  * @param end		hint at the end of the resource range - pass
3350  *			@c ~0 for any end address
3351  * @param count		hint at the size of range required - pass @c 1
3352  *			for any size
3353  * @param flags		any extra flags to control the resource
3354  *			allocation - see @c RF_XXX flags in
3355  *			<sys/rman.h> for details
3356  *
3357  * @returns		the resource which was allocated or @c NULL if no
3358  *			resource could be allocated
3359  */
3360 struct resource *
3361 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3362     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3363 {
3364 	struct resource_list_entry *rle = NULL;
3365 	int passthrough = (device_get_parent(child) != bus);
3366 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3367 
3368 	if (passthrough) {
3369 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3370 		    type, rid, start, end, count, flags));
3371 	}
3372 
3373 	rle = resource_list_find(rl, type, *rid);
3374 
3375 	if (!rle)
3376 		return (NULL);		/* no resource of that type/rid */
3377 
3378 	if (rle->res) {
3379 		if (rle->flags & RLE_RESERVED) {
3380 			if (rle->flags & RLE_ALLOCATED)
3381 				return (NULL);
3382 			if ((flags & RF_ACTIVE) &&
3383 			    bus_activate_resource(child, type, *rid,
3384 			    rle->res) != 0)
3385 				return (NULL);
3386 			rle->flags |= RLE_ALLOCATED;
3387 			return (rle->res);
3388 		}
3389 		device_printf(bus,
3390 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3391 		    type, device_get_nameunit(child));
3392 		return (NULL);
3393 	}
3394 
3395 	if (isdefault) {
3396 		start = rle->start;
3397 		count = ulmax(count, rle->count);
3398 		end = ulmax(rle->end, start + count - 1);
3399 	}
3400 
3401 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3402 	    type, rid, start, end, count, flags);
3403 
3404 	/*
3405 	 * Record the new range.
3406 	 */
3407 	if (rle->res) {
3408 		rle->start = rman_get_start(rle->res);
3409 		rle->end = rman_get_end(rle->res);
3410 		rle->count = count;
3411 	}
3412 
3413 	return (rle->res);
3414 }
3415 
3416 /**
3417  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3418  *
3419  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3420  * used with resource_list_alloc().
3421  *
3422  * @param rl		the resource list which was allocated from
3423  * @param bus		the parent device of @p child
3424  * @param child		the device which is requesting a release
3425  * @param type		the type of resource to release
3426  * @param rid		the resource identifier
3427  * @param res		the resource to release
3428  *
3429  * @retval 0		success
3430  * @retval non-zero	a standard unix error code indicating what
3431  *			error condition prevented the operation
3432  */
3433 int
3434 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3435     int type, int rid, struct resource *res)
3436 {
3437 	struct resource_list_entry *rle = NULL;
3438 	int passthrough = (device_get_parent(child) != bus);
3439 	int error;
3440 
3441 	if (passthrough) {
3442 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3443 		    type, rid, res));
3444 	}
3445 
3446 	rle = resource_list_find(rl, type, rid);
3447 
3448 	if (!rle)
3449 		panic("resource_list_release: can't find resource");
3450 	if (!rle->res)
3451 		panic("resource_list_release: resource entry is not busy");
3452 	if (rle->flags & RLE_RESERVED) {
3453 		if (rle->flags & RLE_ALLOCATED) {
3454 			if (rman_get_flags(res) & RF_ACTIVE) {
3455 				error = bus_deactivate_resource(child, type,
3456 				    rid, res);
3457 				if (error)
3458 					return (error);
3459 			}
3460 			rle->flags &= ~RLE_ALLOCATED;
3461 			return (0);
3462 		}
3463 		return (EINVAL);
3464 	}
3465 
3466 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3467 	    type, rid, res);
3468 	if (error)
3469 		return (error);
3470 
3471 	rle->res = NULL;
3472 	return (0);
3473 }
3474 
3475 /**
3476  * @brief Release all active resources of a given type
3477  *
3478  * Release all active resources of a specified type.  This is intended
3479  * to be used to cleanup resources leaked by a driver after detach or
3480  * a failed attach.
3481  *
3482  * @param rl		the resource list which was allocated from
3483  * @param bus		the parent device of @p child
3484  * @param child		the device whose active resources are being released
3485  * @param type		the type of resources to release
3486  *
3487  * @retval 0		success
3488  * @retval EBUSY	at least one resource was active
3489  */
3490 int
3491 resource_list_release_active(struct resource_list *rl, device_t bus,
3492     device_t child, int type)
3493 {
3494 	struct resource_list_entry *rle;
3495 	int error, retval;
3496 
3497 	retval = 0;
3498 	STAILQ_FOREACH(rle, rl, link) {
3499 		if (rle->type != type)
3500 			continue;
3501 		if (rle->res == NULL)
3502 			continue;
3503 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3504 		    RLE_RESERVED)
3505 			continue;
3506 		retval = EBUSY;
3507 		error = resource_list_release(rl, bus, child, type,
3508 		    rman_get_rid(rle->res), rle->res);
3509 		if (error != 0)
3510 			device_printf(bus,
3511 			    "Failed to release active resource: %d\n", error);
3512 	}
3513 	return (retval);
3514 }
3515 
3516 
3517 /**
3518  * @brief Fully release a reserved resource
3519  *
3520  * Fully releases a resource reserved via resource_list_reserve().
3521  *
3522  * @param rl		the resource list which was allocated from
3523  * @param bus		the parent device of @p child
3524  * @param child		the device whose reserved resource is being released
3525  * @param type		the type of resource to release
3526  * @param rid		the resource identifier
3527  * @param res		the resource to release
3528  *
3529  * @retval 0		success
3530  * @retval non-zero	a standard unix error code indicating what
3531  *			error condition prevented the operation
3532  */
3533 int
3534 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3535     int type, int rid)
3536 {
3537 	struct resource_list_entry *rle = NULL;
3538 	int passthrough = (device_get_parent(child) != bus);
3539 
3540 	if (passthrough)
3541 		panic(
3542     "resource_list_unreserve() should only be called for direct children");
3543 
3544 	rle = resource_list_find(rl, type, rid);
3545 
3546 	if (!rle)
3547 		panic("resource_list_unreserve: can't find resource");
3548 	if (!(rle->flags & RLE_RESERVED))
3549 		return (EINVAL);
3550 	if (rle->flags & RLE_ALLOCATED)
3551 		return (EBUSY);
3552 	rle->flags &= ~RLE_RESERVED;
3553 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3554 }
3555 
3556 /**
3557  * @brief Print a description of resources in a resource list
3558  *
3559  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3560  * The name is printed if at least one resource of the given type is available.
3561  * The format is used to print resource start and end.
3562  *
3563  * @param rl		the resource list to print
3564  * @param name		the name of @p type, e.g. @c "memory"
3565  * @param type		type type of resource entry to print
3566  * @param format	printf(9) format string to print resource
3567  *			start and end values
3568  *
3569  * @returns		the number of characters printed
3570  */
3571 int
3572 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3573     const char *format)
3574 {
3575 	struct resource_list_entry *rle;
3576 	int printed, retval;
3577 
3578 	printed = 0;
3579 	retval = 0;
3580 	/* Yes, this is kinda cheating */
3581 	STAILQ_FOREACH(rle, rl, link) {
3582 		if (rle->type == type) {
3583 			if (printed == 0)
3584 				retval += printf(" %s ", name);
3585 			else
3586 				retval += printf(",");
3587 			printed++;
3588 			retval += printf(format, rle->start);
3589 			if (rle->count > 1) {
3590 				retval += printf("-");
3591 				retval += printf(format, rle->start +
3592 						 rle->count - 1);
3593 			}
3594 		}
3595 	}
3596 	return (retval);
3597 }
3598 
3599 /**
3600  * @brief Releases all the resources in a list.
3601  *
3602  * @param rl		The resource list to purge.
3603  *
3604  * @returns		nothing
3605  */
3606 void
3607 resource_list_purge(struct resource_list *rl)
3608 {
3609 	struct resource_list_entry *rle;
3610 
3611 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3612 		if (rle->res)
3613 			bus_release_resource(rman_get_device(rle->res),
3614 			    rle->type, rle->rid, rle->res);
3615 		STAILQ_REMOVE_HEAD(rl, link);
3616 		free(rle, M_BUS);
3617 	}
3618 }
3619 
3620 device_t
3621 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3622 {
3623 
3624 	return (device_add_child_ordered(dev, order, name, unit));
3625 }
3626 
3627 /**
3628  * @brief Helper function for implementing DEVICE_PROBE()
3629  *
3630  * This function can be used to help implement the DEVICE_PROBE() for
3631  * a bus (i.e. a device which has other devices attached to it). It
3632  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3633  * devclass.
3634  */
3635 int
3636 bus_generic_probe(device_t dev)
3637 {
3638 	devclass_t dc = dev->devclass;
3639 	driverlink_t dl;
3640 
3641 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3642 		/*
3643 		 * If this driver's pass is too high, then ignore it.
3644 		 * For most drivers in the default pass, this will
3645 		 * never be true.  For early-pass drivers they will
3646 		 * only call the identify routines of eligible drivers
3647 		 * when this routine is called.  Drivers for later
3648 		 * passes should have their identify routines called
3649 		 * on early-pass busses during BUS_NEW_PASS().
3650 		 */
3651 		if (dl->pass > bus_current_pass)
3652 			continue;
3653 		DEVICE_IDENTIFY(dl->driver, dev);
3654 	}
3655 
3656 	return (0);
3657 }
3658 
3659 /**
3660  * @brief Helper function for implementing DEVICE_ATTACH()
3661  *
3662  * This function can be used to help implement the DEVICE_ATTACH() for
3663  * a bus. It calls device_probe_and_attach() for each of the device's
3664  * children.
3665  */
3666 int
3667 bus_generic_attach(device_t dev)
3668 {
3669 	device_t child;
3670 
3671 	TAILQ_FOREACH(child, &dev->children, link) {
3672 		device_probe_and_attach(child);
3673 	}
3674 
3675 	return (0);
3676 }
3677 
3678 /**
3679  * @brief Helper function for implementing DEVICE_DETACH()
3680  *
3681  * This function can be used to help implement the DEVICE_DETACH() for
3682  * a bus. It calls device_detach() for each of the device's
3683  * children.
3684  */
3685 int
3686 bus_generic_detach(device_t dev)
3687 {
3688 	device_t child;
3689 	int error;
3690 
3691 	if (dev->state != DS_ATTACHED)
3692 		return (EBUSY);
3693 
3694 	TAILQ_FOREACH(child, &dev->children, link) {
3695 		if ((error = device_detach(child)) != 0)
3696 			return (error);
3697 	}
3698 
3699 	return (0);
3700 }
3701 
3702 /**
3703  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3704  *
3705  * This function can be used to help implement the DEVICE_SHUTDOWN()
3706  * for a bus. It calls device_shutdown() for each of the device's
3707  * children.
3708  */
3709 int
3710 bus_generic_shutdown(device_t dev)
3711 {
3712 	device_t child;
3713 
3714 	TAILQ_FOREACH(child, &dev->children, link) {
3715 		device_shutdown(child);
3716 	}
3717 
3718 	return (0);
3719 }
3720 
3721 /**
3722  * @brief Default function for suspending a child device.
3723  *
3724  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3725  */
3726 int
3727 bus_generic_suspend_child(device_t dev, device_t child)
3728 {
3729 	int	error;
3730 
3731 	error = DEVICE_SUSPEND(child);
3732 
3733 	if (error == 0)
3734 		child->flags |= DF_SUSPENDED;
3735 
3736 	return (error);
3737 }
3738 
3739 /**
3740  * @brief Default function for resuming a child device.
3741  *
3742  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3743  */
3744 int
3745 bus_generic_resume_child(device_t dev, device_t child)
3746 {
3747 
3748 	DEVICE_RESUME(child);
3749 	child->flags &= ~DF_SUSPENDED;
3750 
3751 	return (0);
3752 }
3753 
3754 /**
3755  * @brief Helper function for implementing DEVICE_SUSPEND()
3756  *
3757  * This function can be used to help implement the DEVICE_SUSPEND()
3758  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3759  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3760  * operation is aborted and any devices which were suspended are
3761  * resumed immediately by calling their DEVICE_RESUME() methods.
3762  */
3763 int
3764 bus_generic_suspend(device_t dev)
3765 {
3766 	int		error;
3767 	device_t	child, child2;
3768 
3769 	TAILQ_FOREACH(child, &dev->children, link) {
3770 		error = BUS_SUSPEND_CHILD(dev, child);
3771 		if (error) {
3772 			for (child2 = TAILQ_FIRST(&dev->children);
3773 			     child2 && child2 != child;
3774 			     child2 = TAILQ_NEXT(child2, link))
3775 				BUS_RESUME_CHILD(dev, child2);
3776 			return (error);
3777 		}
3778 	}
3779 	return (0);
3780 }
3781 
3782 /**
3783  * @brief Helper function for implementing DEVICE_RESUME()
3784  *
3785  * This function can be used to help implement the DEVICE_RESUME() for
3786  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3787  */
3788 int
3789 bus_generic_resume(device_t dev)
3790 {
3791 	device_t	child;
3792 
3793 	TAILQ_FOREACH(child, &dev->children, link) {
3794 		BUS_RESUME_CHILD(dev, child);
3795 		/* if resume fails, there's nothing we can usefully do... */
3796 	}
3797 	return (0);
3798 }
3799 
3800 /**
3801  * @brief Helper function for implementing BUS_PRINT_CHILD().
3802  *
3803  * This function prints the first part of the ascii representation of
3804  * @p child, including its name, unit and description (if any - see
3805  * device_set_desc()).
3806  *
3807  * @returns the number of characters printed
3808  */
3809 int
3810 bus_print_child_header(device_t dev, device_t child)
3811 {
3812 	int	retval = 0;
3813 
3814 	if (device_get_desc(child)) {
3815 		retval += device_printf(child, "<%s>", device_get_desc(child));
3816 	} else {
3817 		retval += printf("%s", device_get_nameunit(child));
3818 	}
3819 
3820 	return (retval);
3821 }
3822 
3823 /**
3824  * @brief Helper function for implementing BUS_PRINT_CHILD().
3825  *
3826  * This function prints the last part of the ascii representation of
3827  * @p child, which consists of the string @c " on " followed by the
3828  * name and unit of the @p dev.
3829  *
3830  * @returns the number of characters printed
3831  */
3832 int
3833 bus_print_child_footer(device_t dev, device_t child)
3834 {
3835 	return (printf(" on %s\n", device_get_nameunit(dev)));
3836 }
3837 
3838 /**
3839  * @brief Helper function for implementing BUS_PRINT_CHILD().
3840  *
3841  * This function prints out the VM domain for the given device.
3842  *
3843  * @returns the number of characters printed
3844  */
3845 int
3846 bus_print_child_domain(device_t dev, device_t child)
3847 {
3848 	int domain;
3849 
3850 	/* No domain? Don't print anything */
3851 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3852 		return (0);
3853 
3854 	return (printf(" numa-domain %d", domain));
3855 }
3856 
3857 /**
3858  * @brief Helper function for implementing BUS_PRINT_CHILD().
3859  *
3860  * This function simply calls bus_print_child_header() followed by
3861  * bus_print_child_footer().
3862  *
3863  * @returns the number of characters printed
3864  */
3865 int
3866 bus_generic_print_child(device_t dev, device_t child)
3867 {
3868 	int	retval = 0;
3869 
3870 	retval += bus_print_child_header(dev, child);
3871 	retval += bus_print_child_domain(dev, child);
3872 	retval += bus_print_child_footer(dev, child);
3873 
3874 	return (retval);
3875 }
3876 
3877 /**
3878  * @brief Stub function for implementing BUS_READ_IVAR().
3879  *
3880  * @returns ENOENT
3881  */
3882 int
3883 bus_generic_read_ivar(device_t dev, device_t child, int index,
3884     uintptr_t * result)
3885 {
3886 	return (ENOENT);
3887 }
3888 
3889 /**
3890  * @brief Stub function for implementing BUS_WRITE_IVAR().
3891  *
3892  * @returns ENOENT
3893  */
3894 int
3895 bus_generic_write_ivar(device_t dev, device_t child, int index,
3896     uintptr_t value)
3897 {
3898 	return (ENOENT);
3899 }
3900 
3901 /**
3902  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3903  *
3904  * @returns NULL
3905  */
3906 struct resource_list *
3907 bus_generic_get_resource_list(device_t dev, device_t child)
3908 {
3909 	return (NULL);
3910 }
3911 
3912 /**
3913  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3914  *
3915  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3916  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3917  * and then calls device_probe_and_attach() for each unattached child.
3918  */
3919 void
3920 bus_generic_driver_added(device_t dev, driver_t *driver)
3921 {
3922 	device_t child;
3923 
3924 	DEVICE_IDENTIFY(driver, dev);
3925 	TAILQ_FOREACH(child, &dev->children, link) {
3926 		if (child->state == DS_NOTPRESENT ||
3927 		    (child->flags & DF_REBID))
3928 			device_probe_and_attach(child);
3929 	}
3930 }
3931 
3932 /**
3933  * @brief Helper function for implementing BUS_NEW_PASS().
3934  *
3935  * This implementing of BUS_NEW_PASS() first calls the identify
3936  * routines for any drivers that probe at the current pass.  Then it
3937  * walks the list of devices for this bus.  If a device is already
3938  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3939  * device is not already attached, it attempts to attach a driver to
3940  * it.
3941  */
3942 void
3943 bus_generic_new_pass(device_t dev)
3944 {
3945 	driverlink_t dl;
3946 	devclass_t dc;
3947 	device_t child;
3948 
3949 	dc = dev->devclass;
3950 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3951 		if (dl->pass == bus_current_pass)
3952 			DEVICE_IDENTIFY(dl->driver, dev);
3953 	}
3954 	TAILQ_FOREACH(child, &dev->children, link) {
3955 		if (child->state >= DS_ATTACHED)
3956 			BUS_NEW_PASS(child);
3957 		else if (child->state == DS_NOTPRESENT)
3958 			device_probe_and_attach(child);
3959 	}
3960 }
3961 
3962 /**
3963  * @brief Helper function for implementing BUS_SETUP_INTR().
3964  *
3965  * This simple implementation of BUS_SETUP_INTR() simply calls the
3966  * BUS_SETUP_INTR() method of the parent of @p dev.
3967  */
3968 int
3969 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3970     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3971     void **cookiep)
3972 {
3973 	/* Propagate up the bus hierarchy until someone handles it. */
3974 	if (dev->parent)
3975 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3976 		    filter, intr, arg, cookiep));
3977 	return (EINVAL);
3978 }
3979 
3980 /**
3981  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3982  *
3983  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3984  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3985  */
3986 int
3987 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3988     void *cookie)
3989 {
3990 	/* Propagate up the bus hierarchy until someone handles it. */
3991 	if (dev->parent)
3992 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3993 	return (EINVAL);
3994 }
3995 
3996 /**
3997  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3998  *
3999  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
4000  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
4001  */
4002 int
4003 bus_generic_adjust_resource(device_t dev, device_t child, int type,
4004     struct resource *r, rman_res_t start, rman_res_t end)
4005 {
4006 	/* Propagate up the bus hierarchy until someone handles it. */
4007 	if (dev->parent)
4008 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
4009 		    end));
4010 	return (EINVAL);
4011 }
4012 
4013 /**
4014  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4015  *
4016  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4017  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4018  */
4019 struct resource *
4020 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4021     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4022 {
4023 	/* Propagate up the bus hierarchy until someone handles it. */
4024 	if (dev->parent)
4025 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4026 		    start, end, count, flags));
4027 	return (NULL);
4028 }
4029 
4030 /**
4031  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4032  *
4033  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4034  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4035  */
4036 int
4037 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
4038     struct resource *r)
4039 {
4040 	/* Propagate up the bus hierarchy until someone handles it. */
4041 	if (dev->parent)
4042 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
4043 		    r));
4044 	return (EINVAL);
4045 }
4046 
4047 /**
4048  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4049  *
4050  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4051  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4052  */
4053 int
4054 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4055     struct resource *r)
4056 {
4057 	/* Propagate up the bus hierarchy until someone handles it. */
4058 	if (dev->parent)
4059 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4060 		    r));
4061 	return (EINVAL);
4062 }
4063 
4064 /**
4065  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4066  *
4067  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4068  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4069  */
4070 int
4071 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4072     int rid, struct resource *r)
4073 {
4074 	/* Propagate up the bus hierarchy until someone handles it. */
4075 	if (dev->parent)
4076 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4077 		    r));
4078 	return (EINVAL);
4079 }
4080 
4081 /**
4082  * @brief Helper function for implementing BUS_MAP_RESOURCE().
4083  *
4084  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4085  * BUS_MAP_RESOURCE() method of the parent of @p dev.
4086  */
4087 int
4088 bus_generic_map_resource(device_t dev, device_t child, int type,
4089     struct resource *r, struct resource_map_request *args,
4090     struct resource_map *map)
4091 {
4092 	/* Propagate up the bus hierarchy until someone handles it. */
4093 	if (dev->parent)
4094 		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
4095 		    map));
4096 	return (EINVAL);
4097 }
4098 
4099 /**
4100  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4101  *
4102  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4103  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4104  */
4105 int
4106 bus_generic_unmap_resource(device_t dev, device_t child, int type,
4107     struct resource *r, struct resource_map *map)
4108 {
4109 	/* Propagate up the bus hierarchy until someone handles it. */
4110 	if (dev->parent)
4111 		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
4112 	return (EINVAL);
4113 }
4114 
4115 /**
4116  * @brief Helper function for implementing BUS_BIND_INTR().
4117  *
4118  * This simple implementation of BUS_BIND_INTR() simply calls the
4119  * BUS_BIND_INTR() method of the parent of @p dev.
4120  */
4121 int
4122 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4123     int cpu)
4124 {
4125 
4126 	/* Propagate up the bus hierarchy until someone handles it. */
4127 	if (dev->parent)
4128 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4129 	return (EINVAL);
4130 }
4131 
4132 /**
4133  * @brief Helper function for implementing BUS_CONFIG_INTR().
4134  *
4135  * This simple implementation of BUS_CONFIG_INTR() simply calls the
4136  * BUS_CONFIG_INTR() method of the parent of @p dev.
4137  */
4138 int
4139 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4140     enum intr_polarity pol)
4141 {
4142 
4143 	/* Propagate up the bus hierarchy until someone handles it. */
4144 	if (dev->parent)
4145 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4146 	return (EINVAL);
4147 }
4148 
4149 /**
4150  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4151  *
4152  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4153  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4154  */
4155 int
4156 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4157     void *cookie, const char *descr)
4158 {
4159 
4160 	/* Propagate up the bus hierarchy until someone handles it. */
4161 	if (dev->parent)
4162 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4163 		    descr));
4164 	return (EINVAL);
4165 }
4166 
4167 /**
4168  * @brief Helper function for implementing BUS_GET_CPUS().
4169  *
4170  * This simple implementation of BUS_GET_CPUS() simply calls the
4171  * BUS_GET_CPUS() method of the parent of @p dev.
4172  */
4173 int
4174 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4175     size_t setsize, cpuset_t *cpuset)
4176 {
4177 
4178 	/* Propagate up the bus hierarchy until someone handles it. */
4179 	if (dev->parent != NULL)
4180 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4181 	return (EINVAL);
4182 }
4183 
4184 /**
4185  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4186  *
4187  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4188  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4189  */
4190 bus_dma_tag_t
4191 bus_generic_get_dma_tag(device_t dev, device_t child)
4192 {
4193 
4194 	/* Propagate up the bus hierarchy until someone handles it. */
4195 	if (dev->parent != NULL)
4196 		return (BUS_GET_DMA_TAG(dev->parent, child));
4197 	return (NULL);
4198 }
4199 
4200 /**
4201  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4202  *
4203  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4204  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4205  */
4206 bus_space_tag_t
4207 bus_generic_get_bus_tag(device_t dev, device_t child)
4208 {
4209 
4210 	/* Propagate up the bus hierarchy until someone handles it. */
4211 	if (dev->parent != NULL)
4212 		return (BUS_GET_BUS_TAG(dev->parent, child));
4213 	return ((bus_space_tag_t)0);
4214 }
4215 
4216 /**
4217  * @brief Helper function for implementing BUS_GET_RESOURCE().
4218  *
4219  * This implementation of BUS_GET_RESOURCE() uses the
4220  * resource_list_find() function to do most of the work. It calls
4221  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4222  * search.
4223  */
4224 int
4225 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4226     rman_res_t *startp, rman_res_t *countp)
4227 {
4228 	struct resource_list *		rl = NULL;
4229 	struct resource_list_entry *	rle = NULL;
4230 
4231 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4232 	if (!rl)
4233 		return (EINVAL);
4234 
4235 	rle = resource_list_find(rl, type, rid);
4236 	if (!rle)
4237 		return (ENOENT);
4238 
4239 	if (startp)
4240 		*startp = rle->start;
4241 	if (countp)
4242 		*countp = rle->count;
4243 
4244 	return (0);
4245 }
4246 
4247 /**
4248  * @brief Helper function for implementing BUS_SET_RESOURCE().
4249  *
4250  * This implementation of BUS_SET_RESOURCE() uses the
4251  * resource_list_add() function to do most of the work. It calls
4252  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4253  * edit.
4254  */
4255 int
4256 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4257     rman_res_t start, rman_res_t count)
4258 {
4259 	struct resource_list *		rl = NULL;
4260 
4261 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4262 	if (!rl)
4263 		return (EINVAL);
4264 
4265 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4266 
4267 	return (0);
4268 }
4269 
4270 /**
4271  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4272  *
4273  * This implementation of BUS_DELETE_RESOURCE() uses the
4274  * resource_list_delete() function to do most of the work. It calls
4275  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4276  * edit.
4277  */
4278 void
4279 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4280 {
4281 	struct resource_list *		rl = NULL;
4282 
4283 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4284 	if (!rl)
4285 		return;
4286 
4287 	resource_list_delete(rl, type, rid);
4288 
4289 	return;
4290 }
4291 
4292 /**
4293  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4294  *
4295  * This implementation of BUS_RELEASE_RESOURCE() uses the
4296  * resource_list_release() function to do most of the work. It calls
4297  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4298  */
4299 int
4300 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4301     int rid, struct resource *r)
4302 {
4303 	struct resource_list *		rl = NULL;
4304 
4305 	if (device_get_parent(child) != dev)
4306 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4307 		    type, rid, r));
4308 
4309 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4310 	if (!rl)
4311 		return (EINVAL);
4312 
4313 	return (resource_list_release(rl, dev, child, type, rid, r));
4314 }
4315 
4316 /**
4317  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4318  *
4319  * This implementation of BUS_ALLOC_RESOURCE() uses the
4320  * resource_list_alloc() function to do most of the work. It calls
4321  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4322  */
4323 struct resource *
4324 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4325     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4326 {
4327 	struct resource_list *		rl = NULL;
4328 
4329 	if (device_get_parent(child) != dev)
4330 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4331 		    type, rid, start, end, count, flags));
4332 
4333 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4334 	if (!rl)
4335 		return (NULL);
4336 
4337 	return (resource_list_alloc(rl, dev, child, type, rid,
4338 	    start, end, count, flags));
4339 }
4340 
4341 /**
4342  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4343  *
4344  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4345  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4346  */
4347 int
4348 bus_generic_child_present(device_t dev, device_t child)
4349 {
4350 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4351 }
4352 
4353 int
4354 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4355 {
4356 
4357 	if (dev->parent)
4358 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4359 
4360 	return (ENOENT);
4361 }
4362 
4363 /**
4364  * @brief Helper function for implementing BUS_RESCAN().
4365  *
4366  * This null implementation of BUS_RESCAN() always fails to indicate
4367  * the bus does not support rescanning.
4368  */
4369 int
4370 bus_null_rescan(device_t dev)
4371 {
4372 
4373 	return (ENXIO);
4374 }
4375 
4376 /*
4377  * Some convenience functions to make it easier for drivers to use the
4378  * resource-management functions.  All these really do is hide the
4379  * indirection through the parent's method table, making for slightly
4380  * less-wordy code.  In the future, it might make sense for this code
4381  * to maintain some sort of a list of resources allocated by each device.
4382  */
4383 
4384 int
4385 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4386     struct resource **res)
4387 {
4388 	int i;
4389 
4390 	for (i = 0; rs[i].type != -1; i++)
4391 		res[i] = NULL;
4392 	for (i = 0; rs[i].type != -1; i++) {
4393 		res[i] = bus_alloc_resource_any(dev,
4394 		    rs[i].type, &rs[i].rid, rs[i].flags);
4395 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4396 			bus_release_resources(dev, rs, res);
4397 			return (ENXIO);
4398 		}
4399 	}
4400 	return (0);
4401 }
4402 
4403 void
4404 bus_release_resources(device_t dev, const struct resource_spec *rs,
4405     struct resource **res)
4406 {
4407 	int i;
4408 
4409 	for (i = 0; rs[i].type != -1; i++)
4410 		if (res[i] != NULL) {
4411 			bus_release_resource(
4412 			    dev, rs[i].type, rs[i].rid, res[i]);
4413 			res[i] = NULL;
4414 		}
4415 }
4416 
4417 /**
4418  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4419  *
4420  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4421  * parent of @p dev.
4422  */
4423 struct resource *
4424 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4425     rman_res_t end, rman_res_t count, u_int flags)
4426 {
4427 	struct resource *res;
4428 
4429 	if (dev->parent == NULL)
4430 		return (NULL);
4431 	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4432 	    count, flags);
4433 	return (res);
4434 }
4435 
4436 /**
4437  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4438  *
4439  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4440  * parent of @p dev.
4441  */
4442 int
4443 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4444     rman_res_t end)
4445 {
4446 	if (dev->parent == NULL)
4447 		return (EINVAL);
4448 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4449 }
4450 
4451 /**
4452  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4453  *
4454  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4455  * parent of @p dev.
4456  */
4457 int
4458 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4459 {
4460 	if (dev->parent == NULL)
4461 		return (EINVAL);
4462 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4463 }
4464 
4465 /**
4466  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4467  *
4468  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4469  * parent of @p dev.
4470  */
4471 int
4472 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4473 {
4474 	if (dev->parent == NULL)
4475 		return (EINVAL);
4476 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4477 }
4478 
4479 /**
4480  * @brief Wrapper function for BUS_MAP_RESOURCE().
4481  *
4482  * This function simply calls the BUS_MAP_RESOURCE() method of the
4483  * parent of @p dev.
4484  */
4485 int
4486 bus_map_resource(device_t dev, int type, struct resource *r,
4487     struct resource_map_request *args, struct resource_map *map)
4488 {
4489 	if (dev->parent == NULL)
4490 		return (EINVAL);
4491 	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
4492 }
4493 
4494 /**
4495  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4496  *
4497  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4498  * parent of @p dev.
4499  */
4500 int
4501 bus_unmap_resource(device_t dev, int type, struct resource *r,
4502     struct resource_map *map)
4503 {
4504 	if (dev->parent == NULL)
4505 		return (EINVAL);
4506 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
4507 }
4508 
4509 /**
4510  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4511  *
4512  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4513  * parent of @p dev.
4514  */
4515 int
4516 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4517 {
4518 	int rv;
4519 
4520 	if (dev->parent == NULL)
4521 		return (EINVAL);
4522 	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
4523 	return (rv);
4524 }
4525 
4526 /**
4527  * @brief Wrapper function for BUS_SETUP_INTR().
4528  *
4529  * This function simply calls the BUS_SETUP_INTR() method of the
4530  * parent of @p dev.
4531  */
4532 int
4533 bus_setup_intr(device_t dev, struct resource *r, int flags,
4534     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4535 {
4536 	int error;
4537 
4538 	if (dev->parent == NULL)
4539 		return (EINVAL);
4540 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4541 	    arg, cookiep);
4542 	if (error != 0)
4543 		return (error);
4544 	if (handler != NULL && !(flags & INTR_MPSAFE))
4545 		device_printf(dev, "[GIANT-LOCKED]\n");
4546 	return (0);
4547 }
4548 
4549 /**
4550  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4551  *
4552  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4553  * parent of @p dev.
4554  */
4555 int
4556 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4557 {
4558 	if (dev->parent == NULL)
4559 		return (EINVAL);
4560 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4561 }
4562 
4563 /**
4564  * @brief Wrapper function for BUS_BIND_INTR().
4565  *
4566  * This function simply calls the BUS_BIND_INTR() method of the
4567  * parent of @p dev.
4568  */
4569 int
4570 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4571 {
4572 	if (dev->parent == NULL)
4573 		return (EINVAL);
4574 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4575 }
4576 
4577 /**
4578  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4579  *
4580  * This function first formats the requested description into a
4581  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4582  * the parent of @p dev.
4583  */
4584 int
4585 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4586     const char *fmt, ...)
4587 {
4588 	va_list ap;
4589 	char descr[MAXCOMLEN + 1];
4590 
4591 	if (dev->parent == NULL)
4592 		return (EINVAL);
4593 	va_start(ap, fmt);
4594 	vsnprintf(descr, sizeof(descr), fmt, ap);
4595 	va_end(ap);
4596 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4597 }
4598 
4599 /**
4600  * @brief Wrapper function for BUS_SET_RESOURCE().
4601  *
4602  * This function simply calls the BUS_SET_RESOURCE() method of the
4603  * parent of @p dev.
4604  */
4605 int
4606 bus_set_resource(device_t dev, int type, int rid,
4607     rman_res_t start, rman_res_t count)
4608 {
4609 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4610 	    start, count));
4611 }
4612 
4613 /**
4614  * @brief Wrapper function for BUS_GET_RESOURCE().
4615  *
4616  * This function simply calls the BUS_GET_RESOURCE() method of the
4617  * parent of @p dev.
4618  */
4619 int
4620 bus_get_resource(device_t dev, int type, int rid,
4621     rman_res_t *startp, rman_res_t *countp)
4622 {
4623 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4624 	    startp, countp));
4625 }
4626 
4627 /**
4628  * @brief Wrapper function for BUS_GET_RESOURCE().
4629  *
4630  * This function simply calls the BUS_GET_RESOURCE() method of the
4631  * parent of @p dev and returns the start value.
4632  */
4633 rman_res_t
4634 bus_get_resource_start(device_t dev, int type, int rid)
4635 {
4636 	rman_res_t start;
4637 	rman_res_t count;
4638 	int error;
4639 
4640 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4641 	    &start, &count);
4642 	if (error)
4643 		return (0);
4644 	return (start);
4645 }
4646 
4647 /**
4648  * @brief Wrapper function for BUS_GET_RESOURCE().
4649  *
4650  * This function simply calls the BUS_GET_RESOURCE() method of the
4651  * parent of @p dev and returns the count value.
4652  */
4653 rman_res_t
4654 bus_get_resource_count(device_t dev, int type, int rid)
4655 {
4656 	rman_res_t start;
4657 	rman_res_t count;
4658 	int error;
4659 
4660 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4661 	    &start, &count);
4662 	if (error)
4663 		return (0);
4664 	return (count);
4665 }
4666 
4667 /**
4668  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4669  *
4670  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4671  * parent of @p dev.
4672  */
4673 void
4674 bus_delete_resource(device_t dev, int type, int rid)
4675 {
4676 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4677 }
4678 
4679 /**
4680  * @brief Wrapper function for BUS_CHILD_PRESENT().
4681  *
4682  * This function simply calls the BUS_CHILD_PRESENT() method of the
4683  * parent of @p dev.
4684  */
4685 int
4686 bus_child_present(device_t child)
4687 {
4688 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4689 }
4690 
4691 /**
4692  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4693  *
4694  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4695  * parent of @p dev.
4696  */
4697 int
4698 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4699 {
4700 	device_t parent;
4701 
4702 	parent = device_get_parent(child);
4703 	if (parent == NULL) {
4704 		*buf = '\0';
4705 		return (0);
4706 	}
4707 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4708 }
4709 
4710 /**
4711  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4712  *
4713  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4714  * parent of @p dev.
4715  */
4716 int
4717 bus_child_location_str(device_t child, char *buf, size_t buflen)
4718 {
4719 	device_t parent;
4720 
4721 	parent = device_get_parent(child);
4722 	if (parent == NULL) {
4723 		*buf = '\0';
4724 		return (0);
4725 	}
4726 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4727 }
4728 
4729 /**
4730  * @brief Wrapper function for BUS_GET_CPUS().
4731  *
4732  * This function simply calls the BUS_GET_CPUS() method of the
4733  * parent of @p dev.
4734  */
4735 int
4736 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4737 {
4738 	device_t parent;
4739 
4740 	parent = device_get_parent(dev);
4741 	if (parent == NULL)
4742 		return (EINVAL);
4743 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4744 }
4745 
4746 /**
4747  * @brief Wrapper function for BUS_GET_DMA_TAG().
4748  *
4749  * This function simply calls the BUS_GET_DMA_TAG() method of the
4750  * parent of @p dev.
4751  */
4752 bus_dma_tag_t
4753 bus_get_dma_tag(device_t dev)
4754 {
4755 	device_t parent;
4756 
4757 	parent = device_get_parent(dev);
4758 	if (parent == NULL)
4759 		return (NULL);
4760 	return (BUS_GET_DMA_TAG(parent, dev));
4761 }
4762 
4763 /**
4764  * @brief Wrapper function for BUS_GET_BUS_TAG().
4765  *
4766  * This function simply calls the BUS_GET_BUS_TAG() method of the
4767  * parent of @p dev.
4768  */
4769 bus_space_tag_t
4770 bus_get_bus_tag(device_t dev)
4771 {
4772 	device_t parent;
4773 
4774 	parent = device_get_parent(dev);
4775 	if (parent == NULL)
4776 		return ((bus_space_tag_t)0);
4777 	return (BUS_GET_BUS_TAG(parent, dev));
4778 }
4779 
4780 /**
4781  * @brief Wrapper function for BUS_GET_DOMAIN().
4782  *
4783  * This function simply calls the BUS_GET_DOMAIN() method of the
4784  * parent of @p dev.
4785  */
4786 int
4787 bus_get_domain(device_t dev, int *domain)
4788 {
4789 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4790 }
4791 
4792 /* Resume all devices and then notify userland that we're up again. */
4793 static int
4794 root_resume(device_t dev)
4795 {
4796 	int error;
4797 
4798 	error = bus_generic_resume(dev);
4799 	if (error == 0)
4800 		devctl_notify("kern", "power", "resume", NULL);
4801 	return (error);
4802 }
4803 
4804 static int
4805 root_print_child(device_t dev, device_t child)
4806 {
4807 	int	retval = 0;
4808 
4809 	retval += bus_print_child_header(dev, child);
4810 	retval += printf("\n");
4811 
4812 	return (retval);
4813 }
4814 
4815 static int
4816 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4817     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4818 {
4819 	/*
4820 	 * If an interrupt mapping gets to here something bad has happened.
4821 	 */
4822 	panic("root_setup_intr");
4823 }
4824 
4825 /*
4826  * If we get here, assume that the device is permanent and really is
4827  * present in the system.  Removable bus drivers are expected to intercept
4828  * this call long before it gets here.  We return -1 so that drivers that
4829  * really care can check vs -1 or some ERRNO returned higher in the food
4830  * chain.
4831  */
4832 static int
4833 root_child_present(device_t dev, device_t child)
4834 {
4835 	return (-1);
4836 }
4837 
4838 static int
4839 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
4840     cpuset_t *cpuset)
4841 {
4842 
4843 	switch (op) {
4844 	case INTR_CPUS:
4845 		/* Default to returning the set of all CPUs. */
4846 		if (setsize != sizeof(cpuset_t))
4847 			return (EINVAL);
4848 		*cpuset = all_cpus;
4849 		return (0);
4850 	default:
4851 		return (EINVAL);
4852 	}
4853 }
4854 
4855 static kobj_method_t root_methods[] = {
4856 	/* Device interface */
4857 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4858 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4859 	KOBJMETHOD(device_resume,	root_resume),
4860 
4861 	/* Bus interface */
4862 	KOBJMETHOD(bus_print_child,	root_print_child),
4863 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4864 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4865 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4866 	KOBJMETHOD(bus_child_present,	root_child_present),
4867 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
4868 
4869 	KOBJMETHOD_END
4870 };
4871 
4872 static driver_t root_driver = {
4873 	"root",
4874 	root_methods,
4875 	1,			/* no softc */
4876 };
4877 
4878 device_t	root_bus;
4879 devclass_t	root_devclass;
4880 
4881 static int
4882 root_bus_module_handler(module_t mod, int what, void* arg)
4883 {
4884 	switch (what) {
4885 	case MOD_LOAD:
4886 		TAILQ_INIT(&bus_data_devices);
4887 		kobj_class_compile((kobj_class_t) &root_driver);
4888 		root_bus = make_device(NULL, "root", 0);
4889 		root_bus->desc = "System root bus";
4890 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4891 		root_bus->driver = &root_driver;
4892 		root_bus->state = DS_ATTACHED;
4893 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4894 		devinit();
4895 		return (0);
4896 
4897 	case MOD_SHUTDOWN:
4898 		device_shutdown(root_bus);
4899 		return (0);
4900 	default:
4901 		return (EOPNOTSUPP);
4902 	}
4903 
4904 	return (0);
4905 }
4906 
4907 static moduledata_t root_bus_mod = {
4908 	"rootbus",
4909 	root_bus_module_handler,
4910 	NULL
4911 };
4912 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4913 
4914 /**
4915  * @brief Automatically configure devices
4916  *
4917  * This function begins the autoconfiguration process by calling
4918  * device_probe_and_attach() for each child of the @c root0 device.
4919  */
4920 void
4921 root_bus_configure(void)
4922 {
4923 
4924 	PDEBUG(("."));
4925 
4926 	/* Eventually this will be split up, but this is sufficient for now. */
4927 	bus_set_pass(BUS_PASS_DEFAULT);
4928 }
4929 
4930 /**
4931  * @brief Module handler for registering device drivers
4932  *
4933  * This module handler is used to automatically register device
4934  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4935  * devclass_add_driver() for the driver described by the
4936  * driver_module_data structure pointed to by @p arg
4937  */
4938 int
4939 driver_module_handler(module_t mod, int what, void *arg)
4940 {
4941 	struct driver_module_data *dmd;
4942 	devclass_t bus_devclass;
4943 	kobj_class_t driver;
4944 	int error, pass;
4945 
4946 	dmd = (struct driver_module_data *)arg;
4947 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4948 	error = 0;
4949 
4950 	switch (what) {
4951 	case MOD_LOAD:
4952 		if (dmd->dmd_chainevh)
4953 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4954 
4955 		pass = dmd->dmd_pass;
4956 		driver = dmd->dmd_driver;
4957 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4958 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4959 		error = devclass_add_driver(bus_devclass, driver, pass,
4960 		    dmd->dmd_devclass);
4961 		break;
4962 
4963 	case MOD_UNLOAD:
4964 		PDEBUG(("Unloading module: driver %s from bus %s",
4965 		    DRIVERNAME(dmd->dmd_driver),
4966 		    dmd->dmd_busname));
4967 		error = devclass_delete_driver(bus_devclass,
4968 		    dmd->dmd_driver);
4969 
4970 		if (!error && dmd->dmd_chainevh)
4971 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4972 		break;
4973 	case MOD_QUIESCE:
4974 		PDEBUG(("Quiesce module: driver %s from bus %s",
4975 		    DRIVERNAME(dmd->dmd_driver),
4976 		    dmd->dmd_busname));
4977 		error = devclass_quiesce_driver(bus_devclass,
4978 		    dmd->dmd_driver);
4979 
4980 		if (!error && dmd->dmd_chainevh)
4981 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4982 		break;
4983 	default:
4984 		error = EOPNOTSUPP;
4985 		break;
4986 	}
4987 
4988 	return (error);
4989 }
4990 
4991 /**
4992  * @brief Enumerate all hinted devices for this bus.
4993  *
4994  * Walks through the hints for this bus and calls the bus_hinted_child
4995  * routine for each one it fines.  It searches first for the specific
4996  * bus that's being probed for hinted children (eg isa0), and then for
4997  * generic children (eg isa).
4998  *
4999  * @param	dev	bus device to enumerate
5000  */
5001 void
5002 bus_enumerate_hinted_children(device_t bus)
5003 {
5004 	int i;
5005 	const char *dname, *busname;
5006 	int dunit;
5007 
5008 	/*
5009 	 * enumerate all devices on the specific bus
5010 	 */
5011 	busname = device_get_nameunit(bus);
5012 	i = 0;
5013 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5014 		BUS_HINTED_CHILD(bus, dname, dunit);
5015 
5016 	/*
5017 	 * and all the generic ones.
5018 	 */
5019 	busname = device_get_name(bus);
5020 	i = 0;
5021 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5022 		BUS_HINTED_CHILD(bus, dname, dunit);
5023 }
5024 
5025 #ifdef BUS_DEBUG
5026 
5027 /* the _short versions avoid iteration by not calling anything that prints
5028  * more than oneliners. I love oneliners.
5029  */
5030 
5031 static void
5032 print_device_short(device_t dev, int indent)
5033 {
5034 	if (!dev)
5035 		return;
5036 
5037 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5038 	    dev->unit, dev->desc,
5039 	    (dev->parent? "":"no "),
5040 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5041 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5042 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5043 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5044 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5045 	    (dev->flags&DF_REBID? "rebiddable,":""),
5046 	    (dev->ivars? "":"no "),
5047 	    (dev->softc? "":"no "),
5048 	    dev->busy));
5049 }
5050 
5051 static void
5052 print_device(device_t dev, int indent)
5053 {
5054 	if (!dev)
5055 		return;
5056 
5057 	print_device_short(dev, indent);
5058 
5059 	indentprintf(("Parent:\n"));
5060 	print_device_short(dev->parent, indent+1);
5061 	indentprintf(("Driver:\n"));
5062 	print_driver_short(dev->driver, indent+1);
5063 	indentprintf(("Devclass:\n"));
5064 	print_devclass_short(dev->devclass, indent+1);
5065 }
5066 
5067 void
5068 print_device_tree_short(device_t dev, int indent)
5069 /* print the device and all its children (indented) */
5070 {
5071 	device_t child;
5072 
5073 	if (!dev)
5074 		return;
5075 
5076 	print_device_short(dev, indent);
5077 
5078 	TAILQ_FOREACH(child, &dev->children, link) {
5079 		print_device_tree_short(child, indent+1);
5080 	}
5081 }
5082 
5083 void
5084 print_device_tree(device_t dev, int indent)
5085 /* print the device and all its children (indented) */
5086 {
5087 	device_t child;
5088 
5089 	if (!dev)
5090 		return;
5091 
5092 	print_device(dev, indent);
5093 
5094 	TAILQ_FOREACH(child, &dev->children, link) {
5095 		print_device_tree(child, indent+1);
5096 	}
5097 }
5098 
5099 static void
5100 print_driver_short(driver_t *driver, int indent)
5101 {
5102 	if (!driver)
5103 		return;
5104 
5105 	indentprintf(("driver %s: softc size = %zd\n",
5106 	    driver->name, driver->size));
5107 }
5108 
5109 static void
5110 print_driver(driver_t *driver, int indent)
5111 {
5112 	if (!driver)
5113 		return;
5114 
5115 	print_driver_short(driver, indent);
5116 }
5117 
5118 static void
5119 print_driver_list(driver_list_t drivers, int indent)
5120 {
5121 	driverlink_t driver;
5122 
5123 	TAILQ_FOREACH(driver, &drivers, link) {
5124 		print_driver(driver->driver, indent);
5125 	}
5126 }
5127 
5128 static void
5129 print_devclass_short(devclass_t dc, int indent)
5130 {
5131 	if ( !dc )
5132 		return;
5133 
5134 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5135 }
5136 
5137 static void
5138 print_devclass(devclass_t dc, int indent)
5139 {
5140 	int i;
5141 
5142 	if ( !dc )
5143 		return;
5144 
5145 	print_devclass_short(dc, indent);
5146 	indentprintf(("Drivers:\n"));
5147 	print_driver_list(dc->drivers, indent+1);
5148 
5149 	indentprintf(("Devices:\n"));
5150 	for (i = 0; i < dc->maxunit; i++)
5151 		if (dc->devices[i])
5152 			print_device(dc->devices[i], indent+1);
5153 }
5154 
5155 void
5156 print_devclass_list_short(void)
5157 {
5158 	devclass_t dc;
5159 
5160 	printf("Short listing of devclasses, drivers & devices:\n");
5161 	TAILQ_FOREACH(dc, &devclasses, link) {
5162 		print_devclass_short(dc, 0);
5163 	}
5164 }
5165 
5166 void
5167 print_devclass_list(void)
5168 {
5169 	devclass_t dc;
5170 
5171 	printf("Full listing of devclasses, drivers & devices:\n");
5172 	TAILQ_FOREACH(dc, &devclasses, link) {
5173 		print_devclass(dc, 0);
5174 	}
5175 }
5176 
5177 #endif
5178 
5179 /*
5180  * User-space access to the device tree.
5181  *
5182  * We implement a small set of nodes:
5183  *
5184  * hw.bus			Single integer read method to obtain the
5185  *				current generation count.
5186  * hw.bus.devices		Reads the entire device tree in flat space.
5187  * hw.bus.rman			Resource manager interface
5188  *
5189  * We might like to add the ability to scan devclasses and/or drivers to
5190  * determine what else is currently loaded/available.
5191  */
5192 
5193 static int
5194 sysctl_bus(SYSCTL_HANDLER_ARGS)
5195 {
5196 	struct u_businfo	ubus;
5197 
5198 	ubus.ub_version = BUS_USER_VERSION;
5199 	ubus.ub_generation = bus_data_generation;
5200 
5201 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5202 }
5203 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
5204     "bus-related data");
5205 
5206 static int
5207 sysctl_devices(SYSCTL_HANDLER_ARGS)
5208 {
5209 	int			*name = (int *)arg1;
5210 	u_int			namelen = arg2;
5211 	int			index;
5212 	device_t		dev;
5213 	struct u_device		udev;	/* XXX this is a bit big */
5214 	int			error;
5215 
5216 	if (namelen != 2)
5217 		return (EINVAL);
5218 
5219 	if (bus_data_generation_check(name[0]))
5220 		return (EINVAL);
5221 
5222 	index = name[1];
5223 
5224 	/*
5225 	 * Scan the list of devices, looking for the requested index.
5226 	 */
5227 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5228 		if (index-- == 0)
5229 			break;
5230 	}
5231 	if (dev == NULL)
5232 		return (ENOENT);
5233 
5234 	/*
5235 	 * Populate the return array.
5236 	 */
5237 	bzero(&udev, sizeof(udev));
5238 	udev.dv_handle = (uintptr_t)dev;
5239 	udev.dv_parent = (uintptr_t)dev->parent;
5240 	if (dev->nameunit != NULL)
5241 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
5242 	if (dev->desc != NULL)
5243 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
5244 	if (dev->driver != NULL && dev->driver->name != NULL)
5245 		strlcpy(udev.dv_drivername, dev->driver->name,
5246 		    sizeof(udev.dv_drivername));
5247 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
5248 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
5249 	udev.dv_devflags = dev->devflags;
5250 	udev.dv_flags = dev->flags;
5251 	udev.dv_state = dev->state;
5252 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
5253 	return (error);
5254 }
5255 
5256 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
5257     "system device tree");
5258 
5259 int
5260 bus_data_generation_check(int generation)
5261 {
5262 	if (generation != bus_data_generation)
5263 		return (1);
5264 
5265 	/* XXX generate optimised lists here? */
5266 	return (0);
5267 }
5268 
5269 void
5270 bus_data_generation_update(void)
5271 {
5272 	bus_data_generation++;
5273 }
5274 
5275 int
5276 bus_free_resource(device_t dev, int type, struct resource *r)
5277 {
5278 	if (r == NULL)
5279 		return (0);
5280 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5281 }
5282 
5283 device_t
5284 device_lookup_by_name(const char *name)
5285 {
5286 	device_t dev;
5287 
5288 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5289 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5290 			return (dev);
5291 	}
5292 	return (NULL);
5293 }
5294 
5295 /*
5296  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5297  * implicit semantics on open, so it could not be reused for this.
5298  * Another option would be to call this /dev/bus?
5299  */
5300 static int
5301 find_device(struct devreq *req, device_t *devp)
5302 {
5303 	device_t dev;
5304 
5305 	/*
5306 	 * First, ensure that the name is nul terminated.
5307 	 */
5308 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5309 		return (EINVAL);
5310 
5311 	/*
5312 	 * Second, try to find an attached device whose name matches
5313 	 * 'name'.
5314 	 */
5315 	dev = device_lookup_by_name(req->dr_name);
5316 	if (dev != NULL) {
5317 		*devp = dev;
5318 		return (0);
5319 	}
5320 
5321 	/* Finally, give device enumerators a chance. */
5322 	dev = NULL;
5323 	EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev);
5324 	if (dev == NULL)
5325 		return (ENOENT);
5326 	*devp = dev;
5327 	return (0);
5328 }
5329 
5330 static bool
5331 driver_exists(device_t bus, const char *driver)
5332 {
5333 	devclass_t dc;
5334 
5335 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5336 		if (devclass_find_driver_internal(dc, driver) != NULL)
5337 			return (true);
5338 	}
5339 	return (false);
5340 }
5341 
5342 static int
5343 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5344     struct thread *td)
5345 {
5346 	struct devreq *req;
5347 	device_t dev;
5348 	int error, old;
5349 
5350 	/* Locate the device to control. */
5351 	mtx_lock(&Giant);
5352 	req = (struct devreq *)data;
5353 	switch (cmd) {
5354 	case DEV_ATTACH:
5355 	case DEV_DETACH:
5356 	case DEV_ENABLE:
5357 	case DEV_DISABLE:
5358 	case DEV_SUSPEND:
5359 	case DEV_RESUME:
5360 	case DEV_SET_DRIVER:
5361 	case DEV_CLEAR_DRIVER:
5362 	case DEV_RESCAN:
5363 	case DEV_DELETE:
5364 		error = priv_check(td, PRIV_DRIVER);
5365 		if (error == 0)
5366 			error = find_device(req, &dev);
5367 		break;
5368 	default:
5369 		error = ENOTTY;
5370 		break;
5371 	}
5372 	if (error) {
5373 		mtx_unlock(&Giant);
5374 		return (error);
5375 	}
5376 
5377 	/* Perform the requested operation. */
5378 	switch (cmd) {
5379 	case DEV_ATTACH:
5380 		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5381 			error = EBUSY;
5382 		else if (!device_is_enabled(dev))
5383 			error = ENXIO;
5384 		else
5385 			error = device_probe_and_attach(dev);
5386 		break;
5387 	case DEV_DETACH:
5388 		if (!device_is_attached(dev)) {
5389 			error = ENXIO;
5390 			break;
5391 		}
5392 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5393 			error = device_quiesce(dev);
5394 			if (error)
5395 				break;
5396 		}
5397 		error = device_detach(dev);
5398 		break;
5399 	case DEV_ENABLE:
5400 		if (device_is_enabled(dev)) {
5401 			error = EBUSY;
5402 			break;
5403 		}
5404 
5405 		/*
5406 		 * If the device has been probed but not attached (e.g.
5407 		 * when it has been disabled by a loader hint), just
5408 		 * attach the device rather than doing a full probe.
5409 		 */
5410 		device_enable(dev);
5411 		if (device_is_alive(dev)) {
5412 			/*
5413 			 * If the device was disabled via a hint, clear
5414 			 * the hint.
5415 			 */
5416 			if (resource_disabled(dev->driver->name, dev->unit))
5417 				resource_unset_value(dev->driver->name,
5418 				    dev->unit, "disabled");
5419 			error = device_attach(dev);
5420 		} else
5421 			error = device_probe_and_attach(dev);
5422 		break;
5423 	case DEV_DISABLE:
5424 		if (!device_is_enabled(dev)) {
5425 			error = ENXIO;
5426 			break;
5427 		}
5428 
5429 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5430 			error = device_quiesce(dev);
5431 			if (error)
5432 				break;
5433 		}
5434 
5435 		/*
5436 		 * Force DF_FIXEDCLASS on around detach to preserve
5437 		 * the existing name.
5438 		 */
5439 		old = dev->flags;
5440 		dev->flags |= DF_FIXEDCLASS;
5441 		error = device_detach(dev);
5442 		if (!(old & DF_FIXEDCLASS))
5443 			dev->flags &= ~DF_FIXEDCLASS;
5444 		if (error == 0)
5445 			device_disable(dev);
5446 		break;
5447 	case DEV_SUSPEND:
5448 		if (device_is_suspended(dev)) {
5449 			error = EBUSY;
5450 			break;
5451 		}
5452 		if (device_get_parent(dev) == NULL) {
5453 			error = EINVAL;
5454 			break;
5455 		}
5456 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5457 		break;
5458 	case DEV_RESUME:
5459 		if (!device_is_suspended(dev)) {
5460 			error = EINVAL;
5461 			break;
5462 		}
5463 		if (device_get_parent(dev) == NULL) {
5464 			error = EINVAL;
5465 			break;
5466 		}
5467 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5468 		break;
5469 	case DEV_SET_DRIVER: {
5470 		devclass_t dc;
5471 		char driver[128];
5472 
5473 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5474 		if (error)
5475 			break;
5476 		if (driver[0] == '\0') {
5477 			error = EINVAL;
5478 			break;
5479 		}
5480 		if (dev->devclass != NULL &&
5481 		    strcmp(driver, dev->devclass->name) == 0)
5482 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5483 			break;
5484 
5485 		/*
5486 		 * Scan drivers for this device's bus looking for at
5487 		 * least one matching driver.
5488 		 */
5489 		if (dev->parent == NULL) {
5490 			error = EINVAL;
5491 			break;
5492 		}
5493 		if (!driver_exists(dev->parent, driver)) {
5494 			error = ENOENT;
5495 			break;
5496 		}
5497 		dc = devclass_create(driver);
5498 		if (dc == NULL) {
5499 			error = ENOMEM;
5500 			break;
5501 		}
5502 
5503 		/* Detach device if necessary. */
5504 		if (device_is_attached(dev)) {
5505 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5506 				error = device_detach(dev);
5507 			else
5508 				error = EBUSY;
5509 			if (error)
5510 				break;
5511 		}
5512 
5513 		/* Clear any previously-fixed device class and unit. */
5514 		if (dev->flags & DF_FIXEDCLASS)
5515 			devclass_delete_device(dev->devclass, dev);
5516 		dev->flags |= DF_WILDCARD;
5517 		dev->unit = -1;
5518 
5519 		/* Force the new device class. */
5520 		error = devclass_add_device(dc, dev);
5521 		if (error)
5522 			break;
5523 		dev->flags |= DF_FIXEDCLASS;
5524 		error = device_probe_and_attach(dev);
5525 		break;
5526 	}
5527 	case DEV_CLEAR_DRIVER:
5528 		if (!(dev->flags & DF_FIXEDCLASS)) {
5529 			error = 0;
5530 			break;
5531 		}
5532 		if (device_is_attached(dev)) {
5533 			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5534 				error = device_detach(dev);
5535 			else
5536 				error = EBUSY;
5537 			if (error)
5538 				break;
5539 		}
5540 
5541 		dev->flags &= ~DF_FIXEDCLASS;
5542 		dev->flags |= DF_WILDCARD;
5543 		devclass_delete_device(dev->devclass, dev);
5544 		error = device_probe_and_attach(dev);
5545 		break;
5546 	case DEV_RESCAN:
5547 		if (!device_is_attached(dev)) {
5548 			error = ENXIO;
5549 			break;
5550 		}
5551 		error = BUS_RESCAN(dev);
5552 		break;
5553 	case DEV_DELETE: {
5554 		device_t parent;
5555 
5556 		parent = device_get_parent(dev);
5557 		if (parent == NULL) {
5558 			error = EINVAL;
5559 			break;
5560 		}
5561 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5562 			if (bus_child_present(dev) != 0) {
5563 				error = EBUSY;
5564 				break;
5565 			}
5566 		}
5567 
5568 		error = device_delete_child(parent, dev);
5569 		break;
5570 	}
5571 	}
5572 	mtx_unlock(&Giant);
5573 	return (error);
5574 }
5575 
5576 static struct cdevsw devctl2_cdevsw = {
5577 	.d_version =	D_VERSION,
5578 	.d_ioctl =	devctl2_ioctl,
5579 	.d_name =	"devctl2",
5580 };
5581 
5582 static void
5583 devctl2_init(void)
5584 {
5585 
5586 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5587 	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5588 }
5589