1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/conf.h> 34 #include <sys/filio.h> 35 #include <sys/lock.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/limits.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/mutex.h> 42 #include <sys/poll.h> 43 #include <sys/priv.h> 44 #include <sys/proc.h> 45 #include <sys/condvar.h> 46 #include <sys/queue.h> 47 #include <machine/bus.h> 48 #include <sys/random.h> 49 #include <sys/rman.h> 50 #include <sys/selinfo.h> 51 #include <sys/signalvar.h> 52 #include <sys/smp.h> 53 #include <sys/sysctl.h> 54 #include <sys/systm.h> 55 #include <sys/uio.h> 56 #include <sys/bus.h> 57 #include <sys/interrupt.h> 58 #include <sys/cpuset.h> 59 60 #include <net/vnet.h> 61 62 #include <machine/cpu.h> 63 #include <machine/stdarg.h> 64 65 #include <vm/uma.h> 66 #include <vm/vm.h> 67 68 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 69 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 70 71 /* 72 * Used to attach drivers to devclasses. 73 */ 74 typedef struct driverlink *driverlink_t; 75 struct driverlink { 76 kobj_class_t driver; 77 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 78 int pass; 79 TAILQ_ENTRY(driverlink) passlink; 80 }; 81 82 /* 83 * Forward declarations 84 */ 85 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 86 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 87 typedef TAILQ_HEAD(device_list, device) device_list_t; 88 89 struct devclass { 90 TAILQ_ENTRY(devclass) link; 91 devclass_t parent; /* parent in devclass hierarchy */ 92 driver_list_t drivers; /* bus devclasses store drivers for bus */ 93 char *name; 94 device_t *devices; /* array of devices indexed by unit */ 95 int maxunit; /* size of devices array */ 96 int flags; 97 #define DC_HAS_CHILDREN 1 98 99 struct sysctl_ctx_list sysctl_ctx; 100 struct sysctl_oid *sysctl_tree; 101 }; 102 103 /** 104 * @brief Implementation of device. 105 */ 106 struct device { 107 /* 108 * A device is a kernel object. The first field must be the 109 * current ops table for the object. 110 */ 111 KOBJ_FIELDS; 112 113 /* 114 * Device hierarchy. 115 */ 116 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 117 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 118 device_t parent; /**< parent of this device */ 119 device_list_t children; /**< list of child devices */ 120 121 /* 122 * Details of this device. 123 */ 124 driver_t *driver; /**< current driver */ 125 devclass_t devclass; /**< current device class */ 126 int unit; /**< current unit number */ 127 char* nameunit; /**< name+unit e.g. foodev0 */ 128 char* desc; /**< driver specific description */ 129 int busy; /**< count of calls to device_busy() */ 130 device_state_t state; /**< current device state */ 131 uint32_t devflags; /**< api level flags for device_get_flags() */ 132 u_int flags; /**< internal device flags */ 133 u_int order; /**< order from device_add_child_ordered() */ 134 void *ivars; /**< instance variables */ 135 void *softc; /**< current driver's variables */ 136 137 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 138 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 139 }; 140 141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 143 144 static void devctl2_init(void); 145 146 #ifdef BUS_DEBUG 147 148 static int bus_debug = 1; 149 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 150 "Bus debug level"); 151 152 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 153 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 154 #define DRIVERNAME(d) ((d)? d->name : "no driver") 155 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 156 157 /** 158 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 159 * prevent syslog from deleting initial spaces 160 */ 161 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 162 163 static void print_device_short(device_t dev, int indent); 164 static void print_device(device_t dev, int indent); 165 void print_device_tree_short(device_t dev, int indent); 166 void print_device_tree(device_t dev, int indent); 167 static void print_driver_short(driver_t *driver, int indent); 168 static void print_driver(driver_t *driver, int indent); 169 static void print_driver_list(driver_list_t drivers, int indent); 170 static void print_devclass_short(devclass_t dc, int indent); 171 static void print_devclass(devclass_t dc, int indent); 172 void print_devclass_list_short(void); 173 void print_devclass_list(void); 174 175 #else 176 /* Make the compiler ignore the function calls */ 177 #define PDEBUG(a) /* nop */ 178 #define DEVICENAME(d) /* nop */ 179 #define DRIVERNAME(d) /* nop */ 180 #define DEVCLANAME(d) /* nop */ 181 182 #define print_device_short(d,i) /* nop */ 183 #define print_device(d,i) /* nop */ 184 #define print_device_tree_short(d,i) /* nop */ 185 #define print_device_tree(d,i) /* nop */ 186 #define print_driver_short(d,i) /* nop */ 187 #define print_driver(d,i) /* nop */ 188 #define print_driver_list(d,i) /* nop */ 189 #define print_devclass_short(d,i) /* nop */ 190 #define print_devclass(d,i) /* nop */ 191 #define print_devclass_list_short() /* nop */ 192 #define print_devclass_list() /* nop */ 193 #endif 194 195 /* 196 * dev sysctl tree 197 */ 198 199 enum { 200 DEVCLASS_SYSCTL_PARENT, 201 }; 202 203 static int 204 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 205 { 206 devclass_t dc = (devclass_t)arg1; 207 const char *value; 208 209 switch (arg2) { 210 case DEVCLASS_SYSCTL_PARENT: 211 value = dc->parent ? dc->parent->name : ""; 212 break; 213 default: 214 return (EINVAL); 215 } 216 return (SYSCTL_OUT_STR(req, value)); 217 } 218 219 static void 220 devclass_sysctl_init(devclass_t dc) 221 { 222 223 if (dc->sysctl_tree != NULL) 224 return; 225 sysctl_ctx_init(&dc->sysctl_ctx); 226 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 227 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 228 CTLFLAG_RD, NULL, ""); 229 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 230 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 231 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 232 "parent class"); 233 } 234 235 enum { 236 DEVICE_SYSCTL_DESC, 237 DEVICE_SYSCTL_DRIVER, 238 DEVICE_SYSCTL_LOCATION, 239 DEVICE_SYSCTL_PNPINFO, 240 DEVICE_SYSCTL_PARENT, 241 }; 242 243 static int 244 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 245 { 246 device_t dev = (device_t)arg1; 247 const char *value; 248 char *buf; 249 int error; 250 251 buf = NULL; 252 switch (arg2) { 253 case DEVICE_SYSCTL_DESC: 254 value = dev->desc ? dev->desc : ""; 255 break; 256 case DEVICE_SYSCTL_DRIVER: 257 value = dev->driver ? dev->driver->name : ""; 258 break; 259 case DEVICE_SYSCTL_LOCATION: 260 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 261 bus_child_location_str(dev, buf, 1024); 262 break; 263 case DEVICE_SYSCTL_PNPINFO: 264 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 265 bus_child_pnpinfo_str(dev, buf, 1024); 266 break; 267 case DEVICE_SYSCTL_PARENT: 268 value = dev->parent ? dev->parent->nameunit : ""; 269 break; 270 default: 271 return (EINVAL); 272 } 273 error = SYSCTL_OUT_STR(req, value); 274 if (buf != NULL) 275 free(buf, M_BUS); 276 return (error); 277 } 278 279 static void 280 device_sysctl_init(device_t dev) 281 { 282 devclass_t dc = dev->devclass; 283 int domain; 284 285 if (dev->sysctl_tree != NULL) 286 return; 287 devclass_sysctl_init(dc); 288 sysctl_ctx_init(&dev->sysctl_ctx); 289 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 290 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 291 dev->nameunit + strlen(dc->name), 292 CTLFLAG_RD, NULL, ""); 293 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 294 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 295 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 296 "device description"); 297 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 298 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 299 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 300 "device driver name"); 301 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 302 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 303 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 304 "device location relative to parent"); 305 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 306 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 307 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 308 "device identification"); 309 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 310 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 311 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 312 "parent device"); 313 if (bus_get_domain(dev, &domain) == 0) 314 SYSCTL_ADD_INT(&dev->sysctl_ctx, 315 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 316 CTLFLAG_RD, NULL, domain, "NUMA domain"); 317 } 318 319 static void 320 device_sysctl_update(device_t dev) 321 { 322 devclass_t dc = dev->devclass; 323 324 if (dev->sysctl_tree == NULL) 325 return; 326 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 327 } 328 329 static void 330 device_sysctl_fini(device_t dev) 331 { 332 if (dev->sysctl_tree == NULL) 333 return; 334 sysctl_ctx_free(&dev->sysctl_ctx); 335 dev->sysctl_tree = NULL; 336 } 337 338 /* 339 * /dev/devctl implementation 340 */ 341 342 /* 343 * This design allows only one reader for /dev/devctl. This is not desirable 344 * in the long run, but will get a lot of hair out of this implementation. 345 * Maybe we should make this device a clonable device. 346 * 347 * Also note: we specifically do not attach a device to the device_t tree 348 * to avoid potential chicken and egg problems. One could argue that all 349 * of this belongs to the root node. One could also further argue that the 350 * sysctl interface that we have not might more properly be an ioctl 351 * interface, but at this stage of the game, I'm not inclined to rock that 352 * boat. 353 * 354 * I'm also not sure that the SIGIO support is done correctly or not, as 355 * I copied it from a driver that had SIGIO support that likely hasn't been 356 * tested since 3.4 or 2.2.8! 357 */ 358 359 /* Deprecated way to adjust queue length */ 360 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 361 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN | 362 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I", 363 "devctl disable -- deprecated"); 364 365 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 366 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 367 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 368 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 369 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 370 371 static d_open_t devopen; 372 static d_close_t devclose; 373 static d_read_t devread; 374 static d_ioctl_t devioctl; 375 static d_poll_t devpoll; 376 static d_kqfilter_t devkqfilter; 377 378 static struct cdevsw dev_cdevsw = { 379 .d_version = D_VERSION, 380 .d_open = devopen, 381 .d_close = devclose, 382 .d_read = devread, 383 .d_ioctl = devioctl, 384 .d_poll = devpoll, 385 .d_kqfilter = devkqfilter, 386 .d_name = "devctl", 387 }; 388 389 struct dev_event_info 390 { 391 char *dei_data; 392 TAILQ_ENTRY(dev_event_info) dei_link; 393 }; 394 395 TAILQ_HEAD(devq, dev_event_info); 396 397 static struct dev_softc 398 { 399 int inuse; 400 int nonblock; 401 int queued; 402 int async; 403 struct mtx mtx; 404 struct cv cv; 405 struct selinfo sel; 406 struct devq devq; 407 struct sigio *sigio; 408 } devsoftc; 409 410 static void filt_devctl_detach(struct knote *kn); 411 static int filt_devctl_read(struct knote *kn, long hint); 412 413 struct filterops devctl_rfiltops = { 414 .f_isfd = 1, 415 .f_detach = filt_devctl_detach, 416 .f_event = filt_devctl_read, 417 }; 418 419 static struct cdev *devctl_dev; 420 421 static void 422 devinit(void) 423 { 424 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 425 UID_ROOT, GID_WHEEL, 0600, "devctl"); 426 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 427 cv_init(&devsoftc.cv, "dev cv"); 428 TAILQ_INIT(&devsoftc.devq); 429 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 430 devctl2_init(); 431 } 432 433 static int 434 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 435 { 436 437 mtx_lock(&devsoftc.mtx); 438 if (devsoftc.inuse) { 439 mtx_unlock(&devsoftc.mtx); 440 return (EBUSY); 441 } 442 /* move to init */ 443 devsoftc.inuse = 1; 444 mtx_unlock(&devsoftc.mtx); 445 return (0); 446 } 447 448 static int 449 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 450 { 451 452 mtx_lock(&devsoftc.mtx); 453 devsoftc.inuse = 0; 454 devsoftc.nonblock = 0; 455 devsoftc.async = 0; 456 cv_broadcast(&devsoftc.cv); 457 funsetown(&devsoftc.sigio); 458 mtx_unlock(&devsoftc.mtx); 459 return (0); 460 } 461 462 /* 463 * The read channel for this device is used to report changes to 464 * userland in realtime. We are required to free the data as well as 465 * the n1 object because we allocate them separately. Also note that 466 * we return one record at a time. If you try to read this device a 467 * character at a time, you will lose the rest of the data. Listening 468 * programs are expected to cope. 469 */ 470 static int 471 devread(struct cdev *dev, struct uio *uio, int ioflag) 472 { 473 struct dev_event_info *n1; 474 int rv; 475 476 mtx_lock(&devsoftc.mtx); 477 while (TAILQ_EMPTY(&devsoftc.devq)) { 478 if (devsoftc.nonblock) { 479 mtx_unlock(&devsoftc.mtx); 480 return (EAGAIN); 481 } 482 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 483 if (rv) { 484 /* 485 * Need to translate ERESTART to EINTR here? -- jake 486 */ 487 mtx_unlock(&devsoftc.mtx); 488 return (rv); 489 } 490 } 491 n1 = TAILQ_FIRST(&devsoftc.devq); 492 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 493 devsoftc.queued--; 494 mtx_unlock(&devsoftc.mtx); 495 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 496 free(n1->dei_data, M_BUS); 497 free(n1, M_BUS); 498 return (rv); 499 } 500 501 static int 502 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 503 { 504 switch (cmd) { 505 506 case FIONBIO: 507 if (*(int*)data) 508 devsoftc.nonblock = 1; 509 else 510 devsoftc.nonblock = 0; 511 return (0); 512 case FIOASYNC: 513 if (*(int*)data) 514 devsoftc.async = 1; 515 else 516 devsoftc.async = 0; 517 return (0); 518 case FIOSETOWN: 519 return fsetown(*(int *)data, &devsoftc.sigio); 520 case FIOGETOWN: 521 *(int *)data = fgetown(&devsoftc.sigio); 522 return (0); 523 524 /* (un)Support for other fcntl() calls. */ 525 case FIOCLEX: 526 case FIONCLEX: 527 case FIONREAD: 528 default: 529 break; 530 } 531 return (ENOTTY); 532 } 533 534 static int 535 devpoll(struct cdev *dev, int events, struct thread *td) 536 { 537 int revents = 0; 538 539 mtx_lock(&devsoftc.mtx); 540 if (events & (POLLIN | POLLRDNORM)) { 541 if (!TAILQ_EMPTY(&devsoftc.devq)) 542 revents = events & (POLLIN | POLLRDNORM); 543 else 544 selrecord(td, &devsoftc.sel); 545 } 546 mtx_unlock(&devsoftc.mtx); 547 548 return (revents); 549 } 550 551 static int 552 devkqfilter(struct cdev *dev, struct knote *kn) 553 { 554 int error; 555 556 if (kn->kn_filter == EVFILT_READ) { 557 kn->kn_fop = &devctl_rfiltops; 558 knlist_add(&devsoftc.sel.si_note, kn, 0); 559 error = 0; 560 } else 561 error = EINVAL; 562 return (error); 563 } 564 565 static void 566 filt_devctl_detach(struct knote *kn) 567 { 568 569 knlist_remove(&devsoftc.sel.si_note, kn, 0); 570 } 571 572 static int 573 filt_devctl_read(struct knote *kn, long hint) 574 { 575 kn->kn_data = devsoftc.queued; 576 return (kn->kn_data != 0); 577 } 578 579 /** 580 * @brief Return whether the userland process is running 581 */ 582 boolean_t 583 devctl_process_running(void) 584 { 585 return (devsoftc.inuse == 1); 586 } 587 588 /** 589 * @brief Queue data to be read from the devctl device 590 * 591 * Generic interface to queue data to the devctl device. It is 592 * assumed that @p data is properly formatted. It is further assumed 593 * that @p data is allocated using the M_BUS malloc type. 594 */ 595 void 596 devctl_queue_data_f(char *data, int flags) 597 { 598 struct dev_event_info *n1 = NULL, *n2 = NULL; 599 600 if (strlen(data) == 0) 601 goto out; 602 if (devctl_queue_length == 0) 603 goto out; 604 n1 = malloc(sizeof(*n1), M_BUS, flags); 605 if (n1 == NULL) 606 goto out; 607 n1->dei_data = data; 608 mtx_lock(&devsoftc.mtx); 609 if (devctl_queue_length == 0) { 610 mtx_unlock(&devsoftc.mtx); 611 free(n1->dei_data, M_BUS); 612 free(n1, M_BUS); 613 return; 614 } 615 /* Leave at least one spot in the queue... */ 616 while (devsoftc.queued > devctl_queue_length - 1) { 617 n2 = TAILQ_FIRST(&devsoftc.devq); 618 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 619 free(n2->dei_data, M_BUS); 620 free(n2, M_BUS); 621 devsoftc.queued--; 622 } 623 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 624 devsoftc.queued++; 625 cv_broadcast(&devsoftc.cv); 626 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 627 mtx_unlock(&devsoftc.mtx); 628 selwakeup(&devsoftc.sel); 629 if (devsoftc.async && devsoftc.sigio != NULL) 630 pgsigio(&devsoftc.sigio, SIGIO, 0); 631 return; 632 out: 633 /* 634 * We have to free data on all error paths since the caller 635 * assumes it will be free'd when this item is dequeued. 636 */ 637 free(data, M_BUS); 638 return; 639 } 640 641 void 642 devctl_queue_data(char *data) 643 { 644 645 devctl_queue_data_f(data, M_NOWAIT); 646 } 647 648 /** 649 * @brief Send a 'notification' to userland, using standard ways 650 */ 651 void 652 devctl_notify_f(const char *system, const char *subsystem, const char *type, 653 const char *data, int flags) 654 { 655 int len = 0; 656 char *msg; 657 658 if (system == NULL) 659 return; /* BOGUS! Must specify system. */ 660 if (subsystem == NULL) 661 return; /* BOGUS! Must specify subsystem. */ 662 if (type == NULL) 663 return; /* BOGUS! Must specify type. */ 664 len += strlen(" system=") + strlen(system); 665 len += strlen(" subsystem=") + strlen(subsystem); 666 len += strlen(" type=") + strlen(type); 667 /* add in the data message plus newline. */ 668 if (data != NULL) 669 len += strlen(data); 670 len += 3; /* '!', '\n', and NUL */ 671 msg = malloc(len, M_BUS, flags); 672 if (msg == NULL) 673 return; /* Drop it on the floor */ 674 if (data != NULL) 675 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 676 system, subsystem, type, data); 677 else 678 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 679 system, subsystem, type); 680 devctl_queue_data_f(msg, flags); 681 } 682 683 void 684 devctl_notify(const char *system, const char *subsystem, const char *type, 685 const char *data) 686 { 687 688 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 689 } 690 691 /* 692 * Common routine that tries to make sending messages as easy as possible. 693 * We allocate memory for the data, copy strings into that, but do not 694 * free it unless there's an error. The dequeue part of the driver should 695 * free the data. We don't send data when the device is disabled. We do 696 * send data, even when we have no listeners, because we wish to avoid 697 * races relating to startup and restart of listening applications. 698 * 699 * devaddq is designed to string together the type of event, with the 700 * object of that event, plus the plug and play info and location info 701 * for that event. This is likely most useful for devices, but less 702 * useful for other consumers of this interface. Those should use 703 * the devctl_queue_data() interface instead. 704 */ 705 static void 706 devaddq(const char *type, const char *what, device_t dev) 707 { 708 char *data = NULL; 709 char *loc = NULL; 710 char *pnp = NULL; 711 const char *parstr; 712 713 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 714 return; 715 data = malloc(1024, M_BUS, M_NOWAIT); 716 if (data == NULL) 717 goto bad; 718 719 /* get the bus specific location of this device */ 720 loc = malloc(1024, M_BUS, M_NOWAIT); 721 if (loc == NULL) 722 goto bad; 723 *loc = '\0'; 724 bus_child_location_str(dev, loc, 1024); 725 726 /* Get the bus specific pnp info of this device */ 727 pnp = malloc(1024, M_BUS, M_NOWAIT); 728 if (pnp == NULL) 729 goto bad; 730 *pnp = '\0'; 731 bus_child_pnpinfo_str(dev, pnp, 1024); 732 733 /* Get the parent of this device, or / if high enough in the tree. */ 734 if (device_get_parent(dev) == NULL) 735 parstr = "."; /* Or '/' ? */ 736 else 737 parstr = device_get_nameunit(device_get_parent(dev)); 738 /* String it all together. */ 739 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 740 parstr); 741 free(loc, M_BUS); 742 free(pnp, M_BUS); 743 devctl_queue_data(data); 744 return; 745 bad: 746 free(pnp, M_BUS); 747 free(loc, M_BUS); 748 free(data, M_BUS); 749 return; 750 } 751 752 /* 753 * A device was added to the tree. We are called just after it successfully 754 * attaches (that is, probe and attach success for this device). No call 755 * is made if a device is merely parented into the tree. See devnomatch 756 * if probe fails. If attach fails, no notification is sent (but maybe 757 * we should have a different message for this). 758 */ 759 static void 760 devadded(device_t dev) 761 { 762 devaddq("+", device_get_nameunit(dev), dev); 763 } 764 765 /* 766 * A device was removed from the tree. We are called just before this 767 * happens. 768 */ 769 static void 770 devremoved(device_t dev) 771 { 772 devaddq("-", device_get_nameunit(dev), dev); 773 } 774 775 /* 776 * Called when there's no match for this device. This is only called 777 * the first time that no match happens, so we don't keep getting this 778 * message. Should that prove to be undesirable, we can change it. 779 * This is called when all drivers that can attach to a given bus 780 * decline to accept this device. Other errors may not be detected. 781 */ 782 static void 783 devnomatch(device_t dev) 784 { 785 devaddq("?", "", dev); 786 } 787 788 static int 789 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 790 { 791 struct dev_event_info *n1; 792 int dis, error; 793 794 dis = (devctl_queue_length == 0); 795 error = sysctl_handle_int(oidp, &dis, 0, req); 796 if (error || !req->newptr) 797 return (error); 798 if (mtx_initialized(&devsoftc.mtx)) 799 mtx_lock(&devsoftc.mtx); 800 if (dis) { 801 while (!TAILQ_EMPTY(&devsoftc.devq)) { 802 n1 = TAILQ_FIRST(&devsoftc.devq); 803 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 804 free(n1->dei_data, M_BUS); 805 free(n1, M_BUS); 806 } 807 devsoftc.queued = 0; 808 devctl_queue_length = 0; 809 } else { 810 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 811 } 812 if (mtx_initialized(&devsoftc.mtx)) 813 mtx_unlock(&devsoftc.mtx); 814 return (0); 815 } 816 817 static int 818 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 819 { 820 struct dev_event_info *n1; 821 int q, error; 822 823 q = devctl_queue_length; 824 error = sysctl_handle_int(oidp, &q, 0, req); 825 if (error || !req->newptr) 826 return (error); 827 if (q < 0) 828 return (EINVAL); 829 if (mtx_initialized(&devsoftc.mtx)) 830 mtx_lock(&devsoftc.mtx); 831 devctl_queue_length = q; 832 while (devsoftc.queued > devctl_queue_length) { 833 n1 = TAILQ_FIRST(&devsoftc.devq); 834 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 835 free(n1->dei_data, M_BUS); 836 free(n1, M_BUS); 837 devsoftc.queued--; 838 } 839 if (mtx_initialized(&devsoftc.mtx)) 840 mtx_unlock(&devsoftc.mtx); 841 return (0); 842 } 843 844 /** 845 * @brief safely quotes strings that might have double quotes in them. 846 * 847 * The devctl protocol relies on quoted strings having matching quotes. 848 * This routine quotes any internal quotes so the resulting string 849 * is safe to pass to snprintf to construct, for example pnp info strings. 850 * Strings are always terminated with a NUL, but may be truncated if longer 851 * than @p len bytes after quotes. 852 * 853 * @param dst Buffer to hold the string. Must be at least @p len bytes long 854 * @param src Original buffer. 855 * @param len Length of buffer pointed to by @dst, including trailing NUL 856 */ 857 void 858 devctl_safe_quote(char *dst, const char *src, size_t len) 859 { 860 char *walker = dst, *ep = dst + len - 1; 861 862 if (len == 0) 863 return; 864 while (src != NULL && walker < ep) 865 { 866 if (*src == '"' || *src == '\\') { 867 if (ep - walker < 2) 868 break; 869 *walker++ = '\\'; 870 } 871 *walker++ = *src++; 872 } 873 *walker = '\0'; 874 } 875 876 /* End of /dev/devctl code */ 877 878 static TAILQ_HEAD(,device) bus_data_devices; 879 static int bus_data_generation = 1; 880 881 static kobj_method_t null_methods[] = { 882 KOBJMETHOD_END 883 }; 884 885 DEFINE_CLASS(null, null_methods, 0); 886 887 /* 888 * Bus pass implementation 889 */ 890 891 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 892 int bus_current_pass = BUS_PASS_ROOT; 893 894 /** 895 * @internal 896 * @brief Register the pass level of a new driver attachment 897 * 898 * Register a new driver attachment's pass level. If no driver 899 * attachment with the same pass level has been added, then @p new 900 * will be added to the global passes list. 901 * 902 * @param new the new driver attachment 903 */ 904 static void 905 driver_register_pass(struct driverlink *new) 906 { 907 struct driverlink *dl; 908 909 /* We only consider pass numbers during boot. */ 910 if (bus_current_pass == BUS_PASS_DEFAULT) 911 return; 912 913 /* 914 * Walk the passes list. If we already know about this pass 915 * then there is nothing to do. If we don't, then insert this 916 * driver link into the list. 917 */ 918 TAILQ_FOREACH(dl, &passes, passlink) { 919 if (dl->pass < new->pass) 920 continue; 921 if (dl->pass == new->pass) 922 return; 923 TAILQ_INSERT_BEFORE(dl, new, passlink); 924 return; 925 } 926 TAILQ_INSERT_TAIL(&passes, new, passlink); 927 } 928 929 /** 930 * @brief Raise the current bus pass 931 * 932 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 933 * method on the root bus to kick off a new device tree scan for each 934 * new pass level that has at least one driver. 935 */ 936 void 937 bus_set_pass(int pass) 938 { 939 struct driverlink *dl; 940 941 if (bus_current_pass > pass) 942 panic("Attempt to lower bus pass level"); 943 944 TAILQ_FOREACH(dl, &passes, passlink) { 945 /* Skip pass values below the current pass level. */ 946 if (dl->pass <= bus_current_pass) 947 continue; 948 949 /* 950 * Bail once we hit a driver with a pass level that is 951 * too high. 952 */ 953 if (dl->pass > pass) 954 break; 955 956 /* 957 * Raise the pass level to the next level and rescan 958 * the tree. 959 */ 960 bus_current_pass = dl->pass; 961 BUS_NEW_PASS(root_bus); 962 } 963 964 /* 965 * If there isn't a driver registered for the requested pass, 966 * then bus_current_pass might still be less than 'pass'. Set 967 * it to 'pass' in that case. 968 */ 969 if (bus_current_pass < pass) 970 bus_current_pass = pass; 971 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 972 } 973 974 /* 975 * Devclass implementation 976 */ 977 978 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 979 980 /** 981 * @internal 982 * @brief Find or create a device class 983 * 984 * If a device class with the name @p classname exists, return it, 985 * otherwise if @p create is non-zero create and return a new device 986 * class. 987 * 988 * If @p parentname is non-NULL, the parent of the devclass is set to 989 * the devclass of that name. 990 * 991 * @param classname the devclass name to find or create 992 * @param parentname the parent devclass name or @c NULL 993 * @param create non-zero to create a devclass 994 */ 995 static devclass_t 996 devclass_find_internal(const char *classname, const char *parentname, 997 int create) 998 { 999 devclass_t dc; 1000 1001 PDEBUG(("looking for %s", classname)); 1002 if (!classname) 1003 return (NULL); 1004 1005 TAILQ_FOREACH(dc, &devclasses, link) { 1006 if (!strcmp(dc->name, classname)) 1007 break; 1008 } 1009 1010 if (create && !dc) { 1011 PDEBUG(("creating %s", classname)); 1012 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 1013 M_BUS, M_NOWAIT | M_ZERO); 1014 if (!dc) 1015 return (NULL); 1016 dc->parent = NULL; 1017 dc->name = (char*) (dc + 1); 1018 strcpy(dc->name, classname); 1019 TAILQ_INIT(&dc->drivers); 1020 TAILQ_INSERT_TAIL(&devclasses, dc, link); 1021 1022 bus_data_generation_update(); 1023 } 1024 1025 /* 1026 * If a parent class is specified, then set that as our parent so 1027 * that this devclass will support drivers for the parent class as 1028 * well. If the parent class has the same name don't do this though 1029 * as it creates a cycle that can trigger an infinite loop in 1030 * device_probe_child() if a device exists for which there is no 1031 * suitable driver. 1032 */ 1033 if (parentname && dc && !dc->parent && 1034 strcmp(classname, parentname) != 0) { 1035 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1036 dc->parent->flags |= DC_HAS_CHILDREN; 1037 } 1038 1039 return (dc); 1040 } 1041 1042 /** 1043 * @brief Create a device class 1044 * 1045 * If a device class with the name @p classname exists, return it, 1046 * otherwise create and return a new device class. 1047 * 1048 * @param classname the devclass name to find or create 1049 */ 1050 devclass_t 1051 devclass_create(const char *classname) 1052 { 1053 return (devclass_find_internal(classname, NULL, TRUE)); 1054 } 1055 1056 /** 1057 * @brief Find a device class 1058 * 1059 * If a device class with the name @p classname exists, return it, 1060 * otherwise return @c NULL. 1061 * 1062 * @param classname the devclass name to find 1063 */ 1064 devclass_t 1065 devclass_find(const char *classname) 1066 { 1067 return (devclass_find_internal(classname, NULL, FALSE)); 1068 } 1069 1070 /** 1071 * @brief Register that a device driver has been added to a devclass 1072 * 1073 * Register that a device driver has been added to a devclass. This 1074 * is called by devclass_add_driver to accomplish the recursive 1075 * notification of all the children classes of dc, as well as dc. 1076 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1077 * the devclass. 1078 * 1079 * We do a full search here of the devclass list at each iteration 1080 * level to save storing children-lists in the devclass structure. If 1081 * we ever move beyond a few dozen devices doing this, we may need to 1082 * reevaluate... 1083 * 1084 * @param dc the devclass to edit 1085 * @param driver the driver that was just added 1086 */ 1087 static void 1088 devclass_driver_added(devclass_t dc, driver_t *driver) 1089 { 1090 devclass_t parent; 1091 int i; 1092 1093 /* 1094 * Call BUS_DRIVER_ADDED for any existing busses in this class. 1095 */ 1096 for (i = 0; i < dc->maxunit; i++) 1097 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1098 BUS_DRIVER_ADDED(dc->devices[i], driver); 1099 1100 /* 1101 * Walk through the children classes. Since we only keep a 1102 * single parent pointer around, we walk the entire list of 1103 * devclasses looking for children. We set the 1104 * DC_HAS_CHILDREN flag when a child devclass is created on 1105 * the parent, so we only walk the list for those devclasses 1106 * that have children. 1107 */ 1108 if (!(dc->flags & DC_HAS_CHILDREN)) 1109 return; 1110 parent = dc; 1111 TAILQ_FOREACH(dc, &devclasses, link) { 1112 if (dc->parent == parent) 1113 devclass_driver_added(dc, driver); 1114 } 1115 } 1116 1117 /** 1118 * @brief Add a device driver to a device class 1119 * 1120 * Add a device driver to a devclass. This is normally called 1121 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1122 * all devices in the devclass will be called to allow them to attempt 1123 * to re-probe any unmatched children. 1124 * 1125 * @param dc the devclass to edit 1126 * @param driver the driver to register 1127 */ 1128 int 1129 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1130 { 1131 driverlink_t dl; 1132 const char *parentname; 1133 1134 PDEBUG(("%s", DRIVERNAME(driver))); 1135 1136 /* Don't allow invalid pass values. */ 1137 if (pass <= BUS_PASS_ROOT) 1138 return (EINVAL); 1139 1140 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1141 if (!dl) 1142 return (ENOMEM); 1143 1144 /* 1145 * Compile the driver's methods. Also increase the reference count 1146 * so that the class doesn't get freed when the last instance 1147 * goes. This means we can safely use static methods and avoids a 1148 * double-free in devclass_delete_driver. 1149 */ 1150 kobj_class_compile((kobj_class_t) driver); 1151 1152 /* 1153 * If the driver has any base classes, make the 1154 * devclass inherit from the devclass of the driver's 1155 * first base class. This will allow the system to 1156 * search for drivers in both devclasses for children 1157 * of a device using this driver. 1158 */ 1159 if (driver->baseclasses) 1160 parentname = driver->baseclasses[0]->name; 1161 else 1162 parentname = NULL; 1163 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1164 1165 dl->driver = driver; 1166 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1167 driver->refs++; /* XXX: kobj_mtx */ 1168 dl->pass = pass; 1169 driver_register_pass(dl); 1170 1171 devclass_driver_added(dc, driver); 1172 bus_data_generation_update(); 1173 return (0); 1174 } 1175 1176 /** 1177 * @brief Register that a device driver has been deleted from a devclass 1178 * 1179 * Register that a device driver has been removed from a devclass. 1180 * This is called by devclass_delete_driver to accomplish the 1181 * recursive notification of all the children classes of busclass, as 1182 * well as busclass. Each layer will attempt to detach the driver 1183 * from any devices that are children of the bus's devclass. The function 1184 * will return an error if a device fails to detach. 1185 * 1186 * We do a full search here of the devclass list at each iteration 1187 * level to save storing children-lists in the devclass structure. If 1188 * we ever move beyond a few dozen devices doing this, we may need to 1189 * reevaluate... 1190 * 1191 * @param busclass the devclass of the parent bus 1192 * @param dc the devclass of the driver being deleted 1193 * @param driver the driver being deleted 1194 */ 1195 static int 1196 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1197 { 1198 devclass_t parent; 1199 device_t dev; 1200 int error, i; 1201 1202 /* 1203 * Disassociate from any devices. We iterate through all the 1204 * devices in the devclass of the driver and detach any which are 1205 * using the driver and which have a parent in the devclass which 1206 * we are deleting from. 1207 * 1208 * Note that since a driver can be in multiple devclasses, we 1209 * should not detach devices which are not children of devices in 1210 * the affected devclass. 1211 */ 1212 for (i = 0; i < dc->maxunit; i++) { 1213 if (dc->devices[i]) { 1214 dev = dc->devices[i]; 1215 if (dev->driver == driver && dev->parent && 1216 dev->parent->devclass == busclass) { 1217 if ((error = device_detach(dev)) != 0) 1218 return (error); 1219 BUS_PROBE_NOMATCH(dev->parent, dev); 1220 devnomatch(dev); 1221 dev->flags |= DF_DONENOMATCH; 1222 } 1223 } 1224 } 1225 1226 /* 1227 * Walk through the children classes. Since we only keep a 1228 * single parent pointer around, we walk the entire list of 1229 * devclasses looking for children. We set the 1230 * DC_HAS_CHILDREN flag when a child devclass is created on 1231 * the parent, so we only walk the list for those devclasses 1232 * that have children. 1233 */ 1234 if (!(busclass->flags & DC_HAS_CHILDREN)) 1235 return (0); 1236 parent = busclass; 1237 TAILQ_FOREACH(busclass, &devclasses, link) { 1238 if (busclass->parent == parent) { 1239 error = devclass_driver_deleted(busclass, dc, driver); 1240 if (error) 1241 return (error); 1242 } 1243 } 1244 return (0); 1245 } 1246 1247 /** 1248 * @brief Delete a device driver from a device class 1249 * 1250 * Delete a device driver from a devclass. This is normally called 1251 * automatically by DRIVER_MODULE(). 1252 * 1253 * If the driver is currently attached to any devices, 1254 * devclass_delete_driver() will first attempt to detach from each 1255 * device. If one of the detach calls fails, the driver will not be 1256 * deleted. 1257 * 1258 * @param dc the devclass to edit 1259 * @param driver the driver to unregister 1260 */ 1261 int 1262 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1263 { 1264 devclass_t dc = devclass_find(driver->name); 1265 driverlink_t dl; 1266 int error; 1267 1268 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1269 1270 if (!dc) 1271 return (0); 1272 1273 /* 1274 * Find the link structure in the bus' list of drivers. 1275 */ 1276 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1277 if (dl->driver == driver) 1278 break; 1279 } 1280 1281 if (!dl) { 1282 PDEBUG(("%s not found in %s list", driver->name, 1283 busclass->name)); 1284 return (ENOENT); 1285 } 1286 1287 error = devclass_driver_deleted(busclass, dc, driver); 1288 if (error != 0) 1289 return (error); 1290 1291 TAILQ_REMOVE(&busclass->drivers, dl, link); 1292 free(dl, M_BUS); 1293 1294 /* XXX: kobj_mtx */ 1295 driver->refs--; 1296 if (driver->refs == 0) 1297 kobj_class_free((kobj_class_t) driver); 1298 1299 bus_data_generation_update(); 1300 return (0); 1301 } 1302 1303 /** 1304 * @brief Quiesces a set of device drivers from a device class 1305 * 1306 * Quiesce a device driver from a devclass. This is normally called 1307 * automatically by DRIVER_MODULE(). 1308 * 1309 * If the driver is currently attached to any devices, 1310 * devclass_quiesece_driver() will first attempt to quiesce each 1311 * device. 1312 * 1313 * @param dc the devclass to edit 1314 * @param driver the driver to unregister 1315 */ 1316 static int 1317 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1318 { 1319 devclass_t dc = devclass_find(driver->name); 1320 driverlink_t dl; 1321 device_t dev; 1322 int i; 1323 int error; 1324 1325 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1326 1327 if (!dc) 1328 return (0); 1329 1330 /* 1331 * Find the link structure in the bus' list of drivers. 1332 */ 1333 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1334 if (dl->driver == driver) 1335 break; 1336 } 1337 1338 if (!dl) { 1339 PDEBUG(("%s not found in %s list", driver->name, 1340 busclass->name)); 1341 return (ENOENT); 1342 } 1343 1344 /* 1345 * Quiesce all devices. We iterate through all the devices in 1346 * the devclass of the driver and quiesce any which are using 1347 * the driver and which have a parent in the devclass which we 1348 * are quiescing. 1349 * 1350 * Note that since a driver can be in multiple devclasses, we 1351 * should not quiesce devices which are not children of 1352 * devices in the affected devclass. 1353 */ 1354 for (i = 0; i < dc->maxunit; i++) { 1355 if (dc->devices[i]) { 1356 dev = dc->devices[i]; 1357 if (dev->driver == driver && dev->parent && 1358 dev->parent->devclass == busclass) { 1359 if ((error = device_quiesce(dev)) != 0) 1360 return (error); 1361 } 1362 } 1363 } 1364 1365 return (0); 1366 } 1367 1368 /** 1369 * @internal 1370 */ 1371 static driverlink_t 1372 devclass_find_driver_internal(devclass_t dc, const char *classname) 1373 { 1374 driverlink_t dl; 1375 1376 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1377 1378 TAILQ_FOREACH(dl, &dc->drivers, link) { 1379 if (!strcmp(dl->driver->name, classname)) 1380 return (dl); 1381 } 1382 1383 PDEBUG(("not found")); 1384 return (NULL); 1385 } 1386 1387 /** 1388 * @brief Return the name of the devclass 1389 */ 1390 const char * 1391 devclass_get_name(devclass_t dc) 1392 { 1393 return (dc->name); 1394 } 1395 1396 /** 1397 * @brief Find a device given a unit number 1398 * 1399 * @param dc the devclass to search 1400 * @param unit the unit number to search for 1401 * 1402 * @returns the device with the given unit number or @c 1403 * NULL if there is no such device 1404 */ 1405 device_t 1406 devclass_get_device(devclass_t dc, int unit) 1407 { 1408 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1409 return (NULL); 1410 return (dc->devices[unit]); 1411 } 1412 1413 /** 1414 * @brief Find the softc field of a device given a unit number 1415 * 1416 * @param dc the devclass to search 1417 * @param unit the unit number to search for 1418 * 1419 * @returns the softc field of the device with the given 1420 * unit number or @c NULL if there is no such 1421 * device 1422 */ 1423 void * 1424 devclass_get_softc(devclass_t dc, int unit) 1425 { 1426 device_t dev; 1427 1428 dev = devclass_get_device(dc, unit); 1429 if (!dev) 1430 return (NULL); 1431 1432 return (device_get_softc(dev)); 1433 } 1434 1435 /** 1436 * @brief Get a list of devices in the devclass 1437 * 1438 * An array containing a list of all the devices in the given devclass 1439 * is allocated and returned in @p *devlistp. The number of devices 1440 * in the array is returned in @p *devcountp. The caller should free 1441 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1442 * 1443 * @param dc the devclass to examine 1444 * @param devlistp points at location for array pointer return 1445 * value 1446 * @param devcountp points at location for array size return value 1447 * 1448 * @retval 0 success 1449 * @retval ENOMEM the array allocation failed 1450 */ 1451 int 1452 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1453 { 1454 int count, i; 1455 device_t *list; 1456 1457 count = devclass_get_count(dc); 1458 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1459 if (!list) 1460 return (ENOMEM); 1461 1462 count = 0; 1463 for (i = 0; i < dc->maxunit; i++) { 1464 if (dc->devices[i]) { 1465 list[count] = dc->devices[i]; 1466 count++; 1467 } 1468 } 1469 1470 *devlistp = list; 1471 *devcountp = count; 1472 1473 return (0); 1474 } 1475 1476 /** 1477 * @brief Get a list of drivers in the devclass 1478 * 1479 * An array containing a list of pointers to all the drivers in the 1480 * given devclass is allocated and returned in @p *listp. The number 1481 * of drivers in the array is returned in @p *countp. The caller should 1482 * free the array using @c free(p, M_TEMP). 1483 * 1484 * @param dc the devclass to examine 1485 * @param listp gives location for array pointer return value 1486 * @param countp gives location for number of array elements 1487 * return value 1488 * 1489 * @retval 0 success 1490 * @retval ENOMEM the array allocation failed 1491 */ 1492 int 1493 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1494 { 1495 driverlink_t dl; 1496 driver_t **list; 1497 int count; 1498 1499 count = 0; 1500 TAILQ_FOREACH(dl, &dc->drivers, link) 1501 count++; 1502 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1503 if (list == NULL) 1504 return (ENOMEM); 1505 1506 count = 0; 1507 TAILQ_FOREACH(dl, &dc->drivers, link) { 1508 list[count] = dl->driver; 1509 count++; 1510 } 1511 *listp = list; 1512 *countp = count; 1513 1514 return (0); 1515 } 1516 1517 /** 1518 * @brief Get the number of devices in a devclass 1519 * 1520 * @param dc the devclass to examine 1521 */ 1522 int 1523 devclass_get_count(devclass_t dc) 1524 { 1525 int count, i; 1526 1527 count = 0; 1528 for (i = 0; i < dc->maxunit; i++) 1529 if (dc->devices[i]) 1530 count++; 1531 return (count); 1532 } 1533 1534 /** 1535 * @brief Get the maximum unit number used in a devclass 1536 * 1537 * Note that this is one greater than the highest currently-allocated 1538 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1539 * that not even the devclass has been allocated yet. 1540 * 1541 * @param dc the devclass to examine 1542 */ 1543 int 1544 devclass_get_maxunit(devclass_t dc) 1545 { 1546 if (dc == NULL) 1547 return (-1); 1548 return (dc->maxunit); 1549 } 1550 1551 /** 1552 * @brief Find a free unit number in a devclass 1553 * 1554 * This function searches for the first unused unit number greater 1555 * that or equal to @p unit. 1556 * 1557 * @param dc the devclass to examine 1558 * @param unit the first unit number to check 1559 */ 1560 int 1561 devclass_find_free_unit(devclass_t dc, int unit) 1562 { 1563 if (dc == NULL) 1564 return (unit); 1565 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1566 unit++; 1567 return (unit); 1568 } 1569 1570 /** 1571 * @brief Set the parent of a devclass 1572 * 1573 * The parent class is normally initialised automatically by 1574 * DRIVER_MODULE(). 1575 * 1576 * @param dc the devclass to edit 1577 * @param pdc the new parent devclass 1578 */ 1579 void 1580 devclass_set_parent(devclass_t dc, devclass_t pdc) 1581 { 1582 dc->parent = pdc; 1583 } 1584 1585 /** 1586 * @brief Get the parent of a devclass 1587 * 1588 * @param dc the devclass to examine 1589 */ 1590 devclass_t 1591 devclass_get_parent(devclass_t dc) 1592 { 1593 return (dc->parent); 1594 } 1595 1596 struct sysctl_ctx_list * 1597 devclass_get_sysctl_ctx(devclass_t dc) 1598 { 1599 return (&dc->sysctl_ctx); 1600 } 1601 1602 struct sysctl_oid * 1603 devclass_get_sysctl_tree(devclass_t dc) 1604 { 1605 return (dc->sysctl_tree); 1606 } 1607 1608 /** 1609 * @internal 1610 * @brief Allocate a unit number 1611 * 1612 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1613 * will do). The allocated unit number is returned in @p *unitp. 1614 1615 * @param dc the devclass to allocate from 1616 * @param unitp points at the location for the allocated unit 1617 * number 1618 * 1619 * @retval 0 success 1620 * @retval EEXIST the requested unit number is already allocated 1621 * @retval ENOMEM memory allocation failure 1622 */ 1623 static int 1624 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1625 { 1626 const char *s; 1627 int unit = *unitp; 1628 1629 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1630 1631 /* Ask the parent bus if it wants to wire this device. */ 1632 if (unit == -1) 1633 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1634 &unit); 1635 1636 /* If we were given a wired unit number, check for existing device */ 1637 /* XXX imp XXX */ 1638 if (unit != -1) { 1639 if (unit >= 0 && unit < dc->maxunit && 1640 dc->devices[unit] != NULL) { 1641 if (bootverbose) 1642 printf("%s: %s%d already exists; skipping it\n", 1643 dc->name, dc->name, *unitp); 1644 return (EEXIST); 1645 } 1646 } else { 1647 /* Unwired device, find the next available slot for it */ 1648 unit = 0; 1649 for (unit = 0;; unit++) { 1650 /* If there is an "at" hint for a unit then skip it. */ 1651 if (resource_string_value(dc->name, unit, "at", &s) == 1652 0) 1653 continue; 1654 1655 /* If this device slot is already in use, skip it. */ 1656 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1657 continue; 1658 1659 break; 1660 } 1661 } 1662 1663 /* 1664 * We've selected a unit beyond the length of the table, so let's 1665 * extend the table to make room for all units up to and including 1666 * this one. 1667 */ 1668 if (unit >= dc->maxunit) { 1669 device_t *newlist, *oldlist; 1670 int newsize; 1671 1672 oldlist = dc->devices; 1673 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1674 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1675 if (!newlist) 1676 return (ENOMEM); 1677 if (oldlist != NULL) 1678 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1679 bzero(newlist + dc->maxunit, 1680 sizeof(device_t) * (newsize - dc->maxunit)); 1681 dc->devices = newlist; 1682 dc->maxunit = newsize; 1683 if (oldlist != NULL) 1684 free(oldlist, M_BUS); 1685 } 1686 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1687 1688 *unitp = unit; 1689 return (0); 1690 } 1691 1692 /** 1693 * @internal 1694 * @brief Add a device to a devclass 1695 * 1696 * A unit number is allocated for the device (using the device's 1697 * preferred unit number if any) and the device is registered in the 1698 * devclass. This allows the device to be looked up by its unit 1699 * number, e.g. by decoding a dev_t minor number. 1700 * 1701 * @param dc the devclass to add to 1702 * @param dev the device to add 1703 * 1704 * @retval 0 success 1705 * @retval EEXIST the requested unit number is already allocated 1706 * @retval ENOMEM memory allocation failure 1707 */ 1708 static int 1709 devclass_add_device(devclass_t dc, device_t dev) 1710 { 1711 int buflen, error; 1712 1713 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1714 1715 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1716 if (buflen < 0) 1717 return (ENOMEM); 1718 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1719 if (!dev->nameunit) 1720 return (ENOMEM); 1721 1722 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1723 free(dev->nameunit, M_BUS); 1724 dev->nameunit = NULL; 1725 return (error); 1726 } 1727 dc->devices[dev->unit] = dev; 1728 dev->devclass = dc; 1729 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1730 1731 return (0); 1732 } 1733 1734 /** 1735 * @internal 1736 * @brief Delete a device from a devclass 1737 * 1738 * The device is removed from the devclass's device list and its unit 1739 * number is freed. 1740 1741 * @param dc the devclass to delete from 1742 * @param dev the device to delete 1743 * 1744 * @retval 0 success 1745 */ 1746 static int 1747 devclass_delete_device(devclass_t dc, device_t dev) 1748 { 1749 if (!dc || !dev) 1750 return (0); 1751 1752 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1753 1754 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1755 panic("devclass_delete_device: inconsistent device class"); 1756 dc->devices[dev->unit] = NULL; 1757 if (dev->flags & DF_WILDCARD) 1758 dev->unit = -1; 1759 dev->devclass = NULL; 1760 free(dev->nameunit, M_BUS); 1761 dev->nameunit = NULL; 1762 1763 return (0); 1764 } 1765 1766 /** 1767 * @internal 1768 * @brief Make a new device and add it as a child of @p parent 1769 * 1770 * @param parent the parent of the new device 1771 * @param name the devclass name of the new device or @c NULL 1772 * to leave the devclass unspecified 1773 * @parem unit the unit number of the new device of @c -1 to 1774 * leave the unit number unspecified 1775 * 1776 * @returns the new device 1777 */ 1778 static device_t 1779 make_device(device_t parent, const char *name, int unit) 1780 { 1781 device_t dev; 1782 devclass_t dc; 1783 1784 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1785 1786 if (name) { 1787 dc = devclass_find_internal(name, NULL, TRUE); 1788 if (!dc) { 1789 printf("make_device: can't find device class %s\n", 1790 name); 1791 return (NULL); 1792 } 1793 } else { 1794 dc = NULL; 1795 } 1796 1797 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1798 if (!dev) 1799 return (NULL); 1800 1801 dev->parent = parent; 1802 TAILQ_INIT(&dev->children); 1803 kobj_init((kobj_t) dev, &null_class); 1804 dev->driver = NULL; 1805 dev->devclass = NULL; 1806 dev->unit = unit; 1807 dev->nameunit = NULL; 1808 dev->desc = NULL; 1809 dev->busy = 0; 1810 dev->devflags = 0; 1811 dev->flags = DF_ENABLED; 1812 dev->order = 0; 1813 if (unit == -1) 1814 dev->flags |= DF_WILDCARD; 1815 if (name) { 1816 dev->flags |= DF_FIXEDCLASS; 1817 if (devclass_add_device(dc, dev)) { 1818 kobj_delete((kobj_t) dev, M_BUS); 1819 return (NULL); 1820 } 1821 } 1822 dev->ivars = NULL; 1823 dev->softc = NULL; 1824 1825 dev->state = DS_NOTPRESENT; 1826 1827 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1828 bus_data_generation_update(); 1829 1830 return (dev); 1831 } 1832 1833 /** 1834 * @internal 1835 * @brief Print a description of a device. 1836 */ 1837 static int 1838 device_print_child(device_t dev, device_t child) 1839 { 1840 int retval = 0; 1841 1842 if (device_is_alive(child)) 1843 retval += BUS_PRINT_CHILD(dev, child); 1844 else 1845 retval += device_printf(child, " not found\n"); 1846 1847 return (retval); 1848 } 1849 1850 /** 1851 * @brief Create a new device 1852 * 1853 * This creates a new device and adds it as a child of an existing 1854 * parent device. The new device will be added after the last existing 1855 * child with order zero. 1856 * 1857 * @param dev the device which will be the parent of the 1858 * new child device 1859 * @param name devclass name for new device or @c NULL if not 1860 * specified 1861 * @param unit unit number for new device or @c -1 if not 1862 * specified 1863 * 1864 * @returns the new device 1865 */ 1866 device_t 1867 device_add_child(device_t dev, const char *name, int unit) 1868 { 1869 return (device_add_child_ordered(dev, 0, name, unit)); 1870 } 1871 1872 /** 1873 * @brief Create a new device 1874 * 1875 * This creates a new device and adds it as a child of an existing 1876 * parent device. The new device will be added after the last existing 1877 * child with the same order. 1878 * 1879 * @param dev the device which will be the parent of the 1880 * new child device 1881 * @param order a value which is used to partially sort the 1882 * children of @p dev - devices created using 1883 * lower values of @p order appear first in @p 1884 * dev's list of children 1885 * @param name devclass name for new device or @c NULL if not 1886 * specified 1887 * @param unit unit number for new device or @c -1 if not 1888 * specified 1889 * 1890 * @returns the new device 1891 */ 1892 device_t 1893 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1894 { 1895 device_t child; 1896 device_t place; 1897 1898 PDEBUG(("%s at %s with order %u as unit %d", 1899 name, DEVICENAME(dev), order, unit)); 1900 KASSERT(name != NULL || unit == -1, 1901 ("child device with wildcard name and specific unit number")); 1902 1903 child = make_device(dev, name, unit); 1904 if (child == NULL) 1905 return (child); 1906 child->order = order; 1907 1908 TAILQ_FOREACH(place, &dev->children, link) { 1909 if (place->order > order) 1910 break; 1911 } 1912 1913 if (place) { 1914 /* 1915 * The device 'place' is the first device whose order is 1916 * greater than the new child. 1917 */ 1918 TAILQ_INSERT_BEFORE(place, child, link); 1919 } else { 1920 /* 1921 * The new child's order is greater or equal to the order of 1922 * any existing device. Add the child to the tail of the list. 1923 */ 1924 TAILQ_INSERT_TAIL(&dev->children, child, link); 1925 } 1926 1927 bus_data_generation_update(); 1928 return (child); 1929 } 1930 1931 /** 1932 * @brief Delete a device 1933 * 1934 * This function deletes a device along with all of its children. If 1935 * the device currently has a driver attached to it, the device is 1936 * detached first using device_detach(). 1937 * 1938 * @param dev the parent device 1939 * @param child the device to delete 1940 * 1941 * @retval 0 success 1942 * @retval non-zero a unit error code describing the error 1943 */ 1944 int 1945 device_delete_child(device_t dev, device_t child) 1946 { 1947 int error; 1948 device_t grandchild; 1949 1950 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1951 1952 /* detach parent before deleting children, if any */ 1953 if ((error = device_detach(child)) != 0) 1954 return (error); 1955 1956 /* remove children second */ 1957 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1958 error = device_delete_child(child, grandchild); 1959 if (error) 1960 return (error); 1961 } 1962 1963 if (child->devclass) 1964 devclass_delete_device(child->devclass, child); 1965 if (child->parent) 1966 BUS_CHILD_DELETED(dev, child); 1967 TAILQ_REMOVE(&dev->children, child, link); 1968 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1969 kobj_delete((kobj_t) child, M_BUS); 1970 1971 bus_data_generation_update(); 1972 return (0); 1973 } 1974 1975 /** 1976 * @brief Delete all children devices of the given device, if any. 1977 * 1978 * This function deletes all children devices of the given device, if 1979 * any, using the device_delete_child() function for each device it 1980 * finds. If a child device cannot be deleted, this function will 1981 * return an error code. 1982 * 1983 * @param dev the parent device 1984 * 1985 * @retval 0 success 1986 * @retval non-zero a device would not detach 1987 */ 1988 int 1989 device_delete_children(device_t dev) 1990 { 1991 device_t child; 1992 int error; 1993 1994 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1995 1996 error = 0; 1997 1998 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1999 error = device_delete_child(dev, child); 2000 if (error) { 2001 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 2002 break; 2003 } 2004 } 2005 return (error); 2006 } 2007 2008 /** 2009 * @brief Find a device given a unit number 2010 * 2011 * This is similar to devclass_get_devices() but only searches for 2012 * devices which have @p dev as a parent. 2013 * 2014 * @param dev the parent device to search 2015 * @param unit the unit number to search for. If the unit is -1, 2016 * return the first child of @p dev which has name 2017 * @p classname (that is, the one with the lowest unit.) 2018 * 2019 * @returns the device with the given unit number or @c 2020 * NULL if there is no such device 2021 */ 2022 device_t 2023 device_find_child(device_t dev, const char *classname, int unit) 2024 { 2025 devclass_t dc; 2026 device_t child; 2027 2028 dc = devclass_find(classname); 2029 if (!dc) 2030 return (NULL); 2031 2032 if (unit != -1) { 2033 child = devclass_get_device(dc, unit); 2034 if (child && child->parent == dev) 2035 return (child); 2036 } else { 2037 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2038 child = devclass_get_device(dc, unit); 2039 if (child && child->parent == dev) 2040 return (child); 2041 } 2042 } 2043 return (NULL); 2044 } 2045 2046 /** 2047 * @internal 2048 */ 2049 static driverlink_t 2050 first_matching_driver(devclass_t dc, device_t dev) 2051 { 2052 if (dev->devclass) 2053 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2054 return (TAILQ_FIRST(&dc->drivers)); 2055 } 2056 2057 /** 2058 * @internal 2059 */ 2060 static driverlink_t 2061 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2062 { 2063 if (dev->devclass) { 2064 driverlink_t dl; 2065 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2066 if (!strcmp(dev->devclass->name, dl->driver->name)) 2067 return (dl); 2068 return (NULL); 2069 } 2070 return (TAILQ_NEXT(last, link)); 2071 } 2072 2073 /** 2074 * @internal 2075 */ 2076 int 2077 device_probe_child(device_t dev, device_t child) 2078 { 2079 devclass_t dc; 2080 driverlink_t best = NULL; 2081 driverlink_t dl; 2082 int result, pri = 0; 2083 int hasclass = (child->devclass != NULL); 2084 2085 GIANT_REQUIRED; 2086 2087 dc = dev->devclass; 2088 if (!dc) 2089 panic("device_probe_child: parent device has no devclass"); 2090 2091 /* 2092 * If the state is already probed, then return. However, don't 2093 * return if we can rebid this object. 2094 */ 2095 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2096 return (0); 2097 2098 for (; dc; dc = dc->parent) { 2099 for (dl = first_matching_driver(dc, child); 2100 dl; 2101 dl = next_matching_driver(dc, child, dl)) { 2102 /* If this driver's pass is too high, then ignore it. */ 2103 if (dl->pass > bus_current_pass) 2104 continue; 2105 2106 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2107 result = device_set_driver(child, dl->driver); 2108 if (result == ENOMEM) 2109 return (result); 2110 else if (result != 0) 2111 continue; 2112 if (!hasclass) { 2113 if (device_set_devclass(child, 2114 dl->driver->name) != 0) { 2115 char const * devname = 2116 device_get_name(child); 2117 if (devname == NULL) 2118 devname = "(unknown)"; 2119 printf("driver bug: Unable to set " 2120 "devclass (class: %s " 2121 "devname: %s)\n", 2122 dl->driver->name, 2123 devname); 2124 (void)device_set_driver(child, NULL); 2125 continue; 2126 } 2127 } 2128 2129 /* Fetch any flags for the device before probing. */ 2130 resource_int_value(dl->driver->name, child->unit, 2131 "flags", &child->devflags); 2132 2133 result = DEVICE_PROBE(child); 2134 2135 /* Reset flags and devclass before the next probe. */ 2136 child->devflags = 0; 2137 if (!hasclass) 2138 (void)device_set_devclass(child, NULL); 2139 2140 /* 2141 * If the driver returns SUCCESS, there can be 2142 * no higher match for this device. 2143 */ 2144 if (result == 0) { 2145 best = dl; 2146 pri = 0; 2147 break; 2148 } 2149 2150 /* 2151 * Reset DF_QUIET in case this driver doesn't 2152 * end up as the best driver. 2153 */ 2154 device_verbose(child); 2155 2156 /* 2157 * Probes that return BUS_PROBE_NOWILDCARD or lower 2158 * only match on devices whose driver was explicitly 2159 * specified. 2160 */ 2161 if (result <= BUS_PROBE_NOWILDCARD && 2162 !(child->flags & DF_FIXEDCLASS)) { 2163 result = ENXIO; 2164 } 2165 2166 /* 2167 * The driver returned an error so it 2168 * certainly doesn't match. 2169 */ 2170 if (result > 0) { 2171 (void)device_set_driver(child, NULL); 2172 continue; 2173 } 2174 2175 /* 2176 * A priority lower than SUCCESS, remember the 2177 * best matching driver. Initialise the value 2178 * of pri for the first match. 2179 */ 2180 if (best == NULL || result > pri) { 2181 best = dl; 2182 pri = result; 2183 continue; 2184 } 2185 } 2186 /* 2187 * If we have an unambiguous match in this devclass, 2188 * don't look in the parent. 2189 */ 2190 if (best && pri == 0) 2191 break; 2192 } 2193 2194 /* 2195 * If we found a driver, change state and initialise the devclass. 2196 */ 2197 /* XXX What happens if we rebid and got no best? */ 2198 if (best) { 2199 /* 2200 * If this device was attached, and we were asked to 2201 * rescan, and it is a different driver, then we have 2202 * to detach the old driver and reattach this new one. 2203 * Note, we don't have to check for DF_REBID here 2204 * because if the state is > DS_ALIVE, we know it must 2205 * be. 2206 * 2207 * This assumes that all DF_REBID drivers can have 2208 * their probe routine called at any time and that 2209 * they are idempotent as well as completely benign in 2210 * normal operations. 2211 * 2212 * We also have to make sure that the detach 2213 * succeeded, otherwise we fail the operation (or 2214 * maybe it should just fail silently? I'm torn). 2215 */ 2216 if (child->state > DS_ALIVE && best->driver != child->driver) 2217 if ((result = device_detach(dev)) != 0) 2218 return (result); 2219 2220 /* Set the winning driver, devclass, and flags. */ 2221 if (!child->devclass) { 2222 result = device_set_devclass(child, best->driver->name); 2223 if (result != 0) 2224 return (result); 2225 } 2226 result = device_set_driver(child, best->driver); 2227 if (result != 0) 2228 return (result); 2229 resource_int_value(best->driver->name, child->unit, 2230 "flags", &child->devflags); 2231 2232 if (pri < 0) { 2233 /* 2234 * A bit bogus. Call the probe method again to make 2235 * sure that we have the right description. 2236 */ 2237 DEVICE_PROBE(child); 2238 #if 0 2239 child->flags |= DF_REBID; 2240 #endif 2241 } else 2242 child->flags &= ~DF_REBID; 2243 child->state = DS_ALIVE; 2244 2245 bus_data_generation_update(); 2246 return (0); 2247 } 2248 2249 return (ENXIO); 2250 } 2251 2252 /** 2253 * @brief Return the parent of a device 2254 */ 2255 device_t 2256 device_get_parent(device_t dev) 2257 { 2258 return (dev->parent); 2259 } 2260 2261 /** 2262 * @brief Get a list of children of a device 2263 * 2264 * An array containing a list of all the children of the given device 2265 * is allocated and returned in @p *devlistp. The number of devices 2266 * in the array is returned in @p *devcountp. The caller should free 2267 * the array using @c free(p, M_TEMP). 2268 * 2269 * @param dev the device to examine 2270 * @param devlistp points at location for array pointer return 2271 * value 2272 * @param devcountp points at location for array size return value 2273 * 2274 * @retval 0 success 2275 * @retval ENOMEM the array allocation failed 2276 */ 2277 int 2278 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2279 { 2280 int count; 2281 device_t child; 2282 device_t *list; 2283 2284 count = 0; 2285 TAILQ_FOREACH(child, &dev->children, link) { 2286 count++; 2287 } 2288 if (count == 0) { 2289 *devlistp = NULL; 2290 *devcountp = 0; 2291 return (0); 2292 } 2293 2294 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2295 if (!list) 2296 return (ENOMEM); 2297 2298 count = 0; 2299 TAILQ_FOREACH(child, &dev->children, link) { 2300 list[count] = child; 2301 count++; 2302 } 2303 2304 *devlistp = list; 2305 *devcountp = count; 2306 2307 return (0); 2308 } 2309 2310 /** 2311 * @brief Return the current driver for the device or @c NULL if there 2312 * is no driver currently attached 2313 */ 2314 driver_t * 2315 device_get_driver(device_t dev) 2316 { 2317 return (dev->driver); 2318 } 2319 2320 /** 2321 * @brief Return the current devclass for the device or @c NULL if 2322 * there is none. 2323 */ 2324 devclass_t 2325 device_get_devclass(device_t dev) 2326 { 2327 return (dev->devclass); 2328 } 2329 2330 /** 2331 * @brief Return the name of the device's devclass or @c NULL if there 2332 * is none. 2333 */ 2334 const char * 2335 device_get_name(device_t dev) 2336 { 2337 if (dev != NULL && dev->devclass) 2338 return (devclass_get_name(dev->devclass)); 2339 return (NULL); 2340 } 2341 2342 /** 2343 * @brief Return a string containing the device's devclass name 2344 * followed by an ascii representation of the device's unit number 2345 * (e.g. @c "foo2"). 2346 */ 2347 const char * 2348 device_get_nameunit(device_t dev) 2349 { 2350 return (dev->nameunit); 2351 } 2352 2353 /** 2354 * @brief Return the device's unit number. 2355 */ 2356 int 2357 device_get_unit(device_t dev) 2358 { 2359 return (dev->unit); 2360 } 2361 2362 /** 2363 * @brief Return the device's description string 2364 */ 2365 const char * 2366 device_get_desc(device_t dev) 2367 { 2368 return (dev->desc); 2369 } 2370 2371 /** 2372 * @brief Return the device's flags 2373 */ 2374 uint32_t 2375 device_get_flags(device_t dev) 2376 { 2377 return (dev->devflags); 2378 } 2379 2380 struct sysctl_ctx_list * 2381 device_get_sysctl_ctx(device_t dev) 2382 { 2383 return (&dev->sysctl_ctx); 2384 } 2385 2386 struct sysctl_oid * 2387 device_get_sysctl_tree(device_t dev) 2388 { 2389 return (dev->sysctl_tree); 2390 } 2391 2392 /** 2393 * @brief Print the name of the device followed by a colon and a space 2394 * 2395 * @returns the number of characters printed 2396 */ 2397 int 2398 device_print_prettyname(device_t dev) 2399 { 2400 const char *name = device_get_name(dev); 2401 2402 if (name == NULL) 2403 return (printf("unknown: ")); 2404 return (printf("%s%d: ", name, device_get_unit(dev))); 2405 } 2406 2407 /** 2408 * @brief Print the name of the device followed by a colon, a space 2409 * and the result of calling vprintf() with the value of @p fmt and 2410 * the following arguments. 2411 * 2412 * @returns the number of characters printed 2413 */ 2414 int 2415 device_printf(device_t dev, const char * fmt, ...) 2416 { 2417 va_list ap; 2418 int retval; 2419 2420 retval = device_print_prettyname(dev); 2421 va_start(ap, fmt); 2422 retval += vprintf(fmt, ap); 2423 va_end(ap); 2424 return (retval); 2425 } 2426 2427 /** 2428 * @internal 2429 */ 2430 static void 2431 device_set_desc_internal(device_t dev, const char* desc, int copy) 2432 { 2433 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2434 free(dev->desc, M_BUS); 2435 dev->flags &= ~DF_DESCMALLOCED; 2436 dev->desc = NULL; 2437 } 2438 2439 if (copy && desc) { 2440 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2441 if (dev->desc) { 2442 strcpy(dev->desc, desc); 2443 dev->flags |= DF_DESCMALLOCED; 2444 } 2445 } else { 2446 /* Avoid a -Wcast-qual warning */ 2447 dev->desc = (char *)(uintptr_t) desc; 2448 } 2449 2450 bus_data_generation_update(); 2451 } 2452 2453 /** 2454 * @brief Set the device's description 2455 * 2456 * The value of @c desc should be a string constant that will not 2457 * change (at least until the description is changed in a subsequent 2458 * call to device_set_desc() or device_set_desc_copy()). 2459 */ 2460 void 2461 device_set_desc(device_t dev, const char* desc) 2462 { 2463 device_set_desc_internal(dev, desc, FALSE); 2464 } 2465 2466 /** 2467 * @brief Set the device's description 2468 * 2469 * The string pointed to by @c desc is copied. Use this function if 2470 * the device description is generated, (e.g. with sprintf()). 2471 */ 2472 void 2473 device_set_desc_copy(device_t dev, const char* desc) 2474 { 2475 device_set_desc_internal(dev, desc, TRUE); 2476 } 2477 2478 /** 2479 * @brief Set the device's flags 2480 */ 2481 void 2482 device_set_flags(device_t dev, uint32_t flags) 2483 { 2484 dev->devflags = flags; 2485 } 2486 2487 /** 2488 * @brief Return the device's softc field 2489 * 2490 * The softc is allocated and zeroed when a driver is attached, based 2491 * on the size field of the driver. 2492 */ 2493 void * 2494 device_get_softc(device_t dev) 2495 { 2496 return (dev->softc); 2497 } 2498 2499 /** 2500 * @brief Set the device's softc field 2501 * 2502 * Most drivers do not need to use this since the softc is allocated 2503 * automatically when the driver is attached. 2504 */ 2505 void 2506 device_set_softc(device_t dev, void *softc) 2507 { 2508 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2509 free(dev->softc, M_BUS_SC); 2510 dev->softc = softc; 2511 if (dev->softc) 2512 dev->flags |= DF_EXTERNALSOFTC; 2513 else 2514 dev->flags &= ~DF_EXTERNALSOFTC; 2515 } 2516 2517 /** 2518 * @brief Free claimed softc 2519 * 2520 * Most drivers do not need to use this since the softc is freed 2521 * automatically when the driver is detached. 2522 */ 2523 void 2524 device_free_softc(void *softc) 2525 { 2526 free(softc, M_BUS_SC); 2527 } 2528 2529 /** 2530 * @brief Claim softc 2531 * 2532 * This function can be used to let the driver free the automatically 2533 * allocated softc using "device_free_softc()". This function is 2534 * useful when the driver is refcounting the softc and the softc 2535 * cannot be freed when the "device_detach" method is called. 2536 */ 2537 void 2538 device_claim_softc(device_t dev) 2539 { 2540 if (dev->softc) 2541 dev->flags |= DF_EXTERNALSOFTC; 2542 else 2543 dev->flags &= ~DF_EXTERNALSOFTC; 2544 } 2545 2546 /** 2547 * @brief Get the device's ivars field 2548 * 2549 * The ivars field is used by the parent device to store per-device 2550 * state (e.g. the physical location of the device or a list of 2551 * resources). 2552 */ 2553 void * 2554 device_get_ivars(device_t dev) 2555 { 2556 2557 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2558 return (dev->ivars); 2559 } 2560 2561 /** 2562 * @brief Set the device's ivars field 2563 */ 2564 void 2565 device_set_ivars(device_t dev, void * ivars) 2566 { 2567 2568 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2569 dev->ivars = ivars; 2570 } 2571 2572 /** 2573 * @brief Return the device's state 2574 */ 2575 device_state_t 2576 device_get_state(device_t dev) 2577 { 2578 return (dev->state); 2579 } 2580 2581 /** 2582 * @brief Set the DF_ENABLED flag for the device 2583 */ 2584 void 2585 device_enable(device_t dev) 2586 { 2587 dev->flags |= DF_ENABLED; 2588 } 2589 2590 /** 2591 * @brief Clear the DF_ENABLED flag for the device 2592 */ 2593 void 2594 device_disable(device_t dev) 2595 { 2596 dev->flags &= ~DF_ENABLED; 2597 } 2598 2599 /** 2600 * @brief Increment the busy counter for the device 2601 */ 2602 void 2603 device_busy(device_t dev) 2604 { 2605 if (dev->state < DS_ATTACHING) 2606 panic("device_busy: called for unattached device"); 2607 if (dev->busy == 0 && dev->parent) 2608 device_busy(dev->parent); 2609 dev->busy++; 2610 if (dev->state == DS_ATTACHED) 2611 dev->state = DS_BUSY; 2612 } 2613 2614 /** 2615 * @brief Decrement the busy counter for the device 2616 */ 2617 void 2618 device_unbusy(device_t dev) 2619 { 2620 if (dev->busy != 0 && dev->state != DS_BUSY && 2621 dev->state != DS_ATTACHING) 2622 panic("device_unbusy: called for non-busy device %s", 2623 device_get_nameunit(dev)); 2624 dev->busy--; 2625 if (dev->busy == 0) { 2626 if (dev->parent) 2627 device_unbusy(dev->parent); 2628 if (dev->state == DS_BUSY) 2629 dev->state = DS_ATTACHED; 2630 } 2631 } 2632 2633 /** 2634 * @brief Set the DF_QUIET flag for the device 2635 */ 2636 void 2637 device_quiet(device_t dev) 2638 { 2639 dev->flags |= DF_QUIET; 2640 } 2641 2642 /** 2643 * @brief Clear the DF_QUIET flag for the device 2644 */ 2645 void 2646 device_verbose(device_t dev) 2647 { 2648 dev->flags &= ~DF_QUIET; 2649 } 2650 2651 /** 2652 * @brief Return non-zero if the DF_QUIET flag is set on the device 2653 */ 2654 int 2655 device_is_quiet(device_t dev) 2656 { 2657 return ((dev->flags & DF_QUIET) != 0); 2658 } 2659 2660 /** 2661 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2662 */ 2663 int 2664 device_is_enabled(device_t dev) 2665 { 2666 return ((dev->flags & DF_ENABLED) != 0); 2667 } 2668 2669 /** 2670 * @brief Return non-zero if the device was successfully probed 2671 */ 2672 int 2673 device_is_alive(device_t dev) 2674 { 2675 return (dev->state >= DS_ALIVE); 2676 } 2677 2678 /** 2679 * @brief Return non-zero if the device currently has a driver 2680 * attached to it 2681 */ 2682 int 2683 device_is_attached(device_t dev) 2684 { 2685 return (dev->state >= DS_ATTACHED); 2686 } 2687 2688 /** 2689 * @brief Return non-zero if the device is currently suspended. 2690 */ 2691 int 2692 device_is_suspended(device_t dev) 2693 { 2694 return ((dev->flags & DF_SUSPENDED) != 0); 2695 } 2696 2697 /** 2698 * @brief Set the devclass of a device 2699 * @see devclass_add_device(). 2700 */ 2701 int 2702 device_set_devclass(device_t dev, const char *classname) 2703 { 2704 devclass_t dc; 2705 int error; 2706 2707 if (!classname) { 2708 if (dev->devclass) 2709 devclass_delete_device(dev->devclass, dev); 2710 return (0); 2711 } 2712 2713 if (dev->devclass) { 2714 printf("device_set_devclass: device class already set\n"); 2715 return (EINVAL); 2716 } 2717 2718 dc = devclass_find_internal(classname, NULL, TRUE); 2719 if (!dc) 2720 return (ENOMEM); 2721 2722 error = devclass_add_device(dc, dev); 2723 2724 bus_data_generation_update(); 2725 return (error); 2726 } 2727 2728 /** 2729 * @brief Set the devclass of a device and mark the devclass fixed. 2730 * @see device_set_devclass() 2731 */ 2732 int 2733 device_set_devclass_fixed(device_t dev, const char *classname) 2734 { 2735 int error; 2736 2737 if (classname == NULL) 2738 return (EINVAL); 2739 2740 error = device_set_devclass(dev, classname); 2741 if (error) 2742 return (error); 2743 dev->flags |= DF_FIXEDCLASS; 2744 return (0); 2745 } 2746 2747 /** 2748 * @brief Set the driver of a device 2749 * 2750 * @retval 0 success 2751 * @retval EBUSY the device already has a driver attached 2752 * @retval ENOMEM a memory allocation failure occurred 2753 */ 2754 int 2755 device_set_driver(device_t dev, driver_t *driver) 2756 { 2757 if (dev->state >= DS_ATTACHED) 2758 return (EBUSY); 2759 2760 if (dev->driver == driver) 2761 return (0); 2762 2763 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2764 free(dev->softc, M_BUS_SC); 2765 dev->softc = NULL; 2766 } 2767 device_set_desc(dev, NULL); 2768 kobj_delete((kobj_t) dev, NULL); 2769 dev->driver = driver; 2770 if (driver) { 2771 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2772 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2773 dev->softc = malloc(driver->size, M_BUS_SC, 2774 M_NOWAIT | M_ZERO); 2775 if (!dev->softc) { 2776 kobj_delete((kobj_t) dev, NULL); 2777 kobj_init((kobj_t) dev, &null_class); 2778 dev->driver = NULL; 2779 return (ENOMEM); 2780 } 2781 } 2782 } else { 2783 kobj_init((kobj_t) dev, &null_class); 2784 } 2785 2786 bus_data_generation_update(); 2787 return (0); 2788 } 2789 2790 /** 2791 * @brief Probe a device, and return this status. 2792 * 2793 * This function is the core of the device autoconfiguration 2794 * system. Its purpose is to select a suitable driver for a device and 2795 * then call that driver to initialise the hardware appropriately. The 2796 * driver is selected by calling the DEVICE_PROBE() method of a set of 2797 * candidate drivers and then choosing the driver which returned the 2798 * best value. This driver is then attached to the device using 2799 * device_attach(). 2800 * 2801 * The set of suitable drivers is taken from the list of drivers in 2802 * the parent device's devclass. If the device was originally created 2803 * with a specific class name (see device_add_child()), only drivers 2804 * with that name are probed, otherwise all drivers in the devclass 2805 * are probed. If no drivers return successful probe values in the 2806 * parent devclass, the search continues in the parent of that 2807 * devclass (see devclass_get_parent()) if any. 2808 * 2809 * @param dev the device to initialise 2810 * 2811 * @retval 0 success 2812 * @retval ENXIO no driver was found 2813 * @retval ENOMEM memory allocation failure 2814 * @retval non-zero some other unix error code 2815 * @retval -1 Device already attached 2816 */ 2817 int 2818 device_probe(device_t dev) 2819 { 2820 int error; 2821 2822 GIANT_REQUIRED; 2823 2824 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2825 return (-1); 2826 2827 if (!(dev->flags & DF_ENABLED)) { 2828 if (bootverbose && device_get_name(dev) != NULL) { 2829 device_print_prettyname(dev); 2830 printf("not probed (disabled)\n"); 2831 } 2832 return (-1); 2833 } 2834 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2835 if (bus_current_pass == BUS_PASS_DEFAULT && 2836 !(dev->flags & DF_DONENOMATCH)) { 2837 BUS_PROBE_NOMATCH(dev->parent, dev); 2838 devnomatch(dev); 2839 dev->flags |= DF_DONENOMATCH; 2840 } 2841 return (error); 2842 } 2843 return (0); 2844 } 2845 2846 /** 2847 * @brief Probe a device and attach a driver if possible 2848 * 2849 * calls device_probe() and attaches if that was successful. 2850 */ 2851 int 2852 device_probe_and_attach(device_t dev) 2853 { 2854 int error; 2855 2856 GIANT_REQUIRED; 2857 2858 error = device_probe(dev); 2859 if (error == -1) 2860 return (0); 2861 else if (error != 0) 2862 return (error); 2863 2864 CURVNET_SET_QUIET(vnet0); 2865 error = device_attach(dev); 2866 CURVNET_RESTORE(); 2867 return error; 2868 } 2869 2870 /** 2871 * @brief Attach a device driver to a device 2872 * 2873 * This function is a wrapper around the DEVICE_ATTACH() driver 2874 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2875 * device's sysctl tree, optionally prints a description of the device 2876 * and queues a notification event for user-based device management 2877 * services. 2878 * 2879 * Normally this function is only called internally from 2880 * device_probe_and_attach(). 2881 * 2882 * @param dev the device to initialise 2883 * 2884 * @retval 0 success 2885 * @retval ENXIO no driver was found 2886 * @retval ENOMEM memory allocation failure 2887 * @retval non-zero some other unix error code 2888 */ 2889 int 2890 device_attach(device_t dev) 2891 { 2892 uint64_t attachtime; 2893 int error; 2894 2895 if (resource_disabled(dev->driver->name, dev->unit)) { 2896 device_disable(dev); 2897 if (bootverbose) 2898 device_printf(dev, "disabled via hints entry\n"); 2899 return (ENXIO); 2900 } 2901 2902 device_sysctl_init(dev); 2903 if (!device_is_quiet(dev)) 2904 device_print_child(dev->parent, dev); 2905 attachtime = get_cyclecount(); 2906 dev->state = DS_ATTACHING; 2907 if ((error = DEVICE_ATTACH(dev)) != 0) { 2908 printf("device_attach: %s%d attach returned %d\n", 2909 dev->driver->name, dev->unit, error); 2910 if (!(dev->flags & DF_FIXEDCLASS)) 2911 devclass_delete_device(dev->devclass, dev); 2912 (void)device_set_driver(dev, NULL); 2913 device_sysctl_fini(dev); 2914 KASSERT(dev->busy == 0, ("attach failed but busy")); 2915 dev->state = DS_NOTPRESENT; 2916 return (error); 2917 } 2918 attachtime = get_cyclecount() - attachtime; 2919 /* 2920 * 4 bits per device is a reasonable value for desktop and server 2921 * hardware with good get_cyclecount() implementations, but WILL 2922 * need to be adjusted on other platforms. 2923 */ 2924 #define RANDOM_PROBE_BIT_GUESS 4 2925 if (bootverbose) 2926 printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n", 2927 sizeof(attachtime), RANDOM_PROBE_BIT_GUESS, 2928 dev->driver->name, dev->unit); 2929 random_harvest_direct(&attachtime, sizeof(attachtime), 2930 RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH); 2931 device_sysctl_update(dev); 2932 if (dev->busy) 2933 dev->state = DS_BUSY; 2934 else 2935 dev->state = DS_ATTACHED; 2936 dev->flags &= ~DF_DONENOMATCH; 2937 devadded(dev); 2938 return (0); 2939 } 2940 2941 /** 2942 * @brief Detach a driver from a device 2943 * 2944 * This function is a wrapper around the DEVICE_DETACH() driver 2945 * method. If the call to DEVICE_DETACH() succeeds, it calls 2946 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2947 * notification event for user-based device management services and 2948 * cleans up the device's sysctl tree. 2949 * 2950 * @param dev the device to un-initialise 2951 * 2952 * @retval 0 success 2953 * @retval ENXIO no driver was found 2954 * @retval ENOMEM memory allocation failure 2955 * @retval non-zero some other unix error code 2956 */ 2957 int 2958 device_detach(device_t dev) 2959 { 2960 int error; 2961 2962 GIANT_REQUIRED; 2963 2964 PDEBUG(("%s", DEVICENAME(dev))); 2965 if (dev->state == DS_BUSY) 2966 return (EBUSY); 2967 if (dev->state != DS_ATTACHED) 2968 return (0); 2969 2970 if ((error = DEVICE_DETACH(dev)) != 0) 2971 return (error); 2972 devremoved(dev); 2973 if (!device_is_quiet(dev)) 2974 device_printf(dev, "detached\n"); 2975 if (dev->parent) 2976 BUS_CHILD_DETACHED(dev->parent, dev); 2977 2978 if (!(dev->flags & DF_FIXEDCLASS)) 2979 devclass_delete_device(dev->devclass, dev); 2980 2981 device_verbose(dev); 2982 dev->state = DS_NOTPRESENT; 2983 (void)device_set_driver(dev, NULL); 2984 device_sysctl_fini(dev); 2985 2986 return (0); 2987 } 2988 2989 /** 2990 * @brief Tells a driver to quiesce itself. 2991 * 2992 * This function is a wrapper around the DEVICE_QUIESCE() driver 2993 * method. If the call to DEVICE_QUIESCE() succeeds. 2994 * 2995 * @param dev the device to quiesce 2996 * 2997 * @retval 0 success 2998 * @retval ENXIO no driver was found 2999 * @retval ENOMEM memory allocation failure 3000 * @retval non-zero some other unix error code 3001 */ 3002 int 3003 device_quiesce(device_t dev) 3004 { 3005 3006 PDEBUG(("%s", DEVICENAME(dev))); 3007 if (dev->state == DS_BUSY) 3008 return (EBUSY); 3009 if (dev->state != DS_ATTACHED) 3010 return (0); 3011 3012 return (DEVICE_QUIESCE(dev)); 3013 } 3014 3015 /** 3016 * @brief Notify a device of system shutdown 3017 * 3018 * This function calls the DEVICE_SHUTDOWN() driver method if the 3019 * device currently has an attached driver. 3020 * 3021 * @returns the value returned by DEVICE_SHUTDOWN() 3022 */ 3023 int 3024 device_shutdown(device_t dev) 3025 { 3026 if (dev->state < DS_ATTACHED) 3027 return (0); 3028 return (DEVICE_SHUTDOWN(dev)); 3029 } 3030 3031 /** 3032 * @brief Set the unit number of a device 3033 * 3034 * This function can be used to override the unit number used for a 3035 * device (e.g. to wire a device to a pre-configured unit number). 3036 */ 3037 int 3038 device_set_unit(device_t dev, int unit) 3039 { 3040 devclass_t dc; 3041 int err; 3042 3043 dc = device_get_devclass(dev); 3044 if (unit < dc->maxunit && dc->devices[unit]) 3045 return (EBUSY); 3046 err = devclass_delete_device(dc, dev); 3047 if (err) 3048 return (err); 3049 dev->unit = unit; 3050 err = devclass_add_device(dc, dev); 3051 if (err) 3052 return (err); 3053 3054 bus_data_generation_update(); 3055 return (0); 3056 } 3057 3058 /*======================================*/ 3059 /* 3060 * Some useful method implementations to make life easier for bus drivers. 3061 */ 3062 3063 void 3064 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 3065 { 3066 3067 bzero(args, sz); 3068 args->size = sz; 3069 args->memattr = VM_MEMATTR_UNCACHEABLE; 3070 } 3071 3072 /** 3073 * @brief Initialise a resource list. 3074 * 3075 * @param rl the resource list to initialise 3076 */ 3077 void 3078 resource_list_init(struct resource_list *rl) 3079 { 3080 STAILQ_INIT(rl); 3081 } 3082 3083 /** 3084 * @brief Reclaim memory used by a resource list. 3085 * 3086 * This function frees the memory for all resource entries on the list 3087 * (if any). 3088 * 3089 * @param rl the resource list to free 3090 */ 3091 void 3092 resource_list_free(struct resource_list *rl) 3093 { 3094 struct resource_list_entry *rle; 3095 3096 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3097 if (rle->res) 3098 panic("resource_list_free: resource entry is busy"); 3099 STAILQ_REMOVE_HEAD(rl, link); 3100 free(rle, M_BUS); 3101 } 3102 } 3103 3104 /** 3105 * @brief Add a resource entry. 3106 * 3107 * This function adds a resource entry using the given @p type, @p 3108 * start, @p end and @p count values. A rid value is chosen by 3109 * searching sequentially for the first unused rid starting at zero. 3110 * 3111 * @param rl the resource list to edit 3112 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3113 * @param start the start address of the resource 3114 * @param end the end address of the resource 3115 * @param count XXX end-start+1 3116 */ 3117 int 3118 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 3119 rman_res_t end, rman_res_t count) 3120 { 3121 int rid; 3122 3123 rid = 0; 3124 while (resource_list_find(rl, type, rid) != NULL) 3125 rid++; 3126 resource_list_add(rl, type, rid, start, end, count); 3127 return (rid); 3128 } 3129 3130 /** 3131 * @brief Add or modify a resource entry. 3132 * 3133 * If an existing entry exists with the same type and rid, it will be 3134 * modified using the given values of @p start, @p end and @p 3135 * count. If no entry exists, a new one will be created using the 3136 * given values. The resource list entry that matches is then returned. 3137 * 3138 * @param rl the resource list to edit 3139 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3140 * @param rid the resource identifier 3141 * @param start the start address of the resource 3142 * @param end the end address of the resource 3143 * @param count XXX end-start+1 3144 */ 3145 struct resource_list_entry * 3146 resource_list_add(struct resource_list *rl, int type, int rid, 3147 rman_res_t start, rman_res_t end, rman_res_t count) 3148 { 3149 struct resource_list_entry *rle; 3150 3151 rle = resource_list_find(rl, type, rid); 3152 if (!rle) { 3153 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3154 M_NOWAIT); 3155 if (!rle) 3156 panic("resource_list_add: can't record entry"); 3157 STAILQ_INSERT_TAIL(rl, rle, link); 3158 rle->type = type; 3159 rle->rid = rid; 3160 rle->res = NULL; 3161 rle->flags = 0; 3162 } 3163 3164 if (rle->res) 3165 panic("resource_list_add: resource entry is busy"); 3166 3167 rle->start = start; 3168 rle->end = end; 3169 rle->count = count; 3170 return (rle); 3171 } 3172 3173 /** 3174 * @brief Determine if a resource entry is busy. 3175 * 3176 * Returns true if a resource entry is busy meaning that it has an 3177 * associated resource that is not an unallocated "reserved" resource. 3178 * 3179 * @param rl the resource list to search 3180 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3181 * @param rid the resource identifier 3182 * 3183 * @returns Non-zero if the entry is busy, zero otherwise. 3184 */ 3185 int 3186 resource_list_busy(struct resource_list *rl, int type, int rid) 3187 { 3188 struct resource_list_entry *rle; 3189 3190 rle = resource_list_find(rl, type, rid); 3191 if (rle == NULL || rle->res == NULL) 3192 return (0); 3193 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3194 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3195 ("reserved resource is active")); 3196 return (0); 3197 } 3198 return (1); 3199 } 3200 3201 /** 3202 * @brief Determine if a resource entry is reserved. 3203 * 3204 * Returns true if a resource entry is reserved meaning that it has an 3205 * associated "reserved" resource. The resource can either be 3206 * allocated or unallocated. 3207 * 3208 * @param rl the resource list to search 3209 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3210 * @param rid the resource identifier 3211 * 3212 * @returns Non-zero if the entry is reserved, zero otherwise. 3213 */ 3214 int 3215 resource_list_reserved(struct resource_list *rl, int type, int rid) 3216 { 3217 struct resource_list_entry *rle; 3218 3219 rle = resource_list_find(rl, type, rid); 3220 if (rle != NULL && rle->flags & RLE_RESERVED) 3221 return (1); 3222 return (0); 3223 } 3224 3225 /** 3226 * @brief Find a resource entry by type and rid. 3227 * 3228 * @param rl the resource list to search 3229 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3230 * @param rid the resource identifier 3231 * 3232 * @returns the resource entry pointer or NULL if there is no such 3233 * entry. 3234 */ 3235 struct resource_list_entry * 3236 resource_list_find(struct resource_list *rl, int type, int rid) 3237 { 3238 struct resource_list_entry *rle; 3239 3240 STAILQ_FOREACH(rle, rl, link) { 3241 if (rle->type == type && rle->rid == rid) 3242 return (rle); 3243 } 3244 return (NULL); 3245 } 3246 3247 /** 3248 * @brief Delete a resource entry. 3249 * 3250 * @param rl the resource list to edit 3251 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3252 * @param rid the resource identifier 3253 */ 3254 void 3255 resource_list_delete(struct resource_list *rl, int type, int rid) 3256 { 3257 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3258 3259 if (rle) { 3260 if (rle->res != NULL) 3261 panic("resource_list_delete: resource has not been released"); 3262 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3263 free(rle, M_BUS); 3264 } 3265 } 3266 3267 /** 3268 * @brief Allocate a reserved resource 3269 * 3270 * This can be used by busses to force the allocation of resources 3271 * that are always active in the system even if they are not allocated 3272 * by a driver (e.g. PCI BARs). This function is usually called when 3273 * adding a new child to the bus. The resource is allocated from the 3274 * parent bus when it is reserved. The resource list entry is marked 3275 * with RLE_RESERVED to note that it is a reserved resource. 3276 * 3277 * Subsequent attempts to allocate the resource with 3278 * resource_list_alloc() will succeed the first time and will set 3279 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3280 * resource that has been allocated is released with 3281 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3282 * the actual resource remains allocated. The resource can be released to 3283 * the parent bus by calling resource_list_unreserve(). 3284 * 3285 * @param rl the resource list to allocate from 3286 * @param bus the parent device of @p child 3287 * @param child the device for which the resource is being reserved 3288 * @param type the type of resource to allocate 3289 * @param rid a pointer to the resource identifier 3290 * @param start hint at the start of the resource range - pass 3291 * @c 0 for any start address 3292 * @param end hint at the end of the resource range - pass 3293 * @c ~0 for any end address 3294 * @param count hint at the size of range required - pass @c 1 3295 * for any size 3296 * @param flags any extra flags to control the resource 3297 * allocation - see @c RF_XXX flags in 3298 * <sys/rman.h> for details 3299 * 3300 * @returns the resource which was allocated or @c NULL if no 3301 * resource could be allocated 3302 */ 3303 struct resource * 3304 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3305 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3306 { 3307 struct resource_list_entry *rle = NULL; 3308 int passthrough = (device_get_parent(child) != bus); 3309 struct resource *r; 3310 3311 if (passthrough) 3312 panic( 3313 "resource_list_reserve() should only be called for direct children"); 3314 if (flags & RF_ACTIVE) 3315 panic( 3316 "resource_list_reserve() should only reserve inactive resources"); 3317 3318 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3319 flags); 3320 if (r != NULL) { 3321 rle = resource_list_find(rl, type, *rid); 3322 rle->flags |= RLE_RESERVED; 3323 } 3324 return (r); 3325 } 3326 3327 /** 3328 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3329 * 3330 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3331 * and passing the allocation up to the parent of @p bus. This assumes 3332 * that the first entry of @c device_get_ivars(child) is a struct 3333 * resource_list. This also handles 'passthrough' allocations where a 3334 * child is a remote descendant of bus by passing the allocation up to 3335 * the parent of bus. 3336 * 3337 * Typically, a bus driver would store a list of child resources 3338 * somewhere in the child device's ivars (see device_get_ivars()) and 3339 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3340 * then call resource_list_alloc() to perform the allocation. 3341 * 3342 * @param rl the resource list to allocate from 3343 * @param bus the parent device of @p child 3344 * @param child the device which is requesting an allocation 3345 * @param type the type of resource to allocate 3346 * @param rid a pointer to the resource identifier 3347 * @param start hint at the start of the resource range - pass 3348 * @c 0 for any start address 3349 * @param end hint at the end of the resource range - pass 3350 * @c ~0 for any end address 3351 * @param count hint at the size of range required - pass @c 1 3352 * for any size 3353 * @param flags any extra flags to control the resource 3354 * allocation - see @c RF_XXX flags in 3355 * <sys/rman.h> for details 3356 * 3357 * @returns the resource which was allocated or @c NULL if no 3358 * resource could be allocated 3359 */ 3360 struct resource * 3361 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3362 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3363 { 3364 struct resource_list_entry *rle = NULL; 3365 int passthrough = (device_get_parent(child) != bus); 3366 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3367 3368 if (passthrough) { 3369 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3370 type, rid, start, end, count, flags)); 3371 } 3372 3373 rle = resource_list_find(rl, type, *rid); 3374 3375 if (!rle) 3376 return (NULL); /* no resource of that type/rid */ 3377 3378 if (rle->res) { 3379 if (rle->flags & RLE_RESERVED) { 3380 if (rle->flags & RLE_ALLOCATED) 3381 return (NULL); 3382 if ((flags & RF_ACTIVE) && 3383 bus_activate_resource(child, type, *rid, 3384 rle->res) != 0) 3385 return (NULL); 3386 rle->flags |= RLE_ALLOCATED; 3387 return (rle->res); 3388 } 3389 device_printf(bus, 3390 "resource entry %#x type %d for child %s is busy\n", *rid, 3391 type, device_get_nameunit(child)); 3392 return (NULL); 3393 } 3394 3395 if (isdefault) { 3396 start = rle->start; 3397 count = ulmax(count, rle->count); 3398 end = ulmax(rle->end, start + count - 1); 3399 } 3400 3401 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3402 type, rid, start, end, count, flags); 3403 3404 /* 3405 * Record the new range. 3406 */ 3407 if (rle->res) { 3408 rle->start = rman_get_start(rle->res); 3409 rle->end = rman_get_end(rle->res); 3410 rle->count = count; 3411 } 3412 3413 return (rle->res); 3414 } 3415 3416 /** 3417 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3418 * 3419 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3420 * used with resource_list_alloc(). 3421 * 3422 * @param rl the resource list which was allocated from 3423 * @param bus the parent device of @p child 3424 * @param child the device which is requesting a release 3425 * @param type the type of resource to release 3426 * @param rid the resource identifier 3427 * @param res the resource to release 3428 * 3429 * @retval 0 success 3430 * @retval non-zero a standard unix error code indicating what 3431 * error condition prevented the operation 3432 */ 3433 int 3434 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3435 int type, int rid, struct resource *res) 3436 { 3437 struct resource_list_entry *rle = NULL; 3438 int passthrough = (device_get_parent(child) != bus); 3439 int error; 3440 3441 if (passthrough) { 3442 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3443 type, rid, res)); 3444 } 3445 3446 rle = resource_list_find(rl, type, rid); 3447 3448 if (!rle) 3449 panic("resource_list_release: can't find resource"); 3450 if (!rle->res) 3451 panic("resource_list_release: resource entry is not busy"); 3452 if (rle->flags & RLE_RESERVED) { 3453 if (rle->flags & RLE_ALLOCATED) { 3454 if (rman_get_flags(res) & RF_ACTIVE) { 3455 error = bus_deactivate_resource(child, type, 3456 rid, res); 3457 if (error) 3458 return (error); 3459 } 3460 rle->flags &= ~RLE_ALLOCATED; 3461 return (0); 3462 } 3463 return (EINVAL); 3464 } 3465 3466 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3467 type, rid, res); 3468 if (error) 3469 return (error); 3470 3471 rle->res = NULL; 3472 return (0); 3473 } 3474 3475 /** 3476 * @brief Release all active resources of a given type 3477 * 3478 * Release all active resources of a specified type. This is intended 3479 * to be used to cleanup resources leaked by a driver after detach or 3480 * a failed attach. 3481 * 3482 * @param rl the resource list which was allocated from 3483 * @param bus the parent device of @p child 3484 * @param child the device whose active resources are being released 3485 * @param type the type of resources to release 3486 * 3487 * @retval 0 success 3488 * @retval EBUSY at least one resource was active 3489 */ 3490 int 3491 resource_list_release_active(struct resource_list *rl, device_t bus, 3492 device_t child, int type) 3493 { 3494 struct resource_list_entry *rle; 3495 int error, retval; 3496 3497 retval = 0; 3498 STAILQ_FOREACH(rle, rl, link) { 3499 if (rle->type != type) 3500 continue; 3501 if (rle->res == NULL) 3502 continue; 3503 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3504 RLE_RESERVED) 3505 continue; 3506 retval = EBUSY; 3507 error = resource_list_release(rl, bus, child, type, 3508 rman_get_rid(rle->res), rle->res); 3509 if (error != 0) 3510 device_printf(bus, 3511 "Failed to release active resource: %d\n", error); 3512 } 3513 return (retval); 3514 } 3515 3516 3517 /** 3518 * @brief Fully release a reserved resource 3519 * 3520 * Fully releases a resource reserved via resource_list_reserve(). 3521 * 3522 * @param rl the resource list which was allocated from 3523 * @param bus the parent device of @p child 3524 * @param child the device whose reserved resource is being released 3525 * @param type the type of resource to release 3526 * @param rid the resource identifier 3527 * @param res the resource to release 3528 * 3529 * @retval 0 success 3530 * @retval non-zero a standard unix error code indicating what 3531 * error condition prevented the operation 3532 */ 3533 int 3534 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3535 int type, int rid) 3536 { 3537 struct resource_list_entry *rle = NULL; 3538 int passthrough = (device_get_parent(child) != bus); 3539 3540 if (passthrough) 3541 panic( 3542 "resource_list_unreserve() should only be called for direct children"); 3543 3544 rle = resource_list_find(rl, type, rid); 3545 3546 if (!rle) 3547 panic("resource_list_unreserve: can't find resource"); 3548 if (!(rle->flags & RLE_RESERVED)) 3549 return (EINVAL); 3550 if (rle->flags & RLE_ALLOCATED) 3551 return (EBUSY); 3552 rle->flags &= ~RLE_RESERVED; 3553 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3554 } 3555 3556 /** 3557 * @brief Print a description of resources in a resource list 3558 * 3559 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3560 * The name is printed if at least one resource of the given type is available. 3561 * The format is used to print resource start and end. 3562 * 3563 * @param rl the resource list to print 3564 * @param name the name of @p type, e.g. @c "memory" 3565 * @param type type type of resource entry to print 3566 * @param format printf(9) format string to print resource 3567 * start and end values 3568 * 3569 * @returns the number of characters printed 3570 */ 3571 int 3572 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3573 const char *format) 3574 { 3575 struct resource_list_entry *rle; 3576 int printed, retval; 3577 3578 printed = 0; 3579 retval = 0; 3580 /* Yes, this is kinda cheating */ 3581 STAILQ_FOREACH(rle, rl, link) { 3582 if (rle->type == type) { 3583 if (printed == 0) 3584 retval += printf(" %s ", name); 3585 else 3586 retval += printf(","); 3587 printed++; 3588 retval += printf(format, rle->start); 3589 if (rle->count > 1) { 3590 retval += printf("-"); 3591 retval += printf(format, rle->start + 3592 rle->count - 1); 3593 } 3594 } 3595 } 3596 return (retval); 3597 } 3598 3599 /** 3600 * @brief Releases all the resources in a list. 3601 * 3602 * @param rl The resource list to purge. 3603 * 3604 * @returns nothing 3605 */ 3606 void 3607 resource_list_purge(struct resource_list *rl) 3608 { 3609 struct resource_list_entry *rle; 3610 3611 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3612 if (rle->res) 3613 bus_release_resource(rman_get_device(rle->res), 3614 rle->type, rle->rid, rle->res); 3615 STAILQ_REMOVE_HEAD(rl, link); 3616 free(rle, M_BUS); 3617 } 3618 } 3619 3620 device_t 3621 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3622 { 3623 3624 return (device_add_child_ordered(dev, order, name, unit)); 3625 } 3626 3627 /** 3628 * @brief Helper function for implementing DEVICE_PROBE() 3629 * 3630 * This function can be used to help implement the DEVICE_PROBE() for 3631 * a bus (i.e. a device which has other devices attached to it). It 3632 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3633 * devclass. 3634 */ 3635 int 3636 bus_generic_probe(device_t dev) 3637 { 3638 devclass_t dc = dev->devclass; 3639 driverlink_t dl; 3640 3641 TAILQ_FOREACH(dl, &dc->drivers, link) { 3642 /* 3643 * If this driver's pass is too high, then ignore it. 3644 * For most drivers in the default pass, this will 3645 * never be true. For early-pass drivers they will 3646 * only call the identify routines of eligible drivers 3647 * when this routine is called. Drivers for later 3648 * passes should have their identify routines called 3649 * on early-pass busses during BUS_NEW_PASS(). 3650 */ 3651 if (dl->pass > bus_current_pass) 3652 continue; 3653 DEVICE_IDENTIFY(dl->driver, dev); 3654 } 3655 3656 return (0); 3657 } 3658 3659 /** 3660 * @brief Helper function for implementing DEVICE_ATTACH() 3661 * 3662 * This function can be used to help implement the DEVICE_ATTACH() for 3663 * a bus. It calls device_probe_and_attach() for each of the device's 3664 * children. 3665 */ 3666 int 3667 bus_generic_attach(device_t dev) 3668 { 3669 device_t child; 3670 3671 TAILQ_FOREACH(child, &dev->children, link) { 3672 device_probe_and_attach(child); 3673 } 3674 3675 return (0); 3676 } 3677 3678 /** 3679 * @brief Helper function for implementing DEVICE_DETACH() 3680 * 3681 * This function can be used to help implement the DEVICE_DETACH() for 3682 * a bus. It calls device_detach() for each of the device's 3683 * children. 3684 */ 3685 int 3686 bus_generic_detach(device_t dev) 3687 { 3688 device_t child; 3689 int error; 3690 3691 if (dev->state != DS_ATTACHED) 3692 return (EBUSY); 3693 3694 TAILQ_FOREACH(child, &dev->children, link) { 3695 if ((error = device_detach(child)) != 0) 3696 return (error); 3697 } 3698 3699 return (0); 3700 } 3701 3702 /** 3703 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3704 * 3705 * This function can be used to help implement the DEVICE_SHUTDOWN() 3706 * for a bus. It calls device_shutdown() for each of the device's 3707 * children. 3708 */ 3709 int 3710 bus_generic_shutdown(device_t dev) 3711 { 3712 device_t child; 3713 3714 TAILQ_FOREACH(child, &dev->children, link) { 3715 device_shutdown(child); 3716 } 3717 3718 return (0); 3719 } 3720 3721 /** 3722 * @brief Default function for suspending a child device. 3723 * 3724 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3725 */ 3726 int 3727 bus_generic_suspend_child(device_t dev, device_t child) 3728 { 3729 int error; 3730 3731 error = DEVICE_SUSPEND(child); 3732 3733 if (error == 0) 3734 child->flags |= DF_SUSPENDED; 3735 3736 return (error); 3737 } 3738 3739 /** 3740 * @brief Default function for resuming a child device. 3741 * 3742 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3743 */ 3744 int 3745 bus_generic_resume_child(device_t dev, device_t child) 3746 { 3747 3748 DEVICE_RESUME(child); 3749 child->flags &= ~DF_SUSPENDED; 3750 3751 return (0); 3752 } 3753 3754 /** 3755 * @brief Helper function for implementing DEVICE_SUSPEND() 3756 * 3757 * This function can be used to help implement the DEVICE_SUSPEND() 3758 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3759 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3760 * operation is aborted and any devices which were suspended are 3761 * resumed immediately by calling their DEVICE_RESUME() methods. 3762 */ 3763 int 3764 bus_generic_suspend(device_t dev) 3765 { 3766 int error; 3767 device_t child, child2; 3768 3769 TAILQ_FOREACH(child, &dev->children, link) { 3770 error = BUS_SUSPEND_CHILD(dev, child); 3771 if (error) { 3772 for (child2 = TAILQ_FIRST(&dev->children); 3773 child2 && child2 != child; 3774 child2 = TAILQ_NEXT(child2, link)) 3775 BUS_RESUME_CHILD(dev, child2); 3776 return (error); 3777 } 3778 } 3779 return (0); 3780 } 3781 3782 /** 3783 * @brief Helper function for implementing DEVICE_RESUME() 3784 * 3785 * This function can be used to help implement the DEVICE_RESUME() for 3786 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3787 */ 3788 int 3789 bus_generic_resume(device_t dev) 3790 { 3791 device_t child; 3792 3793 TAILQ_FOREACH(child, &dev->children, link) { 3794 BUS_RESUME_CHILD(dev, child); 3795 /* if resume fails, there's nothing we can usefully do... */ 3796 } 3797 return (0); 3798 } 3799 3800 /** 3801 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3802 * 3803 * This function prints the first part of the ascii representation of 3804 * @p child, including its name, unit and description (if any - see 3805 * device_set_desc()). 3806 * 3807 * @returns the number of characters printed 3808 */ 3809 int 3810 bus_print_child_header(device_t dev, device_t child) 3811 { 3812 int retval = 0; 3813 3814 if (device_get_desc(child)) { 3815 retval += device_printf(child, "<%s>", device_get_desc(child)); 3816 } else { 3817 retval += printf("%s", device_get_nameunit(child)); 3818 } 3819 3820 return (retval); 3821 } 3822 3823 /** 3824 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3825 * 3826 * This function prints the last part of the ascii representation of 3827 * @p child, which consists of the string @c " on " followed by the 3828 * name and unit of the @p dev. 3829 * 3830 * @returns the number of characters printed 3831 */ 3832 int 3833 bus_print_child_footer(device_t dev, device_t child) 3834 { 3835 return (printf(" on %s\n", device_get_nameunit(dev))); 3836 } 3837 3838 /** 3839 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3840 * 3841 * This function prints out the VM domain for the given device. 3842 * 3843 * @returns the number of characters printed 3844 */ 3845 int 3846 bus_print_child_domain(device_t dev, device_t child) 3847 { 3848 int domain; 3849 3850 /* No domain? Don't print anything */ 3851 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3852 return (0); 3853 3854 return (printf(" numa-domain %d", domain)); 3855 } 3856 3857 /** 3858 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3859 * 3860 * This function simply calls bus_print_child_header() followed by 3861 * bus_print_child_footer(). 3862 * 3863 * @returns the number of characters printed 3864 */ 3865 int 3866 bus_generic_print_child(device_t dev, device_t child) 3867 { 3868 int retval = 0; 3869 3870 retval += bus_print_child_header(dev, child); 3871 retval += bus_print_child_domain(dev, child); 3872 retval += bus_print_child_footer(dev, child); 3873 3874 return (retval); 3875 } 3876 3877 /** 3878 * @brief Stub function for implementing BUS_READ_IVAR(). 3879 * 3880 * @returns ENOENT 3881 */ 3882 int 3883 bus_generic_read_ivar(device_t dev, device_t child, int index, 3884 uintptr_t * result) 3885 { 3886 return (ENOENT); 3887 } 3888 3889 /** 3890 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3891 * 3892 * @returns ENOENT 3893 */ 3894 int 3895 bus_generic_write_ivar(device_t dev, device_t child, int index, 3896 uintptr_t value) 3897 { 3898 return (ENOENT); 3899 } 3900 3901 /** 3902 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3903 * 3904 * @returns NULL 3905 */ 3906 struct resource_list * 3907 bus_generic_get_resource_list(device_t dev, device_t child) 3908 { 3909 return (NULL); 3910 } 3911 3912 /** 3913 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3914 * 3915 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3916 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3917 * and then calls device_probe_and_attach() for each unattached child. 3918 */ 3919 void 3920 bus_generic_driver_added(device_t dev, driver_t *driver) 3921 { 3922 device_t child; 3923 3924 DEVICE_IDENTIFY(driver, dev); 3925 TAILQ_FOREACH(child, &dev->children, link) { 3926 if (child->state == DS_NOTPRESENT || 3927 (child->flags & DF_REBID)) 3928 device_probe_and_attach(child); 3929 } 3930 } 3931 3932 /** 3933 * @brief Helper function for implementing BUS_NEW_PASS(). 3934 * 3935 * This implementing of BUS_NEW_PASS() first calls the identify 3936 * routines for any drivers that probe at the current pass. Then it 3937 * walks the list of devices for this bus. If a device is already 3938 * attached, then it calls BUS_NEW_PASS() on that device. If the 3939 * device is not already attached, it attempts to attach a driver to 3940 * it. 3941 */ 3942 void 3943 bus_generic_new_pass(device_t dev) 3944 { 3945 driverlink_t dl; 3946 devclass_t dc; 3947 device_t child; 3948 3949 dc = dev->devclass; 3950 TAILQ_FOREACH(dl, &dc->drivers, link) { 3951 if (dl->pass == bus_current_pass) 3952 DEVICE_IDENTIFY(dl->driver, dev); 3953 } 3954 TAILQ_FOREACH(child, &dev->children, link) { 3955 if (child->state >= DS_ATTACHED) 3956 BUS_NEW_PASS(child); 3957 else if (child->state == DS_NOTPRESENT) 3958 device_probe_and_attach(child); 3959 } 3960 } 3961 3962 /** 3963 * @brief Helper function for implementing BUS_SETUP_INTR(). 3964 * 3965 * This simple implementation of BUS_SETUP_INTR() simply calls the 3966 * BUS_SETUP_INTR() method of the parent of @p dev. 3967 */ 3968 int 3969 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3970 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3971 void **cookiep) 3972 { 3973 /* Propagate up the bus hierarchy until someone handles it. */ 3974 if (dev->parent) 3975 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3976 filter, intr, arg, cookiep)); 3977 return (EINVAL); 3978 } 3979 3980 /** 3981 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3982 * 3983 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3984 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3985 */ 3986 int 3987 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3988 void *cookie) 3989 { 3990 /* Propagate up the bus hierarchy until someone handles it. */ 3991 if (dev->parent) 3992 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3993 return (EINVAL); 3994 } 3995 3996 /** 3997 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3998 * 3999 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 4000 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 4001 */ 4002 int 4003 bus_generic_adjust_resource(device_t dev, device_t child, int type, 4004 struct resource *r, rman_res_t start, rman_res_t end) 4005 { 4006 /* Propagate up the bus hierarchy until someone handles it. */ 4007 if (dev->parent) 4008 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 4009 end)); 4010 return (EINVAL); 4011 } 4012 4013 /** 4014 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4015 * 4016 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 4017 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 4018 */ 4019 struct resource * 4020 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4021 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4022 { 4023 /* Propagate up the bus hierarchy until someone handles it. */ 4024 if (dev->parent) 4025 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4026 start, end, count, flags)); 4027 return (NULL); 4028 } 4029 4030 /** 4031 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4032 * 4033 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4034 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4035 */ 4036 int 4037 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 4038 struct resource *r) 4039 { 4040 /* Propagate up the bus hierarchy until someone handles it. */ 4041 if (dev->parent) 4042 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 4043 r)); 4044 return (EINVAL); 4045 } 4046 4047 /** 4048 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4049 * 4050 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4051 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4052 */ 4053 int 4054 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 4055 struct resource *r) 4056 { 4057 /* Propagate up the bus hierarchy until someone handles it. */ 4058 if (dev->parent) 4059 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 4060 r)); 4061 return (EINVAL); 4062 } 4063 4064 /** 4065 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4066 * 4067 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4068 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4069 */ 4070 int 4071 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 4072 int rid, struct resource *r) 4073 { 4074 /* Propagate up the bus hierarchy until someone handles it. */ 4075 if (dev->parent) 4076 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4077 r)); 4078 return (EINVAL); 4079 } 4080 4081 /** 4082 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4083 * 4084 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4085 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4086 */ 4087 int 4088 bus_generic_map_resource(device_t dev, device_t child, int type, 4089 struct resource *r, struct resource_map_request *args, 4090 struct resource_map *map) 4091 { 4092 /* Propagate up the bus hierarchy until someone handles it. */ 4093 if (dev->parent) 4094 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 4095 map)); 4096 return (EINVAL); 4097 } 4098 4099 /** 4100 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4101 * 4102 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4103 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4104 */ 4105 int 4106 bus_generic_unmap_resource(device_t dev, device_t child, int type, 4107 struct resource *r, struct resource_map *map) 4108 { 4109 /* Propagate up the bus hierarchy until someone handles it. */ 4110 if (dev->parent) 4111 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 4112 return (EINVAL); 4113 } 4114 4115 /** 4116 * @brief Helper function for implementing BUS_BIND_INTR(). 4117 * 4118 * This simple implementation of BUS_BIND_INTR() simply calls the 4119 * BUS_BIND_INTR() method of the parent of @p dev. 4120 */ 4121 int 4122 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4123 int cpu) 4124 { 4125 4126 /* Propagate up the bus hierarchy until someone handles it. */ 4127 if (dev->parent) 4128 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4129 return (EINVAL); 4130 } 4131 4132 /** 4133 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4134 * 4135 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4136 * BUS_CONFIG_INTR() method of the parent of @p dev. 4137 */ 4138 int 4139 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4140 enum intr_polarity pol) 4141 { 4142 4143 /* Propagate up the bus hierarchy until someone handles it. */ 4144 if (dev->parent) 4145 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4146 return (EINVAL); 4147 } 4148 4149 /** 4150 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4151 * 4152 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4153 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4154 */ 4155 int 4156 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4157 void *cookie, const char *descr) 4158 { 4159 4160 /* Propagate up the bus hierarchy until someone handles it. */ 4161 if (dev->parent) 4162 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4163 descr)); 4164 return (EINVAL); 4165 } 4166 4167 /** 4168 * @brief Helper function for implementing BUS_GET_CPUS(). 4169 * 4170 * This simple implementation of BUS_GET_CPUS() simply calls the 4171 * BUS_GET_CPUS() method of the parent of @p dev. 4172 */ 4173 int 4174 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4175 size_t setsize, cpuset_t *cpuset) 4176 { 4177 4178 /* Propagate up the bus hierarchy until someone handles it. */ 4179 if (dev->parent != NULL) 4180 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4181 return (EINVAL); 4182 } 4183 4184 /** 4185 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4186 * 4187 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4188 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4189 */ 4190 bus_dma_tag_t 4191 bus_generic_get_dma_tag(device_t dev, device_t child) 4192 { 4193 4194 /* Propagate up the bus hierarchy until someone handles it. */ 4195 if (dev->parent != NULL) 4196 return (BUS_GET_DMA_TAG(dev->parent, child)); 4197 return (NULL); 4198 } 4199 4200 /** 4201 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4202 * 4203 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4204 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4205 */ 4206 bus_space_tag_t 4207 bus_generic_get_bus_tag(device_t dev, device_t child) 4208 { 4209 4210 /* Propagate up the bus hierarchy until someone handles it. */ 4211 if (dev->parent != NULL) 4212 return (BUS_GET_BUS_TAG(dev->parent, child)); 4213 return ((bus_space_tag_t)0); 4214 } 4215 4216 /** 4217 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4218 * 4219 * This implementation of BUS_GET_RESOURCE() uses the 4220 * resource_list_find() function to do most of the work. It calls 4221 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4222 * search. 4223 */ 4224 int 4225 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4226 rman_res_t *startp, rman_res_t *countp) 4227 { 4228 struct resource_list * rl = NULL; 4229 struct resource_list_entry * rle = NULL; 4230 4231 rl = BUS_GET_RESOURCE_LIST(dev, child); 4232 if (!rl) 4233 return (EINVAL); 4234 4235 rle = resource_list_find(rl, type, rid); 4236 if (!rle) 4237 return (ENOENT); 4238 4239 if (startp) 4240 *startp = rle->start; 4241 if (countp) 4242 *countp = rle->count; 4243 4244 return (0); 4245 } 4246 4247 /** 4248 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4249 * 4250 * This implementation of BUS_SET_RESOURCE() uses the 4251 * resource_list_add() function to do most of the work. It calls 4252 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4253 * edit. 4254 */ 4255 int 4256 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4257 rman_res_t start, rman_res_t count) 4258 { 4259 struct resource_list * rl = NULL; 4260 4261 rl = BUS_GET_RESOURCE_LIST(dev, child); 4262 if (!rl) 4263 return (EINVAL); 4264 4265 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4266 4267 return (0); 4268 } 4269 4270 /** 4271 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4272 * 4273 * This implementation of BUS_DELETE_RESOURCE() uses the 4274 * resource_list_delete() function to do most of the work. It calls 4275 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4276 * edit. 4277 */ 4278 void 4279 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4280 { 4281 struct resource_list * rl = NULL; 4282 4283 rl = BUS_GET_RESOURCE_LIST(dev, child); 4284 if (!rl) 4285 return; 4286 4287 resource_list_delete(rl, type, rid); 4288 4289 return; 4290 } 4291 4292 /** 4293 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4294 * 4295 * This implementation of BUS_RELEASE_RESOURCE() uses the 4296 * resource_list_release() function to do most of the work. It calls 4297 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4298 */ 4299 int 4300 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4301 int rid, struct resource *r) 4302 { 4303 struct resource_list * rl = NULL; 4304 4305 if (device_get_parent(child) != dev) 4306 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4307 type, rid, r)); 4308 4309 rl = BUS_GET_RESOURCE_LIST(dev, child); 4310 if (!rl) 4311 return (EINVAL); 4312 4313 return (resource_list_release(rl, dev, child, type, rid, r)); 4314 } 4315 4316 /** 4317 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4318 * 4319 * This implementation of BUS_ALLOC_RESOURCE() uses the 4320 * resource_list_alloc() function to do most of the work. It calls 4321 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4322 */ 4323 struct resource * 4324 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4325 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4326 { 4327 struct resource_list * rl = NULL; 4328 4329 if (device_get_parent(child) != dev) 4330 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4331 type, rid, start, end, count, flags)); 4332 4333 rl = BUS_GET_RESOURCE_LIST(dev, child); 4334 if (!rl) 4335 return (NULL); 4336 4337 return (resource_list_alloc(rl, dev, child, type, rid, 4338 start, end, count, flags)); 4339 } 4340 4341 /** 4342 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4343 * 4344 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4345 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4346 */ 4347 int 4348 bus_generic_child_present(device_t dev, device_t child) 4349 { 4350 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4351 } 4352 4353 int 4354 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4355 { 4356 4357 if (dev->parent) 4358 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4359 4360 return (ENOENT); 4361 } 4362 4363 /** 4364 * @brief Helper function for implementing BUS_RESCAN(). 4365 * 4366 * This null implementation of BUS_RESCAN() always fails to indicate 4367 * the bus does not support rescanning. 4368 */ 4369 int 4370 bus_null_rescan(device_t dev) 4371 { 4372 4373 return (ENXIO); 4374 } 4375 4376 /* 4377 * Some convenience functions to make it easier for drivers to use the 4378 * resource-management functions. All these really do is hide the 4379 * indirection through the parent's method table, making for slightly 4380 * less-wordy code. In the future, it might make sense for this code 4381 * to maintain some sort of a list of resources allocated by each device. 4382 */ 4383 4384 int 4385 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4386 struct resource **res) 4387 { 4388 int i; 4389 4390 for (i = 0; rs[i].type != -1; i++) 4391 res[i] = NULL; 4392 for (i = 0; rs[i].type != -1; i++) { 4393 res[i] = bus_alloc_resource_any(dev, 4394 rs[i].type, &rs[i].rid, rs[i].flags); 4395 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4396 bus_release_resources(dev, rs, res); 4397 return (ENXIO); 4398 } 4399 } 4400 return (0); 4401 } 4402 4403 void 4404 bus_release_resources(device_t dev, const struct resource_spec *rs, 4405 struct resource **res) 4406 { 4407 int i; 4408 4409 for (i = 0; rs[i].type != -1; i++) 4410 if (res[i] != NULL) { 4411 bus_release_resource( 4412 dev, rs[i].type, rs[i].rid, res[i]); 4413 res[i] = NULL; 4414 } 4415 } 4416 4417 /** 4418 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4419 * 4420 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4421 * parent of @p dev. 4422 */ 4423 struct resource * 4424 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4425 rman_res_t end, rman_res_t count, u_int flags) 4426 { 4427 struct resource *res; 4428 4429 if (dev->parent == NULL) 4430 return (NULL); 4431 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4432 count, flags); 4433 return (res); 4434 } 4435 4436 /** 4437 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4438 * 4439 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4440 * parent of @p dev. 4441 */ 4442 int 4443 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4444 rman_res_t end) 4445 { 4446 if (dev->parent == NULL) 4447 return (EINVAL); 4448 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4449 } 4450 4451 /** 4452 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4453 * 4454 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4455 * parent of @p dev. 4456 */ 4457 int 4458 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4459 { 4460 if (dev->parent == NULL) 4461 return (EINVAL); 4462 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4463 } 4464 4465 /** 4466 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4467 * 4468 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4469 * parent of @p dev. 4470 */ 4471 int 4472 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4473 { 4474 if (dev->parent == NULL) 4475 return (EINVAL); 4476 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4477 } 4478 4479 /** 4480 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4481 * 4482 * This function simply calls the BUS_MAP_RESOURCE() method of the 4483 * parent of @p dev. 4484 */ 4485 int 4486 bus_map_resource(device_t dev, int type, struct resource *r, 4487 struct resource_map_request *args, struct resource_map *map) 4488 { 4489 if (dev->parent == NULL) 4490 return (EINVAL); 4491 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4492 } 4493 4494 /** 4495 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4496 * 4497 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4498 * parent of @p dev. 4499 */ 4500 int 4501 bus_unmap_resource(device_t dev, int type, struct resource *r, 4502 struct resource_map *map) 4503 { 4504 if (dev->parent == NULL) 4505 return (EINVAL); 4506 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4507 } 4508 4509 /** 4510 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4511 * 4512 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4513 * parent of @p dev. 4514 */ 4515 int 4516 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4517 { 4518 int rv; 4519 4520 if (dev->parent == NULL) 4521 return (EINVAL); 4522 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4523 return (rv); 4524 } 4525 4526 /** 4527 * @brief Wrapper function for BUS_SETUP_INTR(). 4528 * 4529 * This function simply calls the BUS_SETUP_INTR() method of the 4530 * parent of @p dev. 4531 */ 4532 int 4533 bus_setup_intr(device_t dev, struct resource *r, int flags, 4534 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4535 { 4536 int error; 4537 4538 if (dev->parent == NULL) 4539 return (EINVAL); 4540 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4541 arg, cookiep); 4542 if (error != 0) 4543 return (error); 4544 if (handler != NULL && !(flags & INTR_MPSAFE)) 4545 device_printf(dev, "[GIANT-LOCKED]\n"); 4546 return (0); 4547 } 4548 4549 /** 4550 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4551 * 4552 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4553 * parent of @p dev. 4554 */ 4555 int 4556 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4557 { 4558 if (dev->parent == NULL) 4559 return (EINVAL); 4560 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4561 } 4562 4563 /** 4564 * @brief Wrapper function for BUS_BIND_INTR(). 4565 * 4566 * This function simply calls the BUS_BIND_INTR() method of the 4567 * parent of @p dev. 4568 */ 4569 int 4570 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4571 { 4572 if (dev->parent == NULL) 4573 return (EINVAL); 4574 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4575 } 4576 4577 /** 4578 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4579 * 4580 * This function first formats the requested description into a 4581 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4582 * the parent of @p dev. 4583 */ 4584 int 4585 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4586 const char *fmt, ...) 4587 { 4588 va_list ap; 4589 char descr[MAXCOMLEN + 1]; 4590 4591 if (dev->parent == NULL) 4592 return (EINVAL); 4593 va_start(ap, fmt); 4594 vsnprintf(descr, sizeof(descr), fmt, ap); 4595 va_end(ap); 4596 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4597 } 4598 4599 /** 4600 * @brief Wrapper function for BUS_SET_RESOURCE(). 4601 * 4602 * This function simply calls the BUS_SET_RESOURCE() method of the 4603 * parent of @p dev. 4604 */ 4605 int 4606 bus_set_resource(device_t dev, int type, int rid, 4607 rman_res_t start, rman_res_t count) 4608 { 4609 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4610 start, count)); 4611 } 4612 4613 /** 4614 * @brief Wrapper function for BUS_GET_RESOURCE(). 4615 * 4616 * This function simply calls the BUS_GET_RESOURCE() method of the 4617 * parent of @p dev. 4618 */ 4619 int 4620 bus_get_resource(device_t dev, int type, int rid, 4621 rman_res_t *startp, rman_res_t *countp) 4622 { 4623 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4624 startp, countp)); 4625 } 4626 4627 /** 4628 * @brief Wrapper function for BUS_GET_RESOURCE(). 4629 * 4630 * This function simply calls the BUS_GET_RESOURCE() method of the 4631 * parent of @p dev and returns the start value. 4632 */ 4633 rman_res_t 4634 bus_get_resource_start(device_t dev, int type, int rid) 4635 { 4636 rman_res_t start; 4637 rman_res_t count; 4638 int error; 4639 4640 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4641 &start, &count); 4642 if (error) 4643 return (0); 4644 return (start); 4645 } 4646 4647 /** 4648 * @brief Wrapper function for BUS_GET_RESOURCE(). 4649 * 4650 * This function simply calls the BUS_GET_RESOURCE() method of the 4651 * parent of @p dev and returns the count value. 4652 */ 4653 rman_res_t 4654 bus_get_resource_count(device_t dev, int type, int rid) 4655 { 4656 rman_res_t start; 4657 rman_res_t count; 4658 int error; 4659 4660 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4661 &start, &count); 4662 if (error) 4663 return (0); 4664 return (count); 4665 } 4666 4667 /** 4668 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4669 * 4670 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4671 * parent of @p dev. 4672 */ 4673 void 4674 bus_delete_resource(device_t dev, int type, int rid) 4675 { 4676 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4677 } 4678 4679 /** 4680 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4681 * 4682 * This function simply calls the BUS_CHILD_PRESENT() method of the 4683 * parent of @p dev. 4684 */ 4685 int 4686 bus_child_present(device_t child) 4687 { 4688 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4689 } 4690 4691 /** 4692 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4693 * 4694 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4695 * parent of @p dev. 4696 */ 4697 int 4698 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4699 { 4700 device_t parent; 4701 4702 parent = device_get_parent(child); 4703 if (parent == NULL) { 4704 *buf = '\0'; 4705 return (0); 4706 } 4707 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4708 } 4709 4710 /** 4711 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4712 * 4713 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4714 * parent of @p dev. 4715 */ 4716 int 4717 bus_child_location_str(device_t child, char *buf, size_t buflen) 4718 { 4719 device_t parent; 4720 4721 parent = device_get_parent(child); 4722 if (parent == NULL) { 4723 *buf = '\0'; 4724 return (0); 4725 } 4726 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4727 } 4728 4729 /** 4730 * @brief Wrapper function for BUS_GET_CPUS(). 4731 * 4732 * This function simply calls the BUS_GET_CPUS() method of the 4733 * parent of @p dev. 4734 */ 4735 int 4736 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 4737 { 4738 device_t parent; 4739 4740 parent = device_get_parent(dev); 4741 if (parent == NULL) 4742 return (EINVAL); 4743 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 4744 } 4745 4746 /** 4747 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4748 * 4749 * This function simply calls the BUS_GET_DMA_TAG() method of the 4750 * parent of @p dev. 4751 */ 4752 bus_dma_tag_t 4753 bus_get_dma_tag(device_t dev) 4754 { 4755 device_t parent; 4756 4757 parent = device_get_parent(dev); 4758 if (parent == NULL) 4759 return (NULL); 4760 return (BUS_GET_DMA_TAG(parent, dev)); 4761 } 4762 4763 /** 4764 * @brief Wrapper function for BUS_GET_BUS_TAG(). 4765 * 4766 * This function simply calls the BUS_GET_BUS_TAG() method of the 4767 * parent of @p dev. 4768 */ 4769 bus_space_tag_t 4770 bus_get_bus_tag(device_t dev) 4771 { 4772 device_t parent; 4773 4774 parent = device_get_parent(dev); 4775 if (parent == NULL) 4776 return ((bus_space_tag_t)0); 4777 return (BUS_GET_BUS_TAG(parent, dev)); 4778 } 4779 4780 /** 4781 * @brief Wrapper function for BUS_GET_DOMAIN(). 4782 * 4783 * This function simply calls the BUS_GET_DOMAIN() method of the 4784 * parent of @p dev. 4785 */ 4786 int 4787 bus_get_domain(device_t dev, int *domain) 4788 { 4789 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 4790 } 4791 4792 /* Resume all devices and then notify userland that we're up again. */ 4793 static int 4794 root_resume(device_t dev) 4795 { 4796 int error; 4797 4798 error = bus_generic_resume(dev); 4799 if (error == 0) 4800 devctl_notify("kern", "power", "resume", NULL); 4801 return (error); 4802 } 4803 4804 static int 4805 root_print_child(device_t dev, device_t child) 4806 { 4807 int retval = 0; 4808 4809 retval += bus_print_child_header(dev, child); 4810 retval += printf("\n"); 4811 4812 return (retval); 4813 } 4814 4815 static int 4816 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4817 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4818 { 4819 /* 4820 * If an interrupt mapping gets to here something bad has happened. 4821 */ 4822 panic("root_setup_intr"); 4823 } 4824 4825 /* 4826 * If we get here, assume that the device is permanent and really is 4827 * present in the system. Removable bus drivers are expected to intercept 4828 * this call long before it gets here. We return -1 so that drivers that 4829 * really care can check vs -1 or some ERRNO returned higher in the food 4830 * chain. 4831 */ 4832 static int 4833 root_child_present(device_t dev, device_t child) 4834 { 4835 return (-1); 4836 } 4837 4838 static int 4839 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 4840 cpuset_t *cpuset) 4841 { 4842 4843 switch (op) { 4844 case INTR_CPUS: 4845 /* Default to returning the set of all CPUs. */ 4846 if (setsize != sizeof(cpuset_t)) 4847 return (EINVAL); 4848 *cpuset = all_cpus; 4849 return (0); 4850 default: 4851 return (EINVAL); 4852 } 4853 } 4854 4855 static kobj_method_t root_methods[] = { 4856 /* Device interface */ 4857 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4858 KOBJMETHOD(device_suspend, bus_generic_suspend), 4859 KOBJMETHOD(device_resume, root_resume), 4860 4861 /* Bus interface */ 4862 KOBJMETHOD(bus_print_child, root_print_child), 4863 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4864 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4865 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4866 KOBJMETHOD(bus_child_present, root_child_present), 4867 KOBJMETHOD(bus_get_cpus, root_get_cpus), 4868 4869 KOBJMETHOD_END 4870 }; 4871 4872 static driver_t root_driver = { 4873 "root", 4874 root_methods, 4875 1, /* no softc */ 4876 }; 4877 4878 device_t root_bus; 4879 devclass_t root_devclass; 4880 4881 static int 4882 root_bus_module_handler(module_t mod, int what, void* arg) 4883 { 4884 switch (what) { 4885 case MOD_LOAD: 4886 TAILQ_INIT(&bus_data_devices); 4887 kobj_class_compile((kobj_class_t) &root_driver); 4888 root_bus = make_device(NULL, "root", 0); 4889 root_bus->desc = "System root bus"; 4890 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4891 root_bus->driver = &root_driver; 4892 root_bus->state = DS_ATTACHED; 4893 root_devclass = devclass_find_internal("root", NULL, FALSE); 4894 devinit(); 4895 return (0); 4896 4897 case MOD_SHUTDOWN: 4898 device_shutdown(root_bus); 4899 return (0); 4900 default: 4901 return (EOPNOTSUPP); 4902 } 4903 4904 return (0); 4905 } 4906 4907 static moduledata_t root_bus_mod = { 4908 "rootbus", 4909 root_bus_module_handler, 4910 NULL 4911 }; 4912 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4913 4914 /** 4915 * @brief Automatically configure devices 4916 * 4917 * This function begins the autoconfiguration process by calling 4918 * device_probe_and_attach() for each child of the @c root0 device. 4919 */ 4920 void 4921 root_bus_configure(void) 4922 { 4923 4924 PDEBUG((".")); 4925 4926 /* Eventually this will be split up, but this is sufficient for now. */ 4927 bus_set_pass(BUS_PASS_DEFAULT); 4928 } 4929 4930 /** 4931 * @brief Module handler for registering device drivers 4932 * 4933 * This module handler is used to automatically register device 4934 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4935 * devclass_add_driver() for the driver described by the 4936 * driver_module_data structure pointed to by @p arg 4937 */ 4938 int 4939 driver_module_handler(module_t mod, int what, void *arg) 4940 { 4941 struct driver_module_data *dmd; 4942 devclass_t bus_devclass; 4943 kobj_class_t driver; 4944 int error, pass; 4945 4946 dmd = (struct driver_module_data *)arg; 4947 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4948 error = 0; 4949 4950 switch (what) { 4951 case MOD_LOAD: 4952 if (dmd->dmd_chainevh) 4953 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4954 4955 pass = dmd->dmd_pass; 4956 driver = dmd->dmd_driver; 4957 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4958 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4959 error = devclass_add_driver(bus_devclass, driver, pass, 4960 dmd->dmd_devclass); 4961 break; 4962 4963 case MOD_UNLOAD: 4964 PDEBUG(("Unloading module: driver %s from bus %s", 4965 DRIVERNAME(dmd->dmd_driver), 4966 dmd->dmd_busname)); 4967 error = devclass_delete_driver(bus_devclass, 4968 dmd->dmd_driver); 4969 4970 if (!error && dmd->dmd_chainevh) 4971 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4972 break; 4973 case MOD_QUIESCE: 4974 PDEBUG(("Quiesce module: driver %s from bus %s", 4975 DRIVERNAME(dmd->dmd_driver), 4976 dmd->dmd_busname)); 4977 error = devclass_quiesce_driver(bus_devclass, 4978 dmd->dmd_driver); 4979 4980 if (!error && dmd->dmd_chainevh) 4981 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4982 break; 4983 default: 4984 error = EOPNOTSUPP; 4985 break; 4986 } 4987 4988 return (error); 4989 } 4990 4991 /** 4992 * @brief Enumerate all hinted devices for this bus. 4993 * 4994 * Walks through the hints for this bus and calls the bus_hinted_child 4995 * routine for each one it fines. It searches first for the specific 4996 * bus that's being probed for hinted children (eg isa0), and then for 4997 * generic children (eg isa). 4998 * 4999 * @param dev bus device to enumerate 5000 */ 5001 void 5002 bus_enumerate_hinted_children(device_t bus) 5003 { 5004 int i; 5005 const char *dname, *busname; 5006 int dunit; 5007 5008 /* 5009 * enumerate all devices on the specific bus 5010 */ 5011 busname = device_get_nameunit(bus); 5012 i = 0; 5013 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5014 BUS_HINTED_CHILD(bus, dname, dunit); 5015 5016 /* 5017 * and all the generic ones. 5018 */ 5019 busname = device_get_name(bus); 5020 i = 0; 5021 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5022 BUS_HINTED_CHILD(bus, dname, dunit); 5023 } 5024 5025 #ifdef BUS_DEBUG 5026 5027 /* the _short versions avoid iteration by not calling anything that prints 5028 * more than oneliners. I love oneliners. 5029 */ 5030 5031 static void 5032 print_device_short(device_t dev, int indent) 5033 { 5034 if (!dev) 5035 return; 5036 5037 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5038 dev->unit, dev->desc, 5039 (dev->parent? "":"no "), 5040 (TAILQ_EMPTY(&dev->children)? "no ":""), 5041 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5042 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5043 (dev->flags&DF_WILDCARD? "wildcard,":""), 5044 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5045 (dev->flags&DF_REBID? "rebiddable,":""), 5046 (dev->ivars? "":"no "), 5047 (dev->softc? "":"no "), 5048 dev->busy)); 5049 } 5050 5051 static void 5052 print_device(device_t dev, int indent) 5053 { 5054 if (!dev) 5055 return; 5056 5057 print_device_short(dev, indent); 5058 5059 indentprintf(("Parent:\n")); 5060 print_device_short(dev->parent, indent+1); 5061 indentprintf(("Driver:\n")); 5062 print_driver_short(dev->driver, indent+1); 5063 indentprintf(("Devclass:\n")); 5064 print_devclass_short(dev->devclass, indent+1); 5065 } 5066 5067 void 5068 print_device_tree_short(device_t dev, int indent) 5069 /* print the device and all its children (indented) */ 5070 { 5071 device_t child; 5072 5073 if (!dev) 5074 return; 5075 5076 print_device_short(dev, indent); 5077 5078 TAILQ_FOREACH(child, &dev->children, link) { 5079 print_device_tree_short(child, indent+1); 5080 } 5081 } 5082 5083 void 5084 print_device_tree(device_t dev, int indent) 5085 /* print the device and all its children (indented) */ 5086 { 5087 device_t child; 5088 5089 if (!dev) 5090 return; 5091 5092 print_device(dev, indent); 5093 5094 TAILQ_FOREACH(child, &dev->children, link) { 5095 print_device_tree(child, indent+1); 5096 } 5097 } 5098 5099 static void 5100 print_driver_short(driver_t *driver, int indent) 5101 { 5102 if (!driver) 5103 return; 5104 5105 indentprintf(("driver %s: softc size = %zd\n", 5106 driver->name, driver->size)); 5107 } 5108 5109 static void 5110 print_driver(driver_t *driver, int indent) 5111 { 5112 if (!driver) 5113 return; 5114 5115 print_driver_short(driver, indent); 5116 } 5117 5118 static void 5119 print_driver_list(driver_list_t drivers, int indent) 5120 { 5121 driverlink_t driver; 5122 5123 TAILQ_FOREACH(driver, &drivers, link) { 5124 print_driver(driver->driver, indent); 5125 } 5126 } 5127 5128 static void 5129 print_devclass_short(devclass_t dc, int indent) 5130 { 5131 if ( !dc ) 5132 return; 5133 5134 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5135 } 5136 5137 static void 5138 print_devclass(devclass_t dc, int indent) 5139 { 5140 int i; 5141 5142 if ( !dc ) 5143 return; 5144 5145 print_devclass_short(dc, indent); 5146 indentprintf(("Drivers:\n")); 5147 print_driver_list(dc->drivers, indent+1); 5148 5149 indentprintf(("Devices:\n")); 5150 for (i = 0; i < dc->maxunit; i++) 5151 if (dc->devices[i]) 5152 print_device(dc->devices[i], indent+1); 5153 } 5154 5155 void 5156 print_devclass_list_short(void) 5157 { 5158 devclass_t dc; 5159 5160 printf("Short listing of devclasses, drivers & devices:\n"); 5161 TAILQ_FOREACH(dc, &devclasses, link) { 5162 print_devclass_short(dc, 0); 5163 } 5164 } 5165 5166 void 5167 print_devclass_list(void) 5168 { 5169 devclass_t dc; 5170 5171 printf("Full listing of devclasses, drivers & devices:\n"); 5172 TAILQ_FOREACH(dc, &devclasses, link) { 5173 print_devclass(dc, 0); 5174 } 5175 } 5176 5177 #endif 5178 5179 /* 5180 * User-space access to the device tree. 5181 * 5182 * We implement a small set of nodes: 5183 * 5184 * hw.bus Single integer read method to obtain the 5185 * current generation count. 5186 * hw.bus.devices Reads the entire device tree in flat space. 5187 * hw.bus.rman Resource manager interface 5188 * 5189 * We might like to add the ability to scan devclasses and/or drivers to 5190 * determine what else is currently loaded/available. 5191 */ 5192 5193 static int 5194 sysctl_bus(SYSCTL_HANDLER_ARGS) 5195 { 5196 struct u_businfo ubus; 5197 5198 ubus.ub_version = BUS_USER_VERSION; 5199 ubus.ub_generation = bus_data_generation; 5200 5201 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5202 } 5203 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 5204 "bus-related data"); 5205 5206 static int 5207 sysctl_devices(SYSCTL_HANDLER_ARGS) 5208 { 5209 int *name = (int *)arg1; 5210 u_int namelen = arg2; 5211 int index; 5212 device_t dev; 5213 struct u_device udev; /* XXX this is a bit big */ 5214 int error; 5215 5216 if (namelen != 2) 5217 return (EINVAL); 5218 5219 if (bus_data_generation_check(name[0])) 5220 return (EINVAL); 5221 5222 index = name[1]; 5223 5224 /* 5225 * Scan the list of devices, looking for the requested index. 5226 */ 5227 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5228 if (index-- == 0) 5229 break; 5230 } 5231 if (dev == NULL) 5232 return (ENOENT); 5233 5234 /* 5235 * Populate the return array. 5236 */ 5237 bzero(&udev, sizeof(udev)); 5238 udev.dv_handle = (uintptr_t)dev; 5239 udev.dv_parent = (uintptr_t)dev->parent; 5240 if (dev->nameunit != NULL) 5241 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 5242 if (dev->desc != NULL) 5243 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 5244 if (dev->driver != NULL && dev->driver->name != NULL) 5245 strlcpy(udev.dv_drivername, dev->driver->name, 5246 sizeof(udev.dv_drivername)); 5247 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 5248 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 5249 udev.dv_devflags = dev->devflags; 5250 udev.dv_flags = dev->flags; 5251 udev.dv_state = dev->state; 5252 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 5253 return (error); 5254 } 5255 5256 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 5257 "system device tree"); 5258 5259 int 5260 bus_data_generation_check(int generation) 5261 { 5262 if (generation != bus_data_generation) 5263 return (1); 5264 5265 /* XXX generate optimised lists here? */ 5266 return (0); 5267 } 5268 5269 void 5270 bus_data_generation_update(void) 5271 { 5272 bus_data_generation++; 5273 } 5274 5275 int 5276 bus_free_resource(device_t dev, int type, struct resource *r) 5277 { 5278 if (r == NULL) 5279 return (0); 5280 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5281 } 5282 5283 device_t 5284 device_lookup_by_name(const char *name) 5285 { 5286 device_t dev; 5287 5288 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5289 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5290 return (dev); 5291 } 5292 return (NULL); 5293 } 5294 5295 /* 5296 * /dev/devctl2 implementation. The existing /dev/devctl device has 5297 * implicit semantics on open, so it could not be reused for this. 5298 * Another option would be to call this /dev/bus? 5299 */ 5300 static int 5301 find_device(struct devreq *req, device_t *devp) 5302 { 5303 device_t dev; 5304 5305 /* 5306 * First, ensure that the name is nul terminated. 5307 */ 5308 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5309 return (EINVAL); 5310 5311 /* 5312 * Second, try to find an attached device whose name matches 5313 * 'name'. 5314 */ 5315 dev = device_lookup_by_name(req->dr_name); 5316 if (dev != NULL) { 5317 *devp = dev; 5318 return (0); 5319 } 5320 5321 /* Finally, give device enumerators a chance. */ 5322 dev = NULL; 5323 EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev); 5324 if (dev == NULL) 5325 return (ENOENT); 5326 *devp = dev; 5327 return (0); 5328 } 5329 5330 static bool 5331 driver_exists(device_t bus, const char *driver) 5332 { 5333 devclass_t dc; 5334 5335 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5336 if (devclass_find_driver_internal(dc, driver) != NULL) 5337 return (true); 5338 } 5339 return (false); 5340 } 5341 5342 static int 5343 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5344 struct thread *td) 5345 { 5346 struct devreq *req; 5347 device_t dev; 5348 int error, old; 5349 5350 /* Locate the device to control. */ 5351 mtx_lock(&Giant); 5352 req = (struct devreq *)data; 5353 switch (cmd) { 5354 case DEV_ATTACH: 5355 case DEV_DETACH: 5356 case DEV_ENABLE: 5357 case DEV_DISABLE: 5358 case DEV_SUSPEND: 5359 case DEV_RESUME: 5360 case DEV_SET_DRIVER: 5361 case DEV_CLEAR_DRIVER: 5362 case DEV_RESCAN: 5363 case DEV_DELETE: 5364 error = priv_check(td, PRIV_DRIVER); 5365 if (error == 0) 5366 error = find_device(req, &dev); 5367 break; 5368 default: 5369 error = ENOTTY; 5370 break; 5371 } 5372 if (error) { 5373 mtx_unlock(&Giant); 5374 return (error); 5375 } 5376 5377 /* Perform the requested operation. */ 5378 switch (cmd) { 5379 case DEV_ATTACH: 5380 if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0) 5381 error = EBUSY; 5382 else if (!device_is_enabled(dev)) 5383 error = ENXIO; 5384 else 5385 error = device_probe_and_attach(dev); 5386 break; 5387 case DEV_DETACH: 5388 if (!device_is_attached(dev)) { 5389 error = ENXIO; 5390 break; 5391 } 5392 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5393 error = device_quiesce(dev); 5394 if (error) 5395 break; 5396 } 5397 error = device_detach(dev); 5398 break; 5399 case DEV_ENABLE: 5400 if (device_is_enabled(dev)) { 5401 error = EBUSY; 5402 break; 5403 } 5404 5405 /* 5406 * If the device has been probed but not attached (e.g. 5407 * when it has been disabled by a loader hint), just 5408 * attach the device rather than doing a full probe. 5409 */ 5410 device_enable(dev); 5411 if (device_is_alive(dev)) { 5412 /* 5413 * If the device was disabled via a hint, clear 5414 * the hint. 5415 */ 5416 if (resource_disabled(dev->driver->name, dev->unit)) 5417 resource_unset_value(dev->driver->name, 5418 dev->unit, "disabled"); 5419 error = device_attach(dev); 5420 } else 5421 error = device_probe_and_attach(dev); 5422 break; 5423 case DEV_DISABLE: 5424 if (!device_is_enabled(dev)) { 5425 error = ENXIO; 5426 break; 5427 } 5428 5429 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5430 error = device_quiesce(dev); 5431 if (error) 5432 break; 5433 } 5434 5435 /* 5436 * Force DF_FIXEDCLASS on around detach to preserve 5437 * the existing name. 5438 */ 5439 old = dev->flags; 5440 dev->flags |= DF_FIXEDCLASS; 5441 error = device_detach(dev); 5442 if (!(old & DF_FIXEDCLASS)) 5443 dev->flags &= ~DF_FIXEDCLASS; 5444 if (error == 0) 5445 device_disable(dev); 5446 break; 5447 case DEV_SUSPEND: 5448 if (device_is_suspended(dev)) { 5449 error = EBUSY; 5450 break; 5451 } 5452 if (device_get_parent(dev) == NULL) { 5453 error = EINVAL; 5454 break; 5455 } 5456 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5457 break; 5458 case DEV_RESUME: 5459 if (!device_is_suspended(dev)) { 5460 error = EINVAL; 5461 break; 5462 } 5463 if (device_get_parent(dev) == NULL) { 5464 error = EINVAL; 5465 break; 5466 } 5467 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5468 break; 5469 case DEV_SET_DRIVER: { 5470 devclass_t dc; 5471 char driver[128]; 5472 5473 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5474 if (error) 5475 break; 5476 if (driver[0] == '\0') { 5477 error = EINVAL; 5478 break; 5479 } 5480 if (dev->devclass != NULL && 5481 strcmp(driver, dev->devclass->name) == 0) 5482 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5483 break; 5484 5485 /* 5486 * Scan drivers for this device's bus looking for at 5487 * least one matching driver. 5488 */ 5489 if (dev->parent == NULL) { 5490 error = EINVAL; 5491 break; 5492 } 5493 if (!driver_exists(dev->parent, driver)) { 5494 error = ENOENT; 5495 break; 5496 } 5497 dc = devclass_create(driver); 5498 if (dc == NULL) { 5499 error = ENOMEM; 5500 break; 5501 } 5502 5503 /* Detach device if necessary. */ 5504 if (device_is_attached(dev)) { 5505 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5506 error = device_detach(dev); 5507 else 5508 error = EBUSY; 5509 if (error) 5510 break; 5511 } 5512 5513 /* Clear any previously-fixed device class and unit. */ 5514 if (dev->flags & DF_FIXEDCLASS) 5515 devclass_delete_device(dev->devclass, dev); 5516 dev->flags |= DF_WILDCARD; 5517 dev->unit = -1; 5518 5519 /* Force the new device class. */ 5520 error = devclass_add_device(dc, dev); 5521 if (error) 5522 break; 5523 dev->flags |= DF_FIXEDCLASS; 5524 error = device_probe_and_attach(dev); 5525 break; 5526 } 5527 case DEV_CLEAR_DRIVER: 5528 if (!(dev->flags & DF_FIXEDCLASS)) { 5529 error = 0; 5530 break; 5531 } 5532 if (device_is_attached(dev)) { 5533 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5534 error = device_detach(dev); 5535 else 5536 error = EBUSY; 5537 if (error) 5538 break; 5539 } 5540 5541 dev->flags &= ~DF_FIXEDCLASS; 5542 dev->flags |= DF_WILDCARD; 5543 devclass_delete_device(dev->devclass, dev); 5544 error = device_probe_and_attach(dev); 5545 break; 5546 case DEV_RESCAN: 5547 if (!device_is_attached(dev)) { 5548 error = ENXIO; 5549 break; 5550 } 5551 error = BUS_RESCAN(dev); 5552 break; 5553 case DEV_DELETE: { 5554 device_t parent; 5555 5556 parent = device_get_parent(dev); 5557 if (parent == NULL) { 5558 error = EINVAL; 5559 break; 5560 } 5561 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5562 if (bus_child_present(dev) != 0) { 5563 error = EBUSY; 5564 break; 5565 } 5566 } 5567 5568 error = device_delete_child(parent, dev); 5569 break; 5570 } 5571 } 5572 mtx_unlock(&Giant); 5573 return (error); 5574 } 5575 5576 static struct cdevsw devctl2_cdevsw = { 5577 .d_version = D_VERSION, 5578 .d_ioctl = devctl2_ioctl, 5579 .d_name = "devctl2", 5580 }; 5581 5582 static void 5583 devctl2_init(void) 5584 { 5585 5586 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5587 UID_ROOT, GID_WHEEL, 0600, "devctl2"); 5588 } 5589