xref: /freebsd/sys/kern/subr_bus.c (revision a3cf0ef5a295c885c895fabfd56470c0d1db322d)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/conf.h>
34 #include <sys/filio.h>
35 #include <sys/lock.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/poll.h>
43 #include <sys/proc.h>
44 #include <sys/condvar.h>
45 #include <sys/queue.h>
46 #include <machine/bus.h>
47 #include <sys/rman.h>
48 #include <sys/selinfo.h>
49 #include <sys/signalvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/uio.h>
53 #include <sys/bus.h>
54 #include <sys/interrupt.h>
55 
56 #include <machine/stdarg.h>
57 
58 #include <vm/uma.h>
59 
60 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
61 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
62 
63 /*
64  * Used to attach drivers to devclasses.
65  */
66 typedef struct driverlink *driverlink_t;
67 struct driverlink {
68 	kobj_class_t	driver;
69 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
70 	int		pass;
71 	TAILQ_ENTRY(driverlink) passlink;
72 };
73 
74 /*
75  * Forward declarations
76  */
77 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
78 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
79 typedef TAILQ_HEAD(device_list, device) device_list_t;
80 
81 struct devclass {
82 	TAILQ_ENTRY(devclass) link;
83 	devclass_t	parent;		/* parent in devclass hierarchy */
84 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
85 	char		*name;
86 	device_t	*devices;	/* array of devices indexed by unit */
87 	int		maxunit;	/* size of devices array */
88 	int		flags;
89 #define DC_HAS_CHILDREN		1
90 
91 	struct sysctl_ctx_list sysctl_ctx;
92 	struct sysctl_oid *sysctl_tree;
93 };
94 
95 /**
96  * @brief Implementation of device.
97  */
98 struct device {
99 	/*
100 	 * A device is a kernel object. The first field must be the
101 	 * current ops table for the object.
102 	 */
103 	KOBJ_FIELDS;
104 
105 	/*
106 	 * Device hierarchy.
107 	 */
108 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
109 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
110 	device_t	parent;		/**< parent of this device  */
111 	device_list_t	children;	/**< list of child devices */
112 
113 	/*
114 	 * Details of this device.
115 	 */
116 	driver_t	*driver;	/**< current driver */
117 	devclass_t	devclass;	/**< current device class */
118 	int		unit;		/**< current unit number */
119 	char*		nameunit;	/**< name+unit e.g. foodev0 */
120 	char*		desc;		/**< driver specific description */
121 	int		busy;		/**< count of calls to device_busy() */
122 	device_state_t	state;		/**< current device state  */
123 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
124 	u_int		flags;		/**< internal device flags  */
125 #define	DF_ENABLED	0x01		/* device should be probed/attached */
126 #define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
127 #define	DF_WILDCARD	0x04		/* unit was originally wildcard */
128 #define	DF_DESCMALLOCED	0x08		/* description was malloced */
129 #define	DF_QUIET	0x10		/* don't print verbose attach message */
130 #define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
131 #define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
132 #define	DF_REBID	0x80		/* Can rebid after attach */
133 	u_int	order;			/**< order from device_add_child_ordered() */
134 	void	*ivars;			/**< instance variables  */
135 	void	*softc;			/**< current driver's variables  */
136 
137 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139 };
140 
141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143 
144 #ifdef BUS_DEBUG
145 
146 static int bus_debug = 1;
147 TUNABLE_INT("bus.debug", &bus_debug);
148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
149     "Debug bus code");
150 
151 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
152 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
153 #define DRIVERNAME(d)	((d)? d->name : "no driver")
154 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
155 
156 /**
157  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
158  * prevent syslog from deleting initial spaces
159  */
160 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
161 
162 static void print_device_short(device_t dev, int indent);
163 static void print_device(device_t dev, int indent);
164 void print_device_tree_short(device_t dev, int indent);
165 void print_device_tree(device_t dev, int indent);
166 static void print_driver_short(driver_t *driver, int indent);
167 static void print_driver(driver_t *driver, int indent);
168 static void print_driver_list(driver_list_t drivers, int indent);
169 static void print_devclass_short(devclass_t dc, int indent);
170 static void print_devclass(devclass_t dc, int indent);
171 void print_devclass_list_short(void);
172 void print_devclass_list(void);
173 
174 #else
175 /* Make the compiler ignore the function calls */
176 #define PDEBUG(a)			/* nop */
177 #define DEVICENAME(d)			/* nop */
178 #define DRIVERNAME(d)			/* nop */
179 #define DEVCLANAME(d)			/* nop */
180 
181 #define print_device_short(d,i)		/* nop */
182 #define print_device(d,i)		/* nop */
183 #define print_device_tree_short(d,i)	/* nop */
184 #define print_device_tree(d,i)		/* nop */
185 #define print_driver_short(d,i)		/* nop */
186 #define print_driver(d,i)		/* nop */
187 #define print_driver_list(d,i)		/* nop */
188 #define print_devclass_short(d,i)	/* nop */
189 #define print_devclass(d,i)		/* nop */
190 #define print_devclass_list_short()	/* nop */
191 #define print_devclass_list()		/* nop */
192 #endif
193 
194 /*
195  * dev sysctl tree
196  */
197 
198 enum {
199 	DEVCLASS_SYSCTL_PARENT,
200 };
201 
202 static int
203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
204 {
205 	devclass_t dc = (devclass_t)arg1;
206 	const char *value;
207 
208 	switch (arg2) {
209 	case DEVCLASS_SYSCTL_PARENT:
210 		value = dc->parent ? dc->parent->name : "";
211 		break;
212 	default:
213 		return (EINVAL);
214 	}
215 	return (SYSCTL_OUT(req, value, strlen(value)));
216 }
217 
218 static void
219 devclass_sysctl_init(devclass_t dc)
220 {
221 
222 	if (dc->sysctl_tree != NULL)
223 		return;
224 	sysctl_ctx_init(&dc->sysctl_ctx);
225 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
226 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
227 	    CTLFLAG_RD, NULL, "");
228 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
229 	    OID_AUTO, "%parent", CTLFLAG_RD,
230 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
231 	    "parent class");
232 }
233 
234 enum {
235 	DEVICE_SYSCTL_DESC,
236 	DEVICE_SYSCTL_DRIVER,
237 	DEVICE_SYSCTL_LOCATION,
238 	DEVICE_SYSCTL_PNPINFO,
239 	DEVICE_SYSCTL_PARENT,
240 };
241 
242 static int
243 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
244 {
245 	device_t dev = (device_t)arg1;
246 	const char *value;
247 	char *buf;
248 	int error;
249 
250 	buf = NULL;
251 	switch (arg2) {
252 	case DEVICE_SYSCTL_DESC:
253 		value = dev->desc ? dev->desc : "";
254 		break;
255 	case DEVICE_SYSCTL_DRIVER:
256 		value = dev->driver ? dev->driver->name : "";
257 		break;
258 	case DEVICE_SYSCTL_LOCATION:
259 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260 		bus_child_location_str(dev, buf, 1024);
261 		break;
262 	case DEVICE_SYSCTL_PNPINFO:
263 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
264 		bus_child_pnpinfo_str(dev, buf, 1024);
265 		break;
266 	case DEVICE_SYSCTL_PARENT:
267 		value = dev->parent ? dev->parent->nameunit : "";
268 		break;
269 	default:
270 		return (EINVAL);
271 	}
272 	error = SYSCTL_OUT(req, value, strlen(value));
273 	if (buf != NULL)
274 		free(buf, M_BUS);
275 	return (error);
276 }
277 
278 static void
279 device_sysctl_init(device_t dev)
280 {
281 	devclass_t dc = dev->devclass;
282 
283 	if (dev->sysctl_tree != NULL)
284 		return;
285 	devclass_sysctl_init(dc);
286 	sysctl_ctx_init(&dev->sysctl_ctx);
287 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
288 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
289 	    dev->nameunit + strlen(dc->name),
290 	    CTLFLAG_RD, NULL, "");
291 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292 	    OID_AUTO, "%desc", CTLFLAG_RD,
293 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
294 	    "device description");
295 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296 	    OID_AUTO, "%driver", CTLFLAG_RD,
297 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
298 	    "device driver name");
299 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300 	    OID_AUTO, "%location", CTLFLAG_RD,
301 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
302 	    "device location relative to parent");
303 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304 	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
305 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
306 	    "device identification");
307 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
308 	    OID_AUTO, "%parent", CTLFLAG_RD,
309 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
310 	    "parent device");
311 }
312 
313 static void
314 device_sysctl_update(device_t dev)
315 {
316 	devclass_t dc = dev->devclass;
317 
318 	if (dev->sysctl_tree == NULL)
319 		return;
320 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
321 }
322 
323 static void
324 device_sysctl_fini(device_t dev)
325 {
326 	if (dev->sysctl_tree == NULL)
327 		return;
328 	sysctl_ctx_free(&dev->sysctl_ctx);
329 	dev->sysctl_tree = NULL;
330 }
331 
332 /*
333  * /dev/devctl implementation
334  */
335 
336 /*
337  * This design allows only one reader for /dev/devctl.  This is not desirable
338  * in the long run, but will get a lot of hair out of this implementation.
339  * Maybe we should make this device a clonable device.
340  *
341  * Also note: we specifically do not attach a device to the device_t tree
342  * to avoid potential chicken and egg problems.  One could argue that all
343  * of this belongs to the root node.  One could also further argue that the
344  * sysctl interface that we have not might more properly be an ioctl
345  * interface, but at this stage of the game, I'm not inclined to rock that
346  * boat.
347  *
348  * I'm also not sure that the SIGIO support is done correctly or not, as
349  * I copied it from a driver that had SIGIO support that likely hasn't been
350  * tested since 3.4 or 2.2.8!
351  */
352 
353 /* Deprecated way to adjust queue length */
354 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
355 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */
356 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
357     0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
358 
359 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
360 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
361 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
362 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
364     0, sysctl_devctl_queue, "I", "devctl queue length");
365 
366 static d_open_t		devopen;
367 static d_close_t	devclose;
368 static d_read_t		devread;
369 static d_ioctl_t	devioctl;
370 static d_poll_t		devpoll;
371 
372 static struct cdevsw dev_cdevsw = {
373 	.d_version =	D_VERSION,
374 	.d_flags =	D_NEEDGIANT,
375 	.d_open =	devopen,
376 	.d_close =	devclose,
377 	.d_read =	devread,
378 	.d_ioctl =	devioctl,
379 	.d_poll =	devpoll,
380 	.d_name =	"devctl",
381 };
382 
383 struct dev_event_info
384 {
385 	char *dei_data;
386 	TAILQ_ENTRY(dev_event_info) dei_link;
387 };
388 
389 TAILQ_HEAD(devq, dev_event_info);
390 
391 static struct dev_softc
392 {
393 	int	inuse;
394 	int	nonblock;
395 	int	queued;
396 	struct mtx mtx;
397 	struct cv cv;
398 	struct selinfo sel;
399 	struct devq devq;
400 	struct proc *async_proc;
401 } devsoftc;
402 
403 static struct cdev *devctl_dev;
404 
405 static void
406 devinit(void)
407 {
408 	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
409 	    "devctl");
410 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
411 	cv_init(&devsoftc.cv, "dev cv");
412 	TAILQ_INIT(&devsoftc.devq);
413 }
414 
415 static int
416 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
417 {
418 	if (devsoftc.inuse)
419 		return (EBUSY);
420 	/* move to init */
421 	devsoftc.inuse = 1;
422 	devsoftc.nonblock = 0;
423 	devsoftc.async_proc = NULL;
424 	return (0);
425 }
426 
427 static int
428 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
429 {
430 	devsoftc.inuse = 0;
431 	mtx_lock(&devsoftc.mtx);
432 	cv_broadcast(&devsoftc.cv);
433 	mtx_unlock(&devsoftc.mtx);
434 	devsoftc.async_proc = NULL;
435 	return (0);
436 }
437 
438 /*
439  * The read channel for this device is used to report changes to
440  * userland in realtime.  We are required to free the data as well as
441  * the n1 object because we allocate them separately.  Also note that
442  * we return one record at a time.  If you try to read this device a
443  * character at a time, you will lose the rest of the data.  Listening
444  * programs are expected to cope.
445  */
446 static int
447 devread(struct cdev *dev, struct uio *uio, int ioflag)
448 {
449 	struct dev_event_info *n1;
450 	int rv;
451 
452 	mtx_lock(&devsoftc.mtx);
453 	while (TAILQ_EMPTY(&devsoftc.devq)) {
454 		if (devsoftc.nonblock) {
455 			mtx_unlock(&devsoftc.mtx);
456 			return (EAGAIN);
457 		}
458 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
459 		if (rv) {
460 			/*
461 			 * Need to translate ERESTART to EINTR here? -- jake
462 			 */
463 			mtx_unlock(&devsoftc.mtx);
464 			return (rv);
465 		}
466 	}
467 	n1 = TAILQ_FIRST(&devsoftc.devq);
468 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
469 	devsoftc.queued--;
470 	mtx_unlock(&devsoftc.mtx);
471 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
472 	free(n1->dei_data, M_BUS);
473 	free(n1, M_BUS);
474 	return (rv);
475 }
476 
477 static	int
478 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
479 {
480 	switch (cmd) {
481 
482 	case FIONBIO:
483 		if (*(int*)data)
484 			devsoftc.nonblock = 1;
485 		else
486 			devsoftc.nonblock = 0;
487 		return (0);
488 	case FIOASYNC:
489 		if (*(int*)data)
490 			devsoftc.async_proc = td->td_proc;
491 		else
492 			devsoftc.async_proc = NULL;
493 		return (0);
494 
495 		/* (un)Support for other fcntl() calls. */
496 	case FIOCLEX:
497 	case FIONCLEX:
498 	case FIONREAD:
499 	case FIOSETOWN:
500 	case FIOGETOWN:
501 	default:
502 		break;
503 	}
504 	return (ENOTTY);
505 }
506 
507 static	int
508 devpoll(struct cdev *dev, int events, struct thread *td)
509 {
510 	int	revents = 0;
511 
512 	mtx_lock(&devsoftc.mtx);
513 	if (events & (POLLIN | POLLRDNORM)) {
514 		if (!TAILQ_EMPTY(&devsoftc.devq))
515 			revents = events & (POLLIN | POLLRDNORM);
516 		else
517 			selrecord(td, &devsoftc.sel);
518 	}
519 	mtx_unlock(&devsoftc.mtx);
520 
521 	return (revents);
522 }
523 
524 /**
525  * @brief Return whether the userland process is running
526  */
527 boolean_t
528 devctl_process_running(void)
529 {
530 	return (devsoftc.inuse == 1);
531 }
532 
533 /**
534  * @brief Queue data to be read from the devctl device
535  *
536  * Generic interface to queue data to the devctl device.  It is
537  * assumed that @p data is properly formatted.  It is further assumed
538  * that @p data is allocated using the M_BUS malloc type.
539  */
540 void
541 devctl_queue_data_f(char *data, int flags)
542 {
543 	struct dev_event_info *n1 = NULL, *n2 = NULL;
544 	struct proc *p;
545 
546 	if (strlen(data) == 0)
547 		goto out;
548 	if (devctl_queue_length == 0)
549 		goto out;
550 	n1 = malloc(sizeof(*n1), M_BUS, flags);
551 	if (n1 == NULL)
552 		goto out;
553 	n1->dei_data = data;
554 	mtx_lock(&devsoftc.mtx);
555 	if (devctl_queue_length == 0) {
556 		mtx_unlock(&devsoftc.mtx);
557 		free(n1->dei_data, M_BUS);
558 		free(n1, M_BUS);
559 		return;
560 	}
561 	/* Leave at least one spot in the queue... */
562 	while (devsoftc.queued > devctl_queue_length - 1) {
563 		n2 = TAILQ_FIRST(&devsoftc.devq);
564 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
565 		free(n2->dei_data, M_BUS);
566 		free(n2, M_BUS);
567 		devsoftc.queued--;
568 	}
569 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
570 	devsoftc.queued++;
571 	cv_broadcast(&devsoftc.cv);
572 	mtx_unlock(&devsoftc.mtx);
573 	selwakeup(&devsoftc.sel);
574 	p = devsoftc.async_proc;
575 	if (p != NULL) {
576 		PROC_LOCK(p);
577 		psignal(p, SIGIO);
578 		PROC_UNLOCK(p);
579 	}
580 	return;
581 out:
582 	/*
583 	 * We have to free data on all error paths since the caller
584 	 * assumes it will be free'd when this item is dequeued.
585 	 */
586 	free(data, M_BUS);
587 	return;
588 }
589 
590 void
591 devctl_queue_data(char *data)
592 {
593 
594 	devctl_queue_data_f(data, M_NOWAIT);
595 }
596 
597 /**
598  * @brief Send a 'notification' to userland, using standard ways
599  */
600 void
601 devctl_notify_f(const char *system, const char *subsystem, const char *type,
602     const char *data, int flags)
603 {
604 	int len = 0;
605 	char *msg;
606 
607 	if (system == NULL)
608 		return;		/* BOGUS!  Must specify system. */
609 	if (subsystem == NULL)
610 		return;		/* BOGUS!  Must specify subsystem. */
611 	if (type == NULL)
612 		return;		/* BOGUS!  Must specify type. */
613 	len += strlen(" system=") + strlen(system);
614 	len += strlen(" subsystem=") + strlen(subsystem);
615 	len += strlen(" type=") + strlen(type);
616 	/* add in the data message plus newline. */
617 	if (data != NULL)
618 		len += strlen(data);
619 	len += 3;	/* '!', '\n', and NUL */
620 	msg = malloc(len, M_BUS, flags);
621 	if (msg == NULL)
622 		return;		/* Drop it on the floor */
623 	if (data != NULL)
624 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
625 		    system, subsystem, type, data);
626 	else
627 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
628 		    system, subsystem, type);
629 	devctl_queue_data_f(msg, flags);
630 }
631 
632 void
633 devctl_notify(const char *system, const char *subsystem, const char *type,
634     const char *data)
635 {
636 
637 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
638 }
639 
640 /*
641  * Common routine that tries to make sending messages as easy as possible.
642  * We allocate memory for the data, copy strings into that, but do not
643  * free it unless there's an error.  The dequeue part of the driver should
644  * free the data.  We don't send data when the device is disabled.  We do
645  * send data, even when we have no listeners, because we wish to avoid
646  * races relating to startup and restart of listening applications.
647  *
648  * devaddq is designed to string together the type of event, with the
649  * object of that event, plus the plug and play info and location info
650  * for that event.  This is likely most useful for devices, but less
651  * useful for other consumers of this interface.  Those should use
652  * the devctl_queue_data() interface instead.
653  */
654 static void
655 devaddq(const char *type, const char *what, device_t dev)
656 {
657 	char *data = NULL;
658 	char *loc = NULL;
659 	char *pnp = NULL;
660 	const char *parstr;
661 
662 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
663 		return;
664 	data = malloc(1024, M_BUS, M_NOWAIT);
665 	if (data == NULL)
666 		goto bad;
667 
668 	/* get the bus specific location of this device */
669 	loc = malloc(1024, M_BUS, M_NOWAIT);
670 	if (loc == NULL)
671 		goto bad;
672 	*loc = '\0';
673 	bus_child_location_str(dev, loc, 1024);
674 
675 	/* Get the bus specific pnp info of this device */
676 	pnp = malloc(1024, M_BUS, M_NOWAIT);
677 	if (pnp == NULL)
678 		goto bad;
679 	*pnp = '\0';
680 	bus_child_pnpinfo_str(dev, pnp, 1024);
681 
682 	/* Get the parent of this device, or / if high enough in the tree. */
683 	if (device_get_parent(dev) == NULL)
684 		parstr = ".";	/* Or '/' ? */
685 	else
686 		parstr = device_get_nameunit(device_get_parent(dev));
687 	/* String it all together. */
688 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
689 	  parstr);
690 	free(loc, M_BUS);
691 	free(pnp, M_BUS);
692 	devctl_queue_data(data);
693 	return;
694 bad:
695 	free(pnp, M_BUS);
696 	free(loc, M_BUS);
697 	free(data, M_BUS);
698 	return;
699 }
700 
701 /*
702  * A device was added to the tree.  We are called just after it successfully
703  * attaches (that is, probe and attach success for this device).  No call
704  * is made if a device is merely parented into the tree.  See devnomatch
705  * if probe fails.  If attach fails, no notification is sent (but maybe
706  * we should have a different message for this).
707  */
708 static void
709 devadded(device_t dev)
710 {
711 	char *pnp = NULL;
712 	char *tmp = NULL;
713 
714 	pnp = malloc(1024, M_BUS, M_NOWAIT);
715 	if (pnp == NULL)
716 		goto fail;
717 	tmp = malloc(1024, M_BUS, M_NOWAIT);
718 	if (tmp == NULL)
719 		goto fail;
720 	*pnp = '\0';
721 	bus_child_pnpinfo_str(dev, pnp, 1024);
722 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
723 	devaddq("+", tmp, dev);
724 fail:
725 	if (pnp != NULL)
726 		free(pnp, M_BUS);
727 	if (tmp != NULL)
728 		free(tmp, M_BUS);
729 	return;
730 }
731 
732 /*
733  * A device was removed from the tree.  We are called just before this
734  * happens.
735  */
736 static void
737 devremoved(device_t dev)
738 {
739 	char *pnp = NULL;
740 	char *tmp = NULL;
741 
742 	pnp = malloc(1024, M_BUS, M_NOWAIT);
743 	if (pnp == NULL)
744 		goto fail;
745 	tmp = malloc(1024, M_BUS, M_NOWAIT);
746 	if (tmp == NULL)
747 		goto fail;
748 	*pnp = '\0';
749 	bus_child_pnpinfo_str(dev, pnp, 1024);
750 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
751 	devaddq("-", tmp, dev);
752 fail:
753 	if (pnp != NULL)
754 		free(pnp, M_BUS);
755 	if (tmp != NULL)
756 		free(tmp, M_BUS);
757 	return;
758 }
759 
760 /*
761  * Called when there's no match for this device.  This is only called
762  * the first time that no match happens, so we don't keep getting this
763  * message.  Should that prove to be undesirable, we can change it.
764  * This is called when all drivers that can attach to a given bus
765  * decline to accept this device.  Other errors may not be detected.
766  */
767 static void
768 devnomatch(device_t dev)
769 {
770 	devaddq("?", "", dev);
771 }
772 
773 static int
774 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
775 {
776 	struct dev_event_info *n1;
777 	int dis, error;
778 
779 	dis = devctl_queue_length == 0;
780 	error = sysctl_handle_int(oidp, &dis, 0, req);
781 	if (error || !req->newptr)
782 		return (error);
783 	mtx_lock(&devsoftc.mtx);
784 	if (dis) {
785 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
786 			n1 = TAILQ_FIRST(&devsoftc.devq);
787 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
788 			free(n1->dei_data, M_BUS);
789 			free(n1, M_BUS);
790 		}
791 		devsoftc.queued = 0;
792 		devctl_queue_length = 0;
793 	} else {
794 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
795 	}
796 	mtx_unlock(&devsoftc.mtx);
797 	return (0);
798 }
799 
800 static int
801 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
802 {
803 	struct dev_event_info *n1;
804 	int q, error;
805 
806 	q = devctl_queue_length;
807 	error = sysctl_handle_int(oidp, &q, 0, req);
808 	if (error || !req->newptr)
809 		return (error);
810 	if (q < 0)
811 		return (EINVAL);
812 	mtx_lock(&devsoftc.mtx);
813 	devctl_queue_length = q;
814 	while (devsoftc.queued > devctl_queue_length) {
815 		n1 = TAILQ_FIRST(&devsoftc.devq);
816 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
817 		free(n1->dei_data, M_BUS);
818 		free(n1, M_BUS);
819 		devsoftc.queued--;
820 	}
821 	mtx_unlock(&devsoftc.mtx);
822 	return (0);
823 }
824 
825 /* End of /dev/devctl code */
826 
827 static TAILQ_HEAD(,device)	bus_data_devices;
828 static int bus_data_generation = 1;
829 
830 static kobj_method_t null_methods[] = {
831 	KOBJMETHOD_END
832 };
833 
834 DEFINE_CLASS(null, null_methods, 0);
835 
836 /*
837  * Bus pass implementation
838  */
839 
840 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
841 int bus_current_pass = BUS_PASS_ROOT;
842 
843 /**
844  * @internal
845  * @brief Register the pass level of a new driver attachment
846  *
847  * Register a new driver attachment's pass level.  If no driver
848  * attachment with the same pass level has been added, then @p new
849  * will be added to the global passes list.
850  *
851  * @param new		the new driver attachment
852  */
853 static void
854 driver_register_pass(struct driverlink *new)
855 {
856 	struct driverlink *dl;
857 
858 	/* We only consider pass numbers during boot. */
859 	if (bus_current_pass == BUS_PASS_DEFAULT)
860 		return;
861 
862 	/*
863 	 * Walk the passes list.  If we already know about this pass
864 	 * then there is nothing to do.  If we don't, then insert this
865 	 * driver link into the list.
866 	 */
867 	TAILQ_FOREACH(dl, &passes, passlink) {
868 		if (dl->pass < new->pass)
869 			continue;
870 		if (dl->pass == new->pass)
871 			return;
872 		TAILQ_INSERT_BEFORE(dl, new, passlink);
873 		return;
874 	}
875 	TAILQ_INSERT_TAIL(&passes, new, passlink);
876 }
877 
878 /**
879  * @brief Raise the current bus pass
880  *
881  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
882  * method on the root bus to kick off a new device tree scan for each
883  * new pass level that has at least one driver.
884  */
885 void
886 bus_set_pass(int pass)
887 {
888 	struct driverlink *dl;
889 
890 	if (bus_current_pass > pass)
891 		panic("Attempt to lower bus pass level");
892 
893 	TAILQ_FOREACH(dl, &passes, passlink) {
894 		/* Skip pass values below the current pass level. */
895 		if (dl->pass <= bus_current_pass)
896 			continue;
897 
898 		/*
899 		 * Bail once we hit a driver with a pass level that is
900 		 * too high.
901 		 */
902 		if (dl->pass > pass)
903 			break;
904 
905 		/*
906 		 * Raise the pass level to the next level and rescan
907 		 * the tree.
908 		 */
909 		bus_current_pass = dl->pass;
910 		BUS_NEW_PASS(root_bus);
911 	}
912 
913 	/*
914 	 * If there isn't a driver registered for the requested pass,
915 	 * then bus_current_pass might still be less than 'pass'.  Set
916 	 * it to 'pass' in that case.
917 	 */
918 	if (bus_current_pass < pass)
919 		bus_current_pass = pass;
920 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
921 }
922 
923 /*
924  * Devclass implementation
925  */
926 
927 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
928 
929 /**
930  * @internal
931  * @brief Find or create a device class
932  *
933  * If a device class with the name @p classname exists, return it,
934  * otherwise if @p create is non-zero create and return a new device
935  * class.
936  *
937  * If @p parentname is non-NULL, the parent of the devclass is set to
938  * the devclass of that name.
939  *
940  * @param classname	the devclass name to find or create
941  * @param parentname	the parent devclass name or @c NULL
942  * @param create	non-zero to create a devclass
943  */
944 static devclass_t
945 devclass_find_internal(const char *classname, const char *parentname,
946 		       int create)
947 {
948 	devclass_t dc;
949 
950 	PDEBUG(("looking for %s", classname));
951 	if (!classname)
952 		return (NULL);
953 
954 	TAILQ_FOREACH(dc, &devclasses, link) {
955 		if (!strcmp(dc->name, classname))
956 			break;
957 	}
958 
959 	if (create && !dc) {
960 		PDEBUG(("creating %s", classname));
961 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
962 		    M_BUS, M_NOWAIT | M_ZERO);
963 		if (!dc)
964 			return (NULL);
965 		dc->parent = NULL;
966 		dc->name = (char*) (dc + 1);
967 		strcpy(dc->name, classname);
968 		TAILQ_INIT(&dc->drivers);
969 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
970 
971 		bus_data_generation_update();
972 	}
973 
974 	/*
975 	 * If a parent class is specified, then set that as our parent so
976 	 * that this devclass will support drivers for the parent class as
977 	 * well.  If the parent class has the same name don't do this though
978 	 * as it creates a cycle that can trigger an infinite loop in
979 	 * device_probe_child() if a device exists for which there is no
980 	 * suitable driver.
981 	 */
982 	if (parentname && dc && !dc->parent &&
983 	    strcmp(classname, parentname) != 0) {
984 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
985 		dc->parent->flags |= DC_HAS_CHILDREN;
986 	}
987 
988 	return (dc);
989 }
990 
991 /**
992  * @brief Create a device class
993  *
994  * If a device class with the name @p classname exists, return it,
995  * otherwise create and return a new device class.
996  *
997  * @param classname	the devclass name to find or create
998  */
999 devclass_t
1000 devclass_create(const char *classname)
1001 {
1002 	return (devclass_find_internal(classname, NULL, TRUE));
1003 }
1004 
1005 /**
1006  * @brief Find a device class
1007  *
1008  * If a device class with the name @p classname exists, return it,
1009  * otherwise return @c NULL.
1010  *
1011  * @param classname	the devclass name to find
1012  */
1013 devclass_t
1014 devclass_find(const char *classname)
1015 {
1016 	return (devclass_find_internal(classname, NULL, FALSE));
1017 }
1018 
1019 /**
1020  * @brief Register that a device driver has been added to a devclass
1021  *
1022  * Register that a device driver has been added to a devclass.  This
1023  * is called by devclass_add_driver to accomplish the recursive
1024  * notification of all the children classes of dc, as well as dc.
1025  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1026  * the devclass.  We do a full search here of the devclass list at
1027  * each iteration level to save storing children-lists in the devclass
1028  * structure.  If we ever move beyond a few dozen devices doing this,
1029  * we may need to reevaluate...
1030  *
1031  * @param dc		the devclass to edit
1032  * @param driver	the driver that was just added
1033  */
1034 static void
1035 devclass_driver_added(devclass_t dc, driver_t *driver)
1036 {
1037 	devclass_t parent;
1038 	int i;
1039 
1040 	/*
1041 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1042 	 */
1043 	for (i = 0; i < dc->maxunit; i++)
1044 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1045 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1046 
1047 	/*
1048 	 * Walk through the children classes.  Since we only keep a
1049 	 * single parent pointer around, we walk the entire list of
1050 	 * devclasses looking for children.  We set the
1051 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1052 	 * the parent, so we only walk the list for those devclasses
1053 	 * that have children.
1054 	 */
1055 	if (!(dc->flags & DC_HAS_CHILDREN))
1056 		return;
1057 	parent = dc;
1058 	TAILQ_FOREACH(dc, &devclasses, link) {
1059 		if (dc->parent == parent)
1060 			devclass_driver_added(dc, driver);
1061 	}
1062 }
1063 
1064 /**
1065  * @brief Add a device driver to a device class
1066  *
1067  * Add a device driver to a devclass. This is normally called
1068  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1069  * all devices in the devclass will be called to allow them to attempt
1070  * to re-probe any unmatched children.
1071  *
1072  * @param dc		the devclass to edit
1073  * @param driver	the driver to register
1074  */
1075 static int
1076 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1077 {
1078 	driverlink_t dl;
1079 	const char *parentname;
1080 
1081 	PDEBUG(("%s", DRIVERNAME(driver)));
1082 
1083 	/* Don't allow invalid pass values. */
1084 	if (pass <= BUS_PASS_ROOT)
1085 		return (EINVAL);
1086 
1087 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1088 	if (!dl)
1089 		return (ENOMEM);
1090 
1091 	/*
1092 	 * Compile the driver's methods. Also increase the reference count
1093 	 * so that the class doesn't get freed when the last instance
1094 	 * goes. This means we can safely use static methods and avoids a
1095 	 * double-free in devclass_delete_driver.
1096 	 */
1097 	kobj_class_compile((kobj_class_t) driver);
1098 
1099 	/*
1100 	 * If the driver has any base classes, make the
1101 	 * devclass inherit from the devclass of the driver's
1102 	 * first base class. This will allow the system to
1103 	 * search for drivers in both devclasses for children
1104 	 * of a device using this driver.
1105 	 */
1106 	if (driver->baseclasses)
1107 		parentname = driver->baseclasses[0]->name;
1108 	else
1109 		parentname = NULL;
1110 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1111 
1112 	dl->driver = driver;
1113 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1114 	driver->refs++;		/* XXX: kobj_mtx */
1115 	dl->pass = pass;
1116 	driver_register_pass(dl);
1117 
1118 	devclass_driver_added(dc, driver);
1119 	bus_data_generation_update();
1120 	return (0);
1121 }
1122 
1123 /**
1124  * @brief Delete a device driver from a device class
1125  *
1126  * Delete a device driver from a devclass. This is normally called
1127  * automatically by DRIVER_MODULE().
1128  *
1129  * If the driver is currently attached to any devices,
1130  * devclass_delete_driver() will first attempt to detach from each
1131  * device. If one of the detach calls fails, the driver will not be
1132  * deleted.
1133  *
1134  * @param dc		the devclass to edit
1135  * @param driver	the driver to unregister
1136  */
1137 static int
1138 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1139 {
1140 	devclass_t dc = devclass_find(driver->name);
1141 	driverlink_t dl;
1142 	device_t dev;
1143 	int i;
1144 	int error;
1145 
1146 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1147 
1148 	if (!dc)
1149 		return (0);
1150 
1151 	/*
1152 	 * Find the link structure in the bus' list of drivers.
1153 	 */
1154 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1155 		if (dl->driver == driver)
1156 			break;
1157 	}
1158 
1159 	if (!dl) {
1160 		PDEBUG(("%s not found in %s list", driver->name,
1161 		    busclass->name));
1162 		return (ENOENT);
1163 	}
1164 
1165 	/*
1166 	 * Disassociate from any devices.  We iterate through all the
1167 	 * devices in the devclass of the driver and detach any which are
1168 	 * using the driver and which have a parent in the devclass which
1169 	 * we are deleting from.
1170 	 *
1171 	 * Note that since a driver can be in multiple devclasses, we
1172 	 * should not detach devices which are not children of devices in
1173 	 * the affected devclass.
1174 	 */
1175 	for (i = 0; i < dc->maxunit; i++) {
1176 		if (dc->devices[i]) {
1177 			dev = dc->devices[i];
1178 			if (dev->driver == driver && dev->parent &&
1179 			    dev->parent->devclass == busclass) {
1180 				if ((error = device_detach(dev)) != 0)
1181 					return (error);
1182 				device_set_driver(dev, NULL);
1183 				BUS_PROBE_NOMATCH(dev->parent, dev);
1184 				devnomatch(dev);
1185 				dev->flags |= DF_DONENOMATCH;
1186 			}
1187 		}
1188 	}
1189 
1190 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1191 	free(dl, M_BUS);
1192 
1193 	/* XXX: kobj_mtx */
1194 	driver->refs--;
1195 	if (driver->refs == 0)
1196 		kobj_class_free((kobj_class_t) driver);
1197 
1198 	bus_data_generation_update();
1199 	return (0);
1200 }
1201 
1202 /**
1203  * @brief Quiesces a set of device drivers from a device class
1204  *
1205  * Quiesce a device driver from a devclass. This is normally called
1206  * automatically by DRIVER_MODULE().
1207  *
1208  * If the driver is currently attached to any devices,
1209  * devclass_quiesece_driver() will first attempt to quiesce each
1210  * device.
1211  *
1212  * @param dc		the devclass to edit
1213  * @param driver	the driver to unregister
1214  */
1215 static int
1216 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1217 {
1218 	devclass_t dc = devclass_find(driver->name);
1219 	driverlink_t dl;
1220 	device_t dev;
1221 	int i;
1222 	int error;
1223 
1224 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1225 
1226 	if (!dc)
1227 		return (0);
1228 
1229 	/*
1230 	 * Find the link structure in the bus' list of drivers.
1231 	 */
1232 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1233 		if (dl->driver == driver)
1234 			break;
1235 	}
1236 
1237 	if (!dl) {
1238 		PDEBUG(("%s not found in %s list", driver->name,
1239 		    busclass->name));
1240 		return (ENOENT);
1241 	}
1242 
1243 	/*
1244 	 * Quiesce all devices.  We iterate through all the devices in
1245 	 * the devclass of the driver and quiesce any which are using
1246 	 * the driver and which have a parent in the devclass which we
1247 	 * are quiescing.
1248 	 *
1249 	 * Note that since a driver can be in multiple devclasses, we
1250 	 * should not quiesce devices which are not children of
1251 	 * devices in the affected devclass.
1252 	 */
1253 	for (i = 0; i < dc->maxunit; i++) {
1254 		if (dc->devices[i]) {
1255 			dev = dc->devices[i];
1256 			if (dev->driver == driver && dev->parent &&
1257 			    dev->parent->devclass == busclass) {
1258 				if ((error = device_quiesce(dev)) != 0)
1259 					return (error);
1260 			}
1261 		}
1262 	}
1263 
1264 	return (0);
1265 }
1266 
1267 /**
1268  * @internal
1269  */
1270 static driverlink_t
1271 devclass_find_driver_internal(devclass_t dc, const char *classname)
1272 {
1273 	driverlink_t dl;
1274 
1275 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1276 
1277 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1278 		if (!strcmp(dl->driver->name, classname))
1279 			return (dl);
1280 	}
1281 
1282 	PDEBUG(("not found"));
1283 	return (NULL);
1284 }
1285 
1286 /**
1287  * @brief Return the name of the devclass
1288  */
1289 const char *
1290 devclass_get_name(devclass_t dc)
1291 {
1292 	return (dc->name);
1293 }
1294 
1295 /**
1296  * @brief Find a device given a unit number
1297  *
1298  * @param dc		the devclass to search
1299  * @param unit		the unit number to search for
1300  *
1301  * @returns		the device with the given unit number or @c
1302  *			NULL if there is no such device
1303  */
1304 device_t
1305 devclass_get_device(devclass_t dc, int unit)
1306 {
1307 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1308 		return (NULL);
1309 	return (dc->devices[unit]);
1310 }
1311 
1312 /**
1313  * @brief Find the softc field of a device given a unit number
1314  *
1315  * @param dc		the devclass to search
1316  * @param unit		the unit number to search for
1317  *
1318  * @returns		the softc field of the device with the given
1319  *			unit number or @c NULL if there is no such
1320  *			device
1321  */
1322 void *
1323 devclass_get_softc(devclass_t dc, int unit)
1324 {
1325 	device_t dev;
1326 
1327 	dev = devclass_get_device(dc, unit);
1328 	if (!dev)
1329 		return (NULL);
1330 
1331 	return (device_get_softc(dev));
1332 }
1333 
1334 /**
1335  * @brief Get a list of devices in the devclass
1336  *
1337  * An array containing a list of all the devices in the given devclass
1338  * is allocated and returned in @p *devlistp. The number of devices
1339  * in the array is returned in @p *devcountp. The caller should free
1340  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1341  *
1342  * @param dc		the devclass to examine
1343  * @param devlistp	points at location for array pointer return
1344  *			value
1345  * @param devcountp	points at location for array size return value
1346  *
1347  * @retval 0		success
1348  * @retval ENOMEM	the array allocation failed
1349  */
1350 int
1351 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1352 {
1353 	int count, i;
1354 	device_t *list;
1355 
1356 	count = devclass_get_count(dc);
1357 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1358 	if (!list)
1359 		return (ENOMEM);
1360 
1361 	count = 0;
1362 	for (i = 0; i < dc->maxunit; i++) {
1363 		if (dc->devices[i]) {
1364 			list[count] = dc->devices[i];
1365 			count++;
1366 		}
1367 	}
1368 
1369 	*devlistp = list;
1370 	*devcountp = count;
1371 
1372 	return (0);
1373 }
1374 
1375 /**
1376  * @brief Get a list of drivers in the devclass
1377  *
1378  * An array containing a list of pointers to all the drivers in the
1379  * given devclass is allocated and returned in @p *listp.  The number
1380  * of drivers in the array is returned in @p *countp. The caller should
1381  * free the array using @c free(p, M_TEMP).
1382  *
1383  * @param dc		the devclass to examine
1384  * @param listp		gives location for array pointer return value
1385  * @param countp	gives location for number of array elements
1386  *			return value
1387  *
1388  * @retval 0		success
1389  * @retval ENOMEM	the array allocation failed
1390  */
1391 int
1392 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1393 {
1394 	driverlink_t dl;
1395 	driver_t **list;
1396 	int count;
1397 
1398 	count = 0;
1399 	TAILQ_FOREACH(dl, &dc->drivers, link)
1400 		count++;
1401 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1402 	if (list == NULL)
1403 		return (ENOMEM);
1404 
1405 	count = 0;
1406 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1407 		list[count] = dl->driver;
1408 		count++;
1409 	}
1410 	*listp = list;
1411 	*countp = count;
1412 
1413 	return (0);
1414 }
1415 
1416 /**
1417  * @brief Get the number of devices in a devclass
1418  *
1419  * @param dc		the devclass to examine
1420  */
1421 int
1422 devclass_get_count(devclass_t dc)
1423 {
1424 	int count, i;
1425 
1426 	count = 0;
1427 	for (i = 0; i < dc->maxunit; i++)
1428 		if (dc->devices[i])
1429 			count++;
1430 	return (count);
1431 }
1432 
1433 /**
1434  * @brief Get the maximum unit number used in a devclass
1435  *
1436  * Note that this is one greater than the highest currently-allocated
1437  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1438  * that not even the devclass has been allocated yet.
1439  *
1440  * @param dc		the devclass to examine
1441  */
1442 int
1443 devclass_get_maxunit(devclass_t dc)
1444 {
1445 	if (dc == NULL)
1446 		return (-1);
1447 	return (dc->maxunit);
1448 }
1449 
1450 /**
1451  * @brief Find a free unit number in a devclass
1452  *
1453  * This function searches for the first unused unit number greater
1454  * that or equal to @p unit.
1455  *
1456  * @param dc		the devclass to examine
1457  * @param unit		the first unit number to check
1458  */
1459 int
1460 devclass_find_free_unit(devclass_t dc, int unit)
1461 {
1462 	if (dc == NULL)
1463 		return (unit);
1464 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1465 		unit++;
1466 	return (unit);
1467 }
1468 
1469 /**
1470  * @brief Set the parent of a devclass
1471  *
1472  * The parent class is normally initialised automatically by
1473  * DRIVER_MODULE().
1474  *
1475  * @param dc		the devclass to edit
1476  * @param pdc		the new parent devclass
1477  */
1478 void
1479 devclass_set_parent(devclass_t dc, devclass_t pdc)
1480 {
1481 	dc->parent = pdc;
1482 }
1483 
1484 /**
1485  * @brief Get the parent of a devclass
1486  *
1487  * @param dc		the devclass to examine
1488  */
1489 devclass_t
1490 devclass_get_parent(devclass_t dc)
1491 {
1492 	return (dc->parent);
1493 }
1494 
1495 struct sysctl_ctx_list *
1496 devclass_get_sysctl_ctx(devclass_t dc)
1497 {
1498 	return (&dc->sysctl_ctx);
1499 }
1500 
1501 struct sysctl_oid *
1502 devclass_get_sysctl_tree(devclass_t dc)
1503 {
1504 	return (dc->sysctl_tree);
1505 }
1506 
1507 /**
1508  * @internal
1509  * @brief Allocate a unit number
1510  *
1511  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1512  * will do). The allocated unit number is returned in @p *unitp.
1513 
1514  * @param dc		the devclass to allocate from
1515  * @param unitp		points at the location for the allocated unit
1516  *			number
1517  *
1518  * @retval 0		success
1519  * @retval EEXIST	the requested unit number is already allocated
1520  * @retval ENOMEM	memory allocation failure
1521  */
1522 static int
1523 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1524 {
1525 	const char *s;
1526 	int unit = *unitp;
1527 
1528 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1529 
1530 	/* Ask the parent bus if it wants to wire this device. */
1531 	if (unit == -1)
1532 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1533 		    &unit);
1534 
1535 	/* If we were given a wired unit number, check for existing device */
1536 	/* XXX imp XXX */
1537 	if (unit != -1) {
1538 		if (unit >= 0 && unit < dc->maxunit &&
1539 		    dc->devices[unit] != NULL) {
1540 			if (bootverbose)
1541 				printf("%s: %s%d already exists; skipping it\n",
1542 				    dc->name, dc->name, *unitp);
1543 			return (EEXIST);
1544 		}
1545 	} else {
1546 		/* Unwired device, find the next available slot for it */
1547 		unit = 0;
1548 		for (unit = 0;; unit++) {
1549 			/* If there is an "at" hint for a unit then skip it. */
1550 			if (resource_string_value(dc->name, unit, "at", &s) ==
1551 			    0)
1552 				continue;
1553 
1554 			/* If this device slot is already in use, skip it. */
1555 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1556 				continue;
1557 
1558 			break;
1559 		}
1560 	}
1561 
1562 	/*
1563 	 * We've selected a unit beyond the length of the table, so let's
1564 	 * extend the table to make room for all units up to and including
1565 	 * this one.
1566 	 */
1567 	if (unit >= dc->maxunit) {
1568 		device_t *newlist, *oldlist;
1569 		int newsize;
1570 
1571 		oldlist = dc->devices;
1572 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1573 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1574 		if (!newlist)
1575 			return (ENOMEM);
1576 		if (oldlist != NULL)
1577 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1578 		bzero(newlist + dc->maxunit,
1579 		    sizeof(device_t) * (newsize - dc->maxunit));
1580 		dc->devices = newlist;
1581 		dc->maxunit = newsize;
1582 		if (oldlist != NULL)
1583 			free(oldlist, M_BUS);
1584 	}
1585 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1586 
1587 	*unitp = unit;
1588 	return (0);
1589 }
1590 
1591 /**
1592  * @internal
1593  * @brief Add a device to a devclass
1594  *
1595  * A unit number is allocated for the device (using the device's
1596  * preferred unit number if any) and the device is registered in the
1597  * devclass. This allows the device to be looked up by its unit
1598  * number, e.g. by decoding a dev_t minor number.
1599  *
1600  * @param dc		the devclass to add to
1601  * @param dev		the device to add
1602  *
1603  * @retval 0		success
1604  * @retval EEXIST	the requested unit number is already allocated
1605  * @retval ENOMEM	memory allocation failure
1606  */
1607 static int
1608 devclass_add_device(devclass_t dc, device_t dev)
1609 {
1610 	int buflen, error;
1611 
1612 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1613 
1614 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1615 	if (buflen < 0)
1616 		return (ENOMEM);
1617 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1618 	if (!dev->nameunit)
1619 		return (ENOMEM);
1620 
1621 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1622 		free(dev->nameunit, M_BUS);
1623 		dev->nameunit = NULL;
1624 		return (error);
1625 	}
1626 	dc->devices[dev->unit] = dev;
1627 	dev->devclass = dc;
1628 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1629 
1630 	return (0);
1631 }
1632 
1633 /**
1634  * @internal
1635  * @brief Delete a device from a devclass
1636  *
1637  * The device is removed from the devclass's device list and its unit
1638  * number is freed.
1639 
1640  * @param dc		the devclass to delete from
1641  * @param dev		the device to delete
1642  *
1643  * @retval 0		success
1644  */
1645 static int
1646 devclass_delete_device(devclass_t dc, device_t dev)
1647 {
1648 	if (!dc || !dev)
1649 		return (0);
1650 
1651 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1652 
1653 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1654 		panic("devclass_delete_device: inconsistent device class");
1655 	dc->devices[dev->unit] = NULL;
1656 	if (dev->flags & DF_WILDCARD)
1657 		dev->unit = -1;
1658 	dev->devclass = NULL;
1659 	free(dev->nameunit, M_BUS);
1660 	dev->nameunit = NULL;
1661 
1662 	return (0);
1663 }
1664 
1665 /**
1666  * @internal
1667  * @brief Make a new device and add it as a child of @p parent
1668  *
1669  * @param parent	the parent of the new device
1670  * @param name		the devclass name of the new device or @c NULL
1671  *			to leave the devclass unspecified
1672  * @parem unit		the unit number of the new device of @c -1 to
1673  *			leave the unit number unspecified
1674  *
1675  * @returns the new device
1676  */
1677 static device_t
1678 make_device(device_t parent, const char *name, int unit)
1679 {
1680 	device_t dev;
1681 	devclass_t dc;
1682 
1683 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1684 
1685 	if (name) {
1686 		dc = devclass_find_internal(name, NULL, TRUE);
1687 		if (!dc) {
1688 			printf("make_device: can't find device class %s\n",
1689 			    name);
1690 			return (NULL);
1691 		}
1692 	} else {
1693 		dc = NULL;
1694 	}
1695 
1696 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1697 	if (!dev)
1698 		return (NULL);
1699 
1700 	dev->parent = parent;
1701 	TAILQ_INIT(&dev->children);
1702 	kobj_init((kobj_t) dev, &null_class);
1703 	dev->driver = NULL;
1704 	dev->devclass = NULL;
1705 	dev->unit = unit;
1706 	dev->nameunit = NULL;
1707 	dev->desc = NULL;
1708 	dev->busy = 0;
1709 	dev->devflags = 0;
1710 	dev->flags = DF_ENABLED;
1711 	dev->order = 0;
1712 	if (unit == -1)
1713 		dev->flags |= DF_WILDCARD;
1714 	if (name) {
1715 		dev->flags |= DF_FIXEDCLASS;
1716 		if (devclass_add_device(dc, dev)) {
1717 			kobj_delete((kobj_t) dev, M_BUS);
1718 			return (NULL);
1719 		}
1720 	}
1721 	dev->ivars = NULL;
1722 	dev->softc = NULL;
1723 
1724 	dev->state = DS_NOTPRESENT;
1725 
1726 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1727 	bus_data_generation_update();
1728 
1729 	return (dev);
1730 }
1731 
1732 /**
1733  * @internal
1734  * @brief Print a description of a device.
1735  */
1736 static int
1737 device_print_child(device_t dev, device_t child)
1738 {
1739 	int retval = 0;
1740 
1741 	if (device_is_alive(child))
1742 		retval += BUS_PRINT_CHILD(dev, child);
1743 	else
1744 		retval += device_printf(child, " not found\n");
1745 
1746 	return (retval);
1747 }
1748 
1749 /**
1750  * @brief Create a new device
1751  *
1752  * This creates a new device and adds it as a child of an existing
1753  * parent device. The new device will be added after the last existing
1754  * child with order zero.
1755  *
1756  * @param dev		the device which will be the parent of the
1757  *			new child device
1758  * @param name		devclass name for new device or @c NULL if not
1759  *			specified
1760  * @param unit		unit number for new device or @c -1 if not
1761  *			specified
1762  *
1763  * @returns		the new device
1764  */
1765 device_t
1766 device_add_child(device_t dev, const char *name, int unit)
1767 {
1768 	return (device_add_child_ordered(dev, 0, name, unit));
1769 }
1770 
1771 /**
1772  * @brief Create a new device
1773  *
1774  * This creates a new device and adds it as a child of an existing
1775  * parent device. The new device will be added after the last existing
1776  * child with the same order.
1777  *
1778  * @param dev		the device which will be the parent of the
1779  *			new child device
1780  * @param order		a value which is used to partially sort the
1781  *			children of @p dev - devices created using
1782  *			lower values of @p order appear first in @p
1783  *			dev's list of children
1784  * @param name		devclass name for new device or @c NULL if not
1785  *			specified
1786  * @param unit		unit number for new device or @c -1 if not
1787  *			specified
1788  *
1789  * @returns		the new device
1790  */
1791 device_t
1792 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1793 {
1794 	device_t child;
1795 	device_t place;
1796 
1797 	PDEBUG(("%s at %s with order %u as unit %d",
1798 	    name, DEVICENAME(dev), order, unit));
1799 
1800 	child = make_device(dev, name, unit);
1801 	if (child == NULL)
1802 		return (child);
1803 	child->order = order;
1804 
1805 	TAILQ_FOREACH(place, &dev->children, link) {
1806 		if (place->order > order)
1807 			break;
1808 	}
1809 
1810 	if (place) {
1811 		/*
1812 		 * The device 'place' is the first device whose order is
1813 		 * greater than the new child.
1814 		 */
1815 		TAILQ_INSERT_BEFORE(place, child, link);
1816 	} else {
1817 		/*
1818 		 * The new child's order is greater or equal to the order of
1819 		 * any existing device. Add the child to the tail of the list.
1820 		 */
1821 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1822 	}
1823 
1824 	bus_data_generation_update();
1825 	return (child);
1826 }
1827 
1828 /**
1829  * @brief Delete a device
1830  *
1831  * This function deletes a device along with all of its children. If
1832  * the device currently has a driver attached to it, the device is
1833  * detached first using device_detach().
1834  *
1835  * @param dev		the parent device
1836  * @param child		the device to delete
1837  *
1838  * @retval 0		success
1839  * @retval non-zero	a unit error code describing the error
1840  */
1841 int
1842 device_delete_child(device_t dev, device_t child)
1843 {
1844 	int error;
1845 	device_t grandchild;
1846 
1847 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1848 
1849 	/* remove children first */
1850 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1851 		error = device_delete_child(child, grandchild);
1852 		if (error)
1853 			return (error);
1854 	}
1855 
1856 	if ((error = device_detach(child)) != 0)
1857 		return (error);
1858 	if (child->devclass)
1859 		devclass_delete_device(child->devclass, child);
1860 	TAILQ_REMOVE(&dev->children, child, link);
1861 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1862 	kobj_delete((kobj_t) child, M_BUS);
1863 
1864 	bus_data_generation_update();
1865 	return (0);
1866 }
1867 
1868 /**
1869  * @brief Find a device given a unit number
1870  *
1871  * This is similar to devclass_get_devices() but only searches for
1872  * devices which have @p dev as a parent.
1873  *
1874  * @param dev		the parent device to search
1875  * @param unit		the unit number to search for.  If the unit is -1,
1876  *			return the first child of @p dev which has name
1877  *			@p classname (that is, the one with the lowest unit.)
1878  *
1879  * @returns		the device with the given unit number or @c
1880  *			NULL if there is no such device
1881  */
1882 device_t
1883 device_find_child(device_t dev, const char *classname, int unit)
1884 {
1885 	devclass_t dc;
1886 	device_t child;
1887 
1888 	dc = devclass_find(classname);
1889 	if (!dc)
1890 		return (NULL);
1891 
1892 	if (unit != -1) {
1893 		child = devclass_get_device(dc, unit);
1894 		if (child && child->parent == dev)
1895 			return (child);
1896 	} else {
1897 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1898 			child = devclass_get_device(dc, unit);
1899 			if (child && child->parent == dev)
1900 				return (child);
1901 		}
1902 	}
1903 	return (NULL);
1904 }
1905 
1906 /**
1907  * @internal
1908  */
1909 static driverlink_t
1910 first_matching_driver(devclass_t dc, device_t dev)
1911 {
1912 	if (dev->devclass)
1913 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1914 	return (TAILQ_FIRST(&dc->drivers));
1915 }
1916 
1917 /**
1918  * @internal
1919  */
1920 static driverlink_t
1921 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1922 {
1923 	if (dev->devclass) {
1924 		driverlink_t dl;
1925 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1926 			if (!strcmp(dev->devclass->name, dl->driver->name))
1927 				return (dl);
1928 		return (NULL);
1929 	}
1930 	return (TAILQ_NEXT(last, link));
1931 }
1932 
1933 /**
1934  * @internal
1935  */
1936 int
1937 device_probe_child(device_t dev, device_t child)
1938 {
1939 	devclass_t dc;
1940 	driverlink_t best = NULL;
1941 	driverlink_t dl;
1942 	int result, pri = 0;
1943 	int hasclass = (child->devclass != NULL);
1944 
1945 	GIANT_REQUIRED;
1946 
1947 	dc = dev->devclass;
1948 	if (!dc)
1949 		panic("device_probe_child: parent device has no devclass");
1950 
1951 	/*
1952 	 * If the state is already probed, then return.  However, don't
1953 	 * return if we can rebid this object.
1954 	 */
1955 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1956 		return (0);
1957 
1958 	for (; dc; dc = dc->parent) {
1959 		for (dl = first_matching_driver(dc, child);
1960 		     dl;
1961 		     dl = next_matching_driver(dc, child, dl)) {
1962 
1963 			/* If this driver's pass is too high, then ignore it. */
1964 			if (dl->pass > bus_current_pass)
1965 				continue;
1966 
1967 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1968 			device_set_driver(child, dl->driver);
1969 			if (!hasclass) {
1970 				if (device_set_devclass(child, dl->driver->name)) {
1971 					printf("driver bug: Unable to set devclass (devname: %s)\n",
1972 					    (child ? device_get_name(child) :
1973 						"no device"));
1974 					device_set_driver(child, NULL);
1975 					continue;
1976 				}
1977 			}
1978 
1979 			/* Fetch any flags for the device before probing. */
1980 			resource_int_value(dl->driver->name, child->unit,
1981 			    "flags", &child->devflags);
1982 
1983 			result = DEVICE_PROBE(child);
1984 
1985 			/* Reset flags and devclass before the next probe. */
1986 			child->devflags = 0;
1987 			if (!hasclass)
1988 				device_set_devclass(child, NULL);
1989 
1990 			/*
1991 			 * If the driver returns SUCCESS, there can be
1992 			 * no higher match for this device.
1993 			 */
1994 			if (result == 0) {
1995 				best = dl;
1996 				pri = 0;
1997 				break;
1998 			}
1999 
2000 			/*
2001 			 * The driver returned an error so it
2002 			 * certainly doesn't match.
2003 			 */
2004 			if (result > 0) {
2005 				device_set_driver(child, NULL);
2006 				continue;
2007 			}
2008 
2009 			/*
2010 			 * A priority lower than SUCCESS, remember the
2011 			 * best matching driver. Initialise the value
2012 			 * of pri for the first match.
2013 			 */
2014 			if (best == NULL || result > pri) {
2015 				/*
2016 				 * Probes that return BUS_PROBE_NOWILDCARD
2017 				 * or lower only match when they are set
2018 				 * in stone by the parent bus.
2019 				 */
2020 				if (result <= BUS_PROBE_NOWILDCARD &&
2021 				    child->flags & DF_WILDCARD)
2022 					continue;
2023 				best = dl;
2024 				pri = result;
2025 				continue;
2026 			}
2027 		}
2028 		/*
2029 		 * If we have an unambiguous match in this devclass,
2030 		 * don't look in the parent.
2031 		 */
2032 		if (best && pri == 0)
2033 			break;
2034 	}
2035 
2036 	/*
2037 	 * If we found a driver, change state and initialise the devclass.
2038 	 */
2039 	/* XXX What happens if we rebid and got no best? */
2040 	if (best) {
2041 		/*
2042 		 * If this device was atached, and we were asked to
2043 		 * rescan, and it is a different driver, then we have
2044 		 * to detach the old driver and reattach this new one.
2045 		 * Note, we don't have to check for DF_REBID here
2046 		 * because if the state is > DS_ALIVE, we know it must
2047 		 * be.
2048 		 *
2049 		 * This assumes that all DF_REBID drivers can have
2050 		 * their probe routine called at any time and that
2051 		 * they are idempotent as well as completely benign in
2052 		 * normal operations.
2053 		 *
2054 		 * We also have to make sure that the detach
2055 		 * succeeded, otherwise we fail the operation (or
2056 		 * maybe it should just fail silently?  I'm torn).
2057 		 */
2058 		if (child->state > DS_ALIVE && best->driver != child->driver)
2059 			if ((result = device_detach(dev)) != 0)
2060 				return (result);
2061 
2062 		/* Set the winning driver, devclass, and flags. */
2063 		if (!child->devclass) {
2064 			result = device_set_devclass(child, best->driver->name);
2065 			if (result != 0)
2066 				return (result);
2067 		}
2068 		device_set_driver(child, best->driver);
2069 		resource_int_value(best->driver->name, child->unit,
2070 		    "flags", &child->devflags);
2071 
2072 		if (pri < 0) {
2073 			/*
2074 			 * A bit bogus. Call the probe method again to make
2075 			 * sure that we have the right description.
2076 			 */
2077 			DEVICE_PROBE(child);
2078 #if 0
2079 			child->flags |= DF_REBID;
2080 #endif
2081 		} else
2082 			child->flags &= ~DF_REBID;
2083 		child->state = DS_ALIVE;
2084 
2085 		bus_data_generation_update();
2086 		return (0);
2087 	}
2088 
2089 	return (ENXIO);
2090 }
2091 
2092 /**
2093  * @brief Return the parent of a device
2094  */
2095 device_t
2096 device_get_parent(device_t dev)
2097 {
2098 	return (dev->parent);
2099 }
2100 
2101 /**
2102  * @brief Get a list of children of a device
2103  *
2104  * An array containing a list of all the children of the given device
2105  * is allocated and returned in @p *devlistp. The number of devices
2106  * in the array is returned in @p *devcountp. The caller should free
2107  * the array using @c free(p, M_TEMP).
2108  *
2109  * @param dev		the device to examine
2110  * @param devlistp	points at location for array pointer return
2111  *			value
2112  * @param devcountp	points at location for array size return value
2113  *
2114  * @retval 0		success
2115  * @retval ENOMEM	the array allocation failed
2116  */
2117 int
2118 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2119 {
2120 	int count;
2121 	device_t child;
2122 	device_t *list;
2123 
2124 	count = 0;
2125 	TAILQ_FOREACH(child, &dev->children, link) {
2126 		count++;
2127 	}
2128 
2129 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2130 	if (!list)
2131 		return (ENOMEM);
2132 
2133 	count = 0;
2134 	TAILQ_FOREACH(child, &dev->children, link) {
2135 		list[count] = child;
2136 		count++;
2137 	}
2138 
2139 	*devlistp = list;
2140 	*devcountp = count;
2141 
2142 	return (0);
2143 }
2144 
2145 /**
2146  * @brief Return the current driver for the device or @c NULL if there
2147  * is no driver currently attached
2148  */
2149 driver_t *
2150 device_get_driver(device_t dev)
2151 {
2152 	return (dev->driver);
2153 }
2154 
2155 /**
2156  * @brief Return the current devclass for the device or @c NULL if
2157  * there is none.
2158  */
2159 devclass_t
2160 device_get_devclass(device_t dev)
2161 {
2162 	return (dev->devclass);
2163 }
2164 
2165 /**
2166  * @brief Return the name of the device's devclass or @c NULL if there
2167  * is none.
2168  */
2169 const char *
2170 device_get_name(device_t dev)
2171 {
2172 	if (dev != NULL && dev->devclass)
2173 		return (devclass_get_name(dev->devclass));
2174 	return (NULL);
2175 }
2176 
2177 /**
2178  * @brief Return a string containing the device's devclass name
2179  * followed by an ascii representation of the device's unit number
2180  * (e.g. @c "foo2").
2181  */
2182 const char *
2183 device_get_nameunit(device_t dev)
2184 {
2185 	return (dev->nameunit);
2186 }
2187 
2188 /**
2189  * @brief Return the device's unit number.
2190  */
2191 int
2192 device_get_unit(device_t dev)
2193 {
2194 	return (dev->unit);
2195 }
2196 
2197 /**
2198  * @brief Return the device's description string
2199  */
2200 const char *
2201 device_get_desc(device_t dev)
2202 {
2203 	return (dev->desc);
2204 }
2205 
2206 /**
2207  * @brief Return the device's flags
2208  */
2209 uint32_t
2210 device_get_flags(device_t dev)
2211 {
2212 	return (dev->devflags);
2213 }
2214 
2215 struct sysctl_ctx_list *
2216 device_get_sysctl_ctx(device_t dev)
2217 {
2218 	return (&dev->sysctl_ctx);
2219 }
2220 
2221 struct sysctl_oid *
2222 device_get_sysctl_tree(device_t dev)
2223 {
2224 	return (dev->sysctl_tree);
2225 }
2226 
2227 /**
2228  * @brief Print the name of the device followed by a colon and a space
2229  *
2230  * @returns the number of characters printed
2231  */
2232 int
2233 device_print_prettyname(device_t dev)
2234 {
2235 	const char *name = device_get_name(dev);
2236 
2237 	if (name == NULL)
2238 		return (printf("unknown: "));
2239 	return (printf("%s%d: ", name, device_get_unit(dev)));
2240 }
2241 
2242 /**
2243  * @brief Print the name of the device followed by a colon, a space
2244  * and the result of calling vprintf() with the value of @p fmt and
2245  * the following arguments.
2246  *
2247  * @returns the number of characters printed
2248  */
2249 int
2250 device_printf(device_t dev, const char * fmt, ...)
2251 {
2252 	va_list ap;
2253 	int retval;
2254 
2255 	retval = device_print_prettyname(dev);
2256 	va_start(ap, fmt);
2257 	retval += vprintf(fmt, ap);
2258 	va_end(ap);
2259 	return (retval);
2260 }
2261 
2262 /**
2263  * @internal
2264  */
2265 static void
2266 device_set_desc_internal(device_t dev, const char* desc, int copy)
2267 {
2268 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2269 		free(dev->desc, M_BUS);
2270 		dev->flags &= ~DF_DESCMALLOCED;
2271 		dev->desc = NULL;
2272 	}
2273 
2274 	if (copy && desc) {
2275 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2276 		if (dev->desc) {
2277 			strcpy(dev->desc, desc);
2278 			dev->flags |= DF_DESCMALLOCED;
2279 		}
2280 	} else {
2281 		/* Avoid a -Wcast-qual warning */
2282 		dev->desc = (char *)(uintptr_t) desc;
2283 	}
2284 
2285 	bus_data_generation_update();
2286 }
2287 
2288 /**
2289  * @brief Set the device's description
2290  *
2291  * The value of @c desc should be a string constant that will not
2292  * change (at least until the description is changed in a subsequent
2293  * call to device_set_desc() or device_set_desc_copy()).
2294  */
2295 void
2296 device_set_desc(device_t dev, const char* desc)
2297 {
2298 	device_set_desc_internal(dev, desc, FALSE);
2299 }
2300 
2301 /**
2302  * @brief Set the device's description
2303  *
2304  * The string pointed to by @c desc is copied. Use this function if
2305  * the device description is generated, (e.g. with sprintf()).
2306  */
2307 void
2308 device_set_desc_copy(device_t dev, const char* desc)
2309 {
2310 	device_set_desc_internal(dev, desc, TRUE);
2311 }
2312 
2313 /**
2314  * @brief Set the device's flags
2315  */
2316 void
2317 device_set_flags(device_t dev, uint32_t flags)
2318 {
2319 	dev->devflags = flags;
2320 }
2321 
2322 /**
2323  * @brief Return the device's softc field
2324  *
2325  * The softc is allocated and zeroed when a driver is attached, based
2326  * on the size field of the driver.
2327  */
2328 void *
2329 device_get_softc(device_t dev)
2330 {
2331 	return (dev->softc);
2332 }
2333 
2334 /**
2335  * @brief Set the device's softc field
2336  *
2337  * Most drivers do not need to use this since the softc is allocated
2338  * automatically when the driver is attached.
2339  */
2340 void
2341 device_set_softc(device_t dev, void *softc)
2342 {
2343 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2344 		free(dev->softc, M_BUS_SC);
2345 	dev->softc = softc;
2346 	if (dev->softc)
2347 		dev->flags |= DF_EXTERNALSOFTC;
2348 	else
2349 		dev->flags &= ~DF_EXTERNALSOFTC;
2350 }
2351 
2352 /**
2353  * @brief Get the device's ivars field
2354  *
2355  * The ivars field is used by the parent device to store per-device
2356  * state (e.g. the physical location of the device or a list of
2357  * resources).
2358  */
2359 void *
2360 device_get_ivars(device_t dev)
2361 {
2362 
2363 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2364 	return (dev->ivars);
2365 }
2366 
2367 /**
2368  * @brief Set the device's ivars field
2369  */
2370 void
2371 device_set_ivars(device_t dev, void * ivars)
2372 {
2373 
2374 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2375 	dev->ivars = ivars;
2376 }
2377 
2378 /**
2379  * @brief Return the device's state
2380  */
2381 device_state_t
2382 device_get_state(device_t dev)
2383 {
2384 	return (dev->state);
2385 }
2386 
2387 /**
2388  * @brief Set the DF_ENABLED flag for the device
2389  */
2390 void
2391 device_enable(device_t dev)
2392 {
2393 	dev->flags |= DF_ENABLED;
2394 }
2395 
2396 /**
2397  * @brief Clear the DF_ENABLED flag for the device
2398  */
2399 void
2400 device_disable(device_t dev)
2401 {
2402 	dev->flags &= ~DF_ENABLED;
2403 }
2404 
2405 /**
2406  * @brief Increment the busy counter for the device
2407  */
2408 void
2409 device_busy(device_t dev)
2410 {
2411 	if (dev->state < DS_ATTACHED)
2412 		panic("device_busy: called for unattached device");
2413 	if (dev->busy == 0 && dev->parent)
2414 		device_busy(dev->parent);
2415 	dev->busy++;
2416 	dev->state = DS_BUSY;
2417 }
2418 
2419 /**
2420  * @brief Decrement the busy counter for the device
2421  */
2422 void
2423 device_unbusy(device_t dev)
2424 {
2425 	if (dev->state != DS_BUSY)
2426 		panic("device_unbusy: called for non-busy device %s",
2427 		    device_get_nameunit(dev));
2428 	dev->busy--;
2429 	if (dev->busy == 0) {
2430 		if (dev->parent)
2431 			device_unbusy(dev->parent);
2432 		dev->state = DS_ATTACHED;
2433 	}
2434 }
2435 
2436 /**
2437  * @brief Set the DF_QUIET flag for the device
2438  */
2439 void
2440 device_quiet(device_t dev)
2441 {
2442 	dev->flags |= DF_QUIET;
2443 }
2444 
2445 /**
2446  * @brief Clear the DF_QUIET flag for the device
2447  */
2448 void
2449 device_verbose(device_t dev)
2450 {
2451 	dev->flags &= ~DF_QUIET;
2452 }
2453 
2454 /**
2455  * @brief Return non-zero if the DF_QUIET flag is set on the device
2456  */
2457 int
2458 device_is_quiet(device_t dev)
2459 {
2460 	return ((dev->flags & DF_QUIET) != 0);
2461 }
2462 
2463 /**
2464  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2465  */
2466 int
2467 device_is_enabled(device_t dev)
2468 {
2469 	return ((dev->flags & DF_ENABLED) != 0);
2470 }
2471 
2472 /**
2473  * @brief Return non-zero if the device was successfully probed
2474  */
2475 int
2476 device_is_alive(device_t dev)
2477 {
2478 	return (dev->state >= DS_ALIVE);
2479 }
2480 
2481 /**
2482  * @brief Return non-zero if the device currently has a driver
2483  * attached to it
2484  */
2485 int
2486 device_is_attached(device_t dev)
2487 {
2488 	return (dev->state >= DS_ATTACHED);
2489 }
2490 
2491 /**
2492  * @brief Set the devclass of a device
2493  * @see devclass_add_device().
2494  */
2495 int
2496 device_set_devclass(device_t dev, const char *classname)
2497 {
2498 	devclass_t dc;
2499 	int error;
2500 
2501 	if (!classname) {
2502 		if (dev->devclass)
2503 			devclass_delete_device(dev->devclass, dev);
2504 		return (0);
2505 	}
2506 
2507 	if (dev->devclass) {
2508 		printf("device_set_devclass: device class already set\n");
2509 		return (EINVAL);
2510 	}
2511 
2512 	dc = devclass_find_internal(classname, NULL, TRUE);
2513 	if (!dc)
2514 		return (ENOMEM);
2515 
2516 	error = devclass_add_device(dc, dev);
2517 
2518 	bus_data_generation_update();
2519 	return (error);
2520 }
2521 
2522 /**
2523  * @brief Set the driver of a device
2524  *
2525  * @retval 0		success
2526  * @retval EBUSY	the device already has a driver attached
2527  * @retval ENOMEM	a memory allocation failure occurred
2528  */
2529 int
2530 device_set_driver(device_t dev, driver_t *driver)
2531 {
2532 	if (dev->state >= DS_ATTACHED)
2533 		return (EBUSY);
2534 
2535 	if (dev->driver == driver)
2536 		return (0);
2537 
2538 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2539 		free(dev->softc, M_BUS_SC);
2540 		dev->softc = NULL;
2541 	}
2542 	kobj_delete((kobj_t) dev, NULL);
2543 	dev->driver = driver;
2544 	if (driver) {
2545 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2546 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2547 			dev->softc = malloc(driver->size, M_BUS_SC,
2548 			    M_NOWAIT | M_ZERO);
2549 			if (!dev->softc) {
2550 				kobj_delete((kobj_t) dev, NULL);
2551 				kobj_init((kobj_t) dev, &null_class);
2552 				dev->driver = NULL;
2553 				return (ENOMEM);
2554 			}
2555 		}
2556 	} else {
2557 		kobj_init((kobj_t) dev, &null_class);
2558 	}
2559 
2560 	bus_data_generation_update();
2561 	return (0);
2562 }
2563 
2564 /**
2565  * @brief Probe a device, and return this status.
2566  *
2567  * This function is the core of the device autoconfiguration
2568  * system. Its purpose is to select a suitable driver for a device and
2569  * then call that driver to initialise the hardware appropriately. The
2570  * driver is selected by calling the DEVICE_PROBE() method of a set of
2571  * candidate drivers and then choosing the driver which returned the
2572  * best value. This driver is then attached to the device using
2573  * device_attach().
2574  *
2575  * The set of suitable drivers is taken from the list of drivers in
2576  * the parent device's devclass. If the device was originally created
2577  * with a specific class name (see device_add_child()), only drivers
2578  * with that name are probed, otherwise all drivers in the devclass
2579  * are probed. If no drivers return successful probe values in the
2580  * parent devclass, the search continues in the parent of that
2581  * devclass (see devclass_get_parent()) if any.
2582  *
2583  * @param dev		the device to initialise
2584  *
2585  * @retval 0		success
2586  * @retval ENXIO	no driver was found
2587  * @retval ENOMEM	memory allocation failure
2588  * @retval non-zero	some other unix error code
2589  * @retval -1		Device already attached
2590  */
2591 int
2592 device_probe(device_t dev)
2593 {
2594 	int error;
2595 
2596 	GIANT_REQUIRED;
2597 
2598 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2599 		return (-1);
2600 
2601 	if (!(dev->flags & DF_ENABLED)) {
2602 		if (bootverbose && device_get_name(dev) != NULL) {
2603 			device_print_prettyname(dev);
2604 			printf("not probed (disabled)\n");
2605 		}
2606 		return (-1);
2607 	}
2608 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2609 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2610 		    !(dev->flags & DF_DONENOMATCH)) {
2611 			BUS_PROBE_NOMATCH(dev->parent, dev);
2612 			devnomatch(dev);
2613 			dev->flags |= DF_DONENOMATCH;
2614 		}
2615 		return (error);
2616 	}
2617 	return (0);
2618 }
2619 
2620 /**
2621  * @brief Probe a device and attach a driver if possible
2622  *
2623  * calls device_probe() and attaches if that was successful.
2624  */
2625 int
2626 device_probe_and_attach(device_t dev)
2627 {
2628 	int error;
2629 
2630 	GIANT_REQUIRED;
2631 
2632 	error = device_probe(dev);
2633 	if (error == -1)
2634 		return (0);
2635 	else if (error != 0)
2636 		return (error);
2637 	return (device_attach(dev));
2638 }
2639 
2640 /**
2641  * @brief Attach a device driver to a device
2642  *
2643  * This function is a wrapper around the DEVICE_ATTACH() driver
2644  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2645  * device's sysctl tree, optionally prints a description of the device
2646  * and queues a notification event for user-based device management
2647  * services.
2648  *
2649  * Normally this function is only called internally from
2650  * device_probe_and_attach().
2651  *
2652  * @param dev		the device to initialise
2653  *
2654  * @retval 0		success
2655  * @retval ENXIO	no driver was found
2656  * @retval ENOMEM	memory allocation failure
2657  * @retval non-zero	some other unix error code
2658  */
2659 int
2660 device_attach(device_t dev)
2661 {
2662 	int error;
2663 
2664 	device_sysctl_init(dev);
2665 	if (!device_is_quiet(dev))
2666 		device_print_child(dev->parent, dev);
2667 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2668 		printf("device_attach: %s%d attach returned %d\n",
2669 		    dev->driver->name, dev->unit, error);
2670 		/* Unset the class; set in device_probe_child */
2671 		if (dev->devclass == NULL)
2672 			device_set_devclass(dev, NULL);
2673 		device_set_driver(dev, NULL);
2674 		device_sysctl_fini(dev);
2675 		dev->state = DS_NOTPRESENT;
2676 		return (error);
2677 	}
2678 	device_sysctl_update(dev);
2679 	dev->state = DS_ATTACHED;
2680 	dev->flags &= ~DF_DONENOMATCH;
2681 	devadded(dev);
2682 	return (0);
2683 }
2684 
2685 /**
2686  * @brief Detach a driver from a device
2687  *
2688  * This function is a wrapper around the DEVICE_DETACH() driver
2689  * method. If the call to DEVICE_DETACH() succeeds, it calls
2690  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2691  * notification event for user-based device management services and
2692  * cleans up the device's sysctl tree.
2693  *
2694  * @param dev		the device to un-initialise
2695  *
2696  * @retval 0		success
2697  * @retval ENXIO	no driver was found
2698  * @retval ENOMEM	memory allocation failure
2699  * @retval non-zero	some other unix error code
2700  */
2701 int
2702 device_detach(device_t dev)
2703 {
2704 	int error;
2705 
2706 	GIANT_REQUIRED;
2707 
2708 	PDEBUG(("%s", DEVICENAME(dev)));
2709 	if (dev->state == DS_BUSY)
2710 		return (EBUSY);
2711 	if (dev->state != DS_ATTACHED)
2712 		return (0);
2713 
2714 	if ((error = DEVICE_DETACH(dev)) != 0)
2715 		return (error);
2716 	devremoved(dev);
2717 	if (!device_is_quiet(dev))
2718 		device_printf(dev, "detached\n");
2719 	if (dev->parent)
2720 		BUS_CHILD_DETACHED(dev->parent, dev);
2721 
2722 	if (!(dev->flags & DF_FIXEDCLASS))
2723 		devclass_delete_device(dev->devclass, dev);
2724 
2725 	dev->state = DS_NOTPRESENT;
2726 	device_set_driver(dev, NULL);
2727 	device_set_desc(dev, NULL);
2728 	device_sysctl_fini(dev);
2729 
2730 	return (0);
2731 }
2732 
2733 /**
2734  * @brief Tells a driver to quiesce itself.
2735  *
2736  * This function is a wrapper around the DEVICE_QUIESCE() driver
2737  * method. If the call to DEVICE_QUIESCE() succeeds.
2738  *
2739  * @param dev		the device to quiesce
2740  *
2741  * @retval 0		success
2742  * @retval ENXIO	no driver was found
2743  * @retval ENOMEM	memory allocation failure
2744  * @retval non-zero	some other unix error code
2745  */
2746 int
2747 device_quiesce(device_t dev)
2748 {
2749 
2750 	PDEBUG(("%s", DEVICENAME(dev)));
2751 	if (dev->state == DS_BUSY)
2752 		return (EBUSY);
2753 	if (dev->state != DS_ATTACHED)
2754 		return (0);
2755 
2756 	return (DEVICE_QUIESCE(dev));
2757 }
2758 
2759 /**
2760  * @brief Notify a device of system shutdown
2761  *
2762  * This function calls the DEVICE_SHUTDOWN() driver method if the
2763  * device currently has an attached driver.
2764  *
2765  * @returns the value returned by DEVICE_SHUTDOWN()
2766  */
2767 int
2768 device_shutdown(device_t dev)
2769 {
2770 	if (dev->state < DS_ATTACHED)
2771 		return (0);
2772 	return (DEVICE_SHUTDOWN(dev));
2773 }
2774 
2775 /**
2776  * @brief Set the unit number of a device
2777  *
2778  * This function can be used to override the unit number used for a
2779  * device (e.g. to wire a device to a pre-configured unit number).
2780  */
2781 int
2782 device_set_unit(device_t dev, int unit)
2783 {
2784 	devclass_t dc;
2785 	int err;
2786 
2787 	dc = device_get_devclass(dev);
2788 	if (unit < dc->maxunit && dc->devices[unit])
2789 		return (EBUSY);
2790 	err = devclass_delete_device(dc, dev);
2791 	if (err)
2792 		return (err);
2793 	dev->unit = unit;
2794 	err = devclass_add_device(dc, dev);
2795 	if (err)
2796 		return (err);
2797 
2798 	bus_data_generation_update();
2799 	return (0);
2800 }
2801 
2802 /*======================================*/
2803 /*
2804  * Some useful method implementations to make life easier for bus drivers.
2805  */
2806 
2807 /**
2808  * @brief Initialise a resource list.
2809  *
2810  * @param rl		the resource list to initialise
2811  */
2812 void
2813 resource_list_init(struct resource_list *rl)
2814 {
2815 	STAILQ_INIT(rl);
2816 }
2817 
2818 /**
2819  * @brief Reclaim memory used by a resource list.
2820  *
2821  * This function frees the memory for all resource entries on the list
2822  * (if any).
2823  *
2824  * @param rl		the resource list to free
2825  */
2826 void
2827 resource_list_free(struct resource_list *rl)
2828 {
2829 	struct resource_list_entry *rle;
2830 
2831 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2832 		if (rle->res)
2833 			panic("resource_list_free: resource entry is busy");
2834 		STAILQ_REMOVE_HEAD(rl, link);
2835 		free(rle, M_BUS);
2836 	}
2837 }
2838 
2839 /**
2840  * @brief Add a resource entry.
2841  *
2842  * This function adds a resource entry using the given @p type, @p
2843  * start, @p end and @p count values. A rid value is chosen by
2844  * searching sequentially for the first unused rid starting at zero.
2845  *
2846  * @param rl		the resource list to edit
2847  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2848  * @param start		the start address of the resource
2849  * @param end		the end address of the resource
2850  * @param count		XXX end-start+1
2851  */
2852 int
2853 resource_list_add_next(struct resource_list *rl, int type, u_long start,
2854     u_long end, u_long count)
2855 {
2856 	int rid;
2857 
2858 	rid = 0;
2859 	while (resource_list_find(rl, type, rid) != NULL)
2860 		rid++;
2861 	resource_list_add(rl, type, rid, start, end, count);
2862 	return (rid);
2863 }
2864 
2865 /**
2866  * @brief Add or modify a resource entry.
2867  *
2868  * If an existing entry exists with the same type and rid, it will be
2869  * modified using the given values of @p start, @p end and @p
2870  * count. If no entry exists, a new one will be created using the
2871  * given values.  The resource list entry that matches is then returned.
2872  *
2873  * @param rl		the resource list to edit
2874  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2875  * @param rid		the resource identifier
2876  * @param start		the start address of the resource
2877  * @param end		the end address of the resource
2878  * @param count		XXX end-start+1
2879  */
2880 struct resource_list_entry *
2881 resource_list_add(struct resource_list *rl, int type, int rid,
2882     u_long start, u_long end, u_long count)
2883 {
2884 	struct resource_list_entry *rle;
2885 
2886 	rle = resource_list_find(rl, type, rid);
2887 	if (!rle) {
2888 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2889 		    M_NOWAIT);
2890 		if (!rle)
2891 			panic("resource_list_add: can't record entry");
2892 		STAILQ_INSERT_TAIL(rl, rle, link);
2893 		rle->type = type;
2894 		rle->rid = rid;
2895 		rle->res = NULL;
2896 		rle->flags = 0;
2897 	}
2898 
2899 	if (rle->res)
2900 		panic("resource_list_add: resource entry is busy");
2901 
2902 	rle->start = start;
2903 	rle->end = end;
2904 	rle->count = count;
2905 	return (rle);
2906 }
2907 
2908 /**
2909  * @brief Determine if a resource entry is busy.
2910  *
2911  * Returns true if a resource entry is busy meaning that it has an
2912  * associated resource that is not an unallocated "reserved" resource.
2913  *
2914  * @param rl		the resource list to search
2915  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2916  * @param rid		the resource identifier
2917  *
2918  * @returns Non-zero if the entry is busy, zero otherwise.
2919  */
2920 int
2921 resource_list_busy(struct resource_list *rl, int type, int rid)
2922 {
2923 	struct resource_list_entry *rle;
2924 
2925 	rle = resource_list_find(rl, type, rid);
2926 	if (rle == NULL || rle->res == NULL)
2927 		return (0);
2928 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2929 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2930 		    ("reserved resource is active"));
2931 		return (0);
2932 	}
2933 	return (1);
2934 }
2935 
2936 /**
2937  * @brief Find a resource entry by type and rid.
2938  *
2939  * @param rl		the resource list to search
2940  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2941  * @param rid		the resource identifier
2942  *
2943  * @returns the resource entry pointer or NULL if there is no such
2944  * entry.
2945  */
2946 struct resource_list_entry *
2947 resource_list_find(struct resource_list *rl, int type, int rid)
2948 {
2949 	struct resource_list_entry *rle;
2950 
2951 	STAILQ_FOREACH(rle, rl, link) {
2952 		if (rle->type == type && rle->rid == rid)
2953 			return (rle);
2954 	}
2955 	return (NULL);
2956 }
2957 
2958 /**
2959  * @brief Delete a resource entry.
2960  *
2961  * @param rl		the resource list to edit
2962  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2963  * @param rid		the resource identifier
2964  */
2965 void
2966 resource_list_delete(struct resource_list *rl, int type, int rid)
2967 {
2968 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2969 
2970 	if (rle) {
2971 		if (rle->res != NULL)
2972 			panic("resource_list_delete: resource has not been released");
2973 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2974 		free(rle, M_BUS);
2975 	}
2976 }
2977 
2978 /**
2979  * @brief Allocate a reserved resource
2980  *
2981  * This can be used by busses to force the allocation of resources
2982  * that are always active in the system even if they are not allocated
2983  * by a driver (e.g. PCI BARs).  This function is usually called when
2984  * adding a new child to the bus.  The resource is allocated from the
2985  * parent bus when it is reserved.  The resource list entry is marked
2986  * with RLE_RESERVED to note that it is a reserved resource.
2987  *
2988  * Subsequent attempts to allocate the resource with
2989  * resource_list_alloc() will succeed the first time and will set
2990  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
2991  * resource that has been allocated is released with
2992  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
2993  * the actual resource remains allocated.  The resource can be released to
2994  * the parent bus by calling resource_list_unreserve().
2995  *
2996  * @param rl		the resource list to allocate from
2997  * @param bus		the parent device of @p child
2998  * @param child		the device for which the resource is being reserved
2999  * @param type		the type of resource to allocate
3000  * @param rid		a pointer to the resource identifier
3001  * @param start		hint at the start of the resource range - pass
3002  *			@c 0UL for any start address
3003  * @param end		hint at the end of the resource range - pass
3004  *			@c ~0UL for any end address
3005  * @param count		hint at the size of range required - pass @c 1
3006  *			for any size
3007  * @param flags		any extra flags to control the resource
3008  *			allocation - see @c RF_XXX flags in
3009  *			<sys/rman.h> for details
3010  *
3011  * @returns		the resource which was allocated or @c NULL if no
3012  *			resource could be allocated
3013  */
3014 struct resource *
3015 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3016     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3017 {
3018 	struct resource_list_entry *rle = NULL;
3019 	int passthrough = (device_get_parent(child) != bus);
3020 	struct resource *r;
3021 
3022 	if (passthrough)
3023 		panic(
3024     "resource_list_reserve() should only be called for direct children");
3025 	if (flags & RF_ACTIVE)
3026 		panic(
3027     "resource_list_reserve() should only reserve inactive resources");
3028 
3029 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3030 	    flags);
3031 	if (r != NULL) {
3032 		rle = resource_list_find(rl, type, *rid);
3033 		rle->flags |= RLE_RESERVED;
3034 	}
3035 	return (r);
3036 }
3037 
3038 /**
3039  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3040  *
3041  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3042  * and passing the allocation up to the parent of @p bus. This assumes
3043  * that the first entry of @c device_get_ivars(child) is a struct
3044  * resource_list. This also handles 'passthrough' allocations where a
3045  * child is a remote descendant of bus by passing the allocation up to
3046  * the parent of bus.
3047  *
3048  * Typically, a bus driver would store a list of child resources
3049  * somewhere in the child device's ivars (see device_get_ivars()) and
3050  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3051  * then call resource_list_alloc() to perform the allocation.
3052  *
3053  * @param rl		the resource list to allocate from
3054  * @param bus		the parent device of @p child
3055  * @param child		the device which is requesting an allocation
3056  * @param type		the type of resource to allocate
3057  * @param rid		a pointer to the resource identifier
3058  * @param start		hint at the start of the resource range - pass
3059  *			@c 0UL for any start address
3060  * @param end		hint at the end of the resource range - pass
3061  *			@c ~0UL for any end address
3062  * @param count		hint at the size of range required - pass @c 1
3063  *			for any size
3064  * @param flags		any extra flags to control the resource
3065  *			allocation - see @c RF_XXX flags in
3066  *			<sys/rman.h> for details
3067  *
3068  * @returns		the resource which was allocated or @c NULL if no
3069  *			resource could be allocated
3070  */
3071 struct resource *
3072 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3073     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3074 {
3075 	struct resource_list_entry *rle = NULL;
3076 	int passthrough = (device_get_parent(child) != bus);
3077 	int isdefault = (start == 0UL && end == ~0UL);
3078 
3079 	if (passthrough) {
3080 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3081 		    type, rid, start, end, count, flags));
3082 	}
3083 
3084 	rle = resource_list_find(rl, type, *rid);
3085 
3086 	if (!rle)
3087 		return (NULL);		/* no resource of that type/rid */
3088 
3089 	if (rle->res) {
3090 		if (rle->flags & RLE_RESERVED) {
3091 			if (rle->flags & RLE_ALLOCATED)
3092 				return (NULL);
3093 			if ((flags & RF_ACTIVE) &&
3094 			    bus_activate_resource(child, type, *rid,
3095 			    rle->res) != 0)
3096 				return (NULL);
3097 			rle->flags |= RLE_ALLOCATED;
3098 			return (rle->res);
3099 		}
3100 		panic("resource_list_alloc: resource entry is busy");
3101 	}
3102 
3103 	if (isdefault) {
3104 		start = rle->start;
3105 		count = ulmax(count, rle->count);
3106 		end = ulmax(rle->end, start + count - 1);
3107 	}
3108 
3109 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3110 	    type, rid, start, end, count, flags);
3111 
3112 	/*
3113 	 * Record the new range.
3114 	 */
3115 	if (rle->res) {
3116 		rle->start = rman_get_start(rle->res);
3117 		rle->end = rman_get_end(rle->res);
3118 		rle->count = count;
3119 	}
3120 
3121 	return (rle->res);
3122 }
3123 
3124 /**
3125  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3126  *
3127  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3128  * used with resource_list_alloc().
3129  *
3130  * @param rl		the resource list which was allocated from
3131  * @param bus		the parent device of @p child
3132  * @param child		the device which is requesting a release
3133  * @param type		the type of resource to release
3134  * @param rid		the resource identifier
3135  * @param res		the resource to release
3136  *
3137  * @retval 0		success
3138  * @retval non-zero	a standard unix error code indicating what
3139  *			error condition prevented the operation
3140  */
3141 int
3142 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3143     int type, int rid, struct resource *res)
3144 {
3145 	struct resource_list_entry *rle = NULL;
3146 	int passthrough = (device_get_parent(child) != bus);
3147 	int error;
3148 
3149 	if (passthrough) {
3150 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3151 		    type, rid, res));
3152 	}
3153 
3154 	rle = resource_list_find(rl, type, rid);
3155 
3156 	if (!rle)
3157 		panic("resource_list_release: can't find resource");
3158 	if (!rle->res)
3159 		panic("resource_list_release: resource entry is not busy");
3160 	if (rle->flags & RLE_RESERVED) {
3161 		if (rle->flags & RLE_ALLOCATED) {
3162 			if (rman_get_flags(res) & RF_ACTIVE) {
3163 				error = bus_deactivate_resource(child, type,
3164 				    rid, res);
3165 				if (error)
3166 					return (error);
3167 			}
3168 			rle->flags &= ~RLE_ALLOCATED;
3169 			return (0);
3170 		}
3171 		return (EINVAL);
3172 	}
3173 
3174 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3175 	    type, rid, res);
3176 	if (error)
3177 		return (error);
3178 
3179 	rle->res = NULL;
3180 	return (0);
3181 }
3182 
3183 /**
3184  * @brief Fully release a reserved resource
3185  *
3186  * Fully releases a resouce reserved via resource_list_reserve().
3187  *
3188  * @param rl		the resource list which was allocated from
3189  * @param bus		the parent device of @p child
3190  * @param child		the device whose reserved resource is being released
3191  * @param type		the type of resource to release
3192  * @param rid		the resource identifier
3193  * @param res		the resource to release
3194  *
3195  * @retval 0		success
3196  * @retval non-zero	a standard unix error code indicating what
3197  *			error condition prevented the operation
3198  */
3199 int
3200 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3201     int type, int rid)
3202 {
3203 	struct resource_list_entry *rle = NULL;
3204 	int passthrough = (device_get_parent(child) != bus);
3205 
3206 	if (passthrough)
3207 		panic(
3208     "resource_list_unreserve() should only be called for direct children");
3209 
3210 	rle = resource_list_find(rl, type, rid);
3211 
3212 	if (!rle)
3213 		panic("resource_list_unreserve: can't find resource");
3214 	if (!(rle->flags & RLE_RESERVED))
3215 		return (EINVAL);
3216 	if (rle->flags & RLE_ALLOCATED)
3217 		return (EBUSY);
3218 	rle->flags &= ~RLE_RESERVED;
3219 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3220 }
3221 
3222 /**
3223  * @brief Print a description of resources in a resource list
3224  *
3225  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3226  * The name is printed if at least one resource of the given type is available.
3227  * The format is used to print resource start and end.
3228  *
3229  * @param rl		the resource list to print
3230  * @param name		the name of @p type, e.g. @c "memory"
3231  * @param type		type type of resource entry to print
3232  * @param format	printf(9) format string to print resource
3233  *			start and end values
3234  *
3235  * @returns		the number of characters printed
3236  */
3237 int
3238 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3239     const char *format)
3240 {
3241 	struct resource_list_entry *rle;
3242 	int printed, retval;
3243 
3244 	printed = 0;
3245 	retval = 0;
3246 	/* Yes, this is kinda cheating */
3247 	STAILQ_FOREACH(rle, rl, link) {
3248 		if (rle->type == type) {
3249 			if (printed == 0)
3250 				retval += printf(" %s ", name);
3251 			else
3252 				retval += printf(",");
3253 			printed++;
3254 			retval += printf(format, rle->start);
3255 			if (rle->count > 1) {
3256 				retval += printf("-");
3257 				retval += printf(format, rle->start +
3258 						 rle->count - 1);
3259 			}
3260 		}
3261 	}
3262 	return (retval);
3263 }
3264 
3265 /**
3266  * @brief Releases all the resources in a list.
3267  *
3268  * @param rl		The resource list to purge.
3269  *
3270  * @returns		nothing
3271  */
3272 void
3273 resource_list_purge(struct resource_list *rl)
3274 {
3275 	struct resource_list_entry *rle;
3276 
3277 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3278 		if (rle->res)
3279 			bus_release_resource(rman_get_device(rle->res),
3280 			    rle->type, rle->rid, rle->res);
3281 		STAILQ_REMOVE_HEAD(rl, link);
3282 		free(rle, M_BUS);
3283 	}
3284 }
3285 
3286 device_t
3287 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3288 {
3289 
3290 	return (device_add_child_ordered(dev, order, name, unit));
3291 }
3292 
3293 /**
3294  * @brief Helper function for implementing DEVICE_PROBE()
3295  *
3296  * This function can be used to help implement the DEVICE_PROBE() for
3297  * a bus (i.e. a device which has other devices attached to it). It
3298  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3299  * devclass.
3300  */
3301 int
3302 bus_generic_probe(device_t dev)
3303 {
3304 	devclass_t dc = dev->devclass;
3305 	driverlink_t dl;
3306 
3307 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3308 		/*
3309 		 * If this driver's pass is too high, then ignore it.
3310 		 * For most drivers in the default pass, this will
3311 		 * never be true.  For early-pass drivers they will
3312 		 * only call the identify routines of eligible drivers
3313 		 * when this routine is called.  Drivers for later
3314 		 * passes should have their identify routines called
3315 		 * on early-pass busses during BUS_NEW_PASS().
3316 		 */
3317 		if (dl->pass > bus_current_pass)
3318 			continue;
3319 		DEVICE_IDENTIFY(dl->driver, dev);
3320 	}
3321 
3322 	return (0);
3323 }
3324 
3325 /**
3326  * @brief Helper function for implementing DEVICE_ATTACH()
3327  *
3328  * This function can be used to help implement the DEVICE_ATTACH() for
3329  * a bus. It calls device_probe_and_attach() for each of the device's
3330  * children.
3331  */
3332 int
3333 bus_generic_attach(device_t dev)
3334 {
3335 	device_t child;
3336 
3337 	TAILQ_FOREACH(child, &dev->children, link) {
3338 		device_probe_and_attach(child);
3339 	}
3340 
3341 	return (0);
3342 }
3343 
3344 /**
3345  * @brief Helper function for implementing DEVICE_DETACH()
3346  *
3347  * This function can be used to help implement the DEVICE_DETACH() for
3348  * a bus. It calls device_detach() for each of the device's
3349  * children.
3350  */
3351 int
3352 bus_generic_detach(device_t dev)
3353 {
3354 	device_t child;
3355 	int error;
3356 
3357 	if (dev->state != DS_ATTACHED)
3358 		return (EBUSY);
3359 
3360 	TAILQ_FOREACH(child, &dev->children, link) {
3361 		if ((error = device_detach(child)) != 0)
3362 			return (error);
3363 	}
3364 
3365 	return (0);
3366 }
3367 
3368 /**
3369  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3370  *
3371  * This function can be used to help implement the DEVICE_SHUTDOWN()
3372  * for a bus. It calls device_shutdown() for each of the device's
3373  * children.
3374  */
3375 int
3376 bus_generic_shutdown(device_t dev)
3377 {
3378 	device_t child;
3379 
3380 	TAILQ_FOREACH(child, &dev->children, link) {
3381 		device_shutdown(child);
3382 	}
3383 
3384 	return (0);
3385 }
3386 
3387 /**
3388  * @brief Helper function for implementing DEVICE_SUSPEND()
3389  *
3390  * This function can be used to help implement the DEVICE_SUSPEND()
3391  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3392  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3393  * operation is aborted and any devices which were suspended are
3394  * resumed immediately by calling their DEVICE_RESUME() methods.
3395  */
3396 int
3397 bus_generic_suspend(device_t dev)
3398 {
3399 	int		error;
3400 	device_t	child, child2;
3401 
3402 	TAILQ_FOREACH(child, &dev->children, link) {
3403 		error = DEVICE_SUSPEND(child);
3404 		if (error) {
3405 			for (child2 = TAILQ_FIRST(&dev->children);
3406 			     child2 && child2 != child;
3407 			     child2 = TAILQ_NEXT(child2, link))
3408 				DEVICE_RESUME(child2);
3409 			return (error);
3410 		}
3411 	}
3412 	return (0);
3413 }
3414 
3415 /**
3416  * @brief Helper function for implementing DEVICE_RESUME()
3417  *
3418  * This function can be used to help implement the DEVICE_RESUME() for
3419  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3420  */
3421 int
3422 bus_generic_resume(device_t dev)
3423 {
3424 	device_t	child;
3425 
3426 	TAILQ_FOREACH(child, &dev->children, link) {
3427 		DEVICE_RESUME(child);
3428 		/* if resume fails, there's nothing we can usefully do... */
3429 	}
3430 	return (0);
3431 }
3432 
3433 /**
3434  * @brief Helper function for implementing BUS_PRINT_CHILD().
3435  *
3436  * This function prints the first part of the ascii representation of
3437  * @p child, including its name, unit and description (if any - see
3438  * device_set_desc()).
3439  *
3440  * @returns the number of characters printed
3441  */
3442 int
3443 bus_print_child_header(device_t dev, device_t child)
3444 {
3445 	int	retval = 0;
3446 
3447 	if (device_get_desc(child)) {
3448 		retval += device_printf(child, "<%s>", device_get_desc(child));
3449 	} else {
3450 		retval += printf("%s", device_get_nameunit(child));
3451 	}
3452 
3453 	return (retval);
3454 }
3455 
3456 /**
3457  * @brief Helper function for implementing BUS_PRINT_CHILD().
3458  *
3459  * This function prints the last part of the ascii representation of
3460  * @p child, which consists of the string @c " on " followed by the
3461  * name and unit of the @p dev.
3462  *
3463  * @returns the number of characters printed
3464  */
3465 int
3466 bus_print_child_footer(device_t dev, device_t child)
3467 {
3468 	return (printf(" on %s\n", device_get_nameunit(dev)));
3469 }
3470 
3471 /**
3472  * @brief Helper function for implementing BUS_PRINT_CHILD().
3473  *
3474  * This function simply calls bus_print_child_header() followed by
3475  * bus_print_child_footer().
3476  *
3477  * @returns the number of characters printed
3478  */
3479 int
3480 bus_generic_print_child(device_t dev, device_t child)
3481 {
3482 	int	retval = 0;
3483 
3484 	retval += bus_print_child_header(dev, child);
3485 	retval += bus_print_child_footer(dev, child);
3486 
3487 	return (retval);
3488 }
3489 
3490 /**
3491  * @brief Stub function for implementing BUS_READ_IVAR().
3492  *
3493  * @returns ENOENT
3494  */
3495 int
3496 bus_generic_read_ivar(device_t dev, device_t child, int index,
3497     uintptr_t * result)
3498 {
3499 	return (ENOENT);
3500 }
3501 
3502 /**
3503  * @brief Stub function for implementing BUS_WRITE_IVAR().
3504  *
3505  * @returns ENOENT
3506  */
3507 int
3508 bus_generic_write_ivar(device_t dev, device_t child, int index,
3509     uintptr_t value)
3510 {
3511 	return (ENOENT);
3512 }
3513 
3514 /**
3515  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3516  *
3517  * @returns NULL
3518  */
3519 struct resource_list *
3520 bus_generic_get_resource_list(device_t dev, device_t child)
3521 {
3522 	return (NULL);
3523 }
3524 
3525 /**
3526  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3527  *
3528  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3529  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3530  * and then calls device_probe_and_attach() for each unattached child.
3531  */
3532 void
3533 bus_generic_driver_added(device_t dev, driver_t *driver)
3534 {
3535 	device_t child;
3536 
3537 	DEVICE_IDENTIFY(driver, dev);
3538 	TAILQ_FOREACH(child, &dev->children, link) {
3539 		if (child->state == DS_NOTPRESENT ||
3540 		    (child->flags & DF_REBID))
3541 			device_probe_and_attach(child);
3542 	}
3543 }
3544 
3545 /**
3546  * @brief Helper function for implementing BUS_NEW_PASS().
3547  *
3548  * This implementing of BUS_NEW_PASS() first calls the identify
3549  * routines for any drivers that probe at the current pass.  Then it
3550  * walks the list of devices for this bus.  If a device is already
3551  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3552  * device is not already attached, it attempts to attach a driver to
3553  * it.
3554  */
3555 void
3556 bus_generic_new_pass(device_t dev)
3557 {
3558 	driverlink_t dl;
3559 	devclass_t dc;
3560 	device_t child;
3561 
3562 	dc = dev->devclass;
3563 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3564 		if (dl->pass == bus_current_pass)
3565 			DEVICE_IDENTIFY(dl->driver, dev);
3566 	}
3567 	TAILQ_FOREACH(child, &dev->children, link) {
3568 		if (child->state >= DS_ATTACHED)
3569 			BUS_NEW_PASS(child);
3570 		else if (child->state == DS_NOTPRESENT)
3571 			device_probe_and_attach(child);
3572 	}
3573 }
3574 
3575 /**
3576  * @brief Helper function for implementing BUS_SETUP_INTR().
3577  *
3578  * This simple implementation of BUS_SETUP_INTR() simply calls the
3579  * BUS_SETUP_INTR() method of the parent of @p dev.
3580  */
3581 int
3582 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3583     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3584     void **cookiep)
3585 {
3586 	/* Propagate up the bus hierarchy until someone handles it. */
3587 	if (dev->parent)
3588 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3589 		    filter, intr, arg, cookiep));
3590 	return (EINVAL);
3591 }
3592 
3593 /**
3594  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3595  *
3596  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3597  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3598  */
3599 int
3600 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3601     void *cookie)
3602 {
3603 	/* Propagate up the bus hierarchy until someone handles it. */
3604 	if (dev->parent)
3605 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3606 	return (EINVAL);
3607 }
3608 
3609 /**
3610  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3611  *
3612  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3613  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3614  */
3615 struct resource *
3616 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3617     u_long start, u_long end, u_long count, u_int flags)
3618 {
3619 	/* Propagate up the bus hierarchy until someone handles it. */
3620 	if (dev->parent)
3621 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3622 		    start, end, count, flags));
3623 	return (NULL);
3624 }
3625 
3626 /**
3627  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3628  *
3629  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3630  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3631  */
3632 int
3633 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3634     struct resource *r)
3635 {
3636 	/* Propagate up the bus hierarchy until someone handles it. */
3637 	if (dev->parent)
3638 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3639 		    r));
3640 	return (EINVAL);
3641 }
3642 
3643 /**
3644  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3645  *
3646  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3647  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3648  */
3649 int
3650 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3651     struct resource *r)
3652 {
3653 	/* Propagate up the bus hierarchy until someone handles it. */
3654 	if (dev->parent)
3655 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3656 		    r));
3657 	return (EINVAL);
3658 }
3659 
3660 /**
3661  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3662  *
3663  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3664  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3665  */
3666 int
3667 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3668     int rid, struct resource *r)
3669 {
3670 	/* Propagate up the bus hierarchy until someone handles it. */
3671 	if (dev->parent)
3672 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3673 		    r));
3674 	return (EINVAL);
3675 }
3676 
3677 /**
3678  * @brief Helper function for implementing BUS_BIND_INTR().
3679  *
3680  * This simple implementation of BUS_BIND_INTR() simply calls the
3681  * BUS_BIND_INTR() method of the parent of @p dev.
3682  */
3683 int
3684 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3685     int cpu)
3686 {
3687 
3688 	/* Propagate up the bus hierarchy until someone handles it. */
3689 	if (dev->parent)
3690 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3691 	return (EINVAL);
3692 }
3693 
3694 /**
3695  * @brief Helper function for implementing BUS_CONFIG_INTR().
3696  *
3697  * This simple implementation of BUS_CONFIG_INTR() simply calls the
3698  * BUS_CONFIG_INTR() method of the parent of @p dev.
3699  */
3700 int
3701 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3702     enum intr_polarity pol)
3703 {
3704 
3705 	/* Propagate up the bus hierarchy until someone handles it. */
3706 	if (dev->parent)
3707 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3708 	return (EINVAL);
3709 }
3710 
3711 /**
3712  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3713  *
3714  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3715  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3716  */
3717 int
3718 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3719     void *cookie, const char *descr)
3720 {
3721 
3722 	/* Propagate up the bus hierarchy until someone handles it. */
3723 	if (dev->parent)
3724 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3725 		    descr));
3726 	return (EINVAL);
3727 }
3728 
3729 /**
3730  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3731  *
3732  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3733  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3734  */
3735 bus_dma_tag_t
3736 bus_generic_get_dma_tag(device_t dev, device_t child)
3737 {
3738 
3739 	/* Propagate up the bus hierarchy until someone handles it. */
3740 	if (dev->parent != NULL)
3741 		return (BUS_GET_DMA_TAG(dev->parent, child));
3742 	return (NULL);
3743 }
3744 
3745 /**
3746  * @brief Helper function for implementing BUS_GET_RESOURCE().
3747  *
3748  * This implementation of BUS_GET_RESOURCE() uses the
3749  * resource_list_find() function to do most of the work. It calls
3750  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3751  * search.
3752  */
3753 int
3754 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3755     u_long *startp, u_long *countp)
3756 {
3757 	struct resource_list *		rl = NULL;
3758 	struct resource_list_entry *	rle = NULL;
3759 
3760 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3761 	if (!rl)
3762 		return (EINVAL);
3763 
3764 	rle = resource_list_find(rl, type, rid);
3765 	if (!rle)
3766 		return (ENOENT);
3767 
3768 	if (startp)
3769 		*startp = rle->start;
3770 	if (countp)
3771 		*countp = rle->count;
3772 
3773 	return (0);
3774 }
3775 
3776 /**
3777  * @brief Helper function for implementing BUS_SET_RESOURCE().
3778  *
3779  * This implementation of BUS_SET_RESOURCE() uses the
3780  * resource_list_add() function to do most of the work. It calls
3781  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3782  * edit.
3783  */
3784 int
3785 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3786     u_long start, u_long count)
3787 {
3788 	struct resource_list *		rl = NULL;
3789 
3790 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3791 	if (!rl)
3792 		return (EINVAL);
3793 
3794 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3795 
3796 	return (0);
3797 }
3798 
3799 /**
3800  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3801  *
3802  * This implementation of BUS_DELETE_RESOURCE() uses the
3803  * resource_list_delete() function to do most of the work. It calls
3804  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3805  * edit.
3806  */
3807 void
3808 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3809 {
3810 	struct resource_list *		rl = NULL;
3811 
3812 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3813 	if (!rl)
3814 		return;
3815 
3816 	resource_list_delete(rl, type, rid);
3817 
3818 	return;
3819 }
3820 
3821 /**
3822  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3823  *
3824  * This implementation of BUS_RELEASE_RESOURCE() uses the
3825  * resource_list_release() function to do most of the work. It calls
3826  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3827  */
3828 int
3829 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3830     int rid, struct resource *r)
3831 {
3832 	struct resource_list *		rl = NULL;
3833 
3834 	if (device_get_parent(child) != dev)
3835 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
3836 		    type, rid, r));
3837 
3838 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3839 	if (!rl)
3840 		return (EINVAL);
3841 
3842 	return (resource_list_release(rl, dev, child, type, rid, r));
3843 }
3844 
3845 /**
3846  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3847  *
3848  * This implementation of BUS_ALLOC_RESOURCE() uses the
3849  * resource_list_alloc() function to do most of the work. It calls
3850  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3851  */
3852 struct resource *
3853 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3854     int *rid, u_long start, u_long end, u_long count, u_int flags)
3855 {
3856 	struct resource_list *		rl = NULL;
3857 
3858 	if (device_get_parent(child) != dev)
3859 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
3860 		    type, rid, start, end, count, flags));
3861 
3862 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3863 	if (!rl)
3864 		return (NULL);
3865 
3866 	return (resource_list_alloc(rl, dev, child, type, rid,
3867 	    start, end, count, flags));
3868 }
3869 
3870 /**
3871  * @brief Helper function for implementing BUS_CHILD_PRESENT().
3872  *
3873  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3874  * BUS_CHILD_PRESENT() method of the parent of @p dev.
3875  */
3876 int
3877 bus_generic_child_present(device_t dev, device_t child)
3878 {
3879 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3880 }
3881 
3882 /*
3883  * Some convenience functions to make it easier for drivers to use the
3884  * resource-management functions.  All these really do is hide the
3885  * indirection through the parent's method table, making for slightly
3886  * less-wordy code.  In the future, it might make sense for this code
3887  * to maintain some sort of a list of resources allocated by each device.
3888  */
3889 
3890 int
3891 bus_alloc_resources(device_t dev, struct resource_spec *rs,
3892     struct resource **res)
3893 {
3894 	int i;
3895 
3896 	for (i = 0; rs[i].type != -1; i++)
3897 		res[i] = NULL;
3898 	for (i = 0; rs[i].type != -1; i++) {
3899 		res[i] = bus_alloc_resource_any(dev,
3900 		    rs[i].type, &rs[i].rid, rs[i].flags);
3901 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3902 			bus_release_resources(dev, rs, res);
3903 			return (ENXIO);
3904 		}
3905 	}
3906 	return (0);
3907 }
3908 
3909 void
3910 bus_release_resources(device_t dev, const struct resource_spec *rs,
3911     struct resource **res)
3912 {
3913 	int i;
3914 
3915 	for (i = 0; rs[i].type != -1; i++)
3916 		if (res[i] != NULL) {
3917 			bus_release_resource(
3918 			    dev, rs[i].type, rs[i].rid, res[i]);
3919 			res[i] = NULL;
3920 		}
3921 }
3922 
3923 /**
3924  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3925  *
3926  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3927  * parent of @p dev.
3928  */
3929 struct resource *
3930 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3931     u_long count, u_int flags)
3932 {
3933 	if (dev->parent == NULL)
3934 		return (NULL);
3935 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3936 	    count, flags));
3937 }
3938 
3939 /**
3940  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3941  *
3942  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3943  * parent of @p dev.
3944  */
3945 int
3946 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3947 {
3948 	if (dev->parent == NULL)
3949 		return (EINVAL);
3950 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3951 }
3952 
3953 /**
3954  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3955  *
3956  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3957  * parent of @p dev.
3958  */
3959 int
3960 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3961 {
3962 	if (dev->parent == NULL)
3963 		return (EINVAL);
3964 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3965 }
3966 
3967 /**
3968  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3969  *
3970  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3971  * parent of @p dev.
3972  */
3973 int
3974 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3975 {
3976 	if (dev->parent == NULL)
3977 		return (EINVAL);
3978 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3979 }
3980 
3981 /**
3982  * @brief Wrapper function for BUS_SETUP_INTR().
3983  *
3984  * This function simply calls the BUS_SETUP_INTR() method of the
3985  * parent of @p dev.
3986  */
3987 int
3988 bus_setup_intr(device_t dev, struct resource *r, int flags,
3989     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
3990 {
3991 	int error;
3992 
3993 	if (dev->parent == NULL)
3994 		return (EINVAL);
3995 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
3996 	    arg, cookiep);
3997 	if (error != 0)
3998 		return (error);
3999 	if (handler != NULL && !(flags & INTR_MPSAFE))
4000 		device_printf(dev, "[GIANT-LOCKED]\n");
4001 	return (0);
4002 }
4003 
4004 /**
4005  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4006  *
4007  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4008  * parent of @p dev.
4009  */
4010 int
4011 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4012 {
4013 	if (dev->parent == NULL)
4014 		return (EINVAL);
4015 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4016 }
4017 
4018 /**
4019  * @brief Wrapper function for BUS_BIND_INTR().
4020  *
4021  * This function simply calls the BUS_BIND_INTR() method of the
4022  * parent of @p dev.
4023  */
4024 int
4025 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4026 {
4027 	if (dev->parent == NULL)
4028 		return (EINVAL);
4029 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4030 }
4031 
4032 /**
4033  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4034  *
4035  * This function first formats the requested description into a
4036  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4037  * the parent of @p dev.
4038  */
4039 int
4040 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4041     const char *fmt, ...)
4042 {
4043 	va_list ap;
4044 	char descr[MAXCOMLEN + 1];
4045 
4046 	if (dev->parent == NULL)
4047 		return (EINVAL);
4048 	va_start(ap, fmt);
4049 	vsnprintf(descr, sizeof(descr), fmt, ap);
4050 	va_end(ap);
4051 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4052 }
4053 
4054 /**
4055  * @brief Wrapper function for BUS_SET_RESOURCE().
4056  *
4057  * This function simply calls the BUS_SET_RESOURCE() method of the
4058  * parent of @p dev.
4059  */
4060 int
4061 bus_set_resource(device_t dev, int type, int rid,
4062     u_long start, u_long count)
4063 {
4064 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4065 	    start, count));
4066 }
4067 
4068 /**
4069  * @brief Wrapper function for BUS_GET_RESOURCE().
4070  *
4071  * This function simply calls the BUS_GET_RESOURCE() method of the
4072  * parent of @p dev.
4073  */
4074 int
4075 bus_get_resource(device_t dev, int type, int rid,
4076     u_long *startp, u_long *countp)
4077 {
4078 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4079 	    startp, countp));
4080 }
4081 
4082 /**
4083  * @brief Wrapper function for BUS_GET_RESOURCE().
4084  *
4085  * This function simply calls the BUS_GET_RESOURCE() method of the
4086  * parent of @p dev and returns the start value.
4087  */
4088 u_long
4089 bus_get_resource_start(device_t dev, int type, int rid)
4090 {
4091 	u_long start, count;
4092 	int error;
4093 
4094 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4095 	    &start, &count);
4096 	if (error)
4097 		return (0);
4098 	return (start);
4099 }
4100 
4101 /**
4102  * @brief Wrapper function for BUS_GET_RESOURCE().
4103  *
4104  * This function simply calls the BUS_GET_RESOURCE() method of the
4105  * parent of @p dev and returns the count value.
4106  */
4107 u_long
4108 bus_get_resource_count(device_t dev, int type, int rid)
4109 {
4110 	u_long start, count;
4111 	int error;
4112 
4113 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4114 	    &start, &count);
4115 	if (error)
4116 		return (0);
4117 	return (count);
4118 }
4119 
4120 /**
4121  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4122  *
4123  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4124  * parent of @p dev.
4125  */
4126 void
4127 bus_delete_resource(device_t dev, int type, int rid)
4128 {
4129 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4130 }
4131 
4132 /**
4133  * @brief Wrapper function for BUS_CHILD_PRESENT().
4134  *
4135  * This function simply calls the BUS_CHILD_PRESENT() method of the
4136  * parent of @p dev.
4137  */
4138 int
4139 bus_child_present(device_t child)
4140 {
4141 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4142 }
4143 
4144 /**
4145  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4146  *
4147  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4148  * parent of @p dev.
4149  */
4150 int
4151 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4152 {
4153 	device_t parent;
4154 
4155 	parent = device_get_parent(child);
4156 	if (parent == NULL) {
4157 		*buf = '\0';
4158 		return (0);
4159 	}
4160 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4161 }
4162 
4163 /**
4164  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4165  *
4166  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4167  * parent of @p dev.
4168  */
4169 int
4170 bus_child_location_str(device_t child, char *buf, size_t buflen)
4171 {
4172 	device_t parent;
4173 
4174 	parent = device_get_parent(child);
4175 	if (parent == NULL) {
4176 		*buf = '\0';
4177 		return (0);
4178 	}
4179 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4180 }
4181 
4182 /**
4183  * @brief Wrapper function for BUS_GET_DMA_TAG().
4184  *
4185  * This function simply calls the BUS_GET_DMA_TAG() method of the
4186  * parent of @p dev.
4187  */
4188 bus_dma_tag_t
4189 bus_get_dma_tag(device_t dev)
4190 {
4191 	device_t parent;
4192 
4193 	parent = device_get_parent(dev);
4194 	if (parent == NULL)
4195 		return (NULL);
4196 	return (BUS_GET_DMA_TAG(parent, dev));
4197 }
4198 
4199 /* Resume all devices and then notify userland that we're up again. */
4200 static int
4201 root_resume(device_t dev)
4202 {
4203 	int error;
4204 
4205 	error = bus_generic_resume(dev);
4206 	if (error == 0)
4207 		devctl_notify("kern", "power", "resume", NULL);
4208 	return (error);
4209 }
4210 
4211 static int
4212 root_print_child(device_t dev, device_t child)
4213 {
4214 	int	retval = 0;
4215 
4216 	retval += bus_print_child_header(dev, child);
4217 	retval += printf("\n");
4218 
4219 	return (retval);
4220 }
4221 
4222 static int
4223 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4224     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4225 {
4226 	/*
4227 	 * If an interrupt mapping gets to here something bad has happened.
4228 	 */
4229 	panic("root_setup_intr");
4230 }
4231 
4232 /*
4233  * If we get here, assume that the device is permanant and really is
4234  * present in the system.  Removable bus drivers are expected to intercept
4235  * this call long before it gets here.  We return -1 so that drivers that
4236  * really care can check vs -1 or some ERRNO returned higher in the food
4237  * chain.
4238  */
4239 static int
4240 root_child_present(device_t dev, device_t child)
4241 {
4242 	return (-1);
4243 }
4244 
4245 static kobj_method_t root_methods[] = {
4246 	/* Device interface */
4247 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4248 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4249 	KOBJMETHOD(device_resume,	root_resume),
4250 
4251 	/* Bus interface */
4252 	KOBJMETHOD(bus_print_child,	root_print_child),
4253 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4254 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4255 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4256 	KOBJMETHOD(bus_child_present,	root_child_present),
4257 
4258 	KOBJMETHOD_END
4259 };
4260 
4261 static driver_t root_driver = {
4262 	"root",
4263 	root_methods,
4264 	1,			/* no softc */
4265 };
4266 
4267 device_t	root_bus;
4268 devclass_t	root_devclass;
4269 
4270 static int
4271 root_bus_module_handler(module_t mod, int what, void* arg)
4272 {
4273 	switch (what) {
4274 	case MOD_LOAD:
4275 		TAILQ_INIT(&bus_data_devices);
4276 		kobj_class_compile((kobj_class_t) &root_driver);
4277 		root_bus = make_device(NULL, "root", 0);
4278 		root_bus->desc = "System root bus";
4279 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4280 		root_bus->driver = &root_driver;
4281 		root_bus->state = DS_ATTACHED;
4282 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4283 		devinit();
4284 		return (0);
4285 
4286 	case MOD_SHUTDOWN:
4287 		device_shutdown(root_bus);
4288 		return (0);
4289 	default:
4290 		return (EOPNOTSUPP);
4291 	}
4292 
4293 	return (0);
4294 }
4295 
4296 static moduledata_t root_bus_mod = {
4297 	"rootbus",
4298 	root_bus_module_handler,
4299 	NULL
4300 };
4301 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4302 
4303 /**
4304  * @brief Automatically configure devices
4305  *
4306  * This function begins the autoconfiguration process by calling
4307  * device_probe_and_attach() for each child of the @c root0 device.
4308  */
4309 void
4310 root_bus_configure(void)
4311 {
4312 
4313 	PDEBUG(("."));
4314 
4315 	/* Eventually this will be split up, but this is sufficient for now. */
4316 	bus_set_pass(BUS_PASS_DEFAULT);
4317 }
4318 
4319 /**
4320  * @brief Module handler for registering device drivers
4321  *
4322  * This module handler is used to automatically register device
4323  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4324  * devclass_add_driver() for the driver described by the
4325  * driver_module_data structure pointed to by @p arg
4326  */
4327 int
4328 driver_module_handler(module_t mod, int what, void *arg)
4329 {
4330 	struct driver_module_data *dmd;
4331 	devclass_t bus_devclass;
4332 	kobj_class_t driver;
4333 	int error, pass;
4334 
4335 	dmd = (struct driver_module_data *)arg;
4336 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4337 	error = 0;
4338 
4339 	switch (what) {
4340 	case MOD_LOAD:
4341 		if (dmd->dmd_chainevh)
4342 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4343 
4344 		pass = dmd->dmd_pass;
4345 		driver = dmd->dmd_driver;
4346 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4347 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4348 		error = devclass_add_driver(bus_devclass, driver, pass,
4349 		    dmd->dmd_devclass);
4350 		break;
4351 
4352 	case MOD_UNLOAD:
4353 		PDEBUG(("Unloading module: driver %s from bus %s",
4354 		    DRIVERNAME(dmd->dmd_driver),
4355 		    dmd->dmd_busname));
4356 		error = devclass_delete_driver(bus_devclass,
4357 		    dmd->dmd_driver);
4358 
4359 		if (!error && dmd->dmd_chainevh)
4360 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4361 		break;
4362 	case MOD_QUIESCE:
4363 		PDEBUG(("Quiesce module: driver %s from bus %s",
4364 		    DRIVERNAME(dmd->dmd_driver),
4365 		    dmd->dmd_busname));
4366 		error = devclass_quiesce_driver(bus_devclass,
4367 		    dmd->dmd_driver);
4368 
4369 		if (!error && dmd->dmd_chainevh)
4370 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4371 		break;
4372 	default:
4373 		error = EOPNOTSUPP;
4374 		break;
4375 	}
4376 
4377 	return (error);
4378 }
4379 
4380 /**
4381  * @brief Enumerate all hinted devices for this bus.
4382  *
4383  * Walks through the hints for this bus and calls the bus_hinted_child
4384  * routine for each one it fines.  It searches first for the specific
4385  * bus that's being probed for hinted children (eg isa0), and then for
4386  * generic children (eg isa).
4387  *
4388  * @param	dev	bus device to enumerate
4389  */
4390 void
4391 bus_enumerate_hinted_children(device_t bus)
4392 {
4393 	int i;
4394 	const char *dname, *busname;
4395 	int dunit;
4396 
4397 	/*
4398 	 * enumerate all devices on the specific bus
4399 	 */
4400 	busname = device_get_nameunit(bus);
4401 	i = 0;
4402 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4403 		BUS_HINTED_CHILD(bus, dname, dunit);
4404 
4405 	/*
4406 	 * and all the generic ones.
4407 	 */
4408 	busname = device_get_name(bus);
4409 	i = 0;
4410 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4411 		BUS_HINTED_CHILD(bus, dname, dunit);
4412 }
4413 
4414 #ifdef BUS_DEBUG
4415 
4416 /* the _short versions avoid iteration by not calling anything that prints
4417  * more than oneliners. I love oneliners.
4418  */
4419 
4420 static void
4421 print_device_short(device_t dev, int indent)
4422 {
4423 	if (!dev)
4424 		return;
4425 
4426 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4427 	    dev->unit, dev->desc,
4428 	    (dev->parent? "":"no "),
4429 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4430 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4431 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4432 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4433 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4434 	    (dev->flags&DF_REBID? "rebiddable,":""),
4435 	    (dev->ivars? "":"no "),
4436 	    (dev->softc? "":"no "),
4437 	    dev->busy));
4438 }
4439 
4440 static void
4441 print_device(device_t dev, int indent)
4442 {
4443 	if (!dev)
4444 		return;
4445 
4446 	print_device_short(dev, indent);
4447 
4448 	indentprintf(("Parent:\n"));
4449 	print_device_short(dev->parent, indent+1);
4450 	indentprintf(("Driver:\n"));
4451 	print_driver_short(dev->driver, indent+1);
4452 	indentprintf(("Devclass:\n"));
4453 	print_devclass_short(dev->devclass, indent+1);
4454 }
4455 
4456 void
4457 print_device_tree_short(device_t dev, int indent)
4458 /* print the device and all its children (indented) */
4459 {
4460 	device_t child;
4461 
4462 	if (!dev)
4463 		return;
4464 
4465 	print_device_short(dev, indent);
4466 
4467 	TAILQ_FOREACH(child, &dev->children, link) {
4468 		print_device_tree_short(child, indent+1);
4469 	}
4470 }
4471 
4472 void
4473 print_device_tree(device_t dev, int indent)
4474 /* print the device and all its children (indented) */
4475 {
4476 	device_t child;
4477 
4478 	if (!dev)
4479 		return;
4480 
4481 	print_device(dev, indent);
4482 
4483 	TAILQ_FOREACH(child, &dev->children, link) {
4484 		print_device_tree(child, indent+1);
4485 	}
4486 }
4487 
4488 static void
4489 print_driver_short(driver_t *driver, int indent)
4490 {
4491 	if (!driver)
4492 		return;
4493 
4494 	indentprintf(("driver %s: softc size = %zd\n",
4495 	    driver->name, driver->size));
4496 }
4497 
4498 static void
4499 print_driver(driver_t *driver, int indent)
4500 {
4501 	if (!driver)
4502 		return;
4503 
4504 	print_driver_short(driver, indent);
4505 }
4506 
4507 
4508 static void
4509 print_driver_list(driver_list_t drivers, int indent)
4510 {
4511 	driverlink_t driver;
4512 
4513 	TAILQ_FOREACH(driver, &drivers, link) {
4514 		print_driver(driver->driver, indent);
4515 	}
4516 }
4517 
4518 static void
4519 print_devclass_short(devclass_t dc, int indent)
4520 {
4521 	if ( !dc )
4522 		return;
4523 
4524 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4525 }
4526 
4527 static void
4528 print_devclass(devclass_t dc, int indent)
4529 {
4530 	int i;
4531 
4532 	if ( !dc )
4533 		return;
4534 
4535 	print_devclass_short(dc, indent);
4536 	indentprintf(("Drivers:\n"));
4537 	print_driver_list(dc->drivers, indent+1);
4538 
4539 	indentprintf(("Devices:\n"));
4540 	for (i = 0; i < dc->maxunit; i++)
4541 		if (dc->devices[i])
4542 			print_device(dc->devices[i], indent+1);
4543 }
4544 
4545 void
4546 print_devclass_list_short(void)
4547 {
4548 	devclass_t dc;
4549 
4550 	printf("Short listing of devclasses, drivers & devices:\n");
4551 	TAILQ_FOREACH(dc, &devclasses, link) {
4552 		print_devclass_short(dc, 0);
4553 	}
4554 }
4555 
4556 void
4557 print_devclass_list(void)
4558 {
4559 	devclass_t dc;
4560 
4561 	printf("Full listing of devclasses, drivers & devices:\n");
4562 	TAILQ_FOREACH(dc, &devclasses, link) {
4563 		print_devclass(dc, 0);
4564 	}
4565 }
4566 
4567 #endif
4568 
4569 /*
4570  * User-space access to the device tree.
4571  *
4572  * We implement a small set of nodes:
4573  *
4574  * hw.bus			Single integer read method to obtain the
4575  *				current generation count.
4576  * hw.bus.devices		Reads the entire device tree in flat space.
4577  * hw.bus.rman			Resource manager interface
4578  *
4579  * We might like to add the ability to scan devclasses and/or drivers to
4580  * determine what else is currently loaded/available.
4581  */
4582 
4583 static int
4584 sysctl_bus(SYSCTL_HANDLER_ARGS)
4585 {
4586 	struct u_businfo	ubus;
4587 
4588 	ubus.ub_version = BUS_USER_VERSION;
4589 	ubus.ub_generation = bus_data_generation;
4590 
4591 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4592 }
4593 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4594     "bus-related data");
4595 
4596 static int
4597 sysctl_devices(SYSCTL_HANDLER_ARGS)
4598 {
4599 	int			*name = (int *)arg1;
4600 	u_int			namelen = arg2;
4601 	int			index;
4602 	struct device		*dev;
4603 	struct u_device		udev;	/* XXX this is a bit big */
4604 	int			error;
4605 
4606 	if (namelen != 2)
4607 		return (EINVAL);
4608 
4609 	if (bus_data_generation_check(name[0]))
4610 		return (EINVAL);
4611 
4612 	index = name[1];
4613 
4614 	/*
4615 	 * Scan the list of devices, looking for the requested index.
4616 	 */
4617 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4618 		if (index-- == 0)
4619 			break;
4620 	}
4621 	if (dev == NULL)
4622 		return (ENOENT);
4623 
4624 	/*
4625 	 * Populate the return array.
4626 	 */
4627 	bzero(&udev, sizeof(udev));
4628 	udev.dv_handle = (uintptr_t)dev;
4629 	udev.dv_parent = (uintptr_t)dev->parent;
4630 	if (dev->nameunit != NULL)
4631 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4632 	if (dev->desc != NULL)
4633 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4634 	if (dev->driver != NULL && dev->driver->name != NULL)
4635 		strlcpy(udev.dv_drivername, dev->driver->name,
4636 		    sizeof(udev.dv_drivername));
4637 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4638 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4639 	udev.dv_devflags = dev->devflags;
4640 	udev.dv_flags = dev->flags;
4641 	udev.dv_state = dev->state;
4642 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4643 	return (error);
4644 }
4645 
4646 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4647     "system device tree");
4648 
4649 int
4650 bus_data_generation_check(int generation)
4651 {
4652 	if (generation != bus_data_generation)
4653 		return (1);
4654 
4655 	/* XXX generate optimised lists here? */
4656 	return (0);
4657 }
4658 
4659 void
4660 bus_data_generation_update(void)
4661 {
4662 	bus_data_generation++;
4663 }
4664 
4665 int
4666 bus_free_resource(device_t dev, int type, struct resource *r)
4667 {
4668 	if (r == NULL)
4669 		return (0);
4670 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4671 }
4672