1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/conf.h> 34 #include <sys/filio.h> 35 #include <sys/lock.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/limits.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/mutex.h> 42 #include <sys/poll.h> 43 #include <sys/proc.h> 44 #include <sys/condvar.h> 45 #include <sys/queue.h> 46 #include <machine/bus.h> 47 #include <sys/rman.h> 48 #include <sys/selinfo.h> 49 #include <sys/signalvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/systm.h> 52 #include <sys/uio.h> 53 #include <sys/bus.h> 54 #include <sys/interrupt.h> 55 56 #include <machine/stdarg.h> 57 58 #include <vm/uma.h> 59 60 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 61 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 62 63 /* 64 * Used to attach drivers to devclasses. 65 */ 66 typedef struct driverlink *driverlink_t; 67 struct driverlink { 68 kobj_class_t driver; 69 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 70 int pass; 71 TAILQ_ENTRY(driverlink) passlink; 72 }; 73 74 /* 75 * Forward declarations 76 */ 77 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 78 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 79 typedef TAILQ_HEAD(device_list, device) device_list_t; 80 81 struct devclass { 82 TAILQ_ENTRY(devclass) link; 83 devclass_t parent; /* parent in devclass hierarchy */ 84 driver_list_t drivers; /* bus devclasses store drivers for bus */ 85 char *name; 86 device_t *devices; /* array of devices indexed by unit */ 87 int maxunit; /* size of devices array */ 88 int flags; 89 #define DC_HAS_CHILDREN 1 90 91 struct sysctl_ctx_list sysctl_ctx; 92 struct sysctl_oid *sysctl_tree; 93 }; 94 95 /** 96 * @brief Implementation of device. 97 */ 98 struct device { 99 /* 100 * A device is a kernel object. The first field must be the 101 * current ops table for the object. 102 */ 103 KOBJ_FIELDS; 104 105 /* 106 * Device hierarchy. 107 */ 108 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 109 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 110 device_t parent; /**< parent of this device */ 111 device_list_t children; /**< list of child devices */ 112 113 /* 114 * Details of this device. 115 */ 116 driver_t *driver; /**< current driver */ 117 devclass_t devclass; /**< current device class */ 118 int unit; /**< current unit number */ 119 char* nameunit; /**< name+unit e.g. foodev0 */ 120 char* desc; /**< driver specific description */ 121 int busy; /**< count of calls to device_busy() */ 122 device_state_t state; /**< current device state */ 123 uint32_t devflags; /**< api level flags for device_get_flags() */ 124 u_int flags; /**< internal device flags */ 125 #define DF_ENABLED 0x01 /* device should be probed/attached */ 126 #define DF_FIXEDCLASS 0x02 /* devclass specified at create time */ 127 #define DF_WILDCARD 0x04 /* unit was originally wildcard */ 128 #define DF_DESCMALLOCED 0x08 /* description was malloced */ 129 #define DF_QUIET 0x10 /* don't print verbose attach message */ 130 #define DF_DONENOMATCH 0x20 /* don't execute DEVICE_NOMATCH again */ 131 #define DF_EXTERNALSOFTC 0x40 /* softc not allocated by us */ 132 #define DF_REBID 0x80 /* Can rebid after attach */ 133 u_int order; /**< order from device_add_child_ordered() */ 134 void *ivars; /**< instance variables */ 135 void *softc; /**< current driver's variables */ 136 137 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 138 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 139 }; 140 141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 143 144 #ifdef BUS_DEBUG 145 146 static int bus_debug = 1; 147 TUNABLE_INT("bus.debug", &bus_debug); 148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0, 149 "Debug bus code"); 150 151 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 152 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 153 #define DRIVERNAME(d) ((d)? d->name : "no driver") 154 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 155 156 /** 157 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 158 * prevent syslog from deleting initial spaces 159 */ 160 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 161 162 static void print_device_short(device_t dev, int indent); 163 static void print_device(device_t dev, int indent); 164 void print_device_tree_short(device_t dev, int indent); 165 void print_device_tree(device_t dev, int indent); 166 static void print_driver_short(driver_t *driver, int indent); 167 static void print_driver(driver_t *driver, int indent); 168 static void print_driver_list(driver_list_t drivers, int indent); 169 static void print_devclass_short(devclass_t dc, int indent); 170 static void print_devclass(devclass_t dc, int indent); 171 void print_devclass_list_short(void); 172 void print_devclass_list(void); 173 174 #else 175 /* Make the compiler ignore the function calls */ 176 #define PDEBUG(a) /* nop */ 177 #define DEVICENAME(d) /* nop */ 178 #define DRIVERNAME(d) /* nop */ 179 #define DEVCLANAME(d) /* nop */ 180 181 #define print_device_short(d,i) /* nop */ 182 #define print_device(d,i) /* nop */ 183 #define print_device_tree_short(d,i) /* nop */ 184 #define print_device_tree(d,i) /* nop */ 185 #define print_driver_short(d,i) /* nop */ 186 #define print_driver(d,i) /* nop */ 187 #define print_driver_list(d,i) /* nop */ 188 #define print_devclass_short(d,i) /* nop */ 189 #define print_devclass(d,i) /* nop */ 190 #define print_devclass_list_short() /* nop */ 191 #define print_devclass_list() /* nop */ 192 #endif 193 194 /* 195 * dev sysctl tree 196 */ 197 198 enum { 199 DEVCLASS_SYSCTL_PARENT, 200 }; 201 202 static int 203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 204 { 205 devclass_t dc = (devclass_t)arg1; 206 const char *value; 207 208 switch (arg2) { 209 case DEVCLASS_SYSCTL_PARENT: 210 value = dc->parent ? dc->parent->name : ""; 211 break; 212 default: 213 return (EINVAL); 214 } 215 return (SYSCTL_OUT(req, value, strlen(value))); 216 } 217 218 static void 219 devclass_sysctl_init(devclass_t dc) 220 { 221 222 if (dc->sysctl_tree != NULL) 223 return; 224 sysctl_ctx_init(&dc->sysctl_ctx); 225 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 226 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 227 CTLFLAG_RD, NULL, ""); 228 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 229 OID_AUTO, "%parent", CTLFLAG_RD, 230 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 231 "parent class"); 232 } 233 234 enum { 235 DEVICE_SYSCTL_DESC, 236 DEVICE_SYSCTL_DRIVER, 237 DEVICE_SYSCTL_LOCATION, 238 DEVICE_SYSCTL_PNPINFO, 239 DEVICE_SYSCTL_PARENT, 240 }; 241 242 static int 243 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 244 { 245 device_t dev = (device_t)arg1; 246 const char *value; 247 char *buf; 248 int error; 249 250 buf = NULL; 251 switch (arg2) { 252 case DEVICE_SYSCTL_DESC: 253 value = dev->desc ? dev->desc : ""; 254 break; 255 case DEVICE_SYSCTL_DRIVER: 256 value = dev->driver ? dev->driver->name : ""; 257 break; 258 case DEVICE_SYSCTL_LOCATION: 259 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 260 bus_child_location_str(dev, buf, 1024); 261 break; 262 case DEVICE_SYSCTL_PNPINFO: 263 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 264 bus_child_pnpinfo_str(dev, buf, 1024); 265 break; 266 case DEVICE_SYSCTL_PARENT: 267 value = dev->parent ? dev->parent->nameunit : ""; 268 break; 269 default: 270 return (EINVAL); 271 } 272 error = SYSCTL_OUT(req, value, strlen(value)); 273 if (buf != NULL) 274 free(buf, M_BUS); 275 return (error); 276 } 277 278 static void 279 device_sysctl_init(device_t dev) 280 { 281 devclass_t dc = dev->devclass; 282 283 if (dev->sysctl_tree != NULL) 284 return; 285 devclass_sysctl_init(dc); 286 sysctl_ctx_init(&dev->sysctl_ctx); 287 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 288 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 289 dev->nameunit + strlen(dc->name), 290 CTLFLAG_RD, NULL, ""); 291 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 292 OID_AUTO, "%desc", CTLFLAG_RD, 293 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 294 "device description"); 295 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 296 OID_AUTO, "%driver", CTLFLAG_RD, 297 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 298 "device driver name"); 299 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 300 OID_AUTO, "%location", CTLFLAG_RD, 301 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 302 "device location relative to parent"); 303 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 304 OID_AUTO, "%pnpinfo", CTLFLAG_RD, 305 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 306 "device identification"); 307 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 308 OID_AUTO, "%parent", CTLFLAG_RD, 309 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 310 "parent device"); 311 } 312 313 static void 314 device_sysctl_update(device_t dev) 315 { 316 devclass_t dc = dev->devclass; 317 318 if (dev->sysctl_tree == NULL) 319 return; 320 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 321 } 322 323 static void 324 device_sysctl_fini(device_t dev) 325 { 326 if (dev->sysctl_tree == NULL) 327 return; 328 sysctl_ctx_free(&dev->sysctl_ctx); 329 dev->sysctl_tree = NULL; 330 } 331 332 /* 333 * /dev/devctl implementation 334 */ 335 336 /* 337 * This design allows only one reader for /dev/devctl. This is not desirable 338 * in the long run, but will get a lot of hair out of this implementation. 339 * Maybe we should make this device a clonable device. 340 * 341 * Also note: we specifically do not attach a device to the device_t tree 342 * to avoid potential chicken and egg problems. One could argue that all 343 * of this belongs to the root node. One could also further argue that the 344 * sysctl interface that we have not might more properly be an ioctl 345 * interface, but at this stage of the game, I'm not inclined to rock that 346 * boat. 347 * 348 * I'm also not sure that the SIGIO support is done correctly or not, as 349 * I copied it from a driver that had SIGIO support that likely hasn't been 350 * tested since 3.4 or 2.2.8! 351 */ 352 353 /* Deprecated way to adjust queue length */ 354 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 355 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */ 356 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL, 357 0, sysctl_devctl_disable, "I", "devctl disable -- deprecated"); 358 359 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 360 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 361 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 362 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length); 363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL, 364 0, sysctl_devctl_queue, "I", "devctl queue length"); 365 366 static d_open_t devopen; 367 static d_close_t devclose; 368 static d_read_t devread; 369 static d_ioctl_t devioctl; 370 static d_poll_t devpoll; 371 372 static struct cdevsw dev_cdevsw = { 373 .d_version = D_VERSION, 374 .d_flags = D_NEEDGIANT, 375 .d_open = devopen, 376 .d_close = devclose, 377 .d_read = devread, 378 .d_ioctl = devioctl, 379 .d_poll = devpoll, 380 .d_name = "devctl", 381 }; 382 383 struct dev_event_info 384 { 385 char *dei_data; 386 TAILQ_ENTRY(dev_event_info) dei_link; 387 }; 388 389 TAILQ_HEAD(devq, dev_event_info); 390 391 static struct dev_softc 392 { 393 int inuse; 394 int nonblock; 395 int queued; 396 struct mtx mtx; 397 struct cv cv; 398 struct selinfo sel; 399 struct devq devq; 400 struct proc *async_proc; 401 } devsoftc; 402 403 static struct cdev *devctl_dev; 404 405 static void 406 devinit(void) 407 { 408 devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, 409 "devctl"); 410 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 411 cv_init(&devsoftc.cv, "dev cv"); 412 TAILQ_INIT(&devsoftc.devq); 413 } 414 415 static int 416 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 417 { 418 if (devsoftc.inuse) 419 return (EBUSY); 420 /* move to init */ 421 devsoftc.inuse = 1; 422 devsoftc.nonblock = 0; 423 devsoftc.async_proc = NULL; 424 return (0); 425 } 426 427 static int 428 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 429 { 430 devsoftc.inuse = 0; 431 mtx_lock(&devsoftc.mtx); 432 cv_broadcast(&devsoftc.cv); 433 mtx_unlock(&devsoftc.mtx); 434 devsoftc.async_proc = NULL; 435 return (0); 436 } 437 438 /* 439 * The read channel for this device is used to report changes to 440 * userland in realtime. We are required to free the data as well as 441 * the n1 object because we allocate them separately. Also note that 442 * we return one record at a time. If you try to read this device a 443 * character at a time, you will lose the rest of the data. Listening 444 * programs are expected to cope. 445 */ 446 static int 447 devread(struct cdev *dev, struct uio *uio, int ioflag) 448 { 449 struct dev_event_info *n1; 450 int rv; 451 452 mtx_lock(&devsoftc.mtx); 453 while (TAILQ_EMPTY(&devsoftc.devq)) { 454 if (devsoftc.nonblock) { 455 mtx_unlock(&devsoftc.mtx); 456 return (EAGAIN); 457 } 458 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 459 if (rv) { 460 /* 461 * Need to translate ERESTART to EINTR here? -- jake 462 */ 463 mtx_unlock(&devsoftc.mtx); 464 return (rv); 465 } 466 } 467 n1 = TAILQ_FIRST(&devsoftc.devq); 468 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 469 devsoftc.queued--; 470 mtx_unlock(&devsoftc.mtx); 471 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 472 free(n1->dei_data, M_BUS); 473 free(n1, M_BUS); 474 return (rv); 475 } 476 477 static int 478 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 479 { 480 switch (cmd) { 481 482 case FIONBIO: 483 if (*(int*)data) 484 devsoftc.nonblock = 1; 485 else 486 devsoftc.nonblock = 0; 487 return (0); 488 case FIOASYNC: 489 if (*(int*)data) 490 devsoftc.async_proc = td->td_proc; 491 else 492 devsoftc.async_proc = NULL; 493 return (0); 494 495 /* (un)Support for other fcntl() calls. */ 496 case FIOCLEX: 497 case FIONCLEX: 498 case FIONREAD: 499 case FIOSETOWN: 500 case FIOGETOWN: 501 default: 502 break; 503 } 504 return (ENOTTY); 505 } 506 507 static int 508 devpoll(struct cdev *dev, int events, struct thread *td) 509 { 510 int revents = 0; 511 512 mtx_lock(&devsoftc.mtx); 513 if (events & (POLLIN | POLLRDNORM)) { 514 if (!TAILQ_EMPTY(&devsoftc.devq)) 515 revents = events & (POLLIN | POLLRDNORM); 516 else 517 selrecord(td, &devsoftc.sel); 518 } 519 mtx_unlock(&devsoftc.mtx); 520 521 return (revents); 522 } 523 524 /** 525 * @brief Return whether the userland process is running 526 */ 527 boolean_t 528 devctl_process_running(void) 529 { 530 return (devsoftc.inuse == 1); 531 } 532 533 /** 534 * @brief Queue data to be read from the devctl device 535 * 536 * Generic interface to queue data to the devctl device. It is 537 * assumed that @p data is properly formatted. It is further assumed 538 * that @p data is allocated using the M_BUS malloc type. 539 */ 540 void 541 devctl_queue_data_f(char *data, int flags) 542 { 543 struct dev_event_info *n1 = NULL, *n2 = NULL; 544 struct proc *p; 545 546 if (strlen(data) == 0) 547 goto out; 548 if (devctl_queue_length == 0) 549 goto out; 550 n1 = malloc(sizeof(*n1), M_BUS, flags); 551 if (n1 == NULL) 552 goto out; 553 n1->dei_data = data; 554 mtx_lock(&devsoftc.mtx); 555 if (devctl_queue_length == 0) { 556 mtx_unlock(&devsoftc.mtx); 557 free(n1->dei_data, M_BUS); 558 free(n1, M_BUS); 559 return; 560 } 561 /* Leave at least one spot in the queue... */ 562 while (devsoftc.queued > devctl_queue_length - 1) { 563 n2 = TAILQ_FIRST(&devsoftc.devq); 564 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 565 free(n2->dei_data, M_BUS); 566 free(n2, M_BUS); 567 devsoftc.queued--; 568 } 569 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 570 devsoftc.queued++; 571 cv_broadcast(&devsoftc.cv); 572 mtx_unlock(&devsoftc.mtx); 573 selwakeup(&devsoftc.sel); 574 p = devsoftc.async_proc; 575 if (p != NULL) { 576 PROC_LOCK(p); 577 psignal(p, SIGIO); 578 PROC_UNLOCK(p); 579 } 580 return; 581 out: 582 /* 583 * We have to free data on all error paths since the caller 584 * assumes it will be free'd when this item is dequeued. 585 */ 586 free(data, M_BUS); 587 return; 588 } 589 590 void 591 devctl_queue_data(char *data) 592 { 593 594 devctl_queue_data_f(data, M_NOWAIT); 595 } 596 597 /** 598 * @brief Send a 'notification' to userland, using standard ways 599 */ 600 void 601 devctl_notify_f(const char *system, const char *subsystem, const char *type, 602 const char *data, int flags) 603 { 604 int len = 0; 605 char *msg; 606 607 if (system == NULL) 608 return; /* BOGUS! Must specify system. */ 609 if (subsystem == NULL) 610 return; /* BOGUS! Must specify subsystem. */ 611 if (type == NULL) 612 return; /* BOGUS! Must specify type. */ 613 len += strlen(" system=") + strlen(system); 614 len += strlen(" subsystem=") + strlen(subsystem); 615 len += strlen(" type=") + strlen(type); 616 /* add in the data message plus newline. */ 617 if (data != NULL) 618 len += strlen(data); 619 len += 3; /* '!', '\n', and NUL */ 620 msg = malloc(len, M_BUS, flags); 621 if (msg == NULL) 622 return; /* Drop it on the floor */ 623 if (data != NULL) 624 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 625 system, subsystem, type, data); 626 else 627 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 628 system, subsystem, type); 629 devctl_queue_data_f(msg, flags); 630 } 631 632 void 633 devctl_notify(const char *system, const char *subsystem, const char *type, 634 const char *data) 635 { 636 637 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 638 } 639 640 /* 641 * Common routine that tries to make sending messages as easy as possible. 642 * We allocate memory for the data, copy strings into that, but do not 643 * free it unless there's an error. The dequeue part of the driver should 644 * free the data. We don't send data when the device is disabled. We do 645 * send data, even when we have no listeners, because we wish to avoid 646 * races relating to startup and restart of listening applications. 647 * 648 * devaddq is designed to string together the type of event, with the 649 * object of that event, plus the plug and play info and location info 650 * for that event. This is likely most useful for devices, but less 651 * useful for other consumers of this interface. Those should use 652 * the devctl_queue_data() interface instead. 653 */ 654 static void 655 devaddq(const char *type, const char *what, device_t dev) 656 { 657 char *data = NULL; 658 char *loc = NULL; 659 char *pnp = NULL; 660 const char *parstr; 661 662 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 663 return; 664 data = malloc(1024, M_BUS, M_NOWAIT); 665 if (data == NULL) 666 goto bad; 667 668 /* get the bus specific location of this device */ 669 loc = malloc(1024, M_BUS, M_NOWAIT); 670 if (loc == NULL) 671 goto bad; 672 *loc = '\0'; 673 bus_child_location_str(dev, loc, 1024); 674 675 /* Get the bus specific pnp info of this device */ 676 pnp = malloc(1024, M_BUS, M_NOWAIT); 677 if (pnp == NULL) 678 goto bad; 679 *pnp = '\0'; 680 bus_child_pnpinfo_str(dev, pnp, 1024); 681 682 /* Get the parent of this device, or / if high enough in the tree. */ 683 if (device_get_parent(dev) == NULL) 684 parstr = "."; /* Or '/' ? */ 685 else 686 parstr = device_get_nameunit(device_get_parent(dev)); 687 /* String it all together. */ 688 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 689 parstr); 690 free(loc, M_BUS); 691 free(pnp, M_BUS); 692 devctl_queue_data(data); 693 return; 694 bad: 695 free(pnp, M_BUS); 696 free(loc, M_BUS); 697 free(data, M_BUS); 698 return; 699 } 700 701 /* 702 * A device was added to the tree. We are called just after it successfully 703 * attaches (that is, probe and attach success for this device). No call 704 * is made if a device is merely parented into the tree. See devnomatch 705 * if probe fails. If attach fails, no notification is sent (but maybe 706 * we should have a different message for this). 707 */ 708 static void 709 devadded(device_t dev) 710 { 711 char *pnp = NULL; 712 char *tmp = NULL; 713 714 pnp = malloc(1024, M_BUS, M_NOWAIT); 715 if (pnp == NULL) 716 goto fail; 717 tmp = malloc(1024, M_BUS, M_NOWAIT); 718 if (tmp == NULL) 719 goto fail; 720 *pnp = '\0'; 721 bus_child_pnpinfo_str(dev, pnp, 1024); 722 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 723 devaddq("+", tmp, dev); 724 fail: 725 if (pnp != NULL) 726 free(pnp, M_BUS); 727 if (tmp != NULL) 728 free(tmp, M_BUS); 729 return; 730 } 731 732 /* 733 * A device was removed from the tree. We are called just before this 734 * happens. 735 */ 736 static void 737 devremoved(device_t dev) 738 { 739 char *pnp = NULL; 740 char *tmp = NULL; 741 742 pnp = malloc(1024, M_BUS, M_NOWAIT); 743 if (pnp == NULL) 744 goto fail; 745 tmp = malloc(1024, M_BUS, M_NOWAIT); 746 if (tmp == NULL) 747 goto fail; 748 *pnp = '\0'; 749 bus_child_pnpinfo_str(dev, pnp, 1024); 750 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 751 devaddq("-", tmp, dev); 752 fail: 753 if (pnp != NULL) 754 free(pnp, M_BUS); 755 if (tmp != NULL) 756 free(tmp, M_BUS); 757 return; 758 } 759 760 /* 761 * Called when there's no match for this device. This is only called 762 * the first time that no match happens, so we don't keep getting this 763 * message. Should that prove to be undesirable, we can change it. 764 * This is called when all drivers that can attach to a given bus 765 * decline to accept this device. Other errors may not be detected. 766 */ 767 static void 768 devnomatch(device_t dev) 769 { 770 devaddq("?", "", dev); 771 } 772 773 static int 774 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 775 { 776 struct dev_event_info *n1; 777 int dis, error; 778 779 dis = devctl_queue_length == 0; 780 error = sysctl_handle_int(oidp, &dis, 0, req); 781 if (error || !req->newptr) 782 return (error); 783 mtx_lock(&devsoftc.mtx); 784 if (dis) { 785 while (!TAILQ_EMPTY(&devsoftc.devq)) { 786 n1 = TAILQ_FIRST(&devsoftc.devq); 787 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 788 free(n1->dei_data, M_BUS); 789 free(n1, M_BUS); 790 } 791 devsoftc.queued = 0; 792 devctl_queue_length = 0; 793 } else { 794 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 795 } 796 mtx_unlock(&devsoftc.mtx); 797 return (0); 798 } 799 800 static int 801 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 802 { 803 struct dev_event_info *n1; 804 int q, error; 805 806 q = devctl_queue_length; 807 error = sysctl_handle_int(oidp, &q, 0, req); 808 if (error || !req->newptr) 809 return (error); 810 if (q < 0) 811 return (EINVAL); 812 mtx_lock(&devsoftc.mtx); 813 devctl_queue_length = q; 814 while (devsoftc.queued > devctl_queue_length) { 815 n1 = TAILQ_FIRST(&devsoftc.devq); 816 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 817 free(n1->dei_data, M_BUS); 818 free(n1, M_BUS); 819 devsoftc.queued--; 820 } 821 mtx_unlock(&devsoftc.mtx); 822 return (0); 823 } 824 825 /* End of /dev/devctl code */ 826 827 static TAILQ_HEAD(,device) bus_data_devices; 828 static int bus_data_generation = 1; 829 830 static kobj_method_t null_methods[] = { 831 KOBJMETHOD_END 832 }; 833 834 DEFINE_CLASS(null, null_methods, 0); 835 836 /* 837 * Bus pass implementation 838 */ 839 840 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 841 int bus_current_pass = BUS_PASS_ROOT; 842 843 /** 844 * @internal 845 * @brief Register the pass level of a new driver attachment 846 * 847 * Register a new driver attachment's pass level. If no driver 848 * attachment with the same pass level has been added, then @p new 849 * will be added to the global passes list. 850 * 851 * @param new the new driver attachment 852 */ 853 static void 854 driver_register_pass(struct driverlink *new) 855 { 856 struct driverlink *dl; 857 858 /* We only consider pass numbers during boot. */ 859 if (bus_current_pass == BUS_PASS_DEFAULT) 860 return; 861 862 /* 863 * Walk the passes list. If we already know about this pass 864 * then there is nothing to do. If we don't, then insert this 865 * driver link into the list. 866 */ 867 TAILQ_FOREACH(dl, &passes, passlink) { 868 if (dl->pass < new->pass) 869 continue; 870 if (dl->pass == new->pass) 871 return; 872 TAILQ_INSERT_BEFORE(dl, new, passlink); 873 return; 874 } 875 TAILQ_INSERT_TAIL(&passes, new, passlink); 876 } 877 878 /** 879 * @brief Raise the current bus pass 880 * 881 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 882 * method on the root bus to kick off a new device tree scan for each 883 * new pass level that has at least one driver. 884 */ 885 void 886 bus_set_pass(int pass) 887 { 888 struct driverlink *dl; 889 890 if (bus_current_pass > pass) 891 panic("Attempt to lower bus pass level"); 892 893 TAILQ_FOREACH(dl, &passes, passlink) { 894 /* Skip pass values below the current pass level. */ 895 if (dl->pass <= bus_current_pass) 896 continue; 897 898 /* 899 * Bail once we hit a driver with a pass level that is 900 * too high. 901 */ 902 if (dl->pass > pass) 903 break; 904 905 /* 906 * Raise the pass level to the next level and rescan 907 * the tree. 908 */ 909 bus_current_pass = dl->pass; 910 BUS_NEW_PASS(root_bus); 911 } 912 913 /* 914 * If there isn't a driver registered for the requested pass, 915 * then bus_current_pass might still be less than 'pass'. Set 916 * it to 'pass' in that case. 917 */ 918 if (bus_current_pass < pass) 919 bus_current_pass = pass; 920 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 921 } 922 923 /* 924 * Devclass implementation 925 */ 926 927 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 928 929 /** 930 * @internal 931 * @brief Find or create a device class 932 * 933 * If a device class with the name @p classname exists, return it, 934 * otherwise if @p create is non-zero create and return a new device 935 * class. 936 * 937 * If @p parentname is non-NULL, the parent of the devclass is set to 938 * the devclass of that name. 939 * 940 * @param classname the devclass name to find or create 941 * @param parentname the parent devclass name or @c NULL 942 * @param create non-zero to create a devclass 943 */ 944 static devclass_t 945 devclass_find_internal(const char *classname, const char *parentname, 946 int create) 947 { 948 devclass_t dc; 949 950 PDEBUG(("looking for %s", classname)); 951 if (!classname) 952 return (NULL); 953 954 TAILQ_FOREACH(dc, &devclasses, link) { 955 if (!strcmp(dc->name, classname)) 956 break; 957 } 958 959 if (create && !dc) { 960 PDEBUG(("creating %s", classname)); 961 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 962 M_BUS, M_NOWAIT | M_ZERO); 963 if (!dc) 964 return (NULL); 965 dc->parent = NULL; 966 dc->name = (char*) (dc + 1); 967 strcpy(dc->name, classname); 968 TAILQ_INIT(&dc->drivers); 969 TAILQ_INSERT_TAIL(&devclasses, dc, link); 970 971 bus_data_generation_update(); 972 } 973 974 /* 975 * If a parent class is specified, then set that as our parent so 976 * that this devclass will support drivers for the parent class as 977 * well. If the parent class has the same name don't do this though 978 * as it creates a cycle that can trigger an infinite loop in 979 * device_probe_child() if a device exists for which there is no 980 * suitable driver. 981 */ 982 if (parentname && dc && !dc->parent && 983 strcmp(classname, parentname) != 0) { 984 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 985 dc->parent->flags |= DC_HAS_CHILDREN; 986 } 987 988 return (dc); 989 } 990 991 /** 992 * @brief Create a device class 993 * 994 * If a device class with the name @p classname exists, return it, 995 * otherwise create and return a new device class. 996 * 997 * @param classname the devclass name to find or create 998 */ 999 devclass_t 1000 devclass_create(const char *classname) 1001 { 1002 return (devclass_find_internal(classname, NULL, TRUE)); 1003 } 1004 1005 /** 1006 * @brief Find a device class 1007 * 1008 * If a device class with the name @p classname exists, return it, 1009 * otherwise return @c NULL. 1010 * 1011 * @param classname the devclass name to find 1012 */ 1013 devclass_t 1014 devclass_find(const char *classname) 1015 { 1016 return (devclass_find_internal(classname, NULL, FALSE)); 1017 } 1018 1019 /** 1020 * @brief Register that a device driver has been added to a devclass 1021 * 1022 * Register that a device driver has been added to a devclass. This 1023 * is called by devclass_add_driver to accomplish the recursive 1024 * notification of all the children classes of dc, as well as dc. 1025 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1026 * the devclass. We do a full search here of the devclass list at 1027 * each iteration level to save storing children-lists in the devclass 1028 * structure. If we ever move beyond a few dozen devices doing this, 1029 * we may need to reevaluate... 1030 * 1031 * @param dc the devclass to edit 1032 * @param driver the driver that was just added 1033 */ 1034 static void 1035 devclass_driver_added(devclass_t dc, driver_t *driver) 1036 { 1037 devclass_t parent; 1038 int i; 1039 1040 /* 1041 * Call BUS_DRIVER_ADDED for any existing busses in this class. 1042 */ 1043 for (i = 0; i < dc->maxunit; i++) 1044 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1045 BUS_DRIVER_ADDED(dc->devices[i], driver); 1046 1047 /* 1048 * Walk through the children classes. Since we only keep a 1049 * single parent pointer around, we walk the entire list of 1050 * devclasses looking for children. We set the 1051 * DC_HAS_CHILDREN flag when a child devclass is created on 1052 * the parent, so we only walk the list for those devclasses 1053 * that have children. 1054 */ 1055 if (!(dc->flags & DC_HAS_CHILDREN)) 1056 return; 1057 parent = dc; 1058 TAILQ_FOREACH(dc, &devclasses, link) { 1059 if (dc->parent == parent) 1060 devclass_driver_added(dc, driver); 1061 } 1062 } 1063 1064 /** 1065 * @brief Add a device driver to a device class 1066 * 1067 * Add a device driver to a devclass. This is normally called 1068 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1069 * all devices in the devclass will be called to allow them to attempt 1070 * to re-probe any unmatched children. 1071 * 1072 * @param dc the devclass to edit 1073 * @param driver the driver to register 1074 */ 1075 static int 1076 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1077 { 1078 driverlink_t dl; 1079 const char *parentname; 1080 1081 PDEBUG(("%s", DRIVERNAME(driver))); 1082 1083 /* Don't allow invalid pass values. */ 1084 if (pass <= BUS_PASS_ROOT) 1085 return (EINVAL); 1086 1087 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1088 if (!dl) 1089 return (ENOMEM); 1090 1091 /* 1092 * Compile the driver's methods. Also increase the reference count 1093 * so that the class doesn't get freed when the last instance 1094 * goes. This means we can safely use static methods and avoids a 1095 * double-free in devclass_delete_driver. 1096 */ 1097 kobj_class_compile((kobj_class_t) driver); 1098 1099 /* 1100 * If the driver has any base classes, make the 1101 * devclass inherit from the devclass of the driver's 1102 * first base class. This will allow the system to 1103 * search for drivers in both devclasses for children 1104 * of a device using this driver. 1105 */ 1106 if (driver->baseclasses) 1107 parentname = driver->baseclasses[0]->name; 1108 else 1109 parentname = NULL; 1110 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1111 1112 dl->driver = driver; 1113 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1114 driver->refs++; /* XXX: kobj_mtx */ 1115 dl->pass = pass; 1116 driver_register_pass(dl); 1117 1118 devclass_driver_added(dc, driver); 1119 bus_data_generation_update(); 1120 return (0); 1121 } 1122 1123 /** 1124 * @brief Delete a device driver from a device class 1125 * 1126 * Delete a device driver from a devclass. This is normally called 1127 * automatically by DRIVER_MODULE(). 1128 * 1129 * If the driver is currently attached to any devices, 1130 * devclass_delete_driver() will first attempt to detach from each 1131 * device. If one of the detach calls fails, the driver will not be 1132 * deleted. 1133 * 1134 * @param dc the devclass to edit 1135 * @param driver the driver to unregister 1136 */ 1137 static int 1138 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1139 { 1140 devclass_t dc = devclass_find(driver->name); 1141 driverlink_t dl; 1142 device_t dev; 1143 int i; 1144 int error; 1145 1146 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1147 1148 if (!dc) 1149 return (0); 1150 1151 /* 1152 * Find the link structure in the bus' list of drivers. 1153 */ 1154 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1155 if (dl->driver == driver) 1156 break; 1157 } 1158 1159 if (!dl) { 1160 PDEBUG(("%s not found in %s list", driver->name, 1161 busclass->name)); 1162 return (ENOENT); 1163 } 1164 1165 /* 1166 * Disassociate from any devices. We iterate through all the 1167 * devices in the devclass of the driver and detach any which are 1168 * using the driver and which have a parent in the devclass which 1169 * we are deleting from. 1170 * 1171 * Note that since a driver can be in multiple devclasses, we 1172 * should not detach devices which are not children of devices in 1173 * the affected devclass. 1174 */ 1175 for (i = 0; i < dc->maxunit; i++) { 1176 if (dc->devices[i]) { 1177 dev = dc->devices[i]; 1178 if (dev->driver == driver && dev->parent && 1179 dev->parent->devclass == busclass) { 1180 if ((error = device_detach(dev)) != 0) 1181 return (error); 1182 device_set_driver(dev, NULL); 1183 BUS_PROBE_NOMATCH(dev->parent, dev); 1184 devnomatch(dev); 1185 dev->flags |= DF_DONENOMATCH; 1186 } 1187 } 1188 } 1189 1190 TAILQ_REMOVE(&busclass->drivers, dl, link); 1191 free(dl, M_BUS); 1192 1193 /* XXX: kobj_mtx */ 1194 driver->refs--; 1195 if (driver->refs == 0) 1196 kobj_class_free((kobj_class_t) driver); 1197 1198 bus_data_generation_update(); 1199 return (0); 1200 } 1201 1202 /** 1203 * @brief Quiesces a set of device drivers from a device class 1204 * 1205 * Quiesce a device driver from a devclass. This is normally called 1206 * automatically by DRIVER_MODULE(). 1207 * 1208 * If the driver is currently attached to any devices, 1209 * devclass_quiesece_driver() will first attempt to quiesce each 1210 * device. 1211 * 1212 * @param dc the devclass to edit 1213 * @param driver the driver to unregister 1214 */ 1215 static int 1216 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1217 { 1218 devclass_t dc = devclass_find(driver->name); 1219 driverlink_t dl; 1220 device_t dev; 1221 int i; 1222 int error; 1223 1224 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1225 1226 if (!dc) 1227 return (0); 1228 1229 /* 1230 * Find the link structure in the bus' list of drivers. 1231 */ 1232 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1233 if (dl->driver == driver) 1234 break; 1235 } 1236 1237 if (!dl) { 1238 PDEBUG(("%s not found in %s list", driver->name, 1239 busclass->name)); 1240 return (ENOENT); 1241 } 1242 1243 /* 1244 * Quiesce all devices. We iterate through all the devices in 1245 * the devclass of the driver and quiesce any which are using 1246 * the driver and which have a parent in the devclass which we 1247 * are quiescing. 1248 * 1249 * Note that since a driver can be in multiple devclasses, we 1250 * should not quiesce devices which are not children of 1251 * devices in the affected devclass. 1252 */ 1253 for (i = 0; i < dc->maxunit; i++) { 1254 if (dc->devices[i]) { 1255 dev = dc->devices[i]; 1256 if (dev->driver == driver && dev->parent && 1257 dev->parent->devclass == busclass) { 1258 if ((error = device_quiesce(dev)) != 0) 1259 return (error); 1260 } 1261 } 1262 } 1263 1264 return (0); 1265 } 1266 1267 /** 1268 * @internal 1269 */ 1270 static driverlink_t 1271 devclass_find_driver_internal(devclass_t dc, const char *classname) 1272 { 1273 driverlink_t dl; 1274 1275 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1276 1277 TAILQ_FOREACH(dl, &dc->drivers, link) { 1278 if (!strcmp(dl->driver->name, classname)) 1279 return (dl); 1280 } 1281 1282 PDEBUG(("not found")); 1283 return (NULL); 1284 } 1285 1286 /** 1287 * @brief Return the name of the devclass 1288 */ 1289 const char * 1290 devclass_get_name(devclass_t dc) 1291 { 1292 return (dc->name); 1293 } 1294 1295 /** 1296 * @brief Find a device given a unit number 1297 * 1298 * @param dc the devclass to search 1299 * @param unit the unit number to search for 1300 * 1301 * @returns the device with the given unit number or @c 1302 * NULL if there is no such device 1303 */ 1304 device_t 1305 devclass_get_device(devclass_t dc, int unit) 1306 { 1307 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1308 return (NULL); 1309 return (dc->devices[unit]); 1310 } 1311 1312 /** 1313 * @brief Find the softc field of a device given a unit number 1314 * 1315 * @param dc the devclass to search 1316 * @param unit the unit number to search for 1317 * 1318 * @returns the softc field of the device with the given 1319 * unit number or @c NULL if there is no such 1320 * device 1321 */ 1322 void * 1323 devclass_get_softc(devclass_t dc, int unit) 1324 { 1325 device_t dev; 1326 1327 dev = devclass_get_device(dc, unit); 1328 if (!dev) 1329 return (NULL); 1330 1331 return (device_get_softc(dev)); 1332 } 1333 1334 /** 1335 * @brief Get a list of devices in the devclass 1336 * 1337 * An array containing a list of all the devices in the given devclass 1338 * is allocated and returned in @p *devlistp. The number of devices 1339 * in the array is returned in @p *devcountp. The caller should free 1340 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1341 * 1342 * @param dc the devclass to examine 1343 * @param devlistp points at location for array pointer return 1344 * value 1345 * @param devcountp points at location for array size return value 1346 * 1347 * @retval 0 success 1348 * @retval ENOMEM the array allocation failed 1349 */ 1350 int 1351 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1352 { 1353 int count, i; 1354 device_t *list; 1355 1356 count = devclass_get_count(dc); 1357 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1358 if (!list) 1359 return (ENOMEM); 1360 1361 count = 0; 1362 for (i = 0; i < dc->maxunit; i++) { 1363 if (dc->devices[i]) { 1364 list[count] = dc->devices[i]; 1365 count++; 1366 } 1367 } 1368 1369 *devlistp = list; 1370 *devcountp = count; 1371 1372 return (0); 1373 } 1374 1375 /** 1376 * @brief Get a list of drivers in the devclass 1377 * 1378 * An array containing a list of pointers to all the drivers in the 1379 * given devclass is allocated and returned in @p *listp. The number 1380 * of drivers in the array is returned in @p *countp. The caller should 1381 * free the array using @c free(p, M_TEMP). 1382 * 1383 * @param dc the devclass to examine 1384 * @param listp gives location for array pointer return value 1385 * @param countp gives location for number of array elements 1386 * return value 1387 * 1388 * @retval 0 success 1389 * @retval ENOMEM the array allocation failed 1390 */ 1391 int 1392 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1393 { 1394 driverlink_t dl; 1395 driver_t **list; 1396 int count; 1397 1398 count = 0; 1399 TAILQ_FOREACH(dl, &dc->drivers, link) 1400 count++; 1401 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1402 if (list == NULL) 1403 return (ENOMEM); 1404 1405 count = 0; 1406 TAILQ_FOREACH(dl, &dc->drivers, link) { 1407 list[count] = dl->driver; 1408 count++; 1409 } 1410 *listp = list; 1411 *countp = count; 1412 1413 return (0); 1414 } 1415 1416 /** 1417 * @brief Get the number of devices in a devclass 1418 * 1419 * @param dc the devclass to examine 1420 */ 1421 int 1422 devclass_get_count(devclass_t dc) 1423 { 1424 int count, i; 1425 1426 count = 0; 1427 for (i = 0; i < dc->maxunit; i++) 1428 if (dc->devices[i]) 1429 count++; 1430 return (count); 1431 } 1432 1433 /** 1434 * @brief Get the maximum unit number used in a devclass 1435 * 1436 * Note that this is one greater than the highest currently-allocated 1437 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1438 * that not even the devclass has been allocated yet. 1439 * 1440 * @param dc the devclass to examine 1441 */ 1442 int 1443 devclass_get_maxunit(devclass_t dc) 1444 { 1445 if (dc == NULL) 1446 return (-1); 1447 return (dc->maxunit); 1448 } 1449 1450 /** 1451 * @brief Find a free unit number in a devclass 1452 * 1453 * This function searches for the first unused unit number greater 1454 * that or equal to @p unit. 1455 * 1456 * @param dc the devclass to examine 1457 * @param unit the first unit number to check 1458 */ 1459 int 1460 devclass_find_free_unit(devclass_t dc, int unit) 1461 { 1462 if (dc == NULL) 1463 return (unit); 1464 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1465 unit++; 1466 return (unit); 1467 } 1468 1469 /** 1470 * @brief Set the parent of a devclass 1471 * 1472 * The parent class is normally initialised automatically by 1473 * DRIVER_MODULE(). 1474 * 1475 * @param dc the devclass to edit 1476 * @param pdc the new parent devclass 1477 */ 1478 void 1479 devclass_set_parent(devclass_t dc, devclass_t pdc) 1480 { 1481 dc->parent = pdc; 1482 } 1483 1484 /** 1485 * @brief Get the parent of a devclass 1486 * 1487 * @param dc the devclass to examine 1488 */ 1489 devclass_t 1490 devclass_get_parent(devclass_t dc) 1491 { 1492 return (dc->parent); 1493 } 1494 1495 struct sysctl_ctx_list * 1496 devclass_get_sysctl_ctx(devclass_t dc) 1497 { 1498 return (&dc->sysctl_ctx); 1499 } 1500 1501 struct sysctl_oid * 1502 devclass_get_sysctl_tree(devclass_t dc) 1503 { 1504 return (dc->sysctl_tree); 1505 } 1506 1507 /** 1508 * @internal 1509 * @brief Allocate a unit number 1510 * 1511 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1512 * will do). The allocated unit number is returned in @p *unitp. 1513 1514 * @param dc the devclass to allocate from 1515 * @param unitp points at the location for the allocated unit 1516 * number 1517 * 1518 * @retval 0 success 1519 * @retval EEXIST the requested unit number is already allocated 1520 * @retval ENOMEM memory allocation failure 1521 */ 1522 static int 1523 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1524 { 1525 const char *s; 1526 int unit = *unitp; 1527 1528 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1529 1530 /* Ask the parent bus if it wants to wire this device. */ 1531 if (unit == -1) 1532 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1533 &unit); 1534 1535 /* If we were given a wired unit number, check for existing device */ 1536 /* XXX imp XXX */ 1537 if (unit != -1) { 1538 if (unit >= 0 && unit < dc->maxunit && 1539 dc->devices[unit] != NULL) { 1540 if (bootverbose) 1541 printf("%s: %s%d already exists; skipping it\n", 1542 dc->name, dc->name, *unitp); 1543 return (EEXIST); 1544 } 1545 } else { 1546 /* Unwired device, find the next available slot for it */ 1547 unit = 0; 1548 for (unit = 0;; unit++) { 1549 /* If there is an "at" hint for a unit then skip it. */ 1550 if (resource_string_value(dc->name, unit, "at", &s) == 1551 0) 1552 continue; 1553 1554 /* If this device slot is already in use, skip it. */ 1555 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1556 continue; 1557 1558 break; 1559 } 1560 } 1561 1562 /* 1563 * We've selected a unit beyond the length of the table, so let's 1564 * extend the table to make room for all units up to and including 1565 * this one. 1566 */ 1567 if (unit >= dc->maxunit) { 1568 device_t *newlist, *oldlist; 1569 int newsize; 1570 1571 oldlist = dc->devices; 1572 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1573 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1574 if (!newlist) 1575 return (ENOMEM); 1576 if (oldlist != NULL) 1577 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1578 bzero(newlist + dc->maxunit, 1579 sizeof(device_t) * (newsize - dc->maxunit)); 1580 dc->devices = newlist; 1581 dc->maxunit = newsize; 1582 if (oldlist != NULL) 1583 free(oldlist, M_BUS); 1584 } 1585 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1586 1587 *unitp = unit; 1588 return (0); 1589 } 1590 1591 /** 1592 * @internal 1593 * @brief Add a device to a devclass 1594 * 1595 * A unit number is allocated for the device (using the device's 1596 * preferred unit number if any) and the device is registered in the 1597 * devclass. This allows the device to be looked up by its unit 1598 * number, e.g. by decoding a dev_t minor number. 1599 * 1600 * @param dc the devclass to add to 1601 * @param dev the device to add 1602 * 1603 * @retval 0 success 1604 * @retval EEXIST the requested unit number is already allocated 1605 * @retval ENOMEM memory allocation failure 1606 */ 1607 static int 1608 devclass_add_device(devclass_t dc, device_t dev) 1609 { 1610 int buflen, error; 1611 1612 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1613 1614 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1615 if (buflen < 0) 1616 return (ENOMEM); 1617 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1618 if (!dev->nameunit) 1619 return (ENOMEM); 1620 1621 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1622 free(dev->nameunit, M_BUS); 1623 dev->nameunit = NULL; 1624 return (error); 1625 } 1626 dc->devices[dev->unit] = dev; 1627 dev->devclass = dc; 1628 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1629 1630 return (0); 1631 } 1632 1633 /** 1634 * @internal 1635 * @brief Delete a device from a devclass 1636 * 1637 * The device is removed from the devclass's device list and its unit 1638 * number is freed. 1639 1640 * @param dc the devclass to delete from 1641 * @param dev the device to delete 1642 * 1643 * @retval 0 success 1644 */ 1645 static int 1646 devclass_delete_device(devclass_t dc, device_t dev) 1647 { 1648 if (!dc || !dev) 1649 return (0); 1650 1651 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1652 1653 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1654 panic("devclass_delete_device: inconsistent device class"); 1655 dc->devices[dev->unit] = NULL; 1656 if (dev->flags & DF_WILDCARD) 1657 dev->unit = -1; 1658 dev->devclass = NULL; 1659 free(dev->nameunit, M_BUS); 1660 dev->nameunit = NULL; 1661 1662 return (0); 1663 } 1664 1665 /** 1666 * @internal 1667 * @brief Make a new device and add it as a child of @p parent 1668 * 1669 * @param parent the parent of the new device 1670 * @param name the devclass name of the new device or @c NULL 1671 * to leave the devclass unspecified 1672 * @parem unit the unit number of the new device of @c -1 to 1673 * leave the unit number unspecified 1674 * 1675 * @returns the new device 1676 */ 1677 static device_t 1678 make_device(device_t parent, const char *name, int unit) 1679 { 1680 device_t dev; 1681 devclass_t dc; 1682 1683 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1684 1685 if (name) { 1686 dc = devclass_find_internal(name, NULL, TRUE); 1687 if (!dc) { 1688 printf("make_device: can't find device class %s\n", 1689 name); 1690 return (NULL); 1691 } 1692 } else { 1693 dc = NULL; 1694 } 1695 1696 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1697 if (!dev) 1698 return (NULL); 1699 1700 dev->parent = parent; 1701 TAILQ_INIT(&dev->children); 1702 kobj_init((kobj_t) dev, &null_class); 1703 dev->driver = NULL; 1704 dev->devclass = NULL; 1705 dev->unit = unit; 1706 dev->nameunit = NULL; 1707 dev->desc = NULL; 1708 dev->busy = 0; 1709 dev->devflags = 0; 1710 dev->flags = DF_ENABLED; 1711 dev->order = 0; 1712 if (unit == -1) 1713 dev->flags |= DF_WILDCARD; 1714 if (name) { 1715 dev->flags |= DF_FIXEDCLASS; 1716 if (devclass_add_device(dc, dev)) { 1717 kobj_delete((kobj_t) dev, M_BUS); 1718 return (NULL); 1719 } 1720 } 1721 dev->ivars = NULL; 1722 dev->softc = NULL; 1723 1724 dev->state = DS_NOTPRESENT; 1725 1726 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1727 bus_data_generation_update(); 1728 1729 return (dev); 1730 } 1731 1732 /** 1733 * @internal 1734 * @brief Print a description of a device. 1735 */ 1736 static int 1737 device_print_child(device_t dev, device_t child) 1738 { 1739 int retval = 0; 1740 1741 if (device_is_alive(child)) 1742 retval += BUS_PRINT_CHILD(dev, child); 1743 else 1744 retval += device_printf(child, " not found\n"); 1745 1746 return (retval); 1747 } 1748 1749 /** 1750 * @brief Create a new device 1751 * 1752 * This creates a new device and adds it as a child of an existing 1753 * parent device. The new device will be added after the last existing 1754 * child with order zero. 1755 * 1756 * @param dev the device which will be the parent of the 1757 * new child device 1758 * @param name devclass name for new device or @c NULL if not 1759 * specified 1760 * @param unit unit number for new device or @c -1 if not 1761 * specified 1762 * 1763 * @returns the new device 1764 */ 1765 device_t 1766 device_add_child(device_t dev, const char *name, int unit) 1767 { 1768 return (device_add_child_ordered(dev, 0, name, unit)); 1769 } 1770 1771 /** 1772 * @brief Create a new device 1773 * 1774 * This creates a new device and adds it as a child of an existing 1775 * parent device. The new device will be added after the last existing 1776 * child with the same order. 1777 * 1778 * @param dev the device which will be the parent of the 1779 * new child device 1780 * @param order a value which is used to partially sort the 1781 * children of @p dev - devices created using 1782 * lower values of @p order appear first in @p 1783 * dev's list of children 1784 * @param name devclass name for new device or @c NULL if not 1785 * specified 1786 * @param unit unit number for new device or @c -1 if not 1787 * specified 1788 * 1789 * @returns the new device 1790 */ 1791 device_t 1792 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1793 { 1794 device_t child; 1795 device_t place; 1796 1797 PDEBUG(("%s at %s with order %u as unit %d", 1798 name, DEVICENAME(dev), order, unit)); 1799 1800 child = make_device(dev, name, unit); 1801 if (child == NULL) 1802 return (child); 1803 child->order = order; 1804 1805 TAILQ_FOREACH(place, &dev->children, link) { 1806 if (place->order > order) 1807 break; 1808 } 1809 1810 if (place) { 1811 /* 1812 * The device 'place' is the first device whose order is 1813 * greater than the new child. 1814 */ 1815 TAILQ_INSERT_BEFORE(place, child, link); 1816 } else { 1817 /* 1818 * The new child's order is greater or equal to the order of 1819 * any existing device. Add the child to the tail of the list. 1820 */ 1821 TAILQ_INSERT_TAIL(&dev->children, child, link); 1822 } 1823 1824 bus_data_generation_update(); 1825 return (child); 1826 } 1827 1828 /** 1829 * @brief Delete a device 1830 * 1831 * This function deletes a device along with all of its children. If 1832 * the device currently has a driver attached to it, the device is 1833 * detached first using device_detach(). 1834 * 1835 * @param dev the parent device 1836 * @param child the device to delete 1837 * 1838 * @retval 0 success 1839 * @retval non-zero a unit error code describing the error 1840 */ 1841 int 1842 device_delete_child(device_t dev, device_t child) 1843 { 1844 int error; 1845 device_t grandchild; 1846 1847 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1848 1849 /* remove children first */ 1850 while ( (grandchild = TAILQ_FIRST(&child->children)) ) { 1851 error = device_delete_child(child, grandchild); 1852 if (error) 1853 return (error); 1854 } 1855 1856 if ((error = device_detach(child)) != 0) 1857 return (error); 1858 if (child->devclass) 1859 devclass_delete_device(child->devclass, child); 1860 TAILQ_REMOVE(&dev->children, child, link); 1861 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1862 kobj_delete((kobj_t) child, M_BUS); 1863 1864 bus_data_generation_update(); 1865 return (0); 1866 } 1867 1868 /** 1869 * @brief Find a device given a unit number 1870 * 1871 * This is similar to devclass_get_devices() but only searches for 1872 * devices which have @p dev as a parent. 1873 * 1874 * @param dev the parent device to search 1875 * @param unit the unit number to search for. If the unit is -1, 1876 * return the first child of @p dev which has name 1877 * @p classname (that is, the one with the lowest unit.) 1878 * 1879 * @returns the device with the given unit number or @c 1880 * NULL if there is no such device 1881 */ 1882 device_t 1883 device_find_child(device_t dev, const char *classname, int unit) 1884 { 1885 devclass_t dc; 1886 device_t child; 1887 1888 dc = devclass_find(classname); 1889 if (!dc) 1890 return (NULL); 1891 1892 if (unit != -1) { 1893 child = devclass_get_device(dc, unit); 1894 if (child && child->parent == dev) 1895 return (child); 1896 } else { 1897 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1898 child = devclass_get_device(dc, unit); 1899 if (child && child->parent == dev) 1900 return (child); 1901 } 1902 } 1903 return (NULL); 1904 } 1905 1906 /** 1907 * @internal 1908 */ 1909 static driverlink_t 1910 first_matching_driver(devclass_t dc, device_t dev) 1911 { 1912 if (dev->devclass) 1913 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1914 return (TAILQ_FIRST(&dc->drivers)); 1915 } 1916 1917 /** 1918 * @internal 1919 */ 1920 static driverlink_t 1921 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1922 { 1923 if (dev->devclass) { 1924 driverlink_t dl; 1925 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1926 if (!strcmp(dev->devclass->name, dl->driver->name)) 1927 return (dl); 1928 return (NULL); 1929 } 1930 return (TAILQ_NEXT(last, link)); 1931 } 1932 1933 /** 1934 * @internal 1935 */ 1936 int 1937 device_probe_child(device_t dev, device_t child) 1938 { 1939 devclass_t dc; 1940 driverlink_t best = NULL; 1941 driverlink_t dl; 1942 int result, pri = 0; 1943 int hasclass = (child->devclass != NULL); 1944 1945 GIANT_REQUIRED; 1946 1947 dc = dev->devclass; 1948 if (!dc) 1949 panic("device_probe_child: parent device has no devclass"); 1950 1951 /* 1952 * If the state is already probed, then return. However, don't 1953 * return if we can rebid this object. 1954 */ 1955 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 1956 return (0); 1957 1958 for (; dc; dc = dc->parent) { 1959 for (dl = first_matching_driver(dc, child); 1960 dl; 1961 dl = next_matching_driver(dc, child, dl)) { 1962 1963 /* If this driver's pass is too high, then ignore it. */ 1964 if (dl->pass > bus_current_pass) 1965 continue; 1966 1967 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1968 device_set_driver(child, dl->driver); 1969 if (!hasclass) { 1970 if (device_set_devclass(child, dl->driver->name)) { 1971 printf("driver bug: Unable to set devclass (devname: %s)\n", 1972 (child ? device_get_name(child) : 1973 "no device")); 1974 device_set_driver(child, NULL); 1975 continue; 1976 } 1977 } 1978 1979 /* Fetch any flags for the device before probing. */ 1980 resource_int_value(dl->driver->name, child->unit, 1981 "flags", &child->devflags); 1982 1983 result = DEVICE_PROBE(child); 1984 1985 /* Reset flags and devclass before the next probe. */ 1986 child->devflags = 0; 1987 if (!hasclass) 1988 device_set_devclass(child, NULL); 1989 1990 /* 1991 * If the driver returns SUCCESS, there can be 1992 * no higher match for this device. 1993 */ 1994 if (result == 0) { 1995 best = dl; 1996 pri = 0; 1997 break; 1998 } 1999 2000 /* 2001 * The driver returned an error so it 2002 * certainly doesn't match. 2003 */ 2004 if (result > 0) { 2005 device_set_driver(child, NULL); 2006 continue; 2007 } 2008 2009 /* 2010 * A priority lower than SUCCESS, remember the 2011 * best matching driver. Initialise the value 2012 * of pri for the first match. 2013 */ 2014 if (best == NULL || result > pri) { 2015 /* 2016 * Probes that return BUS_PROBE_NOWILDCARD 2017 * or lower only match when they are set 2018 * in stone by the parent bus. 2019 */ 2020 if (result <= BUS_PROBE_NOWILDCARD && 2021 child->flags & DF_WILDCARD) 2022 continue; 2023 best = dl; 2024 pri = result; 2025 continue; 2026 } 2027 } 2028 /* 2029 * If we have an unambiguous match in this devclass, 2030 * don't look in the parent. 2031 */ 2032 if (best && pri == 0) 2033 break; 2034 } 2035 2036 /* 2037 * If we found a driver, change state and initialise the devclass. 2038 */ 2039 /* XXX What happens if we rebid and got no best? */ 2040 if (best) { 2041 /* 2042 * If this device was atached, and we were asked to 2043 * rescan, and it is a different driver, then we have 2044 * to detach the old driver and reattach this new one. 2045 * Note, we don't have to check for DF_REBID here 2046 * because if the state is > DS_ALIVE, we know it must 2047 * be. 2048 * 2049 * This assumes that all DF_REBID drivers can have 2050 * their probe routine called at any time and that 2051 * they are idempotent as well as completely benign in 2052 * normal operations. 2053 * 2054 * We also have to make sure that the detach 2055 * succeeded, otherwise we fail the operation (or 2056 * maybe it should just fail silently? I'm torn). 2057 */ 2058 if (child->state > DS_ALIVE && best->driver != child->driver) 2059 if ((result = device_detach(dev)) != 0) 2060 return (result); 2061 2062 /* Set the winning driver, devclass, and flags. */ 2063 if (!child->devclass) { 2064 result = device_set_devclass(child, best->driver->name); 2065 if (result != 0) 2066 return (result); 2067 } 2068 device_set_driver(child, best->driver); 2069 resource_int_value(best->driver->name, child->unit, 2070 "flags", &child->devflags); 2071 2072 if (pri < 0) { 2073 /* 2074 * A bit bogus. Call the probe method again to make 2075 * sure that we have the right description. 2076 */ 2077 DEVICE_PROBE(child); 2078 #if 0 2079 child->flags |= DF_REBID; 2080 #endif 2081 } else 2082 child->flags &= ~DF_REBID; 2083 child->state = DS_ALIVE; 2084 2085 bus_data_generation_update(); 2086 return (0); 2087 } 2088 2089 return (ENXIO); 2090 } 2091 2092 /** 2093 * @brief Return the parent of a device 2094 */ 2095 device_t 2096 device_get_parent(device_t dev) 2097 { 2098 return (dev->parent); 2099 } 2100 2101 /** 2102 * @brief Get a list of children of a device 2103 * 2104 * An array containing a list of all the children of the given device 2105 * is allocated and returned in @p *devlistp. The number of devices 2106 * in the array is returned in @p *devcountp. The caller should free 2107 * the array using @c free(p, M_TEMP). 2108 * 2109 * @param dev the device to examine 2110 * @param devlistp points at location for array pointer return 2111 * value 2112 * @param devcountp points at location for array size return value 2113 * 2114 * @retval 0 success 2115 * @retval ENOMEM the array allocation failed 2116 */ 2117 int 2118 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2119 { 2120 int count; 2121 device_t child; 2122 device_t *list; 2123 2124 count = 0; 2125 TAILQ_FOREACH(child, &dev->children, link) { 2126 count++; 2127 } 2128 2129 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2130 if (!list) 2131 return (ENOMEM); 2132 2133 count = 0; 2134 TAILQ_FOREACH(child, &dev->children, link) { 2135 list[count] = child; 2136 count++; 2137 } 2138 2139 *devlistp = list; 2140 *devcountp = count; 2141 2142 return (0); 2143 } 2144 2145 /** 2146 * @brief Return the current driver for the device or @c NULL if there 2147 * is no driver currently attached 2148 */ 2149 driver_t * 2150 device_get_driver(device_t dev) 2151 { 2152 return (dev->driver); 2153 } 2154 2155 /** 2156 * @brief Return the current devclass for the device or @c NULL if 2157 * there is none. 2158 */ 2159 devclass_t 2160 device_get_devclass(device_t dev) 2161 { 2162 return (dev->devclass); 2163 } 2164 2165 /** 2166 * @brief Return the name of the device's devclass or @c NULL if there 2167 * is none. 2168 */ 2169 const char * 2170 device_get_name(device_t dev) 2171 { 2172 if (dev != NULL && dev->devclass) 2173 return (devclass_get_name(dev->devclass)); 2174 return (NULL); 2175 } 2176 2177 /** 2178 * @brief Return a string containing the device's devclass name 2179 * followed by an ascii representation of the device's unit number 2180 * (e.g. @c "foo2"). 2181 */ 2182 const char * 2183 device_get_nameunit(device_t dev) 2184 { 2185 return (dev->nameunit); 2186 } 2187 2188 /** 2189 * @brief Return the device's unit number. 2190 */ 2191 int 2192 device_get_unit(device_t dev) 2193 { 2194 return (dev->unit); 2195 } 2196 2197 /** 2198 * @brief Return the device's description string 2199 */ 2200 const char * 2201 device_get_desc(device_t dev) 2202 { 2203 return (dev->desc); 2204 } 2205 2206 /** 2207 * @brief Return the device's flags 2208 */ 2209 uint32_t 2210 device_get_flags(device_t dev) 2211 { 2212 return (dev->devflags); 2213 } 2214 2215 struct sysctl_ctx_list * 2216 device_get_sysctl_ctx(device_t dev) 2217 { 2218 return (&dev->sysctl_ctx); 2219 } 2220 2221 struct sysctl_oid * 2222 device_get_sysctl_tree(device_t dev) 2223 { 2224 return (dev->sysctl_tree); 2225 } 2226 2227 /** 2228 * @brief Print the name of the device followed by a colon and a space 2229 * 2230 * @returns the number of characters printed 2231 */ 2232 int 2233 device_print_prettyname(device_t dev) 2234 { 2235 const char *name = device_get_name(dev); 2236 2237 if (name == NULL) 2238 return (printf("unknown: ")); 2239 return (printf("%s%d: ", name, device_get_unit(dev))); 2240 } 2241 2242 /** 2243 * @brief Print the name of the device followed by a colon, a space 2244 * and the result of calling vprintf() with the value of @p fmt and 2245 * the following arguments. 2246 * 2247 * @returns the number of characters printed 2248 */ 2249 int 2250 device_printf(device_t dev, const char * fmt, ...) 2251 { 2252 va_list ap; 2253 int retval; 2254 2255 retval = device_print_prettyname(dev); 2256 va_start(ap, fmt); 2257 retval += vprintf(fmt, ap); 2258 va_end(ap); 2259 return (retval); 2260 } 2261 2262 /** 2263 * @internal 2264 */ 2265 static void 2266 device_set_desc_internal(device_t dev, const char* desc, int copy) 2267 { 2268 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2269 free(dev->desc, M_BUS); 2270 dev->flags &= ~DF_DESCMALLOCED; 2271 dev->desc = NULL; 2272 } 2273 2274 if (copy && desc) { 2275 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2276 if (dev->desc) { 2277 strcpy(dev->desc, desc); 2278 dev->flags |= DF_DESCMALLOCED; 2279 } 2280 } else { 2281 /* Avoid a -Wcast-qual warning */ 2282 dev->desc = (char *)(uintptr_t) desc; 2283 } 2284 2285 bus_data_generation_update(); 2286 } 2287 2288 /** 2289 * @brief Set the device's description 2290 * 2291 * The value of @c desc should be a string constant that will not 2292 * change (at least until the description is changed in a subsequent 2293 * call to device_set_desc() or device_set_desc_copy()). 2294 */ 2295 void 2296 device_set_desc(device_t dev, const char* desc) 2297 { 2298 device_set_desc_internal(dev, desc, FALSE); 2299 } 2300 2301 /** 2302 * @brief Set the device's description 2303 * 2304 * The string pointed to by @c desc is copied. Use this function if 2305 * the device description is generated, (e.g. with sprintf()). 2306 */ 2307 void 2308 device_set_desc_copy(device_t dev, const char* desc) 2309 { 2310 device_set_desc_internal(dev, desc, TRUE); 2311 } 2312 2313 /** 2314 * @brief Set the device's flags 2315 */ 2316 void 2317 device_set_flags(device_t dev, uint32_t flags) 2318 { 2319 dev->devflags = flags; 2320 } 2321 2322 /** 2323 * @brief Return the device's softc field 2324 * 2325 * The softc is allocated and zeroed when a driver is attached, based 2326 * on the size field of the driver. 2327 */ 2328 void * 2329 device_get_softc(device_t dev) 2330 { 2331 return (dev->softc); 2332 } 2333 2334 /** 2335 * @brief Set the device's softc field 2336 * 2337 * Most drivers do not need to use this since the softc is allocated 2338 * automatically when the driver is attached. 2339 */ 2340 void 2341 device_set_softc(device_t dev, void *softc) 2342 { 2343 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2344 free(dev->softc, M_BUS_SC); 2345 dev->softc = softc; 2346 if (dev->softc) 2347 dev->flags |= DF_EXTERNALSOFTC; 2348 else 2349 dev->flags &= ~DF_EXTERNALSOFTC; 2350 } 2351 2352 /** 2353 * @brief Get the device's ivars field 2354 * 2355 * The ivars field is used by the parent device to store per-device 2356 * state (e.g. the physical location of the device or a list of 2357 * resources). 2358 */ 2359 void * 2360 device_get_ivars(device_t dev) 2361 { 2362 2363 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2364 return (dev->ivars); 2365 } 2366 2367 /** 2368 * @brief Set the device's ivars field 2369 */ 2370 void 2371 device_set_ivars(device_t dev, void * ivars) 2372 { 2373 2374 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2375 dev->ivars = ivars; 2376 } 2377 2378 /** 2379 * @brief Return the device's state 2380 */ 2381 device_state_t 2382 device_get_state(device_t dev) 2383 { 2384 return (dev->state); 2385 } 2386 2387 /** 2388 * @brief Set the DF_ENABLED flag for the device 2389 */ 2390 void 2391 device_enable(device_t dev) 2392 { 2393 dev->flags |= DF_ENABLED; 2394 } 2395 2396 /** 2397 * @brief Clear the DF_ENABLED flag for the device 2398 */ 2399 void 2400 device_disable(device_t dev) 2401 { 2402 dev->flags &= ~DF_ENABLED; 2403 } 2404 2405 /** 2406 * @brief Increment the busy counter for the device 2407 */ 2408 void 2409 device_busy(device_t dev) 2410 { 2411 if (dev->state < DS_ATTACHED) 2412 panic("device_busy: called for unattached device"); 2413 if (dev->busy == 0 && dev->parent) 2414 device_busy(dev->parent); 2415 dev->busy++; 2416 dev->state = DS_BUSY; 2417 } 2418 2419 /** 2420 * @brief Decrement the busy counter for the device 2421 */ 2422 void 2423 device_unbusy(device_t dev) 2424 { 2425 if (dev->state != DS_BUSY) 2426 panic("device_unbusy: called for non-busy device %s", 2427 device_get_nameunit(dev)); 2428 dev->busy--; 2429 if (dev->busy == 0) { 2430 if (dev->parent) 2431 device_unbusy(dev->parent); 2432 dev->state = DS_ATTACHED; 2433 } 2434 } 2435 2436 /** 2437 * @brief Set the DF_QUIET flag for the device 2438 */ 2439 void 2440 device_quiet(device_t dev) 2441 { 2442 dev->flags |= DF_QUIET; 2443 } 2444 2445 /** 2446 * @brief Clear the DF_QUIET flag for the device 2447 */ 2448 void 2449 device_verbose(device_t dev) 2450 { 2451 dev->flags &= ~DF_QUIET; 2452 } 2453 2454 /** 2455 * @brief Return non-zero if the DF_QUIET flag is set on the device 2456 */ 2457 int 2458 device_is_quiet(device_t dev) 2459 { 2460 return ((dev->flags & DF_QUIET) != 0); 2461 } 2462 2463 /** 2464 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2465 */ 2466 int 2467 device_is_enabled(device_t dev) 2468 { 2469 return ((dev->flags & DF_ENABLED) != 0); 2470 } 2471 2472 /** 2473 * @brief Return non-zero if the device was successfully probed 2474 */ 2475 int 2476 device_is_alive(device_t dev) 2477 { 2478 return (dev->state >= DS_ALIVE); 2479 } 2480 2481 /** 2482 * @brief Return non-zero if the device currently has a driver 2483 * attached to it 2484 */ 2485 int 2486 device_is_attached(device_t dev) 2487 { 2488 return (dev->state >= DS_ATTACHED); 2489 } 2490 2491 /** 2492 * @brief Set the devclass of a device 2493 * @see devclass_add_device(). 2494 */ 2495 int 2496 device_set_devclass(device_t dev, const char *classname) 2497 { 2498 devclass_t dc; 2499 int error; 2500 2501 if (!classname) { 2502 if (dev->devclass) 2503 devclass_delete_device(dev->devclass, dev); 2504 return (0); 2505 } 2506 2507 if (dev->devclass) { 2508 printf("device_set_devclass: device class already set\n"); 2509 return (EINVAL); 2510 } 2511 2512 dc = devclass_find_internal(classname, NULL, TRUE); 2513 if (!dc) 2514 return (ENOMEM); 2515 2516 error = devclass_add_device(dc, dev); 2517 2518 bus_data_generation_update(); 2519 return (error); 2520 } 2521 2522 /** 2523 * @brief Set the driver of a device 2524 * 2525 * @retval 0 success 2526 * @retval EBUSY the device already has a driver attached 2527 * @retval ENOMEM a memory allocation failure occurred 2528 */ 2529 int 2530 device_set_driver(device_t dev, driver_t *driver) 2531 { 2532 if (dev->state >= DS_ATTACHED) 2533 return (EBUSY); 2534 2535 if (dev->driver == driver) 2536 return (0); 2537 2538 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2539 free(dev->softc, M_BUS_SC); 2540 dev->softc = NULL; 2541 } 2542 kobj_delete((kobj_t) dev, NULL); 2543 dev->driver = driver; 2544 if (driver) { 2545 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2546 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2547 dev->softc = malloc(driver->size, M_BUS_SC, 2548 M_NOWAIT | M_ZERO); 2549 if (!dev->softc) { 2550 kobj_delete((kobj_t) dev, NULL); 2551 kobj_init((kobj_t) dev, &null_class); 2552 dev->driver = NULL; 2553 return (ENOMEM); 2554 } 2555 } 2556 } else { 2557 kobj_init((kobj_t) dev, &null_class); 2558 } 2559 2560 bus_data_generation_update(); 2561 return (0); 2562 } 2563 2564 /** 2565 * @brief Probe a device, and return this status. 2566 * 2567 * This function is the core of the device autoconfiguration 2568 * system. Its purpose is to select a suitable driver for a device and 2569 * then call that driver to initialise the hardware appropriately. The 2570 * driver is selected by calling the DEVICE_PROBE() method of a set of 2571 * candidate drivers and then choosing the driver which returned the 2572 * best value. This driver is then attached to the device using 2573 * device_attach(). 2574 * 2575 * The set of suitable drivers is taken from the list of drivers in 2576 * the parent device's devclass. If the device was originally created 2577 * with a specific class name (see device_add_child()), only drivers 2578 * with that name are probed, otherwise all drivers in the devclass 2579 * are probed. If no drivers return successful probe values in the 2580 * parent devclass, the search continues in the parent of that 2581 * devclass (see devclass_get_parent()) if any. 2582 * 2583 * @param dev the device to initialise 2584 * 2585 * @retval 0 success 2586 * @retval ENXIO no driver was found 2587 * @retval ENOMEM memory allocation failure 2588 * @retval non-zero some other unix error code 2589 * @retval -1 Device already attached 2590 */ 2591 int 2592 device_probe(device_t dev) 2593 { 2594 int error; 2595 2596 GIANT_REQUIRED; 2597 2598 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2599 return (-1); 2600 2601 if (!(dev->flags & DF_ENABLED)) { 2602 if (bootverbose && device_get_name(dev) != NULL) { 2603 device_print_prettyname(dev); 2604 printf("not probed (disabled)\n"); 2605 } 2606 return (-1); 2607 } 2608 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2609 if (bus_current_pass == BUS_PASS_DEFAULT && 2610 !(dev->flags & DF_DONENOMATCH)) { 2611 BUS_PROBE_NOMATCH(dev->parent, dev); 2612 devnomatch(dev); 2613 dev->flags |= DF_DONENOMATCH; 2614 } 2615 return (error); 2616 } 2617 return (0); 2618 } 2619 2620 /** 2621 * @brief Probe a device and attach a driver if possible 2622 * 2623 * calls device_probe() and attaches if that was successful. 2624 */ 2625 int 2626 device_probe_and_attach(device_t dev) 2627 { 2628 int error; 2629 2630 GIANT_REQUIRED; 2631 2632 error = device_probe(dev); 2633 if (error == -1) 2634 return (0); 2635 else if (error != 0) 2636 return (error); 2637 return (device_attach(dev)); 2638 } 2639 2640 /** 2641 * @brief Attach a device driver to a device 2642 * 2643 * This function is a wrapper around the DEVICE_ATTACH() driver 2644 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2645 * device's sysctl tree, optionally prints a description of the device 2646 * and queues a notification event for user-based device management 2647 * services. 2648 * 2649 * Normally this function is only called internally from 2650 * device_probe_and_attach(). 2651 * 2652 * @param dev the device to initialise 2653 * 2654 * @retval 0 success 2655 * @retval ENXIO no driver was found 2656 * @retval ENOMEM memory allocation failure 2657 * @retval non-zero some other unix error code 2658 */ 2659 int 2660 device_attach(device_t dev) 2661 { 2662 int error; 2663 2664 device_sysctl_init(dev); 2665 if (!device_is_quiet(dev)) 2666 device_print_child(dev->parent, dev); 2667 if ((error = DEVICE_ATTACH(dev)) != 0) { 2668 printf("device_attach: %s%d attach returned %d\n", 2669 dev->driver->name, dev->unit, error); 2670 /* Unset the class; set in device_probe_child */ 2671 if (dev->devclass == NULL) 2672 device_set_devclass(dev, NULL); 2673 device_set_driver(dev, NULL); 2674 device_sysctl_fini(dev); 2675 dev->state = DS_NOTPRESENT; 2676 return (error); 2677 } 2678 device_sysctl_update(dev); 2679 dev->state = DS_ATTACHED; 2680 dev->flags &= ~DF_DONENOMATCH; 2681 devadded(dev); 2682 return (0); 2683 } 2684 2685 /** 2686 * @brief Detach a driver from a device 2687 * 2688 * This function is a wrapper around the DEVICE_DETACH() driver 2689 * method. If the call to DEVICE_DETACH() succeeds, it calls 2690 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2691 * notification event for user-based device management services and 2692 * cleans up the device's sysctl tree. 2693 * 2694 * @param dev the device to un-initialise 2695 * 2696 * @retval 0 success 2697 * @retval ENXIO no driver was found 2698 * @retval ENOMEM memory allocation failure 2699 * @retval non-zero some other unix error code 2700 */ 2701 int 2702 device_detach(device_t dev) 2703 { 2704 int error; 2705 2706 GIANT_REQUIRED; 2707 2708 PDEBUG(("%s", DEVICENAME(dev))); 2709 if (dev->state == DS_BUSY) 2710 return (EBUSY); 2711 if (dev->state != DS_ATTACHED) 2712 return (0); 2713 2714 if ((error = DEVICE_DETACH(dev)) != 0) 2715 return (error); 2716 devremoved(dev); 2717 if (!device_is_quiet(dev)) 2718 device_printf(dev, "detached\n"); 2719 if (dev->parent) 2720 BUS_CHILD_DETACHED(dev->parent, dev); 2721 2722 if (!(dev->flags & DF_FIXEDCLASS)) 2723 devclass_delete_device(dev->devclass, dev); 2724 2725 dev->state = DS_NOTPRESENT; 2726 device_set_driver(dev, NULL); 2727 device_set_desc(dev, NULL); 2728 device_sysctl_fini(dev); 2729 2730 return (0); 2731 } 2732 2733 /** 2734 * @brief Tells a driver to quiesce itself. 2735 * 2736 * This function is a wrapper around the DEVICE_QUIESCE() driver 2737 * method. If the call to DEVICE_QUIESCE() succeeds. 2738 * 2739 * @param dev the device to quiesce 2740 * 2741 * @retval 0 success 2742 * @retval ENXIO no driver was found 2743 * @retval ENOMEM memory allocation failure 2744 * @retval non-zero some other unix error code 2745 */ 2746 int 2747 device_quiesce(device_t dev) 2748 { 2749 2750 PDEBUG(("%s", DEVICENAME(dev))); 2751 if (dev->state == DS_BUSY) 2752 return (EBUSY); 2753 if (dev->state != DS_ATTACHED) 2754 return (0); 2755 2756 return (DEVICE_QUIESCE(dev)); 2757 } 2758 2759 /** 2760 * @brief Notify a device of system shutdown 2761 * 2762 * This function calls the DEVICE_SHUTDOWN() driver method if the 2763 * device currently has an attached driver. 2764 * 2765 * @returns the value returned by DEVICE_SHUTDOWN() 2766 */ 2767 int 2768 device_shutdown(device_t dev) 2769 { 2770 if (dev->state < DS_ATTACHED) 2771 return (0); 2772 return (DEVICE_SHUTDOWN(dev)); 2773 } 2774 2775 /** 2776 * @brief Set the unit number of a device 2777 * 2778 * This function can be used to override the unit number used for a 2779 * device (e.g. to wire a device to a pre-configured unit number). 2780 */ 2781 int 2782 device_set_unit(device_t dev, int unit) 2783 { 2784 devclass_t dc; 2785 int err; 2786 2787 dc = device_get_devclass(dev); 2788 if (unit < dc->maxunit && dc->devices[unit]) 2789 return (EBUSY); 2790 err = devclass_delete_device(dc, dev); 2791 if (err) 2792 return (err); 2793 dev->unit = unit; 2794 err = devclass_add_device(dc, dev); 2795 if (err) 2796 return (err); 2797 2798 bus_data_generation_update(); 2799 return (0); 2800 } 2801 2802 /*======================================*/ 2803 /* 2804 * Some useful method implementations to make life easier for bus drivers. 2805 */ 2806 2807 /** 2808 * @brief Initialise a resource list. 2809 * 2810 * @param rl the resource list to initialise 2811 */ 2812 void 2813 resource_list_init(struct resource_list *rl) 2814 { 2815 STAILQ_INIT(rl); 2816 } 2817 2818 /** 2819 * @brief Reclaim memory used by a resource list. 2820 * 2821 * This function frees the memory for all resource entries on the list 2822 * (if any). 2823 * 2824 * @param rl the resource list to free 2825 */ 2826 void 2827 resource_list_free(struct resource_list *rl) 2828 { 2829 struct resource_list_entry *rle; 2830 2831 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2832 if (rle->res) 2833 panic("resource_list_free: resource entry is busy"); 2834 STAILQ_REMOVE_HEAD(rl, link); 2835 free(rle, M_BUS); 2836 } 2837 } 2838 2839 /** 2840 * @brief Add a resource entry. 2841 * 2842 * This function adds a resource entry using the given @p type, @p 2843 * start, @p end and @p count values. A rid value is chosen by 2844 * searching sequentially for the first unused rid starting at zero. 2845 * 2846 * @param rl the resource list to edit 2847 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2848 * @param start the start address of the resource 2849 * @param end the end address of the resource 2850 * @param count XXX end-start+1 2851 */ 2852 int 2853 resource_list_add_next(struct resource_list *rl, int type, u_long start, 2854 u_long end, u_long count) 2855 { 2856 int rid; 2857 2858 rid = 0; 2859 while (resource_list_find(rl, type, rid) != NULL) 2860 rid++; 2861 resource_list_add(rl, type, rid, start, end, count); 2862 return (rid); 2863 } 2864 2865 /** 2866 * @brief Add or modify a resource entry. 2867 * 2868 * If an existing entry exists with the same type and rid, it will be 2869 * modified using the given values of @p start, @p end and @p 2870 * count. If no entry exists, a new one will be created using the 2871 * given values. The resource list entry that matches is then returned. 2872 * 2873 * @param rl the resource list to edit 2874 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2875 * @param rid the resource identifier 2876 * @param start the start address of the resource 2877 * @param end the end address of the resource 2878 * @param count XXX end-start+1 2879 */ 2880 struct resource_list_entry * 2881 resource_list_add(struct resource_list *rl, int type, int rid, 2882 u_long start, u_long end, u_long count) 2883 { 2884 struct resource_list_entry *rle; 2885 2886 rle = resource_list_find(rl, type, rid); 2887 if (!rle) { 2888 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2889 M_NOWAIT); 2890 if (!rle) 2891 panic("resource_list_add: can't record entry"); 2892 STAILQ_INSERT_TAIL(rl, rle, link); 2893 rle->type = type; 2894 rle->rid = rid; 2895 rle->res = NULL; 2896 rle->flags = 0; 2897 } 2898 2899 if (rle->res) 2900 panic("resource_list_add: resource entry is busy"); 2901 2902 rle->start = start; 2903 rle->end = end; 2904 rle->count = count; 2905 return (rle); 2906 } 2907 2908 /** 2909 * @brief Determine if a resource entry is busy. 2910 * 2911 * Returns true if a resource entry is busy meaning that it has an 2912 * associated resource that is not an unallocated "reserved" resource. 2913 * 2914 * @param rl the resource list to search 2915 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2916 * @param rid the resource identifier 2917 * 2918 * @returns Non-zero if the entry is busy, zero otherwise. 2919 */ 2920 int 2921 resource_list_busy(struct resource_list *rl, int type, int rid) 2922 { 2923 struct resource_list_entry *rle; 2924 2925 rle = resource_list_find(rl, type, rid); 2926 if (rle == NULL || rle->res == NULL) 2927 return (0); 2928 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 2929 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 2930 ("reserved resource is active")); 2931 return (0); 2932 } 2933 return (1); 2934 } 2935 2936 /** 2937 * @brief Find a resource entry by type and rid. 2938 * 2939 * @param rl the resource list to search 2940 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2941 * @param rid the resource identifier 2942 * 2943 * @returns the resource entry pointer or NULL if there is no such 2944 * entry. 2945 */ 2946 struct resource_list_entry * 2947 resource_list_find(struct resource_list *rl, int type, int rid) 2948 { 2949 struct resource_list_entry *rle; 2950 2951 STAILQ_FOREACH(rle, rl, link) { 2952 if (rle->type == type && rle->rid == rid) 2953 return (rle); 2954 } 2955 return (NULL); 2956 } 2957 2958 /** 2959 * @brief Delete a resource entry. 2960 * 2961 * @param rl the resource list to edit 2962 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2963 * @param rid the resource identifier 2964 */ 2965 void 2966 resource_list_delete(struct resource_list *rl, int type, int rid) 2967 { 2968 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2969 2970 if (rle) { 2971 if (rle->res != NULL) 2972 panic("resource_list_delete: resource has not been released"); 2973 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 2974 free(rle, M_BUS); 2975 } 2976 } 2977 2978 /** 2979 * @brief Allocate a reserved resource 2980 * 2981 * This can be used by busses to force the allocation of resources 2982 * that are always active in the system even if they are not allocated 2983 * by a driver (e.g. PCI BARs). This function is usually called when 2984 * adding a new child to the bus. The resource is allocated from the 2985 * parent bus when it is reserved. The resource list entry is marked 2986 * with RLE_RESERVED to note that it is a reserved resource. 2987 * 2988 * Subsequent attempts to allocate the resource with 2989 * resource_list_alloc() will succeed the first time and will set 2990 * RLE_ALLOCATED to note that it has been allocated. When a reserved 2991 * resource that has been allocated is released with 2992 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 2993 * the actual resource remains allocated. The resource can be released to 2994 * the parent bus by calling resource_list_unreserve(). 2995 * 2996 * @param rl the resource list to allocate from 2997 * @param bus the parent device of @p child 2998 * @param child the device for which the resource is being reserved 2999 * @param type the type of resource to allocate 3000 * @param rid a pointer to the resource identifier 3001 * @param start hint at the start of the resource range - pass 3002 * @c 0UL for any start address 3003 * @param end hint at the end of the resource range - pass 3004 * @c ~0UL for any end address 3005 * @param count hint at the size of range required - pass @c 1 3006 * for any size 3007 * @param flags any extra flags to control the resource 3008 * allocation - see @c RF_XXX flags in 3009 * <sys/rman.h> for details 3010 * 3011 * @returns the resource which was allocated or @c NULL if no 3012 * resource could be allocated 3013 */ 3014 struct resource * 3015 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3016 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3017 { 3018 struct resource_list_entry *rle = NULL; 3019 int passthrough = (device_get_parent(child) != bus); 3020 struct resource *r; 3021 3022 if (passthrough) 3023 panic( 3024 "resource_list_reserve() should only be called for direct children"); 3025 if (flags & RF_ACTIVE) 3026 panic( 3027 "resource_list_reserve() should only reserve inactive resources"); 3028 3029 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3030 flags); 3031 if (r != NULL) { 3032 rle = resource_list_find(rl, type, *rid); 3033 rle->flags |= RLE_RESERVED; 3034 } 3035 return (r); 3036 } 3037 3038 /** 3039 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3040 * 3041 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3042 * and passing the allocation up to the parent of @p bus. This assumes 3043 * that the first entry of @c device_get_ivars(child) is a struct 3044 * resource_list. This also handles 'passthrough' allocations where a 3045 * child is a remote descendant of bus by passing the allocation up to 3046 * the parent of bus. 3047 * 3048 * Typically, a bus driver would store a list of child resources 3049 * somewhere in the child device's ivars (see device_get_ivars()) and 3050 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3051 * then call resource_list_alloc() to perform the allocation. 3052 * 3053 * @param rl the resource list to allocate from 3054 * @param bus the parent device of @p child 3055 * @param child the device which is requesting an allocation 3056 * @param type the type of resource to allocate 3057 * @param rid a pointer to the resource identifier 3058 * @param start hint at the start of the resource range - pass 3059 * @c 0UL for any start address 3060 * @param end hint at the end of the resource range - pass 3061 * @c ~0UL for any end address 3062 * @param count hint at the size of range required - pass @c 1 3063 * for any size 3064 * @param flags any extra flags to control the resource 3065 * allocation - see @c RF_XXX flags in 3066 * <sys/rman.h> for details 3067 * 3068 * @returns the resource which was allocated or @c NULL if no 3069 * resource could be allocated 3070 */ 3071 struct resource * 3072 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3073 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3074 { 3075 struct resource_list_entry *rle = NULL; 3076 int passthrough = (device_get_parent(child) != bus); 3077 int isdefault = (start == 0UL && end == ~0UL); 3078 3079 if (passthrough) { 3080 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3081 type, rid, start, end, count, flags)); 3082 } 3083 3084 rle = resource_list_find(rl, type, *rid); 3085 3086 if (!rle) 3087 return (NULL); /* no resource of that type/rid */ 3088 3089 if (rle->res) { 3090 if (rle->flags & RLE_RESERVED) { 3091 if (rle->flags & RLE_ALLOCATED) 3092 return (NULL); 3093 if ((flags & RF_ACTIVE) && 3094 bus_activate_resource(child, type, *rid, 3095 rle->res) != 0) 3096 return (NULL); 3097 rle->flags |= RLE_ALLOCATED; 3098 return (rle->res); 3099 } 3100 panic("resource_list_alloc: resource entry is busy"); 3101 } 3102 3103 if (isdefault) { 3104 start = rle->start; 3105 count = ulmax(count, rle->count); 3106 end = ulmax(rle->end, start + count - 1); 3107 } 3108 3109 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3110 type, rid, start, end, count, flags); 3111 3112 /* 3113 * Record the new range. 3114 */ 3115 if (rle->res) { 3116 rle->start = rman_get_start(rle->res); 3117 rle->end = rman_get_end(rle->res); 3118 rle->count = count; 3119 } 3120 3121 return (rle->res); 3122 } 3123 3124 /** 3125 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3126 * 3127 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3128 * used with resource_list_alloc(). 3129 * 3130 * @param rl the resource list which was allocated from 3131 * @param bus the parent device of @p child 3132 * @param child the device which is requesting a release 3133 * @param type the type of resource to release 3134 * @param rid the resource identifier 3135 * @param res the resource to release 3136 * 3137 * @retval 0 success 3138 * @retval non-zero a standard unix error code indicating what 3139 * error condition prevented the operation 3140 */ 3141 int 3142 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3143 int type, int rid, struct resource *res) 3144 { 3145 struct resource_list_entry *rle = NULL; 3146 int passthrough = (device_get_parent(child) != bus); 3147 int error; 3148 3149 if (passthrough) { 3150 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3151 type, rid, res)); 3152 } 3153 3154 rle = resource_list_find(rl, type, rid); 3155 3156 if (!rle) 3157 panic("resource_list_release: can't find resource"); 3158 if (!rle->res) 3159 panic("resource_list_release: resource entry is not busy"); 3160 if (rle->flags & RLE_RESERVED) { 3161 if (rle->flags & RLE_ALLOCATED) { 3162 if (rman_get_flags(res) & RF_ACTIVE) { 3163 error = bus_deactivate_resource(child, type, 3164 rid, res); 3165 if (error) 3166 return (error); 3167 } 3168 rle->flags &= ~RLE_ALLOCATED; 3169 return (0); 3170 } 3171 return (EINVAL); 3172 } 3173 3174 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3175 type, rid, res); 3176 if (error) 3177 return (error); 3178 3179 rle->res = NULL; 3180 return (0); 3181 } 3182 3183 /** 3184 * @brief Fully release a reserved resource 3185 * 3186 * Fully releases a resouce reserved via resource_list_reserve(). 3187 * 3188 * @param rl the resource list which was allocated from 3189 * @param bus the parent device of @p child 3190 * @param child the device whose reserved resource is being released 3191 * @param type the type of resource to release 3192 * @param rid the resource identifier 3193 * @param res the resource to release 3194 * 3195 * @retval 0 success 3196 * @retval non-zero a standard unix error code indicating what 3197 * error condition prevented the operation 3198 */ 3199 int 3200 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3201 int type, int rid) 3202 { 3203 struct resource_list_entry *rle = NULL; 3204 int passthrough = (device_get_parent(child) != bus); 3205 3206 if (passthrough) 3207 panic( 3208 "resource_list_unreserve() should only be called for direct children"); 3209 3210 rle = resource_list_find(rl, type, rid); 3211 3212 if (!rle) 3213 panic("resource_list_unreserve: can't find resource"); 3214 if (!(rle->flags & RLE_RESERVED)) 3215 return (EINVAL); 3216 if (rle->flags & RLE_ALLOCATED) 3217 return (EBUSY); 3218 rle->flags &= ~RLE_RESERVED; 3219 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3220 } 3221 3222 /** 3223 * @brief Print a description of resources in a resource list 3224 * 3225 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3226 * The name is printed if at least one resource of the given type is available. 3227 * The format is used to print resource start and end. 3228 * 3229 * @param rl the resource list to print 3230 * @param name the name of @p type, e.g. @c "memory" 3231 * @param type type type of resource entry to print 3232 * @param format printf(9) format string to print resource 3233 * start and end values 3234 * 3235 * @returns the number of characters printed 3236 */ 3237 int 3238 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3239 const char *format) 3240 { 3241 struct resource_list_entry *rle; 3242 int printed, retval; 3243 3244 printed = 0; 3245 retval = 0; 3246 /* Yes, this is kinda cheating */ 3247 STAILQ_FOREACH(rle, rl, link) { 3248 if (rle->type == type) { 3249 if (printed == 0) 3250 retval += printf(" %s ", name); 3251 else 3252 retval += printf(","); 3253 printed++; 3254 retval += printf(format, rle->start); 3255 if (rle->count > 1) { 3256 retval += printf("-"); 3257 retval += printf(format, rle->start + 3258 rle->count - 1); 3259 } 3260 } 3261 } 3262 return (retval); 3263 } 3264 3265 /** 3266 * @brief Releases all the resources in a list. 3267 * 3268 * @param rl The resource list to purge. 3269 * 3270 * @returns nothing 3271 */ 3272 void 3273 resource_list_purge(struct resource_list *rl) 3274 { 3275 struct resource_list_entry *rle; 3276 3277 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3278 if (rle->res) 3279 bus_release_resource(rman_get_device(rle->res), 3280 rle->type, rle->rid, rle->res); 3281 STAILQ_REMOVE_HEAD(rl, link); 3282 free(rle, M_BUS); 3283 } 3284 } 3285 3286 device_t 3287 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3288 { 3289 3290 return (device_add_child_ordered(dev, order, name, unit)); 3291 } 3292 3293 /** 3294 * @brief Helper function for implementing DEVICE_PROBE() 3295 * 3296 * This function can be used to help implement the DEVICE_PROBE() for 3297 * a bus (i.e. a device which has other devices attached to it). It 3298 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3299 * devclass. 3300 */ 3301 int 3302 bus_generic_probe(device_t dev) 3303 { 3304 devclass_t dc = dev->devclass; 3305 driverlink_t dl; 3306 3307 TAILQ_FOREACH(dl, &dc->drivers, link) { 3308 /* 3309 * If this driver's pass is too high, then ignore it. 3310 * For most drivers in the default pass, this will 3311 * never be true. For early-pass drivers they will 3312 * only call the identify routines of eligible drivers 3313 * when this routine is called. Drivers for later 3314 * passes should have their identify routines called 3315 * on early-pass busses during BUS_NEW_PASS(). 3316 */ 3317 if (dl->pass > bus_current_pass) 3318 continue; 3319 DEVICE_IDENTIFY(dl->driver, dev); 3320 } 3321 3322 return (0); 3323 } 3324 3325 /** 3326 * @brief Helper function for implementing DEVICE_ATTACH() 3327 * 3328 * This function can be used to help implement the DEVICE_ATTACH() for 3329 * a bus. It calls device_probe_and_attach() for each of the device's 3330 * children. 3331 */ 3332 int 3333 bus_generic_attach(device_t dev) 3334 { 3335 device_t child; 3336 3337 TAILQ_FOREACH(child, &dev->children, link) { 3338 device_probe_and_attach(child); 3339 } 3340 3341 return (0); 3342 } 3343 3344 /** 3345 * @brief Helper function for implementing DEVICE_DETACH() 3346 * 3347 * This function can be used to help implement the DEVICE_DETACH() for 3348 * a bus. It calls device_detach() for each of the device's 3349 * children. 3350 */ 3351 int 3352 bus_generic_detach(device_t dev) 3353 { 3354 device_t child; 3355 int error; 3356 3357 if (dev->state != DS_ATTACHED) 3358 return (EBUSY); 3359 3360 TAILQ_FOREACH(child, &dev->children, link) { 3361 if ((error = device_detach(child)) != 0) 3362 return (error); 3363 } 3364 3365 return (0); 3366 } 3367 3368 /** 3369 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3370 * 3371 * This function can be used to help implement the DEVICE_SHUTDOWN() 3372 * for a bus. It calls device_shutdown() for each of the device's 3373 * children. 3374 */ 3375 int 3376 bus_generic_shutdown(device_t dev) 3377 { 3378 device_t child; 3379 3380 TAILQ_FOREACH(child, &dev->children, link) { 3381 device_shutdown(child); 3382 } 3383 3384 return (0); 3385 } 3386 3387 /** 3388 * @brief Helper function for implementing DEVICE_SUSPEND() 3389 * 3390 * This function can be used to help implement the DEVICE_SUSPEND() 3391 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3392 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3393 * operation is aborted and any devices which were suspended are 3394 * resumed immediately by calling their DEVICE_RESUME() methods. 3395 */ 3396 int 3397 bus_generic_suspend(device_t dev) 3398 { 3399 int error; 3400 device_t child, child2; 3401 3402 TAILQ_FOREACH(child, &dev->children, link) { 3403 error = DEVICE_SUSPEND(child); 3404 if (error) { 3405 for (child2 = TAILQ_FIRST(&dev->children); 3406 child2 && child2 != child; 3407 child2 = TAILQ_NEXT(child2, link)) 3408 DEVICE_RESUME(child2); 3409 return (error); 3410 } 3411 } 3412 return (0); 3413 } 3414 3415 /** 3416 * @brief Helper function for implementing DEVICE_RESUME() 3417 * 3418 * This function can be used to help implement the DEVICE_RESUME() for 3419 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3420 */ 3421 int 3422 bus_generic_resume(device_t dev) 3423 { 3424 device_t child; 3425 3426 TAILQ_FOREACH(child, &dev->children, link) { 3427 DEVICE_RESUME(child); 3428 /* if resume fails, there's nothing we can usefully do... */ 3429 } 3430 return (0); 3431 } 3432 3433 /** 3434 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3435 * 3436 * This function prints the first part of the ascii representation of 3437 * @p child, including its name, unit and description (if any - see 3438 * device_set_desc()). 3439 * 3440 * @returns the number of characters printed 3441 */ 3442 int 3443 bus_print_child_header(device_t dev, device_t child) 3444 { 3445 int retval = 0; 3446 3447 if (device_get_desc(child)) { 3448 retval += device_printf(child, "<%s>", device_get_desc(child)); 3449 } else { 3450 retval += printf("%s", device_get_nameunit(child)); 3451 } 3452 3453 return (retval); 3454 } 3455 3456 /** 3457 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3458 * 3459 * This function prints the last part of the ascii representation of 3460 * @p child, which consists of the string @c " on " followed by the 3461 * name and unit of the @p dev. 3462 * 3463 * @returns the number of characters printed 3464 */ 3465 int 3466 bus_print_child_footer(device_t dev, device_t child) 3467 { 3468 return (printf(" on %s\n", device_get_nameunit(dev))); 3469 } 3470 3471 /** 3472 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3473 * 3474 * This function simply calls bus_print_child_header() followed by 3475 * bus_print_child_footer(). 3476 * 3477 * @returns the number of characters printed 3478 */ 3479 int 3480 bus_generic_print_child(device_t dev, device_t child) 3481 { 3482 int retval = 0; 3483 3484 retval += bus_print_child_header(dev, child); 3485 retval += bus_print_child_footer(dev, child); 3486 3487 return (retval); 3488 } 3489 3490 /** 3491 * @brief Stub function for implementing BUS_READ_IVAR(). 3492 * 3493 * @returns ENOENT 3494 */ 3495 int 3496 bus_generic_read_ivar(device_t dev, device_t child, int index, 3497 uintptr_t * result) 3498 { 3499 return (ENOENT); 3500 } 3501 3502 /** 3503 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3504 * 3505 * @returns ENOENT 3506 */ 3507 int 3508 bus_generic_write_ivar(device_t dev, device_t child, int index, 3509 uintptr_t value) 3510 { 3511 return (ENOENT); 3512 } 3513 3514 /** 3515 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3516 * 3517 * @returns NULL 3518 */ 3519 struct resource_list * 3520 bus_generic_get_resource_list(device_t dev, device_t child) 3521 { 3522 return (NULL); 3523 } 3524 3525 /** 3526 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3527 * 3528 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3529 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3530 * and then calls device_probe_and_attach() for each unattached child. 3531 */ 3532 void 3533 bus_generic_driver_added(device_t dev, driver_t *driver) 3534 { 3535 device_t child; 3536 3537 DEVICE_IDENTIFY(driver, dev); 3538 TAILQ_FOREACH(child, &dev->children, link) { 3539 if (child->state == DS_NOTPRESENT || 3540 (child->flags & DF_REBID)) 3541 device_probe_and_attach(child); 3542 } 3543 } 3544 3545 /** 3546 * @brief Helper function for implementing BUS_NEW_PASS(). 3547 * 3548 * This implementing of BUS_NEW_PASS() first calls the identify 3549 * routines for any drivers that probe at the current pass. Then it 3550 * walks the list of devices for this bus. If a device is already 3551 * attached, then it calls BUS_NEW_PASS() on that device. If the 3552 * device is not already attached, it attempts to attach a driver to 3553 * it. 3554 */ 3555 void 3556 bus_generic_new_pass(device_t dev) 3557 { 3558 driverlink_t dl; 3559 devclass_t dc; 3560 device_t child; 3561 3562 dc = dev->devclass; 3563 TAILQ_FOREACH(dl, &dc->drivers, link) { 3564 if (dl->pass == bus_current_pass) 3565 DEVICE_IDENTIFY(dl->driver, dev); 3566 } 3567 TAILQ_FOREACH(child, &dev->children, link) { 3568 if (child->state >= DS_ATTACHED) 3569 BUS_NEW_PASS(child); 3570 else if (child->state == DS_NOTPRESENT) 3571 device_probe_and_attach(child); 3572 } 3573 } 3574 3575 /** 3576 * @brief Helper function for implementing BUS_SETUP_INTR(). 3577 * 3578 * This simple implementation of BUS_SETUP_INTR() simply calls the 3579 * BUS_SETUP_INTR() method of the parent of @p dev. 3580 */ 3581 int 3582 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3583 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3584 void **cookiep) 3585 { 3586 /* Propagate up the bus hierarchy until someone handles it. */ 3587 if (dev->parent) 3588 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3589 filter, intr, arg, cookiep)); 3590 return (EINVAL); 3591 } 3592 3593 /** 3594 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3595 * 3596 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3597 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3598 */ 3599 int 3600 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3601 void *cookie) 3602 { 3603 /* Propagate up the bus hierarchy until someone handles it. */ 3604 if (dev->parent) 3605 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3606 return (EINVAL); 3607 } 3608 3609 /** 3610 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3611 * 3612 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3613 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3614 */ 3615 struct resource * 3616 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3617 u_long start, u_long end, u_long count, u_int flags) 3618 { 3619 /* Propagate up the bus hierarchy until someone handles it. */ 3620 if (dev->parent) 3621 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3622 start, end, count, flags)); 3623 return (NULL); 3624 } 3625 3626 /** 3627 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3628 * 3629 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3630 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3631 */ 3632 int 3633 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3634 struct resource *r) 3635 { 3636 /* Propagate up the bus hierarchy until someone handles it. */ 3637 if (dev->parent) 3638 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3639 r)); 3640 return (EINVAL); 3641 } 3642 3643 /** 3644 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3645 * 3646 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3647 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3648 */ 3649 int 3650 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3651 struct resource *r) 3652 { 3653 /* Propagate up the bus hierarchy until someone handles it. */ 3654 if (dev->parent) 3655 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3656 r)); 3657 return (EINVAL); 3658 } 3659 3660 /** 3661 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3662 * 3663 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3664 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3665 */ 3666 int 3667 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3668 int rid, struct resource *r) 3669 { 3670 /* Propagate up the bus hierarchy until someone handles it. */ 3671 if (dev->parent) 3672 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3673 r)); 3674 return (EINVAL); 3675 } 3676 3677 /** 3678 * @brief Helper function for implementing BUS_BIND_INTR(). 3679 * 3680 * This simple implementation of BUS_BIND_INTR() simply calls the 3681 * BUS_BIND_INTR() method of the parent of @p dev. 3682 */ 3683 int 3684 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 3685 int cpu) 3686 { 3687 3688 /* Propagate up the bus hierarchy until someone handles it. */ 3689 if (dev->parent) 3690 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 3691 return (EINVAL); 3692 } 3693 3694 /** 3695 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3696 * 3697 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3698 * BUS_CONFIG_INTR() method of the parent of @p dev. 3699 */ 3700 int 3701 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3702 enum intr_polarity pol) 3703 { 3704 3705 /* Propagate up the bus hierarchy until someone handles it. */ 3706 if (dev->parent) 3707 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3708 return (EINVAL); 3709 } 3710 3711 /** 3712 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 3713 * 3714 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 3715 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 3716 */ 3717 int 3718 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 3719 void *cookie, const char *descr) 3720 { 3721 3722 /* Propagate up the bus hierarchy until someone handles it. */ 3723 if (dev->parent) 3724 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 3725 descr)); 3726 return (EINVAL); 3727 } 3728 3729 /** 3730 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 3731 * 3732 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 3733 * BUS_GET_DMA_TAG() method of the parent of @p dev. 3734 */ 3735 bus_dma_tag_t 3736 bus_generic_get_dma_tag(device_t dev, device_t child) 3737 { 3738 3739 /* Propagate up the bus hierarchy until someone handles it. */ 3740 if (dev->parent != NULL) 3741 return (BUS_GET_DMA_TAG(dev->parent, child)); 3742 return (NULL); 3743 } 3744 3745 /** 3746 * @brief Helper function for implementing BUS_GET_RESOURCE(). 3747 * 3748 * This implementation of BUS_GET_RESOURCE() uses the 3749 * resource_list_find() function to do most of the work. It calls 3750 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3751 * search. 3752 */ 3753 int 3754 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 3755 u_long *startp, u_long *countp) 3756 { 3757 struct resource_list * rl = NULL; 3758 struct resource_list_entry * rle = NULL; 3759 3760 rl = BUS_GET_RESOURCE_LIST(dev, child); 3761 if (!rl) 3762 return (EINVAL); 3763 3764 rle = resource_list_find(rl, type, rid); 3765 if (!rle) 3766 return (ENOENT); 3767 3768 if (startp) 3769 *startp = rle->start; 3770 if (countp) 3771 *countp = rle->count; 3772 3773 return (0); 3774 } 3775 3776 /** 3777 * @brief Helper function for implementing BUS_SET_RESOURCE(). 3778 * 3779 * This implementation of BUS_SET_RESOURCE() uses the 3780 * resource_list_add() function to do most of the work. It calls 3781 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3782 * edit. 3783 */ 3784 int 3785 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 3786 u_long start, u_long count) 3787 { 3788 struct resource_list * rl = NULL; 3789 3790 rl = BUS_GET_RESOURCE_LIST(dev, child); 3791 if (!rl) 3792 return (EINVAL); 3793 3794 resource_list_add(rl, type, rid, start, (start + count - 1), count); 3795 3796 return (0); 3797 } 3798 3799 /** 3800 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 3801 * 3802 * This implementation of BUS_DELETE_RESOURCE() uses the 3803 * resource_list_delete() function to do most of the work. It calls 3804 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3805 * edit. 3806 */ 3807 void 3808 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 3809 { 3810 struct resource_list * rl = NULL; 3811 3812 rl = BUS_GET_RESOURCE_LIST(dev, child); 3813 if (!rl) 3814 return; 3815 3816 resource_list_delete(rl, type, rid); 3817 3818 return; 3819 } 3820 3821 /** 3822 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3823 * 3824 * This implementation of BUS_RELEASE_RESOURCE() uses the 3825 * resource_list_release() function to do most of the work. It calls 3826 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3827 */ 3828 int 3829 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 3830 int rid, struct resource *r) 3831 { 3832 struct resource_list * rl = NULL; 3833 3834 if (device_get_parent(child) != dev) 3835 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 3836 type, rid, r)); 3837 3838 rl = BUS_GET_RESOURCE_LIST(dev, child); 3839 if (!rl) 3840 return (EINVAL); 3841 3842 return (resource_list_release(rl, dev, child, type, rid, r)); 3843 } 3844 3845 /** 3846 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3847 * 3848 * This implementation of BUS_ALLOC_RESOURCE() uses the 3849 * resource_list_alloc() function to do most of the work. It calls 3850 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3851 */ 3852 struct resource * 3853 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 3854 int *rid, u_long start, u_long end, u_long count, u_int flags) 3855 { 3856 struct resource_list * rl = NULL; 3857 3858 if (device_get_parent(child) != dev) 3859 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 3860 type, rid, start, end, count, flags)); 3861 3862 rl = BUS_GET_RESOURCE_LIST(dev, child); 3863 if (!rl) 3864 return (NULL); 3865 3866 return (resource_list_alloc(rl, dev, child, type, rid, 3867 start, end, count, flags)); 3868 } 3869 3870 /** 3871 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 3872 * 3873 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 3874 * BUS_CHILD_PRESENT() method of the parent of @p dev. 3875 */ 3876 int 3877 bus_generic_child_present(device_t dev, device_t child) 3878 { 3879 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 3880 } 3881 3882 /* 3883 * Some convenience functions to make it easier for drivers to use the 3884 * resource-management functions. All these really do is hide the 3885 * indirection through the parent's method table, making for slightly 3886 * less-wordy code. In the future, it might make sense for this code 3887 * to maintain some sort of a list of resources allocated by each device. 3888 */ 3889 3890 int 3891 bus_alloc_resources(device_t dev, struct resource_spec *rs, 3892 struct resource **res) 3893 { 3894 int i; 3895 3896 for (i = 0; rs[i].type != -1; i++) 3897 res[i] = NULL; 3898 for (i = 0; rs[i].type != -1; i++) { 3899 res[i] = bus_alloc_resource_any(dev, 3900 rs[i].type, &rs[i].rid, rs[i].flags); 3901 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 3902 bus_release_resources(dev, rs, res); 3903 return (ENXIO); 3904 } 3905 } 3906 return (0); 3907 } 3908 3909 void 3910 bus_release_resources(device_t dev, const struct resource_spec *rs, 3911 struct resource **res) 3912 { 3913 int i; 3914 3915 for (i = 0; rs[i].type != -1; i++) 3916 if (res[i] != NULL) { 3917 bus_release_resource( 3918 dev, rs[i].type, rs[i].rid, res[i]); 3919 res[i] = NULL; 3920 } 3921 } 3922 3923 /** 3924 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 3925 * 3926 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 3927 * parent of @p dev. 3928 */ 3929 struct resource * 3930 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 3931 u_long count, u_int flags) 3932 { 3933 if (dev->parent == NULL) 3934 return (NULL); 3935 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 3936 count, flags)); 3937 } 3938 3939 /** 3940 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 3941 * 3942 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 3943 * parent of @p dev. 3944 */ 3945 int 3946 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 3947 { 3948 if (dev->parent == NULL) 3949 return (EINVAL); 3950 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3951 } 3952 3953 /** 3954 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 3955 * 3956 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 3957 * parent of @p dev. 3958 */ 3959 int 3960 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 3961 { 3962 if (dev->parent == NULL) 3963 return (EINVAL); 3964 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3965 } 3966 3967 /** 3968 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 3969 * 3970 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 3971 * parent of @p dev. 3972 */ 3973 int 3974 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 3975 { 3976 if (dev->parent == NULL) 3977 return (EINVAL); 3978 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 3979 } 3980 3981 /** 3982 * @brief Wrapper function for BUS_SETUP_INTR(). 3983 * 3984 * This function simply calls the BUS_SETUP_INTR() method of the 3985 * parent of @p dev. 3986 */ 3987 int 3988 bus_setup_intr(device_t dev, struct resource *r, int flags, 3989 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 3990 { 3991 int error; 3992 3993 if (dev->parent == NULL) 3994 return (EINVAL); 3995 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 3996 arg, cookiep); 3997 if (error != 0) 3998 return (error); 3999 if (handler != NULL && !(flags & INTR_MPSAFE)) 4000 device_printf(dev, "[GIANT-LOCKED]\n"); 4001 return (0); 4002 } 4003 4004 /** 4005 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4006 * 4007 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4008 * parent of @p dev. 4009 */ 4010 int 4011 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4012 { 4013 if (dev->parent == NULL) 4014 return (EINVAL); 4015 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4016 } 4017 4018 /** 4019 * @brief Wrapper function for BUS_BIND_INTR(). 4020 * 4021 * This function simply calls the BUS_BIND_INTR() method of the 4022 * parent of @p dev. 4023 */ 4024 int 4025 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4026 { 4027 if (dev->parent == NULL) 4028 return (EINVAL); 4029 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4030 } 4031 4032 /** 4033 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4034 * 4035 * This function first formats the requested description into a 4036 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4037 * the parent of @p dev. 4038 */ 4039 int 4040 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4041 const char *fmt, ...) 4042 { 4043 va_list ap; 4044 char descr[MAXCOMLEN + 1]; 4045 4046 if (dev->parent == NULL) 4047 return (EINVAL); 4048 va_start(ap, fmt); 4049 vsnprintf(descr, sizeof(descr), fmt, ap); 4050 va_end(ap); 4051 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4052 } 4053 4054 /** 4055 * @brief Wrapper function for BUS_SET_RESOURCE(). 4056 * 4057 * This function simply calls the BUS_SET_RESOURCE() method of the 4058 * parent of @p dev. 4059 */ 4060 int 4061 bus_set_resource(device_t dev, int type, int rid, 4062 u_long start, u_long count) 4063 { 4064 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4065 start, count)); 4066 } 4067 4068 /** 4069 * @brief Wrapper function for BUS_GET_RESOURCE(). 4070 * 4071 * This function simply calls the BUS_GET_RESOURCE() method of the 4072 * parent of @p dev. 4073 */ 4074 int 4075 bus_get_resource(device_t dev, int type, int rid, 4076 u_long *startp, u_long *countp) 4077 { 4078 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4079 startp, countp)); 4080 } 4081 4082 /** 4083 * @brief Wrapper function for BUS_GET_RESOURCE(). 4084 * 4085 * This function simply calls the BUS_GET_RESOURCE() method of the 4086 * parent of @p dev and returns the start value. 4087 */ 4088 u_long 4089 bus_get_resource_start(device_t dev, int type, int rid) 4090 { 4091 u_long start, count; 4092 int error; 4093 4094 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4095 &start, &count); 4096 if (error) 4097 return (0); 4098 return (start); 4099 } 4100 4101 /** 4102 * @brief Wrapper function for BUS_GET_RESOURCE(). 4103 * 4104 * This function simply calls the BUS_GET_RESOURCE() method of the 4105 * parent of @p dev and returns the count value. 4106 */ 4107 u_long 4108 bus_get_resource_count(device_t dev, int type, int rid) 4109 { 4110 u_long start, count; 4111 int error; 4112 4113 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4114 &start, &count); 4115 if (error) 4116 return (0); 4117 return (count); 4118 } 4119 4120 /** 4121 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4122 * 4123 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4124 * parent of @p dev. 4125 */ 4126 void 4127 bus_delete_resource(device_t dev, int type, int rid) 4128 { 4129 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4130 } 4131 4132 /** 4133 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4134 * 4135 * This function simply calls the BUS_CHILD_PRESENT() method of the 4136 * parent of @p dev. 4137 */ 4138 int 4139 bus_child_present(device_t child) 4140 { 4141 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4142 } 4143 4144 /** 4145 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4146 * 4147 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4148 * parent of @p dev. 4149 */ 4150 int 4151 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4152 { 4153 device_t parent; 4154 4155 parent = device_get_parent(child); 4156 if (parent == NULL) { 4157 *buf = '\0'; 4158 return (0); 4159 } 4160 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4161 } 4162 4163 /** 4164 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4165 * 4166 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4167 * parent of @p dev. 4168 */ 4169 int 4170 bus_child_location_str(device_t child, char *buf, size_t buflen) 4171 { 4172 device_t parent; 4173 4174 parent = device_get_parent(child); 4175 if (parent == NULL) { 4176 *buf = '\0'; 4177 return (0); 4178 } 4179 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4180 } 4181 4182 /** 4183 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4184 * 4185 * This function simply calls the BUS_GET_DMA_TAG() method of the 4186 * parent of @p dev. 4187 */ 4188 bus_dma_tag_t 4189 bus_get_dma_tag(device_t dev) 4190 { 4191 device_t parent; 4192 4193 parent = device_get_parent(dev); 4194 if (parent == NULL) 4195 return (NULL); 4196 return (BUS_GET_DMA_TAG(parent, dev)); 4197 } 4198 4199 /* Resume all devices and then notify userland that we're up again. */ 4200 static int 4201 root_resume(device_t dev) 4202 { 4203 int error; 4204 4205 error = bus_generic_resume(dev); 4206 if (error == 0) 4207 devctl_notify("kern", "power", "resume", NULL); 4208 return (error); 4209 } 4210 4211 static int 4212 root_print_child(device_t dev, device_t child) 4213 { 4214 int retval = 0; 4215 4216 retval += bus_print_child_header(dev, child); 4217 retval += printf("\n"); 4218 4219 return (retval); 4220 } 4221 4222 static int 4223 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4224 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4225 { 4226 /* 4227 * If an interrupt mapping gets to here something bad has happened. 4228 */ 4229 panic("root_setup_intr"); 4230 } 4231 4232 /* 4233 * If we get here, assume that the device is permanant and really is 4234 * present in the system. Removable bus drivers are expected to intercept 4235 * this call long before it gets here. We return -1 so that drivers that 4236 * really care can check vs -1 or some ERRNO returned higher in the food 4237 * chain. 4238 */ 4239 static int 4240 root_child_present(device_t dev, device_t child) 4241 { 4242 return (-1); 4243 } 4244 4245 static kobj_method_t root_methods[] = { 4246 /* Device interface */ 4247 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4248 KOBJMETHOD(device_suspend, bus_generic_suspend), 4249 KOBJMETHOD(device_resume, root_resume), 4250 4251 /* Bus interface */ 4252 KOBJMETHOD(bus_print_child, root_print_child), 4253 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4254 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4255 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4256 KOBJMETHOD(bus_child_present, root_child_present), 4257 4258 KOBJMETHOD_END 4259 }; 4260 4261 static driver_t root_driver = { 4262 "root", 4263 root_methods, 4264 1, /* no softc */ 4265 }; 4266 4267 device_t root_bus; 4268 devclass_t root_devclass; 4269 4270 static int 4271 root_bus_module_handler(module_t mod, int what, void* arg) 4272 { 4273 switch (what) { 4274 case MOD_LOAD: 4275 TAILQ_INIT(&bus_data_devices); 4276 kobj_class_compile((kobj_class_t) &root_driver); 4277 root_bus = make_device(NULL, "root", 0); 4278 root_bus->desc = "System root bus"; 4279 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4280 root_bus->driver = &root_driver; 4281 root_bus->state = DS_ATTACHED; 4282 root_devclass = devclass_find_internal("root", NULL, FALSE); 4283 devinit(); 4284 return (0); 4285 4286 case MOD_SHUTDOWN: 4287 device_shutdown(root_bus); 4288 return (0); 4289 default: 4290 return (EOPNOTSUPP); 4291 } 4292 4293 return (0); 4294 } 4295 4296 static moduledata_t root_bus_mod = { 4297 "rootbus", 4298 root_bus_module_handler, 4299 NULL 4300 }; 4301 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4302 4303 /** 4304 * @brief Automatically configure devices 4305 * 4306 * This function begins the autoconfiguration process by calling 4307 * device_probe_and_attach() for each child of the @c root0 device. 4308 */ 4309 void 4310 root_bus_configure(void) 4311 { 4312 4313 PDEBUG((".")); 4314 4315 /* Eventually this will be split up, but this is sufficient for now. */ 4316 bus_set_pass(BUS_PASS_DEFAULT); 4317 } 4318 4319 /** 4320 * @brief Module handler for registering device drivers 4321 * 4322 * This module handler is used to automatically register device 4323 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4324 * devclass_add_driver() for the driver described by the 4325 * driver_module_data structure pointed to by @p arg 4326 */ 4327 int 4328 driver_module_handler(module_t mod, int what, void *arg) 4329 { 4330 struct driver_module_data *dmd; 4331 devclass_t bus_devclass; 4332 kobj_class_t driver; 4333 int error, pass; 4334 4335 dmd = (struct driver_module_data *)arg; 4336 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4337 error = 0; 4338 4339 switch (what) { 4340 case MOD_LOAD: 4341 if (dmd->dmd_chainevh) 4342 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4343 4344 pass = dmd->dmd_pass; 4345 driver = dmd->dmd_driver; 4346 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4347 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4348 error = devclass_add_driver(bus_devclass, driver, pass, 4349 dmd->dmd_devclass); 4350 break; 4351 4352 case MOD_UNLOAD: 4353 PDEBUG(("Unloading module: driver %s from bus %s", 4354 DRIVERNAME(dmd->dmd_driver), 4355 dmd->dmd_busname)); 4356 error = devclass_delete_driver(bus_devclass, 4357 dmd->dmd_driver); 4358 4359 if (!error && dmd->dmd_chainevh) 4360 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4361 break; 4362 case MOD_QUIESCE: 4363 PDEBUG(("Quiesce module: driver %s from bus %s", 4364 DRIVERNAME(dmd->dmd_driver), 4365 dmd->dmd_busname)); 4366 error = devclass_quiesce_driver(bus_devclass, 4367 dmd->dmd_driver); 4368 4369 if (!error && dmd->dmd_chainevh) 4370 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4371 break; 4372 default: 4373 error = EOPNOTSUPP; 4374 break; 4375 } 4376 4377 return (error); 4378 } 4379 4380 /** 4381 * @brief Enumerate all hinted devices for this bus. 4382 * 4383 * Walks through the hints for this bus and calls the bus_hinted_child 4384 * routine for each one it fines. It searches first for the specific 4385 * bus that's being probed for hinted children (eg isa0), and then for 4386 * generic children (eg isa). 4387 * 4388 * @param dev bus device to enumerate 4389 */ 4390 void 4391 bus_enumerate_hinted_children(device_t bus) 4392 { 4393 int i; 4394 const char *dname, *busname; 4395 int dunit; 4396 4397 /* 4398 * enumerate all devices on the specific bus 4399 */ 4400 busname = device_get_nameunit(bus); 4401 i = 0; 4402 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4403 BUS_HINTED_CHILD(bus, dname, dunit); 4404 4405 /* 4406 * and all the generic ones. 4407 */ 4408 busname = device_get_name(bus); 4409 i = 0; 4410 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4411 BUS_HINTED_CHILD(bus, dname, dunit); 4412 } 4413 4414 #ifdef BUS_DEBUG 4415 4416 /* the _short versions avoid iteration by not calling anything that prints 4417 * more than oneliners. I love oneliners. 4418 */ 4419 4420 static void 4421 print_device_short(device_t dev, int indent) 4422 { 4423 if (!dev) 4424 return; 4425 4426 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4427 dev->unit, dev->desc, 4428 (dev->parent? "":"no "), 4429 (TAILQ_EMPTY(&dev->children)? "no ":""), 4430 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4431 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4432 (dev->flags&DF_WILDCARD? "wildcard,":""), 4433 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4434 (dev->flags&DF_REBID? "rebiddable,":""), 4435 (dev->ivars? "":"no "), 4436 (dev->softc? "":"no "), 4437 dev->busy)); 4438 } 4439 4440 static void 4441 print_device(device_t dev, int indent) 4442 { 4443 if (!dev) 4444 return; 4445 4446 print_device_short(dev, indent); 4447 4448 indentprintf(("Parent:\n")); 4449 print_device_short(dev->parent, indent+1); 4450 indentprintf(("Driver:\n")); 4451 print_driver_short(dev->driver, indent+1); 4452 indentprintf(("Devclass:\n")); 4453 print_devclass_short(dev->devclass, indent+1); 4454 } 4455 4456 void 4457 print_device_tree_short(device_t dev, int indent) 4458 /* print the device and all its children (indented) */ 4459 { 4460 device_t child; 4461 4462 if (!dev) 4463 return; 4464 4465 print_device_short(dev, indent); 4466 4467 TAILQ_FOREACH(child, &dev->children, link) { 4468 print_device_tree_short(child, indent+1); 4469 } 4470 } 4471 4472 void 4473 print_device_tree(device_t dev, int indent) 4474 /* print the device and all its children (indented) */ 4475 { 4476 device_t child; 4477 4478 if (!dev) 4479 return; 4480 4481 print_device(dev, indent); 4482 4483 TAILQ_FOREACH(child, &dev->children, link) { 4484 print_device_tree(child, indent+1); 4485 } 4486 } 4487 4488 static void 4489 print_driver_short(driver_t *driver, int indent) 4490 { 4491 if (!driver) 4492 return; 4493 4494 indentprintf(("driver %s: softc size = %zd\n", 4495 driver->name, driver->size)); 4496 } 4497 4498 static void 4499 print_driver(driver_t *driver, int indent) 4500 { 4501 if (!driver) 4502 return; 4503 4504 print_driver_short(driver, indent); 4505 } 4506 4507 4508 static void 4509 print_driver_list(driver_list_t drivers, int indent) 4510 { 4511 driverlink_t driver; 4512 4513 TAILQ_FOREACH(driver, &drivers, link) { 4514 print_driver(driver->driver, indent); 4515 } 4516 } 4517 4518 static void 4519 print_devclass_short(devclass_t dc, int indent) 4520 { 4521 if ( !dc ) 4522 return; 4523 4524 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4525 } 4526 4527 static void 4528 print_devclass(devclass_t dc, int indent) 4529 { 4530 int i; 4531 4532 if ( !dc ) 4533 return; 4534 4535 print_devclass_short(dc, indent); 4536 indentprintf(("Drivers:\n")); 4537 print_driver_list(dc->drivers, indent+1); 4538 4539 indentprintf(("Devices:\n")); 4540 for (i = 0; i < dc->maxunit; i++) 4541 if (dc->devices[i]) 4542 print_device(dc->devices[i], indent+1); 4543 } 4544 4545 void 4546 print_devclass_list_short(void) 4547 { 4548 devclass_t dc; 4549 4550 printf("Short listing of devclasses, drivers & devices:\n"); 4551 TAILQ_FOREACH(dc, &devclasses, link) { 4552 print_devclass_short(dc, 0); 4553 } 4554 } 4555 4556 void 4557 print_devclass_list(void) 4558 { 4559 devclass_t dc; 4560 4561 printf("Full listing of devclasses, drivers & devices:\n"); 4562 TAILQ_FOREACH(dc, &devclasses, link) { 4563 print_devclass(dc, 0); 4564 } 4565 } 4566 4567 #endif 4568 4569 /* 4570 * User-space access to the device tree. 4571 * 4572 * We implement a small set of nodes: 4573 * 4574 * hw.bus Single integer read method to obtain the 4575 * current generation count. 4576 * hw.bus.devices Reads the entire device tree in flat space. 4577 * hw.bus.rman Resource manager interface 4578 * 4579 * We might like to add the ability to scan devclasses and/or drivers to 4580 * determine what else is currently loaded/available. 4581 */ 4582 4583 static int 4584 sysctl_bus(SYSCTL_HANDLER_ARGS) 4585 { 4586 struct u_businfo ubus; 4587 4588 ubus.ub_version = BUS_USER_VERSION; 4589 ubus.ub_generation = bus_data_generation; 4590 4591 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4592 } 4593 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4594 "bus-related data"); 4595 4596 static int 4597 sysctl_devices(SYSCTL_HANDLER_ARGS) 4598 { 4599 int *name = (int *)arg1; 4600 u_int namelen = arg2; 4601 int index; 4602 struct device *dev; 4603 struct u_device udev; /* XXX this is a bit big */ 4604 int error; 4605 4606 if (namelen != 2) 4607 return (EINVAL); 4608 4609 if (bus_data_generation_check(name[0])) 4610 return (EINVAL); 4611 4612 index = name[1]; 4613 4614 /* 4615 * Scan the list of devices, looking for the requested index. 4616 */ 4617 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 4618 if (index-- == 0) 4619 break; 4620 } 4621 if (dev == NULL) 4622 return (ENOENT); 4623 4624 /* 4625 * Populate the return array. 4626 */ 4627 bzero(&udev, sizeof(udev)); 4628 udev.dv_handle = (uintptr_t)dev; 4629 udev.dv_parent = (uintptr_t)dev->parent; 4630 if (dev->nameunit != NULL) 4631 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 4632 if (dev->desc != NULL) 4633 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 4634 if (dev->driver != NULL && dev->driver->name != NULL) 4635 strlcpy(udev.dv_drivername, dev->driver->name, 4636 sizeof(udev.dv_drivername)); 4637 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 4638 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 4639 udev.dv_devflags = dev->devflags; 4640 udev.dv_flags = dev->flags; 4641 udev.dv_state = dev->state; 4642 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 4643 return (error); 4644 } 4645 4646 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 4647 "system device tree"); 4648 4649 int 4650 bus_data_generation_check(int generation) 4651 { 4652 if (generation != bus_data_generation) 4653 return (1); 4654 4655 /* XXX generate optimised lists here? */ 4656 return (0); 4657 } 4658 4659 void 4660 bus_data_generation_update(void) 4661 { 4662 bus_data_generation++; 4663 } 4664 4665 int 4666 bus_free_resource(device_t dev, int type, struct resource *r) 4667 { 4668 if (r == NULL) 4669 return (0); 4670 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 4671 } 4672