1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 #include "opt_random.h" 32 33 #include <sys/param.h> 34 #include <sys/conf.h> 35 #include <sys/filio.h> 36 #include <sys/lock.h> 37 #include <sys/kernel.h> 38 #include <sys/kobj.h> 39 #include <sys/limits.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/mutex.h> 43 #include <sys/poll.h> 44 #include <sys/proc.h> 45 #include <sys/condvar.h> 46 #include <sys/queue.h> 47 #include <machine/bus.h> 48 #include <sys/random.h> 49 #include <sys/rman.h> 50 #include <sys/selinfo.h> 51 #include <sys/signalvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 #include <sys/uio.h> 55 #include <sys/bus.h> 56 #include <sys/interrupt.h> 57 58 #include <net/vnet.h> 59 60 #include <machine/cpu.h> 61 #include <machine/stdarg.h> 62 63 #include <vm/uma.h> 64 65 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 66 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 67 68 /* 69 * Used to attach drivers to devclasses. 70 */ 71 typedef struct driverlink *driverlink_t; 72 struct driverlink { 73 kobj_class_t driver; 74 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 75 int pass; 76 TAILQ_ENTRY(driverlink) passlink; 77 }; 78 79 /* 80 * Forward declarations 81 */ 82 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 83 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 84 typedef TAILQ_HEAD(device_list, device) device_list_t; 85 86 struct devclass { 87 TAILQ_ENTRY(devclass) link; 88 devclass_t parent; /* parent in devclass hierarchy */ 89 driver_list_t drivers; /* bus devclasses store drivers for bus */ 90 char *name; 91 device_t *devices; /* array of devices indexed by unit */ 92 int maxunit; /* size of devices array */ 93 int flags; 94 #define DC_HAS_CHILDREN 1 95 96 struct sysctl_ctx_list sysctl_ctx; 97 struct sysctl_oid *sysctl_tree; 98 }; 99 100 /** 101 * @brief Implementation of device. 102 */ 103 struct device { 104 /* 105 * A device is a kernel object. The first field must be the 106 * current ops table for the object. 107 */ 108 KOBJ_FIELDS; 109 110 /* 111 * Device hierarchy. 112 */ 113 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 114 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 115 device_t parent; /**< parent of this device */ 116 device_list_t children; /**< list of child devices */ 117 118 /* 119 * Details of this device. 120 */ 121 driver_t *driver; /**< current driver */ 122 devclass_t devclass; /**< current device class */ 123 int unit; /**< current unit number */ 124 char* nameunit; /**< name+unit e.g. foodev0 */ 125 char* desc; /**< driver specific description */ 126 int busy; /**< count of calls to device_busy() */ 127 device_state_t state; /**< current device state */ 128 uint32_t devflags; /**< api level flags for device_get_flags() */ 129 u_int flags; /**< internal device flags */ 130 #define DF_ENABLED 0x01 /* device should be probed/attached */ 131 #define DF_FIXEDCLASS 0x02 /* devclass specified at create time */ 132 #define DF_WILDCARD 0x04 /* unit was originally wildcard */ 133 #define DF_DESCMALLOCED 0x08 /* description was malloced */ 134 #define DF_QUIET 0x10 /* don't print verbose attach message */ 135 #define DF_DONENOMATCH 0x20 /* don't execute DEVICE_NOMATCH again */ 136 #define DF_EXTERNALSOFTC 0x40 /* softc not allocated by us */ 137 #define DF_REBID 0x80 /* Can rebid after attach */ 138 u_int order; /**< order from device_add_child_ordered() */ 139 void *ivars; /**< instance variables */ 140 void *softc; /**< current driver's variables */ 141 142 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 143 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 144 }; 145 146 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 147 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 148 149 #ifdef BUS_DEBUG 150 151 static int bus_debug = 1; 152 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 153 "Bus debug level"); 154 155 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 156 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 157 #define DRIVERNAME(d) ((d)? d->name : "no driver") 158 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 159 160 /** 161 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 162 * prevent syslog from deleting initial spaces 163 */ 164 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 165 166 static void print_device_short(device_t dev, int indent); 167 static void print_device(device_t dev, int indent); 168 void print_device_tree_short(device_t dev, int indent); 169 void print_device_tree(device_t dev, int indent); 170 static void print_driver_short(driver_t *driver, int indent); 171 static void print_driver(driver_t *driver, int indent); 172 static void print_driver_list(driver_list_t drivers, int indent); 173 static void print_devclass_short(devclass_t dc, int indent); 174 static void print_devclass(devclass_t dc, int indent); 175 void print_devclass_list_short(void); 176 void print_devclass_list(void); 177 178 #else 179 /* Make the compiler ignore the function calls */ 180 #define PDEBUG(a) /* nop */ 181 #define DEVICENAME(d) /* nop */ 182 #define DRIVERNAME(d) /* nop */ 183 #define DEVCLANAME(d) /* nop */ 184 185 #define print_device_short(d,i) /* nop */ 186 #define print_device(d,i) /* nop */ 187 #define print_device_tree_short(d,i) /* nop */ 188 #define print_device_tree(d,i) /* nop */ 189 #define print_driver_short(d,i) /* nop */ 190 #define print_driver(d,i) /* nop */ 191 #define print_driver_list(d,i) /* nop */ 192 #define print_devclass_short(d,i) /* nop */ 193 #define print_devclass(d,i) /* nop */ 194 #define print_devclass_list_short() /* nop */ 195 #define print_devclass_list() /* nop */ 196 #endif 197 198 /* 199 * dev sysctl tree 200 */ 201 202 enum { 203 DEVCLASS_SYSCTL_PARENT, 204 }; 205 206 static int 207 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 208 { 209 devclass_t dc = (devclass_t)arg1; 210 const char *value; 211 212 switch (arg2) { 213 case DEVCLASS_SYSCTL_PARENT: 214 value = dc->parent ? dc->parent->name : ""; 215 break; 216 default: 217 return (EINVAL); 218 } 219 return (SYSCTL_OUT(req, value, strlen(value))); 220 } 221 222 static void 223 devclass_sysctl_init(devclass_t dc) 224 { 225 226 if (dc->sysctl_tree != NULL) 227 return; 228 sysctl_ctx_init(&dc->sysctl_ctx); 229 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 230 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 231 CTLFLAG_RD, NULL, ""); 232 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 233 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 234 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 235 "parent class"); 236 } 237 238 enum { 239 DEVICE_SYSCTL_DESC, 240 DEVICE_SYSCTL_DRIVER, 241 DEVICE_SYSCTL_LOCATION, 242 DEVICE_SYSCTL_PNPINFO, 243 DEVICE_SYSCTL_PARENT, 244 }; 245 246 static int 247 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 248 { 249 device_t dev = (device_t)arg1; 250 const char *value; 251 char *buf; 252 int error; 253 254 buf = NULL; 255 switch (arg2) { 256 case DEVICE_SYSCTL_DESC: 257 value = dev->desc ? dev->desc : ""; 258 break; 259 case DEVICE_SYSCTL_DRIVER: 260 value = dev->driver ? dev->driver->name : ""; 261 break; 262 case DEVICE_SYSCTL_LOCATION: 263 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 264 bus_child_location_str(dev, buf, 1024); 265 break; 266 case DEVICE_SYSCTL_PNPINFO: 267 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 268 bus_child_pnpinfo_str(dev, buf, 1024); 269 break; 270 case DEVICE_SYSCTL_PARENT: 271 value = dev->parent ? dev->parent->nameunit : ""; 272 break; 273 default: 274 return (EINVAL); 275 } 276 error = SYSCTL_OUT(req, value, strlen(value)); 277 if (buf != NULL) 278 free(buf, M_BUS); 279 return (error); 280 } 281 282 static void 283 device_sysctl_init(device_t dev) 284 { 285 devclass_t dc = dev->devclass; 286 287 if (dev->sysctl_tree != NULL) 288 return; 289 devclass_sysctl_init(dc); 290 sysctl_ctx_init(&dev->sysctl_ctx); 291 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 292 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 293 dev->nameunit + strlen(dc->name), 294 CTLFLAG_RD, NULL, ""); 295 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 296 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 297 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 298 "device description"); 299 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 300 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 301 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 302 "device driver name"); 303 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 304 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 305 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 306 "device location relative to parent"); 307 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 308 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 309 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 310 "device identification"); 311 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 312 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 313 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 314 "parent device"); 315 } 316 317 static void 318 device_sysctl_update(device_t dev) 319 { 320 devclass_t dc = dev->devclass; 321 322 if (dev->sysctl_tree == NULL) 323 return; 324 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 325 } 326 327 static void 328 device_sysctl_fini(device_t dev) 329 { 330 if (dev->sysctl_tree == NULL) 331 return; 332 sysctl_ctx_free(&dev->sysctl_ctx); 333 dev->sysctl_tree = NULL; 334 } 335 336 /* 337 * /dev/devctl implementation 338 */ 339 340 /* 341 * This design allows only one reader for /dev/devctl. This is not desirable 342 * in the long run, but will get a lot of hair out of this implementation. 343 * Maybe we should make this device a clonable device. 344 * 345 * Also note: we specifically do not attach a device to the device_t tree 346 * to avoid potential chicken and egg problems. One could argue that all 347 * of this belongs to the root node. One could also further argue that the 348 * sysctl interface that we have not might more properly be an ioctl 349 * interface, but at this stage of the game, I'm not inclined to rock that 350 * boat. 351 * 352 * I'm also not sure that the SIGIO support is done correctly or not, as 353 * I copied it from a driver that had SIGIO support that likely hasn't been 354 * tested since 3.4 or 2.2.8! 355 */ 356 357 /* Deprecated way to adjust queue length */ 358 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 359 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN | 360 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I", 361 "devctl disable -- deprecated"); 362 363 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 364 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 365 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 366 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 367 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 368 369 static d_open_t devopen; 370 static d_close_t devclose; 371 static d_read_t devread; 372 static d_ioctl_t devioctl; 373 static d_poll_t devpoll; 374 static d_kqfilter_t devkqfilter; 375 376 static struct cdevsw dev_cdevsw = { 377 .d_version = D_VERSION, 378 .d_open = devopen, 379 .d_close = devclose, 380 .d_read = devread, 381 .d_ioctl = devioctl, 382 .d_poll = devpoll, 383 .d_kqfilter = devkqfilter, 384 .d_name = "devctl", 385 }; 386 387 struct dev_event_info 388 { 389 char *dei_data; 390 TAILQ_ENTRY(dev_event_info) dei_link; 391 }; 392 393 TAILQ_HEAD(devq, dev_event_info); 394 395 static struct dev_softc 396 { 397 int inuse; 398 int nonblock; 399 int queued; 400 int async; 401 struct mtx mtx; 402 struct cv cv; 403 struct selinfo sel; 404 struct devq devq; 405 struct sigio *sigio; 406 } devsoftc; 407 408 static void filt_devctl_detach(struct knote *kn); 409 static int filt_devctl_read(struct knote *kn, long hint); 410 411 struct filterops devctl_rfiltops = { 412 .f_isfd = 1, 413 .f_detach = filt_devctl_detach, 414 .f_event = filt_devctl_read, 415 }; 416 417 static struct cdev *devctl_dev; 418 419 static void 420 devinit(void) 421 { 422 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 423 UID_ROOT, GID_WHEEL, 0600, "devctl"); 424 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 425 cv_init(&devsoftc.cv, "dev cv"); 426 TAILQ_INIT(&devsoftc.devq); 427 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 428 } 429 430 static int 431 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 432 { 433 434 mtx_lock(&devsoftc.mtx); 435 if (devsoftc.inuse) { 436 mtx_unlock(&devsoftc.mtx); 437 return (EBUSY); 438 } 439 /* move to init */ 440 devsoftc.inuse = 1; 441 mtx_unlock(&devsoftc.mtx); 442 return (0); 443 } 444 445 static int 446 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 447 { 448 449 mtx_lock(&devsoftc.mtx); 450 devsoftc.inuse = 0; 451 devsoftc.nonblock = 0; 452 devsoftc.async = 0; 453 cv_broadcast(&devsoftc.cv); 454 funsetown(&devsoftc.sigio); 455 mtx_unlock(&devsoftc.mtx); 456 return (0); 457 } 458 459 /* 460 * The read channel for this device is used to report changes to 461 * userland in realtime. We are required to free the data as well as 462 * the n1 object because we allocate them separately. Also note that 463 * we return one record at a time. If you try to read this device a 464 * character at a time, you will lose the rest of the data. Listening 465 * programs are expected to cope. 466 */ 467 static int 468 devread(struct cdev *dev, struct uio *uio, int ioflag) 469 { 470 struct dev_event_info *n1; 471 int rv; 472 473 mtx_lock(&devsoftc.mtx); 474 while (TAILQ_EMPTY(&devsoftc.devq)) { 475 if (devsoftc.nonblock) { 476 mtx_unlock(&devsoftc.mtx); 477 return (EAGAIN); 478 } 479 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 480 if (rv) { 481 /* 482 * Need to translate ERESTART to EINTR here? -- jake 483 */ 484 mtx_unlock(&devsoftc.mtx); 485 return (rv); 486 } 487 } 488 n1 = TAILQ_FIRST(&devsoftc.devq); 489 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 490 devsoftc.queued--; 491 mtx_unlock(&devsoftc.mtx); 492 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 493 free(n1->dei_data, M_BUS); 494 free(n1, M_BUS); 495 return (rv); 496 } 497 498 static int 499 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 500 { 501 switch (cmd) { 502 503 case FIONBIO: 504 if (*(int*)data) 505 devsoftc.nonblock = 1; 506 else 507 devsoftc.nonblock = 0; 508 return (0); 509 case FIOASYNC: 510 if (*(int*)data) 511 devsoftc.async = 1; 512 else 513 devsoftc.async = 0; 514 return (0); 515 case FIOSETOWN: 516 return fsetown(*(int *)data, &devsoftc.sigio); 517 case FIOGETOWN: 518 *(int *)data = fgetown(&devsoftc.sigio); 519 return (0); 520 521 /* (un)Support for other fcntl() calls. */ 522 case FIOCLEX: 523 case FIONCLEX: 524 case FIONREAD: 525 default: 526 break; 527 } 528 return (ENOTTY); 529 } 530 531 static int 532 devpoll(struct cdev *dev, int events, struct thread *td) 533 { 534 int revents = 0; 535 536 mtx_lock(&devsoftc.mtx); 537 if (events & (POLLIN | POLLRDNORM)) { 538 if (!TAILQ_EMPTY(&devsoftc.devq)) 539 revents = events & (POLLIN | POLLRDNORM); 540 else 541 selrecord(td, &devsoftc.sel); 542 } 543 mtx_unlock(&devsoftc.mtx); 544 545 return (revents); 546 } 547 548 static int 549 devkqfilter(struct cdev *dev, struct knote *kn) 550 { 551 int error; 552 553 if (kn->kn_filter == EVFILT_READ) { 554 kn->kn_fop = &devctl_rfiltops; 555 knlist_add(&devsoftc.sel.si_note, kn, 0); 556 error = 0; 557 } else 558 error = EINVAL; 559 return (error); 560 } 561 562 static void 563 filt_devctl_detach(struct knote *kn) 564 { 565 566 knlist_remove(&devsoftc.sel.si_note, kn, 0); 567 } 568 569 static int 570 filt_devctl_read(struct knote *kn, long hint) 571 { 572 kn->kn_data = devsoftc.queued; 573 return (kn->kn_data != 0); 574 } 575 576 /** 577 * @brief Return whether the userland process is running 578 */ 579 boolean_t 580 devctl_process_running(void) 581 { 582 return (devsoftc.inuse == 1); 583 } 584 585 /** 586 * @brief Queue data to be read from the devctl device 587 * 588 * Generic interface to queue data to the devctl device. It is 589 * assumed that @p data is properly formatted. It is further assumed 590 * that @p data is allocated using the M_BUS malloc type. 591 */ 592 void 593 devctl_queue_data_f(char *data, int flags) 594 { 595 struct dev_event_info *n1 = NULL, *n2 = NULL; 596 597 if (strlen(data) == 0) 598 goto out; 599 if (devctl_queue_length == 0) 600 goto out; 601 n1 = malloc(sizeof(*n1), M_BUS, flags); 602 if (n1 == NULL) 603 goto out; 604 n1->dei_data = data; 605 mtx_lock(&devsoftc.mtx); 606 if (devctl_queue_length == 0) { 607 mtx_unlock(&devsoftc.mtx); 608 free(n1->dei_data, M_BUS); 609 free(n1, M_BUS); 610 return; 611 } 612 /* Leave at least one spot in the queue... */ 613 while (devsoftc.queued > devctl_queue_length - 1) { 614 n2 = TAILQ_FIRST(&devsoftc.devq); 615 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 616 free(n2->dei_data, M_BUS); 617 free(n2, M_BUS); 618 devsoftc.queued--; 619 } 620 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 621 devsoftc.queued++; 622 cv_broadcast(&devsoftc.cv); 623 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 624 mtx_unlock(&devsoftc.mtx); 625 selwakeup(&devsoftc.sel); 626 if (devsoftc.async && devsoftc.sigio != NULL) 627 pgsigio(&devsoftc.sigio, SIGIO, 0); 628 return; 629 out: 630 /* 631 * We have to free data on all error paths since the caller 632 * assumes it will be free'd when this item is dequeued. 633 */ 634 free(data, M_BUS); 635 return; 636 } 637 638 void 639 devctl_queue_data(char *data) 640 { 641 642 devctl_queue_data_f(data, M_NOWAIT); 643 } 644 645 /** 646 * @brief Send a 'notification' to userland, using standard ways 647 */ 648 void 649 devctl_notify_f(const char *system, const char *subsystem, const char *type, 650 const char *data, int flags) 651 { 652 int len = 0; 653 char *msg; 654 655 if (system == NULL) 656 return; /* BOGUS! Must specify system. */ 657 if (subsystem == NULL) 658 return; /* BOGUS! Must specify subsystem. */ 659 if (type == NULL) 660 return; /* BOGUS! Must specify type. */ 661 len += strlen(" system=") + strlen(system); 662 len += strlen(" subsystem=") + strlen(subsystem); 663 len += strlen(" type=") + strlen(type); 664 /* add in the data message plus newline. */ 665 if (data != NULL) 666 len += strlen(data); 667 len += 3; /* '!', '\n', and NUL */ 668 msg = malloc(len, M_BUS, flags); 669 if (msg == NULL) 670 return; /* Drop it on the floor */ 671 if (data != NULL) 672 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 673 system, subsystem, type, data); 674 else 675 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 676 system, subsystem, type); 677 devctl_queue_data_f(msg, flags); 678 } 679 680 void 681 devctl_notify(const char *system, const char *subsystem, const char *type, 682 const char *data) 683 { 684 685 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 686 } 687 688 /* 689 * Common routine that tries to make sending messages as easy as possible. 690 * We allocate memory for the data, copy strings into that, but do not 691 * free it unless there's an error. The dequeue part of the driver should 692 * free the data. We don't send data when the device is disabled. We do 693 * send data, even when we have no listeners, because we wish to avoid 694 * races relating to startup and restart of listening applications. 695 * 696 * devaddq is designed to string together the type of event, with the 697 * object of that event, plus the plug and play info and location info 698 * for that event. This is likely most useful for devices, but less 699 * useful for other consumers of this interface. Those should use 700 * the devctl_queue_data() interface instead. 701 */ 702 static void 703 devaddq(const char *type, const char *what, device_t dev) 704 { 705 char *data = NULL; 706 char *loc = NULL; 707 char *pnp = NULL; 708 const char *parstr; 709 710 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 711 return; 712 data = malloc(1024, M_BUS, M_NOWAIT); 713 if (data == NULL) 714 goto bad; 715 716 /* get the bus specific location of this device */ 717 loc = malloc(1024, M_BUS, M_NOWAIT); 718 if (loc == NULL) 719 goto bad; 720 *loc = '\0'; 721 bus_child_location_str(dev, loc, 1024); 722 723 /* Get the bus specific pnp info of this device */ 724 pnp = malloc(1024, M_BUS, M_NOWAIT); 725 if (pnp == NULL) 726 goto bad; 727 *pnp = '\0'; 728 bus_child_pnpinfo_str(dev, pnp, 1024); 729 730 /* Get the parent of this device, or / if high enough in the tree. */ 731 if (device_get_parent(dev) == NULL) 732 parstr = "."; /* Or '/' ? */ 733 else 734 parstr = device_get_nameunit(device_get_parent(dev)); 735 /* String it all together. */ 736 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 737 parstr); 738 free(loc, M_BUS); 739 free(pnp, M_BUS); 740 devctl_queue_data(data); 741 return; 742 bad: 743 free(pnp, M_BUS); 744 free(loc, M_BUS); 745 free(data, M_BUS); 746 return; 747 } 748 749 /* 750 * A device was added to the tree. We are called just after it successfully 751 * attaches (that is, probe and attach success for this device). No call 752 * is made if a device is merely parented into the tree. See devnomatch 753 * if probe fails. If attach fails, no notification is sent (but maybe 754 * we should have a different message for this). 755 */ 756 static void 757 devadded(device_t dev) 758 { 759 devaddq("+", device_get_nameunit(dev), dev); 760 } 761 762 /* 763 * A device was removed from the tree. We are called just before this 764 * happens. 765 */ 766 static void 767 devremoved(device_t dev) 768 { 769 devaddq("-", device_get_nameunit(dev), dev); 770 } 771 772 /* 773 * Called when there's no match for this device. This is only called 774 * the first time that no match happens, so we don't keep getting this 775 * message. Should that prove to be undesirable, we can change it. 776 * This is called when all drivers that can attach to a given bus 777 * decline to accept this device. Other errors may not be detected. 778 */ 779 static void 780 devnomatch(device_t dev) 781 { 782 devaddq("?", "", dev); 783 } 784 785 static int 786 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 787 { 788 struct dev_event_info *n1; 789 int dis, error; 790 791 dis = (devctl_queue_length == 0); 792 error = sysctl_handle_int(oidp, &dis, 0, req); 793 if (error || !req->newptr) 794 return (error); 795 if (mtx_initialized(&devsoftc.mtx)) 796 mtx_lock(&devsoftc.mtx); 797 if (dis) { 798 while (!TAILQ_EMPTY(&devsoftc.devq)) { 799 n1 = TAILQ_FIRST(&devsoftc.devq); 800 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 801 free(n1->dei_data, M_BUS); 802 free(n1, M_BUS); 803 } 804 devsoftc.queued = 0; 805 devctl_queue_length = 0; 806 } else { 807 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 808 } 809 if (mtx_initialized(&devsoftc.mtx)) 810 mtx_unlock(&devsoftc.mtx); 811 return (0); 812 } 813 814 static int 815 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 816 { 817 struct dev_event_info *n1; 818 int q, error; 819 820 q = devctl_queue_length; 821 error = sysctl_handle_int(oidp, &q, 0, req); 822 if (error || !req->newptr) 823 return (error); 824 if (q < 0) 825 return (EINVAL); 826 if (mtx_initialized(&devsoftc.mtx)) 827 mtx_lock(&devsoftc.mtx); 828 devctl_queue_length = q; 829 while (devsoftc.queued > devctl_queue_length) { 830 n1 = TAILQ_FIRST(&devsoftc.devq); 831 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 832 free(n1->dei_data, M_BUS); 833 free(n1, M_BUS); 834 devsoftc.queued--; 835 } 836 if (mtx_initialized(&devsoftc.mtx)) 837 mtx_unlock(&devsoftc.mtx); 838 return (0); 839 } 840 841 /* End of /dev/devctl code */ 842 843 static TAILQ_HEAD(,device) bus_data_devices; 844 static int bus_data_generation = 1; 845 846 static kobj_method_t null_methods[] = { 847 KOBJMETHOD_END 848 }; 849 850 DEFINE_CLASS(null, null_methods, 0); 851 852 /* 853 * Bus pass implementation 854 */ 855 856 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 857 int bus_current_pass = BUS_PASS_ROOT; 858 859 /** 860 * @internal 861 * @brief Register the pass level of a new driver attachment 862 * 863 * Register a new driver attachment's pass level. If no driver 864 * attachment with the same pass level has been added, then @p new 865 * will be added to the global passes list. 866 * 867 * @param new the new driver attachment 868 */ 869 static void 870 driver_register_pass(struct driverlink *new) 871 { 872 struct driverlink *dl; 873 874 /* We only consider pass numbers during boot. */ 875 if (bus_current_pass == BUS_PASS_DEFAULT) 876 return; 877 878 /* 879 * Walk the passes list. If we already know about this pass 880 * then there is nothing to do. If we don't, then insert this 881 * driver link into the list. 882 */ 883 TAILQ_FOREACH(dl, &passes, passlink) { 884 if (dl->pass < new->pass) 885 continue; 886 if (dl->pass == new->pass) 887 return; 888 TAILQ_INSERT_BEFORE(dl, new, passlink); 889 return; 890 } 891 TAILQ_INSERT_TAIL(&passes, new, passlink); 892 } 893 894 /** 895 * @brief Raise the current bus pass 896 * 897 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 898 * method on the root bus to kick off a new device tree scan for each 899 * new pass level that has at least one driver. 900 */ 901 void 902 bus_set_pass(int pass) 903 { 904 struct driverlink *dl; 905 906 if (bus_current_pass > pass) 907 panic("Attempt to lower bus pass level"); 908 909 TAILQ_FOREACH(dl, &passes, passlink) { 910 /* Skip pass values below the current pass level. */ 911 if (dl->pass <= bus_current_pass) 912 continue; 913 914 /* 915 * Bail once we hit a driver with a pass level that is 916 * too high. 917 */ 918 if (dl->pass > pass) 919 break; 920 921 /* 922 * Raise the pass level to the next level and rescan 923 * the tree. 924 */ 925 bus_current_pass = dl->pass; 926 BUS_NEW_PASS(root_bus); 927 } 928 929 /* 930 * If there isn't a driver registered for the requested pass, 931 * then bus_current_pass might still be less than 'pass'. Set 932 * it to 'pass' in that case. 933 */ 934 if (bus_current_pass < pass) 935 bus_current_pass = pass; 936 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 937 } 938 939 /* 940 * Devclass implementation 941 */ 942 943 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 944 945 /** 946 * @internal 947 * @brief Find or create a device class 948 * 949 * If a device class with the name @p classname exists, return it, 950 * otherwise if @p create is non-zero create and return a new device 951 * class. 952 * 953 * If @p parentname is non-NULL, the parent of the devclass is set to 954 * the devclass of that name. 955 * 956 * @param classname the devclass name to find or create 957 * @param parentname the parent devclass name or @c NULL 958 * @param create non-zero to create a devclass 959 */ 960 static devclass_t 961 devclass_find_internal(const char *classname, const char *parentname, 962 int create) 963 { 964 devclass_t dc; 965 966 PDEBUG(("looking for %s", classname)); 967 if (!classname) 968 return (NULL); 969 970 TAILQ_FOREACH(dc, &devclasses, link) { 971 if (!strcmp(dc->name, classname)) 972 break; 973 } 974 975 if (create && !dc) { 976 PDEBUG(("creating %s", classname)); 977 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 978 M_BUS, M_NOWAIT | M_ZERO); 979 if (!dc) 980 return (NULL); 981 dc->parent = NULL; 982 dc->name = (char*) (dc + 1); 983 strcpy(dc->name, classname); 984 TAILQ_INIT(&dc->drivers); 985 TAILQ_INSERT_TAIL(&devclasses, dc, link); 986 987 bus_data_generation_update(); 988 } 989 990 /* 991 * If a parent class is specified, then set that as our parent so 992 * that this devclass will support drivers for the parent class as 993 * well. If the parent class has the same name don't do this though 994 * as it creates a cycle that can trigger an infinite loop in 995 * device_probe_child() if a device exists for which there is no 996 * suitable driver. 997 */ 998 if (parentname && dc && !dc->parent && 999 strcmp(classname, parentname) != 0) { 1000 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1001 dc->parent->flags |= DC_HAS_CHILDREN; 1002 } 1003 1004 return (dc); 1005 } 1006 1007 /** 1008 * @brief Create a device class 1009 * 1010 * If a device class with the name @p classname exists, return it, 1011 * otherwise create and return a new device class. 1012 * 1013 * @param classname the devclass name to find or create 1014 */ 1015 devclass_t 1016 devclass_create(const char *classname) 1017 { 1018 return (devclass_find_internal(classname, NULL, TRUE)); 1019 } 1020 1021 /** 1022 * @brief Find a device class 1023 * 1024 * If a device class with the name @p classname exists, return it, 1025 * otherwise return @c NULL. 1026 * 1027 * @param classname the devclass name to find 1028 */ 1029 devclass_t 1030 devclass_find(const char *classname) 1031 { 1032 return (devclass_find_internal(classname, NULL, FALSE)); 1033 } 1034 1035 /** 1036 * @brief Register that a device driver has been added to a devclass 1037 * 1038 * Register that a device driver has been added to a devclass. This 1039 * is called by devclass_add_driver to accomplish the recursive 1040 * notification of all the children classes of dc, as well as dc. 1041 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1042 * the devclass. 1043 * 1044 * We do a full search here of the devclass list at each iteration 1045 * level to save storing children-lists in the devclass structure. If 1046 * we ever move beyond a few dozen devices doing this, we may need to 1047 * reevaluate... 1048 * 1049 * @param dc the devclass to edit 1050 * @param driver the driver that was just added 1051 */ 1052 static void 1053 devclass_driver_added(devclass_t dc, driver_t *driver) 1054 { 1055 devclass_t parent; 1056 int i; 1057 1058 /* 1059 * Call BUS_DRIVER_ADDED for any existing busses in this class. 1060 */ 1061 for (i = 0; i < dc->maxunit; i++) 1062 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1063 BUS_DRIVER_ADDED(dc->devices[i], driver); 1064 1065 /* 1066 * Walk through the children classes. Since we only keep a 1067 * single parent pointer around, we walk the entire list of 1068 * devclasses looking for children. We set the 1069 * DC_HAS_CHILDREN flag when a child devclass is created on 1070 * the parent, so we only walk the list for those devclasses 1071 * that have children. 1072 */ 1073 if (!(dc->flags & DC_HAS_CHILDREN)) 1074 return; 1075 parent = dc; 1076 TAILQ_FOREACH(dc, &devclasses, link) { 1077 if (dc->parent == parent) 1078 devclass_driver_added(dc, driver); 1079 } 1080 } 1081 1082 /** 1083 * @brief Add a device driver to a device class 1084 * 1085 * Add a device driver to a devclass. This is normally called 1086 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1087 * all devices in the devclass will be called to allow them to attempt 1088 * to re-probe any unmatched children. 1089 * 1090 * @param dc the devclass to edit 1091 * @param driver the driver to register 1092 */ 1093 int 1094 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1095 { 1096 driverlink_t dl; 1097 const char *parentname; 1098 1099 PDEBUG(("%s", DRIVERNAME(driver))); 1100 1101 /* Don't allow invalid pass values. */ 1102 if (pass <= BUS_PASS_ROOT) 1103 return (EINVAL); 1104 1105 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1106 if (!dl) 1107 return (ENOMEM); 1108 1109 /* 1110 * Compile the driver's methods. Also increase the reference count 1111 * so that the class doesn't get freed when the last instance 1112 * goes. This means we can safely use static methods and avoids a 1113 * double-free in devclass_delete_driver. 1114 */ 1115 kobj_class_compile((kobj_class_t) driver); 1116 1117 /* 1118 * If the driver has any base classes, make the 1119 * devclass inherit from the devclass of the driver's 1120 * first base class. This will allow the system to 1121 * search for drivers in both devclasses for children 1122 * of a device using this driver. 1123 */ 1124 if (driver->baseclasses) 1125 parentname = driver->baseclasses[0]->name; 1126 else 1127 parentname = NULL; 1128 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1129 1130 dl->driver = driver; 1131 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1132 driver->refs++; /* XXX: kobj_mtx */ 1133 dl->pass = pass; 1134 driver_register_pass(dl); 1135 1136 devclass_driver_added(dc, driver); 1137 bus_data_generation_update(); 1138 return (0); 1139 } 1140 1141 /** 1142 * @brief Register that a device driver has been deleted from a devclass 1143 * 1144 * Register that a device driver has been removed from a devclass. 1145 * This is called by devclass_delete_driver to accomplish the 1146 * recursive notification of all the children classes of busclass, as 1147 * well as busclass. Each layer will attempt to detach the driver 1148 * from any devices that are children of the bus's devclass. The function 1149 * will return an error if a device fails to detach. 1150 * 1151 * We do a full search here of the devclass list at each iteration 1152 * level to save storing children-lists in the devclass structure. If 1153 * we ever move beyond a few dozen devices doing this, we may need to 1154 * reevaluate... 1155 * 1156 * @param busclass the devclass of the parent bus 1157 * @param dc the devclass of the driver being deleted 1158 * @param driver the driver being deleted 1159 */ 1160 static int 1161 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1162 { 1163 devclass_t parent; 1164 device_t dev; 1165 int error, i; 1166 1167 /* 1168 * Disassociate from any devices. We iterate through all the 1169 * devices in the devclass of the driver and detach any which are 1170 * using the driver and which have a parent in the devclass which 1171 * we are deleting from. 1172 * 1173 * Note that since a driver can be in multiple devclasses, we 1174 * should not detach devices which are not children of devices in 1175 * the affected devclass. 1176 */ 1177 for (i = 0; i < dc->maxunit; i++) { 1178 if (dc->devices[i]) { 1179 dev = dc->devices[i]; 1180 if (dev->driver == driver && dev->parent && 1181 dev->parent->devclass == busclass) { 1182 if ((error = device_detach(dev)) != 0) 1183 return (error); 1184 BUS_PROBE_NOMATCH(dev->parent, dev); 1185 devnomatch(dev); 1186 dev->flags |= DF_DONENOMATCH; 1187 } 1188 } 1189 } 1190 1191 /* 1192 * Walk through the children classes. Since we only keep a 1193 * single parent pointer around, we walk the entire list of 1194 * devclasses looking for children. We set the 1195 * DC_HAS_CHILDREN flag when a child devclass is created on 1196 * the parent, so we only walk the list for those devclasses 1197 * that have children. 1198 */ 1199 if (!(busclass->flags & DC_HAS_CHILDREN)) 1200 return (0); 1201 parent = busclass; 1202 TAILQ_FOREACH(busclass, &devclasses, link) { 1203 if (busclass->parent == parent) { 1204 error = devclass_driver_deleted(busclass, dc, driver); 1205 if (error) 1206 return (error); 1207 } 1208 } 1209 return (0); 1210 } 1211 1212 /** 1213 * @brief Delete a device driver from a device class 1214 * 1215 * Delete a device driver from a devclass. This is normally called 1216 * automatically by DRIVER_MODULE(). 1217 * 1218 * If the driver is currently attached to any devices, 1219 * devclass_delete_driver() will first attempt to detach from each 1220 * device. If one of the detach calls fails, the driver will not be 1221 * deleted. 1222 * 1223 * @param dc the devclass to edit 1224 * @param driver the driver to unregister 1225 */ 1226 int 1227 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1228 { 1229 devclass_t dc = devclass_find(driver->name); 1230 driverlink_t dl; 1231 int error; 1232 1233 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1234 1235 if (!dc) 1236 return (0); 1237 1238 /* 1239 * Find the link structure in the bus' list of drivers. 1240 */ 1241 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1242 if (dl->driver == driver) 1243 break; 1244 } 1245 1246 if (!dl) { 1247 PDEBUG(("%s not found in %s list", driver->name, 1248 busclass->name)); 1249 return (ENOENT); 1250 } 1251 1252 error = devclass_driver_deleted(busclass, dc, driver); 1253 if (error != 0) 1254 return (error); 1255 1256 TAILQ_REMOVE(&busclass->drivers, dl, link); 1257 free(dl, M_BUS); 1258 1259 /* XXX: kobj_mtx */ 1260 driver->refs--; 1261 if (driver->refs == 0) 1262 kobj_class_free((kobj_class_t) driver); 1263 1264 bus_data_generation_update(); 1265 return (0); 1266 } 1267 1268 /** 1269 * @brief Quiesces a set of device drivers from a device class 1270 * 1271 * Quiesce a device driver from a devclass. This is normally called 1272 * automatically by DRIVER_MODULE(). 1273 * 1274 * If the driver is currently attached to any devices, 1275 * devclass_quiesece_driver() will first attempt to quiesce each 1276 * device. 1277 * 1278 * @param dc the devclass to edit 1279 * @param driver the driver to unregister 1280 */ 1281 static int 1282 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1283 { 1284 devclass_t dc = devclass_find(driver->name); 1285 driverlink_t dl; 1286 device_t dev; 1287 int i; 1288 int error; 1289 1290 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1291 1292 if (!dc) 1293 return (0); 1294 1295 /* 1296 * Find the link structure in the bus' list of drivers. 1297 */ 1298 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1299 if (dl->driver == driver) 1300 break; 1301 } 1302 1303 if (!dl) { 1304 PDEBUG(("%s not found in %s list", driver->name, 1305 busclass->name)); 1306 return (ENOENT); 1307 } 1308 1309 /* 1310 * Quiesce all devices. We iterate through all the devices in 1311 * the devclass of the driver and quiesce any which are using 1312 * the driver and which have a parent in the devclass which we 1313 * are quiescing. 1314 * 1315 * Note that since a driver can be in multiple devclasses, we 1316 * should not quiesce devices which are not children of 1317 * devices in the affected devclass. 1318 */ 1319 for (i = 0; i < dc->maxunit; i++) { 1320 if (dc->devices[i]) { 1321 dev = dc->devices[i]; 1322 if (dev->driver == driver && dev->parent && 1323 dev->parent->devclass == busclass) { 1324 if ((error = device_quiesce(dev)) != 0) 1325 return (error); 1326 } 1327 } 1328 } 1329 1330 return (0); 1331 } 1332 1333 /** 1334 * @internal 1335 */ 1336 static driverlink_t 1337 devclass_find_driver_internal(devclass_t dc, const char *classname) 1338 { 1339 driverlink_t dl; 1340 1341 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1342 1343 TAILQ_FOREACH(dl, &dc->drivers, link) { 1344 if (!strcmp(dl->driver->name, classname)) 1345 return (dl); 1346 } 1347 1348 PDEBUG(("not found")); 1349 return (NULL); 1350 } 1351 1352 /** 1353 * @brief Return the name of the devclass 1354 */ 1355 const char * 1356 devclass_get_name(devclass_t dc) 1357 { 1358 return (dc->name); 1359 } 1360 1361 /** 1362 * @brief Find a device given a unit number 1363 * 1364 * @param dc the devclass to search 1365 * @param unit the unit number to search for 1366 * 1367 * @returns the device with the given unit number or @c 1368 * NULL if there is no such device 1369 */ 1370 device_t 1371 devclass_get_device(devclass_t dc, int unit) 1372 { 1373 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1374 return (NULL); 1375 return (dc->devices[unit]); 1376 } 1377 1378 /** 1379 * @brief Find the softc field of a device given a unit number 1380 * 1381 * @param dc the devclass to search 1382 * @param unit the unit number to search for 1383 * 1384 * @returns the softc field of the device with the given 1385 * unit number or @c NULL if there is no such 1386 * device 1387 */ 1388 void * 1389 devclass_get_softc(devclass_t dc, int unit) 1390 { 1391 device_t dev; 1392 1393 dev = devclass_get_device(dc, unit); 1394 if (!dev) 1395 return (NULL); 1396 1397 return (device_get_softc(dev)); 1398 } 1399 1400 /** 1401 * @brief Get a list of devices in the devclass 1402 * 1403 * An array containing a list of all the devices in the given devclass 1404 * is allocated and returned in @p *devlistp. The number of devices 1405 * in the array is returned in @p *devcountp. The caller should free 1406 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1407 * 1408 * @param dc the devclass to examine 1409 * @param devlistp points at location for array pointer return 1410 * value 1411 * @param devcountp points at location for array size return value 1412 * 1413 * @retval 0 success 1414 * @retval ENOMEM the array allocation failed 1415 */ 1416 int 1417 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1418 { 1419 int count, i; 1420 device_t *list; 1421 1422 count = devclass_get_count(dc); 1423 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1424 if (!list) 1425 return (ENOMEM); 1426 1427 count = 0; 1428 for (i = 0; i < dc->maxunit; i++) { 1429 if (dc->devices[i]) { 1430 list[count] = dc->devices[i]; 1431 count++; 1432 } 1433 } 1434 1435 *devlistp = list; 1436 *devcountp = count; 1437 1438 return (0); 1439 } 1440 1441 /** 1442 * @brief Get a list of drivers in the devclass 1443 * 1444 * An array containing a list of pointers to all the drivers in the 1445 * given devclass is allocated and returned in @p *listp. The number 1446 * of drivers in the array is returned in @p *countp. The caller should 1447 * free the array using @c free(p, M_TEMP). 1448 * 1449 * @param dc the devclass to examine 1450 * @param listp gives location for array pointer return value 1451 * @param countp gives location for number of array elements 1452 * return value 1453 * 1454 * @retval 0 success 1455 * @retval ENOMEM the array allocation failed 1456 */ 1457 int 1458 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1459 { 1460 driverlink_t dl; 1461 driver_t **list; 1462 int count; 1463 1464 count = 0; 1465 TAILQ_FOREACH(dl, &dc->drivers, link) 1466 count++; 1467 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1468 if (list == NULL) 1469 return (ENOMEM); 1470 1471 count = 0; 1472 TAILQ_FOREACH(dl, &dc->drivers, link) { 1473 list[count] = dl->driver; 1474 count++; 1475 } 1476 *listp = list; 1477 *countp = count; 1478 1479 return (0); 1480 } 1481 1482 /** 1483 * @brief Get the number of devices in a devclass 1484 * 1485 * @param dc the devclass to examine 1486 */ 1487 int 1488 devclass_get_count(devclass_t dc) 1489 { 1490 int count, i; 1491 1492 count = 0; 1493 for (i = 0; i < dc->maxunit; i++) 1494 if (dc->devices[i]) 1495 count++; 1496 return (count); 1497 } 1498 1499 /** 1500 * @brief Get the maximum unit number used in a devclass 1501 * 1502 * Note that this is one greater than the highest currently-allocated 1503 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1504 * that not even the devclass has been allocated yet. 1505 * 1506 * @param dc the devclass to examine 1507 */ 1508 int 1509 devclass_get_maxunit(devclass_t dc) 1510 { 1511 if (dc == NULL) 1512 return (-1); 1513 return (dc->maxunit); 1514 } 1515 1516 /** 1517 * @brief Find a free unit number in a devclass 1518 * 1519 * This function searches for the first unused unit number greater 1520 * that or equal to @p unit. 1521 * 1522 * @param dc the devclass to examine 1523 * @param unit the first unit number to check 1524 */ 1525 int 1526 devclass_find_free_unit(devclass_t dc, int unit) 1527 { 1528 if (dc == NULL) 1529 return (unit); 1530 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1531 unit++; 1532 return (unit); 1533 } 1534 1535 /** 1536 * @brief Set the parent of a devclass 1537 * 1538 * The parent class is normally initialised automatically by 1539 * DRIVER_MODULE(). 1540 * 1541 * @param dc the devclass to edit 1542 * @param pdc the new parent devclass 1543 */ 1544 void 1545 devclass_set_parent(devclass_t dc, devclass_t pdc) 1546 { 1547 dc->parent = pdc; 1548 } 1549 1550 /** 1551 * @brief Get the parent of a devclass 1552 * 1553 * @param dc the devclass to examine 1554 */ 1555 devclass_t 1556 devclass_get_parent(devclass_t dc) 1557 { 1558 return (dc->parent); 1559 } 1560 1561 struct sysctl_ctx_list * 1562 devclass_get_sysctl_ctx(devclass_t dc) 1563 { 1564 return (&dc->sysctl_ctx); 1565 } 1566 1567 struct sysctl_oid * 1568 devclass_get_sysctl_tree(devclass_t dc) 1569 { 1570 return (dc->sysctl_tree); 1571 } 1572 1573 /** 1574 * @internal 1575 * @brief Allocate a unit number 1576 * 1577 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1578 * will do). The allocated unit number is returned in @p *unitp. 1579 1580 * @param dc the devclass to allocate from 1581 * @param unitp points at the location for the allocated unit 1582 * number 1583 * 1584 * @retval 0 success 1585 * @retval EEXIST the requested unit number is already allocated 1586 * @retval ENOMEM memory allocation failure 1587 */ 1588 static int 1589 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1590 { 1591 const char *s; 1592 int unit = *unitp; 1593 1594 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1595 1596 /* Ask the parent bus if it wants to wire this device. */ 1597 if (unit == -1) 1598 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1599 &unit); 1600 1601 /* If we were given a wired unit number, check for existing device */ 1602 /* XXX imp XXX */ 1603 if (unit != -1) { 1604 if (unit >= 0 && unit < dc->maxunit && 1605 dc->devices[unit] != NULL) { 1606 if (bootverbose) 1607 printf("%s: %s%d already exists; skipping it\n", 1608 dc->name, dc->name, *unitp); 1609 return (EEXIST); 1610 } 1611 } else { 1612 /* Unwired device, find the next available slot for it */ 1613 unit = 0; 1614 for (unit = 0;; unit++) { 1615 /* If there is an "at" hint for a unit then skip it. */ 1616 if (resource_string_value(dc->name, unit, "at", &s) == 1617 0) 1618 continue; 1619 1620 /* If this device slot is already in use, skip it. */ 1621 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1622 continue; 1623 1624 break; 1625 } 1626 } 1627 1628 /* 1629 * We've selected a unit beyond the length of the table, so let's 1630 * extend the table to make room for all units up to and including 1631 * this one. 1632 */ 1633 if (unit >= dc->maxunit) { 1634 device_t *newlist, *oldlist; 1635 int newsize; 1636 1637 oldlist = dc->devices; 1638 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1639 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1640 if (!newlist) 1641 return (ENOMEM); 1642 if (oldlist != NULL) 1643 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1644 bzero(newlist + dc->maxunit, 1645 sizeof(device_t) * (newsize - dc->maxunit)); 1646 dc->devices = newlist; 1647 dc->maxunit = newsize; 1648 if (oldlist != NULL) 1649 free(oldlist, M_BUS); 1650 } 1651 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1652 1653 *unitp = unit; 1654 return (0); 1655 } 1656 1657 /** 1658 * @internal 1659 * @brief Add a device to a devclass 1660 * 1661 * A unit number is allocated for the device (using the device's 1662 * preferred unit number if any) and the device is registered in the 1663 * devclass. This allows the device to be looked up by its unit 1664 * number, e.g. by decoding a dev_t minor number. 1665 * 1666 * @param dc the devclass to add to 1667 * @param dev the device to add 1668 * 1669 * @retval 0 success 1670 * @retval EEXIST the requested unit number is already allocated 1671 * @retval ENOMEM memory allocation failure 1672 */ 1673 static int 1674 devclass_add_device(devclass_t dc, device_t dev) 1675 { 1676 int buflen, error; 1677 1678 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1679 1680 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1681 if (buflen < 0) 1682 return (ENOMEM); 1683 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1684 if (!dev->nameunit) 1685 return (ENOMEM); 1686 1687 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1688 free(dev->nameunit, M_BUS); 1689 dev->nameunit = NULL; 1690 return (error); 1691 } 1692 dc->devices[dev->unit] = dev; 1693 dev->devclass = dc; 1694 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1695 1696 return (0); 1697 } 1698 1699 /** 1700 * @internal 1701 * @brief Delete a device from a devclass 1702 * 1703 * The device is removed from the devclass's device list and its unit 1704 * number is freed. 1705 1706 * @param dc the devclass to delete from 1707 * @param dev the device to delete 1708 * 1709 * @retval 0 success 1710 */ 1711 static int 1712 devclass_delete_device(devclass_t dc, device_t dev) 1713 { 1714 if (!dc || !dev) 1715 return (0); 1716 1717 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1718 1719 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1720 panic("devclass_delete_device: inconsistent device class"); 1721 dc->devices[dev->unit] = NULL; 1722 if (dev->flags & DF_WILDCARD) 1723 dev->unit = -1; 1724 dev->devclass = NULL; 1725 free(dev->nameunit, M_BUS); 1726 dev->nameunit = NULL; 1727 1728 return (0); 1729 } 1730 1731 /** 1732 * @internal 1733 * @brief Make a new device and add it as a child of @p parent 1734 * 1735 * @param parent the parent of the new device 1736 * @param name the devclass name of the new device or @c NULL 1737 * to leave the devclass unspecified 1738 * @parem unit the unit number of the new device of @c -1 to 1739 * leave the unit number unspecified 1740 * 1741 * @returns the new device 1742 */ 1743 static device_t 1744 make_device(device_t parent, const char *name, int unit) 1745 { 1746 device_t dev; 1747 devclass_t dc; 1748 1749 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1750 1751 if (name) { 1752 dc = devclass_find_internal(name, NULL, TRUE); 1753 if (!dc) { 1754 printf("make_device: can't find device class %s\n", 1755 name); 1756 return (NULL); 1757 } 1758 } else { 1759 dc = NULL; 1760 } 1761 1762 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1763 if (!dev) 1764 return (NULL); 1765 1766 dev->parent = parent; 1767 TAILQ_INIT(&dev->children); 1768 kobj_init((kobj_t) dev, &null_class); 1769 dev->driver = NULL; 1770 dev->devclass = NULL; 1771 dev->unit = unit; 1772 dev->nameunit = NULL; 1773 dev->desc = NULL; 1774 dev->busy = 0; 1775 dev->devflags = 0; 1776 dev->flags = DF_ENABLED; 1777 dev->order = 0; 1778 if (unit == -1) 1779 dev->flags |= DF_WILDCARD; 1780 if (name) { 1781 dev->flags |= DF_FIXEDCLASS; 1782 if (devclass_add_device(dc, dev)) { 1783 kobj_delete((kobj_t) dev, M_BUS); 1784 return (NULL); 1785 } 1786 } 1787 dev->ivars = NULL; 1788 dev->softc = NULL; 1789 1790 dev->state = DS_NOTPRESENT; 1791 1792 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1793 bus_data_generation_update(); 1794 1795 return (dev); 1796 } 1797 1798 /** 1799 * @internal 1800 * @brief Print a description of a device. 1801 */ 1802 static int 1803 device_print_child(device_t dev, device_t child) 1804 { 1805 int retval = 0; 1806 1807 if (device_is_alive(child)) 1808 retval += BUS_PRINT_CHILD(dev, child); 1809 else 1810 retval += device_printf(child, " not found\n"); 1811 1812 return (retval); 1813 } 1814 1815 /** 1816 * @brief Create a new device 1817 * 1818 * This creates a new device and adds it as a child of an existing 1819 * parent device. The new device will be added after the last existing 1820 * child with order zero. 1821 * 1822 * @param dev the device which will be the parent of the 1823 * new child device 1824 * @param name devclass name for new device or @c NULL if not 1825 * specified 1826 * @param unit unit number for new device or @c -1 if not 1827 * specified 1828 * 1829 * @returns the new device 1830 */ 1831 device_t 1832 device_add_child(device_t dev, const char *name, int unit) 1833 { 1834 return (device_add_child_ordered(dev, 0, name, unit)); 1835 } 1836 1837 /** 1838 * @brief Create a new device 1839 * 1840 * This creates a new device and adds it as a child of an existing 1841 * parent device. The new device will be added after the last existing 1842 * child with the same order. 1843 * 1844 * @param dev the device which will be the parent of the 1845 * new child device 1846 * @param order a value which is used to partially sort the 1847 * children of @p dev - devices created using 1848 * lower values of @p order appear first in @p 1849 * dev's list of children 1850 * @param name devclass name for new device or @c NULL if not 1851 * specified 1852 * @param unit unit number for new device or @c -1 if not 1853 * specified 1854 * 1855 * @returns the new device 1856 */ 1857 device_t 1858 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1859 { 1860 device_t child; 1861 device_t place; 1862 1863 PDEBUG(("%s at %s with order %u as unit %d", 1864 name, DEVICENAME(dev), order, unit)); 1865 KASSERT(name != NULL || unit == -1, 1866 ("child device with wildcard name and specific unit number")); 1867 1868 child = make_device(dev, name, unit); 1869 if (child == NULL) 1870 return (child); 1871 child->order = order; 1872 1873 TAILQ_FOREACH(place, &dev->children, link) { 1874 if (place->order > order) 1875 break; 1876 } 1877 1878 if (place) { 1879 /* 1880 * The device 'place' is the first device whose order is 1881 * greater than the new child. 1882 */ 1883 TAILQ_INSERT_BEFORE(place, child, link); 1884 } else { 1885 /* 1886 * The new child's order is greater or equal to the order of 1887 * any existing device. Add the child to the tail of the list. 1888 */ 1889 TAILQ_INSERT_TAIL(&dev->children, child, link); 1890 } 1891 1892 bus_data_generation_update(); 1893 return (child); 1894 } 1895 1896 /** 1897 * @brief Delete a device 1898 * 1899 * This function deletes a device along with all of its children. If 1900 * the device currently has a driver attached to it, the device is 1901 * detached first using device_detach(). 1902 * 1903 * @param dev the parent device 1904 * @param child the device to delete 1905 * 1906 * @retval 0 success 1907 * @retval non-zero a unit error code describing the error 1908 */ 1909 int 1910 device_delete_child(device_t dev, device_t child) 1911 { 1912 int error; 1913 device_t grandchild; 1914 1915 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1916 1917 /* remove children first */ 1918 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1919 error = device_delete_child(child, grandchild); 1920 if (error) 1921 return (error); 1922 } 1923 1924 if ((error = device_detach(child)) != 0) 1925 return (error); 1926 if (child->devclass) 1927 devclass_delete_device(child->devclass, child); 1928 if (child->parent) 1929 BUS_CHILD_DELETED(dev, child); 1930 TAILQ_REMOVE(&dev->children, child, link); 1931 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1932 kobj_delete((kobj_t) child, M_BUS); 1933 1934 bus_data_generation_update(); 1935 return (0); 1936 } 1937 1938 /** 1939 * @brief Delete all children devices of the given device, if any. 1940 * 1941 * This function deletes all children devices of the given device, if 1942 * any, using the device_delete_child() function for each device it 1943 * finds. If a child device cannot be deleted, this function will 1944 * return an error code. 1945 * 1946 * @param dev the parent device 1947 * 1948 * @retval 0 success 1949 * @retval non-zero a device would not detach 1950 */ 1951 int 1952 device_delete_children(device_t dev) 1953 { 1954 device_t child; 1955 int error; 1956 1957 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1958 1959 error = 0; 1960 1961 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1962 error = device_delete_child(dev, child); 1963 if (error) { 1964 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1965 break; 1966 } 1967 } 1968 return (error); 1969 } 1970 1971 /** 1972 * @brief Find a device given a unit number 1973 * 1974 * This is similar to devclass_get_devices() but only searches for 1975 * devices which have @p dev as a parent. 1976 * 1977 * @param dev the parent device to search 1978 * @param unit the unit number to search for. If the unit is -1, 1979 * return the first child of @p dev which has name 1980 * @p classname (that is, the one with the lowest unit.) 1981 * 1982 * @returns the device with the given unit number or @c 1983 * NULL if there is no such device 1984 */ 1985 device_t 1986 device_find_child(device_t dev, const char *classname, int unit) 1987 { 1988 devclass_t dc; 1989 device_t child; 1990 1991 dc = devclass_find(classname); 1992 if (!dc) 1993 return (NULL); 1994 1995 if (unit != -1) { 1996 child = devclass_get_device(dc, unit); 1997 if (child && child->parent == dev) 1998 return (child); 1999 } else { 2000 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2001 child = devclass_get_device(dc, unit); 2002 if (child && child->parent == dev) 2003 return (child); 2004 } 2005 } 2006 return (NULL); 2007 } 2008 2009 /** 2010 * @internal 2011 */ 2012 static driverlink_t 2013 first_matching_driver(devclass_t dc, device_t dev) 2014 { 2015 if (dev->devclass) 2016 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2017 return (TAILQ_FIRST(&dc->drivers)); 2018 } 2019 2020 /** 2021 * @internal 2022 */ 2023 static driverlink_t 2024 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2025 { 2026 if (dev->devclass) { 2027 driverlink_t dl; 2028 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2029 if (!strcmp(dev->devclass->name, dl->driver->name)) 2030 return (dl); 2031 return (NULL); 2032 } 2033 return (TAILQ_NEXT(last, link)); 2034 } 2035 2036 /** 2037 * @internal 2038 */ 2039 int 2040 device_probe_child(device_t dev, device_t child) 2041 { 2042 devclass_t dc; 2043 driverlink_t best = NULL; 2044 driverlink_t dl; 2045 int result, pri = 0; 2046 int hasclass = (child->devclass != NULL); 2047 2048 GIANT_REQUIRED; 2049 2050 dc = dev->devclass; 2051 if (!dc) 2052 panic("device_probe_child: parent device has no devclass"); 2053 2054 /* 2055 * If the state is already probed, then return. However, don't 2056 * return if we can rebid this object. 2057 */ 2058 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2059 return (0); 2060 2061 for (; dc; dc = dc->parent) { 2062 for (dl = first_matching_driver(dc, child); 2063 dl; 2064 dl = next_matching_driver(dc, child, dl)) { 2065 /* If this driver's pass is too high, then ignore it. */ 2066 if (dl->pass > bus_current_pass) 2067 continue; 2068 2069 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2070 result = device_set_driver(child, dl->driver); 2071 if (result == ENOMEM) 2072 return (result); 2073 else if (result != 0) 2074 continue; 2075 if (!hasclass) { 2076 if (device_set_devclass(child, 2077 dl->driver->name) != 0) { 2078 char const * devname = 2079 device_get_name(child); 2080 if (devname == NULL) 2081 devname = "(unknown)"; 2082 printf("driver bug: Unable to set " 2083 "devclass (class: %s " 2084 "devname: %s)\n", 2085 dl->driver->name, 2086 devname); 2087 (void)device_set_driver(child, NULL); 2088 continue; 2089 } 2090 } 2091 2092 /* Fetch any flags for the device before probing. */ 2093 resource_int_value(dl->driver->name, child->unit, 2094 "flags", &child->devflags); 2095 2096 result = DEVICE_PROBE(child); 2097 2098 /* Reset flags and devclass before the next probe. */ 2099 child->devflags = 0; 2100 if (!hasclass) 2101 (void)device_set_devclass(child, NULL); 2102 2103 /* 2104 * If the driver returns SUCCESS, there can be 2105 * no higher match for this device. 2106 */ 2107 if (result == 0) { 2108 best = dl; 2109 pri = 0; 2110 break; 2111 } 2112 2113 /* 2114 * The driver returned an error so it 2115 * certainly doesn't match. 2116 */ 2117 if (result > 0) { 2118 (void)device_set_driver(child, NULL); 2119 continue; 2120 } 2121 2122 /* 2123 * A priority lower than SUCCESS, remember the 2124 * best matching driver. Initialise the value 2125 * of pri for the first match. 2126 */ 2127 if (best == NULL || result > pri) { 2128 /* 2129 * Probes that return BUS_PROBE_NOWILDCARD 2130 * or lower only match on devices whose 2131 * driver was explicitly specified. 2132 */ 2133 if (result <= BUS_PROBE_NOWILDCARD && 2134 !(child->flags & DF_FIXEDCLASS)) 2135 continue; 2136 best = dl; 2137 pri = result; 2138 continue; 2139 } 2140 } 2141 /* 2142 * If we have an unambiguous match in this devclass, 2143 * don't look in the parent. 2144 */ 2145 if (best && pri == 0) 2146 break; 2147 } 2148 2149 /* 2150 * If we found a driver, change state and initialise the devclass. 2151 */ 2152 /* XXX What happens if we rebid and got no best? */ 2153 if (best) { 2154 /* 2155 * If this device was attached, and we were asked to 2156 * rescan, and it is a different driver, then we have 2157 * to detach the old driver and reattach this new one. 2158 * Note, we don't have to check for DF_REBID here 2159 * because if the state is > DS_ALIVE, we know it must 2160 * be. 2161 * 2162 * This assumes that all DF_REBID drivers can have 2163 * their probe routine called at any time and that 2164 * they are idempotent as well as completely benign in 2165 * normal operations. 2166 * 2167 * We also have to make sure that the detach 2168 * succeeded, otherwise we fail the operation (or 2169 * maybe it should just fail silently? I'm torn). 2170 */ 2171 if (child->state > DS_ALIVE && best->driver != child->driver) 2172 if ((result = device_detach(dev)) != 0) 2173 return (result); 2174 2175 /* Set the winning driver, devclass, and flags. */ 2176 if (!child->devclass) { 2177 result = device_set_devclass(child, best->driver->name); 2178 if (result != 0) 2179 return (result); 2180 } 2181 result = device_set_driver(child, best->driver); 2182 if (result != 0) 2183 return (result); 2184 resource_int_value(best->driver->name, child->unit, 2185 "flags", &child->devflags); 2186 2187 if (pri < 0) { 2188 /* 2189 * A bit bogus. Call the probe method again to make 2190 * sure that we have the right description. 2191 */ 2192 DEVICE_PROBE(child); 2193 #if 0 2194 child->flags |= DF_REBID; 2195 #endif 2196 } else 2197 child->flags &= ~DF_REBID; 2198 child->state = DS_ALIVE; 2199 2200 bus_data_generation_update(); 2201 return (0); 2202 } 2203 2204 return (ENXIO); 2205 } 2206 2207 /** 2208 * @brief Return the parent of a device 2209 */ 2210 device_t 2211 device_get_parent(device_t dev) 2212 { 2213 return (dev->parent); 2214 } 2215 2216 /** 2217 * @brief Get a list of children of a device 2218 * 2219 * An array containing a list of all the children of the given device 2220 * is allocated and returned in @p *devlistp. The number of devices 2221 * in the array is returned in @p *devcountp. The caller should free 2222 * the array using @c free(p, M_TEMP). 2223 * 2224 * @param dev the device to examine 2225 * @param devlistp points at location for array pointer return 2226 * value 2227 * @param devcountp points at location for array size return value 2228 * 2229 * @retval 0 success 2230 * @retval ENOMEM the array allocation failed 2231 */ 2232 int 2233 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2234 { 2235 int count; 2236 device_t child; 2237 device_t *list; 2238 2239 count = 0; 2240 TAILQ_FOREACH(child, &dev->children, link) { 2241 count++; 2242 } 2243 if (count == 0) { 2244 *devlistp = NULL; 2245 *devcountp = 0; 2246 return (0); 2247 } 2248 2249 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2250 if (!list) 2251 return (ENOMEM); 2252 2253 count = 0; 2254 TAILQ_FOREACH(child, &dev->children, link) { 2255 list[count] = child; 2256 count++; 2257 } 2258 2259 *devlistp = list; 2260 *devcountp = count; 2261 2262 return (0); 2263 } 2264 2265 /** 2266 * @brief Return the current driver for the device or @c NULL if there 2267 * is no driver currently attached 2268 */ 2269 driver_t * 2270 device_get_driver(device_t dev) 2271 { 2272 return (dev->driver); 2273 } 2274 2275 /** 2276 * @brief Return the current devclass for the device or @c NULL if 2277 * there is none. 2278 */ 2279 devclass_t 2280 device_get_devclass(device_t dev) 2281 { 2282 return (dev->devclass); 2283 } 2284 2285 /** 2286 * @brief Return the name of the device's devclass or @c NULL if there 2287 * is none. 2288 */ 2289 const char * 2290 device_get_name(device_t dev) 2291 { 2292 if (dev != NULL && dev->devclass) 2293 return (devclass_get_name(dev->devclass)); 2294 return (NULL); 2295 } 2296 2297 /** 2298 * @brief Return a string containing the device's devclass name 2299 * followed by an ascii representation of the device's unit number 2300 * (e.g. @c "foo2"). 2301 */ 2302 const char * 2303 device_get_nameunit(device_t dev) 2304 { 2305 return (dev->nameunit); 2306 } 2307 2308 /** 2309 * @brief Return the device's unit number. 2310 */ 2311 int 2312 device_get_unit(device_t dev) 2313 { 2314 return (dev->unit); 2315 } 2316 2317 /** 2318 * @brief Return the device's description string 2319 */ 2320 const char * 2321 device_get_desc(device_t dev) 2322 { 2323 return (dev->desc); 2324 } 2325 2326 /** 2327 * @brief Return the device's flags 2328 */ 2329 uint32_t 2330 device_get_flags(device_t dev) 2331 { 2332 return (dev->devflags); 2333 } 2334 2335 struct sysctl_ctx_list * 2336 device_get_sysctl_ctx(device_t dev) 2337 { 2338 return (&dev->sysctl_ctx); 2339 } 2340 2341 struct sysctl_oid * 2342 device_get_sysctl_tree(device_t dev) 2343 { 2344 return (dev->sysctl_tree); 2345 } 2346 2347 /** 2348 * @brief Print the name of the device followed by a colon and a space 2349 * 2350 * @returns the number of characters printed 2351 */ 2352 int 2353 device_print_prettyname(device_t dev) 2354 { 2355 const char *name = device_get_name(dev); 2356 2357 if (name == NULL) 2358 return (printf("unknown: ")); 2359 return (printf("%s%d: ", name, device_get_unit(dev))); 2360 } 2361 2362 /** 2363 * @brief Print the name of the device followed by a colon, a space 2364 * and the result of calling vprintf() with the value of @p fmt and 2365 * the following arguments. 2366 * 2367 * @returns the number of characters printed 2368 */ 2369 int 2370 device_printf(device_t dev, const char * fmt, ...) 2371 { 2372 va_list ap; 2373 int retval; 2374 2375 retval = device_print_prettyname(dev); 2376 va_start(ap, fmt); 2377 retval += vprintf(fmt, ap); 2378 va_end(ap); 2379 return (retval); 2380 } 2381 2382 /** 2383 * @internal 2384 */ 2385 static void 2386 device_set_desc_internal(device_t dev, const char* desc, int copy) 2387 { 2388 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2389 free(dev->desc, M_BUS); 2390 dev->flags &= ~DF_DESCMALLOCED; 2391 dev->desc = NULL; 2392 } 2393 2394 if (copy && desc) { 2395 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2396 if (dev->desc) { 2397 strcpy(dev->desc, desc); 2398 dev->flags |= DF_DESCMALLOCED; 2399 } 2400 } else { 2401 /* Avoid a -Wcast-qual warning */ 2402 dev->desc = (char *)(uintptr_t) desc; 2403 } 2404 2405 bus_data_generation_update(); 2406 } 2407 2408 /** 2409 * @brief Set the device's description 2410 * 2411 * The value of @c desc should be a string constant that will not 2412 * change (at least until the description is changed in a subsequent 2413 * call to device_set_desc() or device_set_desc_copy()). 2414 */ 2415 void 2416 device_set_desc(device_t dev, const char* desc) 2417 { 2418 device_set_desc_internal(dev, desc, FALSE); 2419 } 2420 2421 /** 2422 * @brief Set the device's description 2423 * 2424 * The string pointed to by @c desc is copied. Use this function if 2425 * the device description is generated, (e.g. with sprintf()). 2426 */ 2427 void 2428 device_set_desc_copy(device_t dev, const char* desc) 2429 { 2430 device_set_desc_internal(dev, desc, TRUE); 2431 } 2432 2433 /** 2434 * @brief Set the device's flags 2435 */ 2436 void 2437 device_set_flags(device_t dev, uint32_t flags) 2438 { 2439 dev->devflags = flags; 2440 } 2441 2442 /** 2443 * @brief Return the device's softc field 2444 * 2445 * The softc is allocated and zeroed when a driver is attached, based 2446 * on the size field of the driver. 2447 */ 2448 void * 2449 device_get_softc(device_t dev) 2450 { 2451 return (dev->softc); 2452 } 2453 2454 /** 2455 * @brief Set the device's softc field 2456 * 2457 * Most drivers do not need to use this since the softc is allocated 2458 * automatically when the driver is attached. 2459 */ 2460 void 2461 device_set_softc(device_t dev, void *softc) 2462 { 2463 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2464 free(dev->softc, M_BUS_SC); 2465 dev->softc = softc; 2466 if (dev->softc) 2467 dev->flags |= DF_EXTERNALSOFTC; 2468 else 2469 dev->flags &= ~DF_EXTERNALSOFTC; 2470 } 2471 2472 /** 2473 * @brief Free claimed softc 2474 * 2475 * Most drivers do not need to use this since the softc is freed 2476 * automatically when the driver is detached. 2477 */ 2478 void 2479 device_free_softc(void *softc) 2480 { 2481 free(softc, M_BUS_SC); 2482 } 2483 2484 /** 2485 * @brief Claim softc 2486 * 2487 * This function can be used to let the driver free the automatically 2488 * allocated softc using "device_free_softc()". This function is 2489 * useful when the driver is refcounting the softc and the softc 2490 * cannot be freed when the "device_detach" method is called. 2491 */ 2492 void 2493 device_claim_softc(device_t dev) 2494 { 2495 if (dev->softc) 2496 dev->flags |= DF_EXTERNALSOFTC; 2497 else 2498 dev->flags &= ~DF_EXTERNALSOFTC; 2499 } 2500 2501 /** 2502 * @brief Get the device's ivars field 2503 * 2504 * The ivars field is used by the parent device to store per-device 2505 * state (e.g. the physical location of the device or a list of 2506 * resources). 2507 */ 2508 void * 2509 device_get_ivars(device_t dev) 2510 { 2511 2512 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2513 return (dev->ivars); 2514 } 2515 2516 /** 2517 * @brief Set the device's ivars field 2518 */ 2519 void 2520 device_set_ivars(device_t dev, void * ivars) 2521 { 2522 2523 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2524 dev->ivars = ivars; 2525 } 2526 2527 /** 2528 * @brief Return the device's state 2529 */ 2530 device_state_t 2531 device_get_state(device_t dev) 2532 { 2533 return (dev->state); 2534 } 2535 2536 /** 2537 * @brief Set the DF_ENABLED flag for the device 2538 */ 2539 void 2540 device_enable(device_t dev) 2541 { 2542 dev->flags |= DF_ENABLED; 2543 } 2544 2545 /** 2546 * @brief Clear the DF_ENABLED flag for the device 2547 */ 2548 void 2549 device_disable(device_t dev) 2550 { 2551 dev->flags &= ~DF_ENABLED; 2552 } 2553 2554 /** 2555 * @brief Increment the busy counter for the device 2556 */ 2557 void 2558 device_busy(device_t dev) 2559 { 2560 if (dev->state < DS_ATTACHING) 2561 panic("device_busy: called for unattached device"); 2562 if (dev->busy == 0 && dev->parent) 2563 device_busy(dev->parent); 2564 dev->busy++; 2565 if (dev->state == DS_ATTACHED) 2566 dev->state = DS_BUSY; 2567 } 2568 2569 /** 2570 * @brief Decrement the busy counter for the device 2571 */ 2572 void 2573 device_unbusy(device_t dev) 2574 { 2575 if (dev->busy != 0 && dev->state != DS_BUSY && 2576 dev->state != DS_ATTACHING) 2577 panic("device_unbusy: called for non-busy device %s", 2578 device_get_nameunit(dev)); 2579 dev->busy--; 2580 if (dev->busy == 0) { 2581 if (dev->parent) 2582 device_unbusy(dev->parent); 2583 if (dev->state == DS_BUSY) 2584 dev->state = DS_ATTACHED; 2585 } 2586 } 2587 2588 /** 2589 * @brief Set the DF_QUIET flag for the device 2590 */ 2591 void 2592 device_quiet(device_t dev) 2593 { 2594 dev->flags |= DF_QUIET; 2595 } 2596 2597 /** 2598 * @brief Clear the DF_QUIET flag for the device 2599 */ 2600 void 2601 device_verbose(device_t dev) 2602 { 2603 dev->flags &= ~DF_QUIET; 2604 } 2605 2606 /** 2607 * @brief Return non-zero if the DF_QUIET flag is set on the device 2608 */ 2609 int 2610 device_is_quiet(device_t dev) 2611 { 2612 return ((dev->flags & DF_QUIET) != 0); 2613 } 2614 2615 /** 2616 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2617 */ 2618 int 2619 device_is_enabled(device_t dev) 2620 { 2621 return ((dev->flags & DF_ENABLED) != 0); 2622 } 2623 2624 /** 2625 * @brief Return non-zero if the device was successfully probed 2626 */ 2627 int 2628 device_is_alive(device_t dev) 2629 { 2630 return (dev->state >= DS_ALIVE); 2631 } 2632 2633 /** 2634 * @brief Return non-zero if the device currently has a driver 2635 * attached to it 2636 */ 2637 int 2638 device_is_attached(device_t dev) 2639 { 2640 return (dev->state >= DS_ATTACHED); 2641 } 2642 2643 /** 2644 * @brief Set the devclass of a device 2645 * @see devclass_add_device(). 2646 */ 2647 int 2648 device_set_devclass(device_t dev, const char *classname) 2649 { 2650 devclass_t dc; 2651 int error; 2652 2653 if (!classname) { 2654 if (dev->devclass) 2655 devclass_delete_device(dev->devclass, dev); 2656 return (0); 2657 } 2658 2659 if (dev->devclass) { 2660 printf("device_set_devclass: device class already set\n"); 2661 return (EINVAL); 2662 } 2663 2664 dc = devclass_find_internal(classname, NULL, TRUE); 2665 if (!dc) 2666 return (ENOMEM); 2667 2668 error = devclass_add_device(dc, dev); 2669 2670 bus_data_generation_update(); 2671 return (error); 2672 } 2673 2674 /** 2675 * @brief Set the driver of a device 2676 * 2677 * @retval 0 success 2678 * @retval EBUSY the device already has a driver attached 2679 * @retval ENOMEM a memory allocation failure occurred 2680 */ 2681 int 2682 device_set_driver(device_t dev, driver_t *driver) 2683 { 2684 if (dev->state >= DS_ATTACHED) 2685 return (EBUSY); 2686 2687 if (dev->driver == driver) 2688 return (0); 2689 2690 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2691 free(dev->softc, M_BUS_SC); 2692 dev->softc = NULL; 2693 } 2694 device_set_desc(dev, NULL); 2695 kobj_delete((kobj_t) dev, NULL); 2696 dev->driver = driver; 2697 if (driver) { 2698 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2699 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2700 dev->softc = malloc(driver->size, M_BUS_SC, 2701 M_NOWAIT | M_ZERO); 2702 if (!dev->softc) { 2703 kobj_delete((kobj_t) dev, NULL); 2704 kobj_init((kobj_t) dev, &null_class); 2705 dev->driver = NULL; 2706 return (ENOMEM); 2707 } 2708 } 2709 } else { 2710 kobj_init((kobj_t) dev, &null_class); 2711 } 2712 2713 bus_data_generation_update(); 2714 return (0); 2715 } 2716 2717 /** 2718 * @brief Probe a device, and return this status. 2719 * 2720 * This function is the core of the device autoconfiguration 2721 * system. Its purpose is to select a suitable driver for a device and 2722 * then call that driver to initialise the hardware appropriately. The 2723 * driver is selected by calling the DEVICE_PROBE() method of a set of 2724 * candidate drivers and then choosing the driver which returned the 2725 * best value. This driver is then attached to the device using 2726 * device_attach(). 2727 * 2728 * The set of suitable drivers is taken from the list of drivers in 2729 * the parent device's devclass. If the device was originally created 2730 * with a specific class name (see device_add_child()), only drivers 2731 * with that name are probed, otherwise all drivers in the devclass 2732 * are probed. If no drivers return successful probe values in the 2733 * parent devclass, the search continues in the parent of that 2734 * devclass (see devclass_get_parent()) if any. 2735 * 2736 * @param dev the device to initialise 2737 * 2738 * @retval 0 success 2739 * @retval ENXIO no driver was found 2740 * @retval ENOMEM memory allocation failure 2741 * @retval non-zero some other unix error code 2742 * @retval -1 Device already attached 2743 */ 2744 int 2745 device_probe(device_t dev) 2746 { 2747 int error; 2748 2749 GIANT_REQUIRED; 2750 2751 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2752 return (-1); 2753 2754 if (!(dev->flags & DF_ENABLED)) { 2755 if (bootverbose && device_get_name(dev) != NULL) { 2756 device_print_prettyname(dev); 2757 printf("not probed (disabled)\n"); 2758 } 2759 return (-1); 2760 } 2761 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2762 if (bus_current_pass == BUS_PASS_DEFAULT && 2763 !(dev->flags & DF_DONENOMATCH)) { 2764 BUS_PROBE_NOMATCH(dev->parent, dev); 2765 devnomatch(dev); 2766 dev->flags |= DF_DONENOMATCH; 2767 } 2768 return (error); 2769 } 2770 return (0); 2771 } 2772 2773 /** 2774 * @brief Probe a device and attach a driver if possible 2775 * 2776 * calls device_probe() and attaches if that was successful. 2777 */ 2778 int 2779 device_probe_and_attach(device_t dev) 2780 { 2781 int error; 2782 2783 GIANT_REQUIRED; 2784 2785 error = device_probe(dev); 2786 if (error == -1) 2787 return (0); 2788 else if (error != 0) 2789 return (error); 2790 2791 CURVNET_SET_QUIET(vnet0); 2792 error = device_attach(dev); 2793 CURVNET_RESTORE(); 2794 return error; 2795 } 2796 2797 /** 2798 * @brief Attach a device driver to a device 2799 * 2800 * This function is a wrapper around the DEVICE_ATTACH() driver 2801 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2802 * device's sysctl tree, optionally prints a description of the device 2803 * and queues a notification event for user-based device management 2804 * services. 2805 * 2806 * Normally this function is only called internally from 2807 * device_probe_and_attach(). 2808 * 2809 * @param dev the device to initialise 2810 * 2811 * @retval 0 success 2812 * @retval ENXIO no driver was found 2813 * @retval ENOMEM memory allocation failure 2814 * @retval non-zero some other unix error code 2815 */ 2816 int 2817 device_attach(device_t dev) 2818 { 2819 uint64_t attachtime; 2820 int error; 2821 2822 if (resource_disabled(dev->driver->name, dev->unit)) { 2823 device_disable(dev); 2824 if (bootverbose) 2825 device_printf(dev, "disabled via hints entry\n"); 2826 return (ENXIO); 2827 } 2828 2829 device_sysctl_init(dev); 2830 if (!device_is_quiet(dev)) 2831 device_print_child(dev->parent, dev); 2832 attachtime = get_cyclecount(); 2833 dev->state = DS_ATTACHING; 2834 if ((error = DEVICE_ATTACH(dev)) != 0) { 2835 printf("device_attach: %s%d attach returned %d\n", 2836 dev->driver->name, dev->unit, error); 2837 if (!(dev->flags & DF_FIXEDCLASS)) 2838 devclass_delete_device(dev->devclass, dev); 2839 (void)device_set_driver(dev, NULL); 2840 device_sysctl_fini(dev); 2841 KASSERT(dev->busy == 0, ("attach failed but busy")); 2842 dev->state = DS_NOTPRESENT; 2843 return (error); 2844 } 2845 attachtime = get_cyclecount() - attachtime; 2846 /* 2847 * 4 bits per device is a reasonable value for desktop and server 2848 * hardware with good get_cyclecount() implementations, but may 2849 * need to be adjusted on other platforms. 2850 */ 2851 #ifdef RANDOM_DEBUG 2852 printf("%s(): feeding %d bit(s) of entropy from %s%d\n", 2853 __func__, 4, dev->driver->name, dev->unit); 2854 #endif 2855 random_harvest(&attachtime, sizeof(attachtime), 4, RANDOM_ATTACH); 2856 device_sysctl_update(dev); 2857 if (dev->busy) 2858 dev->state = DS_BUSY; 2859 else 2860 dev->state = DS_ATTACHED; 2861 dev->flags &= ~DF_DONENOMATCH; 2862 devadded(dev); 2863 return (0); 2864 } 2865 2866 /** 2867 * @brief Detach a driver from a device 2868 * 2869 * This function is a wrapper around the DEVICE_DETACH() driver 2870 * method. If the call to DEVICE_DETACH() succeeds, it calls 2871 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2872 * notification event for user-based device management services and 2873 * cleans up the device's sysctl tree. 2874 * 2875 * @param dev the device to un-initialise 2876 * 2877 * @retval 0 success 2878 * @retval ENXIO no driver was found 2879 * @retval ENOMEM memory allocation failure 2880 * @retval non-zero some other unix error code 2881 */ 2882 int 2883 device_detach(device_t dev) 2884 { 2885 int error; 2886 2887 GIANT_REQUIRED; 2888 2889 PDEBUG(("%s", DEVICENAME(dev))); 2890 if (dev->state == DS_BUSY) 2891 return (EBUSY); 2892 if (dev->state != DS_ATTACHED) 2893 return (0); 2894 2895 if ((error = DEVICE_DETACH(dev)) != 0) 2896 return (error); 2897 devremoved(dev); 2898 if (!device_is_quiet(dev)) 2899 device_printf(dev, "detached\n"); 2900 if (dev->parent) 2901 BUS_CHILD_DETACHED(dev->parent, dev); 2902 2903 if (!(dev->flags & DF_FIXEDCLASS)) 2904 devclass_delete_device(dev->devclass, dev); 2905 2906 dev->state = DS_NOTPRESENT; 2907 (void)device_set_driver(dev, NULL); 2908 device_sysctl_fini(dev); 2909 2910 return (0); 2911 } 2912 2913 /** 2914 * @brief Tells a driver to quiesce itself. 2915 * 2916 * This function is a wrapper around the DEVICE_QUIESCE() driver 2917 * method. If the call to DEVICE_QUIESCE() succeeds. 2918 * 2919 * @param dev the device to quiesce 2920 * 2921 * @retval 0 success 2922 * @retval ENXIO no driver was found 2923 * @retval ENOMEM memory allocation failure 2924 * @retval non-zero some other unix error code 2925 */ 2926 int 2927 device_quiesce(device_t dev) 2928 { 2929 2930 PDEBUG(("%s", DEVICENAME(dev))); 2931 if (dev->state == DS_BUSY) 2932 return (EBUSY); 2933 if (dev->state != DS_ATTACHED) 2934 return (0); 2935 2936 return (DEVICE_QUIESCE(dev)); 2937 } 2938 2939 /** 2940 * @brief Notify a device of system shutdown 2941 * 2942 * This function calls the DEVICE_SHUTDOWN() driver method if the 2943 * device currently has an attached driver. 2944 * 2945 * @returns the value returned by DEVICE_SHUTDOWN() 2946 */ 2947 int 2948 device_shutdown(device_t dev) 2949 { 2950 if (dev->state < DS_ATTACHED) 2951 return (0); 2952 return (DEVICE_SHUTDOWN(dev)); 2953 } 2954 2955 /** 2956 * @brief Set the unit number of a device 2957 * 2958 * This function can be used to override the unit number used for a 2959 * device (e.g. to wire a device to a pre-configured unit number). 2960 */ 2961 int 2962 device_set_unit(device_t dev, int unit) 2963 { 2964 devclass_t dc; 2965 int err; 2966 2967 dc = device_get_devclass(dev); 2968 if (unit < dc->maxunit && dc->devices[unit]) 2969 return (EBUSY); 2970 err = devclass_delete_device(dc, dev); 2971 if (err) 2972 return (err); 2973 dev->unit = unit; 2974 err = devclass_add_device(dc, dev); 2975 if (err) 2976 return (err); 2977 2978 bus_data_generation_update(); 2979 return (0); 2980 } 2981 2982 /*======================================*/ 2983 /* 2984 * Some useful method implementations to make life easier for bus drivers. 2985 */ 2986 2987 /** 2988 * @brief Initialise a resource list. 2989 * 2990 * @param rl the resource list to initialise 2991 */ 2992 void 2993 resource_list_init(struct resource_list *rl) 2994 { 2995 STAILQ_INIT(rl); 2996 } 2997 2998 /** 2999 * @brief Reclaim memory used by a resource list. 3000 * 3001 * This function frees the memory for all resource entries on the list 3002 * (if any). 3003 * 3004 * @param rl the resource list to free 3005 */ 3006 void 3007 resource_list_free(struct resource_list *rl) 3008 { 3009 struct resource_list_entry *rle; 3010 3011 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3012 if (rle->res) 3013 panic("resource_list_free: resource entry is busy"); 3014 STAILQ_REMOVE_HEAD(rl, link); 3015 free(rle, M_BUS); 3016 } 3017 } 3018 3019 /** 3020 * @brief Add a resource entry. 3021 * 3022 * This function adds a resource entry using the given @p type, @p 3023 * start, @p end and @p count values. A rid value is chosen by 3024 * searching sequentially for the first unused rid starting at zero. 3025 * 3026 * @param rl the resource list to edit 3027 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3028 * @param start the start address of the resource 3029 * @param end the end address of the resource 3030 * @param count XXX end-start+1 3031 */ 3032 int 3033 resource_list_add_next(struct resource_list *rl, int type, u_long start, 3034 u_long end, u_long count) 3035 { 3036 int rid; 3037 3038 rid = 0; 3039 while (resource_list_find(rl, type, rid) != NULL) 3040 rid++; 3041 resource_list_add(rl, type, rid, start, end, count); 3042 return (rid); 3043 } 3044 3045 /** 3046 * @brief Add or modify a resource entry. 3047 * 3048 * If an existing entry exists with the same type and rid, it will be 3049 * modified using the given values of @p start, @p end and @p 3050 * count. If no entry exists, a new one will be created using the 3051 * given values. The resource list entry that matches is then returned. 3052 * 3053 * @param rl the resource list to edit 3054 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3055 * @param rid the resource identifier 3056 * @param start the start address of the resource 3057 * @param end the end address of the resource 3058 * @param count XXX end-start+1 3059 */ 3060 struct resource_list_entry * 3061 resource_list_add(struct resource_list *rl, int type, int rid, 3062 u_long start, u_long end, u_long count) 3063 { 3064 struct resource_list_entry *rle; 3065 3066 rle = resource_list_find(rl, type, rid); 3067 if (!rle) { 3068 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3069 M_NOWAIT); 3070 if (!rle) 3071 panic("resource_list_add: can't record entry"); 3072 STAILQ_INSERT_TAIL(rl, rle, link); 3073 rle->type = type; 3074 rle->rid = rid; 3075 rle->res = NULL; 3076 rle->flags = 0; 3077 } 3078 3079 if (rle->res) 3080 panic("resource_list_add: resource entry is busy"); 3081 3082 rle->start = start; 3083 rle->end = end; 3084 rle->count = count; 3085 return (rle); 3086 } 3087 3088 /** 3089 * @brief Determine if a resource entry is busy. 3090 * 3091 * Returns true if a resource entry is busy meaning that it has an 3092 * associated resource that is not an unallocated "reserved" resource. 3093 * 3094 * @param rl the resource list to search 3095 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3096 * @param rid the resource identifier 3097 * 3098 * @returns Non-zero if the entry is busy, zero otherwise. 3099 */ 3100 int 3101 resource_list_busy(struct resource_list *rl, int type, int rid) 3102 { 3103 struct resource_list_entry *rle; 3104 3105 rle = resource_list_find(rl, type, rid); 3106 if (rle == NULL || rle->res == NULL) 3107 return (0); 3108 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3109 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3110 ("reserved resource is active")); 3111 return (0); 3112 } 3113 return (1); 3114 } 3115 3116 /** 3117 * @brief Determine if a resource entry is reserved. 3118 * 3119 * Returns true if a resource entry is reserved meaning that it has an 3120 * associated "reserved" resource. The resource can either be 3121 * allocated or unallocated. 3122 * 3123 * @param rl the resource list to search 3124 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3125 * @param rid the resource identifier 3126 * 3127 * @returns Non-zero if the entry is reserved, zero otherwise. 3128 */ 3129 int 3130 resource_list_reserved(struct resource_list *rl, int type, int rid) 3131 { 3132 struct resource_list_entry *rle; 3133 3134 rle = resource_list_find(rl, type, rid); 3135 if (rle != NULL && rle->flags & RLE_RESERVED) 3136 return (1); 3137 return (0); 3138 } 3139 3140 /** 3141 * @brief Find a resource entry by type and rid. 3142 * 3143 * @param rl the resource list to search 3144 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3145 * @param rid the resource identifier 3146 * 3147 * @returns the resource entry pointer or NULL if there is no such 3148 * entry. 3149 */ 3150 struct resource_list_entry * 3151 resource_list_find(struct resource_list *rl, int type, int rid) 3152 { 3153 struct resource_list_entry *rle; 3154 3155 STAILQ_FOREACH(rle, rl, link) { 3156 if (rle->type == type && rle->rid == rid) 3157 return (rle); 3158 } 3159 return (NULL); 3160 } 3161 3162 /** 3163 * @brief Delete a resource entry. 3164 * 3165 * @param rl the resource list to edit 3166 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3167 * @param rid the resource identifier 3168 */ 3169 void 3170 resource_list_delete(struct resource_list *rl, int type, int rid) 3171 { 3172 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3173 3174 if (rle) { 3175 if (rle->res != NULL) 3176 panic("resource_list_delete: resource has not been released"); 3177 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3178 free(rle, M_BUS); 3179 } 3180 } 3181 3182 /** 3183 * @brief Allocate a reserved resource 3184 * 3185 * This can be used by busses to force the allocation of resources 3186 * that are always active in the system even if they are not allocated 3187 * by a driver (e.g. PCI BARs). This function is usually called when 3188 * adding a new child to the bus. The resource is allocated from the 3189 * parent bus when it is reserved. The resource list entry is marked 3190 * with RLE_RESERVED to note that it is a reserved resource. 3191 * 3192 * Subsequent attempts to allocate the resource with 3193 * resource_list_alloc() will succeed the first time and will set 3194 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3195 * resource that has been allocated is released with 3196 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3197 * the actual resource remains allocated. The resource can be released to 3198 * the parent bus by calling resource_list_unreserve(). 3199 * 3200 * @param rl the resource list to allocate from 3201 * @param bus the parent device of @p child 3202 * @param child the device for which the resource is being reserved 3203 * @param type the type of resource to allocate 3204 * @param rid a pointer to the resource identifier 3205 * @param start hint at the start of the resource range - pass 3206 * @c 0UL for any start address 3207 * @param end hint at the end of the resource range - pass 3208 * @c ~0UL for any end address 3209 * @param count hint at the size of range required - pass @c 1 3210 * for any size 3211 * @param flags any extra flags to control the resource 3212 * allocation - see @c RF_XXX flags in 3213 * <sys/rman.h> for details 3214 * 3215 * @returns the resource which was allocated or @c NULL if no 3216 * resource could be allocated 3217 */ 3218 struct resource * 3219 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3220 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3221 { 3222 struct resource_list_entry *rle = NULL; 3223 int passthrough = (device_get_parent(child) != bus); 3224 struct resource *r; 3225 3226 if (passthrough) 3227 panic( 3228 "resource_list_reserve() should only be called for direct children"); 3229 if (flags & RF_ACTIVE) 3230 panic( 3231 "resource_list_reserve() should only reserve inactive resources"); 3232 3233 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3234 flags); 3235 if (r != NULL) { 3236 rle = resource_list_find(rl, type, *rid); 3237 rle->flags |= RLE_RESERVED; 3238 } 3239 return (r); 3240 } 3241 3242 /** 3243 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3244 * 3245 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3246 * and passing the allocation up to the parent of @p bus. This assumes 3247 * that the first entry of @c device_get_ivars(child) is a struct 3248 * resource_list. This also handles 'passthrough' allocations where a 3249 * child is a remote descendant of bus by passing the allocation up to 3250 * the parent of bus. 3251 * 3252 * Typically, a bus driver would store a list of child resources 3253 * somewhere in the child device's ivars (see device_get_ivars()) and 3254 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3255 * then call resource_list_alloc() to perform the allocation. 3256 * 3257 * @param rl the resource list to allocate from 3258 * @param bus the parent device of @p child 3259 * @param child the device which is requesting an allocation 3260 * @param type the type of resource to allocate 3261 * @param rid a pointer to the resource identifier 3262 * @param start hint at the start of the resource range - pass 3263 * @c 0UL for any start address 3264 * @param end hint at the end of the resource range - pass 3265 * @c ~0UL for any end address 3266 * @param count hint at the size of range required - pass @c 1 3267 * for any size 3268 * @param flags any extra flags to control the resource 3269 * allocation - see @c RF_XXX flags in 3270 * <sys/rman.h> for details 3271 * 3272 * @returns the resource which was allocated or @c NULL if no 3273 * resource could be allocated 3274 */ 3275 struct resource * 3276 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3277 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3278 { 3279 struct resource_list_entry *rle = NULL; 3280 int passthrough = (device_get_parent(child) != bus); 3281 int isdefault = (start == 0UL && end == ~0UL); 3282 3283 if (passthrough) { 3284 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3285 type, rid, start, end, count, flags)); 3286 } 3287 3288 rle = resource_list_find(rl, type, *rid); 3289 3290 if (!rle) 3291 return (NULL); /* no resource of that type/rid */ 3292 3293 if (rle->res) { 3294 if (rle->flags & RLE_RESERVED) { 3295 if (rle->flags & RLE_ALLOCATED) 3296 return (NULL); 3297 if ((flags & RF_ACTIVE) && 3298 bus_activate_resource(child, type, *rid, 3299 rle->res) != 0) 3300 return (NULL); 3301 rle->flags |= RLE_ALLOCATED; 3302 return (rle->res); 3303 } 3304 panic("resource_list_alloc: resource entry is busy"); 3305 } 3306 3307 if (isdefault) { 3308 start = rle->start; 3309 count = ulmax(count, rle->count); 3310 end = ulmax(rle->end, start + count - 1); 3311 } 3312 3313 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3314 type, rid, start, end, count, flags); 3315 3316 /* 3317 * Record the new range. 3318 */ 3319 if (rle->res) { 3320 rle->start = rman_get_start(rle->res); 3321 rle->end = rman_get_end(rle->res); 3322 rle->count = count; 3323 } 3324 3325 return (rle->res); 3326 } 3327 3328 /** 3329 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3330 * 3331 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3332 * used with resource_list_alloc(). 3333 * 3334 * @param rl the resource list which was allocated from 3335 * @param bus the parent device of @p child 3336 * @param child the device which is requesting a release 3337 * @param type the type of resource to release 3338 * @param rid the resource identifier 3339 * @param res the resource to release 3340 * 3341 * @retval 0 success 3342 * @retval non-zero a standard unix error code indicating what 3343 * error condition prevented the operation 3344 */ 3345 int 3346 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3347 int type, int rid, struct resource *res) 3348 { 3349 struct resource_list_entry *rle = NULL; 3350 int passthrough = (device_get_parent(child) != bus); 3351 int error; 3352 3353 if (passthrough) { 3354 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3355 type, rid, res)); 3356 } 3357 3358 rle = resource_list_find(rl, type, rid); 3359 3360 if (!rle) 3361 panic("resource_list_release: can't find resource"); 3362 if (!rle->res) 3363 panic("resource_list_release: resource entry is not busy"); 3364 if (rle->flags & RLE_RESERVED) { 3365 if (rle->flags & RLE_ALLOCATED) { 3366 if (rman_get_flags(res) & RF_ACTIVE) { 3367 error = bus_deactivate_resource(child, type, 3368 rid, res); 3369 if (error) 3370 return (error); 3371 } 3372 rle->flags &= ~RLE_ALLOCATED; 3373 return (0); 3374 } 3375 return (EINVAL); 3376 } 3377 3378 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3379 type, rid, res); 3380 if (error) 3381 return (error); 3382 3383 rle->res = NULL; 3384 return (0); 3385 } 3386 3387 /** 3388 * @brief Release all active resources of a given type 3389 * 3390 * Release all active resources of a specified type. This is intended 3391 * to be used to cleanup resources leaked by a driver after detach or 3392 * a failed attach. 3393 * 3394 * @param rl the resource list which was allocated from 3395 * @param bus the parent device of @p child 3396 * @param child the device whose active resources are being released 3397 * @param type the type of resources to release 3398 * 3399 * @retval 0 success 3400 * @retval EBUSY at least one resource was active 3401 */ 3402 int 3403 resource_list_release_active(struct resource_list *rl, device_t bus, 3404 device_t child, int type) 3405 { 3406 struct resource_list_entry *rle; 3407 int error, retval; 3408 3409 retval = 0; 3410 STAILQ_FOREACH(rle, rl, link) { 3411 if (rle->type != type) 3412 continue; 3413 if (rle->res == NULL) 3414 continue; 3415 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3416 RLE_RESERVED) 3417 continue; 3418 retval = EBUSY; 3419 error = resource_list_release(rl, bus, child, type, 3420 rman_get_rid(rle->res), rle->res); 3421 if (error != 0) 3422 device_printf(bus, 3423 "Failed to release active resource: %d\n", error); 3424 } 3425 return (retval); 3426 } 3427 3428 3429 /** 3430 * @brief Fully release a reserved resource 3431 * 3432 * Fully releases a resource reserved via resource_list_reserve(). 3433 * 3434 * @param rl the resource list which was allocated from 3435 * @param bus the parent device of @p child 3436 * @param child the device whose reserved resource is being released 3437 * @param type the type of resource to release 3438 * @param rid the resource identifier 3439 * @param res the resource to release 3440 * 3441 * @retval 0 success 3442 * @retval non-zero a standard unix error code indicating what 3443 * error condition prevented the operation 3444 */ 3445 int 3446 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3447 int type, int rid) 3448 { 3449 struct resource_list_entry *rle = NULL; 3450 int passthrough = (device_get_parent(child) != bus); 3451 3452 if (passthrough) 3453 panic( 3454 "resource_list_unreserve() should only be called for direct children"); 3455 3456 rle = resource_list_find(rl, type, rid); 3457 3458 if (!rle) 3459 panic("resource_list_unreserve: can't find resource"); 3460 if (!(rle->flags & RLE_RESERVED)) 3461 return (EINVAL); 3462 if (rle->flags & RLE_ALLOCATED) 3463 return (EBUSY); 3464 rle->flags &= ~RLE_RESERVED; 3465 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3466 } 3467 3468 /** 3469 * @brief Print a description of resources in a resource list 3470 * 3471 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3472 * The name is printed if at least one resource of the given type is available. 3473 * The format is used to print resource start and end. 3474 * 3475 * @param rl the resource list to print 3476 * @param name the name of @p type, e.g. @c "memory" 3477 * @param type type type of resource entry to print 3478 * @param format printf(9) format string to print resource 3479 * start and end values 3480 * 3481 * @returns the number of characters printed 3482 */ 3483 int 3484 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3485 const char *format) 3486 { 3487 struct resource_list_entry *rle; 3488 int printed, retval; 3489 3490 printed = 0; 3491 retval = 0; 3492 /* Yes, this is kinda cheating */ 3493 STAILQ_FOREACH(rle, rl, link) { 3494 if (rle->type == type) { 3495 if (printed == 0) 3496 retval += printf(" %s ", name); 3497 else 3498 retval += printf(","); 3499 printed++; 3500 retval += printf(format, rle->start); 3501 if (rle->count > 1) { 3502 retval += printf("-"); 3503 retval += printf(format, rle->start + 3504 rle->count - 1); 3505 } 3506 } 3507 } 3508 return (retval); 3509 } 3510 3511 /** 3512 * @brief Releases all the resources in a list. 3513 * 3514 * @param rl The resource list to purge. 3515 * 3516 * @returns nothing 3517 */ 3518 void 3519 resource_list_purge(struct resource_list *rl) 3520 { 3521 struct resource_list_entry *rle; 3522 3523 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3524 if (rle->res) 3525 bus_release_resource(rman_get_device(rle->res), 3526 rle->type, rle->rid, rle->res); 3527 STAILQ_REMOVE_HEAD(rl, link); 3528 free(rle, M_BUS); 3529 } 3530 } 3531 3532 device_t 3533 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3534 { 3535 3536 return (device_add_child_ordered(dev, order, name, unit)); 3537 } 3538 3539 /** 3540 * @brief Helper function for implementing DEVICE_PROBE() 3541 * 3542 * This function can be used to help implement the DEVICE_PROBE() for 3543 * a bus (i.e. a device which has other devices attached to it). It 3544 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3545 * devclass. 3546 */ 3547 int 3548 bus_generic_probe(device_t dev) 3549 { 3550 devclass_t dc = dev->devclass; 3551 driverlink_t dl; 3552 3553 TAILQ_FOREACH(dl, &dc->drivers, link) { 3554 /* 3555 * If this driver's pass is too high, then ignore it. 3556 * For most drivers in the default pass, this will 3557 * never be true. For early-pass drivers they will 3558 * only call the identify routines of eligible drivers 3559 * when this routine is called. Drivers for later 3560 * passes should have their identify routines called 3561 * on early-pass busses during BUS_NEW_PASS(). 3562 */ 3563 if (dl->pass > bus_current_pass) 3564 continue; 3565 DEVICE_IDENTIFY(dl->driver, dev); 3566 } 3567 3568 return (0); 3569 } 3570 3571 /** 3572 * @brief Helper function for implementing DEVICE_ATTACH() 3573 * 3574 * This function can be used to help implement the DEVICE_ATTACH() for 3575 * a bus. It calls device_probe_and_attach() for each of the device's 3576 * children. 3577 */ 3578 int 3579 bus_generic_attach(device_t dev) 3580 { 3581 device_t child; 3582 3583 TAILQ_FOREACH(child, &dev->children, link) { 3584 device_probe_and_attach(child); 3585 } 3586 3587 return (0); 3588 } 3589 3590 /** 3591 * @brief Helper function for implementing DEVICE_DETACH() 3592 * 3593 * This function can be used to help implement the DEVICE_DETACH() for 3594 * a bus. It calls device_detach() for each of the device's 3595 * children. 3596 */ 3597 int 3598 bus_generic_detach(device_t dev) 3599 { 3600 device_t child; 3601 int error; 3602 3603 if (dev->state != DS_ATTACHED) 3604 return (EBUSY); 3605 3606 TAILQ_FOREACH(child, &dev->children, link) { 3607 if ((error = device_detach(child)) != 0) 3608 return (error); 3609 } 3610 3611 return (0); 3612 } 3613 3614 /** 3615 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3616 * 3617 * This function can be used to help implement the DEVICE_SHUTDOWN() 3618 * for a bus. It calls device_shutdown() for each of the device's 3619 * children. 3620 */ 3621 int 3622 bus_generic_shutdown(device_t dev) 3623 { 3624 device_t child; 3625 3626 TAILQ_FOREACH(child, &dev->children, link) { 3627 device_shutdown(child); 3628 } 3629 3630 return (0); 3631 } 3632 3633 /** 3634 * @brief Helper function for implementing DEVICE_SUSPEND() 3635 * 3636 * This function can be used to help implement the DEVICE_SUSPEND() 3637 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3638 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3639 * operation is aborted and any devices which were suspended are 3640 * resumed immediately by calling their DEVICE_RESUME() methods. 3641 */ 3642 int 3643 bus_generic_suspend(device_t dev) 3644 { 3645 int error; 3646 device_t child, child2; 3647 3648 TAILQ_FOREACH(child, &dev->children, link) { 3649 error = DEVICE_SUSPEND(child); 3650 if (error) { 3651 for (child2 = TAILQ_FIRST(&dev->children); 3652 child2 && child2 != child; 3653 child2 = TAILQ_NEXT(child2, link)) 3654 DEVICE_RESUME(child2); 3655 return (error); 3656 } 3657 } 3658 return (0); 3659 } 3660 3661 /** 3662 * @brief Helper function for implementing DEVICE_RESUME() 3663 * 3664 * This function can be used to help implement the DEVICE_RESUME() for 3665 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3666 */ 3667 int 3668 bus_generic_resume(device_t dev) 3669 { 3670 device_t child; 3671 3672 TAILQ_FOREACH(child, &dev->children, link) { 3673 DEVICE_RESUME(child); 3674 /* if resume fails, there's nothing we can usefully do... */ 3675 } 3676 return (0); 3677 } 3678 3679 /** 3680 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3681 * 3682 * This function prints the first part of the ascii representation of 3683 * @p child, including its name, unit and description (if any - see 3684 * device_set_desc()). 3685 * 3686 * @returns the number of characters printed 3687 */ 3688 int 3689 bus_print_child_header(device_t dev, device_t child) 3690 { 3691 int retval = 0; 3692 3693 if (device_get_desc(child)) { 3694 retval += device_printf(child, "<%s>", device_get_desc(child)); 3695 } else { 3696 retval += printf("%s", device_get_nameunit(child)); 3697 } 3698 3699 return (retval); 3700 } 3701 3702 /** 3703 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3704 * 3705 * This function prints the last part of the ascii representation of 3706 * @p child, which consists of the string @c " on " followed by the 3707 * name and unit of the @p dev. 3708 * 3709 * @returns the number of characters printed 3710 */ 3711 int 3712 bus_print_child_footer(device_t dev, device_t child) 3713 { 3714 return (printf(" on %s\n", device_get_nameunit(dev))); 3715 } 3716 3717 /** 3718 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3719 * 3720 * This function simply calls bus_print_child_header() followed by 3721 * bus_print_child_footer(). 3722 * 3723 * @returns the number of characters printed 3724 */ 3725 int 3726 bus_generic_print_child(device_t dev, device_t child) 3727 { 3728 int retval = 0; 3729 3730 retval += bus_print_child_header(dev, child); 3731 retval += bus_print_child_footer(dev, child); 3732 3733 return (retval); 3734 } 3735 3736 /** 3737 * @brief Stub function for implementing BUS_READ_IVAR(). 3738 * 3739 * @returns ENOENT 3740 */ 3741 int 3742 bus_generic_read_ivar(device_t dev, device_t child, int index, 3743 uintptr_t * result) 3744 { 3745 return (ENOENT); 3746 } 3747 3748 /** 3749 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3750 * 3751 * @returns ENOENT 3752 */ 3753 int 3754 bus_generic_write_ivar(device_t dev, device_t child, int index, 3755 uintptr_t value) 3756 { 3757 return (ENOENT); 3758 } 3759 3760 /** 3761 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3762 * 3763 * @returns NULL 3764 */ 3765 struct resource_list * 3766 bus_generic_get_resource_list(device_t dev, device_t child) 3767 { 3768 return (NULL); 3769 } 3770 3771 /** 3772 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3773 * 3774 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3775 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3776 * and then calls device_probe_and_attach() for each unattached child. 3777 */ 3778 void 3779 bus_generic_driver_added(device_t dev, driver_t *driver) 3780 { 3781 device_t child; 3782 3783 DEVICE_IDENTIFY(driver, dev); 3784 TAILQ_FOREACH(child, &dev->children, link) { 3785 if (child->state == DS_NOTPRESENT || 3786 (child->flags & DF_REBID)) 3787 device_probe_and_attach(child); 3788 } 3789 } 3790 3791 /** 3792 * @brief Helper function for implementing BUS_NEW_PASS(). 3793 * 3794 * This implementing of BUS_NEW_PASS() first calls the identify 3795 * routines for any drivers that probe at the current pass. Then it 3796 * walks the list of devices for this bus. If a device is already 3797 * attached, then it calls BUS_NEW_PASS() on that device. If the 3798 * device is not already attached, it attempts to attach a driver to 3799 * it. 3800 */ 3801 void 3802 bus_generic_new_pass(device_t dev) 3803 { 3804 driverlink_t dl; 3805 devclass_t dc; 3806 device_t child; 3807 3808 dc = dev->devclass; 3809 TAILQ_FOREACH(dl, &dc->drivers, link) { 3810 if (dl->pass == bus_current_pass) 3811 DEVICE_IDENTIFY(dl->driver, dev); 3812 } 3813 TAILQ_FOREACH(child, &dev->children, link) { 3814 if (child->state >= DS_ATTACHED) 3815 BUS_NEW_PASS(child); 3816 else if (child->state == DS_NOTPRESENT) 3817 device_probe_and_attach(child); 3818 } 3819 } 3820 3821 /** 3822 * @brief Helper function for implementing BUS_SETUP_INTR(). 3823 * 3824 * This simple implementation of BUS_SETUP_INTR() simply calls the 3825 * BUS_SETUP_INTR() method of the parent of @p dev. 3826 */ 3827 int 3828 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3829 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3830 void **cookiep) 3831 { 3832 /* Propagate up the bus hierarchy until someone handles it. */ 3833 if (dev->parent) 3834 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3835 filter, intr, arg, cookiep)); 3836 return (EINVAL); 3837 } 3838 3839 /** 3840 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3841 * 3842 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3843 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3844 */ 3845 int 3846 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3847 void *cookie) 3848 { 3849 /* Propagate up the bus hierarchy until someone handles it. */ 3850 if (dev->parent) 3851 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3852 return (EINVAL); 3853 } 3854 3855 /** 3856 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3857 * 3858 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3859 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3860 */ 3861 int 3862 bus_generic_adjust_resource(device_t dev, device_t child, int type, 3863 struct resource *r, u_long start, u_long end) 3864 { 3865 /* Propagate up the bus hierarchy until someone handles it. */ 3866 if (dev->parent) 3867 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 3868 end)); 3869 return (EINVAL); 3870 } 3871 3872 /** 3873 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3874 * 3875 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3876 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3877 */ 3878 struct resource * 3879 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3880 u_long start, u_long end, u_long count, u_int flags) 3881 { 3882 /* Propagate up the bus hierarchy until someone handles it. */ 3883 if (dev->parent) 3884 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3885 start, end, count, flags)); 3886 return (NULL); 3887 } 3888 3889 /** 3890 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3891 * 3892 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3893 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3894 */ 3895 int 3896 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3897 struct resource *r) 3898 { 3899 /* Propagate up the bus hierarchy until someone handles it. */ 3900 if (dev->parent) 3901 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3902 r)); 3903 return (EINVAL); 3904 } 3905 3906 /** 3907 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3908 * 3909 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3910 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3911 */ 3912 int 3913 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3914 struct resource *r) 3915 { 3916 /* Propagate up the bus hierarchy until someone handles it. */ 3917 if (dev->parent) 3918 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3919 r)); 3920 return (EINVAL); 3921 } 3922 3923 /** 3924 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3925 * 3926 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3927 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3928 */ 3929 int 3930 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3931 int rid, struct resource *r) 3932 { 3933 /* Propagate up the bus hierarchy until someone handles it. */ 3934 if (dev->parent) 3935 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3936 r)); 3937 return (EINVAL); 3938 } 3939 3940 /** 3941 * @brief Helper function for implementing BUS_BIND_INTR(). 3942 * 3943 * This simple implementation of BUS_BIND_INTR() simply calls the 3944 * BUS_BIND_INTR() method of the parent of @p dev. 3945 */ 3946 int 3947 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 3948 int cpu) 3949 { 3950 3951 /* Propagate up the bus hierarchy until someone handles it. */ 3952 if (dev->parent) 3953 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 3954 return (EINVAL); 3955 } 3956 3957 /** 3958 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3959 * 3960 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3961 * BUS_CONFIG_INTR() method of the parent of @p dev. 3962 */ 3963 int 3964 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3965 enum intr_polarity pol) 3966 { 3967 3968 /* Propagate up the bus hierarchy until someone handles it. */ 3969 if (dev->parent) 3970 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3971 return (EINVAL); 3972 } 3973 3974 /** 3975 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 3976 * 3977 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 3978 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 3979 */ 3980 int 3981 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 3982 void *cookie, const char *descr) 3983 { 3984 3985 /* Propagate up the bus hierarchy until someone handles it. */ 3986 if (dev->parent) 3987 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 3988 descr)); 3989 return (EINVAL); 3990 } 3991 3992 /** 3993 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 3994 * 3995 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 3996 * BUS_GET_DMA_TAG() method of the parent of @p dev. 3997 */ 3998 bus_dma_tag_t 3999 bus_generic_get_dma_tag(device_t dev, device_t child) 4000 { 4001 4002 /* Propagate up the bus hierarchy until someone handles it. */ 4003 if (dev->parent != NULL) 4004 return (BUS_GET_DMA_TAG(dev->parent, child)); 4005 return (NULL); 4006 } 4007 4008 /** 4009 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4010 * 4011 * This implementation of BUS_GET_RESOURCE() uses the 4012 * resource_list_find() function to do most of the work. It calls 4013 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4014 * search. 4015 */ 4016 int 4017 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4018 u_long *startp, u_long *countp) 4019 { 4020 struct resource_list * rl = NULL; 4021 struct resource_list_entry * rle = NULL; 4022 4023 rl = BUS_GET_RESOURCE_LIST(dev, child); 4024 if (!rl) 4025 return (EINVAL); 4026 4027 rle = resource_list_find(rl, type, rid); 4028 if (!rle) 4029 return (ENOENT); 4030 4031 if (startp) 4032 *startp = rle->start; 4033 if (countp) 4034 *countp = rle->count; 4035 4036 return (0); 4037 } 4038 4039 /** 4040 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4041 * 4042 * This implementation of BUS_SET_RESOURCE() uses the 4043 * resource_list_add() function to do most of the work. It calls 4044 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4045 * edit. 4046 */ 4047 int 4048 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4049 u_long start, u_long count) 4050 { 4051 struct resource_list * rl = NULL; 4052 4053 rl = BUS_GET_RESOURCE_LIST(dev, child); 4054 if (!rl) 4055 return (EINVAL); 4056 4057 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4058 4059 return (0); 4060 } 4061 4062 /** 4063 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4064 * 4065 * This implementation of BUS_DELETE_RESOURCE() uses the 4066 * resource_list_delete() function to do most of the work. It calls 4067 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4068 * edit. 4069 */ 4070 void 4071 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4072 { 4073 struct resource_list * rl = NULL; 4074 4075 rl = BUS_GET_RESOURCE_LIST(dev, child); 4076 if (!rl) 4077 return; 4078 4079 resource_list_delete(rl, type, rid); 4080 4081 return; 4082 } 4083 4084 /** 4085 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4086 * 4087 * This implementation of BUS_RELEASE_RESOURCE() uses the 4088 * resource_list_release() function to do most of the work. It calls 4089 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4090 */ 4091 int 4092 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4093 int rid, struct resource *r) 4094 { 4095 struct resource_list * rl = NULL; 4096 4097 if (device_get_parent(child) != dev) 4098 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4099 type, rid, r)); 4100 4101 rl = BUS_GET_RESOURCE_LIST(dev, child); 4102 if (!rl) 4103 return (EINVAL); 4104 4105 return (resource_list_release(rl, dev, child, type, rid, r)); 4106 } 4107 4108 /** 4109 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4110 * 4111 * This implementation of BUS_ALLOC_RESOURCE() uses the 4112 * resource_list_alloc() function to do most of the work. It calls 4113 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4114 */ 4115 struct resource * 4116 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4117 int *rid, u_long start, u_long end, u_long count, u_int flags) 4118 { 4119 struct resource_list * rl = NULL; 4120 4121 if (device_get_parent(child) != dev) 4122 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4123 type, rid, start, end, count, flags)); 4124 4125 rl = BUS_GET_RESOURCE_LIST(dev, child); 4126 if (!rl) 4127 return (NULL); 4128 4129 return (resource_list_alloc(rl, dev, child, type, rid, 4130 start, end, count, flags)); 4131 } 4132 4133 /** 4134 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4135 * 4136 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4137 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4138 */ 4139 int 4140 bus_generic_child_present(device_t dev, device_t child) 4141 { 4142 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4143 } 4144 4145 /* 4146 * Some convenience functions to make it easier for drivers to use the 4147 * resource-management functions. All these really do is hide the 4148 * indirection through the parent's method table, making for slightly 4149 * less-wordy code. In the future, it might make sense for this code 4150 * to maintain some sort of a list of resources allocated by each device. 4151 */ 4152 4153 int 4154 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4155 struct resource **res) 4156 { 4157 int i; 4158 4159 for (i = 0; rs[i].type != -1; i++) 4160 res[i] = NULL; 4161 for (i = 0; rs[i].type != -1; i++) { 4162 res[i] = bus_alloc_resource_any(dev, 4163 rs[i].type, &rs[i].rid, rs[i].flags); 4164 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4165 bus_release_resources(dev, rs, res); 4166 return (ENXIO); 4167 } 4168 } 4169 return (0); 4170 } 4171 4172 void 4173 bus_release_resources(device_t dev, const struct resource_spec *rs, 4174 struct resource **res) 4175 { 4176 int i; 4177 4178 for (i = 0; rs[i].type != -1; i++) 4179 if (res[i] != NULL) { 4180 bus_release_resource( 4181 dev, rs[i].type, rs[i].rid, res[i]); 4182 res[i] = NULL; 4183 } 4184 } 4185 4186 /** 4187 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4188 * 4189 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4190 * parent of @p dev. 4191 */ 4192 struct resource * 4193 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 4194 u_long count, u_int flags) 4195 { 4196 if (dev->parent == NULL) 4197 return (NULL); 4198 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4199 count, flags)); 4200 } 4201 4202 /** 4203 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4204 * 4205 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4206 * parent of @p dev. 4207 */ 4208 int 4209 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start, 4210 u_long end) 4211 { 4212 if (dev->parent == NULL) 4213 return (EINVAL); 4214 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4215 } 4216 4217 /** 4218 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4219 * 4220 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4221 * parent of @p dev. 4222 */ 4223 int 4224 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4225 { 4226 if (dev->parent == NULL) 4227 return (EINVAL); 4228 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4229 } 4230 4231 /** 4232 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4233 * 4234 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4235 * parent of @p dev. 4236 */ 4237 int 4238 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4239 { 4240 if (dev->parent == NULL) 4241 return (EINVAL); 4242 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4243 } 4244 4245 /** 4246 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4247 * 4248 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4249 * parent of @p dev. 4250 */ 4251 int 4252 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4253 { 4254 if (dev->parent == NULL) 4255 return (EINVAL); 4256 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 4257 } 4258 4259 /** 4260 * @brief Wrapper function for BUS_SETUP_INTR(). 4261 * 4262 * This function simply calls the BUS_SETUP_INTR() method of the 4263 * parent of @p dev. 4264 */ 4265 int 4266 bus_setup_intr(device_t dev, struct resource *r, int flags, 4267 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4268 { 4269 int error; 4270 4271 if (dev->parent == NULL) 4272 return (EINVAL); 4273 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4274 arg, cookiep); 4275 if (error != 0) 4276 return (error); 4277 if (handler != NULL && !(flags & INTR_MPSAFE)) 4278 device_printf(dev, "[GIANT-LOCKED]\n"); 4279 return (0); 4280 } 4281 4282 /** 4283 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4284 * 4285 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4286 * parent of @p dev. 4287 */ 4288 int 4289 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4290 { 4291 if (dev->parent == NULL) 4292 return (EINVAL); 4293 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4294 } 4295 4296 /** 4297 * @brief Wrapper function for BUS_BIND_INTR(). 4298 * 4299 * This function simply calls the BUS_BIND_INTR() method of the 4300 * parent of @p dev. 4301 */ 4302 int 4303 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4304 { 4305 if (dev->parent == NULL) 4306 return (EINVAL); 4307 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4308 } 4309 4310 /** 4311 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4312 * 4313 * This function first formats the requested description into a 4314 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4315 * the parent of @p dev. 4316 */ 4317 int 4318 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4319 const char *fmt, ...) 4320 { 4321 va_list ap; 4322 char descr[MAXCOMLEN + 1]; 4323 4324 if (dev->parent == NULL) 4325 return (EINVAL); 4326 va_start(ap, fmt); 4327 vsnprintf(descr, sizeof(descr), fmt, ap); 4328 va_end(ap); 4329 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4330 } 4331 4332 /** 4333 * @brief Wrapper function for BUS_SET_RESOURCE(). 4334 * 4335 * This function simply calls the BUS_SET_RESOURCE() method of the 4336 * parent of @p dev. 4337 */ 4338 int 4339 bus_set_resource(device_t dev, int type, int rid, 4340 u_long start, u_long count) 4341 { 4342 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4343 start, count)); 4344 } 4345 4346 /** 4347 * @brief Wrapper function for BUS_GET_RESOURCE(). 4348 * 4349 * This function simply calls the BUS_GET_RESOURCE() method of the 4350 * parent of @p dev. 4351 */ 4352 int 4353 bus_get_resource(device_t dev, int type, int rid, 4354 u_long *startp, u_long *countp) 4355 { 4356 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4357 startp, countp)); 4358 } 4359 4360 /** 4361 * @brief Wrapper function for BUS_GET_RESOURCE(). 4362 * 4363 * This function simply calls the BUS_GET_RESOURCE() method of the 4364 * parent of @p dev and returns the start value. 4365 */ 4366 u_long 4367 bus_get_resource_start(device_t dev, int type, int rid) 4368 { 4369 u_long start, count; 4370 int error; 4371 4372 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4373 &start, &count); 4374 if (error) 4375 return (0); 4376 return (start); 4377 } 4378 4379 /** 4380 * @brief Wrapper function for BUS_GET_RESOURCE(). 4381 * 4382 * This function simply calls the BUS_GET_RESOURCE() method of the 4383 * parent of @p dev and returns the count value. 4384 */ 4385 u_long 4386 bus_get_resource_count(device_t dev, int type, int rid) 4387 { 4388 u_long start, count; 4389 int error; 4390 4391 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4392 &start, &count); 4393 if (error) 4394 return (0); 4395 return (count); 4396 } 4397 4398 /** 4399 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4400 * 4401 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4402 * parent of @p dev. 4403 */ 4404 void 4405 bus_delete_resource(device_t dev, int type, int rid) 4406 { 4407 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4408 } 4409 4410 /** 4411 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4412 * 4413 * This function simply calls the BUS_CHILD_PRESENT() method of the 4414 * parent of @p dev. 4415 */ 4416 int 4417 bus_child_present(device_t child) 4418 { 4419 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4420 } 4421 4422 /** 4423 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4424 * 4425 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4426 * parent of @p dev. 4427 */ 4428 int 4429 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4430 { 4431 device_t parent; 4432 4433 parent = device_get_parent(child); 4434 if (parent == NULL) { 4435 *buf = '\0'; 4436 return (0); 4437 } 4438 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4439 } 4440 4441 /** 4442 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4443 * 4444 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4445 * parent of @p dev. 4446 */ 4447 int 4448 bus_child_location_str(device_t child, char *buf, size_t buflen) 4449 { 4450 device_t parent; 4451 4452 parent = device_get_parent(child); 4453 if (parent == NULL) { 4454 *buf = '\0'; 4455 return (0); 4456 } 4457 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4458 } 4459 4460 /** 4461 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4462 * 4463 * This function simply calls the BUS_GET_DMA_TAG() method of the 4464 * parent of @p dev. 4465 */ 4466 bus_dma_tag_t 4467 bus_get_dma_tag(device_t dev) 4468 { 4469 device_t parent; 4470 4471 parent = device_get_parent(dev); 4472 if (parent == NULL) 4473 return (NULL); 4474 return (BUS_GET_DMA_TAG(parent, dev)); 4475 } 4476 4477 /* Resume all devices and then notify userland that we're up again. */ 4478 static int 4479 root_resume(device_t dev) 4480 { 4481 int error; 4482 4483 error = bus_generic_resume(dev); 4484 if (error == 0) 4485 devctl_notify("kern", "power", "resume", NULL); 4486 return (error); 4487 } 4488 4489 static int 4490 root_print_child(device_t dev, device_t child) 4491 { 4492 int retval = 0; 4493 4494 retval += bus_print_child_header(dev, child); 4495 retval += printf("\n"); 4496 4497 return (retval); 4498 } 4499 4500 static int 4501 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4502 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4503 { 4504 /* 4505 * If an interrupt mapping gets to here something bad has happened. 4506 */ 4507 panic("root_setup_intr"); 4508 } 4509 4510 /* 4511 * If we get here, assume that the device is permanant and really is 4512 * present in the system. Removable bus drivers are expected to intercept 4513 * this call long before it gets here. We return -1 so that drivers that 4514 * really care can check vs -1 or some ERRNO returned higher in the food 4515 * chain. 4516 */ 4517 static int 4518 root_child_present(device_t dev, device_t child) 4519 { 4520 return (-1); 4521 } 4522 4523 static kobj_method_t root_methods[] = { 4524 /* Device interface */ 4525 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4526 KOBJMETHOD(device_suspend, bus_generic_suspend), 4527 KOBJMETHOD(device_resume, root_resume), 4528 4529 /* Bus interface */ 4530 KOBJMETHOD(bus_print_child, root_print_child), 4531 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4532 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4533 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4534 KOBJMETHOD(bus_child_present, root_child_present), 4535 4536 KOBJMETHOD_END 4537 }; 4538 4539 static driver_t root_driver = { 4540 "root", 4541 root_methods, 4542 1, /* no softc */ 4543 }; 4544 4545 device_t root_bus; 4546 devclass_t root_devclass; 4547 4548 static int 4549 root_bus_module_handler(module_t mod, int what, void* arg) 4550 { 4551 switch (what) { 4552 case MOD_LOAD: 4553 TAILQ_INIT(&bus_data_devices); 4554 kobj_class_compile((kobj_class_t) &root_driver); 4555 root_bus = make_device(NULL, "root", 0); 4556 root_bus->desc = "System root bus"; 4557 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4558 root_bus->driver = &root_driver; 4559 root_bus->state = DS_ATTACHED; 4560 root_devclass = devclass_find_internal("root", NULL, FALSE); 4561 devinit(); 4562 return (0); 4563 4564 case MOD_SHUTDOWN: 4565 device_shutdown(root_bus); 4566 return (0); 4567 default: 4568 return (EOPNOTSUPP); 4569 } 4570 4571 return (0); 4572 } 4573 4574 static moduledata_t root_bus_mod = { 4575 "rootbus", 4576 root_bus_module_handler, 4577 NULL 4578 }; 4579 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4580 4581 /** 4582 * @brief Automatically configure devices 4583 * 4584 * This function begins the autoconfiguration process by calling 4585 * device_probe_and_attach() for each child of the @c root0 device. 4586 */ 4587 void 4588 root_bus_configure(void) 4589 { 4590 4591 PDEBUG((".")); 4592 4593 /* Eventually this will be split up, but this is sufficient for now. */ 4594 bus_set_pass(BUS_PASS_DEFAULT); 4595 } 4596 4597 /** 4598 * @brief Module handler for registering device drivers 4599 * 4600 * This module handler is used to automatically register device 4601 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4602 * devclass_add_driver() for the driver described by the 4603 * driver_module_data structure pointed to by @p arg 4604 */ 4605 int 4606 driver_module_handler(module_t mod, int what, void *arg) 4607 { 4608 struct driver_module_data *dmd; 4609 devclass_t bus_devclass; 4610 kobj_class_t driver; 4611 int error, pass; 4612 4613 dmd = (struct driver_module_data *)arg; 4614 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4615 error = 0; 4616 4617 switch (what) { 4618 case MOD_LOAD: 4619 if (dmd->dmd_chainevh) 4620 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4621 4622 pass = dmd->dmd_pass; 4623 driver = dmd->dmd_driver; 4624 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4625 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4626 error = devclass_add_driver(bus_devclass, driver, pass, 4627 dmd->dmd_devclass); 4628 break; 4629 4630 case MOD_UNLOAD: 4631 PDEBUG(("Unloading module: driver %s from bus %s", 4632 DRIVERNAME(dmd->dmd_driver), 4633 dmd->dmd_busname)); 4634 error = devclass_delete_driver(bus_devclass, 4635 dmd->dmd_driver); 4636 4637 if (!error && dmd->dmd_chainevh) 4638 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4639 break; 4640 case MOD_QUIESCE: 4641 PDEBUG(("Quiesce module: driver %s from bus %s", 4642 DRIVERNAME(dmd->dmd_driver), 4643 dmd->dmd_busname)); 4644 error = devclass_quiesce_driver(bus_devclass, 4645 dmd->dmd_driver); 4646 4647 if (!error && dmd->dmd_chainevh) 4648 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4649 break; 4650 default: 4651 error = EOPNOTSUPP; 4652 break; 4653 } 4654 4655 return (error); 4656 } 4657 4658 /** 4659 * @brief Enumerate all hinted devices for this bus. 4660 * 4661 * Walks through the hints for this bus and calls the bus_hinted_child 4662 * routine for each one it fines. It searches first for the specific 4663 * bus that's being probed for hinted children (eg isa0), and then for 4664 * generic children (eg isa). 4665 * 4666 * @param dev bus device to enumerate 4667 */ 4668 void 4669 bus_enumerate_hinted_children(device_t bus) 4670 { 4671 int i; 4672 const char *dname, *busname; 4673 int dunit; 4674 4675 /* 4676 * enumerate all devices on the specific bus 4677 */ 4678 busname = device_get_nameunit(bus); 4679 i = 0; 4680 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4681 BUS_HINTED_CHILD(bus, dname, dunit); 4682 4683 /* 4684 * and all the generic ones. 4685 */ 4686 busname = device_get_name(bus); 4687 i = 0; 4688 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4689 BUS_HINTED_CHILD(bus, dname, dunit); 4690 } 4691 4692 #ifdef BUS_DEBUG 4693 4694 /* the _short versions avoid iteration by not calling anything that prints 4695 * more than oneliners. I love oneliners. 4696 */ 4697 4698 static void 4699 print_device_short(device_t dev, int indent) 4700 { 4701 if (!dev) 4702 return; 4703 4704 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4705 dev->unit, dev->desc, 4706 (dev->parent? "":"no "), 4707 (TAILQ_EMPTY(&dev->children)? "no ":""), 4708 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4709 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4710 (dev->flags&DF_WILDCARD? "wildcard,":""), 4711 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4712 (dev->flags&DF_REBID? "rebiddable,":""), 4713 (dev->ivars? "":"no "), 4714 (dev->softc? "":"no "), 4715 dev->busy)); 4716 } 4717 4718 static void 4719 print_device(device_t dev, int indent) 4720 { 4721 if (!dev) 4722 return; 4723 4724 print_device_short(dev, indent); 4725 4726 indentprintf(("Parent:\n")); 4727 print_device_short(dev->parent, indent+1); 4728 indentprintf(("Driver:\n")); 4729 print_driver_short(dev->driver, indent+1); 4730 indentprintf(("Devclass:\n")); 4731 print_devclass_short(dev->devclass, indent+1); 4732 } 4733 4734 void 4735 print_device_tree_short(device_t dev, int indent) 4736 /* print the device and all its children (indented) */ 4737 { 4738 device_t child; 4739 4740 if (!dev) 4741 return; 4742 4743 print_device_short(dev, indent); 4744 4745 TAILQ_FOREACH(child, &dev->children, link) { 4746 print_device_tree_short(child, indent+1); 4747 } 4748 } 4749 4750 void 4751 print_device_tree(device_t dev, int indent) 4752 /* print the device and all its children (indented) */ 4753 { 4754 device_t child; 4755 4756 if (!dev) 4757 return; 4758 4759 print_device(dev, indent); 4760 4761 TAILQ_FOREACH(child, &dev->children, link) { 4762 print_device_tree(child, indent+1); 4763 } 4764 } 4765 4766 static void 4767 print_driver_short(driver_t *driver, int indent) 4768 { 4769 if (!driver) 4770 return; 4771 4772 indentprintf(("driver %s: softc size = %zd\n", 4773 driver->name, driver->size)); 4774 } 4775 4776 static void 4777 print_driver(driver_t *driver, int indent) 4778 { 4779 if (!driver) 4780 return; 4781 4782 print_driver_short(driver, indent); 4783 } 4784 4785 static void 4786 print_driver_list(driver_list_t drivers, int indent) 4787 { 4788 driverlink_t driver; 4789 4790 TAILQ_FOREACH(driver, &drivers, link) { 4791 print_driver(driver->driver, indent); 4792 } 4793 } 4794 4795 static void 4796 print_devclass_short(devclass_t dc, int indent) 4797 { 4798 if ( !dc ) 4799 return; 4800 4801 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4802 } 4803 4804 static void 4805 print_devclass(devclass_t dc, int indent) 4806 { 4807 int i; 4808 4809 if ( !dc ) 4810 return; 4811 4812 print_devclass_short(dc, indent); 4813 indentprintf(("Drivers:\n")); 4814 print_driver_list(dc->drivers, indent+1); 4815 4816 indentprintf(("Devices:\n")); 4817 for (i = 0; i < dc->maxunit; i++) 4818 if (dc->devices[i]) 4819 print_device(dc->devices[i], indent+1); 4820 } 4821 4822 void 4823 print_devclass_list_short(void) 4824 { 4825 devclass_t dc; 4826 4827 printf("Short listing of devclasses, drivers & devices:\n"); 4828 TAILQ_FOREACH(dc, &devclasses, link) { 4829 print_devclass_short(dc, 0); 4830 } 4831 } 4832 4833 void 4834 print_devclass_list(void) 4835 { 4836 devclass_t dc; 4837 4838 printf("Full listing of devclasses, drivers & devices:\n"); 4839 TAILQ_FOREACH(dc, &devclasses, link) { 4840 print_devclass(dc, 0); 4841 } 4842 } 4843 4844 #endif 4845 4846 /* 4847 * User-space access to the device tree. 4848 * 4849 * We implement a small set of nodes: 4850 * 4851 * hw.bus Single integer read method to obtain the 4852 * current generation count. 4853 * hw.bus.devices Reads the entire device tree in flat space. 4854 * hw.bus.rman Resource manager interface 4855 * 4856 * We might like to add the ability to scan devclasses and/or drivers to 4857 * determine what else is currently loaded/available. 4858 */ 4859 4860 static int 4861 sysctl_bus(SYSCTL_HANDLER_ARGS) 4862 { 4863 struct u_businfo ubus; 4864 4865 ubus.ub_version = BUS_USER_VERSION; 4866 ubus.ub_generation = bus_data_generation; 4867 4868 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4869 } 4870 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4871 "bus-related data"); 4872 4873 static int 4874 sysctl_devices(SYSCTL_HANDLER_ARGS) 4875 { 4876 int *name = (int *)arg1; 4877 u_int namelen = arg2; 4878 int index; 4879 struct device *dev; 4880 struct u_device udev; /* XXX this is a bit big */ 4881 int error; 4882 4883 if (namelen != 2) 4884 return (EINVAL); 4885 4886 if (bus_data_generation_check(name[0])) 4887 return (EINVAL); 4888 4889 index = name[1]; 4890 4891 /* 4892 * Scan the list of devices, looking for the requested index. 4893 */ 4894 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 4895 if (index-- == 0) 4896 break; 4897 } 4898 if (dev == NULL) 4899 return (ENOENT); 4900 4901 /* 4902 * Populate the return array. 4903 */ 4904 bzero(&udev, sizeof(udev)); 4905 udev.dv_handle = (uintptr_t)dev; 4906 udev.dv_parent = (uintptr_t)dev->parent; 4907 if (dev->nameunit != NULL) 4908 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 4909 if (dev->desc != NULL) 4910 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 4911 if (dev->driver != NULL && dev->driver->name != NULL) 4912 strlcpy(udev.dv_drivername, dev->driver->name, 4913 sizeof(udev.dv_drivername)); 4914 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 4915 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 4916 udev.dv_devflags = dev->devflags; 4917 udev.dv_flags = dev->flags; 4918 udev.dv_state = dev->state; 4919 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 4920 return (error); 4921 } 4922 4923 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 4924 "system device tree"); 4925 4926 int 4927 bus_data_generation_check(int generation) 4928 { 4929 if (generation != bus_data_generation) 4930 return (1); 4931 4932 /* XXX generate optimised lists here? */ 4933 return (0); 4934 } 4935 4936 void 4937 bus_data_generation_update(void) 4938 { 4939 bus_data_generation++; 4940 } 4941 4942 int 4943 bus_free_resource(device_t dev, int type, struct resource *r) 4944 { 4945 if (r == NULL) 4946 return (0); 4947 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 4948 } 4949