1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/conf.h> 34 #include <sys/filio.h> 35 #include <sys/lock.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/limits.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/mutex.h> 42 #include <sys/poll.h> 43 #include <sys/proc.h> 44 #include <sys/condvar.h> 45 #include <sys/queue.h> 46 #include <machine/bus.h> 47 #include <sys/rman.h> 48 #include <sys/selinfo.h> 49 #include <sys/signalvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/systm.h> 52 #include <sys/uio.h> 53 #include <sys/bus.h> 54 #include <sys/interrupt.h> 55 56 #include <machine/stdarg.h> 57 58 #include <vm/uma.h> 59 60 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 61 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 62 63 /* 64 * Used to attach drivers to devclasses. 65 */ 66 typedef struct driverlink *driverlink_t; 67 struct driverlink { 68 kobj_class_t driver; 69 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 70 int pass; 71 TAILQ_ENTRY(driverlink) passlink; 72 }; 73 74 /* 75 * Forward declarations 76 */ 77 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 78 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 79 typedef TAILQ_HEAD(device_list, device) device_list_t; 80 81 struct devclass { 82 TAILQ_ENTRY(devclass) link; 83 devclass_t parent; /* parent in devclass hierarchy */ 84 driver_list_t drivers; /* bus devclasses store drivers for bus */ 85 char *name; 86 device_t *devices; /* array of devices indexed by unit */ 87 int maxunit; /* size of devices array */ 88 int flags; 89 #define DC_HAS_CHILDREN 1 90 91 struct sysctl_ctx_list sysctl_ctx; 92 struct sysctl_oid *sysctl_tree; 93 }; 94 95 /** 96 * @brief Implementation of device. 97 */ 98 struct device { 99 /* 100 * A device is a kernel object. The first field must be the 101 * current ops table for the object. 102 */ 103 KOBJ_FIELDS; 104 105 /* 106 * Device hierarchy. 107 */ 108 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 109 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 110 device_t parent; /**< parent of this device */ 111 device_list_t children; /**< list of child devices */ 112 113 /* 114 * Details of this device. 115 */ 116 driver_t *driver; /**< current driver */ 117 devclass_t devclass; /**< current device class */ 118 int unit; /**< current unit number */ 119 char* nameunit; /**< name+unit e.g. foodev0 */ 120 char* desc; /**< driver specific description */ 121 int busy; /**< count of calls to device_busy() */ 122 device_state_t state; /**< current device state */ 123 uint32_t devflags; /**< api level flags for device_get_flags() */ 124 u_int flags; /**< internal device flags */ 125 #define DF_ENABLED 0x01 /* device should be probed/attached */ 126 #define DF_FIXEDCLASS 0x02 /* devclass specified at create time */ 127 #define DF_WILDCARD 0x04 /* unit was originally wildcard */ 128 #define DF_DESCMALLOCED 0x08 /* description was malloced */ 129 #define DF_QUIET 0x10 /* don't print verbose attach message */ 130 #define DF_DONENOMATCH 0x20 /* don't execute DEVICE_NOMATCH again */ 131 #define DF_EXTERNALSOFTC 0x40 /* softc not allocated by us */ 132 #define DF_REBID 0x80 /* Can rebid after attach */ 133 u_int order; /**< order from device_add_child_ordered() */ 134 void *ivars; /**< instance variables */ 135 void *softc; /**< current driver's variables */ 136 137 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 138 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 139 }; 140 141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 143 144 #ifdef BUS_DEBUG 145 146 static int bus_debug = 1; 147 TUNABLE_INT("bus.debug", &bus_debug); 148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0, 149 "Debug bus code"); 150 151 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 152 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 153 #define DRIVERNAME(d) ((d)? d->name : "no driver") 154 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 155 156 /** 157 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 158 * prevent syslog from deleting initial spaces 159 */ 160 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 161 162 static void print_device_short(device_t dev, int indent); 163 static void print_device(device_t dev, int indent); 164 void print_device_tree_short(device_t dev, int indent); 165 void print_device_tree(device_t dev, int indent); 166 static void print_driver_short(driver_t *driver, int indent); 167 static void print_driver(driver_t *driver, int indent); 168 static void print_driver_list(driver_list_t drivers, int indent); 169 static void print_devclass_short(devclass_t dc, int indent); 170 static void print_devclass(devclass_t dc, int indent); 171 void print_devclass_list_short(void); 172 void print_devclass_list(void); 173 174 #else 175 /* Make the compiler ignore the function calls */ 176 #define PDEBUG(a) /* nop */ 177 #define DEVICENAME(d) /* nop */ 178 #define DRIVERNAME(d) /* nop */ 179 #define DEVCLANAME(d) /* nop */ 180 181 #define print_device_short(d,i) /* nop */ 182 #define print_device(d,i) /* nop */ 183 #define print_device_tree_short(d,i) /* nop */ 184 #define print_device_tree(d,i) /* nop */ 185 #define print_driver_short(d,i) /* nop */ 186 #define print_driver(d,i) /* nop */ 187 #define print_driver_list(d,i) /* nop */ 188 #define print_devclass_short(d,i) /* nop */ 189 #define print_devclass(d,i) /* nop */ 190 #define print_devclass_list_short() /* nop */ 191 #define print_devclass_list() /* nop */ 192 #endif 193 194 /* 195 * dev sysctl tree 196 */ 197 198 enum { 199 DEVCLASS_SYSCTL_PARENT, 200 }; 201 202 static int 203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 204 { 205 devclass_t dc = (devclass_t)arg1; 206 const char *value; 207 208 switch (arg2) { 209 case DEVCLASS_SYSCTL_PARENT: 210 value = dc->parent ? dc->parent->name : ""; 211 break; 212 default: 213 return (EINVAL); 214 } 215 return (SYSCTL_OUT(req, value, strlen(value))); 216 } 217 218 static void 219 devclass_sysctl_init(devclass_t dc) 220 { 221 222 if (dc->sysctl_tree != NULL) 223 return; 224 sysctl_ctx_init(&dc->sysctl_ctx); 225 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 226 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 227 CTLFLAG_RD, NULL, ""); 228 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 229 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 230 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 231 "parent class"); 232 } 233 234 enum { 235 DEVICE_SYSCTL_DESC, 236 DEVICE_SYSCTL_DRIVER, 237 DEVICE_SYSCTL_LOCATION, 238 DEVICE_SYSCTL_PNPINFO, 239 DEVICE_SYSCTL_PARENT, 240 }; 241 242 static int 243 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 244 { 245 device_t dev = (device_t)arg1; 246 const char *value; 247 char *buf; 248 int error; 249 250 buf = NULL; 251 switch (arg2) { 252 case DEVICE_SYSCTL_DESC: 253 value = dev->desc ? dev->desc : ""; 254 break; 255 case DEVICE_SYSCTL_DRIVER: 256 value = dev->driver ? dev->driver->name : ""; 257 break; 258 case DEVICE_SYSCTL_LOCATION: 259 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 260 bus_child_location_str(dev, buf, 1024); 261 break; 262 case DEVICE_SYSCTL_PNPINFO: 263 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 264 bus_child_pnpinfo_str(dev, buf, 1024); 265 break; 266 case DEVICE_SYSCTL_PARENT: 267 value = dev->parent ? dev->parent->nameunit : ""; 268 break; 269 default: 270 return (EINVAL); 271 } 272 error = SYSCTL_OUT(req, value, strlen(value)); 273 if (buf != NULL) 274 free(buf, M_BUS); 275 return (error); 276 } 277 278 static void 279 device_sysctl_init(device_t dev) 280 { 281 devclass_t dc = dev->devclass; 282 283 if (dev->sysctl_tree != NULL) 284 return; 285 devclass_sysctl_init(dc); 286 sysctl_ctx_init(&dev->sysctl_ctx); 287 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 288 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 289 dev->nameunit + strlen(dc->name), 290 CTLFLAG_RD, NULL, ""); 291 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 292 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 293 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 294 "device description"); 295 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 296 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 297 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 298 "device driver name"); 299 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 300 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 301 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 302 "device location relative to parent"); 303 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 304 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 305 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 306 "device identification"); 307 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 308 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 309 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 310 "parent device"); 311 } 312 313 static void 314 device_sysctl_update(device_t dev) 315 { 316 devclass_t dc = dev->devclass; 317 318 if (dev->sysctl_tree == NULL) 319 return; 320 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 321 } 322 323 static void 324 device_sysctl_fini(device_t dev) 325 { 326 if (dev->sysctl_tree == NULL) 327 return; 328 sysctl_ctx_free(&dev->sysctl_ctx); 329 dev->sysctl_tree = NULL; 330 } 331 332 /* 333 * /dev/devctl implementation 334 */ 335 336 /* 337 * This design allows only one reader for /dev/devctl. This is not desirable 338 * in the long run, but will get a lot of hair out of this implementation. 339 * Maybe we should make this device a clonable device. 340 * 341 * Also note: we specifically do not attach a device to the device_t tree 342 * to avoid potential chicken and egg problems. One could argue that all 343 * of this belongs to the root node. One could also further argue that the 344 * sysctl interface that we have not might more properly be an ioctl 345 * interface, but at this stage of the game, I'm not inclined to rock that 346 * boat. 347 * 348 * I'm also not sure that the SIGIO support is done correctly or not, as 349 * I copied it from a driver that had SIGIO support that likely hasn't been 350 * tested since 3.4 or 2.2.8! 351 */ 352 353 /* Deprecated way to adjust queue length */ 354 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 355 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */ 356 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL, 357 0, sysctl_devctl_disable, "I", "devctl disable -- deprecated"); 358 359 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 360 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 361 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 362 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length); 363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL, 364 0, sysctl_devctl_queue, "I", "devctl queue length"); 365 366 static d_open_t devopen; 367 static d_close_t devclose; 368 static d_read_t devread; 369 static d_ioctl_t devioctl; 370 static d_poll_t devpoll; 371 372 static struct cdevsw dev_cdevsw = { 373 .d_version = D_VERSION, 374 .d_flags = D_NEEDGIANT, 375 .d_open = devopen, 376 .d_close = devclose, 377 .d_read = devread, 378 .d_ioctl = devioctl, 379 .d_poll = devpoll, 380 .d_name = "devctl", 381 }; 382 383 struct dev_event_info 384 { 385 char *dei_data; 386 TAILQ_ENTRY(dev_event_info) dei_link; 387 }; 388 389 TAILQ_HEAD(devq, dev_event_info); 390 391 static struct dev_softc 392 { 393 int inuse; 394 int nonblock; 395 int queued; 396 struct mtx mtx; 397 struct cv cv; 398 struct selinfo sel; 399 struct devq devq; 400 struct proc *async_proc; 401 } devsoftc; 402 403 static struct cdev *devctl_dev; 404 405 static void 406 devinit(void) 407 { 408 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 409 UID_ROOT, GID_WHEEL, 0600, "devctl"); 410 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 411 cv_init(&devsoftc.cv, "dev cv"); 412 TAILQ_INIT(&devsoftc.devq); 413 } 414 415 static int 416 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 417 { 418 if (devsoftc.inuse) 419 return (EBUSY); 420 /* move to init */ 421 devsoftc.inuse = 1; 422 devsoftc.nonblock = 0; 423 devsoftc.async_proc = NULL; 424 return (0); 425 } 426 427 static int 428 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 429 { 430 devsoftc.inuse = 0; 431 mtx_lock(&devsoftc.mtx); 432 cv_broadcast(&devsoftc.cv); 433 mtx_unlock(&devsoftc.mtx); 434 devsoftc.async_proc = NULL; 435 return (0); 436 } 437 438 /* 439 * The read channel for this device is used to report changes to 440 * userland in realtime. We are required to free the data as well as 441 * the n1 object because we allocate them separately. Also note that 442 * we return one record at a time. If you try to read this device a 443 * character at a time, you will lose the rest of the data. Listening 444 * programs are expected to cope. 445 */ 446 static int 447 devread(struct cdev *dev, struct uio *uio, int ioflag) 448 { 449 struct dev_event_info *n1; 450 int rv; 451 452 mtx_lock(&devsoftc.mtx); 453 while (TAILQ_EMPTY(&devsoftc.devq)) { 454 if (devsoftc.nonblock) { 455 mtx_unlock(&devsoftc.mtx); 456 return (EAGAIN); 457 } 458 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 459 if (rv) { 460 /* 461 * Need to translate ERESTART to EINTR here? -- jake 462 */ 463 mtx_unlock(&devsoftc.mtx); 464 return (rv); 465 } 466 } 467 n1 = TAILQ_FIRST(&devsoftc.devq); 468 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 469 devsoftc.queued--; 470 mtx_unlock(&devsoftc.mtx); 471 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 472 free(n1->dei_data, M_BUS); 473 free(n1, M_BUS); 474 return (rv); 475 } 476 477 static int 478 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 479 { 480 switch (cmd) { 481 482 case FIONBIO: 483 if (*(int*)data) 484 devsoftc.nonblock = 1; 485 else 486 devsoftc.nonblock = 0; 487 return (0); 488 case FIOASYNC: 489 if (*(int*)data) 490 devsoftc.async_proc = td->td_proc; 491 else 492 devsoftc.async_proc = NULL; 493 return (0); 494 495 /* (un)Support for other fcntl() calls. */ 496 case FIOCLEX: 497 case FIONCLEX: 498 case FIONREAD: 499 case FIOSETOWN: 500 case FIOGETOWN: 501 default: 502 break; 503 } 504 return (ENOTTY); 505 } 506 507 static int 508 devpoll(struct cdev *dev, int events, struct thread *td) 509 { 510 int revents = 0; 511 512 mtx_lock(&devsoftc.mtx); 513 if (events & (POLLIN | POLLRDNORM)) { 514 if (!TAILQ_EMPTY(&devsoftc.devq)) 515 revents = events & (POLLIN | POLLRDNORM); 516 else 517 selrecord(td, &devsoftc.sel); 518 } 519 mtx_unlock(&devsoftc.mtx); 520 521 return (revents); 522 } 523 524 /** 525 * @brief Return whether the userland process is running 526 */ 527 boolean_t 528 devctl_process_running(void) 529 { 530 return (devsoftc.inuse == 1); 531 } 532 533 /** 534 * @brief Queue data to be read from the devctl device 535 * 536 * Generic interface to queue data to the devctl device. It is 537 * assumed that @p data is properly formatted. It is further assumed 538 * that @p data is allocated using the M_BUS malloc type. 539 */ 540 void 541 devctl_queue_data_f(char *data, int flags) 542 { 543 struct dev_event_info *n1 = NULL, *n2 = NULL; 544 struct proc *p; 545 546 if (strlen(data) == 0) 547 goto out; 548 if (devctl_queue_length == 0) 549 goto out; 550 n1 = malloc(sizeof(*n1), M_BUS, flags); 551 if (n1 == NULL) 552 goto out; 553 n1->dei_data = data; 554 mtx_lock(&devsoftc.mtx); 555 if (devctl_queue_length == 0) { 556 mtx_unlock(&devsoftc.mtx); 557 free(n1->dei_data, M_BUS); 558 free(n1, M_BUS); 559 return; 560 } 561 /* Leave at least one spot in the queue... */ 562 while (devsoftc.queued > devctl_queue_length - 1) { 563 n2 = TAILQ_FIRST(&devsoftc.devq); 564 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 565 free(n2->dei_data, M_BUS); 566 free(n2, M_BUS); 567 devsoftc.queued--; 568 } 569 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 570 devsoftc.queued++; 571 cv_broadcast(&devsoftc.cv); 572 mtx_unlock(&devsoftc.mtx); 573 selwakeup(&devsoftc.sel); 574 p = devsoftc.async_proc; 575 if (p != NULL) { 576 PROC_LOCK(p); 577 kern_psignal(p, SIGIO); 578 PROC_UNLOCK(p); 579 } 580 return; 581 out: 582 /* 583 * We have to free data on all error paths since the caller 584 * assumes it will be free'd when this item is dequeued. 585 */ 586 free(data, M_BUS); 587 return; 588 } 589 590 void 591 devctl_queue_data(char *data) 592 { 593 594 devctl_queue_data_f(data, M_NOWAIT); 595 } 596 597 /** 598 * @brief Send a 'notification' to userland, using standard ways 599 */ 600 void 601 devctl_notify_f(const char *system, const char *subsystem, const char *type, 602 const char *data, int flags) 603 { 604 int len = 0; 605 char *msg; 606 607 if (system == NULL) 608 return; /* BOGUS! Must specify system. */ 609 if (subsystem == NULL) 610 return; /* BOGUS! Must specify subsystem. */ 611 if (type == NULL) 612 return; /* BOGUS! Must specify type. */ 613 len += strlen(" system=") + strlen(system); 614 len += strlen(" subsystem=") + strlen(subsystem); 615 len += strlen(" type=") + strlen(type); 616 /* add in the data message plus newline. */ 617 if (data != NULL) 618 len += strlen(data); 619 len += 3; /* '!', '\n', and NUL */ 620 msg = malloc(len, M_BUS, flags); 621 if (msg == NULL) 622 return; /* Drop it on the floor */ 623 if (data != NULL) 624 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 625 system, subsystem, type, data); 626 else 627 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 628 system, subsystem, type); 629 devctl_queue_data_f(msg, flags); 630 } 631 632 void 633 devctl_notify(const char *system, const char *subsystem, const char *type, 634 const char *data) 635 { 636 637 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 638 } 639 640 /* 641 * Common routine that tries to make sending messages as easy as possible. 642 * We allocate memory for the data, copy strings into that, but do not 643 * free it unless there's an error. The dequeue part of the driver should 644 * free the data. We don't send data when the device is disabled. We do 645 * send data, even when we have no listeners, because we wish to avoid 646 * races relating to startup and restart of listening applications. 647 * 648 * devaddq is designed to string together the type of event, with the 649 * object of that event, plus the plug and play info and location info 650 * for that event. This is likely most useful for devices, but less 651 * useful for other consumers of this interface. Those should use 652 * the devctl_queue_data() interface instead. 653 */ 654 static void 655 devaddq(const char *type, const char *what, device_t dev) 656 { 657 char *data = NULL; 658 char *loc = NULL; 659 char *pnp = NULL; 660 const char *parstr; 661 662 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 663 return; 664 data = malloc(1024, M_BUS, M_NOWAIT); 665 if (data == NULL) 666 goto bad; 667 668 /* get the bus specific location of this device */ 669 loc = malloc(1024, M_BUS, M_NOWAIT); 670 if (loc == NULL) 671 goto bad; 672 *loc = '\0'; 673 bus_child_location_str(dev, loc, 1024); 674 675 /* Get the bus specific pnp info of this device */ 676 pnp = malloc(1024, M_BUS, M_NOWAIT); 677 if (pnp == NULL) 678 goto bad; 679 *pnp = '\0'; 680 bus_child_pnpinfo_str(dev, pnp, 1024); 681 682 /* Get the parent of this device, or / if high enough in the tree. */ 683 if (device_get_parent(dev) == NULL) 684 parstr = "."; /* Or '/' ? */ 685 else 686 parstr = device_get_nameunit(device_get_parent(dev)); 687 /* String it all together. */ 688 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 689 parstr); 690 free(loc, M_BUS); 691 free(pnp, M_BUS); 692 devctl_queue_data(data); 693 return; 694 bad: 695 free(pnp, M_BUS); 696 free(loc, M_BUS); 697 free(data, M_BUS); 698 return; 699 } 700 701 /* 702 * A device was added to the tree. We are called just after it successfully 703 * attaches (that is, probe and attach success for this device). No call 704 * is made if a device is merely parented into the tree. See devnomatch 705 * if probe fails. If attach fails, no notification is sent (but maybe 706 * we should have a different message for this). 707 */ 708 static void 709 devadded(device_t dev) 710 { 711 devaddq("+", device_get_nameunit(dev), dev); 712 } 713 714 /* 715 * A device was removed from the tree. We are called just before this 716 * happens. 717 */ 718 static void 719 devremoved(device_t dev) 720 { 721 devaddq("-", device_get_nameunit(dev), dev); 722 } 723 724 /* 725 * Called when there's no match for this device. This is only called 726 * the first time that no match happens, so we don't keep getting this 727 * message. Should that prove to be undesirable, we can change it. 728 * This is called when all drivers that can attach to a given bus 729 * decline to accept this device. Other errors may not be detected. 730 */ 731 static void 732 devnomatch(device_t dev) 733 { 734 devaddq("?", "", dev); 735 } 736 737 static int 738 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 739 { 740 struct dev_event_info *n1; 741 int dis, error; 742 743 dis = devctl_queue_length == 0; 744 error = sysctl_handle_int(oidp, &dis, 0, req); 745 if (error || !req->newptr) 746 return (error); 747 mtx_lock(&devsoftc.mtx); 748 if (dis) { 749 while (!TAILQ_EMPTY(&devsoftc.devq)) { 750 n1 = TAILQ_FIRST(&devsoftc.devq); 751 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 752 free(n1->dei_data, M_BUS); 753 free(n1, M_BUS); 754 } 755 devsoftc.queued = 0; 756 devctl_queue_length = 0; 757 } else { 758 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 759 } 760 mtx_unlock(&devsoftc.mtx); 761 return (0); 762 } 763 764 static int 765 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 766 { 767 struct dev_event_info *n1; 768 int q, error; 769 770 q = devctl_queue_length; 771 error = sysctl_handle_int(oidp, &q, 0, req); 772 if (error || !req->newptr) 773 return (error); 774 if (q < 0) 775 return (EINVAL); 776 mtx_lock(&devsoftc.mtx); 777 devctl_queue_length = q; 778 while (devsoftc.queued > devctl_queue_length) { 779 n1 = TAILQ_FIRST(&devsoftc.devq); 780 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 781 free(n1->dei_data, M_BUS); 782 free(n1, M_BUS); 783 devsoftc.queued--; 784 } 785 mtx_unlock(&devsoftc.mtx); 786 return (0); 787 } 788 789 /* End of /dev/devctl code */ 790 791 static TAILQ_HEAD(,device) bus_data_devices; 792 static int bus_data_generation = 1; 793 794 static kobj_method_t null_methods[] = { 795 KOBJMETHOD_END 796 }; 797 798 DEFINE_CLASS(null, null_methods, 0); 799 800 /* 801 * Bus pass implementation 802 */ 803 804 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 805 int bus_current_pass = BUS_PASS_ROOT; 806 807 /** 808 * @internal 809 * @brief Register the pass level of a new driver attachment 810 * 811 * Register a new driver attachment's pass level. If no driver 812 * attachment with the same pass level has been added, then @p new 813 * will be added to the global passes list. 814 * 815 * @param new the new driver attachment 816 */ 817 static void 818 driver_register_pass(struct driverlink *new) 819 { 820 struct driverlink *dl; 821 822 /* We only consider pass numbers during boot. */ 823 if (bus_current_pass == BUS_PASS_DEFAULT) 824 return; 825 826 /* 827 * Walk the passes list. If we already know about this pass 828 * then there is nothing to do. If we don't, then insert this 829 * driver link into the list. 830 */ 831 TAILQ_FOREACH(dl, &passes, passlink) { 832 if (dl->pass < new->pass) 833 continue; 834 if (dl->pass == new->pass) 835 return; 836 TAILQ_INSERT_BEFORE(dl, new, passlink); 837 return; 838 } 839 TAILQ_INSERT_TAIL(&passes, new, passlink); 840 } 841 842 /** 843 * @brief Raise the current bus pass 844 * 845 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 846 * method on the root bus to kick off a new device tree scan for each 847 * new pass level that has at least one driver. 848 */ 849 void 850 bus_set_pass(int pass) 851 { 852 struct driverlink *dl; 853 854 if (bus_current_pass > pass) 855 panic("Attempt to lower bus pass level"); 856 857 TAILQ_FOREACH(dl, &passes, passlink) { 858 /* Skip pass values below the current pass level. */ 859 if (dl->pass <= bus_current_pass) 860 continue; 861 862 /* 863 * Bail once we hit a driver with a pass level that is 864 * too high. 865 */ 866 if (dl->pass > pass) 867 break; 868 869 /* 870 * Raise the pass level to the next level and rescan 871 * the tree. 872 */ 873 bus_current_pass = dl->pass; 874 BUS_NEW_PASS(root_bus); 875 } 876 877 /* 878 * If there isn't a driver registered for the requested pass, 879 * then bus_current_pass might still be less than 'pass'. Set 880 * it to 'pass' in that case. 881 */ 882 if (bus_current_pass < pass) 883 bus_current_pass = pass; 884 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 885 } 886 887 /* 888 * Devclass implementation 889 */ 890 891 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 892 893 /** 894 * @internal 895 * @brief Find or create a device class 896 * 897 * If a device class with the name @p classname exists, return it, 898 * otherwise if @p create is non-zero create and return a new device 899 * class. 900 * 901 * If @p parentname is non-NULL, the parent of the devclass is set to 902 * the devclass of that name. 903 * 904 * @param classname the devclass name to find or create 905 * @param parentname the parent devclass name or @c NULL 906 * @param create non-zero to create a devclass 907 */ 908 static devclass_t 909 devclass_find_internal(const char *classname, const char *parentname, 910 int create) 911 { 912 devclass_t dc; 913 914 PDEBUG(("looking for %s", classname)); 915 if (!classname) 916 return (NULL); 917 918 TAILQ_FOREACH(dc, &devclasses, link) { 919 if (!strcmp(dc->name, classname)) 920 break; 921 } 922 923 if (create && !dc) { 924 PDEBUG(("creating %s", classname)); 925 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 926 M_BUS, M_NOWAIT | M_ZERO); 927 if (!dc) 928 return (NULL); 929 dc->parent = NULL; 930 dc->name = (char*) (dc + 1); 931 strcpy(dc->name, classname); 932 TAILQ_INIT(&dc->drivers); 933 TAILQ_INSERT_TAIL(&devclasses, dc, link); 934 935 bus_data_generation_update(); 936 } 937 938 /* 939 * If a parent class is specified, then set that as our parent so 940 * that this devclass will support drivers for the parent class as 941 * well. If the parent class has the same name don't do this though 942 * as it creates a cycle that can trigger an infinite loop in 943 * device_probe_child() if a device exists for which there is no 944 * suitable driver. 945 */ 946 if (parentname && dc && !dc->parent && 947 strcmp(classname, parentname) != 0) { 948 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 949 dc->parent->flags |= DC_HAS_CHILDREN; 950 } 951 952 return (dc); 953 } 954 955 /** 956 * @brief Create a device class 957 * 958 * If a device class with the name @p classname exists, return it, 959 * otherwise create and return a new device class. 960 * 961 * @param classname the devclass name to find or create 962 */ 963 devclass_t 964 devclass_create(const char *classname) 965 { 966 return (devclass_find_internal(classname, NULL, TRUE)); 967 } 968 969 /** 970 * @brief Find a device class 971 * 972 * If a device class with the name @p classname exists, return it, 973 * otherwise return @c NULL. 974 * 975 * @param classname the devclass name to find 976 */ 977 devclass_t 978 devclass_find(const char *classname) 979 { 980 return (devclass_find_internal(classname, NULL, FALSE)); 981 } 982 983 /** 984 * @brief Register that a device driver has been added to a devclass 985 * 986 * Register that a device driver has been added to a devclass. This 987 * is called by devclass_add_driver to accomplish the recursive 988 * notification of all the children classes of dc, as well as dc. 989 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 990 * the devclass. 991 * 992 * We do a full search here of the devclass list at each iteration 993 * level to save storing children-lists in the devclass structure. If 994 * we ever move beyond a few dozen devices doing this, we may need to 995 * reevaluate... 996 * 997 * @param dc the devclass to edit 998 * @param driver the driver that was just added 999 */ 1000 static void 1001 devclass_driver_added(devclass_t dc, driver_t *driver) 1002 { 1003 devclass_t parent; 1004 int i; 1005 1006 /* 1007 * Call BUS_DRIVER_ADDED for any existing busses in this class. 1008 */ 1009 for (i = 0; i < dc->maxunit; i++) 1010 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1011 BUS_DRIVER_ADDED(dc->devices[i], driver); 1012 1013 /* 1014 * Walk through the children classes. Since we only keep a 1015 * single parent pointer around, we walk the entire list of 1016 * devclasses looking for children. We set the 1017 * DC_HAS_CHILDREN flag when a child devclass is created on 1018 * the parent, so we only walk the list for those devclasses 1019 * that have children. 1020 */ 1021 if (!(dc->flags & DC_HAS_CHILDREN)) 1022 return; 1023 parent = dc; 1024 TAILQ_FOREACH(dc, &devclasses, link) { 1025 if (dc->parent == parent) 1026 devclass_driver_added(dc, driver); 1027 } 1028 } 1029 1030 /** 1031 * @brief Add a device driver to a device class 1032 * 1033 * Add a device driver to a devclass. This is normally called 1034 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1035 * all devices in the devclass will be called to allow them to attempt 1036 * to re-probe any unmatched children. 1037 * 1038 * @param dc the devclass to edit 1039 * @param driver the driver to register 1040 */ 1041 int 1042 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1043 { 1044 driverlink_t dl; 1045 const char *parentname; 1046 1047 PDEBUG(("%s", DRIVERNAME(driver))); 1048 1049 /* Don't allow invalid pass values. */ 1050 if (pass <= BUS_PASS_ROOT) 1051 return (EINVAL); 1052 1053 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1054 if (!dl) 1055 return (ENOMEM); 1056 1057 /* 1058 * Compile the driver's methods. Also increase the reference count 1059 * so that the class doesn't get freed when the last instance 1060 * goes. This means we can safely use static methods and avoids a 1061 * double-free in devclass_delete_driver. 1062 */ 1063 kobj_class_compile((kobj_class_t) driver); 1064 1065 /* 1066 * If the driver has any base classes, make the 1067 * devclass inherit from the devclass of the driver's 1068 * first base class. This will allow the system to 1069 * search for drivers in both devclasses for children 1070 * of a device using this driver. 1071 */ 1072 if (driver->baseclasses) 1073 parentname = driver->baseclasses[0]->name; 1074 else 1075 parentname = NULL; 1076 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1077 1078 dl->driver = driver; 1079 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1080 driver->refs++; /* XXX: kobj_mtx */ 1081 dl->pass = pass; 1082 driver_register_pass(dl); 1083 1084 devclass_driver_added(dc, driver); 1085 bus_data_generation_update(); 1086 return (0); 1087 } 1088 1089 /** 1090 * @brief Register that a device driver has been deleted from a devclass 1091 * 1092 * Register that a device driver has been removed from a devclass. 1093 * This is called by devclass_delete_driver to accomplish the 1094 * recursive notification of all the children classes of busclass, as 1095 * well as busclass. Each layer will attempt to detach the driver 1096 * from any devices that are children of the bus's devclass. The function 1097 * will return an error if a device fails to detach. 1098 * 1099 * We do a full search here of the devclass list at each iteration 1100 * level to save storing children-lists in the devclass structure. If 1101 * we ever move beyond a few dozen devices doing this, we may need to 1102 * reevaluate... 1103 * 1104 * @param busclass the devclass of the parent bus 1105 * @param dc the devclass of the driver being deleted 1106 * @param driver the driver being deleted 1107 */ 1108 static int 1109 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1110 { 1111 devclass_t parent; 1112 device_t dev; 1113 int error, i; 1114 1115 /* 1116 * Disassociate from any devices. We iterate through all the 1117 * devices in the devclass of the driver and detach any which are 1118 * using the driver and which have a parent in the devclass which 1119 * we are deleting from. 1120 * 1121 * Note that since a driver can be in multiple devclasses, we 1122 * should not detach devices which are not children of devices in 1123 * the affected devclass. 1124 */ 1125 for (i = 0; i < dc->maxunit; i++) { 1126 if (dc->devices[i]) { 1127 dev = dc->devices[i]; 1128 if (dev->driver == driver && dev->parent && 1129 dev->parent->devclass == busclass) { 1130 if ((error = device_detach(dev)) != 0) 1131 return (error); 1132 (void)device_set_driver(dev, NULL); 1133 BUS_PROBE_NOMATCH(dev->parent, dev); 1134 devnomatch(dev); 1135 dev->flags |= DF_DONENOMATCH; 1136 } 1137 } 1138 } 1139 1140 /* 1141 * Walk through the children classes. Since we only keep a 1142 * single parent pointer around, we walk the entire list of 1143 * devclasses looking for children. We set the 1144 * DC_HAS_CHILDREN flag when a child devclass is created on 1145 * the parent, so we only walk the list for those devclasses 1146 * that have children. 1147 */ 1148 if (!(busclass->flags & DC_HAS_CHILDREN)) 1149 return (0); 1150 parent = busclass; 1151 TAILQ_FOREACH(busclass, &devclasses, link) { 1152 if (busclass->parent == parent) { 1153 error = devclass_driver_deleted(busclass, dc, driver); 1154 if (error) 1155 return (error); 1156 } 1157 } 1158 return (0); 1159 } 1160 1161 /** 1162 * @brief Delete a device driver from a device class 1163 * 1164 * Delete a device driver from a devclass. This is normally called 1165 * automatically by DRIVER_MODULE(). 1166 * 1167 * If the driver is currently attached to any devices, 1168 * devclass_delete_driver() will first attempt to detach from each 1169 * device. If one of the detach calls fails, the driver will not be 1170 * deleted. 1171 * 1172 * @param dc the devclass to edit 1173 * @param driver the driver to unregister 1174 */ 1175 int 1176 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1177 { 1178 devclass_t dc = devclass_find(driver->name); 1179 driverlink_t dl; 1180 int error; 1181 1182 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1183 1184 if (!dc) 1185 return (0); 1186 1187 /* 1188 * Find the link structure in the bus' list of drivers. 1189 */ 1190 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1191 if (dl->driver == driver) 1192 break; 1193 } 1194 1195 if (!dl) { 1196 PDEBUG(("%s not found in %s list", driver->name, 1197 busclass->name)); 1198 return (ENOENT); 1199 } 1200 1201 error = devclass_driver_deleted(busclass, dc, driver); 1202 if (error != 0) 1203 return (error); 1204 1205 TAILQ_REMOVE(&busclass->drivers, dl, link); 1206 free(dl, M_BUS); 1207 1208 /* XXX: kobj_mtx */ 1209 driver->refs--; 1210 if (driver->refs == 0) 1211 kobj_class_free((kobj_class_t) driver); 1212 1213 bus_data_generation_update(); 1214 return (0); 1215 } 1216 1217 /** 1218 * @brief Quiesces a set of device drivers from a device class 1219 * 1220 * Quiesce a device driver from a devclass. This is normally called 1221 * automatically by DRIVER_MODULE(). 1222 * 1223 * If the driver is currently attached to any devices, 1224 * devclass_quiesece_driver() will first attempt to quiesce each 1225 * device. 1226 * 1227 * @param dc the devclass to edit 1228 * @param driver the driver to unregister 1229 */ 1230 static int 1231 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1232 { 1233 devclass_t dc = devclass_find(driver->name); 1234 driverlink_t dl; 1235 device_t dev; 1236 int i; 1237 int error; 1238 1239 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1240 1241 if (!dc) 1242 return (0); 1243 1244 /* 1245 * Find the link structure in the bus' list of drivers. 1246 */ 1247 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1248 if (dl->driver == driver) 1249 break; 1250 } 1251 1252 if (!dl) { 1253 PDEBUG(("%s not found in %s list", driver->name, 1254 busclass->name)); 1255 return (ENOENT); 1256 } 1257 1258 /* 1259 * Quiesce all devices. We iterate through all the devices in 1260 * the devclass of the driver and quiesce any which are using 1261 * the driver and which have a parent in the devclass which we 1262 * are quiescing. 1263 * 1264 * Note that since a driver can be in multiple devclasses, we 1265 * should not quiesce devices which are not children of 1266 * devices in the affected devclass. 1267 */ 1268 for (i = 0; i < dc->maxunit; i++) { 1269 if (dc->devices[i]) { 1270 dev = dc->devices[i]; 1271 if (dev->driver == driver && dev->parent && 1272 dev->parent->devclass == busclass) { 1273 if ((error = device_quiesce(dev)) != 0) 1274 return (error); 1275 } 1276 } 1277 } 1278 1279 return (0); 1280 } 1281 1282 /** 1283 * @internal 1284 */ 1285 static driverlink_t 1286 devclass_find_driver_internal(devclass_t dc, const char *classname) 1287 { 1288 driverlink_t dl; 1289 1290 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1291 1292 TAILQ_FOREACH(dl, &dc->drivers, link) { 1293 if (!strcmp(dl->driver->name, classname)) 1294 return (dl); 1295 } 1296 1297 PDEBUG(("not found")); 1298 return (NULL); 1299 } 1300 1301 /** 1302 * @brief Return the name of the devclass 1303 */ 1304 const char * 1305 devclass_get_name(devclass_t dc) 1306 { 1307 return (dc->name); 1308 } 1309 1310 /** 1311 * @brief Find a device given a unit number 1312 * 1313 * @param dc the devclass to search 1314 * @param unit the unit number to search for 1315 * 1316 * @returns the device with the given unit number or @c 1317 * NULL if there is no such device 1318 */ 1319 device_t 1320 devclass_get_device(devclass_t dc, int unit) 1321 { 1322 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1323 return (NULL); 1324 return (dc->devices[unit]); 1325 } 1326 1327 /** 1328 * @brief Find the softc field of a device given a unit number 1329 * 1330 * @param dc the devclass to search 1331 * @param unit the unit number to search for 1332 * 1333 * @returns the softc field of the device with the given 1334 * unit number or @c NULL if there is no such 1335 * device 1336 */ 1337 void * 1338 devclass_get_softc(devclass_t dc, int unit) 1339 { 1340 device_t dev; 1341 1342 dev = devclass_get_device(dc, unit); 1343 if (!dev) 1344 return (NULL); 1345 1346 return (device_get_softc(dev)); 1347 } 1348 1349 /** 1350 * @brief Get a list of devices in the devclass 1351 * 1352 * An array containing a list of all the devices in the given devclass 1353 * is allocated and returned in @p *devlistp. The number of devices 1354 * in the array is returned in @p *devcountp. The caller should free 1355 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1356 * 1357 * @param dc the devclass to examine 1358 * @param devlistp points at location for array pointer return 1359 * value 1360 * @param devcountp points at location for array size return value 1361 * 1362 * @retval 0 success 1363 * @retval ENOMEM the array allocation failed 1364 */ 1365 int 1366 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1367 { 1368 int count, i; 1369 device_t *list; 1370 1371 count = devclass_get_count(dc); 1372 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1373 if (!list) 1374 return (ENOMEM); 1375 1376 count = 0; 1377 for (i = 0; i < dc->maxunit; i++) { 1378 if (dc->devices[i]) { 1379 list[count] = dc->devices[i]; 1380 count++; 1381 } 1382 } 1383 1384 *devlistp = list; 1385 *devcountp = count; 1386 1387 return (0); 1388 } 1389 1390 /** 1391 * @brief Get a list of drivers in the devclass 1392 * 1393 * An array containing a list of pointers to all the drivers in the 1394 * given devclass is allocated and returned in @p *listp. The number 1395 * of drivers in the array is returned in @p *countp. The caller should 1396 * free the array using @c free(p, M_TEMP). 1397 * 1398 * @param dc the devclass to examine 1399 * @param listp gives location for array pointer return value 1400 * @param countp gives location for number of array elements 1401 * return value 1402 * 1403 * @retval 0 success 1404 * @retval ENOMEM the array allocation failed 1405 */ 1406 int 1407 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1408 { 1409 driverlink_t dl; 1410 driver_t **list; 1411 int count; 1412 1413 count = 0; 1414 TAILQ_FOREACH(dl, &dc->drivers, link) 1415 count++; 1416 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1417 if (list == NULL) 1418 return (ENOMEM); 1419 1420 count = 0; 1421 TAILQ_FOREACH(dl, &dc->drivers, link) { 1422 list[count] = dl->driver; 1423 count++; 1424 } 1425 *listp = list; 1426 *countp = count; 1427 1428 return (0); 1429 } 1430 1431 /** 1432 * @brief Get the number of devices in a devclass 1433 * 1434 * @param dc the devclass to examine 1435 */ 1436 int 1437 devclass_get_count(devclass_t dc) 1438 { 1439 int count, i; 1440 1441 count = 0; 1442 for (i = 0; i < dc->maxunit; i++) 1443 if (dc->devices[i]) 1444 count++; 1445 return (count); 1446 } 1447 1448 /** 1449 * @brief Get the maximum unit number used in a devclass 1450 * 1451 * Note that this is one greater than the highest currently-allocated 1452 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1453 * that not even the devclass has been allocated yet. 1454 * 1455 * @param dc the devclass to examine 1456 */ 1457 int 1458 devclass_get_maxunit(devclass_t dc) 1459 { 1460 if (dc == NULL) 1461 return (-1); 1462 return (dc->maxunit); 1463 } 1464 1465 /** 1466 * @brief Find a free unit number in a devclass 1467 * 1468 * This function searches for the first unused unit number greater 1469 * that or equal to @p unit. 1470 * 1471 * @param dc the devclass to examine 1472 * @param unit the first unit number to check 1473 */ 1474 int 1475 devclass_find_free_unit(devclass_t dc, int unit) 1476 { 1477 if (dc == NULL) 1478 return (unit); 1479 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1480 unit++; 1481 return (unit); 1482 } 1483 1484 /** 1485 * @brief Set the parent of a devclass 1486 * 1487 * The parent class is normally initialised automatically by 1488 * DRIVER_MODULE(). 1489 * 1490 * @param dc the devclass to edit 1491 * @param pdc the new parent devclass 1492 */ 1493 void 1494 devclass_set_parent(devclass_t dc, devclass_t pdc) 1495 { 1496 dc->parent = pdc; 1497 } 1498 1499 /** 1500 * @brief Get the parent of a devclass 1501 * 1502 * @param dc the devclass to examine 1503 */ 1504 devclass_t 1505 devclass_get_parent(devclass_t dc) 1506 { 1507 return (dc->parent); 1508 } 1509 1510 struct sysctl_ctx_list * 1511 devclass_get_sysctl_ctx(devclass_t dc) 1512 { 1513 return (&dc->sysctl_ctx); 1514 } 1515 1516 struct sysctl_oid * 1517 devclass_get_sysctl_tree(devclass_t dc) 1518 { 1519 return (dc->sysctl_tree); 1520 } 1521 1522 /** 1523 * @internal 1524 * @brief Allocate a unit number 1525 * 1526 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1527 * will do). The allocated unit number is returned in @p *unitp. 1528 1529 * @param dc the devclass to allocate from 1530 * @param unitp points at the location for the allocated unit 1531 * number 1532 * 1533 * @retval 0 success 1534 * @retval EEXIST the requested unit number is already allocated 1535 * @retval ENOMEM memory allocation failure 1536 */ 1537 static int 1538 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1539 { 1540 const char *s; 1541 int unit = *unitp; 1542 1543 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1544 1545 /* Ask the parent bus if it wants to wire this device. */ 1546 if (unit == -1) 1547 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1548 &unit); 1549 1550 /* If we were given a wired unit number, check for existing device */ 1551 /* XXX imp XXX */ 1552 if (unit != -1) { 1553 if (unit >= 0 && unit < dc->maxunit && 1554 dc->devices[unit] != NULL) { 1555 if (bootverbose) 1556 printf("%s: %s%d already exists; skipping it\n", 1557 dc->name, dc->name, *unitp); 1558 return (EEXIST); 1559 } 1560 } else { 1561 /* Unwired device, find the next available slot for it */ 1562 unit = 0; 1563 for (unit = 0;; unit++) { 1564 /* If there is an "at" hint for a unit then skip it. */ 1565 if (resource_string_value(dc->name, unit, "at", &s) == 1566 0) 1567 continue; 1568 1569 /* If this device slot is already in use, skip it. */ 1570 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1571 continue; 1572 1573 break; 1574 } 1575 } 1576 1577 /* 1578 * We've selected a unit beyond the length of the table, so let's 1579 * extend the table to make room for all units up to and including 1580 * this one. 1581 */ 1582 if (unit >= dc->maxunit) { 1583 device_t *newlist, *oldlist; 1584 int newsize; 1585 1586 oldlist = dc->devices; 1587 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1588 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1589 if (!newlist) 1590 return (ENOMEM); 1591 if (oldlist != NULL) 1592 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1593 bzero(newlist + dc->maxunit, 1594 sizeof(device_t) * (newsize - dc->maxunit)); 1595 dc->devices = newlist; 1596 dc->maxunit = newsize; 1597 if (oldlist != NULL) 1598 free(oldlist, M_BUS); 1599 } 1600 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1601 1602 *unitp = unit; 1603 return (0); 1604 } 1605 1606 /** 1607 * @internal 1608 * @brief Add a device to a devclass 1609 * 1610 * A unit number is allocated for the device (using the device's 1611 * preferred unit number if any) and the device is registered in the 1612 * devclass. This allows the device to be looked up by its unit 1613 * number, e.g. by decoding a dev_t minor number. 1614 * 1615 * @param dc the devclass to add to 1616 * @param dev the device to add 1617 * 1618 * @retval 0 success 1619 * @retval EEXIST the requested unit number is already allocated 1620 * @retval ENOMEM memory allocation failure 1621 */ 1622 static int 1623 devclass_add_device(devclass_t dc, device_t dev) 1624 { 1625 int buflen, error; 1626 1627 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1628 1629 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1630 if (buflen < 0) 1631 return (ENOMEM); 1632 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1633 if (!dev->nameunit) 1634 return (ENOMEM); 1635 1636 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1637 free(dev->nameunit, M_BUS); 1638 dev->nameunit = NULL; 1639 return (error); 1640 } 1641 dc->devices[dev->unit] = dev; 1642 dev->devclass = dc; 1643 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1644 1645 return (0); 1646 } 1647 1648 /** 1649 * @internal 1650 * @brief Delete a device from a devclass 1651 * 1652 * The device is removed from the devclass's device list and its unit 1653 * number is freed. 1654 1655 * @param dc the devclass to delete from 1656 * @param dev the device to delete 1657 * 1658 * @retval 0 success 1659 */ 1660 static int 1661 devclass_delete_device(devclass_t dc, device_t dev) 1662 { 1663 if (!dc || !dev) 1664 return (0); 1665 1666 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1667 1668 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1669 panic("devclass_delete_device: inconsistent device class"); 1670 dc->devices[dev->unit] = NULL; 1671 if (dev->flags & DF_WILDCARD) 1672 dev->unit = -1; 1673 dev->devclass = NULL; 1674 free(dev->nameunit, M_BUS); 1675 dev->nameunit = NULL; 1676 1677 return (0); 1678 } 1679 1680 /** 1681 * @internal 1682 * @brief Make a new device and add it as a child of @p parent 1683 * 1684 * @param parent the parent of the new device 1685 * @param name the devclass name of the new device or @c NULL 1686 * to leave the devclass unspecified 1687 * @parem unit the unit number of the new device of @c -1 to 1688 * leave the unit number unspecified 1689 * 1690 * @returns the new device 1691 */ 1692 static device_t 1693 make_device(device_t parent, const char *name, int unit) 1694 { 1695 device_t dev; 1696 devclass_t dc; 1697 1698 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1699 1700 if (name) { 1701 dc = devclass_find_internal(name, NULL, TRUE); 1702 if (!dc) { 1703 printf("make_device: can't find device class %s\n", 1704 name); 1705 return (NULL); 1706 } 1707 } else { 1708 dc = NULL; 1709 } 1710 1711 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1712 if (!dev) 1713 return (NULL); 1714 1715 dev->parent = parent; 1716 TAILQ_INIT(&dev->children); 1717 kobj_init((kobj_t) dev, &null_class); 1718 dev->driver = NULL; 1719 dev->devclass = NULL; 1720 dev->unit = unit; 1721 dev->nameunit = NULL; 1722 dev->desc = NULL; 1723 dev->busy = 0; 1724 dev->devflags = 0; 1725 dev->flags = DF_ENABLED; 1726 dev->order = 0; 1727 if (unit == -1) 1728 dev->flags |= DF_WILDCARD; 1729 if (name) { 1730 dev->flags |= DF_FIXEDCLASS; 1731 if (devclass_add_device(dc, dev)) { 1732 kobj_delete((kobj_t) dev, M_BUS); 1733 return (NULL); 1734 } 1735 } 1736 dev->ivars = NULL; 1737 dev->softc = NULL; 1738 1739 dev->state = DS_NOTPRESENT; 1740 1741 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1742 bus_data_generation_update(); 1743 1744 return (dev); 1745 } 1746 1747 /** 1748 * @internal 1749 * @brief Print a description of a device. 1750 */ 1751 static int 1752 device_print_child(device_t dev, device_t child) 1753 { 1754 int retval = 0; 1755 1756 if (device_is_alive(child)) 1757 retval += BUS_PRINT_CHILD(dev, child); 1758 else 1759 retval += device_printf(child, " not found\n"); 1760 1761 return (retval); 1762 } 1763 1764 /** 1765 * @brief Create a new device 1766 * 1767 * This creates a new device and adds it as a child of an existing 1768 * parent device. The new device will be added after the last existing 1769 * child with order zero. 1770 * 1771 * @param dev the device which will be the parent of the 1772 * new child device 1773 * @param name devclass name for new device or @c NULL if not 1774 * specified 1775 * @param unit unit number for new device or @c -1 if not 1776 * specified 1777 * 1778 * @returns the new device 1779 */ 1780 device_t 1781 device_add_child(device_t dev, const char *name, int unit) 1782 { 1783 return (device_add_child_ordered(dev, 0, name, unit)); 1784 } 1785 1786 /** 1787 * @brief Create a new device 1788 * 1789 * This creates a new device and adds it as a child of an existing 1790 * parent device. The new device will be added after the last existing 1791 * child with the same order. 1792 * 1793 * @param dev the device which will be the parent of the 1794 * new child device 1795 * @param order a value which is used to partially sort the 1796 * children of @p dev - devices created using 1797 * lower values of @p order appear first in @p 1798 * dev's list of children 1799 * @param name devclass name for new device or @c NULL if not 1800 * specified 1801 * @param unit unit number for new device or @c -1 if not 1802 * specified 1803 * 1804 * @returns the new device 1805 */ 1806 device_t 1807 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1808 { 1809 device_t child; 1810 device_t place; 1811 1812 PDEBUG(("%s at %s with order %u as unit %d", 1813 name, DEVICENAME(dev), order, unit)); 1814 1815 child = make_device(dev, name, unit); 1816 if (child == NULL) 1817 return (child); 1818 child->order = order; 1819 1820 TAILQ_FOREACH(place, &dev->children, link) { 1821 if (place->order > order) 1822 break; 1823 } 1824 1825 if (place) { 1826 /* 1827 * The device 'place' is the first device whose order is 1828 * greater than the new child. 1829 */ 1830 TAILQ_INSERT_BEFORE(place, child, link); 1831 } else { 1832 /* 1833 * The new child's order is greater or equal to the order of 1834 * any existing device. Add the child to the tail of the list. 1835 */ 1836 TAILQ_INSERT_TAIL(&dev->children, child, link); 1837 } 1838 1839 bus_data_generation_update(); 1840 return (child); 1841 } 1842 1843 /** 1844 * @brief Delete a device 1845 * 1846 * This function deletes a device along with all of its children. If 1847 * the device currently has a driver attached to it, the device is 1848 * detached first using device_detach(). 1849 * 1850 * @param dev the parent device 1851 * @param child the device to delete 1852 * 1853 * @retval 0 success 1854 * @retval non-zero a unit error code describing the error 1855 */ 1856 int 1857 device_delete_child(device_t dev, device_t child) 1858 { 1859 int error; 1860 device_t grandchild; 1861 1862 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1863 1864 /* remove children first */ 1865 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1866 error = device_delete_child(child, grandchild); 1867 if (error) 1868 return (error); 1869 } 1870 1871 if ((error = device_detach(child)) != 0) 1872 return (error); 1873 if (child->devclass) 1874 devclass_delete_device(child->devclass, child); 1875 TAILQ_REMOVE(&dev->children, child, link); 1876 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1877 kobj_delete((kobj_t) child, M_BUS); 1878 1879 bus_data_generation_update(); 1880 return (0); 1881 } 1882 1883 /** 1884 * @brief Delete all children devices of the given device, if any. 1885 * 1886 * This function deletes all children devices of the given device, if 1887 * any, using the device_delete_child() function for each device it 1888 * finds. If a child device cannot be deleted, this function will 1889 * return an error code. 1890 * 1891 * @param dev the parent device 1892 * 1893 * @retval 0 success 1894 * @retval non-zero a device would not detach 1895 */ 1896 int 1897 device_delete_children(device_t dev) 1898 { 1899 device_t child; 1900 int error; 1901 1902 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1903 1904 error = 0; 1905 1906 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1907 error = device_delete_child(dev, child); 1908 if (error) { 1909 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1910 break; 1911 } 1912 } 1913 return (error); 1914 } 1915 1916 /** 1917 * @brief Find a device given a unit number 1918 * 1919 * This is similar to devclass_get_devices() but only searches for 1920 * devices which have @p dev as a parent. 1921 * 1922 * @param dev the parent device to search 1923 * @param unit the unit number to search for. If the unit is -1, 1924 * return the first child of @p dev which has name 1925 * @p classname (that is, the one with the lowest unit.) 1926 * 1927 * @returns the device with the given unit number or @c 1928 * NULL if there is no such device 1929 */ 1930 device_t 1931 device_find_child(device_t dev, const char *classname, int unit) 1932 { 1933 devclass_t dc; 1934 device_t child; 1935 1936 dc = devclass_find(classname); 1937 if (!dc) 1938 return (NULL); 1939 1940 if (unit != -1) { 1941 child = devclass_get_device(dc, unit); 1942 if (child && child->parent == dev) 1943 return (child); 1944 } else { 1945 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1946 child = devclass_get_device(dc, unit); 1947 if (child && child->parent == dev) 1948 return (child); 1949 } 1950 } 1951 return (NULL); 1952 } 1953 1954 /** 1955 * @internal 1956 */ 1957 static driverlink_t 1958 first_matching_driver(devclass_t dc, device_t dev) 1959 { 1960 if (dev->devclass) 1961 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1962 return (TAILQ_FIRST(&dc->drivers)); 1963 } 1964 1965 /** 1966 * @internal 1967 */ 1968 static driverlink_t 1969 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1970 { 1971 if (dev->devclass) { 1972 driverlink_t dl; 1973 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1974 if (!strcmp(dev->devclass->name, dl->driver->name)) 1975 return (dl); 1976 return (NULL); 1977 } 1978 return (TAILQ_NEXT(last, link)); 1979 } 1980 1981 /** 1982 * @internal 1983 */ 1984 int 1985 device_probe_child(device_t dev, device_t child) 1986 { 1987 devclass_t dc; 1988 driverlink_t best = NULL; 1989 driverlink_t dl; 1990 int result, pri = 0; 1991 int hasclass = (child->devclass != NULL); 1992 1993 GIANT_REQUIRED; 1994 1995 dc = dev->devclass; 1996 if (!dc) 1997 panic("device_probe_child: parent device has no devclass"); 1998 1999 /* 2000 * If the state is already probed, then return. However, don't 2001 * return if we can rebid this object. 2002 */ 2003 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2004 return (0); 2005 2006 for (; dc; dc = dc->parent) { 2007 for (dl = first_matching_driver(dc, child); 2008 dl; 2009 dl = next_matching_driver(dc, child, dl)) { 2010 /* If this driver's pass is too high, then ignore it. */ 2011 if (dl->pass > bus_current_pass) 2012 continue; 2013 2014 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2015 result = device_set_driver(child, dl->driver); 2016 if (result == ENOMEM) 2017 return (result); 2018 else if (result != 0) 2019 continue; 2020 if (!hasclass) { 2021 if (device_set_devclass(child, 2022 dl->driver->name) != 0) { 2023 char const * devname = 2024 device_get_name(child); 2025 if (devname == NULL) 2026 devname = "(unknown)"; 2027 printf("driver bug: Unable to set " 2028 "devclass (class: %s " 2029 "devname: %s)\n", 2030 dl->driver->name, 2031 devname); 2032 (void)device_set_driver(child, NULL); 2033 continue; 2034 } 2035 } 2036 2037 /* Fetch any flags for the device before probing. */ 2038 resource_int_value(dl->driver->name, child->unit, 2039 "flags", &child->devflags); 2040 2041 result = DEVICE_PROBE(child); 2042 2043 /* Reset flags and devclass before the next probe. */ 2044 child->devflags = 0; 2045 if (!hasclass) 2046 (void)device_set_devclass(child, NULL); 2047 2048 /* 2049 * If the driver returns SUCCESS, there can be 2050 * no higher match for this device. 2051 */ 2052 if (result == 0) { 2053 best = dl; 2054 pri = 0; 2055 break; 2056 } 2057 2058 /* 2059 * The driver returned an error so it 2060 * certainly doesn't match. 2061 */ 2062 if (result > 0) { 2063 (void)device_set_driver(child, NULL); 2064 continue; 2065 } 2066 2067 /* 2068 * A priority lower than SUCCESS, remember the 2069 * best matching driver. Initialise the value 2070 * of pri for the first match. 2071 */ 2072 if (best == NULL || result > pri) { 2073 /* 2074 * Probes that return BUS_PROBE_NOWILDCARD 2075 * or lower only match when they are set 2076 * in stone by the parent bus. 2077 */ 2078 if (result <= BUS_PROBE_NOWILDCARD && 2079 child->flags & DF_WILDCARD) 2080 continue; 2081 best = dl; 2082 pri = result; 2083 continue; 2084 } 2085 } 2086 /* 2087 * If we have an unambiguous match in this devclass, 2088 * don't look in the parent. 2089 */ 2090 if (best && pri == 0) 2091 break; 2092 } 2093 2094 /* 2095 * If we found a driver, change state and initialise the devclass. 2096 */ 2097 /* XXX What happens if we rebid and got no best? */ 2098 if (best) { 2099 /* 2100 * If this device was atached, and we were asked to 2101 * rescan, and it is a different driver, then we have 2102 * to detach the old driver and reattach this new one. 2103 * Note, we don't have to check for DF_REBID here 2104 * because if the state is > DS_ALIVE, we know it must 2105 * be. 2106 * 2107 * This assumes that all DF_REBID drivers can have 2108 * their probe routine called at any time and that 2109 * they are idempotent as well as completely benign in 2110 * normal operations. 2111 * 2112 * We also have to make sure that the detach 2113 * succeeded, otherwise we fail the operation (or 2114 * maybe it should just fail silently? I'm torn). 2115 */ 2116 if (child->state > DS_ALIVE && best->driver != child->driver) 2117 if ((result = device_detach(dev)) != 0) 2118 return (result); 2119 2120 /* Set the winning driver, devclass, and flags. */ 2121 if (!child->devclass) { 2122 result = device_set_devclass(child, best->driver->name); 2123 if (result != 0) 2124 return (result); 2125 } 2126 result = device_set_driver(child, best->driver); 2127 if (result != 0) 2128 return (result); 2129 resource_int_value(best->driver->name, child->unit, 2130 "flags", &child->devflags); 2131 2132 if (pri < 0) { 2133 /* 2134 * A bit bogus. Call the probe method again to make 2135 * sure that we have the right description. 2136 */ 2137 DEVICE_PROBE(child); 2138 #if 0 2139 child->flags |= DF_REBID; 2140 #endif 2141 } else 2142 child->flags &= ~DF_REBID; 2143 child->state = DS_ALIVE; 2144 2145 bus_data_generation_update(); 2146 return (0); 2147 } 2148 2149 return (ENXIO); 2150 } 2151 2152 /** 2153 * @brief Return the parent of a device 2154 */ 2155 device_t 2156 device_get_parent(device_t dev) 2157 { 2158 return (dev->parent); 2159 } 2160 2161 /** 2162 * @brief Get a list of children of a device 2163 * 2164 * An array containing a list of all the children of the given device 2165 * is allocated and returned in @p *devlistp. The number of devices 2166 * in the array is returned in @p *devcountp. The caller should free 2167 * the array using @c free(p, M_TEMP). 2168 * 2169 * @param dev the device to examine 2170 * @param devlistp points at location for array pointer return 2171 * value 2172 * @param devcountp points at location for array size return value 2173 * 2174 * @retval 0 success 2175 * @retval ENOMEM the array allocation failed 2176 */ 2177 int 2178 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2179 { 2180 int count; 2181 device_t child; 2182 device_t *list; 2183 2184 count = 0; 2185 TAILQ_FOREACH(child, &dev->children, link) { 2186 count++; 2187 } 2188 if (count == 0) { 2189 *devlistp = NULL; 2190 *devcountp = 0; 2191 return (0); 2192 } 2193 2194 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2195 if (!list) 2196 return (ENOMEM); 2197 2198 count = 0; 2199 TAILQ_FOREACH(child, &dev->children, link) { 2200 list[count] = child; 2201 count++; 2202 } 2203 2204 *devlistp = list; 2205 *devcountp = count; 2206 2207 return (0); 2208 } 2209 2210 /** 2211 * @brief Return the current driver for the device or @c NULL if there 2212 * is no driver currently attached 2213 */ 2214 driver_t * 2215 device_get_driver(device_t dev) 2216 { 2217 return (dev->driver); 2218 } 2219 2220 /** 2221 * @brief Return the current devclass for the device or @c NULL if 2222 * there is none. 2223 */ 2224 devclass_t 2225 device_get_devclass(device_t dev) 2226 { 2227 return (dev->devclass); 2228 } 2229 2230 /** 2231 * @brief Return the name of the device's devclass or @c NULL if there 2232 * is none. 2233 */ 2234 const char * 2235 device_get_name(device_t dev) 2236 { 2237 if (dev != NULL && dev->devclass) 2238 return (devclass_get_name(dev->devclass)); 2239 return (NULL); 2240 } 2241 2242 /** 2243 * @brief Return a string containing the device's devclass name 2244 * followed by an ascii representation of the device's unit number 2245 * (e.g. @c "foo2"). 2246 */ 2247 const char * 2248 device_get_nameunit(device_t dev) 2249 { 2250 return (dev->nameunit); 2251 } 2252 2253 /** 2254 * @brief Return the device's unit number. 2255 */ 2256 int 2257 device_get_unit(device_t dev) 2258 { 2259 return (dev->unit); 2260 } 2261 2262 /** 2263 * @brief Return the device's description string 2264 */ 2265 const char * 2266 device_get_desc(device_t dev) 2267 { 2268 return (dev->desc); 2269 } 2270 2271 /** 2272 * @brief Return the device's flags 2273 */ 2274 uint32_t 2275 device_get_flags(device_t dev) 2276 { 2277 return (dev->devflags); 2278 } 2279 2280 struct sysctl_ctx_list * 2281 device_get_sysctl_ctx(device_t dev) 2282 { 2283 return (&dev->sysctl_ctx); 2284 } 2285 2286 struct sysctl_oid * 2287 device_get_sysctl_tree(device_t dev) 2288 { 2289 return (dev->sysctl_tree); 2290 } 2291 2292 /** 2293 * @brief Print the name of the device followed by a colon and a space 2294 * 2295 * @returns the number of characters printed 2296 */ 2297 int 2298 device_print_prettyname(device_t dev) 2299 { 2300 const char *name = device_get_name(dev); 2301 2302 if (name == NULL) 2303 return (printf("unknown: ")); 2304 return (printf("%s%d: ", name, device_get_unit(dev))); 2305 } 2306 2307 /** 2308 * @brief Print the name of the device followed by a colon, a space 2309 * and the result of calling vprintf() with the value of @p fmt and 2310 * the following arguments. 2311 * 2312 * @returns the number of characters printed 2313 */ 2314 int 2315 device_printf(device_t dev, const char * fmt, ...) 2316 { 2317 va_list ap; 2318 int retval; 2319 2320 retval = device_print_prettyname(dev); 2321 va_start(ap, fmt); 2322 retval += vprintf(fmt, ap); 2323 va_end(ap); 2324 return (retval); 2325 } 2326 2327 /** 2328 * @internal 2329 */ 2330 static void 2331 device_set_desc_internal(device_t dev, const char* desc, int copy) 2332 { 2333 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2334 free(dev->desc, M_BUS); 2335 dev->flags &= ~DF_DESCMALLOCED; 2336 dev->desc = NULL; 2337 } 2338 2339 if (copy && desc) { 2340 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2341 if (dev->desc) { 2342 strcpy(dev->desc, desc); 2343 dev->flags |= DF_DESCMALLOCED; 2344 } 2345 } else { 2346 /* Avoid a -Wcast-qual warning */ 2347 dev->desc = (char *)(uintptr_t) desc; 2348 } 2349 2350 bus_data_generation_update(); 2351 } 2352 2353 /** 2354 * @brief Set the device's description 2355 * 2356 * The value of @c desc should be a string constant that will not 2357 * change (at least until the description is changed in a subsequent 2358 * call to device_set_desc() or device_set_desc_copy()). 2359 */ 2360 void 2361 device_set_desc(device_t dev, const char* desc) 2362 { 2363 device_set_desc_internal(dev, desc, FALSE); 2364 } 2365 2366 /** 2367 * @brief Set the device's description 2368 * 2369 * The string pointed to by @c desc is copied. Use this function if 2370 * the device description is generated, (e.g. with sprintf()). 2371 */ 2372 void 2373 device_set_desc_copy(device_t dev, const char* desc) 2374 { 2375 device_set_desc_internal(dev, desc, TRUE); 2376 } 2377 2378 /** 2379 * @brief Set the device's flags 2380 */ 2381 void 2382 device_set_flags(device_t dev, uint32_t flags) 2383 { 2384 dev->devflags = flags; 2385 } 2386 2387 /** 2388 * @brief Return the device's softc field 2389 * 2390 * The softc is allocated and zeroed when a driver is attached, based 2391 * on the size field of the driver. 2392 */ 2393 void * 2394 device_get_softc(device_t dev) 2395 { 2396 return (dev->softc); 2397 } 2398 2399 /** 2400 * @brief Set the device's softc field 2401 * 2402 * Most drivers do not need to use this since the softc is allocated 2403 * automatically when the driver is attached. 2404 */ 2405 void 2406 device_set_softc(device_t dev, void *softc) 2407 { 2408 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2409 free(dev->softc, M_BUS_SC); 2410 dev->softc = softc; 2411 if (dev->softc) 2412 dev->flags |= DF_EXTERNALSOFTC; 2413 else 2414 dev->flags &= ~DF_EXTERNALSOFTC; 2415 } 2416 2417 /** 2418 * @brief Get the device's ivars field 2419 * 2420 * The ivars field is used by the parent device to store per-device 2421 * state (e.g. the physical location of the device or a list of 2422 * resources). 2423 */ 2424 void * 2425 device_get_ivars(device_t dev) 2426 { 2427 2428 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2429 return (dev->ivars); 2430 } 2431 2432 /** 2433 * @brief Set the device's ivars field 2434 */ 2435 void 2436 device_set_ivars(device_t dev, void * ivars) 2437 { 2438 2439 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2440 dev->ivars = ivars; 2441 } 2442 2443 /** 2444 * @brief Return the device's state 2445 */ 2446 device_state_t 2447 device_get_state(device_t dev) 2448 { 2449 return (dev->state); 2450 } 2451 2452 /** 2453 * @brief Set the DF_ENABLED flag for the device 2454 */ 2455 void 2456 device_enable(device_t dev) 2457 { 2458 dev->flags |= DF_ENABLED; 2459 } 2460 2461 /** 2462 * @brief Clear the DF_ENABLED flag for the device 2463 */ 2464 void 2465 device_disable(device_t dev) 2466 { 2467 dev->flags &= ~DF_ENABLED; 2468 } 2469 2470 /** 2471 * @brief Increment the busy counter for the device 2472 */ 2473 void 2474 device_busy(device_t dev) 2475 { 2476 if (dev->state < DS_ATTACHED) 2477 panic("device_busy: called for unattached device"); 2478 if (dev->busy == 0 && dev->parent) 2479 device_busy(dev->parent); 2480 dev->busy++; 2481 dev->state = DS_BUSY; 2482 } 2483 2484 /** 2485 * @brief Decrement the busy counter for the device 2486 */ 2487 void 2488 device_unbusy(device_t dev) 2489 { 2490 if (dev->state != DS_BUSY) 2491 panic("device_unbusy: called for non-busy device %s", 2492 device_get_nameunit(dev)); 2493 dev->busy--; 2494 if (dev->busy == 0) { 2495 if (dev->parent) 2496 device_unbusy(dev->parent); 2497 dev->state = DS_ATTACHED; 2498 } 2499 } 2500 2501 /** 2502 * @brief Set the DF_QUIET flag for the device 2503 */ 2504 void 2505 device_quiet(device_t dev) 2506 { 2507 dev->flags |= DF_QUIET; 2508 } 2509 2510 /** 2511 * @brief Clear the DF_QUIET flag for the device 2512 */ 2513 void 2514 device_verbose(device_t dev) 2515 { 2516 dev->flags &= ~DF_QUIET; 2517 } 2518 2519 /** 2520 * @brief Return non-zero if the DF_QUIET flag is set on the device 2521 */ 2522 int 2523 device_is_quiet(device_t dev) 2524 { 2525 return ((dev->flags & DF_QUIET) != 0); 2526 } 2527 2528 /** 2529 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2530 */ 2531 int 2532 device_is_enabled(device_t dev) 2533 { 2534 return ((dev->flags & DF_ENABLED) != 0); 2535 } 2536 2537 /** 2538 * @brief Return non-zero if the device was successfully probed 2539 */ 2540 int 2541 device_is_alive(device_t dev) 2542 { 2543 return (dev->state >= DS_ALIVE); 2544 } 2545 2546 /** 2547 * @brief Return non-zero if the device currently has a driver 2548 * attached to it 2549 */ 2550 int 2551 device_is_attached(device_t dev) 2552 { 2553 return (dev->state >= DS_ATTACHED); 2554 } 2555 2556 /** 2557 * @brief Set the devclass of a device 2558 * @see devclass_add_device(). 2559 */ 2560 int 2561 device_set_devclass(device_t dev, const char *classname) 2562 { 2563 devclass_t dc; 2564 int error; 2565 2566 if (!classname) { 2567 if (dev->devclass) 2568 devclass_delete_device(dev->devclass, dev); 2569 return (0); 2570 } 2571 2572 if (dev->devclass) { 2573 printf("device_set_devclass: device class already set\n"); 2574 return (EINVAL); 2575 } 2576 2577 dc = devclass_find_internal(classname, NULL, TRUE); 2578 if (!dc) 2579 return (ENOMEM); 2580 2581 error = devclass_add_device(dc, dev); 2582 2583 bus_data_generation_update(); 2584 return (error); 2585 } 2586 2587 /** 2588 * @brief Set the driver of a device 2589 * 2590 * @retval 0 success 2591 * @retval EBUSY the device already has a driver attached 2592 * @retval ENOMEM a memory allocation failure occurred 2593 */ 2594 int 2595 device_set_driver(device_t dev, driver_t *driver) 2596 { 2597 if (dev->state >= DS_ATTACHED) 2598 return (EBUSY); 2599 2600 if (dev->driver == driver) 2601 return (0); 2602 2603 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2604 free(dev->softc, M_BUS_SC); 2605 dev->softc = NULL; 2606 } 2607 kobj_delete((kobj_t) dev, NULL); 2608 dev->driver = driver; 2609 if (driver) { 2610 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2611 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2612 dev->softc = malloc(driver->size, M_BUS_SC, 2613 M_NOWAIT | M_ZERO); 2614 if (!dev->softc) { 2615 kobj_delete((kobj_t) dev, NULL); 2616 kobj_init((kobj_t) dev, &null_class); 2617 dev->driver = NULL; 2618 return (ENOMEM); 2619 } 2620 } 2621 } else { 2622 kobj_init((kobj_t) dev, &null_class); 2623 } 2624 2625 bus_data_generation_update(); 2626 return (0); 2627 } 2628 2629 /** 2630 * @brief Probe a device, and return this status. 2631 * 2632 * This function is the core of the device autoconfiguration 2633 * system. Its purpose is to select a suitable driver for a device and 2634 * then call that driver to initialise the hardware appropriately. The 2635 * driver is selected by calling the DEVICE_PROBE() method of a set of 2636 * candidate drivers and then choosing the driver which returned the 2637 * best value. This driver is then attached to the device using 2638 * device_attach(). 2639 * 2640 * The set of suitable drivers is taken from the list of drivers in 2641 * the parent device's devclass. If the device was originally created 2642 * with a specific class name (see device_add_child()), only drivers 2643 * with that name are probed, otherwise all drivers in the devclass 2644 * are probed. If no drivers return successful probe values in the 2645 * parent devclass, the search continues in the parent of that 2646 * devclass (see devclass_get_parent()) if any. 2647 * 2648 * @param dev the device to initialise 2649 * 2650 * @retval 0 success 2651 * @retval ENXIO no driver was found 2652 * @retval ENOMEM memory allocation failure 2653 * @retval non-zero some other unix error code 2654 * @retval -1 Device already attached 2655 */ 2656 int 2657 device_probe(device_t dev) 2658 { 2659 int error; 2660 2661 GIANT_REQUIRED; 2662 2663 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2664 return (-1); 2665 2666 if (!(dev->flags & DF_ENABLED)) { 2667 if (bootverbose && device_get_name(dev) != NULL) { 2668 device_print_prettyname(dev); 2669 printf("not probed (disabled)\n"); 2670 } 2671 return (-1); 2672 } 2673 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2674 if (bus_current_pass == BUS_PASS_DEFAULT && 2675 !(dev->flags & DF_DONENOMATCH)) { 2676 BUS_PROBE_NOMATCH(dev->parent, dev); 2677 devnomatch(dev); 2678 dev->flags |= DF_DONENOMATCH; 2679 } 2680 return (error); 2681 } 2682 return (0); 2683 } 2684 2685 /** 2686 * @brief Probe a device and attach a driver if possible 2687 * 2688 * calls device_probe() and attaches if that was successful. 2689 */ 2690 int 2691 device_probe_and_attach(device_t dev) 2692 { 2693 int error; 2694 2695 GIANT_REQUIRED; 2696 2697 error = device_probe(dev); 2698 if (error == -1) 2699 return (0); 2700 else if (error != 0) 2701 return (error); 2702 return (device_attach(dev)); 2703 } 2704 2705 /** 2706 * @brief Attach a device driver to a device 2707 * 2708 * This function is a wrapper around the DEVICE_ATTACH() driver 2709 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2710 * device's sysctl tree, optionally prints a description of the device 2711 * and queues a notification event for user-based device management 2712 * services. 2713 * 2714 * Normally this function is only called internally from 2715 * device_probe_and_attach(). 2716 * 2717 * @param dev the device to initialise 2718 * 2719 * @retval 0 success 2720 * @retval ENXIO no driver was found 2721 * @retval ENOMEM memory allocation failure 2722 * @retval non-zero some other unix error code 2723 */ 2724 int 2725 device_attach(device_t dev) 2726 { 2727 int error; 2728 2729 device_sysctl_init(dev); 2730 if (!device_is_quiet(dev)) 2731 device_print_child(dev->parent, dev); 2732 if ((error = DEVICE_ATTACH(dev)) != 0) { 2733 printf("device_attach: %s%d attach returned %d\n", 2734 dev->driver->name, dev->unit, error); 2735 /* Unset the class; set in device_probe_child */ 2736 if (dev->devclass == NULL) 2737 (void)device_set_devclass(dev, NULL); 2738 (void)device_set_driver(dev, NULL); 2739 device_sysctl_fini(dev); 2740 dev->state = DS_NOTPRESENT; 2741 return (error); 2742 } 2743 device_sysctl_update(dev); 2744 dev->state = DS_ATTACHED; 2745 dev->flags &= ~DF_DONENOMATCH; 2746 devadded(dev); 2747 return (0); 2748 } 2749 2750 /** 2751 * @brief Detach a driver from a device 2752 * 2753 * This function is a wrapper around the DEVICE_DETACH() driver 2754 * method. If the call to DEVICE_DETACH() succeeds, it calls 2755 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2756 * notification event for user-based device management services and 2757 * cleans up the device's sysctl tree. 2758 * 2759 * @param dev the device to un-initialise 2760 * 2761 * @retval 0 success 2762 * @retval ENXIO no driver was found 2763 * @retval ENOMEM memory allocation failure 2764 * @retval non-zero some other unix error code 2765 */ 2766 int 2767 device_detach(device_t dev) 2768 { 2769 int error; 2770 2771 GIANT_REQUIRED; 2772 2773 PDEBUG(("%s", DEVICENAME(dev))); 2774 if (dev->state == DS_BUSY) 2775 return (EBUSY); 2776 if (dev->state != DS_ATTACHED) 2777 return (0); 2778 2779 if ((error = DEVICE_DETACH(dev)) != 0) 2780 return (error); 2781 devremoved(dev); 2782 if (!device_is_quiet(dev)) 2783 device_printf(dev, "detached\n"); 2784 if (dev->parent) 2785 BUS_CHILD_DETACHED(dev->parent, dev); 2786 2787 if (!(dev->flags & DF_FIXEDCLASS)) 2788 devclass_delete_device(dev->devclass, dev); 2789 2790 dev->state = DS_NOTPRESENT; 2791 (void)device_set_driver(dev, NULL); 2792 device_set_desc(dev, NULL); 2793 device_sysctl_fini(dev); 2794 2795 return (0); 2796 } 2797 2798 /** 2799 * @brief Tells a driver to quiesce itself. 2800 * 2801 * This function is a wrapper around the DEVICE_QUIESCE() driver 2802 * method. If the call to DEVICE_QUIESCE() succeeds. 2803 * 2804 * @param dev the device to quiesce 2805 * 2806 * @retval 0 success 2807 * @retval ENXIO no driver was found 2808 * @retval ENOMEM memory allocation failure 2809 * @retval non-zero some other unix error code 2810 */ 2811 int 2812 device_quiesce(device_t dev) 2813 { 2814 2815 PDEBUG(("%s", DEVICENAME(dev))); 2816 if (dev->state == DS_BUSY) 2817 return (EBUSY); 2818 if (dev->state != DS_ATTACHED) 2819 return (0); 2820 2821 return (DEVICE_QUIESCE(dev)); 2822 } 2823 2824 /** 2825 * @brief Notify a device of system shutdown 2826 * 2827 * This function calls the DEVICE_SHUTDOWN() driver method if the 2828 * device currently has an attached driver. 2829 * 2830 * @returns the value returned by DEVICE_SHUTDOWN() 2831 */ 2832 int 2833 device_shutdown(device_t dev) 2834 { 2835 if (dev->state < DS_ATTACHED) 2836 return (0); 2837 return (DEVICE_SHUTDOWN(dev)); 2838 } 2839 2840 /** 2841 * @brief Set the unit number of a device 2842 * 2843 * This function can be used to override the unit number used for a 2844 * device (e.g. to wire a device to a pre-configured unit number). 2845 */ 2846 int 2847 device_set_unit(device_t dev, int unit) 2848 { 2849 devclass_t dc; 2850 int err; 2851 2852 dc = device_get_devclass(dev); 2853 if (unit < dc->maxunit && dc->devices[unit]) 2854 return (EBUSY); 2855 err = devclass_delete_device(dc, dev); 2856 if (err) 2857 return (err); 2858 dev->unit = unit; 2859 err = devclass_add_device(dc, dev); 2860 if (err) 2861 return (err); 2862 2863 bus_data_generation_update(); 2864 return (0); 2865 } 2866 2867 /*======================================*/ 2868 /* 2869 * Some useful method implementations to make life easier for bus drivers. 2870 */ 2871 2872 /** 2873 * @brief Initialise a resource list. 2874 * 2875 * @param rl the resource list to initialise 2876 */ 2877 void 2878 resource_list_init(struct resource_list *rl) 2879 { 2880 STAILQ_INIT(rl); 2881 } 2882 2883 /** 2884 * @brief Reclaim memory used by a resource list. 2885 * 2886 * This function frees the memory for all resource entries on the list 2887 * (if any). 2888 * 2889 * @param rl the resource list to free 2890 */ 2891 void 2892 resource_list_free(struct resource_list *rl) 2893 { 2894 struct resource_list_entry *rle; 2895 2896 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2897 if (rle->res) 2898 panic("resource_list_free: resource entry is busy"); 2899 STAILQ_REMOVE_HEAD(rl, link); 2900 free(rle, M_BUS); 2901 } 2902 } 2903 2904 /** 2905 * @brief Add a resource entry. 2906 * 2907 * This function adds a resource entry using the given @p type, @p 2908 * start, @p end and @p count values. A rid value is chosen by 2909 * searching sequentially for the first unused rid starting at zero. 2910 * 2911 * @param rl the resource list to edit 2912 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2913 * @param start the start address of the resource 2914 * @param end the end address of the resource 2915 * @param count XXX end-start+1 2916 */ 2917 int 2918 resource_list_add_next(struct resource_list *rl, int type, u_long start, 2919 u_long end, u_long count) 2920 { 2921 int rid; 2922 2923 rid = 0; 2924 while (resource_list_find(rl, type, rid) != NULL) 2925 rid++; 2926 resource_list_add(rl, type, rid, start, end, count); 2927 return (rid); 2928 } 2929 2930 /** 2931 * @brief Add or modify a resource entry. 2932 * 2933 * If an existing entry exists with the same type and rid, it will be 2934 * modified using the given values of @p start, @p end and @p 2935 * count. If no entry exists, a new one will be created using the 2936 * given values. The resource list entry that matches is then returned. 2937 * 2938 * @param rl the resource list to edit 2939 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2940 * @param rid the resource identifier 2941 * @param start the start address of the resource 2942 * @param end the end address of the resource 2943 * @param count XXX end-start+1 2944 */ 2945 struct resource_list_entry * 2946 resource_list_add(struct resource_list *rl, int type, int rid, 2947 u_long start, u_long end, u_long count) 2948 { 2949 struct resource_list_entry *rle; 2950 2951 rle = resource_list_find(rl, type, rid); 2952 if (!rle) { 2953 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2954 M_NOWAIT); 2955 if (!rle) 2956 panic("resource_list_add: can't record entry"); 2957 STAILQ_INSERT_TAIL(rl, rle, link); 2958 rle->type = type; 2959 rle->rid = rid; 2960 rle->res = NULL; 2961 rle->flags = 0; 2962 } 2963 2964 if (rle->res) 2965 panic("resource_list_add: resource entry is busy"); 2966 2967 rle->start = start; 2968 rle->end = end; 2969 rle->count = count; 2970 return (rle); 2971 } 2972 2973 /** 2974 * @brief Determine if a resource entry is busy. 2975 * 2976 * Returns true if a resource entry is busy meaning that it has an 2977 * associated resource that is not an unallocated "reserved" resource. 2978 * 2979 * @param rl the resource list to search 2980 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2981 * @param rid the resource identifier 2982 * 2983 * @returns Non-zero if the entry is busy, zero otherwise. 2984 */ 2985 int 2986 resource_list_busy(struct resource_list *rl, int type, int rid) 2987 { 2988 struct resource_list_entry *rle; 2989 2990 rle = resource_list_find(rl, type, rid); 2991 if (rle == NULL || rle->res == NULL) 2992 return (0); 2993 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 2994 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 2995 ("reserved resource is active")); 2996 return (0); 2997 } 2998 return (1); 2999 } 3000 3001 /** 3002 * @brief Determine if a resource entry is reserved. 3003 * 3004 * Returns true if a resource entry is reserved meaning that it has an 3005 * associated "reserved" resource. The resource can either be 3006 * allocated or unallocated. 3007 * 3008 * @param rl the resource list to search 3009 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3010 * @param rid the resource identifier 3011 * 3012 * @returns Non-zero if the entry is reserved, zero otherwise. 3013 */ 3014 int 3015 resource_list_reserved(struct resource_list *rl, int type, int rid) 3016 { 3017 struct resource_list_entry *rle; 3018 3019 rle = resource_list_find(rl, type, rid); 3020 if (rle != NULL && rle->flags & RLE_RESERVED) 3021 return (1); 3022 return (0); 3023 } 3024 3025 /** 3026 * @brief Find a resource entry by type and rid. 3027 * 3028 * @param rl the resource list to search 3029 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3030 * @param rid the resource identifier 3031 * 3032 * @returns the resource entry pointer or NULL if there is no such 3033 * entry. 3034 */ 3035 struct resource_list_entry * 3036 resource_list_find(struct resource_list *rl, int type, int rid) 3037 { 3038 struct resource_list_entry *rle; 3039 3040 STAILQ_FOREACH(rle, rl, link) { 3041 if (rle->type == type && rle->rid == rid) 3042 return (rle); 3043 } 3044 return (NULL); 3045 } 3046 3047 /** 3048 * @brief Delete a resource entry. 3049 * 3050 * @param rl the resource list to edit 3051 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3052 * @param rid the resource identifier 3053 */ 3054 void 3055 resource_list_delete(struct resource_list *rl, int type, int rid) 3056 { 3057 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3058 3059 if (rle) { 3060 if (rle->res != NULL) 3061 panic("resource_list_delete: resource has not been released"); 3062 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3063 free(rle, M_BUS); 3064 } 3065 } 3066 3067 /** 3068 * @brief Allocate a reserved resource 3069 * 3070 * This can be used by busses to force the allocation of resources 3071 * that are always active in the system even if they are not allocated 3072 * by a driver (e.g. PCI BARs). This function is usually called when 3073 * adding a new child to the bus. The resource is allocated from the 3074 * parent bus when it is reserved. The resource list entry is marked 3075 * with RLE_RESERVED to note that it is a reserved resource. 3076 * 3077 * Subsequent attempts to allocate the resource with 3078 * resource_list_alloc() will succeed the first time and will set 3079 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3080 * resource that has been allocated is released with 3081 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3082 * the actual resource remains allocated. The resource can be released to 3083 * the parent bus by calling resource_list_unreserve(). 3084 * 3085 * @param rl the resource list to allocate from 3086 * @param bus the parent device of @p child 3087 * @param child the device for which the resource is being reserved 3088 * @param type the type of resource to allocate 3089 * @param rid a pointer to the resource identifier 3090 * @param start hint at the start of the resource range - pass 3091 * @c 0UL for any start address 3092 * @param end hint at the end of the resource range - pass 3093 * @c ~0UL for any end address 3094 * @param count hint at the size of range required - pass @c 1 3095 * for any size 3096 * @param flags any extra flags to control the resource 3097 * allocation - see @c RF_XXX flags in 3098 * <sys/rman.h> for details 3099 * 3100 * @returns the resource which was allocated or @c NULL if no 3101 * resource could be allocated 3102 */ 3103 struct resource * 3104 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3105 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3106 { 3107 struct resource_list_entry *rle = NULL; 3108 int passthrough = (device_get_parent(child) != bus); 3109 struct resource *r; 3110 3111 if (passthrough) 3112 panic( 3113 "resource_list_reserve() should only be called for direct children"); 3114 if (flags & RF_ACTIVE) 3115 panic( 3116 "resource_list_reserve() should only reserve inactive resources"); 3117 3118 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3119 flags); 3120 if (r != NULL) { 3121 rle = resource_list_find(rl, type, *rid); 3122 rle->flags |= RLE_RESERVED; 3123 } 3124 return (r); 3125 } 3126 3127 /** 3128 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3129 * 3130 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3131 * and passing the allocation up to the parent of @p bus. This assumes 3132 * that the first entry of @c device_get_ivars(child) is a struct 3133 * resource_list. This also handles 'passthrough' allocations where a 3134 * child is a remote descendant of bus by passing the allocation up to 3135 * the parent of bus. 3136 * 3137 * Typically, a bus driver would store a list of child resources 3138 * somewhere in the child device's ivars (see device_get_ivars()) and 3139 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3140 * then call resource_list_alloc() to perform the allocation. 3141 * 3142 * @param rl the resource list to allocate from 3143 * @param bus the parent device of @p child 3144 * @param child the device which is requesting an allocation 3145 * @param type the type of resource to allocate 3146 * @param rid a pointer to the resource identifier 3147 * @param start hint at the start of the resource range - pass 3148 * @c 0UL for any start address 3149 * @param end hint at the end of the resource range - pass 3150 * @c ~0UL for any end address 3151 * @param count hint at the size of range required - pass @c 1 3152 * for any size 3153 * @param flags any extra flags to control the resource 3154 * allocation - see @c RF_XXX flags in 3155 * <sys/rman.h> for details 3156 * 3157 * @returns the resource which was allocated or @c NULL if no 3158 * resource could be allocated 3159 */ 3160 struct resource * 3161 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3162 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3163 { 3164 struct resource_list_entry *rle = NULL; 3165 int passthrough = (device_get_parent(child) != bus); 3166 int isdefault = (start == 0UL && end == ~0UL); 3167 3168 if (passthrough) { 3169 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3170 type, rid, start, end, count, flags)); 3171 } 3172 3173 rle = resource_list_find(rl, type, *rid); 3174 3175 if (!rle) 3176 return (NULL); /* no resource of that type/rid */ 3177 3178 if (rle->res) { 3179 if (rle->flags & RLE_RESERVED) { 3180 if (rle->flags & RLE_ALLOCATED) 3181 return (NULL); 3182 if ((flags & RF_ACTIVE) && 3183 bus_activate_resource(child, type, *rid, 3184 rle->res) != 0) 3185 return (NULL); 3186 rle->flags |= RLE_ALLOCATED; 3187 return (rle->res); 3188 } 3189 panic("resource_list_alloc: resource entry is busy"); 3190 } 3191 3192 if (isdefault) { 3193 start = rle->start; 3194 count = ulmax(count, rle->count); 3195 end = ulmax(rle->end, start + count - 1); 3196 } 3197 3198 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3199 type, rid, start, end, count, flags); 3200 3201 /* 3202 * Record the new range. 3203 */ 3204 if (rle->res) { 3205 rle->start = rman_get_start(rle->res); 3206 rle->end = rman_get_end(rle->res); 3207 rle->count = count; 3208 } 3209 3210 return (rle->res); 3211 } 3212 3213 /** 3214 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3215 * 3216 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3217 * used with resource_list_alloc(). 3218 * 3219 * @param rl the resource list which was allocated from 3220 * @param bus the parent device of @p child 3221 * @param child the device which is requesting a release 3222 * @param type the type of resource to release 3223 * @param rid the resource identifier 3224 * @param res the resource to release 3225 * 3226 * @retval 0 success 3227 * @retval non-zero a standard unix error code indicating what 3228 * error condition prevented the operation 3229 */ 3230 int 3231 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3232 int type, int rid, struct resource *res) 3233 { 3234 struct resource_list_entry *rle = NULL; 3235 int passthrough = (device_get_parent(child) != bus); 3236 int error; 3237 3238 if (passthrough) { 3239 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3240 type, rid, res)); 3241 } 3242 3243 rle = resource_list_find(rl, type, rid); 3244 3245 if (!rle) 3246 panic("resource_list_release: can't find resource"); 3247 if (!rle->res) 3248 panic("resource_list_release: resource entry is not busy"); 3249 if (rle->flags & RLE_RESERVED) { 3250 if (rle->flags & RLE_ALLOCATED) { 3251 if (rman_get_flags(res) & RF_ACTIVE) { 3252 error = bus_deactivate_resource(child, type, 3253 rid, res); 3254 if (error) 3255 return (error); 3256 } 3257 rle->flags &= ~RLE_ALLOCATED; 3258 return (0); 3259 } 3260 return (EINVAL); 3261 } 3262 3263 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3264 type, rid, res); 3265 if (error) 3266 return (error); 3267 3268 rle->res = NULL; 3269 return (0); 3270 } 3271 3272 /** 3273 * @brief Fully release a reserved resource 3274 * 3275 * Fully releases a resouce reserved via resource_list_reserve(). 3276 * 3277 * @param rl the resource list which was allocated from 3278 * @param bus the parent device of @p child 3279 * @param child the device whose reserved resource is being released 3280 * @param type the type of resource to release 3281 * @param rid the resource identifier 3282 * @param res the resource to release 3283 * 3284 * @retval 0 success 3285 * @retval non-zero a standard unix error code indicating what 3286 * error condition prevented the operation 3287 */ 3288 int 3289 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3290 int type, int rid) 3291 { 3292 struct resource_list_entry *rle = NULL; 3293 int passthrough = (device_get_parent(child) != bus); 3294 3295 if (passthrough) 3296 panic( 3297 "resource_list_unreserve() should only be called for direct children"); 3298 3299 rle = resource_list_find(rl, type, rid); 3300 3301 if (!rle) 3302 panic("resource_list_unreserve: can't find resource"); 3303 if (!(rle->flags & RLE_RESERVED)) 3304 return (EINVAL); 3305 if (rle->flags & RLE_ALLOCATED) 3306 return (EBUSY); 3307 rle->flags &= ~RLE_RESERVED; 3308 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3309 } 3310 3311 /** 3312 * @brief Print a description of resources in a resource list 3313 * 3314 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3315 * The name is printed if at least one resource of the given type is available. 3316 * The format is used to print resource start and end. 3317 * 3318 * @param rl the resource list to print 3319 * @param name the name of @p type, e.g. @c "memory" 3320 * @param type type type of resource entry to print 3321 * @param format printf(9) format string to print resource 3322 * start and end values 3323 * 3324 * @returns the number of characters printed 3325 */ 3326 int 3327 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3328 const char *format) 3329 { 3330 struct resource_list_entry *rle; 3331 int printed, retval; 3332 3333 printed = 0; 3334 retval = 0; 3335 /* Yes, this is kinda cheating */ 3336 STAILQ_FOREACH(rle, rl, link) { 3337 if (rle->type == type) { 3338 if (printed == 0) 3339 retval += printf(" %s ", name); 3340 else 3341 retval += printf(","); 3342 printed++; 3343 retval += printf(format, rle->start); 3344 if (rle->count > 1) { 3345 retval += printf("-"); 3346 retval += printf(format, rle->start + 3347 rle->count - 1); 3348 } 3349 } 3350 } 3351 return (retval); 3352 } 3353 3354 /** 3355 * @brief Releases all the resources in a list. 3356 * 3357 * @param rl The resource list to purge. 3358 * 3359 * @returns nothing 3360 */ 3361 void 3362 resource_list_purge(struct resource_list *rl) 3363 { 3364 struct resource_list_entry *rle; 3365 3366 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3367 if (rle->res) 3368 bus_release_resource(rman_get_device(rle->res), 3369 rle->type, rle->rid, rle->res); 3370 STAILQ_REMOVE_HEAD(rl, link); 3371 free(rle, M_BUS); 3372 } 3373 } 3374 3375 device_t 3376 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3377 { 3378 3379 return (device_add_child_ordered(dev, order, name, unit)); 3380 } 3381 3382 /** 3383 * @brief Helper function for implementing DEVICE_PROBE() 3384 * 3385 * This function can be used to help implement the DEVICE_PROBE() for 3386 * a bus (i.e. a device which has other devices attached to it). It 3387 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3388 * devclass. 3389 */ 3390 int 3391 bus_generic_probe(device_t dev) 3392 { 3393 devclass_t dc = dev->devclass; 3394 driverlink_t dl; 3395 3396 TAILQ_FOREACH(dl, &dc->drivers, link) { 3397 /* 3398 * If this driver's pass is too high, then ignore it. 3399 * For most drivers in the default pass, this will 3400 * never be true. For early-pass drivers they will 3401 * only call the identify routines of eligible drivers 3402 * when this routine is called. Drivers for later 3403 * passes should have their identify routines called 3404 * on early-pass busses during BUS_NEW_PASS(). 3405 */ 3406 if (dl->pass > bus_current_pass) 3407 continue; 3408 DEVICE_IDENTIFY(dl->driver, dev); 3409 } 3410 3411 return (0); 3412 } 3413 3414 /** 3415 * @brief Helper function for implementing DEVICE_ATTACH() 3416 * 3417 * This function can be used to help implement the DEVICE_ATTACH() for 3418 * a bus. It calls device_probe_and_attach() for each of the device's 3419 * children. 3420 */ 3421 int 3422 bus_generic_attach(device_t dev) 3423 { 3424 device_t child; 3425 3426 TAILQ_FOREACH(child, &dev->children, link) { 3427 device_probe_and_attach(child); 3428 } 3429 3430 return (0); 3431 } 3432 3433 /** 3434 * @brief Helper function for implementing DEVICE_DETACH() 3435 * 3436 * This function can be used to help implement the DEVICE_DETACH() for 3437 * a bus. It calls device_detach() for each of the device's 3438 * children. 3439 */ 3440 int 3441 bus_generic_detach(device_t dev) 3442 { 3443 device_t child; 3444 int error; 3445 3446 if (dev->state != DS_ATTACHED) 3447 return (EBUSY); 3448 3449 TAILQ_FOREACH(child, &dev->children, link) { 3450 if ((error = device_detach(child)) != 0) 3451 return (error); 3452 } 3453 3454 return (0); 3455 } 3456 3457 /** 3458 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3459 * 3460 * This function can be used to help implement the DEVICE_SHUTDOWN() 3461 * for a bus. It calls device_shutdown() for each of the device's 3462 * children. 3463 */ 3464 int 3465 bus_generic_shutdown(device_t dev) 3466 { 3467 device_t child; 3468 3469 TAILQ_FOREACH(child, &dev->children, link) { 3470 device_shutdown(child); 3471 } 3472 3473 return (0); 3474 } 3475 3476 /** 3477 * @brief Helper function for implementing DEVICE_SUSPEND() 3478 * 3479 * This function can be used to help implement the DEVICE_SUSPEND() 3480 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3481 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3482 * operation is aborted and any devices which were suspended are 3483 * resumed immediately by calling their DEVICE_RESUME() methods. 3484 */ 3485 int 3486 bus_generic_suspend(device_t dev) 3487 { 3488 int error; 3489 device_t child, child2; 3490 3491 TAILQ_FOREACH(child, &dev->children, link) { 3492 error = DEVICE_SUSPEND(child); 3493 if (error) { 3494 for (child2 = TAILQ_FIRST(&dev->children); 3495 child2 && child2 != child; 3496 child2 = TAILQ_NEXT(child2, link)) 3497 DEVICE_RESUME(child2); 3498 return (error); 3499 } 3500 } 3501 return (0); 3502 } 3503 3504 /** 3505 * @brief Helper function for implementing DEVICE_RESUME() 3506 * 3507 * This function can be used to help implement the DEVICE_RESUME() for 3508 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3509 */ 3510 int 3511 bus_generic_resume(device_t dev) 3512 { 3513 device_t child; 3514 3515 TAILQ_FOREACH(child, &dev->children, link) { 3516 DEVICE_RESUME(child); 3517 /* if resume fails, there's nothing we can usefully do... */ 3518 } 3519 return (0); 3520 } 3521 3522 /** 3523 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3524 * 3525 * This function prints the first part of the ascii representation of 3526 * @p child, including its name, unit and description (if any - see 3527 * device_set_desc()). 3528 * 3529 * @returns the number of characters printed 3530 */ 3531 int 3532 bus_print_child_header(device_t dev, device_t child) 3533 { 3534 int retval = 0; 3535 3536 if (device_get_desc(child)) { 3537 retval += device_printf(child, "<%s>", device_get_desc(child)); 3538 } else { 3539 retval += printf("%s", device_get_nameunit(child)); 3540 } 3541 3542 return (retval); 3543 } 3544 3545 /** 3546 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3547 * 3548 * This function prints the last part of the ascii representation of 3549 * @p child, which consists of the string @c " on " followed by the 3550 * name and unit of the @p dev. 3551 * 3552 * @returns the number of characters printed 3553 */ 3554 int 3555 bus_print_child_footer(device_t dev, device_t child) 3556 { 3557 return (printf(" on %s\n", device_get_nameunit(dev))); 3558 } 3559 3560 /** 3561 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3562 * 3563 * This function simply calls bus_print_child_header() followed by 3564 * bus_print_child_footer(). 3565 * 3566 * @returns the number of characters printed 3567 */ 3568 int 3569 bus_generic_print_child(device_t dev, device_t child) 3570 { 3571 int retval = 0; 3572 3573 retval += bus_print_child_header(dev, child); 3574 retval += bus_print_child_footer(dev, child); 3575 3576 return (retval); 3577 } 3578 3579 /** 3580 * @brief Stub function for implementing BUS_READ_IVAR(). 3581 * 3582 * @returns ENOENT 3583 */ 3584 int 3585 bus_generic_read_ivar(device_t dev, device_t child, int index, 3586 uintptr_t * result) 3587 { 3588 return (ENOENT); 3589 } 3590 3591 /** 3592 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3593 * 3594 * @returns ENOENT 3595 */ 3596 int 3597 bus_generic_write_ivar(device_t dev, device_t child, int index, 3598 uintptr_t value) 3599 { 3600 return (ENOENT); 3601 } 3602 3603 /** 3604 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3605 * 3606 * @returns NULL 3607 */ 3608 struct resource_list * 3609 bus_generic_get_resource_list(device_t dev, device_t child) 3610 { 3611 return (NULL); 3612 } 3613 3614 /** 3615 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3616 * 3617 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3618 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3619 * and then calls device_probe_and_attach() for each unattached child. 3620 */ 3621 void 3622 bus_generic_driver_added(device_t dev, driver_t *driver) 3623 { 3624 device_t child; 3625 3626 DEVICE_IDENTIFY(driver, dev); 3627 TAILQ_FOREACH(child, &dev->children, link) { 3628 if (child->state == DS_NOTPRESENT || 3629 (child->flags & DF_REBID)) 3630 device_probe_and_attach(child); 3631 } 3632 } 3633 3634 /** 3635 * @brief Helper function for implementing BUS_NEW_PASS(). 3636 * 3637 * This implementing of BUS_NEW_PASS() first calls the identify 3638 * routines for any drivers that probe at the current pass. Then it 3639 * walks the list of devices for this bus. If a device is already 3640 * attached, then it calls BUS_NEW_PASS() on that device. If the 3641 * device is not already attached, it attempts to attach a driver to 3642 * it. 3643 */ 3644 void 3645 bus_generic_new_pass(device_t dev) 3646 { 3647 driverlink_t dl; 3648 devclass_t dc; 3649 device_t child; 3650 3651 dc = dev->devclass; 3652 TAILQ_FOREACH(dl, &dc->drivers, link) { 3653 if (dl->pass == bus_current_pass) 3654 DEVICE_IDENTIFY(dl->driver, dev); 3655 } 3656 TAILQ_FOREACH(child, &dev->children, link) { 3657 if (child->state >= DS_ATTACHED) 3658 BUS_NEW_PASS(child); 3659 else if (child->state == DS_NOTPRESENT) 3660 device_probe_and_attach(child); 3661 } 3662 } 3663 3664 /** 3665 * @brief Helper function for implementing BUS_SETUP_INTR(). 3666 * 3667 * This simple implementation of BUS_SETUP_INTR() simply calls the 3668 * BUS_SETUP_INTR() method of the parent of @p dev. 3669 */ 3670 int 3671 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3672 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3673 void **cookiep) 3674 { 3675 /* Propagate up the bus hierarchy until someone handles it. */ 3676 if (dev->parent) 3677 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3678 filter, intr, arg, cookiep)); 3679 return (EINVAL); 3680 } 3681 3682 /** 3683 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3684 * 3685 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3686 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3687 */ 3688 int 3689 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3690 void *cookie) 3691 { 3692 /* Propagate up the bus hierarchy until someone handles it. */ 3693 if (dev->parent) 3694 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3695 return (EINVAL); 3696 } 3697 3698 /** 3699 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3700 * 3701 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3702 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3703 */ 3704 int 3705 bus_generic_adjust_resource(device_t dev, device_t child, int type, 3706 struct resource *r, u_long start, u_long end) 3707 { 3708 /* Propagate up the bus hierarchy until someone handles it. */ 3709 if (dev->parent) 3710 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 3711 end)); 3712 return (EINVAL); 3713 } 3714 3715 /** 3716 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3717 * 3718 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3719 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3720 */ 3721 struct resource * 3722 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3723 u_long start, u_long end, u_long count, u_int flags) 3724 { 3725 /* Propagate up the bus hierarchy until someone handles it. */ 3726 if (dev->parent) 3727 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3728 start, end, count, flags)); 3729 return (NULL); 3730 } 3731 3732 /** 3733 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3734 * 3735 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3736 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3737 */ 3738 int 3739 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3740 struct resource *r) 3741 { 3742 /* Propagate up the bus hierarchy until someone handles it. */ 3743 if (dev->parent) 3744 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3745 r)); 3746 return (EINVAL); 3747 } 3748 3749 /** 3750 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3751 * 3752 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3753 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3754 */ 3755 int 3756 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3757 struct resource *r) 3758 { 3759 /* Propagate up the bus hierarchy until someone handles it. */ 3760 if (dev->parent) 3761 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3762 r)); 3763 return (EINVAL); 3764 } 3765 3766 /** 3767 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3768 * 3769 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3770 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3771 */ 3772 int 3773 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3774 int rid, struct resource *r) 3775 { 3776 /* Propagate up the bus hierarchy until someone handles it. */ 3777 if (dev->parent) 3778 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3779 r)); 3780 return (EINVAL); 3781 } 3782 3783 /** 3784 * @brief Helper function for implementing BUS_BIND_INTR(). 3785 * 3786 * This simple implementation of BUS_BIND_INTR() simply calls the 3787 * BUS_BIND_INTR() method of the parent of @p dev. 3788 */ 3789 int 3790 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 3791 int cpu) 3792 { 3793 3794 /* Propagate up the bus hierarchy until someone handles it. */ 3795 if (dev->parent) 3796 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 3797 return (EINVAL); 3798 } 3799 3800 /** 3801 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3802 * 3803 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3804 * BUS_CONFIG_INTR() method of the parent of @p dev. 3805 */ 3806 int 3807 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3808 enum intr_polarity pol) 3809 { 3810 3811 /* Propagate up the bus hierarchy until someone handles it. */ 3812 if (dev->parent) 3813 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3814 return (EINVAL); 3815 } 3816 3817 /** 3818 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 3819 * 3820 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 3821 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 3822 */ 3823 int 3824 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 3825 void *cookie, const char *descr) 3826 { 3827 3828 /* Propagate up the bus hierarchy until someone handles it. */ 3829 if (dev->parent) 3830 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 3831 descr)); 3832 return (EINVAL); 3833 } 3834 3835 /** 3836 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 3837 * 3838 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 3839 * BUS_GET_DMA_TAG() method of the parent of @p dev. 3840 */ 3841 bus_dma_tag_t 3842 bus_generic_get_dma_tag(device_t dev, device_t child) 3843 { 3844 3845 /* Propagate up the bus hierarchy until someone handles it. */ 3846 if (dev->parent != NULL) 3847 return (BUS_GET_DMA_TAG(dev->parent, child)); 3848 return (NULL); 3849 } 3850 3851 /** 3852 * @brief Helper function for implementing BUS_GET_RESOURCE(). 3853 * 3854 * This implementation of BUS_GET_RESOURCE() uses the 3855 * resource_list_find() function to do most of the work. It calls 3856 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3857 * search. 3858 */ 3859 int 3860 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 3861 u_long *startp, u_long *countp) 3862 { 3863 struct resource_list * rl = NULL; 3864 struct resource_list_entry * rle = NULL; 3865 3866 rl = BUS_GET_RESOURCE_LIST(dev, child); 3867 if (!rl) 3868 return (EINVAL); 3869 3870 rle = resource_list_find(rl, type, rid); 3871 if (!rle) 3872 return (ENOENT); 3873 3874 if (startp) 3875 *startp = rle->start; 3876 if (countp) 3877 *countp = rle->count; 3878 3879 return (0); 3880 } 3881 3882 /** 3883 * @brief Helper function for implementing BUS_SET_RESOURCE(). 3884 * 3885 * This implementation of BUS_SET_RESOURCE() uses the 3886 * resource_list_add() function to do most of the work. It calls 3887 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3888 * edit. 3889 */ 3890 int 3891 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 3892 u_long start, u_long count) 3893 { 3894 struct resource_list * rl = NULL; 3895 3896 rl = BUS_GET_RESOURCE_LIST(dev, child); 3897 if (!rl) 3898 return (EINVAL); 3899 3900 resource_list_add(rl, type, rid, start, (start + count - 1), count); 3901 3902 return (0); 3903 } 3904 3905 /** 3906 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 3907 * 3908 * This implementation of BUS_DELETE_RESOURCE() uses the 3909 * resource_list_delete() function to do most of the work. It calls 3910 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3911 * edit. 3912 */ 3913 void 3914 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 3915 { 3916 struct resource_list * rl = NULL; 3917 3918 rl = BUS_GET_RESOURCE_LIST(dev, child); 3919 if (!rl) 3920 return; 3921 3922 resource_list_delete(rl, type, rid); 3923 3924 return; 3925 } 3926 3927 /** 3928 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3929 * 3930 * This implementation of BUS_RELEASE_RESOURCE() uses the 3931 * resource_list_release() function to do most of the work. It calls 3932 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3933 */ 3934 int 3935 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 3936 int rid, struct resource *r) 3937 { 3938 struct resource_list * rl = NULL; 3939 3940 if (device_get_parent(child) != dev) 3941 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 3942 type, rid, r)); 3943 3944 rl = BUS_GET_RESOURCE_LIST(dev, child); 3945 if (!rl) 3946 return (EINVAL); 3947 3948 return (resource_list_release(rl, dev, child, type, rid, r)); 3949 } 3950 3951 /** 3952 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3953 * 3954 * This implementation of BUS_ALLOC_RESOURCE() uses the 3955 * resource_list_alloc() function to do most of the work. It calls 3956 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3957 */ 3958 struct resource * 3959 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 3960 int *rid, u_long start, u_long end, u_long count, u_int flags) 3961 { 3962 struct resource_list * rl = NULL; 3963 3964 if (device_get_parent(child) != dev) 3965 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 3966 type, rid, start, end, count, flags)); 3967 3968 rl = BUS_GET_RESOURCE_LIST(dev, child); 3969 if (!rl) 3970 return (NULL); 3971 3972 return (resource_list_alloc(rl, dev, child, type, rid, 3973 start, end, count, flags)); 3974 } 3975 3976 /** 3977 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 3978 * 3979 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 3980 * BUS_CHILD_PRESENT() method of the parent of @p dev. 3981 */ 3982 int 3983 bus_generic_child_present(device_t dev, device_t child) 3984 { 3985 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 3986 } 3987 3988 /* 3989 * Some convenience functions to make it easier for drivers to use the 3990 * resource-management functions. All these really do is hide the 3991 * indirection through the parent's method table, making for slightly 3992 * less-wordy code. In the future, it might make sense for this code 3993 * to maintain some sort of a list of resources allocated by each device. 3994 */ 3995 3996 int 3997 bus_alloc_resources(device_t dev, struct resource_spec *rs, 3998 struct resource **res) 3999 { 4000 int i; 4001 4002 for (i = 0; rs[i].type != -1; i++) 4003 res[i] = NULL; 4004 for (i = 0; rs[i].type != -1; i++) { 4005 res[i] = bus_alloc_resource_any(dev, 4006 rs[i].type, &rs[i].rid, rs[i].flags); 4007 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4008 bus_release_resources(dev, rs, res); 4009 return (ENXIO); 4010 } 4011 } 4012 return (0); 4013 } 4014 4015 void 4016 bus_release_resources(device_t dev, const struct resource_spec *rs, 4017 struct resource **res) 4018 { 4019 int i; 4020 4021 for (i = 0; rs[i].type != -1; i++) 4022 if (res[i] != NULL) { 4023 bus_release_resource( 4024 dev, rs[i].type, rs[i].rid, res[i]); 4025 res[i] = NULL; 4026 } 4027 } 4028 4029 /** 4030 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4031 * 4032 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4033 * parent of @p dev. 4034 */ 4035 struct resource * 4036 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 4037 u_long count, u_int flags) 4038 { 4039 if (dev->parent == NULL) 4040 return (NULL); 4041 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4042 count, flags)); 4043 } 4044 4045 /** 4046 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4047 * 4048 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4049 * parent of @p dev. 4050 */ 4051 int 4052 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start, 4053 u_long end) 4054 { 4055 if (dev->parent == NULL) 4056 return (EINVAL); 4057 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4058 } 4059 4060 /** 4061 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4062 * 4063 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4064 * parent of @p dev. 4065 */ 4066 int 4067 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4068 { 4069 if (dev->parent == NULL) 4070 return (EINVAL); 4071 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4072 } 4073 4074 /** 4075 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4076 * 4077 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4078 * parent of @p dev. 4079 */ 4080 int 4081 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4082 { 4083 if (dev->parent == NULL) 4084 return (EINVAL); 4085 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4086 } 4087 4088 /** 4089 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4090 * 4091 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4092 * parent of @p dev. 4093 */ 4094 int 4095 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4096 { 4097 if (dev->parent == NULL) 4098 return (EINVAL); 4099 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 4100 } 4101 4102 /** 4103 * @brief Wrapper function for BUS_SETUP_INTR(). 4104 * 4105 * This function simply calls the BUS_SETUP_INTR() method of the 4106 * parent of @p dev. 4107 */ 4108 int 4109 bus_setup_intr(device_t dev, struct resource *r, int flags, 4110 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4111 { 4112 int error; 4113 4114 if (dev->parent == NULL) 4115 return (EINVAL); 4116 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4117 arg, cookiep); 4118 if (error != 0) 4119 return (error); 4120 if (handler != NULL && !(flags & INTR_MPSAFE)) 4121 device_printf(dev, "[GIANT-LOCKED]\n"); 4122 return (0); 4123 } 4124 4125 /** 4126 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4127 * 4128 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4129 * parent of @p dev. 4130 */ 4131 int 4132 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4133 { 4134 if (dev->parent == NULL) 4135 return (EINVAL); 4136 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4137 } 4138 4139 /** 4140 * @brief Wrapper function for BUS_BIND_INTR(). 4141 * 4142 * This function simply calls the BUS_BIND_INTR() method of the 4143 * parent of @p dev. 4144 */ 4145 int 4146 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4147 { 4148 if (dev->parent == NULL) 4149 return (EINVAL); 4150 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4151 } 4152 4153 /** 4154 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4155 * 4156 * This function first formats the requested description into a 4157 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4158 * the parent of @p dev. 4159 */ 4160 int 4161 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4162 const char *fmt, ...) 4163 { 4164 va_list ap; 4165 char descr[MAXCOMLEN + 1]; 4166 4167 if (dev->parent == NULL) 4168 return (EINVAL); 4169 va_start(ap, fmt); 4170 vsnprintf(descr, sizeof(descr), fmt, ap); 4171 va_end(ap); 4172 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4173 } 4174 4175 /** 4176 * @brief Wrapper function for BUS_SET_RESOURCE(). 4177 * 4178 * This function simply calls the BUS_SET_RESOURCE() method of the 4179 * parent of @p dev. 4180 */ 4181 int 4182 bus_set_resource(device_t dev, int type, int rid, 4183 u_long start, u_long count) 4184 { 4185 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4186 start, count)); 4187 } 4188 4189 /** 4190 * @brief Wrapper function for BUS_GET_RESOURCE(). 4191 * 4192 * This function simply calls the BUS_GET_RESOURCE() method of the 4193 * parent of @p dev. 4194 */ 4195 int 4196 bus_get_resource(device_t dev, int type, int rid, 4197 u_long *startp, u_long *countp) 4198 { 4199 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4200 startp, countp)); 4201 } 4202 4203 /** 4204 * @brief Wrapper function for BUS_GET_RESOURCE(). 4205 * 4206 * This function simply calls the BUS_GET_RESOURCE() method of the 4207 * parent of @p dev and returns the start value. 4208 */ 4209 u_long 4210 bus_get_resource_start(device_t dev, int type, int rid) 4211 { 4212 u_long start, count; 4213 int error; 4214 4215 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4216 &start, &count); 4217 if (error) 4218 return (0); 4219 return (start); 4220 } 4221 4222 /** 4223 * @brief Wrapper function for BUS_GET_RESOURCE(). 4224 * 4225 * This function simply calls the BUS_GET_RESOURCE() method of the 4226 * parent of @p dev and returns the count value. 4227 */ 4228 u_long 4229 bus_get_resource_count(device_t dev, int type, int rid) 4230 { 4231 u_long start, count; 4232 int error; 4233 4234 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4235 &start, &count); 4236 if (error) 4237 return (0); 4238 return (count); 4239 } 4240 4241 /** 4242 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4243 * 4244 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4245 * parent of @p dev. 4246 */ 4247 void 4248 bus_delete_resource(device_t dev, int type, int rid) 4249 { 4250 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4251 } 4252 4253 /** 4254 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4255 * 4256 * This function simply calls the BUS_CHILD_PRESENT() method of the 4257 * parent of @p dev. 4258 */ 4259 int 4260 bus_child_present(device_t child) 4261 { 4262 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4263 } 4264 4265 /** 4266 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4267 * 4268 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4269 * parent of @p dev. 4270 */ 4271 int 4272 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4273 { 4274 device_t parent; 4275 4276 parent = device_get_parent(child); 4277 if (parent == NULL) { 4278 *buf = '\0'; 4279 return (0); 4280 } 4281 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4282 } 4283 4284 /** 4285 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4286 * 4287 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4288 * parent of @p dev. 4289 */ 4290 int 4291 bus_child_location_str(device_t child, char *buf, size_t buflen) 4292 { 4293 device_t parent; 4294 4295 parent = device_get_parent(child); 4296 if (parent == NULL) { 4297 *buf = '\0'; 4298 return (0); 4299 } 4300 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4301 } 4302 4303 /** 4304 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4305 * 4306 * This function simply calls the BUS_GET_DMA_TAG() method of the 4307 * parent of @p dev. 4308 */ 4309 bus_dma_tag_t 4310 bus_get_dma_tag(device_t dev) 4311 { 4312 device_t parent; 4313 4314 parent = device_get_parent(dev); 4315 if (parent == NULL) 4316 return (NULL); 4317 return (BUS_GET_DMA_TAG(parent, dev)); 4318 } 4319 4320 /* Resume all devices and then notify userland that we're up again. */ 4321 static int 4322 root_resume(device_t dev) 4323 { 4324 int error; 4325 4326 error = bus_generic_resume(dev); 4327 if (error == 0) 4328 devctl_notify("kern", "power", "resume", NULL); 4329 return (error); 4330 } 4331 4332 static int 4333 root_print_child(device_t dev, device_t child) 4334 { 4335 int retval = 0; 4336 4337 retval += bus_print_child_header(dev, child); 4338 retval += printf("\n"); 4339 4340 return (retval); 4341 } 4342 4343 static int 4344 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4345 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4346 { 4347 /* 4348 * If an interrupt mapping gets to here something bad has happened. 4349 */ 4350 panic("root_setup_intr"); 4351 } 4352 4353 /* 4354 * If we get here, assume that the device is permanant and really is 4355 * present in the system. Removable bus drivers are expected to intercept 4356 * this call long before it gets here. We return -1 so that drivers that 4357 * really care can check vs -1 or some ERRNO returned higher in the food 4358 * chain. 4359 */ 4360 static int 4361 root_child_present(device_t dev, device_t child) 4362 { 4363 return (-1); 4364 } 4365 4366 static kobj_method_t root_methods[] = { 4367 /* Device interface */ 4368 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4369 KOBJMETHOD(device_suspend, bus_generic_suspend), 4370 KOBJMETHOD(device_resume, root_resume), 4371 4372 /* Bus interface */ 4373 KOBJMETHOD(bus_print_child, root_print_child), 4374 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4375 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4376 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4377 KOBJMETHOD(bus_child_present, root_child_present), 4378 4379 KOBJMETHOD_END 4380 }; 4381 4382 static driver_t root_driver = { 4383 "root", 4384 root_methods, 4385 1, /* no softc */ 4386 }; 4387 4388 device_t root_bus; 4389 devclass_t root_devclass; 4390 4391 static int 4392 root_bus_module_handler(module_t mod, int what, void* arg) 4393 { 4394 switch (what) { 4395 case MOD_LOAD: 4396 TAILQ_INIT(&bus_data_devices); 4397 kobj_class_compile((kobj_class_t) &root_driver); 4398 root_bus = make_device(NULL, "root", 0); 4399 root_bus->desc = "System root bus"; 4400 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4401 root_bus->driver = &root_driver; 4402 root_bus->state = DS_ATTACHED; 4403 root_devclass = devclass_find_internal("root", NULL, FALSE); 4404 devinit(); 4405 return (0); 4406 4407 case MOD_SHUTDOWN: 4408 device_shutdown(root_bus); 4409 return (0); 4410 default: 4411 return (EOPNOTSUPP); 4412 } 4413 4414 return (0); 4415 } 4416 4417 static moduledata_t root_bus_mod = { 4418 "rootbus", 4419 root_bus_module_handler, 4420 NULL 4421 }; 4422 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4423 4424 /** 4425 * @brief Automatically configure devices 4426 * 4427 * This function begins the autoconfiguration process by calling 4428 * device_probe_and_attach() for each child of the @c root0 device. 4429 */ 4430 void 4431 root_bus_configure(void) 4432 { 4433 4434 PDEBUG((".")); 4435 4436 /* Eventually this will be split up, but this is sufficient for now. */ 4437 bus_set_pass(BUS_PASS_DEFAULT); 4438 } 4439 4440 /** 4441 * @brief Module handler for registering device drivers 4442 * 4443 * This module handler is used to automatically register device 4444 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4445 * devclass_add_driver() for the driver described by the 4446 * driver_module_data structure pointed to by @p arg 4447 */ 4448 int 4449 driver_module_handler(module_t mod, int what, void *arg) 4450 { 4451 struct driver_module_data *dmd; 4452 devclass_t bus_devclass; 4453 kobj_class_t driver; 4454 int error, pass; 4455 4456 dmd = (struct driver_module_data *)arg; 4457 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4458 error = 0; 4459 4460 switch (what) { 4461 case MOD_LOAD: 4462 if (dmd->dmd_chainevh) 4463 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4464 4465 pass = dmd->dmd_pass; 4466 driver = dmd->dmd_driver; 4467 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4468 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4469 error = devclass_add_driver(bus_devclass, driver, pass, 4470 dmd->dmd_devclass); 4471 break; 4472 4473 case MOD_UNLOAD: 4474 PDEBUG(("Unloading module: driver %s from bus %s", 4475 DRIVERNAME(dmd->dmd_driver), 4476 dmd->dmd_busname)); 4477 error = devclass_delete_driver(bus_devclass, 4478 dmd->dmd_driver); 4479 4480 if (!error && dmd->dmd_chainevh) 4481 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4482 break; 4483 case MOD_QUIESCE: 4484 PDEBUG(("Quiesce module: driver %s from bus %s", 4485 DRIVERNAME(dmd->dmd_driver), 4486 dmd->dmd_busname)); 4487 error = devclass_quiesce_driver(bus_devclass, 4488 dmd->dmd_driver); 4489 4490 if (!error && dmd->dmd_chainevh) 4491 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4492 break; 4493 default: 4494 error = EOPNOTSUPP; 4495 break; 4496 } 4497 4498 return (error); 4499 } 4500 4501 /** 4502 * @brief Enumerate all hinted devices for this bus. 4503 * 4504 * Walks through the hints for this bus and calls the bus_hinted_child 4505 * routine for each one it fines. It searches first for the specific 4506 * bus that's being probed for hinted children (eg isa0), and then for 4507 * generic children (eg isa). 4508 * 4509 * @param dev bus device to enumerate 4510 */ 4511 void 4512 bus_enumerate_hinted_children(device_t bus) 4513 { 4514 int i; 4515 const char *dname, *busname; 4516 int dunit; 4517 4518 /* 4519 * enumerate all devices on the specific bus 4520 */ 4521 busname = device_get_nameunit(bus); 4522 i = 0; 4523 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4524 BUS_HINTED_CHILD(bus, dname, dunit); 4525 4526 /* 4527 * and all the generic ones. 4528 */ 4529 busname = device_get_name(bus); 4530 i = 0; 4531 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4532 BUS_HINTED_CHILD(bus, dname, dunit); 4533 } 4534 4535 #ifdef BUS_DEBUG 4536 4537 /* the _short versions avoid iteration by not calling anything that prints 4538 * more than oneliners. I love oneliners. 4539 */ 4540 4541 static void 4542 print_device_short(device_t dev, int indent) 4543 { 4544 if (!dev) 4545 return; 4546 4547 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4548 dev->unit, dev->desc, 4549 (dev->parent? "":"no "), 4550 (TAILQ_EMPTY(&dev->children)? "no ":""), 4551 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4552 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4553 (dev->flags&DF_WILDCARD? "wildcard,":""), 4554 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4555 (dev->flags&DF_REBID? "rebiddable,":""), 4556 (dev->ivars? "":"no "), 4557 (dev->softc? "":"no "), 4558 dev->busy)); 4559 } 4560 4561 static void 4562 print_device(device_t dev, int indent) 4563 { 4564 if (!dev) 4565 return; 4566 4567 print_device_short(dev, indent); 4568 4569 indentprintf(("Parent:\n")); 4570 print_device_short(dev->parent, indent+1); 4571 indentprintf(("Driver:\n")); 4572 print_driver_short(dev->driver, indent+1); 4573 indentprintf(("Devclass:\n")); 4574 print_devclass_short(dev->devclass, indent+1); 4575 } 4576 4577 void 4578 print_device_tree_short(device_t dev, int indent) 4579 /* print the device and all its children (indented) */ 4580 { 4581 device_t child; 4582 4583 if (!dev) 4584 return; 4585 4586 print_device_short(dev, indent); 4587 4588 TAILQ_FOREACH(child, &dev->children, link) { 4589 print_device_tree_short(child, indent+1); 4590 } 4591 } 4592 4593 void 4594 print_device_tree(device_t dev, int indent) 4595 /* print the device and all its children (indented) */ 4596 { 4597 device_t child; 4598 4599 if (!dev) 4600 return; 4601 4602 print_device(dev, indent); 4603 4604 TAILQ_FOREACH(child, &dev->children, link) { 4605 print_device_tree(child, indent+1); 4606 } 4607 } 4608 4609 static void 4610 print_driver_short(driver_t *driver, int indent) 4611 { 4612 if (!driver) 4613 return; 4614 4615 indentprintf(("driver %s: softc size = %zd\n", 4616 driver->name, driver->size)); 4617 } 4618 4619 static void 4620 print_driver(driver_t *driver, int indent) 4621 { 4622 if (!driver) 4623 return; 4624 4625 print_driver_short(driver, indent); 4626 } 4627 4628 static void 4629 print_driver_list(driver_list_t drivers, int indent) 4630 { 4631 driverlink_t driver; 4632 4633 TAILQ_FOREACH(driver, &drivers, link) { 4634 print_driver(driver->driver, indent); 4635 } 4636 } 4637 4638 static void 4639 print_devclass_short(devclass_t dc, int indent) 4640 { 4641 if ( !dc ) 4642 return; 4643 4644 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4645 } 4646 4647 static void 4648 print_devclass(devclass_t dc, int indent) 4649 { 4650 int i; 4651 4652 if ( !dc ) 4653 return; 4654 4655 print_devclass_short(dc, indent); 4656 indentprintf(("Drivers:\n")); 4657 print_driver_list(dc->drivers, indent+1); 4658 4659 indentprintf(("Devices:\n")); 4660 for (i = 0; i < dc->maxunit; i++) 4661 if (dc->devices[i]) 4662 print_device(dc->devices[i], indent+1); 4663 } 4664 4665 void 4666 print_devclass_list_short(void) 4667 { 4668 devclass_t dc; 4669 4670 printf("Short listing of devclasses, drivers & devices:\n"); 4671 TAILQ_FOREACH(dc, &devclasses, link) { 4672 print_devclass_short(dc, 0); 4673 } 4674 } 4675 4676 void 4677 print_devclass_list(void) 4678 { 4679 devclass_t dc; 4680 4681 printf("Full listing of devclasses, drivers & devices:\n"); 4682 TAILQ_FOREACH(dc, &devclasses, link) { 4683 print_devclass(dc, 0); 4684 } 4685 } 4686 4687 #endif 4688 4689 /* 4690 * User-space access to the device tree. 4691 * 4692 * We implement a small set of nodes: 4693 * 4694 * hw.bus Single integer read method to obtain the 4695 * current generation count. 4696 * hw.bus.devices Reads the entire device tree in flat space. 4697 * hw.bus.rman Resource manager interface 4698 * 4699 * We might like to add the ability to scan devclasses and/or drivers to 4700 * determine what else is currently loaded/available. 4701 */ 4702 4703 static int 4704 sysctl_bus(SYSCTL_HANDLER_ARGS) 4705 { 4706 struct u_businfo ubus; 4707 4708 ubus.ub_version = BUS_USER_VERSION; 4709 ubus.ub_generation = bus_data_generation; 4710 4711 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4712 } 4713 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4714 "bus-related data"); 4715 4716 static int 4717 sysctl_devices(SYSCTL_HANDLER_ARGS) 4718 { 4719 int *name = (int *)arg1; 4720 u_int namelen = arg2; 4721 int index; 4722 struct device *dev; 4723 struct u_device udev; /* XXX this is a bit big */ 4724 int error; 4725 4726 if (namelen != 2) 4727 return (EINVAL); 4728 4729 if (bus_data_generation_check(name[0])) 4730 return (EINVAL); 4731 4732 index = name[1]; 4733 4734 /* 4735 * Scan the list of devices, looking for the requested index. 4736 */ 4737 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 4738 if (index-- == 0) 4739 break; 4740 } 4741 if (dev == NULL) 4742 return (ENOENT); 4743 4744 /* 4745 * Populate the return array. 4746 */ 4747 bzero(&udev, sizeof(udev)); 4748 udev.dv_handle = (uintptr_t)dev; 4749 udev.dv_parent = (uintptr_t)dev->parent; 4750 if (dev->nameunit != NULL) 4751 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 4752 if (dev->desc != NULL) 4753 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 4754 if (dev->driver != NULL && dev->driver->name != NULL) 4755 strlcpy(udev.dv_drivername, dev->driver->name, 4756 sizeof(udev.dv_drivername)); 4757 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 4758 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 4759 udev.dv_devflags = dev->devflags; 4760 udev.dv_flags = dev->flags; 4761 udev.dv_state = dev->state; 4762 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 4763 return (error); 4764 } 4765 4766 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 4767 "system device tree"); 4768 4769 int 4770 bus_data_generation_check(int generation) 4771 { 4772 if (generation != bus_data_generation) 4773 return (1); 4774 4775 /* XXX generate optimised lists here? */ 4776 return (0); 4777 } 4778 4779 void 4780 bus_data_generation_update(void) 4781 { 4782 bus_data_generation++; 4783 } 4784 4785 int 4786 bus_free_resource(device_t dev, int type, struct resource *r) 4787 { 4788 if (r == NULL) 4789 return (0); 4790 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 4791 } 4792