1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 #include "opt_random.h" 32 33 #include <sys/param.h> 34 #include <sys/conf.h> 35 #include <sys/filio.h> 36 #include <sys/lock.h> 37 #include <sys/kernel.h> 38 #include <sys/kobj.h> 39 #include <sys/limits.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/mutex.h> 43 #include <sys/poll.h> 44 #include <sys/priv.h> 45 #include <sys/proc.h> 46 #include <sys/condvar.h> 47 #include <sys/queue.h> 48 #include <machine/bus.h> 49 #include <sys/random.h> 50 #include <sys/rman.h> 51 #include <sys/selinfo.h> 52 #include <sys/signalvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/systm.h> 55 #include <sys/uio.h> 56 #include <sys/bus.h> 57 #include <sys/interrupt.h> 58 #include <sys/cpuset.h> 59 60 #include <net/vnet.h> 61 62 #include <machine/cpu.h> 63 #include <machine/stdarg.h> 64 65 #include <vm/uma.h> 66 67 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 68 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 69 70 /* 71 * Used to attach drivers to devclasses. 72 */ 73 typedef struct driverlink *driverlink_t; 74 struct driverlink { 75 kobj_class_t driver; 76 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 77 int pass; 78 TAILQ_ENTRY(driverlink) passlink; 79 }; 80 81 /* 82 * Forward declarations 83 */ 84 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 85 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 86 typedef TAILQ_HEAD(device_list, device) device_list_t; 87 88 struct devclass { 89 TAILQ_ENTRY(devclass) link; 90 devclass_t parent; /* parent in devclass hierarchy */ 91 driver_list_t drivers; /* bus devclasses store drivers for bus */ 92 char *name; 93 device_t *devices; /* array of devices indexed by unit */ 94 int maxunit; /* size of devices array */ 95 int flags; 96 #define DC_HAS_CHILDREN 1 97 98 struct sysctl_ctx_list sysctl_ctx; 99 struct sysctl_oid *sysctl_tree; 100 }; 101 102 /** 103 * @brief Implementation of device. 104 */ 105 struct device { 106 /* 107 * A device is a kernel object. The first field must be the 108 * current ops table for the object. 109 */ 110 KOBJ_FIELDS; 111 112 /* 113 * Device hierarchy. 114 */ 115 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 116 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 117 device_t parent; /**< parent of this device */ 118 device_list_t children; /**< list of child devices */ 119 120 /* 121 * Details of this device. 122 */ 123 driver_t *driver; /**< current driver */ 124 devclass_t devclass; /**< current device class */ 125 int unit; /**< current unit number */ 126 char* nameunit; /**< name+unit e.g. foodev0 */ 127 char* desc; /**< driver specific description */ 128 int busy; /**< count of calls to device_busy() */ 129 device_state_t state; /**< current device state */ 130 uint32_t devflags; /**< api level flags for device_get_flags() */ 131 u_int flags; /**< internal device flags */ 132 u_int order; /**< order from device_add_child_ordered() */ 133 void *ivars; /**< instance variables */ 134 void *softc; /**< current driver's variables */ 135 136 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 137 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 138 }; 139 140 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 141 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 142 143 static void devctl2_init(void); 144 145 #ifdef BUS_DEBUG 146 147 static int bus_debug = 1; 148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 149 "Bus debug level"); 150 151 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 152 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 153 #define DRIVERNAME(d) ((d)? d->name : "no driver") 154 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 155 156 /** 157 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 158 * prevent syslog from deleting initial spaces 159 */ 160 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 161 162 static void print_device_short(device_t dev, int indent); 163 static void print_device(device_t dev, int indent); 164 void print_device_tree_short(device_t dev, int indent); 165 void print_device_tree(device_t dev, int indent); 166 static void print_driver_short(driver_t *driver, int indent); 167 static void print_driver(driver_t *driver, int indent); 168 static void print_driver_list(driver_list_t drivers, int indent); 169 static void print_devclass_short(devclass_t dc, int indent); 170 static void print_devclass(devclass_t dc, int indent); 171 void print_devclass_list_short(void); 172 void print_devclass_list(void); 173 174 #else 175 /* Make the compiler ignore the function calls */ 176 #define PDEBUG(a) /* nop */ 177 #define DEVICENAME(d) /* nop */ 178 #define DRIVERNAME(d) /* nop */ 179 #define DEVCLANAME(d) /* nop */ 180 181 #define print_device_short(d,i) /* nop */ 182 #define print_device(d,i) /* nop */ 183 #define print_device_tree_short(d,i) /* nop */ 184 #define print_device_tree(d,i) /* nop */ 185 #define print_driver_short(d,i) /* nop */ 186 #define print_driver(d,i) /* nop */ 187 #define print_driver_list(d,i) /* nop */ 188 #define print_devclass_short(d,i) /* nop */ 189 #define print_devclass(d,i) /* nop */ 190 #define print_devclass_list_short() /* nop */ 191 #define print_devclass_list() /* nop */ 192 #endif 193 194 /* 195 * dev sysctl tree 196 */ 197 198 enum { 199 DEVCLASS_SYSCTL_PARENT, 200 }; 201 202 static int 203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 204 { 205 devclass_t dc = (devclass_t)arg1; 206 const char *value; 207 208 switch (arg2) { 209 case DEVCLASS_SYSCTL_PARENT: 210 value = dc->parent ? dc->parent->name : ""; 211 break; 212 default: 213 return (EINVAL); 214 } 215 return (SYSCTL_OUT_STR(req, value)); 216 } 217 218 static void 219 devclass_sysctl_init(devclass_t dc) 220 { 221 222 if (dc->sysctl_tree != NULL) 223 return; 224 sysctl_ctx_init(&dc->sysctl_ctx); 225 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 226 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 227 CTLFLAG_RD, NULL, ""); 228 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 229 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 230 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 231 "parent class"); 232 } 233 234 enum { 235 DEVICE_SYSCTL_DESC, 236 DEVICE_SYSCTL_DRIVER, 237 DEVICE_SYSCTL_LOCATION, 238 DEVICE_SYSCTL_PNPINFO, 239 DEVICE_SYSCTL_PARENT, 240 }; 241 242 static int 243 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 244 { 245 device_t dev = (device_t)arg1; 246 const char *value; 247 char *buf; 248 int error; 249 250 buf = NULL; 251 switch (arg2) { 252 case DEVICE_SYSCTL_DESC: 253 value = dev->desc ? dev->desc : ""; 254 break; 255 case DEVICE_SYSCTL_DRIVER: 256 value = dev->driver ? dev->driver->name : ""; 257 break; 258 case DEVICE_SYSCTL_LOCATION: 259 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 260 bus_child_location_str(dev, buf, 1024); 261 break; 262 case DEVICE_SYSCTL_PNPINFO: 263 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 264 bus_child_pnpinfo_str(dev, buf, 1024); 265 break; 266 case DEVICE_SYSCTL_PARENT: 267 value = dev->parent ? dev->parent->nameunit : ""; 268 break; 269 default: 270 return (EINVAL); 271 } 272 error = SYSCTL_OUT_STR(req, value); 273 if (buf != NULL) 274 free(buf, M_BUS); 275 return (error); 276 } 277 278 static void 279 device_sysctl_init(device_t dev) 280 { 281 devclass_t dc = dev->devclass; 282 int domain; 283 284 if (dev->sysctl_tree != NULL) 285 return; 286 devclass_sysctl_init(dc); 287 sysctl_ctx_init(&dev->sysctl_ctx); 288 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 289 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 290 dev->nameunit + strlen(dc->name), 291 CTLFLAG_RD, NULL, ""); 292 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 293 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 294 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 295 "device description"); 296 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 297 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 298 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 299 "device driver name"); 300 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 301 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 302 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 303 "device location relative to parent"); 304 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 305 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 306 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 307 "device identification"); 308 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 309 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 310 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 311 "parent device"); 312 if (bus_get_domain(dev, &domain) == 0) 313 SYSCTL_ADD_INT(&dev->sysctl_ctx, 314 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 315 CTLFLAG_RD, NULL, domain, "NUMA domain"); 316 } 317 318 static void 319 device_sysctl_update(device_t dev) 320 { 321 devclass_t dc = dev->devclass; 322 323 if (dev->sysctl_tree == NULL) 324 return; 325 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 326 } 327 328 static void 329 device_sysctl_fini(device_t dev) 330 { 331 if (dev->sysctl_tree == NULL) 332 return; 333 sysctl_ctx_free(&dev->sysctl_ctx); 334 dev->sysctl_tree = NULL; 335 } 336 337 /* 338 * /dev/devctl implementation 339 */ 340 341 /* 342 * This design allows only one reader for /dev/devctl. This is not desirable 343 * in the long run, but will get a lot of hair out of this implementation. 344 * Maybe we should make this device a clonable device. 345 * 346 * Also note: we specifically do not attach a device to the device_t tree 347 * to avoid potential chicken and egg problems. One could argue that all 348 * of this belongs to the root node. One could also further argue that the 349 * sysctl interface that we have not might more properly be an ioctl 350 * interface, but at this stage of the game, I'm not inclined to rock that 351 * boat. 352 * 353 * I'm also not sure that the SIGIO support is done correctly or not, as 354 * I copied it from a driver that had SIGIO support that likely hasn't been 355 * tested since 3.4 or 2.2.8! 356 */ 357 358 /* Deprecated way to adjust queue length */ 359 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 360 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN | 361 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I", 362 "devctl disable -- deprecated"); 363 364 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 365 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 366 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 367 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 368 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 369 370 static d_open_t devopen; 371 static d_close_t devclose; 372 static d_read_t devread; 373 static d_ioctl_t devioctl; 374 static d_poll_t devpoll; 375 static d_kqfilter_t devkqfilter; 376 377 static struct cdevsw dev_cdevsw = { 378 .d_version = D_VERSION, 379 .d_open = devopen, 380 .d_close = devclose, 381 .d_read = devread, 382 .d_ioctl = devioctl, 383 .d_poll = devpoll, 384 .d_kqfilter = devkqfilter, 385 .d_name = "devctl", 386 }; 387 388 struct dev_event_info 389 { 390 char *dei_data; 391 TAILQ_ENTRY(dev_event_info) dei_link; 392 }; 393 394 TAILQ_HEAD(devq, dev_event_info); 395 396 static struct dev_softc 397 { 398 int inuse; 399 int nonblock; 400 int queued; 401 int async; 402 struct mtx mtx; 403 struct cv cv; 404 struct selinfo sel; 405 struct devq devq; 406 struct sigio *sigio; 407 } devsoftc; 408 409 static void filt_devctl_detach(struct knote *kn); 410 static int filt_devctl_read(struct knote *kn, long hint); 411 412 struct filterops devctl_rfiltops = { 413 .f_isfd = 1, 414 .f_detach = filt_devctl_detach, 415 .f_event = filt_devctl_read, 416 }; 417 418 static struct cdev *devctl_dev; 419 420 static void 421 devinit(void) 422 { 423 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 424 UID_ROOT, GID_WHEEL, 0600, "devctl"); 425 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 426 cv_init(&devsoftc.cv, "dev cv"); 427 TAILQ_INIT(&devsoftc.devq); 428 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 429 devctl2_init(); 430 } 431 432 static int 433 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 434 { 435 436 mtx_lock(&devsoftc.mtx); 437 if (devsoftc.inuse) { 438 mtx_unlock(&devsoftc.mtx); 439 return (EBUSY); 440 } 441 /* move to init */ 442 devsoftc.inuse = 1; 443 mtx_unlock(&devsoftc.mtx); 444 return (0); 445 } 446 447 static int 448 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 449 { 450 451 mtx_lock(&devsoftc.mtx); 452 devsoftc.inuse = 0; 453 devsoftc.nonblock = 0; 454 devsoftc.async = 0; 455 cv_broadcast(&devsoftc.cv); 456 funsetown(&devsoftc.sigio); 457 mtx_unlock(&devsoftc.mtx); 458 return (0); 459 } 460 461 /* 462 * The read channel for this device is used to report changes to 463 * userland in realtime. We are required to free the data as well as 464 * the n1 object because we allocate them separately. Also note that 465 * we return one record at a time. If you try to read this device a 466 * character at a time, you will lose the rest of the data. Listening 467 * programs are expected to cope. 468 */ 469 static int 470 devread(struct cdev *dev, struct uio *uio, int ioflag) 471 { 472 struct dev_event_info *n1; 473 int rv; 474 475 mtx_lock(&devsoftc.mtx); 476 while (TAILQ_EMPTY(&devsoftc.devq)) { 477 if (devsoftc.nonblock) { 478 mtx_unlock(&devsoftc.mtx); 479 return (EAGAIN); 480 } 481 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 482 if (rv) { 483 /* 484 * Need to translate ERESTART to EINTR here? -- jake 485 */ 486 mtx_unlock(&devsoftc.mtx); 487 return (rv); 488 } 489 } 490 n1 = TAILQ_FIRST(&devsoftc.devq); 491 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 492 devsoftc.queued--; 493 mtx_unlock(&devsoftc.mtx); 494 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 495 free(n1->dei_data, M_BUS); 496 free(n1, M_BUS); 497 return (rv); 498 } 499 500 static int 501 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 502 { 503 switch (cmd) { 504 505 case FIONBIO: 506 if (*(int*)data) 507 devsoftc.nonblock = 1; 508 else 509 devsoftc.nonblock = 0; 510 return (0); 511 case FIOASYNC: 512 if (*(int*)data) 513 devsoftc.async = 1; 514 else 515 devsoftc.async = 0; 516 return (0); 517 case FIOSETOWN: 518 return fsetown(*(int *)data, &devsoftc.sigio); 519 case FIOGETOWN: 520 *(int *)data = fgetown(&devsoftc.sigio); 521 return (0); 522 523 /* (un)Support for other fcntl() calls. */ 524 case FIOCLEX: 525 case FIONCLEX: 526 case FIONREAD: 527 default: 528 break; 529 } 530 return (ENOTTY); 531 } 532 533 static int 534 devpoll(struct cdev *dev, int events, struct thread *td) 535 { 536 int revents = 0; 537 538 mtx_lock(&devsoftc.mtx); 539 if (events & (POLLIN | POLLRDNORM)) { 540 if (!TAILQ_EMPTY(&devsoftc.devq)) 541 revents = events & (POLLIN | POLLRDNORM); 542 else 543 selrecord(td, &devsoftc.sel); 544 } 545 mtx_unlock(&devsoftc.mtx); 546 547 return (revents); 548 } 549 550 static int 551 devkqfilter(struct cdev *dev, struct knote *kn) 552 { 553 int error; 554 555 if (kn->kn_filter == EVFILT_READ) { 556 kn->kn_fop = &devctl_rfiltops; 557 knlist_add(&devsoftc.sel.si_note, kn, 0); 558 error = 0; 559 } else 560 error = EINVAL; 561 return (error); 562 } 563 564 static void 565 filt_devctl_detach(struct knote *kn) 566 { 567 568 knlist_remove(&devsoftc.sel.si_note, kn, 0); 569 } 570 571 static int 572 filt_devctl_read(struct knote *kn, long hint) 573 { 574 kn->kn_data = devsoftc.queued; 575 return (kn->kn_data != 0); 576 } 577 578 /** 579 * @brief Return whether the userland process is running 580 */ 581 boolean_t 582 devctl_process_running(void) 583 { 584 return (devsoftc.inuse == 1); 585 } 586 587 /** 588 * @brief Queue data to be read from the devctl device 589 * 590 * Generic interface to queue data to the devctl device. It is 591 * assumed that @p data is properly formatted. It is further assumed 592 * that @p data is allocated using the M_BUS malloc type. 593 */ 594 void 595 devctl_queue_data_f(char *data, int flags) 596 { 597 struct dev_event_info *n1 = NULL, *n2 = NULL; 598 599 if (strlen(data) == 0) 600 goto out; 601 if (devctl_queue_length == 0) 602 goto out; 603 n1 = malloc(sizeof(*n1), M_BUS, flags); 604 if (n1 == NULL) 605 goto out; 606 n1->dei_data = data; 607 mtx_lock(&devsoftc.mtx); 608 if (devctl_queue_length == 0) { 609 mtx_unlock(&devsoftc.mtx); 610 free(n1->dei_data, M_BUS); 611 free(n1, M_BUS); 612 return; 613 } 614 /* Leave at least one spot in the queue... */ 615 while (devsoftc.queued > devctl_queue_length - 1) { 616 n2 = TAILQ_FIRST(&devsoftc.devq); 617 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 618 free(n2->dei_data, M_BUS); 619 free(n2, M_BUS); 620 devsoftc.queued--; 621 } 622 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 623 devsoftc.queued++; 624 cv_broadcast(&devsoftc.cv); 625 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 626 mtx_unlock(&devsoftc.mtx); 627 selwakeup(&devsoftc.sel); 628 if (devsoftc.async && devsoftc.sigio != NULL) 629 pgsigio(&devsoftc.sigio, SIGIO, 0); 630 return; 631 out: 632 /* 633 * We have to free data on all error paths since the caller 634 * assumes it will be free'd when this item is dequeued. 635 */ 636 free(data, M_BUS); 637 return; 638 } 639 640 void 641 devctl_queue_data(char *data) 642 { 643 644 devctl_queue_data_f(data, M_NOWAIT); 645 } 646 647 /** 648 * @brief Send a 'notification' to userland, using standard ways 649 */ 650 void 651 devctl_notify_f(const char *system, const char *subsystem, const char *type, 652 const char *data, int flags) 653 { 654 int len = 0; 655 char *msg; 656 657 if (system == NULL) 658 return; /* BOGUS! Must specify system. */ 659 if (subsystem == NULL) 660 return; /* BOGUS! Must specify subsystem. */ 661 if (type == NULL) 662 return; /* BOGUS! Must specify type. */ 663 len += strlen(" system=") + strlen(system); 664 len += strlen(" subsystem=") + strlen(subsystem); 665 len += strlen(" type=") + strlen(type); 666 /* add in the data message plus newline. */ 667 if (data != NULL) 668 len += strlen(data); 669 len += 3; /* '!', '\n', and NUL */ 670 msg = malloc(len, M_BUS, flags); 671 if (msg == NULL) 672 return; /* Drop it on the floor */ 673 if (data != NULL) 674 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 675 system, subsystem, type, data); 676 else 677 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 678 system, subsystem, type); 679 devctl_queue_data_f(msg, flags); 680 } 681 682 void 683 devctl_notify(const char *system, const char *subsystem, const char *type, 684 const char *data) 685 { 686 687 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 688 } 689 690 /* 691 * Common routine that tries to make sending messages as easy as possible. 692 * We allocate memory for the data, copy strings into that, but do not 693 * free it unless there's an error. The dequeue part of the driver should 694 * free the data. We don't send data when the device is disabled. We do 695 * send data, even when we have no listeners, because we wish to avoid 696 * races relating to startup and restart of listening applications. 697 * 698 * devaddq is designed to string together the type of event, with the 699 * object of that event, plus the plug and play info and location info 700 * for that event. This is likely most useful for devices, but less 701 * useful for other consumers of this interface. Those should use 702 * the devctl_queue_data() interface instead. 703 */ 704 static void 705 devaddq(const char *type, const char *what, device_t dev) 706 { 707 char *data = NULL; 708 char *loc = NULL; 709 char *pnp = NULL; 710 const char *parstr; 711 712 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 713 return; 714 data = malloc(1024, M_BUS, M_NOWAIT); 715 if (data == NULL) 716 goto bad; 717 718 /* get the bus specific location of this device */ 719 loc = malloc(1024, M_BUS, M_NOWAIT); 720 if (loc == NULL) 721 goto bad; 722 *loc = '\0'; 723 bus_child_location_str(dev, loc, 1024); 724 725 /* Get the bus specific pnp info of this device */ 726 pnp = malloc(1024, M_BUS, M_NOWAIT); 727 if (pnp == NULL) 728 goto bad; 729 *pnp = '\0'; 730 bus_child_pnpinfo_str(dev, pnp, 1024); 731 732 /* Get the parent of this device, or / if high enough in the tree. */ 733 if (device_get_parent(dev) == NULL) 734 parstr = "."; /* Or '/' ? */ 735 else 736 parstr = device_get_nameunit(device_get_parent(dev)); 737 /* String it all together. */ 738 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 739 parstr); 740 free(loc, M_BUS); 741 free(pnp, M_BUS); 742 devctl_queue_data(data); 743 return; 744 bad: 745 free(pnp, M_BUS); 746 free(loc, M_BUS); 747 free(data, M_BUS); 748 return; 749 } 750 751 /* 752 * A device was added to the tree. We are called just after it successfully 753 * attaches (that is, probe and attach success for this device). No call 754 * is made if a device is merely parented into the tree. See devnomatch 755 * if probe fails. If attach fails, no notification is sent (but maybe 756 * we should have a different message for this). 757 */ 758 static void 759 devadded(device_t dev) 760 { 761 devaddq("+", device_get_nameunit(dev), dev); 762 } 763 764 /* 765 * A device was removed from the tree. We are called just before this 766 * happens. 767 */ 768 static void 769 devremoved(device_t dev) 770 { 771 devaddq("-", device_get_nameunit(dev), dev); 772 } 773 774 /* 775 * Called when there's no match for this device. This is only called 776 * the first time that no match happens, so we don't keep getting this 777 * message. Should that prove to be undesirable, we can change it. 778 * This is called when all drivers that can attach to a given bus 779 * decline to accept this device. Other errors may not be detected. 780 */ 781 static void 782 devnomatch(device_t dev) 783 { 784 devaddq("?", "", dev); 785 } 786 787 static int 788 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 789 { 790 struct dev_event_info *n1; 791 int dis, error; 792 793 dis = (devctl_queue_length == 0); 794 error = sysctl_handle_int(oidp, &dis, 0, req); 795 if (error || !req->newptr) 796 return (error); 797 if (mtx_initialized(&devsoftc.mtx)) 798 mtx_lock(&devsoftc.mtx); 799 if (dis) { 800 while (!TAILQ_EMPTY(&devsoftc.devq)) { 801 n1 = TAILQ_FIRST(&devsoftc.devq); 802 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 803 free(n1->dei_data, M_BUS); 804 free(n1, M_BUS); 805 } 806 devsoftc.queued = 0; 807 devctl_queue_length = 0; 808 } else { 809 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 810 } 811 if (mtx_initialized(&devsoftc.mtx)) 812 mtx_unlock(&devsoftc.mtx); 813 return (0); 814 } 815 816 static int 817 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 818 { 819 struct dev_event_info *n1; 820 int q, error; 821 822 q = devctl_queue_length; 823 error = sysctl_handle_int(oidp, &q, 0, req); 824 if (error || !req->newptr) 825 return (error); 826 if (q < 0) 827 return (EINVAL); 828 if (mtx_initialized(&devsoftc.mtx)) 829 mtx_lock(&devsoftc.mtx); 830 devctl_queue_length = q; 831 while (devsoftc.queued > devctl_queue_length) { 832 n1 = TAILQ_FIRST(&devsoftc.devq); 833 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 834 free(n1->dei_data, M_BUS); 835 free(n1, M_BUS); 836 devsoftc.queued--; 837 } 838 if (mtx_initialized(&devsoftc.mtx)) 839 mtx_unlock(&devsoftc.mtx); 840 return (0); 841 } 842 843 /* End of /dev/devctl code */ 844 845 static TAILQ_HEAD(,device) bus_data_devices; 846 static int bus_data_generation = 1; 847 848 static kobj_method_t null_methods[] = { 849 KOBJMETHOD_END 850 }; 851 852 DEFINE_CLASS(null, null_methods, 0); 853 854 /* 855 * Bus pass implementation 856 */ 857 858 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 859 int bus_current_pass = BUS_PASS_ROOT; 860 861 /** 862 * @internal 863 * @brief Register the pass level of a new driver attachment 864 * 865 * Register a new driver attachment's pass level. If no driver 866 * attachment with the same pass level has been added, then @p new 867 * will be added to the global passes list. 868 * 869 * @param new the new driver attachment 870 */ 871 static void 872 driver_register_pass(struct driverlink *new) 873 { 874 struct driverlink *dl; 875 876 /* We only consider pass numbers during boot. */ 877 if (bus_current_pass == BUS_PASS_DEFAULT) 878 return; 879 880 /* 881 * Walk the passes list. If we already know about this pass 882 * then there is nothing to do. If we don't, then insert this 883 * driver link into the list. 884 */ 885 TAILQ_FOREACH(dl, &passes, passlink) { 886 if (dl->pass < new->pass) 887 continue; 888 if (dl->pass == new->pass) 889 return; 890 TAILQ_INSERT_BEFORE(dl, new, passlink); 891 return; 892 } 893 TAILQ_INSERT_TAIL(&passes, new, passlink); 894 } 895 896 /** 897 * @brief Raise the current bus pass 898 * 899 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 900 * method on the root bus to kick off a new device tree scan for each 901 * new pass level that has at least one driver. 902 */ 903 void 904 bus_set_pass(int pass) 905 { 906 struct driverlink *dl; 907 908 if (bus_current_pass > pass) 909 panic("Attempt to lower bus pass level"); 910 911 TAILQ_FOREACH(dl, &passes, passlink) { 912 /* Skip pass values below the current pass level. */ 913 if (dl->pass <= bus_current_pass) 914 continue; 915 916 /* 917 * Bail once we hit a driver with a pass level that is 918 * too high. 919 */ 920 if (dl->pass > pass) 921 break; 922 923 /* 924 * Raise the pass level to the next level and rescan 925 * the tree. 926 */ 927 bus_current_pass = dl->pass; 928 BUS_NEW_PASS(root_bus); 929 } 930 931 /* 932 * If there isn't a driver registered for the requested pass, 933 * then bus_current_pass might still be less than 'pass'. Set 934 * it to 'pass' in that case. 935 */ 936 if (bus_current_pass < pass) 937 bus_current_pass = pass; 938 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 939 } 940 941 /* 942 * Devclass implementation 943 */ 944 945 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 946 947 /** 948 * @internal 949 * @brief Find or create a device class 950 * 951 * If a device class with the name @p classname exists, return it, 952 * otherwise if @p create is non-zero create and return a new device 953 * class. 954 * 955 * If @p parentname is non-NULL, the parent of the devclass is set to 956 * the devclass of that name. 957 * 958 * @param classname the devclass name to find or create 959 * @param parentname the parent devclass name or @c NULL 960 * @param create non-zero to create a devclass 961 */ 962 static devclass_t 963 devclass_find_internal(const char *classname, const char *parentname, 964 int create) 965 { 966 devclass_t dc; 967 968 PDEBUG(("looking for %s", classname)); 969 if (!classname) 970 return (NULL); 971 972 TAILQ_FOREACH(dc, &devclasses, link) { 973 if (!strcmp(dc->name, classname)) 974 break; 975 } 976 977 if (create && !dc) { 978 PDEBUG(("creating %s", classname)); 979 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 980 M_BUS, M_NOWAIT | M_ZERO); 981 if (!dc) 982 return (NULL); 983 dc->parent = NULL; 984 dc->name = (char*) (dc + 1); 985 strcpy(dc->name, classname); 986 TAILQ_INIT(&dc->drivers); 987 TAILQ_INSERT_TAIL(&devclasses, dc, link); 988 989 bus_data_generation_update(); 990 } 991 992 /* 993 * If a parent class is specified, then set that as our parent so 994 * that this devclass will support drivers for the parent class as 995 * well. If the parent class has the same name don't do this though 996 * as it creates a cycle that can trigger an infinite loop in 997 * device_probe_child() if a device exists for which there is no 998 * suitable driver. 999 */ 1000 if (parentname && dc && !dc->parent && 1001 strcmp(classname, parentname) != 0) { 1002 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1003 dc->parent->flags |= DC_HAS_CHILDREN; 1004 } 1005 1006 return (dc); 1007 } 1008 1009 /** 1010 * @brief Create a device class 1011 * 1012 * If a device class with the name @p classname exists, return it, 1013 * otherwise create and return a new device class. 1014 * 1015 * @param classname the devclass name to find or create 1016 */ 1017 devclass_t 1018 devclass_create(const char *classname) 1019 { 1020 return (devclass_find_internal(classname, NULL, TRUE)); 1021 } 1022 1023 /** 1024 * @brief Find a device class 1025 * 1026 * If a device class with the name @p classname exists, return it, 1027 * otherwise return @c NULL. 1028 * 1029 * @param classname the devclass name to find 1030 */ 1031 devclass_t 1032 devclass_find(const char *classname) 1033 { 1034 return (devclass_find_internal(classname, NULL, FALSE)); 1035 } 1036 1037 /** 1038 * @brief Register that a device driver has been added to a devclass 1039 * 1040 * Register that a device driver has been added to a devclass. This 1041 * is called by devclass_add_driver to accomplish the recursive 1042 * notification of all the children classes of dc, as well as dc. 1043 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1044 * the devclass. 1045 * 1046 * We do a full search here of the devclass list at each iteration 1047 * level to save storing children-lists in the devclass structure. If 1048 * we ever move beyond a few dozen devices doing this, we may need to 1049 * reevaluate... 1050 * 1051 * @param dc the devclass to edit 1052 * @param driver the driver that was just added 1053 */ 1054 static void 1055 devclass_driver_added(devclass_t dc, driver_t *driver) 1056 { 1057 devclass_t parent; 1058 int i; 1059 1060 /* 1061 * Call BUS_DRIVER_ADDED for any existing busses in this class. 1062 */ 1063 for (i = 0; i < dc->maxunit; i++) 1064 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1065 BUS_DRIVER_ADDED(dc->devices[i], driver); 1066 1067 /* 1068 * Walk through the children classes. Since we only keep a 1069 * single parent pointer around, we walk the entire list of 1070 * devclasses looking for children. We set the 1071 * DC_HAS_CHILDREN flag when a child devclass is created on 1072 * the parent, so we only walk the list for those devclasses 1073 * that have children. 1074 */ 1075 if (!(dc->flags & DC_HAS_CHILDREN)) 1076 return; 1077 parent = dc; 1078 TAILQ_FOREACH(dc, &devclasses, link) { 1079 if (dc->parent == parent) 1080 devclass_driver_added(dc, driver); 1081 } 1082 } 1083 1084 /** 1085 * @brief Add a device driver to a device class 1086 * 1087 * Add a device driver to a devclass. This is normally called 1088 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1089 * all devices in the devclass will be called to allow them to attempt 1090 * to re-probe any unmatched children. 1091 * 1092 * @param dc the devclass to edit 1093 * @param driver the driver to register 1094 */ 1095 int 1096 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1097 { 1098 driverlink_t dl; 1099 const char *parentname; 1100 1101 PDEBUG(("%s", DRIVERNAME(driver))); 1102 1103 /* Don't allow invalid pass values. */ 1104 if (pass <= BUS_PASS_ROOT) 1105 return (EINVAL); 1106 1107 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1108 if (!dl) 1109 return (ENOMEM); 1110 1111 /* 1112 * Compile the driver's methods. Also increase the reference count 1113 * so that the class doesn't get freed when the last instance 1114 * goes. This means we can safely use static methods and avoids a 1115 * double-free in devclass_delete_driver. 1116 */ 1117 kobj_class_compile((kobj_class_t) driver); 1118 1119 /* 1120 * If the driver has any base classes, make the 1121 * devclass inherit from the devclass of the driver's 1122 * first base class. This will allow the system to 1123 * search for drivers in both devclasses for children 1124 * of a device using this driver. 1125 */ 1126 if (driver->baseclasses) 1127 parentname = driver->baseclasses[0]->name; 1128 else 1129 parentname = NULL; 1130 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1131 1132 dl->driver = driver; 1133 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1134 driver->refs++; /* XXX: kobj_mtx */ 1135 dl->pass = pass; 1136 driver_register_pass(dl); 1137 1138 devclass_driver_added(dc, driver); 1139 bus_data_generation_update(); 1140 return (0); 1141 } 1142 1143 /** 1144 * @brief Register that a device driver has been deleted from a devclass 1145 * 1146 * Register that a device driver has been removed from a devclass. 1147 * This is called by devclass_delete_driver to accomplish the 1148 * recursive notification of all the children classes of busclass, as 1149 * well as busclass. Each layer will attempt to detach the driver 1150 * from any devices that are children of the bus's devclass. The function 1151 * will return an error if a device fails to detach. 1152 * 1153 * We do a full search here of the devclass list at each iteration 1154 * level to save storing children-lists in the devclass structure. If 1155 * we ever move beyond a few dozen devices doing this, we may need to 1156 * reevaluate... 1157 * 1158 * @param busclass the devclass of the parent bus 1159 * @param dc the devclass of the driver being deleted 1160 * @param driver the driver being deleted 1161 */ 1162 static int 1163 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1164 { 1165 devclass_t parent; 1166 device_t dev; 1167 int error, i; 1168 1169 /* 1170 * Disassociate from any devices. We iterate through all the 1171 * devices in the devclass of the driver and detach any which are 1172 * using the driver and which have a parent in the devclass which 1173 * we are deleting from. 1174 * 1175 * Note that since a driver can be in multiple devclasses, we 1176 * should not detach devices which are not children of devices in 1177 * the affected devclass. 1178 */ 1179 for (i = 0; i < dc->maxunit; i++) { 1180 if (dc->devices[i]) { 1181 dev = dc->devices[i]; 1182 if (dev->driver == driver && dev->parent && 1183 dev->parent->devclass == busclass) { 1184 if ((error = device_detach(dev)) != 0) 1185 return (error); 1186 BUS_PROBE_NOMATCH(dev->parent, dev); 1187 devnomatch(dev); 1188 dev->flags |= DF_DONENOMATCH; 1189 } 1190 } 1191 } 1192 1193 /* 1194 * Walk through the children classes. Since we only keep a 1195 * single parent pointer around, we walk the entire list of 1196 * devclasses looking for children. We set the 1197 * DC_HAS_CHILDREN flag when a child devclass is created on 1198 * the parent, so we only walk the list for those devclasses 1199 * that have children. 1200 */ 1201 if (!(busclass->flags & DC_HAS_CHILDREN)) 1202 return (0); 1203 parent = busclass; 1204 TAILQ_FOREACH(busclass, &devclasses, link) { 1205 if (busclass->parent == parent) { 1206 error = devclass_driver_deleted(busclass, dc, driver); 1207 if (error) 1208 return (error); 1209 } 1210 } 1211 return (0); 1212 } 1213 1214 /** 1215 * @brief Delete a device driver from a device class 1216 * 1217 * Delete a device driver from a devclass. This is normally called 1218 * automatically by DRIVER_MODULE(). 1219 * 1220 * If the driver is currently attached to any devices, 1221 * devclass_delete_driver() will first attempt to detach from each 1222 * device. If one of the detach calls fails, the driver will not be 1223 * deleted. 1224 * 1225 * @param dc the devclass to edit 1226 * @param driver the driver to unregister 1227 */ 1228 int 1229 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1230 { 1231 devclass_t dc = devclass_find(driver->name); 1232 driverlink_t dl; 1233 int error; 1234 1235 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1236 1237 if (!dc) 1238 return (0); 1239 1240 /* 1241 * Find the link structure in the bus' list of drivers. 1242 */ 1243 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1244 if (dl->driver == driver) 1245 break; 1246 } 1247 1248 if (!dl) { 1249 PDEBUG(("%s not found in %s list", driver->name, 1250 busclass->name)); 1251 return (ENOENT); 1252 } 1253 1254 error = devclass_driver_deleted(busclass, dc, driver); 1255 if (error != 0) 1256 return (error); 1257 1258 TAILQ_REMOVE(&busclass->drivers, dl, link); 1259 free(dl, M_BUS); 1260 1261 /* XXX: kobj_mtx */ 1262 driver->refs--; 1263 if (driver->refs == 0) 1264 kobj_class_free((kobj_class_t) driver); 1265 1266 bus_data_generation_update(); 1267 return (0); 1268 } 1269 1270 /** 1271 * @brief Quiesces a set of device drivers from a device class 1272 * 1273 * Quiesce a device driver from a devclass. This is normally called 1274 * automatically by DRIVER_MODULE(). 1275 * 1276 * If the driver is currently attached to any devices, 1277 * devclass_quiesece_driver() will first attempt to quiesce each 1278 * device. 1279 * 1280 * @param dc the devclass to edit 1281 * @param driver the driver to unregister 1282 */ 1283 static int 1284 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1285 { 1286 devclass_t dc = devclass_find(driver->name); 1287 driverlink_t dl; 1288 device_t dev; 1289 int i; 1290 int error; 1291 1292 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1293 1294 if (!dc) 1295 return (0); 1296 1297 /* 1298 * Find the link structure in the bus' list of drivers. 1299 */ 1300 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1301 if (dl->driver == driver) 1302 break; 1303 } 1304 1305 if (!dl) { 1306 PDEBUG(("%s not found in %s list", driver->name, 1307 busclass->name)); 1308 return (ENOENT); 1309 } 1310 1311 /* 1312 * Quiesce all devices. We iterate through all the devices in 1313 * the devclass of the driver and quiesce any which are using 1314 * the driver and which have a parent in the devclass which we 1315 * are quiescing. 1316 * 1317 * Note that since a driver can be in multiple devclasses, we 1318 * should not quiesce devices which are not children of 1319 * devices in the affected devclass. 1320 */ 1321 for (i = 0; i < dc->maxunit; i++) { 1322 if (dc->devices[i]) { 1323 dev = dc->devices[i]; 1324 if (dev->driver == driver && dev->parent && 1325 dev->parent->devclass == busclass) { 1326 if ((error = device_quiesce(dev)) != 0) 1327 return (error); 1328 } 1329 } 1330 } 1331 1332 return (0); 1333 } 1334 1335 /** 1336 * @internal 1337 */ 1338 static driverlink_t 1339 devclass_find_driver_internal(devclass_t dc, const char *classname) 1340 { 1341 driverlink_t dl; 1342 1343 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1344 1345 TAILQ_FOREACH(dl, &dc->drivers, link) { 1346 if (!strcmp(dl->driver->name, classname)) 1347 return (dl); 1348 } 1349 1350 PDEBUG(("not found")); 1351 return (NULL); 1352 } 1353 1354 /** 1355 * @brief Return the name of the devclass 1356 */ 1357 const char * 1358 devclass_get_name(devclass_t dc) 1359 { 1360 return (dc->name); 1361 } 1362 1363 /** 1364 * @brief Find a device given a unit number 1365 * 1366 * @param dc the devclass to search 1367 * @param unit the unit number to search for 1368 * 1369 * @returns the device with the given unit number or @c 1370 * NULL if there is no such device 1371 */ 1372 device_t 1373 devclass_get_device(devclass_t dc, int unit) 1374 { 1375 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1376 return (NULL); 1377 return (dc->devices[unit]); 1378 } 1379 1380 /** 1381 * @brief Find the softc field of a device given a unit number 1382 * 1383 * @param dc the devclass to search 1384 * @param unit the unit number to search for 1385 * 1386 * @returns the softc field of the device with the given 1387 * unit number or @c NULL if there is no such 1388 * device 1389 */ 1390 void * 1391 devclass_get_softc(devclass_t dc, int unit) 1392 { 1393 device_t dev; 1394 1395 dev = devclass_get_device(dc, unit); 1396 if (!dev) 1397 return (NULL); 1398 1399 return (device_get_softc(dev)); 1400 } 1401 1402 /** 1403 * @brief Get a list of devices in the devclass 1404 * 1405 * An array containing a list of all the devices in the given devclass 1406 * is allocated and returned in @p *devlistp. The number of devices 1407 * in the array is returned in @p *devcountp. The caller should free 1408 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1409 * 1410 * @param dc the devclass to examine 1411 * @param devlistp points at location for array pointer return 1412 * value 1413 * @param devcountp points at location for array size return value 1414 * 1415 * @retval 0 success 1416 * @retval ENOMEM the array allocation failed 1417 */ 1418 int 1419 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1420 { 1421 int count, i; 1422 device_t *list; 1423 1424 count = devclass_get_count(dc); 1425 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1426 if (!list) 1427 return (ENOMEM); 1428 1429 count = 0; 1430 for (i = 0; i < dc->maxunit; i++) { 1431 if (dc->devices[i]) { 1432 list[count] = dc->devices[i]; 1433 count++; 1434 } 1435 } 1436 1437 *devlistp = list; 1438 *devcountp = count; 1439 1440 return (0); 1441 } 1442 1443 /** 1444 * @brief Get a list of drivers in the devclass 1445 * 1446 * An array containing a list of pointers to all the drivers in the 1447 * given devclass is allocated and returned in @p *listp. The number 1448 * of drivers in the array is returned in @p *countp. The caller should 1449 * free the array using @c free(p, M_TEMP). 1450 * 1451 * @param dc the devclass to examine 1452 * @param listp gives location for array pointer return value 1453 * @param countp gives location for number of array elements 1454 * return value 1455 * 1456 * @retval 0 success 1457 * @retval ENOMEM the array allocation failed 1458 */ 1459 int 1460 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1461 { 1462 driverlink_t dl; 1463 driver_t **list; 1464 int count; 1465 1466 count = 0; 1467 TAILQ_FOREACH(dl, &dc->drivers, link) 1468 count++; 1469 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1470 if (list == NULL) 1471 return (ENOMEM); 1472 1473 count = 0; 1474 TAILQ_FOREACH(dl, &dc->drivers, link) { 1475 list[count] = dl->driver; 1476 count++; 1477 } 1478 *listp = list; 1479 *countp = count; 1480 1481 return (0); 1482 } 1483 1484 /** 1485 * @brief Get the number of devices in a devclass 1486 * 1487 * @param dc the devclass to examine 1488 */ 1489 int 1490 devclass_get_count(devclass_t dc) 1491 { 1492 int count, i; 1493 1494 count = 0; 1495 for (i = 0; i < dc->maxunit; i++) 1496 if (dc->devices[i]) 1497 count++; 1498 return (count); 1499 } 1500 1501 /** 1502 * @brief Get the maximum unit number used in a devclass 1503 * 1504 * Note that this is one greater than the highest currently-allocated 1505 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1506 * that not even the devclass has been allocated yet. 1507 * 1508 * @param dc the devclass to examine 1509 */ 1510 int 1511 devclass_get_maxunit(devclass_t dc) 1512 { 1513 if (dc == NULL) 1514 return (-1); 1515 return (dc->maxunit); 1516 } 1517 1518 /** 1519 * @brief Find a free unit number in a devclass 1520 * 1521 * This function searches for the first unused unit number greater 1522 * that or equal to @p unit. 1523 * 1524 * @param dc the devclass to examine 1525 * @param unit the first unit number to check 1526 */ 1527 int 1528 devclass_find_free_unit(devclass_t dc, int unit) 1529 { 1530 if (dc == NULL) 1531 return (unit); 1532 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1533 unit++; 1534 return (unit); 1535 } 1536 1537 /** 1538 * @brief Set the parent of a devclass 1539 * 1540 * The parent class is normally initialised automatically by 1541 * DRIVER_MODULE(). 1542 * 1543 * @param dc the devclass to edit 1544 * @param pdc the new parent devclass 1545 */ 1546 void 1547 devclass_set_parent(devclass_t dc, devclass_t pdc) 1548 { 1549 dc->parent = pdc; 1550 } 1551 1552 /** 1553 * @brief Get the parent of a devclass 1554 * 1555 * @param dc the devclass to examine 1556 */ 1557 devclass_t 1558 devclass_get_parent(devclass_t dc) 1559 { 1560 return (dc->parent); 1561 } 1562 1563 struct sysctl_ctx_list * 1564 devclass_get_sysctl_ctx(devclass_t dc) 1565 { 1566 return (&dc->sysctl_ctx); 1567 } 1568 1569 struct sysctl_oid * 1570 devclass_get_sysctl_tree(devclass_t dc) 1571 { 1572 return (dc->sysctl_tree); 1573 } 1574 1575 /** 1576 * @internal 1577 * @brief Allocate a unit number 1578 * 1579 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1580 * will do). The allocated unit number is returned in @p *unitp. 1581 1582 * @param dc the devclass to allocate from 1583 * @param unitp points at the location for the allocated unit 1584 * number 1585 * 1586 * @retval 0 success 1587 * @retval EEXIST the requested unit number is already allocated 1588 * @retval ENOMEM memory allocation failure 1589 */ 1590 static int 1591 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1592 { 1593 const char *s; 1594 int unit = *unitp; 1595 1596 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1597 1598 /* Ask the parent bus if it wants to wire this device. */ 1599 if (unit == -1) 1600 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1601 &unit); 1602 1603 /* If we were given a wired unit number, check for existing device */ 1604 /* XXX imp XXX */ 1605 if (unit != -1) { 1606 if (unit >= 0 && unit < dc->maxunit && 1607 dc->devices[unit] != NULL) { 1608 if (bootverbose) 1609 printf("%s: %s%d already exists; skipping it\n", 1610 dc->name, dc->name, *unitp); 1611 return (EEXIST); 1612 } 1613 } else { 1614 /* Unwired device, find the next available slot for it */ 1615 unit = 0; 1616 for (unit = 0;; unit++) { 1617 /* If there is an "at" hint for a unit then skip it. */ 1618 if (resource_string_value(dc->name, unit, "at", &s) == 1619 0) 1620 continue; 1621 1622 /* If this device slot is already in use, skip it. */ 1623 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1624 continue; 1625 1626 break; 1627 } 1628 } 1629 1630 /* 1631 * We've selected a unit beyond the length of the table, so let's 1632 * extend the table to make room for all units up to and including 1633 * this one. 1634 */ 1635 if (unit >= dc->maxunit) { 1636 device_t *newlist, *oldlist; 1637 int newsize; 1638 1639 oldlist = dc->devices; 1640 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1641 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1642 if (!newlist) 1643 return (ENOMEM); 1644 if (oldlist != NULL) 1645 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1646 bzero(newlist + dc->maxunit, 1647 sizeof(device_t) * (newsize - dc->maxunit)); 1648 dc->devices = newlist; 1649 dc->maxunit = newsize; 1650 if (oldlist != NULL) 1651 free(oldlist, M_BUS); 1652 } 1653 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1654 1655 *unitp = unit; 1656 return (0); 1657 } 1658 1659 /** 1660 * @internal 1661 * @brief Add a device to a devclass 1662 * 1663 * A unit number is allocated for the device (using the device's 1664 * preferred unit number if any) and the device is registered in the 1665 * devclass. This allows the device to be looked up by its unit 1666 * number, e.g. by decoding a dev_t minor number. 1667 * 1668 * @param dc the devclass to add to 1669 * @param dev the device to add 1670 * 1671 * @retval 0 success 1672 * @retval EEXIST the requested unit number is already allocated 1673 * @retval ENOMEM memory allocation failure 1674 */ 1675 static int 1676 devclass_add_device(devclass_t dc, device_t dev) 1677 { 1678 int buflen, error; 1679 1680 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1681 1682 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1683 if (buflen < 0) 1684 return (ENOMEM); 1685 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1686 if (!dev->nameunit) 1687 return (ENOMEM); 1688 1689 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1690 free(dev->nameunit, M_BUS); 1691 dev->nameunit = NULL; 1692 return (error); 1693 } 1694 dc->devices[dev->unit] = dev; 1695 dev->devclass = dc; 1696 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1697 1698 return (0); 1699 } 1700 1701 /** 1702 * @internal 1703 * @brief Delete a device from a devclass 1704 * 1705 * The device is removed from the devclass's device list and its unit 1706 * number is freed. 1707 1708 * @param dc the devclass to delete from 1709 * @param dev the device to delete 1710 * 1711 * @retval 0 success 1712 */ 1713 static int 1714 devclass_delete_device(devclass_t dc, device_t dev) 1715 { 1716 if (!dc || !dev) 1717 return (0); 1718 1719 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1720 1721 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1722 panic("devclass_delete_device: inconsistent device class"); 1723 dc->devices[dev->unit] = NULL; 1724 if (dev->flags & DF_WILDCARD) 1725 dev->unit = -1; 1726 dev->devclass = NULL; 1727 free(dev->nameunit, M_BUS); 1728 dev->nameunit = NULL; 1729 1730 return (0); 1731 } 1732 1733 /** 1734 * @internal 1735 * @brief Make a new device and add it as a child of @p parent 1736 * 1737 * @param parent the parent of the new device 1738 * @param name the devclass name of the new device or @c NULL 1739 * to leave the devclass unspecified 1740 * @parem unit the unit number of the new device of @c -1 to 1741 * leave the unit number unspecified 1742 * 1743 * @returns the new device 1744 */ 1745 static device_t 1746 make_device(device_t parent, const char *name, int unit) 1747 { 1748 device_t dev; 1749 devclass_t dc; 1750 1751 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1752 1753 if (name) { 1754 dc = devclass_find_internal(name, NULL, TRUE); 1755 if (!dc) { 1756 printf("make_device: can't find device class %s\n", 1757 name); 1758 return (NULL); 1759 } 1760 } else { 1761 dc = NULL; 1762 } 1763 1764 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1765 if (!dev) 1766 return (NULL); 1767 1768 dev->parent = parent; 1769 TAILQ_INIT(&dev->children); 1770 kobj_init((kobj_t) dev, &null_class); 1771 dev->driver = NULL; 1772 dev->devclass = NULL; 1773 dev->unit = unit; 1774 dev->nameunit = NULL; 1775 dev->desc = NULL; 1776 dev->busy = 0; 1777 dev->devflags = 0; 1778 dev->flags = DF_ENABLED; 1779 dev->order = 0; 1780 if (unit == -1) 1781 dev->flags |= DF_WILDCARD; 1782 if (name) { 1783 dev->flags |= DF_FIXEDCLASS; 1784 if (devclass_add_device(dc, dev)) { 1785 kobj_delete((kobj_t) dev, M_BUS); 1786 return (NULL); 1787 } 1788 } 1789 dev->ivars = NULL; 1790 dev->softc = NULL; 1791 1792 dev->state = DS_NOTPRESENT; 1793 1794 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1795 bus_data_generation_update(); 1796 1797 return (dev); 1798 } 1799 1800 /** 1801 * @internal 1802 * @brief Print a description of a device. 1803 */ 1804 static int 1805 device_print_child(device_t dev, device_t child) 1806 { 1807 int retval = 0; 1808 1809 if (device_is_alive(child)) 1810 retval += BUS_PRINT_CHILD(dev, child); 1811 else 1812 retval += device_printf(child, " not found\n"); 1813 1814 return (retval); 1815 } 1816 1817 /** 1818 * @brief Create a new device 1819 * 1820 * This creates a new device and adds it as a child of an existing 1821 * parent device. The new device will be added after the last existing 1822 * child with order zero. 1823 * 1824 * @param dev the device which will be the parent of the 1825 * new child device 1826 * @param name devclass name for new device or @c NULL if not 1827 * specified 1828 * @param unit unit number for new device or @c -1 if not 1829 * specified 1830 * 1831 * @returns the new device 1832 */ 1833 device_t 1834 device_add_child(device_t dev, const char *name, int unit) 1835 { 1836 return (device_add_child_ordered(dev, 0, name, unit)); 1837 } 1838 1839 /** 1840 * @brief Create a new device 1841 * 1842 * This creates a new device and adds it as a child of an existing 1843 * parent device. The new device will be added after the last existing 1844 * child with the same order. 1845 * 1846 * @param dev the device which will be the parent of the 1847 * new child device 1848 * @param order a value which is used to partially sort the 1849 * children of @p dev - devices created using 1850 * lower values of @p order appear first in @p 1851 * dev's list of children 1852 * @param name devclass name for new device or @c NULL if not 1853 * specified 1854 * @param unit unit number for new device or @c -1 if not 1855 * specified 1856 * 1857 * @returns the new device 1858 */ 1859 device_t 1860 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1861 { 1862 device_t child; 1863 device_t place; 1864 1865 PDEBUG(("%s at %s with order %u as unit %d", 1866 name, DEVICENAME(dev), order, unit)); 1867 KASSERT(name != NULL || unit == -1, 1868 ("child device with wildcard name and specific unit number")); 1869 1870 child = make_device(dev, name, unit); 1871 if (child == NULL) 1872 return (child); 1873 child->order = order; 1874 1875 TAILQ_FOREACH(place, &dev->children, link) { 1876 if (place->order > order) 1877 break; 1878 } 1879 1880 if (place) { 1881 /* 1882 * The device 'place' is the first device whose order is 1883 * greater than the new child. 1884 */ 1885 TAILQ_INSERT_BEFORE(place, child, link); 1886 } else { 1887 /* 1888 * The new child's order is greater or equal to the order of 1889 * any existing device. Add the child to the tail of the list. 1890 */ 1891 TAILQ_INSERT_TAIL(&dev->children, child, link); 1892 } 1893 1894 bus_data_generation_update(); 1895 return (child); 1896 } 1897 1898 /** 1899 * @brief Delete a device 1900 * 1901 * This function deletes a device along with all of its children. If 1902 * the device currently has a driver attached to it, the device is 1903 * detached first using device_detach(). 1904 * 1905 * @param dev the parent device 1906 * @param child the device to delete 1907 * 1908 * @retval 0 success 1909 * @retval non-zero a unit error code describing the error 1910 */ 1911 int 1912 device_delete_child(device_t dev, device_t child) 1913 { 1914 int error; 1915 device_t grandchild; 1916 1917 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1918 1919 /* remove children first */ 1920 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1921 error = device_delete_child(child, grandchild); 1922 if (error) 1923 return (error); 1924 } 1925 1926 if ((error = device_detach(child)) != 0) 1927 return (error); 1928 if (child->devclass) 1929 devclass_delete_device(child->devclass, child); 1930 if (child->parent) 1931 BUS_CHILD_DELETED(dev, child); 1932 TAILQ_REMOVE(&dev->children, child, link); 1933 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1934 kobj_delete((kobj_t) child, M_BUS); 1935 1936 bus_data_generation_update(); 1937 return (0); 1938 } 1939 1940 /** 1941 * @brief Delete all children devices of the given device, if any. 1942 * 1943 * This function deletes all children devices of the given device, if 1944 * any, using the device_delete_child() function for each device it 1945 * finds. If a child device cannot be deleted, this function will 1946 * return an error code. 1947 * 1948 * @param dev the parent device 1949 * 1950 * @retval 0 success 1951 * @retval non-zero a device would not detach 1952 */ 1953 int 1954 device_delete_children(device_t dev) 1955 { 1956 device_t child; 1957 int error; 1958 1959 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1960 1961 error = 0; 1962 1963 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1964 error = device_delete_child(dev, child); 1965 if (error) { 1966 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1967 break; 1968 } 1969 } 1970 return (error); 1971 } 1972 1973 /** 1974 * @brief Find a device given a unit number 1975 * 1976 * This is similar to devclass_get_devices() but only searches for 1977 * devices which have @p dev as a parent. 1978 * 1979 * @param dev the parent device to search 1980 * @param unit the unit number to search for. If the unit is -1, 1981 * return the first child of @p dev which has name 1982 * @p classname (that is, the one with the lowest unit.) 1983 * 1984 * @returns the device with the given unit number or @c 1985 * NULL if there is no such device 1986 */ 1987 device_t 1988 device_find_child(device_t dev, const char *classname, int unit) 1989 { 1990 devclass_t dc; 1991 device_t child; 1992 1993 dc = devclass_find(classname); 1994 if (!dc) 1995 return (NULL); 1996 1997 if (unit != -1) { 1998 child = devclass_get_device(dc, unit); 1999 if (child && child->parent == dev) 2000 return (child); 2001 } else { 2002 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2003 child = devclass_get_device(dc, unit); 2004 if (child && child->parent == dev) 2005 return (child); 2006 } 2007 } 2008 return (NULL); 2009 } 2010 2011 /** 2012 * @internal 2013 */ 2014 static driverlink_t 2015 first_matching_driver(devclass_t dc, device_t dev) 2016 { 2017 if (dev->devclass) 2018 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2019 return (TAILQ_FIRST(&dc->drivers)); 2020 } 2021 2022 /** 2023 * @internal 2024 */ 2025 static driverlink_t 2026 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2027 { 2028 if (dev->devclass) { 2029 driverlink_t dl; 2030 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2031 if (!strcmp(dev->devclass->name, dl->driver->name)) 2032 return (dl); 2033 return (NULL); 2034 } 2035 return (TAILQ_NEXT(last, link)); 2036 } 2037 2038 /** 2039 * @internal 2040 */ 2041 int 2042 device_probe_child(device_t dev, device_t child) 2043 { 2044 devclass_t dc; 2045 driverlink_t best = NULL; 2046 driverlink_t dl; 2047 int result, pri = 0; 2048 int hasclass = (child->devclass != NULL); 2049 2050 GIANT_REQUIRED; 2051 2052 dc = dev->devclass; 2053 if (!dc) 2054 panic("device_probe_child: parent device has no devclass"); 2055 2056 /* 2057 * If the state is already probed, then return. However, don't 2058 * return if we can rebid this object. 2059 */ 2060 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2061 return (0); 2062 2063 for (; dc; dc = dc->parent) { 2064 for (dl = first_matching_driver(dc, child); 2065 dl; 2066 dl = next_matching_driver(dc, child, dl)) { 2067 /* If this driver's pass is too high, then ignore it. */ 2068 if (dl->pass > bus_current_pass) 2069 continue; 2070 2071 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2072 result = device_set_driver(child, dl->driver); 2073 if (result == ENOMEM) 2074 return (result); 2075 else if (result != 0) 2076 continue; 2077 if (!hasclass) { 2078 if (device_set_devclass(child, 2079 dl->driver->name) != 0) { 2080 char const * devname = 2081 device_get_name(child); 2082 if (devname == NULL) 2083 devname = "(unknown)"; 2084 printf("driver bug: Unable to set " 2085 "devclass (class: %s " 2086 "devname: %s)\n", 2087 dl->driver->name, 2088 devname); 2089 (void)device_set_driver(child, NULL); 2090 continue; 2091 } 2092 } 2093 2094 /* Fetch any flags for the device before probing. */ 2095 resource_int_value(dl->driver->name, child->unit, 2096 "flags", &child->devflags); 2097 2098 result = DEVICE_PROBE(child); 2099 2100 /* Reset flags and devclass before the next probe. */ 2101 child->devflags = 0; 2102 if (!hasclass) 2103 (void)device_set_devclass(child, NULL); 2104 2105 /* 2106 * If the driver returns SUCCESS, there can be 2107 * no higher match for this device. 2108 */ 2109 if (result == 0) { 2110 best = dl; 2111 pri = 0; 2112 break; 2113 } 2114 2115 /* 2116 * Probes that return BUS_PROBE_NOWILDCARD or lower 2117 * only match on devices whose driver was explicitly 2118 * specified. 2119 */ 2120 if (result <= BUS_PROBE_NOWILDCARD && 2121 !(child->flags & DF_FIXEDCLASS)) { 2122 result = ENXIO; 2123 } 2124 2125 /* 2126 * The driver returned an error so it 2127 * certainly doesn't match. 2128 */ 2129 if (result > 0) { 2130 (void)device_set_driver(child, NULL); 2131 continue; 2132 } 2133 2134 /* 2135 * A priority lower than SUCCESS, remember the 2136 * best matching driver. Initialise the value 2137 * of pri for the first match. 2138 */ 2139 if (best == NULL || result > pri) { 2140 best = dl; 2141 pri = result; 2142 continue; 2143 } 2144 } 2145 /* 2146 * If we have an unambiguous match in this devclass, 2147 * don't look in the parent. 2148 */ 2149 if (best && pri == 0) 2150 break; 2151 } 2152 2153 /* 2154 * If we found a driver, change state and initialise the devclass. 2155 */ 2156 /* XXX What happens if we rebid and got no best? */ 2157 if (best) { 2158 /* 2159 * If this device was attached, and we were asked to 2160 * rescan, and it is a different driver, then we have 2161 * to detach the old driver and reattach this new one. 2162 * Note, we don't have to check for DF_REBID here 2163 * because if the state is > DS_ALIVE, we know it must 2164 * be. 2165 * 2166 * This assumes that all DF_REBID drivers can have 2167 * their probe routine called at any time and that 2168 * they are idempotent as well as completely benign in 2169 * normal operations. 2170 * 2171 * We also have to make sure that the detach 2172 * succeeded, otherwise we fail the operation (or 2173 * maybe it should just fail silently? I'm torn). 2174 */ 2175 if (child->state > DS_ALIVE && best->driver != child->driver) 2176 if ((result = device_detach(dev)) != 0) 2177 return (result); 2178 2179 /* Set the winning driver, devclass, and flags. */ 2180 if (!child->devclass) { 2181 result = device_set_devclass(child, best->driver->name); 2182 if (result != 0) 2183 return (result); 2184 } 2185 result = device_set_driver(child, best->driver); 2186 if (result != 0) 2187 return (result); 2188 resource_int_value(best->driver->name, child->unit, 2189 "flags", &child->devflags); 2190 2191 if (pri < 0) { 2192 /* 2193 * A bit bogus. Call the probe method again to make 2194 * sure that we have the right description. 2195 */ 2196 DEVICE_PROBE(child); 2197 #if 0 2198 child->flags |= DF_REBID; 2199 #endif 2200 } else 2201 child->flags &= ~DF_REBID; 2202 child->state = DS_ALIVE; 2203 2204 bus_data_generation_update(); 2205 return (0); 2206 } 2207 2208 return (ENXIO); 2209 } 2210 2211 /** 2212 * @brief Return the parent of a device 2213 */ 2214 device_t 2215 device_get_parent(device_t dev) 2216 { 2217 return (dev->parent); 2218 } 2219 2220 /** 2221 * @brief Get a list of children of a device 2222 * 2223 * An array containing a list of all the children of the given device 2224 * is allocated and returned in @p *devlistp. The number of devices 2225 * in the array is returned in @p *devcountp. The caller should free 2226 * the array using @c free(p, M_TEMP). 2227 * 2228 * @param dev the device to examine 2229 * @param devlistp points at location for array pointer return 2230 * value 2231 * @param devcountp points at location for array size return value 2232 * 2233 * @retval 0 success 2234 * @retval ENOMEM the array allocation failed 2235 */ 2236 int 2237 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2238 { 2239 int count; 2240 device_t child; 2241 device_t *list; 2242 2243 count = 0; 2244 TAILQ_FOREACH(child, &dev->children, link) { 2245 count++; 2246 } 2247 if (count == 0) { 2248 *devlistp = NULL; 2249 *devcountp = 0; 2250 return (0); 2251 } 2252 2253 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2254 if (!list) 2255 return (ENOMEM); 2256 2257 count = 0; 2258 TAILQ_FOREACH(child, &dev->children, link) { 2259 list[count] = child; 2260 count++; 2261 } 2262 2263 *devlistp = list; 2264 *devcountp = count; 2265 2266 return (0); 2267 } 2268 2269 /** 2270 * @brief Return the current driver for the device or @c NULL if there 2271 * is no driver currently attached 2272 */ 2273 driver_t * 2274 device_get_driver(device_t dev) 2275 { 2276 return (dev->driver); 2277 } 2278 2279 /** 2280 * @brief Return the current devclass for the device or @c NULL if 2281 * there is none. 2282 */ 2283 devclass_t 2284 device_get_devclass(device_t dev) 2285 { 2286 return (dev->devclass); 2287 } 2288 2289 /** 2290 * @brief Return the name of the device's devclass or @c NULL if there 2291 * is none. 2292 */ 2293 const char * 2294 device_get_name(device_t dev) 2295 { 2296 if (dev != NULL && dev->devclass) 2297 return (devclass_get_name(dev->devclass)); 2298 return (NULL); 2299 } 2300 2301 /** 2302 * @brief Return a string containing the device's devclass name 2303 * followed by an ascii representation of the device's unit number 2304 * (e.g. @c "foo2"). 2305 */ 2306 const char * 2307 device_get_nameunit(device_t dev) 2308 { 2309 return (dev->nameunit); 2310 } 2311 2312 /** 2313 * @brief Return the device's unit number. 2314 */ 2315 int 2316 device_get_unit(device_t dev) 2317 { 2318 return (dev->unit); 2319 } 2320 2321 /** 2322 * @brief Return the device's description string 2323 */ 2324 const char * 2325 device_get_desc(device_t dev) 2326 { 2327 return (dev->desc); 2328 } 2329 2330 /** 2331 * @brief Return the device's flags 2332 */ 2333 uint32_t 2334 device_get_flags(device_t dev) 2335 { 2336 return (dev->devflags); 2337 } 2338 2339 struct sysctl_ctx_list * 2340 device_get_sysctl_ctx(device_t dev) 2341 { 2342 return (&dev->sysctl_ctx); 2343 } 2344 2345 struct sysctl_oid * 2346 device_get_sysctl_tree(device_t dev) 2347 { 2348 return (dev->sysctl_tree); 2349 } 2350 2351 /** 2352 * @brief Print the name of the device followed by a colon and a space 2353 * 2354 * @returns the number of characters printed 2355 */ 2356 int 2357 device_print_prettyname(device_t dev) 2358 { 2359 const char *name = device_get_name(dev); 2360 2361 if (name == NULL) 2362 return (printf("unknown: ")); 2363 return (printf("%s%d: ", name, device_get_unit(dev))); 2364 } 2365 2366 /** 2367 * @brief Print the name of the device followed by a colon, a space 2368 * and the result of calling vprintf() with the value of @p fmt and 2369 * the following arguments. 2370 * 2371 * @returns the number of characters printed 2372 */ 2373 int 2374 device_printf(device_t dev, const char * fmt, ...) 2375 { 2376 va_list ap; 2377 int retval; 2378 2379 retval = device_print_prettyname(dev); 2380 va_start(ap, fmt); 2381 retval += vprintf(fmt, ap); 2382 va_end(ap); 2383 return (retval); 2384 } 2385 2386 /** 2387 * @internal 2388 */ 2389 static void 2390 device_set_desc_internal(device_t dev, const char* desc, int copy) 2391 { 2392 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2393 free(dev->desc, M_BUS); 2394 dev->flags &= ~DF_DESCMALLOCED; 2395 dev->desc = NULL; 2396 } 2397 2398 if (copy && desc) { 2399 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2400 if (dev->desc) { 2401 strcpy(dev->desc, desc); 2402 dev->flags |= DF_DESCMALLOCED; 2403 } 2404 } else { 2405 /* Avoid a -Wcast-qual warning */ 2406 dev->desc = (char *)(uintptr_t) desc; 2407 } 2408 2409 bus_data_generation_update(); 2410 } 2411 2412 /** 2413 * @brief Set the device's description 2414 * 2415 * The value of @c desc should be a string constant that will not 2416 * change (at least until the description is changed in a subsequent 2417 * call to device_set_desc() or device_set_desc_copy()). 2418 */ 2419 void 2420 device_set_desc(device_t dev, const char* desc) 2421 { 2422 device_set_desc_internal(dev, desc, FALSE); 2423 } 2424 2425 /** 2426 * @brief Set the device's description 2427 * 2428 * The string pointed to by @c desc is copied. Use this function if 2429 * the device description is generated, (e.g. with sprintf()). 2430 */ 2431 void 2432 device_set_desc_copy(device_t dev, const char* desc) 2433 { 2434 device_set_desc_internal(dev, desc, TRUE); 2435 } 2436 2437 /** 2438 * @brief Set the device's flags 2439 */ 2440 void 2441 device_set_flags(device_t dev, uint32_t flags) 2442 { 2443 dev->devflags = flags; 2444 } 2445 2446 /** 2447 * @brief Return the device's softc field 2448 * 2449 * The softc is allocated and zeroed when a driver is attached, based 2450 * on the size field of the driver. 2451 */ 2452 void * 2453 device_get_softc(device_t dev) 2454 { 2455 return (dev->softc); 2456 } 2457 2458 /** 2459 * @brief Set the device's softc field 2460 * 2461 * Most drivers do not need to use this since the softc is allocated 2462 * automatically when the driver is attached. 2463 */ 2464 void 2465 device_set_softc(device_t dev, void *softc) 2466 { 2467 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2468 free(dev->softc, M_BUS_SC); 2469 dev->softc = softc; 2470 if (dev->softc) 2471 dev->flags |= DF_EXTERNALSOFTC; 2472 else 2473 dev->flags &= ~DF_EXTERNALSOFTC; 2474 } 2475 2476 /** 2477 * @brief Free claimed softc 2478 * 2479 * Most drivers do not need to use this since the softc is freed 2480 * automatically when the driver is detached. 2481 */ 2482 void 2483 device_free_softc(void *softc) 2484 { 2485 free(softc, M_BUS_SC); 2486 } 2487 2488 /** 2489 * @brief Claim softc 2490 * 2491 * This function can be used to let the driver free the automatically 2492 * allocated softc using "device_free_softc()". This function is 2493 * useful when the driver is refcounting the softc and the softc 2494 * cannot be freed when the "device_detach" method is called. 2495 */ 2496 void 2497 device_claim_softc(device_t dev) 2498 { 2499 if (dev->softc) 2500 dev->flags |= DF_EXTERNALSOFTC; 2501 else 2502 dev->flags &= ~DF_EXTERNALSOFTC; 2503 } 2504 2505 /** 2506 * @brief Get the device's ivars field 2507 * 2508 * The ivars field is used by the parent device to store per-device 2509 * state (e.g. the physical location of the device or a list of 2510 * resources). 2511 */ 2512 void * 2513 device_get_ivars(device_t dev) 2514 { 2515 2516 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2517 return (dev->ivars); 2518 } 2519 2520 /** 2521 * @brief Set the device's ivars field 2522 */ 2523 void 2524 device_set_ivars(device_t dev, void * ivars) 2525 { 2526 2527 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2528 dev->ivars = ivars; 2529 } 2530 2531 /** 2532 * @brief Return the device's state 2533 */ 2534 device_state_t 2535 device_get_state(device_t dev) 2536 { 2537 return (dev->state); 2538 } 2539 2540 /** 2541 * @brief Set the DF_ENABLED flag for the device 2542 */ 2543 void 2544 device_enable(device_t dev) 2545 { 2546 dev->flags |= DF_ENABLED; 2547 } 2548 2549 /** 2550 * @brief Clear the DF_ENABLED flag for the device 2551 */ 2552 void 2553 device_disable(device_t dev) 2554 { 2555 dev->flags &= ~DF_ENABLED; 2556 } 2557 2558 /** 2559 * @brief Increment the busy counter for the device 2560 */ 2561 void 2562 device_busy(device_t dev) 2563 { 2564 if (dev->state < DS_ATTACHING) 2565 panic("device_busy: called for unattached device"); 2566 if (dev->busy == 0 && dev->parent) 2567 device_busy(dev->parent); 2568 dev->busy++; 2569 if (dev->state == DS_ATTACHED) 2570 dev->state = DS_BUSY; 2571 } 2572 2573 /** 2574 * @brief Decrement the busy counter for the device 2575 */ 2576 void 2577 device_unbusy(device_t dev) 2578 { 2579 if (dev->busy != 0 && dev->state != DS_BUSY && 2580 dev->state != DS_ATTACHING) 2581 panic("device_unbusy: called for non-busy device %s", 2582 device_get_nameunit(dev)); 2583 dev->busy--; 2584 if (dev->busy == 0) { 2585 if (dev->parent) 2586 device_unbusy(dev->parent); 2587 if (dev->state == DS_BUSY) 2588 dev->state = DS_ATTACHED; 2589 } 2590 } 2591 2592 /** 2593 * @brief Set the DF_QUIET flag for the device 2594 */ 2595 void 2596 device_quiet(device_t dev) 2597 { 2598 dev->flags |= DF_QUIET; 2599 } 2600 2601 /** 2602 * @brief Clear the DF_QUIET flag for the device 2603 */ 2604 void 2605 device_verbose(device_t dev) 2606 { 2607 dev->flags &= ~DF_QUIET; 2608 } 2609 2610 /** 2611 * @brief Return non-zero if the DF_QUIET flag is set on the device 2612 */ 2613 int 2614 device_is_quiet(device_t dev) 2615 { 2616 return ((dev->flags & DF_QUIET) != 0); 2617 } 2618 2619 /** 2620 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2621 */ 2622 int 2623 device_is_enabled(device_t dev) 2624 { 2625 return ((dev->flags & DF_ENABLED) != 0); 2626 } 2627 2628 /** 2629 * @brief Return non-zero if the device was successfully probed 2630 */ 2631 int 2632 device_is_alive(device_t dev) 2633 { 2634 return (dev->state >= DS_ALIVE); 2635 } 2636 2637 /** 2638 * @brief Return non-zero if the device currently has a driver 2639 * attached to it 2640 */ 2641 int 2642 device_is_attached(device_t dev) 2643 { 2644 return (dev->state >= DS_ATTACHED); 2645 } 2646 2647 /** 2648 * @brief Return non-zero if the device is currently suspended. 2649 */ 2650 int 2651 device_is_suspended(device_t dev) 2652 { 2653 return ((dev->flags & DF_SUSPENDED) != 0); 2654 } 2655 2656 /** 2657 * @brief Set the devclass of a device 2658 * @see devclass_add_device(). 2659 */ 2660 int 2661 device_set_devclass(device_t dev, const char *classname) 2662 { 2663 devclass_t dc; 2664 int error; 2665 2666 if (!classname) { 2667 if (dev->devclass) 2668 devclass_delete_device(dev->devclass, dev); 2669 return (0); 2670 } 2671 2672 if (dev->devclass) { 2673 printf("device_set_devclass: device class already set\n"); 2674 return (EINVAL); 2675 } 2676 2677 dc = devclass_find_internal(classname, NULL, TRUE); 2678 if (!dc) 2679 return (ENOMEM); 2680 2681 error = devclass_add_device(dc, dev); 2682 2683 bus_data_generation_update(); 2684 return (error); 2685 } 2686 2687 /** 2688 * @brief Set the devclass of a device and mark the devclass fixed. 2689 * @see device_set_devclass() 2690 */ 2691 int 2692 device_set_devclass_fixed(device_t dev, const char *classname) 2693 { 2694 int error; 2695 2696 if (classname == NULL) 2697 return (EINVAL); 2698 2699 error = device_set_devclass(dev, classname); 2700 if (error) 2701 return (error); 2702 dev->flags |= DF_FIXEDCLASS; 2703 return (0); 2704 } 2705 2706 /** 2707 * @brief Set the driver of a device 2708 * 2709 * @retval 0 success 2710 * @retval EBUSY the device already has a driver attached 2711 * @retval ENOMEM a memory allocation failure occurred 2712 */ 2713 int 2714 device_set_driver(device_t dev, driver_t *driver) 2715 { 2716 if (dev->state >= DS_ATTACHED) 2717 return (EBUSY); 2718 2719 if (dev->driver == driver) 2720 return (0); 2721 2722 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2723 free(dev->softc, M_BUS_SC); 2724 dev->softc = NULL; 2725 } 2726 device_set_desc(dev, NULL); 2727 kobj_delete((kobj_t) dev, NULL); 2728 dev->driver = driver; 2729 if (driver) { 2730 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2731 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2732 dev->softc = malloc(driver->size, M_BUS_SC, 2733 M_NOWAIT | M_ZERO); 2734 if (!dev->softc) { 2735 kobj_delete((kobj_t) dev, NULL); 2736 kobj_init((kobj_t) dev, &null_class); 2737 dev->driver = NULL; 2738 return (ENOMEM); 2739 } 2740 } 2741 } else { 2742 kobj_init((kobj_t) dev, &null_class); 2743 } 2744 2745 bus_data_generation_update(); 2746 return (0); 2747 } 2748 2749 /** 2750 * @brief Probe a device, and return this status. 2751 * 2752 * This function is the core of the device autoconfiguration 2753 * system. Its purpose is to select a suitable driver for a device and 2754 * then call that driver to initialise the hardware appropriately. The 2755 * driver is selected by calling the DEVICE_PROBE() method of a set of 2756 * candidate drivers and then choosing the driver which returned the 2757 * best value. This driver is then attached to the device using 2758 * device_attach(). 2759 * 2760 * The set of suitable drivers is taken from the list of drivers in 2761 * the parent device's devclass. If the device was originally created 2762 * with a specific class name (see device_add_child()), only drivers 2763 * with that name are probed, otherwise all drivers in the devclass 2764 * are probed. If no drivers return successful probe values in the 2765 * parent devclass, the search continues in the parent of that 2766 * devclass (see devclass_get_parent()) if any. 2767 * 2768 * @param dev the device to initialise 2769 * 2770 * @retval 0 success 2771 * @retval ENXIO no driver was found 2772 * @retval ENOMEM memory allocation failure 2773 * @retval non-zero some other unix error code 2774 * @retval -1 Device already attached 2775 */ 2776 int 2777 device_probe(device_t dev) 2778 { 2779 int error; 2780 2781 GIANT_REQUIRED; 2782 2783 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2784 return (-1); 2785 2786 if (!(dev->flags & DF_ENABLED)) { 2787 if (bootverbose && device_get_name(dev) != NULL) { 2788 device_print_prettyname(dev); 2789 printf("not probed (disabled)\n"); 2790 } 2791 return (-1); 2792 } 2793 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2794 if (bus_current_pass == BUS_PASS_DEFAULT && 2795 !(dev->flags & DF_DONENOMATCH)) { 2796 BUS_PROBE_NOMATCH(dev->parent, dev); 2797 devnomatch(dev); 2798 dev->flags |= DF_DONENOMATCH; 2799 } 2800 return (error); 2801 } 2802 return (0); 2803 } 2804 2805 /** 2806 * @brief Probe a device and attach a driver if possible 2807 * 2808 * calls device_probe() and attaches if that was successful. 2809 */ 2810 int 2811 device_probe_and_attach(device_t dev) 2812 { 2813 int error; 2814 2815 GIANT_REQUIRED; 2816 2817 error = device_probe(dev); 2818 if (error == -1) 2819 return (0); 2820 else if (error != 0) 2821 return (error); 2822 2823 CURVNET_SET_QUIET(vnet0); 2824 error = device_attach(dev); 2825 CURVNET_RESTORE(); 2826 return error; 2827 } 2828 2829 /** 2830 * @brief Attach a device driver to a device 2831 * 2832 * This function is a wrapper around the DEVICE_ATTACH() driver 2833 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2834 * device's sysctl tree, optionally prints a description of the device 2835 * and queues a notification event for user-based device management 2836 * services. 2837 * 2838 * Normally this function is only called internally from 2839 * device_probe_and_attach(). 2840 * 2841 * @param dev the device to initialise 2842 * 2843 * @retval 0 success 2844 * @retval ENXIO no driver was found 2845 * @retval ENOMEM memory allocation failure 2846 * @retval non-zero some other unix error code 2847 */ 2848 int 2849 device_attach(device_t dev) 2850 { 2851 uint64_t attachtime; 2852 int error; 2853 2854 if (resource_disabled(dev->driver->name, dev->unit)) { 2855 device_disable(dev); 2856 if (bootverbose) 2857 device_printf(dev, "disabled via hints entry\n"); 2858 return (ENXIO); 2859 } 2860 2861 device_sysctl_init(dev); 2862 if (!device_is_quiet(dev)) 2863 device_print_child(dev->parent, dev); 2864 attachtime = get_cyclecount(); 2865 dev->state = DS_ATTACHING; 2866 if ((error = DEVICE_ATTACH(dev)) != 0) { 2867 printf("device_attach: %s%d attach returned %d\n", 2868 dev->driver->name, dev->unit, error); 2869 if (!(dev->flags & DF_FIXEDCLASS)) 2870 devclass_delete_device(dev->devclass, dev); 2871 (void)device_set_driver(dev, NULL); 2872 device_sysctl_fini(dev); 2873 KASSERT(dev->busy == 0, ("attach failed but busy")); 2874 dev->state = DS_NOTPRESENT; 2875 return (error); 2876 } 2877 attachtime = get_cyclecount() - attachtime; 2878 /* 2879 * 4 bits per device is a reasonable value for desktop and server 2880 * hardware with good get_cyclecount() implementations, but may 2881 * need to be adjusted on other platforms. 2882 */ 2883 #ifdef RANDOM_DEBUG 2884 printf("random: %s(): feeding %d bit(s) of entropy from %s%d\n", 2885 __func__, 4, dev->driver->name, dev->unit); 2886 #endif 2887 random_harvest(&attachtime, sizeof(attachtime), 4, RANDOM_ATTACH); 2888 device_sysctl_update(dev); 2889 if (dev->busy) 2890 dev->state = DS_BUSY; 2891 else 2892 dev->state = DS_ATTACHED; 2893 dev->flags &= ~DF_DONENOMATCH; 2894 devadded(dev); 2895 return (0); 2896 } 2897 2898 /** 2899 * @brief Detach a driver from a device 2900 * 2901 * This function is a wrapper around the DEVICE_DETACH() driver 2902 * method. If the call to DEVICE_DETACH() succeeds, it calls 2903 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2904 * notification event for user-based device management services and 2905 * cleans up the device's sysctl tree. 2906 * 2907 * @param dev the device to un-initialise 2908 * 2909 * @retval 0 success 2910 * @retval ENXIO no driver was found 2911 * @retval ENOMEM memory allocation failure 2912 * @retval non-zero some other unix error code 2913 */ 2914 int 2915 device_detach(device_t dev) 2916 { 2917 int error; 2918 2919 GIANT_REQUIRED; 2920 2921 PDEBUG(("%s", DEVICENAME(dev))); 2922 if (dev->state == DS_BUSY) 2923 return (EBUSY); 2924 if (dev->state != DS_ATTACHED) 2925 return (0); 2926 2927 if ((error = DEVICE_DETACH(dev)) != 0) 2928 return (error); 2929 devremoved(dev); 2930 if (!device_is_quiet(dev)) 2931 device_printf(dev, "detached\n"); 2932 if (dev->parent) 2933 BUS_CHILD_DETACHED(dev->parent, dev); 2934 2935 if (!(dev->flags & DF_FIXEDCLASS)) 2936 devclass_delete_device(dev->devclass, dev); 2937 2938 dev->state = DS_NOTPRESENT; 2939 (void)device_set_driver(dev, NULL); 2940 device_sysctl_fini(dev); 2941 2942 return (0); 2943 } 2944 2945 /** 2946 * @brief Tells a driver to quiesce itself. 2947 * 2948 * This function is a wrapper around the DEVICE_QUIESCE() driver 2949 * method. If the call to DEVICE_QUIESCE() succeeds. 2950 * 2951 * @param dev the device to quiesce 2952 * 2953 * @retval 0 success 2954 * @retval ENXIO no driver was found 2955 * @retval ENOMEM memory allocation failure 2956 * @retval non-zero some other unix error code 2957 */ 2958 int 2959 device_quiesce(device_t dev) 2960 { 2961 2962 PDEBUG(("%s", DEVICENAME(dev))); 2963 if (dev->state == DS_BUSY) 2964 return (EBUSY); 2965 if (dev->state != DS_ATTACHED) 2966 return (0); 2967 2968 return (DEVICE_QUIESCE(dev)); 2969 } 2970 2971 /** 2972 * @brief Notify a device of system shutdown 2973 * 2974 * This function calls the DEVICE_SHUTDOWN() driver method if the 2975 * device currently has an attached driver. 2976 * 2977 * @returns the value returned by DEVICE_SHUTDOWN() 2978 */ 2979 int 2980 device_shutdown(device_t dev) 2981 { 2982 if (dev->state < DS_ATTACHED) 2983 return (0); 2984 return (DEVICE_SHUTDOWN(dev)); 2985 } 2986 2987 /** 2988 * @brief Set the unit number of a device 2989 * 2990 * This function can be used to override the unit number used for a 2991 * device (e.g. to wire a device to a pre-configured unit number). 2992 */ 2993 int 2994 device_set_unit(device_t dev, int unit) 2995 { 2996 devclass_t dc; 2997 int err; 2998 2999 dc = device_get_devclass(dev); 3000 if (unit < dc->maxunit && dc->devices[unit]) 3001 return (EBUSY); 3002 err = devclass_delete_device(dc, dev); 3003 if (err) 3004 return (err); 3005 dev->unit = unit; 3006 err = devclass_add_device(dc, dev); 3007 if (err) 3008 return (err); 3009 3010 bus_data_generation_update(); 3011 return (0); 3012 } 3013 3014 /*======================================*/ 3015 /* 3016 * Some useful method implementations to make life easier for bus drivers. 3017 */ 3018 3019 /** 3020 * @brief Initialise a resource list. 3021 * 3022 * @param rl the resource list to initialise 3023 */ 3024 void 3025 resource_list_init(struct resource_list *rl) 3026 { 3027 STAILQ_INIT(rl); 3028 } 3029 3030 /** 3031 * @brief Reclaim memory used by a resource list. 3032 * 3033 * This function frees the memory for all resource entries on the list 3034 * (if any). 3035 * 3036 * @param rl the resource list to free 3037 */ 3038 void 3039 resource_list_free(struct resource_list *rl) 3040 { 3041 struct resource_list_entry *rle; 3042 3043 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3044 if (rle->res) 3045 panic("resource_list_free: resource entry is busy"); 3046 STAILQ_REMOVE_HEAD(rl, link); 3047 free(rle, M_BUS); 3048 } 3049 } 3050 3051 /** 3052 * @brief Add a resource entry. 3053 * 3054 * This function adds a resource entry using the given @p type, @p 3055 * start, @p end and @p count values. A rid value is chosen by 3056 * searching sequentially for the first unused rid starting at zero. 3057 * 3058 * @param rl the resource list to edit 3059 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3060 * @param start the start address of the resource 3061 * @param end the end address of the resource 3062 * @param count XXX end-start+1 3063 */ 3064 int 3065 resource_list_add_next(struct resource_list *rl, int type, u_long start, 3066 u_long end, u_long count) 3067 { 3068 int rid; 3069 3070 rid = 0; 3071 while (resource_list_find(rl, type, rid) != NULL) 3072 rid++; 3073 resource_list_add(rl, type, rid, start, end, count); 3074 return (rid); 3075 } 3076 3077 /** 3078 * @brief Add or modify a resource entry. 3079 * 3080 * If an existing entry exists with the same type and rid, it will be 3081 * modified using the given values of @p start, @p end and @p 3082 * count. If no entry exists, a new one will be created using the 3083 * given values. The resource list entry that matches is then returned. 3084 * 3085 * @param rl the resource list to edit 3086 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3087 * @param rid the resource identifier 3088 * @param start the start address of the resource 3089 * @param end the end address of the resource 3090 * @param count XXX end-start+1 3091 */ 3092 struct resource_list_entry * 3093 resource_list_add(struct resource_list *rl, int type, int rid, 3094 u_long start, u_long end, u_long count) 3095 { 3096 struct resource_list_entry *rle; 3097 3098 rle = resource_list_find(rl, type, rid); 3099 if (!rle) { 3100 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3101 M_NOWAIT); 3102 if (!rle) 3103 panic("resource_list_add: can't record entry"); 3104 STAILQ_INSERT_TAIL(rl, rle, link); 3105 rle->type = type; 3106 rle->rid = rid; 3107 rle->res = NULL; 3108 rle->flags = 0; 3109 } 3110 3111 if (rle->res) 3112 panic("resource_list_add: resource entry is busy"); 3113 3114 rle->start = start; 3115 rle->end = end; 3116 rle->count = count; 3117 return (rle); 3118 } 3119 3120 /** 3121 * @brief Determine if a resource entry is busy. 3122 * 3123 * Returns true if a resource entry is busy meaning that it has an 3124 * associated resource that is not an unallocated "reserved" resource. 3125 * 3126 * @param rl the resource list to search 3127 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3128 * @param rid the resource identifier 3129 * 3130 * @returns Non-zero if the entry is busy, zero otherwise. 3131 */ 3132 int 3133 resource_list_busy(struct resource_list *rl, int type, int rid) 3134 { 3135 struct resource_list_entry *rle; 3136 3137 rle = resource_list_find(rl, type, rid); 3138 if (rle == NULL || rle->res == NULL) 3139 return (0); 3140 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3141 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3142 ("reserved resource is active")); 3143 return (0); 3144 } 3145 return (1); 3146 } 3147 3148 /** 3149 * @brief Determine if a resource entry is reserved. 3150 * 3151 * Returns true if a resource entry is reserved meaning that it has an 3152 * associated "reserved" resource. The resource can either be 3153 * allocated or unallocated. 3154 * 3155 * @param rl the resource list to search 3156 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3157 * @param rid the resource identifier 3158 * 3159 * @returns Non-zero if the entry is reserved, zero otherwise. 3160 */ 3161 int 3162 resource_list_reserved(struct resource_list *rl, int type, int rid) 3163 { 3164 struct resource_list_entry *rle; 3165 3166 rle = resource_list_find(rl, type, rid); 3167 if (rle != NULL && rle->flags & RLE_RESERVED) 3168 return (1); 3169 return (0); 3170 } 3171 3172 /** 3173 * @brief Find a resource entry by type and rid. 3174 * 3175 * @param rl the resource list to search 3176 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3177 * @param rid the resource identifier 3178 * 3179 * @returns the resource entry pointer or NULL if there is no such 3180 * entry. 3181 */ 3182 struct resource_list_entry * 3183 resource_list_find(struct resource_list *rl, int type, int rid) 3184 { 3185 struct resource_list_entry *rle; 3186 3187 STAILQ_FOREACH(rle, rl, link) { 3188 if (rle->type == type && rle->rid == rid) 3189 return (rle); 3190 } 3191 return (NULL); 3192 } 3193 3194 /** 3195 * @brief Delete a resource entry. 3196 * 3197 * @param rl the resource list to edit 3198 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3199 * @param rid the resource identifier 3200 */ 3201 void 3202 resource_list_delete(struct resource_list *rl, int type, int rid) 3203 { 3204 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3205 3206 if (rle) { 3207 if (rle->res != NULL) 3208 panic("resource_list_delete: resource has not been released"); 3209 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3210 free(rle, M_BUS); 3211 } 3212 } 3213 3214 /** 3215 * @brief Allocate a reserved resource 3216 * 3217 * This can be used by busses to force the allocation of resources 3218 * that are always active in the system even if they are not allocated 3219 * by a driver (e.g. PCI BARs). This function is usually called when 3220 * adding a new child to the bus. The resource is allocated from the 3221 * parent bus when it is reserved. The resource list entry is marked 3222 * with RLE_RESERVED to note that it is a reserved resource. 3223 * 3224 * Subsequent attempts to allocate the resource with 3225 * resource_list_alloc() will succeed the first time and will set 3226 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3227 * resource that has been allocated is released with 3228 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3229 * the actual resource remains allocated. The resource can be released to 3230 * the parent bus by calling resource_list_unreserve(). 3231 * 3232 * @param rl the resource list to allocate from 3233 * @param bus the parent device of @p child 3234 * @param child the device for which the resource is being reserved 3235 * @param type the type of resource to allocate 3236 * @param rid a pointer to the resource identifier 3237 * @param start hint at the start of the resource range - pass 3238 * @c 0UL for any start address 3239 * @param end hint at the end of the resource range - pass 3240 * @c ~0UL for any end address 3241 * @param count hint at the size of range required - pass @c 1 3242 * for any size 3243 * @param flags any extra flags to control the resource 3244 * allocation - see @c RF_XXX flags in 3245 * <sys/rman.h> for details 3246 * 3247 * @returns the resource which was allocated or @c NULL if no 3248 * resource could be allocated 3249 */ 3250 struct resource * 3251 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3252 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3253 { 3254 struct resource_list_entry *rle = NULL; 3255 int passthrough = (device_get_parent(child) != bus); 3256 struct resource *r; 3257 3258 if (passthrough) 3259 panic( 3260 "resource_list_reserve() should only be called for direct children"); 3261 if (flags & RF_ACTIVE) 3262 panic( 3263 "resource_list_reserve() should only reserve inactive resources"); 3264 3265 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3266 flags); 3267 if (r != NULL) { 3268 rle = resource_list_find(rl, type, *rid); 3269 rle->flags |= RLE_RESERVED; 3270 } 3271 return (r); 3272 } 3273 3274 /** 3275 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3276 * 3277 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3278 * and passing the allocation up to the parent of @p bus. This assumes 3279 * that the first entry of @c device_get_ivars(child) is a struct 3280 * resource_list. This also handles 'passthrough' allocations where a 3281 * child is a remote descendant of bus by passing the allocation up to 3282 * the parent of bus. 3283 * 3284 * Typically, a bus driver would store a list of child resources 3285 * somewhere in the child device's ivars (see device_get_ivars()) and 3286 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3287 * then call resource_list_alloc() to perform the allocation. 3288 * 3289 * @param rl the resource list to allocate from 3290 * @param bus the parent device of @p child 3291 * @param child the device which is requesting an allocation 3292 * @param type the type of resource to allocate 3293 * @param rid a pointer to the resource identifier 3294 * @param start hint at the start of the resource range - pass 3295 * @c 0UL for any start address 3296 * @param end hint at the end of the resource range - pass 3297 * @c ~0UL for any end address 3298 * @param count hint at the size of range required - pass @c 1 3299 * for any size 3300 * @param flags any extra flags to control the resource 3301 * allocation - see @c RF_XXX flags in 3302 * <sys/rman.h> for details 3303 * 3304 * @returns the resource which was allocated or @c NULL if no 3305 * resource could be allocated 3306 */ 3307 struct resource * 3308 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3309 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3310 { 3311 struct resource_list_entry *rle = NULL; 3312 int passthrough = (device_get_parent(child) != bus); 3313 int isdefault = (start == 0UL && end == ~0UL); 3314 3315 if (passthrough) { 3316 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3317 type, rid, start, end, count, flags)); 3318 } 3319 3320 rle = resource_list_find(rl, type, *rid); 3321 3322 if (!rle) 3323 return (NULL); /* no resource of that type/rid */ 3324 3325 if (rle->res) { 3326 if (rle->flags & RLE_RESERVED) { 3327 if (rle->flags & RLE_ALLOCATED) 3328 return (NULL); 3329 if ((flags & RF_ACTIVE) && 3330 bus_activate_resource(child, type, *rid, 3331 rle->res) != 0) 3332 return (NULL); 3333 rle->flags |= RLE_ALLOCATED; 3334 return (rle->res); 3335 } 3336 device_printf(bus, 3337 "resource entry %#x type %d for child %s is busy\n", *rid, 3338 type, device_get_nameunit(child)); 3339 return (NULL); 3340 } 3341 3342 if (isdefault) { 3343 start = rle->start; 3344 count = ulmax(count, rle->count); 3345 end = ulmax(rle->end, start + count - 1); 3346 } 3347 3348 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3349 type, rid, start, end, count, flags); 3350 3351 /* 3352 * Record the new range. 3353 */ 3354 if (rle->res) { 3355 rle->start = rman_get_start(rle->res); 3356 rle->end = rman_get_end(rle->res); 3357 rle->count = count; 3358 } 3359 3360 return (rle->res); 3361 } 3362 3363 /** 3364 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3365 * 3366 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3367 * used with resource_list_alloc(). 3368 * 3369 * @param rl the resource list which was allocated from 3370 * @param bus the parent device of @p child 3371 * @param child the device which is requesting a release 3372 * @param type the type of resource to release 3373 * @param rid the resource identifier 3374 * @param res the resource to release 3375 * 3376 * @retval 0 success 3377 * @retval non-zero a standard unix error code indicating what 3378 * error condition prevented the operation 3379 */ 3380 int 3381 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3382 int type, int rid, struct resource *res) 3383 { 3384 struct resource_list_entry *rle = NULL; 3385 int passthrough = (device_get_parent(child) != bus); 3386 int error; 3387 3388 if (passthrough) { 3389 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3390 type, rid, res)); 3391 } 3392 3393 rle = resource_list_find(rl, type, rid); 3394 3395 if (!rle) 3396 panic("resource_list_release: can't find resource"); 3397 if (!rle->res) 3398 panic("resource_list_release: resource entry is not busy"); 3399 if (rle->flags & RLE_RESERVED) { 3400 if (rle->flags & RLE_ALLOCATED) { 3401 if (rman_get_flags(res) & RF_ACTIVE) { 3402 error = bus_deactivate_resource(child, type, 3403 rid, res); 3404 if (error) 3405 return (error); 3406 } 3407 rle->flags &= ~RLE_ALLOCATED; 3408 return (0); 3409 } 3410 return (EINVAL); 3411 } 3412 3413 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3414 type, rid, res); 3415 if (error) 3416 return (error); 3417 3418 rle->res = NULL; 3419 return (0); 3420 } 3421 3422 /** 3423 * @brief Release all active resources of a given type 3424 * 3425 * Release all active resources of a specified type. This is intended 3426 * to be used to cleanup resources leaked by a driver after detach or 3427 * a failed attach. 3428 * 3429 * @param rl the resource list which was allocated from 3430 * @param bus the parent device of @p child 3431 * @param child the device whose active resources are being released 3432 * @param type the type of resources to release 3433 * 3434 * @retval 0 success 3435 * @retval EBUSY at least one resource was active 3436 */ 3437 int 3438 resource_list_release_active(struct resource_list *rl, device_t bus, 3439 device_t child, int type) 3440 { 3441 struct resource_list_entry *rle; 3442 int error, retval; 3443 3444 retval = 0; 3445 STAILQ_FOREACH(rle, rl, link) { 3446 if (rle->type != type) 3447 continue; 3448 if (rle->res == NULL) 3449 continue; 3450 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3451 RLE_RESERVED) 3452 continue; 3453 retval = EBUSY; 3454 error = resource_list_release(rl, bus, child, type, 3455 rman_get_rid(rle->res), rle->res); 3456 if (error != 0) 3457 device_printf(bus, 3458 "Failed to release active resource: %d\n", error); 3459 } 3460 return (retval); 3461 } 3462 3463 3464 /** 3465 * @brief Fully release a reserved resource 3466 * 3467 * Fully releases a resource reserved via resource_list_reserve(). 3468 * 3469 * @param rl the resource list which was allocated from 3470 * @param bus the parent device of @p child 3471 * @param child the device whose reserved resource is being released 3472 * @param type the type of resource to release 3473 * @param rid the resource identifier 3474 * @param res the resource to release 3475 * 3476 * @retval 0 success 3477 * @retval non-zero a standard unix error code indicating what 3478 * error condition prevented the operation 3479 */ 3480 int 3481 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3482 int type, int rid) 3483 { 3484 struct resource_list_entry *rle = NULL; 3485 int passthrough = (device_get_parent(child) != bus); 3486 3487 if (passthrough) 3488 panic( 3489 "resource_list_unreserve() should only be called for direct children"); 3490 3491 rle = resource_list_find(rl, type, rid); 3492 3493 if (!rle) 3494 panic("resource_list_unreserve: can't find resource"); 3495 if (!(rle->flags & RLE_RESERVED)) 3496 return (EINVAL); 3497 if (rle->flags & RLE_ALLOCATED) 3498 return (EBUSY); 3499 rle->flags &= ~RLE_RESERVED; 3500 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3501 } 3502 3503 /** 3504 * @brief Print a description of resources in a resource list 3505 * 3506 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3507 * The name is printed if at least one resource of the given type is available. 3508 * The format is used to print resource start and end. 3509 * 3510 * @param rl the resource list to print 3511 * @param name the name of @p type, e.g. @c "memory" 3512 * @param type type type of resource entry to print 3513 * @param format printf(9) format string to print resource 3514 * start and end values 3515 * 3516 * @returns the number of characters printed 3517 */ 3518 int 3519 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3520 const char *format) 3521 { 3522 struct resource_list_entry *rle; 3523 int printed, retval; 3524 3525 printed = 0; 3526 retval = 0; 3527 /* Yes, this is kinda cheating */ 3528 STAILQ_FOREACH(rle, rl, link) { 3529 if (rle->type == type) { 3530 if (printed == 0) 3531 retval += printf(" %s ", name); 3532 else 3533 retval += printf(","); 3534 printed++; 3535 retval += printf(format, rle->start); 3536 if (rle->count > 1) { 3537 retval += printf("-"); 3538 retval += printf(format, rle->start + 3539 rle->count - 1); 3540 } 3541 } 3542 } 3543 return (retval); 3544 } 3545 3546 /** 3547 * @brief Releases all the resources in a list. 3548 * 3549 * @param rl The resource list to purge. 3550 * 3551 * @returns nothing 3552 */ 3553 void 3554 resource_list_purge(struct resource_list *rl) 3555 { 3556 struct resource_list_entry *rle; 3557 3558 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3559 if (rle->res) 3560 bus_release_resource(rman_get_device(rle->res), 3561 rle->type, rle->rid, rle->res); 3562 STAILQ_REMOVE_HEAD(rl, link); 3563 free(rle, M_BUS); 3564 } 3565 } 3566 3567 device_t 3568 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3569 { 3570 3571 return (device_add_child_ordered(dev, order, name, unit)); 3572 } 3573 3574 /** 3575 * @brief Helper function for implementing DEVICE_PROBE() 3576 * 3577 * This function can be used to help implement the DEVICE_PROBE() for 3578 * a bus (i.e. a device which has other devices attached to it). It 3579 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3580 * devclass. 3581 */ 3582 int 3583 bus_generic_probe(device_t dev) 3584 { 3585 devclass_t dc = dev->devclass; 3586 driverlink_t dl; 3587 3588 TAILQ_FOREACH(dl, &dc->drivers, link) { 3589 /* 3590 * If this driver's pass is too high, then ignore it. 3591 * For most drivers in the default pass, this will 3592 * never be true. For early-pass drivers they will 3593 * only call the identify routines of eligible drivers 3594 * when this routine is called. Drivers for later 3595 * passes should have their identify routines called 3596 * on early-pass busses during BUS_NEW_PASS(). 3597 */ 3598 if (dl->pass > bus_current_pass) 3599 continue; 3600 DEVICE_IDENTIFY(dl->driver, dev); 3601 } 3602 3603 return (0); 3604 } 3605 3606 /** 3607 * @brief Helper function for implementing DEVICE_ATTACH() 3608 * 3609 * This function can be used to help implement the DEVICE_ATTACH() for 3610 * a bus. It calls device_probe_and_attach() for each of the device's 3611 * children. 3612 */ 3613 int 3614 bus_generic_attach(device_t dev) 3615 { 3616 device_t child; 3617 3618 TAILQ_FOREACH(child, &dev->children, link) { 3619 device_probe_and_attach(child); 3620 } 3621 3622 return (0); 3623 } 3624 3625 /** 3626 * @brief Helper function for implementing DEVICE_DETACH() 3627 * 3628 * This function can be used to help implement the DEVICE_DETACH() for 3629 * a bus. It calls device_detach() for each of the device's 3630 * children. 3631 */ 3632 int 3633 bus_generic_detach(device_t dev) 3634 { 3635 device_t child; 3636 int error; 3637 3638 if (dev->state != DS_ATTACHED) 3639 return (EBUSY); 3640 3641 TAILQ_FOREACH(child, &dev->children, link) { 3642 if ((error = device_detach(child)) != 0) 3643 return (error); 3644 } 3645 3646 return (0); 3647 } 3648 3649 /** 3650 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3651 * 3652 * This function can be used to help implement the DEVICE_SHUTDOWN() 3653 * for a bus. It calls device_shutdown() for each of the device's 3654 * children. 3655 */ 3656 int 3657 bus_generic_shutdown(device_t dev) 3658 { 3659 device_t child; 3660 3661 TAILQ_FOREACH(child, &dev->children, link) { 3662 device_shutdown(child); 3663 } 3664 3665 return (0); 3666 } 3667 3668 /** 3669 * @brief Default function for suspending a child device. 3670 * 3671 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3672 */ 3673 int 3674 bus_generic_suspend_child(device_t dev, device_t child) 3675 { 3676 int error; 3677 3678 error = DEVICE_SUSPEND(child); 3679 3680 if (error == 0) 3681 child->flags |= DF_SUSPENDED; 3682 3683 return (error); 3684 } 3685 3686 /** 3687 * @brief Default function for resuming a child device. 3688 * 3689 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3690 */ 3691 int 3692 bus_generic_resume_child(device_t dev, device_t child) 3693 { 3694 3695 DEVICE_RESUME(child); 3696 child->flags &= ~DF_SUSPENDED; 3697 3698 return (0); 3699 } 3700 3701 /** 3702 * @brief Helper function for implementing DEVICE_SUSPEND() 3703 * 3704 * This function can be used to help implement the DEVICE_SUSPEND() 3705 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3706 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3707 * operation is aborted and any devices which were suspended are 3708 * resumed immediately by calling their DEVICE_RESUME() methods. 3709 */ 3710 int 3711 bus_generic_suspend(device_t dev) 3712 { 3713 int error; 3714 device_t child, child2; 3715 3716 TAILQ_FOREACH(child, &dev->children, link) { 3717 error = BUS_SUSPEND_CHILD(dev, child); 3718 if (error) { 3719 for (child2 = TAILQ_FIRST(&dev->children); 3720 child2 && child2 != child; 3721 child2 = TAILQ_NEXT(child2, link)) 3722 BUS_RESUME_CHILD(dev, child2); 3723 return (error); 3724 } 3725 } 3726 return (0); 3727 } 3728 3729 /** 3730 * @brief Helper function for implementing DEVICE_RESUME() 3731 * 3732 * This function can be used to help implement the DEVICE_RESUME() for 3733 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3734 */ 3735 int 3736 bus_generic_resume(device_t dev) 3737 { 3738 device_t child; 3739 3740 TAILQ_FOREACH(child, &dev->children, link) { 3741 BUS_RESUME_CHILD(dev, child); 3742 /* if resume fails, there's nothing we can usefully do... */ 3743 } 3744 return (0); 3745 } 3746 3747 /** 3748 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3749 * 3750 * This function prints the first part of the ascii representation of 3751 * @p child, including its name, unit and description (if any - see 3752 * device_set_desc()). 3753 * 3754 * @returns the number of characters printed 3755 */ 3756 int 3757 bus_print_child_header(device_t dev, device_t child) 3758 { 3759 int retval = 0; 3760 3761 if (device_get_desc(child)) { 3762 retval += device_printf(child, "<%s>", device_get_desc(child)); 3763 } else { 3764 retval += printf("%s", device_get_nameunit(child)); 3765 } 3766 3767 return (retval); 3768 } 3769 3770 /** 3771 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3772 * 3773 * This function prints the last part of the ascii representation of 3774 * @p child, which consists of the string @c " on " followed by the 3775 * name and unit of the @p dev. 3776 * 3777 * @returns the number of characters printed 3778 */ 3779 int 3780 bus_print_child_footer(device_t dev, device_t child) 3781 { 3782 return (printf(" on %s\n", device_get_nameunit(dev))); 3783 } 3784 3785 /** 3786 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3787 * 3788 * This function prints out the VM domain for the given device. 3789 * 3790 * @returns the number of characters printed 3791 */ 3792 int 3793 bus_print_child_domain(device_t dev, device_t child) 3794 { 3795 int domain; 3796 3797 /* No domain? Don't print anything */ 3798 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3799 return (0); 3800 3801 return (printf(" numa-domain %d", domain)); 3802 } 3803 3804 /** 3805 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3806 * 3807 * This function simply calls bus_print_child_header() followed by 3808 * bus_print_child_footer(). 3809 * 3810 * @returns the number of characters printed 3811 */ 3812 int 3813 bus_generic_print_child(device_t dev, device_t child) 3814 { 3815 int retval = 0; 3816 3817 retval += bus_print_child_header(dev, child); 3818 retval += bus_print_child_domain(dev, child); 3819 retval += bus_print_child_footer(dev, child); 3820 3821 return (retval); 3822 } 3823 3824 /** 3825 * @brief Stub function for implementing BUS_READ_IVAR(). 3826 * 3827 * @returns ENOENT 3828 */ 3829 int 3830 bus_generic_read_ivar(device_t dev, device_t child, int index, 3831 uintptr_t * result) 3832 { 3833 return (ENOENT); 3834 } 3835 3836 /** 3837 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3838 * 3839 * @returns ENOENT 3840 */ 3841 int 3842 bus_generic_write_ivar(device_t dev, device_t child, int index, 3843 uintptr_t value) 3844 { 3845 return (ENOENT); 3846 } 3847 3848 /** 3849 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3850 * 3851 * @returns NULL 3852 */ 3853 struct resource_list * 3854 bus_generic_get_resource_list(device_t dev, device_t child) 3855 { 3856 return (NULL); 3857 } 3858 3859 /** 3860 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3861 * 3862 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3863 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3864 * and then calls device_probe_and_attach() for each unattached child. 3865 */ 3866 void 3867 bus_generic_driver_added(device_t dev, driver_t *driver) 3868 { 3869 device_t child; 3870 3871 DEVICE_IDENTIFY(driver, dev); 3872 TAILQ_FOREACH(child, &dev->children, link) { 3873 if (child->state == DS_NOTPRESENT || 3874 (child->flags & DF_REBID)) 3875 device_probe_and_attach(child); 3876 } 3877 } 3878 3879 /** 3880 * @brief Helper function for implementing BUS_NEW_PASS(). 3881 * 3882 * This implementing of BUS_NEW_PASS() first calls the identify 3883 * routines for any drivers that probe at the current pass. Then it 3884 * walks the list of devices for this bus. If a device is already 3885 * attached, then it calls BUS_NEW_PASS() on that device. If the 3886 * device is not already attached, it attempts to attach a driver to 3887 * it. 3888 */ 3889 void 3890 bus_generic_new_pass(device_t dev) 3891 { 3892 driverlink_t dl; 3893 devclass_t dc; 3894 device_t child; 3895 3896 dc = dev->devclass; 3897 TAILQ_FOREACH(dl, &dc->drivers, link) { 3898 if (dl->pass == bus_current_pass) 3899 DEVICE_IDENTIFY(dl->driver, dev); 3900 } 3901 TAILQ_FOREACH(child, &dev->children, link) { 3902 if (child->state >= DS_ATTACHED) 3903 BUS_NEW_PASS(child); 3904 else if (child->state == DS_NOTPRESENT) 3905 device_probe_and_attach(child); 3906 } 3907 } 3908 3909 /** 3910 * @brief Helper function for implementing BUS_SETUP_INTR(). 3911 * 3912 * This simple implementation of BUS_SETUP_INTR() simply calls the 3913 * BUS_SETUP_INTR() method of the parent of @p dev. 3914 */ 3915 int 3916 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3917 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3918 void **cookiep) 3919 { 3920 /* Propagate up the bus hierarchy until someone handles it. */ 3921 if (dev->parent) 3922 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3923 filter, intr, arg, cookiep)); 3924 return (EINVAL); 3925 } 3926 3927 /** 3928 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3929 * 3930 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3931 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3932 */ 3933 int 3934 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3935 void *cookie) 3936 { 3937 /* Propagate up the bus hierarchy until someone handles it. */ 3938 if (dev->parent) 3939 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3940 return (EINVAL); 3941 } 3942 3943 /** 3944 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3945 * 3946 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3947 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3948 */ 3949 int 3950 bus_generic_adjust_resource(device_t dev, device_t child, int type, 3951 struct resource *r, u_long start, u_long end) 3952 { 3953 /* Propagate up the bus hierarchy until someone handles it. */ 3954 if (dev->parent) 3955 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 3956 end)); 3957 return (EINVAL); 3958 } 3959 3960 /** 3961 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3962 * 3963 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3964 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3965 */ 3966 struct resource * 3967 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3968 u_long start, u_long end, u_long count, u_int flags) 3969 { 3970 /* Propagate up the bus hierarchy until someone handles it. */ 3971 if (dev->parent) 3972 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3973 start, end, count, flags)); 3974 return (NULL); 3975 } 3976 3977 /** 3978 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3979 * 3980 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3981 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3982 */ 3983 int 3984 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3985 struct resource *r) 3986 { 3987 /* Propagate up the bus hierarchy until someone handles it. */ 3988 if (dev->parent) 3989 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3990 r)); 3991 return (EINVAL); 3992 } 3993 3994 /** 3995 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3996 * 3997 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3998 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3999 */ 4000 int 4001 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 4002 struct resource *r) 4003 { 4004 /* Propagate up the bus hierarchy until someone handles it. */ 4005 if (dev->parent) 4006 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 4007 r)); 4008 return (EINVAL); 4009 } 4010 4011 /** 4012 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4013 * 4014 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4015 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4016 */ 4017 int 4018 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 4019 int rid, struct resource *r) 4020 { 4021 /* Propagate up the bus hierarchy until someone handles it. */ 4022 if (dev->parent) 4023 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4024 r)); 4025 return (EINVAL); 4026 } 4027 4028 /** 4029 * @brief Helper function for implementing BUS_BIND_INTR(). 4030 * 4031 * This simple implementation of BUS_BIND_INTR() simply calls the 4032 * BUS_BIND_INTR() method of the parent of @p dev. 4033 */ 4034 int 4035 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4036 int cpu) 4037 { 4038 4039 /* Propagate up the bus hierarchy until someone handles it. */ 4040 if (dev->parent) 4041 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4042 return (EINVAL); 4043 } 4044 4045 /** 4046 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4047 * 4048 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4049 * BUS_CONFIG_INTR() method of the parent of @p dev. 4050 */ 4051 int 4052 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4053 enum intr_polarity pol) 4054 { 4055 4056 /* Propagate up the bus hierarchy until someone handles it. */ 4057 if (dev->parent) 4058 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4059 return (EINVAL); 4060 } 4061 4062 /** 4063 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4064 * 4065 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4066 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4067 */ 4068 int 4069 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4070 void *cookie, const char *descr) 4071 { 4072 4073 /* Propagate up the bus hierarchy until someone handles it. */ 4074 if (dev->parent) 4075 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4076 descr)); 4077 return (EINVAL); 4078 } 4079 4080 /** 4081 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4082 * 4083 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4084 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4085 */ 4086 bus_dma_tag_t 4087 bus_generic_get_dma_tag(device_t dev, device_t child) 4088 { 4089 4090 /* Propagate up the bus hierarchy until someone handles it. */ 4091 if (dev->parent != NULL) 4092 return (BUS_GET_DMA_TAG(dev->parent, child)); 4093 return (NULL); 4094 } 4095 4096 /** 4097 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4098 * 4099 * This implementation of BUS_GET_RESOURCE() uses the 4100 * resource_list_find() function to do most of the work. It calls 4101 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4102 * search. 4103 */ 4104 int 4105 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4106 u_long *startp, u_long *countp) 4107 { 4108 struct resource_list * rl = NULL; 4109 struct resource_list_entry * rle = NULL; 4110 4111 rl = BUS_GET_RESOURCE_LIST(dev, child); 4112 if (!rl) 4113 return (EINVAL); 4114 4115 rle = resource_list_find(rl, type, rid); 4116 if (!rle) 4117 return (ENOENT); 4118 4119 if (startp) 4120 *startp = rle->start; 4121 if (countp) 4122 *countp = rle->count; 4123 4124 return (0); 4125 } 4126 4127 /** 4128 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4129 * 4130 * This implementation of BUS_SET_RESOURCE() uses the 4131 * resource_list_add() function to do most of the work. It calls 4132 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4133 * edit. 4134 */ 4135 int 4136 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4137 u_long start, u_long count) 4138 { 4139 struct resource_list * rl = NULL; 4140 4141 rl = BUS_GET_RESOURCE_LIST(dev, child); 4142 if (!rl) 4143 return (EINVAL); 4144 4145 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4146 4147 return (0); 4148 } 4149 4150 /** 4151 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4152 * 4153 * This implementation of BUS_DELETE_RESOURCE() uses the 4154 * resource_list_delete() function to do most of the work. It calls 4155 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4156 * edit. 4157 */ 4158 void 4159 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4160 { 4161 struct resource_list * rl = NULL; 4162 4163 rl = BUS_GET_RESOURCE_LIST(dev, child); 4164 if (!rl) 4165 return; 4166 4167 resource_list_delete(rl, type, rid); 4168 4169 return; 4170 } 4171 4172 /** 4173 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4174 * 4175 * This implementation of BUS_RELEASE_RESOURCE() uses the 4176 * resource_list_release() function to do most of the work. It calls 4177 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4178 */ 4179 int 4180 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4181 int rid, struct resource *r) 4182 { 4183 struct resource_list * rl = NULL; 4184 4185 if (device_get_parent(child) != dev) 4186 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4187 type, rid, r)); 4188 4189 rl = BUS_GET_RESOURCE_LIST(dev, child); 4190 if (!rl) 4191 return (EINVAL); 4192 4193 return (resource_list_release(rl, dev, child, type, rid, r)); 4194 } 4195 4196 /** 4197 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4198 * 4199 * This implementation of BUS_ALLOC_RESOURCE() uses the 4200 * resource_list_alloc() function to do most of the work. It calls 4201 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4202 */ 4203 struct resource * 4204 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4205 int *rid, u_long start, u_long end, u_long count, u_int flags) 4206 { 4207 struct resource_list * rl = NULL; 4208 4209 if (device_get_parent(child) != dev) 4210 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4211 type, rid, start, end, count, flags)); 4212 4213 rl = BUS_GET_RESOURCE_LIST(dev, child); 4214 if (!rl) 4215 return (NULL); 4216 4217 return (resource_list_alloc(rl, dev, child, type, rid, 4218 start, end, count, flags)); 4219 } 4220 4221 /** 4222 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4223 * 4224 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4225 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4226 */ 4227 int 4228 bus_generic_child_present(device_t dev, device_t child) 4229 { 4230 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4231 } 4232 4233 int 4234 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4235 { 4236 4237 if (dev->parent) 4238 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4239 4240 return (ENOENT); 4241 } 4242 4243 /* 4244 * Some convenience functions to make it easier for drivers to use the 4245 * resource-management functions. All these really do is hide the 4246 * indirection through the parent's method table, making for slightly 4247 * less-wordy code. In the future, it might make sense for this code 4248 * to maintain some sort of a list of resources allocated by each device. 4249 */ 4250 4251 int 4252 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4253 struct resource **res) 4254 { 4255 int i; 4256 4257 for (i = 0; rs[i].type != -1; i++) 4258 res[i] = NULL; 4259 for (i = 0; rs[i].type != -1; i++) { 4260 res[i] = bus_alloc_resource_any(dev, 4261 rs[i].type, &rs[i].rid, rs[i].flags); 4262 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4263 bus_release_resources(dev, rs, res); 4264 return (ENXIO); 4265 } 4266 } 4267 return (0); 4268 } 4269 4270 void 4271 bus_release_resources(device_t dev, const struct resource_spec *rs, 4272 struct resource **res) 4273 { 4274 int i; 4275 4276 for (i = 0; rs[i].type != -1; i++) 4277 if (res[i] != NULL) { 4278 bus_release_resource( 4279 dev, rs[i].type, rs[i].rid, res[i]); 4280 res[i] = NULL; 4281 } 4282 } 4283 4284 /** 4285 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4286 * 4287 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4288 * parent of @p dev. 4289 */ 4290 struct resource * 4291 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 4292 u_long count, u_int flags) 4293 { 4294 if (dev->parent == NULL) 4295 return (NULL); 4296 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4297 count, flags)); 4298 } 4299 4300 /** 4301 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4302 * 4303 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4304 * parent of @p dev. 4305 */ 4306 int 4307 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start, 4308 u_long end) 4309 { 4310 if (dev->parent == NULL) 4311 return (EINVAL); 4312 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4313 } 4314 4315 /** 4316 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4317 * 4318 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4319 * parent of @p dev. 4320 */ 4321 int 4322 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4323 { 4324 if (dev->parent == NULL) 4325 return (EINVAL); 4326 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4327 } 4328 4329 /** 4330 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4331 * 4332 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4333 * parent of @p dev. 4334 */ 4335 int 4336 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4337 { 4338 if (dev->parent == NULL) 4339 return (EINVAL); 4340 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4341 } 4342 4343 /** 4344 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4345 * 4346 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4347 * parent of @p dev. 4348 */ 4349 int 4350 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4351 { 4352 if (dev->parent == NULL) 4353 return (EINVAL); 4354 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 4355 } 4356 4357 /** 4358 * @brief Wrapper function for BUS_SETUP_INTR(). 4359 * 4360 * This function simply calls the BUS_SETUP_INTR() method of the 4361 * parent of @p dev. 4362 */ 4363 int 4364 bus_setup_intr(device_t dev, struct resource *r, int flags, 4365 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4366 { 4367 int error; 4368 4369 if (dev->parent == NULL) 4370 return (EINVAL); 4371 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4372 arg, cookiep); 4373 if (error != 0) 4374 return (error); 4375 if (handler != NULL && !(flags & INTR_MPSAFE)) 4376 device_printf(dev, "[GIANT-LOCKED]\n"); 4377 return (0); 4378 } 4379 4380 /** 4381 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4382 * 4383 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4384 * parent of @p dev. 4385 */ 4386 int 4387 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4388 { 4389 if (dev->parent == NULL) 4390 return (EINVAL); 4391 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4392 } 4393 4394 /** 4395 * @brief Wrapper function for BUS_BIND_INTR(). 4396 * 4397 * This function simply calls the BUS_BIND_INTR() method of the 4398 * parent of @p dev. 4399 */ 4400 int 4401 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4402 { 4403 if (dev->parent == NULL) 4404 return (EINVAL); 4405 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4406 } 4407 4408 /** 4409 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4410 * 4411 * This function first formats the requested description into a 4412 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4413 * the parent of @p dev. 4414 */ 4415 int 4416 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4417 const char *fmt, ...) 4418 { 4419 va_list ap; 4420 char descr[MAXCOMLEN + 1]; 4421 4422 if (dev->parent == NULL) 4423 return (EINVAL); 4424 va_start(ap, fmt); 4425 vsnprintf(descr, sizeof(descr), fmt, ap); 4426 va_end(ap); 4427 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4428 } 4429 4430 /** 4431 * @brief Wrapper function for BUS_SET_RESOURCE(). 4432 * 4433 * This function simply calls the BUS_SET_RESOURCE() method of the 4434 * parent of @p dev. 4435 */ 4436 int 4437 bus_set_resource(device_t dev, int type, int rid, 4438 u_long start, u_long count) 4439 { 4440 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4441 start, count)); 4442 } 4443 4444 /** 4445 * @brief Wrapper function for BUS_GET_RESOURCE(). 4446 * 4447 * This function simply calls the BUS_GET_RESOURCE() method of the 4448 * parent of @p dev. 4449 */ 4450 int 4451 bus_get_resource(device_t dev, int type, int rid, 4452 u_long *startp, u_long *countp) 4453 { 4454 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4455 startp, countp)); 4456 } 4457 4458 /** 4459 * @brief Wrapper function for BUS_GET_RESOURCE(). 4460 * 4461 * This function simply calls the BUS_GET_RESOURCE() method of the 4462 * parent of @p dev and returns the start value. 4463 */ 4464 u_long 4465 bus_get_resource_start(device_t dev, int type, int rid) 4466 { 4467 u_long start, count; 4468 int error; 4469 4470 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4471 &start, &count); 4472 if (error) 4473 return (0); 4474 return (start); 4475 } 4476 4477 /** 4478 * @brief Wrapper function for BUS_GET_RESOURCE(). 4479 * 4480 * This function simply calls the BUS_GET_RESOURCE() method of the 4481 * parent of @p dev and returns the count value. 4482 */ 4483 u_long 4484 bus_get_resource_count(device_t dev, int type, int rid) 4485 { 4486 u_long start, count; 4487 int error; 4488 4489 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4490 &start, &count); 4491 if (error) 4492 return (0); 4493 return (count); 4494 } 4495 4496 /** 4497 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4498 * 4499 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4500 * parent of @p dev. 4501 */ 4502 void 4503 bus_delete_resource(device_t dev, int type, int rid) 4504 { 4505 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4506 } 4507 4508 /** 4509 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4510 * 4511 * This function simply calls the BUS_CHILD_PRESENT() method of the 4512 * parent of @p dev. 4513 */ 4514 int 4515 bus_child_present(device_t child) 4516 { 4517 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4518 } 4519 4520 /** 4521 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4522 * 4523 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4524 * parent of @p dev. 4525 */ 4526 int 4527 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4528 { 4529 device_t parent; 4530 4531 parent = device_get_parent(child); 4532 if (parent == NULL) { 4533 *buf = '\0'; 4534 return (0); 4535 } 4536 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4537 } 4538 4539 /** 4540 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4541 * 4542 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4543 * parent of @p dev. 4544 */ 4545 int 4546 bus_child_location_str(device_t child, char *buf, size_t buflen) 4547 { 4548 device_t parent; 4549 4550 parent = device_get_parent(child); 4551 if (parent == NULL) { 4552 *buf = '\0'; 4553 return (0); 4554 } 4555 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4556 } 4557 4558 /** 4559 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4560 * 4561 * This function simply calls the BUS_GET_DMA_TAG() method of the 4562 * parent of @p dev. 4563 */ 4564 bus_dma_tag_t 4565 bus_get_dma_tag(device_t dev) 4566 { 4567 device_t parent; 4568 4569 parent = device_get_parent(dev); 4570 if (parent == NULL) 4571 return (NULL); 4572 return (BUS_GET_DMA_TAG(parent, dev)); 4573 } 4574 4575 /** 4576 * @brief Wrapper function for BUS_GET_DOMAIN(). 4577 * 4578 * This function simply calls the BUS_GET_DOMAIN() method of the 4579 * parent of @p dev. 4580 */ 4581 int 4582 bus_get_domain(device_t dev, int *domain) 4583 { 4584 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 4585 } 4586 4587 /* Resume all devices and then notify userland that we're up again. */ 4588 static int 4589 root_resume(device_t dev) 4590 { 4591 int error; 4592 4593 error = bus_generic_resume(dev); 4594 if (error == 0) 4595 devctl_notify("kern", "power", "resume", NULL); 4596 return (error); 4597 } 4598 4599 static int 4600 root_print_child(device_t dev, device_t child) 4601 { 4602 int retval = 0; 4603 4604 retval += bus_print_child_header(dev, child); 4605 retval += printf("\n"); 4606 4607 return (retval); 4608 } 4609 4610 static int 4611 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4612 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4613 { 4614 /* 4615 * If an interrupt mapping gets to here something bad has happened. 4616 */ 4617 panic("root_setup_intr"); 4618 } 4619 4620 /* 4621 * If we get here, assume that the device is permanant and really is 4622 * present in the system. Removable bus drivers are expected to intercept 4623 * this call long before it gets here. We return -1 so that drivers that 4624 * really care can check vs -1 or some ERRNO returned higher in the food 4625 * chain. 4626 */ 4627 static int 4628 root_child_present(device_t dev, device_t child) 4629 { 4630 return (-1); 4631 } 4632 4633 static kobj_method_t root_methods[] = { 4634 /* Device interface */ 4635 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4636 KOBJMETHOD(device_suspend, bus_generic_suspend), 4637 KOBJMETHOD(device_resume, root_resume), 4638 4639 /* Bus interface */ 4640 KOBJMETHOD(bus_print_child, root_print_child), 4641 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4642 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4643 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4644 KOBJMETHOD(bus_child_present, root_child_present), 4645 4646 KOBJMETHOD_END 4647 }; 4648 4649 static driver_t root_driver = { 4650 "root", 4651 root_methods, 4652 1, /* no softc */ 4653 }; 4654 4655 device_t root_bus; 4656 devclass_t root_devclass; 4657 4658 static int 4659 root_bus_module_handler(module_t mod, int what, void* arg) 4660 { 4661 switch (what) { 4662 case MOD_LOAD: 4663 TAILQ_INIT(&bus_data_devices); 4664 kobj_class_compile((kobj_class_t) &root_driver); 4665 root_bus = make_device(NULL, "root", 0); 4666 root_bus->desc = "System root bus"; 4667 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4668 root_bus->driver = &root_driver; 4669 root_bus->state = DS_ATTACHED; 4670 root_devclass = devclass_find_internal("root", NULL, FALSE); 4671 devinit(); 4672 return (0); 4673 4674 case MOD_SHUTDOWN: 4675 device_shutdown(root_bus); 4676 return (0); 4677 default: 4678 return (EOPNOTSUPP); 4679 } 4680 4681 return (0); 4682 } 4683 4684 static moduledata_t root_bus_mod = { 4685 "rootbus", 4686 root_bus_module_handler, 4687 NULL 4688 }; 4689 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4690 4691 /** 4692 * @brief Automatically configure devices 4693 * 4694 * This function begins the autoconfiguration process by calling 4695 * device_probe_and_attach() for each child of the @c root0 device. 4696 */ 4697 void 4698 root_bus_configure(void) 4699 { 4700 4701 PDEBUG((".")); 4702 4703 /* Eventually this will be split up, but this is sufficient for now. */ 4704 bus_set_pass(BUS_PASS_DEFAULT); 4705 } 4706 4707 /** 4708 * @brief Module handler for registering device drivers 4709 * 4710 * This module handler is used to automatically register device 4711 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4712 * devclass_add_driver() for the driver described by the 4713 * driver_module_data structure pointed to by @p arg 4714 */ 4715 int 4716 driver_module_handler(module_t mod, int what, void *arg) 4717 { 4718 struct driver_module_data *dmd; 4719 devclass_t bus_devclass; 4720 kobj_class_t driver; 4721 int error, pass; 4722 4723 dmd = (struct driver_module_data *)arg; 4724 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4725 error = 0; 4726 4727 switch (what) { 4728 case MOD_LOAD: 4729 if (dmd->dmd_chainevh) 4730 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4731 4732 pass = dmd->dmd_pass; 4733 driver = dmd->dmd_driver; 4734 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4735 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4736 error = devclass_add_driver(bus_devclass, driver, pass, 4737 dmd->dmd_devclass); 4738 break; 4739 4740 case MOD_UNLOAD: 4741 PDEBUG(("Unloading module: driver %s from bus %s", 4742 DRIVERNAME(dmd->dmd_driver), 4743 dmd->dmd_busname)); 4744 error = devclass_delete_driver(bus_devclass, 4745 dmd->dmd_driver); 4746 4747 if (!error && dmd->dmd_chainevh) 4748 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4749 break; 4750 case MOD_QUIESCE: 4751 PDEBUG(("Quiesce module: driver %s from bus %s", 4752 DRIVERNAME(dmd->dmd_driver), 4753 dmd->dmd_busname)); 4754 error = devclass_quiesce_driver(bus_devclass, 4755 dmd->dmd_driver); 4756 4757 if (!error && dmd->dmd_chainevh) 4758 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4759 break; 4760 default: 4761 error = EOPNOTSUPP; 4762 break; 4763 } 4764 4765 return (error); 4766 } 4767 4768 /** 4769 * @brief Enumerate all hinted devices for this bus. 4770 * 4771 * Walks through the hints for this bus and calls the bus_hinted_child 4772 * routine for each one it fines. It searches first for the specific 4773 * bus that's being probed for hinted children (eg isa0), and then for 4774 * generic children (eg isa). 4775 * 4776 * @param dev bus device to enumerate 4777 */ 4778 void 4779 bus_enumerate_hinted_children(device_t bus) 4780 { 4781 int i; 4782 const char *dname, *busname; 4783 int dunit; 4784 4785 /* 4786 * enumerate all devices on the specific bus 4787 */ 4788 busname = device_get_nameunit(bus); 4789 i = 0; 4790 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4791 BUS_HINTED_CHILD(bus, dname, dunit); 4792 4793 /* 4794 * and all the generic ones. 4795 */ 4796 busname = device_get_name(bus); 4797 i = 0; 4798 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4799 BUS_HINTED_CHILD(bus, dname, dunit); 4800 } 4801 4802 #ifdef BUS_DEBUG 4803 4804 /* the _short versions avoid iteration by not calling anything that prints 4805 * more than oneliners. I love oneliners. 4806 */ 4807 4808 static void 4809 print_device_short(device_t dev, int indent) 4810 { 4811 if (!dev) 4812 return; 4813 4814 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4815 dev->unit, dev->desc, 4816 (dev->parent? "":"no "), 4817 (TAILQ_EMPTY(&dev->children)? "no ":""), 4818 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4819 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4820 (dev->flags&DF_WILDCARD? "wildcard,":""), 4821 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4822 (dev->flags&DF_REBID? "rebiddable,":""), 4823 (dev->ivars? "":"no "), 4824 (dev->softc? "":"no "), 4825 dev->busy)); 4826 } 4827 4828 static void 4829 print_device(device_t dev, int indent) 4830 { 4831 if (!dev) 4832 return; 4833 4834 print_device_short(dev, indent); 4835 4836 indentprintf(("Parent:\n")); 4837 print_device_short(dev->parent, indent+1); 4838 indentprintf(("Driver:\n")); 4839 print_driver_short(dev->driver, indent+1); 4840 indentprintf(("Devclass:\n")); 4841 print_devclass_short(dev->devclass, indent+1); 4842 } 4843 4844 void 4845 print_device_tree_short(device_t dev, int indent) 4846 /* print the device and all its children (indented) */ 4847 { 4848 device_t child; 4849 4850 if (!dev) 4851 return; 4852 4853 print_device_short(dev, indent); 4854 4855 TAILQ_FOREACH(child, &dev->children, link) { 4856 print_device_tree_short(child, indent+1); 4857 } 4858 } 4859 4860 void 4861 print_device_tree(device_t dev, int indent) 4862 /* print the device and all its children (indented) */ 4863 { 4864 device_t child; 4865 4866 if (!dev) 4867 return; 4868 4869 print_device(dev, indent); 4870 4871 TAILQ_FOREACH(child, &dev->children, link) { 4872 print_device_tree(child, indent+1); 4873 } 4874 } 4875 4876 static void 4877 print_driver_short(driver_t *driver, int indent) 4878 { 4879 if (!driver) 4880 return; 4881 4882 indentprintf(("driver %s: softc size = %zd\n", 4883 driver->name, driver->size)); 4884 } 4885 4886 static void 4887 print_driver(driver_t *driver, int indent) 4888 { 4889 if (!driver) 4890 return; 4891 4892 print_driver_short(driver, indent); 4893 } 4894 4895 static void 4896 print_driver_list(driver_list_t drivers, int indent) 4897 { 4898 driverlink_t driver; 4899 4900 TAILQ_FOREACH(driver, &drivers, link) { 4901 print_driver(driver->driver, indent); 4902 } 4903 } 4904 4905 static void 4906 print_devclass_short(devclass_t dc, int indent) 4907 { 4908 if ( !dc ) 4909 return; 4910 4911 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4912 } 4913 4914 static void 4915 print_devclass(devclass_t dc, int indent) 4916 { 4917 int i; 4918 4919 if ( !dc ) 4920 return; 4921 4922 print_devclass_short(dc, indent); 4923 indentprintf(("Drivers:\n")); 4924 print_driver_list(dc->drivers, indent+1); 4925 4926 indentprintf(("Devices:\n")); 4927 for (i = 0; i < dc->maxunit; i++) 4928 if (dc->devices[i]) 4929 print_device(dc->devices[i], indent+1); 4930 } 4931 4932 void 4933 print_devclass_list_short(void) 4934 { 4935 devclass_t dc; 4936 4937 printf("Short listing of devclasses, drivers & devices:\n"); 4938 TAILQ_FOREACH(dc, &devclasses, link) { 4939 print_devclass_short(dc, 0); 4940 } 4941 } 4942 4943 void 4944 print_devclass_list(void) 4945 { 4946 devclass_t dc; 4947 4948 printf("Full listing of devclasses, drivers & devices:\n"); 4949 TAILQ_FOREACH(dc, &devclasses, link) { 4950 print_devclass(dc, 0); 4951 } 4952 } 4953 4954 #endif 4955 4956 /* 4957 * User-space access to the device tree. 4958 * 4959 * We implement a small set of nodes: 4960 * 4961 * hw.bus Single integer read method to obtain the 4962 * current generation count. 4963 * hw.bus.devices Reads the entire device tree in flat space. 4964 * hw.bus.rman Resource manager interface 4965 * 4966 * We might like to add the ability to scan devclasses and/or drivers to 4967 * determine what else is currently loaded/available. 4968 */ 4969 4970 static int 4971 sysctl_bus(SYSCTL_HANDLER_ARGS) 4972 { 4973 struct u_businfo ubus; 4974 4975 ubus.ub_version = BUS_USER_VERSION; 4976 ubus.ub_generation = bus_data_generation; 4977 4978 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4979 } 4980 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4981 "bus-related data"); 4982 4983 static int 4984 sysctl_devices(SYSCTL_HANDLER_ARGS) 4985 { 4986 int *name = (int *)arg1; 4987 u_int namelen = arg2; 4988 int index; 4989 struct device *dev; 4990 struct u_device udev; /* XXX this is a bit big */ 4991 int error; 4992 4993 if (namelen != 2) 4994 return (EINVAL); 4995 4996 if (bus_data_generation_check(name[0])) 4997 return (EINVAL); 4998 4999 index = name[1]; 5000 5001 /* 5002 * Scan the list of devices, looking for the requested index. 5003 */ 5004 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5005 if (index-- == 0) 5006 break; 5007 } 5008 if (dev == NULL) 5009 return (ENOENT); 5010 5011 /* 5012 * Populate the return array. 5013 */ 5014 bzero(&udev, sizeof(udev)); 5015 udev.dv_handle = (uintptr_t)dev; 5016 udev.dv_parent = (uintptr_t)dev->parent; 5017 if (dev->nameunit != NULL) 5018 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 5019 if (dev->desc != NULL) 5020 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 5021 if (dev->driver != NULL && dev->driver->name != NULL) 5022 strlcpy(udev.dv_drivername, dev->driver->name, 5023 sizeof(udev.dv_drivername)); 5024 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 5025 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 5026 udev.dv_devflags = dev->devflags; 5027 udev.dv_flags = dev->flags; 5028 udev.dv_state = dev->state; 5029 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 5030 return (error); 5031 } 5032 5033 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 5034 "system device tree"); 5035 5036 int 5037 bus_data_generation_check(int generation) 5038 { 5039 if (generation != bus_data_generation) 5040 return (1); 5041 5042 /* XXX generate optimised lists here? */ 5043 return (0); 5044 } 5045 5046 void 5047 bus_data_generation_update(void) 5048 { 5049 bus_data_generation++; 5050 } 5051 5052 int 5053 bus_free_resource(device_t dev, int type, struct resource *r) 5054 { 5055 if (r == NULL) 5056 return (0); 5057 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5058 } 5059 5060 /* 5061 * /dev/devctl2 implementation. The existing /dev/devctl device has 5062 * implicit semantics on open, so it could not be reused for this. 5063 * Another option would be to call this /dev/bus? 5064 */ 5065 static int 5066 find_device(struct devreq *req, device_t *devp) 5067 { 5068 device_t dev; 5069 5070 /* 5071 * First, ensure that the name is nul terminated. 5072 */ 5073 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5074 return (EINVAL); 5075 5076 /* 5077 * Second, try to find an attached device whose name matches 5078 * 'name'. 5079 */ 5080 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5081 if (dev->nameunit != NULL && 5082 strcmp(dev->nameunit, req->dr_name) == 0) { 5083 *devp = dev; 5084 return (0); 5085 } 5086 } 5087 5088 /* Finally, give device enumerators a chance. */ 5089 dev = NULL; 5090 EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev); 5091 if (dev == NULL) 5092 return (ENOENT); 5093 *devp = dev; 5094 return (0); 5095 } 5096 5097 static bool 5098 driver_exists(struct device *bus, const char *driver) 5099 { 5100 devclass_t dc; 5101 5102 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5103 if (devclass_find_driver_internal(dc, driver) != NULL) 5104 return (true); 5105 } 5106 return (false); 5107 } 5108 5109 static int 5110 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5111 struct thread *td) 5112 { 5113 struct devreq *req; 5114 device_t dev; 5115 int error, old; 5116 5117 /* Locate the device to control. */ 5118 mtx_lock(&Giant); 5119 req = (struct devreq *)data; 5120 switch (cmd) { 5121 case DEV_ATTACH: 5122 case DEV_DETACH: 5123 case DEV_ENABLE: 5124 case DEV_DISABLE: 5125 case DEV_SUSPEND: 5126 case DEV_RESUME: 5127 case DEV_SET_DRIVER: 5128 error = priv_check(td, PRIV_DRIVER); 5129 if (error == 0) 5130 error = find_device(req, &dev); 5131 break; 5132 default: 5133 error = ENOTTY; 5134 break; 5135 } 5136 if (error) { 5137 mtx_unlock(&Giant); 5138 return (error); 5139 } 5140 5141 /* Perform the requested operation. */ 5142 switch (cmd) { 5143 case DEV_ATTACH: 5144 if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0) 5145 error = EBUSY; 5146 else if (!device_is_enabled(dev)) 5147 error = ENXIO; 5148 else 5149 error = device_probe_and_attach(dev); 5150 break; 5151 case DEV_DETACH: 5152 if (!device_is_attached(dev)) { 5153 error = ENXIO; 5154 break; 5155 } 5156 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5157 error = device_quiesce(dev); 5158 if (error) 5159 break; 5160 } 5161 error = device_detach(dev); 5162 break; 5163 case DEV_ENABLE: 5164 if (device_is_enabled(dev)) { 5165 error = EBUSY; 5166 break; 5167 } 5168 5169 /* 5170 * If the device has been probed but not attached (e.g. 5171 * when it has been disabled by a loader hint), just 5172 * attach the device rather than doing a full probe. 5173 */ 5174 device_enable(dev); 5175 if (device_is_alive(dev)) { 5176 /* 5177 * If the device was disabled via a hint, clear 5178 * the hint. 5179 */ 5180 if (resource_disabled(dev->driver->name, dev->unit)) 5181 resource_unset_value(dev->driver->name, 5182 dev->unit, "disabled"); 5183 error = device_attach(dev); 5184 } else 5185 error = device_probe_and_attach(dev); 5186 break; 5187 case DEV_DISABLE: 5188 if (!device_is_enabled(dev)) { 5189 error = ENXIO; 5190 break; 5191 } 5192 5193 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5194 error = device_quiesce(dev); 5195 if (error) 5196 break; 5197 } 5198 5199 /* 5200 * Force DF_FIXEDCLASS on around detach to preserve 5201 * the existing name. 5202 */ 5203 old = dev->flags; 5204 dev->flags |= DF_FIXEDCLASS; 5205 error = device_detach(dev); 5206 if (!(old & DF_FIXEDCLASS)) 5207 dev->flags &= ~DF_FIXEDCLASS; 5208 if (error == 0) 5209 device_disable(dev); 5210 break; 5211 case DEV_SUSPEND: 5212 if (device_is_suspended(dev)) { 5213 error = EBUSY; 5214 break; 5215 } 5216 if (device_get_parent(dev) == NULL) { 5217 error = EINVAL; 5218 break; 5219 } 5220 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5221 break; 5222 case DEV_RESUME: 5223 if (!device_is_suspended(dev)) { 5224 error = EINVAL; 5225 break; 5226 } 5227 if (device_get_parent(dev) == NULL) { 5228 error = EINVAL; 5229 break; 5230 } 5231 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5232 break; 5233 case DEV_SET_DRIVER: { 5234 devclass_t dc; 5235 char driver[128]; 5236 5237 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5238 if (error) 5239 break; 5240 if (driver[0] == '\0') { 5241 error = EINVAL; 5242 break; 5243 } 5244 if (dev->devclass != NULL && 5245 strcmp(driver, dev->devclass->name) == 0) 5246 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5247 break; 5248 5249 /* 5250 * Scan drivers for this device's bus looking for at 5251 * least one matching driver. 5252 */ 5253 if (dev->parent == NULL) { 5254 error = EINVAL; 5255 break; 5256 } 5257 if (!driver_exists(dev->parent, driver)) { 5258 error = ENOENT; 5259 break; 5260 } 5261 dc = devclass_create(driver); 5262 if (dc == NULL) { 5263 error = ENOMEM; 5264 break; 5265 } 5266 5267 /* Detach device if necessary. */ 5268 if (device_is_attached(dev)) { 5269 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5270 error = device_detach(dev); 5271 else 5272 error = EBUSY; 5273 if (error) 5274 break; 5275 } 5276 5277 /* Clear any previously-fixed device class and unit. */ 5278 if (dev->flags & DF_FIXEDCLASS) 5279 devclass_delete_device(dev->devclass, dev); 5280 dev->flags |= DF_WILDCARD; 5281 dev->unit = -1; 5282 5283 /* Force the new device class. */ 5284 error = devclass_add_device(dc, dev); 5285 if (error) 5286 break; 5287 dev->flags |= DF_FIXEDCLASS; 5288 error = device_probe_and_attach(dev); 5289 break; 5290 } 5291 } 5292 mtx_unlock(&Giant); 5293 return (error); 5294 } 5295 5296 static struct cdevsw devctl2_cdevsw = { 5297 .d_version = D_VERSION, 5298 .d_ioctl = devctl2_ioctl, 5299 .d_name = "devctl2", 5300 }; 5301 5302 static void 5303 devctl2_init(void) 5304 { 5305 5306 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5307 UID_ROOT, GID_WHEEL, 0600, "devctl2"); 5308 } 5309