1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_bus.h" 31 #include "opt_ddb.h" 32 #include "opt_iommu.h" 33 34 #include <sys/param.h> 35 #include <sys/conf.h> 36 #include <sys/domainset.h> 37 #include <sys/eventhandler.h> 38 #include <sys/jail.h> 39 #include <sys/lock.h> 40 #include <sys/kernel.h> 41 #include <sys/limits.h> 42 #include <sys/malloc.h> 43 #include <sys/module.h> 44 #include <sys/mutex.h> 45 #include <sys/priv.h> 46 #include <machine/bus.h> 47 #include <sys/random.h> 48 #include <sys/refcount.h> 49 #include <sys/rman.h> 50 #include <sys/sbuf.h> 51 #include <sys/smp.h> 52 #include <sys/stdarg.h> 53 #include <sys/sysctl.h> 54 #include <sys/systm.h> 55 #include <sys/taskqueue.h> 56 #include <sys/bus.h> 57 #include <sys/cpuset.h> 58 #ifdef INTRNG 59 #include <sys/intr.h> 60 #endif 61 62 #include <net/vnet.h> 63 64 #include <machine/cpu.h> 65 66 #include <vm/uma.h> 67 #include <vm/vm.h> 68 69 #include <dev/iommu/iommu.h> 70 71 #include <ddb/ddb.h> 72 73 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 74 NULL); 75 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 76 NULL); 77 78 static bool disable_failed_devs = false; 79 SYSCTL_BOOL(_hw_bus, OID_AUTO, disable_failed_devices, CTLFLAG_RWTUN, &disable_failed_devs, 80 0, "Do not retry attaching devices that return an error from DEVICE_ATTACH the first time"); 81 82 /* 83 * Used to attach drivers to devclasses. 84 */ 85 typedef struct driverlink *driverlink_t; 86 struct driverlink { 87 kobj_class_t driver; 88 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 89 int pass; 90 int flags; 91 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 92 TAILQ_ENTRY(driverlink) passlink; 93 }; 94 95 /* 96 * Forward declarations 97 */ 98 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 99 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 100 typedef TAILQ_HEAD(device_list, _device) device_list_t; 101 102 struct devclass { 103 TAILQ_ENTRY(devclass) link; 104 devclass_t parent; /* parent in devclass hierarchy */ 105 driver_list_t drivers; /* bus devclasses store drivers for bus */ 106 char *name; 107 device_t *devices; /* array of devices indexed by unit */ 108 int maxunit; /* size of devices array */ 109 int flags; 110 #define DC_HAS_CHILDREN 1 111 112 struct sysctl_ctx_list sysctl_ctx; 113 struct sysctl_oid *sysctl_tree; 114 }; 115 116 struct device_prop_elm { 117 const char *name; 118 void *val; 119 void *dtr_ctx; 120 device_prop_dtr_t dtr; 121 LIST_ENTRY(device_prop_elm) link; 122 }; 123 124 TASKQUEUE_DEFINE_THREAD(bus); 125 126 static void device_destroy_props(device_t dev); 127 128 /** 129 * @brief Implementation of _device. 130 * 131 * The structure is named "_device" instead of "device" to avoid type confusion 132 * caused by other subsystems defining a (struct device). 133 */ 134 struct _device { 135 /* 136 * A device is a kernel object. The first field must be the 137 * current ops table for the object. 138 */ 139 KOBJ_FIELDS; 140 141 /* 142 * Device hierarchy. 143 */ 144 TAILQ_ENTRY(_device) link; /**< list of devices in parent */ 145 TAILQ_ENTRY(_device) devlink; /**< global device list membership */ 146 device_t parent; /**< parent of this device */ 147 device_list_t children; /**< list of child devices */ 148 149 /* 150 * Details of this device. 151 */ 152 driver_t *driver; /**< current driver */ 153 devclass_t devclass; /**< current device class */ 154 int unit; /**< current unit number */ 155 char* nameunit; /**< name+unit e.g. foodev0 */ 156 char* desc; /**< driver specific description */ 157 u_int busy; /**< count of calls to device_busy() */ 158 device_state_t state; /**< current device state */ 159 uint32_t devflags; /**< api level flags for device_get_flags() */ 160 u_int flags; /**< internal device flags */ 161 u_int order; /**< order from device_add_child_ordered() */ 162 void *ivars; /**< instance variables */ 163 void *softc; /**< current driver's variables */ 164 LIST_HEAD(, device_prop_elm) props; 165 166 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 167 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 168 }; 169 170 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 171 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 172 173 EVENTHANDLER_LIST_DEFINE(device_attach); 174 EVENTHANDLER_LIST_DEFINE(device_detach); 175 EVENTHANDLER_LIST_DEFINE(device_nomatch); 176 EVENTHANDLER_LIST_DEFINE(dev_lookup); 177 178 static void devctl2_init(void); 179 static bool device_frozen; 180 181 #define DRIVERNAME(d) ((d)? d->name : "no driver") 182 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 183 184 #ifdef BUS_DEBUG 185 186 static int bus_debug = 1; 187 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 188 "Bus debug level"); 189 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 190 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 191 192 /** 193 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 194 * prevent syslog from deleting initial spaces 195 */ 196 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 197 198 static void print_device_short(device_t dev, int indent); 199 static void print_device(device_t dev, int indent); 200 void print_device_tree_short(device_t dev, int indent); 201 void print_device_tree(device_t dev, int indent); 202 static void print_driver_short(driver_t *driver, int indent); 203 static void print_driver(driver_t *driver, int indent); 204 static void print_driver_list(driver_list_t drivers, int indent); 205 static void print_devclass_short(devclass_t dc, int indent); 206 static void print_devclass(devclass_t dc, int indent); 207 void print_devclass_list_short(void); 208 void print_devclass_list(void); 209 210 #else 211 /* Make the compiler ignore the function calls */ 212 #define PDEBUG(a) /* nop */ 213 #define DEVICENAME(d) /* nop */ 214 215 #define print_device_short(d,i) /* nop */ 216 #define print_device(d,i) /* nop */ 217 #define print_device_tree_short(d,i) /* nop */ 218 #define print_device_tree(d,i) /* nop */ 219 #define print_driver_short(d,i) /* nop */ 220 #define print_driver(d,i) /* nop */ 221 #define print_driver_list(d,i) /* nop */ 222 #define print_devclass_short(d,i) /* nop */ 223 #define print_devclass(d,i) /* nop */ 224 #define print_devclass_list_short() /* nop */ 225 #define print_devclass_list() /* nop */ 226 #endif 227 228 /* 229 * dev sysctl tree 230 */ 231 232 enum { 233 DEVCLASS_SYSCTL_PARENT, 234 }; 235 236 static int 237 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 238 { 239 devclass_t dc = (devclass_t)arg1; 240 const char *value; 241 242 switch (arg2) { 243 case DEVCLASS_SYSCTL_PARENT: 244 value = dc->parent ? dc->parent->name : ""; 245 break; 246 default: 247 return (EINVAL); 248 } 249 return (SYSCTL_OUT_STR(req, value)); 250 } 251 252 static void 253 devclass_sysctl_init(devclass_t dc) 254 { 255 if (dc->sysctl_tree != NULL) 256 return; 257 sysctl_ctx_init(&dc->sysctl_ctx); 258 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 259 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 260 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 261 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 262 OID_AUTO, "%parent", 263 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 264 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 265 "parent class"); 266 } 267 268 enum { 269 DEVICE_SYSCTL_DESC, 270 DEVICE_SYSCTL_DRIVER, 271 DEVICE_SYSCTL_LOCATION, 272 DEVICE_SYSCTL_PNPINFO, 273 DEVICE_SYSCTL_PARENT, 274 DEVICE_SYSCTL_IOMMU, 275 }; 276 277 static int 278 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 279 { 280 struct sbuf sb; 281 device_t dev = (device_t)arg1; 282 device_t iommu; 283 #ifdef IOMMU 284 device_t requester; 285 #endif 286 int error; 287 uint16_t rid; 288 const char *c; 289 290 sbuf_new_for_sysctl(&sb, NULL, 1024, req); 291 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 292 bus_topo_lock(); 293 switch (arg2) { 294 case DEVICE_SYSCTL_DESC: 295 sbuf_cat(&sb, dev->desc ? dev->desc : ""); 296 break; 297 case DEVICE_SYSCTL_DRIVER: 298 sbuf_cat(&sb, dev->driver ? dev->driver->name : ""); 299 break; 300 case DEVICE_SYSCTL_LOCATION: 301 bus_child_location(dev, &sb); 302 break; 303 case DEVICE_SYSCTL_PNPINFO: 304 bus_child_pnpinfo(dev, &sb); 305 break; 306 case DEVICE_SYSCTL_PARENT: 307 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : ""); 308 break; 309 case DEVICE_SYSCTL_IOMMU: 310 iommu = NULL; 311 error = device_get_prop(dev, DEV_PROP_NAME_IOMMU, 312 (void **)&iommu); 313 c = ""; 314 if (error == 0 && iommu != NULL) { 315 sbuf_printf(&sb, "unit=%s", device_get_nameunit(iommu)); 316 c = " "; 317 } 318 rid = 0; 319 #ifdef IOMMU 320 error = iommu_get_requester(dev, &requester, &rid); 321 /* 322 * Do not return requester error from sysctl, iommu 323 * unit might be assigned by other means. 324 */ 325 #else 326 error = ENXIO; 327 #endif 328 if (error == 0) 329 sbuf_printf(&sb, "%srid=%#x", c, rid); 330 break; 331 default: 332 error = EINVAL; 333 goto out; 334 } 335 error = sbuf_finish(&sb); 336 out: 337 bus_topo_unlock(); 338 sbuf_delete(&sb); 339 return (error); 340 } 341 342 static void 343 device_sysctl_init(device_t dev) 344 { 345 devclass_t dc = dev->devclass; 346 int domain; 347 348 if (dev->sysctl_tree != NULL) 349 return; 350 devclass_sysctl_init(dc); 351 sysctl_ctx_init(&dev->sysctl_ctx); 352 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 353 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 354 dev->nameunit + strlen(dc->name), 355 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); 356 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 357 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 358 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 359 "device description"); 360 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 361 OID_AUTO, "%driver", 362 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 363 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 364 "device driver name"); 365 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 366 OID_AUTO, "%location", 367 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 368 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 369 "device location relative to parent"); 370 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 371 OID_AUTO, "%pnpinfo", 372 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 373 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 374 "device identification"); 375 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 376 OID_AUTO, "%parent", 377 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 378 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 379 "parent device"); 380 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 381 OID_AUTO, "%iommu", 382 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 383 dev, DEVICE_SYSCTL_IOMMU, device_sysctl_handler, "A", 384 "iommu unit handling the device requests"); 385 if (bus_get_domain(dev, &domain) == 0) 386 SYSCTL_ADD_INT(&dev->sysctl_ctx, 387 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 388 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain"); 389 } 390 391 static void 392 device_sysctl_update(device_t dev) 393 { 394 devclass_t dc = dev->devclass; 395 396 if (dev->sysctl_tree == NULL) 397 return; 398 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 399 } 400 401 static void 402 device_sysctl_fini(device_t dev) 403 { 404 if (dev->sysctl_tree == NULL) 405 return; 406 sysctl_ctx_free(&dev->sysctl_ctx); 407 dev->sysctl_tree = NULL; 408 } 409 410 static struct device_list bus_data_devices; 411 static int bus_data_generation = 1; 412 413 static kobj_method_t null_methods[] = { 414 KOBJMETHOD_END 415 }; 416 417 DEFINE_CLASS(null, null_methods, 0); 418 419 void 420 bus_topo_assert(void) 421 { 422 423 GIANT_REQUIRED; 424 } 425 426 struct mtx * 427 bus_topo_mtx(void) 428 { 429 430 return (&Giant); 431 } 432 433 void 434 bus_topo_lock(void) 435 { 436 437 mtx_lock(bus_topo_mtx()); 438 } 439 440 void 441 bus_topo_unlock(void) 442 { 443 444 mtx_unlock(bus_topo_mtx()); 445 } 446 447 /* 448 * Bus pass implementation 449 */ 450 451 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 452 static int bus_current_pass = BUS_PASS_ROOT; 453 454 /** 455 * @internal 456 * @brief Register the pass level of a new driver attachment 457 * 458 * Register a new driver attachment's pass level. If no driver 459 * attachment with the same pass level has been added, then @p new 460 * will be added to the global passes list. 461 * 462 * @param new the new driver attachment 463 */ 464 static void 465 driver_register_pass(struct driverlink *new) 466 { 467 struct driverlink *dl; 468 469 /* We only consider pass numbers during boot. */ 470 if (bus_current_pass == BUS_PASS_DEFAULT) 471 return; 472 473 /* 474 * Walk the passes list. If we already know about this pass 475 * then there is nothing to do. If we don't, then insert this 476 * driver link into the list. 477 */ 478 TAILQ_FOREACH(dl, &passes, passlink) { 479 if (dl->pass < new->pass) 480 continue; 481 if (dl->pass == new->pass) 482 return; 483 TAILQ_INSERT_BEFORE(dl, new, passlink); 484 return; 485 } 486 TAILQ_INSERT_TAIL(&passes, new, passlink); 487 } 488 489 /** 490 * @brief Retrieve the current bus pass 491 * 492 * Retrieves the current bus pass level. Call the BUS_NEW_PASS() 493 * method on the root bus to kick off a new device tree scan for each 494 * new pass level that has at least one driver. 495 */ 496 int 497 bus_get_pass(void) 498 { 499 500 return (bus_current_pass); 501 } 502 503 /** 504 * @brief Raise the current bus pass 505 * 506 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 507 * method on the root bus to kick off a new device tree scan for each 508 * new pass level that has at least one driver. 509 */ 510 static void 511 bus_set_pass(int pass) 512 { 513 struct driverlink *dl; 514 515 if (bus_current_pass > pass) 516 panic("Attempt to lower bus pass level"); 517 518 TAILQ_FOREACH(dl, &passes, passlink) { 519 /* Skip pass values below the current pass level. */ 520 if (dl->pass <= bus_current_pass) 521 continue; 522 523 /* 524 * Bail once we hit a driver with a pass level that is 525 * too high. 526 */ 527 if (dl->pass > pass) 528 break; 529 530 /* 531 * Raise the pass level to the next level and rescan 532 * the tree. 533 */ 534 bus_current_pass = dl->pass; 535 BUS_NEW_PASS(root_bus); 536 } 537 538 /* 539 * If there isn't a driver registered for the requested pass, 540 * then bus_current_pass might still be less than 'pass'. Set 541 * it to 'pass' in that case. 542 */ 543 if (bus_current_pass < pass) 544 bus_current_pass = pass; 545 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 546 } 547 548 /* 549 * Devclass implementation 550 */ 551 552 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 553 554 /** 555 * @internal 556 * @brief Find or create a device class 557 * 558 * If a device class with the name @p classname exists, return it, 559 * otherwise if @p create is non-zero create and return a new device 560 * class. 561 * 562 * If @p parentname is non-NULL, the parent of the devclass is set to 563 * the devclass of that name. 564 * 565 * @param classname the devclass name to find or create 566 * @param parentname the parent devclass name or @c NULL 567 * @param create non-zero to create a devclass 568 */ 569 static devclass_t 570 devclass_find_internal(const char *classname, const char *parentname, 571 int create) 572 { 573 devclass_t dc; 574 575 PDEBUG(("looking for %s", classname)); 576 if (!classname) 577 return (NULL); 578 579 TAILQ_FOREACH(dc, &devclasses, link) { 580 if (!strcmp(dc->name, classname)) 581 break; 582 } 583 584 if (create && !dc) { 585 PDEBUG(("creating %s", classname)); 586 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 587 M_BUS, M_WAITOK | M_ZERO); 588 dc->parent = NULL; 589 dc->name = (char*) (dc + 1); 590 strcpy(dc->name, classname); 591 TAILQ_INIT(&dc->drivers); 592 TAILQ_INSERT_TAIL(&devclasses, dc, link); 593 594 bus_data_generation_update(); 595 } 596 597 /* 598 * If a parent class is specified, then set that as our parent so 599 * that this devclass will support drivers for the parent class as 600 * well. If the parent class has the same name don't do this though 601 * as it creates a cycle that can trigger an infinite loop in 602 * device_probe_child() if a device exists for which there is no 603 * suitable driver. 604 */ 605 if (parentname && dc && !dc->parent && 606 strcmp(classname, parentname) != 0) { 607 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 608 dc->parent->flags |= DC_HAS_CHILDREN; 609 } 610 611 return (dc); 612 } 613 614 /** 615 * @brief Create a device class 616 * 617 * If a device class with the name @p classname exists, return it, 618 * otherwise create and return a new device class. 619 * 620 * @param classname the devclass name to find or create 621 */ 622 devclass_t 623 devclass_create(const char *classname) 624 { 625 return (devclass_find_internal(classname, NULL, TRUE)); 626 } 627 628 /** 629 * @brief Find a device class 630 * 631 * If a device class with the name @p classname exists, return it, 632 * otherwise return @c NULL. 633 * 634 * @param classname the devclass name to find 635 */ 636 devclass_t 637 devclass_find(const char *classname) 638 { 639 return (devclass_find_internal(classname, NULL, FALSE)); 640 } 641 642 /** 643 * @brief Register that a device driver has been added to a devclass 644 * 645 * Register that a device driver has been added to a devclass. This 646 * is called by devclass_add_driver to accomplish the recursive 647 * notification of all the children classes of dc, as well as dc. 648 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 649 * the devclass. 650 * 651 * We do a full search here of the devclass list at each iteration 652 * level to save storing children-lists in the devclass structure. If 653 * we ever move beyond a few dozen devices doing this, we may need to 654 * reevaluate... 655 * 656 * @param dc the devclass to edit 657 * @param driver the driver that was just added 658 */ 659 static void 660 devclass_driver_added(devclass_t dc, driver_t *driver) 661 { 662 devclass_t parent; 663 int i; 664 665 /* 666 * Call BUS_DRIVER_ADDED for any existing buses in this class. 667 */ 668 for (i = 0; i < dc->maxunit; i++) 669 if (dc->devices[i] && device_is_attached(dc->devices[i])) 670 BUS_DRIVER_ADDED(dc->devices[i], driver); 671 672 /* 673 * Walk through the children classes. Since we only keep a 674 * single parent pointer around, we walk the entire list of 675 * devclasses looking for children. We set the 676 * DC_HAS_CHILDREN flag when a child devclass is created on 677 * the parent, so we only walk the list for those devclasses 678 * that have children. 679 */ 680 if (!(dc->flags & DC_HAS_CHILDREN)) 681 return; 682 parent = dc; 683 TAILQ_FOREACH(dc, &devclasses, link) { 684 if (dc->parent == parent) 685 devclass_driver_added(dc, driver); 686 } 687 } 688 689 static void 690 device_handle_nomatch(device_t dev) 691 { 692 BUS_PROBE_NOMATCH(dev->parent, dev); 693 EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev); 694 dev->flags |= DF_DONENOMATCH; 695 } 696 697 /** 698 * @brief Add a device driver to a device class 699 * 700 * Add a device driver to a devclass. This is normally called 701 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 702 * all devices in the devclass will be called to allow them to attempt 703 * to re-probe any unmatched children. 704 * 705 * @param dc the devclass to edit 706 * @param driver the driver to register 707 */ 708 int 709 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 710 { 711 driverlink_t dl; 712 devclass_t child_dc; 713 const char *parentname; 714 715 PDEBUG(("%s", DRIVERNAME(driver))); 716 717 /* Don't allow invalid pass values. */ 718 if (pass <= BUS_PASS_ROOT) 719 return (EINVAL); 720 721 dl = malloc(sizeof *dl, M_BUS, M_WAITOK|M_ZERO); 722 723 /* 724 * Compile the driver's methods. Also increase the reference count 725 * so that the class doesn't get freed when the last instance 726 * goes. This means we can safely use static methods and avoids a 727 * double-free in devclass_delete_driver. 728 */ 729 kobj_class_compile((kobj_class_t) driver); 730 731 /* 732 * If the driver has any base classes, make the 733 * devclass inherit from the devclass of the driver's 734 * first base class. This will allow the system to 735 * search for drivers in both devclasses for children 736 * of a device using this driver. 737 */ 738 if (driver->baseclasses) 739 parentname = driver->baseclasses[0]->name; 740 else 741 parentname = NULL; 742 child_dc = devclass_find_internal(driver->name, parentname, TRUE); 743 if (dcp != NULL) 744 *dcp = child_dc; 745 746 dl->driver = driver; 747 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 748 driver->refs++; /* XXX: kobj_mtx */ 749 dl->pass = pass; 750 driver_register_pass(dl); 751 752 if (device_frozen) { 753 dl->flags |= DL_DEFERRED_PROBE; 754 } else { 755 devclass_driver_added(dc, driver); 756 } 757 bus_data_generation_update(); 758 return (0); 759 } 760 761 /** 762 * @brief Register that a device driver has been deleted from a devclass 763 * 764 * Register that a device driver has been removed from a devclass. 765 * This is called by devclass_delete_driver to accomplish the 766 * recursive notification of all the children classes of busclass, as 767 * well as busclass. Each layer will attempt to detach the driver 768 * from any devices that are children of the bus's devclass. The function 769 * will return an error if a device fails to detach. 770 * 771 * We do a full search here of the devclass list at each iteration 772 * level to save storing children-lists in the devclass structure. If 773 * we ever move beyond a few dozen devices doing this, we may need to 774 * reevaluate... 775 * 776 * @param busclass the devclass of the parent bus 777 * @param dc the devclass of the driver being deleted 778 * @param driver the driver being deleted 779 */ 780 static int 781 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 782 { 783 devclass_t parent; 784 device_t dev; 785 int error, i; 786 787 /* 788 * Disassociate from any devices. We iterate through all the 789 * devices in the devclass of the driver and detach any which are 790 * using the driver and which have a parent in the devclass which 791 * we are deleting from. 792 * 793 * Note that since a driver can be in multiple devclasses, we 794 * should not detach devices which are not children of devices in 795 * the affected devclass. 796 * 797 * If we're frozen, we don't generate NOMATCH events. Mark to 798 * generate later. 799 */ 800 for (i = 0; i < dc->maxunit; i++) { 801 if (dc->devices[i]) { 802 dev = dc->devices[i]; 803 if (dev->driver == driver && dev->parent && 804 dev->parent->devclass == busclass) { 805 if ((error = device_detach(dev)) != 0) 806 return (error); 807 if (device_frozen) { 808 dev->flags &= ~DF_DONENOMATCH; 809 dev->flags |= DF_NEEDNOMATCH; 810 } else { 811 device_handle_nomatch(dev); 812 } 813 } 814 } 815 } 816 817 /* 818 * Walk through the children classes. Since we only keep a 819 * single parent pointer around, we walk the entire list of 820 * devclasses looking for children. We set the 821 * DC_HAS_CHILDREN flag when a child devclass is created on 822 * the parent, so we only walk the list for those devclasses 823 * that have children. 824 */ 825 if (!(busclass->flags & DC_HAS_CHILDREN)) 826 return (0); 827 parent = busclass; 828 TAILQ_FOREACH(busclass, &devclasses, link) { 829 if (busclass->parent == parent) { 830 error = devclass_driver_deleted(busclass, dc, driver); 831 if (error) 832 return (error); 833 } 834 } 835 return (0); 836 } 837 838 /** 839 * @brief Delete a device driver from a device class 840 * 841 * Delete a device driver from a devclass. This is normally called 842 * automatically by DRIVER_MODULE(). 843 * 844 * If the driver is currently attached to any devices, 845 * devclass_delete_driver() will first attempt to detach from each 846 * device. If one of the detach calls fails, the driver will not be 847 * deleted. 848 * 849 * @param dc the devclass to edit 850 * @param driver the driver to unregister 851 */ 852 int 853 devclass_delete_driver(devclass_t busclass, driver_t *driver) 854 { 855 devclass_t dc = devclass_find(driver->name); 856 driverlink_t dl; 857 int error; 858 859 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 860 861 if (!dc) 862 return (0); 863 864 /* 865 * Find the link structure in the bus' list of drivers. 866 */ 867 TAILQ_FOREACH(dl, &busclass->drivers, link) { 868 if (dl->driver == driver) 869 break; 870 } 871 872 if (!dl) { 873 PDEBUG(("%s not found in %s list", driver->name, 874 busclass->name)); 875 return (ENOENT); 876 } 877 878 error = devclass_driver_deleted(busclass, dc, driver); 879 if (error != 0) 880 return (error); 881 882 TAILQ_REMOVE(&busclass->drivers, dl, link); 883 free(dl, M_BUS); 884 885 /* XXX: kobj_mtx */ 886 driver->refs--; 887 if (driver->refs == 0) 888 kobj_class_free((kobj_class_t) driver); 889 890 bus_data_generation_update(); 891 return (0); 892 } 893 894 /** 895 * @brief Quiesces a set of device drivers from a device class 896 * 897 * Quiesce a device driver from a devclass. This is normally called 898 * automatically by DRIVER_MODULE(). 899 * 900 * If the driver is currently attached to any devices, 901 * devclass_quiesece_driver() will first attempt to quiesce each 902 * device. 903 * 904 * @param dc the devclass to edit 905 * @param driver the driver to unregister 906 */ 907 static int 908 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 909 { 910 devclass_t dc = devclass_find(driver->name); 911 driverlink_t dl; 912 device_t dev; 913 int i; 914 int error; 915 916 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 917 918 if (!dc) 919 return (0); 920 921 /* 922 * Find the link structure in the bus' list of drivers. 923 */ 924 TAILQ_FOREACH(dl, &busclass->drivers, link) { 925 if (dl->driver == driver) 926 break; 927 } 928 929 if (!dl) { 930 PDEBUG(("%s not found in %s list", driver->name, 931 busclass->name)); 932 return (ENOENT); 933 } 934 935 /* 936 * Quiesce all devices. We iterate through all the devices in 937 * the devclass of the driver and quiesce any which are using 938 * the driver and which have a parent in the devclass which we 939 * are quiescing. 940 * 941 * Note that since a driver can be in multiple devclasses, we 942 * should not quiesce devices which are not children of 943 * devices in the affected devclass. 944 */ 945 for (i = 0; i < dc->maxunit; i++) { 946 if (dc->devices[i]) { 947 dev = dc->devices[i]; 948 if (dev->driver == driver && dev->parent && 949 dev->parent->devclass == busclass) { 950 if ((error = device_quiesce(dev)) != 0) 951 return (error); 952 } 953 } 954 } 955 956 return (0); 957 } 958 959 /** 960 * @internal 961 */ 962 static driverlink_t 963 devclass_find_driver_internal(devclass_t dc, const char *classname) 964 { 965 driverlink_t dl; 966 967 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 968 969 TAILQ_FOREACH(dl, &dc->drivers, link) { 970 if (!strcmp(dl->driver->name, classname)) 971 return (dl); 972 } 973 974 PDEBUG(("not found")); 975 return (NULL); 976 } 977 978 /** 979 * @brief Return the name of the devclass 980 */ 981 const char * 982 devclass_get_name(devclass_t dc) 983 { 984 return (dc->name); 985 } 986 987 /** 988 * @brief Find a device given a unit number 989 * 990 * @param dc the devclass to search 991 * @param unit the unit number to search for 992 * 993 * @returns the device with the given unit number or @c 994 * NULL if there is no such device 995 */ 996 device_t 997 devclass_get_device(devclass_t dc, int unit) 998 { 999 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1000 return (NULL); 1001 return (dc->devices[unit]); 1002 } 1003 1004 /** 1005 * @brief Find the softc field of a device given a unit number 1006 * 1007 * @param dc the devclass to search 1008 * @param unit the unit number to search for 1009 * 1010 * @returns the softc field of the device with the given 1011 * unit number or @c NULL if there is no such 1012 * device 1013 */ 1014 void * 1015 devclass_get_softc(devclass_t dc, int unit) 1016 { 1017 device_t dev; 1018 1019 dev = devclass_get_device(dc, unit); 1020 if (!dev) 1021 return (NULL); 1022 1023 return (device_get_softc(dev)); 1024 } 1025 1026 /** 1027 * @brief Get a list of devices in the devclass 1028 * 1029 * An array containing a list of all the devices in the given devclass 1030 * is allocated and returned in @p *devlistp. The number of devices 1031 * in the array is returned in @p *devcountp. The caller should free 1032 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1033 * 1034 * @param dc the devclass to examine 1035 * @param devlistp points at location for array pointer return 1036 * value 1037 * @param devcountp points at location for array size return value 1038 * 1039 * @retval 0 success 1040 * @retval ENOMEM the array allocation failed 1041 */ 1042 int 1043 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1044 { 1045 int count, i; 1046 device_t *list; 1047 1048 count = devclass_get_count(dc); 1049 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1050 if (!list) 1051 return (ENOMEM); 1052 1053 count = 0; 1054 for (i = 0; i < dc->maxunit; i++) { 1055 if (dc->devices[i]) { 1056 list[count] = dc->devices[i]; 1057 count++; 1058 } 1059 } 1060 1061 *devlistp = list; 1062 *devcountp = count; 1063 1064 return (0); 1065 } 1066 1067 /** 1068 * @brief Get a list of drivers in the devclass 1069 * 1070 * An array containing a list of pointers to all the drivers in the 1071 * given devclass is allocated and returned in @p *listp. The number 1072 * of drivers in the array is returned in @p *countp. The caller should 1073 * free the array using @c free(p, M_TEMP). 1074 * 1075 * @param dc the devclass to examine 1076 * @param listp gives location for array pointer return value 1077 * @param countp gives location for number of array elements 1078 * return value 1079 * 1080 * @retval 0 success 1081 * @retval ENOMEM the array allocation failed 1082 */ 1083 int 1084 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1085 { 1086 driverlink_t dl; 1087 driver_t **list; 1088 int count; 1089 1090 count = 0; 1091 TAILQ_FOREACH(dl, &dc->drivers, link) 1092 count++; 1093 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1094 if (list == NULL) 1095 return (ENOMEM); 1096 1097 count = 0; 1098 TAILQ_FOREACH(dl, &dc->drivers, link) { 1099 list[count] = dl->driver; 1100 count++; 1101 } 1102 *listp = list; 1103 *countp = count; 1104 1105 return (0); 1106 } 1107 1108 /** 1109 * @brief Get the number of devices in a devclass 1110 * 1111 * @param dc the devclass to examine 1112 */ 1113 int 1114 devclass_get_count(devclass_t dc) 1115 { 1116 int count, i; 1117 1118 count = 0; 1119 for (i = 0; i < dc->maxunit; i++) 1120 if (dc->devices[i]) 1121 count++; 1122 return (count); 1123 } 1124 1125 /** 1126 * @brief Get the maximum unit number used in a devclass 1127 * 1128 * Note that this is one greater than the highest currently-allocated unit. If 1129 * @p dc is NULL, @c -1 is returned to indicate that not even the devclass has 1130 * been allocated yet. 1131 * 1132 * @param dc the devclass to examine 1133 */ 1134 int 1135 devclass_get_maxunit(devclass_t dc) 1136 { 1137 if (dc == NULL) 1138 return (-1); 1139 return (dc->maxunit); 1140 } 1141 1142 /** 1143 * @brief Find a free unit number in a devclass 1144 * 1145 * This function searches for the first unused unit number greater 1146 * that or equal to @p unit. Note: This can return INT_MAX which 1147 * may be rejected elsewhere. 1148 * 1149 * @param dc the devclass to examine 1150 * @param unit the first unit number to check 1151 */ 1152 int 1153 devclass_find_free_unit(devclass_t dc, int unit) 1154 { 1155 if (dc == NULL) 1156 return (unit); 1157 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1158 unit++; 1159 return (unit); 1160 } 1161 1162 /** 1163 * @brief Set the parent of a devclass 1164 * 1165 * The parent class is normally initialised automatically by 1166 * DRIVER_MODULE(). 1167 * 1168 * @param dc the devclass to edit 1169 * @param pdc the new parent devclass 1170 */ 1171 void 1172 devclass_set_parent(devclass_t dc, devclass_t pdc) 1173 { 1174 dc->parent = pdc; 1175 } 1176 1177 /** 1178 * @brief Get the parent of a devclass 1179 * 1180 * @param dc the devclass to examine 1181 */ 1182 devclass_t 1183 devclass_get_parent(devclass_t dc) 1184 { 1185 return (dc->parent); 1186 } 1187 1188 struct sysctl_ctx_list * 1189 devclass_get_sysctl_ctx(devclass_t dc) 1190 { 1191 return (&dc->sysctl_ctx); 1192 } 1193 1194 struct sysctl_oid * 1195 devclass_get_sysctl_tree(devclass_t dc) 1196 { 1197 return (dc->sysctl_tree); 1198 } 1199 1200 /** 1201 * @internal 1202 * @brief Allocate a unit number 1203 * 1204 * On entry, @p *unitp is the desired unit number (or @c DEVICE_UNIT_ANY if any 1205 * will do). The allocated unit number is returned in @p *unitp. 1206 * 1207 * @param dc the devclass to allocate from 1208 * @param unitp points at the location for the allocated unit 1209 * number 1210 * 1211 * @retval 0 success 1212 * @retval EEXIST the requested unit number is already allocated 1213 * @retval ENOMEM memory allocation failure 1214 * @retval EINVAL unit is negative or we've run out of units 1215 */ 1216 static int 1217 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1218 { 1219 const char *s; 1220 int unit = *unitp; 1221 1222 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1223 1224 /* Ask the parent bus if it wants to wire this device. */ 1225 if (unit == DEVICE_UNIT_ANY) 1226 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1227 &unit); 1228 1229 /* Unit numbers are either DEVICE_UNIT_ANY or in [0,INT_MAX) */ 1230 if ((unit < 0 && unit != DEVICE_UNIT_ANY) || unit == INT_MAX) 1231 return (EINVAL); 1232 1233 /* If we were given a wired unit number, check for existing device */ 1234 if (unit != DEVICE_UNIT_ANY) { 1235 if (unit < dc->maxunit && dc->devices[unit] != NULL) { 1236 if (bootverbose) 1237 printf("%s: %s%d already exists; skipping it\n", 1238 dc->name, dc->name, *unitp); 1239 return (EEXIST); 1240 } 1241 } else { 1242 /* Unwired device, find the next available slot for it */ 1243 unit = 0; 1244 for (unit = 0; unit < INT_MAX; unit++) { 1245 /* If this device slot is already in use, skip it. */ 1246 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1247 continue; 1248 1249 /* If there is an "at" hint for a unit then skip it. */ 1250 if (resource_string_value(dc->name, unit, "at", &s) == 1251 0) 1252 continue; 1253 1254 break; 1255 } 1256 } 1257 1258 /* 1259 * Unit numbers must be in the range [0, INT_MAX), so exclude INT_MAX as 1260 * too large. We constrain maxunit below to be <= INT_MAX. This means we 1261 * can treat unit and maxunit as normal integers with normal math 1262 * everywhere and we only have to flag INT_MAX as invalid. 1263 */ 1264 if (unit == INT_MAX) 1265 return (EINVAL); 1266 1267 /* 1268 * We've selected a unit beyond the length of the table, so let's extend 1269 * the table to make room for all units up to and including this one. 1270 */ 1271 if (unit >= dc->maxunit) { 1272 int newsize; 1273 1274 newsize = unit + 1; 1275 dc->devices = reallocf(dc->devices, 1276 newsize * sizeof(*dc->devices), M_BUS, M_WAITOK); 1277 memset(dc->devices + dc->maxunit, 0, 1278 sizeof(device_t) * (newsize - dc->maxunit)); 1279 dc->maxunit = newsize; 1280 } 1281 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1282 1283 *unitp = unit; 1284 return (0); 1285 } 1286 1287 /** 1288 * @internal 1289 * @brief Add a device to a devclass 1290 * 1291 * A unit number is allocated for the device (using the device's 1292 * preferred unit number if any) and the device is registered in the 1293 * devclass. This allows the device to be looked up by its unit 1294 * number, e.g. by decoding a dev_t minor number. 1295 * 1296 * @param dc the devclass to add to 1297 * @param dev the device to add 1298 * 1299 * @retval 0 success 1300 * @retval EEXIST the requested unit number is already allocated 1301 * @retval ENOMEM memory allocation failure 1302 * @retval EINVAL Unit number invalid or too many units 1303 */ 1304 static int 1305 devclass_add_device(devclass_t dc, device_t dev) 1306 { 1307 int buflen, error; 1308 1309 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1310 1311 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1312 if (buflen < 0) 1313 return (ENOMEM); 1314 dev->nameunit = malloc(buflen, M_BUS, M_WAITOK|M_ZERO); 1315 1316 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1317 free(dev->nameunit, M_BUS); 1318 dev->nameunit = NULL; 1319 return (error); 1320 } 1321 dc->devices[dev->unit] = dev; 1322 dev->devclass = dc; 1323 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1324 1325 return (0); 1326 } 1327 1328 /** 1329 * @internal 1330 * @brief Delete a device from a devclass 1331 * 1332 * The device is removed from the devclass's device list and its unit 1333 * number is freed. 1334 1335 * @param dc the devclass to delete from 1336 * @param dev the device to delete 1337 * 1338 * @retval 0 success 1339 */ 1340 static int 1341 devclass_delete_device(devclass_t dc, device_t dev) 1342 { 1343 if (!dc || !dev) 1344 return (0); 1345 1346 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1347 1348 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1349 panic("devclass_delete_device: inconsistent device class"); 1350 dc->devices[dev->unit] = NULL; 1351 if (dev->flags & DF_WILDCARD) 1352 dev->unit = DEVICE_UNIT_ANY; 1353 dev->devclass = NULL; 1354 free(dev->nameunit, M_BUS); 1355 dev->nameunit = NULL; 1356 1357 return (0); 1358 } 1359 1360 /** 1361 * @internal 1362 * @brief Make a new device and add it as a child of @p parent 1363 * 1364 * @param parent the parent of the new device 1365 * @param name the devclass name of the new device or @c NULL 1366 * to leave the devclass unspecified 1367 * @parem unit the unit number of the new device of @c DEVICE_UNIT_ANY 1368 * to leave the unit number unspecified 1369 * 1370 * @returns the new device 1371 */ 1372 static device_t 1373 make_device(device_t parent, const char *name, int unit) 1374 { 1375 device_t dev; 1376 devclass_t dc; 1377 1378 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1379 1380 if (name) { 1381 dc = devclass_find_internal(name, NULL, TRUE); 1382 if (!dc) { 1383 printf("make_device: can't find device class %s\n", 1384 name); 1385 return (NULL); 1386 } 1387 } else { 1388 dc = NULL; 1389 } 1390 1391 dev = malloc(sizeof(*dev), M_BUS, M_WAITOK|M_ZERO); 1392 dev->parent = parent; 1393 TAILQ_INIT(&dev->children); 1394 kobj_init((kobj_t) dev, &null_class); 1395 dev->driver = NULL; 1396 dev->devclass = NULL; 1397 dev->unit = unit; 1398 dev->nameunit = NULL; 1399 dev->desc = NULL; 1400 dev->busy = 0; 1401 dev->devflags = 0; 1402 dev->flags = DF_ENABLED; 1403 dev->order = 0; 1404 if (unit == DEVICE_UNIT_ANY) 1405 dev->flags |= DF_WILDCARD; 1406 if (name) { 1407 dev->flags |= DF_FIXEDCLASS; 1408 if (devclass_add_device(dc, dev)) { 1409 kobj_delete((kobj_t) dev, M_BUS); 1410 return (NULL); 1411 } 1412 } 1413 if (parent != NULL && device_has_quiet_children(parent)) 1414 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1415 dev->ivars = NULL; 1416 dev->softc = NULL; 1417 LIST_INIT(&dev->props); 1418 1419 dev->state = DS_NOTPRESENT; 1420 1421 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1422 bus_data_generation_update(); 1423 1424 return (dev); 1425 } 1426 1427 /** 1428 * @internal 1429 * @brief Print a description of a device. 1430 */ 1431 static int 1432 device_print_child(device_t dev, device_t child) 1433 { 1434 int retval = 0; 1435 1436 if (device_is_alive(child)) 1437 retval += BUS_PRINT_CHILD(dev, child); 1438 else 1439 retval += device_printf(child, " not found\n"); 1440 1441 return (retval); 1442 } 1443 1444 /** 1445 * @brief Create a new device 1446 * 1447 * This creates a new device and adds it as a child of an existing 1448 * parent device. The new device will be added after the last existing 1449 * child with order zero. 1450 * 1451 * @param dev the device which will be the parent of the 1452 * new child device 1453 * @param name devclass name for new device or @c NULL if not 1454 * specified 1455 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not 1456 * specified 1457 * 1458 * @returns the new device 1459 */ 1460 device_t 1461 device_add_child(device_t dev, const char *name, int unit) 1462 { 1463 return (device_add_child_ordered(dev, 0, name, unit)); 1464 } 1465 1466 /** 1467 * @brief Create a new device 1468 * 1469 * This creates a new device and adds it as a child of an existing 1470 * parent device. The new device will be added after the last existing 1471 * child with the same order. 1472 * 1473 * @param dev the device which will be the parent of the 1474 * new child device 1475 * @param order a value which is used to partially sort the 1476 * children of @p dev - devices created using 1477 * lower values of @p order appear first in @p 1478 * dev's list of children 1479 * @param name devclass name for new device or @c NULL if not 1480 * specified 1481 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not 1482 * specified 1483 * 1484 * @returns the new device 1485 */ 1486 device_t 1487 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1488 { 1489 device_t child; 1490 device_t place; 1491 1492 PDEBUG(("%s at %s with order %u as unit %d", 1493 name, DEVICENAME(dev), order, unit)); 1494 KASSERT(name != NULL || unit == DEVICE_UNIT_ANY, 1495 ("child device with wildcard name and specific unit number")); 1496 1497 child = make_device(dev, name, unit); 1498 if (child == NULL) 1499 return (child); 1500 child->order = order; 1501 1502 TAILQ_FOREACH(place, &dev->children, link) { 1503 if (place->order > order) 1504 break; 1505 } 1506 1507 if (place) { 1508 /* 1509 * The device 'place' is the first device whose order is 1510 * greater than the new child. 1511 */ 1512 TAILQ_INSERT_BEFORE(place, child, link); 1513 } else { 1514 /* 1515 * The new child's order is greater or equal to the order of 1516 * any existing device. Add the child to the tail of the list. 1517 */ 1518 TAILQ_INSERT_TAIL(&dev->children, child, link); 1519 } 1520 1521 bus_data_generation_update(); 1522 return (child); 1523 } 1524 1525 /** 1526 * @brief Delete a device 1527 * 1528 * This function deletes a device along with all of its children. If 1529 * the device currently has a driver attached to it, the device is 1530 * detached first using device_detach(). 1531 * 1532 * @param dev the parent device 1533 * @param child the device to delete 1534 * 1535 * @retval 0 success 1536 * @retval non-zero a unit error code describing the error 1537 */ 1538 int 1539 device_delete_child(device_t dev, device_t child) 1540 { 1541 int error; 1542 device_t grandchild; 1543 1544 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1545 1546 /* 1547 * Detach child. Ideally this cleans up any grandchild 1548 * devices. 1549 */ 1550 if ((error = device_detach(child)) != 0) 1551 return (error); 1552 1553 /* Delete any grandchildren left after detach. */ 1554 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1555 error = device_delete_child(child, grandchild); 1556 if (error) 1557 return (error); 1558 } 1559 1560 device_destroy_props(dev); 1561 if (child->devclass) 1562 devclass_delete_device(child->devclass, child); 1563 if (child->parent) 1564 BUS_CHILD_DELETED(dev, child); 1565 TAILQ_REMOVE(&dev->children, child, link); 1566 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1567 kobj_delete((kobj_t) child, M_BUS); 1568 1569 bus_data_generation_update(); 1570 return (0); 1571 } 1572 1573 /** 1574 * @brief Delete all children devices of the given device, if any. 1575 * 1576 * This function deletes all children devices of the given device, if 1577 * any, using the device_delete_child() function for each device it 1578 * finds. If a child device cannot be deleted, this function will 1579 * return an error code. 1580 * 1581 * @param dev the parent device 1582 * 1583 * @retval 0 success 1584 * @retval non-zero a device would not detach 1585 */ 1586 int 1587 device_delete_children(device_t dev) 1588 { 1589 device_t child; 1590 int error; 1591 1592 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1593 1594 error = 0; 1595 1596 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1597 error = device_delete_child(dev, child); 1598 if (error) { 1599 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1600 break; 1601 } 1602 } 1603 return (error); 1604 } 1605 1606 /** 1607 * @brief Find a device given a unit number 1608 * 1609 * This is similar to devclass_get_devices() but only searches for 1610 * devices which have @p dev as a parent. 1611 * 1612 * @param dev the parent device to search 1613 * @param unit the unit number to search for. If the unit is 1614 * @c DEVICE_UNIT_ANY, return the first child of @p dev 1615 * which has name @p classname (that is, the one with the 1616 * lowest unit.) 1617 * 1618 * @returns the device with the given unit number or @c 1619 * NULL if there is no such device 1620 */ 1621 device_t 1622 device_find_child(device_t dev, const char *classname, int unit) 1623 { 1624 devclass_t dc; 1625 device_t child; 1626 1627 dc = devclass_find(classname); 1628 if (!dc) 1629 return (NULL); 1630 1631 if (unit != DEVICE_UNIT_ANY) { 1632 child = devclass_get_device(dc, unit); 1633 if (child && child->parent == dev) 1634 return (child); 1635 } else { 1636 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1637 child = devclass_get_device(dc, unit); 1638 if (child && child->parent == dev) 1639 return (child); 1640 } 1641 } 1642 return (NULL); 1643 } 1644 1645 /** 1646 * @internal 1647 */ 1648 static driverlink_t 1649 first_matching_driver(devclass_t dc, device_t dev) 1650 { 1651 if (dev->devclass) 1652 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1653 return (TAILQ_FIRST(&dc->drivers)); 1654 } 1655 1656 /** 1657 * @internal 1658 */ 1659 static driverlink_t 1660 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1661 { 1662 if (dev->devclass) { 1663 driverlink_t dl; 1664 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1665 if (!strcmp(dev->devclass->name, dl->driver->name)) 1666 return (dl); 1667 return (NULL); 1668 } 1669 return (TAILQ_NEXT(last, link)); 1670 } 1671 1672 /** 1673 * @internal 1674 */ 1675 int 1676 device_probe_child(device_t dev, device_t child) 1677 { 1678 devclass_t dc; 1679 driverlink_t best = NULL; 1680 driverlink_t dl; 1681 int result, pri = 0; 1682 /* We should preserve the devclass (or lack of) set by the bus. */ 1683 int hasclass = (child->devclass != NULL); 1684 1685 bus_topo_assert(); 1686 1687 dc = dev->devclass; 1688 if (!dc) 1689 panic("device_probe_child: parent device has no devclass"); 1690 1691 /* 1692 * If the state is already probed, then return. 1693 */ 1694 if (child->state == DS_ALIVE) 1695 return (0); 1696 1697 for (; dc; dc = dc->parent) { 1698 for (dl = first_matching_driver(dc, child); 1699 dl; 1700 dl = next_matching_driver(dc, child, dl)) { 1701 /* If this driver's pass is too high, then ignore it. */ 1702 if (dl->pass > bus_current_pass) 1703 continue; 1704 1705 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1706 result = device_set_driver(child, dl->driver); 1707 if (result == ENOMEM) 1708 return (result); 1709 else if (result != 0) 1710 continue; 1711 if (!hasclass) { 1712 if (device_set_devclass(child, 1713 dl->driver->name) != 0) { 1714 char const * devname = 1715 device_get_name(child); 1716 if (devname == NULL) 1717 devname = "(unknown)"; 1718 printf("driver bug: Unable to set " 1719 "devclass (class: %s " 1720 "devname: %s)\n", 1721 dl->driver->name, 1722 devname); 1723 (void)device_set_driver(child, NULL); 1724 continue; 1725 } 1726 } 1727 1728 /* Fetch any flags for the device before probing. */ 1729 resource_int_value(dl->driver->name, child->unit, 1730 "flags", &child->devflags); 1731 1732 result = DEVICE_PROBE(child); 1733 1734 /* 1735 * If probe returns 0, this is the driver that wins this 1736 * device. 1737 */ 1738 if (result == 0) { 1739 best = dl; 1740 pri = 0; 1741 goto exact_match; /* C doesn't have break 2 */ 1742 } 1743 1744 /* Reset flags and devclass before the next probe. */ 1745 child->devflags = 0; 1746 if (!hasclass) 1747 (void)device_set_devclass(child, NULL); 1748 1749 /* 1750 * Reset DF_QUIET in case this driver doesn't 1751 * end up as the best driver. 1752 */ 1753 device_verbose(child); 1754 1755 /* 1756 * Probes that return BUS_PROBE_NOWILDCARD or lower 1757 * only match on devices whose driver was explicitly 1758 * specified. 1759 */ 1760 if (result <= BUS_PROBE_NOWILDCARD && 1761 !(child->flags & DF_FIXEDCLASS)) { 1762 result = ENXIO; 1763 } 1764 1765 /* 1766 * The driver returned an error so it 1767 * certainly doesn't match. 1768 */ 1769 if (result > 0) { 1770 (void)device_set_driver(child, NULL); 1771 continue; 1772 } 1773 1774 /* 1775 * A priority lower than SUCCESS, remember the 1776 * best matching driver. Initialise the value 1777 * of pri for the first match. 1778 */ 1779 if (best == NULL || result > pri) { 1780 best = dl; 1781 pri = result; 1782 continue; 1783 } 1784 } 1785 } 1786 1787 if (best == NULL) 1788 return (ENXIO); 1789 1790 /* 1791 * If we found a driver, change state and initialise the devclass. 1792 * Set the winning driver, devclass, and flags. 1793 */ 1794 result = device_set_driver(child, best->driver); 1795 if (result != 0) 1796 return (result); 1797 if (!child->devclass) { 1798 result = device_set_devclass(child, best->driver->name); 1799 if (result != 0) { 1800 (void)device_set_driver(child, NULL); 1801 return (result); 1802 } 1803 } 1804 resource_int_value(best->driver->name, child->unit, 1805 "flags", &child->devflags); 1806 1807 /* 1808 * A bit bogus. Call the probe method again to make sure that we have 1809 * the right description for the device. 1810 */ 1811 result = DEVICE_PROBE(child); 1812 if (result > 0) { 1813 if (!hasclass) 1814 (void)device_set_devclass(child, NULL); 1815 (void)device_set_driver(child, NULL); 1816 return (result); 1817 } 1818 1819 exact_match: 1820 child->state = DS_ALIVE; 1821 bus_data_generation_update(); 1822 return (0); 1823 } 1824 1825 /** 1826 * @brief Return the parent of a device 1827 */ 1828 device_t 1829 device_get_parent(device_t dev) 1830 { 1831 return (dev->parent); 1832 } 1833 1834 /** 1835 * @brief Get a list of children of a device 1836 * 1837 * An array containing a list of all the children of the given device 1838 * is allocated and returned in @p *devlistp. The number of devices 1839 * in the array is returned in @p *devcountp. The caller should free 1840 * the array using @c free(p, M_TEMP). 1841 * 1842 * @param dev the device to examine 1843 * @param devlistp points at location for array pointer return 1844 * value 1845 * @param devcountp points at location for array size return value 1846 * 1847 * @retval 0 success 1848 * @retval ENOMEM the array allocation failed 1849 */ 1850 int 1851 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1852 { 1853 int count; 1854 device_t child; 1855 device_t *list; 1856 1857 count = 0; 1858 TAILQ_FOREACH(child, &dev->children, link) { 1859 count++; 1860 } 1861 if (devlistp == NULL) { 1862 *devcountp = count; 1863 return (0); 1864 } 1865 if (count == 0) { 1866 *devlistp = NULL; 1867 *devcountp = 0; 1868 return (0); 1869 } 1870 1871 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1872 if (!list) 1873 return (ENOMEM); 1874 1875 count = 0; 1876 TAILQ_FOREACH(child, &dev->children, link) { 1877 list[count] = child; 1878 count++; 1879 } 1880 1881 *devlistp = list; 1882 *devcountp = count; 1883 1884 return (0); 1885 } 1886 1887 /** 1888 * @brief Check if a device has children 1889 * 1890 * @param dev the device to examine 1891 * 1892 * @rerval true the device has at least one child 1893 * @retval false the device has no children 1894 */ 1895 bool 1896 device_has_children(device_t dev) 1897 { 1898 return (!TAILQ_EMPTY(&dev->children)); 1899 } 1900 1901 /** 1902 * @brief Return the current driver for the device or @c NULL if there 1903 * is no driver currently attached 1904 */ 1905 driver_t * 1906 device_get_driver(device_t dev) 1907 { 1908 return (dev->driver); 1909 } 1910 1911 /** 1912 * @brief Return the current devclass for the device or @c NULL if 1913 * there is none. 1914 */ 1915 devclass_t 1916 device_get_devclass(device_t dev) 1917 { 1918 return (dev->devclass); 1919 } 1920 1921 /** 1922 * @brief Return the name of the device's devclass or @c NULL if there 1923 * is none. 1924 */ 1925 const char * 1926 device_get_name(device_t dev) 1927 { 1928 if (dev != NULL && dev->devclass) 1929 return (devclass_get_name(dev->devclass)); 1930 return (NULL); 1931 } 1932 1933 /** 1934 * @brief Return a string containing the device's devclass name 1935 * followed by an ascii representation of the device's unit number 1936 * (e.g. @c "foo2"). 1937 */ 1938 const char * 1939 device_get_nameunit(device_t dev) 1940 { 1941 return (dev->nameunit); 1942 } 1943 1944 /** 1945 * @brief Return the device's unit number. 1946 */ 1947 int 1948 device_get_unit(device_t dev) 1949 { 1950 return (dev->unit); 1951 } 1952 1953 /** 1954 * @brief Return the device's description string 1955 */ 1956 const char * 1957 device_get_desc(device_t dev) 1958 { 1959 return (dev->desc); 1960 } 1961 1962 /** 1963 * @brief Return the device's flags 1964 */ 1965 uint32_t 1966 device_get_flags(device_t dev) 1967 { 1968 return (dev->devflags); 1969 } 1970 1971 struct sysctl_ctx_list * 1972 device_get_sysctl_ctx(device_t dev) 1973 { 1974 return (&dev->sysctl_ctx); 1975 } 1976 1977 struct sysctl_oid * 1978 device_get_sysctl_tree(device_t dev) 1979 { 1980 return (dev->sysctl_tree); 1981 } 1982 1983 /** 1984 * @brief Print the name of the device followed by a colon and a space 1985 * 1986 * @returns the number of characters printed 1987 */ 1988 int 1989 device_print_prettyname(device_t dev) 1990 { 1991 const char *name = device_get_name(dev); 1992 1993 if (name == NULL) 1994 return (printf("unknown: ")); 1995 return (printf("%s%d: ", name, device_get_unit(dev))); 1996 } 1997 1998 /** 1999 * @brief Print the name of the device followed by a colon, a space 2000 * and the result of calling vprintf() with the value of @p fmt and 2001 * the following arguments. 2002 * 2003 * @returns the number of characters printed 2004 */ 2005 int 2006 device_printf(device_t dev, const char * fmt, ...) 2007 { 2008 char buf[128]; 2009 struct sbuf sb; 2010 const char *name; 2011 va_list ap; 2012 size_t retval; 2013 2014 retval = 0; 2015 2016 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2017 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 2018 2019 name = device_get_name(dev); 2020 2021 if (name == NULL) 2022 sbuf_cat(&sb, "unknown: "); 2023 else 2024 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2025 2026 va_start(ap, fmt); 2027 sbuf_vprintf(&sb, fmt, ap); 2028 va_end(ap); 2029 2030 sbuf_finish(&sb); 2031 sbuf_delete(&sb); 2032 2033 return (retval); 2034 } 2035 2036 /** 2037 * @brief Print the name of the device followed by a colon, a space 2038 * and the result of calling log() with the value of @p fmt and 2039 * the following arguments. 2040 * 2041 * @returns the number of characters printed 2042 */ 2043 int 2044 device_log(device_t dev, int pri, const char * fmt, ...) 2045 { 2046 char buf[128]; 2047 struct sbuf sb; 2048 const char *name; 2049 va_list ap; 2050 size_t retval; 2051 2052 retval = 0; 2053 2054 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2055 2056 name = device_get_name(dev); 2057 2058 if (name == NULL) 2059 sbuf_cat(&sb, "unknown: "); 2060 else 2061 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2062 2063 va_start(ap, fmt); 2064 sbuf_vprintf(&sb, fmt, ap); 2065 va_end(ap); 2066 2067 sbuf_finish(&sb); 2068 2069 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb)); 2070 retval = sbuf_len(&sb); 2071 2072 sbuf_delete(&sb); 2073 2074 return (retval); 2075 } 2076 2077 /** 2078 * @internal 2079 */ 2080 static void 2081 device_set_desc_internal(device_t dev, const char *desc, bool allocated) 2082 { 2083 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2084 free(dev->desc, M_BUS); 2085 dev->flags &= ~DF_DESCMALLOCED; 2086 dev->desc = NULL; 2087 } 2088 2089 if (allocated && desc) 2090 dev->flags |= DF_DESCMALLOCED; 2091 dev->desc = __DECONST(char *, desc); 2092 2093 bus_data_generation_update(); 2094 } 2095 2096 /** 2097 * @brief Set the device's description 2098 * 2099 * The value of @c desc should be a string constant that will not 2100 * change (at least until the description is changed in a subsequent 2101 * call to device_set_desc() or device_set_desc_copy()). 2102 */ 2103 void 2104 device_set_desc(device_t dev, const char *desc) 2105 { 2106 device_set_desc_internal(dev, desc, false); 2107 } 2108 2109 /** 2110 * @brief Set the device's description 2111 * 2112 * A printf-like version of device_set_desc(). 2113 */ 2114 void 2115 device_set_descf(device_t dev, const char *fmt, ...) 2116 { 2117 va_list ap; 2118 char *buf = NULL; 2119 2120 va_start(ap, fmt); 2121 vasprintf(&buf, M_BUS, fmt, ap); 2122 va_end(ap); 2123 device_set_desc_internal(dev, buf, true); 2124 } 2125 2126 /** 2127 * @brief Set the device's description 2128 * 2129 * The string pointed to by @c desc is copied. Use this function if 2130 * the device description is generated, (e.g. with sprintf()). 2131 */ 2132 void 2133 device_set_desc_copy(device_t dev, const char *desc) 2134 { 2135 char *buf; 2136 2137 buf = strdup_flags(desc, M_BUS, M_WAITOK); 2138 device_set_desc_internal(dev, buf, true); 2139 } 2140 2141 /** 2142 * @brief Set the device's flags 2143 */ 2144 void 2145 device_set_flags(device_t dev, uint32_t flags) 2146 { 2147 dev->devflags = flags; 2148 } 2149 2150 /** 2151 * @brief Return the device's softc field 2152 * 2153 * The softc is allocated and zeroed when a driver is attached, based 2154 * on the size field of the driver. 2155 */ 2156 void * 2157 device_get_softc(device_t dev) 2158 { 2159 return (dev->softc); 2160 } 2161 2162 /** 2163 * @brief Set the device's softc field 2164 * 2165 * Most drivers do not need to use this since the softc is allocated 2166 * automatically when the driver is attached. 2167 */ 2168 void 2169 device_set_softc(device_t dev, void *softc) 2170 { 2171 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2172 free(dev->softc, M_BUS_SC); 2173 dev->softc = softc; 2174 if (dev->softc) 2175 dev->flags |= DF_EXTERNALSOFTC; 2176 else 2177 dev->flags &= ~DF_EXTERNALSOFTC; 2178 } 2179 2180 /** 2181 * @brief Free claimed softc 2182 * 2183 * Most drivers do not need to use this since the softc is freed 2184 * automatically when the driver is detached. 2185 */ 2186 void 2187 device_free_softc(void *softc) 2188 { 2189 free(softc, M_BUS_SC); 2190 } 2191 2192 /** 2193 * @brief Claim softc 2194 * 2195 * This function can be used to let the driver free the automatically 2196 * allocated softc using "device_free_softc()". This function is 2197 * useful when the driver is refcounting the softc and the softc 2198 * cannot be freed when the "device_detach" method is called. 2199 */ 2200 void 2201 device_claim_softc(device_t dev) 2202 { 2203 if (dev->softc) 2204 dev->flags |= DF_EXTERNALSOFTC; 2205 else 2206 dev->flags &= ~DF_EXTERNALSOFTC; 2207 } 2208 2209 /** 2210 * @brief Get the device's ivars field 2211 * 2212 * The ivars field is used by the parent device to store per-device 2213 * state (e.g. the physical location of the device or a list of 2214 * resources). 2215 */ 2216 void * 2217 device_get_ivars(device_t dev) 2218 { 2219 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2220 return (dev->ivars); 2221 } 2222 2223 /** 2224 * @brief Set the device's ivars field 2225 */ 2226 void 2227 device_set_ivars(device_t dev, void * ivars) 2228 { 2229 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2230 dev->ivars = ivars; 2231 } 2232 2233 /** 2234 * @brief Return the device's state 2235 */ 2236 device_state_t 2237 device_get_state(device_t dev) 2238 { 2239 return (dev->state); 2240 } 2241 2242 /** 2243 * @brief Set the DF_ENABLED flag for the device 2244 */ 2245 void 2246 device_enable(device_t dev) 2247 { 2248 dev->flags |= DF_ENABLED; 2249 } 2250 2251 /** 2252 * @brief Clear the DF_ENABLED flag for the device 2253 */ 2254 void 2255 device_disable(device_t dev) 2256 { 2257 dev->flags &= ~DF_ENABLED; 2258 } 2259 2260 /** 2261 * @brief Increment the busy counter for the device 2262 */ 2263 void 2264 device_busy(device_t dev) 2265 { 2266 2267 /* 2268 * Mark the device as busy, recursively up the tree if this busy count 2269 * goes 0->1. 2270 */ 2271 if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL) 2272 device_busy(dev->parent); 2273 } 2274 2275 /** 2276 * @brief Decrement the busy counter for the device 2277 */ 2278 void 2279 device_unbusy(device_t dev) 2280 { 2281 2282 /* 2283 * Mark the device as unbsy, recursively if this is the last busy count. 2284 */ 2285 if (refcount_release(&dev->busy) && dev->parent != NULL) 2286 device_unbusy(dev->parent); 2287 } 2288 2289 /** 2290 * @brief Set the DF_QUIET flag for the device 2291 */ 2292 void 2293 device_quiet(device_t dev) 2294 { 2295 dev->flags |= DF_QUIET; 2296 } 2297 2298 /** 2299 * @brief Set the DF_QUIET_CHILDREN flag for the device 2300 */ 2301 void 2302 device_quiet_children(device_t dev) 2303 { 2304 dev->flags |= DF_QUIET_CHILDREN; 2305 } 2306 2307 /** 2308 * @brief Clear the DF_QUIET flag for the device 2309 */ 2310 void 2311 device_verbose(device_t dev) 2312 { 2313 dev->flags &= ~DF_QUIET; 2314 } 2315 2316 ssize_t 2317 device_get_property(device_t dev, const char *prop, void *val, size_t sz, 2318 device_property_type_t type) 2319 { 2320 device_t bus = device_get_parent(dev); 2321 2322 switch (type) { 2323 case DEVICE_PROP_ANY: 2324 case DEVICE_PROP_BUFFER: 2325 case DEVICE_PROP_HANDLE: /* Size checks done in implementation. */ 2326 break; 2327 case DEVICE_PROP_UINT32: 2328 if (sz % 4 != 0) 2329 return (-1); 2330 break; 2331 case DEVICE_PROP_UINT64: 2332 if (sz % 8 != 0) 2333 return (-1); 2334 break; 2335 default: 2336 return (-1); 2337 } 2338 2339 return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type)); 2340 } 2341 2342 bool 2343 device_has_property(device_t dev, const char *prop) 2344 { 2345 return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0); 2346 } 2347 2348 /** 2349 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2350 */ 2351 int 2352 device_has_quiet_children(device_t dev) 2353 { 2354 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2355 } 2356 2357 /** 2358 * @brief Return non-zero if the DF_QUIET flag is set on the device 2359 */ 2360 int 2361 device_is_quiet(device_t dev) 2362 { 2363 return ((dev->flags & DF_QUIET) != 0); 2364 } 2365 2366 /** 2367 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2368 */ 2369 int 2370 device_is_enabled(device_t dev) 2371 { 2372 return ((dev->flags & DF_ENABLED) != 0); 2373 } 2374 2375 /** 2376 * @brief Return non-zero if the device was successfully probed 2377 */ 2378 int 2379 device_is_alive(device_t dev) 2380 { 2381 return (dev->state >= DS_ALIVE); 2382 } 2383 2384 /** 2385 * @brief Return non-zero if the device currently has a driver 2386 * attached to it 2387 */ 2388 int 2389 device_is_attached(device_t dev) 2390 { 2391 return (dev->state >= DS_ATTACHED); 2392 } 2393 2394 /** 2395 * @brief Return non-zero if the device is currently suspended. 2396 */ 2397 int 2398 device_is_suspended(device_t dev) 2399 { 2400 return ((dev->flags & DF_SUSPENDED) != 0); 2401 } 2402 2403 /** 2404 * @brief Set the devclass of a device 2405 * @see devclass_add_device(). 2406 */ 2407 int 2408 device_set_devclass(device_t dev, const char *classname) 2409 { 2410 devclass_t dc; 2411 int error; 2412 2413 if (!classname) { 2414 if (dev->devclass) 2415 devclass_delete_device(dev->devclass, dev); 2416 return (0); 2417 } 2418 2419 if (dev->devclass) { 2420 printf("device_set_devclass: device class already set\n"); 2421 return (EINVAL); 2422 } 2423 2424 dc = devclass_find_internal(classname, NULL, TRUE); 2425 if (!dc) 2426 return (ENOMEM); 2427 2428 error = devclass_add_device(dc, dev); 2429 2430 bus_data_generation_update(); 2431 return (error); 2432 } 2433 2434 /** 2435 * @brief Set the devclass of a device and mark the devclass fixed. 2436 * @see device_set_devclass() 2437 */ 2438 int 2439 device_set_devclass_fixed(device_t dev, const char *classname) 2440 { 2441 int error; 2442 2443 if (classname == NULL) 2444 return (EINVAL); 2445 2446 error = device_set_devclass(dev, classname); 2447 if (error) 2448 return (error); 2449 dev->flags |= DF_FIXEDCLASS; 2450 return (0); 2451 } 2452 2453 /** 2454 * @brief Query the device to determine if it's of a fixed devclass 2455 * @see device_set_devclass_fixed() 2456 */ 2457 bool 2458 device_is_devclass_fixed(device_t dev) 2459 { 2460 return ((dev->flags & DF_FIXEDCLASS) != 0); 2461 } 2462 2463 /** 2464 * @brief Set the driver of a device 2465 * 2466 * @retval 0 success 2467 * @retval EBUSY the device already has a driver attached 2468 * @retval ENOMEM a memory allocation failure occurred 2469 */ 2470 int 2471 device_set_driver(device_t dev, driver_t *driver) 2472 { 2473 int domain; 2474 struct domainset *policy; 2475 2476 if (dev->state >= DS_ATTACHED) 2477 return (EBUSY); 2478 2479 if (dev->driver == driver) 2480 return (0); 2481 2482 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2483 free(dev->softc, M_BUS_SC); 2484 dev->softc = NULL; 2485 } 2486 device_set_desc(dev, NULL); 2487 kobj_delete((kobj_t) dev, NULL); 2488 dev->driver = driver; 2489 if (driver) { 2490 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2491 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2492 if (bus_get_domain(dev, &domain) == 0) 2493 policy = DOMAINSET_PREF(domain); 2494 else 2495 policy = DOMAINSET_RR(); 2496 dev->softc = malloc_domainset(driver->size, M_BUS_SC, 2497 policy, M_WAITOK | M_ZERO); 2498 } 2499 } else { 2500 kobj_init((kobj_t) dev, &null_class); 2501 } 2502 2503 bus_data_generation_update(); 2504 return (0); 2505 } 2506 2507 /** 2508 * @brief Probe a device, and return this status. 2509 * 2510 * This function is the core of the device autoconfiguration 2511 * system. Its purpose is to select a suitable driver for a device and 2512 * then call that driver to initialise the hardware appropriately. The 2513 * driver is selected by calling the DEVICE_PROBE() method of a set of 2514 * candidate drivers and then choosing the driver which returned the 2515 * best value. This driver is then attached to the device using 2516 * device_attach(). 2517 * 2518 * The set of suitable drivers is taken from the list of drivers in 2519 * the parent device's devclass. If the device was originally created 2520 * with a specific class name (see device_add_child()), only drivers 2521 * with that name are probed, otherwise all drivers in the devclass 2522 * are probed. If no drivers return successful probe values in the 2523 * parent devclass, the search continues in the parent of that 2524 * devclass (see devclass_get_parent()) if any. 2525 * 2526 * @param dev the device to initialise 2527 * 2528 * @retval 0 success 2529 * @retval ENXIO no driver was found 2530 * @retval ENOMEM memory allocation failure 2531 * @retval non-zero some other unix error code 2532 * @retval -1 Device already attached 2533 */ 2534 int 2535 device_probe(device_t dev) 2536 { 2537 int error; 2538 2539 bus_topo_assert(); 2540 2541 if (dev->state >= DS_ALIVE) 2542 return (-1); 2543 2544 if (!(dev->flags & DF_ENABLED)) { 2545 if (bootverbose && device_get_name(dev) != NULL) { 2546 device_print_prettyname(dev); 2547 printf("not probed (disabled)\n"); 2548 } 2549 return (-1); 2550 } 2551 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2552 if (bus_current_pass == BUS_PASS_DEFAULT && 2553 !(dev->flags & DF_DONENOMATCH)) { 2554 device_handle_nomatch(dev); 2555 } 2556 return (error); 2557 } 2558 return (0); 2559 } 2560 2561 /** 2562 * @brief Probe a device and attach a driver if possible 2563 * 2564 * calls device_probe() and attaches if that was successful. 2565 */ 2566 int 2567 device_probe_and_attach(device_t dev) 2568 { 2569 int error; 2570 2571 bus_topo_assert(); 2572 2573 error = device_probe(dev); 2574 if (error == -1) 2575 return (0); 2576 else if (error != 0) 2577 return (error); 2578 2579 return (device_attach(dev)); 2580 } 2581 2582 /** 2583 * @brief Attach a device driver to a device 2584 * 2585 * This function is a wrapper around the DEVICE_ATTACH() driver 2586 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2587 * device's sysctl tree, optionally prints a description of the device 2588 * and queues a notification event for user-based device management 2589 * services. 2590 * 2591 * Normally this function is only called internally from 2592 * device_probe_and_attach(). 2593 * 2594 * @param dev the device to initialise 2595 * 2596 * @retval 0 success 2597 * @retval ENXIO no driver was found 2598 * @retval ENOMEM memory allocation failure 2599 * @retval non-zero some other unix error code 2600 */ 2601 int 2602 device_attach(device_t dev) 2603 { 2604 uint64_t attachtime; 2605 uint16_t attachentropy; 2606 int error; 2607 2608 if (resource_disabled(dev->driver->name, dev->unit)) { 2609 /* 2610 * Mostly detach the device, but leave it attached to 2611 * the devclass to reserve the name and unit. 2612 */ 2613 device_disable(dev); 2614 (void)device_set_driver(dev, NULL); 2615 dev->state = DS_NOTPRESENT; 2616 if (bootverbose) 2617 device_printf(dev, "disabled via hints entry\n"); 2618 return (ENXIO); 2619 } 2620 2621 KASSERT(IS_DEFAULT_VNET(TD_TO_VNET(curthread)), 2622 ("device_attach: curthread is not in default vnet")); 2623 CURVNET_SET_QUIET(TD_TO_VNET(curthread)); 2624 2625 device_sysctl_init(dev); 2626 if (!device_is_quiet(dev)) 2627 device_print_child(dev->parent, dev); 2628 attachtime = get_cyclecount(); 2629 dev->state = DS_ATTACHING; 2630 if ((error = DEVICE_ATTACH(dev)) != 0) { 2631 printf("device_attach: %s%d attach returned %d\n", 2632 dev->driver->name, dev->unit, error); 2633 BUS_CHILD_DETACHED(dev->parent, dev); 2634 if (disable_failed_devs) { 2635 /* 2636 * When the user has asked to disable failed devices, we 2637 * directly disable the device, but leave it in the 2638 * attaching state. It will not try to probe/attach the 2639 * device further. This leaves the device numbering 2640 * intact for other similar devices in the system. It 2641 * can be removed from this state with devctl. 2642 */ 2643 device_disable(dev); 2644 } else { 2645 /* 2646 * Otherwise, when attach fails, tear down the state 2647 * around that so we can retry when, for example, new 2648 * drivers are loaded. 2649 */ 2650 if (!(dev->flags & DF_FIXEDCLASS)) 2651 devclass_delete_device(dev->devclass, dev); 2652 (void)device_set_driver(dev, NULL); 2653 device_sysctl_fini(dev); 2654 KASSERT(dev->busy == 0, ("attach failed but busy")); 2655 dev->state = DS_NOTPRESENT; 2656 } 2657 CURVNET_RESTORE(); 2658 return (error); 2659 } 2660 CURVNET_RESTORE(); 2661 dev->flags |= DF_ATTACHED_ONCE; 2662 /* 2663 * We only need the low bits of this time, but ranges from tens to thousands 2664 * have been seen, so keep 2 bytes' worth. 2665 */ 2666 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 2667 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 2668 device_sysctl_update(dev); 2669 dev->state = DS_ATTACHED; 2670 dev->flags &= ~DF_DONENOMATCH; 2671 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 2672 return (0); 2673 } 2674 2675 /** 2676 * @brief Detach a driver from a device 2677 * 2678 * This function is a wrapper around the DEVICE_DETACH() driver 2679 * method. If the call to DEVICE_DETACH() succeeds, it calls 2680 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2681 * notification event for user-based device management services and 2682 * cleans up the device's sysctl tree. 2683 * 2684 * @param dev the device to un-initialise 2685 * 2686 * @retval 0 success 2687 * @retval ENXIO no driver was found 2688 * @retval ENOMEM memory allocation failure 2689 * @retval non-zero some other unix error code 2690 */ 2691 int 2692 device_detach(device_t dev) 2693 { 2694 int error; 2695 2696 bus_topo_assert(); 2697 2698 PDEBUG(("%s", DEVICENAME(dev))); 2699 if (dev->busy > 0) 2700 return (EBUSY); 2701 if (dev->state == DS_ATTACHING) { 2702 device_printf(dev, "device in attaching state! Deferring detach.\n"); 2703 return (EBUSY); 2704 } 2705 if (dev->state != DS_ATTACHED) 2706 return (0); 2707 2708 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 2709 if ((error = DEVICE_DETACH(dev)) != 0) { 2710 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2711 EVHDEV_DETACH_FAILED); 2712 return (error); 2713 } else { 2714 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2715 EVHDEV_DETACH_COMPLETE); 2716 } 2717 if (!device_is_quiet(dev)) 2718 device_printf(dev, "detached\n"); 2719 if (dev->parent) 2720 BUS_CHILD_DETACHED(dev->parent, dev); 2721 2722 if (!(dev->flags & DF_FIXEDCLASS)) 2723 devclass_delete_device(dev->devclass, dev); 2724 2725 device_verbose(dev); 2726 dev->state = DS_NOTPRESENT; 2727 (void)device_set_driver(dev, NULL); 2728 device_sysctl_fini(dev); 2729 2730 return (0); 2731 } 2732 2733 /** 2734 * @brief Tells a driver to quiesce itself. 2735 * 2736 * This function is a wrapper around the DEVICE_QUIESCE() driver 2737 * method. If the call to DEVICE_QUIESCE() succeeds. 2738 * 2739 * @param dev the device to quiesce 2740 * 2741 * @retval 0 success 2742 * @retval ENXIO no driver was found 2743 * @retval ENOMEM memory allocation failure 2744 * @retval non-zero some other unix error code 2745 */ 2746 int 2747 device_quiesce(device_t dev) 2748 { 2749 PDEBUG(("%s", DEVICENAME(dev))); 2750 if (dev->busy > 0) 2751 return (EBUSY); 2752 if (dev->state != DS_ATTACHED) 2753 return (0); 2754 2755 return (DEVICE_QUIESCE(dev)); 2756 } 2757 2758 /** 2759 * @brief Notify a device of system shutdown 2760 * 2761 * This function calls the DEVICE_SHUTDOWN() driver method if the 2762 * device currently has an attached driver. 2763 * 2764 * @returns the value returned by DEVICE_SHUTDOWN() 2765 */ 2766 int 2767 device_shutdown(device_t dev) 2768 { 2769 if (dev->state < DS_ATTACHED) 2770 return (0); 2771 return (DEVICE_SHUTDOWN(dev)); 2772 } 2773 2774 /** 2775 * @brief Set the unit number of a device 2776 * 2777 * This function can be used to override the unit number used for a 2778 * device (e.g. to wire a device to a pre-configured unit number). 2779 */ 2780 int 2781 device_set_unit(device_t dev, int unit) 2782 { 2783 devclass_t dc; 2784 int err; 2785 2786 if (unit == dev->unit) 2787 return (0); 2788 dc = device_get_devclass(dev); 2789 if (unit < dc->maxunit && dc->devices[unit]) 2790 return (EBUSY); 2791 err = devclass_delete_device(dc, dev); 2792 if (err) 2793 return (err); 2794 dev->unit = unit; 2795 err = devclass_add_device(dc, dev); 2796 if (err) 2797 return (err); 2798 2799 bus_data_generation_update(); 2800 return (0); 2801 } 2802 2803 /*======================================*/ 2804 /* 2805 * Some useful method implementations to make life easier for bus drivers. 2806 */ 2807 2808 /** 2809 * @brief Initialize a resource mapping request 2810 * 2811 * This is the internal implementation of the public API 2812 * resource_init_map_request. Callers may be using a different layout 2813 * of struct resource_map_request than the kernel, so callers pass in 2814 * the size of the structure they are using to identify the structure 2815 * layout. 2816 */ 2817 void 2818 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 2819 { 2820 bzero(args, sz); 2821 args->size = sz; 2822 args->memattr = VM_MEMATTR_DEVICE; 2823 } 2824 2825 /** 2826 * @brief Validate a resource mapping request 2827 * 2828 * Translate a device driver's mapping request (@p in) to a struct 2829 * resource_map_request using the current structure layout (@p out). 2830 * In addition, validate the offset and length from the mapping 2831 * request against the bounds of the resource @p r. If the offset or 2832 * length are invalid, fail with EINVAL. If the offset and length are 2833 * valid, the absolute starting address of the requested mapping is 2834 * returned in @p startp and the length of the requested mapping is 2835 * returned in @p lengthp. 2836 */ 2837 int 2838 resource_validate_map_request(struct resource *r, 2839 struct resource_map_request *in, struct resource_map_request *out, 2840 rman_res_t *startp, rman_res_t *lengthp) 2841 { 2842 rman_res_t end, length, start; 2843 2844 /* 2845 * This assumes that any callers of this function are compiled 2846 * into the kernel and use the same version of the structure 2847 * as this file. 2848 */ 2849 MPASS(out->size == sizeof(struct resource_map_request)); 2850 2851 if (in != NULL) 2852 bcopy(in, out, imin(in->size, out->size)); 2853 start = rman_get_start(r) + out->offset; 2854 if (out->length == 0) 2855 length = rman_get_size(r); 2856 else 2857 length = out->length; 2858 end = start + length - 1; 2859 if (start > rman_get_end(r) || start < rman_get_start(r)) 2860 return (EINVAL); 2861 if (end > rman_get_end(r) || end < start) 2862 return (EINVAL); 2863 *lengthp = length; 2864 *startp = start; 2865 return (0); 2866 } 2867 2868 /** 2869 * @brief Initialise a resource list. 2870 * 2871 * @param rl the resource list to initialise 2872 */ 2873 void 2874 resource_list_init(struct resource_list *rl) 2875 { 2876 STAILQ_INIT(rl); 2877 } 2878 2879 /** 2880 * @brief Reclaim memory used by a resource list. 2881 * 2882 * This function frees the memory for all resource entries on the list 2883 * (if any). 2884 * 2885 * @param rl the resource list to free 2886 */ 2887 void 2888 resource_list_free(struct resource_list *rl) 2889 { 2890 struct resource_list_entry *rle; 2891 2892 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2893 if (rle->res) 2894 panic("resource_list_free: resource entry is busy"); 2895 STAILQ_REMOVE_HEAD(rl, link); 2896 free(rle, M_BUS); 2897 } 2898 } 2899 2900 /** 2901 * @brief Add a resource entry. 2902 * 2903 * This function adds a resource entry using the given @p type, @p 2904 * start, @p end and @p count values. A rid value is chosen by 2905 * searching sequentially for the first unused rid starting at zero. 2906 * 2907 * @param rl the resource list to edit 2908 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2909 * @param start the start address of the resource 2910 * @param end the end address of the resource 2911 * @param count XXX end-start+1 2912 */ 2913 int 2914 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 2915 rman_res_t end, rman_res_t count) 2916 { 2917 int rid; 2918 2919 rid = 0; 2920 while (resource_list_find(rl, type, rid) != NULL) 2921 rid++; 2922 resource_list_add(rl, type, rid, start, end, count); 2923 return (rid); 2924 } 2925 2926 /** 2927 * @brief Add or modify a resource entry. 2928 * 2929 * If an existing entry exists with the same type and rid, it will be 2930 * modified using the given values of @p start, @p end and @p 2931 * count. If no entry exists, a new one will be created using the 2932 * given values. The resource list entry that matches is then returned. 2933 * 2934 * @param rl the resource list to edit 2935 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2936 * @param rid the resource identifier 2937 * @param start the start address of the resource 2938 * @param end the end address of the resource 2939 * @param count XXX end-start+1 2940 */ 2941 struct resource_list_entry * 2942 resource_list_add(struct resource_list *rl, int type, int rid, 2943 rman_res_t start, rman_res_t end, rman_res_t count) 2944 { 2945 struct resource_list_entry *rle; 2946 2947 rle = resource_list_find(rl, type, rid); 2948 if (!rle) { 2949 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2950 M_WAITOK); 2951 STAILQ_INSERT_TAIL(rl, rle, link); 2952 rle->type = type; 2953 rle->rid = rid; 2954 rle->res = NULL; 2955 rle->flags = 0; 2956 } 2957 2958 if (rle->res) 2959 panic("resource_list_add: resource entry is busy"); 2960 2961 rle->start = start; 2962 rle->end = end; 2963 rle->count = count; 2964 return (rle); 2965 } 2966 2967 /** 2968 * @brief Determine if a resource entry is busy. 2969 * 2970 * Returns true if a resource entry is busy meaning that it has an 2971 * associated resource that is not an unallocated "reserved" resource. 2972 * 2973 * @param rl the resource list to search 2974 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2975 * @param rid the resource identifier 2976 * 2977 * @returns Non-zero if the entry is busy, zero otherwise. 2978 */ 2979 int 2980 resource_list_busy(struct resource_list *rl, int type, int rid) 2981 { 2982 struct resource_list_entry *rle; 2983 2984 rle = resource_list_find(rl, type, rid); 2985 if (rle == NULL || rle->res == NULL) 2986 return (0); 2987 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 2988 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 2989 ("reserved resource is active")); 2990 return (0); 2991 } 2992 return (1); 2993 } 2994 2995 /** 2996 * @brief Determine if a resource entry is reserved. 2997 * 2998 * Returns true if a resource entry is reserved meaning that it has an 2999 * associated "reserved" resource. The resource can either be 3000 * allocated or unallocated. 3001 * 3002 * @param rl the resource list to search 3003 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3004 * @param rid the resource identifier 3005 * 3006 * @returns Non-zero if the entry is reserved, zero otherwise. 3007 */ 3008 int 3009 resource_list_reserved(struct resource_list *rl, int type, int rid) 3010 { 3011 struct resource_list_entry *rle; 3012 3013 rle = resource_list_find(rl, type, rid); 3014 if (rle != NULL && rle->flags & RLE_RESERVED) 3015 return (1); 3016 return (0); 3017 } 3018 3019 /** 3020 * @brief Find a resource entry by type and rid. 3021 * 3022 * @param rl the resource list to search 3023 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3024 * @param rid the resource identifier 3025 * 3026 * @returns the resource entry pointer or NULL if there is no such 3027 * entry. 3028 */ 3029 struct resource_list_entry * 3030 resource_list_find(struct resource_list *rl, int type, int rid) 3031 { 3032 struct resource_list_entry *rle; 3033 3034 STAILQ_FOREACH(rle, rl, link) { 3035 if (rle->type == type && rle->rid == rid) 3036 return (rle); 3037 } 3038 return (NULL); 3039 } 3040 3041 /** 3042 * @brief Delete a resource entry. 3043 * 3044 * @param rl the resource list to edit 3045 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3046 * @param rid the resource identifier 3047 */ 3048 void 3049 resource_list_delete(struct resource_list *rl, int type, int rid) 3050 { 3051 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3052 3053 if (rle) { 3054 if (rle->res != NULL) 3055 panic("resource_list_delete: resource has not been released"); 3056 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3057 free(rle, M_BUS); 3058 } 3059 } 3060 3061 /** 3062 * @brief Allocate a reserved resource 3063 * 3064 * This can be used by buses to force the allocation of resources 3065 * that are always active in the system even if they are not allocated 3066 * by a driver (e.g. PCI BARs). This function is usually called when 3067 * adding a new child to the bus. The resource is allocated from the 3068 * parent bus when it is reserved. The resource list entry is marked 3069 * with RLE_RESERVED to note that it is a reserved resource. 3070 * 3071 * Subsequent attempts to allocate the resource with 3072 * resource_list_alloc() will succeed the first time and will set 3073 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3074 * resource that has been allocated is released with 3075 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3076 * the actual resource remains allocated. The resource can be released to 3077 * the parent bus by calling resource_list_unreserve(). 3078 * 3079 * @param rl the resource list to allocate from 3080 * @param bus the parent device of @p child 3081 * @param child the device for which the resource is being reserved 3082 * @param type the type of resource to allocate 3083 * @param rid a pointer to the resource identifier 3084 * @param start hint at the start of the resource range - pass 3085 * @c 0 for any start address 3086 * @param end hint at the end of the resource range - pass 3087 * @c ~0 for any end address 3088 * @param count hint at the size of range required - pass @c 1 3089 * for any size 3090 * @param flags any extra flags to control the resource 3091 * allocation - see @c RF_XXX flags in 3092 * <sys/rman.h> for details 3093 * 3094 * @returns the resource which was allocated or @c NULL if no 3095 * resource could be allocated 3096 */ 3097 struct resource * 3098 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3099 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3100 { 3101 struct resource_list_entry *rle = NULL; 3102 int passthrough = (device_get_parent(child) != bus); 3103 struct resource *r; 3104 3105 if (passthrough) 3106 panic( 3107 "resource_list_reserve() should only be called for direct children"); 3108 if (flags & RF_ACTIVE) 3109 panic( 3110 "resource_list_reserve() should only reserve inactive resources"); 3111 3112 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3113 flags); 3114 if (r != NULL) { 3115 rle = resource_list_find(rl, type, *rid); 3116 rle->flags |= RLE_RESERVED; 3117 } 3118 return (r); 3119 } 3120 3121 /** 3122 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3123 * 3124 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3125 * and passing the allocation up to the parent of @p bus. This assumes 3126 * that the first entry of @c device_get_ivars(child) is a struct 3127 * resource_list. This also handles 'passthrough' allocations where a 3128 * child is a remote descendant of bus by passing the allocation up to 3129 * the parent of bus. 3130 * 3131 * Typically, a bus driver would store a list of child resources 3132 * somewhere in the child device's ivars (see device_get_ivars()) and 3133 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3134 * then call resource_list_alloc() to perform the allocation. 3135 * 3136 * @param rl the resource list to allocate from 3137 * @param bus the parent device of @p child 3138 * @param child the device which is requesting an allocation 3139 * @param type the type of resource to allocate 3140 * @param rid a pointer to the resource identifier 3141 * @param start hint at the start of the resource range - pass 3142 * @c 0 for any start address 3143 * @param end hint at the end of the resource range - pass 3144 * @c ~0 for any end address 3145 * @param count hint at the size of range required - pass @c 1 3146 * for any size 3147 * @param flags any extra flags to control the resource 3148 * allocation - see @c RF_XXX flags in 3149 * <sys/rman.h> for details 3150 * 3151 * @returns the resource which was allocated or @c NULL if no 3152 * resource could be allocated 3153 */ 3154 struct resource * 3155 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3156 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3157 { 3158 struct resource_list_entry *rle = NULL; 3159 int passthrough = (device_get_parent(child) != bus); 3160 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3161 3162 if (passthrough) { 3163 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3164 type, rid, start, end, count, flags)); 3165 } 3166 3167 rle = resource_list_find(rl, type, *rid); 3168 3169 if (!rle) 3170 return (NULL); /* no resource of that type/rid */ 3171 3172 if (rle->res) { 3173 if (rle->flags & RLE_RESERVED) { 3174 if (rle->flags & RLE_ALLOCATED) 3175 return (NULL); 3176 if ((flags & RF_ACTIVE) && 3177 bus_activate_resource(child, type, *rid, 3178 rle->res) != 0) 3179 return (NULL); 3180 rle->flags |= RLE_ALLOCATED; 3181 return (rle->res); 3182 } 3183 device_printf(bus, 3184 "resource entry %#x type %d for child %s is busy\n", *rid, 3185 type, device_get_nameunit(child)); 3186 return (NULL); 3187 } 3188 3189 if (isdefault) { 3190 start = rle->start; 3191 count = ulmax(count, rle->count); 3192 end = ulmax(rle->end, start + count - 1); 3193 } 3194 3195 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3196 type, rid, start, end, count, flags); 3197 3198 /* 3199 * Record the new range. 3200 */ 3201 if (rle->res) { 3202 rle->start = rman_get_start(rle->res); 3203 rle->end = rman_get_end(rle->res); 3204 rle->count = count; 3205 } 3206 3207 return (rle->res); 3208 } 3209 3210 /** 3211 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3212 * 3213 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3214 * used with resource_list_alloc(). 3215 * 3216 * @param rl the resource list which was allocated from 3217 * @param bus the parent device of @p child 3218 * @param child the device which is requesting a release 3219 * @param res the resource to release 3220 * 3221 * @retval 0 success 3222 * @retval non-zero a standard unix error code indicating what 3223 * error condition prevented the operation 3224 */ 3225 int 3226 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3227 struct resource *res) 3228 { 3229 struct resource_list_entry *rle = NULL; 3230 int passthrough = (device_get_parent(child) != bus); 3231 int error; 3232 3233 if (passthrough) { 3234 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3235 res)); 3236 } 3237 3238 rle = resource_list_find(rl, rman_get_type(res), rman_get_rid(res)); 3239 3240 if (!rle) 3241 panic("resource_list_release: can't find resource"); 3242 if (!rle->res) 3243 panic("resource_list_release: resource entry is not busy"); 3244 if (rle->flags & RLE_RESERVED) { 3245 if (rle->flags & RLE_ALLOCATED) { 3246 if (rman_get_flags(res) & RF_ACTIVE) { 3247 error = bus_deactivate_resource(child, res); 3248 if (error) 3249 return (error); 3250 } 3251 rle->flags &= ~RLE_ALLOCATED; 3252 return (0); 3253 } 3254 return (EINVAL); 3255 } 3256 3257 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, res); 3258 if (error) 3259 return (error); 3260 3261 rle->res = NULL; 3262 return (0); 3263 } 3264 3265 /** 3266 * @brief Release all active resources of a given type 3267 * 3268 * Release all active resources of a specified type. This is intended 3269 * to be used to cleanup resources leaked by a driver after detach or 3270 * a failed attach. 3271 * 3272 * @param rl the resource list which was allocated from 3273 * @param bus the parent device of @p child 3274 * @param child the device whose active resources are being released 3275 * @param type the type of resources to release 3276 * 3277 * @retval 0 success 3278 * @retval EBUSY at least one resource was active 3279 */ 3280 int 3281 resource_list_release_active(struct resource_list *rl, device_t bus, 3282 device_t child, int type) 3283 { 3284 struct resource_list_entry *rle; 3285 int error, retval; 3286 3287 retval = 0; 3288 STAILQ_FOREACH(rle, rl, link) { 3289 if (rle->type != type) 3290 continue; 3291 if (rle->res == NULL) 3292 continue; 3293 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3294 RLE_RESERVED) 3295 continue; 3296 retval = EBUSY; 3297 error = resource_list_release(rl, bus, child, rle->res); 3298 if (error != 0) 3299 device_printf(bus, 3300 "Failed to release active resource: %d\n", error); 3301 } 3302 return (retval); 3303 } 3304 3305 /** 3306 * @brief Fully release a reserved resource 3307 * 3308 * Fully releases a resource reserved via resource_list_reserve(). 3309 * 3310 * @param rl the resource list which was allocated from 3311 * @param bus the parent device of @p child 3312 * @param child the device whose reserved resource is being released 3313 * @param type the type of resource to release 3314 * @param rid the resource identifier 3315 * @param res the resource to release 3316 * 3317 * @retval 0 success 3318 * @retval non-zero a standard unix error code indicating what 3319 * error condition prevented the operation 3320 */ 3321 int 3322 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3323 int type, int rid) 3324 { 3325 struct resource_list_entry *rle = NULL; 3326 int passthrough = (device_get_parent(child) != bus); 3327 3328 if (passthrough) 3329 panic( 3330 "resource_list_unreserve() should only be called for direct children"); 3331 3332 rle = resource_list_find(rl, type, rid); 3333 3334 if (!rle) 3335 panic("resource_list_unreserve: can't find resource"); 3336 if (!(rle->flags & RLE_RESERVED)) 3337 return (EINVAL); 3338 if (rle->flags & RLE_ALLOCATED) 3339 return (EBUSY); 3340 rle->flags &= ~RLE_RESERVED; 3341 return (resource_list_release(rl, bus, child, rle->res)); 3342 } 3343 3344 /** 3345 * @brief Print a description of resources in a resource list 3346 * 3347 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3348 * The name is printed if at least one resource of the given type is available. 3349 * The format is used to print resource start and end. 3350 * 3351 * @param rl the resource list to print 3352 * @param name the name of @p type, e.g. @c "memory" 3353 * @param type type type of resource entry to print 3354 * @param format printf(9) format string to print resource 3355 * start and end values 3356 * 3357 * @returns the number of characters printed 3358 */ 3359 int 3360 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3361 const char *format) 3362 { 3363 struct resource_list_entry *rle; 3364 int printed, retval; 3365 3366 printed = 0; 3367 retval = 0; 3368 /* Yes, this is kinda cheating */ 3369 STAILQ_FOREACH(rle, rl, link) { 3370 if (rle->type == type) { 3371 if (printed == 0) 3372 retval += printf(" %s ", name); 3373 else 3374 retval += printf(","); 3375 printed++; 3376 retval += printf(format, rle->start); 3377 if (rle->count > 1) { 3378 retval += printf("-"); 3379 retval += printf(format, rle->start + 3380 rle->count - 1); 3381 } 3382 } 3383 } 3384 return (retval); 3385 } 3386 3387 /** 3388 * @brief Releases all the resources in a list. 3389 * 3390 * @param rl The resource list to purge. 3391 * 3392 * @returns nothing 3393 */ 3394 void 3395 resource_list_purge(struct resource_list *rl) 3396 { 3397 struct resource_list_entry *rle; 3398 3399 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3400 if (rle->res) 3401 bus_release_resource(rman_get_device(rle->res), 3402 rle->type, rle->rid, rle->res); 3403 STAILQ_REMOVE_HEAD(rl, link); 3404 free(rle, M_BUS); 3405 } 3406 } 3407 3408 device_t 3409 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3410 { 3411 return (device_add_child_ordered(dev, order, name, unit)); 3412 } 3413 3414 /** 3415 * @brief Helper function for implementing DEVICE_PROBE() 3416 * 3417 * This function can be used to help implement the DEVICE_PROBE() for 3418 * a bus (i.e. a device which has other devices attached to it). It 3419 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3420 * devclass. 3421 */ 3422 int 3423 bus_generic_probe(device_t dev) 3424 { 3425 bus_identify_children(dev); 3426 return (0); 3427 } 3428 3429 /** 3430 * @brief Ask drivers to add child devices of the given device. 3431 * 3432 * This function allows drivers for child devices of a bus to identify 3433 * child devices and add them as children of the given device. NB: 3434 * The driver for @param dev must implement the BUS_ADD_CHILD method. 3435 * 3436 * @param dev the parent device 3437 */ 3438 void 3439 bus_identify_children(device_t dev) 3440 { 3441 devclass_t dc = dev->devclass; 3442 driverlink_t dl; 3443 3444 TAILQ_FOREACH(dl, &dc->drivers, link) { 3445 /* 3446 * If this driver's pass is too high, then ignore it. 3447 * For most drivers in the default pass, this will 3448 * never be true. For early-pass drivers they will 3449 * only call the identify routines of eligible drivers 3450 * when this routine is called. Drivers for later 3451 * passes should have their identify routines called 3452 * on early-pass buses during BUS_NEW_PASS(). 3453 */ 3454 if (dl->pass > bus_current_pass) 3455 continue; 3456 DEVICE_IDENTIFY(dl->driver, dev); 3457 } 3458 } 3459 3460 /** 3461 * @brief Helper function for implementing DEVICE_ATTACH() 3462 * 3463 * This function can be used to help implement the DEVICE_ATTACH() for 3464 * a bus. It calls device_probe_and_attach() for each of the device's 3465 * children. 3466 */ 3467 int 3468 bus_generic_attach(device_t dev) 3469 { 3470 bus_attach_children(dev); 3471 return (0); 3472 } 3473 3474 /** 3475 * @brief Probe and attach all children of the given device 3476 * 3477 * This function attempts to attach a device driver to each unattached 3478 * child of the given device using device_probe_and_attach(). If an 3479 * individual child fails to attach this function continues attaching 3480 * other children. 3481 * 3482 * @param dev the parent device 3483 */ 3484 void 3485 bus_attach_children(device_t dev) 3486 { 3487 device_t child; 3488 3489 TAILQ_FOREACH(child, &dev->children, link) { 3490 device_probe_and_attach(child); 3491 } 3492 } 3493 3494 /** 3495 * @brief Helper function for delaying attaching children 3496 * 3497 * Many buses can't run transactions on the bus which children need to probe and 3498 * attach until after interrupts and/or timers are running. This function 3499 * delays their attach until interrupts and timers are enabled. 3500 */ 3501 void 3502 bus_delayed_attach_children(device_t dev) 3503 { 3504 /* Probe and attach the bus children when interrupts are available */ 3505 config_intrhook_oneshot((ich_func_t)bus_attach_children, dev); 3506 } 3507 3508 /** 3509 * @brief Helper function for implementing DEVICE_DETACH() 3510 * 3511 * This function can be used to help implement the DEVICE_DETACH() for 3512 * a bus. It detaches and deletes all children. If an individual 3513 * child fails to detach, this function stops and returns an error. 3514 * 3515 * @param dev the parent device 3516 * 3517 * @retval 0 success 3518 * @retval non-zero a device would not detach 3519 */ 3520 int 3521 bus_generic_detach(device_t dev) 3522 { 3523 int error; 3524 3525 error = bus_detach_children(dev); 3526 if (error != 0) 3527 return (error); 3528 3529 return (device_delete_children(dev)); 3530 } 3531 3532 /** 3533 * @brief Detach drivers from all children of a device 3534 * 3535 * This function attempts to detach a device driver from each attached 3536 * child of the given device using device_detach(). If an individual 3537 * child fails to detach this function stops and returns an error. 3538 * NB: Children that were successfully detached are not re-attached if 3539 * an error occurs. 3540 * 3541 * @param dev the parent device 3542 * 3543 * @retval 0 success 3544 * @retval non-zero a device would not detach 3545 */ 3546 int 3547 bus_detach_children(device_t dev) 3548 { 3549 device_t child; 3550 int error; 3551 3552 /* 3553 * Detach children in the reverse order. 3554 * See bus_generic_suspend for details. 3555 */ 3556 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3557 if ((error = device_detach(child)) != 0) 3558 return (error); 3559 } 3560 3561 return (0); 3562 } 3563 3564 /** 3565 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3566 * 3567 * This function can be used to help implement the DEVICE_SHUTDOWN() 3568 * for a bus. It calls device_shutdown() for each of the device's 3569 * children. 3570 */ 3571 int 3572 bus_generic_shutdown(device_t dev) 3573 { 3574 device_t child; 3575 3576 /* 3577 * Shut down children in the reverse order. 3578 * See bus_generic_suspend for details. 3579 */ 3580 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3581 device_shutdown(child); 3582 } 3583 3584 return (0); 3585 } 3586 3587 /** 3588 * @brief Default function for suspending a child device. 3589 * 3590 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3591 */ 3592 int 3593 bus_generic_suspend_child(device_t dev, device_t child) 3594 { 3595 int error; 3596 3597 error = DEVICE_SUSPEND(child); 3598 3599 if (error == 0) { 3600 child->flags |= DF_SUSPENDED; 3601 } else { 3602 printf("DEVICE_SUSPEND(%s) failed: %d\n", 3603 device_get_nameunit(child), error); 3604 } 3605 3606 return (error); 3607 } 3608 3609 /** 3610 * @brief Default function for resuming a child device. 3611 * 3612 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3613 */ 3614 int 3615 bus_generic_resume_child(device_t dev, device_t child) 3616 { 3617 DEVICE_RESUME(child); 3618 child->flags &= ~DF_SUSPENDED; 3619 3620 return (0); 3621 } 3622 3623 /** 3624 * @brief Helper function for implementing DEVICE_SUSPEND() 3625 * 3626 * This function can be used to help implement the DEVICE_SUSPEND() 3627 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3628 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3629 * operation is aborted and any devices which were suspended are 3630 * resumed immediately by calling their DEVICE_RESUME() methods. 3631 */ 3632 int 3633 bus_generic_suspend(device_t dev) 3634 { 3635 int error; 3636 device_t child; 3637 3638 /* 3639 * Suspend children in the reverse order. 3640 * For most buses all children are equal, so the order does not matter. 3641 * Other buses, such as acpi, carefully order their child devices to 3642 * express implicit dependencies between them. For such buses it is 3643 * safer to bring down devices in the reverse order. 3644 */ 3645 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3646 error = BUS_SUSPEND_CHILD(dev, child); 3647 if (error != 0) { 3648 child = TAILQ_NEXT(child, link); 3649 if (child != NULL) { 3650 TAILQ_FOREACH_FROM(child, &dev->children, link) 3651 BUS_RESUME_CHILD(dev, child); 3652 } 3653 return (error); 3654 } 3655 } 3656 return (0); 3657 } 3658 3659 /** 3660 * @brief Helper function for implementing DEVICE_RESUME() 3661 * 3662 * This function can be used to help implement the DEVICE_RESUME() for 3663 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3664 */ 3665 int 3666 bus_generic_resume(device_t dev) 3667 { 3668 device_t child; 3669 3670 TAILQ_FOREACH(child, &dev->children, link) { 3671 BUS_RESUME_CHILD(dev, child); 3672 /* if resume fails, there's nothing we can usefully do... */ 3673 } 3674 return (0); 3675 } 3676 3677 /** 3678 * @brief Helper function for implementing BUS_RESET_POST 3679 * 3680 * Bus can use this function to implement common operations of 3681 * re-attaching or resuming the children after the bus itself was 3682 * reset, and after restoring bus-unique state of children. 3683 * 3684 * @param dev The bus 3685 * #param flags DEVF_RESET_* 3686 */ 3687 int 3688 bus_helper_reset_post(device_t dev, int flags) 3689 { 3690 device_t child; 3691 int error, error1; 3692 3693 error = 0; 3694 TAILQ_FOREACH(child, &dev->children,link) { 3695 BUS_RESET_POST(dev, child); 3696 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3697 device_probe_and_attach(child) : 3698 BUS_RESUME_CHILD(dev, child); 3699 if (error == 0 && error1 != 0) 3700 error = error1; 3701 } 3702 return (error); 3703 } 3704 3705 static void 3706 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3707 { 3708 child = TAILQ_NEXT(child, link); 3709 if (child == NULL) 3710 return; 3711 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3712 BUS_RESET_POST(dev, child); 3713 if ((flags & DEVF_RESET_DETACH) != 0) 3714 device_probe_and_attach(child); 3715 else 3716 BUS_RESUME_CHILD(dev, child); 3717 } 3718 } 3719 3720 /** 3721 * @brief Helper function for implementing BUS_RESET_PREPARE 3722 * 3723 * Bus can use this function to implement common operations of 3724 * detaching or suspending the children before the bus itself is 3725 * reset, and then save bus-unique state of children that must 3726 * persists around reset. 3727 * 3728 * @param dev The bus 3729 * #param flags DEVF_RESET_* 3730 */ 3731 int 3732 bus_helper_reset_prepare(device_t dev, int flags) 3733 { 3734 device_t child; 3735 int error; 3736 3737 if (dev->state != DS_ATTACHED) 3738 return (EBUSY); 3739 3740 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3741 if ((flags & DEVF_RESET_DETACH) != 0) { 3742 error = device_get_state(child) == DS_ATTACHED ? 3743 device_detach(child) : 0; 3744 } else { 3745 error = BUS_SUSPEND_CHILD(dev, child); 3746 } 3747 if (error == 0) { 3748 error = BUS_RESET_PREPARE(dev, child); 3749 if (error != 0) { 3750 if ((flags & DEVF_RESET_DETACH) != 0) 3751 device_probe_and_attach(child); 3752 else 3753 BUS_RESUME_CHILD(dev, child); 3754 } 3755 } 3756 if (error != 0) { 3757 bus_helper_reset_prepare_rollback(dev, child, flags); 3758 return (error); 3759 } 3760 } 3761 return (0); 3762 } 3763 3764 /** 3765 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3766 * 3767 * This function prints the first part of the ascii representation of 3768 * @p child, including its name, unit and description (if any - see 3769 * device_set_desc()). 3770 * 3771 * @returns the number of characters printed 3772 */ 3773 int 3774 bus_print_child_header(device_t dev, device_t child) 3775 { 3776 int retval = 0; 3777 3778 if (device_get_desc(child)) { 3779 retval += device_printf(child, "<%s>", device_get_desc(child)); 3780 } else { 3781 retval += printf("%s", device_get_nameunit(child)); 3782 } 3783 3784 return (retval); 3785 } 3786 3787 /** 3788 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3789 * 3790 * This function prints the last part of the ascii representation of 3791 * @p child, which consists of the string @c " on " followed by the 3792 * name and unit of the @p dev. 3793 * 3794 * @returns the number of characters printed 3795 */ 3796 int 3797 bus_print_child_footer(device_t dev, device_t child) 3798 { 3799 return (printf(" on %s\n", device_get_nameunit(dev))); 3800 } 3801 3802 /** 3803 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3804 * 3805 * This function prints out the VM domain for the given device. 3806 * 3807 * @returns the number of characters printed 3808 */ 3809 int 3810 bus_print_child_domain(device_t dev, device_t child) 3811 { 3812 int domain; 3813 3814 /* No domain? Don't print anything */ 3815 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3816 return (0); 3817 3818 return (printf(" numa-domain %d", domain)); 3819 } 3820 3821 /** 3822 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3823 * 3824 * This function simply calls bus_print_child_header() followed by 3825 * bus_print_child_footer(). 3826 * 3827 * @returns the number of characters printed 3828 */ 3829 int 3830 bus_generic_print_child(device_t dev, device_t child) 3831 { 3832 int retval = 0; 3833 3834 retval += bus_print_child_header(dev, child); 3835 retval += bus_print_child_domain(dev, child); 3836 retval += bus_print_child_footer(dev, child); 3837 3838 return (retval); 3839 } 3840 3841 /** 3842 * @brief Stub function for implementing BUS_READ_IVAR(). 3843 * 3844 * @returns ENOENT 3845 */ 3846 int 3847 bus_generic_read_ivar(device_t dev, device_t child, int index, 3848 uintptr_t * result) 3849 { 3850 return (ENOENT); 3851 } 3852 3853 /** 3854 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3855 * 3856 * @returns ENOENT 3857 */ 3858 int 3859 bus_generic_write_ivar(device_t dev, device_t child, int index, 3860 uintptr_t value) 3861 { 3862 return (ENOENT); 3863 } 3864 3865 /** 3866 * @brief Helper function for implementing BUS_GET_PROPERTY(). 3867 * 3868 * This simply calls the BUS_GET_PROPERTY of the parent of dev, 3869 * until a non-default implementation is found. 3870 */ 3871 ssize_t 3872 bus_generic_get_property(device_t dev, device_t child, const char *propname, 3873 void *propvalue, size_t size, device_property_type_t type) 3874 { 3875 if (device_get_parent(dev) != NULL) 3876 return (BUS_GET_PROPERTY(device_get_parent(dev), child, 3877 propname, propvalue, size, type)); 3878 3879 return (-1); 3880 } 3881 3882 /** 3883 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3884 * 3885 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3886 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3887 * and then calls device_probe_and_attach() for each unattached child. 3888 */ 3889 void 3890 bus_generic_driver_added(device_t dev, driver_t *driver) 3891 { 3892 device_t child; 3893 3894 DEVICE_IDENTIFY(driver, dev); 3895 TAILQ_FOREACH(child, &dev->children, link) { 3896 if (child->state == DS_NOTPRESENT) 3897 device_probe_and_attach(child); 3898 } 3899 } 3900 3901 /** 3902 * @brief Helper function for implementing BUS_NEW_PASS(). 3903 * 3904 * This implementing of BUS_NEW_PASS() first calls the identify 3905 * routines for any drivers that probe at the current pass. Then it 3906 * walks the list of devices for this bus. If a device is already 3907 * attached, then it calls BUS_NEW_PASS() on that device. If the 3908 * device is not already attached, it attempts to attach a driver to 3909 * it. 3910 */ 3911 void 3912 bus_generic_new_pass(device_t dev) 3913 { 3914 driverlink_t dl; 3915 devclass_t dc; 3916 device_t child; 3917 3918 dc = dev->devclass; 3919 TAILQ_FOREACH(dl, &dc->drivers, link) { 3920 if (dl->pass == bus_current_pass) 3921 DEVICE_IDENTIFY(dl->driver, dev); 3922 } 3923 TAILQ_FOREACH(child, &dev->children, link) { 3924 if (child->state >= DS_ATTACHED) 3925 BUS_NEW_PASS(child); 3926 else if (child->state == DS_NOTPRESENT) 3927 device_probe_and_attach(child); 3928 } 3929 } 3930 3931 /** 3932 * @brief Helper function for implementing BUS_SETUP_INTR(). 3933 * 3934 * This simple implementation of BUS_SETUP_INTR() simply calls the 3935 * BUS_SETUP_INTR() method of the parent of @p dev. 3936 */ 3937 int 3938 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3939 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3940 void **cookiep) 3941 { 3942 /* Propagate up the bus hierarchy until someone handles it. */ 3943 if (dev->parent) 3944 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3945 filter, intr, arg, cookiep)); 3946 return (EINVAL); 3947 } 3948 3949 /** 3950 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3951 * 3952 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3953 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3954 */ 3955 int 3956 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3957 void *cookie) 3958 { 3959 /* Propagate up the bus hierarchy until someone handles it. */ 3960 if (dev->parent) 3961 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3962 return (EINVAL); 3963 } 3964 3965 /** 3966 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 3967 * 3968 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 3969 * BUS_SUSPEND_INTR() method of the parent of @p dev. 3970 */ 3971 int 3972 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 3973 { 3974 /* Propagate up the bus hierarchy until someone handles it. */ 3975 if (dev->parent) 3976 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 3977 return (EINVAL); 3978 } 3979 3980 /** 3981 * @brief Helper function for implementing BUS_RESUME_INTR(). 3982 * 3983 * This simple implementation of BUS_RESUME_INTR() simply calls the 3984 * BUS_RESUME_INTR() method of the parent of @p dev. 3985 */ 3986 int 3987 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 3988 { 3989 /* Propagate up the bus hierarchy until someone handles it. */ 3990 if (dev->parent) 3991 return (BUS_RESUME_INTR(dev->parent, child, irq)); 3992 return (EINVAL); 3993 } 3994 3995 /** 3996 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3997 * 3998 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3999 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 4000 */ 4001 int 4002 bus_generic_adjust_resource(device_t dev, device_t child, struct resource *r, 4003 rman_res_t start, rman_res_t end) 4004 { 4005 /* Propagate up the bus hierarchy until someone handles it. */ 4006 if (dev->parent) 4007 return (BUS_ADJUST_RESOURCE(dev->parent, child, r, start, end)); 4008 return (EINVAL); 4009 } 4010 4011 /* 4012 * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE(). 4013 * 4014 * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the 4015 * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev. If there is no 4016 * parent, no translation happens. 4017 */ 4018 int 4019 bus_generic_translate_resource(device_t dev, int type, rman_res_t start, 4020 rman_res_t *newstart) 4021 { 4022 if (dev->parent) 4023 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, 4024 newstart)); 4025 *newstart = start; 4026 return (0); 4027 } 4028 4029 /** 4030 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4031 * 4032 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 4033 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 4034 */ 4035 struct resource * 4036 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4037 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4038 { 4039 /* Propagate up the bus hierarchy until someone handles it. */ 4040 if (dev->parent) 4041 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4042 start, end, count, flags)); 4043 return (NULL); 4044 } 4045 4046 /** 4047 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4048 * 4049 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4050 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4051 */ 4052 int 4053 bus_generic_release_resource(device_t dev, device_t child, struct resource *r) 4054 { 4055 /* Propagate up the bus hierarchy until someone handles it. */ 4056 if (dev->parent) 4057 return (BUS_RELEASE_RESOURCE(dev->parent, child, r)); 4058 return (EINVAL); 4059 } 4060 4061 /** 4062 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4063 * 4064 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4065 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4066 */ 4067 int 4068 bus_generic_activate_resource(device_t dev, device_t child, struct resource *r) 4069 { 4070 /* Propagate up the bus hierarchy until someone handles it. */ 4071 if (dev->parent) 4072 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, r)); 4073 return (EINVAL); 4074 } 4075 4076 /** 4077 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4078 * 4079 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4080 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4081 */ 4082 int 4083 bus_generic_deactivate_resource(device_t dev, device_t child, 4084 struct resource *r) 4085 { 4086 /* Propagate up the bus hierarchy until someone handles it. */ 4087 if (dev->parent) 4088 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, r)); 4089 return (EINVAL); 4090 } 4091 4092 /** 4093 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4094 * 4095 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4096 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4097 */ 4098 int 4099 bus_generic_map_resource(device_t dev, device_t child, struct resource *r, 4100 struct resource_map_request *args, struct resource_map *map) 4101 { 4102 /* Propagate up the bus hierarchy until someone handles it. */ 4103 if (dev->parent) 4104 return (BUS_MAP_RESOURCE(dev->parent, child, r, args, map)); 4105 return (EINVAL); 4106 } 4107 4108 /** 4109 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4110 * 4111 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4112 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4113 */ 4114 int 4115 bus_generic_unmap_resource(device_t dev, device_t child, struct resource *r, 4116 struct resource_map *map) 4117 { 4118 /* Propagate up the bus hierarchy until someone handles it. */ 4119 if (dev->parent) 4120 return (BUS_UNMAP_RESOURCE(dev->parent, child, r, map)); 4121 return (EINVAL); 4122 } 4123 4124 /** 4125 * @brief Helper function for implementing BUS_BIND_INTR(). 4126 * 4127 * This simple implementation of BUS_BIND_INTR() simply calls the 4128 * BUS_BIND_INTR() method of the parent of @p dev. 4129 */ 4130 int 4131 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4132 int cpu) 4133 { 4134 /* Propagate up the bus hierarchy until someone handles it. */ 4135 if (dev->parent) 4136 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4137 return (EINVAL); 4138 } 4139 4140 /** 4141 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4142 * 4143 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4144 * BUS_CONFIG_INTR() method of the parent of @p dev. 4145 */ 4146 int 4147 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4148 enum intr_polarity pol) 4149 { 4150 /* Propagate up the bus hierarchy until someone handles it. */ 4151 if (dev->parent) 4152 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4153 return (EINVAL); 4154 } 4155 4156 /** 4157 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4158 * 4159 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4160 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4161 */ 4162 int 4163 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4164 void *cookie, const char *descr) 4165 { 4166 /* Propagate up the bus hierarchy until someone handles it. */ 4167 if (dev->parent) 4168 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4169 descr)); 4170 return (EINVAL); 4171 } 4172 4173 /** 4174 * @brief Helper function for implementing BUS_GET_CPUS(). 4175 * 4176 * This simple implementation of BUS_GET_CPUS() simply calls the 4177 * BUS_GET_CPUS() method of the parent of @p dev. 4178 */ 4179 int 4180 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4181 size_t setsize, cpuset_t *cpuset) 4182 { 4183 /* Propagate up the bus hierarchy until someone handles it. */ 4184 if (dev->parent != NULL) 4185 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4186 return (EINVAL); 4187 } 4188 4189 /** 4190 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4191 * 4192 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4193 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4194 */ 4195 bus_dma_tag_t 4196 bus_generic_get_dma_tag(device_t dev, device_t child) 4197 { 4198 /* Propagate up the bus hierarchy until someone handles it. */ 4199 if (dev->parent != NULL) 4200 return (BUS_GET_DMA_TAG(dev->parent, child)); 4201 return (NULL); 4202 } 4203 4204 /** 4205 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4206 * 4207 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4208 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4209 */ 4210 bus_space_tag_t 4211 bus_generic_get_bus_tag(device_t dev, device_t child) 4212 { 4213 /* Propagate up the bus hierarchy until someone handles it. */ 4214 if (dev->parent != NULL) 4215 return (BUS_GET_BUS_TAG(dev->parent, child)); 4216 return ((bus_space_tag_t)0); 4217 } 4218 4219 /** 4220 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4221 * 4222 * This implementation of BUS_GET_RESOURCE() uses the 4223 * resource_list_find() function to do most of the work. It calls 4224 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4225 * search. 4226 */ 4227 int 4228 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4229 rman_res_t *startp, rman_res_t *countp) 4230 { 4231 struct resource_list * rl = NULL; 4232 struct resource_list_entry * rle = NULL; 4233 4234 rl = BUS_GET_RESOURCE_LIST(dev, child); 4235 if (!rl) 4236 return (EINVAL); 4237 4238 rle = resource_list_find(rl, type, rid); 4239 if (!rle) 4240 return (ENOENT); 4241 4242 if (startp) 4243 *startp = rle->start; 4244 if (countp) 4245 *countp = rle->count; 4246 4247 return (0); 4248 } 4249 4250 /** 4251 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4252 * 4253 * This implementation of BUS_SET_RESOURCE() uses the 4254 * resource_list_add() function to do most of the work. It calls 4255 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4256 * edit. 4257 */ 4258 int 4259 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4260 rman_res_t start, rman_res_t count) 4261 { 4262 struct resource_list * rl = NULL; 4263 4264 rl = BUS_GET_RESOURCE_LIST(dev, child); 4265 if (!rl) 4266 return (EINVAL); 4267 4268 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4269 4270 return (0); 4271 } 4272 4273 /** 4274 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4275 * 4276 * This implementation of BUS_DELETE_RESOURCE() uses the 4277 * resource_list_delete() function to do most of the work. It calls 4278 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4279 * edit. 4280 */ 4281 void 4282 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4283 { 4284 struct resource_list * rl = NULL; 4285 4286 rl = BUS_GET_RESOURCE_LIST(dev, child); 4287 if (!rl) 4288 return; 4289 4290 resource_list_delete(rl, type, rid); 4291 4292 return; 4293 } 4294 4295 /** 4296 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4297 * 4298 * This implementation of BUS_RELEASE_RESOURCE() uses the 4299 * resource_list_release() function to do most of the work. It calls 4300 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4301 */ 4302 int 4303 bus_generic_rl_release_resource(device_t dev, device_t child, 4304 struct resource *r) 4305 { 4306 struct resource_list * rl = NULL; 4307 4308 if (device_get_parent(child) != dev) 4309 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, r)); 4310 4311 rl = BUS_GET_RESOURCE_LIST(dev, child); 4312 if (!rl) 4313 return (EINVAL); 4314 4315 return (resource_list_release(rl, dev, child, r)); 4316 } 4317 4318 /** 4319 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4320 * 4321 * This implementation of BUS_ALLOC_RESOURCE() uses the 4322 * resource_list_alloc() function to do most of the work. It calls 4323 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4324 */ 4325 struct resource * 4326 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4327 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4328 { 4329 struct resource_list * rl = NULL; 4330 4331 if (device_get_parent(child) != dev) 4332 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4333 type, rid, start, end, count, flags)); 4334 4335 rl = BUS_GET_RESOURCE_LIST(dev, child); 4336 if (!rl) 4337 return (NULL); 4338 4339 return (resource_list_alloc(rl, dev, child, type, rid, 4340 start, end, count, flags)); 4341 } 4342 4343 /** 4344 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4345 * 4346 * This implementation of BUS_ALLOC_RESOURCE() allocates a 4347 * resource from a resource manager. It uses BUS_GET_RMAN() 4348 * to obtain the resource manager. 4349 */ 4350 struct resource * 4351 bus_generic_rman_alloc_resource(device_t dev, device_t child, int type, 4352 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4353 { 4354 struct resource *r; 4355 struct rman *rm; 4356 4357 rm = BUS_GET_RMAN(dev, type, flags); 4358 if (rm == NULL) 4359 return (NULL); 4360 4361 r = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 4362 child); 4363 if (r == NULL) 4364 return (NULL); 4365 rman_set_rid(r, *rid); 4366 rman_set_type(r, type); 4367 4368 if (flags & RF_ACTIVE) { 4369 if (bus_activate_resource(child, type, *rid, r) != 0) { 4370 rman_release_resource(r); 4371 return (NULL); 4372 } 4373 } 4374 4375 return (r); 4376 } 4377 4378 /** 4379 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4380 * 4381 * This implementation of BUS_ADJUST_RESOURCE() adjusts resources only 4382 * if they were allocated from the resource manager returned by 4383 * BUS_GET_RMAN(). 4384 */ 4385 int 4386 bus_generic_rman_adjust_resource(device_t dev, device_t child, 4387 struct resource *r, rman_res_t start, rman_res_t end) 4388 { 4389 struct rman *rm; 4390 4391 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r)); 4392 if (rm == NULL) 4393 return (ENXIO); 4394 if (!rman_is_region_manager(r, rm)) 4395 return (EINVAL); 4396 return (rman_adjust_resource(r, start, end)); 4397 } 4398 4399 /** 4400 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4401 * 4402 * This implementation of BUS_RELEASE_RESOURCE() releases resources 4403 * allocated by bus_generic_rman_alloc_resource. 4404 */ 4405 int 4406 bus_generic_rman_release_resource(device_t dev, device_t child, 4407 struct resource *r) 4408 { 4409 #ifdef INVARIANTS 4410 struct rman *rm; 4411 #endif 4412 int error; 4413 4414 #ifdef INVARIANTS 4415 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r)); 4416 KASSERT(rman_is_region_manager(r, rm), 4417 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4418 #endif 4419 4420 if (rman_get_flags(r) & RF_ACTIVE) { 4421 error = bus_deactivate_resource(child, r); 4422 if (error != 0) 4423 return (error); 4424 } 4425 return (rman_release_resource(r)); 4426 } 4427 4428 /** 4429 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4430 * 4431 * This implementation of BUS_ACTIVATE_RESOURCE() activates resources 4432 * allocated by bus_generic_rman_alloc_resource. 4433 */ 4434 int 4435 bus_generic_rman_activate_resource(device_t dev, device_t child, 4436 struct resource *r) 4437 { 4438 struct resource_map map; 4439 #ifdef INVARIANTS 4440 struct rman *rm; 4441 #endif 4442 int error, type; 4443 4444 type = rman_get_type(r); 4445 #ifdef INVARIANTS 4446 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r)); 4447 KASSERT(rman_is_region_manager(r, rm), 4448 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4449 #endif 4450 4451 error = rman_activate_resource(r); 4452 if (error != 0) 4453 return (error); 4454 4455 switch (type) { 4456 case SYS_RES_IOPORT: 4457 case SYS_RES_MEMORY: 4458 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) { 4459 error = BUS_MAP_RESOURCE(dev, child, r, NULL, &map); 4460 if (error != 0) 4461 break; 4462 4463 rman_set_mapping(r, &map); 4464 } 4465 break; 4466 #ifdef INTRNG 4467 case SYS_RES_IRQ: 4468 error = intr_activate_irq(child, r); 4469 break; 4470 #endif 4471 } 4472 if (error != 0) 4473 rman_deactivate_resource(r); 4474 return (error); 4475 } 4476 4477 /** 4478 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4479 * 4480 * This implementation of BUS_DEACTIVATE_RESOURCE() deactivates 4481 * resources allocated by bus_generic_rman_alloc_resource. 4482 */ 4483 int 4484 bus_generic_rman_deactivate_resource(device_t dev, device_t child, 4485 struct resource *r) 4486 { 4487 struct resource_map map; 4488 #ifdef INVARIANTS 4489 struct rman *rm; 4490 #endif 4491 int error, type; 4492 4493 type = rman_get_type(r); 4494 #ifdef INVARIANTS 4495 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r)); 4496 KASSERT(rman_is_region_manager(r, rm), 4497 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4498 #endif 4499 4500 error = rman_deactivate_resource(r); 4501 if (error != 0) 4502 return (error); 4503 4504 switch (type) { 4505 case SYS_RES_IOPORT: 4506 case SYS_RES_MEMORY: 4507 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) { 4508 rman_get_mapping(r, &map); 4509 BUS_UNMAP_RESOURCE(dev, child, r, &map); 4510 } 4511 break; 4512 #ifdef INTRNG 4513 case SYS_RES_IRQ: 4514 intr_deactivate_irq(child, r); 4515 break; 4516 #endif 4517 } 4518 return (0); 4519 } 4520 4521 /** 4522 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4523 * 4524 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4525 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4526 */ 4527 int 4528 bus_generic_child_present(device_t dev, device_t child) 4529 { 4530 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4531 } 4532 4533 /** 4534 * @brief Helper function for implementing BUS_GET_DOMAIN(). 4535 * 4536 * This simple implementation of BUS_GET_DOMAIN() calls the 4537 * BUS_GET_DOMAIN() method of the parent of @p dev. If @p dev 4538 * does not have a parent, the function fails with ENOENT. 4539 */ 4540 int 4541 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4542 { 4543 if (dev->parent) 4544 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4545 4546 return (ENOENT); 4547 } 4548 4549 /** 4550 * @brief Helper function to implement normal BUS_GET_DEVICE_PATH() 4551 * 4552 * This function knows how to (a) pass the request up the tree if there's 4553 * a parent and (b) Knows how to supply a FreeBSD locator. 4554 * 4555 * @param bus bus in the walk up the tree 4556 * @param child leaf node to print information about 4557 * @param locator BUS_LOCATOR_xxx string for locator 4558 * @param sb Buffer to print information into 4559 */ 4560 int 4561 bus_generic_get_device_path(device_t bus, device_t child, const char *locator, 4562 struct sbuf *sb) 4563 { 4564 int rv = 0; 4565 device_t parent; 4566 4567 /* 4568 * We don't recurse on ACPI since either we know the handle for the 4569 * device or we don't. And if we're in the generic routine, we don't 4570 * have a ACPI override. All other locators build up a path by having 4571 * their parents create a path and then adding the path element for this 4572 * node. That's why we recurse with parent, bus rather than the typical 4573 * parent, child: each spot in the tree is independent of what our child 4574 * will do with this path. 4575 */ 4576 parent = device_get_parent(bus); 4577 if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) { 4578 rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb); 4579 } 4580 if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) { 4581 if (rv == 0) { 4582 sbuf_printf(sb, "/%s", device_get_nameunit(child)); 4583 } 4584 return (rv); 4585 } 4586 /* 4587 * Don't know what to do. So assume we do nothing. Not sure that's 4588 * the right thing, but keeps us from having a big list here. 4589 */ 4590 return (0); 4591 } 4592 4593 4594 /** 4595 * @brief Helper function for implementing BUS_RESCAN(). 4596 * 4597 * This null implementation of BUS_RESCAN() always fails to indicate 4598 * the bus does not support rescanning. 4599 */ 4600 int 4601 bus_null_rescan(device_t dev) 4602 { 4603 return (ENODEV); 4604 } 4605 4606 /* 4607 * Some convenience functions to make it easier for drivers to use the 4608 * resource-management functions. All these really do is hide the 4609 * indirection through the parent's method table, making for slightly 4610 * less-wordy code. In the future, it might make sense for this code 4611 * to maintain some sort of a list of resources allocated by each device. 4612 */ 4613 4614 int 4615 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4616 struct resource **res) 4617 { 4618 int i; 4619 4620 for (i = 0; rs[i].type != -1; i++) 4621 res[i] = NULL; 4622 for (i = 0; rs[i].type != -1; i++) { 4623 res[i] = bus_alloc_resource_any(dev, 4624 rs[i].type, &rs[i].rid, rs[i].flags); 4625 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4626 bus_release_resources(dev, rs, res); 4627 return (ENXIO); 4628 } 4629 } 4630 return (0); 4631 } 4632 4633 void 4634 bus_release_resources(device_t dev, const struct resource_spec *rs, 4635 struct resource **res) 4636 { 4637 int i; 4638 4639 for (i = 0; rs[i].type != -1; i++) 4640 if (res[i] != NULL) { 4641 bus_release_resource( 4642 dev, rs[i].type, rs[i].rid, res[i]); 4643 res[i] = NULL; 4644 } 4645 } 4646 4647 /** 4648 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4649 * 4650 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4651 * parent of @p dev. 4652 */ 4653 struct resource * 4654 (bus_alloc_resource)(device_t dev, int type, int *rid, rman_res_t start, 4655 rman_res_t end, rman_res_t count, u_int flags) 4656 { 4657 struct resource *res; 4658 4659 if (dev->parent == NULL) 4660 return (NULL); 4661 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4662 count, flags); 4663 return (res); 4664 } 4665 4666 /** 4667 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4668 * 4669 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4670 * parent of @p dev. 4671 */ 4672 int 4673 bus_adjust_resource(device_t dev, struct resource *r, rman_res_t start, 4674 rman_res_t end) 4675 { 4676 if (dev->parent == NULL) 4677 return (EINVAL); 4678 return (BUS_ADJUST_RESOURCE(dev->parent, dev, r, start, end)); 4679 } 4680 4681 int 4682 bus_adjust_resource_old(device_t dev, int type __unused, struct resource *r, 4683 rman_res_t start, rman_res_t end) 4684 { 4685 return (bus_adjust_resource(dev, r, start, end)); 4686 } 4687 4688 /** 4689 * @brief Wrapper function for BUS_TRANSLATE_RESOURCE(). 4690 * 4691 * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the 4692 * parent of @p dev. 4693 */ 4694 int 4695 bus_translate_resource(device_t dev, int type, rman_res_t start, 4696 rman_res_t *newstart) 4697 { 4698 if (dev->parent == NULL) 4699 return (EINVAL); 4700 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart)); 4701 } 4702 4703 /** 4704 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4705 * 4706 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4707 * parent of @p dev. 4708 */ 4709 int 4710 bus_activate_resource(device_t dev, struct resource *r) 4711 { 4712 if (dev->parent == NULL) 4713 return (EINVAL); 4714 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, r)); 4715 } 4716 4717 int 4718 bus_activate_resource_old(device_t dev, int type, int rid, struct resource *r) 4719 { 4720 return (bus_activate_resource(dev, r)); 4721 } 4722 4723 /** 4724 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4725 * 4726 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4727 * parent of @p dev. 4728 */ 4729 int 4730 bus_deactivate_resource(device_t dev, struct resource *r) 4731 { 4732 if (dev->parent == NULL) 4733 return (EINVAL); 4734 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, r)); 4735 } 4736 4737 int 4738 bus_deactivate_resource_old(device_t dev, int type, int rid, struct resource *r) 4739 { 4740 return (bus_deactivate_resource(dev, r)); 4741 } 4742 4743 /** 4744 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4745 * 4746 * This function simply calls the BUS_MAP_RESOURCE() method of the 4747 * parent of @p dev. 4748 */ 4749 int 4750 bus_map_resource(device_t dev, struct resource *r, 4751 struct resource_map_request *args, struct resource_map *map) 4752 { 4753 if (dev->parent == NULL) 4754 return (EINVAL); 4755 return (BUS_MAP_RESOURCE(dev->parent, dev, r, args, map)); 4756 } 4757 4758 int 4759 bus_map_resource_old(device_t dev, int type, struct resource *r, 4760 struct resource_map_request *args, struct resource_map *map) 4761 { 4762 return (bus_map_resource(dev, r, args, map)); 4763 } 4764 4765 /** 4766 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4767 * 4768 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4769 * parent of @p dev. 4770 */ 4771 int 4772 bus_unmap_resource(device_t dev, struct resource *r, struct resource_map *map) 4773 { 4774 if (dev->parent == NULL) 4775 return (EINVAL); 4776 return (BUS_UNMAP_RESOURCE(dev->parent, dev, r, map)); 4777 } 4778 4779 int 4780 bus_unmap_resource_old(device_t dev, int type, struct resource *r, 4781 struct resource_map *map) 4782 { 4783 return (bus_unmap_resource(dev, r, map)); 4784 } 4785 4786 /** 4787 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4788 * 4789 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4790 * parent of @p dev. 4791 */ 4792 int 4793 bus_release_resource(device_t dev, struct resource *r) 4794 { 4795 int rv; 4796 4797 if (dev->parent == NULL) 4798 return (EINVAL); 4799 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, r); 4800 return (rv); 4801 } 4802 4803 int 4804 bus_release_resource_old(device_t dev, int type, int rid, struct resource *r) 4805 { 4806 return (bus_release_resource(dev, r)); 4807 } 4808 4809 /** 4810 * @brief Wrapper function for BUS_SETUP_INTR(). 4811 * 4812 * This function simply calls the BUS_SETUP_INTR() method of the 4813 * parent of @p dev. 4814 */ 4815 int 4816 bus_setup_intr(device_t dev, struct resource *r, int flags, 4817 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4818 { 4819 int error; 4820 4821 if (dev->parent == NULL) 4822 return (EINVAL); 4823 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4824 arg, cookiep); 4825 if (error != 0) 4826 return (error); 4827 if (handler != NULL && !(flags & INTR_MPSAFE)) 4828 device_printf(dev, "[GIANT-LOCKED]\n"); 4829 return (0); 4830 } 4831 4832 /** 4833 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4834 * 4835 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4836 * parent of @p dev. 4837 */ 4838 int 4839 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4840 { 4841 if (dev->parent == NULL) 4842 return (EINVAL); 4843 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4844 } 4845 4846 /** 4847 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4848 * 4849 * This function simply calls the BUS_SUSPEND_INTR() method of the 4850 * parent of @p dev. 4851 */ 4852 int 4853 bus_suspend_intr(device_t dev, struct resource *r) 4854 { 4855 if (dev->parent == NULL) 4856 return (EINVAL); 4857 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4858 } 4859 4860 /** 4861 * @brief Wrapper function for BUS_RESUME_INTR(). 4862 * 4863 * This function simply calls the BUS_RESUME_INTR() method of the 4864 * parent of @p dev. 4865 */ 4866 int 4867 bus_resume_intr(device_t dev, struct resource *r) 4868 { 4869 if (dev->parent == NULL) 4870 return (EINVAL); 4871 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4872 } 4873 4874 /** 4875 * @brief Wrapper function for BUS_BIND_INTR(). 4876 * 4877 * This function simply calls the BUS_BIND_INTR() method of the 4878 * parent of @p dev. 4879 */ 4880 int 4881 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4882 { 4883 if (dev->parent == NULL) 4884 return (EINVAL); 4885 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4886 } 4887 4888 /** 4889 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4890 * 4891 * This function first formats the requested description into a 4892 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4893 * the parent of @p dev. 4894 */ 4895 int 4896 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4897 const char *fmt, ...) 4898 { 4899 va_list ap; 4900 char descr[MAXCOMLEN + 1]; 4901 4902 if (dev->parent == NULL) 4903 return (EINVAL); 4904 va_start(ap, fmt); 4905 vsnprintf(descr, sizeof(descr), fmt, ap); 4906 va_end(ap); 4907 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4908 } 4909 4910 /** 4911 * @brief Wrapper function for BUS_SET_RESOURCE(). 4912 * 4913 * This function simply calls the BUS_SET_RESOURCE() method of the 4914 * parent of @p dev. 4915 */ 4916 int 4917 bus_set_resource(device_t dev, int type, int rid, 4918 rman_res_t start, rman_res_t count) 4919 { 4920 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4921 start, count)); 4922 } 4923 4924 /** 4925 * @brief Wrapper function for BUS_GET_RESOURCE(). 4926 * 4927 * This function simply calls the BUS_GET_RESOURCE() method of the 4928 * parent of @p dev. 4929 */ 4930 int 4931 bus_get_resource(device_t dev, int type, int rid, 4932 rman_res_t *startp, rman_res_t *countp) 4933 { 4934 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4935 startp, countp)); 4936 } 4937 4938 /** 4939 * @brief Wrapper function for BUS_GET_RESOURCE(). 4940 * 4941 * This function simply calls the BUS_GET_RESOURCE() method of the 4942 * parent of @p dev and returns the start value. 4943 */ 4944 rman_res_t 4945 bus_get_resource_start(device_t dev, int type, int rid) 4946 { 4947 rman_res_t start; 4948 rman_res_t count; 4949 int error; 4950 4951 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4952 &start, &count); 4953 if (error) 4954 return (0); 4955 return (start); 4956 } 4957 4958 /** 4959 * @brief Wrapper function for BUS_GET_RESOURCE(). 4960 * 4961 * This function simply calls the BUS_GET_RESOURCE() method of the 4962 * parent of @p dev and returns the count value. 4963 */ 4964 rman_res_t 4965 bus_get_resource_count(device_t dev, int type, int rid) 4966 { 4967 rman_res_t start; 4968 rman_res_t count; 4969 int error; 4970 4971 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4972 &start, &count); 4973 if (error) 4974 return (0); 4975 return (count); 4976 } 4977 4978 /** 4979 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4980 * 4981 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4982 * parent of @p dev. 4983 */ 4984 void 4985 bus_delete_resource(device_t dev, int type, int rid) 4986 { 4987 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4988 } 4989 4990 /** 4991 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4992 * 4993 * This function simply calls the BUS_CHILD_PRESENT() method of the 4994 * parent of @p dev. 4995 */ 4996 int 4997 bus_child_present(device_t child) 4998 { 4999 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 5000 } 5001 5002 /** 5003 * @brief Wrapper function for BUS_CHILD_PNPINFO(). 5004 * 5005 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p 5006 * dev. 5007 */ 5008 int 5009 bus_child_pnpinfo(device_t child, struct sbuf *sb) 5010 { 5011 device_t parent; 5012 5013 parent = device_get_parent(child); 5014 if (parent == NULL) 5015 return (0); 5016 return (BUS_CHILD_PNPINFO(parent, child, sb)); 5017 } 5018 5019 /** 5020 * @brief Generic implementation that does nothing for bus_child_pnpinfo 5021 * 5022 * This function has the right signature and returns 0 since the sbuf is passed 5023 * to us to append to. 5024 */ 5025 int 5026 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb) 5027 { 5028 return (0); 5029 } 5030 5031 /** 5032 * @brief Wrapper function for BUS_CHILD_LOCATION(). 5033 * 5034 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of 5035 * @p dev. 5036 */ 5037 int 5038 bus_child_location(device_t child, struct sbuf *sb) 5039 { 5040 device_t parent; 5041 5042 parent = device_get_parent(child); 5043 if (parent == NULL) 5044 return (0); 5045 return (BUS_CHILD_LOCATION(parent, child, sb)); 5046 } 5047 5048 /** 5049 * @brief Generic implementation that does nothing for bus_child_location 5050 * 5051 * This function has the right signature and returns 0 since the sbuf is passed 5052 * to us to append to. 5053 */ 5054 int 5055 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb) 5056 { 5057 return (0); 5058 } 5059 5060 /** 5061 * @brief Wrapper function for BUS_GET_CPUS(). 5062 * 5063 * This function simply calls the BUS_GET_CPUS() method of the 5064 * parent of @p dev. 5065 */ 5066 int 5067 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 5068 { 5069 device_t parent; 5070 5071 parent = device_get_parent(dev); 5072 if (parent == NULL) 5073 return (EINVAL); 5074 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 5075 } 5076 5077 /** 5078 * @brief Wrapper function for BUS_GET_DMA_TAG(). 5079 * 5080 * This function simply calls the BUS_GET_DMA_TAG() method of the 5081 * parent of @p dev. 5082 */ 5083 bus_dma_tag_t 5084 bus_get_dma_tag(device_t dev) 5085 { 5086 device_t parent; 5087 5088 parent = device_get_parent(dev); 5089 if (parent == NULL) 5090 return (NULL); 5091 return (BUS_GET_DMA_TAG(parent, dev)); 5092 } 5093 5094 /** 5095 * @brief Wrapper function for BUS_GET_BUS_TAG(). 5096 * 5097 * This function simply calls the BUS_GET_BUS_TAG() method of the 5098 * parent of @p dev. 5099 */ 5100 bus_space_tag_t 5101 bus_get_bus_tag(device_t dev) 5102 { 5103 device_t parent; 5104 5105 parent = device_get_parent(dev); 5106 if (parent == NULL) 5107 return ((bus_space_tag_t)0); 5108 return (BUS_GET_BUS_TAG(parent, dev)); 5109 } 5110 5111 /** 5112 * @brief Wrapper function for BUS_GET_DOMAIN(). 5113 * 5114 * This function simply calls the BUS_GET_DOMAIN() method of the 5115 * parent of @p dev. 5116 */ 5117 int 5118 bus_get_domain(device_t dev, int *domain) 5119 { 5120 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 5121 } 5122 5123 /* Resume all devices and then notify userland that we're up again. */ 5124 static int 5125 root_resume(device_t dev) 5126 { 5127 int error; 5128 5129 error = bus_generic_resume(dev); 5130 if (error == 0) { 5131 devctl_notify("kernel", "power", "resume", NULL); 5132 } 5133 return (error); 5134 } 5135 5136 static int 5137 root_print_child(device_t dev, device_t child) 5138 { 5139 int retval = 0; 5140 5141 retval += bus_print_child_header(dev, child); 5142 retval += printf("\n"); 5143 5144 return (retval); 5145 } 5146 5147 static int 5148 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 5149 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 5150 { 5151 /* 5152 * If an interrupt mapping gets to here something bad has happened. 5153 */ 5154 panic("root_setup_intr"); 5155 } 5156 5157 /* 5158 * If we get here, assume that the device is permanent and really is 5159 * present in the system. Removable bus drivers are expected to intercept 5160 * this call long before it gets here. We return -1 so that drivers that 5161 * really care can check vs -1 or some ERRNO returned higher in the food 5162 * chain. 5163 */ 5164 static int 5165 root_child_present(device_t dev, device_t child) 5166 { 5167 return (-1); 5168 } 5169 5170 static int 5171 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 5172 cpuset_t *cpuset) 5173 { 5174 switch (op) { 5175 case INTR_CPUS: 5176 /* Default to returning the set of all CPUs. */ 5177 if (setsize != sizeof(cpuset_t)) 5178 return (EINVAL); 5179 *cpuset = all_cpus; 5180 return (0); 5181 default: 5182 return (EINVAL); 5183 } 5184 } 5185 5186 static kobj_method_t root_methods[] = { 5187 /* Device interface */ 5188 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 5189 KOBJMETHOD(device_suspend, bus_generic_suspend), 5190 KOBJMETHOD(device_resume, root_resume), 5191 5192 /* Bus interface */ 5193 KOBJMETHOD(bus_print_child, root_print_child), 5194 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 5195 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 5196 KOBJMETHOD(bus_setup_intr, root_setup_intr), 5197 KOBJMETHOD(bus_child_present, root_child_present), 5198 KOBJMETHOD(bus_get_cpus, root_get_cpus), 5199 5200 KOBJMETHOD_END 5201 }; 5202 5203 static driver_t root_driver = { 5204 "root", 5205 root_methods, 5206 1, /* no softc */ 5207 }; 5208 5209 device_t root_bus; 5210 devclass_t root_devclass; 5211 5212 static int 5213 root_bus_module_handler(module_t mod, int what, void* arg) 5214 { 5215 switch (what) { 5216 case MOD_LOAD: 5217 TAILQ_INIT(&bus_data_devices); 5218 kobj_class_compile((kobj_class_t) &root_driver); 5219 root_bus = make_device(NULL, "root", 0); 5220 root_bus->desc = "System root bus"; 5221 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 5222 root_bus->driver = &root_driver; 5223 root_bus->state = DS_ATTACHED; 5224 root_devclass = devclass_find_internal("root", NULL, FALSE); 5225 devctl2_init(); 5226 return (0); 5227 5228 case MOD_SHUTDOWN: 5229 device_shutdown(root_bus); 5230 return (0); 5231 default: 5232 return (EOPNOTSUPP); 5233 } 5234 5235 return (0); 5236 } 5237 5238 static moduledata_t root_bus_mod = { 5239 "rootbus", 5240 root_bus_module_handler, 5241 NULL 5242 }; 5243 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 5244 5245 /** 5246 * @brief Automatically configure devices 5247 * 5248 * This function begins the autoconfiguration process by calling 5249 * device_probe_and_attach() for each child of the @c root0 device. 5250 */ 5251 void 5252 root_bus_configure(void) 5253 { 5254 PDEBUG((".")); 5255 5256 /* Eventually this will be split up, but this is sufficient for now. */ 5257 bus_set_pass(BUS_PASS_DEFAULT); 5258 } 5259 5260 /** 5261 * @brief Module handler for registering device drivers 5262 * 5263 * This module handler is used to automatically register device 5264 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 5265 * devclass_add_driver() for the driver described by the 5266 * driver_module_data structure pointed to by @p arg 5267 */ 5268 int 5269 driver_module_handler(module_t mod, int what, void *arg) 5270 { 5271 struct driver_module_data *dmd; 5272 devclass_t bus_devclass; 5273 kobj_class_t driver; 5274 int error, pass; 5275 5276 dmd = (struct driver_module_data *)arg; 5277 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 5278 error = 0; 5279 5280 switch (what) { 5281 case MOD_LOAD: 5282 if (dmd->dmd_chainevh) 5283 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5284 5285 pass = dmd->dmd_pass; 5286 driver = dmd->dmd_driver; 5287 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 5288 DRIVERNAME(driver), dmd->dmd_busname, pass)); 5289 error = devclass_add_driver(bus_devclass, driver, pass, 5290 dmd->dmd_devclass); 5291 break; 5292 5293 case MOD_UNLOAD: 5294 PDEBUG(("Unloading module: driver %s from bus %s", 5295 DRIVERNAME(dmd->dmd_driver), 5296 dmd->dmd_busname)); 5297 error = devclass_delete_driver(bus_devclass, 5298 dmd->dmd_driver); 5299 5300 if (!error && dmd->dmd_chainevh) 5301 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5302 break; 5303 case MOD_QUIESCE: 5304 PDEBUG(("Quiesce module: driver %s from bus %s", 5305 DRIVERNAME(dmd->dmd_driver), 5306 dmd->dmd_busname)); 5307 error = devclass_quiesce_driver(bus_devclass, 5308 dmd->dmd_driver); 5309 5310 if (!error && dmd->dmd_chainevh) 5311 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5312 break; 5313 default: 5314 error = EOPNOTSUPP; 5315 break; 5316 } 5317 5318 return (error); 5319 } 5320 5321 /** 5322 * @brief Enumerate all hinted devices for this bus. 5323 * 5324 * Walks through the hints for this bus and calls the bus_hinted_child 5325 * routine for each one it fines. It searches first for the specific 5326 * bus that's being probed for hinted children (eg isa0), and then for 5327 * generic children (eg isa). 5328 * 5329 * @param dev bus device to enumerate 5330 */ 5331 void 5332 bus_enumerate_hinted_children(device_t bus) 5333 { 5334 int i; 5335 const char *dname, *busname; 5336 int dunit; 5337 5338 /* 5339 * enumerate all devices on the specific bus 5340 */ 5341 busname = device_get_nameunit(bus); 5342 i = 0; 5343 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5344 BUS_HINTED_CHILD(bus, dname, dunit); 5345 5346 /* 5347 * and all the generic ones. 5348 */ 5349 busname = device_get_name(bus); 5350 i = 0; 5351 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5352 BUS_HINTED_CHILD(bus, dname, dunit); 5353 } 5354 5355 #ifdef BUS_DEBUG 5356 5357 /* the _short versions avoid iteration by not calling anything that prints 5358 * more than oneliners. I love oneliners. 5359 */ 5360 5361 static void 5362 print_device_short(device_t dev, int indent) 5363 { 5364 if (!dev) 5365 return; 5366 5367 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5368 dev->unit, dev->desc, 5369 (dev->parent? "":"no "), 5370 (TAILQ_EMPTY(&dev->children)? "no ":""), 5371 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5372 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5373 (dev->flags&DF_WILDCARD? "wildcard,":""), 5374 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5375 (dev->flags&DF_SUSPENDED? "suspended,":""), 5376 (dev->ivars? "":"no "), 5377 (dev->softc? "":"no "), 5378 dev->busy)); 5379 } 5380 5381 static void 5382 print_device(device_t dev, int indent) 5383 { 5384 if (!dev) 5385 return; 5386 5387 print_device_short(dev, indent); 5388 5389 indentprintf(("Parent:\n")); 5390 print_device_short(dev->parent, indent+1); 5391 indentprintf(("Driver:\n")); 5392 print_driver_short(dev->driver, indent+1); 5393 indentprintf(("Devclass:\n")); 5394 print_devclass_short(dev->devclass, indent+1); 5395 } 5396 5397 void 5398 print_device_tree_short(device_t dev, int indent) 5399 /* print the device and all its children (indented) */ 5400 { 5401 device_t child; 5402 5403 if (!dev) 5404 return; 5405 5406 print_device_short(dev, indent); 5407 5408 TAILQ_FOREACH(child, &dev->children, link) { 5409 print_device_tree_short(child, indent+1); 5410 } 5411 } 5412 5413 void 5414 print_device_tree(device_t dev, int indent) 5415 /* print the device and all its children (indented) */ 5416 { 5417 device_t child; 5418 5419 if (!dev) 5420 return; 5421 5422 print_device(dev, indent); 5423 5424 TAILQ_FOREACH(child, &dev->children, link) { 5425 print_device_tree(child, indent+1); 5426 } 5427 } 5428 5429 static void 5430 print_driver_short(driver_t *driver, int indent) 5431 { 5432 if (!driver) 5433 return; 5434 5435 indentprintf(("driver %s: softc size = %zd\n", 5436 driver->name, driver->size)); 5437 } 5438 5439 static void 5440 print_driver(driver_t *driver, int indent) 5441 { 5442 if (!driver) 5443 return; 5444 5445 print_driver_short(driver, indent); 5446 } 5447 5448 static void 5449 print_driver_list(driver_list_t drivers, int indent) 5450 { 5451 driverlink_t driver; 5452 5453 TAILQ_FOREACH(driver, &drivers, link) { 5454 print_driver(driver->driver, indent); 5455 } 5456 } 5457 5458 static void 5459 print_devclass_short(devclass_t dc, int indent) 5460 { 5461 if ( !dc ) 5462 return; 5463 5464 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5465 } 5466 5467 static void 5468 print_devclass(devclass_t dc, int indent) 5469 { 5470 int i; 5471 5472 if ( !dc ) 5473 return; 5474 5475 print_devclass_short(dc, indent); 5476 indentprintf(("Drivers:\n")); 5477 print_driver_list(dc->drivers, indent+1); 5478 5479 indentprintf(("Devices:\n")); 5480 for (i = 0; i < dc->maxunit; i++) 5481 if (dc->devices[i]) 5482 print_device(dc->devices[i], indent+1); 5483 } 5484 5485 void 5486 print_devclass_list_short(void) 5487 { 5488 devclass_t dc; 5489 5490 printf("Short listing of devclasses, drivers & devices:\n"); 5491 TAILQ_FOREACH(dc, &devclasses, link) { 5492 print_devclass_short(dc, 0); 5493 } 5494 } 5495 5496 void 5497 print_devclass_list(void) 5498 { 5499 devclass_t dc; 5500 5501 printf("Full listing of devclasses, drivers & devices:\n"); 5502 TAILQ_FOREACH(dc, &devclasses, link) { 5503 print_devclass(dc, 0); 5504 } 5505 } 5506 5507 #endif 5508 5509 /* 5510 * User-space access to the device tree. 5511 * 5512 * We implement a small set of nodes: 5513 * 5514 * hw.bus Single integer read method to obtain the 5515 * current generation count. 5516 * hw.bus.devices Reads the entire device tree in flat space. 5517 * hw.bus.rman Resource manager interface 5518 * 5519 * We might like to add the ability to scan devclasses and/or drivers to 5520 * determine what else is currently loaded/available. 5521 */ 5522 5523 static int 5524 sysctl_bus_info(SYSCTL_HANDLER_ARGS) 5525 { 5526 struct u_businfo ubus; 5527 5528 ubus.ub_version = BUS_USER_VERSION; 5529 ubus.ub_generation = bus_data_generation; 5530 5531 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5532 } 5533 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | 5534 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", 5535 "bus-related data"); 5536 5537 static int 5538 sysctl_devices(SYSCTL_HANDLER_ARGS) 5539 { 5540 struct sbuf sb; 5541 int *name = (int *)arg1; 5542 u_int namelen = arg2; 5543 int index; 5544 device_t dev; 5545 struct u_device *udev; 5546 int error; 5547 5548 if (namelen != 2) 5549 return (EINVAL); 5550 5551 if (bus_data_generation_check(name[0])) 5552 return (EINVAL); 5553 5554 index = name[1]; 5555 5556 /* 5557 * Scan the list of devices, looking for the requested index. 5558 */ 5559 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5560 if (index-- == 0) 5561 break; 5562 } 5563 if (dev == NULL) 5564 return (ENOENT); 5565 5566 /* 5567 * Populate the return item, careful not to overflow the buffer. 5568 */ 5569 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5570 udev->dv_handle = (uintptr_t)dev; 5571 udev->dv_parent = (uintptr_t)dev->parent; 5572 udev->dv_devflags = dev->devflags; 5573 udev->dv_flags = dev->flags; 5574 udev->dv_state = dev->state; 5575 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN); 5576 if (dev->nameunit != NULL) 5577 sbuf_cat(&sb, dev->nameunit); 5578 sbuf_putc(&sb, '\0'); 5579 if (dev->desc != NULL) 5580 sbuf_cat(&sb, dev->desc); 5581 sbuf_putc(&sb, '\0'); 5582 if (dev->driver != NULL) 5583 sbuf_cat(&sb, dev->driver->name); 5584 sbuf_putc(&sb, '\0'); 5585 bus_child_pnpinfo(dev, &sb); 5586 sbuf_putc(&sb, '\0'); 5587 bus_child_location(dev, &sb); 5588 sbuf_putc(&sb, '\0'); 5589 error = sbuf_finish(&sb); 5590 if (error == 0) 5591 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5592 sbuf_delete(&sb); 5593 free(udev, M_BUS); 5594 return (error); 5595 } 5596 5597 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, 5598 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, 5599 "system device tree"); 5600 5601 int 5602 bus_data_generation_check(int generation) 5603 { 5604 if (generation != bus_data_generation) 5605 return (1); 5606 5607 /* XXX generate optimised lists here? */ 5608 return (0); 5609 } 5610 5611 void 5612 bus_data_generation_update(void) 5613 { 5614 atomic_add_int(&bus_data_generation, 1); 5615 } 5616 5617 int 5618 bus_free_resource(device_t dev, int type, struct resource *r) 5619 { 5620 if (r == NULL) 5621 return (0); 5622 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5623 } 5624 5625 device_t 5626 device_lookup_by_name(const char *name) 5627 { 5628 device_t dev; 5629 5630 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5631 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5632 return (dev); 5633 } 5634 return (NULL); 5635 } 5636 5637 /* 5638 * /dev/devctl2 implementation. The existing /dev/devctl device has 5639 * implicit semantics on open, so it could not be reused for this. 5640 * Another option would be to call this /dev/bus? 5641 */ 5642 static int 5643 find_device(struct devreq *req, device_t *devp) 5644 { 5645 device_t dev; 5646 5647 /* 5648 * First, ensure that the name is nul terminated. 5649 */ 5650 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5651 return (EINVAL); 5652 5653 /* 5654 * Second, try to find an attached device whose name matches 5655 * 'name'. 5656 */ 5657 dev = device_lookup_by_name(req->dr_name); 5658 if (dev != NULL) { 5659 *devp = dev; 5660 return (0); 5661 } 5662 5663 /* Finally, give device enumerators a chance. */ 5664 dev = NULL; 5665 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5666 if (dev == NULL) 5667 return (ENOENT); 5668 *devp = dev; 5669 return (0); 5670 } 5671 5672 static bool 5673 driver_exists(device_t bus, const char *driver) 5674 { 5675 devclass_t dc; 5676 5677 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5678 if (devclass_find_driver_internal(dc, driver) != NULL) 5679 return (true); 5680 } 5681 return (false); 5682 } 5683 5684 static void 5685 device_gen_nomatch(device_t dev) 5686 { 5687 device_t child; 5688 5689 if (dev->flags & DF_NEEDNOMATCH && 5690 dev->state == DS_NOTPRESENT) { 5691 device_handle_nomatch(dev); 5692 } 5693 dev->flags &= ~DF_NEEDNOMATCH; 5694 TAILQ_FOREACH(child, &dev->children, link) { 5695 device_gen_nomatch(child); 5696 } 5697 } 5698 5699 static void 5700 device_do_deferred_actions(void) 5701 { 5702 devclass_t dc; 5703 driverlink_t dl; 5704 5705 /* 5706 * Walk through the devclasses to find all the drivers we've tagged as 5707 * deferred during the freeze and call the driver added routines. They 5708 * have already been added to the lists in the background, so the driver 5709 * added routines that trigger a probe will have all the right bidders 5710 * for the probe auction. 5711 */ 5712 TAILQ_FOREACH(dc, &devclasses, link) { 5713 TAILQ_FOREACH(dl, &dc->drivers, link) { 5714 if (dl->flags & DL_DEFERRED_PROBE) { 5715 devclass_driver_added(dc, dl->driver); 5716 dl->flags &= ~DL_DEFERRED_PROBE; 5717 } 5718 } 5719 } 5720 5721 /* 5722 * We also defer no-match events during a freeze. Walk the tree and 5723 * generate all the pent-up events that are still relevant. 5724 */ 5725 device_gen_nomatch(root_bus); 5726 bus_data_generation_update(); 5727 } 5728 5729 static int 5730 device_get_path(device_t dev, const char *locator, struct sbuf *sb) 5731 { 5732 device_t parent; 5733 int error; 5734 5735 KASSERT(sb != NULL, ("sb is NULL")); 5736 parent = device_get_parent(dev); 5737 if (parent == NULL) { 5738 error = sbuf_putc(sb, '/'); 5739 } else { 5740 error = BUS_GET_DEVICE_PATH(parent, dev, locator, sb); 5741 if (error == 0) { 5742 error = sbuf_error(sb); 5743 if (error == 0 && sbuf_len(sb) <= 1) 5744 error = EIO; 5745 } 5746 } 5747 sbuf_finish(sb); 5748 return (error); 5749 } 5750 5751 static int 5752 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5753 struct thread *td) 5754 { 5755 struct devreq *req; 5756 device_t dev; 5757 int error, old; 5758 5759 /* Locate the device to control. */ 5760 bus_topo_lock(); 5761 req = (struct devreq *)data; 5762 switch (cmd) { 5763 case DEV_ATTACH: 5764 case DEV_DETACH: 5765 case DEV_ENABLE: 5766 case DEV_DISABLE: 5767 case DEV_SUSPEND: 5768 case DEV_RESUME: 5769 case DEV_SET_DRIVER: 5770 case DEV_CLEAR_DRIVER: 5771 case DEV_RESCAN: 5772 case DEV_DELETE: 5773 case DEV_RESET: 5774 error = priv_check(td, PRIV_DRIVER); 5775 if (error == 0) 5776 error = find_device(req, &dev); 5777 break; 5778 case DEV_FREEZE: 5779 case DEV_THAW: 5780 error = priv_check(td, PRIV_DRIVER); 5781 break; 5782 case DEV_GET_PATH: 5783 error = find_device(req, &dev); 5784 break; 5785 default: 5786 error = ENOTTY; 5787 break; 5788 } 5789 if (error) { 5790 bus_topo_unlock(); 5791 return (error); 5792 } 5793 5794 /* Perform the requested operation. */ 5795 switch (cmd) { 5796 case DEV_ATTACH: 5797 if (device_is_attached(dev)) 5798 error = EBUSY; 5799 else if (!device_is_enabled(dev)) 5800 error = ENXIO; 5801 else 5802 error = device_probe_and_attach(dev); 5803 break; 5804 case DEV_DETACH: 5805 if (!device_is_attached(dev)) { 5806 error = ENXIO; 5807 break; 5808 } 5809 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5810 error = device_quiesce(dev); 5811 if (error) 5812 break; 5813 } 5814 error = device_detach(dev); 5815 break; 5816 case DEV_ENABLE: 5817 if (device_is_enabled(dev)) { 5818 error = EBUSY; 5819 break; 5820 } 5821 5822 /* 5823 * If the device has been probed but not attached (e.g. 5824 * when it has been disabled by a loader hint), just 5825 * attach the device rather than doing a full probe. 5826 */ 5827 device_enable(dev); 5828 if (dev->devclass != NULL) { 5829 /* 5830 * If the device was disabled via a hint, clear 5831 * the hint. 5832 */ 5833 if (resource_disabled(dev->devclass->name, dev->unit)) 5834 resource_unset_value(dev->devclass->name, 5835 dev->unit, "disabled"); 5836 5837 /* Allow any drivers to rebid. */ 5838 if (!(dev->flags & DF_FIXEDCLASS)) 5839 devclass_delete_device(dev->devclass, dev); 5840 } 5841 error = device_probe_and_attach(dev); 5842 break; 5843 case DEV_DISABLE: 5844 if (!device_is_enabled(dev)) { 5845 error = ENXIO; 5846 break; 5847 } 5848 5849 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5850 error = device_quiesce(dev); 5851 if (error) 5852 break; 5853 } 5854 5855 /* 5856 * Force DF_FIXEDCLASS on around detach to preserve 5857 * the existing name. 5858 */ 5859 old = dev->flags; 5860 dev->flags |= DF_FIXEDCLASS; 5861 error = device_detach(dev); 5862 if (!(old & DF_FIXEDCLASS)) 5863 dev->flags &= ~DF_FIXEDCLASS; 5864 if (error == 0) 5865 device_disable(dev); 5866 break; 5867 case DEV_SUSPEND: 5868 if (device_is_suspended(dev)) { 5869 error = EBUSY; 5870 break; 5871 } 5872 if (device_get_parent(dev) == NULL) { 5873 error = EINVAL; 5874 break; 5875 } 5876 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5877 break; 5878 case DEV_RESUME: 5879 if (!device_is_suspended(dev)) { 5880 error = EINVAL; 5881 break; 5882 } 5883 if (device_get_parent(dev) == NULL) { 5884 error = EINVAL; 5885 break; 5886 } 5887 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5888 break; 5889 case DEV_SET_DRIVER: { 5890 devclass_t dc; 5891 char driver[128]; 5892 5893 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5894 if (error) 5895 break; 5896 if (driver[0] == '\0') { 5897 error = EINVAL; 5898 break; 5899 } 5900 if (dev->devclass != NULL && 5901 strcmp(driver, dev->devclass->name) == 0) 5902 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5903 break; 5904 5905 /* 5906 * Scan drivers for this device's bus looking for at 5907 * least one matching driver. 5908 */ 5909 if (dev->parent == NULL) { 5910 error = EINVAL; 5911 break; 5912 } 5913 if (!driver_exists(dev->parent, driver)) { 5914 error = ENOENT; 5915 break; 5916 } 5917 dc = devclass_create(driver); 5918 if (dc == NULL) { 5919 error = ENOMEM; 5920 break; 5921 } 5922 5923 /* Detach device if necessary. */ 5924 if (device_is_attached(dev)) { 5925 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5926 error = device_detach(dev); 5927 else 5928 error = EBUSY; 5929 if (error) 5930 break; 5931 } 5932 5933 /* Clear any previously-fixed device class and unit. */ 5934 if (dev->flags & DF_FIXEDCLASS) 5935 devclass_delete_device(dev->devclass, dev); 5936 dev->flags |= DF_WILDCARD; 5937 dev->unit = DEVICE_UNIT_ANY; 5938 5939 /* Force the new device class. */ 5940 error = devclass_add_device(dc, dev); 5941 if (error) 5942 break; 5943 dev->flags |= DF_FIXEDCLASS; 5944 error = device_probe_and_attach(dev); 5945 break; 5946 } 5947 case DEV_CLEAR_DRIVER: 5948 if (!(dev->flags & DF_FIXEDCLASS)) { 5949 error = 0; 5950 break; 5951 } 5952 if (device_is_attached(dev)) { 5953 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5954 error = device_detach(dev); 5955 else 5956 error = EBUSY; 5957 if (error) 5958 break; 5959 } 5960 5961 dev->flags &= ~DF_FIXEDCLASS; 5962 dev->flags |= DF_WILDCARD; 5963 devclass_delete_device(dev->devclass, dev); 5964 error = device_probe_and_attach(dev); 5965 break; 5966 case DEV_RESCAN: 5967 if (!device_is_attached(dev)) { 5968 error = ENXIO; 5969 break; 5970 } 5971 error = BUS_RESCAN(dev); 5972 break; 5973 case DEV_DELETE: { 5974 device_t parent; 5975 5976 parent = device_get_parent(dev); 5977 if (parent == NULL) { 5978 error = EINVAL; 5979 break; 5980 } 5981 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5982 if (bus_child_present(dev) != 0) { 5983 error = EBUSY; 5984 break; 5985 } 5986 } 5987 5988 error = device_delete_child(parent, dev); 5989 break; 5990 } 5991 case DEV_FREEZE: 5992 if (device_frozen) 5993 error = EBUSY; 5994 else 5995 device_frozen = true; 5996 break; 5997 case DEV_THAW: 5998 if (!device_frozen) 5999 error = EBUSY; 6000 else { 6001 device_do_deferred_actions(); 6002 device_frozen = false; 6003 } 6004 break; 6005 case DEV_RESET: 6006 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 6007 error = EINVAL; 6008 break; 6009 } 6010 if (device_get_parent(dev) == NULL) { 6011 error = EINVAL; 6012 break; 6013 } 6014 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 6015 req->dr_flags); 6016 break; 6017 case DEV_GET_PATH: { 6018 struct sbuf *sb; 6019 char locator[64]; 6020 ssize_t len; 6021 6022 error = copyinstr(req->dr_buffer.buffer, locator, 6023 sizeof(locator), NULL); 6024 if (error != 0) 6025 break; 6026 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | 6027 SBUF_INCLUDENUL /* | SBUF_WAITOK */); 6028 error = device_get_path(dev, locator, sb); 6029 if (error == 0) { 6030 len = sbuf_len(sb); 6031 if (req->dr_buffer.length < len) { 6032 error = ENAMETOOLONG; 6033 } else { 6034 error = copyout(sbuf_data(sb), 6035 req->dr_buffer.buffer, len); 6036 } 6037 req->dr_buffer.length = len; 6038 } 6039 sbuf_delete(sb); 6040 break; 6041 } 6042 } 6043 bus_topo_unlock(); 6044 return (error); 6045 } 6046 6047 static struct cdevsw devctl2_cdevsw = { 6048 .d_version = D_VERSION, 6049 .d_ioctl = devctl2_ioctl, 6050 .d_name = "devctl2", 6051 }; 6052 6053 static void 6054 devctl2_init(void) 6055 { 6056 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 6057 UID_ROOT, GID_WHEEL, 0644, "devctl2"); 6058 } 6059 6060 /* 6061 * For maintaining device 'at' location info to avoid recomputing it 6062 */ 6063 struct device_location_node { 6064 const char *dln_locator; 6065 const char *dln_path; 6066 TAILQ_ENTRY(device_location_node) dln_link; 6067 }; 6068 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t; 6069 6070 struct device_location_cache { 6071 device_location_list_t dlc_list; 6072 }; 6073 6074 6075 /* 6076 * Location cache for wired devices. 6077 */ 6078 device_location_cache_t * 6079 dev_wired_cache_init(void) 6080 { 6081 device_location_cache_t *dcp; 6082 6083 dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO); 6084 TAILQ_INIT(&dcp->dlc_list); 6085 6086 return (dcp); 6087 } 6088 6089 void 6090 dev_wired_cache_fini(device_location_cache_t *dcp) 6091 { 6092 struct device_location_node *dln, *tdln; 6093 6094 TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) { 6095 free(dln, M_BUS); 6096 } 6097 free(dcp, M_BUS); 6098 } 6099 6100 static struct device_location_node * 6101 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator) 6102 { 6103 struct device_location_node *dln; 6104 6105 TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) { 6106 if (strcmp(locator, dln->dln_locator) == 0) 6107 return (dln); 6108 } 6109 6110 return (NULL); 6111 } 6112 6113 static struct device_location_node * 6114 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path) 6115 { 6116 struct device_location_node *dln; 6117 size_t loclen, pathlen; 6118 6119 loclen = strlen(locator) + 1; 6120 pathlen = strlen(path) + 1; 6121 dln = malloc(sizeof(*dln) + loclen + pathlen, M_BUS, M_WAITOK | M_ZERO); 6122 dln->dln_locator = (char *)(dln + 1); 6123 memcpy(__DECONST(char *, dln->dln_locator), locator, loclen); 6124 dln->dln_path = dln->dln_locator + loclen; 6125 memcpy(__DECONST(char *, dln->dln_path), path, pathlen); 6126 TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link); 6127 6128 return (dln); 6129 } 6130 6131 bool 6132 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev, 6133 const char *at) 6134 { 6135 struct sbuf *sb; 6136 const char *cp; 6137 char locator[32]; 6138 int error, len; 6139 struct device_location_node *res; 6140 6141 cp = strchr(at, ':'); 6142 if (cp == NULL) 6143 return (false); 6144 len = cp - at; 6145 if (len > sizeof(locator) - 1) /* Skip too long locator */ 6146 return (false); 6147 memcpy(locator, at, len); 6148 locator[len] = '\0'; 6149 cp++; 6150 6151 error = 0; 6152 /* maybe cache this inside device_t and look that up, but not yet */ 6153 res = dev_wired_cache_lookup(dcp, locator); 6154 if (res == NULL) { 6155 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | 6156 SBUF_INCLUDENUL | SBUF_NOWAIT); 6157 if (sb != NULL) { 6158 error = device_get_path(dev, locator, sb); 6159 if (error == 0) { 6160 res = dev_wired_cache_add(dcp, locator, 6161 sbuf_data(sb)); 6162 } 6163 sbuf_delete(sb); 6164 } 6165 } 6166 if (error != 0 || res == NULL || res->dln_path == NULL) 6167 return (false); 6168 6169 return (strcmp(res->dln_path, cp) == 0); 6170 } 6171 6172 static struct device_prop_elm * 6173 device_prop_find(device_t dev, const char *name) 6174 { 6175 struct device_prop_elm *e; 6176 6177 bus_topo_assert(); 6178 6179 LIST_FOREACH(e, &dev->props, link) { 6180 if (strcmp(name, e->name) == 0) 6181 return (e); 6182 } 6183 return (NULL); 6184 } 6185 6186 int 6187 device_set_prop(device_t dev, const char *name, void *val, 6188 device_prop_dtr_t dtr, void *dtr_ctx) 6189 { 6190 struct device_prop_elm *e, *e1; 6191 6192 bus_topo_assert(); 6193 6194 e = device_prop_find(dev, name); 6195 if (e != NULL) 6196 goto found; 6197 6198 e1 = malloc(sizeof(*e), M_BUS, M_WAITOK); 6199 e = device_prop_find(dev, name); 6200 if (e != NULL) { 6201 free(e1, M_BUS); 6202 goto found; 6203 } 6204 6205 e1->name = name; 6206 e1->val = val; 6207 e1->dtr = dtr; 6208 e1->dtr_ctx = dtr_ctx; 6209 LIST_INSERT_HEAD(&dev->props, e1, link); 6210 return (0); 6211 6212 found: 6213 LIST_REMOVE(e, link); 6214 if (e->dtr != NULL) 6215 e->dtr(dev, name, e->val, e->dtr_ctx); 6216 e->val = val; 6217 e->dtr = dtr; 6218 e->dtr_ctx = dtr_ctx; 6219 LIST_INSERT_HEAD(&dev->props, e, link); 6220 return (EEXIST); 6221 } 6222 6223 int 6224 device_get_prop(device_t dev, const char *name, void **valp) 6225 { 6226 struct device_prop_elm *e; 6227 6228 bus_topo_assert(); 6229 6230 e = device_prop_find(dev, name); 6231 if (e == NULL) 6232 return (ENOENT); 6233 *valp = e->val; 6234 return (0); 6235 } 6236 6237 int 6238 device_clear_prop(device_t dev, const char *name) 6239 { 6240 struct device_prop_elm *e; 6241 6242 bus_topo_assert(); 6243 6244 e = device_prop_find(dev, name); 6245 if (e == NULL) 6246 return (ENOENT); 6247 LIST_REMOVE(e, link); 6248 if (e->dtr != NULL) 6249 e->dtr(dev, e->name, e->val, e->dtr_ctx); 6250 free(e, M_BUS); 6251 return (0); 6252 } 6253 6254 static void 6255 device_destroy_props(device_t dev) 6256 { 6257 struct device_prop_elm *e; 6258 6259 bus_topo_assert(); 6260 6261 while ((e = LIST_FIRST(&dev->props)) != NULL) { 6262 LIST_REMOVE_HEAD(&dev->props, link); 6263 if (e->dtr != NULL) 6264 e->dtr(dev, e->name, e->val, e->dtr_ctx); 6265 free(e, M_BUS); 6266 } 6267 } 6268 6269 void 6270 device_clear_prop_alldev(const char *name) 6271 { 6272 device_t dev; 6273 6274 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 6275 device_clear_prop(dev, name); 6276 } 6277 } 6278 6279 /* 6280 * APIs to manage deprecation and obsolescence. 6281 */ 6282 static int obsolete_panic = 0; 6283 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 6284 "Panic when obsolete features are used (0 = never, 1 = if obsolete, " 6285 "2 = if deprecated)"); 6286 6287 static void 6288 gone_panic(int major, int running, const char *msg, ...) 6289 { 6290 va_list ap; 6291 6292 switch (obsolete_panic) 6293 { 6294 case 0: 6295 return; 6296 case 1: 6297 if (running < major) 6298 return; 6299 /* FALLTHROUGH */ 6300 default: 6301 va_start(ap, msg); 6302 vpanic(msg, ap); 6303 } 6304 } 6305 6306 void 6307 _gone_in(int major, const char *msg, ...) 6308 { 6309 va_list ap; 6310 6311 va_start(ap, msg); 6312 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg, ap); 6313 vprintf(msg, ap); 6314 va_end(ap); 6315 if (P_OSREL_MAJOR(__FreeBSD_version) < major) 6316 printf("To be removed in FreeBSD %d\n", major); 6317 } 6318 6319 void 6320 _gone_in_dev(device_t dev, int major, const char *msg, ...) 6321 { 6322 va_list ap; 6323 6324 va_start(ap, msg); 6325 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg, ap); 6326 device_printf(dev, msg, ap); 6327 va_end(ap); 6328 if (P_OSREL_MAJOR(__FreeBSD_version) < major) 6329 device_printf(dev, 6330 "to be removed in FreeBSD %d\n", major); 6331 } 6332 6333 #ifdef DDB 6334 DB_SHOW_COMMAND(device, db_show_device) 6335 { 6336 device_t dev; 6337 6338 if (!have_addr) 6339 return; 6340 6341 dev = (device_t)addr; 6342 6343 db_printf("name: %s\n", device_get_nameunit(dev)); 6344 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 6345 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 6346 db_printf(" addr: %p\n", dev); 6347 db_printf(" parent: %p\n", dev->parent); 6348 db_printf(" softc: %p\n", dev->softc); 6349 db_printf(" ivars: %p\n", dev->ivars); 6350 } 6351 6352 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 6353 { 6354 device_t dev; 6355 6356 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 6357 db_show_device((db_expr_t)dev, true, count, modif); 6358 } 6359 } 6360 #endif 6361