1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bus.h" 33 #include "opt_ddb.h" 34 35 #include <sys/param.h> 36 #include <sys/conf.h> 37 #include <sys/domainset.h> 38 #include <sys/eventhandler.h> 39 #include <sys/filio.h> 40 #include <sys/lock.h> 41 #include <sys/kernel.h> 42 #include <sys/kobj.h> 43 #include <sys/limits.h> 44 #include <sys/malloc.h> 45 #include <sys/module.h> 46 #include <sys/mutex.h> 47 #include <sys/poll.h> 48 #include <sys/priv.h> 49 #include <sys/proc.h> 50 #include <sys/condvar.h> 51 #include <sys/queue.h> 52 #include <machine/bus.h> 53 #include <sys/random.h> 54 #include <sys/rman.h> 55 #include <sys/sbuf.h> 56 #include <sys/selinfo.h> 57 #include <sys/signalvar.h> 58 #include <sys/smp.h> 59 #include <sys/sysctl.h> 60 #include <sys/systm.h> 61 #include <sys/uio.h> 62 #include <sys/bus.h> 63 #include <sys/cpuset.h> 64 65 #include <net/vnet.h> 66 67 #include <machine/cpu.h> 68 #include <machine/stdarg.h> 69 70 #include <vm/uma.h> 71 #include <vm/vm.h> 72 73 #include <ddb/ddb.h> 74 75 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 76 NULL); 77 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 78 NULL); 79 80 /* 81 * Used to attach drivers to devclasses. 82 */ 83 typedef struct driverlink *driverlink_t; 84 struct driverlink { 85 kobj_class_t driver; 86 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 87 int pass; 88 int flags; 89 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 90 TAILQ_ENTRY(driverlink) passlink; 91 }; 92 93 /* 94 * Forward declarations 95 */ 96 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 97 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 98 typedef TAILQ_HEAD(device_list, _device) device_list_t; 99 100 struct devclass { 101 TAILQ_ENTRY(devclass) link; 102 devclass_t parent; /* parent in devclass hierarchy */ 103 driver_list_t drivers; /* bus devclasses store drivers for bus */ 104 char *name; 105 device_t *devices; /* array of devices indexed by unit */ 106 int maxunit; /* size of devices array */ 107 int flags; 108 #define DC_HAS_CHILDREN 1 109 110 struct sysctl_ctx_list sysctl_ctx; 111 struct sysctl_oid *sysctl_tree; 112 }; 113 114 /** 115 * @brief Implementation of _device. 116 * 117 * The structure is named "_device" instead of "device" to avoid type confusion 118 * caused by other subsystems defining a (struct device). 119 */ 120 struct _device { 121 /* 122 * A device is a kernel object. The first field must be the 123 * current ops table for the object. 124 */ 125 KOBJ_FIELDS; 126 127 /* 128 * Device hierarchy. 129 */ 130 TAILQ_ENTRY(_device) link; /**< list of devices in parent */ 131 TAILQ_ENTRY(_device) devlink; /**< global device list membership */ 132 device_t parent; /**< parent of this device */ 133 device_list_t children; /**< list of child devices */ 134 135 /* 136 * Details of this device. 137 */ 138 driver_t *driver; /**< current driver */ 139 devclass_t devclass; /**< current device class */ 140 int unit; /**< current unit number */ 141 char* nameunit; /**< name+unit e.g. foodev0 */ 142 char* desc; /**< driver specific description */ 143 int busy; /**< count of calls to device_busy() */ 144 device_state_t state; /**< current device state */ 145 uint32_t devflags; /**< api level flags for device_get_flags() */ 146 u_int flags; /**< internal device flags */ 147 u_int order; /**< order from device_add_child_ordered() */ 148 void *ivars; /**< instance variables */ 149 void *softc; /**< current driver's variables */ 150 151 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 152 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 153 }; 154 155 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 156 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 157 158 EVENTHANDLER_LIST_DEFINE(device_attach); 159 EVENTHANDLER_LIST_DEFINE(device_detach); 160 EVENTHANDLER_LIST_DEFINE(dev_lookup); 161 162 static void devctl2_init(void); 163 static bool device_frozen; 164 165 #define DRIVERNAME(d) ((d)? d->name : "no driver") 166 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 167 168 #ifdef BUS_DEBUG 169 170 static int bus_debug = 1; 171 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 172 "Bus debug level"); 173 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 174 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 175 176 /** 177 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 178 * prevent syslog from deleting initial spaces 179 */ 180 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 181 182 static void print_device_short(device_t dev, int indent); 183 static void print_device(device_t dev, int indent); 184 void print_device_tree_short(device_t dev, int indent); 185 void print_device_tree(device_t dev, int indent); 186 static void print_driver_short(driver_t *driver, int indent); 187 static void print_driver(driver_t *driver, int indent); 188 static void print_driver_list(driver_list_t drivers, int indent); 189 static void print_devclass_short(devclass_t dc, int indent); 190 static void print_devclass(devclass_t dc, int indent); 191 void print_devclass_list_short(void); 192 void print_devclass_list(void); 193 194 #else 195 /* Make the compiler ignore the function calls */ 196 #define PDEBUG(a) /* nop */ 197 #define DEVICENAME(d) /* nop */ 198 199 #define print_device_short(d,i) /* nop */ 200 #define print_device(d,i) /* nop */ 201 #define print_device_tree_short(d,i) /* nop */ 202 #define print_device_tree(d,i) /* nop */ 203 #define print_driver_short(d,i) /* nop */ 204 #define print_driver(d,i) /* nop */ 205 #define print_driver_list(d,i) /* nop */ 206 #define print_devclass_short(d,i) /* nop */ 207 #define print_devclass(d,i) /* nop */ 208 #define print_devclass_list_short() /* nop */ 209 #define print_devclass_list() /* nop */ 210 #endif 211 212 /* 213 * dev sysctl tree 214 */ 215 216 enum { 217 DEVCLASS_SYSCTL_PARENT, 218 }; 219 220 static int 221 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 222 { 223 devclass_t dc = (devclass_t)arg1; 224 const char *value; 225 226 switch (arg2) { 227 case DEVCLASS_SYSCTL_PARENT: 228 value = dc->parent ? dc->parent->name : ""; 229 break; 230 default: 231 return (EINVAL); 232 } 233 return (SYSCTL_OUT_STR(req, value)); 234 } 235 236 static void 237 devclass_sysctl_init(devclass_t dc) 238 { 239 if (dc->sysctl_tree != NULL) 240 return; 241 sysctl_ctx_init(&dc->sysctl_ctx); 242 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 243 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 244 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 245 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 246 OID_AUTO, "%parent", 247 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 248 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 249 "parent class"); 250 } 251 252 enum { 253 DEVICE_SYSCTL_DESC, 254 DEVICE_SYSCTL_DRIVER, 255 DEVICE_SYSCTL_LOCATION, 256 DEVICE_SYSCTL_PNPINFO, 257 DEVICE_SYSCTL_PARENT, 258 }; 259 260 static int 261 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 262 { 263 struct sbuf sb; 264 device_t dev = (device_t)arg1; 265 int error; 266 267 sbuf_new_for_sysctl(&sb, NULL, 1024, req); 268 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 269 switch (arg2) { 270 case DEVICE_SYSCTL_DESC: 271 sbuf_cat(&sb, dev->desc ? dev->desc : ""); 272 break; 273 case DEVICE_SYSCTL_DRIVER: 274 sbuf_cat(&sb, dev->driver ? dev->driver->name : ""); 275 break; 276 case DEVICE_SYSCTL_LOCATION: 277 bus_child_location(dev, &sb); 278 break; 279 case DEVICE_SYSCTL_PNPINFO: 280 bus_child_pnpinfo(dev, &sb); 281 break; 282 case DEVICE_SYSCTL_PARENT: 283 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : ""); 284 break; 285 default: 286 sbuf_delete(&sb); 287 return (EINVAL); 288 } 289 error = sbuf_finish(&sb); 290 sbuf_delete(&sb); 291 return (error); 292 } 293 294 static void 295 device_sysctl_init(device_t dev) 296 { 297 devclass_t dc = dev->devclass; 298 int domain; 299 300 if (dev->sysctl_tree != NULL) 301 return; 302 devclass_sysctl_init(dc); 303 sysctl_ctx_init(&dev->sysctl_ctx); 304 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 305 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 306 dev->nameunit + strlen(dc->name), 307 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); 308 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 309 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 310 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 311 "device description"); 312 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 313 OID_AUTO, "%driver", 314 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 315 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 316 "device driver name"); 317 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 318 OID_AUTO, "%location", 319 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 320 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 321 "device location relative to parent"); 322 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 323 OID_AUTO, "%pnpinfo", 324 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 325 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 326 "device identification"); 327 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 328 OID_AUTO, "%parent", 329 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 330 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 331 "parent device"); 332 if (bus_get_domain(dev, &domain) == 0) 333 SYSCTL_ADD_INT(&dev->sysctl_ctx, 334 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 335 CTLFLAG_RD, NULL, domain, "NUMA domain"); 336 } 337 338 static void 339 device_sysctl_update(device_t dev) 340 { 341 devclass_t dc = dev->devclass; 342 343 if (dev->sysctl_tree == NULL) 344 return; 345 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 346 } 347 348 static void 349 device_sysctl_fini(device_t dev) 350 { 351 if (dev->sysctl_tree == NULL) 352 return; 353 sysctl_ctx_free(&dev->sysctl_ctx); 354 dev->sysctl_tree = NULL; 355 } 356 357 /* 358 * /dev/devctl implementation 359 */ 360 361 /* 362 * This design allows only one reader for /dev/devctl. This is not desirable 363 * in the long run, but will get a lot of hair out of this implementation. 364 * Maybe we should make this device a clonable device. 365 * 366 * Also note: we specifically do not attach a device to the device_t tree 367 * to avoid potential chicken and egg problems. One could argue that all 368 * of this belongs to the root node. 369 */ 370 371 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 372 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 373 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 374 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 375 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 376 377 static d_open_t devopen; 378 static d_close_t devclose; 379 static d_read_t devread; 380 static d_ioctl_t devioctl; 381 static d_poll_t devpoll; 382 static d_kqfilter_t devkqfilter; 383 384 static struct cdevsw dev_cdevsw = { 385 .d_version = D_VERSION, 386 .d_open = devopen, 387 .d_close = devclose, 388 .d_read = devread, 389 .d_ioctl = devioctl, 390 .d_poll = devpoll, 391 .d_kqfilter = devkqfilter, 392 .d_name = "devctl", 393 }; 394 395 #define DEVCTL_BUFFER (1024 - sizeof(void *)) 396 struct dev_event_info { 397 STAILQ_ENTRY(dev_event_info) dei_link; 398 char dei_data[DEVCTL_BUFFER]; 399 }; 400 401 STAILQ_HEAD(devq, dev_event_info); 402 403 static struct dev_softc { 404 int inuse; 405 int nonblock; 406 int queued; 407 int async; 408 struct mtx mtx; 409 struct cv cv; 410 struct selinfo sel; 411 struct devq devq; 412 struct sigio *sigio; 413 uma_zone_t zone; 414 } devsoftc; 415 416 static void filt_devctl_detach(struct knote *kn); 417 static int filt_devctl_read(struct knote *kn, long hint); 418 419 struct filterops devctl_rfiltops = { 420 .f_isfd = 1, 421 .f_detach = filt_devctl_detach, 422 .f_event = filt_devctl_read, 423 }; 424 425 static struct cdev *devctl_dev; 426 427 static void 428 devinit(void) 429 { 430 int reserve; 431 uma_zone_t z; 432 433 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 434 UID_ROOT, GID_WHEEL, 0600, "devctl"); 435 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 436 cv_init(&devsoftc.cv, "dev cv"); 437 STAILQ_INIT(&devsoftc.devq); 438 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 439 if (devctl_queue_length > 0) { 440 /* 441 * Allocate a zone for the messages. Preallocate 2% of these for 442 * a reserve. Allow only devctl_queue_length slabs to cap memory 443 * usage. The reserve usually allows coverage of surges of 444 * events during memory shortages. Normally we won't have to 445 * re-use events from the queue, but will in extreme shortages. 446 */ 447 z = devsoftc.zone = uma_zcreate("DEVCTL", 448 sizeof(struct dev_event_info), NULL, NULL, NULL, NULL, 449 UMA_ALIGN_PTR, 0); 450 reserve = max(devctl_queue_length / 50, 100); /* 2% reserve */ 451 uma_zone_set_max(z, devctl_queue_length); 452 uma_zone_set_maxcache(z, 0); 453 uma_zone_reserve(z, reserve); 454 uma_prealloc(z, reserve); 455 } 456 devctl2_init(); 457 } 458 459 static int 460 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 461 { 462 mtx_lock(&devsoftc.mtx); 463 if (devsoftc.inuse) { 464 mtx_unlock(&devsoftc.mtx); 465 return (EBUSY); 466 } 467 /* move to init */ 468 devsoftc.inuse = 1; 469 mtx_unlock(&devsoftc.mtx); 470 return (0); 471 } 472 473 static int 474 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 475 { 476 mtx_lock(&devsoftc.mtx); 477 devsoftc.inuse = 0; 478 devsoftc.nonblock = 0; 479 devsoftc.async = 0; 480 cv_broadcast(&devsoftc.cv); 481 funsetown(&devsoftc.sigio); 482 mtx_unlock(&devsoftc.mtx); 483 return (0); 484 } 485 486 /* 487 * The read channel for this device is used to report changes to 488 * userland in realtime. We are required to free the data as well as 489 * the n1 object because we allocate them separately. Also note that 490 * we return one record at a time. If you try to read this device a 491 * character at a time, you will lose the rest of the data. Listening 492 * programs are expected to cope. 493 */ 494 static int 495 devread(struct cdev *dev, struct uio *uio, int ioflag) 496 { 497 struct dev_event_info *n1; 498 int rv; 499 500 mtx_lock(&devsoftc.mtx); 501 while (STAILQ_EMPTY(&devsoftc.devq)) { 502 if (devsoftc.nonblock) { 503 mtx_unlock(&devsoftc.mtx); 504 return (EAGAIN); 505 } 506 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 507 if (rv) { 508 /* 509 * Need to translate ERESTART to EINTR here? -- jake 510 */ 511 mtx_unlock(&devsoftc.mtx); 512 return (rv); 513 } 514 } 515 n1 = STAILQ_FIRST(&devsoftc.devq); 516 STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); 517 devsoftc.queued--; 518 mtx_unlock(&devsoftc.mtx); 519 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 520 uma_zfree(devsoftc.zone, n1); 521 return (rv); 522 } 523 524 static int 525 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 526 { 527 switch (cmd) { 528 case FIONBIO: 529 if (*(int*)data) 530 devsoftc.nonblock = 1; 531 else 532 devsoftc.nonblock = 0; 533 return (0); 534 case FIOASYNC: 535 if (*(int*)data) 536 devsoftc.async = 1; 537 else 538 devsoftc.async = 0; 539 return (0); 540 case FIOSETOWN: 541 return fsetown(*(int *)data, &devsoftc.sigio); 542 case FIOGETOWN: 543 *(int *)data = fgetown(&devsoftc.sigio); 544 return (0); 545 546 /* (un)Support for other fcntl() calls. */ 547 case FIOCLEX: 548 case FIONCLEX: 549 case FIONREAD: 550 default: 551 break; 552 } 553 return (ENOTTY); 554 } 555 556 static int 557 devpoll(struct cdev *dev, int events, struct thread *td) 558 { 559 int revents = 0; 560 561 mtx_lock(&devsoftc.mtx); 562 if (events & (POLLIN | POLLRDNORM)) { 563 if (!STAILQ_EMPTY(&devsoftc.devq)) 564 revents = events & (POLLIN | POLLRDNORM); 565 else 566 selrecord(td, &devsoftc.sel); 567 } 568 mtx_unlock(&devsoftc.mtx); 569 570 return (revents); 571 } 572 573 static int 574 devkqfilter(struct cdev *dev, struct knote *kn) 575 { 576 int error; 577 578 if (kn->kn_filter == EVFILT_READ) { 579 kn->kn_fop = &devctl_rfiltops; 580 knlist_add(&devsoftc.sel.si_note, kn, 0); 581 error = 0; 582 } else 583 error = EINVAL; 584 return (error); 585 } 586 587 static void 588 filt_devctl_detach(struct knote *kn) 589 { 590 knlist_remove(&devsoftc.sel.si_note, kn, 0); 591 } 592 593 static int 594 filt_devctl_read(struct knote *kn, long hint) 595 { 596 kn->kn_data = devsoftc.queued; 597 return (kn->kn_data != 0); 598 } 599 600 /** 601 * @brief Return whether the userland process is running 602 */ 603 bool 604 devctl_process_running(void) 605 { 606 return (devsoftc.inuse == 1); 607 } 608 609 static struct dev_event_info * 610 devctl_alloc_dei(void) 611 { 612 struct dev_event_info *dei = NULL; 613 614 mtx_lock(&devsoftc.mtx); 615 if (devctl_queue_length == 0) 616 goto out; 617 dei = uma_zalloc(devsoftc.zone, M_NOWAIT); 618 if (dei == NULL) 619 dei = uma_zalloc(devsoftc.zone, M_NOWAIT | M_USE_RESERVE); 620 if (dei == NULL) { 621 /* 622 * Guard against no items in the queue. Normally, this won't 623 * happen, but if lots of events happen all at once and there's 624 * a chance we're out of allocated space but none have yet been 625 * queued when we get here, leaving nothing to steal. This can 626 * also happen with error injection. Fail safe by returning 627 * NULL in that case.. 628 */ 629 if (devsoftc.queued == 0) 630 goto out; 631 dei = STAILQ_FIRST(&devsoftc.devq); 632 STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); 633 devsoftc.queued--; 634 } 635 MPASS(dei != NULL); 636 *dei->dei_data = '\0'; 637 out: 638 mtx_unlock(&devsoftc.mtx); 639 return (dei); 640 } 641 642 static struct dev_event_info * 643 devctl_alloc_dei_sb(struct sbuf *sb) 644 { 645 struct dev_event_info *dei; 646 647 dei = devctl_alloc_dei(); 648 if (dei != NULL) 649 sbuf_new(sb, dei->dei_data, sizeof(dei->dei_data), SBUF_FIXEDLEN); 650 return (dei); 651 } 652 653 static void 654 devctl_free_dei(struct dev_event_info *dei) 655 { 656 uma_zfree(devsoftc.zone, dei); 657 } 658 659 static void 660 devctl_queue(struct dev_event_info *dei) 661 { 662 mtx_lock(&devsoftc.mtx); 663 STAILQ_INSERT_TAIL(&devsoftc.devq, dei, dei_link); 664 devsoftc.queued++; 665 cv_broadcast(&devsoftc.cv); 666 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 667 mtx_unlock(&devsoftc.mtx); 668 selwakeup(&devsoftc.sel); 669 if (devsoftc.async && devsoftc.sigio != NULL) 670 pgsigio(&devsoftc.sigio, SIGIO, 0); 671 } 672 673 /** 674 * @brief Send a 'notification' to userland, using standard ways 675 */ 676 void 677 devctl_notify(const char *system, const char *subsystem, const char *type, 678 const char *data) 679 { 680 struct dev_event_info *dei; 681 struct sbuf sb; 682 683 if (system == NULL || subsystem == NULL || type == NULL) 684 return; 685 dei = devctl_alloc_dei_sb(&sb); 686 if (dei == NULL) 687 return; 688 sbuf_cpy(&sb, "!system="); 689 sbuf_cat(&sb, system); 690 sbuf_cat(&sb, " subsystem="); 691 sbuf_cat(&sb, subsystem); 692 sbuf_cat(&sb, " type="); 693 sbuf_cat(&sb, type); 694 if (data != NULL) { 695 sbuf_putc(&sb, ' '); 696 sbuf_cat(&sb, data); 697 } 698 sbuf_putc(&sb, '\n'); 699 if (sbuf_finish(&sb) != 0) 700 devctl_free_dei(dei); /* overflow -> drop it */ 701 else 702 devctl_queue(dei); 703 } 704 705 /* 706 * Common routine that tries to make sending messages as easy as possible. 707 * We allocate memory for the data, copy strings into that, but do not 708 * free it unless there's an error. The dequeue part of the driver should 709 * free the data. We don't send data when the device is disabled. We do 710 * send data, even when we have no listeners, because we wish to avoid 711 * races relating to startup and restart of listening applications. 712 * 713 * devaddq is designed to string together the type of event, with the 714 * object of that event, plus the plug and play info and location info 715 * for that event. This is likely most useful for devices, but less 716 * useful for other consumers of this interface. Those should use 717 * the devctl_notify() interface instead. 718 * 719 * Output: 720 * ${type}${what} at $(location dev) $(pnp-info dev) on $(parent dev) 721 */ 722 static void 723 devaddq(const char *type, const char *what, device_t dev) 724 { 725 struct dev_event_info *dei; 726 const char *parstr; 727 struct sbuf sb; 728 729 dei = devctl_alloc_dei_sb(&sb); 730 if (dei == NULL) 731 return; 732 sbuf_cpy(&sb, type); 733 sbuf_cat(&sb, what); 734 sbuf_cat(&sb, " at "); 735 736 /* Add in the location */ 737 bus_child_location(dev, &sb); 738 sbuf_putc(&sb, ' '); 739 740 /* Add in pnpinfo */ 741 bus_child_pnpinfo(dev, &sb); 742 743 /* Get the parent of this device, or / if high enough in the tree. */ 744 if (device_get_parent(dev) == NULL) 745 parstr = "."; /* Or '/' ? */ 746 else 747 parstr = device_get_nameunit(device_get_parent(dev)); 748 sbuf_cat(&sb, " on "); 749 sbuf_cat(&sb, parstr); 750 sbuf_putc(&sb, '\n'); 751 if (sbuf_finish(&sb) != 0) 752 goto bad; 753 devctl_queue(dei); 754 return; 755 bad: 756 devctl_free_dei(dei); 757 } 758 759 /* 760 * A device was added to the tree. We are called just after it successfully 761 * attaches (that is, probe and attach success for this device). No call 762 * is made if a device is merely parented into the tree. See devnomatch 763 * if probe fails. If attach fails, no notification is sent (but maybe 764 * we should have a different message for this). 765 */ 766 static void 767 devadded(device_t dev) 768 { 769 devaddq("+", device_get_nameunit(dev), dev); 770 } 771 772 /* 773 * A device was removed from the tree. We are called just before this 774 * happens. 775 */ 776 static void 777 devremoved(device_t dev) 778 { 779 devaddq("-", device_get_nameunit(dev), dev); 780 } 781 782 /* 783 * Called when there's no match for this device. This is only called 784 * the first time that no match happens, so we don't keep getting this 785 * message. Should that prove to be undesirable, we can change it. 786 * This is called when all drivers that can attach to a given bus 787 * decline to accept this device. Other errors may not be detected. 788 */ 789 static void 790 devnomatch(device_t dev) 791 { 792 devaddq("?", "", dev); 793 } 794 795 static int 796 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 797 { 798 int q, error; 799 800 q = devctl_queue_length; 801 error = sysctl_handle_int(oidp, &q, 0, req); 802 if (error || !req->newptr) 803 return (error); 804 if (q < 0) 805 return (EINVAL); 806 807 /* 808 * When set as a tunable, we've not yet initialized the mutex. 809 * It is safe to just assign to devctl_queue_length and return 810 * as we're racing no one. We'll use whatever value set in 811 * devinit. 812 */ 813 if (!mtx_initialized(&devsoftc.mtx)) { 814 devctl_queue_length = q; 815 return (0); 816 } 817 818 /* 819 * XXX It's hard to grow or shrink the UMA zone. Only allow 820 * disabling the queue size for the moment until underlying 821 * UMA issues can be sorted out. 822 */ 823 if (q != 0) 824 return (EINVAL); 825 if (q == devctl_queue_length) 826 return (0); 827 mtx_lock(&devsoftc.mtx); 828 devctl_queue_length = 0; 829 uma_zdestroy(devsoftc.zone); 830 devsoftc.zone = 0; 831 mtx_unlock(&devsoftc.mtx); 832 return (0); 833 } 834 835 /** 836 * @brief safely quotes strings that might have double quotes in them. 837 * 838 * The devctl protocol relies on quoted strings having matching quotes. 839 * This routine quotes any internal quotes so the resulting string 840 * is safe to pass to snprintf to construct, for example pnp info strings. 841 * 842 * @param sb sbuf to place the characters into 843 * @param src Original buffer. 844 */ 845 void 846 devctl_safe_quote_sb(struct sbuf *sb, const char *src) 847 { 848 while (*src != '\0') { 849 if (*src == '"' || *src == '\\') 850 sbuf_putc(sb, '\\'); 851 sbuf_putc(sb, *src++); 852 } 853 } 854 855 /* End of /dev/devctl code */ 856 857 static struct device_list bus_data_devices; 858 static int bus_data_generation = 1; 859 860 static kobj_method_t null_methods[] = { 861 KOBJMETHOD_END 862 }; 863 864 DEFINE_CLASS(null, null_methods, 0); 865 866 /* 867 * Bus pass implementation 868 */ 869 870 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 871 int bus_current_pass = BUS_PASS_ROOT; 872 873 /** 874 * @internal 875 * @brief Register the pass level of a new driver attachment 876 * 877 * Register a new driver attachment's pass level. If no driver 878 * attachment with the same pass level has been added, then @p new 879 * will be added to the global passes list. 880 * 881 * @param new the new driver attachment 882 */ 883 static void 884 driver_register_pass(struct driverlink *new) 885 { 886 struct driverlink *dl; 887 888 /* We only consider pass numbers during boot. */ 889 if (bus_current_pass == BUS_PASS_DEFAULT) 890 return; 891 892 /* 893 * Walk the passes list. If we already know about this pass 894 * then there is nothing to do. If we don't, then insert this 895 * driver link into the list. 896 */ 897 TAILQ_FOREACH(dl, &passes, passlink) { 898 if (dl->pass < new->pass) 899 continue; 900 if (dl->pass == new->pass) 901 return; 902 TAILQ_INSERT_BEFORE(dl, new, passlink); 903 return; 904 } 905 TAILQ_INSERT_TAIL(&passes, new, passlink); 906 } 907 908 /** 909 * @brief Raise the current bus pass 910 * 911 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 912 * method on the root bus to kick off a new device tree scan for each 913 * new pass level that has at least one driver. 914 */ 915 void 916 bus_set_pass(int pass) 917 { 918 struct driverlink *dl; 919 920 if (bus_current_pass > pass) 921 panic("Attempt to lower bus pass level"); 922 923 TAILQ_FOREACH(dl, &passes, passlink) { 924 /* Skip pass values below the current pass level. */ 925 if (dl->pass <= bus_current_pass) 926 continue; 927 928 /* 929 * Bail once we hit a driver with a pass level that is 930 * too high. 931 */ 932 if (dl->pass > pass) 933 break; 934 935 /* 936 * Raise the pass level to the next level and rescan 937 * the tree. 938 */ 939 bus_current_pass = dl->pass; 940 BUS_NEW_PASS(root_bus); 941 } 942 943 /* 944 * If there isn't a driver registered for the requested pass, 945 * then bus_current_pass might still be less than 'pass'. Set 946 * it to 'pass' in that case. 947 */ 948 if (bus_current_pass < pass) 949 bus_current_pass = pass; 950 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 951 } 952 953 /* 954 * Devclass implementation 955 */ 956 957 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 958 959 /** 960 * @internal 961 * @brief Find or create a device class 962 * 963 * If a device class with the name @p classname exists, return it, 964 * otherwise if @p create is non-zero create and return a new device 965 * class. 966 * 967 * If @p parentname is non-NULL, the parent of the devclass is set to 968 * the devclass of that name. 969 * 970 * @param classname the devclass name to find or create 971 * @param parentname the parent devclass name or @c NULL 972 * @param create non-zero to create a devclass 973 */ 974 static devclass_t 975 devclass_find_internal(const char *classname, const char *parentname, 976 int create) 977 { 978 devclass_t dc; 979 980 PDEBUG(("looking for %s", classname)); 981 if (!classname) 982 return (NULL); 983 984 TAILQ_FOREACH(dc, &devclasses, link) { 985 if (!strcmp(dc->name, classname)) 986 break; 987 } 988 989 if (create && !dc) { 990 PDEBUG(("creating %s", classname)); 991 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 992 M_BUS, M_NOWAIT | M_ZERO); 993 if (!dc) 994 return (NULL); 995 dc->parent = NULL; 996 dc->name = (char*) (dc + 1); 997 strcpy(dc->name, classname); 998 TAILQ_INIT(&dc->drivers); 999 TAILQ_INSERT_TAIL(&devclasses, dc, link); 1000 1001 bus_data_generation_update(); 1002 } 1003 1004 /* 1005 * If a parent class is specified, then set that as our parent so 1006 * that this devclass will support drivers for the parent class as 1007 * well. If the parent class has the same name don't do this though 1008 * as it creates a cycle that can trigger an infinite loop in 1009 * device_probe_child() if a device exists for which there is no 1010 * suitable driver. 1011 */ 1012 if (parentname && dc && !dc->parent && 1013 strcmp(classname, parentname) != 0) { 1014 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1015 dc->parent->flags |= DC_HAS_CHILDREN; 1016 } 1017 1018 return (dc); 1019 } 1020 1021 /** 1022 * @brief Create a device class 1023 * 1024 * If a device class with the name @p classname exists, return it, 1025 * otherwise create and return a new device class. 1026 * 1027 * @param classname the devclass name to find or create 1028 */ 1029 devclass_t 1030 devclass_create(const char *classname) 1031 { 1032 return (devclass_find_internal(classname, NULL, TRUE)); 1033 } 1034 1035 /** 1036 * @brief Find a device class 1037 * 1038 * If a device class with the name @p classname exists, return it, 1039 * otherwise return @c NULL. 1040 * 1041 * @param classname the devclass name to find 1042 */ 1043 devclass_t 1044 devclass_find(const char *classname) 1045 { 1046 return (devclass_find_internal(classname, NULL, FALSE)); 1047 } 1048 1049 /** 1050 * @brief Register that a device driver has been added to a devclass 1051 * 1052 * Register that a device driver has been added to a devclass. This 1053 * is called by devclass_add_driver to accomplish the recursive 1054 * notification of all the children classes of dc, as well as dc. 1055 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1056 * the devclass. 1057 * 1058 * We do a full search here of the devclass list at each iteration 1059 * level to save storing children-lists in the devclass structure. If 1060 * we ever move beyond a few dozen devices doing this, we may need to 1061 * reevaluate... 1062 * 1063 * @param dc the devclass to edit 1064 * @param driver the driver that was just added 1065 */ 1066 static void 1067 devclass_driver_added(devclass_t dc, driver_t *driver) 1068 { 1069 devclass_t parent; 1070 int i; 1071 1072 /* 1073 * Call BUS_DRIVER_ADDED for any existing buses in this class. 1074 */ 1075 for (i = 0; i < dc->maxunit; i++) 1076 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1077 BUS_DRIVER_ADDED(dc->devices[i], driver); 1078 1079 /* 1080 * Walk through the children classes. Since we only keep a 1081 * single parent pointer around, we walk the entire list of 1082 * devclasses looking for children. We set the 1083 * DC_HAS_CHILDREN flag when a child devclass is created on 1084 * the parent, so we only walk the list for those devclasses 1085 * that have children. 1086 */ 1087 if (!(dc->flags & DC_HAS_CHILDREN)) 1088 return; 1089 parent = dc; 1090 TAILQ_FOREACH(dc, &devclasses, link) { 1091 if (dc->parent == parent) 1092 devclass_driver_added(dc, driver); 1093 } 1094 } 1095 1096 /** 1097 * @brief Add a device driver to a device class 1098 * 1099 * Add a device driver to a devclass. This is normally called 1100 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1101 * all devices in the devclass will be called to allow them to attempt 1102 * to re-probe any unmatched children. 1103 * 1104 * @param dc the devclass to edit 1105 * @param driver the driver to register 1106 */ 1107 int 1108 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1109 { 1110 driverlink_t dl; 1111 const char *parentname; 1112 1113 PDEBUG(("%s", DRIVERNAME(driver))); 1114 1115 /* Don't allow invalid pass values. */ 1116 if (pass <= BUS_PASS_ROOT) 1117 return (EINVAL); 1118 1119 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1120 if (!dl) 1121 return (ENOMEM); 1122 1123 /* 1124 * Compile the driver's methods. Also increase the reference count 1125 * so that the class doesn't get freed when the last instance 1126 * goes. This means we can safely use static methods and avoids a 1127 * double-free in devclass_delete_driver. 1128 */ 1129 kobj_class_compile((kobj_class_t) driver); 1130 1131 /* 1132 * If the driver has any base classes, make the 1133 * devclass inherit from the devclass of the driver's 1134 * first base class. This will allow the system to 1135 * search for drivers in both devclasses for children 1136 * of a device using this driver. 1137 */ 1138 if (driver->baseclasses) 1139 parentname = driver->baseclasses[0]->name; 1140 else 1141 parentname = NULL; 1142 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1143 1144 dl->driver = driver; 1145 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1146 driver->refs++; /* XXX: kobj_mtx */ 1147 dl->pass = pass; 1148 driver_register_pass(dl); 1149 1150 if (device_frozen) { 1151 dl->flags |= DL_DEFERRED_PROBE; 1152 } else { 1153 devclass_driver_added(dc, driver); 1154 } 1155 bus_data_generation_update(); 1156 return (0); 1157 } 1158 1159 /** 1160 * @brief Register that a device driver has been deleted from a devclass 1161 * 1162 * Register that a device driver has been removed from a devclass. 1163 * This is called by devclass_delete_driver to accomplish the 1164 * recursive notification of all the children classes of busclass, as 1165 * well as busclass. Each layer will attempt to detach the driver 1166 * from any devices that are children of the bus's devclass. The function 1167 * will return an error if a device fails to detach. 1168 * 1169 * We do a full search here of the devclass list at each iteration 1170 * level to save storing children-lists in the devclass structure. If 1171 * we ever move beyond a few dozen devices doing this, we may need to 1172 * reevaluate... 1173 * 1174 * @param busclass the devclass of the parent bus 1175 * @param dc the devclass of the driver being deleted 1176 * @param driver the driver being deleted 1177 */ 1178 static int 1179 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1180 { 1181 devclass_t parent; 1182 device_t dev; 1183 int error, i; 1184 1185 /* 1186 * Disassociate from any devices. We iterate through all the 1187 * devices in the devclass of the driver and detach any which are 1188 * using the driver and which have a parent in the devclass which 1189 * we are deleting from. 1190 * 1191 * Note that since a driver can be in multiple devclasses, we 1192 * should not detach devices which are not children of devices in 1193 * the affected devclass. 1194 * 1195 * If we're frozen, we don't generate NOMATCH events. Mark to 1196 * generate later. 1197 */ 1198 for (i = 0; i < dc->maxunit; i++) { 1199 if (dc->devices[i]) { 1200 dev = dc->devices[i]; 1201 if (dev->driver == driver && dev->parent && 1202 dev->parent->devclass == busclass) { 1203 if ((error = device_detach(dev)) != 0) 1204 return (error); 1205 if (device_frozen) { 1206 dev->flags &= ~DF_DONENOMATCH; 1207 dev->flags |= DF_NEEDNOMATCH; 1208 } else { 1209 BUS_PROBE_NOMATCH(dev->parent, dev); 1210 devnomatch(dev); 1211 dev->flags |= DF_DONENOMATCH; 1212 } 1213 } 1214 } 1215 } 1216 1217 /* 1218 * Walk through the children classes. Since we only keep a 1219 * single parent pointer around, we walk the entire list of 1220 * devclasses looking for children. We set the 1221 * DC_HAS_CHILDREN flag when a child devclass is created on 1222 * the parent, so we only walk the list for those devclasses 1223 * that have children. 1224 */ 1225 if (!(busclass->flags & DC_HAS_CHILDREN)) 1226 return (0); 1227 parent = busclass; 1228 TAILQ_FOREACH(busclass, &devclasses, link) { 1229 if (busclass->parent == parent) { 1230 error = devclass_driver_deleted(busclass, dc, driver); 1231 if (error) 1232 return (error); 1233 } 1234 } 1235 return (0); 1236 } 1237 1238 /** 1239 * @brief Delete a device driver from a device class 1240 * 1241 * Delete a device driver from a devclass. This is normally called 1242 * automatically by DRIVER_MODULE(). 1243 * 1244 * If the driver is currently attached to any devices, 1245 * devclass_delete_driver() will first attempt to detach from each 1246 * device. If one of the detach calls fails, the driver will not be 1247 * deleted. 1248 * 1249 * @param dc the devclass to edit 1250 * @param driver the driver to unregister 1251 */ 1252 int 1253 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1254 { 1255 devclass_t dc = devclass_find(driver->name); 1256 driverlink_t dl; 1257 int error; 1258 1259 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1260 1261 if (!dc) 1262 return (0); 1263 1264 /* 1265 * Find the link structure in the bus' list of drivers. 1266 */ 1267 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1268 if (dl->driver == driver) 1269 break; 1270 } 1271 1272 if (!dl) { 1273 PDEBUG(("%s not found in %s list", driver->name, 1274 busclass->name)); 1275 return (ENOENT); 1276 } 1277 1278 error = devclass_driver_deleted(busclass, dc, driver); 1279 if (error != 0) 1280 return (error); 1281 1282 TAILQ_REMOVE(&busclass->drivers, dl, link); 1283 free(dl, M_BUS); 1284 1285 /* XXX: kobj_mtx */ 1286 driver->refs--; 1287 if (driver->refs == 0) 1288 kobj_class_free((kobj_class_t) driver); 1289 1290 bus_data_generation_update(); 1291 return (0); 1292 } 1293 1294 /** 1295 * @brief Quiesces a set of device drivers from a device class 1296 * 1297 * Quiesce a device driver from a devclass. This is normally called 1298 * automatically by DRIVER_MODULE(). 1299 * 1300 * If the driver is currently attached to any devices, 1301 * devclass_quiesece_driver() will first attempt to quiesce each 1302 * device. 1303 * 1304 * @param dc the devclass to edit 1305 * @param driver the driver to unregister 1306 */ 1307 static int 1308 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1309 { 1310 devclass_t dc = devclass_find(driver->name); 1311 driverlink_t dl; 1312 device_t dev; 1313 int i; 1314 int error; 1315 1316 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1317 1318 if (!dc) 1319 return (0); 1320 1321 /* 1322 * Find the link structure in the bus' list of drivers. 1323 */ 1324 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1325 if (dl->driver == driver) 1326 break; 1327 } 1328 1329 if (!dl) { 1330 PDEBUG(("%s not found in %s list", driver->name, 1331 busclass->name)); 1332 return (ENOENT); 1333 } 1334 1335 /* 1336 * Quiesce all devices. We iterate through all the devices in 1337 * the devclass of the driver and quiesce any which are using 1338 * the driver and which have a parent in the devclass which we 1339 * are quiescing. 1340 * 1341 * Note that since a driver can be in multiple devclasses, we 1342 * should not quiesce devices which are not children of 1343 * devices in the affected devclass. 1344 */ 1345 for (i = 0; i < dc->maxunit; i++) { 1346 if (dc->devices[i]) { 1347 dev = dc->devices[i]; 1348 if (dev->driver == driver && dev->parent && 1349 dev->parent->devclass == busclass) { 1350 if ((error = device_quiesce(dev)) != 0) 1351 return (error); 1352 } 1353 } 1354 } 1355 1356 return (0); 1357 } 1358 1359 /** 1360 * @internal 1361 */ 1362 static driverlink_t 1363 devclass_find_driver_internal(devclass_t dc, const char *classname) 1364 { 1365 driverlink_t dl; 1366 1367 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1368 1369 TAILQ_FOREACH(dl, &dc->drivers, link) { 1370 if (!strcmp(dl->driver->name, classname)) 1371 return (dl); 1372 } 1373 1374 PDEBUG(("not found")); 1375 return (NULL); 1376 } 1377 1378 /** 1379 * @brief Return the name of the devclass 1380 */ 1381 const char * 1382 devclass_get_name(devclass_t dc) 1383 { 1384 return (dc->name); 1385 } 1386 1387 /** 1388 * @brief Find a device given a unit number 1389 * 1390 * @param dc the devclass to search 1391 * @param unit the unit number to search for 1392 * 1393 * @returns the device with the given unit number or @c 1394 * NULL if there is no such device 1395 */ 1396 device_t 1397 devclass_get_device(devclass_t dc, int unit) 1398 { 1399 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1400 return (NULL); 1401 return (dc->devices[unit]); 1402 } 1403 1404 /** 1405 * @brief Find the softc field of a device given a unit number 1406 * 1407 * @param dc the devclass to search 1408 * @param unit the unit number to search for 1409 * 1410 * @returns the softc field of the device with the given 1411 * unit number or @c NULL if there is no such 1412 * device 1413 */ 1414 void * 1415 devclass_get_softc(devclass_t dc, int unit) 1416 { 1417 device_t dev; 1418 1419 dev = devclass_get_device(dc, unit); 1420 if (!dev) 1421 return (NULL); 1422 1423 return (device_get_softc(dev)); 1424 } 1425 1426 /** 1427 * @brief Get a list of devices in the devclass 1428 * 1429 * An array containing a list of all the devices in the given devclass 1430 * is allocated and returned in @p *devlistp. The number of devices 1431 * in the array is returned in @p *devcountp. The caller should free 1432 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1433 * 1434 * @param dc the devclass to examine 1435 * @param devlistp points at location for array pointer return 1436 * value 1437 * @param devcountp points at location for array size return value 1438 * 1439 * @retval 0 success 1440 * @retval ENOMEM the array allocation failed 1441 */ 1442 int 1443 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1444 { 1445 int count, i; 1446 device_t *list; 1447 1448 count = devclass_get_count(dc); 1449 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1450 if (!list) 1451 return (ENOMEM); 1452 1453 count = 0; 1454 for (i = 0; i < dc->maxunit; i++) { 1455 if (dc->devices[i]) { 1456 list[count] = dc->devices[i]; 1457 count++; 1458 } 1459 } 1460 1461 *devlistp = list; 1462 *devcountp = count; 1463 1464 return (0); 1465 } 1466 1467 /** 1468 * @brief Get a list of drivers in the devclass 1469 * 1470 * An array containing a list of pointers to all the drivers in the 1471 * given devclass is allocated and returned in @p *listp. The number 1472 * of drivers in the array is returned in @p *countp. The caller should 1473 * free the array using @c free(p, M_TEMP). 1474 * 1475 * @param dc the devclass to examine 1476 * @param listp gives location for array pointer return value 1477 * @param countp gives location for number of array elements 1478 * return value 1479 * 1480 * @retval 0 success 1481 * @retval ENOMEM the array allocation failed 1482 */ 1483 int 1484 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1485 { 1486 driverlink_t dl; 1487 driver_t **list; 1488 int count; 1489 1490 count = 0; 1491 TAILQ_FOREACH(dl, &dc->drivers, link) 1492 count++; 1493 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1494 if (list == NULL) 1495 return (ENOMEM); 1496 1497 count = 0; 1498 TAILQ_FOREACH(dl, &dc->drivers, link) { 1499 list[count] = dl->driver; 1500 count++; 1501 } 1502 *listp = list; 1503 *countp = count; 1504 1505 return (0); 1506 } 1507 1508 /** 1509 * @brief Get the number of devices in a devclass 1510 * 1511 * @param dc the devclass to examine 1512 */ 1513 int 1514 devclass_get_count(devclass_t dc) 1515 { 1516 int count, i; 1517 1518 count = 0; 1519 for (i = 0; i < dc->maxunit; i++) 1520 if (dc->devices[i]) 1521 count++; 1522 return (count); 1523 } 1524 1525 /** 1526 * @brief Get the maximum unit number used in a devclass 1527 * 1528 * Note that this is one greater than the highest currently-allocated 1529 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1530 * that not even the devclass has been allocated yet. 1531 * 1532 * @param dc the devclass to examine 1533 */ 1534 int 1535 devclass_get_maxunit(devclass_t dc) 1536 { 1537 if (dc == NULL) 1538 return (-1); 1539 return (dc->maxunit); 1540 } 1541 1542 /** 1543 * @brief Find a free unit number in a devclass 1544 * 1545 * This function searches for the first unused unit number greater 1546 * that or equal to @p unit. 1547 * 1548 * @param dc the devclass to examine 1549 * @param unit the first unit number to check 1550 */ 1551 int 1552 devclass_find_free_unit(devclass_t dc, int unit) 1553 { 1554 if (dc == NULL) 1555 return (unit); 1556 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1557 unit++; 1558 return (unit); 1559 } 1560 1561 /** 1562 * @brief Set the parent of a devclass 1563 * 1564 * The parent class is normally initialised automatically by 1565 * DRIVER_MODULE(). 1566 * 1567 * @param dc the devclass to edit 1568 * @param pdc the new parent devclass 1569 */ 1570 void 1571 devclass_set_parent(devclass_t dc, devclass_t pdc) 1572 { 1573 dc->parent = pdc; 1574 } 1575 1576 /** 1577 * @brief Get the parent of a devclass 1578 * 1579 * @param dc the devclass to examine 1580 */ 1581 devclass_t 1582 devclass_get_parent(devclass_t dc) 1583 { 1584 return (dc->parent); 1585 } 1586 1587 struct sysctl_ctx_list * 1588 devclass_get_sysctl_ctx(devclass_t dc) 1589 { 1590 return (&dc->sysctl_ctx); 1591 } 1592 1593 struct sysctl_oid * 1594 devclass_get_sysctl_tree(devclass_t dc) 1595 { 1596 return (dc->sysctl_tree); 1597 } 1598 1599 /** 1600 * @internal 1601 * @brief Allocate a unit number 1602 * 1603 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1604 * will do). The allocated unit number is returned in @p *unitp. 1605 1606 * @param dc the devclass to allocate from 1607 * @param unitp points at the location for the allocated unit 1608 * number 1609 * 1610 * @retval 0 success 1611 * @retval EEXIST the requested unit number is already allocated 1612 * @retval ENOMEM memory allocation failure 1613 */ 1614 static int 1615 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1616 { 1617 const char *s; 1618 int unit = *unitp; 1619 1620 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1621 1622 /* Ask the parent bus if it wants to wire this device. */ 1623 if (unit == -1) 1624 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1625 &unit); 1626 1627 /* If we were given a wired unit number, check for existing device */ 1628 /* XXX imp XXX */ 1629 if (unit != -1) { 1630 if (unit >= 0 && unit < dc->maxunit && 1631 dc->devices[unit] != NULL) { 1632 if (bootverbose) 1633 printf("%s: %s%d already exists; skipping it\n", 1634 dc->name, dc->name, *unitp); 1635 return (EEXIST); 1636 } 1637 } else { 1638 /* Unwired device, find the next available slot for it */ 1639 unit = 0; 1640 for (unit = 0;; unit++) { 1641 /* If this device slot is already in use, skip it. */ 1642 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1643 continue; 1644 1645 /* If there is an "at" hint for a unit then skip it. */ 1646 if (resource_string_value(dc->name, unit, "at", &s) == 1647 0) 1648 continue; 1649 1650 break; 1651 } 1652 } 1653 1654 /* 1655 * We've selected a unit beyond the length of the table, so let's 1656 * extend the table to make room for all units up to and including 1657 * this one. 1658 */ 1659 if (unit >= dc->maxunit) { 1660 device_t *newlist, *oldlist; 1661 int newsize; 1662 1663 oldlist = dc->devices; 1664 newsize = roundup((unit + 1), 1665 MAX(1, MINALLOCSIZE / sizeof(device_t))); 1666 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1667 if (!newlist) 1668 return (ENOMEM); 1669 if (oldlist != NULL) 1670 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1671 bzero(newlist + dc->maxunit, 1672 sizeof(device_t) * (newsize - dc->maxunit)); 1673 dc->devices = newlist; 1674 dc->maxunit = newsize; 1675 if (oldlist != NULL) 1676 free(oldlist, M_BUS); 1677 } 1678 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1679 1680 *unitp = unit; 1681 return (0); 1682 } 1683 1684 /** 1685 * @internal 1686 * @brief Add a device to a devclass 1687 * 1688 * A unit number is allocated for the device (using the device's 1689 * preferred unit number if any) and the device is registered in the 1690 * devclass. This allows the device to be looked up by its unit 1691 * number, e.g. by decoding a dev_t minor number. 1692 * 1693 * @param dc the devclass to add to 1694 * @param dev the device to add 1695 * 1696 * @retval 0 success 1697 * @retval EEXIST the requested unit number is already allocated 1698 * @retval ENOMEM memory allocation failure 1699 */ 1700 static int 1701 devclass_add_device(devclass_t dc, device_t dev) 1702 { 1703 int buflen, error; 1704 1705 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1706 1707 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1708 if (buflen < 0) 1709 return (ENOMEM); 1710 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1711 if (!dev->nameunit) 1712 return (ENOMEM); 1713 1714 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1715 free(dev->nameunit, M_BUS); 1716 dev->nameunit = NULL; 1717 return (error); 1718 } 1719 dc->devices[dev->unit] = dev; 1720 dev->devclass = dc; 1721 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1722 1723 return (0); 1724 } 1725 1726 /** 1727 * @internal 1728 * @brief Delete a device from a devclass 1729 * 1730 * The device is removed from the devclass's device list and its unit 1731 * number is freed. 1732 1733 * @param dc the devclass to delete from 1734 * @param dev the device to delete 1735 * 1736 * @retval 0 success 1737 */ 1738 static int 1739 devclass_delete_device(devclass_t dc, device_t dev) 1740 { 1741 if (!dc || !dev) 1742 return (0); 1743 1744 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1745 1746 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1747 panic("devclass_delete_device: inconsistent device class"); 1748 dc->devices[dev->unit] = NULL; 1749 if (dev->flags & DF_WILDCARD) 1750 dev->unit = -1; 1751 dev->devclass = NULL; 1752 free(dev->nameunit, M_BUS); 1753 dev->nameunit = NULL; 1754 1755 return (0); 1756 } 1757 1758 /** 1759 * @internal 1760 * @brief Make a new device and add it as a child of @p parent 1761 * 1762 * @param parent the parent of the new device 1763 * @param name the devclass name of the new device or @c NULL 1764 * to leave the devclass unspecified 1765 * @parem unit the unit number of the new device of @c -1 to 1766 * leave the unit number unspecified 1767 * 1768 * @returns the new device 1769 */ 1770 static device_t 1771 make_device(device_t parent, const char *name, int unit) 1772 { 1773 device_t dev; 1774 devclass_t dc; 1775 1776 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1777 1778 if (name) { 1779 dc = devclass_find_internal(name, NULL, TRUE); 1780 if (!dc) { 1781 printf("make_device: can't find device class %s\n", 1782 name); 1783 return (NULL); 1784 } 1785 } else { 1786 dc = NULL; 1787 } 1788 1789 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1790 if (!dev) 1791 return (NULL); 1792 1793 dev->parent = parent; 1794 TAILQ_INIT(&dev->children); 1795 kobj_init((kobj_t) dev, &null_class); 1796 dev->driver = NULL; 1797 dev->devclass = NULL; 1798 dev->unit = unit; 1799 dev->nameunit = NULL; 1800 dev->desc = NULL; 1801 dev->busy = 0; 1802 dev->devflags = 0; 1803 dev->flags = DF_ENABLED; 1804 dev->order = 0; 1805 if (unit == -1) 1806 dev->flags |= DF_WILDCARD; 1807 if (name) { 1808 dev->flags |= DF_FIXEDCLASS; 1809 if (devclass_add_device(dc, dev)) { 1810 kobj_delete((kobj_t) dev, M_BUS); 1811 return (NULL); 1812 } 1813 } 1814 if (parent != NULL && device_has_quiet_children(parent)) 1815 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1816 dev->ivars = NULL; 1817 dev->softc = NULL; 1818 1819 dev->state = DS_NOTPRESENT; 1820 1821 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1822 bus_data_generation_update(); 1823 1824 return (dev); 1825 } 1826 1827 /** 1828 * @internal 1829 * @brief Print a description of a device. 1830 */ 1831 static int 1832 device_print_child(device_t dev, device_t child) 1833 { 1834 int retval = 0; 1835 1836 if (device_is_alive(child)) 1837 retval += BUS_PRINT_CHILD(dev, child); 1838 else 1839 retval += device_printf(child, " not found\n"); 1840 1841 return (retval); 1842 } 1843 1844 /** 1845 * @brief Create a new device 1846 * 1847 * This creates a new device and adds it as a child of an existing 1848 * parent device. The new device will be added after the last existing 1849 * child with order zero. 1850 * 1851 * @param dev the device which will be the parent of the 1852 * new child device 1853 * @param name devclass name for new device or @c NULL if not 1854 * specified 1855 * @param unit unit number for new device or @c -1 if not 1856 * specified 1857 * 1858 * @returns the new device 1859 */ 1860 device_t 1861 device_add_child(device_t dev, const char *name, int unit) 1862 { 1863 return (device_add_child_ordered(dev, 0, name, unit)); 1864 } 1865 1866 /** 1867 * @brief Create a new device 1868 * 1869 * This creates a new device and adds it as a child of an existing 1870 * parent device. The new device will be added after the last existing 1871 * child with the same order. 1872 * 1873 * @param dev the device which will be the parent of the 1874 * new child device 1875 * @param order a value which is used to partially sort the 1876 * children of @p dev - devices created using 1877 * lower values of @p order appear first in @p 1878 * dev's list of children 1879 * @param name devclass name for new device or @c NULL if not 1880 * specified 1881 * @param unit unit number for new device or @c -1 if not 1882 * specified 1883 * 1884 * @returns the new device 1885 */ 1886 device_t 1887 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1888 { 1889 device_t child; 1890 device_t place; 1891 1892 PDEBUG(("%s at %s with order %u as unit %d", 1893 name, DEVICENAME(dev), order, unit)); 1894 KASSERT(name != NULL || unit == -1, 1895 ("child device with wildcard name and specific unit number")); 1896 1897 child = make_device(dev, name, unit); 1898 if (child == NULL) 1899 return (child); 1900 child->order = order; 1901 1902 TAILQ_FOREACH(place, &dev->children, link) { 1903 if (place->order > order) 1904 break; 1905 } 1906 1907 if (place) { 1908 /* 1909 * The device 'place' is the first device whose order is 1910 * greater than the new child. 1911 */ 1912 TAILQ_INSERT_BEFORE(place, child, link); 1913 } else { 1914 /* 1915 * The new child's order is greater or equal to the order of 1916 * any existing device. Add the child to the tail of the list. 1917 */ 1918 TAILQ_INSERT_TAIL(&dev->children, child, link); 1919 } 1920 1921 bus_data_generation_update(); 1922 return (child); 1923 } 1924 1925 /** 1926 * @brief Delete a device 1927 * 1928 * This function deletes a device along with all of its children. If 1929 * the device currently has a driver attached to it, the device is 1930 * detached first using device_detach(). 1931 * 1932 * @param dev the parent device 1933 * @param child the device to delete 1934 * 1935 * @retval 0 success 1936 * @retval non-zero a unit error code describing the error 1937 */ 1938 int 1939 device_delete_child(device_t dev, device_t child) 1940 { 1941 int error; 1942 device_t grandchild; 1943 1944 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1945 1946 /* detach parent before deleting children, if any */ 1947 if ((error = device_detach(child)) != 0) 1948 return (error); 1949 1950 /* remove children second */ 1951 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1952 error = device_delete_child(child, grandchild); 1953 if (error) 1954 return (error); 1955 } 1956 1957 if (child->devclass) 1958 devclass_delete_device(child->devclass, child); 1959 if (child->parent) 1960 BUS_CHILD_DELETED(dev, child); 1961 TAILQ_REMOVE(&dev->children, child, link); 1962 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1963 kobj_delete((kobj_t) child, M_BUS); 1964 1965 bus_data_generation_update(); 1966 return (0); 1967 } 1968 1969 /** 1970 * @brief Delete all children devices of the given device, if any. 1971 * 1972 * This function deletes all children devices of the given device, if 1973 * any, using the device_delete_child() function for each device it 1974 * finds. If a child device cannot be deleted, this function will 1975 * return an error code. 1976 * 1977 * @param dev the parent device 1978 * 1979 * @retval 0 success 1980 * @retval non-zero a device would not detach 1981 */ 1982 int 1983 device_delete_children(device_t dev) 1984 { 1985 device_t child; 1986 int error; 1987 1988 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1989 1990 error = 0; 1991 1992 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1993 error = device_delete_child(dev, child); 1994 if (error) { 1995 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1996 break; 1997 } 1998 } 1999 return (error); 2000 } 2001 2002 /** 2003 * @brief Find a device given a unit number 2004 * 2005 * This is similar to devclass_get_devices() but only searches for 2006 * devices which have @p dev as a parent. 2007 * 2008 * @param dev the parent device to search 2009 * @param unit the unit number to search for. If the unit is -1, 2010 * return the first child of @p dev which has name 2011 * @p classname (that is, the one with the lowest unit.) 2012 * 2013 * @returns the device with the given unit number or @c 2014 * NULL if there is no such device 2015 */ 2016 device_t 2017 device_find_child(device_t dev, const char *classname, int unit) 2018 { 2019 devclass_t dc; 2020 device_t child; 2021 2022 dc = devclass_find(classname); 2023 if (!dc) 2024 return (NULL); 2025 2026 if (unit != -1) { 2027 child = devclass_get_device(dc, unit); 2028 if (child && child->parent == dev) 2029 return (child); 2030 } else { 2031 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2032 child = devclass_get_device(dc, unit); 2033 if (child && child->parent == dev) 2034 return (child); 2035 } 2036 } 2037 return (NULL); 2038 } 2039 2040 /** 2041 * @internal 2042 */ 2043 static driverlink_t 2044 first_matching_driver(devclass_t dc, device_t dev) 2045 { 2046 if (dev->devclass) 2047 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2048 return (TAILQ_FIRST(&dc->drivers)); 2049 } 2050 2051 /** 2052 * @internal 2053 */ 2054 static driverlink_t 2055 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2056 { 2057 if (dev->devclass) { 2058 driverlink_t dl; 2059 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2060 if (!strcmp(dev->devclass->name, dl->driver->name)) 2061 return (dl); 2062 return (NULL); 2063 } 2064 return (TAILQ_NEXT(last, link)); 2065 } 2066 2067 /** 2068 * @internal 2069 */ 2070 int 2071 device_probe_child(device_t dev, device_t child) 2072 { 2073 devclass_t dc; 2074 driverlink_t best = NULL; 2075 driverlink_t dl; 2076 int result, pri = 0; 2077 int hasclass = (child->devclass != NULL); 2078 2079 GIANT_REQUIRED; 2080 2081 dc = dev->devclass; 2082 if (!dc) 2083 panic("device_probe_child: parent device has no devclass"); 2084 2085 /* 2086 * If the state is already probed, then return. However, don't 2087 * return if we can rebid this object. 2088 */ 2089 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2090 return (0); 2091 2092 for (; dc; dc = dc->parent) { 2093 for (dl = first_matching_driver(dc, child); 2094 dl; 2095 dl = next_matching_driver(dc, child, dl)) { 2096 /* If this driver's pass is too high, then ignore it. */ 2097 if (dl->pass > bus_current_pass) 2098 continue; 2099 2100 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2101 result = device_set_driver(child, dl->driver); 2102 if (result == ENOMEM) 2103 return (result); 2104 else if (result != 0) 2105 continue; 2106 if (!hasclass) { 2107 if (device_set_devclass(child, 2108 dl->driver->name) != 0) { 2109 char const * devname = 2110 device_get_name(child); 2111 if (devname == NULL) 2112 devname = "(unknown)"; 2113 printf("driver bug: Unable to set " 2114 "devclass (class: %s " 2115 "devname: %s)\n", 2116 dl->driver->name, 2117 devname); 2118 (void)device_set_driver(child, NULL); 2119 continue; 2120 } 2121 } 2122 2123 /* Fetch any flags for the device before probing. */ 2124 resource_int_value(dl->driver->name, child->unit, 2125 "flags", &child->devflags); 2126 2127 result = DEVICE_PROBE(child); 2128 2129 /* Reset flags and devclass before the next probe. */ 2130 child->devflags = 0; 2131 if (!hasclass) 2132 (void)device_set_devclass(child, NULL); 2133 2134 /* 2135 * If the driver returns SUCCESS, there can be 2136 * no higher match for this device. 2137 */ 2138 if (result == 0) { 2139 best = dl; 2140 pri = 0; 2141 break; 2142 } 2143 2144 /* 2145 * Reset DF_QUIET in case this driver doesn't 2146 * end up as the best driver. 2147 */ 2148 device_verbose(child); 2149 2150 /* 2151 * Probes that return BUS_PROBE_NOWILDCARD or lower 2152 * only match on devices whose driver was explicitly 2153 * specified. 2154 */ 2155 if (result <= BUS_PROBE_NOWILDCARD && 2156 !(child->flags & DF_FIXEDCLASS)) { 2157 result = ENXIO; 2158 } 2159 2160 /* 2161 * The driver returned an error so it 2162 * certainly doesn't match. 2163 */ 2164 if (result > 0) { 2165 (void)device_set_driver(child, NULL); 2166 continue; 2167 } 2168 2169 /* 2170 * A priority lower than SUCCESS, remember the 2171 * best matching driver. Initialise the value 2172 * of pri for the first match. 2173 */ 2174 if (best == NULL || result > pri) { 2175 best = dl; 2176 pri = result; 2177 continue; 2178 } 2179 } 2180 /* 2181 * If we have an unambiguous match in this devclass, 2182 * don't look in the parent. 2183 */ 2184 if (best && pri == 0) 2185 break; 2186 } 2187 2188 /* 2189 * If we found a driver, change state and initialise the devclass. 2190 */ 2191 /* XXX What happens if we rebid and got no best? */ 2192 if (best) { 2193 /* 2194 * If this device was attached, and we were asked to 2195 * rescan, and it is a different driver, then we have 2196 * to detach the old driver and reattach this new one. 2197 * Note, we don't have to check for DF_REBID here 2198 * because if the state is > DS_ALIVE, we know it must 2199 * be. 2200 * 2201 * This assumes that all DF_REBID drivers can have 2202 * their probe routine called at any time and that 2203 * they are idempotent as well as completely benign in 2204 * normal operations. 2205 * 2206 * We also have to make sure that the detach 2207 * succeeded, otherwise we fail the operation (or 2208 * maybe it should just fail silently? I'm torn). 2209 */ 2210 if (child->state > DS_ALIVE && best->driver != child->driver) 2211 if ((result = device_detach(dev)) != 0) 2212 return (result); 2213 2214 /* Set the winning driver, devclass, and flags. */ 2215 if (!child->devclass) { 2216 result = device_set_devclass(child, best->driver->name); 2217 if (result != 0) 2218 return (result); 2219 } 2220 result = device_set_driver(child, best->driver); 2221 if (result != 0) 2222 return (result); 2223 resource_int_value(best->driver->name, child->unit, 2224 "flags", &child->devflags); 2225 2226 if (pri < 0) { 2227 /* 2228 * A bit bogus. Call the probe method again to make 2229 * sure that we have the right description. 2230 */ 2231 DEVICE_PROBE(child); 2232 #if 0 2233 child->flags |= DF_REBID; 2234 #endif 2235 } else 2236 child->flags &= ~DF_REBID; 2237 child->state = DS_ALIVE; 2238 2239 bus_data_generation_update(); 2240 return (0); 2241 } 2242 2243 return (ENXIO); 2244 } 2245 2246 /** 2247 * @brief Return the parent of a device 2248 */ 2249 device_t 2250 device_get_parent(device_t dev) 2251 { 2252 return (dev->parent); 2253 } 2254 2255 /** 2256 * @brief Get a list of children of a device 2257 * 2258 * An array containing a list of all the children of the given device 2259 * is allocated and returned in @p *devlistp. The number of devices 2260 * in the array is returned in @p *devcountp. The caller should free 2261 * the array using @c free(p, M_TEMP). 2262 * 2263 * @param dev the device to examine 2264 * @param devlistp points at location for array pointer return 2265 * value 2266 * @param devcountp points at location for array size return value 2267 * 2268 * @retval 0 success 2269 * @retval ENOMEM the array allocation failed 2270 */ 2271 int 2272 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2273 { 2274 int count; 2275 device_t child; 2276 device_t *list; 2277 2278 count = 0; 2279 TAILQ_FOREACH(child, &dev->children, link) { 2280 count++; 2281 } 2282 if (count == 0) { 2283 *devlistp = NULL; 2284 *devcountp = 0; 2285 return (0); 2286 } 2287 2288 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2289 if (!list) 2290 return (ENOMEM); 2291 2292 count = 0; 2293 TAILQ_FOREACH(child, &dev->children, link) { 2294 list[count] = child; 2295 count++; 2296 } 2297 2298 *devlistp = list; 2299 *devcountp = count; 2300 2301 return (0); 2302 } 2303 2304 /** 2305 * @brief Return the current driver for the device or @c NULL if there 2306 * is no driver currently attached 2307 */ 2308 driver_t * 2309 device_get_driver(device_t dev) 2310 { 2311 return (dev->driver); 2312 } 2313 2314 /** 2315 * @brief Return the current devclass for the device or @c NULL if 2316 * there is none. 2317 */ 2318 devclass_t 2319 device_get_devclass(device_t dev) 2320 { 2321 return (dev->devclass); 2322 } 2323 2324 /** 2325 * @brief Return the name of the device's devclass or @c NULL if there 2326 * is none. 2327 */ 2328 const char * 2329 device_get_name(device_t dev) 2330 { 2331 if (dev != NULL && dev->devclass) 2332 return (devclass_get_name(dev->devclass)); 2333 return (NULL); 2334 } 2335 2336 /** 2337 * @brief Return a string containing the device's devclass name 2338 * followed by an ascii representation of the device's unit number 2339 * (e.g. @c "foo2"). 2340 */ 2341 const char * 2342 device_get_nameunit(device_t dev) 2343 { 2344 return (dev->nameunit); 2345 } 2346 2347 /** 2348 * @brief Return the device's unit number. 2349 */ 2350 int 2351 device_get_unit(device_t dev) 2352 { 2353 return (dev->unit); 2354 } 2355 2356 /** 2357 * @brief Return the device's description string 2358 */ 2359 const char * 2360 device_get_desc(device_t dev) 2361 { 2362 return (dev->desc); 2363 } 2364 2365 /** 2366 * @brief Return the device's flags 2367 */ 2368 uint32_t 2369 device_get_flags(device_t dev) 2370 { 2371 return (dev->devflags); 2372 } 2373 2374 struct sysctl_ctx_list * 2375 device_get_sysctl_ctx(device_t dev) 2376 { 2377 return (&dev->sysctl_ctx); 2378 } 2379 2380 struct sysctl_oid * 2381 device_get_sysctl_tree(device_t dev) 2382 { 2383 return (dev->sysctl_tree); 2384 } 2385 2386 /** 2387 * @brief Print the name of the device followed by a colon and a space 2388 * 2389 * @returns the number of characters printed 2390 */ 2391 int 2392 device_print_prettyname(device_t dev) 2393 { 2394 const char *name = device_get_name(dev); 2395 2396 if (name == NULL) 2397 return (printf("unknown: ")); 2398 return (printf("%s%d: ", name, device_get_unit(dev))); 2399 } 2400 2401 /** 2402 * @brief Print the name of the device followed by a colon, a space 2403 * and the result of calling vprintf() with the value of @p fmt and 2404 * the following arguments. 2405 * 2406 * @returns the number of characters printed 2407 */ 2408 int 2409 device_printf(device_t dev, const char * fmt, ...) 2410 { 2411 char buf[128]; 2412 struct sbuf sb; 2413 const char *name; 2414 va_list ap; 2415 size_t retval; 2416 2417 retval = 0; 2418 2419 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2420 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 2421 2422 name = device_get_name(dev); 2423 2424 if (name == NULL) 2425 sbuf_cat(&sb, "unknown: "); 2426 else 2427 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2428 2429 va_start(ap, fmt); 2430 sbuf_vprintf(&sb, fmt, ap); 2431 va_end(ap); 2432 2433 sbuf_finish(&sb); 2434 sbuf_delete(&sb); 2435 2436 return (retval); 2437 } 2438 2439 /** 2440 * @brief Print the name of the device followed by a colon, a space 2441 * and the result of calling log() with the value of @p fmt and 2442 * the following arguments. 2443 * 2444 * @returns the number of characters printed 2445 */ 2446 int 2447 device_log(device_t dev, int pri, const char * fmt, ...) 2448 { 2449 char buf[128]; 2450 struct sbuf sb; 2451 const char *name; 2452 va_list ap; 2453 size_t retval; 2454 2455 retval = 0; 2456 2457 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2458 2459 name = device_get_name(dev); 2460 2461 if (name == NULL) 2462 sbuf_cat(&sb, "unknown: "); 2463 else 2464 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2465 2466 va_start(ap, fmt); 2467 sbuf_vprintf(&sb, fmt, ap); 2468 va_end(ap); 2469 2470 sbuf_finish(&sb); 2471 2472 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb)); 2473 retval = sbuf_len(&sb); 2474 2475 sbuf_delete(&sb); 2476 2477 return (retval); 2478 } 2479 2480 /** 2481 * @internal 2482 */ 2483 static void 2484 device_set_desc_internal(device_t dev, const char* desc, int copy) 2485 { 2486 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2487 free(dev->desc, M_BUS); 2488 dev->flags &= ~DF_DESCMALLOCED; 2489 dev->desc = NULL; 2490 } 2491 2492 if (copy && desc) { 2493 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2494 if (dev->desc) { 2495 strcpy(dev->desc, desc); 2496 dev->flags |= DF_DESCMALLOCED; 2497 } 2498 } else { 2499 /* Avoid a -Wcast-qual warning */ 2500 dev->desc = (char *)(uintptr_t) desc; 2501 } 2502 2503 bus_data_generation_update(); 2504 } 2505 2506 /** 2507 * @brief Set the device's description 2508 * 2509 * The value of @c desc should be a string constant that will not 2510 * change (at least until the description is changed in a subsequent 2511 * call to device_set_desc() or device_set_desc_copy()). 2512 */ 2513 void 2514 device_set_desc(device_t dev, const char* desc) 2515 { 2516 device_set_desc_internal(dev, desc, FALSE); 2517 } 2518 2519 /** 2520 * @brief Set the device's description 2521 * 2522 * The string pointed to by @c desc is copied. Use this function if 2523 * the device description is generated, (e.g. with sprintf()). 2524 */ 2525 void 2526 device_set_desc_copy(device_t dev, const char* desc) 2527 { 2528 device_set_desc_internal(dev, desc, TRUE); 2529 } 2530 2531 /** 2532 * @brief Set the device's flags 2533 */ 2534 void 2535 device_set_flags(device_t dev, uint32_t flags) 2536 { 2537 dev->devflags = flags; 2538 } 2539 2540 /** 2541 * @brief Return the device's softc field 2542 * 2543 * The softc is allocated and zeroed when a driver is attached, based 2544 * on the size field of the driver. 2545 */ 2546 void * 2547 device_get_softc(device_t dev) 2548 { 2549 return (dev->softc); 2550 } 2551 2552 /** 2553 * @brief Set the device's softc field 2554 * 2555 * Most drivers do not need to use this since the softc is allocated 2556 * automatically when the driver is attached. 2557 */ 2558 void 2559 device_set_softc(device_t dev, void *softc) 2560 { 2561 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2562 free(dev->softc, M_BUS_SC); 2563 dev->softc = softc; 2564 if (dev->softc) 2565 dev->flags |= DF_EXTERNALSOFTC; 2566 else 2567 dev->flags &= ~DF_EXTERNALSOFTC; 2568 } 2569 2570 /** 2571 * @brief Free claimed softc 2572 * 2573 * Most drivers do not need to use this since the softc is freed 2574 * automatically when the driver is detached. 2575 */ 2576 void 2577 device_free_softc(void *softc) 2578 { 2579 free(softc, M_BUS_SC); 2580 } 2581 2582 /** 2583 * @brief Claim softc 2584 * 2585 * This function can be used to let the driver free the automatically 2586 * allocated softc using "device_free_softc()". This function is 2587 * useful when the driver is refcounting the softc and the softc 2588 * cannot be freed when the "device_detach" method is called. 2589 */ 2590 void 2591 device_claim_softc(device_t dev) 2592 { 2593 if (dev->softc) 2594 dev->flags |= DF_EXTERNALSOFTC; 2595 else 2596 dev->flags &= ~DF_EXTERNALSOFTC; 2597 } 2598 2599 /** 2600 * @brief Get the device's ivars field 2601 * 2602 * The ivars field is used by the parent device to store per-device 2603 * state (e.g. the physical location of the device or a list of 2604 * resources). 2605 */ 2606 void * 2607 device_get_ivars(device_t dev) 2608 { 2609 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2610 return (dev->ivars); 2611 } 2612 2613 /** 2614 * @brief Set the device's ivars field 2615 */ 2616 void 2617 device_set_ivars(device_t dev, void * ivars) 2618 { 2619 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2620 dev->ivars = ivars; 2621 } 2622 2623 /** 2624 * @brief Return the device's state 2625 */ 2626 device_state_t 2627 device_get_state(device_t dev) 2628 { 2629 return (dev->state); 2630 } 2631 2632 /** 2633 * @brief Set the DF_ENABLED flag for the device 2634 */ 2635 void 2636 device_enable(device_t dev) 2637 { 2638 dev->flags |= DF_ENABLED; 2639 } 2640 2641 /** 2642 * @brief Clear the DF_ENABLED flag for the device 2643 */ 2644 void 2645 device_disable(device_t dev) 2646 { 2647 dev->flags &= ~DF_ENABLED; 2648 } 2649 2650 /** 2651 * @brief Increment the busy counter for the device 2652 */ 2653 void 2654 device_busy(device_t dev) 2655 { 2656 if (dev->state < DS_ATTACHING) 2657 panic("device_busy: called for unattached device"); 2658 if (dev->busy == 0 && dev->parent) 2659 device_busy(dev->parent); 2660 dev->busy++; 2661 if (dev->state == DS_ATTACHED) 2662 dev->state = DS_BUSY; 2663 } 2664 2665 /** 2666 * @brief Decrement the busy counter for the device 2667 */ 2668 void 2669 device_unbusy(device_t dev) 2670 { 2671 if (dev->busy != 0 && dev->state != DS_BUSY && 2672 dev->state != DS_ATTACHING) 2673 panic("device_unbusy: called for non-busy device %s", 2674 device_get_nameunit(dev)); 2675 dev->busy--; 2676 if (dev->busy == 0) { 2677 if (dev->parent) 2678 device_unbusy(dev->parent); 2679 if (dev->state == DS_BUSY) 2680 dev->state = DS_ATTACHED; 2681 } 2682 } 2683 2684 /** 2685 * @brief Set the DF_QUIET flag for the device 2686 */ 2687 void 2688 device_quiet(device_t dev) 2689 { 2690 dev->flags |= DF_QUIET; 2691 } 2692 2693 /** 2694 * @brief Set the DF_QUIET_CHILDREN flag for the device 2695 */ 2696 void 2697 device_quiet_children(device_t dev) 2698 { 2699 dev->flags |= DF_QUIET_CHILDREN; 2700 } 2701 2702 /** 2703 * @brief Clear the DF_QUIET flag for the device 2704 */ 2705 void 2706 device_verbose(device_t dev) 2707 { 2708 dev->flags &= ~DF_QUIET; 2709 } 2710 2711 ssize_t 2712 device_get_property(device_t dev, const char *prop, void *val, size_t sz) 2713 { 2714 device_t bus = device_get_parent(dev); 2715 2716 return (BUS_GET_PROPERTY(bus, dev, prop, val, sz)); 2717 } 2718 2719 bool 2720 device_has_property(device_t dev, const char *prop) 2721 { 2722 return (device_get_property(dev, prop, NULL, 0) >= 0); 2723 } 2724 2725 /** 2726 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2727 */ 2728 int 2729 device_has_quiet_children(device_t dev) 2730 { 2731 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2732 } 2733 2734 /** 2735 * @brief Return non-zero if the DF_QUIET flag is set on the device 2736 */ 2737 int 2738 device_is_quiet(device_t dev) 2739 { 2740 return ((dev->flags & DF_QUIET) != 0); 2741 } 2742 2743 /** 2744 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2745 */ 2746 int 2747 device_is_enabled(device_t dev) 2748 { 2749 return ((dev->flags & DF_ENABLED) != 0); 2750 } 2751 2752 /** 2753 * @brief Return non-zero if the device was successfully probed 2754 */ 2755 int 2756 device_is_alive(device_t dev) 2757 { 2758 return (dev->state >= DS_ALIVE); 2759 } 2760 2761 /** 2762 * @brief Return non-zero if the device currently has a driver 2763 * attached to it 2764 */ 2765 int 2766 device_is_attached(device_t dev) 2767 { 2768 return (dev->state >= DS_ATTACHED); 2769 } 2770 2771 /** 2772 * @brief Return non-zero if the device is currently suspended. 2773 */ 2774 int 2775 device_is_suspended(device_t dev) 2776 { 2777 return ((dev->flags & DF_SUSPENDED) != 0); 2778 } 2779 2780 /** 2781 * @brief Set the devclass of a device 2782 * @see devclass_add_device(). 2783 */ 2784 int 2785 device_set_devclass(device_t dev, const char *classname) 2786 { 2787 devclass_t dc; 2788 int error; 2789 2790 if (!classname) { 2791 if (dev->devclass) 2792 devclass_delete_device(dev->devclass, dev); 2793 return (0); 2794 } 2795 2796 if (dev->devclass) { 2797 printf("device_set_devclass: device class already set\n"); 2798 return (EINVAL); 2799 } 2800 2801 dc = devclass_find_internal(classname, NULL, TRUE); 2802 if (!dc) 2803 return (ENOMEM); 2804 2805 error = devclass_add_device(dc, dev); 2806 2807 bus_data_generation_update(); 2808 return (error); 2809 } 2810 2811 /** 2812 * @brief Set the devclass of a device and mark the devclass fixed. 2813 * @see device_set_devclass() 2814 */ 2815 int 2816 device_set_devclass_fixed(device_t dev, const char *classname) 2817 { 2818 int error; 2819 2820 if (classname == NULL) 2821 return (EINVAL); 2822 2823 error = device_set_devclass(dev, classname); 2824 if (error) 2825 return (error); 2826 dev->flags |= DF_FIXEDCLASS; 2827 return (0); 2828 } 2829 2830 /** 2831 * @brief Query the device to determine if it's of a fixed devclass 2832 * @see device_set_devclass_fixed() 2833 */ 2834 bool 2835 device_is_devclass_fixed(device_t dev) 2836 { 2837 return ((dev->flags & DF_FIXEDCLASS) != 0); 2838 } 2839 2840 /** 2841 * @brief Set the driver of a device 2842 * 2843 * @retval 0 success 2844 * @retval EBUSY the device already has a driver attached 2845 * @retval ENOMEM a memory allocation failure occurred 2846 */ 2847 int 2848 device_set_driver(device_t dev, driver_t *driver) 2849 { 2850 int domain; 2851 struct domainset *policy; 2852 2853 if (dev->state >= DS_ATTACHED) 2854 return (EBUSY); 2855 2856 if (dev->driver == driver) 2857 return (0); 2858 2859 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2860 free(dev->softc, M_BUS_SC); 2861 dev->softc = NULL; 2862 } 2863 device_set_desc(dev, NULL); 2864 kobj_delete((kobj_t) dev, NULL); 2865 dev->driver = driver; 2866 if (driver) { 2867 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2868 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2869 if (bus_get_domain(dev, &domain) == 0) 2870 policy = DOMAINSET_PREF(domain); 2871 else 2872 policy = DOMAINSET_RR(); 2873 dev->softc = malloc_domainset(driver->size, M_BUS_SC, 2874 policy, M_NOWAIT | M_ZERO); 2875 if (!dev->softc) { 2876 kobj_delete((kobj_t) dev, NULL); 2877 kobj_init((kobj_t) dev, &null_class); 2878 dev->driver = NULL; 2879 return (ENOMEM); 2880 } 2881 } 2882 } else { 2883 kobj_init((kobj_t) dev, &null_class); 2884 } 2885 2886 bus_data_generation_update(); 2887 return (0); 2888 } 2889 2890 /** 2891 * @brief Probe a device, and return this status. 2892 * 2893 * This function is the core of the device autoconfiguration 2894 * system. Its purpose is to select a suitable driver for a device and 2895 * then call that driver to initialise the hardware appropriately. The 2896 * driver is selected by calling the DEVICE_PROBE() method of a set of 2897 * candidate drivers and then choosing the driver which returned the 2898 * best value. This driver is then attached to the device using 2899 * device_attach(). 2900 * 2901 * The set of suitable drivers is taken from the list of drivers in 2902 * the parent device's devclass. If the device was originally created 2903 * with a specific class name (see device_add_child()), only drivers 2904 * with that name are probed, otherwise all drivers in the devclass 2905 * are probed. If no drivers return successful probe values in the 2906 * parent devclass, the search continues in the parent of that 2907 * devclass (see devclass_get_parent()) if any. 2908 * 2909 * @param dev the device to initialise 2910 * 2911 * @retval 0 success 2912 * @retval ENXIO no driver was found 2913 * @retval ENOMEM memory allocation failure 2914 * @retval non-zero some other unix error code 2915 * @retval -1 Device already attached 2916 */ 2917 int 2918 device_probe(device_t dev) 2919 { 2920 int error; 2921 2922 GIANT_REQUIRED; 2923 2924 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2925 return (-1); 2926 2927 if (!(dev->flags & DF_ENABLED)) { 2928 if (bootverbose && device_get_name(dev) != NULL) { 2929 device_print_prettyname(dev); 2930 printf("not probed (disabled)\n"); 2931 } 2932 return (-1); 2933 } 2934 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2935 if (bus_current_pass == BUS_PASS_DEFAULT && 2936 !(dev->flags & DF_DONENOMATCH)) { 2937 BUS_PROBE_NOMATCH(dev->parent, dev); 2938 devnomatch(dev); 2939 dev->flags |= DF_DONENOMATCH; 2940 } 2941 return (error); 2942 } 2943 return (0); 2944 } 2945 2946 /** 2947 * @brief Probe a device and attach a driver if possible 2948 * 2949 * calls device_probe() and attaches if that was successful. 2950 */ 2951 int 2952 device_probe_and_attach(device_t dev) 2953 { 2954 int error; 2955 2956 GIANT_REQUIRED; 2957 2958 error = device_probe(dev); 2959 if (error == -1) 2960 return (0); 2961 else if (error != 0) 2962 return (error); 2963 2964 CURVNET_SET_QUIET(vnet0); 2965 error = device_attach(dev); 2966 CURVNET_RESTORE(); 2967 return error; 2968 } 2969 2970 /** 2971 * @brief Attach a device driver to a device 2972 * 2973 * This function is a wrapper around the DEVICE_ATTACH() driver 2974 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2975 * device's sysctl tree, optionally prints a description of the device 2976 * and queues a notification event for user-based device management 2977 * services. 2978 * 2979 * Normally this function is only called internally from 2980 * device_probe_and_attach(). 2981 * 2982 * @param dev the device to initialise 2983 * 2984 * @retval 0 success 2985 * @retval ENXIO no driver was found 2986 * @retval ENOMEM memory allocation failure 2987 * @retval non-zero some other unix error code 2988 */ 2989 int 2990 device_attach(device_t dev) 2991 { 2992 uint64_t attachtime; 2993 uint16_t attachentropy; 2994 int error; 2995 2996 if (resource_disabled(dev->driver->name, dev->unit)) { 2997 device_disable(dev); 2998 if (bootverbose) 2999 device_printf(dev, "disabled via hints entry\n"); 3000 return (ENXIO); 3001 } 3002 3003 device_sysctl_init(dev); 3004 if (!device_is_quiet(dev)) 3005 device_print_child(dev->parent, dev); 3006 attachtime = get_cyclecount(); 3007 dev->state = DS_ATTACHING; 3008 if ((error = DEVICE_ATTACH(dev)) != 0) { 3009 printf("device_attach: %s%d attach returned %d\n", 3010 dev->driver->name, dev->unit, error); 3011 if (!(dev->flags & DF_FIXEDCLASS)) 3012 devclass_delete_device(dev->devclass, dev); 3013 (void)device_set_driver(dev, NULL); 3014 device_sysctl_fini(dev); 3015 KASSERT(dev->busy == 0, ("attach failed but busy")); 3016 dev->state = DS_NOTPRESENT; 3017 return (error); 3018 } 3019 dev->flags |= DF_ATTACHED_ONCE; 3020 /* We only need the low bits of this time, but ranges from tens to thousands 3021 * have been seen, so keep 2 bytes' worth. 3022 */ 3023 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 3024 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 3025 device_sysctl_update(dev); 3026 if (dev->busy) 3027 dev->state = DS_BUSY; 3028 else 3029 dev->state = DS_ATTACHED; 3030 dev->flags &= ~DF_DONENOMATCH; 3031 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 3032 devadded(dev); 3033 return (0); 3034 } 3035 3036 /** 3037 * @brief Detach a driver from a device 3038 * 3039 * This function is a wrapper around the DEVICE_DETACH() driver 3040 * method. If the call to DEVICE_DETACH() succeeds, it calls 3041 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 3042 * notification event for user-based device management services and 3043 * cleans up the device's sysctl tree. 3044 * 3045 * @param dev the device to un-initialise 3046 * 3047 * @retval 0 success 3048 * @retval ENXIO no driver was found 3049 * @retval ENOMEM memory allocation failure 3050 * @retval non-zero some other unix error code 3051 */ 3052 int 3053 device_detach(device_t dev) 3054 { 3055 int error; 3056 3057 GIANT_REQUIRED; 3058 3059 PDEBUG(("%s", DEVICENAME(dev))); 3060 if (dev->state == DS_BUSY) 3061 return (EBUSY); 3062 if (dev->state == DS_ATTACHING) { 3063 device_printf(dev, "device in attaching state! Deferring detach.\n"); 3064 return (EBUSY); 3065 } 3066 if (dev->state != DS_ATTACHED) 3067 return (0); 3068 3069 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 3070 if ((error = DEVICE_DETACH(dev)) != 0) { 3071 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3072 EVHDEV_DETACH_FAILED); 3073 return (error); 3074 } else { 3075 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3076 EVHDEV_DETACH_COMPLETE); 3077 } 3078 devremoved(dev); 3079 if (!device_is_quiet(dev)) 3080 device_printf(dev, "detached\n"); 3081 if (dev->parent) 3082 BUS_CHILD_DETACHED(dev->parent, dev); 3083 3084 if (!(dev->flags & DF_FIXEDCLASS)) 3085 devclass_delete_device(dev->devclass, dev); 3086 3087 device_verbose(dev); 3088 dev->state = DS_NOTPRESENT; 3089 (void)device_set_driver(dev, NULL); 3090 device_sysctl_fini(dev); 3091 3092 return (0); 3093 } 3094 3095 /** 3096 * @brief Tells a driver to quiesce itself. 3097 * 3098 * This function is a wrapper around the DEVICE_QUIESCE() driver 3099 * method. If the call to DEVICE_QUIESCE() succeeds. 3100 * 3101 * @param dev the device to quiesce 3102 * 3103 * @retval 0 success 3104 * @retval ENXIO no driver was found 3105 * @retval ENOMEM memory allocation failure 3106 * @retval non-zero some other unix error code 3107 */ 3108 int 3109 device_quiesce(device_t dev) 3110 { 3111 PDEBUG(("%s", DEVICENAME(dev))); 3112 if (dev->state == DS_BUSY) 3113 return (EBUSY); 3114 if (dev->state != DS_ATTACHED) 3115 return (0); 3116 3117 return (DEVICE_QUIESCE(dev)); 3118 } 3119 3120 /** 3121 * @brief Notify a device of system shutdown 3122 * 3123 * This function calls the DEVICE_SHUTDOWN() driver method if the 3124 * device currently has an attached driver. 3125 * 3126 * @returns the value returned by DEVICE_SHUTDOWN() 3127 */ 3128 int 3129 device_shutdown(device_t dev) 3130 { 3131 if (dev->state < DS_ATTACHED) 3132 return (0); 3133 return (DEVICE_SHUTDOWN(dev)); 3134 } 3135 3136 /** 3137 * @brief Set the unit number of a device 3138 * 3139 * This function can be used to override the unit number used for a 3140 * device (e.g. to wire a device to a pre-configured unit number). 3141 */ 3142 int 3143 device_set_unit(device_t dev, int unit) 3144 { 3145 devclass_t dc; 3146 int err; 3147 3148 dc = device_get_devclass(dev); 3149 if (unit < dc->maxunit && dc->devices[unit]) 3150 return (EBUSY); 3151 err = devclass_delete_device(dc, dev); 3152 if (err) 3153 return (err); 3154 dev->unit = unit; 3155 err = devclass_add_device(dc, dev); 3156 if (err) 3157 return (err); 3158 3159 bus_data_generation_update(); 3160 return (0); 3161 } 3162 3163 /*======================================*/ 3164 /* 3165 * Some useful method implementations to make life easier for bus drivers. 3166 */ 3167 3168 void 3169 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 3170 { 3171 bzero(args, sz); 3172 args->size = sz; 3173 args->memattr = VM_MEMATTR_DEVICE; 3174 } 3175 3176 /** 3177 * @brief Initialise a resource list. 3178 * 3179 * @param rl the resource list to initialise 3180 */ 3181 void 3182 resource_list_init(struct resource_list *rl) 3183 { 3184 STAILQ_INIT(rl); 3185 } 3186 3187 /** 3188 * @brief Reclaim memory used by a resource list. 3189 * 3190 * This function frees the memory for all resource entries on the list 3191 * (if any). 3192 * 3193 * @param rl the resource list to free 3194 */ 3195 void 3196 resource_list_free(struct resource_list *rl) 3197 { 3198 struct resource_list_entry *rle; 3199 3200 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3201 if (rle->res) 3202 panic("resource_list_free: resource entry is busy"); 3203 STAILQ_REMOVE_HEAD(rl, link); 3204 free(rle, M_BUS); 3205 } 3206 } 3207 3208 /** 3209 * @brief Add a resource entry. 3210 * 3211 * This function adds a resource entry using the given @p type, @p 3212 * start, @p end and @p count values. A rid value is chosen by 3213 * searching sequentially for the first unused rid starting at zero. 3214 * 3215 * @param rl the resource list to edit 3216 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3217 * @param start the start address of the resource 3218 * @param end the end address of the resource 3219 * @param count XXX end-start+1 3220 */ 3221 int 3222 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 3223 rman_res_t end, rman_res_t count) 3224 { 3225 int rid; 3226 3227 rid = 0; 3228 while (resource_list_find(rl, type, rid) != NULL) 3229 rid++; 3230 resource_list_add(rl, type, rid, start, end, count); 3231 return (rid); 3232 } 3233 3234 /** 3235 * @brief Add or modify a resource entry. 3236 * 3237 * If an existing entry exists with the same type and rid, it will be 3238 * modified using the given values of @p start, @p end and @p 3239 * count. If no entry exists, a new one will be created using the 3240 * given values. The resource list entry that matches is then returned. 3241 * 3242 * @param rl the resource list to edit 3243 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3244 * @param rid the resource identifier 3245 * @param start the start address of the resource 3246 * @param end the end address of the resource 3247 * @param count XXX end-start+1 3248 */ 3249 struct resource_list_entry * 3250 resource_list_add(struct resource_list *rl, int type, int rid, 3251 rman_res_t start, rman_res_t end, rman_res_t count) 3252 { 3253 struct resource_list_entry *rle; 3254 3255 rle = resource_list_find(rl, type, rid); 3256 if (!rle) { 3257 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3258 M_NOWAIT); 3259 if (!rle) 3260 panic("resource_list_add: can't record entry"); 3261 STAILQ_INSERT_TAIL(rl, rle, link); 3262 rle->type = type; 3263 rle->rid = rid; 3264 rle->res = NULL; 3265 rle->flags = 0; 3266 } 3267 3268 if (rle->res) 3269 panic("resource_list_add: resource entry is busy"); 3270 3271 rle->start = start; 3272 rle->end = end; 3273 rle->count = count; 3274 return (rle); 3275 } 3276 3277 /** 3278 * @brief Determine if a resource entry is busy. 3279 * 3280 * Returns true if a resource entry is busy meaning that it has an 3281 * associated resource that is not an unallocated "reserved" resource. 3282 * 3283 * @param rl the resource list to search 3284 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3285 * @param rid the resource identifier 3286 * 3287 * @returns Non-zero if the entry is busy, zero otherwise. 3288 */ 3289 int 3290 resource_list_busy(struct resource_list *rl, int type, int rid) 3291 { 3292 struct resource_list_entry *rle; 3293 3294 rle = resource_list_find(rl, type, rid); 3295 if (rle == NULL || rle->res == NULL) 3296 return (0); 3297 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3298 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3299 ("reserved resource is active")); 3300 return (0); 3301 } 3302 return (1); 3303 } 3304 3305 /** 3306 * @brief Determine if a resource entry is reserved. 3307 * 3308 * Returns true if a resource entry is reserved meaning that it has an 3309 * associated "reserved" resource. The resource can either be 3310 * allocated or unallocated. 3311 * 3312 * @param rl the resource list to search 3313 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3314 * @param rid the resource identifier 3315 * 3316 * @returns Non-zero if the entry is reserved, zero otherwise. 3317 */ 3318 int 3319 resource_list_reserved(struct resource_list *rl, int type, int rid) 3320 { 3321 struct resource_list_entry *rle; 3322 3323 rle = resource_list_find(rl, type, rid); 3324 if (rle != NULL && rle->flags & RLE_RESERVED) 3325 return (1); 3326 return (0); 3327 } 3328 3329 /** 3330 * @brief Find a resource entry by type and rid. 3331 * 3332 * @param rl the resource list to search 3333 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3334 * @param rid the resource identifier 3335 * 3336 * @returns the resource entry pointer or NULL if there is no such 3337 * entry. 3338 */ 3339 struct resource_list_entry * 3340 resource_list_find(struct resource_list *rl, int type, int rid) 3341 { 3342 struct resource_list_entry *rle; 3343 3344 STAILQ_FOREACH(rle, rl, link) { 3345 if (rle->type == type && rle->rid == rid) 3346 return (rle); 3347 } 3348 return (NULL); 3349 } 3350 3351 /** 3352 * @brief Delete a resource entry. 3353 * 3354 * @param rl the resource list to edit 3355 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3356 * @param rid the resource identifier 3357 */ 3358 void 3359 resource_list_delete(struct resource_list *rl, int type, int rid) 3360 { 3361 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3362 3363 if (rle) { 3364 if (rle->res != NULL) 3365 panic("resource_list_delete: resource has not been released"); 3366 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3367 free(rle, M_BUS); 3368 } 3369 } 3370 3371 /** 3372 * @brief Allocate a reserved resource 3373 * 3374 * This can be used by buses to force the allocation of resources 3375 * that are always active in the system even if they are not allocated 3376 * by a driver (e.g. PCI BARs). This function is usually called when 3377 * adding a new child to the bus. The resource is allocated from the 3378 * parent bus when it is reserved. The resource list entry is marked 3379 * with RLE_RESERVED to note that it is a reserved resource. 3380 * 3381 * Subsequent attempts to allocate the resource with 3382 * resource_list_alloc() will succeed the first time and will set 3383 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3384 * resource that has been allocated is released with 3385 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3386 * the actual resource remains allocated. The resource can be released to 3387 * the parent bus by calling resource_list_unreserve(). 3388 * 3389 * @param rl the resource list to allocate from 3390 * @param bus the parent device of @p child 3391 * @param child the device for which the resource is being reserved 3392 * @param type the type of resource to allocate 3393 * @param rid a pointer to the resource identifier 3394 * @param start hint at the start of the resource range - pass 3395 * @c 0 for any start address 3396 * @param end hint at the end of the resource range - pass 3397 * @c ~0 for any end address 3398 * @param count hint at the size of range required - pass @c 1 3399 * for any size 3400 * @param flags any extra flags to control the resource 3401 * allocation - see @c RF_XXX flags in 3402 * <sys/rman.h> for details 3403 * 3404 * @returns the resource which was allocated or @c NULL if no 3405 * resource could be allocated 3406 */ 3407 struct resource * 3408 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3409 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3410 { 3411 struct resource_list_entry *rle = NULL; 3412 int passthrough = (device_get_parent(child) != bus); 3413 struct resource *r; 3414 3415 if (passthrough) 3416 panic( 3417 "resource_list_reserve() should only be called for direct children"); 3418 if (flags & RF_ACTIVE) 3419 panic( 3420 "resource_list_reserve() should only reserve inactive resources"); 3421 3422 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3423 flags); 3424 if (r != NULL) { 3425 rle = resource_list_find(rl, type, *rid); 3426 rle->flags |= RLE_RESERVED; 3427 } 3428 return (r); 3429 } 3430 3431 /** 3432 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3433 * 3434 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3435 * and passing the allocation up to the parent of @p bus. This assumes 3436 * that the first entry of @c device_get_ivars(child) is a struct 3437 * resource_list. This also handles 'passthrough' allocations where a 3438 * child is a remote descendant of bus by passing the allocation up to 3439 * the parent of bus. 3440 * 3441 * Typically, a bus driver would store a list of child resources 3442 * somewhere in the child device's ivars (see device_get_ivars()) and 3443 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3444 * then call resource_list_alloc() to perform the allocation. 3445 * 3446 * @param rl the resource list to allocate from 3447 * @param bus the parent device of @p child 3448 * @param child the device which is requesting an allocation 3449 * @param type the type of resource to allocate 3450 * @param rid a pointer to the resource identifier 3451 * @param start hint at the start of the resource range - pass 3452 * @c 0 for any start address 3453 * @param end hint at the end of the resource range - pass 3454 * @c ~0 for any end address 3455 * @param count hint at the size of range required - pass @c 1 3456 * for any size 3457 * @param flags any extra flags to control the resource 3458 * allocation - see @c RF_XXX flags in 3459 * <sys/rman.h> for details 3460 * 3461 * @returns the resource which was allocated or @c NULL if no 3462 * resource could be allocated 3463 */ 3464 struct resource * 3465 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3466 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3467 { 3468 struct resource_list_entry *rle = NULL; 3469 int passthrough = (device_get_parent(child) != bus); 3470 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3471 3472 if (passthrough) { 3473 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3474 type, rid, start, end, count, flags)); 3475 } 3476 3477 rle = resource_list_find(rl, type, *rid); 3478 3479 if (!rle) 3480 return (NULL); /* no resource of that type/rid */ 3481 3482 if (rle->res) { 3483 if (rle->flags & RLE_RESERVED) { 3484 if (rle->flags & RLE_ALLOCATED) 3485 return (NULL); 3486 if ((flags & RF_ACTIVE) && 3487 bus_activate_resource(child, type, *rid, 3488 rle->res) != 0) 3489 return (NULL); 3490 rle->flags |= RLE_ALLOCATED; 3491 return (rle->res); 3492 } 3493 device_printf(bus, 3494 "resource entry %#x type %d for child %s is busy\n", *rid, 3495 type, device_get_nameunit(child)); 3496 return (NULL); 3497 } 3498 3499 if (isdefault) { 3500 start = rle->start; 3501 count = ulmax(count, rle->count); 3502 end = ulmax(rle->end, start + count - 1); 3503 } 3504 3505 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3506 type, rid, start, end, count, flags); 3507 3508 /* 3509 * Record the new range. 3510 */ 3511 if (rle->res) { 3512 rle->start = rman_get_start(rle->res); 3513 rle->end = rman_get_end(rle->res); 3514 rle->count = count; 3515 } 3516 3517 return (rle->res); 3518 } 3519 3520 /** 3521 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3522 * 3523 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3524 * used with resource_list_alloc(). 3525 * 3526 * @param rl the resource list which was allocated from 3527 * @param bus the parent device of @p child 3528 * @param child the device which is requesting a release 3529 * @param type the type of resource to release 3530 * @param rid the resource identifier 3531 * @param res the resource to release 3532 * 3533 * @retval 0 success 3534 * @retval non-zero a standard unix error code indicating what 3535 * error condition prevented the operation 3536 */ 3537 int 3538 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3539 int type, int rid, struct resource *res) 3540 { 3541 struct resource_list_entry *rle = NULL; 3542 int passthrough = (device_get_parent(child) != bus); 3543 int error; 3544 3545 if (passthrough) { 3546 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3547 type, rid, res)); 3548 } 3549 3550 rle = resource_list_find(rl, type, rid); 3551 3552 if (!rle) 3553 panic("resource_list_release: can't find resource"); 3554 if (!rle->res) 3555 panic("resource_list_release: resource entry is not busy"); 3556 if (rle->flags & RLE_RESERVED) { 3557 if (rle->flags & RLE_ALLOCATED) { 3558 if (rman_get_flags(res) & RF_ACTIVE) { 3559 error = bus_deactivate_resource(child, type, 3560 rid, res); 3561 if (error) 3562 return (error); 3563 } 3564 rle->flags &= ~RLE_ALLOCATED; 3565 return (0); 3566 } 3567 return (EINVAL); 3568 } 3569 3570 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3571 type, rid, res); 3572 if (error) 3573 return (error); 3574 3575 rle->res = NULL; 3576 return (0); 3577 } 3578 3579 /** 3580 * @brief Release all active resources of a given type 3581 * 3582 * Release all active resources of a specified type. This is intended 3583 * to be used to cleanup resources leaked by a driver after detach or 3584 * a failed attach. 3585 * 3586 * @param rl the resource list which was allocated from 3587 * @param bus the parent device of @p child 3588 * @param child the device whose active resources are being released 3589 * @param type the type of resources to release 3590 * 3591 * @retval 0 success 3592 * @retval EBUSY at least one resource was active 3593 */ 3594 int 3595 resource_list_release_active(struct resource_list *rl, device_t bus, 3596 device_t child, int type) 3597 { 3598 struct resource_list_entry *rle; 3599 int error, retval; 3600 3601 retval = 0; 3602 STAILQ_FOREACH(rle, rl, link) { 3603 if (rle->type != type) 3604 continue; 3605 if (rle->res == NULL) 3606 continue; 3607 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3608 RLE_RESERVED) 3609 continue; 3610 retval = EBUSY; 3611 error = resource_list_release(rl, bus, child, type, 3612 rman_get_rid(rle->res), rle->res); 3613 if (error != 0) 3614 device_printf(bus, 3615 "Failed to release active resource: %d\n", error); 3616 } 3617 return (retval); 3618 } 3619 3620 /** 3621 * @brief Fully release a reserved resource 3622 * 3623 * Fully releases a resource reserved via resource_list_reserve(). 3624 * 3625 * @param rl the resource list which was allocated from 3626 * @param bus the parent device of @p child 3627 * @param child the device whose reserved resource is being released 3628 * @param type the type of resource to release 3629 * @param rid the resource identifier 3630 * @param res the resource to release 3631 * 3632 * @retval 0 success 3633 * @retval non-zero a standard unix error code indicating what 3634 * error condition prevented the operation 3635 */ 3636 int 3637 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3638 int type, int rid) 3639 { 3640 struct resource_list_entry *rle = NULL; 3641 int passthrough = (device_get_parent(child) != bus); 3642 3643 if (passthrough) 3644 panic( 3645 "resource_list_unreserve() should only be called for direct children"); 3646 3647 rle = resource_list_find(rl, type, rid); 3648 3649 if (!rle) 3650 panic("resource_list_unreserve: can't find resource"); 3651 if (!(rle->flags & RLE_RESERVED)) 3652 return (EINVAL); 3653 if (rle->flags & RLE_ALLOCATED) 3654 return (EBUSY); 3655 rle->flags &= ~RLE_RESERVED; 3656 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3657 } 3658 3659 /** 3660 * @brief Print a description of resources in a resource list 3661 * 3662 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3663 * The name is printed if at least one resource of the given type is available. 3664 * The format is used to print resource start and end. 3665 * 3666 * @param rl the resource list to print 3667 * @param name the name of @p type, e.g. @c "memory" 3668 * @param type type type of resource entry to print 3669 * @param format printf(9) format string to print resource 3670 * start and end values 3671 * 3672 * @returns the number of characters printed 3673 */ 3674 int 3675 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3676 const char *format) 3677 { 3678 struct resource_list_entry *rle; 3679 int printed, retval; 3680 3681 printed = 0; 3682 retval = 0; 3683 /* Yes, this is kinda cheating */ 3684 STAILQ_FOREACH(rle, rl, link) { 3685 if (rle->type == type) { 3686 if (printed == 0) 3687 retval += printf(" %s ", name); 3688 else 3689 retval += printf(","); 3690 printed++; 3691 retval += printf(format, rle->start); 3692 if (rle->count > 1) { 3693 retval += printf("-"); 3694 retval += printf(format, rle->start + 3695 rle->count - 1); 3696 } 3697 } 3698 } 3699 return (retval); 3700 } 3701 3702 /** 3703 * @brief Releases all the resources in a list. 3704 * 3705 * @param rl The resource list to purge. 3706 * 3707 * @returns nothing 3708 */ 3709 void 3710 resource_list_purge(struct resource_list *rl) 3711 { 3712 struct resource_list_entry *rle; 3713 3714 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3715 if (rle->res) 3716 bus_release_resource(rman_get_device(rle->res), 3717 rle->type, rle->rid, rle->res); 3718 STAILQ_REMOVE_HEAD(rl, link); 3719 free(rle, M_BUS); 3720 } 3721 } 3722 3723 device_t 3724 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3725 { 3726 return (device_add_child_ordered(dev, order, name, unit)); 3727 } 3728 3729 /** 3730 * @brief Helper function for implementing DEVICE_PROBE() 3731 * 3732 * This function can be used to help implement the DEVICE_PROBE() for 3733 * a bus (i.e. a device which has other devices attached to it). It 3734 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3735 * devclass. 3736 */ 3737 int 3738 bus_generic_probe(device_t dev) 3739 { 3740 devclass_t dc = dev->devclass; 3741 driverlink_t dl; 3742 3743 TAILQ_FOREACH(dl, &dc->drivers, link) { 3744 /* 3745 * If this driver's pass is too high, then ignore it. 3746 * For most drivers in the default pass, this will 3747 * never be true. For early-pass drivers they will 3748 * only call the identify routines of eligible drivers 3749 * when this routine is called. Drivers for later 3750 * passes should have their identify routines called 3751 * on early-pass buses during BUS_NEW_PASS(). 3752 */ 3753 if (dl->pass > bus_current_pass) 3754 continue; 3755 DEVICE_IDENTIFY(dl->driver, dev); 3756 } 3757 3758 return (0); 3759 } 3760 3761 /** 3762 * @brief Helper function for implementing DEVICE_ATTACH() 3763 * 3764 * This function can be used to help implement the DEVICE_ATTACH() for 3765 * a bus. It calls device_probe_and_attach() for each of the device's 3766 * children. 3767 */ 3768 int 3769 bus_generic_attach(device_t dev) 3770 { 3771 device_t child; 3772 3773 TAILQ_FOREACH(child, &dev->children, link) { 3774 device_probe_and_attach(child); 3775 } 3776 3777 return (0); 3778 } 3779 3780 /** 3781 * @brief Helper function for delaying attaching children 3782 * 3783 * Many buses can't run transactions on the bus which children need to probe and 3784 * attach until after interrupts and/or timers are running. This function 3785 * delays their attach until interrupts and timers are enabled. 3786 */ 3787 int 3788 bus_delayed_attach_children(device_t dev) 3789 { 3790 /* Probe and attach the bus children when interrupts are available */ 3791 config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev); 3792 3793 return (0); 3794 } 3795 3796 /** 3797 * @brief Helper function for implementing DEVICE_DETACH() 3798 * 3799 * This function can be used to help implement the DEVICE_DETACH() for 3800 * a bus. It calls device_detach() for each of the device's 3801 * children. 3802 */ 3803 int 3804 bus_generic_detach(device_t dev) 3805 { 3806 device_t child; 3807 int error; 3808 3809 if (dev->state != DS_ATTACHED) 3810 return (EBUSY); 3811 3812 /* 3813 * Detach children in the reverse order. 3814 * See bus_generic_suspend for details. 3815 */ 3816 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3817 if ((error = device_detach(child)) != 0) 3818 return (error); 3819 } 3820 3821 return (0); 3822 } 3823 3824 /** 3825 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3826 * 3827 * This function can be used to help implement the DEVICE_SHUTDOWN() 3828 * for a bus. It calls device_shutdown() for each of the device's 3829 * children. 3830 */ 3831 int 3832 bus_generic_shutdown(device_t dev) 3833 { 3834 device_t child; 3835 3836 /* 3837 * Shut down children in the reverse order. 3838 * See bus_generic_suspend for details. 3839 */ 3840 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3841 device_shutdown(child); 3842 } 3843 3844 return (0); 3845 } 3846 3847 /** 3848 * @brief Default function for suspending a child device. 3849 * 3850 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3851 */ 3852 int 3853 bus_generic_suspend_child(device_t dev, device_t child) 3854 { 3855 int error; 3856 3857 error = DEVICE_SUSPEND(child); 3858 3859 if (error == 0) 3860 child->flags |= DF_SUSPENDED; 3861 3862 return (error); 3863 } 3864 3865 /** 3866 * @brief Default function for resuming a child device. 3867 * 3868 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3869 */ 3870 int 3871 bus_generic_resume_child(device_t dev, device_t child) 3872 { 3873 DEVICE_RESUME(child); 3874 child->flags &= ~DF_SUSPENDED; 3875 3876 return (0); 3877 } 3878 3879 /** 3880 * @brief Helper function for implementing DEVICE_SUSPEND() 3881 * 3882 * This function can be used to help implement the DEVICE_SUSPEND() 3883 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3884 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3885 * operation is aborted and any devices which were suspended are 3886 * resumed immediately by calling their DEVICE_RESUME() methods. 3887 */ 3888 int 3889 bus_generic_suspend(device_t dev) 3890 { 3891 int error; 3892 device_t child; 3893 3894 /* 3895 * Suspend children in the reverse order. 3896 * For most buses all children are equal, so the order does not matter. 3897 * Other buses, such as acpi, carefully order their child devices to 3898 * express implicit dependencies between them. For such buses it is 3899 * safer to bring down devices in the reverse order. 3900 */ 3901 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3902 error = BUS_SUSPEND_CHILD(dev, child); 3903 if (error != 0) { 3904 child = TAILQ_NEXT(child, link); 3905 if (child != NULL) { 3906 TAILQ_FOREACH_FROM(child, &dev->children, link) 3907 BUS_RESUME_CHILD(dev, child); 3908 } 3909 return (error); 3910 } 3911 } 3912 return (0); 3913 } 3914 3915 /** 3916 * @brief Helper function for implementing DEVICE_RESUME() 3917 * 3918 * This function can be used to help implement the DEVICE_RESUME() for 3919 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3920 */ 3921 int 3922 bus_generic_resume(device_t dev) 3923 { 3924 device_t child; 3925 3926 TAILQ_FOREACH(child, &dev->children, link) { 3927 BUS_RESUME_CHILD(dev, child); 3928 /* if resume fails, there's nothing we can usefully do... */ 3929 } 3930 return (0); 3931 } 3932 3933 /** 3934 * @brief Helper function for implementing BUS_RESET_POST 3935 * 3936 * Bus can use this function to implement common operations of 3937 * re-attaching or resuming the children after the bus itself was 3938 * reset, and after restoring bus-unique state of children. 3939 * 3940 * @param dev The bus 3941 * #param flags DEVF_RESET_* 3942 */ 3943 int 3944 bus_helper_reset_post(device_t dev, int flags) 3945 { 3946 device_t child; 3947 int error, error1; 3948 3949 error = 0; 3950 TAILQ_FOREACH(child, &dev->children,link) { 3951 BUS_RESET_POST(dev, child); 3952 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3953 device_probe_and_attach(child) : 3954 BUS_RESUME_CHILD(dev, child); 3955 if (error == 0 && error1 != 0) 3956 error = error1; 3957 } 3958 return (error); 3959 } 3960 3961 static void 3962 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3963 { 3964 child = TAILQ_NEXT(child, link); 3965 if (child == NULL) 3966 return; 3967 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3968 BUS_RESET_POST(dev, child); 3969 if ((flags & DEVF_RESET_DETACH) != 0) 3970 device_probe_and_attach(child); 3971 else 3972 BUS_RESUME_CHILD(dev, child); 3973 } 3974 } 3975 3976 /** 3977 * @brief Helper function for implementing BUS_RESET_PREPARE 3978 * 3979 * Bus can use this function to implement common operations of 3980 * detaching or suspending the children before the bus itself is 3981 * reset, and then save bus-unique state of children that must 3982 * persists around reset. 3983 * 3984 * @param dev The bus 3985 * #param flags DEVF_RESET_* 3986 */ 3987 int 3988 bus_helper_reset_prepare(device_t dev, int flags) 3989 { 3990 device_t child; 3991 int error; 3992 3993 if (dev->state != DS_ATTACHED) 3994 return (EBUSY); 3995 3996 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3997 if ((flags & DEVF_RESET_DETACH) != 0) { 3998 error = device_get_state(child) == DS_ATTACHED ? 3999 device_detach(child) : 0; 4000 } else { 4001 error = BUS_SUSPEND_CHILD(dev, child); 4002 } 4003 if (error == 0) { 4004 error = BUS_RESET_PREPARE(dev, child); 4005 if (error != 0) { 4006 if ((flags & DEVF_RESET_DETACH) != 0) 4007 device_probe_and_attach(child); 4008 else 4009 BUS_RESUME_CHILD(dev, child); 4010 } 4011 } 4012 if (error != 0) { 4013 bus_helper_reset_prepare_rollback(dev, child, flags); 4014 return (error); 4015 } 4016 } 4017 return (0); 4018 } 4019 4020 /** 4021 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4022 * 4023 * This function prints the first part of the ascii representation of 4024 * @p child, including its name, unit and description (if any - see 4025 * device_set_desc()). 4026 * 4027 * @returns the number of characters printed 4028 */ 4029 int 4030 bus_print_child_header(device_t dev, device_t child) 4031 { 4032 int retval = 0; 4033 4034 if (device_get_desc(child)) { 4035 retval += device_printf(child, "<%s>", device_get_desc(child)); 4036 } else { 4037 retval += printf("%s", device_get_nameunit(child)); 4038 } 4039 4040 return (retval); 4041 } 4042 4043 /** 4044 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4045 * 4046 * This function prints the last part of the ascii representation of 4047 * @p child, which consists of the string @c " on " followed by the 4048 * name and unit of the @p dev. 4049 * 4050 * @returns the number of characters printed 4051 */ 4052 int 4053 bus_print_child_footer(device_t dev, device_t child) 4054 { 4055 return (printf(" on %s\n", device_get_nameunit(dev))); 4056 } 4057 4058 /** 4059 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4060 * 4061 * This function prints out the VM domain for the given device. 4062 * 4063 * @returns the number of characters printed 4064 */ 4065 int 4066 bus_print_child_domain(device_t dev, device_t child) 4067 { 4068 int domain; 4069 4070 /* No domain? Don't print anything */ 4071 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 4072 return (0); 4073 4074 return (printf(" numa-domain %d", domain)); 4075 } 4076 4077 /** 4078 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4079 * 4080 * This function simply calls bus_print_child_header() followed by 4081 * bus_print_child_footer(). 4082 * 4083 * @returns the number of characters printed 4084 */ 4085 int 4086 bus_generic_print_child(device_t dev, device_t child) 4087 { 4088 int retval = 0; 4089 4090 retval += bus_print_child_header(dev, child); 4091 retval += bus_print_child_domain(dev, child); 4092 retval += bus_print_child_footer(dev, child); 4093 4094 return (retval); 4095 } 4096 4097 /** 4098 * @brief Stub function for implementing BUS_READ_IVAR(). 4099 * 4100 * @returns ENOENT 4101 */ 4102 int 4103 bus_generic_read_ivar(device_t dev, device_t child, int index, 4104 uintptr_t * result) 4105 { 4106 return (ENOENT); 4107 } 4108 4109 /** 4110 * @brief Stub function for implementing BUS_WRITE_IVAR(). 4111 * 4112 * @returns ENOENT 4113 */ 4114 int 4115 bus_generic_write_ivar(device_t dev, device_t child, int index, 4116 uintptr_t value) 4117 { 4118 return (ENOENT); 4119 } 4120 4121 /** 4122 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 4123 * 4124 * @returns NULL 4125 */ 4126 struct resource_list * 4127 bus_generic_get_resource_list(device_t dev, device_t child) 4128 { 4129 return (NULL); 4130 } 4131 4132 /** 4133 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 4134 * 4135 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 4136 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 4137 * and then calls device_probe_and_attach() for each unattached child. 4138 */ 4139 void 4140 bus_generic_driver_added(device_t dev, driver_t *driver) 4141 { 4142 device_t child; 4143 4144 DEVICE_IDENTIFY(driver, dev); 4145 TAILQ_FOREACH(child, &dev->children, link) { 4146 if (child->state == DS_NOTPRESENT || 4147 (child->flags & DF_REBID)) 4148 device_probe_and_attach(child); 4149 } 4150 } 4151 4152 /** 4153 * @brief Helper function for implementing BUS_NEW_PASS(). 4154 * 4155 * This implementing of BUS_NEW_PASS() first calls the identify 4156 * routines for any drivers that probe at the current pass. Then it 4157 * walks the list of devices for this bus. If a device is already 4158 * attached, then it calls BUS_NEW_PASS() on that device. If the 4159 * device is not already attached, it attempts to attach a driver to 4160 * it. 4161 */ 4162 void 4163 bus_generic_new_pass(device_t dev) 4164 { 4165 driverlink_t dl; 4166 devclass_t dc; 4167 device_t child; 4168 4169 dc = dev->devclass; 4170 TAILQ_FOREACH(dl, &dc->drivers, link) { 4171 if (dl->pass == bus_current_pass) 4172 DEVICE_IDENTIFY(dl->driver, dev); 4173 } 4174 TAILQ_FOREACH(child, &dev->children, link) { 4175 if (child->state >= DS_ATTACHED) 4176 BUS_NEW_PASS(child); 4177 else if (child->state == DS_NOTPRESENT) 4178 device_probe_and_attach(child); 4179 } 4180 } 4181 4182 /** 4183 * @brief Helper function for implementing BUS_SETUP_INTR(). 4184 * 4185 * This simple implementation of BUS_SETUP_INTR() simply calls the 4186 * BUS_SETUP_INTR() method of the parent of @p dev. 4187 */ 4188 int 4189 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 4190 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 4191 void **cookiep) 4192 { 4193 /* Propagate up the bus hierarchy until someone handles it. */ 4194 if (dev->parent) 4195 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 4196 filter, intr, arg, cookiep)); 4197 return (EINVAL); 4198 } 4199 4200 /** 4201 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 4202 * 4203 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 4204 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 4205 */ 4206 int 4207 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 4208 void *cookie) 4209 { 4210 /* Propagate up the bus hierarchy until someone handles it. */ 4211 if (dev->parent) 4212 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 4213 return (EINVAL); 4214 } 4215 4216 /** 4217 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 4218 * 4219 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 4220 * BUS_SUSPEND_INTR() method of the parent of @p dev. 4221 */ 4222 int 4223 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 4224 { 4225 /* Propagate up the bus hierarchy until someone handles it. */ 4226 if (dev->parent) 4227 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 4228 return (EINVAL); 4229 } 4230 4231 /** 4232 * @brief Helper function for implementing BUS_RESUME_INTR(). 4233 * 4234 * This simple implementation of BUS_RESUME_INTR() simply calls the 4235 * BUS_RESUME_INTR() method of the parent of @p dev. 4236 */ 4237 int 4238 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 4239 { 4240 /* Propagate up the bus hierarchy until someone handles it. */ 4241 if (dev->parent) 4242 return (BUS_RESUME_INTR(dev->parent, child, irq)); 4243 return (EINVAL); 4244 } 4245 4246 /** 4247 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4248 * 4249 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 4250 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 4251 */ 4252 int 4253 bus_generic_adjust_resource(device_t dev, device_t child, int type, 4254 struct resource *r, rman_res_t start, rman_res_t end) 4255 { 4256 /* Propagate up the bus hierarchy until someone handles it. */ 4257 if (dev->parent) 4258 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 4259 end)); 4260 return (EINVAL); 4261 } 4262 4263 /** 4264 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4265 * 4266 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 4267 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 4268 */ 4269 struct resource * 4270 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4271 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4272 { 4273 /* Propagate up the bus hierarchy until someone handles it. */ 4274 if (dev->parent) 4275 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4276 start, end, count, flags)); 4277 return (NULL); 4278 } 4279 4280 /** 4281 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4282 * 4283 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4284 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4285 */ 4286 int 4287 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 4288 struct resource *r) 4289 { 4290 /* Propagate up the bus hierarchy until someone handles it. */ 4291 if (dev->parent) 4292 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 4293 r)); 4294 return (EINVAL); 4295 } 4296 4297 /** 4298 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4299 * 4300 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4301 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4302 */ 4303 int 4304 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 4305 struct resource *r) 4306 { 4307 /* Propagate up the bus hierarchy until someone handles it. */ 4308 if (dev->parent) 4309 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 4310 r)); 4311 return (EINVAL); 4312 } 4313 4314 /** 4315 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4316 * 4317 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4318 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4319 */ 4320 int 4321 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 4322 int rid, struct resource *r) 4323 { 4324 /* Propagate up the bus hierarchy until someone handles it. */ 4325 if (dev->parent) 4326 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4327 r)); 4328 return (EINVAL); 4329 } 4330 4331 /** 4332 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4333 * 4334 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4335 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4336 */ 4337 int 4338 bus_generic_map_resource(device_t dev, device_t child, int type, 4339 struct resource *r, struct resource_map_request *args, 4340 struct resource_map *map) 4341 { 4342 /* Propagate up the bus hierarchy until someone handles it. */ 4343 if (dev->parent) 4344 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 4345 map)); 4346 return (EINVAL); 4347 } 4348 4349 /** 4350 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4351 * 4352 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4353 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4354 */ 4355 int 4356 bus_generic_unmap_resource(device_t dev, device_t child, int type, 4357 struct resource *r, struct resource_map *map) 4358 { 4359 /* Propagate up the bus hierarchy until someone handles it. */ 4360 if (dev->parent) 4361 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 4362 return (EINVAL); 4363 } 4364 4365 /** 4366 * @brief Helper function for implementing BUS_BIND_INTR(). 4367 * 4368 * This simple implementation of BUS_BIND_INTR() simply calls the 4369 * BUS_BIND_INTR() method of the parent of @p dev. 4370 */ 4371 int 4372 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4373 int cpu) 4374 { 4375 /* Propagate up the bus hierarchy until someone handles it. */ 4376 if (dev->parent) 4377 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4378 return (EINVAL); 4379 } 4380 4381 /** 4382 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4383 * 4384 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4385 * BUS_CONFIG_INTR() method of the parent of @p dev. 4386 */ 4387 int 4388 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4389 enum intr_polarity pol) 4390 { 4391 /* Propagate up the bus hierarchy until someone handles it. */ 4392 if (dev->parent) 4393 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4394 return (EINVAL); 4395 } 4396 4397 /** 4398 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4399 * 4400 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4401 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4402 */ 4403 int 4404 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4405 void *cookie, const char *descr) 4406 { 4407 /* Propagate up the bus hierarchy until someone handles it. */ 4408 if (dev->parent) 4409 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4410 descr)); 4411 return (EINVAL); 4412 } 4413 4414 /** 4415 * @brief Helper function for implementing BUS_GET_CPUS(). 4416 * 4417 * This simple implementation of BUS_GET_CPUS() simply calls the 4418 * BUS_GET_CPUS() method of the parent of @p dev. 4419 */ 4420 int 4421 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4422 size_t setsize, cpuset_t *cpuset) 4423 { 4424 /* Propagate up the bus hierarchy until someone handles it. */ 4425 if (dev->parent != NULL) 4426 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4427 return (EINVAL); 4428 } 4429 4430 /** 4431 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4432 * 4433 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4434 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4435 */ 4436 bus_dma_tag_t 4437 bus_generic_get_dma_tag(device_t dev, device_t child) 4438 { 4439 /* Propagate up the bus hierarchy until someone handles it. */ 4440 if (dev->parent != NULL) 4441 return (BUS_GET_DMA_TAG(dev->parent, child)); 4442 return (NULL); 4443 } 4444 4445 /** 4446 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4447 * 4448 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4449 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4450 */ 4451 bus_space_tag_t 4452 bus_generic_get_bus_tag(device_t dev, device_t child) 4453 { 4454 /* Propagate up the bus hierarchy until someone handles it. */ 4455 if (dev->parent != NULL) 4456 return (BUS_GET_BUS_TAG(dev->parent, child)); 4457 return ((bus_space_tag_t)0); 4458 } 4459 4460 /** 4461 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4462 * 4463 * This implementation of BUS_GET_RESOURCE() uses the 4464 * resource_list_find() function to do most of the work. It calls 4465 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4466 * search. 4467 */ 4468 int 4469 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4470 rman_res_t *startp, rman_res_t *countp) 4471 { 4472 struct resource_list * rl = NULL; 4473 struct resource_list_entry * rle = NULL; 4474 4475 rl = BUS_GET_RESOURCE_LIST(dev, child); 4476 if (!rl) 4477 return (EINVAL); 4478 4479 rle = resource_list_find(rl, type, rid); 4480 if (!rle) 4481 return (ENOENT); 4482 4483 if (startp) 4484 *startp = rle->start; 4485 if (countp) 4486 *countp = rle->count; 4487 4488 return (0); 4489 } 4490 4491 /** 4492 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4493 * 4494 * This implementation of BUS_SET_RESOURCE() uses the 4495 * resource_list_add() function to do most of the work. It calls 4496 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4497 * edit. 4498 */ 4499 int 4500 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4501 rman_res_t start, rman_res_t count) 4502 { 4503 struct resource_list * rl = NULL; 4504 4505 rl = BUS_GET_RESOURCE_LIST(dev, child); 4506 if (!rl) 4507 return (EINVAL); 4508 4509 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4510 4511 return (0); 4512 } 4513 4514 /** 4515 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4516 * 4517 * This implementation of BUS_DELETE_RESOURCE() uses the 4518 * resource_list_delete() function to do most of the work. It calls 4519 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4520 * edit. 4521 */ 4522 void 4523 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4524 { 4525 struct resource_list * rl = NULL; 4526 4527 rl = BUS_GET_RESOURCE_LIST(dev, child); 4528 if (!rl) 4529 return; 4530 4531 resource_list_delete(rl, type, rid); 4532 4533 return; 4534 } 4535 4536 /** 4537 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4538 * 4539 * This implementation of BUS_RELEASE_RESOURCE() uses the 4540 * resource_list_release() function to do most of the work. It calls 4541 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4542 */ 4543 int 4544 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4545 int rid, struct resource *r) 4546 { 4547 struct resource_list * rl = NULL; 4548 4549 if (device_get_parent(child) != dev) 4550 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4551 type, rid, r)); 4552 4553 rl = BUS_GET_RESOURCE_LIST(dev, child); 4554 if (!rl) 4555 return (EINVAL); 4556 4557 return (resource_list_release(rl, dev, child, type, rid, r)); 4558 } 4559 4560 /** 4561 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4562 * 4563 * This implementation of BUS_ALLOC_RESOURCE() uses the 4564 * resource_list_alloc() function to do most of the work. It calls 4565 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4566 */ 4567 struct resource * 4568 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4569 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4570 { 4571 struct resource_list * rl = NULL; 4572 4573 if (device_get_parent(child) != dev) 4574 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4575 type, rid, start, end, count, flags)); 4576 4577 rl = BUS_GET_RESOURCE_LIST(dev, child); 4578 if (!rl) 4579 return (NULL); 4580 4581 return (resource_list_alloc(rl, dev, child, type, rid, 4582 start, end, count, flags)); 4583 } 4584 4585 /** 4586 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4587 * 4588 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4589 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4590 */ 4591 int 4592 bus_generic_child_present(device_t dev, device_t child) 4593 { 4594 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4595 } 4596 4597 int 4598 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4599 { 4600 if (dev->parent) 4601 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4602 4603 return (ENOENT); 4604 } 4605 4606 /** 4607 * @brief Helper function for implementing BUS_RESCAN(). 4608 * 4609 * This null implementation of BUS_RESCAN() always fails to indicate 4610 * the bus does not support rescanning. 4611 */ 4612 int 4613 bus_null_rescan(device_t dev) 4614 { 4615 return (ENXIO); 4616 } 4617 4618 /* 4619 * Some convenience functions to make it easier for drivers to use the 4620 * resource-management functions. All these really do is hide the 4621 * indirection through the parent's method table, making for slightly 4622 * less-wordy code. In the future, it might make sense for this code 4623 * to maintain some sort of a list of resources allocated by each device. 4624 */ 4625 4626 int 4627 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4628 struct resource **res) 4629 { 4630 int i; 4631 4632 for (i = 0; rs[i].type != -1; i++) 4633 res[i] = NULL; 4634 for (i = 0; rs[i].type != -1; i++) { 4635 res[i] = bus_alloc_resource_any(dev, 4636 rs[i].type, &rs[i].rid, rs[i].flags); 4637 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4638 bus_release_resources(dev, rs, res); 4639 return (ENXIO); 4640 } 4641 } 4642 return (0); 4643 } 4644 4645 void 4646 bus_release_resources(device_t dev, const struct resource_spec *rs, 4647 struct resource **res) 4648 { 4649 int i; 4650 4651 for (i = 0; rs[i].type != -1; i++) 4652 if (res[i] != NULL) { 4653 bus_release_resource( 4654 dev, rs[i].type, rs[i].rid, res[i]); 4655 res[i] = NULL; 4656 } 4657 } 4658 4659 /** 4660 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4661 * 4662 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4663 * parent of @p dev. 4664 */ 4665 struct resource * 4666 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4667 rman_res_t end, rman_res_t count, u_int flags) 4668 { 4669 struct resource *res; 4670 4671 if (dev->parent == NULL) 4672 return (NULL); 4673 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4674 count, flags); 4675 return (res); 4676 } 4677 4678 /** 4679 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4680 * 4681 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4682 * parent of @p dev. 4683 */ 4684 int 4685 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4686 rman_res_t end) 4687 { 4688 if (dev->parent == NULL) 4689 return (EINVAL); 4690 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4691 } 4692 4693 /** 4694 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4695 * 4696 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4697 * parent of @p dev. 4698 */ 4699 int 4700 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4701 { 4702 if (dev->parent == NULL) 4703 return (EINVAL); 4704 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4705 } 4706 4707 /** 4708 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4709 * 4710 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4711 * parent of @p dev. 4712 */ 4713 int 4714 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4715 { 4716 if (dev->parent == NULL) 4717 return (EINVAL); 4718 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4719 } 4720 4721 /** 4722 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4723 * 4724 * This function simply calls the BUS_MAP_RESOURCE() method of the 4725 * parent of @p dev. 4726 */ 4727 int 4728 bus_map_resource(device_t dev, int type, struct resource *r, 4729 struct resource_map_request *args, struct resource_map *map) 4730 { 4731 if (dev->parent == NULL) 4732 return (EINVAL); 4733 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4734 } 4735 4736 /** 4737 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4738 * 4739 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4740 * parent of @p dev. 4741 */ 4742 int 4743 bus_unmap_resource(device_t dev, int type, struct resource *r, 4744 struct resource_map *map) 4745 { 4746 if (dev->parent == NULL) 4747 return (EINVAL); 4748 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4749 } 4750 4751 /** 4752 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4753 * 4754 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4755 * parent of @p dev. 4756 */ 4757 int 4758 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4759 { 4760 int rv; 4761 4762 if (dev->parent == NULL) 4763 return (EINVAL); 4764 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4765 return (rv); 4766 } 4767 4768 /** 4769 * @brief Wrapper function for BUS_SETUP_INTR(). 4770 * 4771 * This function simply calls the BUS_SETUP_INTR() method of the 4772 * parent of @p dev. 4773 */ 4774 int 4775 bus_setup_intr(device_t dev, struct resource *r, int flags, 4776 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4777 { 4778 int error; 4779 4780 if (dev->parent == NULL) 4781 return (EINVAL); 4782 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4783 arg, cookiep); 4784 if (error != 0) 4785 return (error); 4786 if (handler != NULL && !(flags & INTR_MPSAFE)) 4787 device_printf(dev, "[GIANT-LOCKED]\n"); 4788 return (0); 4789 } 4790 4791 /** 4792 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4793 * 4794 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4795 * parent of @p dev. 4796 */ 4797 int 4798 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4799 { 4800 if (dev->parent == NULL) 4801 return (EINVAL); 4802 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4803 } 4804 4805 /** 4806 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4807 * 4808 * This function simply calls the BUS_SUSPEND_INTR() method of the 4809 * parent of @p dev. 4810 */ 4811 int 4812 bus_suspend_intr(device_t dev, struct resource *r) 4813 { 4814 if (dev->parent == NULL) 4815 return (EINVAL); 4816 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4817 } 4818 4819 /** 4820 * @brief Wrapper function for BUS_RESUME_INTR(). 4821 * 4822 * This function simply calls the BUS_RESUME_INTR() method of the 4823 * parent of @p dev. 4824 */ 4825 int 4826 bus_resume_intr(device_t dev, struct resource *r) 4827 { 4828 if (dev->parent == NULL) 4829 return (EINVAL); 4830 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4831 } 4832 4833 /** 4834 * @brief Wrapper function for BUS_BIND_INTR(). 4835 * 4836 * This function simply calls the BUS_BIND_INTR() method of the 4837 * parent of @p dev. 4838 */ 4839 int 4840 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4841 { 4842 if (dev->parent == NULL) 4843 return (EINVAL); 4844 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4845 } 4846 4847 /** 4848 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4849 * 4850 * This function first formats the requested description into a 4851 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4852 * the parent of @p dev. 4853 */ 4854 int 4855 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4856 const char *fmt, ...) 4857 { 4858 va_list ap; 4859 char descr[MAXCOMLEN + 1]; 4860 4861 if (dev->parent == NULL) 4862 return (EINVAL); 4863 va_start(ap, fmt); 4864 vsnprintf(descr, sizeof(descr), fmt, ap); 4865 va_end(ap); 4866 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4867 } 4868 4869 /** 4870 * @brief Wrapper function for BUS_SET_RESOURCE(). 4871 * 4872 * This function simply calls the BUS_SET_RESOURCE() method of the 4873 * parent of @p dev. 4874 */ 4875 int 4876 bus_set_resource(device_t dev, int type, int rid, 4877 rman_res_t start, rman_res_t count) 4878 { 4879 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4880 start, count)); 4881 } 4882 4883 /** 4884 * @brief Wrapper function for BUS_GET_RESOURCE(). 4885 * 4886 * This function simply calls the BUS_GET_RESOURCE() method of the 4887 * parent of @p dev. 4888 */ 4889 int 4890 bus_get_resource(device_t dev, int type, int rid, 4891 rman_res_t *startp, rman_res_t *countp) 4892 { 4893 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4894 startp, countp)); 4895 } 4896 4897 /** 4898 * @brief Wrapper function for BUS_GET_RESOURCE(). 4899 * 4900 * This function simply calls the BUS_GET_RESOURCE() method of the 4901 * parent of @p dev and returns the start value. 4902 */ 4903 rman_res_t 4904 bus_get_resource_start(device_t dev, int type, int rid) 4905 { 4906 rman_res_t start; 4907 rman_res_t count; 4908 int error; 4909 4910 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4911 &start, &count); 4912 if (error) 4913 return (0); 4914 return (start); 4915 } 4916 4917 /** 4918 * @brief Wrapper function for BUS_GET_RESOURCE(). 4919 * 4920 * This function simply calls the BUS_GET_RESOURCE() method of the 4921 * parent of @p dev and returns the count value. 4922 */ 4923 rman_res_t 4924 bus_get_resource_count(device_t dev, int type, int rid) 4925 { 4926 rman_res_t start; 4927 rman_res_t count; 4928 int error; 4929 4930 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4931 &start, &count); 4932 if (error) 4933 return (0); 4934 return (count); 4935 } 4936 4937 /** 4938 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4939 * 4940 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4941 * parent of @p dev. 4942 */ 4943 void 4944 bus_delete_resource(device_t dev, int type, int rid) 4945 { 4946 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4947 } 4948 4949 /** 4950 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4951 * 4952 * This function simply calls the BUS_CHILD_PRESENT() method of the 4953 * parent of @p dev. 4954 */ 4955 int 4956 bus_child_present(device_t child) 4957 { 4958 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4959 } 4960 4961 /** 4962 * @brief Wrapper function for BUS_CHILD_PNPINFO(). 4963 * 4964 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p 4965 * dev. 4966 */ 4967 int 4968 bus_child_pnpinfo(device_t child, struct sbuf *sb) 4969 { 4970 device_t parent; 4971 4972 parent = device_get_parent(child); 4973 if (parent == NULL) 4974 return (0); 4975 return (BUS_CHILD_PNPINFO(parent, child, sb)); 4976 } 4977 4978 /** 4979 * @brief Generic implementation that does nothing for bus_child_pnpinfo 4980 * 4981 * This function has the right signature and returns 0 since the sbuf is passed 4982 * to us to append to. 4983 */ 4984 int 4985 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb) 4986 { 4987 return (0); 4988 } 4989 4990 /** 4991 * @brief Wrapper function for BUS_CHILD_LOCATION(). 4992 * 4993 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of 4994 * @p dev. 4995 */ 4996 int 4997 bus_child_location(device_t child, struct sbuf *sb) 4998 { 4999 device_t parent; 5000 5001 parent = device_get_parent(child); 5002 if (parent == NULL) 5003 return (0); 5004 return (BUS_CHILD_LOCATION(parent, child, sb)); 5005 } 5006 5007 /** 5008 * @brief Generic implementation that does nothing for bus_child_location 5009 * 5010 * This function has the right signature and returns 0 since the sbuf is passed 5011 * to us to append to. 5012 */ 5013 int 5014 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb) 5015 { 5016 return (0); 5017 } 5018 5019 /** 5020 * @brief Wrapper function for BUS_GET_CPUS(). 5021 * 5022 * This function simply calls the BUS_GET_CPUS() method of the 5023 * parent of @p dev. 5024 */ 5025 int 5026 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 5027 { 5028 device_t parent; 5029 5030 parent = device_get_parent(dev); 5031 if (parent == NULL) 5032 return (EINVAL); 5033 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 5034 } 5035 5036 /** 5037 * @brief Wrapper function for BUS_GET_DMA_TAG(). 5038 * 5039 * This function simply calls the BUS_GET_DMA_TAG() method of the 5040 * parent of @p dev. 5041 */ 5042 bus_dma_tag_t 5043 bus_get_dma_tag(device_t dev) 5044 { 5045 device_t parent; 5046 5047 parent = device_get_parent(dev); 5048 if (parent == NULL) 5049 return (NULL); 5050 return (BUS_GET_DMA_TAG(parent, dev)); 5051 } 5052 5053 /** 5054 * @brief Wrapper function for BUS_GET_BUS_TAG(). 5055 * 5056 * This function simply calls the BUS_GET_BUS_TAG() method of the 5057 * parent of @p dev. 5058 */ 5059 bus_space_tag_t 5060 bus_get_bus_tag(device_t dev) 5061 { 5062 device_t parent; 5063 5064 parent = device_get_parent(dev); 5065 if (parent == NULL) 5066 return ((bus_space_tag_t)0); 5067 return (BUS_GET_BUS_TAG(parent, dev)); 5068 } 5069 5070 /** 5071 * @brief Wrapper function for BUS_GET_DOMAIN(). 5072 * 5073 * This function simply calls the BUS_GET_DOMAIN() method of the 5074 * parent of @p dev. 5075 */ 5076 int 5077 bus_get_domain(device_t dev, int *domain) 5078 { 5079 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 5080 } 5081 5082 /* Resume all devices and then notify userland that we're up again. */ 5083 static int 5084 root_resume(device_t dev) 5085 { 5086 int error; 5087 5088 error = bus_generic_resume(dev); 5089 if (error == 0) { 5090 devctl_notify("kern", "power", "resume", NULL); /* Deprecated gone in 14 */ 5091 devctl_notify("kernel", "power", "resume", NULL); 5092 } 5093 return (error); 5094 } 5095 5096 static int 5097 root_print_child(device_t dev, device_t child) 5098 { 5099 int retval = 0; 5100 5101 retval += bus_print_child_header(dev, child); 5102 retval += printf("\n"); 5103 5104 return (retval); 5105 } 5106 5107 static int 5108 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 5109 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 5110 { 5111 /* 5112 * If an interrupt mapping gets to here something bad has happened. 5113 */ 5114 panic("root_setup_intr"); 5115 } 5116 5117 /* 5118 * If we get here, assume that the device is permanent and really is 5119 * present in the system. Removable bus drivers are expected to intercept 5120 * this call long before it gets here. We return -1 so that drivers that 5121 * really care can check vs -1 or some ERRNO returned higher in the food 5122 * chain. 5123 */ 5124 static int 5125 root_child_present(device_t dev, device_t child) 5126 { 5127 return (-1); 5128 } 5129 5130 static int 5131 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 5132 cpuset_t *cpuset) 5133 { 5134 switch (op) { 5135 case INTR_CPUS: 5136 /* Default to returning the set of all CPUs. */ 5137 if (setsize != sizeof(cpuset_t)) 5138 return (EINVAL); 5139 *cpuset = all_cpus; 5140 return (0); 5141 default: 5142 return (EINVAL); 5143 } 5144 } 5145 5146 static kobj_method_t root_methods[] = { 5147 /* Device interface */ 5148 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 5149 KOBJMETHOD(device_suspend, bus_generic_suspend), 5150 KOBJMETHOD(device_resume, root_resume), 5151 5152 /* Bus interface */ 5153 KOBJMETHOD(bus_print_child, root_print_child), 5154 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 5155 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 5156 KOBJMETHOD(bus_setup_intr, root_setup_intr), 5157 KOBJMETHOD(bus_child_present, root_child_present), 5158 KOBJMETHOD(bus_get_cpus, root_get_cpus), 5159 5160 KOBJMETHOD_END 5161 }; 5162 5163 static driver_t root_driver = { 5164 "root", 5165 root_methods, 5166 1, /* no softc */ 5167 }; 5168 5169 device_t root_bus; 5170 devclass_t root_devclass; 5171 5172 static int 5173 root_bus_module_handler(module_t mod, int what, void* arg) 5174 { 5175 switch (what) { 5176 case MOD_LOAD: 5177 TAILQ_INIT(&bus_data_devices); 5178 kobj_class_compile((kobj_class_t) &root_driver); 5179 root_bus = make_device(NULL, "root", 0); 5180 root_bus->desc = "System root bus"; 5181 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 5182 root_bus->driver = &root_driver; 5183 root_bus->state = DS_ATTACHED; 5184 root_devclass = devclass_find_internal("root", NULL, FALSE); 5185 devinit(); 5186 return (0); 5187 5188 case MOD_SHUTDOWN: 5189 device_shutdown(root_bus); 5190 return (0); 5191 default: 5192 return (EOPNOTSUPP); 5193 } 5194 5195 return (0); 5196 } 5197 5198 static moduledata_t root_bus_mod = { 5199 "rootbus", 5200 root_bus_module_handler, 5201 NULL 5202 }; 5203 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 5204 5205 /** 5206 * @brief Automatically configure devices 5207 * 5208 * This function begins the autoconfiguration process by calling 5209 * device_probe_and_attach() for each child of the @c root0 device. 5210 */ 5211 void 5212 root_bus_configure(void) 5213 { 5214 PDEBUG((".")); 5215 5216 /* Eventually this will be split up, but this is sufficient for now. */ 5217 bus_set_pass(BUS_PASS_DEFAULT); 5218 } 5219 5220 /** 5221 * @brief Module handler for registering device drivers 5222 * 5223 * This module handler is used to automatically register device 5224 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 5225 * devclass_add_driver() for the driver described by the 5226 * driver_module_data structure pointed to by @p arg 5227 */ 5228 int 5229 driver_module_handler(module_t mod, int what, void *arg) 5230 { 5231 struct driver_module_data *dmd; 5232 devclass_t bus_devclass; 5233 kobj_class_t driver; 5234 int error, pass; 5235 5236 dmd = (struct driver_module_data *)arg; 5237 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 5238 error = 0; 5239 5240 switch (what) { 5241 case MOD_LOAD: 5242 if (dmd->dmd_chainevh) 5243 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5244 5245 pass = dmd->dmd_pass; 5246 driver = dmd->dmd_driver; 5247 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 5248 DRIVERNAME(driver), dmd->dmd_busname, pass)); 5249 error = devclass_add_driver(bus_devclass, driver, pass, 5250 dmd->dmd_devclass); 5251 break; 5252 5253 case MOD_UNLOAD: 5254 PDEBUG(("Unloading module: driver %s from bus %s", 5255 DRIVERNAME(dmd->dmd_driver), 5256 dmd->dmd_busname)); 5257 error = devclass_delete_driver(bus_devclass, 5258 dmd->dmd_driver); 5259 5260 if (!error && dmd->dmd_chainevh) 5261 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5262 break; 5263 case MOD_QUIESCE: 5264 PDEBUG(("Quiesce module: driver %s from bus %s", 5265 DRIVERNAME(dmd->dmd_driver), 5266 dmd->dmd_busname)); 5267 error = devclass_quiesce_driver(bus_devclass, 5268 dmd->dmd_driver); 5269 5270 if (!error && dmd->dmd_chainevh) 5271 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5272 break; 5273 default: 5274 error = EOPNOTSUPP; 5275 break; 5276 } 5277 5278 return (error); 5279 } 5280 5281 /** 5282 * @brief Enumerate all hinted devices for this bus. 5283 * 5284 * Walks through the hints for this bus and calls the bus_hinted_child 5285 * routine for each one it fines. It searches first for the specific 5286 * bus that's being probed for hinted children (eg isa0), and then for 5287 * generic children (eg isa). 5288 * 5289 * @param dev bus device to enumerate 5290 */ 5291 void 5292 bus_enumerate_hinted_children(device_t bus) 5293 { 5294 int i; 5295 const char *dname, *busname; 5296 int dunit; 5297 5298 /* 5299 * enumerate all devices on the specific bus 5300 */ 5301 busname = device_get_nameunit(bus); 5302 i = 0; 5303 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5304 BUS_HINTED_CHILD(bus, dname, dunit); 5305 5306 /* 5307 * and all the generic ones. 5308 */ 5309 busname = device_get_name(bus); 5310 i = 0; 5311 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5312 BUS_HINTED_CHILD(bus, dname, dunit); 5313 } 5314 5315 #ifdef BUS_DEBUG 5316 5317 /* the _short versions avoid iteration by not calling anything that prints 5318 * more than oneliners. I love oneliners. 5319 */ 5320 5321 static void 5322 print_device_short(device_t dev, int indent) 5323 { 5324 if (!dev) 5325 return; 5326 5327 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5328 dev->unit, dev->desc, 5329 (dev->parent? "":"no "), 5330 (TAILQ_EMPTY(&dev->children)? "no ":""), 5331 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5332 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5333 (dev->flags&DF_WILDCARD? "wildcard,":""), 5334 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5335 (dev->flags&DF_REBID? "rebiddable,":""), 5336 (dev->flags&DF_SUSPENDED? "suspended,":""), 5337 (dev->ivars? "":"no "), 5338 (dev->softc? "":"no "), 5339 dev->busy)); 5340 } 5341 5342 static void 5343 print_device(device_t dev, int indent) 5344 { 5345 if (!dev) 5346 return; 5347 5348 print_device_short(dev, indent); 5349 5350 indentprintf(("Parent:\n")); 5351 print_device_short(dev->parent, indent+1); 5352 indentprintf(("Driver:\n")); 5353 print_driver_short(dev->driver, indent+1); 5354 indentprintf(("Devclass:\n")); 5355 print_devclass_short(dev->devclass, indent+1); 5356 } 5357 5358 void 5359 print_device_tree_short(device_t dev, int indent) 5360 /* print the device and all its children (indented) */ 5361 { 5362 device_t child; 5363 5364 if (!dev) 5365 return; 5366 5367 print_device_short(dev, indent); 5368 5369 TAILQ_FOREACH(child, &dev->children, link) { 5370 print_device_tree_short(child, indent+1); 5371 } 5372 } 5373 5374 void 5375 print_device_tree(device_t dev, int indent) 5376 /* print the device and all its children (indented) */ 5377 { 5378 device_t child; 5379 5380 if (!dev) 5381 return; 5382 5383 print_device(dev, indent); 5384 5385 TAILQ_FOREACH(child, &dev->children, link) { 5386 print_device_tree(child, indent+1); 5387 } 5388 } 5389 5390 static void 5391 print_driver_short(driver_t *driver, int indent) 5392 { 5393 if (!driver) 5394 return; 5395 5396 indentprintf(("driver %s: softc size = %zd\n", 5397 driver->name, driver->size)); 5398 } 5399 5400 static void 5401 print_driver(driver_t *driver, int indent) 5402 { 5403 if (!driver) 5404 return; 5405 5406 print_driver_short(driver, indent); 5407 } 5408 5409 static void 5410 print_driver_list(driver_list_t drivers, int indent) 5411 { 5412 driverlink_t driver; 5413 5414 TAILQ_FOREACH(driver, &drivers, link) { 5415 print_driver(driver->driver, indent); 5416 } 5417 } 5418 5419 static void 5420 print_devclass_short(devclass_t dc, int indent) 5421 { 5422 if ( !dc ) 5423 return; 5424 5425 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5426 } 5427 5428 static void 5429 print_devclass(devclass_t dc, int indent) 5430 { 5431 int i; 5432 5433 if ( !dc ) 5434 return; 5435 5436 print_devclass_short(dc, indent); 5437 indentprintf(("Drivers:\n")); 5438 print_driver_list(dc->drivers, indent+1); 5439 5440 indentprintf(("Devices:\n")); 5441 for (i = 0; i < dc->maxunit; i++) 5442 if (dc->devices[i]) 5443 print_device(dc->devices[i], indent+1); 5444 } 5445 5446 void 5447 print_devclass_list_short(void) 5448 { 5449 devclass_t dc; 5450 5451 printf("Short listing of devclasses, drivers & devices:\n"); 5452 TAILQ_FOREACH(dc, &devclasses, link) { 5453 print_devclass_short(dc, 0); 5454 } 5455 } 5456 5457 void 5458 print_devclass_list(void) 5459 { 5460 devclass_t dc; 5461 5462 printf("Full listing of devclasses, drivers & devices:\n"); 5463 TAILQ_FOREACH(dc, &devclasses, link) { 5464 print_devclass(dc, 0); 5465 } 5466 } 5467 5468 #endif 5469 5470 /* 5471 * User-space access to the device tree. 5472 * 5473 * We implement a small set of nodes: 5474 * 5475 * hw.bus Single integer read method to obtain the 5476 * current generation count. 5477 * hw.bus.devices Reads the entire device tree in flat space. 5478 * hw.bus.rman Resource manager interface 5479 * 5480 * We might like to add the ability to scan devclasses and/or drivers to 5481 * determine what else is currently loaded/available. 5482 */ 5483 5484 static int 5485 sysctl_bus_info(SYSCTL_HANDLER_ARGS) 5486 { 5487 struct u_businfo ubus; 5488 5489 ubus.ub_version = BUS_USER_VERSION; 5490 ubus.ub_generation = bus_data_generation; 5491 5492 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5493 } 5494 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | 5495 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", 5496 "bus-related data"); 5497 5498 static int 5499 sysctl_devices(SYSCTL_HANDLER_ARGS) 5500 { 5501 struct sbuf sb; 5502 int *name = (int *)arg1; 5503 u_int namelen = arg2; 5504 int index; 5505 device_t dev; 5506 struct u_device *udev; 5507 int error; 5508 5509 if (namelen != 2) 5510 return (EINVAL); 5511 5512 if (bus_data_generation_check(name[0])) 5513 return (EINVAL); 5514 5515 index = name[1]; 5516 5517 /* 5518 * Scan the list of devices, looking for the requested index. 5519 */ 5520 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5521 if (index-- == 0) 5522 break; 5523 } 5524 if (dev == NULL) 5525 return (ENOENT); 5526 5527 /* 5528 * Populate the return item, careful not to overflow the buffer. 5529 */ 5530 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5531 if (udev == NULL) 5532 return (ENOMEM); 5533 udev->dv_handle = (uintptr_t)dev; 5534 udev->dv_parent = (uintptr_t)dev->parent; 5535 udev->dv_devflags = dev->devflags; 5536 udev->dv_flags = dev->flags; 5537 udev->dv_state = dev->state; 5538 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN); 5539 if (dev->nameunit != NULL) 5540 sbuf_cat(&sb, dev->nameunit); 5541 sbuf_putc(&sb, '\0'); 5542 if (dev->desc != NULL) 5543 sbuf_cat(&sb, dev->desc); 5544 sbuf_putc(&sb, '\0'); 5545 if (dev->driver != NULL) 5546 sbuf_cat(&sb, dev->driver->name); 5547 sbuf_putc(&sb, '\0'); 5548 bus_child_pnpinfo(dev, &sb); 5549 sbuf_putc(&sb, '\0'); 5550 bus_child_location(dev, &sb); 5551 sbuf_putc(&sb, '\0'); 5552 error = sbuf_finish(&sb); 5553 if (error == 0) 5554 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5555 sbuf_delete(&sb); 5556 free(udev, M_BUS); 5557 return (error); 5558 } 5559 5560 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, 5561 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, 5562 "system device tree"); 5563 5564 int 5565 bus_data_generation_check(int generation) 5566 { 5567 if (generation != bus_data_generation) 5568 return (1); 5569 5570 /* XXX generate optimised lists here? */ 5571 return (0); 5572 } 5573 5574 void 5575 bus_data_generation_update(void) 5576 { 5577 atomic_add_int(&bus_data_generation, 1); 5578 } 5579 5580 int 5581 bus_free_resource(device_t dev, int type, struct resource *r) 5582 { 5583 if (r == NULL) 5584 return (0); 5585 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5586 } 5587 5588 device_t 5589 device_lookup_by_name(const char *name) 5590 { 5591 device_t dev; 5592 5593 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5594 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5595 return (dev); 5596 } 5597 return (NULL); 5598 } 5599 5600 /* 5601 * /dev/devctl2 implementation. The existing /dev/devctl device has 5602 * implicit semantics on open, so it could not be reused for this. 5603 * Another option would be to call this /dev/bus? 5604 */ 5605 static int 5606 find_device(struct devreq *req, device_t *devp) 5607 { 5608 device_t dev; 5609 5610 /* 5611 * First, ensure that the name is nul terminated. 5612 */ 5613 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5614 return (EINVAL); 5615 5616 /* 5617 * Second, try to find an attached device whose name matches 5618 * 'name'. 5619 */ 5620 dev = device_lookup_by_name(req->dr_name); 5621 if (dev != NULL) { 5622 *devp = dev; 5623 return (0); 5624 } 5625 5626 /* Finally, give device enumerators a chance. */ 5627 dev = NULL; 5628 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5629 if (dev == NULL) 5630 return (ENOENT); 5631 *devp = dev; 5632 return (0); 5633 } 5634 5635 static bool 5636 driver_exists(device_t bus, const char *driver) 5637 { 5638 devclass_t dc; 5639 5640 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5641 if (devclass_find_driver_internal(dc, driver) != NULL) 5642 return (true); 5643 } 5644 return (false); 5645 } 5646 5647 static void 5648 device_gen_nomatch(device_t dev) 5649 { 5650 device_t child; 5651 5652 if (dev->flags & DF_NEEDNOMATCH && 5653 dev->state == DS_NOTPRESENT) { 5654 BUS_PROBE_NOMATCH(dev->parent, dev); 5655 devnomatch(dev); 5656 dev->flags |= DF_DONENOMATCH; 5657 } 5658 dev->flags &= ~DF_NEEDNOMATCH; 5659 TAILQ_FOREACH(child, &dev->children, link) { 5660 device_gen_nomatch(child); 5661 } 5662 } 5663 5664 static void 5665 device_do_deferred_actions(void) 5666 { 5667 devclass_t dc; 5668 driverlink_t dl; 5669 5670 /* 5671 * Walk through the devclasses to find all the drivers we've tagged as 5672 * deferred during the freeze and call the driver added routines. They 5673 * have already been added to the lists in the background, so the driver 5674 * added routines that trigger a probe will have all the right bidders 5675 * for the probe auction. 5676 */ 5677 TAILQ_FOREACH(dc, &devclasses, link) { 5678 TAILQ_FOREACH(dl, &dc->drivers, link) { 5679 if (dl->flags & DL_DEFERRED_PROBE) { 5680 devclass_driver_added(dc, dl->driver); 5681 dl->flags &= ~DL_DEFERRED_PROBE; 5682 } 5683 } 5684 } 5685 5686 /* 5687 * We also defer no-match events during a freeze. Walk the tree and 5688 * generate all the pent-up events that are still relevant. 5689 */ 5690 device_gen_nomatch(root_bus); 5691 bus_data_generation_update(); 5692 } 5693 5694 static int 5695 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5696 struct thread *td) 5697 { 5698 struct devreq *req; 5699 device_t dev; 5700 int error, old; 5701 5702 /* Locate the device to control. */ 5703 mtx_lock(&Giant); 5704 req = (struct devreq *)data; 5705 switch (cmd) { 5706 case DEV_ATTACH: 5707 case DEV_DETACH: 5708 case DEV_ENABLE: 5709 case DEV_DISABLE: 5710 case DEV_SUSPEND: 5711 case DEV_RESUME: 5712 case DEV_SET_DRIVER: 5713 case DEV_CLEAR_DRIVER: 5714 case DEV_RESCAN: 5715 case DEV_DELETE: 5716 case DEV_RESET: 5717 error = priv_check(td, PRIV_DRIVER); 5718 if (error == 0) 5719 error = find_device(req, &dev); 5720 break; 5721 case DEV_FREEZE: 5722 case DEV_THAW: 5723 error = priv_check(td, PRIV_DRIVER); 5724 break; 5725 default: 5726 error = ENOTTY; 5727 break; 5728 } 5729 if (error) { 5730 mtx_unlock(&Giant); 5731 return (error); 5732 } 5733 5734 /* Perform the requested operation. */ 5735 switch (cmd) { 5736 case DEV_ATTACH: 5737 if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0) 5738 error = EBUSY; 5739 else if (!device_is_enabled(dev)) 5740 error = ENXIO; 5741 else 5742 error = device_probe_and_attach(dev); 5743 break; 5744 case DEV_DETACH: 5745 if (!device_is_attached(dev)) { 5746 error = ENXIO; 5747 break; 5748 } 5749 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5750 error = device_quiesce(dev); 5751 if (error) 5752 break; 5753 } 5754 error = device_detach(dev); 5755 break; 5756 case DEV_ENABLE: 5757 if (device_is_enabled(dev)) { 5758 error = EBUSY; 5759 break; 5760 } 5761 5762 /* 5763 * If the device has been probed but not attached (e.g. 5764 * when it has been disabled by a loader hint), just 5765 * attach the device rather than doing a full probe. 5766 */ 5767 device_enable(dev); 5768 if (device_is_alive(dev)) { 5769 /* 5770 * If the device was disabled via a hint, clear 5771 * the hint. 5772 */ 5773 if (resource_disabled(dev->driver->name, dev->unit)) 5774 resource_unset_value(dev->driver->name, 5775 dev->unit, "disabled"); 5776 error = device_attach(dev); 5777 } else 5778 error = device_probe_and_attach(dev); 5779 break; 5780 case DEV_DISABLE: 5781 if (!device_is_enabled(dev)) { 5782 error = ENXIO; 5783 break; 5784 } 5785 5786 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5787 error = device_quiesce(dev); 5788 if (error) 5789 break; 5790 } 5791 5792 /* 5793 * Force DF_FIXEDCLASS on around detach to preserve 5794 * the existing name. 5795 */ 5796 old = dev->flags; 5797 dev->flags |= DF_FIXEDCLASS; 5798 error = device_detach(dev); 5799 if (!(old & DF_FIXEDCLASS)) 5800 dev->flags &= ~DF_FIXEDCLASS; 5801 if (error == 0) 5802 device_disable(dev); 5803 break; 5804 case DEV_SUSPEND: 5805 if (device_is_suspended(dev)) { 5806 error = EBUSY; 5807 break; 5808 } 5809 if (device_get_parent(dev) == NULL) { 5810 error = EINVAL; 5811 break; 5812 } 5813 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5814 break; 5815 case DEV_RESUME: 5816 if (!device_is_suspended(dev)) { 5817 error = EINVAL; 5818 break; 5819 } 5820 if (device_get_parent(dev) == NULL) { 5821 error = EINVAL; 5822 break; 5823 } 5824 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5825 break; 5826 case DEV_SET_DRIVER: { 5827 devclass_t dc; 5828 char driver[128]; 5829 5830 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5831 if (error) 5832 break; 5833 if (driver[0] == '\0') { 5834 error = EINVAL; 5835 break; 5836 } 5837 if (dev->devclass != NULL && 5838 strcmp(driver, dev->devclass->name) == 0) 5839 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5840 break; 5841 5842 /* 5843 * Scan drivers for this device's bus looking for at 5844 * least one matching driver. 5845 */ 5846 if (dev->parent == NULL) { 5847 error = EINVAL; 5848 break; 5849 } 5850 if (!driver_exists(dev->parent, driver)) { 5851 error = ENOENT; 5852 break; 5853 } 5854 dc = devclass_create(driver); 5855 if (dc == NULL) { 5856 error = ENOMEM; 5857 break; 5858 } 5859 5860 /* Detach device if necessary. */ 5861 if (device_is_attached(dev)) { 5862 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5863 error = device_detach(dev); 5864 else 5865 error = EBUSY; 5866 if (error) 5867 break; 5868 } 5869 5870 /* Clear any previously-fixed device class and unit. */ 5871 if (dev->flags & DF_FIXEDCLASS) 5872 devclass_delete_device(dev->devclass, dev); 5873 dev->flags |= DF_WILDCARD; 5874 dev->unit = -1; 5875 5876 /* Force the new device class. */ 5877 error = devclass_add_device(dc, dev); 5878 if (error) 5879 break; 5880 dev->flags |= DF_FIXEDCLASS; 5881 error = device_probe_and_attach(dev); 5882 break; 5883 } 5884 case DEV_CLEAR_DRIVER: 5885 if (!(dev->flags & DF_FIXEDCLASS)) { 5886 error = 0; 5887 break; 5888 } 5889 if (device_is_attached(dev)) { 5890 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5891 error = device_detach(dev); 5892 else 5893 error = EBUSY; 5894 if (error) 5895 break; 5896 } 5897 5898 dev->flags &= ~DF_FIXEDCLASS; 5899 dev->flags |= DF_WILDCARD; 5900 devclass_delete_device(dev->devclass, dev); 5901 error = device_probe_and_attach(dev); 5902 break; 5903 case DEV_RESCAN: 5904 if (!device_is_attached(dev)) { 5905 error = ENXIO; 5906 break; 5907 } 5908 error = BUS_RESCAN(dev); 5909 break; 5910 case DEV_DELETE: { 5911 device_t parent; 5912 5913 parent = device_get_parent(dev); 5914 if (parent == NULL) { 5915 error = EINVAL; 5916 break; 5917 } 5918 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5919 if (bus_child_present(dev) != 0) { 5920 error = EBUSY; 5921 break; 5922 } 5923 } 5924 5925 error = device_delete_child(parent, dev); 5926 break; 5927 } 5928 case DEV_FREEZE: 5929 if (device_frozen) 5930 error = EBUSY; 5931 else 5932 device_frozen = true; 5933 break; 5934 case DEV_THAW: 5935 if (!device_frozen) 5936 error = EBUSY; 5937 else { 5938 device_do_deferred_actions(); 5939 device_frozen = false; 5940 } 5941 break; 5942 case DEV_RESET: 5943 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 5944 error = EINVAL; 5945 break; 5946 } 5947 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 5948 req->dr_flags); 5949 break; 5950 } 5951 mtx_unlock(&Giant); 5952 return (error); 5953 } 5954 5955 static struct cdevsw devctl2_cdevsw = { 5956 .d_version = D_VERSION, 5957 .d_ioctl = devctl2_ioctl, 5958 .d_name = "devctl2", 5959 }; 5960 5961 static void 5962 devctl2_init(void) 5963 { 5964 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5965 UID_ROOT, GID_WHEEL, 0600, "devctl2"); 5966 } 5967 5968 /* 5969 * APIs to manage deprecation and obsolescence. 5970 */ 5971 static int obsolete_panic = 0; 5972 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 5973 "Panic when obsolete features are used (0 = never, 1 = if osbolete, " 5974 "2 = if deprecated)"); 5975 5976 static void 5977 gone_panic(int major, int running, const char *msg) 5978 { 5979 switch (obsolete_panic) 5980 { 5981 case 0: 5982 return; 5983 case 1: 5984 if (running < major) 5985 return; 5986 /* FALLTHROUGH */ 5987 default: 5988 panic("%s", msg); 5989 } 5990 } 5991 5992 void 5993 _gone_in(int major, const char *msg) 5994 { 5995 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5996 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5997 printf("Obsolete code will be removed soon: %s\n", msg); 5998 else 5999 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 6000 major, msg); 6001 } 6002 6003 void 6004 _gone_in_dev(device_t dev, int major, const char *msg) 6005 { 6006 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 6007 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 6008 device_printf(dev, 6009 "Obsolete code will be removed soon: %s\n", msg); 6010 else 6011 device_printf(dev, 6012 "Deprecated code (to be removed in FreeBSD %d): %s\n", 6013 major, msg); 6014 } 6015 6016 #ifdef DDB 6017 DB_SHOW_COMMAND(device, db_show_device) 6018 { 6019 device_t dev; 6020 6021 if (!have_addr) 6022 return; 6023 6024 dev = (device_t)addr; 6025 6026 db_printf("name: %s\n", device_get_nameunit(dev)); 6027 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 6028 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 6029 db_printf(" addr: %p\n", dev); 6030 db_printf(" parent: %p\n", dev->parent); 6031 db_printf(" softc: %p\n", dev->softc); 6032 db_printf(" ivars: %p\n", dev->ivars); 6033 } 6034 6035 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 6036 { 6037 device_t dev; 6038 6039 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 6040 db_show_device((db_expr_t)dev, true, count, modif); 6041 } 6042 } 6043 #endif 6044