xref: /freebsd/sys/kern/subr_bus.c (revision 9124ddeb4a551977cf6b2218291e7c666ce25f47)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/conf.h>
34 #include <sys/filio.h>
35 #include <sys/lock.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/poll.h>
43 #include <sys/proc.h>
44 #include <sys/condvar.h>
45 #include <sys/queue.h>
46 #include <machine/bus.h>
47 #include <sys/rman.h>
48 #include <sys/selinfo.h>
49 #include <sys/signalvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/uio.h>
53 #include <sys/bus.h>
54 #include <sys/interrupt.h>
55 
56 #include <machine/stdarg.h>
57 
58 #include <vm/uma.h>
59 
60 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
61 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
62 
63 /*
64  * Used to attach drivers to devclasses.
65  */
66 typedef struct driverlink *driverlink_t;
67 struct driverlink {
68 	kobj_class_t	driver;
69 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
70 	int		pass;
71 	TAILQ_ENTRY(driverlink) passlink;
72 };
73 
74 /*
75  * Forward declarations
76  */
77 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
78 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
79 typedef TAILQ_HEAD(device_list, device) device_list_t;
80 
81 struct devclass {
82 	TAILQ_ENTRY(devclass) link;
83 	devclass_t	parent;		/* parent in devclass hierarchy */
84 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
85 	char		*name;
86 	device_t	*devices;	/* array of devices indexed by unit */
87 	int		maxunit;	/* size of devices array */
88 	int		flags;
89 #define DC_HAS_CHILDREN		1
90 
91 	struct sysctl_ctx_list sysctl_ctx;
92 	struct sysctl_oid *sysctl_tree;
93 };
94 
95 /**
96  * @brief Implementation of device.
97  */
98 struct device {
99 	/*
100 	 * A device is a kernel object. The first field must be the
101 	 * current ops table for the object.
102 	 */
103 	KOBJ_FIELDS;
104 
105 	/*
106 	 * Device hierarchy.
107 	 */
108 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
109 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
110 	device_t	parent;		/**< parent of this device  */
111 	device_list_t	children;	/**< list of child devices */
112 
113 	/*
114 	 * Details of this device.
115 	 */
116 	driver_t	*driver;	/**< current driver */
117 	devclass_t	devclass;	/**< current device class */
118 	int		unit;		/**< current unit number */
119 	char*		nameunit;	/**< name+unit e.g. foodev0 */
120 	char*		desc;		/**< driver specific description */
121 	int		busy;		/**< count of calls to device_busy() */
122 	device_state_t	state;		/**< current device state  */
123 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
124 	u_int		flags;		/**< internal device flags  */
125 #define	DF_ENABLED	0x01		/* device should be probed/attached */
126 #define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
127 #define	DF_WILDCARD	0x04		/* unit was originally wildcard */
128 #define	DF_DESCMALLOCED	0x08		/* description was malloced */
129 #define	DF_QUIET	0x10		/* don't print verbose attach message */
130 #define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
131 #define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
132 #define	DF_REBID	0x80		/* Can rebid after attach */
133 	u_int	order;			/**< order from device_add_child_ordered() */
134 	void	*ivars;			/**< instance variables  */
135 	void	*softc;			/**< current driver's variables  */
136 
137 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139 };
140 
141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143 
144 #ifdef BUS_DEBUG
145 
146 static int bus_debug = 1;
147 TUNABLE_INT("bus.debug", &bus_debug);
148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
149     "Debug bus code");
150 
151 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
152 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
153 #define DRIVERNAME(d)	((d)? d->name : "no driver")
154 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
155 
156 /**
157  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
158  * prevent syslog from deleting initial spaces
159  */
160 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
161 
162 static void print_device_short(device_t dev, int indent);
163 static void print_device(device_t dev, int indent);
164 void print_device_tree_short(device_t dev, int indent);
165 void print_device_tree(device_t dev, int indent);
166 static void print_driver_short(driver_t *driver, int indent);
167 static void print_driver(driver_t *driver, int indent);
168 static void print_driver_list(driver_list_t drivers, int indent);
169 static void print_devclass_short(devclass_t dc, int indent);
170 static void print_devclass(devclass_t dc, int indent);
171 void print_devclass_list_short(void);
172 void print_devclass_list(void);
173 
174 #else
175 /* Make the compiler ignore the function calls */
176 #define PDEBUG(a)			/* nop */
177 #define DEVICENAME(d)			/* nop */
178 #define DRIVERNAME(d)			/* nop */
179 #define DEVCLANAME(d)			/* nop */
180 
181 #define print_device_short(d,i)		/* nop */
182 #define print_device(d,i)		/* nop */
183 #define print_device_tree_short(d,i)	/* nop */
184 #define print_device_tree(d,i)		/* nop */
185 #define print_driver_short(d,i)		/* nop */
186 #define print_driver(d,i)		/* nop */
187 #define print_driver_list(d,i)		/* nop */
188 #define print_devclass_short(d,i)	/* nop */
189 #define print_devclass(d,i)		/* nop */
190 #define print_devclass_list_short()	/* nop */
191 #define print_devclass_list()		/* nop */
192 #endif
193 
194 /*
195  * dev sysctl tree
196  */
197 
198 enum {
199 	DEVCLASS_SYSCTL_PARENT,
200 };
201 
202 static int
203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
204 {
205 	devclass_t dc = (devclass_t)arg1;
206 	const char *value;
207 
208 	switch (arg2) {
209 	case DEVCLASS_SYSCTL_PARENT:
210 		value = dc->parent ? dc->parent->name : "";
211 		break;
212 	default:
213 		return (EINVAL);
214 	}
215 	return (SYSCTL_OUT(req, value, strlen(value)));
216 }
217 
218 static void
219 devclass_sysctl_init(devclass_t dc)
220 {
221 
222 	if (dc->sysctl_tree != NULL)
223 		return;
224 	sysctl_ctx_init(&dc->sysctl_ctx);
225 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
226 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
227 	    CTLFLAG_RD, NULL, "");
228 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
229 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
230 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
231 	    "parent class");
232 }
233 
234 enum {
235 	DEVICE_SYSCTL_DESC,
236 	DEVICE_SYSCTL_DRIVER,
237 	DEVICE_SYSCTL_LOCATION,
238 	DEVICE_SYSCTL_PNPINFO,
239 	DEVICE_SYSCTL_PARENT,
240 };
241 
242 static int
243 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
244 {
245 	device_t dev = (device_t)arg1;
246 	const char *value;
247 	char *buf;
248 	int error;
249 
250 	buf = NULL;
251 	switch (arg2) {
252 	case DEVICE_SYSCTL_DESC:
253 		value = dev->desc ? dev->desc : "";
254 		break;
255 	case DEVICE_SYSCTL_DRIVER:
256 		value = dev->driver ? dev->driver->name : "";
257 		break;
258 	case DEVICE_SYSCTL_LOCATION:
259 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260 		bus_child_location_str(dev, buf, 1024);
261 		break;
262 	case DEVICE_SYSCTL_PNPINFO:
263 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
264 		bus_child_pnpinfo_str(dev, buf, 1024);
265 		break;
266 	case DEVICE_SYSCTL_PARENT:
267 		value = dev->parent ? dev->parent->nameunit : "";
268 		break;
269 	default:
270 		return (EINVAL);
271 	}
272 	error = SYSCTL_OUT(req, value, strlen(value));
273 	if (buf != NULL)
274 		free(buf, M_BUS);
275 	return (error);
276 }
277 
278 static void
279 device_sysctl_init(device_t dev)
280 {
281 	devclass_t dc = dev->devclass;
282 
283 	if (dev->sysctl_tree != NULL)
284 		return;
285 	devclass_sysctl_init(dc);
286 	sysctl_ctx_init(&dev->sysctl_ctx);
287 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
288 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
289 	    dev->nameunit + strlen(dc->name),
290 	    CTLFLAG_RD, NULL, "");
291 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
293 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
294 	    "device description");
295 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
297 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
298 	    "device driver name");
299 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
301 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
302 	    "device location relative to parent");
303 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
305 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
306 	    "device identification");
307 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
308 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
309 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
310 	    "parent device");
311 }
312 
313 static void
314 device_sysctl_update(device_t dev)
315 {
316 	devclass_t dc = dev->devclass;
317 
318 	if (dev->sysctl_tree == NULL)
319 		return;
320 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
321 }
322 
323 static void
324 device_sysctl_fini(device_t dev)
325 {
326 	if (dev->sysctl_tree == NULL)
327 		return;
328 	sysctl_ctx_free(&dev->sysctl_ctx);
329 	dev->sysctl_tree = NULL;
330 }
331 
332 /*
333  * /dev/devctl implementation
334  */
335 
336 /*
337  * This design allows only one reader for /dev/devctl.  This is not desirable
338  * in the long run, but will get a lot of hair out of this implementation.
339  * Maybe we should make this device a clonable device.
340  *
341  * Also note: we specifically do not attach a device to the device_t tree
342  * to avoid potential chicken and egg problems.  One could argue that all
343  * of this belongs to the root node.  One could also further argue that the
344  * sysctl interface that we have not might more properly be an ioctl
345  * interface, but at this stage of the game, I'm not inclined to rock that
346  * boat.
347  *
348  * I'm also not sure that the SIGIO support is done correctly or not, as
349  * I copied it from a driver that had SIGIO support that likely hasn't been
350  * tested since 3.4 or 2.2.8!
351  */
352 
353 /* Deprecated way to adjust queue length */
354 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
355 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */
356 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
357     0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
358 
359 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
360 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
361 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
362 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
364     0, sysctl_devctl_queue, "I", "devctl queue length");
365 
366 static d_open_t		devopen;
367 static d_close_t	devclose;
368 static d_read_t		devread;
369 static d_ioctl_t	devioctl;
370 static d_poll_t		devpoll;
371 
372 static struct cdevsw dev_cdevsw = {
373 	.d_version =	D_VERSION,
374 	.d_flags =	D_NEEDGIANT,
375 	.d_open =	devopen,
376 	.d_close =	devclose,
377 	.d_read =	devread,
378 	.d_ioctl =	devioctl,
379 	.d_poll =	devpoll,
380 	.d_name =	"devctl",
381 };
382 
383 struct dev_event_info
384 {
385 	char *dei_data;
386 	TAILQ_ENTRY(dev_event_info) dei_link;
387 };
388 
389 TAILQ_HEAD(devq, dev_event_info);
390 
391 static struct dev_softc
392 {
393 	int	inuse;
394 	int	nonblock;
395 	int	queued;
396 	struct mtx mtx;
397 	struct cv cv;
398 	struct selinfo sel;
399 	struct devq devq;
400 	struct proc *async_proc;
401 } devsoftc;
402 
403 static struct cdev *devctl_dev;
404 
405 static void
406 devinit(void)
407 {
408 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
409 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
410 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
411 	cv_init(&devsoftc.cv, "dev cv");
412 	TAILQ_INIT(&devsoftc.devq);
413 }
414 
415 static int
416 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
417 {
418 	if (devsoftc.inuse)
419 		return (EBUSY);
420 	/* move to init */
421 	devsoftc.inuse = 1;
422 	devsoftc.nonblock = 0;
423 	devsoftc.async_proc = NULL;
424 	return (0);
425 }
426 
427 static int
428 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
429 {
430 	devsoftc.inuse = 0;
431 	mtx_lock(&devsoftc.mtx);
432 	cv_broadcast(&devsoftc.cv);
433 	mtx_unlock(&devsoftc.mtx);
434 	devsoftc.async_proc = NULL;
435 	return (0);
436 }
437 
438 /*
439  * The read channel for this device is used to report changes to
440  * userland in realtime.  We are required to free the data as well as
441  * the n1 object because we allocate them separately.  Also note that
442  * we return one record at a time.  If you try to read this device a
443  * character at a time, you will lose the rest of the data.  Listening
444  * programs are expected to cope.
445  */
446 static int
447 devread(struct cdev *dev, struct uio *uio, int ioflag)
448 {
449 	struct dev_event_info *n1;
450 	int rv;
451 
452 	mtx_lock(&devsoftc.mtx);
453 	while (TAILQ_EMPTY(&devsoftc.devq)) {
454 		if (devsoftc.nonblock) {
455 			mtx_unlock(&devsoftc.mtx);
456 			return (EAGAIN);
457 		}
458 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
459 		if (rv) {
460 			/*
461 			 * Need to translate ERESTART to EINTR here? -- jake
462 			 */
463 			mtx_unlock(&devsoftc.mtx);
464 			return (rv);
465 		}
466 	}
467 	n1 = TAILQ_FIRST(&devsoftc.devq);
468 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
469 	devsoftc.queued--;
470 	mtx_unlock(&devsoftc.mtx);
471 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
472 	free(n1->dei_data, M_BUS);
473 	free(n1, M_BUS);
474 	return (rv);
475 }
476 
477 static	int
478 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
479 {
480 	switch (cmd) {
481 
482 	case FIONBIO:
483 		if (*(int*)data)
484 			devsoftc.nonblock = 1;
485 		else
486 			devsoftc.nonblock = 0;
487 		return (0);
488 	case FIOASYNC:
489 		if (*(int*)data)
490 			devsoftc.async_proc = td->td_proc;
491 		else
492 			devsoftc.async_proc = NULL;
493 		return (0);
494 
495 		/* (un)Support for other fcntl() calls. */
496 	case FIOCLEX:
497 	case FIONCLEX:
498 	case FIONREAD:
499 	case FIOSETOWN:
500 	case FIOGETOWN:
501 	default:
502 		break;
503 	}
504 	return (ENOTTY);
505 }
506 
507 static	int
508 devpoll(struct cdev *dev, int events, struct thread *td)
509 {
510 	int	revents = 0;
511 
512 	mtx_lock(&devsoftc.mtx);
513 	if (events & (POLLIN | POLLRDNORM)) {
514 		if (!TAILQ_EMPTY(&devsoftc.devq))
515 			revents = events & (POLLIN | POLLRDNORM);
516 		else
517 			selrecord(td, &devsoftc.sel);
518 	}
519 	mtx_unlock(&devsoftc.mtx);
520 
521 	return (revents);
522 }
523 
524 /**
525  * @brief Return whether the userland process is running
526  */
527 boolean_t
528 devctl_process_running(void)
529 {
530 	return (devsoftc.inuse == 1);
531 }
532 
533 /**
534  * @brief Queue data to be read from the devctl device
535  *
536  * Generic interface to queue data to the devctl device.  It is
537  * assumed that @p data is properly formatted.  It is further assumed
538  * that @p data is allocated using the M_BUS malloc type.
539  */
540 void
541 devctl_queue_data_f(char *data, int flags)
542 {
543 	struct dev_event_info *n1 = NULL, *n2 = NULL;
544 	struct proc *p;
545 
546 	if (strlen(data) == 0)
547 		goto out;
548 	if (devctl_queue_length == 0)
549 		goto out;
550 	n1 = malloc(sizeof(*n1), M_BUS, flags);
551 	if (n1 == NULL)
552 		goto out;
553 	n1->dei_data = data;
554 	mtx_lock(&devsoftc.mtx);
555 	if (devctl_queue_length == 0) {
556 		mtx_unlock(&devsoftc.mtx);
557 		free(n1->dei_data, M_BUS);
558 		free(n1, M_BUS);
559 		return;
560 	}
561 	/* Leave at least one spot in the queue... */
562 	while (devsoftc.queued > devctl_queue_length - 1) {
563 		n2 = TAILQ_FIRST(&devsoftc.devq);
564 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
565 		free(n2->dei_data, M_BUS);
566 		free(n2, M_BUS);
567 		devsoftc.queued--;
568 	}
569 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
570 	devsoftc.queued++;
571 	cv_broadcast(&devsoftc.cv);
572 	mtx_unlock(&devsoftc.mtx);
573 	selwakeup(&devsoftc.sel);
574 	p = devsoftc.async_proc;
575 	if (p != NULL) {
576 		PROC_LOCK(p);
577 		kern_psignal(p, SIGIO);
578 		PROC_UNLOCK(p);
579 	}
580 	return;
581 out:
582 	/*
583 	 * We have to free data on all error paths since the caller
584 	 * assumes it will be free'd when this item is dequeued.
585 	 */
586 	free(data, M_BUS);
587 	return;
588 }
589 
590 void
591 devctl_queue_data(char *data)
592 {
593 
594 	devctl_queue_data_f(data, M_NOWAIT);
595 }
596 
597 /**
598  * @brief Send a 'notification' to userland, using standard ways
599  */
600 void
601 devctl_notify_f(const char *system, const char *subsystem, const char *type,
602     const char *data, int flags)
603 {
604 	int len = 0;
605 	char *msg;
606 
607 	if (system == NULL)
608 		return;		/* BOGUS!  Must specify system. */
609 	if (subsystem == NULL)
610 		return;		/* BOGUS!  Must specify subsystem. */
611 	if (type == NULL)
612 		return;		/* BOGUS!  Must specify type. */
613 	len += strlen(" system=") + strlen(system);
614 	len += strlen(" subsystem=") + strlen(subsystem);
615 	len += strlen(" type=") + strlen(type);
616 	/* add in the data message plus newline. */
617 	if (data != NULL)
618 		len += strlen(data);
619 	len += 3;	/* '!', '\n', and NUL */
620 	msg = malloc(len, M_BUS, flags);
621 	if (msg == NULL)
622 		return;		/* Drop it on the floor */
623 	if (data != NULL)
624 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
625 		    system, subsystem, type, data);
626 	else
627 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
628 		    system, subsystem, type);
629 	devctl_queue_data_f(msg, flags);
630 }
631 
632 void
633 devctl_notify(const char *system, const char *subsystem, const char *type,
634     const char *data)
635 {
636 
637 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
638 }
639 
640 /*
641  * Common routine that tries to make sending messages as easy as possible.
642  * We allocate memory for the data, copy strings into that, but do not
643  * free it unless there's an error.  The dequeue part of the driver should
644  * free the data.  We don't send data when the device is disabled.  We do
645  * send data, even when we have no listeners, because we wish to avoid
646  * races relating to startup and restart of listening applications.
647  *
648  * devaddq is designed to string together the type of event, with the
649  * object of that event, plus the plug and play info and location info
650  * for that event.  This is likely most useful for devices, but less
651  * useful for other consumers of this interface.  Those should use
652  * the devctl_queue_data() interface instead.
653  */
654 static void
655 devaddq(const char *type, const char *what, device_t dev)
656 {
657 	char *data = NULL;
658 	char *loc = NULL;
659 	char *pnp = NULL;
660 	const char *parstr;
661 
662 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
663 		return;
664 	data = malloc(1024, M_BUS, M_NOWAIT);
665 	if (data == NULL)
666 		goto bad;
667 
668 	/* get the bus specific location of this device */
669 	loc = malloc(1024, M_BUS, M_NOWAIT);
670 	if (loc == NULL)
671 		goto bad;
672 	*loc = '\0';
673 	bus_child_location_str(dev, loc, 1024);
674 
675 	/* Get the bus specific pnp info of this device */
676 	pnp = malloc(1024, M_BUS, M_NOWAIT);
677 	if (pnp == NULL)
678 		goto bad;
679 	*pnp = '\0';
680 	bus_child_pnpinfo_str(dev, pnp, 1024);
681 
682 	/* Get the parent of this device, or / if high enough in the tree. */
683 	if (device_get_parent(dev) == NULL)
684 		parstr = ".";	/* Or '/' ? */
685 	else
686 		parstr = device_get_nameunit(device_get_parent(dev));
687 	/* String it all together. */
688 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
689 	  parstr);
690 	free(loc, M_BUS);
691 	free(pnp, M_BUS);
692 	devctl_queue_data(data);
693 	return;
694 bad:
695 	free(pnp, M_BUS);
696 	free(loc, M_BUS);
697 	free(data, M_BUS);
698 	return;
699 }
700 
701 /*
702  * A device was added to the tree.  We are called just after it successfully
703  * attaches (that is, probe and attach success for this device).  No call
704  * is made if a device is merely parented into the tree.  See devnomatch
705  * if probe fails.  If attach fails, no notification is sent (but maybe
706  * we should have a different message for this).
707  */
708 static void
709 devadded(device_t dev)
710 {
711 	devaddq("+", device_get_nameunit(dev), dev);
712 }
713 
714 /*
715  * A device was removed from the tree.  We are called just before this
716  * happens.
717  */
718 static void
719 devremoved(device_t dev)
720 {
721 	devaddq("-", device_get_nameunit(dev), dev);
722 }
723 
724 /*
725  * Called when there's no match for this device.  This is only called
726  * the first time that no match happens, so we don't keep getting this
727  * message.  Should that prove to be undesirable, we can change it.
728  * This is called when all drivers that can attach to a given bus
729  * decline to accept this device.  Other errors may not be detected.
730  */
731 static void
732 devnomatch(device_t dev)
733 {
734 	devaddq("?", "", dev);
735 }
736 
737 static int
738 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
739 {
740 	struct dev_event_info *n1;
741 	int dis, error;
742 
743 	dis = devctl_queue_length == 0;
744 	error = sysctl_handle_int(oidp, &dis, 0, req);
745 	if (error || !req->newptr)
746 		return (error);
747 	mtx_lock(&devsoftc.mtx);
748 	if (dis) {
749 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
750 			n1 = TAILQ_FIRST(&devsoftc.devq);
751 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
752 			free(n1->dei_data, M_BUS);
753 			free(n1, M_BUS);
754 		}
755 		devsoftc.queued = 0;
756 		devctl_queue_length = 0;
757 	} else {
758 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
759 	}
760 	mtx_unlock(&devsoftc.mtx);
761 	return (0);
762 }
763 
764 static int
765 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
766 {
767 	struct dev_event_info *n1;
768 	int q, error;
769 
770 	q = devctl_queue_length;
771 	error = sysctl_handle_int(oidp, &q, 0, req);
772 	if (error || !req->newptr)
773 		return (error);
774 	if (q < 0)
775 		return (EINVAL);
776 	mtx_lock(&devsoftc.mtx);
777 	devctl_queue_length = q;
778 	while (devsoftc.queued > devctl_queue_length) {
779 		n1 = TAILQ_FIRST(&devsoftc.devq);
780 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
781 		free(n1->dei_data, M_BUS);
782 		free(n1, M_BUS);
783 		devsoftc.queued--;
784 	}
785 	mtx_unlock(&devsoftc.mtx);
786 	return (0);
787 }
788 
789 /* End of /dev/devctl code */
790 
791 static TAILQ_HEAD(,device)	bus_data_devices;
792 static int bus_data_generation = 1;
793 
794 static kobj_method_t null_methods[] = {
795 	KOBJMETHOD_END
796 };
797 
798 DEFINE_CLASS(null, null_methods, 0);
799 
800 /*
801  * Bus pass implementation
802  */
803 
804 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
805 int bus_current_pass = BUS_PASS_ROOT;
806 
807 /**
808  * @internal
809  * @brief Register the pass level of a new driver attachment
810  *
811  * Register a new driver attachment's pass level.  If no driver
812  * attachment with the same pass level has been added, then @p new
813  * will be added to the global passes list.
814  *
815  * @param new		the new driver attachment
816  */
817 static void
818 driver_register_pass(struct driverlink *new)
819 {
820 	struct driverlink *dl;
821 
822 	/* We only consider pass numbers during boot. */
823 	if (bus_current_pass == BUS_PASS_DEFAULT)
824 		return;
825 
826 	/*
827 	 * Walk the passes list.  If we already know about this pass
828 	 * then there is nothing to do.  If we don't, then insert this
829 	 * driver link into the list.
830 	 */
831 	TAILQ_FOREACH(dl, &passes, passlink) {
832 		if (dl->pass < new->pass)
833 			continue;
834 		if (dl->pass == new->pass)
835 			return;
836 		TAILQ_INSERT_BEFORE(dl, new, passlink);
837 		return;
838 	}
839 	TAILQ_INSERT_TAIL(&passes, new, passlink);
840 }
841 
842 /**
843  * @brief Raise the current bus pass
844  *
845  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
846  * method on the root bus to kick off a new device tree scan for each
847  * new pass level that has at least one driver.
848  */
849 void
850 bus_set_pass(int pass)
851 {
852 	struct driverlink *dl;
853 
854 	if (bus_current_pass > pass)
855 		panic("Attempt to lower bus pass level");
856 
857 	TAILQ_FOREACH(dl, &passes, passlink) {
858 		/* Skip pass values below the current pass level. */
859 		if (dl->pass <= bus_current_pass)
860 			continue;
861 
862 		/*
863 		 * Bail once we hit a driver with a pass level that is
864 		 * too high.
865 		 */
866 		if (dl->pass > pass)
867 			break;
868 
869 		/*
870 		 * Raise the pass level to the next level and rescan
871 		 * the tree.
872 		 */
873 		bus_current_pass = dl->pass;
874 		BUS_NEW_PASS(root_bus);
875 	}
876 
877 	/*
878 	 * If there isn't a driver registered for the requested pass,
879 	 * then bus_current_pass might still be less than 'pass'.  Set
880 	 * it to 'pass' in that case.
881 	 */
882 	if (bus_current_pass < pass)
883 		bus_current_pass = pass;
884 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
885 }
886 
887 /*
888  * Devclass implementation
889  */
890 
891 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
892 
893 /**
894  * @internal
895  * @brief Find or create a device class
896  *
897  * If a device class with the name @p classname exists, return it,
898  * otherwise if @p create is non-zero create and return a new device
899  * class.
900  *
901  * If @p parentname is non-NULL, the parent of the devclass is set to
902  * the devclass of that name.
903  *
904  * @param classname	the devclass name to find or create
905  * @param parentname	the parent devclass name or @c NULL
906  * @param create	non-zero to create a devclass
907  */
908 static devclass_t
909 devclass_find_internal(const char *classname, const char *parentname,
910 		       int create)
911 {
912 	devclass_t dc;
913 
914 	PDEBUG(("looking for %s", classname));
915 	if (!classname)
916 		return (NULL);
917 
918 	TAILQ_FOREACH(dc, &devclasses, link) {
919 		if (!strcmp(dc->name, classname))
920 			break;
921 	}
922 
923 	if (create && !dc) {
924 		PDEBUG(("creating %s", classname));
925 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
926 		    M_BUS, M_NOWAIT | M_ZERO);
927 		if (!dc)
928 			return (NULL);
929 		dc->parent = NULL;
930 		dc->name = (char*) (dc + 1);
931 		strcpy(dc->name, classname);
932 		TAILQ_INIT(&dc->drivers);
933 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
934 
935 		bus_data_generation_update();
936 	}
937 
938 	/*
939 	 * If a parent class is specified, then set that as our parent so
940 	 * that this devclass will support drivers for the parent class as
941 	 * well.  If the parent class has the same name don't do this though
942 	 * as it creates a cycle that can trigger an infinite loop in
943 	 * device_probe_child() if a device exists for which there is no
944 	 * suitable driver.
945 	 */
946 	if (parentname && dc && !dc->parent &&
947 	    strcmp(classname, parentname) != 0) {
948 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
949 		dc->parent->flags |= DC_HAS_CHILDREN;
950 	}
951 
952 	return (dc);
953 }
954 
955 /**
956  * @brief Create a device class
957  *
958  * If a device class with the name @p classname exists, return it,
959  * otherwise create and return a new device class.
960  *
961  * @param classname	the devclass name to find or create
962  */
963 devclass_t
964 devclass_create(const char *classname)
965 {
966 	return (devclass_find_internal(classname, NULL, TRUE));
967 }
968 
969 /**
970  * @brief Find a device class
971  *
972  * If a device class with the name @p classname exists, return it,
973  * otherwise return @c NULL.
974  *
975  * @param classname	the devclass name to find
976  */
977 devclass_t
978 devclass_find(const char *classname)
979 {
980 	return (devclass_find_internal(classname, NULL, FALSE));
981 }
982 
983 /**
984  * @brief Register that a device driver has been added to a devclass
985  *
986  * Register that a device driver has been added to a devclass.  This
987  * is called by devclass_add_driver to accomplish the recursive
988  * notification of all the children classes of dc, as well as dc.
989  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
990  * the devclass.
991  *
992  * We do a full search here of the devclass list at each iteration
993  * level to save storing children-lists in the devclass structure.  If
994  * we ever move beyond a few dozen devices doing this, we may need to
995  * reevaluate...
996  *
997  * @param dc		the devclass to edit
998  * @param driver	the driver that was just added
999  */
1000 static void
1001 devclass_driver_added(devclass_t dc, driver_t *driver)
1002 {
1003 	devclass_t parent;
1004 	int i;
1005 
1006 	/*
1007 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1008 	 */
1009 	for (i = 0; i < dc->maxunit; i++)
1010 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1011 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1012 
1013 	/*
1014 	 * Walk through the children classes.  Since we only keep a
1015 	 * single parent pointer around, we walk the entire list of
1016 	 * devclasses looking for children.  We set the
1017 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1018 	 * the parent, so we only walk the list for those devclasses
1019 	 * that have children.
1020 	 */
1021 	if (!(dc->flags & DC_HAS_CHILDREN))
1022 		return;
1023 	parent = dc;
1024 	TAILQ_FOREACH(dc, &devclasses, link) {
1025 		if (dc->parent == parent)
1026 			devclass_driver_added(dc, driver);
1027 	}
1028 }
1029 
1030 /**
1031  * @brief Add a device driver to a device class
1032  *
1033  * Add a device driver to a devclass. This is normally called
1034  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1035  * all devices in the devclass will be called to allow them to attempt
1036  * to re-probe any unmatched children.
1037  *
1038  * @param dc		the devclass to edit
1039  * @param driver	the driver to register
1040  */
1041 int
1042 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1043 {
1044 	driverlink_t dl;
1045 	const char *parentname;
1046 
1047 	PDEBUG(("%s", DRIVERNAME(driver)));
1048 
1049 	/* Don't allow invalid pass values. */
1050 	if (pass <= BUS_PASS_ROOT)
1051 		return (EINVAL);
1052 
1053 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1054 	if (!dl)
1055 		return (ENOMEM);
1056 
1057 	/*
1058 	 * Compile the driver's methods. Also increase the reference count
1059 	 * so that the class doesn't get freed when the last instance
1060 	 * goes. This means we can safely use static methods and avoids a
1061 	 * double-free in devclass_delete_driver.
1062 	 */
1063 	kobj_class_compile((kobj_class_t) driver);
1064 
1065 	/*
1066 	 * If the driver has any base classes, make the
1067 	 * devclass inherit from the devclass of the driver's
1068 	 * first base class. This will allow the system to
1069 	 * search for drivers in both devclasses for children
1070 	 * of a device using this driver.
1071 	 */
1072 	if (driver->baseclasses)
1073 		parentname = driver->baseclasses[0]->name;
1074 	else
1075 		parentname = NULL;
1076 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1077 
1078 	dl->driver = driver;
1079 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1080 	driver->refs++;		/* XXX: kobj_mtx */
1081 	dl->pass = pass;
1082 	driver_register_pass(dl);
1083 
1084 	devclass_driver_added(dc, driver);
1085 	bus_data_generation_update();
1086 	return (0);
1087 }
1088 
1089 /**
1090  * @brief Register that a device driver has been deleted from a devclass
1091  *
1092  * Register that a device driver has been removed from a devclass.
1093  * This is called by devclass_delete_driver to accomplish the
1094  * recursive notification of all the children classes of busclass, as
1095  * well as busclass.  Each layer will attempt to detach the driver
1096  * from any devices that are children of the bus's devclass.  The function
1097  * will return an error if a device fails to detach.
1098  *
1099  * We do a full search here of the devclass list at each iteration
1100  * level to save storing children-lists in the devclass structure.  If
1101  * we ever move beyond a few dozen devices doing this, we may need to
1102  * reevaluate...
1103  *
1104  * @param busclass	the devclass of the parent bus
1105  * @param dc		the devclass of the driver being deleted
1106  * @param driver	the driver being deleted
1107  */
1108 static int
1109 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1110 {
1111 	devclass_t parent;
1112 	device_t dev;
1113 	int error, i;
1114 
1115 	/*
1116 	 * Disassociate from any devices.  We iterate through all the
1117 	 * devices in the devclass of the driver and detach any which are
1118 	 * using the driver and which have a parent in the devclass which
1119 	 * we are deleting from.
1120 	 *
1121 	 * Note that since a driver can be in multiple devclasses, we
1122 	 * should not detach devices which are not children of devices in
1123 	 * the affected devclass.
1124 	 */
1125 	for (i = 0; i < dc->maxunit; i++) {
1126 		if (dc->devices[i]) {
1127 			dev = dc->devices[i];
1128 			if (dev->driver == driver && dev->parent &&
1129 			    dev->parent->devclass == busclass) {
1130 				if ((error = device_detach(dev)) != 0)
1131 					return (error);
1132 				BUS_PROBE_NOMATCH(dev->parent, dev);
1133 				devnomatch(dev);
1134 				dev->flags |= DF_DONENOMATCH;
1135 			}
1136 		}
1137 	}
1138 
1139 	/*
1140 	 * Walk through the children classes.  Since we only keep a
1141 	 * single parent pointer around, we walk the entire list of
1142 	 * devclasses looking for children.  We set the
1143 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1144 	 * the parent, so we only walk the list for those devclasses
1145 	 * that have children.
1146 	 */
1147 	if (!(busclass->flags & DC_HAS_CHILDREN))
1148 		return (0);
1149 	parent = busclass;
1150 	TAILQ_FOREACH(busclass, &devclasses, link) {
1151 		if (busclass->parent == parent) {
1152 			error = devclass_driver_deleted(busclass, dc, driver);
1153 			if (error)
1154 				return (error);
1155 		}
1156 	}
1157 	return (0);
1158 }
1159 
1160 /**
1161  * @brief Delete a device driver from a device class
1162  *
1163  * Delete a device driver from a devclass. This is normally called
1164  * automatically by DRIVER_MODULE().
1165  *
1166  * If the driver is currently attached to any devices,
1167  * devclass_delete_driver() will first attempt to detach from each
1168  * device. If one of the detach calls fails, the driver will not be
1169  * deleted.
1170  *
1171  * @param dc		the devclass to edit
1172  * @param driver	the driver to unregister
1173  */
1174 int
1175 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1176 {
1177 	devclass_t dc = devclass_find(driver->name);
1178 	driverlink_t dl;
1179 	int error;
1180 
1181 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1182 
1183 	if (!dc)
1184 		return (0);
1185 
1186 	/*
1187 	 * Find the link structure in the bus' list of drivers.
1188 	 */
1189 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1190 		if (dl->driver == driver)
1191 			break;
1192 	}
1193 
1194 	if (!dl) {
1195 		PDEBUG(("%s not found in %s list", driver->name,
1196 		    busclass->name));
1197 		return (ENOENT);
1198 	}
1199 
1200 	error = devclass_driver_deleted(busclass, dc, driver);
1201 	if (error != 0)
1202 		return (error);
1203 
1204 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1205 	free(dl, M_BUS);
1206 
1207 	/* XXX: kobj_mtx */
1208 	driver->refs--;
1209 	if (driver->refs == 0)
1210 		kobj_class_free((kobj_class_t) driver);
1211 
1212 	bus_data_generation_update();
1213 	return (0);
1214 }
1215 
1216 /**
1217  * @brief Quiesces a set of device drivers from a device class
1218  *
1219  * Quiesce a device driver from a devclass. This is normally called
1220  * automatically by DRIVER_MODULE().
1221  *
1222  * If the driver is currently attached to any devices,
1223  * devclass_quiesece_driver() will first attempt to quiesce each
1224  * device.
1225  *
1226  * @param dc		the devclass to edit
1227  * @param driver	the driver to unregister
1228  */
1229 static int
1230 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1231 {
1232 	devclass_t dc = devclass_find(driver->name);
1233 	driverlink_t dl;
1234 	device_t dev;
1235 	int i;
1236 	int error;
1237 
1238 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1239 
1240 	if (!dc)
1241 		return (0);
1242 
1243 	/*
1244 	 * Find the link structure in the bus' list of drivers.
1245 	 */
1246 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1247 		if (dl->driver == driver)
1248 			break;
1249 	}
1250 
1251 	if (!dl) {
1252 		PDEBUG(("%s not found in %s list", driver->name,
1253 		    busclass->name));
1254 		return (ENOENT);
1255 	}
1256 
1257 	/*
1258 	 * Quiesce all devices.  We iterate through all the devices in
1259 	 * the devclass of the driver and quiesce any which are using
1260 	 * the driver and which have a parent in the devclass which we
1261 	 * are quiescing.
1262 	 *
1263 	 * Note that since a driver can be in multiple devclasses, we
1264 	 * should not quiesce devices which are not children of
1265 	 * devices in the affected devclass.
1266 	 */
1267 	for (i = 0; i < dc->maxunit; i++) {
1268 		if (dc->devices[i]) {
1269 			dev = dc->devices[i];
1270 			if (dev->driver == driver && dev->parent &&
1271 			    dev->parent->devclass == busclass) {
1272 				if ((error = device_quiesce(dev)) != 0)
1273 					return (error);
1274 			}
1275 		}
1276 	}
1277 
1278 	return (0);
1279 }
1280 
1281 /**
1282  * @internal
1283  */
1284 static driverlink_t
1285 devclass_find_driver_internal(devclass_t dc, const char *classname)
1286 {
1287 	driverlink_t dl;
1288 
1289 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1290 
1291 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1292 		if (!strcmp(dl->driver->name, classname))
1293 			return (dl);
1294 	}
1295 
1296 	PDEBUG(("not found"));
1297 	return (NULL);
1298 }
1299 
1300 /**
1301  * @brief Return the name of the devclass
1302  */
1303 const char *
1304 devclass_get_name(devclass_t dc)
1305 {
1306 	return (dc->name);
1307 }
1308 
1309 /**
1310  * @brief Find a device given a unit number
1311  *
1312  * @param dc		the devclass to search
1313  * @param unit		the unit number to search for
1314  *
1315  * @returns		the device with the given unit number or @c
1316  *			NULL if there is no such device
1317  */
1318 device_t
1319 devclass_get_device(devclass_t dc, int unit)
1320 {
1321 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1322 		return (NULL);
1323 	return (dc->devices[unit]);
1324 }
1325 
1326 /**
1327  * @brief Find the softc field of a device given a unit number
1328  *
1329  * @param dc		the devclass to search
1330  * @param unit		the unit number to search for
1331  *
1332  * @returns		the softc field of the device with the given
1333  *			unit number or @c NULL if there is no such
1334  *			device
1335  */
1336 void *
1337 devclass_get_softc(devclass_t dc, int unit)
1338 {
1339 	device_t dev;
1340 
1341 	dev = devclass_get_device(dc, unit);
1342 	if (!dev)
1343 		return (NULL);
1344 
1345 	return (device_get_softc(dev));
1346 }
1347 
1348 /**
1349  * @brief Get a list of devices in the devclass
1350  *
1351  * An array containing a list of all the devices in the given devclass
1352  * is allocated and returned in @p *devlistp. The number of devices
1353  * in the array is returned in @p *devcountp. The caller should free
1354  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1355  *
1356  * @param dc		the devclass to examine
1357  * @param devlistp	points at location for array pointer return
1358  *			value
1359  * @param devcountp	points at location for array size return value
1360  *
1361  * @retval 0		success
1362  * @retval ENOMEM	the array allocation failed
1363  */
1364 int
1365 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1366 {
1367 	int count, i;
1368 	device_t *list;
1369 
1370 	count = devclass_get_count(dc);
1371 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1372 	if (!list)
1373 		return (ENOMEM);
1374 
1375 	count = 0;
1376 	for (i = 0; i < dc->maxunit; i++) {
1377 		if (dc->devices[i]) {
1378 			list[count] = dc->devices[i];
1379 			count++;
1380 		}
1381 	}
1382 
1383 	*devlistp = list;
1384 	*devcountp = count;
1385 
1386 	return (0);
1387 }
1388 
1389 /**
1390  * @brief Get a list of drivers in the devclass
1391  *
1392  * An array containing a list of pointers to all the drivers in the
1393  * given devclass is allocated and returned in @p *listp.  The number
1394  * of drivers in the array is returned in @p *countp. The caller should
1395  * free the array using @c free(p, M_TEMP).
1396  *
1397  * @param dc		the devclass to examine
1398  * @param listp		gives location for array pointer return value
1399  * @param countp	gives location for number of array elements
1400  *			return value
1401  *
1402  * @retval 0		success
1403  * @retval ENOMEM	the array allocation failed
1404  */
1405 int
1406 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1407 {
1408 	driverlink_t dl;
1409 	driver_t **list;
1410 	int count;
1411 
1412 	count = 0;
1413 	TAILQ_FOREACH(dl, &dc->drivers, link)
1414 		count++;
1415 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1416 	if (list == NULL)
1417 		return (ENOMEM);
1418 
1419 	count = 0;
1420 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1421 		list[count] = dl->driver;
1422 		count++;
1423 	}
1424 	*listp = list;
1425 	*countp = count;
1426 
1427 	return (0);
1428 }
1429 
1430 /**
1431  * @brief Get the number of devices in a devclass
1432  *
1433  * @param dc		the devclass to examine
1434  */
1435 int
1436 devclass_get_count(devclass_t dc)
1437 {
1438 	int count, i;
1439 
1440 	count = 0;
1441 	for (i = 0; i < dc->maxunit; i++)
1442 		if (dc->devices[i])
1443 			count++;
1444 	return (count);
1445 }
1446 
1447 /**
1448  * @brief Get the maximum unit number used in a devclass
1449  *
1450  * Note that this is one greater than the highest currently-allocated
1451  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1452  * that not even the devclass has been allocated yet.
1453  *
1454  * @param dc		the devclass to examine
1455  */
1456 int
1457 devclass_get_maxunit(devclass_t dc)
1458 {
1459 	if (dc == NULL)
1460 		return (-1);
1461 	return (dc->maxunit);
1462 }
1463 
1464 /**
1465  * @brief Find a free unit number in a devclass
1466  *
1467  * This function searches for the first unused unit number greater
1468  * that or equal to @p unit.
1469  *
1470  * @param dc		the devclass to examine
1471  * @param unit		the first unit number to check
1472  */
1473 int
1474 devclass_find_free_unit(devclass_t dc, int unit)
1475 {
1476 	if (dc == NULL)
1477 		return (unit);
1478 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1479 		unit++;
1480 	return (unit);
1481 }
1482 
1483 /**
1484  * @brief Set the parent of a devclass
1485  *
1486  * The parent class is normally initialised automatically by
1487  * DRIVER_MODULE().
1488  *
1489  * @param dc		the devclass to edit
1490  * @param pdc		the new parent devclass
1491  */
1492 void
1493 devclass_set_parent(devclass_t dc, devclass_t pdc)
1494 {
1495 	dc->parent = pdc;
1496 }
1497 
1498 /**
1499  * @brief Get the parent of a devclass
1500  *
1501  * @param dc		the devclass to examine
1502  */
1503 devclass_t
1504 devclass_get_parent(devclass_t dc)
1505 {
1506 	return (dc->parent);
1507 }
1508 
1509 struct sysctl_ctx_list *
1510 devclass_get_sysctl_ctx(devclass_t dc)
1511 {
1512 	return (&dc->sysctl_ctx);
1513 }
1514 
1515 struct sysctl_oid *
1516 devclass_get_sysctl_tree(devclass_t dc)
1517 {
1518 	return (dc->sysctl_tree);
1519 }
1520 
1521 /**
1522  * @internal
1523  * @brief Allocate a unit number
1524  *
1525  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1526  * will do). The allocated unit number is returned in @p *unitp.
1527 
1528  * @param dc		the devclass to allocate from
1529  * @param unitp		points at the location for the allocated unit
1530  *			number
1531  *
1532  * @retval 0		success
1533  * @retval EEXIST	the requested unit number is already allocated
1534  * @retval ENOMEM	memory allocation failure
1535  */
1536 static int
1537 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1538 {
1539 	const char *s;
1540 	int unit = *unitp;
1541 
1542 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1543 
1544 	/* Ask the parent bus if it wants to wire this device. */
1545 	if (unit == -1)
1546 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1547 		    &unit);
1548 
1549 	/* If we were given a wired unit number, check for existing device */
1550 	/* XXX imp XXX */
1551 	if (unit != -1) {
1552 		if (unit >= 0 && unit < dc->maxunit &&
1553 		    dc->devices[unit] != NULL) {
1554 			if (bootverbose)
1555 				printf("%s: %s%d already exists; skipping it\n",
1556 				    dc->name, dc->name, *unitp);
1557 			return (EEXIST);
1558 		}
1559 	} else {
1560 		/* Unwired device, find the next available slot for it */
1561 		unit = 0;
1562 		for (unit = 0;; unit++) {
1563 			/* If there is an "at" hint for a unit then skip it. */
1564 			if (resource_string_value(dc->name, unit, "at", &s) ==
1565 			    0)
1566 				continue;
1567 
1568 			/* If this device slot is already in use, skip it. */
1569 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1570 				continue;
1571 
1572 			break;
1573 		}
1574 	}
1575 
1576 	/*
1577 	 * We've selected a unit beyond the length of the table, so let's
1578 	 * extend the table to make room for all units up to and including
1579 	 * this one.
1580 	 */
1581 	if (unit >= dc->maxunit) {
1582 		device_t *newlist, *oldlist;
1583 		int newsize;
1584 
1585 		oldlist = dc->devices;
1586 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1587 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1588 		if (!newlist)
1589 			return (ENOMEM);
1590 		if (oldlist != NULL)
1591 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1592 		bzero(newlist + dc->maxunit,
1593 		    sizeof(device_t) * (newsize - dc->maxunit));
1594 		dc->devices = newlist;
1595 		dc->maxunit = newsize;
1596 		if (oldlist != NULL)
1597 			free(oldlist, M_BUS);
1598 	}
1599 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1600 
1601 	*unitp = unit;
1602 	return (0);
1603 }
1604 
1605 /**
1606  * @internal
1607  * @brief Add a device to a devclass
1608  *
1609  * A unit number is allocated for the device (using the device's
1610  * preferred unit number if any) and the device is registered in the
1611  * devclass. This allows the device to be looked up by its unit
1612  * number, e.g. by decoding a dev_t minor number.
1613  *
1614  * @param dc		the devclass to add to
1615  * @param dev		the device to add
1616  *
1617  * @retval 0		success
1618  * @retval EEXIST	the requested unit number is already allocated
1619  * @retval ENOMEM	memory allocation failure
1620  */
1621 static int
1622 devclass_add_device(devclass_t dc, device_t dev)
1623 {
1624 	int buflen, error;
1625 
1626 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1627 
1628 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1629 	if (buflen < 0)
1630 		return (ENOMEM);
1631 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1632 	if (!dev->nameunit)
1633 		return (ENOMEM);
1634 
1635 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1636 		free(dev->nameunit, M_BUS);
1637 		dev->nameunit = NULL;
1638 		return (error);
1639 	}
1640 	dc->devices[dev->unit] = dev;
1641 	dev->devclass = dc;
1642 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1643 
1644 	return (0);
1645 }
1646 
1647 /**
1648  * @internal
1649  * @brief Delete a device from a devclass
1650  *
1651  * The device is removed from the devclass's device list and its unit
1652  * number is freed.
1653 
1654  * @param dc		the devclass to delete from
1655  * @param dev		the device to delete
1656  *
1657  * @retval 0		success
1658  */
1659 static int
1660 devclass_delete_device(devclass_t dc, device_t dev)
1661 {
1662 	if (!dc || !dev)
1663 		return (0);
1664 
1665 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1666 
1667 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1668 		panic("devclass_delete_device: inconsistent device class");
1669 	dc->devices[dev->unit] = NULL;
1670 	if (dev->flags & DF_WILDCARD)
1671 		dev->unit = -1;
1672 	dev->devclass = NULL;
1673 	free(dev->nameunit, M_BUS);
1674 	dev->nameunit = NULL;
1675 
1676 	return (0);
1677 }
1678 
1679 /**
1680  * @internal
1681  * @brief Make a new device and add it as a child of @p parent
1682  *
1683  * @param parent	the parent of the new device
1684  * @param name		the devclass name of the new device or @c NULL
1685  *			to leave the devclass unspecified
1686  * @parem unit		the unit number of the new device of @c -1 to
1687  *			leave the unit number unspecified
1688  *
1689  * @returns the new device
1690  */
1691 static device_t
1692 make_device(device_t parent, const char *name, int unit)
1693 {
1694 	device_t dev;
1695 	devclass_t dc;
1696 
1697 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1698 
1699 	if (name) {
1700 		dc = devclass_find_internal(name, NULL, TRUE);
1701 		if (!dc) {
1702 			printf("make_device: can't find device class %s\n",
1703 			    name);
1704 			return (NULL);
1705 		}
1706 	} else {
1707 		dc = NULL;
1708 	}
1709 
1710 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1711 	if (!dev)
1712 		return (NULL);
1713 
1714 	dev->parent = parent;
1715 	TAILQ_INIT(&dev->children);
1716 	kobj_init((kobj_t) dev, &null_class);
1717 	dev->driver = NULL;
1718 	dev->devclass = NULL;
1719 	dev->unit = unit;
1720 	dev->nameunit = NULL;
1721 	dev->desc = NULL;
1722 	dev->busy = 0;
1723 	dev->devflags = 0;
1724 	dev->flags = DF_ENABLED;
1725 	dev->order = 0;
1726 	if (unit == -1)
1727 		dev->flags |= DF_WILDCARD;
1728 	if (name) {
1729 		dev->flags |= DF_FIXEDCLASS;
1730 		if (devclass_add_device(dc, dev)) {
1731 			kobj_delete((kobj_t) dev, M_BUS);
1732 			return (NULL);
1733 		}
1734 	}
1735 	dev->ivars = NULL;
1736 	dev->softc = NULL;
1737 
1738 	dev->state = DS_NOTPRESENT;
1739 
1740 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1741 	bus_data_generation_update();
1742 
1743 	return (dev);
1744 }
1745 
1746 /**
1747  * @internal
1748  * @brief Print a description of a device.
1749  */
1750 static int
1751 device_print_child(device_t dev, device_t child)
1752 {
1753 	int retval = 0;
1754 
1755 	if (device_is_alive(child))
1756 		retval += BUS_PRINT_CHILD(dev, child);
1757 	else
1758 		retval += device_printf(child, " not found\n");
1759 
1760 	return (retval);
1761 }
1762 
1763 /**
1764  * @brief Create a new device
1765  *
1766  * This creates a new device and adds it as a child of an existing
1767  * parent device. The new device will be added after the last existing
1768  * child with order zero.
1769  *
1770  * @param dev		the device which will be the parent of the
1771  *			new child device
1772  * @param name		devclass name for new device or @c NULL if not
1773  *			specified
1774  * @param unit		unit number for new device or @c -1 if not
1775  *			specified
1776  *
1777  * @returns		the new device
1778  */
1779 device_t
1780 device_add_child(device_t dev, const char *name, int unit)
1781 {
1782 	return (device_add_child_ordered(dev, 0, name, unit));
1783 }
1784 
1785 /**
1786  * @brief Create a new device
1787  *
1788  * This creates a new device and adds it as a child of an existing
1789  * parent device. The new device will be added after the last existing
1790  * child with the same order.
1791  *
1792  * @param dev		the device which will be the parent of the
1793  *			new child device
1794  * @param order		a value which is used to partially sort the
1795  *			children of @p dev - devices created using
1796  *			lower values of @p order appear first in @p
1797  *			dev's list of children
1798  * @param name		devclass name for new device or @c NULL if not
1799  *			specified
1800  * @param unit		unit number for new device or @c -1 if not
1801  *			specified
1802  *
1803  * @returns		the new device
1804  */
1805 device_t
1806 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1807 {
1808 	device_t child;
1809 	device_t place;
1810 
1811 	PDEBUG(("%s at %s with order %u as unit %d",
1812 	    name, DEVICENAME(dev), order, unit));
1813 
1814 	child = make_device(dev, name, unit);
1815 	if (child == NULL)
1816 		return (child);
1817 	child->order = order;
1818 
1819 	TAILQ_FOREACH(place, &dev->children, link) {
1820 		if (place->order > order)
1821 			break;
1822 	}
1823 
1824 	if (place) {
1825 		/*
1826 		 * The device 'place' is the first device whose order is
1827 		 * greater than the new child.
1828 		 */
1829 		TAILQ_INSERT_BEFORE(place, child, link);
1830 	} else {
1831 		/*
1832 		 * The new child's order is greater or equal to the order of
1833 		 * any existing device. Add the child to the tail of the list.
1834 		 */
1835 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1836 	}
1837 
1838 	bus_data_generation_update();
1839 	return (child);
1840 }
1841 
1842 /**
1843  * @brief Delete a device
1844  *
1845  * This function deletes a device along with all of its children. If
1846  * the device currently has a driver attached to it, the device is
1847  * detached first using device_detach().
1848  *
1849  * @param dev		the parent device
1850  * @param child		the device to delete
1851  *
1852  * @retval 0		success
1853  * @retval non-zero	a unit error code describing the error
1854  */
1855 int
1856 device_delete_child(device_t dev, device_t child)
1857 {
1858 	int error;
1859 	device_t grandchild;
1860 
1861 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1862 
1863 	/* remove children first */
1864 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1865 		error = device_delete_child(child, grandchild);
1866 		if (error)
1867 			return (error);
1868 	}
1869 
1870 	if ((error = device_detach(child)) != 0)
1871 		return (error);
1872 	if (child->devclass)
1873 		devclass_delete_device(child->devclass, child);
1874 	TAILQ_REMOVE(&dev->children, child, link);
1875 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1876 	kobj_delete((kobj_t) child, M_BUS);
1877 
1878 	bus_data_generation_update();
1879 	return (0);
1880 }
1881 
1882 /**
1883  * @brief Delete all children devices of the given device, if any.
1884  *
1885  * This function deletes all children devices of the given device, if
1886  * any, using the device_delete_child() function for each device it
1887  * finds. If a child device cannot be deleted, this function will
1888  * return an error code.
1889  *
1890  * @param dev		the parent device
1891  *
1892  * @retval 0		success
1893  * @retval non-zero	a device would not detach
1894  */
1895 int
1896 device_delete_children(device_t dev)
1897 {
1898 	device_t child;
1899 	int error;
1900 
1901 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1902 
1903 	error = 0;
1904 
1905 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1906 		error = device_delete_child(dev, child);
1907 		if (error) {
1908 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1909 			break;
1910 		}
1911 	}
1912 	return (error);
1913 }
1914 
1915 /**
1916  * @brief Find a device given a unit number
1917  *
1918  * This is similar to devclass_get_devices() but only searches for
1919  * devices which have @p dev as a parent.
1920  *
1921  * @param dev		the parent device to search
1922  * @param unit		the unit number to search for.  If the unit is -1,
1923  *			return the first child of @p dev which has name
1924  *			@p classname (that is, the one with the lowest unit.)
1925  *
1926  * @returns		the device with the given unit number or @c
1927  *			NULL if there is no such device
1928  */
1929 device_t
1930 device_find_child(device_t dev, const char *classname, int unit)
1931 {
1932 	devclass_t dc;
1933 	device_t child;
1934 
1935 	dc = devclass_find(classname);
1936 	if (!dc)
1937 		return (NULL);
1938 
1939 	if (unit != -1) {
1940 		child = devclass_get_device(dc, unit);
1941 		if (child && child->parent == dev)
1942 			return (child);
1943 	} else {
1944 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1945 			child = devclass_get_device(dc, unit);
1946 			if (child && child->parent == dev)
1947 				return (child);
1948 		}
1949 	}
1950 	return (NULL);
1951 }
1952 
1953 /**
1954  * @internal
1955  */
1956 static driverlink_t
1957 first_matching_driver(devclass_t dc, device_t dev)
1958 {
1959 	if (dev->devclass)
1960 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1961 	return (TAILQ_FIRST(&dc->drivers));
1962 }
1963 
1964 /**
1965  * @internal
1966  */
1967 static driverlink_t
1968 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1969 {
1970 	if (dev->devclass) {
1971 		driverlink_t dl;
1972 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1973 			if (!strcmp(dev->devclass->name, dl->driver->name))
1974 				return (dl);
1975 		return (NULL);
1976 	}
1977 	return (TAILQ_NEXT(last, link));
1978 }
1979 
1980 /**
1981  * @internal
1982  */
1983 int
1984 device_probe_child(device_t dev, device_t child)
1985 {
1986 	devclass_t dc;
1987 	driverlink_t best = NULL;
1988 	driverlink_t dl;
1989 	int result, pri = 0;
1990 	int hasclass = (child->devclass != NULL);
1991 
1992 	GIANT_REQUIRED;
1993 
1994 	dc = dev->devclass;
1995 	if (!dc)
1996 		panic("device_probe_child: parent device has no devclass");
1997 
1998 	/*
1999 	 * If the state is already probed, then return.  However, don't
2000 	 * return if we can rebid this object.
2001 	 */
2002 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2003 		return (0);
2004 
2005 	for (; dc; dc = dc->parent) {
2006 		for (dl = first_matching_driver(dc, child);
2007 		     dl;
2008 		     dl = next_matching_driver(dc, child, dl)) {
2009 			/* If this driver's pass is too high, then ignore it. */
2010 			if (dl->pass > bus_current_pass)
2011 				continue;
2012 
2013 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2014 			result = device_set_driver(child, dl->driver);
2015 			if (result == ENOMEM)
2016 				return (result);
2017 			else if (result != 0)
2018 				continue;
2019 			if (!hasclass) {
2020 				if (device_set_devclass(child,
2021 				    dl->driver->name) != 0) {
2022 					char const * devname =
2023 					    device_get_name(child);
2024 					if (devname == NULL)
2025 						devname = "(unknown)";
2026 					printf("driver bug: Unable to set "
2027 					    "devclass (class: %s "
2028 					    "devname: %s)\n",
2029 					    dl->driver->name,
2030 					    devname);
2031 					(void)device_set_driver(child, NULL);
2032 					continue;
2033 				}
2034 			}
2035 
2036 			/* Fetch any flags for the device before probing. */
2037 			resource_int_value(dl->driver->name, child->unit,
2038 			    "flags", &child->devflags);
2039 
2040 			result = DEVICE_PROBE(child);
2041 
2042 			/* Reset flags and devclass before the next probe. */
2043 			child->devflags = 0;
2044 			if (!hasclass)
2045 				(void)device_set_devclass(child, NULL);
2046 
2047 			/*
2048 			 * If the driver returns SUCCESS, there can be
2049 			 * no higher match for this device.
2050 			 */
2051 			if (result == 0) {
2052 				best = dl;
2053 				pri = 0;
2054 				break;
2055 			}
2056 
2057 			/*
2058 			 * The driver returned an error so it
2059 			 * certainly doesn't match.
2060 			 */
2061 			if (result > 0) {
2062 				(void)device_set_driver(child, NULL);
2063 				continue;
2064 			}
2065 
2066 			/*
2067 			 * A priority lower than SUCCESS, remember the
2068 			 * best matching driver. Initialise the value
2069 			 * of pri for the first match.
2070 			 */
2071 			if (best == NULL || result > pri) {
2072 				/*
2073 				 * Probes that return BUS_PROBE_NOWILDCARD
2074 				 * or lower only match when they are set
2075 				 * in stone by the parent bus.
2076 				 */
2077 				if (result <= BUS_PROBE_NOWILDCARD &&
2078 				    child->flags & DF_WILDCARD)
2079 					continue;
2080 				best = dl;
2081 				pri = result;
2082 				continue;
2083 			}
2084 		}
2085 		/*
2086 		 * If we have an unambiguous match in this devclass,
2087 		 * don't look in the parent.
2088 		 */
2089 		if (best && pri == 0)
2090 			break;
2091 	}
2092 
2093 	/*
2094 	 * If we found a driver, change state and initialise the devclass.
2095 	 */
2096 	/* XXX What happens if we rebid and got no best? */
2097 	if (best) {
2098 		/*
2099 		 * If this device was attached, and we were asked to
2100 		 * rescan, and it is a different driver, then we have
2101 		 * to detach the old driver and reattach this new one.
2102 		 * Note, we don't have to check for DF_REBID here
2103 		 * because if the state is > DS_ALIVE, we know it must
2104 		 * be.
2105 		 *
2106 		 * This assumes that all DF_REBID drivers can have
2107 		 * their probe routine called at any time and that
2108 		 * they are idempotent as well as completely benign in
2109 		 * normal operations.
2110 		 *
2111 		 * We also have to make sure that the detach
2112 		 * succeeded, otherwise we fail the operation (or
2113 		 * maybe it should just fail silently?  I'm torn).
2114 		 */
2115 		if (child->state > DS_ALIVE && best->driver != child->driver)
2116 			if ((result = device_detach(dev)) != 0)
2117 				return (result);
2118 
2119 		/* Set the winning driver, devclass, and flags. */
2120 		if (!child->devclass) {
2121 			result = device_set_devclass(child, best->driver->name);
2122 			if (result != 0)
2123 				return (result);
2124 		}
2125 		result = device_set_driver(child, best->driver);
2126 		if (result != 0)
2127 			return (result);
2128 		resource_int_value(best->driver->name, child->unit,
2129 		    "flags", &child->devflags);
2130 
2131 		if (pri < 0) {
2132 			/*
2133 			 * A bit bogus. Call the probe method again to make
2134 			 * sure that we have the right description.
2135 			 */
2136 			DEVICE_PROBE(child);
2137 #if 0
2138 			child->flags |= DF_REBID;
2139 #endif
2140 		} else
2141 			child->flags &= ~DF_REBID;
2142 		child->state = DS_ALIVE;
2143 
2144 		bus_data_generation_update();
2145 		return (0);
2146 	}
2147 
2148 	return (ENXIO);
2149 }
2150 
2151 /**
2152  * @brief Return the parent of a device
2153  */
2154 device_t
2155 device_get_parent(device_t dev)
2156 {
2157 	return (dev->parent);
2158 }
2159 
2160 /**
2161  * @brief Get a list of children of a device
2162  *
2163  * An array containing a list of all the children of the given device
2164  * is allocated and returned in @p *devlistp. The number of devices
2165  * in the array is returned in @p *devcountp. The caller should free
2166  * the array using @c free(p, M_TEMP).
2167  *
2168  * @param dev		the device to examine
2169  * @param devlistp	points at location for array pointer return
2170  *			value
2171  * @param devcountp	points at location for array size return value
2172  *
2173  * @retval 0		success
2174  * @retval ENOMEM	the array allocation failed
2175  */
2176 int
2177 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2178 {
2179 	int count;
2180 	device_t child;
2181 	device_t *list;
2182 
2183 	count = 0;
2184 	TAILQ_FOREACH(child, &dev->children, link) {
2185 		count++;
2186 	}
2187 	if (count == 0) {
2188 		*devlistp = NULL;
2189 		*devcountp = 0;
2190 		return (0);
2191 	}
2192 
2193 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2194 	if (!list)
2195 		return (ENOMEM);
2196 
2197 	count = 0;
2198 	TAILQ_FOREACH(child, &dev->children, link) {
2199 		list[count] = child;
2200 		count++;
2201 	}
2202 
2203 	*devlistp = list;
2204 	*devcountp = count;
2205 
2206 	return (0);
2207 }
2208 
2209 /**
2210  * @brief Return the current driver for the device or @c NULL if there
2211  * is no driver currently attached
2212  */
2213 driver_t *
2214 device_get_driver(device_t dev)
2215 {
2216 	return (dev->driver);
2217 }
2218 
2219 /**
2220  * @brief Return the current devclass for the device or @c NULL if
2221  * there is none.
2222  */
2223 devclass_t
2224 device_get_devclass(device_t dev)
2225 {
2226 	return (dev->devclass);
2227 }
2228 
2229 /**
2230  * @brief Return the name of the device's devclass or @c NULL if there
2231  * is none.
2232  */
2233 const char *
2234 device_get_name(device_t dev)
2235 {
2236 	if (dev != NULL && dev->devclass)
2237 		return (devclass_get_name(dev->devclass));
2238 	return (NULL);
2239 }
2240 
2241 /**
2242  * @brief Return a string containing the device's devclass name
2243  * followed by an ascii representation of the device's unit number
2244  * (e.g. @c "foo2").
2245  */
2246 const char *
2247 device_get_nameunit(device_t dev)
2248 {
2249 	return (dev->nameunit);
2250 }
2251 
2252 /**
2253  * @brief Return the device's unit number.
2254  */
2255 int
2256 device_get_unit(device_t dev)
2257 {
2258 	return (dev->unit);
2259 }
2260 
2261 /**
2262  * @brief Return the device's description string
2263  */
2264 const char *
2265 device_get_desc(device_t dev)
2266 {
2267 	return (dev->desc);
2268 }
2269 
2270 /**
2271  * @brief Return the device's flags
2272  */
2273 uint32_t
2274 device_get_flags(device_t dev)
2275 {
2276 	return (dev->devflags);
2277 }
2278 
2279 struct sysctl_ctx_list *
2280 device_get_sysctl_ctx(device_t dev)
2281 {
2282 	return (&dev->sysctl_ctx);
2283 }
2284 
2285 struct sysctl_oid *
2286 device_get_sysctl_tree(device_t dev)
2287 {
2288 	return (dev->sysctl_tree);
2289 }
2290 
2291 /**
2292  * @brief Print the name of the device followed by a colon and a space
2293  *
2294  * @returns the number of characters printed
2295  */
2296 int
2297 device_print_prettyname(device_t dev)
2298 {
2299 	const char *name = device_get_name(dev);
2300 
2301 	if (name == NULL)
2302 		return (printf("unknown: "));
2303 	return (printf("%s%d: ", name, device_get_unit(dev)));
2304 }
2305 
2306 /**
2307  * @brief Print the name of the device followed by a colon, a space
2308  * and the result of calling vprintf() with the value of @p fmt and
2309  * the following arguments.
2310  *
2311  * @returns the number of characters printed
2312  */
2313 int
2314 device_printf(device_t dev, const char * fmt, ...)
2315 {
2316 	va_list ap;
2317 	int retval;
2318 
2319 	retval = device_print_prettyname(dev);
2320 	va_start(ap, fmt);
2321 	retval += vprintf(fmt, ap);
2322 	va_end(ap);
2323 	return (retval);
2324 }
2325 
2326 /**
2327  * @internal
2328  */
2329 static void
2330 device_set_desc_internal(device_t dev, const char* desc, int copy)
2331 {
2332 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2333 		free(dev->desc, M_BUS);
2334 		dev->flags &= ~DF_DESCMALLOCED;
2335 		dev->desc = NULL;
2336 	}
2337 
2338 	if (copy && desc) {
2339 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2340 		if (dev->desc) {
2341 			strcpy(dev->desc, desc);
2342 			dev->flags |= DF_DESCMALLOCED;
2343 		}
2344 	} else {
2345 		/* Avoid a -Wcast-qual warning */
2346 		dev->desc = (char *)(uintptr_t) desc;
2347 	}
2348 
2349 	bus_data_generation_update();
2350 }
2351 
2352 /**
2353  * @brief Set the device's description
2354  *
2355  * The value of @c desc should be a string constant that will not
2356  * change (at least until the description is changed in a subsequent
2357  * call to device_set_desc() or device_set_desc_copy()).
2358  */
2359 void
2360 device_set_desc(device_t dev, const char* desc)
2361 {
2362 	device_set_desc_internal(dev, desc, FALSE);
2363 }
2364 
2365 /**
2366  * @brief Set the device's description
2367  *
2368  * The string pointed to by @c desc is copied. Use this function if
2369  * the device description is generated, (e.g. with sprintf()).
2370  */
2371 void
2372 device_set_desc_copy(device_t dev, const char* desc)
2373 {
2374 	device_set_desc_internal(dev, desc, TRUE);
2375 }
2376 
2377 /**
2378  * @brief Set the device's flags
2379  */
2380 void
2381 device_set_flags(device_t dev, uint32_t flags)
2382 {
2383 	dev->devflags = flags;
2384 }
2385 
2386 /**
2387  * @brief Return the device's softc field
2388  *
2389  * The softc is allocated and zeroed when a driver is attached, based
2390  * on the size field of the driver.
2391  */
2392 void *
2393 device_get_softc(device_t dev)
2394 {
2395 	return (dev->softc);
2396 }
2397 
2398 /**
2399  * @brief Set the device's softc field
2400  *
2401  * Most drivers do not need to use this since the softc is allocated
2402  * automatically when the driver is attached.
2403  */
2404 void
2405 device_set_softc(device_t dev, void *softc)
2406 {
2407 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2408 		free(dev->softc, M_BUS_SC);
2409 	dev->softc = softc;
2410 	if (dev->softc)
2411 		dev->flags |= DF_EXTERNALSOFTC;
2412 	else
2413 		dev->flags &= ~DF_EXTERNALSOFTC;
2414 }
2415 
2416 /**
2417  * @brief Get the device's ivars field
2418  *
2419  * The ivars field is used by the parent device to store per-device
2420  * state (e.g. the physical location of the device or a list of
2421  * resources).
2422  */
2423 void *
2424 device_get_ivars(device_t dev)
2425 {
2426 
2427 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2428 	return (dev->ivars);
2429 }
2430 
2431 /**
2432  * @brief Set the device's ivars field
2433  */
2434 void
2435 device_set_ivars(device_t dev, void * ivars)
2436 {
2437 
2438 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2439 	dev->ivars = ivars;
2440 }
2441 
2442 /**
2443  * @brief Return the device's state
2444  */
2445 device_state_t
2446 device_get_state(device_t dev)
2447 {
2448 	return (dev->state);
2449 }
2450 
2451 /**
2452  * @brief Set the DF_ENABLED flag for the device
2453  */
2454 void
2455 device_enable(device_t dev)
2456 {
2457 	dev->flags |= DF_ENABLED;
2458 }
2459 
2460 /**
2461  * @brief Clear the DF_ENABLED flag for the device
2462  */
2463 void
2464 device_disable(device_t dev)
2465 {
2466 	dev->flags &= ~DF_ENABLED;
2467 }
2468 
2469 /**
2470  * @brief Increment the busy counter for the device
2471  */
2472 void
2473 device_busy(device_t dev)
2474 {
2475 	if (dev->state < DS_ATTACHED)
2476 		panic("device_busy: called for unattached device");
2477 	if (dev->busy == 0 && dev->parent)
2478 		device_busy(dev->parent);
2479 	dev->busy++;
2480 	dev->state = DS_BUSY;
2481 }
2482 
2483 /**
2484  * @brief Decrement the busy counter for the device
2485  */
2486 void
2487 device_unbusy(device_t dev)
2488 {
2489 	if (dev->state != DS_BUSY)
2490 		panic("device_unbusy: called for non-busy device %s",
2491 		    device_get_nameunit(dev));
2492 	dev->busy--;
2493 	if (dev->busy == 0) {
2494 		if (dev->parent)
2495 			device_unbusy(dev->parent);
2496 		dev->state = DS_ATTACHED;
2497 	}
2498 }
2499 
2500 /**
2501  * @brief Set the DF_QUIET flag for the device
2502  */
2503 void
2504 device_quiet(device_t dev)
2505 {
2506 	dev->flags |= DF_QUIET;
2507 }
2508 
2509 /**
2510  * @brief Clear the DF_QUIET flag for the device
2511  */
2512 void
2513 device_verbose(device_t dev)
2514 {
2515 	dev->flags &= ~DF_QUIET;
2516 }
2517 
2518 /**
2519  * @brief Return non-zero if the DF_QUIET flag is set on the device
2520  */
2521 int
2522 device_is_quiet(device_t dev)
2523 {
2524 	return ((dev->flags & DF_QUIET) != 0);
2525 }
2526 
2527 /**
2528  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2529  */
2530 int
2531 device_is_enabled(device_t dev)
2532 {
2533 	return ((dev->flags & DF_ENABLED) != 0);
2534 }
2535 
2536 /**
2537  * @brief Return non-zero if the device was successfully probed
2538  */
2539 int
2540 device_is_alive(device_t dev)
2541 {
2542 	return (dev->state >= DS_ALIVE);
2543 }
2544 
2545 /**
2546  * @brief Return non-zero if the device currently has a driver
2547  * attached to it
2548  */
2549 int
2550 device_is_attached(device_t dev)
2551 {
2552 	return (dev->state >= DS_ATTACHED);
2553 }
2554 
2555 /**
2556  * @brief Set the devclass of a device
2557  * @see devclass_add_device().
2558  */
2559 int
2560 device_set_devclass(device_t dev, const char *classname)
2561 {
2562 	devclass_t dc;
2563 	int error;
2564 
2565 	if (!classname) {
2566 		if (dev->devclass)
2567 			devclass_delete_device(dev->devclass, dev);
2568 		return (0);
2569 	}
2570 
2571 	if (dev->devclass) {
2572 		printf("device_set_devclass: device class already set\n");
2573 		return (EINVAL);
2574 	}
2575 
2576 	dc = devclass_find_internal(classname, NULL, TRUE);
2577 	if (!dc)
2578 		return (ENOMEM);
2579 
2580 	error = devclass_add_device(dc, dev);
2581 
2582 	bus_data_generation_update();
2583 	return (error);
2584 }
2585 
2586 /**
2587  * @brief Set the driver of a device
2588  *
2589  * @retval 0		success
2590  * @retval EBUSY	the device already has a driver attached
2591  * @retval ENOMEM	a memory allocation failure occurred
2592  */
2593 int
2594 device_set_driver(device_t dev, driver_t *driver)
2595 {
2596 	if (dev->state >= DS_ATTACHED)
2597 		return (EBUSY);
2598 
2599 	if (dev->driver == driver)
2600 		return (0);
2601 
2602 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2603 		free(dev->softc, M_BUS_SC);
2604 		dev->softc = NULL;
2605 	}
2606 	device_set_desc(dev, NULL);
2607 	kobj_delete((kobj_t) dev, NULL);
2608 	dev->driver = driver;
2609 	if (driver) {
2610 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2611 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2612 			dev->softc = malloc(driver->size, M_BUS_SC,
2613 			    M_NOWAIT | M_ZERO);
2614 			if (!dev->softc) {
2615 				kobj_delete((kobj_t) dev, NULL);
2616 				kobj_init((kobj_t) dev, &null_class);
2617 				dev->driver = NULL;
2618 				return (ENOMEM);
2619 			}
2620 		}
2621 	} else {
2622 		kobj_init((kobj_t) dev, &null_class);
2623 	}
2624 
2625 	bus_data_generation_update();
2626 	return (0);
2627 }
2628 
2629 /**
2630  * @brief Probe a device, and return this status.
2631  *
2632  * This function is the core of the device autoconfiguration
2633  * system. Its purpose is to select a suitable driver for a device and
2634  * then call that driver to initialise the hardware appropriately. The
2635  * driver is selected by calling the DEVICE_PROBE() method of a set of
2636  * candidate drivers and then choosing the driver which returned the
2637  * best value. This driver is then attached to the device using
2638  * device_attach().
2639  *
2640  * The set of suitable drivers is taken from the list of drivers in
2641  * the parent device's devclass. If the device was originally created
2642  * with a specific class name (see device_add_child()), only drivers
2643  * with that name are probed, otherwise all drivers in the devclass
2644  * are probed. If no drivers return successful probe values in the
2645  * parent devclass, the search continues in the parent of that
2646  * devclass (see devclass_get_parent()) if any.
2647  *
2648  * @param dev		the device to initialise
2649  *
2650  * @retval 0		success
2651  * @retval ENXIO	no driver was found
2652  * @retval ENOMEM	memory allocation failure
2653  * @retval non-zero	some other unix error code
2654  * @retval -1		Device already attached
2655  */
2656 int
2657 device_probe(device_t dev)
2658 {
2659 	int error;
2660 
2661 	GIANT_REQUIRED;
2662 
2663 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2664 		return (-1);
2665 
2666 	if (!(dev->flags & DF_ENABLED)) {
2667 		if (bootverbose && device_get_name(dev) != NULL) {
2668 			device_print_prettyname(dev);
2669 			printf("not probed (disabled)\n");
2670 		}
2671 		return (-1);
2672 	}
2673 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2674 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2675 		    !(dev->flags & DF_DONENOMATCH)) {
2676 			BUS_PROBE_NOMATCH(dev->parent, dev);
2677 			devnomatch(dev);
2678 			dev->flags |= DF_DONENOMATCH;
2679 		}
2680 		return (error);
2681 	}
2682 	return (0);
2683 }
2684 
2685 /**
2686  * @brief Probe a device and attach a driver if possible
2687  *
2688  * calls device_probe() and attaches if that was successful.
2689  */
2690 int
2691 device_probe_and_attach(device_t dev)
2692 {
2693 	int error;
2694 
2695 	GIANT_REQUIRED;
2696 
2697 	error = device_probe(dev);
2698 	if (error == -1)
2699 		return (0);
2700 	else if (error != 0)
2701 		return (error);
2702 	return (device_attach(dev));
2703 }
2704 
2705 /**
2706  * @brief Attach a device driver to a device
2707  *
2708  * This function is a wrapper around the DEVICE_ATTACH() driver
2709  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2710  * device's sysctl tree, optionally prints a description of the device
2711  * and queues a notification event for user-based device management
2712  * services.
2713  *
2714  * Normally this function is only called internally from
2715  * device_probe_and_attach().
2716  *
2717  * @param dev		the device to initialise
2718  *
2719  * @retval 0		success
2720  * @retval ENXIO	no driver was found
2721  * @retval ENOMEM	memory allocation failure
2722  * @retval non-zero	some other unix error code
2723  */
2724 int
2725 device_attach(device_t dev)
2726 {
2727 	int error;
2728 
2729 	device_sysctl_init(dev);
2730 	if (!device_is_quiet(dev))
2731 		device_print_child(dev->parent, dev);
2732 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2733 		printf("device_attach: %s%d attach returned %d\n",
2734 		    dev->driver->name, dev->unit, error);
2735 		if (!(dev->flags & DF_FIXEDCLASS))
2736 			devclass_delete_device(dev->devclass, dev);
2737 		(void)device_set_driver(dev, NULL);
2738 		device_sysctl_fini(dev);
2739 		dev->state = DS_NOTPRESENT;
2740 		return (error);
2741 	}
2742 	device_sysctl_update(dev);
2743 	dev->state = DS_ATTACHED;
2744 	dev->flags &= ~DF_DONENOMATCH;
2745 	devadded(dev);
2746 	return (0);
2747 }
2748 
2749 /**
2750  * @brief Detach a driver from a device
2751  *
2752  * This function is a wrapper around the DEVICE_DETACH() driver
2753  * method. If the call to DEVICE_DETACH() succeeds, it calls
2754  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2755  * notification event for user-based device management services and
2756  * cleans up the device's sysctl tree.
2757  *
2758  * @param dev		the device to un-initialise
2759  *
2760  * @retval 0		success
2761  * @retval ENXIO	no driver was found
2762  * @retval ENOMEM	memory allocation failure
2763  * @retval non-zero	some other unix error code
2764  */
2765 int
2766 device_detach(device_t dev)
2767 {
2768 	int error;
2769 
2770 	GIANT_REQUIRED;
2771 
2772 	PDEBUG(("%s", DEVICENAME(dev)));
2773 	if (dev->state == DS_BUSY)
2774 		return (EBUSY);
2775 	if (dev->state != DS_ATTACHED)
2776 		return (0);
2777 
2778 	if ((error = DEVICE_DETACH(dev)) != 0)
2779 		return (error);
2780 	devremoved(dev);
2781 	if (!device_is_quiet(dev))
2782 		device_printf(dev, "detached\n");
2783 	if (dev->parent)
2784 		BUS_CHILD_DETACHED(dev->parent, dev);
2785 
2786 	if (!(dev->flags & DF_FIXEDCLASS))
2787 		devclass_delete_device(dev->devclass, dev);
2788 
2789 	dev->state = DS_NOTPRESENT;
2790 	(void)device_set_driver(dev, NULL);
2791 	device_sysctl_fini(dev);
2792 
2793 	return (0);
2794 }
2795 
2796 /**
2797  * @brief Tells a driver to quiesce itself.
2798  *
2799  * This function is a wrapper around the DEVICE_QUIESCE() driver
2800  * method. If the call to DEVICE_QUIESCE() succeeds.
2801  *
2802  * @param dev		the device to quiesce
2803  *
2804  * @retval 0		success
2805  * @retval ENXIO	no driver was found
2806  * @retval ENOMEM	memory allocation failure
2807  * @retval non-zero	some other unix error code
2808  */
2809 int
2810 device_quiesce(device_t dev)
2811 {
2812 
2813 	PDEBUG(("%s", DEVICENAME(dev)));
2814 	if (dev->state == DS_BUSY)
2815 		return (EBUSY);
2816 	if (dev->state != DS_ATTACHED)
2817 		return (0);
2818 
2819 	return (DEVICE_QUIESCE(dev));
2820 }
2821 
2822 /**
2823  * @brief Notify a device of system shutdown
2824  *
2825  * This function calls the DEVICE_SHUTDOWN() driver method if the
2826  * device currently has an attached driver.
2827  *
2828  * @returns the value returned by DEVICE_SHUTDOWN()
2829  */
2830 int
2831 device_shutdown(device_t dev)
2832 {
2833 	if (dev->state < DS_ATTACHED)
2834 		return (0);
2835 	return (DEVICE_SHUTDOWN(dev));
2836 }
2837 
2838 /**
2839  * @brief Set the unit number of a device
2840  *
2841  * This function can be used to override the unit number used for a
2842  * device (e.g. to wire a device to a pre-configured unit number).
2843  */
2844 int
2845 device_set_unit(device_t dev, int unit)
2846 {
2847 	devclass_t dc;
2848 	int err;
2849 
2850 	dc = device_get_devclass(dev);
2851 	if (unit < dc->maxunit && dc->devices[unit])
2852 		return (EBUSY);
2853 	err = devclass_delete_device(dc, dev);
2854 	if (err)
2855 		return (err);
2856 	dev->unit = unit;
2857 	err = devclass_add_device(dc, dev);
2858 	if (err)
2859 		return (err);
2860 
2861 	bus_data_generation_update();
2862 	return (0);
2863 }
2864 
2865 /*======================================*/
2866 /*
2867  * Some useful method implementations to make life easier for bus drivers.
2868  */
2869 
2870 /**
2871  * @brief Initialise a resource list.
2872  *
2873  * @param rl		the resource list to initialise
2874  */
2875 void
2876 resource_list_init(struct resource_list *rl)
2877 {
2878 	STAILQ_INIT(rl);
2879 }
2880 
2881 /**
2882  * @brief Reclaim memory used by a resource list.
2883  *
2884  * This function frees the memory for all resource entries on the list
2885  * (if any).
2886  *
2887  * @param rl		the resource list to free
2888  */
2889 void
2890 resource_list_free(struct resource_list *rl)
2891 {
2892 	struct resource_list_entry *rle;
2893 
2894 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2895 		if (rle->res)
2896 			panic("resource_list_free: resource entry is busy");
2897 		STAILQ_REMOVE_HEAD(rl, link);
2898 		free(rle, M_BUS);
2899 	}
2900 }
2901 
2902 /**
2903  * @brief Add a resource entry.
2904  *
2905  * This function adds a resource entry using the given @p type, @p
2906  * start, @p end and @p count values. A rid value is chosen by
2907  * searching sequentially for the first unused rid starting at zero.
2908  *
2909  * @param rl		the resource list to edit
2910  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2911  * @param start		the start address of the resource
2912  * @param end		the end address of the resource
2913  * @param count		XXX end-start+1
2914  */
2915 int
2916 resource_list_add_next(struct resource_list *rl, int type, u_long start,
2917     u_long end, u_long count)
2918 {
2919 	int rid;
2920 
2921 	rid = 0;
2922 	while (resource_list_find(rl, type, rid) != NULL)
2923 		rid++;
2924 	resource_list_add(rl, type, rid, start, end, count);
2925 	return (rid);
2926 }
2927 
2928 /**
2929  * @brief Add or modify a resource entry.
2930  *
2931  * If an existing entry exists with the same type and rid, it will be
2932  * modified using the given values of @p start, @p end and @p
2933  * count. If no entry exists, a new one will be created using the
2934  * given values.  The resource list entry that matches is then returned.
2935  *
2936  * @param rl		the resource list to edit
2937  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2938  * @param rid		the resource identifier
2939  * @param start		the start address of the resource
2940  * @param end		the end address of the resource
2941  * @param count		XXX end-start+1
2942  */
2943 struct resource_list_entry *
2944 resource_list_add(struct resource_list *rl, int type, int rid,
2945     u_long start, u_long end, u_long count)
2946 {
2947 	struct resource_list_entry *rle;
2948 
2949 	rle = resource_list_find(rl, type, rid);
2950 	if (!rle) {
2951 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2952 		    M_NOWAIT);
2953 		if (!rle)
2954 			panic("resource_list_add: can't record entry");
2955 		STAILQ_INSERT_TAIL(rl, rle, link);
2956 		rle->type = type;
2957 		rle->rid = rid;
2958 		rle->res = NULL;
2959 		rle->flags = 0;
2960 	}
2961 
2962 	if (rle->res)
2963 		panic("resource_list_add: resource entry is busy");
2964 
2965 	rle->start = start;
2966 	rle->end = end;
2967 	rle->count = count;
2968 	return (rle);
2969 }
2970 
2971 /**
2972  * @brief Determine if a resource entry is busy.
2973  *
2974  * Returns true if a resource entry is busy meaning that it has an
2975  * associated resource that is not an unallocated "reserved" resource.
2976  *
2977  * @param rl		the resource list to search
2978  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2979  * @param rid		the resource identifier
2980  *
2981  * @returns Non-zero if the entry is busy, zero otherwise.
2982  */
2983 int
2984 resource_list_busy(struct resource_list *rl, int type, int rid)
2985 {
2986 	struct resource_list_entry *rle;
2987 
2988 	rle = resource_list_find(rl, type, rid);
2989 	if (rle == NULL || rle->res == NULL)
2990 		return (0);
2991 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2992 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2993 		    ("reserved resource is active"));
2994 		return (0);
2995 	}
2996 	return (1);
2997 }
2998 
2999 /**
3000  * @brief Determine if a resource entry is reserved.
3001  *
3002  * Returns true if a resource entry is reserved meaning that it has an
3003  * associated "reserved" resource.  The resource can either be
3004  * allocated or unallocated.
3005  *
3006  * @param rl		the resource list to search
3007  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3008  * @param rid		the resource identifier
3009  *
3010  * @returns Non-zero if the entry is reserved, zero otherwise.
3011  */
3012 int
3013 resource_list_reserved(struct resource_list *rl, int type, int rid)
3014 {
3015 	struct resource_list_entry *rle;
3016 
3017 	rle = resource_list_find(rl, type, rid);
3018 	if (rle != NULL && rle->flags & RLE_RESERVED)
3019 		return (1);
3020 	return (0);
3021 }
3022 
3023 /**
3024  * @brief Find a resource entry by type and rid.
3025  *
3026  * @param rl		the resource list to search
3027  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3028  * @param rid		the resource identifier
3029  *
3030  * @returns the resource entry pointer or NULL if there is no such
3031  * entry.
3032  */
3033 struct resource_list_entry *
3034 resource_list_find(struct resource_list *rl, int type, int rid)
3035 {
3036 	struct resource_list_entry *rle;
3037 
3038 	STAILQ_FOREACH(rle, rl, link) {
3039 		if (rle->type == type && rle->rid == rid)
3040 			return (rle);
3041 	}
3042 	return (NULL);
3043 }
3044 
3045 /**
3046  * @brief Delete a resource entry.
3047  *
3048  * @param rl		the resource list to edit
3049  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3050  * @param rid		the resource identifier
3051  */
3052 void
3053 resource_list_delete(struct resource_list *rl, int type, int rid)
3054 {
3055 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3056 
3057 	if (rle) {
3058 		if (rle->res != NULL)
3059 			panic("resource_list_delete: resource has not been released");
3060 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3061 		free(rle, M_BUS);
3062 	}
3063 }
3064 
3065 /**
3066  * @brief Allocate a reserved resource
3067  *
3068  * This can be used by busses to force the allocation of resources
3069  * that are always active in the system even if they are not allocated
3070  * by a driver (e.g. PCI BARs).  This function is usually called when
3071  * adding a new child to the bus.  The resource is allocated from the
3072  * parent bus when it is reserved.  The resource list entry is marked
3073  * with RLE_RESERVED to note that it is a reserved resource.
3074  *
3075  * Subsequent attempts to allocate the resource with
3076  * resource_list_alloc() will succeed the first time and will set
3077  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3078  * resource that has been allocated is released with
3079  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3080  * the actual resource remains allocated.  The resource can be released to
3081  * the parent bus by calling resource_list_unreserve().
3082  *
3083  * @param rl		the resource list to allocate from
3084  * @param bus		the parent device of @p child
3085  * @param child		the device for which the resource is being reserved
3086  * @param type		the type of resource to allocate
3087  * @param rid		a pointer to the resource identifier
3088  * @param start		hint at the start of the resource range - pass
3089  *			@c 0UL for any start address
3090  * @param end		hint at the end of the resource range - pass
3091  *			@c ~0UL for any end address
3092  * @param count		hint at the size of range required - pass @c 1
3093  *			for any size
3094  * @param flags		any extra flags to control the resource
3095  *			allocation - see @c RF_XXX flags in
3096  *			<sys/rman.h> for details
3097  *
3098  * @returns		the resource which was allocated or @c NULL if no
3099  *			resource could be allocated
3100  */
3101 struct resource *
3102 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3103     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3104 {
3105 	struct resource_list_entry *rle = NULL;
3106 	int passthrough = (device_get_parent(child) != bus);
3107 	struct resource *r;
3108 
3109 	if (passthrough)
3110 		panic(
3111     "resource_list_reserve() should only be called for direct children");
3112 	if (flags & RF_ACTIVE)
3113 		panic(
3114     "resource_list_reserve() should only reserve inactive resources");
3115 
3116 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3117 	    flags);
3118 	if (r != NULL) {
3119 		rle = resource_list_find(rl, type, *rid);
3120 		rle->flags |= RLE_RESERVED;
3121 	}
3122 	return (r);
3123 }
3124 
3125 /**
3126  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3127  *
3128  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3129  * and passing the allocation up to the parent of @p bus. This assumes
3130  * that the first entry of @c device_get_ivars(child) is a struct
3131  * resource_list. This also handles 'passthrough' allocations where a
3132  * child is a remote descendant of bus by passing the allocation up to
3133  * the parent of bus.
3134  *
3135  * Typically, a bus driver would store a list of child resources
3136  * somewhere in the child device's ivars (see device_get_ivars()) and
3137  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3138  * then call resource_list_alloc() to perform the allocation.
3139  *
3140  * @param rl		the resource list to allocate from
3141  * @param bus		the parent device of @p child
3142  * @param child		the device which is requesting an allocation
3143  * @param type		the type of resource to allocate
3144  * @param rid		a pointer to the resource identifier
3145  * @param start		hint at the start of the resource range - pass
3146  *			@c 0UL for any start address
3147  * @param end		hint at the end of the resource range - pass
3148  *			@c ~0UL for any end address
3149  * @param count		hint at the size of range required - pass @c 1
3150  *			for any size
3151  * @param flags		any extra flags to control the resource
3152  *			allocation - see @c RF_XXX flags in
3153  *			<sys/rman.h> for details
3154  *
3155  * @returns		the resource which was allocated or @c NULL if no
3156  *			resource could be allocated
3157  */
3158 struct resource *
3159 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3160     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3161 {
3162 	struct resource_list_entry *rle = NULL;
3163 	int passthrough = (device_get_parent(child) != bus);
3164 	int isdefault = (start == 0UL && end == ~0UL);
3165 
3166 	if (passthrough) {
3167 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3168 		    type, rid, start, end, count, flags));
3169 	}
3170 
3171 	rle = resource_list_find(rl, type, *rid);
3172 
3173 	if (!rle)
3174 		return (NULL);		/* no resource of that type/rid */
3175 
3176 	if (rle->res) {
3177 		if (rle->flags & RLE_RESERVED) {
3178 			if (rle->flags & RLE_ALLOCATED)
3179 				return (NULL);
3180 			if ((flags & RF_ACTIVE) &&
3181 			    bus_activate_resource(child, type, *rid,
3182 			    rle->res) != 0)
3183 				return (NULL);
3184 			rle->flags |= RLE_ALLOCATED;
3185 			return (rle->res);
3186 		}
3187 		panic("resource_list_alloc: resource entry is busy");
3188 	}
3189 
3190 	if (isdefault) {
3191 		start = rle->start;
3192 		count = ulmax(count, rle->count);
3193 		end = ulmax(rle->end, start + count - 1);
3194 	}
3195 
3196 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3197 	    type, rid, start, end, count, flags);
3198 
3199 	/*
3200 	 * Record the new range.
3201 	 */
3202 	if (rle->res) {
3203 		rle->start = rman_get_start(rle->res);
3204 		rle->end = rman_get_end(rle->res);
3205 		rle->count = count;
3206 	}
3207 
3208 	return (rle->res);
3209 }
3210 
3211 /**
3212  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3213  *
3214  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3215  * used with resource_list_alloc().
3216  *
3217  * @param rl		the resource list which was allocated from
3218  * @param bus		the parent device of @p child
3219  * @param child		the device which is requesting a release
3220  * @param type		the type of resource to release
3221  * @param rid		the resource identifier
3222  * @param res		the resource to release
3223  *
3224  * @retval 0		success
3225  * @retval non-zero	a standard unix error code indicating what
3226  *			error condition prevented the operation
3227  */
3228 int
3229 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3230     int type, int rid, struct resource *res)
3231 {
3232 	struct resource_list_entry *rle = NULL;
3233 	int passthrough = (device_get_parent(child) != bus);
3234 	int error;
3235 
3236 	if (passthrough) {
3237 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3238 		    type, rid, res));
3239 	}
3240 
3241 	rle = resource_list_find(rl, type, rid);
3242 
3243 	if (!rle)
3244 		panic("resource_list_release: can't find resource");
3245 	if (!rle->res)
3246 		panic("resource_list_release: resource entry is not busy");
3247 	if (rle->flags & RLE_RESERVED) {
3248 		if (rle->flags & RLE_ALLOCATED) {
3249 			if (rman_get_flags(res) & RF_ACTIVE) {
3250 				error = bus_deactivate_resource(child, type,
3251 				    rid, res);
3252 				if (error)
3253 					return (error);
3254 			}
3255 			rle->flags &= ~RLE_ALLOCATED;
3256 			return (0);
3257 		}
3258 		return (EINVAL);
3259 	}
3260 
3261 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3262 	    type, rid, res);
3263 	if (error)
3264 		return (error);
3265 
3266 	rle->res = NULL;
3267 	return (0);
3268 }
3269 
3270 /**
3271  * @brief Fully release a reserved resource
3272  *
3273  * Fully releases a resouce reserved via resource_list_reserve().
3274  *
3275  * @param rl		the resource list which was allocated from
3276  * @param bus		the parent device of @p child
3277  * @param child		the device whose reserved resource is being released
3278  * @param type		the type of resource to release
3279  * @param rid		the resource identifier
3280  * @param res		the resource to release
3281  *
3282  * @retval 0		success
3283  * @retval non-zero	a standard unix error code indicating what
3284  *			error condition prevented the operation
3285  */
3286 int
3287 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3288     int type, int rid)
3289 {
3290 	struct resource_list_entry *rle = NULL;
3291 	int passthrough = (device_get_parent(child) != bus);
3292 
3293 	if (passthrough)
3294 		panic(
3295     "resource_list_unreserve() should only be called for direct children");
3296 
3297 	rle = resource_list_find(rl, type, rid);
3298 
3299 	if (!rle)
3300 		panic("resource_list_unreserve: can't find resource");
3301 	if (!(rle->flags & RLE_RESERVED))
3302 		return (EINVAL);
3303 	if (rle->flags & RLE_ALLOCATED)
3304 		return (EBUSY);
3305 	rle->flags &= ~RLE_RESERVED;
3306 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3307 }
3308 
3309 /**
3310  * @brief Print a description of resources in a resource list
3311  *
3312  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3313  * The name is printed if at least one resource of the given type is available.
3314  * The format is used to print resource start and end.
3315  *
3316  * @param rl		the resource list to print
3317  * @param name		the name of @p type, e.g. @c "memory"
3318  * @param type		type type of resource entry to print
3319  * @param format	printf(9) format string to print resource
3320  *			start and end values
3321  *
3322  * @returns		the number of characters printed
3323  */
3324 int
3325 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3326     const char *format)
3327 {
3328 	struct resource_list_entry *rle;
3329 	int printed, retval;
3330 
3331 	printed = 0;
3332 	retval = 0;
3333 	/* Yes, this is kinda cheating */
3334 	STAILQ_FOREACH(rle, rl, link) {
3335 		if (rle->type == type) {
3336 			if (printed == 0)
3337 				retval += printf(" %s ", name);
3338 			else
3339 				retval += printf(",");
3340 			printed++;
3341 			retval += printf(format, rle->start);
3342 			if (rle->count > 1) {
3343 				retval += printf("-");
3344 				retval += printf(format, rle->start +
3345 						 rle->count - 1);
3346 			}
3347 		}
3348 	}
3349 	return (retval);
3350 }
3351 
3352 /**
3353  * @brief Releases all the resources in a list.
3354  *
3355  * @param rl		The resource list to purge.
3356  *
3357  * @returns		nothing
3358  */
3359 void
3360 resource_list_purge(struct resource_list *rl)
3361 {
3362 	struct resource_list_entry *rle;
3363 
3364 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3365 		if (rle->res)
3366 			bus_release_resource(rman_get_device(rle->res),
3367 			    rle->type, rle->rid, rle->res);
3368 		STAILQ_REMOVE_HEAD(rl, link);
3369 		free(rle, M_BUS);
3370 	}
3371 }
3372 
3373 device_t
3374 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3375 {
3376 
3377 	return (device_add_child_ordered(dev, order, name, unit));
3378 }
3379 
3380 /**
3381  * @brief Helper function for implementing DEVICE_PROBE()
3382  *
3383  * This function can be used to help implement the DEVICE_PROBE() for
3384  * a bus (i.e. a device which has other devices attached to it). It
3385  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3386  * devclass.
3387  */
3388 int
3389 bus_generic_probe(device_t dev)
3390 {
3391 	devclass_t dc = dev->devclass;
3392 	driverlink_t dl;
3393 
3394 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3395 		/*
3396 		 * If this driver's pass is too high, then ignore it.
3397 		 * For most drivers in the default pass, this will
3398 		 * never be true.  For early-pass drivers they will
3399 		 * only call the identify routines of eligible drivers
3400 		 * when this routine is called.  Drivers for later
3401 		 * passes should have their identify routines called
3402 		 * on early-pass busses during BUS_NEW_PASS().
3403 		 */
3404 		if (dl->pass > bus_current_pass)
3405 			continue;
3406 		DEVICE_IDENTIFY(dl->driver, dev);
3407 	}
3408 
3409 	return (0);
3410 }
3411 
3412 /**
3413  * @brief Helper function for implementing DEVICE_ATTACH()
3414  *
3415  * This function can be used to help implement the DEVICE_ATTACH() for
3416  * a bus. It calls device_probe_and_attach() for each of the device's
3417  * children.
3418  */
3419 int
3420 bus_generic_attach(device_t dev)
3421 {
3422 	device_t child;
3423 
3424 	TAILQ_FOREACH(child, &dev->children, link) {
3425 		device_probe_and_attach(child);
3426 	}
3427 
3428 	return (0);
3429 }
3430 
3431 /**
3432  * @brief Helper function for implementing DEVICE_DETACH()
3433  *
3434  * This function can be used to help implement the DEVICE_DETACH() for
3435  * a bus. It calls device_detach() for each of the device's
3436  * children.
3437  */
3438 int
3439 bus_generic_detach(device_t dev)
3440 {
3441 	device_t child;
3442 	int error;
3443 
3444 	if (dev->state != DS_ATTACHED)
3445 		return (EBUSY);
3446 
3447 	TAILQ_FOREACH(child, &dev->children, link) {
3448 		if ((error = device_detach(child)) != 0)
3449 			return (error);
3450 	}
3451 
3452 	return (0);
3453 }
3454 
3455 /**
3456  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3457  *
3458  * This function can be used to help implement the DEVICE_SHUTDOWN()
3459  * for a bus. It calls device_shutdown() for each of the device's
3460  * children.
3461  */
3462 int
3463 bus_generic_shutdown(device_t dev)
3464 {
3465 	device_t child;
3466 
3467 	TAILQ_FOREACH(child, &dev->children, link) {
3468 		device_shutdown(child);
3469 	}
3470 
3471 	return (0);
3472 }
3473 
3474 /**
3475  * @brief Helper function for implementing DEVICE_SUSPEND()
3476  *
3477  * This function can be used to help implement the DEVICE_SUSPEND()
3478  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3479  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3480  * operation is aborted and any devices which were suspended are
3481  * resumed immediately by calling their DEVICE_RESUME() methods.
3482  */
3483 int
3484 bus_generic_suspend(device_t dev)
3485 {
3486 	int		error;
3487 	device_t	child, child2;
3488 
3489 	TAILQ_FOREACH(child, &dev->children, link) {
3490 		error = DEVICE_SUSPEND(child);
3491 		if (error) {
3492 			for (child2 = TAILQ_FIRST(&dev->children);
3493 			     child2 && child2 != child;
3494 			     child2 = TAILQ_NEXT(child2, link))
3495 				DEVICE_RESUME(child2);
3496 			return (error);
3497 		}
3498 	}
3499 	return (0);
3500 }
3501 
3502 /**
3503  * @brief Helper function for implementing DEVICE_RESUME()
3504  *
3505  * This function can be used to help implement the DEVICE_RESUME() for
3506  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3507  */
3508 int
3509 bus_generic_resume(device_t dev)
3510 {
3511 	device_t	child;
3512 
3513 	TAILQ_FOREACH(child, &dev->children, link) {
3514 		DEVICE_RESUME(child);
3515 		/* if resume fails, there's nothing we can usefully do... */
3516 	}
3517 	return (0);
3518 }
3519 
3520 /**
3521  * @brief Helper function for implementing BUS_PRINT_CHILD().
3522  *
3523  * This function prints the first part of the ascii representation of
3524  * @p child, including its name, unit and description (if any - see
3525  * device_set_desc()).
3526  *
3527  * @returns the number of characters printed
3528  */
3529 int
3530 bus_print_child_header(device_t dev, device_t child)
3531 {
3532 	int	retval = 0;
3533 
3534 	if (device_get_desc(child)) {
3535 		retval += device_printf(child, "<%s>", device_get_desc(child));
3536 	} else {
3537 		retval += printf("%s", device_get_nameunit(child));
3538 	}
3539 
3540 	return (retval);
3541 }
3542 
3543 /**
3544  * @brief Helper function for implementing BUS_PRINT_CHILD().
3545  *
3546  * This function prints the last part of the ascii representation of
3547  * @p child, which consists of the string @c " on " followed by the
3548  * name and unit of the @p dev.
3549  *
3550  * @returns the number of characters printed
3551  */
3552 int
3553 bus_print_child_footer(device_t dev, device_t child)
3554 {
3555 	return (printf(" on %s\n", device_get_nameunit(dev)));
3556 }
3557 
3558 /**
3559  * @brief Helper function for implementing BUS_PRINT_CHILD().
3560  *
3561  * This function simply calls bus_print_child_header() followed by
3562  * bus_print_child_footer().
3563  *
3564  * @returns the number of characters printed
3565  */
3566 int
3567 bus_generic_print_child(device_t dev, device_t child)
3568 {
3569 	int	retval = 0;
3570 
3571 	retval += bus_print_child_header(dev, child);
3572 	retval += bus_print_child_footer(dev, child);
3573 
3574 	return (retval);
3575 }
3576 
3577 /**
3578  * @brief Stub function for implementing BUS_READ_IVAR().
3579  *
3580  * @returns ENOENT
3581  */
3582 int
3583 bus_generic_read_ivar(device_t dev, device_t child, int index,
3584     uintptr_t * result)
3585 {
3586 	return (ENOENT);
3587 }
3588 
3589 /**
3590  * @brief Stub function for implementing BUS_WRITE_IVAR().
3591  *
3592  * @returns ENOENT
3593  */
3594 int
3595 bus_generic_write_ivar(device_t dev, device_t child, int index,
3596     uintptr_t value)
3597 {
3598 	return (ENOENT);
3599 }
3600 
3601 /**
3602  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3603  *
3604  * @returns NULL
3605  */
3606 struct resource_list *
3607 bus_generic_get_resource_list(device_t dev, device_t child)
3608 {
3609 	return (NULL);
3610 }
3611 
3612 /**
3613  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3614  *
3615  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3616  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3617  * and then calls device_probe_and_attach() for each unattached child.
3618  */
3619 void
3620 bus_generic_driver_added(device_t dev, driver_t *driver)
3621 {
3622 	device_t child;
3623 
3624 	DEVICE_IDENTIFY(driver, dev);
3625 	TAILQ_FOREACH(child, &dev->children, link) {
3626 		if (child->state == DS_NOTPRESENT ||
3627 		    (child->flags & DF_REBID))
3628 			device_probe_and_attach(child);
3629 	}
3630 }
3631 
3632 /**
3633  * @brief Helper function for implementing BUS_NEW_PASS().
3634  *
3635  * This implementing of BUS_NEW_PASS() first calls the identify
3636  * routines for any drivers that probe at the current pass.  Then it
3637  * walks the list of devices for this bus.  If a device is already
3638  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3639  * device is not already attached, it attempts to attach a driver to
3640  * it.
3641  */
3642 void
3643 bus_generic_new_pass(device_t dev)
3644 {
3645 	driverlink_t dl;
3646 	devclass_t dc;
3647 	device_t child;
3648 
3649 	dc = dev->devclass;
3650 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3651 		if (dl->pass == bus_current_pass)
3652 			DEVICE_IDENTIFY(dl->driver, dev);
3653 	}
3654 	TAILQ_FOREACH(child, &dev->children, link) {
3655 		if (child->state >= DS_ATTACHED)
3656 			BUS_NEW_PASS(child);
3657 		else if (child->state == DS_NOTPRESENT)
3658 			device_probe_and_attach(child);
3659 	}
3660 }
3661 
3662 /**
3663  * @brief Helper function for implementing BUS_SETUP_INTR().
3664  *
3665  * This simple implementation of BUS_SETUP_INTR() simply calls the
3666  * BUS_SETUP_INTR() method of the parent of @p dev.
3667  */
3668 int
3669 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3670     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3671     void **cookiep)
3672 {
3673 	/* Propagate up the bus hierarchy until someone handles it. */
3674 	if (dev->parent)
3675 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3676 		    filter, intr, arg, cookiep));
3677 	return (EINVAL);
3678 }
3679 
3680 /**
3681  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3682  *
3683  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3684  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3685  */
3686 int
3687 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3688     void *cookie)
3689 {
3690 	/* Propagate up the bus hierarchy until someone handles it. */
3691 	if (dev->parent)
3692 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3693 	return (EINVAL);
3694 }
3695 
3696 /**
3697  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3698  *
3699  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3700  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3701  */
3702 int
3703 bus_generic_adjust_resource(device_t dev, device_t child, int type,
3704     struct resource *r, u_long start, u_long end)
3705 {
3706 	/* Propagate up the bus hierarchy until someone handles it. */
3707 	if (dev->parent)
3708 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3709 		    end));
3710 	return (EINVAL);
3711 }
3712 
3713 /**
3714  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3715  *
3716  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3717  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3718  */
3719 struct resource *
3720 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3721     u_long start, u_long end, u_long count, u_int flags)
3722 {
3723 	/* Propagate up the bus hierarchy until someone handles it. */
3724 	if (dev->parent)
3725 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3726 		    start, end, count, flags));
3727 	return (NULL);
3728 }
3729 
3730 /**
3731  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3732  *
3733  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3734  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3735  */
3736 int
3737 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3738     struct resource *r)
3739 {
3740 	/* Propagate up the bus hierarchy until someone handles it. */
3741 	if (dev->parent)
3742 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3743 		    r));
3744 	return (EINVAL);
3745 }
3746 
3747 /**
3748  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3749  *
3750  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3751  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3752  */
3753 int
3754 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3755     struct resource *r)
3756 {
3757 	/* Propagate up the bus hierarchy until someone handles it. */
3758 	if (dev->parent)
3759 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3760 		    r));
3761 	return (EINVAL);
3762 }
3763 
3764 /**
3765  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3766  *
3767  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3768  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3769  */
3770 int
3771 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3772     int rid, struct resource *r)
3773 {
3774 	/* Propagate up the bus hierarchy until someone handles it. */
3775 	if (dev->parent)
3776 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3777 		    r));
3778 	return (EINVAL);
3779 }
3780 
3781 /**
3782  * @brief Helper function for implementing BUS_BIND_INTR().
3783  *
3784  * This simple implementation of BUS_BIND_INTR() simply calls the
3785  * BUS_BIND_INTR() method of the parent of @p dev.
3786  */
3787 int
3788 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3789     int cpu)
3790 {
3791 
3792 	/* Propagate up the bus hierarchy until someone handles it. */
3793 	if (dev->parent)
3794 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3795 	return (EINVAL);
3796 }
3797 
3798 /**
3799  * @brief Helper function for implementing BUS_CONFIG_INTR().
3800  *
3801  * This simple implementation of BUS_CONFIG_INTR() simply calls the
3802  * BUS_CONFIG_INTR() method of the parent of @p dev.
3803  */
3804 int
3805 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3806     enum intr_polarity pol)
3807 {
3808 
3809 	/* Propagate up the bus hierarchy until someone handles it. */
3810 	if (dev->parent)
3811 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3812 	return (EINVAL);
3813 }
3814 
3815 /**
3816  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3817  *
3818  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3819  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3820  */
3821 int
3822 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3823     void *cookie, const char *descr)
3824 {
3825 
3826 	/* Propagate up the bus hierarchy until someone handles it. */
3827 	if (dev->parent)
3828 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3829 		    descr));
3830 	return (EINVAL);
3831 }
3832 
3833 /**
3834  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3835  *
3836  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3837  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3838  */
3839 bus_dma_tag_t
3840 bus_generic_get_dma_tag(device_t dev, device_t child)
3841 {
3842 
3843 	/* Propagate up the bus hierarchy until someone handles it. */
3844 	if (dev->parent != NULL)
3845 		return (BUS_GET_DMA_TAG(dev->parent, child));
3846 	return (NULL);
3847 }
3848 
3849 /**
3850  * @brief Helper function for implementing BUS_GET_RESOURCE().
3851  *
3852  * This implementation of BUS_GET_RESOURCE() uses the
3853  * resource_list_find() function to do most of the work. It calls
3854  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3855  * search.
3856  */
3857 int
3858 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3859     u_long *startp, u_long *countp)
3860 {
3861 	struct resource_list *		rl = NULL;
3862 	struct resource_list_entry *	rle = NULL;
3863 
3864 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3865 	if (!rl)
3866 		return (EINVAL);
3867 
3868 	rle = resource_list_find(rl, type, rid);
3869 	if (!rle)
3870 		return (ENOENT);
3871 
3872 	if (startp)
3873 		*startp = rle->start;
3874 	if (countp)
3875 		*countp = rle->count;
3876 
3877 	return (0);
3878 }
3879 
3880 /**
3881  * @brief Helper function for implementing BUS_SET_RESOURCE().
3882  *
3883  * This implementation of BUS_SET_RESOURCE() uses the
3884  * resource_list_add() function to do most of the work. It calls
3885  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3886  * edit.
3887  */
3888 int
3889 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3890     u_long start, u_long count)
3891 {
3892 	struct resource_list *		rl = NULL;
3893 
3894 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3895 	if (!rl)
3896 		return (EINVAL);
3897 
3898 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3899 
3900 	return (0);
3901 }
3902 
3903 /**
3904  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3905  *
3906  * This implementation of BUS_DELETE_RESOURCE() uses the
3907  * resource_list_delete() function to do most of the work. It calls
3908  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3909  * edit.
3910  */
3911 void
3912 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3913 {
3914 	struct resource_list *		rl = NULL;
3915 
3916 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3917 	if (!rl)
3918 		return;
3919 
3920 	resource_list_delete(rl, type, rid);
3921 
3922 	return;
3923 }
3924 
3925 /**
3926  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3927  *
3928  * This implementation of BUS_RELEASE_RESOURCE() uses the
3929  * resource_list_release() function to do most of the work. It calls
3930  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3931  */
3932 int
3933 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3934     int rid, struct resource *r)
3935 {
3936 	struct resource_list *		rl = NULL;
3937 
3938 	if (device_get_parent(child) != dev)
3939 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
3940 		    type, rid, r));
3941 
3942 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3943 	if (!rl)
3944 		return (EINVAL);
3945 
3946 	return (resource_list_release(rl, dev, child, type, rid, r));
3947 }
3948 
3949 /**
3950  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3951  *
3952  * This implementation of BUS_ALLOC_RESOURCE() uses the
3953  * resource_list_alloc() function to do most of the work. It calls
3954  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3955  */
3956 struct resource *
3957 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3958     int *rid, u_long start, u_long end, u_long count, u_int flags)
3959 {
3960 	struct resource_list *		rl = NULL;
3961 
3962 	if (device_get_parent(child) != dev)
3963 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
3964 		    type, rid, start, end, count, flags));
3965 
3966 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3967 	if (!rl)
3968 		return (NULL);
3969 
3970 	return (resource_list_alloc(rl, dev, child, type, rid,
3971 	    start, end, count, flags));
3972 }
3973 
3974 /**
3975  * @brief Helper function for implementing BUS_CHILD_PRESENT().
3976  *
3977  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3978  * BUS_CHILD_PRESENT() method of the parent of @p dev.
3979  */
3980 int
3981 bus_generic_child_present(device_t dev, device_t child)
3982 {
3983 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3984 }
3985 
3986 /*
3987  * Some convenience functions to make it easier for drivers to use the
3988  * resource-management functions.  All these really do is hide the
3989  * indirection through the parent's method table, making for slightly
3990  * less-wordy code.  In the future, it might make sense for this code
3991  * to maintain some sort of a list of resources allocated by each device.
3992  */
3993 
3994 int
3995 bus_alloc_resources(device_t dev, struct resource_spec *rs,
3996     struct resource **res)
3997 {
3998 	int i;
3999 
4000 	for (i = 0; rs[i].type != -1; i++)
4001 		res[i] = NULL;
4002 	for (i = 0; rs[i].type != -1; i++) {
4003 		res[i] = bus_alloc_resource_any(dev,
4004 		    rs[i].type, &rs[i].rid, rs[i].flags);
4005 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4006 			bus_release_resources(dev, rs, res);
4007 			return (ENXIO);
4008 		}
4009 	}
4010 	return (0);
4011 }
4012 
4013 void
4014 bus_release_resources(device_t dev, const struct resource_spec *rs,
4015     struct resource **res)
4016 {
4017 	int i;
4018 
4019 	for (i = 0; rs[i].type != -1; i++)
4020 		if (res[i] != NULL) {
4021 			bus_release_resource(
4022 			    dev, rs[i].type, rs[i].rid, res[i]);
4023 			res[i] = NULL;
4024 		}
4025 }
4026 
4027 /**
4028  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4029  *
4030  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4031  * parent of @p dev.
4032  */
4033 struct resource *
4034 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
4035     u_long count, u_int flags)
4036 {
4037 	if (dev->parent == NULL)
4038 		return (NULL);
4039 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4040 	    count, flags));
4041 }
4042 
4043 /**
4044  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4045  *
4046  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4047  * parent of @p dev.
4048  */
4049 int
4050 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
4051     u_long end)
4052 {
4053 	if (dev->parent == NULL)
4054 		return (EINVAL);
4055 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4056 }
4057 
4058 /**
4059  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4060  *
4061  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4062  * parent of @p dev.
4063  */
4064 int
4065 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4066 {
4067 	if (dev->parent == NULL)
4068 		return (EINVAL);
4069 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4070 }
4071 
4072 /**
4073  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4074  *
4075  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4076  * parent of @p dev.
4077  */
4078 int
4079 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4080 {
4081 	if (dev->parent == NULL)
4082 		return (EINVAL);
4083 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4084 }
4085 
4086 /**
4087  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4088  *
4089  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4090  * parent of @p dev.
4091  */
4092 int
4093 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4094 {
4095 	if (dev->parent == NULL)
4096 		return (EINVAL);
4097 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4098 }
4099 
4100 /**
4101  * @brief Wrapper function for BUS_SETUP_INTR().
4102  *
4103  * This function simply calls the BUS_SETUP_INTR() method of the
4104  * parent of @p dev.
4105  */
4106 int
4107 bus_setup_intr(device_t dev, struct resource *r, int flags,
4108     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4109 {
4110 	int error;
4111 
4112 	if (dev->parent == NULL)
4113 		return (EINVAL);
4114 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4115 	    arg, cookiep);
4116 	if (error != 0)
4117 		return (error);
4118 	if (handler != NULL && !(flags & INTR_MPSAFE))
4119 		device_printf(dev, "[GIANT-LOCKED]\n");
4120 	return (0);
4121 }
4122 
4123 /**
4124  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4125  *
4126  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4127  * parent of @p dev.
4128  */
4129 int
4130 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4131 {
4132 	if (dev->parent == NULL)
4133 		return (EINVAL);
4134 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4135 }
4136 
4137 /**
4138  * @brief Wrapper function for BUS_BIND_INTR().
4139  *
4140  * This function simply calls the BUS_BIND_INTR() method of the
4141  * parent of @p dev.
4142  */
4143 int
4144 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4145 {
4146 	if (dev->parent == NULL)
4147 		return (EINVAL);
4148 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4149 }
4150 
4151 /**
4152  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4153  *
4154  * This function first formats the requested description into a
4155  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4156  * the parent of @p dev.
4157  */
4158 int
4159 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4160     const char *fmt, ...)
4161 {
4162 	va_list ap;
4163 	char descr[MAXCOMLEN + 1];
4164 
4165 	if (dev->parent == NULL)
4166 		return (EINVAL);
4167 	va_start(ap, fmt);
4168 	vsnprintf(descr, sizeof(descr), fmt, ap);
4169 	va_end(ap);
4170 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4171 }
4172 
4173 /**
4174  * @brief Wrapper function for BUS_SET_RESOURCE().
4175  *
4176  * This function simply calls the BUS_SET_RESOURCE() method of the
4177  * parent of @p dev.
4178  */
4179 int
4180 bus_set_resource(device_t dev, int type, int rid,
4181     u_long start, u_long count)
4182 {
4183 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4184 	    start, count));
4185 }
4186 
4187 /**
4188  * @brief Wrapper function for BUS_GET_RESOURCE().
4189  *
4190  * This function simply calls the BUS_GET_RESOURCE() method of the
4191  * parent of @p dev.
4192  */
4193 int
4194 bus_get_resource(device_t dev, int type, int rid,
4195     u_long *startp, u_long *countp)
4196 {
4197 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4198 	    startp, countp));
4199 }
4200 
4201 /**
4202  * @brief Wrapper function for BUS_GET_RESOURCE().
4203  *
4204  * This function simply calls the BUS_GET_RESOURCE() method of the
4205  * parent of @p dev and returns the start value.
4206  */
4207 u_long
4208 bus_get_resource_start(device_t dev, int type, int rid)
4209 {
4210 	u_long start, count;
4211 	int error;
4212 
4213 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4214 	    &start, &count);
4215 	if (error)
4216 		return (0);
4217 	return (start);
4218 }
4219 
4220 /**
4221  * @brief Wrapper function for BUS_GET_RESOURCE().
4222  *
4223  * This function simply calls the BUS_GET_RESOURCE() method of the
4224  * parent of @p dev and returns the count value.
4225  */
4226 u_long
4227 bus_get_resource_count(device_t dev, int type, int rid)
4228 {
4229 	u_long start, count;
4230 	int error;
4231 
4232 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4233 	    &start, &count);
4234 	if (error)
4235 		return (0);
4236 	return (count);
4237 }
4238 
4239 /**
4240  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4241  *
4242  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4243  * parent of @p dev.
4244  */
4245 void
4246 bus_delete_resource(device_t dev, int type, int rid)
4247 {
4248 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4249 }
4250 
4251 /**
4252  * @brief Wrapper function for BUS_CHILD_PRESENT().
4253  *
4254  * This function simply calls the BUS_CHILD_PRESENT() method of the
4255  * parent of @p dev.
4256  */
4257 int
4258 bus_child_present(device_t child)
4259 {
4260 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4261 }
4262 
4263 /**
4264  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4265  *
4266  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4267  * parent of @p dev.
4268  */
4269 int
4270 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4271 {
4272 	device_t parent;
4273 
4274 	parent = device_get_parent(child);
4275 	if (parent == NULL) {
4276 		*buf = '\0';
4277 		return (0);
4278 	}
4279 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4280 }
4281 
4282 /**
4283  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4284  *
4285  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4286  * parent of @p dev.
4287  */
4288 int
4289 bus_child_location_str(device_t child, char *buf, size_t buflen)
4290 {
4291 	device_t parent;
4292 
4293 	parent = device_get_parent(child);
4294 	if (parent == NULL) {
4295 		*buf = '\0';
4296 		return (0);
4297 	}
4298 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4299 }
4300 
4301 /**
4302  * @brief Wrapper function for BUS_GET_DMA_TAG().
4303  *
4304  * This function simply calls the BUS_GET_DMA_TAG() method of the
4305  * parent of @p dev.
4306  */
4307 bus_dma_tag_t
4308 bus_get_dma_tag(device_t dev)
4309 {
4310 	device_t parent;
4311 
4312 	parent = device_get_parent(dev);
4313 	if (parent == NULL)
4314 		return (NULL);
4315 	return (BUS_GET_DMA_TAG(parent, dev));
4316 }
4317 
4318 /* Resume all devices and then notify userland that we're up again. */
4319 static int
4320 root_resume(device_t dev)
4321 {
4322 	int error;
4323 
4324 	error = bus_generic_resume(dev);
4325 	if (error == 0)
4326 		devctl_notify("kern", "power", "resume", NULL);
4327 	return (error);
4328 }
4329 
4330 static int
4331 root_print_child(device_t dev, device_t child)
4332 {
4333 	int	retval = 0;
4334 
4335 	retval += bus_print_child_header(dev, child);
4336 	retval += printf("\n");
4337 
4338 	return (retval);
4339 }
4340 
4341 static int
4342 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4343     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4344 {
4345 	/*
4346 	 * If an interrupt mapping gets to here something bad has happened.
4347 	 */
4348 	panic("root_setup_intr");
4349 }
4350 
4351 /*
4352  * If we get here, assume that the device is permanant and really is
4353  * present in the system.  Removable bus drivers are expected to intercept
4354  * this call long before it gets here.  We return -1 so that drivers that
4355  * really care can check vs -1 or some ERRNO returned higher in the food
4356  * chain.
4357  */
4358 static int
4359 root_child_present(device_t dev, device_t child)
4360 {
4361 	return (-1);
4362 }
4363 
4364 static kobj_method_t root_methods[] = {
4365 	/* Device interface */
4366 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4367 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4368 	KOBJMETHOD(device_resume,	root_resume),
4369 
4370 	/* Bus interface */
4371 	KOBJMETHOD(bus_print_child,	root_print_child),
4372 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4373 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4374 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4375 	KOBJMETHOD(bus_child_present,	root_child_present),
4376 
4377 	KOBJMETHOD_END
4378 };
4379 
4380 static driver_t root_driver = {
4381 	"root",
4382 	root_methods,
4383 	1,			/* no softc */
4384 };
4385 
4386 device_t	root_bus;
4387 devclass_t	root_devclass;
4388 
4389 static int
4390 root_bus_module_handler(module_t mod, int what, void* arg)
4391 {
4392 	switch (what) {
4393 	case MOD_LOAD:
4394 		TAILQ_INIT(&bus_data_devices);
4395 		kobj_class_compile((kobj_class_t) &root_driver);
4396 		root_bus = make_device(NULL, "root", 0);
4397 		root_bus->desc = "System root bus";
4398 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4399 		root_bus->driver = &root_driver;
4400 		root_bus->state = DS_ATTACHED;
4401 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4402 		devinit();
4403 		return (0);
4404 
4405 	case MOD_SHUTDOWN:
4406 		device_shutdown(root_bus);
4407 		return (0);
4408 	default:
4409 		return (EOPNOTSUPP);
4410 	}
4411 
4412 	return (0);
4413 }
4414 
4415 static moduledata_t root_bus_mod = {
4416 	"rootbus",
4417 	root_bus_module_handler,
4418 	NULL
4419 };
4420 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4421 
4422 /**
4423  * @brief Automatically configure devices
4424  *
4425  * This function begins the autoconfiguration process by calling
4426  * device_probe_and_attach() for each child of the @c root0 device.
4427  */
4428 void
4429 root_bus_configure(void)
4430 {
4431 
4432 	PDEBUG(("."));
4433 
4434 	/* Eventually this will be split up, but this is sufficient for now. */
4435 	bus_set_pass(BUS_PASS_DEFAULT);
4436 }
4437 
4438 /**
4439  * @brief Module handler for registering device drivers
4440  *
4441  * This module handler is used to automatically register device
4442  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4443  * devclass_add_driver() for the driver described by the
4444  * driver_module_data structure pointed to by @p arg
4445  */
4446 int
4447 driver_module_handler(module_t mod, int what, void *arg)
4448 {
4449 	struct driver_module_data *dmd;
4450 	devclass_t bus_devclass;
4451 	kobj_class_t driver;
4452 	int error, pass;
4453 
4454 	dmd = (struct driver_module_data *)arg;
4455 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4456 	error = 0;
4457 
4458 	switch (what) {
4459 	case MOD_LOAD:
4460 		if (dmd->dmd_chainevh)
4461 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4462 
4463 		pass = dmd->dmd_pass;
4464 		driver = dmd->dmd_driver;
4465 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4466 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4467 		error = devclass_add_driver(bus_devclass, driver, pass,
4468 		    dmd->dmd_devclass);
4469 		break;
4470 
4471 	case MOD_UNLOAD:
4472 		PDEBUG(("Unloading module: driver %s from bus %s",
4473 		    DRIVERNAME(dmd->dmd_driver),
4474 		    dmd->dmd_busname));
4475 		error = devclass_delete_driver(bus_devclass,
4476 		    dmd->dmd_driver);
4477 
4478 		if (!error && dmd->dmd_chainevh)
4479 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4480 		break;
4481 	case MOD_QUIESCE:
4482 		PDEBUG(("Quiesce module: driver %s from bus %s",
4483 		    DRIVERNAME(dmd->dmd_driver),
4484 		    dmd->dmd_busname));
4485 		error = devclass_quiesce_driver(bus_devclass,
4486 		    dmd->dmd_driver);
4487 
4488 		if (!error && dmd->dmd_chainevh)
4489 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4490 		break;
4491 	default:
4492 		error = EOPNOTSUPP;
4493 		break;
4494 	}
4495 
4496 	return (error);
4497 }
4498 
4499 /**
4500  * @brief Enumerate all hinted devices for this bus.
4501  *
4502  * Walks through the hints for this bus and calls the bus_hinted_child
4503  * routine for each one it fines.  It searches first for the specific
4504  * bus that's being probed for hinted children (eg isa0), and then for
4505  * generic children (eg isa).
4506  *
4507  * @param	dev	bus device to enumerate
4508  */
4509 void
4510 bus_enumerate_hinted_children(device_t bus)
4511 {
4512 	int i;
4513 	const char *dname, *busname;
4514 	int dunit;
4515 
4516 	/*
4517 	 * enumerate all devices on the specific bus
4518 	 */
4519 	busname = device_get_nameunit(bus);
4520 	i = 0;
4521 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4522 		BUS_HINTED_CHILD(bus, dname, dunit);
4523 
4524 	/*
4525 	 * and all the generic ones.
4526 	 */
4527 	busname = device_get_name(bus);
4528 	i = 0;
4529 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4530 		BUS_HINTED_CHILD(bus, dname, dunit);
4531 }
4532 
4533 #ifdef BUS_DEBUG
4534 
4535 /* the _short versions avoid iteration by not calling anything that prints
4536  * more than oneliners. I love oneliners.
4537  */
4538 
4539 static void
4540 print_device_short(device_t dev, int indent)
4541 {
4542 	if (!dev)
4543 		return;
4544 
4545 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4546 	    dev->unit, dev->desc,
4547 	    (dev->parent? "":"no "),
4548 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4549 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4550 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4551 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4552 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4553 	    (dev->flags&DF_REBID? "rebiddable,":""),
4554 	    (dev->ivars? "":"no "),
4555 	    (dev->softc? "":"no "),
4556 	    dev->busy));
4557 }
4558 
4559 static void
4560 print_device(device_t dev, int indent)
4561 {
4562 	if (!dev)
4563 		return;
4564 
4565 	print_device_short(dev, indent);
4566 
4567 	indentprintf(("Parent:\n"));
4568 	print_device_short(dev->parent, indent+1);
4569 	indentprintf(("Driver:\n"));
4570 	print_driver_short(dev->driver, indent+1);
4571 	indentprintf(("Devclass:\n"));
4572 	print_devclass_short(dev->devclass, indent+1);
4573 }
4574 
4575 void
4576 print_device_tree_short(device_t dev, int indent)
4577 /* print the device and all its children (indented) */
4578 {
4579 	device_t child;
4580 
4581 	if (!dev)
4582 		return;
4583 
4584 	print_device_short(dev, indent);
4585 
4586 	TAILQ_FOREACH(child, &dev->children, link) {
4587 		print_device_tree_short(child, indent+1);
4588 	}
4589 }
4590 
4591 void
4592 print_device_tree(device_t dev, int indent)
4593 /* print the device and all its children (indented) */
4594 {
4595 	device_t child;
4596 
4597 	if (!dev)
4598 		return;
4599 
4600 	print_device(dev, indent);
4601 
4602 	TAILQ_FOREACH(child, &dev->children, link) {
4603 		print_device_tree(child, indent+1);
4604 	}
4605 }
4606 
4607 static void
4608 print_driver_short(driver_t *driver, int indent)
4609 {
4610 	if (!driver)
4611 		return;
4612 
4613 	indentprintf(("driver %s: softc size = %zd\n",
4614 	    driver->name, driver->size));
4615 }
4616 
4617 static void
4618 print_driver(driver_t *driver, int indent)
4619 {
4620 	if (!driver)
4621 		return;
4622 
4623 	print_driver_short(driver, indent);
4624 }
4625 
4626 static void
4627 print_driver_list(driver_list_t drivers, int indent)
4628 {
4629 	driverlink_t driver;
4630 
4631 	TAILQ_FOREACH(driver, &drivers, link) {
4632 		print_driver(driver->driver, indent);
4633 	}
4634 }
4635 
4636 static void
4637 print_devclass_short(devclass_t dc, int indent)
4638 {
4639 	if ( !dc )
4640 		return;
4641 
4642 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4643 }
4644 
4645 static void
4646 print_devclass(devclass_t dc, int indent)
4647 {
4648 	int i;
4649 
4650 	if ( !dc )
4651 		return;
4652 
4653 	print_devclass_short(dc, indent);
4654 	indentprintf(("Drivers:\n"));
4655 	print_driver_list(dc->drivers, indent+1);
4656 
4657 	indentprintf(("Devices:\n"));
4658 	for (i = 0; i < dc->maxunit; i++)
4659 		if (dc->devices[i])
4660 			print_device(dc->devices[i], indent+1);
4661 }
4662 
4663 void
4664 print_devclass_list_short(void)
4665 {
4666 	devclass_t dc;
4667 
4668 	printf("Short listing of devclasses, drivers & devices:\n");
4669 	TAILQ_FOREACH(dc, &devclasses, link) {
4670 		print_devclass_short(dc, 0);
4671 	}
4672 }
4673 
4674 void
4675 print_devclass_list(void)
4676 {
4677 	devclass_t dc;
4678 
4679 	printf("Full listing of devclasses, drivers & devices:\n");
4680 	TAILQ_FOREACH(dc, &devclasses, link) {
4681 		print_devclass(dc, 0);
4682 	}
4683 }
4684 
4685 #endif
4686 
4687 /*
4688  * User-space access to the device tree.
4689  *
4690  * We implement a small set of nodes:
4691  *
4692  * hw.bus			Single integer read method to obtain the
4693  *				current generation count.
4694  * hw.bus.devices		Reads the entire device tree in flat space.
4695  * hw.bus.rman			Resource manager interface
4696  *
4697  * We might like to add the ability to scan devclasses and/or drivers to
4698  * determine what else is currently loaded/available.
4699  */
4700 
4701 static int
4702 sysctl_bus(SYSCTL_HANDLER_ARGS)
4703 {
4704 	struct u_businfo	ubus;
4705 
4706 	ubus.ub_version = BUS_USER_VERSION;
4707 	ubus.ub_generation = bus_data_generation;
4708 
4709 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4710 }
4711 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4712     "bus-related data");
4713 
4714 static int
4715 sysctl_devices(SYSCTL_HANDLER_ARGS)
4716 {
4717 	int			*name = (int *)arg1;
4718 	u_int			namelen = arg2;
4719 	int			index;
4720 	struct device		*dev;
4721 	struct u_device		udev;	/* XXX this is a bit big */
4722 	int			error;
4723 
4724 	if (namelen != 2)
4725 		return (EINVAL);
4726 
4727 	if (bus_data_generation_check(name[0]))
4728 		return (EINVAL);
4729 
4730 	index = name[1];
4731 
4732 	/*
4733 	 * Scan the list of devices, looking for the requested index.
4734 	 */
4735 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4736 		if (index-- == 0)
4737 			break;
4738 	}
4739 	if (dev == NULL)
4740 		return (ENOENT);
4741 
4742 	/*
4743 	 * Populate the return array.
4744 	 */
4745 	bzero(&udev, sizeof(udev));
4746 	udev.dv_handle = (uintptr_t)dev;
4747 	udev.dv_parent = (uintptr_t)dev->parent;
4748 	if (dev->nameunit != NULL)
4749 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4750 	if (dev->desc != NULL)
4751 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4752 	if (dev->driver != NULL && dev->driver->name != NULL)
4753 		strlcpy(udev.dv_drivername, dev->driver->name,
4754 		    sizeof(udev.dv_drivername));
4755 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4756 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4757 	udev.dv_devflags = dev->devflags;
4758 	udev.dv_flags = dev->flags;
4759 	udev.dv_state = dev->state;
4760 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4761 	return (error);
4762 }
4763 
4764 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4765     "system device tree");
4766 
4767 int
4768 bus_data_generation_check(int generation)
4769 {
4770 	if (generation != bus_data_generation)
4771 		return (1);
4772 
4773 	/* XXX generate optimised lists here? */
4774 	return (0);
4775 }
4776 
4777 void
4778 bus_data_generation_update(void)
4779 {
4780 	bus_data_generation++;
4781 }
4782 
4783 int
4784 bus_free_resource(device_t dev, int type, struct resource *r)
4785 {
4786 	if (r == NULL)
4787 		return (0);
4788 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4789 }
4790