xref: /freebsd/sys/kern/subr_bus.c (revision 8ef24a0d4b28fe230e20637f56869cc4148cd2ca)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/conf.h>
34 #include <sys/filio.h>
35 #include <sys/lock.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/poll.h>
43 #include <sys/priv.h>
44 #include <sys/proc.h>
45 #include <sys/condvar.h>
46 #include <sys/queue.h>
47 #include <machine/bus.h>
48 #include <sys/random.h>
49 #include <sys/rman.h>
50 #include <sys/selinfo.h>
51 #include <sys/signalvar.h>
52 #include <sys/smp.h>
53 #include <sys/sysctl.h>
54 #include <sys/systm.h>
55 #include <sys/uio.h>
56 #include <sys/bus.h>
57 #include <sys/interrupt.h>
58 #include <sys/cpuset.h>
59 
60 #include <net/vnet.h>
61 
62 #include <machine/cpu.h>
63 #include <machine/stdarg.h>
64 
65 #include <vm/uma.h>
66 
67 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
68 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
69 
70 /*
71  * Used to attach drivers to devclasses.
72  */
73 typedef struct driverlink *driverlink_t;
74 struct driverlink {
75 	kobj_class_t	driver;
76 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
77 	int		pass;
78 	TAILQ_ENTRY(driverlink) passlink;
79 };
80 
81 /*
82  * Forward declarations
83  */
84 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
85 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
86 typedef TAILQ_HEAD(device_list, device) device_list_t;
87 
88 struct devclass {
89 	TAILQ_ENTRY(devclass) link;
90 	devclass_t	parent;		/* parent in devclass hierarchy */
91 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
92 	char		*name;
93 	device_t	*devices;	/* array of devices indexed by unit */
94 	int		maxunit;	/* size of devices array */
95 	int		flags;
96 #define DC_HAS_CHILDREN		1
97 
98 	struct sysctl_ctx_list sysctl_ctx;
99 	struct sysctl_oid *sysctl_tree;
100 };
101 
102 /**
103  * @brief Implementation of device.
104  */
105 struct device {
106 	/*
107 	 * A device is a kernel object. The first field must be the
108 	 * current ops table for the object.
109 	 */
110 	KOBJ_FIELDS;
111 
112 	/*
113 	 * Device hierarchy.
114 	 */
115 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
116 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
117 	device_t	parent;		/**< parent of this device  */
118 	device_list_t	children;	/**< list of child devices */
119 
120 	/*
121 	 * Details of this device.
122 	 */
123 	driver_t	*driver;	/**< current driver */
124 	devclass_t	devclass;	/**< current device class */
125 	int		unit;		/**< current unit number */
126 	char*		nameunit;	/**< name+unit e.g. foodev0 */
127 	char*		desc;		/**< driver specific description */
128 	int		busy;		/**< count of calls to device_busy() */
129 	device_state_t	state;		/**< current device state  */
130 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
131 	u_int		flags;		/**< internal device flags  */
132 	u_int	order;			/**< order from device_add_child_ordered() */
133 	void	*ivars;			/**< instance variables  */
134 	void	*softc;			/**< current driver's variables  */
135 
136 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
137 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
138 };
139 
140 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
141 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
142 
143 static void devctl2_init(void);
144 
145 #ifdef BUS_DEBUG
146 
147 static int bus_debug = 1;
148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
149     "Bus debug level");
150 
151 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
152 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
153 #define DRIVERNAME(d)	((d)? d->name : "no driver")
154 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
155 
156 /**
157  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
158  * prevent syslog from deleting initial spaces
159  */
160 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
161 
162 static void print_device_short(device_t dev, int indent);
163 static void print_device(device_t dev, int indent);
164 void print_device_tree_short(device_t dev, int indent);
165 void print_device_tree(device_t dev, int indent);
166 static void print_driver_short(driver_t *driver, int indent);
167 static void print_driver(driver_t *driver, int indent);
168 static void print_driver_list(driver_list_t drivers, int indent);
169 static void print_devclass_short(devclass_t dc, int indent);
170 static void print_devclass(devclass_t dc, int indent);
171 void print_devclass_list_short(void);
172 void print_devclass_list(void);
173 
174 #else
175 /* Make the compiler ignore the function calls */
176 #define PDEBUG(a)			/* nop */
177 #define DEVICENAME(d)			/* nop */
178 #define DRIVERNAME(d)			/* nop */
179 #define DEVCLANAME(d)			/* nop */
180 
181 #define print_device_short(d,i)		/* nop */
182 #define print_device(d,i)		/* nop */
183 #define print_device_tree_short(d,i)	/* nop */
184 #define print_device_tree(d,i)		/* nop */
185 #define print_driver_short(d,i)		/* nop */
186 #define print_driver(d,i)		/* nop */
187 #define print_driver_list(d,i)		/* nop */
188 #define print_devclass_short(d,i)	/* nop */
189 #define print_devclass(d,i)		/* nop */
190 #define print_devclass_list_short()	/* nop */
191 #define print_devclass_list()		/* nop */
192 #endif
193 
194 /*
195  * dev sysctl tree
196  */
197 
198 enum {
199 	DEVCLASS_SYSCTL_PARENT,
200 };
201 
202 static int
203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
204 {
205 	devclass_t dc = (devclass_t)arg1;
206 	const char *value;
207 
208 	switch (arg2) {
209 	case DEVCLASS_SYSCTL_PARENT:
210 		value = dc->parent ? dc->parent->name : "";
211 		break;
212 	default:
213 		return (EINVAL);
214 	}
215 	return (SYSCTL_OUT_STR(req, value));
216 }
217 
218 static void
219 devclass_sysctl_init(devclass_t dc)
220 {
221 
222 	if (dc->sysctl_tree != NULL)
223 		return;
224 	sysctl_ctx_init(&dc->sysctl_ctx);
225 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
226 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
227 	    CTLFLAG_RD, NULL, "");
228 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
229 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
230 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
231 	    "parent class");
232 }
233 
234 enum {
235 	DEVICE_SYSCTL_DESC,
236 	DEVICE_SYSCTL_DRIVER,
237 	DEVICE_SYSCTL_LOCATION,
238 	DEVICE_SYSCTL_PNPINFO,
239 	DEVICE_SYSCTL_PARENT,
240 };
241 
242 static int
243 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
244 {
245 	device_t dev = (device_t)arg1;
246 	const char *value;
247 	char *buf;
248 	int error;
249 
250 	buf = NULL;
251 	switch (arg2) {
252 	case DEVICE_SYSCTL_DESC:
253 		value = dev->desc ? dev->desc : "";
254 		break;
255 	case DEVICE_SYSCTL_DRIVER:
256 		value = dev->driver ? dev->driver->name : "";
257 		break;
258 	case DEVICE_SYSCTL_LOCATION:
259 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260 		bus_child_location_str(dev, buf, 1024);
261 		break;
262 	case DEVICE_SYSCTL_PNPINFO:
263 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
264 		bus_child_pnpinfo_str(dev, buf, 1024);
265 		break;
266 	case DEVICE_SYSCTL_PARENT:
267 		value = dev->parent ? dev->parent->nameunit : "";
268 		break;
269 	default:
270 		return (EINVAL);
271 	}
272 	error = SYSCTL_OUT_STR(req, value);
273 	if (buf != NULL)
274 		free(buf, M_BUS);
275 	return (error);
276 }
277 
278 static void
279 device_sysctl_init(device_t dev)
280 {
281 	devclass_t dc = dev->devclass;
282 	int domain;
283 
284 	if (dev->sysctl_tree != NULL)
285 		return;
286 	devclass_sysctl_init(dc);
287 	sysctl_ctx_init(&dev->sysctl_ctx);
288 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
289 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
290 	    dev->nameunit + strlen(dc->name),
291 	    CTLFLAG_RD, NULL, "");
292 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
293 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
294 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
295 	    "device description");
296 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
297 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
298 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
299 	    "device driver name");
300 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
301 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
302 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
303 	    "device location relative to parent");
304 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
305 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
306 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
307 	    "device identification");
308 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
309 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
310 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
311 	    "parent device");
312 	if (bus_get_domain(dev, &domain) == 0)
313 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
314 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
315 		    CTLFLAG_RD, NULL, domain, "NUMA domain");
316 }
317 
318 static void
319 device_sysctl_update(device_t dev)
320 {
321 	devclass_t dc = dev->devclass;
322 
323 	if (dev->sysctl_tree == NULL)
324 		return;
325 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
326 }
327 
328 static void
329 device_sysctl_fini(device_t dev)
330 {
331 	if (dev->sysctl_tree == NULL)
332 		return;
333 	sysctl_ctx_free(&dev->sysctl_ctx);
334 	dev->sysctl_tree = NULL;
335 }
336 
337 /*
338  * /dev/devctl implementation
339  */
340 
341 /*
342  * This design allows only one reader for /dev/devctl.  This is not desirable
343  * in the long run, but will get a lot of hair out of this implementation.
344  * Maybe we should make this device a clonable device.
345  *
346  * Also note: we specifically do not attach a device to the device_t tree
347  * to avoid potential chicken and egg problems.  One could argue that all
348  * of this belongs to the root node.  One could also further argue that the
349  * sysctl interface that we have not might more properly be an ioctl
350  * interface, but at this stage of the game, I'm not inclined to rock that
351  * boat.
352  *
353  * I'm also not sure that the SIGIO support is done correctly or not, as
354  * I copied it from a driver that had SIGIO support that likely hasn't been
355  * tested since 3.4 or 2.2.8!
356  */
357 
358 /* Deprecated way to adjust queue length */
359 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
360 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
361     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
362     "devctl disable -- deprecated");
363 
364 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
365 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
366 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
367 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
368     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
369 
370 static d_open_t		devopen;
371 static d_close_t	devclose;
372 static d_read_t		devread;
373 static d_ioctl_t	devioctl;
374 static d_poll_t		devpoll;
375 static d_kqfilter_t	devkqfilter;
376 
377 static struct cdevsw dev_cdevsw = {
378 	.d_version =	D_VERSION,
379 	.d_open =	devopen,
380 	.d_close =	devclose,
381 	.d_read =	devread,
382 	.d_ioctl =	devioctl,
383 	.d_poll =	devpoll,
384 	.d_kqfilter =	devkqfilter,
385 	.d_name =	"devctl",
386 };
387 
388 struct dev_event_info
389 {
390 	char *dei_data;
391 	TAILQ_ENTRY(dev_event_info) dei_link;
392 };
393 
394 TAILQ_HEAD(devq, dev_event_info);
395 
396 static struct dev_softc
397 {
398 	int	inuse;
399 	int	nonblock;
400 	int	queued;
401 	int	async;
402 	struct mtx mtx;
403 	struct cv cv;
404 	struct selinfo sel;
405 	struct devq devq;
406 	struct sigio *sigio;
407 } devsoftc;
408 
409 static void	filt_devctl_detach(struct knote *kn);
410 static int	filt_devctl_read(struct knote *kn, long hint);
411 
412 struct filterops devctl_rfiltops = {
413 	.f_isfd = 1,
414 	.f_detach = filt_devctl_detach,
415 	.f_event = filt_devctl_read,
416 };
417 
418 static struct cdev *devctl_dev;
419 
420 static void
421 devinit(void)
422 {
423 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
424 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
425 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
426 	cv_init(&devsoftc.cv, "dev cv");
427 	TAILQ_INIT(&devsoftc.devq);
428 	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
429 	devctl2_init();
430 }
431 
432 static int
433 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
434 {
435 
436 	mtx_lock(&devsoftc.mtx);
437 	if (devsoftc.inuse) {
438 		mtx_unlock(&devsoftc.mtx);
439 		return (EBUSY);
440 	}
441 	/* move to init */
442 	devsoftc.inuse = 1;
443 	mtx_unlock(&devsoftc.mtx);
444 	return (0);
445 }
446 
447 static int
448 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
449 {
450 
451 	mtx_lock(&devsoftc.mtx);
452 	devsoftc.inuse = 0;
453 	devsoftc.nonblock = 0;
454 	devsoftc.async = 0;
455 	cv_broadcast(&devsoftc.cv);
456 	funsetown(&devsoftc.sigio);
457 	mtx_unlock(&devsoftc.mtx);
458 	return (0);
459 }
460 
461 /*
462  * The read channel for this device is used to report changes to
463  * userland in realtime.  We are required to free the data as well as
464  * the n1 object because we allocate them separately.  Also note that
465  * we return one record at a time.  If you try to read this device a
466  * character at a time, you will lose the rest of the data.  Listening
467  * programs are expected to cope.
468  */
469 static int
470 devread(struct cdev *dev, struct uio *uio, int ioflag)
471 {
472 	struct dev_event_info *n1;
473 	int rv;
474 
475 	mtx_lock(&devsoftc.mtx);
476 	while (TAILQ_EMPTY(&devsoftc.devq)) {
477 		if (devsoftc.nonblock) {
478 			mtx_unlock(&devsoftc.mtx);
479 			return (EAGAIN);
480 		}
481 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
482 		if (rv) {
483 			/*
484 			 * Need to translate ERESTART to EINTR here? -- jake
485 			 */
486 			mtx_unlock(&devsoftc.mtx);
487 			return (rv);
488 		}
489 	}
490 	n1 = TAILQ_FIRST(&devsoftc.devq);
491 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
492 	devsoftc.queued--;
493 	mtx_unlock(&devsoftc.mtx);
494 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
495 	free(n1->dei_data, M_BUS);
496 	free(n1, M_BUS);
497 	return (rv);
498 }
499 
500 static	int
501 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
502 {
503 	switch (cmd) {
504 
505 	case FIONBIO:
506 		if (*(int*)data)
507 			devsoftc.nonblock = 1;
508 		else
509 			devsoftc.nonblock = 0;
510 		return (0);
511 	case FIOASYNC:
512 		if (*(int*)data)
513 			devsoftc.async = 1;
514 		else
515 			devsoftc.async = 0;
516 		return (0);
517 	case FIOSETOWN:
518 		return fsetown(*(int *)data, &devsoftc.sigio);
519 	case FIOGETOWN:
520 		*(int *)data = fgetown(&devsoftc.sigio);
521 		return (0);
522 
523 		/* (un)Support for other fcntl() calls. */
524 	case FIOCLEX:
525 	case FIONCLEX:
526 	case FIONREAD:
527 	default:
528 		break;
529 	}
530 	return (ENOTTY);
531 }
532 
533 static	int
534 devpoll(struct cdev *dev, int events, struct thread *td)
535 {
536 	int	revents = 0;
537 
538 	mtx_lock(&devsoftc.mtx);
539 	if (events & (POLLIN | POLLRDNORM)) {
540 		if (!TAILQ_EMPTY(&devsoftc.devq))
541 			revents = events & (POLLIN | POLLRDNORM);
542 		else
543 			selrecord(td, &devsoftc.sel);
544 	}
545 	mtx_unlock(&devsoftc.mtx);
546 
547 	return (revents);
548 }
549 
550 static int
551 devkqfilter(struct cdev *dev, struct knote *kn)
552 {
553 	int error;
554 
555 	if (kn->kn_filter == EVFILT_READ) {
556 		kn->kn_fop = &devctl_rfiltops;
557 		knlist_add(&devsoftc.sel.si_note, kn, 0);
558 		error = 0;
559 	} else
560 		error = EINVAL;
561 	return (error);
562 }
563 
564 static void
565 filt_devctl_detach(struct knote *kn)
566 {
567 
568 	knlist_remove(&devsoftc.sel.si_note, kn, 0);
569 }
570 
571 static int
572 filt_devctl_read(struct knote *kn, long hint)
573 {
574 	kn->kn_data = devsoftc.queued;
575 	return (kn->kn_data != 0);
576 }
577 
578 /**
579  * @brief Return whether the userland process is running
580  */
581 boolean_t
582 devctl_process_running(void)
583 {
584 	return (devsoftc.inuse == 1);
585 }
586 
587 /**
588  * @brief Queue data to be read from the devctl device
589  *
590  * Generic interface to queue data to the devctl device.  It is
591  * assumed that @p data is properly formatted.  It is further assumed
592  * that @p data is allocated using the M_BUS malloc type.
593  */
594 void
595 devctl_queue_data_f(char *data, int flags)
596 {
597 	struct dev_event_info *n1 = NULL, *n2 = NULL;
598 
599 	if (strlen(data) == 0)
600 		goto out;
601 	if (devctl_queue_length == 0)
602 		goto out;
603 	n1 = malloc(sizeof(*n1), M_BUS, flags);
604 	if (n1 == NULL)
605 		goto out;
606 	n1->dei_data = data;
607 	mtx_lock(&devsoftc.mtx);
608 	if (devctl_queue_length == 0) {
609 		mtx_unlock(&devsoftc.mtx);
610 		free(n1->dei_data, M_BUS);
611 		free(n1, M_BUS);
612 		return;
613 	}
614 	/* Leave at least one spot in the queue... */
615 	while (devsoftc.queued > devctl_queue_length - 1) {
616 		n2 = TAILQ_FIRST(&devsoftc.devq);
617 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
618 		free(n2->dei_data, M_BUS);
619 		free(n2, M_BUS);
620 		devsoftc.queued--;
621 	}
622 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
623 	devsoftc.queued++;
624 	cv_broadcast(&devsoftc.cv);
625 	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
626 	mtx_unlock(&devsoftc.mtx);
627 	selwakeup(&devsoftc.sel);
628 	if (devsoftc.async && devsoftc.sigio != NULL)
629 		pgsigio(&devsoftc.sigio, SIGIO, 0);
630 	return;
631 out:
632 	/*
633 	 * We have to free data on all error paths since the caller
634 	 * assumes it will be free'd when this item is dequeued.
635 	 */
636 	free(data, M_BUS);
637 	return;
638 }
639 
640 void
641 devctl_queue_data(char *data)
642 {
643 
644 	devctl_queue_data_f(data, M_NOWAIT);
645 }
646 
647 /**
648  * @brief Send a 'notification' to userland, using standard ways
649  */
650 void
651 devctl_notify_f(const char *system, const char *subsystem, const char *type,
652     const char *data, int flags)
653 {
654 	int len = 0;
655 	char *msg;
656 
657 	if (system == NULL)
658 		return;		/* BOGUS!  Must specify system. */
659 	if (subsystem == NULL)
660 		return;		/* BOGUS!  Must specify subsystem. */
661 	if (type == NULL)
662 		return;		/* BOGUS!  Must specify type. */
663 	len += strlen(" system=") + strlen(system);
664 	len += strlen(" subsystem=") + strlen(subsystem);
665 	len += strlen(" type=") + strlen(type);
666 	/* add in the data message plus newline. */
667 	if (data != NULL)
668 		len += strlen(data);
669 	len += 3;	/* '!', '\n', and NUL */
670 	msg = malloc(len, M_BUS, flags);
671 	if (msg == NULL)
672 		return;		/* Drop it on the floor */
673 	if (data != NULL)
674 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
675 		    system, subsystem, type, data);
676 	else
677 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
678 		    system, subsystem, type);
679 	devctl_queue_data_f(msg, flags);
680 }
681 
682 void
683 devctl_notify(const char *system, const char *subsystem, const char *type,
684     const char *data)
685 {
686 
687 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
688 }
689 
690 /*
691  * Common routine that tries to make sending messages as easy as possible.
692  * We allocate memory for the data, copy strings into that, but do not
693  * free it unless there's an error.  The dequeue part of the driver should
694  * free the data.  We don't send data when the device is disabled.  We do
695  * send data, even when we have no listeners, because we wish to avoid
696  * races relating to startup and restart of listening applications.
697  *
698  * devaddq is designed to string together the type of event, with the
699  * object of that event, plus the plug and play info and location info
700  * for that event.  This is likely most useful for devices, but less
701  * useful for other consumers of this interface.  Those should use
702  * the devctl_queue_data() interface instead.
703  */
704 static void
705 devaddq(const char *type, const char *what, device_t dev)
706 {
707 	char *data = NULL;
708 	char *loc = NULL;
709 	char *pnp = NULL;
710 	const char *parstr;
711 
712 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
713 		return;
714 	data = malloc(1024, M_BUS, M_NOWAIT);
715 	if (data == NULL)
716 		goto bad;
717 
718 	/* get the bus specific location of this device */
719 	loc = malloc(1024, M_BUS, M_NOWAIT);
720 	if (loc == NULL)
721 		goto bad;
722 	*loc = '\0';
723 	bus_child_location_str(dev, loc, 1024);
724 
725 	/* Get the bus specific pnp info of this device */
726 	pnp = malloc(1024, M_BUS, M_NOWAIT);
727 	if (pnp == NULL)
728 		goto bad;
729 	*pnp = '\0';
730 	bus_child_pnpinfo_str(dev, pnp, 1024);
731 
732 	/* Get the parent of this device, or / if high enough in the tree. */
733 	if (device_get_parent(dev) == NULL)
734 		parstr = ".";	/* Or '/' ? */
735 	else
736 		parstr = device_get_nameunit(device_get_parent(dev));
737 	/* String it all together. */
738 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
739 	  parstr);
740 	free(loc, M_BUS);
741 	free(pnp, M_BUS);
742 	devctl_queue_data(data);
743 	return;
744 bad:
745 	free(pnp, M_BUS);
746 	free(loc, M_BUS);
747 	free(data, M_BUS);
748 	return;
749 }
750 
751 /*
752  * A device was added to the tree.  We are called just after it successfully
753  * attaches (that is, probe and attach success for this device).  No call
754  * is made if a device is merely parented into the tree.  See devnomatch
755  * if probe fails.  If attach fails, no notification is sent (but maybe
756  * we should have a different message for this).
757  */
758 static void
759 devadded(device_t dev)
760 {
761 	devaddq("+", device_get_nameunit(dev), dev);
762 }
763 
764 /*
765  * A device was removed from the tree.  We are called just before this
766  * happens.
767  */
768 static void
769 devremoved(device_t dev)
770 {
771 	devaddq("-", device_get_nameunit(dev), dev);
772 }
773 
774 /*
775  * Called when there's no match for this device.  This is only called
776  * the first time that no match happens, so we don't keep getting this
777  * message.  Should that prove to be undesirable, we can change it.
778  * This is called when all drivers that can attach to a given bus
779  * decline to accept this device.  Other errors may not be detected.
780  */
781 static void
782 devnomatch(device_t dev)
783 {
784 	devaddq("?", "", dev);
785 }
786 
787 static int
788 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
789 {
790 	struct dev_event_info *n1;
791 	int dis, error;
792 
793 	dis = (devctl_queue_length == 0);
794 	error = sysctl_handle_int(oidp, &dis, 0, req);
795 	if (error || !req->newptr)
796 		return (error);
797 	if (mtx_initialized(&devsoftc.mtx))
798 		mtx_lock(&devsoftc.mtx);
799 	if (dis) {
800 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
801 			n1 = TAILQ_FIRST(&devsoftc.devq);
802 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
803 			free(n1->dei_data, M_BUS);
804 			free(n1, M_BUS);
805 		}
806 		devsoftc.queued = 0;
807 		devctl_queue_length = 0;
808 	} else {
809 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
810 	}
811 	if (mtx_initialized(&devsoftc.mtx))
812 		mtx_unlock(&devsoftc.mtx);
813 	return (0);
814 }
815 
816 static int
817 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
818 {
819 	struct dev_event_info *n1;
820 	int q, error;
821 
822 	q = devctl_queue_length;
823 	error = sysctl_handle_int(oidp, &q, 0, req);
824 	if (error || !req->newptr)
825 		return (error);
826 	if (q < 0)
827 		return (EINVAL);
828 	if (mtx_initialized(&devsoftc.mtx))
829 		mtx_lock(&devsoftc.mtx);
830 	devctl_queue_length = q;
831 	while (devsoftc.queued > devctl_queue_length) {
832 		n1 = TAILQ_FIRST(&devsoftc.devq);
833 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
834 		free(n1->dei_data, M_BUS);
835 		free(n1, M_BUS);
836 		devsoftc.queued--;
837 	}
838 	if (mtx_initialized(&devsoftc.mtx))
839 		mtx_unlock(&devsoftc.mtx);
840 	return (0);
841 }
842 
843 /**
844  * @brief safely quotes strings that might have double quotes in them.
845  *
846  * The devctl protocol relies on quoted strings having matching quotes.
847  * This routine quotes any internal quotes so the resulting string
848  * is safe to pass to snprintf to construct, for example pnp info strings.
849  * Strings are always terminated with a NUL, but may be truncated if longer
850  * than @p len bytes after quotes.
851  *
852  * @param dst	Buffer to hold the string. Must be at least @p len bytes long
853  * @param src	Original buffer.
854  * @param len	Length of buffer pointed to by @dst, including trailing NUL
855  */
856 void
857 devctl_safe_quote(char *dst, const char *src, size_t len)
858 {
859 	char *walker = dst, *ep = dst + len - 1;
860 
861 	if (len == 0)
862 		return;
863 	while (src != NULL && walker < ep)
864 	{
865 		if (*src == '"') {
866 			if (ep - walker < 2)
867 				break;
868 			*walker++ = '\\';
869 		}
870 		*walker++ = *src++;
871 	}
872 	*walker = '\0';
873 }
874 
875 /* End of /dev/devctl code */
876 
877 static TAILQ_HEAD(,device)	bus_data_devices;
878 static int bus_data_generation = 1;
879 
880 static kobj_method_t null_methods[] = {
881 	KOBJMETHOD_END
882 };
883 
884 DEFINE_CLASS(null, null_methods, 0);
885 
886 /*
887  * Bus pass implementation
888  */
889 
890 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
891 int bus_current_pass = BUS_PASS_ROOT;
892 
893 /**
894  * @internal
895  * @brief Register the pass level of a new driver attachment
896  *
897  * Register a new driver attachment's pass level.  If no driver
898  * attachment with the same pass level has been added, then @p new
899  * will be added to the global passes list.
900  *
901  * @param new		the new driver attachment
902  */
903 static void
904 driver_register_pass(struct driverlink *new)
905 {
906 	struct driverlink *dl;
907 
908 	/* We only consider pass numbers during boot. */
909 	if (bus_current_pass == BUS_PASS_DEFAULT)
910 		return;
911 
912 	/*
913 	 * Walk the passes list.  If we already know about this pass
914 	 * then there is nothing to do.  If we don't, then insert this
915 	 * driver link into the list.
916 	 */
917 	TAILQ_FOREACH(dl, &passes, passlink) {
918 		if (dl->pass < new->pass)
919 			continue;
920 		if (dl->pass == new->pass)
921 			return;
922 		TAILQ_INSERT_BEFORE(dl, new, passlink);
923 		return;
924 	}
925 	TAILQ_INSERT_TAIL(&passes, new, passlink);
926 }
927 
928 /**
929  * @brief Raise the current bus pass
930  *
931  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
932  * method on the root bus to kick off a new device tree scan for each
933  * new pass level that has at least one driver.
934  */
935 void
936 bus_set_pass(int pass)
937 {
938 	struct driverlink *dl;
939 
940 	if (bus_current_pass > pass)
941 		panic("Attempt to lower bus pass level");
942 
943 	TAILQ_FOREACH(dl, &passes, passlink) {
944 		/* Skip pass values below the current pass level. */
945 		if (dl->pass <= bus_current_pass)
946 			continue;
947 
948 		/*
949 		 * Bail once we hit a driver with a pass level that is
950 		 * too high.
951 		 */
952 		if (dl->pass > pass)
953 			break;
954 
955 		/*
956 		 * Raise the pass level to the next level and rescan
957 		 * the tree.
958 		 */
959 		bus_current_pass = dl->pass;
960 		BUS_NEW_PASS(root_bus);
961 	}
962 
963 	/*
964 	 * If there isn't a driver registered for the requested pass,
965 	 * then bus_current_pass might still be less than 'pass'.  Set
966 	 * it to 'pass' in that case.
967 	 */
968 	if (bus_current_pass < pass)
969 		bus_current_pass = pass;
970 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
971 }
972 
973 /*
974  * Devclass implementation
975  */
976 
977 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
978 
979 /**
980  * @internal
981  * @brief Find or create a device class
982  *
983  * If a device class with the name @p classname exists, return it,
984  * otherwise if @p create is non-zero create and return a new device
985  * class.
986  *
987  * If @p parentname is non-NULL, the parent of the devclass is set to
988  * the devclass of that name.
989  *
990  * @param classname	the devclass name to find or create
991  * @param parentname	the parent devclass name or @c NULL
992  * @param create	non-zero to create a devclass
993  */
994 static devclass_t
995 devclass_find_internal(const char *classname, const char *parentname,
996 		       int create)
997 {
998 	devclass_t dc;
999 
1000 	PDEBUG(("looking for %s", classname));
1001 	if (!classname)
1002 		return (NULL);
1003 
1004 	TAILQ_FOREACH(dc, &devclasses, link) {
1005 		if (!strcmp(dc->name, classname))
1006 			break;
1007 	}
1008 
1009 	if (create && !dc) {
1010 		PDEBUG(("creating %s", classname));
1011 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
1012 		    M_BUS, M_NOWAIT | M_ZERO);
1013 		if (!dc)
1014 			return (NULL);
1015 		dc->parent = NULL;
1016 		dc->name = (char*) (dc + 1);
1017 		strcpy(dc->name, classname);
1018 		TAILQ_INIT(&dc->drivers);
1019 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
1020 
1021 		bus_data_generation_update();
1022 	}
1023 
1024 	/*
1025 	 * If a parent class is specified, then set that as our parent so
1026 	 * that this devclass will support drivers for the parent class as
1027 	 * well.  If the parent class has the same name don't do this though
1028 	 * as it creates a cycle that can trigger an infinite loop in
1029 	 * device_probe_child() if a device exists for which there is no
1030 	 * suitable driver.
1031 	 */
1032 	if (parentname && dc && !dc->parent &&
1033 	    strcmp(classname, parentname) != 0) {
1034 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1035 		dc->parent->flags |= DC_HAS_CHILDREN;
1036 	}
1037 
1038 	return (dc);
1039 }
1040 
1041 /**
1042  * @brief Create a device class
1043  *
1044  * If a device class with the name @p classname exists, return it,
1045  * otherwise create and return a new device class.
1046  *
1047  * @param classname	the devclass name to find or create
1048  */
1049 devclass_t
1050 devclass_create(const char *classname)
1051 {
1052 	return (devclass_find_internal(classname, NULL, TRUE));
1053 }
1054 
1055 /**
1056  * @brief Find a device class
1057  *
1058  * If a device class with the name @p classname exists, return it,
1059  * otherwise return @c NULL.
1060  *
1061  * @param classname	the devclass name to find
1062  */
1063 devclass_t
1064 devclass_find(const char *classname)
1065 {
1066 	return (devclass_find_internal(classname, NULL, FALSE));
1067 }
1068 
1069 /**
1070  * @brief Register that a device driver has been added to a devclass
1071  *
1072  * Register that a device driver has been added to a devclass.  This
1073  * is called by devclass_add_driver to accomplish the recursive
1074  * notification of all the children classes of dc, as well as dc.
1075  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1076  * the devclass.
1077  *
1078  * We do a full search here of the devclass list at each iteration
1079  * level to save storing children-lists in the devclass structure.  If
1080  * we ever move beyond a few dozen devices doing this, we may need to
1081  * reevaluate...
1082  *
1083  * @param dc		the devclass to edit
1084  * @param driver	the driver that was just added
1085  */
1086 static void
1087 devclass_driver_added(devclass_t dc, driver_t *driver)
1088 {
1089 	devclass_t parent;
1090 	int i;
1091 
1092 	/*
1093 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1094 	 */
1095 	for (i = 0; i < dc->maxunit; i++)
1096 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1097 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1098 
1099 	/*
1100 	 * Walk through the children classes.  Since we only keep a
1101 	 * single parent pointer around, we walk the entire list of
1102 	 * devclasses looking for children.  We set the
1103 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1104 	 * the parent, so we only walk the list for those devclasses
1105 	 * that have children.
1106 	 */
1107 	if (!(dc->flags & DC_HAS_CHILDREN))
1108 		return;
1109 	parent = dc;
1110 	TAILQ_FOREACH(dc, &devclasses, link) {
1111 		if (dc->parent == parent)
1112 			devclass_driver_added(dc, driver);
1113 	}
1114 }
1115 
1116 /**
1117  * @brief Add a device driver to a device class
1118  *
1119  * Add a device driver to a devclass. This is normally called
1120  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1121  * all devices in the devclass will be called to allow them to attempt
1122  * to re-probe any unmatched children.
1123  *
1124  * @param dc		the devclass to edit
1125  * @param driver	the driver to register
1126  */
1127 int
1128 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1129 {
1130 	driverlink_t dl;
1131 	const char *parentname;
1132 
1133 	PDEBUG(("%s", DRIVERNAME(driver)));
1134 
1135 	/* Don't allow invalid pass values. */
1136 	if (pass <= BUS_PASS_ROOT)
1137 		return (EINVAL);
1138 
1139 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1140 	if (!dl)
1141 		return (ENOMEM);
1142 
1143 	/*
1144 	 * Compile the driver's methods. Also increase the reference count
1145 	 * so that the class doesn't get freed when the last instance
1146 	 * goes. This means we can safely use static methods and avoids a
1147 	 * double-free in devclass_delete_driver.
1148 	 */
1149 	kobj_class_compile((kobj_class_t) driver);
1150 
1151 	/*
1152 	 * If the driver has any base classes, make the
1153 	 * devclass inherit from the devclass of the driver's
1154 	 * first base class. This will allow the system to
1155 	 * search for drivers in both devclasses for children
1156 	 * of a device using this driver.
1157 	 */
1158 	if (driver->baseclasses)
1159 		parentname = driver->baseclasses[0]->name;
1160 	else
1161 		parentname = NULL;
1162 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1163 
1164 	dl->driver = driver;
1165 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1166 	driver->refs++;		/* XXX: kobj_mtx */
1167 	dl->pass = pass;
1168 	driver_register_pass(dl);
1169 
1170 	devclass_driver_added(dc, driver);
1171 	bus_data_generation_update();
1172 	return (0);
1173 }
1174 
1175 /**
1176  * @brief Register that a device driver has been deleted from a devclass
1177  *
1178  * Register that a device driver has been removed from a devclass.
1179  * This is called by devclass_delete_driver to accomplish the
1180  * recursive notification of all the children classes of busclass, as
1181  * well as busclass.  Each layer will attempt to detach the driver
1182  * from any devices that are children of the bus's devclass.  The function
1183  * will return an error if a device fails to detach.
1184  *
1185  * We do a full search here of the devclass list at each iteration
1186  * level to save storing children-lists in the devclass structure.  If
1187  * we ever move beyond a few dozen devices doing this, we may need to
1188  * reevaluate...
1189  *
1190  * @param busclass	the devclass of the parent bus
1191  * @param dc		the devclass of the driver being deleted
1192  * @param driver	the driver being deleted
1193  */
1194 static int
1195 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1196 {
1197 	devclass_t parent;
1198 	device_t dev;
1199 	int error, i;
1200 
1201 	/*
1202 	 * Disassociate from any devices.  We iterate through all the
1203 	 * devices in the devclass of the driver and detach any which are
1204 	 * using the driver and which have a parent in the devclass which
1205 	 * we are deleting from.
1206 	 *
1207 	 * Note that since a driver can be in multiple devclasses, we
1208 	 * should not detach devices which are not children of devices in
1209 	 * the affected devclass.
1210 	 */
1211 	for (i = 0; i < dc->maxunit; i++) {
1212 		if (dc->devices[i]) {
1213 			dev = dc->devices[i];
1214 			if (dev->driver == driver && dev->parent &&
1215 			    dev->parent->devclass == busclass) {
1216 				if ((error = device_detach(dev)) != 0)
1217 					return (error);
1218 				BUS_PROBE_NOMATCH(dev->parent, dev);
1219 				devnomatch(dev);
1220 				dev->flags |= DF_DONENOMATCH;
1221 			}
1222 		}
1223 	}
1224 
1225 	/*
1226 	 * Walk through the children classes.  Since we only keep a
1227 	 * single parent pointer around, we walk the entire list of
1228 	 * devclasses looking for children.  We set the
1229 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1230 	 * the parent, so we only walk the list for those devclasses
1231 	 * that have children.
1232 	 */
1233 	if (!(busclass->flags & DC_HAS_CHILDREN))
1234 		return (0);
1235 	parent = busclass;
1236 	TAILQ_FOREACH(busclass, &devclasses, link) {
1237 		if (busclass->parent == parent) {
1238 			error = devclass_driver_deleted(busclass, dc, driver);
1239 			if (error)
1240 				return (error);
1241 		}
1242 	}
1243 	return (0);
1244 }
1245 
1246 /**
1247  * @brief Delete a device driver from a device class
1248  *
1249  * Delete a device driver from a devclass. This is normally called
1250  * automatically by DRIVER_MODULE().
1251  *
1252  * If the driver is currently attached to any devices,
1253  * devclass_delete_driver() will first attempt to detach from each
1254  * device. If one of the detach calls fails, the driver will not be
1255  * deleted.
1256  *
1257  * @param dc		the devclass to edit
1258  * @param driver	the driver to unregister
1259  */
1260 int
1261 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1262 {
1263 	devclass_t dc = devclass_find(driver->name);
1264 	driverlink_t dl;
1265 	int error;
1266 
1267 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1268 
1269 	if (!dc)
1270 		return (0);
1271 
1272 	/*
1273 	 * Find the link structure in the bus' list of drivers.
1274 	 */
1275 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1276 		if (dl->driver == driver)
1277 			break;
1278 	}
1279 
1280 	if (!dl) {
1281 		PDEBUG(("%s not found in %s list", driver->name,
1282 		    busclass->name));
1283 		return (ENOENT);
1284 	}
1285 
1286 	error = devclass_driver_deleted(busclass, dc, driver);
1287 	if (error != 0)
1288 		return (error);
1289 
1290 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1291 	free(dl, M_BUS);
1292 
1293 	/* XXX: kobj_mtx */
1294 	driver->refs--;
1295 	if (driver->refs == 0)
1296 		kobj_class_free((kobj_class_t) driver);
1297 
1298 	bus_data_generation_update();
1299 	return (0);
1300 }
1301 
1302 /**
1303  * @brief Quiesces a set of device drivers from a device class
1304  *
1305  * Quiesce a device driver from a devclass. This is normally called
1306  * automatically by DRIVER_MODULE().
1307  *
1308  * If the driver is currently attached to any devices,
1309  * devclass_quiesece_driver() will first attempt to quiesce each
1310  * device.
1311  *
1312  * @param dc		the devclass to edit
1313  * @param driver	the driver to unregister
1314  */
1315 static int
1316 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1317 {
1318 	devclass_t dc = devclass_find(driver->name);
1319 	driverlink_t dl;
1320 	device_t dev;
1321 	int i;
1322 	int error;
1323 
1324 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1325 
1326 	if (!dc)
1327 		return (0);
1328 
1329 	/*
1330 	 * Find the link structure in the bus' list of drivers.
1331 	 */
1332 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1333 		if (dl->driver == driver)
1334 			break;
1335 	}
1336 
1337 	if (!dl) {
1338 		PDEBUG(("%s not found in %s list", driver->name,
1339 		    busclass->name));
1340 		return (ENOENT);
1341 	}
1342 
1343 	/*
1344 	 * Quiesce all devices.  We iterate through all the devices in
1345 	 * the devclass of the driver and quiesce any which are using
1346 	 * the driver and which have a parent in the devclass which we
1347 	 * are quiescing.
1348 	 *
1349 	 * Note that since a driver can be in multiple devclasses, we
1350 	 * should not quiesce devices which are not children of
1351 	 * devices in the affected devclass.
1352 	 */
1353 	for (i = 0; i < dc->maxunit; i++) {
1354 		if (dc->devices[i]) {
1355 			dev = dc->devices[i];
1356 			if (dev->driver == driver && dev->parent &&
1357 			    dev->parent->devclass == busclass) {
1358 				if ((error = device_quiesce(dev)) != 0)
1359 					return (error);
1360 			}
1361 		}
1362 	}
1363 
1364 	return (0);
1365 }
1366 
1367 /**
1368  * @internal
1369  */
1370 static driverlink_t
1371 devclass_find_driver_internal(devclass_t dc, const char *classname)
1372 {
1373 	driverlink_t dl;
1374 
1375 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1376 
1377 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1378 		if (!strcmp(dl->driver->name, classname))
1379 			return (dl);
1380 	}
1381 
1382 	PDEBUG(("not found"));
1383 	return (NULL);
1384 }
1385 
1386 /**
1387  * @brief Return the name of the devclass
1388  */
1389 const char *
1390 devclass_get_name(devclass_t dc)
1391 {
1392 	return (dc->name);
1393 }
1394 
1395 /**
1396  * @brief Find a device given a unit number
1397  *
1398  * @param dc		the devclass to search
1399  * @param unit		the unit number to search for
1400  *
1401  * @returns		the device with the given unit number or @c
1402  *			NULL if there is no such device
1403  */
1404 device_t
1405 devclass_get_device(devclass_t dc, int unit)
1406 {
1407 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1408 		return (NULL);
1409 	return (dc->devices[unit]);
1410 }
1411 
1412 /**
1413  * @brief Find the softc field of a device given a unit number
1414  *
1415  * @param dc		the devclass to search
1416  * @param unit		the unit number to search for
1417  *
1418  * @returns		the softc field of the device with the given
1419  *			unit number or @c NULL if there is no such
1420  *			device
1421  */
1422 void *
1423 devclass_get_softc(devclass_t dc, int unit)
1424 {
1425 	device_t dev;
1426 
1427 	dev = devclass_get_device(dc, unit);
1428 	if (!dev)
1429 		return (NULL);
1430 
1431 	return (device_get_softc(dev));
1432 }
1433 
1434 /**
1435  * @brief Get a list of devices in the devclass
1436  *
1437  * An array containing a list of all the devices in the given devclass
1438  * is allocated and returned in @p *devlistp. The number of devices
1439  * in the array is returned in @p *devcountp. The caller should free
1440  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1441  *
1442  * @param dc		the devclass to examine
1443  * @param devlistp	points at location for array pointer return
1444  *			value
1445  * @param devcountp	points at location for array size return value
1446  *
1447  * @retval 0		success
1448  * @retval ENOMEM	the array allocation failed
1449  */
1450 int
1451 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1452 {
1453 	int count, i;
1454 	device_t *list;
1455 
1456 	count = devclass_get_count(dc);
1457 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1458 	if (!list)
1459 		return (ENOMEM);
1460 
1461 	count = 0;
1462 	for (i = 0; i < dc->maxunit; i++) {
1463 		if (dc->devices[i]) {
1464 			list[count] = dc->devices[i];
1465 			count++;
1466 		}
1467 	}
1468 
1469 	*devlistp = list;
1470 	*devcountp = count;
1471 
1472 	return (0);
1473 }
1474 
1475 /**
1476  * @brief Get a list of drivers in the devclass
1477  *
1478  * An array containing a list of pointers to all the drivers in the
1479  * given devclass is allocated and returned in @p *listp.  The number
1480  * of drivers in the array is returned in @p *countp. The caller should
1481  * free the array using @c free(p, M_TEMP).
1482  *
1483  * @param dc		the devclass to examine
1484  * @param listp		gives location for array pointer return value
1485  * @param countp	gives location for number of array elements
1486  *			return value
1487  *
1488  * @retval 0		success
1489  * @retval ENOMEM	the array allocation failed
1490  */
1491 int
1492 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1493 {
1494 	driverlink_t dl;
1495 	driver_t **list;
1496 	int count;
1497 
1498 	count = 0;
1499 	TAILQ_FOREACH(dl, &dc->drivers, link)
1500 		count++;
1501 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1502 	if (list == NULL)
1503 		return (ENOMEM);
1504 
1505 	count = 0;
1506 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1507 		list[count] = dl->driver;
1508 		count++;
1509 	}
1510 	*listp = list;
1511 	*countp = count;
1512 
1513 	return (0);
1514 }
1515 
1516 /**
1517  * @brief Get the number of devices in a devclass
1518  *
1519  * @param dc		the devclass to examine
1520  */
1521 int
1522 devclass_get_count(devclass_t dc)
1523 {
1524 	int count, i;
1525 
1526 	count = 0;
1527 	for (i = 0; i < dc->maxunit; i++)
1528 		if (dc->devices[i])
1529 			count++;
1530 	return (count);
1531 }
1532 
1533 /**
1534  * @brief Get the maximum unit number used in a devclass
1535  *
1536  * Note that this is one greater than the highest currently-allocated
1537  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1538  * that not even the devclass has been allocated yet.
1539  *
1540  * @param dc		the devclass to examine
1541  */
1542 int
1543 devclass_get_maxunit(devclass_t dc)
1544 {
1545 	if (dc == NULL)
1546 		return (-1);
1547 	return (dc->maxunit);
1548 }
1549 
1550 /**
1551  * @brief Find a free unit number in a devclass
1552  *
1553  * This function searches for the first unused unit number greater
1554  * that or equal to @p unit.
1555  *
1556  * @param dc		the devclass to examine
1557  * @param unit		the first unit number to check
1558  */
1559 int
1560 devclass_find_free_unit(devclass_t dc, int unit)
1561 {
1562 	if (dc == NULL)
1563 		return (unit);
1564 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1565 		unit++;
1566 	return (unit);
1567 }
1568 
1569 /**
1570  * @brief Set the parent of a devclass
1571  *
1572  * The parent class is normally initialised automatically by
1573  * DRIVER_MODULE().
1574  *
1575  * @param dc		the devclass to edit
1576  * @param pdc		the new parent devclass
1577  */
1578 void
1579 devclass_set_parent(devclass_t dc, devclass_t pdc)
1580 {
1581 	dc->parent = pdc;
1582 }
1583 
1584 /**
1585  * @brief Get the parent of a devclass
1586  *
1587  * @param dc		the devclass to examine
1588  */
1589 devclass_t
1590 devclass_get_parent(devclass_t dc)
1591 {
1592 	return (dc->parent);
1593 }
1594 
1595 struct sysctl_ctx_list *
1596 devclass_get_sysctl_ctx(devclass_t dc)
1597 {
1598 	return (&dc->sysctl_ctx);
1599 }
1600 
1601 struct sysctl_oid *
1602 devclass_get_sysctl_tree(devclass_t dc)
1603 {
1604 	return (dc->sysctl_tree);
1605 }
1606 
1607 /**
1608  * @internal
1609  * @brief Allocate a unit number
1610  *
1611  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1612  * will do). The allocated unit number is returned in @p *unitp.
1613 
1614  * @param dc		the devclass to allocate from
1615  * @param unitp		points at the location for the allocated unit
1616  *			number
1617  *
1618  * @retval 0		success
1619  * @retval EEXIST	the requested unit number is already allocated
1620  * @retval ENOMEM	memory allocation failure
1621  */
1622 static int
1623 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1624 {
1625 	const char *s;
1626 	int unit = *unitp;
1627 
1628 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1629 
1630 	/* Ask the parent bus if it wants to wire this device. */
1631 	if (unit == -1)
1632 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1633 		    &unit);
1634 
1635 	/* If we were given a wired unit number, check for existing device */
1636 	/* XXX imp XXX */
1637 	if (unit != -1) {
1638 		if (unit >= 0 && unit < dc->maxunit &&
1639 		    dc->devices[unit] != NULL) {
1640 			if (bootverbose)
1641 				printf("%s: %s%d already exists; skipping it\n",
1642 				    dc->name, dc->name, *unitp);
1643 			return (EEXIST);
1644 		}
1645 	} else {
1646 		/* Unwired device, find the next available slot for it */
1647 		unit = 0;
1648 		for (unit = 0;; unit++) {
1649 			/* If there is an "at" hint for a unit then skip it. */
1650 			if (resource_string_value(dc->name, unit, "at", &s) ==
1651 			    0)
1652 				continue;
1653 
1654 			/* If this device slot is already in use, skip it. */
1655 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1656 				continue;
1657 
1658 			break;
1659 		}
1660 	}
1661 
1662 	/*
1663 	 * We've selected a unit beyond the length of the table, so let's
1664 	 * extend the table to make room for all units up to and including
1665 	 * this one.
1666 	 */
1667 	if (unit >= dc->maxunit) {
1668 		device_t *newlist, *oldlist;
1669 		int newsize;
1670 
1671 		oldlist = dc->devices;
1672 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1673 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1674 		if (!newlist)
1675 			return (ENOMEM);
1676 		if (oldlist != NULL)
1677 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1678 		bzero(newlist + dc->maxunit,
1679 		    sizeof(device_t) * (newsize - dc->maxunit));
1680 		dc->devices = newlist;
1681 		dc->maxunit = newsize;
1682 		if (oldlist != NULL)
1683 			free(oldlist, M_BUS);
1684 	}
1685 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1686 
1687 	*unitp = unit;
1688 	return (0);
1689 }
1690 
1691 /**
1692  * @internal
1693  * @brief Add a device to a devclass
1694  *
1695  * A unit number is allocated for the device (using the device's
1696  * preferred unit number if any) and the device is registered in the
1697  * devclass. This allows the device to be looked up by its unit
1698  * number, e.g. by decoding a dev_t minor number.
1699  *
1700  * @param dc		the devclass to add to
1701  * @param dev		the device to add
1702  *
1703  * @retval 0		success
1704  * @retval EEXIST	the requested unit number is already allocated
1705  * @retval ENOMEM	memory allocation failure
1706  */
1707 static int
1708 devclass_add_device(devclass_t dc, device_t dev)
1709 {
1710 	int buflen, error;
1711 
1712 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1713 
1714 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1715 	if (buflen < 0)
1716 		return (ENOMEM);
1717 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1718 	if (!dev->nameunit)
1719 		return (ENOMEM);
1720 
1721 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1722 		free(dev->nameunit, M_BUS);
1723 		dev->nameunit = NULL;
1724 		return (error);
1725 	}
1726 	dc->devices[dev->unit] = dev;
1727 	dev->devclass = dc;
1728 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1729 
1730 	return (0);
1731 }
1732 
1733 /**
1734  * @internal
1735  * @brief Delete a device from a devclass
1736  *
1737  * The device is removed from the devclass's device list and its unit
1738  * number is freed.
1739 
1740  * @param dc		the devclass to delete from
1741  * @param dev		the device to delete
1742  *
1743  * @retval 0		success
1744  */
1745 static int
1746 devclass_delete_device(devclass_t dc, device_t dev)
1747 {
1748 	if (!dc || !dev)
1749 		return (0);
1750 
1751 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1752 
1753 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1754 		panic("devclass_delete_device: inconsistent device class");
1755 	dc->devices[dev->unit] = NULL;
1756 	if (dev->flags & DF_WILDCARD)
1757 		dev->unit = -1;
1758 	dev->devclass = NULL;
1759 	free(dev->nameunit, M_BUS);
1760 	dev->nameunit = NULL;
1761 
1762 	return (0);
1763 }
1764 
1765 /**
1766  * @internal
1767  * @brief Make a new device and add it as a child of @p parent
1768  *
1769  * @param parent	the parent of the new device
1770  * @param name		the devclass name of the new device or @c NULL
1771  *			to leave the devclass unspecified
1772  * @parem unit		the unit number of the new device of @c -1 to
1773  *			leave the unit number unspecified
1774  *
1775  * @returns the new device
1776  */
1777 static device_t
1778 make_device(device_t parent, const char *name, int unit)
1779 {
1780 	device_t dev;
1781 	devclass_t dc;
1782 
1783 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1784 
1785 	if (name) {
1786 		dc = devclass_find_internal(name, NULL, TRUE);
1787 		if (!dc) {
1788 			printf("make_device: can't find device class %s\n",
1789 			    name);
1790 			return (NULL);
1791 		}
1792 	} else {
1793 		dc = NULL;
1794 	}
1795 
1796 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1797 	if (!dev)
1798 		return (NULL);
1799 
1800 	dev->parent = parent;
1801 	TAILQ_INIT(&dev->children);
1802 	kobj_init((kobj_t) dev, &null_class);
1803 	dev->driver = NULL;
1804 	dev->devclass = NULL;
1805 	dev->unit = unit;
1806 	dev->nameunit = NULL;
1807 	dev->desc = NULL;
1808 	dev->busy = 0;
1809 	dev->devflags = 0;
1810 	dev->flags = DF_ENABLED;
1811 	dev->order = 0;
1812 	if (unit == -1)
1813 		dev->flags |= DF_WILDCARD;
1814 	if (name) {
1815 		dev->flags |= DF_FIXEDCLASS;
1816 		if (devclass_add_device(dc, dev)) {
1817 			kobj_delete((kobj_t) dev, M_BUS);
1818 			return (NULL);
1819 		}
1820 	}
1821 	dev->ivars = NULL;
1822 	dev->softc = NULL;
1823 
1824 	dev->state = DS_NOTPRESENT;
1825 
1826 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1827 	bus_data_generation_update();
1828 
1829 	return (dev);
1830 }
1831 
1832 /**
1833  * @internal
1834  * @brief Print a description of a device.
1835  */
1836 static int
1837 device_print_child(device_t dev, device_t child)
1838 {
1839 	int retval = 0;
1840 
1841 	if (device_is_alive(child))
1842 		retval += BUS_PRINT_CHILD(dev, child);
1843 	else
1844 		retval += device_printf(child, " not found\n");
1845 
1846 	return (retval);
1847 }
1848 
1849 /**
1850  * @brief Create a new device
1851  *
1852  * This creates a new device and adds it as a child of an existing
1853  * parent device. The new device will be added after the last existing
1854  * child with order zero.
1855  *
1856  * @param dev		the device which will be the parent of the
1857  *			new child device
1858  * @param name		devclass name for new device or @c NULL if not
1859  *			specified
1860  * @param unit		unit number for new device or @c -1 if not
1861  *			specified
1862  *
1863  * @returns		the new device
1864  */
1865 device_t
1866 device_add_child(device_t dev, const char *name, int unit)
1867 {
1868 	return (device_add_child_ordered(dev, 0, name, unit));
1869 }
1870 
1871 /**
1872  * @brief Create a new device
1873  *
1874  * This creates a new device and adds it as a child of an existing
1875  * parent device. The new device will be added after the last existing
1876  * child with the same order.
1877  *
1878  * @param dev		the device which will be the parent of the
1879  *			new child device
1880  * @param order		a value which is used to partially sort the
1881  *			children of @p dev - devices created using
1882  *			lower values of @p order appear first in @p
1883  *			dev's list of children
1884  * @param name		devclass name for new device or @c NULL if not
1885  *			specified
1886  * @param unit		unit number for new device or @c -1 if not
1887  *			specified
1888  *
1889  * @returns		the new device
1890  */
1891 device_t
1892 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1893 {
1894 	device_t child;
1895 	device_t place;
1896 
1897 	PDEBUG(("%s at %s with order %u as unit %d",
1898 	    name, DEVICENAME(dev), order, unit));
1899 	KASSERT(name != NULL || unit == -1,
1900 	    ("child device with wildcard name and specific unit number"));
1901 
1902 	child = make_device(dev, name, unit);
1903 	if (child == NULL)
1904 		return (child);
1905 	child->order = order;
1906 
1907 	TAILQ_FOREACH(place, &dev->children, link) {
1908 		if (place->order > order)
1909 			break;
1910 	}
1911 
1912 	if (place) {
1913 		/*
1914 		 * The device 'place' is the first device whose order is
1915 		 * greater than the new child.
1916 		 */
1917 		TAILQ_INSERT_BEFORE(place, child, link);
1918 	} else {
1919 		/*
1920 		 * The new child's order is greater or equal to the order of
1921 		 * any existing device. Add the child to the tail of the list.
1922 		 */
1923 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1924 	}
1925 
1926 	bus_data_generation_update();
1927 	return (child);
1928 }
1929 
1930 /**
1931  * @brief Delete a device
1932  *
1933  * This function deletes a device along with all of its children. If
1934  * the device currently has a driver attached to it, the device is
1935  * detached first using device_detach().
1936  *
1937  * @param dev		the parent device
1938  * @param child		the device to delete
1939  *
1940  * @retval 0		success
1941  * @retval non-zero	a unit error code describing the error
1942  */
1943 int
1944 device_delete_child(device_t dev, device_t child)
1945 {
1946 	int error;
1947 	device_t grandchild;
1948 
1949 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1950 
1951 	/* remove children first */
1952 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1953 		error = device_delete_child(child, grandchild);
1954 		if (error)
1955 			return (error);
1956 	}
1957 
1958 	if ((error = device_detach(child)) != 0)
1959 		return (error);
1960 	if (child->devclass)
1961 		devclass_delete_device(child->devclass, child);
1962 	if (child->parent)
1963 		BUS_CHILD_DELETED(dev, child);
1964 	TAILQ_REMOVE(&dev->children, child, link);
1965 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1966 	kobj_delete((kobj_t) child, M_BUS);
1967 
1968 	bus_data_generation_update();
1969 	return (0);
1970 }
1971 
1972 /**
1973  * @brief Delete all children devices of the given device, if any.
1974  *
1975  * This function deletes all children devices of the given device, if
1976  * any, using the device_delete_child() function for each device it
1977  * finds. If a child device cannot be deleted, this function will
1978  * return an error code.
1979  *
1980  * @param dev		the parent device
1981  *
1982  * @retval 0		success
1983  * @retval non-zero	a device would not detach
1984  */
1985 int
1986 device_delete_children(device_t dev)
1987 {
1988 	device_t child;
1989 	int error;
1990 
1991 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1992 
1993 	error = 0;
1994 
1995 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1996 		error = device_delete_child(dev, child);
1997 		if (error) {
1998 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1999 			break;
2000 		}
2001 	}
2002 	return (error);
2003 }
2004 
2005 /**
2006  * @brief Find a device given a unit number
2007  *
2008  * This is similar to devclass_get_devices() but only searches for
2009  * devices which have @p dev as a parent.
2010  *
2011  * @param dev		the parent device to search
2012  * @param unit		the unit number to search for.  If the unit is -1,
2013  *			return the first child of @p dev which has name
2014  *			@p classname (that is, the one with the lowest unit.)
2015  *
2016  * @returns		the device with the given unit number or @c
2017  *			NULL if there is no such device
2018  */
2019 device_t
2020 device_find_child(device_t dev, const char *classname, int unit)
2021 {
2022 	devclass_t dc;
2023 	device_t child;
2024 
2025 	dc = devclass_find(classname);
2026 	if (!dc)
2027 		return (NULL);
2028 
2029 	if (unit != -1) {
2030 		child = devclass_get_device(dc, unit);
2031 		if (child && child->parent == dev)
2032 			return (child);
2033 	} else {
2034 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2035 			child = devclass_get_device(dc, unit);
2036 			if (child && child->parent == dev)
2037 				return (child);
2038 		}
2039 	}
2040 	return (NULL);
2041 }
2042 
2043 /**
2044  * @internal
2045  */
2046 static driverlink_t
2047 first_matching_driver(devclass_t dc, device_t dev)
2048 {
2049 	if (dev->devclass)
2050 		return (devclass_find_driver_internal(dc, dev->devclass->name));
2051 	return (TAILQ_FIRST(&dc->drivers));
2052 }
2053 
2054 /**
2055  * @internal
2056  */
2057 static driverlink_t
2058 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2059 {
2060 	if (dev->devclass) {
2061 		driverlink_t dl;
2062 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2063 			if (!strcmp(dev->devclass->name, dl->driver->name))
2064 				return (dl);
2065 		return (NULL);
2066 	}
2067 	return (TAILQ_NEXT(last, link));
2068 }
2069 
2070 /**
2071  * @internal
2072  */
2073 int
2074 device_probe_child(device_t dev, device_t child)
2075 {
2076 	devclass_t dc;
2077 	driverlink_t best = NULL;
2078 	driverlink_t dl;
2079 	int result, pri = 0;
2080 	int hasclass = (child->devclass != NULL);
2081 
2082 	GIANT_REQUIRED;
2083 
2084 	dc = dev->devclass;
2085 	if (!dc)
2086 		panic("device_probe_child: parent device has no devclass");
2087 
2088 	/*
2089 	 * If the state is already probed, then return.  However, don't
2090 	 * return if we can rebid this object.
2091 	 */
2092 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2093 		return (0);
2094 
2095 	for (; dc; dc = dc->parent) {
2096 		for (dl = first_matching_driver(dc, child);
2097 		     dl;
2098 		     dl = next_matching_driver(dc, child, dl)) {
2099 			/* If this driver's pass is too high, then ignore it. */
2100 			if (dl->pass > bus_current_pass)
2101 				continue;
2102 
2103 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2104 			result = device_set_driver(child, dl->driver);
2105 			if (result == ENOMEM)
2106 				return (result);
2107 			else if (result != 0)
2108 				continue;
2109 			if (!hasclass) {
2110 				if (device_set_devclass(child,
2111 				    dl->driver->name) != 0) {
2112 					char const * devname =
2113 					    device_get_name(child);
2114 					if (devname == NULL)
2115 						devname = "(unknown)";
2116 					printf("driver bug: Unable to set "
2117 					    "devclass (class: %s "
2118 					    "devname: %s)\n",
2119 					    dl->driver->name,
2120 					    devname);
2121 					(void)device_set_driver(child, NULL);
2122 					continue;
2123 				}
2124 			}
2125 
2126 			/* Fetch any flags for the device before probing. */
2127 			resource_int_value(dl->driver->name, child->unit,
2128 			    "flags", &child->devflags);
2129 
2130 			result = DEVICE_PROBE(child);
2131 
2132 			/* Reset flags and devclass before the next probe. */
2133 			child->devflags = 0;
2134 			if (!hasclass)
2135 				(void)device_set_devclass(child, NULL);
2136 
2137 			/*
2138 			 * If the driver returns SUCCESS, there can be
2139 			 * no higher match for this device.
2140 			 */
2141 			if (result == 0) {
2142 				best = dl;
2143 				pri = 0;
2144 				break;
2145 			}
2146 
2147 			/*
2148 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2149 			 * only match on devices whose driver was explicitly
2150 			 * specified.
2151 			 */
2152 			if (result <= BUS_PROBE_NOWILDCARD &&
2153 			    !(child->flags & DF_FIXEDCLASS)) {
2154 				result = ENXIO;
2155 			}
2156 
2157 			/*
2158 			 * The driver returned an error so it
2159 			 * certainly doesn't match.
2160 			 */
2161 			if (result > 0) {
2162 				(void)device_set_driver(child, NULL);
2163 				continue;
2164 			}
2165 
2166 			/*
2167 			 * A priority lower than SUCCESS, remember the
2168 			 * best matching driver. Initialise the value
2169 			 * of pri for the first match.
2170 			 */
2171 			if (best == NULL || result > pri) {
2172 				best = dl;
2173 				pri = result;
2174 				continue;
2175 			}
2176 		}
2177 		/*
2178 		 * If we have an unambiguous match in this devclass,
2179 		 * don't look in the parent.
2180 		 */
2181 		if (best && pri == 0)
2182 			break;
2183 	}
2184 
2185 	/*
2186 	 * If we found a driver, change state and initialise the devclass.
2187 	 */
2188 	/* XXX What happens if we rebid and got no best? */
2189 	if (best) {
2190 		/*
2191 		 * If this device was attached, and we were asked to
2192 		 * rescan, and it is a different driver, then we have
2193 		 * to detach the old driver and reattach this new one.
2194 		 * Note, we don't have to check for DF_REBID here
2195 		 * because if the state is > DS_ALIVE, we know it must
2196 		 * be.
2197 		 *
2198 		 * This assumes that all DF_REBID drivers can have
2199 		 * their probe routine called at any time and that
2200 		 * they are idempotent as well as completely benign in
2201 		 * normal operations.
2202 		 *
2203 		 * We also have to make sure that the detach
2204 		 * succeeded, otherwise we fail the operation (or
2205 		 * maybe it should just fail silently?  I'm torn).
2206 		 */
2207 		if (child->state > DS_ALIVE && best->driver != child->driver)
2208 			if ((result = device_detach(dev)) != 0)
2209 				return (result);
2210 
2211 		/* Set the winning driver, devclass, and flags. */
2212 		if (!child->devclass) {
2213 			result = device_set_devclass(child, best->driver->name);
2214 			if (result != 0)
2215 				return (result);
2216 		}
2217 		result = device_set_driver(child, best->driver);
2218 		if (result != 0)
2219 			return (result);
2220 		resource_int_value(best->driver->name, child->unit,
2221 		    "flags", &child->devflags);
2222 
2223 		if (pri < 0) {
2224 			/*
2225 			 * A bit bogus. Call the probe method again to make
2226 			 * sure that we have the right description.
2227 			 */
2228 			DEVICE_PROBE(child);
2229 #if 0
2230 			child->flags |= DF_REBID;
2231 #endif
2232 		} else
2233 			child->flags &= ~DF_REBID;
2234 		child->state = DS_ALIVE;
2235 
2236 		bus_data_generation_update();
2237 		return (0);
2238 	}
2239 
2240 	return (ENXIO);
2241 }
2242 
2243 /**
2244  * @brief Return the parent of a device
2245  */
2246 device_t
2247 device_get_parent(device_t dev)
2248 {
2249 	return (dev->parent);
2250 }
2251 
2252 /**
2253  * @brief Get a list of children of a device
2254  *
2255  * An array containing a list of all the children of the given device
2256  * is allocated and returned in @p *devlistp. The number of devices
2257  * in the array is returned in @p *devcountp. The caller should free
2258  * the array using @c free(p, M_TEMP).
2259  *
2260  * @param dev		the device to examine
2261  * @param devlistp	points at location for array pointer return
2262  *			value
2263  * @param devcountp	points at location for array size return value
2264  *
2265  * @retval 0		success
2266  * @retval ENOMEM	the array allocation failed
2267  */
2268 int
2269 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2270 {
2271 	int count;
2272 	device_t child;
2273 	device_t *list;
2274 
2275 	count = 0;
2276 	TAILQ_FOREACH(child, &dev->children, link) {
2277 		count++;
2278 	}
2279 	if (count == 0) {
2280 		*devlistp = NULL;
2281 		*devcountp = 0;
2282 		return (0);
2283 	}
2284 
2285 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2286 	if (!list)
2287 		return (ENOMEM);
2288 
2289 	count = 0;
2290 	TAILQ_FOREACH(child, &dev->children, link) {
2291 		list[count] = child;
2292 		count++;
2293 	}
2294 
2295 	*devlistp = list;
2296 	*devcountp = count;
2297 
2298 	return (0);
2299 }
2300 
2301 /**
2302  * @brief Return the current driver for the device or @c NULL if there
2303  * is no driver currently attached
2304  */
2305 driver_t *
2306 device_get_driver(device_t dev)
2307 {
2308 	return (dev->driver);
2309 }
2310 
2311 /**
2312  * @brief Return the current devclass for the device or @c NULL if
2313  * there is none.
2314  */
2315 devclass_t
2316 device_get_devclass(device_t dev)
2317 {
2318 	return (dev->devclass);
2319 }
2320 
2321 /**
2322  * @brief Return the name of the device's devclass or @c NULL if there
2323  * is none.
2324  */
2325 const char *
2326 device_get_name(device_t dev)
2327 {
2328 	if (dev != NULL && dev->devclass)
2329 		return (devclass_get_name(dev->devclass));
2330 	return (NULL);
2331 }
2332 
2333 /**
2334  * @brief Return a string containing the device's devclass name
2335  * followed by an ascii representation of the device's unit number
2336  * (e.g. @c "foo2").
2337  */
2338 const char *
2339 device_get_nameunit(device_t dev)
2340 {
2341 	return (dev->nameunit);
2342 }
2343 
2344 /**
2345  * @brief Return the device's unit number.
2346  */
2347 int
2348 device_get_unit(device_t dev)
2349 {
2350 	return (dev->unit);
2351 }
2352 
2353 /**
2354  * @brief Return the device's description string
2355  */
2356 const char *
2357 device_get_desc(device_t dev)
2358 {
2359 	return (dev->desc);
2360 }
2361 
2362 /**
2363  * @brief Return the device's flags
2364  */
2365 uint32_t
2366 device_get_flags(device_t dev)
2367 {
2368 	return (dev->devflags);
2369 }
2370 
2371 struct sysctl_ctx_list *
2372 device_get_sysctl_ctx(device_t dev)
2373 {
2374 	return (&dev->sysctl_ctx);
2375 }
2376 
2377 struct sysctl_oid *
2378 device_get_sysctl_tree(device_t dev)
2379 {
2380 	return (dev->sysctl_tree);
2381 }
2382 
2383 /**
2384  * @brief Print the name of the device followed by a colon and a space
2385  *
2386  * @returns the number of characters printed
2387  */
2388 int
2389 device_print_prettyname(device_t dev)
2390 {
2391 	const char *name = device_get_name(dev);
2392 
2393 	if (name == NULL)
2394 		return (printf("unknown: "));
2395 	return (printf("%s%d: ", name, device_get_unit(dev)));
2396 }
2397 
2398 /**
2399  * @brief Print the name of the device followed by a colon, a space
2400  * and the result of calling vprintf() with the value of @p fmt and
2401  * the following arguments.
2402  *
2403  * @returns the number of characters printed
2404  */
2405 int
2406 device_printf(device_t dev, const char * fmt, ...)
2407 {
2408 	va_list ap;
2409 	int retval;
2410 
2411 	retval = device_print_prettyname(dev);
2412 	va_start(ap, fmt);
2413 	retval += vprintf(fmt, ap);
2414 	va_end(ap);
2415 	return (retval);
2416 }
2417 
2418 /**
2419  * @internal
2420  */
2421 static void
2422 device_set_desc_internal(device_t dev, const char* desc, int copy)
2423 {
2424 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2425 		free(dev->desc, M_BUS);
2426 		dev->flags &= ~DF_DESCMALLOCED;
2427 		dev->desc = NULL;
2428 	}
2429 
2430 	if (copy && desc) {
2431 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2432 		if (dev->desc) {
2433 			strcpy(dev->desc, desc);
2434 			dev->flags |= DF_DESCMALLOCED;
2435 		}
2436 	} else {
2437 		/* Avoid a -Wcast-qual warning */
2438 		dev->desc = (char *)(uintptr_t) desc;
2439 	}
2440 
2441 	bus_data_generation_update();
2442 }
2443 
2444 /**
2445  * @brief Set the device's description
2446  *
2447  * The value of @c desc should be a string constant that will not
2448  * change (at least until the description is changed in a subsequent
2449  * call to device_set_desc() or device_set_desc_copy()).
2450  */
2451 void
2452 device_set_desc(device_t dev, const char* desc)
2453 {
2454 	device_set_desc_internal(dev, desc, FALSE);
2455 }
2456 
2457 /**
2458  * @brief Set the device's description
2459  *
2460  * The string pointed to by @c desc is copied. Use this function if
2461  * the device description is generated, (e.g. with sprintf()).
2462  */
2463 void
2464 device_set_desc_copy(device_t dev, const char* desc)
2465 {
2466 	device_set_desc_internal(dev, desc, TRUE);
2467 }
2468 
2469 /**
2470  * @brief Set the device's flags
2471  */
2472 void
2473 device_set_flags(device_t dev, uint32_t flags)
2474 {
2475 	dev->devflags = flags;
2476 }
2477 
2478 /**
2479  * @brief Return the device's softc field
2480  *
2481  * The softc is allocated and zeroed when a driver is attached, based
2482  * on the size field of the driver.
2483  */
2484 void *
2485 device_get_softc(device_t dev)
2486 {
2487 	return (dev->softc);
2488 }
2489 
2490 /**
2491  * @brief Set the device's softc field
2492  *
2493  * Most drivers do not need to use this since the softc is allocated
2494  * automatically when the driver is attached.
2495  */
2496 void
2497 device_set_softc(device_t dev, void *softc)
2498 {
2499 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2500 		free(dev->softc, M_BUS_SC);
2501 	dev->softc = softc;
2502 	if (dev->softc)
2503 		dev->flags |= DF_EXTERNALSOFTC;
2504 	else
2505 		dev->flags &= ~DF_EXTERNALSOFTC;
2506 }
2507 
2508 /**
2509  * @brief Free claimed softc
2510  *
2511  * Most drivers do not need to use this since the softc is freed
2512  * automatically when the driver is detached.
2513  */
2514 void
2515 device_free_softc(void *softc)
2516 {
2517 	free(softc, M_BUS_SC);
2518 }
2519 
2520 /**
2521  * @brief Claim softc
2522  *
2523  * This function can be used to let the driver free the automatically
2524  * allocated softc using "device_free_softc()". This function is
2525  * useful when the driver is refcounting the softc and the softc
2526  * cannot be freed when the "device_detach" method is called.
2527  */
2528 void
2529 device_claim_softc(device_t dev)
2530 {
2531 	if (dev->softc)
2532 		dev->flags |= DF_EXTERNALSOFTC;
2533 	else
2534 		dev->flags &= ~DF_EXTERNALSOFTC;
2535 }
2536 
2537 /**
2538  * @brief Get the device's ivars field
2539  *
2540  * The ivars field is used by the parent device to store per-device
2541  * state (e.g. the physical location of the device or a list of
2542  * resources).
2543  */
2544 void *
2545 device_get_ivars(device_t dev)
2546 {
2547 
2548 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2549 	return (dev->ivars);
2550 }
2551 
2552 /**
2553  * @brief Set the device's ivars field
2554  */
2555 void
2556 device_set_ivars(device_t dev, void * ivars)
2557 {
2558 
2559 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2560 	dev->ivars = ivars;
2561 }
2562 
2563 /**
2564  * @brief Return the device's state
2565  */
2566 device_state_t
2567 device_get_state(device_t dev)
2568 {
2569 	return (dev->state);
2570 }
2571 
2572 /**
2573  * @brief Set the DF_ENABLED flag for the device
2574  */
2575 void
2576 device_enable(device_t dev)
2577 {
2578 	dev->flags |= DF_ENABLED;
2579 }
2580 
2581 /**
2582  * @brief Clear the DF_ENABLED flag for the device
2583  */
2584 void
2585 device_disable(device_t dev)
2586 {
2587 	dev->flags &= ~DF_ENABLED;
2588 }
2589 
2590 /**
2591  * @brief Increment the busy counter for the device
2592  */
2593 void
2594 device_busy(device_t dev)
2595 {
2596 	if (dev->state < DS_ATTACHING)
2597 		panic("device_busy: called for unattached device");
2598 	if (dev->busy == 0 && dev->parent)
2599 		device_busy(dev->parent);
2600 	dev->busy++;
2601 	if (dev->state == DS_ATTACHED)
2602 		dev->state = DS_BUSY;
2603 }
2604 
2605 /**
2606  * @brief Decrement the busy counter for the device
2607  */
2608 void
2609 device_unbusy(device_t dev)
2610 {
2611 	if (dev->busy != 0 && dev->state != DS_BUSY &&
2612 	    dev->state != DS_ATTACHING)
2613 		panic("device_unbusy: called for non-busy device %s",
2614 		    device_get_nameunit(dev));
2615 	dev->busy--;
2616 	if (dev->busy == 0) {
2617 		if (dev->parent)
2618 			device_unbusy(dev->parent);
2619 		if (dev->state == DS_BUSY)
2620 			dev->state = DS_ATTACHED;
2621 	}
2622 }
2623 
2624 /**
2625  * @brief Set the DF_QUIET flag for the device
2626  */
2627 void
2628 device_quiet(device_t dev)
2629 {
2630 	dev->flags |= DF_QUIET;
2631 }
2632 
2633 /**
2634  * @brief Clear the DF_QUIET flag for the device
2635  */
2636 void
2637 device_verbose(device_t dev)
2638 {
2639 	dev->flags &= ~DF_QUIET;
2640 }
2641 
2642 /**
2643  * @brief Return non-zero if the DF_QUIET flag is set on the device
2644  */
2645 int
2646 device_is_quiet(device_t dev)
2647 {
2648 	return ((dev->flags & DF_QUIET) != 0);
2649 }
2650 
2651 /**
2652  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2653  */
2654 int
2655 device_is_enabled(device_t dev)
2656 {
2657 	return ((dev->flags & DF_ENABLED) != 0);
2658 }
2659 
2660 /**
2661  * @brief Return non-zero if the device was successfully probed
2662  */
2663 int
2664 device_is_alive(device_t dev)
2665 {
2666 	return (dev->state >= DS_ALIVE);
2667 }
2668 
2669 /**
2670  * @brief Return non-zero if the device currently has a driver
2671  * attached to it
2672  */
2673 int
2674 device_is_attached(device_t dev)
2675 {
2676 	return (dev->state >= DS_ATTACHED);
2677 }
2678 
2679 /**
2680  * @brief Return non-zero if the device is currently suspended.
2681  */
2682 int
2683 device_is_suspended(device_t dev)
2684 {
2685 	return ((dev->flags & DF_SUSPENDED) != 0);
2686 }
2687 
2688 /**
2689  * @brief Set the devclass of a device
2690  * @see devclass_add_device().
2691  */
2692 int
2693 device_set_devclass(device_t dev, const char *classname)
2694 {
2695 	devclass_t dc;
2696 	int error;
2697 
2698 	if (!classname) {
2699 		if (dev->devclass)
2700 			devclass_delete_device(dev->devclass, dev);
2701 		return (0);
2702 	}
2703 
2704 	if (dev->devclass) {
2705 		printf("device_set_devclass: device class already set\n");
2706 		return (EINVAL);
2707 	}
2708 
2709 	dc = devclass_find_internal(classname, NULL, TRUE);
2710 	if (!dc)
2711 		return (ENOMEM);
2712 
2713 	error = devclass_add_device(dc, dev);
2714 
2715 	bus_data_generation_update();
2716 	return (error);
2717 }
2718 
2719 /**
2720  * @brief Set the devclass of a device and mark the devclass fixed.
2721  * @see device_set_devclass()
2722  */
2723 int
2724 device_set_devclass_fixed(device_t dev, const char *classname)
2725 {
2726 	int error;
2727 
2728 	if (classname == NULL)
2729 		return (EINVAL);
2730 
2731 	error = device_set_devclass(dev, classname);
2732 	if (error)
2733 		return (error);
2734 	dev->flags |= DF_FIXEDCLASS;
2735 	return (0);
2736 }
2737 
2738 /**
2739  * @brief Set the driver of a device
2740  *
2741  * @retval 0		success
2742  * @retval EBUSY	the device already has a driver attached
2743  * @retval ENOMEM	a memory allocation failure occurred
2744  */
2745 int
2746 device_set_driver(device_t dev, driver_t *driver)
2747 {
2748 	if (dev->state >= DS_ATTACHED)
2749 		return (EBUSY);
2750 
2751 	if (dev->driver == driver)
2752 		return (0);
2753 
2754 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2755 		free(dev->softc, M_BUS_SC);
2756 		dev->softc = NULL;
2757 	}
2758 	device_set_desc(dev, NULL);
2759 	kobj_delete((kobj_t) dev, NULL);
2760 	dev->driver = driver;
2761 	if (driver) {
2762 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2763 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2764 			dev->softc = malloc(driver->size, M_BUS_SC,
2765 			    M_NOWAIT | M_ZERO);
2766 			if (!dev->softc) {
2767 				kobj_delete((kobj_t) dev, NULL);
2768 				kobj_init((kobj_t) dev, &null_class);
2769 				dev->driver = NULL;
2770 				return (ENOMEM);
2771 			}
2772 		}
2773 	} else {
2774 		kobj_init((kobj_t) dev, &null_class);
2775 	}
2776 
2777 	bus_data_generation_update();
2778 	return (0);
2779 }
2780 
2781 /**
2782  * @brief Probe a device, and return this status.
2783  *
2784  * This function is the core of the device autoconfiguration
2785  * system. Its purpose is to select a suitable driver for a device and
2786  * then call that driver to initialise the hardware appropriately. The
2787  * driver is selected by calling the DEVICE_PROBE() method of a set of
2788  * candidate drivers and then choosing the driver which returned the
2789  * best value. This driver is then attached to the device using
2790  * device_attach().
2791  *
2792  * The set of suitable drivers is taken from the list of drivers in
2793  * the parent device's devclass. If the device was originally created
2794  * with a specific class name (see device_add_child()), only drivers
2795  * with that name are probed, otherwise all drivers in the devclass
2796  * are probed. If no drivers return successful probe values in the
2797  * parent devclass, the search continues in the parent of that
2798  * devclass (see devclass_get_parent()) if any.
2799  *
2800  * @param dev		the device to initialise
2801  *
2802  * @retval 0		success
2803  * @retval ENXIO	no driver was found
2804  * @retval ENOMEM	memory allocation failure
2805  * @retval non-zero	some other unix error code
2806  * @retval -1		Device already attached
2807  */
2808 int
2809 device_probe(device_t dev)
2810 {
2811 	int error;
2812 
2813 	GIANT_REQUIRED;
2814 
2815 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2816 		return (-1);
2817 
2818 	if (!(dev->flags & DF_ENABLED)) {
2819 		if (bootverbose && device_get_name(dev) != NULL) {
2820 			device_print_prettyname(dev);
2821 			printf("not probed (disabled)\n");
2822 		}
2823 		return (-1);
2824 	}
2825 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2826 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2827 		    !(dev->flags & DF_DONENOMATCH)) {
2828 			BUS_PROBE_NOMATCH(dev->parent, dev);
2829 			devnomatch(dev);
2830 			dev->flags |= DF_DONENOMATCH;
2831 		}
2832 		return (error);
2833 	}
2834 	return (0);
2835 }
2836 
2837 /**
2838  * @brief Probe a device and attach a driver if possible
2839  *
2840  * calls device_probe() and attaches if that was successful.
2841  */
2842 int
2843 device_probe_and_attach(device_t dev)
2844 {
2845 	int error;
2846 
2847 	GIANT_REQUIRED;
2848 
2849 	error = device_probe(dev);
2850 	if (error == -1)
2851 		return (0);
2852 	else if (error != 0)
2853 		return (error);
2854 
2855 	CURVNET_SET_QUIET(vnet0);
2856 	error = device_attach(dev);
2857 	CURVNET_RESTORE();
2858 	return error;
2859 }
2860 
2861 /**
2862  * @brief Attach a device driver to a device
2863  *
2864  * This function is a wrapper around the DEVICE_ATTACH() driver
2865  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2866  * device's sysctl tree, optionally prints a description of the device
2867  * and queues a notification event for user-based device management
2868  * services.
2869  *
2870  * Normally this function is only called internally from
2871  * device_probe_and_attach().
2872  *
2873  * @param dev		the device to initialise
2874  *
2875  * @retval 0		success
2876  * @retval ENXIO	no driver was found
2877  * @retval ENOMEM	memory allocation failure
2878  * @retval non-zero	some other unix error code
2879  */
2880 int
2881 device_attach(device_t dev)
2882 {
2883 	uint64_t attachtime;
2884 	int error;
2885 
2886 	if (resource_disabled(dev->driver->name, dev->unit)) {
2887 		device_disable(dev);
2888 		if (bootverbose)
2889 			 device_printf(dev, "disabled via hints entry\n");
2890 		return (ENXIO);
2891 	}
2892 
2893 	device_sysctl_init(dev);
2894 	if (!device_is_quiet(dev))
2895 		device_print_child(dev->parent, dev);
2896 	attachtime = get_cyclecount();
2897 	dev->state = DS_ATTACHING;
2898 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2899 		printf("device_attach: %s%d attach returned %d\n",
2900 		    dev->driver->name, dev->unit, error);
2901 		if (!(dev->flags & DF_FIXEDCLASS))
2902 			devclass_delete_device(dev->devclass, dev);
2903 		(void)device_set_driver(dev, NULL);
2904 		device_sysctl_fini(dev);
2905 		KASSERT(dev->busy == 0, ("attach failed but busy"));
2906 		dev->state = DS_NOTPRESENT;
2907 		return (error);
2908 	}
2909 	attachtime = get_cyclecount() - attachtime;
2910 	/*
2911 	 * 4 bits per device is a reasonable value for desktop and server
2912 	 * hardware with good get_cyclecount() implementations, but WILL
2913 	 * need to be adjusted on other platforms.
2914 	 */
2915 #define	RANDOM_PROBE_BIT_GUESS	4
2916 	if (bootverbose)
2917 		printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n",
2918 		    sizeof(attachtime), RANDOM_PROBE_BIT_GUESS,
2919 		    dev->driver->name, dev->unit);
2920 	random_harvest_direct(&attachtime, sizeof(attachtime),
2921 	    RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH);
2922 	device_sysctl_update(dev);
2923 	if (dev->busy)
2924 		dev->state = DS_BUSY;
2925 	else
2926 		dev->state = DS_ATTACHED;
2927 	dev->flags &= ~DF_DONENOMATCH;
2928 	devadded(dev);
2929 	return (0);
2930 }
2931 
2932 /**
2933  * @brief Detach a driver from a device
2934  *
2935  * This function is a wrapper around the DEVICE_DETACH() driver
2936  * method. If the call to DEVICE_DETACH() succeeds, it calls
2937  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2938  * notification event for user-based device management services and
2939  * cleans up the device's sysctl tree.
2940  *
2941  * @param dev		the device to un-initialise
2942  *
2943  * @retval 0		success
2944  * @retval ENXIO	no driver was found
2945  * @retval ENOMEM	memory allocation failure
2946  * @retval non-zero	some other unix error code
2947  */
2948 int
2949 device_detach(device_t dev)
2950 {
2951 	int error;
2952 
2953 	GIANT_REQUIRED;
2954 
2955 	PDEBUG(("%s", DEVICENAME(dev)));
2956 	if (dev->state == DS_BUSY)
2957 		return (EBUSY);
2958 	if (dev->state != DS_ATTACHED)
2959 		return (0);
2960 
2961 	if ((error = DEVICE_DETACH(dev)) != 0)
2962 		return (error);
2963 	devremoved(dev);
2964 	if (!device_is_quiet(dev))
2965 		device_printf(dev, "detached\n");
2966 	if (dev->parent)
2967 		BUS_CHILD_DETACHED(dev->parent, dev);
2968 
2969 	if (!(dev->flags & DF_FIXEDCLASS))
2970 		devclass_delete_device(dev->devclass, dev);
2971 
2972 	dev->state = DS_NOTPRESENT;
2973 	(void)device_set_driver(dev, NULL);
2974 	device_sysctl_fini(dev);
2975 
2976 	return (0);
2977 }
2978 
2979 /**
2980  * @brief Tells a driver to quiesce itself.
2981  *
2982  * This function is a wrapper around the DEVICE_QUIESCE() driver
2983  * method. If the call to DEVICE_QUIESCE() succeeds.
2984  *
2985  * @param dev		the device to quiesce
2986  *
2987  * @retval 0		success
2988  * @retval ENXIO	no driver was found
2989  * @retval ENOMEM	memory allocation failure
2990  * @retval non-zero	some other unix error code
2991  */
2992 int
2993 device_quiesce(device_t dev)
2994 {
2995 
2996 	PDEBUG(("%s", DEVICENAME(dev)));
2997 	if (dev->state == DS_BUSY)
2998 		return (EBUSY);
2999 	if (dev->state != DS_ATTACHED)
3000 		return (0);
3001 
3002 	return (DEVICE_QUIESCE(dev));
3003 }
3004 
3005 /**
3006  * @brief Notify a device of system shutdown
3007  *
3008  * This function calls the DEVICE_SHUTDOWN() driver method if the
3009  * device currently has an attached driver.
3010  *
3011  * @returns the value returned by DEVICE_SHUTDOWN()
3012  */
3013 int
3014 device_shutdown(device_t dev)
3015 {
3016 	if (dev->state < DS_ATTACHED)
3017 		return (0);
3018 	return (DEVICE_SHUTDOWN(dev));
3019 }
3020 
3021 /**
3022  * @brief Set the unit number of a device
3023  *
3024  * This function can be used to override the unit number used for a
3025  * device (e.g. to wire a device to a pre-configured unit number).
3026  */
3027 int
3028 device_set_unit(device_t dev, int unit)
3029 {
3030 	devclass_t dc;
3031 	int err;
3032 
3033 	dc = device_get_devclass(dev);
3034 	if (unit < dc->maxunit && dc->devices[unit])
3035 		return (EBUSY);
3036 	err = devclass_delete_device(dc, dev);
3037 	if (err)
3038 		return (err);
3039 	dev->unit = unit;
3040 	err = devclass_add_device(dc, dev);
3041 	if (err)
3042 		return (err);
3043 
3044 	bus_data_generation_update();
3045 	return (0);
3046 }
3047 
3048 /*======================================*/
3049 /*
3050  * Some useful method implementations to make life easier for bus drivers.
3051  */
3052 
3053 /**
3054  * @brief Initialise a resource list.
3055  *
3056  * @param rl		the resource list to initialise
3057  */
3058 void
3059 resource_list_init(struct resource_list *rl)
3060 {
3061 	STAILQ_INIT(rl);
3062 }
3063 
3064 /**
3065  * @brief Reclaim memory used by a resource list.
3066  *
3067  * This function frees the memory for all resource entries on the list
3068  * (if any).
3069  *
3070  * @param rl		the resource list to free
3071  */
3072 void
3073 resource_list_free(struct resource_list *rl)
3074 {
3075 	struct resource_list_entry *rle;
3076 
3077 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3078 		if (rle->res)
3079 			panic("resource_list_free: resource entry is busy");
3080 		STAILQ_REMOVE_HEAD(rl, link);
3081 		free(rle, M_BUS);
3082 	}
3083 }
3084 
3085 /**
3086  * @brief Add a resource entry.
3087  *
3088  * This function adds a resource entry using the given @p type, @p
3089  * start, @p end and @p count values. A rid value is chosen by
3090  * searching sequentially for the first unused rid starting at zero.
3091  *
3092  * @param rl		the resource list to edit
3093  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3094  * @param start		the start address of the resource
3095  * @param end		the end address of the resource
3096  * @param count		XXX end-start+1
3097  */
3098 int
3099 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3100     rman_res_t end, rman_res_t count)
3101 {
3102 	int rid;
3103 
3104 	rid = 0;
3105 	while (resource_list_find(rl, type, rid) != NULL)
3106 		rid++;
3107 	resource_list_add(rl, type, rid, start, end, count);
3108 	return (rid);
3109 }
3110 
3111 /**
3112  * @brief Add or modify a resource entry.
3113  *
3114  * If an existing entry exists with the same type and rid, it will be
3115  * modified using the given values of @p start, @p end and @p
3116  * count. If no entry exists, a new one will be created using the
3117  * given values.  The resource list entry that matches is then returned.
3118  *
3119  * @param rl		the resource list to edit
3120  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3121  * @param rid		the resource identifier
3122  * @param start		the start address of the resource
3123  * @param end		the end address of the resource
3124  * @param count		XXX end-start+1
3125  */
3126 struct resource_list_entry *
3127 resource_list_add(struct resource_list *rl, int type, int rid,
3128     rman_res_t start, rman_res_t end, rman_res_t count)
3129 {
3130 	struct resource_list_entry *rle;
3131 
3132 	rle = resource_list_find(rl, type, rid);
3133 	if (!rle) {
3134 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3135 		    M_NOWAIT);
3136 		if (!rle)
3137 			panic("resource_list_add: can't record entry");
3138 		STAILQ_INSERT_TAIL(rl, rle, link);
3139 		rle->type = type;
3140 		rle->rid = rid;
3141 		rle->res = NULL;
3142 		rle->flags = 0;
3143 	}
3144 
3145 	if (rle->res)
3146 		panic("resource_list_add: resource entry is busy");
3147 
3148 	rle->start = start;
3149 	rle->end = end;
3150 	rle->count = count;
3151 	return (rle);
3152 }
3153 
3154 /**
3155  * @brief Determine if a resource entry is busy.
3156  *
3157  * Returns true if a resource entry is busy meaning that it has an
3158  * associated resource that is not an unallocated "reserved" resource.
3159  *
3160  * @param rl		the resource list to search
3161  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3162  * @param rid		the resource identifier
3163  *
3164  * @returns Non-zero if the entry is busy, zero otherwise.
3165  */
3166 int
3167 resource_list_busy(struct resource_list *rl, int type, int rid)
3168 {
3169 	struct resource_list_entry *rle;
3170 
3171 	rle = resource_list_find(rl, type, rid);
3172 	if (rle == NULL || rle->res == NULL)
3173 		return (0);
3174 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3175 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3176 		    ("reserved resource is active"));
3177 		return (0);
3178 	}
3179 	return (1);
3180 }
3181 
3182 /**
3183  * @brief Determine if a resource entry is reserved.
3184  *
3185  * Returns true if a resource entry is reserved meaning that it has an
3186  * associated "reserved" resource.  The resource can either be
3187  * allocated or unallocated.
3188  *
3189  * @param rl		the resource list to search
3190  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3191  * @param rid		the resource identifier
3192  *
3193  * @returns Non-zero if the entry is reserved, zero otherwise.
3194  */
3195 int
3196 resource_list_reserved(struct resource_list *rl, int type, int rid)
3197 {
3198 	struct resource_list_entry *rle;
3199 
3200 	rle = resource_list_find(rl, type, rid);
3201 	if (rle != NULL && rle->flags & RLE_RESERVED)
3202 		return (1);
3203 	return (0);
3204 }
3205 
3206 /**
3207  * @brief Find a resource entry by type and rid.
3208  *
3209  * @param rl		the resource list to search
3210  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3211  * @param rid		the resource identifier
3212  *
3213  * @returns the resource entry pointer or NULL if there is no such
3214  * entry.
3215  */
3216 struct resource_list_entry *
3217 resource_list_find(struct resource_list *rl, int type, int rid)
3218 {
3219 	struct resource_list_entry *rle;
3220 
3221 	STAILQ_FOREACH(rle, rl, link) {
3222 		if (rle->type == type && rle->rid == rid)
3223 			return (rle);
3224 	}
3225 	return (NULL);
3226 }
3227 
3228 /**
3229  * @brief Delete a resource entry.
3230  *
3231  * @param rl		the resource list to edit
3232  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3233  * @param rid		the resource identifier
3234  */
3235 void
3236 resource_list_delete(struct resource_list *rl, int type, int rid)
3237 {
3238 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3239 
3240 	if (rle) {
3241 		if (rle->res != NULL)
3242 			panic("resource_list_delete: resource has not been released");
3243 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3244 		free(rle, M_BUS);
3245 	}
3246 }
3247 
3248 /**
3249  * @brief Allocate a reserved resource
3250  *
3251  * This can be used by busses to force the allocation of resources
3252  * that are always active in the system even if they are not allocated
3253  * by a driver (e.g. PCI BARs).  This function is usually called when
3254  * adding a new child to the bus.  The resource is allocated from the
3255  * parent bus when it is reserved.  The resource list entry is marked
3256  * with RLE_RESERVED to note that it is a reserved resource.
3257  *
3258  * Subsequent attempts to allocate the resource with
3259  * resource_list_alloc() will succeed the first time and will set
3260  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3261  * resource that has been allocated is released with
3262  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3263  * the actual resource remains allocated.  The resource can be released to
3264  * the parent bus by calling resource_list_unreserve().
3265  *
3266  * @param rl		the resource list to allocate from
3267  * @param bus		the parent device of @p child
3268  * @param child		the device for which the resource is being reserved
3269  * @param type		the type of resource to allocate
3270  * @param rid		a pointer to the resource identifier
3271  * @param start		hint at the start of the resource range - pass
3272  *			@c 0 for any start address
3273  * @param end		hint at the end of the resource range - pass
3274  *			@c ~0 for any end address
3275  * @param count		hint at the size of range required - pass @c 1
3276  *			for any size
3277  * @param flags		any extra flags to control the resource
3278  *			allocation - see @c RF_XXX flags in
3279  *			<sys/rman.h> for details
3280  *
3281  * @returns		the resource which was allocated or @c NULL if no
3282  *			resource could be allocated
3283  */
3284 struct resource *
3285 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3286     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3287 {
3288 	struct resource_list_entry *rle = NULL;
3289 	int passthrough = (device_get_parent(child) != bus);
3290 	struct resource *r;
3291 
3292 	if (passthrough)
3293 		panic(
3294     "resource_list_reserve() should only be called for direct children");
3295 	if (flags & RF_ACTIVE)
3296 		panic(
3297     "resource_list_reserve() should only reserve inactive resources");
3298 
3299 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3300 	    flags);
3301 	if (r != NULL) {
3302 		rle = resource_list_find(rl, type, *rid);
3303 		rle->flags |= RLE_RESERVED;
3304 	}
3305 	return (r);
3306 }
3307 
3308 /**
3309  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3310  *
3311  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3312  * and passing the allocation up to the parent of @p bus. This assumes
3313  * that the first entry of @c device_get_ivars(child) is a struct
3314  * resource_list. This also handles 'passthrough' allocations where a
3315  * child is a remote descendant of bus by passing the allocation up to
3316  * the parent of bus.
3317  *
3318  * Typically, a bus driver would store a list of child resources
3319  * somewhere in the child device's ivars (see device_get_ivars()) and
3320  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3321  * then call resource_list_alloc() to perform the allocation.
3322  *
3323  * @param rl		the resource list to allocate from
3324  * @param bus		the parent device of @p child
3325  * @param child		the device which is requesting an allocation
3326  * @param type		the type of resource to allocate
3327  * @param rid		a pointer to the resource identifier
3328  * @param start		hint at the start of the resource range - pass
3329  *			@c 0 for any start address
3330  * @param end		hint at the end of the resource range - pass
3331  *			@c ~0 for any end address
3332  * @param count		hint at the size of range required - pass @c 1
3333  *			for any size
3334  * @param flags		any extra flags to control the resource
3335  *			allocation - see @c RF_XXX flags in
3336  *			<sys/rman.h> for details
3337  *
3338  * @returns		the resource which was allocated or @c NULL if no
3339  *			resource could be allocated
3340  */
3341 struct resource *
3342 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3343     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3344 {
3345 	struct resource_list_entry *rle = NULL;
3346 	int passthrough = (device_get_parent(child) != bus);
3347 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3348 
3349 	if (passthrough) {
3350 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3351 		    type, rid, start, end, count, flags));
3352 	}
3353 
3354 	rle = resource_list_find(rl, type, *rid);
3355 
3356 	if (!rle)
3357 		return (NULL);		/* no resource of that type/rid */
3358 
3359 	if (rle->res) {
3360 		if (rle->flags & RLE_RESERVED) {
3361 			if (rle->flags & RLE_ALLOCATED)
3362 				return (NULL);
3363 			if ((flags & RF_ACTIVE) &&
3364 			    bus_activate_resource(child, type, *rid,
3365 			    rle->res) != 0)
3366 				return (NULL);
3367 			rle->flags |= RLE_ALLOCATED;
3368 			return (rle->res);
3369 		}
3370 		device_printf(bus,
3371 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3372 		    type, device_get_nameunit(child));
3373 		return (NULL);
3374 	}
3375 
3376 	if (isdefault) {
3377 		start = rle->start;
3378 		count = ulmax(count, rle->count);
3379 		end = ulmax(rle->end, start + count - 1);
3380 	}
3381 
3382 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3383 	    type, rid, start, end, count, flags);
3384 
3385 	/*
3386 	 * Record the new range.
3387 	 */
3388 	if (rle->res) {
3389 		rle->start = rman_get_start(rle->res);
3390 		rle->end = rman_get_end(rle->res);
3391 		rle->count = count;
3392 	}
3393 
3394 	return (rle->res);
3395 }
3396 
3397 /**
3398  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3399  *
3400  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3401  * used with resource_list_alloc().
3402  *
3403  * @param rl		the resource list which was allocated from
3404  * @param bus		the parent device of @p child
3405  * @param child		the device which is requesting a release
3406  * @param type		the type of resource to release
3407  * @param rid		the resource identifier
3408  * @param res		the resource to release
3409  *
3410  * @retval 0		success
3411  * @retval non-zero	a standard unix error code indicating what
3412  *			error condition prevented the operation
3413  */
3414 int
3415 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3416     int type, int rid, struct resource *res)
3417 {
3418 	struct resource_list_entry *rle = NULL;
3419 	int passthrough = (device_get_parent(child) != bus);
3420 	int error;
3421 
3422 	if (passthrough) {
3423 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3424 		    type, rid, res));
3425 	}
3426 
3427 	rle = resource_list_find(rl, type, rid);
3428 
3429 	if (!rle)
3430 		panic("resource_list_release: can't find resource");
3431 	if (!rle->res)
3432 		panic("resource_list_release: resource entry is not busy");
3433 	if (rle->flags & RLE_RESERVED) {
3434 		if (rle->flags & RLE_ALLOCATED) {
3435 			if (rman_get_flags(res) & RF_ACTIVE) {
3436 				error = bus_deactivate_resource(child, type,
3437 				    rid, res);
3438 				if (error)
3439 					return (error);
3440 			}
3441 			rle->flags &= ~RLE_ALLOCATED;
3442 			return (0);
3443 		}
3444 		return (EINVAL);
3445 	}
3446 
3447 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3448 	    type, rid, res);
3449 	if (error)
3450 		return (error);
3451 
3452 	rle->res = NULL;
3453 	return (0);
3454 }
3455 
3456 /**
3457  * @brief Release all active resources of a given type
3458  *
3459  * Release all active resources of a specified type.  This is intended
3460  * to be used to cleanup resources leaked by a driver after detach or
3461  * a failed attach.
3462  *
3463  * @param rl		the resource list which was allocated from
3464  * @param bus		the parent device of @p child
3465  * @param child		the device whose active resources are being released
3466  * @param type		the type of resources to release
3467  *
3468  * @retval 0		success
3469  * @retval EBUSY	at least one resource was active
3470  */
3471 int
3472 resource_list_release_active(struct resource_list *rl, device_t bus,
3473     device_t child, int type)
3474 {
3475 	struct resource_list_entry *rle;
3476 	int error, retval;
3477 
3478 	retval = 0;
3479 	STAILQ_FOREACH(rle, rl, link) {
3480 		if (rle->type != type)
3481 			continue;
3482 		if (rle->res == NULL)
3483 			continue;
3484 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3485 		    RLE_RESERVED)
3486 			continue;
3487 		retval = EBUSY;
3488 		error = resource_list_release(rl, bus, child, type,
3489 		    rman_get_rid(rle->res), rle->res);
3490 		if (error != 0)
3491 			device_printf(bus,
3492 			    "Failed to release active resource: %d\n", error);
3493 	}
3494 	return (retval);
3495 }
3496 
3497 
3498 /**
3499  * @brief Fully release a reserved resource
3500  *
3501  * Fully releases a resource reserved via resource_list_reserve().
3502  *
3503  * @param rl		the resource list which was allocated from
3504  * @param bus		the parent device of @p child
3505  * @param child		the device whose reserved resource is being released
3506  * @param type		the type of resource to release
3507  * @param rid		the resource identifier
3508  * @param res		the resource to release
3509  *
3510  * @retval 0		success
3511  * @retval non-zero	a standard unix error code indicating what
3512  *			error condition prevented the operation
3513  */
3514 int
3515 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3516     int type, int rid)
3517 {
3518 	struct resource_list_entry *rle = NULL;
3519 	int passthrough = (device_get_parent(child) != bus);
3520 
3521 	if (passthrough)
3522 		panic(
3523     "resource_list_unreserve() should only be called for direct children");
3524 
3525 	rle = resource_list_find(rl, type, rid);
3526 
3527 	if (!rle)
3528 		panic("resource_list_unreserve: can't find resource");
3529 	if (!(rle->flags & RLE_RESERVED))
3530 		return (EINVAL);
3531 	if (rle->flags & RLE_ALLOCATED)
3532 		return (EBUSY);
3533 	rle->flags &= ~RLE_RESERVED;
3534 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3535 }
3536 
3537 /**
3538  * @brief Print a description of resources in a resource list
3539  *
3540  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3541  * The name is printed if at least one resource of the given type is available.
3542  * The format is used to print resource start and end.
3543  *
3544  * @param rl		the resource list to print
3545  * @param name		the name of @p type, e.g. @c "memory"
3546  * @param type		type type of resource entry to print
3547  * @param format	printf(9) format string to print resource
3548  *			start and end values
3549  *
3550  * @returns		the number of characters printed
3551  */
3552 int
3553 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3554     const char *format)
3555 {
3556 	struct resource_list_entry *rle;
3557 	int printed, retval;
3558 
3559 	printed = 0;
3560 	retval = 0;
3561 	/* Yes, this is kinda cheating */
3562 	STAILQ_FOREACH(rle, rl, link) {
3563 		if (rle->type == type) {
3564 			if (printed == 0)
3565 				retval += printf(" %s ", name);
3566 			else
3567 				retval += printf(",");
3568 			printed++;
3569 			retval += printf(format, rle->start);
3570 			if (rle->count > 1) {
3571 				retval += printf("-");
3572 				retval += printf(format, rle->start +
3573 						 rle->count - 1);
3574 			}
3575 		}
3576 	}
3577 	return (retval);
3578 }
3579 
3580 /**
3581  * @brief Releases all the resources in a list.
3582  *
3583  * @param rl		The resource list to purge.
3584  *
3585  * @returns		nothing
3586  */
3587 void
3588 resource_list_purge(struct resource_list *rl)
3589 {
3590 	struct resource_list_entry *rle;
3591 
3592 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3593 		if (rle->res)
3594 			bus_release_resource(rman_get_device(rle->res),
3595 			    rle->type, rle->rid, rle->res);
3596 		STAILQ_REMOVE_HEAD(rl, link);
3597 		free(rle, M_BUS);
3598 	}
3599 }
3600 
3601 device_t
3602 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3603 {
3604 
3605 	return (device_add_child_ordered(dev, order, name, unit));
3606 }
3607 
3608 /**
3609  * @brief Helper function for implementing DEVICE_PROBE()
3610  *
3611  * This function can be used to help implement the DEVICE_PROBE() for
3612  * a bus (i.e. a device which has other devices attached to it). It
3613  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3614  * devclass.
3615  */
3616 int
3617 bus_generic_probe(device_t dev)
3618 {
3619 	devclass_t dc = dev->devclass;
3620 	driverlink_t dl;
3621 
3622 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3623 		/*
3624 		 * If this driver's pass is too high, then ignore it.
3625 		 * For most drivers in the default pass, this will
3626 		 * never be true.  For early-pass drivers they will
3627 		 * only call the identify routines of eligible drivers
3628 		 * when this routine is called.  Drivers for later
3629 		 * passes should have their identify routines called
3630 		 * on early-pass busses during BUS_NEW_PASS().
3631 		 */
3632 		if (dl->pass > bus_current_pass)
3633 			continue;
3634 		DEVICE_IDENTIFY(dl->driver, dev);
3635 	}
3636 
3637 	return (0);
3638 }
3639 
3640 /**
3641  * @brief Helper function for implementing DEVICE_ATTACH()
3642  *
3643  * This function can be used to help implement the DEVICE_ATTACH() for
3644  * a bus. It calls device_probe_and_attach() for each of the device's
3645  * children.
3646  */
3647 int
3648 bus_generic_attach(device_t dev)
3649 {
3650 	device_t child;
3651 
3652 	TAILQ_FOREACH(child, &dev->children, link) {
3653 		device_probe_and_attach(child);
3654 	}
3655 
3656 	return (0);
3657 }
3658 
3659 /**
3660  * @brief Helper function for implementing DEVICE_DETACH()
3661  *
3662  * This function can be used to help implement the DEVICE_DETACH() for
3663  * a bus. It calls device_detach() for each of the device's
3664  * children.
3665  */
3666 int
3667 bus_generic_detach(device_t dev)
3668 {
3669 	device_t child;
3670 	int error;
3671 
3672 	if (dev->state != DS_ATTACHED)
3673 		return (EBUSY);
3674 
3675 	TAILQ_FOREACH(child, &dev->children, link) {
3676 		if ((error = device_detach(child)) != 0)
3677 			return (error);
3678 	}
3679 
3680 	return (0);
3681 }
3682 
3683 /**
3684  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3685  *
3686  * This function can be used to help implement the DEVICE_SHUTDOWN()
3687  * for a bus. It calls device_shutdown() for each of the device's
3688  * children.
3689  */
3690 int
3691 bus_generic_shutdown(device_t dev)
3692 {
3693 	device_t child;
3694 
3695 	TAILQ_FOREACH(child, &dev->children, link) {
3696 		device_shutdown(child);
3697 	}
3698 
3699 	return (0);
3700 }
3701 
3702 /**
3703  * @brief Default function for suspending a child device.
3704  *
3705  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3706  */
3707 int
3708 bus_generic_suspend_child(device_t dev, device_t child)
3709 {
3710 	int	error;
3711 
3712 	error = DEVICE_SUSPEND(child);
3713 
3714 	if (error == 0)
3715 		child->flags |= DF_SUSPENDED;
3716 
3717 	return (error);
3718 }
3719 
3720 /**
3721  * @brief Default function for resuming a child device.
3722  *
3723  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3724  */
3725 int
3726 bus_generic_resume_child(device_t dev, device_t child)
3727 {
3728 
3729 	DEVICE_RESUME(child);
3730 	child->flags &= ~DF_SUSPENDED;
3731 
3732 	return (0);
3733 }
3734 
3735 /**
3736  * @brief Helper function for implementing DEVICE_SUSPEND()
3737  *
3738  * This function can be used to help implement the DEVICE_SUSPEND()
3739  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3740  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3741  * operation is aborted and any devices which were suspended are
3742  * resumed immediately by calling their DEVICE_RESUME() methods.
3743  */
3744 int
3745 bus_generic_suspend(device_t dev)
3746 {
3747 	int		error;
3748 	device_t	child, child2;
3749 
3750 	TAILQ_FOREACH(child, &dev->children, link) {
3751 		error = BUS_SUSPEND_CHILD(dev, child);
3752 		if (error) {
3753 			for (child2 = TAILQ_FIRST(&dev->children);
3754 			     child2 && child2 != child;
3755 			     child2 = TAILQ_NEXT(child2, link))
3756 				BUS_RESUME_CHILD(dev, child2);
3757 			return (error);
3758 		}
3759 	}
3760 	return (0);
3761 }
3762 
3763 /**
3764  * @brief Helper function for implementing DEVICE_RESUME()
3765  *
3766  * This function can be used to help implement the DEVICE_RESUME() for
3767  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3768  */
3769 int
3770 bus_generic_resume(device_t dev)
3771 {
3772 	device_t	child;
3773 
3774 	TAILQ_FOREACH(child, &dev->children, link) {
3775 		BUS_RESUME_CHILD(dev, child);
3776 		/* if resume fails, there's nothing we can usefully do... */
3777 	}
3778 	return (0);
3779 }
3780 
3781 /**
3782  * @brief Helper function for implementing BUS_PRINT_CHILD().
3783  *
3784  * This function prints the first part of the ascii representation of
3785  * @p child, including its name, unit and description (if any - see
3786  * device_set_desc()).
3787  *
3788  * @returns the number of characters printed
3789  */
3790 int
3791 bus_print_child_header(device_t dev, device_t child)
3792 {
3793 	int	retval = 0;
3794 
3795 	if (device_get_desc(child)) {
3796 		retval += device_printf(child, "<%s>", device_get_desc(child));
3797 	} else {
3798 		retval += printf("%s", device_get_nameunit(child));
3799 	}
3800 
3801 	return (retval);
3802 }
3803 
3804 /**
3805  * @brief Helper function for implementing BUS_PRINT_CHILD().
3806  *
3807  * This function prints the last part of the ascii representation of
3808  * @p child, which consists of the string @c " on " followed by the
3809  * name and unit of the @p dev.
3810  *
3811  * @returns the number of characters printed
3812  */
3813 int
3814 bus_print_child_footer(device_t dev, device_t child)
3815 {
3816 	return (printf(" on %s\n", device_get_nameunit(dev)));
3817 }
3818 
3819 /**
3820  * @brief Helper function for implementing BUS_PRINT_CHILD().
3821  *
3822  * This function prints out the VM domain for the given device.
3823  *
3824  * @returns the number of characters printed
3825  */
3826 int
3827 bus_print_child_domain(device_t dev, device_t child)
3828 {
3829 	int domain;
3830 
3831 	/* No domain? Don't print anything */
3832 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3833 		return (0);
3834 
3835 	return (printf(" numa-domain %d", domain));
3836 }
3837 
3838 /**
3839  * @brief Helper function for implementing BUS_PRINT_CHILD().
3840  *
3841  * This function simply calls bus_print_child_header() followed by
3842  * bus_print_child_footer().
3843  *
3844  * @returns the number of characters printed
3845  */
3846 int
3847 bus_generic_print_child(device_t dev, device_t child)
3848 {
3849 	int	retval = 0;
3850 
3851 	retval += bus_print_child_header(dev, child);
3852 	retval += bus_print_child_domain(dev, child);
3853 	retval += bus_print_child_footer(dev, child);
3854 
3855 	return (retval);
3856 }
3857 
3858 /**
3859  * @brief Stub function for implementing BUS_READ_IVAR().
3860  *
3861  * @returns ENOENT
3862  */
3863 int
3864 bus_generic_read_ivar(device_t dev, device_t child, int index,
3865     uintptr_t * result)
3866 {
3867 	return (ENOENT);
3868 }
3869 
3870 /**
3871  * @brief Stub function for implementing BUS_WRITE_IVAR().
3872  *
3873  * @returns ENOENT
3874  */
3875 int
3876 bus_generic_write_ivar(device_t dev, device_t child, int index,
3877     uintptr_t value)
3878 {
3879 	return (ENOENT);
3880 }
3881 
3882 /**
3883  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3884  *
3885  * @returns NULL
3886  */
3887 struct resource_list *
3888 bus_generic_get_resource_list(device_t dev, device_t child)
3889 {
3890 	return (NULL);
3891 }
3892 
3893 /**
3894  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3895  *
3896  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3897  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3898  * and then calls device_probe_and_attach() for each unattached child.
3899  */
3900 void
3901 bus_generic_driver_added(device_t dev, driver_t *driver)
3902 {
3903 	device_t child;
3904 
3905 	DEVICE_IDENTIFY(driver, dev);
3906 	TAILQ_FOREACH(child, &dev->children, link) {
3907 		if (child->state == DS_NOTPRESENT ||
3908 		    (child->flags & DF_REBID))
3909 			device_probe_and_attach(child);
3910 	}
3911 }
3912 
3913 /**
3914  * @brief Helper function for implementing BUS_NEW_PASS().
3915  *
3916  * This implementing of BUS_NEW_PASS() first calls the identify
3917  * routines for any drivers that probe at the current pass.  Then it
3918  * walks the list of devices for this bus.  If a device is already
3919  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3920  * device is not already attached, it attempts to attach a driver to
3921  * it.
3922  */
3923 void
3924 bus_generic_new_pass(device_t dev)
3925 {
3926 	driverlink_t dl;
3927 	devclass_t dc;
3928 	device_t child;
3929 
3930 	dc = dev->devclass;
3931 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3932 		if (dl->pass == bus_current_pass)
3933 			DEVICE_IDENTIFY(dl->driver, dev);
3934 	}
3935 	TAILQ_FOREACH(child, &dev->children, link) {
3936 		if (child->state >= DS_ATTACHED)
3937 			BUS_NEW_PASS(child);
3938 		else if (child->state == DS_NOTPRESENT)
3939 			device_probe_and_attach(child);
3940 	}
3941 }
3942 
3943 /**
3944  * @brief Helper function for implementing BUS_SETUP_INTR().
3945  *
3946  * This simple implementation of BUS_SETUP_INTR() simply calls the
3947  * BUS_SETUP_INTR() method of the parent of @p dev.
3948  */
3949 int
3950 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3951     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3952     void **cookiep)
3953 {
3954 	/* Propagate up the bus hierarchy until someone handles it. */
3955 	if (dev->parent)
3956 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3957 		    filter, intr, arg, cookiep));
3958 	return (EINVAL);
3959 }
3960 
3961 /**
3962  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3963  *
3964  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3965  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3966  */
3967 int
3968 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3969     void *cookie)
3970 {
3971 	/* Propagate up the bus hierarchy until someone handles it. */
3972 	if (dev->parent)
3973 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3974 	return (EINVAL);
3975 }
3976 
3977 /**
3978  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3979  *
3980  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3981  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3982  */
3983 int
3984 bus_generic_adjust_resource(device_t dev, device_t child, int type,
3985     struct resource *r, rman_res_t start, rman_res_t end)
3986 {
3987 	/* Propagate up the bus hierarchy until someone handles it. */
3988 	if (dev->parent)
3989 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3990 		    end));
3991 	return (EINVAL);
3992 }
3993 
3994 /**
3995  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3996  *
3997  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3998  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3999  */
4000 struct resource *
4001 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4002     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4003 {
4004 	/* Propagate up the bus hierarchy until someone handles it. */
4005 	if (dev->parent)
4006 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4007 		    start, end, count, flags));
4008 	return (NULL);
4009 }
4010 
4011 /**
4012  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4013  *
4014  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4015  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4016  */
4017 int
4018 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
4019     struct resource *r)
4020 {
4021 	/* Propagate up the bus hierarchy until someone handles it. */
4022 	if (dev->parent)
4023 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
4024 		    r));
4025 	return (EINVAL);
4026 }
4027 
4028 /**
4029  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4030  *
4031  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4032  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4033  */
4034 int
4035 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4036     struct resource *r)
4037 {
4038 	/* Propagate up the bus hierarchy until someone handles it. */
4039 	if (dev->parent)
4040 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4041 		    r));
4042 	return (EINVAL);
4043 }
4044 
4045 /**
4046  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4047  *
4048  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4049  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4050  */
4051 int
4052 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4053     int rid, struct resource *r)
4054 {
4055 	/* Propagate up the bus hierarchy until someone handles it. */
4056 	if (dev->parent)
4057 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4058 		    r));
4059 	return (EINVAL);
4060 }
4061 
4062 /**
4063  * @brief Helper function for implementing BUS_BIND_INTR().
4064  *
4065  * This simple implementation of BUS_BIND_INTR() simply calls the
4066  * BUS_BIND_INTR() method of the parent of @p dev.
4067  */
4068 int
4069 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4070     int cpu)
4071 {
4072 
4073 	/* Propagate up the bus hierarchy until someone handles it. */
4074 	if (dev->parent)
4075 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4076 	return (EINVAL);
4077 }
4078 
4079 /**
4080  * @brief Helper function for implementing BUS_CONFIG_INTR().
4081  *
4082  * This simple implementation of BUS_CONFIG_INTR() simply calls the
4083  * BUS_CONFIG_INTR() method of the parent of @p dev.
4084  */
4085 int
4086 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4087     enum intr_polarity pol)
4088 {
4089 
4090 	/* Propagate up the bus hierarchy until someone handles it. */
4091 	if (dev->parent)
4092 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4093 	return (EINVAL);
4094 }
4095 
4096 /**
4097  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4098  *
4099  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4100  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4101  */
4102 int
4103 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4104     void *cookie, const char *descr)
4105 {
4106 
4107 	/* Propagate up the bus hierarchy until someone handles it. */
4108 	if (dev->parent)
4109 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4110 		    descr));
4111 	return (EINVAL);
4112 }
4113 
4114 /**
4115  * @brief Helper function for implementing BUS_GET_CPUS().
4116  *
4117  * This simple implementation of BUS_GET_CPUS() simply calls the
4118  * BUS_GET_CPUS() method of the parent of @p dev.
4119  */
4120 int
4121 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4122     size_t setsize, cpuset_t *cpuset)
4123 {
4124 
4125 	/* Propagate up the bus hierarchy until someone handles it. */
4126 	if (dev->parent != NULL)
4127 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4128 	return (EINVAL);
4129 }
4130 
4131 /**
4132  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4133  *
4134  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4135  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4136  */
4137 bus_dma_tag_t
4138 bus_generic_get_dma_tag(device_t dev, device_t child)
4139 {
4140 
4141 	/* Propagate up the bus hierarchy until someone handles it. */
4142 	if (dev->parent != NULL)
4143 		return (BUS_GET_DMA_TAG(dev->parent, child));
4144 	return (NULL);
4145 }
4146 
4147 /**
4148  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4149  *
4150  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4151  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4152  */
4153 bus_space_tag_t
4154 bus_generic_get_bus_tag(device_t dev, device_t child)
4155 {
4156 
4157 	/* Propagate up the bus hierarchy until someone handles it. */
4158 	if (dev->parent != NULL)
4159 		return (BUS_GET_BUS_TAG(dev->parent, child));
4160 	return ((bus_space_tag_t)0);
4161 }
4162 
4163 /**
4164  * @brief Helper function for implementing BUS_GET_RESOURCE().
4165  *
4166  * This implementation of BUS_GET_RESOURCE() uses the
4167  * resource_list_find() function to do most of the work. It calls
4168  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4169  * search.
4170  */
4171 int
4172 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4173     rman_res_t *startp, rman_res_t *countp)
4174 {
4175 	struct resource_list *		rl = NULL;
4176 	struct resource_list_entry *	rle = NULL;
4177 
4178 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4179 	if (!rl)
4180 		return (EINVAL);
4181 
4182 	rle = resource_list_find(rl, type, rid);
4183 	if (!rle)
4184 		return (ENOENT);
4185 
4186 	if (startp)
4187 		*startp = rle->start;
4188 	if (countp)
4189 		*countp = rle->count;
4190 
4191 	return (0);
4192 }
4193 
4194 /**
4195  * @brief Helper function for implementing BUS_SET_RESOURCE().
4196  *
4197  * This implementation of BUS_SET_RESOURCE() uses the
4198  * resource_list_add() function to do most of the work. It calls
4199  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4200  * edit.
4201  */
4202 int
4203 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4204     rman_res_t start, rman_res_t count)
4205 {
4206 	struct resource_list *		rl = NULL;
4207 
4208 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4209 	if (!rl)
4210 		return (EINVAL);
4211 
4212 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4213 
4214 	return (0);
4215 }
4216 
4217 /**
4218  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4219  *
4220  * This implementation of BUS_DELETE_RESOURCE() uses the
4221  * resource_list_delete() function to do most of the work. It calls
4222  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4223  * edit.
4224  */
4225 void
4226 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4227 {
4228 	struct resource_list *		rl = NULL;
4229 
4230 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4231 	if (!rl)
4232 		return;
4233 
4234 	resource_list_delete(rl, type, rid);
4235 
4236 	return;
4237 }
4238 
4239 /**
4240  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4241  *
4242  * This implementation of BUS_RELEASE_RESOURCE() uses the
4243  * resource_list_release() function to do most of the work. It calls
4244  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4245  */
4246 int
4247 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4248     int rid, struct resource *r)
4249 {
4250 	struct resource_list *		rl = NULL;
4251 
4252 	if (device_get_parent(child) != dev)
4253 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4254 		    type, rid, r));
4255 
4256 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4257 	if (!rl)
4258 		return (EINVAL);
4259 
4260 	return (resource_list_release(rl, dev, child, type, rid, r));
4261 }
4262 
4263 /**
4264  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4265  *
4266  * This implementation of BUS_ALLOC_RESOURCE() uses the
4267  * resource_list_alloc() function to do most of the work. It calls
4268  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4269  */
4270 struct resource *
4271 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4272     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4273 {
4274 	struct resource_list *		rl = NULL;
4275 
4276 	if (device_get_parent(child) != dev)
4277 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4278 		    type, rid, start, end, count, flags));
4279 
4280 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4281 	if (!rl)
4282 		return (NULL);
4283 
4284 	return (resource_list_alloc(rl, dev, child, type, rid,
4285 	    start, end, count, flags));
4286 }
4287 
4288 /**
4289  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4290  *
4291  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4292  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4293  */
4294 int
4295 bus_generic_child_present(device_t dev, device_t child)
4296 {
4297 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4298 }
4299 
4300 int
4301 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4302 {
4303 
4304 	if (dev->parent)
4305 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4306 
4307 	return (ENOENT);
4308 }
4309 
4310 /**
4311  * @brief Helper function for implementing BUS_RESCAN().
4312  *
4313  * This null implementation of BUS_RESCAN() always fails to indicate
4314  * the bus does not support rescanning.
4315  */
4316 int
4317 bus_null_rescan(device_t dev)
4318 {
4319 
4320 	return (ENXIO);
4321 }
4322 
4323 /*
4324  * Some convenience functions to make it easier for drivers to use the
4325  * resource-management functions.  All these really do is hide the
4326  * indirection through the parent's method table, making for slightly
4327  * less-wordy code.  In the future, it might make sense for this code
4328  * to maintain some sort of a list of resources allocated by each device.
4329  */
4330 
4331 int
4332 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4333     struct resource **res)
4334 {
4335 	int i;
4336 
4337 	for (i = 0; rs[i].type != -1; i++)
4338 		res[i] = NULL;
4339 	for (i = 0; rs[i].type != -1; i++) {
4340 		res[i] = bus_alloc_resource_any(dev,
4341 		    rs[i].type, &rs[i].rid, rs[i].flags);
4342 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4343 			bus_release_resources(dev, rs, res);
4344 			return (ENXIO);
4345 		}
4346 	}
4347 	return (0);
4348 }
4349 
4350 void
4351 bus_release_resources(device_t dev, const struct resource_spec *rs,
4352     struct resource **res)
4353 {
4354 	int i;
4355 
4356 	for (i = 0; rs[i].type != -1; i++)
4357 		if (res[i] != NULL) {
4358 			bus_release_resource(
4359 			    dev, rs[i].type, rs[i].rid, res[i]);
4360 			res[i] = NULL;
4361 		}
4362 }
4363 
4364 /**
4365  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4366  *
4367  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4368  * parent of @p dev.
4369  */
4370 struct resource *
4371 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, rman_res_t end,
4372     rman_res_t count, u_int flags)
4373 {
4374 	if (dev->parent == NULL)
4375 		return (NULL);
4376 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4377 	    count, flags));
4378 }
4379 
4380 /**
4381  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4382  *
4383  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4384  * parent of @p dev.
4385  */
4386 int
4387 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4388     rman_res_t end)
4389 {
4390 	if (dev->parent == NULL)
4391 		return (EINVAL);
4392 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4393 }
4394 
4395 /**
4396  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4397  *
4398  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4399  * parent of @p dev.
4400  */
4401 int
4402 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4403 {
4404 	if (dev->parent == NULL)
4405 		return (EINVAL);
4406 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4407 }
4408 
4409 /**
4410  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4411  *
4412  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4413  * parent of @p dev.
4414  */
4415 int
4416 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4417 {
4418 	if (dev->parent == NULL)
4419 		return (EINVAL);
4420 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4421 }
4422 
4423 /**
4424  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4425  *
4426  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4427  * parent of @p dev.
4428  */
4429 int
4430 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4431 {
4432 	if (dev->parent == NULL)
4433 		return (EINVAL);
4434 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4435 }
4436 
4437 /**
4438  * @brief Wrapper function for BUS_SETUP_INTR().
4439  *
4440  * This function simply calls the BUS_SETUP_INTR() method of the
4441  * parent of @p dev.
4442  */
4443 int
4444 bus_setup_intr(device_t dev, struct resource *r, int flags,
4445     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4446 {
4447 	int error;
4448 
4449 	if (dev->parent == NULL)
4450 		return (EINVAL);
4451 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4452 	    arg, cookiep);
4453 	if (error != 0)
4454 		return (error);
4455 	if (handler != NULL && !(flags & INTR_MPSAFE))
4456 		device_printf(dev, "[GIANT-LOCKED]\n");
4457 	return (0);
4458 }
4459 
4460 /**
4461  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4462  *
4463  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4464  * parent of @p dev.
4465  */
4466 int
4467 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4468 {
4469 	if (dev->parent == NULL)
4470 		return (EINVAL);
4471 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4472 }
4473 
4474 /**
4475  * @brief Wrapper function for BUS_BIND_INTR().
4476  *
4477  * This function simply calls the BUS_BIND_INTR() method of the
4478  * parent of @p dev.
4479  */
4480 int
4481 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4482 {
4483 	if (dev->parent == NULL)
4484 		return (EINVAL);
4485 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4486 }
4487 
4488 /**
4489  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4490  *
4491  * This function first formats the requested description into a
4492  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4493  * the parent of @p dev.
4494  */
4495 int
4496 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4497     const char *fmt, ...)
4498 {
4499 	va_list ap;
4500 	char descr[MAXCOMLEN + 1];
4501 
4502 	if (dev->parent == NULL)
4503 		return (EINVAL);
4504 	va_start(ap, fmt);
4505 	vsnprintf(descr, sizeof(descr), fmt, ap);
4506 	va_end(ap);
4507 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4508 }
4509 
4510 /**
4511  * @brief Wrapper function for BUS_SET_RESOURCE().
4512  *
4513  * This function simply calls the BUS_SET_RESOURCE() method of the
4514  * parent of @p dev.
4515  */
4516 int
4517 bus_set_resource(device_t dev, int type, int rid,
4518     rman_res_t start, rman_res_t count)
4519 {
4520 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4521 	    start, count));
4522 }
4523 
4524 /**
4525  * @brief Wrapper function for BUS_GET_RESOURCE().
4526  *
4527  * This function simply calls the BUS_GET_RESOURCE() method of the
4528  * parent of @p dev.
4529  */
4530 int
4531 bus_get_resource(device_t dev, int type, int rid,
4532     rman_res_t *startp, rman_res_t *countp)
4533 {
4534 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4535 	    startp, countp));
4536 }
4537 
4538 /**
4539  * @brief Wrapper function for BUS_GET_RESOURCE().
4540  *
4541  * This function simply calls the BUS_GET_RESOURCE() method of the
4542  * parent of @p dev and returns the start value.
4543  */
4544 rman_res_t
4545 bus_get_resource_start(device_t dev, int type, int rid)
4546 {
4547 	rman_res_t start;
4548 	rman_res_t count;
4549 	int error;
4550 
4551 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4552 	    &start, &count);
4553 	if (error)
4554 		return (0);
4555 	return (start);
4556 }
4557 
4558 /**
4559  * @brief Wrapper function for BUS_GET_RESOURCE().
4560  *
4561  * This function simply calls the BUS_GET_RESOURCE() method of the
4562  * parent of @p dev and returns the count value.
4563  */
4564 rman_res_t
4565 bus_get_resource_count(device_t dev, int type, int rid)
4566 {
4567 	rman_res_t start;
4568 	rman_res_t count;
4569 	int error;
4570 
4571 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4572 	    &start, &count);
4573 	if (error)
4574 		return (0);
4575 	return (count);
4576 }
4577 
4578 /**
4579  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4580  *
4581  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4582  * parent of @p dev.
4583  */
4584 void
4585 bus_delete_resource(device_t dev, int type, int rid)
4586 {
4587 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4588 }
4589 
4590 /**
4591  * @brief Wrapper function for BUS_CHILD_PRESENT().
4592  *
4593  * This function simply calls the BUS_CHILD_PRESENT() method of the
4594  * parent of @p dev.
4595  */
4596 int
4597 bus_child_present(device_t child)
4598 {
4599 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4600 }
4601 
4602 /**
4603  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4604  *
4605  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4606  * parent of @p dev.
4607  */
4608 int
4609 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4610 {
4611 	device_t parent;
4612 
4613 	parent = device_get_parent(child);
4614 	if (parent == NULL) {
4615 		*buf = '\0';
4616 		return (0);
4617 	}
4618 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4619 }
4620 
4621 /**
4622  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4623  *
4624  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4625  * parent of @p dev.
4626  */
4627 int
4628 bus_child_location_str(device_t child, char *buf, size_t buflen)
4629 {
4630 	device_t parent;
4631 
4632 	parent = device_get_parent(child);
4633 	if (parent == NULL) {
4634 		*buf = '\0';
4635 		return (0);
4636 	}
4637 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4638 }
4639 
4640 /**
4641  * @brief Wrapper function for BUS_GET_CPUS().
4642  *
4643  * This function simply calls the BUS_GET_CPUS() method of the
4644  * parent of @p dev.
4645  */
4646 int
4647 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4648 {
4649 	device_t parent;
4650 
4651 	parent = device_get_parent(dev);
4652 	if (parent == NULL)
4653 		return (EINVAL);
4654 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4655 }
4656 
4657 /**
4658  * @brief Wrapper function for BUS_GET_DMA_TAG().
4659  *
4660  * This function simply calls the BUS_GET_DMA_TAG() method of the
4661  * parent of @p dev.
4662  */
4663 bus_dma_tag_t
4664 bus_get_dma_tag(device_t dev)
4665 {
4666 	device_t parent;
4667 
4668 	parent = device_get_parent(dev);
4669 	if (parent == NULL)
4670 		return (NULL);
4671 	return (BUS_GET_DMA_TAG(parent, dev));
4672 }
4673 
4674 /**
4675  * @brief Wrapper function for BUS_GET_BUS_TAG().
4676  *
4677  * This function simply calls the BUS_GET_BUS_TAG() method of the
4678  * parent of @p dev.
4679  */
4680 bus_space_tag_t
4681 bus_get_bus_tag(device_t dev)
4682 {
4683 	device_t parent;
4684 
4685 	parent = device_get_parent(dev);
4686 	if (parent == NULL)
4687 		return ((bus_space_tag_t)0);
4688 	return (BUS_GET_BUS_TAG(parent, dev));
4689 }
4690 
4691 /**
4692  * @brief Wrapper function for BUS_GET_DOMAIN().
4693  *
4694  * This function simply calls the BUS_GET_DOMAIN() method of the
4695  * parent of @p dev.
4696  */
4697 int
4698 bus_get_domain(device_t dev, int *domain)
4699 {
4700 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4701 }
4702 
4703 /* Resume all devices and then notify userland that we're up again. */
4704 static int
4705 root_resume(device_t dev)
4706 {
4707 	int error;
4708 
4709 	error = bus_generic_resume(dev);
4710 	if (error == 0)
4711 		devctl_notify("kern", "power", "resume", NULL);
4712 	return (error);
4713 }
4714 
4715 static int
4716 root_print_child(device_t dev, device_t child)
4717 {
4718 	int	retval = 0;
4719 
4720 	retval += bus_print_child_header(dev, child);
4721 	retval += printf("\n");
4722 
4723 	return (retval);
4724 }
4725 
4726 static int
4727 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4728     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4729 {
4730 	/*
4731 	 * If an interrupt mapping gets to here something bad has happened.
4732 	 */
4733 	panic("root_setup_intr");
4734 }
4735 
4736 /*
4737  * If we get here, assume that the device is permanent and really is
4738  * present in the system.  Removable bus drivers are expected to intercept
4739  * this call long before it gets here.  We return -1 so that drivers that
4740  * really care can check vs -1 or some ERRNO returned higher in the food
4741  * chain.
4742  */
4743 static int
4744 root_child_present(device_t dev, device_t child)
4745 {
4746 	return (-1);
4747 }
4748 
4749 static int
4750 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
4751     cpuset_t *cpuset)
4752 {
4753 
4754 	switch (op) {
4755 	case INTR_CPUS:
4756 		/* Default to returning the set of all CPUs. */
4757 		if (setsize != sizeof(cpuset_t))
4758 			return (EINVAL);
4759 		*cpuset = all_cpus;
4760 		return (0);
4761 	default:
4762 		return (EINVAL);
4763 	}
4764 }
4765 
4766 static kobj_method_t root_methods[] = {
4767 	/* Device interface */
4768 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4769 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4770 	KOBJMETHOD(device_resume,	root_resume),
4771 
4772 	/* Bus interface */
4773 	KOBJMETHOD(bus_print_child,	root_print_child),
4774 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4775 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4776 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4777 	KOBJMETHOD(bus_child_present,	root_child_present),
4778 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
4779 
4780 	KOBJMETHOD_END
4781 };
4782 
4783 static driver_t root_driver = {
4784 	"root",
4785 	root_methods,
4786 	1,			/* no softc */
4787 };
4788 
4789 device_t	root_bus;
4790 devclass_t	root_devclass;
4791 
4792 static int
4793 root_bus_module_handler(module_t mod, int what, void* arg)
4794 {
4795 	switch (what) {
4796 	case MOD_LOAD:
4797 		TAILQ_INIT(&bus_data_devices);
4798 		kobj_class_compile((kobj_class_t) &root_driver);
4799 		root_bus = make_device(NULL, "root", 0);
4800 		root_bus->desc = "System root bus";
4801 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4802 		root_bus->driver = &root_driver;
4803 		root_bus->state = DS_ATTACHED;
4804 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4805 		devinit();
4806 		return (0);
4807 
4808 	case MOD_SHUTDOWN:
4809 		device_shutdown(root_bus);
4810 		return (0);
4811 	default:
4812 		return (EOPNOTSUPP);
4813 	}
4814 
4815 	return (0);
4816 }
4817 
4818 static moduledata_t root_bus_mod = {
4819 	"rootbus",
4820 	root_bus_module_handler,
4821 	NULL
4822 };
4823 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4824 
4825 /**
4826  * @brief Automatically configure devices
4827  *
4828  * This function begins the autoconfiguration process by calling
4829  * device_probe_and_attach() for each child of the @c root0 device.
4830  */
4831 void
4832 root_bus_configure(void)
4833 {
4834 
4835 	PDEBUG(("."));
4836 
4837 	/* Eventually this will be split up, but this is sufficient for now. */
4838 	bus_set_pass(BUS_PASS_DEFAULT);
4839 }
4840 
4841 /**
4842  * @brief Module handler for registering device drivers
4843  *
4844  * This module handler is used to automatically register device
4845  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4846  * devclass_add_driver() for the driver described by the
4847  * driver_module_data structure pointed to by @p arg
4848  */
4849 int
4850 driver_module_handler(module_t mod, int what, void *arg)
4851 {
4852 	struct driver_module_data *dmd;
4853 	devclass_t bus_devclass;
4854 	kobj_class_t driver;
4855 	int error, pass;
4856 
4857 	dmd = (struct driver_module_data *)arg;
4858 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4859 	error = 0;
4860 
4861 	switch (what) {
4862 	case MOD_LOAD:
4863 		if (dmd->dmd_chainevh)
4864 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4865 
4866 		pass = dmd->dmd_pass;
4867 		driver = dmd->dmd_driver;
4868 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4869 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4870 		error = devclass_add_driver(bus_devclass, driver, pass,
4871 		    dmd->dmd_devclass);
4872 		break;
4873 
4874 	case MOD_UNLOAD:
4875 		PDEBUG(("Unloading module: driver %s from bus %s",
4876 		    DRIVERNAME(dmd->dmd_driver),
4877 		    dmd->dmd_busname));
4878 		error = devclass_delete_driver(bus_devclass,
4879 		    dmd->dmd_driver);
4880 
4881 		if (!error && dmd->dmd_chainevh)
4882 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4883 		break;
4884 	case MOD_QUIESCE:
4885 		PDEBUG(("Quiesce module: driver %s from bus %s",
4886 		    DRIVERNAME(dmd->dmd_driver),
4887 		    dmd->dmd_busname));
4888 		error = devclass_quiesce_driver(bus_devclass,
4889 		    dmd->dmd_driver);
4890 
4891 		if (!error && dmd->dmd_chainevh)
4892 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4893 		break;
4894 	default:
4895 		error = EOPNOTSUPP;
4896 		break;
4897 	}
4898 
4899 	return (error);
4900 }
4901 
4902 /**
4903  * @brief Enumerate all hinted devices for this bus.
4904  *
4905  * Walks through the hints for this bus and calls the bus_hinted_child
4906  * routine for each one it fines.  It searches first for the specific
4907  * bus that's being probed for hinted children (eg isa0), and then for
4908  * generic children (eg isa).
4909  *
4910  * @param	dev	bus device to enumerate
4911  */
4912 void
4913 bus_enumerate_hinted_children(device_t bus)
4914 {
4915 	int i;
4916 	const char *dname, *busname;
4917 	int dunit;
4918 
4919 	/*
4920 	 * enumerate all devices on the specific bus
4921 	 */
4922 	busname = device_get_nameunit(bus);
4923 	i = 0;
4924 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4925 		BUS_HINTED_CHILD(bus, dname, dunit);
4926 
4927 	/*
4928 	 * and all the generic ones.
4929 	 */
4930 	busname = device_get_name(bus);
4931 	i = 0;
4932 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4933 		BUS_HINTED_CHILD(bus, dname, dunit);
4934 }
4935 
4936 #ifdef BUS_DEBUG
4937 
4938 /* the _short versions avoid iteration by not calling anything that prints
4939  * more than oneliners. I love oneliners.
4940  */
4941 
4942 static void
4943 print_device_short(device_t dev, int indent)
4944 {
4945 	if (!dev)
4946 		return;
4947 
4948 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4949 	    dev->unit, dev->desc,
4950 	    (dev->parent? "":"no "),
4951 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4952 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4953 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4954 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4955 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4956 	    (dev->flags&DF_REBID? "rebiddable,":""),
4957 	    (dev->ivars? "":"no "),
4958 	    (dev->softc? "":"no "),
4959 	    dev->busy));
4960 }
4961 
4962 static void
4963 print_device(device_t dev, int indent)
4964 {
4965 	if (!dev)
4966 		return;
4967 
4968 	print_device_short(dev, indent);
4969 
4970 	indentprintf(("Parent:\n"));
4971 	print_device_short(dev->parent, indent+1);
4972 	indentprintf(("Driver:\n"));
4973 	print_driver_short(dev->driver, indent+1);
4974 	indentprintf(("Devclass:\n"));
4975 	print_devclass_short(dev->devclass, indent+1);
4976 }
4977 
4978 void
4979 print_device_tree_short(device_t dev, int indent)
4980 /* print the device and all its children (indented) */
4981 {
4982 	device_t child;
4983 
4984 	if (!dev)
4985 		return;
4986 
4987 	print_device_short(dev, indent);
4988 
4989 	TAILQ_FOREACH(child, &dev->children, link) {
4990 		print_device_tree_short(child, indent+1);
4991 	}
4992 }
4993 
4994 void
4995 print_device_tree(device_t dev, int indent)
4996 /* print the device and all its children (indented) */
4997 {
4998 	device_t child;
4999 
5000 	if (!dev)
5001 		return;
5002 
5003 	print_device(dev, indent);
5004 
5005 	TAILQ_FOREACH(child, &dev->children, link) {
5006 		print_device_tree(child, indent+1);
5007 	}
5008 }
5009 
5010 static void
5011 print_driver_short(driver_t *driver, int indent)
5012 {
5013 	if (!driver)
5014 		return;
5015 
5016 	indentprintf(("driver %s: softc size = %zd\n",
5017 	    driver->name, driver->size));
5018 }
5019 
5020 static void
5021 print_driver(driver_t *driver, int indent)
5022 {
5023 	if (!driver)
5024 		return;
5025 
5026 	print_driver_short(driver, indent);
5027 }
5028 
5029 static void
5030 print_driver_list(driver_list_t drivers, int indent)
5031 {
5032 	driverlink_t driver;
5033 
5034 	TAILQ_FOREACH(driver, &drivers, link) {
5035 		print_driver(driver->driver, indent);
5036 	}
5037 }
5038 
5039 static void
5040 print_devclass_short(devclass_t dc, int indent)
5041 {
5042 	if ( !dc )
5043 		return;
5044 
5045 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5046 }
5047 
5048 static void
5049 print_devclass(devclass_t dc, int indent)
5050 {
5051 	int i;
5052 
5053 	if ( !dc )
5054 		return;
5055 
5056 	print_devclass_short(dc, indent);
5057 	indentprintf(("Drivers:\n"));
5058 	print_driver_list(dc->drivers, indent+1);
5059 
5060 	indentprintf(("Devices:\n"));
5061 	for (i = 0; i < dc->maxunit; i++)
5062 		if (dc->devices[i])
5063 			print_device(dc->devices[i], indent+1);
5064 }
5065 
5066 void
5067 print_devclass_list_short(void)
5068 {
5069 	devclass_t dc;
5070 
5071 	printf("Short listing of devclasses, drivers & devices:\n");
5072 	TAILQ_FOREACH(dc, &devclasses, link) {
5073 		print_devclass_short(dc, 0);
5074 	}
5075 }
5076 
5077 void
5078 print_devclass_list(void)
5079 {
5080 	devclass_t dc;
5081 
5082 	printf("Full listing of devclasses, drivers & devices:\n");
5083 	TAILQ_FOREACH(dc, &devclasses, link) {
5084 		print_devclass(dc, 0);
5085 	}
5086 }
5087 
5088 #endif
5089 
5090 /*
5091  * User-space access to the device tree.
5092  *
5093  * We implement a small set of nodes:
5094  *
5095  * hw.bus			Single integer read method to obtain the
5096  *				current generation count.
5097  * hw.bus.devices		Reads the entire device tree in flat space.
5098  * hw.bus.rman			Resource manager interface
5099  *
5100  * We might like to add the ability to scan devclasses and/or drivers to
5101  * determine what else is currently loaded/available.
5102  */
5103 
5104 static int
5105 sysctl_bus(SYSCTL_HANDLER_ARGS)
5106 {
5107 	struct u_businfo	ubus;
5108 
5109 	ubus.ub_version = BUS_USER_VERSION;
5110 	ubus.ub_generation = bus_data_generation;
5111 
5112 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5113 }
5114 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
5115     "bus-related data");
5116 
5117 static int
5118 sysctl_devices(SYSCTL_HANDLER_ARGS)
5119 {
5120 	int			*name = (int *)arg1;
5121 	u_int			namelen = arg2;
5122 	int			index;
5123 	struct device		*dev;
5124 	struct u_device		udev;	/* XXX this is a bit big */
5125 	int			error;
5126 
5127 	if (namelen != 2)
5128 		return (EINVAL);
5129 
5130 	if (bus_data_generation_check(name[0]))
5131 		return (EINVAL);
5132 
5133 	index = name[1];
5134 
5135 	/*
5136 	 * Scan the list of devices, looking for the requested index.
5137 	 */
5138 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5139 		if (index-- == 0)
5140 			break;
5141 	}
5142 	if (dev == NULL)
5143 		return (ENOENT);
5144 
5145 	/*
5146 	 * Populate the return array.
5147 	 */
5148 	bzero(&udev, sizeof(udev));
5149 	udev.dv_handle = (uintptr_t)dev;
5150 	udev.dv_parent = (uintptr_t)dev->parent;
5151 	if (dev->nameunit != NULL)
5152 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
5153 	if (dev->desc != NULL)
5154 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
5155 	if (dev->driver != NULL && dev->driver->name != NULL)
5156 		strlcpy(udev.dv_drivername, dev->driver->name,
5157 		    sizeof(udev.dv_drivername));
5158 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
5159 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
5160 	udev.dv_devflags = dev->devflags;
5161 	udev.dv_flags = dev->flags;
5162 	udev.dv_state = dev->state;
5163 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
5164 	return (error);
5165 }
5166 
5167 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
5168     "system device tree");
5169 
5170 int
5171 bus_data_generation_check(int generation)
5172 {
5173 	if (generation != bus_data_generation)
5174 		return (1);
5175 
5176 	/* XXX generate optimised lists here? */
5177 	return (0);
5178 }
5179 
5180 void
5181 bus_data_generation_update(void)
5182 {
5183 	bus_data_generation++;
5184 }
5185 
5186 int
5187 bus_free_resource(device_t dev, int type, struct resource *r)
5188 {
5189 	if (r == NULL)
5190 		return (0);
5191 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5192 }
5193 
5194 device_t
5195 device_lookup_by_name(const char *name)
5196 {
5197 	device_t dev;
5198 
5199 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5200 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5201 			return (dev);
5202 	}
5203 	return (NULL);
5204 }
5205 
5206 /*
5207  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5208  * implicit semantics on open, so it could not be reused for this.
5209  * Another option would be to call this /dev/bus?
5210  */
5211 static int
5212 find_device(struct devreq *req, device_t *devp)
5213 {
5214 	device_t dev;
5215 
5216 	/*
5217 	 * First, ensure that the name is nul terminated.
5218 	 */
5219 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5220 		return (EINVAL);
5221 
5222 	/*
5223 	 * Second, try to find an attached device whose name matches
5224 	 * 'name'.
5225 	 */
5226 	dev = device_lookup_by_name(req->dr_name);
5227 	if (dev != NULL) {
5228 		*devp = dev;
5229 		return (0);
5230 	}
5231 
5232 	/* Finally, give device enumerators a chance. */
5233 	dev = NULL;
5234 	EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev);
5235 	if (dev == NULL)
5236 		return (ENOENT);
5237 	*devp = dev;
5238 	return (0);
5239 }
5240 
5241 static bool
5242 driver_exists(device_t bus, const char *driver)
5243 {
5244 	devclass_t dc;
5245 
5246 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5247 		if (devclass_find_driver_internal(dc, driver) != NULL)
5248 			return (true);
5249 	}
5250 	return (false);
5251 }
5252 
5253 static int
5254 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5255     struct thread *td)
5256 {
5257 	struct devreq *req;
5258 	device_t dev;
5259 	int error, old;
5260 
5261 	/* Locate the device to control. */
5262 	mtx_lock(&Giant);
5263 	req = (struct devreq *)data;
5264 	switch (cmd) {
5265 	case DEV_ATTACH:
5266 	case DEV_DETACH:
5267 	case DEV_ENABLE:
5268 	case DEV_DISABLE:
5269 	case DEV_SUSPEND:
5270 	case DEV_RESUME:
5271 	case DEV_SET_DRIVER:
5272 	case DEV_RESCAN:
5273 	case DEV_DELETE:
5274 		error = priv_check(td, PRIV_DRIVER);
5275 		if (error == 0)
5276 			error = find_device(req, &dev);
5277 		break;
5278 	default:
5279 		error = ENOTTY;
5280 		break;
5281 	}
5282 	if (error) {
5283 		mtx_unlock(&Giant);
5284 		return (error);
5285 	}
5286 
5287 	/* Perform the requested operation. */
5288 	switch (cmd) {
5289 	case DEV_ATTACH:
5290 		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5291 			error = EBUSY;
5292 		else if (!device_is_enabled(dev))
5293 			error = ENXIO;
5294 		else
5295 			error = device_probe_and_attach(dev);
5296 		break;
5297 	case DEV_DETACH:
5298 		if (!device_is_attached(dev)) {
5299 			error = ENXIO;
5300 			break;
5301 		}
5302 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5303 			error = device_quiesce(dev);
5304 			if (error)
5305 				break;
5306 		}
5307 		error = device_detach(dev);
5308 		break;
5309 	case DEV_ENABLE:
5310 		if (device_is_enabled(dev)) {
5311 			error = EBUSY;
5312 			break;
5313 		}
5314 
5315 		/*
5316 		 * If the device has been probed but not attached (e.g.
5317 		 * when it has been disabled by a loader hint), just
5318 		 * attach the device rather than doing a full probe.
5319 		 */
5320 		device_enable(dev);
5321 		if (device_is_alive(dev)) {
5322 			/*
5323 			 * If the device was disabled via a hint, clear
5324 			 * the hint.
5325 			 */
5326 			if (resource_disabled(dev->driver->name, dev->unit))
5327 				resource_unset_value(dev->driver->name,
5328 				    dev->unit, "disabled");
5329 			error = device_attach(dev);
5330 		} else
5331 			error = device_probe_and_attach(dev);
5332 		break;
5333 	case DEV_DISABLE:
5334 		if (!device_is_enabled(dev)) {
5335 			error = ENXIO;
5336 			break;
5337 		}
5338 
5339 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5340 			error = device_quiesce(dev);
5341 			if (error)
5342 				break;
5343 		}
5344 
5345 		/*
5346 		 * Force DF_FIXEDCLASS on around detach to preserve
5347 		 * the existing name.
5348 		 */
5349 		old = dev->flags;
5350 		dev->flags |= DF_FIXEDCLASS;
5351 		error = device_detach(dev);
5352 		if (!(old & DF_FIXEDCLASS))
5353 			dev->flags &= ~DF_FIXEDCLASS;
5354 		if (error == 0)
5355 			device_disable(dev);
5356 		break;
5357 	case DEV_SUSPEND:
5358 		if (device_is_suspended(dev)) {
5359 			error = EBUSY;
5360 			break;
5361 		}
5362 		if (device_get_parent(dev) == NULL) {
5363 			error = EINVAL;
5364 			break;
5365 		}
5366 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5367 		break;
5368 	case DEV_RESUME:
5369 		if (!device_is_suspended(dev)) {
5370 			error = EINVAL;
5371 			break;
5372 		}
5373 		if (device_get_parent(dev) == NULL) {
5374 			error = EINVAL;
5375 			break;
5376 		}
5377 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5378 		break;
5379 	case DEV_SET_DRIVER: {
5380 		devclass_t dc;
5381 		char driver[128];
5382 
5383 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5384 		if (error)
5385 			break;
5386 		if (driver[0] == '\0') {
5387 			error = EINVAL;
5388 			break;
5389 		}
5390 		if (dev->devclass != NULL &&
5391 		    strcmp(driver, dev->devclass->name) == 0)
5392 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5393 			break;
5394 
5395 		/*
5396 		 * Scan drivers for this device's bus looking for at
5397 		 * least one matching driver.
5398 		 */
5399 		if (dev->parent == NULL) {
5400 			error = EINVAL;
5401 			break;
5402 		}
5403 		if (!driver_exists(dev->parent, driver)) {
5404 			error = ENOENT;
5405 			break;
5406 		}
5407 		dc = devclass_create(driver);
5408 		if (dc == NULL) {
5409 			error = ENOMEM;
5410 			break;
5411 		}
5412 
5413 		/* Detach device if necessary. */
5414 		if (device_is_attached(dev)) {
5415 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5416 				error = device_detach(dev);
5417 			else
5418 				error = EBUSY;
5419 			if (error)
5420 				break;
5421 		}
5422 
5423 		/* Clear any previously-fixed device class and unit. */
5424 		if (dev->flags & DF_FIXEDCLASS)
5425 			devclass_delete_device(dev->devclass, dev);
5426 		dev->flags |= DF_WILDCARD;
5427 		dev->unit = -1;
5428 
5429 		/* Force the new device class. */
5430 		error = devclass_add_device(dc, dev);
5431 		if (error)
5432 			break;
5433 		dev->flags |= DF_FIXEDCLASS;
5434 		error = device_probe_and_attach(dev);
5435 		break;
5436 	}
5437 	case DEV_RESCAN:
5438 		if (!device_is_attached(dev)) {
5439 			error = ENXIO;
5440 			break;
5441 		}
5442 		error = BUS_RESCAN(dev);
5443 		break;
5444 	case DEV_DELETE: {
5445 		device_t parent;
5446 
5447 		parent = device_get_parent(dev);
5448 		if (parent == NULL) {
5449 			error = EINVAL;
5450 			break;
5451 		}
5452 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5453 			if (bus_child_present(dev) != 0) {
5454 				error = EBUSY;
5455 				break;
5456 			}
5457 		}
5458 
5459 		error = device_delete_child(parent, dev);
5460 		break;
5461 	}
5462 	}
5463 	mtx_unlock(&Giant);
5464 	return (error);
5465 }
5466 
5467 static struct cdevsw devctl2_cdevsw = {
5468 	.d_version =	D_VERSION,
5469 	.d_ioctl =	devctl2_ioctl,
5470 	.d_name =	"devctl2",
5471 };
5472 
5473 static void
5474 devctl2_init(void)
5475 {
5476 
5477 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5478 	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5479 }
5480