1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bus.h" 33 #include "opt_ddb.h" 34 35 #include <sys/param.h> 36 #include <sys/conf.h> 37 #include <sys/eventhandler.h> 38 #include <sys/filio.h> 39 #include <sys/lock.h> 40 #include <sys/kernel.h> 41 #include <sys/kobj.h> 42 #include <sys/limits.h> 43 #include <sys/malloc.h> 44 #include <sys/module.h> 45 #include <sys/mutex.h> 46 #include <sys/poll.h> 47 #include <sys/priv.h> 48 #include <sys/proc.h> 49 #include <sys/condvar.h> 50 #include <sys/queue.h> 51 #include <machine/bus.h> 52 #include <sys/random.h> 53 #include <sys/rman.h> 54 #include <sys/sbuf.h> 55 #include <sys/selinfo.h> 56 #include <sys/signalvar.h> 57 #include <sys/smp.h> 58 #include <sys/sysctl.h> 59 #include <sys/systm.h> 60 #include <sys/uio.h> 61 #include <sys/bus.h> 62 #include <sys/cpuset.h> 63 64 #include <net/vnet.h> 65 66 #include <machine/cpu.h> 67 #include <machine/stdarg.h> 68 69 #include <vm/uma.h> 70 #include <vm/vm.h> 71 72 #include <ddb/ddb.h> 73 74 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 75 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 76 77 /* 78 * Used to attach drivers to devclasses. 79 */ 80 typedef struct driverlink *driverlink_t; 81 struct driverlink { 82 kobj_class_t driver; 83 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 84 int pass; 85 int flags; 86 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 87 TAILQ_ENTRY(driverlink) passlink; 88 }; 89 90 /* 91 * Forward declarations 92 */ 93 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 94 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 95 typedef TAILQ_HEAD(device_list, device) device_list_t; 96 97 struct devclass { 98 TAILQ_ENTRY(devclass) link; 99 devclass_t parent; /* parent in devclass hierarchy */ 100 driver_list_t drivers; /* bus devclasses store drivers for bus */ 101 char *name; 102 device_t *devices; /* array of devices indexed by unit */ 103 int maxunit; /* size of devices array */ 104 int flags; 105 #define DC_HAS_CHILDREN 1 106 107 struct sysctl_ctx_list sysctl_ctx; 108 struct sysctl_oid *sysctl_tree; 109 }; 110 111 /** 112 * @brief Implementation of device. 113 */ 114 struct device { 115 /* 116 * A device is a kernel object. The first field must be the 117 * current ops table for the object. 118 */ 119 KOBJ_FIELDS; 120 121 /* 122 * Device hierarchy. 123 */ 124 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 125 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 126 device_t parent; /**< parent of this device */ 127 device_list_t children; /**< list of child devices */ 128 129 /* 130 * Details of this device. 131 */ 132 driver_t *driver; /**< current driver */ 133 devclass_t devclass; /**< current device class */ 134 int unit; /**< current unit number */ 135 char* nameunit; /**< name+unit e.g. foodev0 */ 136 char* desc; /**< driver specific description */ 137 int busy; /**< count of calls to device_busy() */ 138 device_state_t state; /**< current device state */ 139 uint32_t devflags; /**< api level flags for device_get_flags() */ 140 u_int flags; /**< internal device flags */ 141 u_int order; /**< order from device_add_child_ordered() */ 142 void *ivars; /**< instance variables */ 143 void *softc; /**< current driver's variables */ 144 145 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 146 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 147 }; 148 149 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 150 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 151 152 EVENTHANDLER_LIST_DEFINE(device_attach); 153 EVENTHANDLER_LIST_DEFINE(device_detach); 154 EVENTHANDLER_LIST_DEFINE(dev_lookup); 155 156 static void devctl2_init(void); 157 static bool device_frozen; 158 159 #define DRIVERNAME(d) ((d)? d->name : "no driver") 160 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 161 162 #ifdef BUS_DEBUG 163 164 static int bus_debug = 1; 165 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 166 "Bus debug level"); 167 168 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 169 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 170 171 /** 172 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 173 * prevent syslog from deleting initial spaces 174 */ 175 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 176 177 static void print_device_short(device_t dev, int indent); 178 static void print_device(device_t dev, int indent); 179 void print_device_tree_short(device_t dev, int indent); 180 void print_device_tree(device_t dev, int indent); 181 static void print_driver_short(driver_t *driver, int indent); 182 static void print_driver(driver_t *driver, int indent); 183 static void print_driver_list(driver_list_t drivers, int indent); 184 static void print_devclass_short(devclass_t dc, int indent); 185 static void print_devclass(devclass_t dc, int indent); 186 void print_devclass_list_short(void); 187 void print_devclass_list(void); 188 189 #else 190 /* Make the compiler ignore the function calls */ 191 #define PDEBUG(a) /* nop */ 192 #define DEVICENAME(d) /* nop */ 193 194 #define print_device_short(d,i) /* nop */ 195 #define print_device(d,i) /* nop */ 196 #define print_device_tree_short(d,i) /* nop */ 197 #define print_device_tree(d,i) /* nop */ 198 #define print_driver_short(d,i) /* nop */ 199 #define print_driver(d,i) /* nop */ 200 #define print_driver_list(d,i) /* nop */ 201 #define print_devclass_short(d,i) /* nop */ 202 #define print_devclass(d,i) /* nop */ 203 #define print_devclass_list_short() /* nop */ 204 #define print_devclass_list() /* nop */ 205 #endif 206 207 /* 208 * dev sysctl tree 209 */ 210 211 enum { 212 DEVCLASS_SYSCTL_PARENT, 213 }; 214 215 static int 216 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 217 { 218 devclass_t dc = (devclass_t)arg1; 219 const char *value; 220 221 switch (arg2) { 222 case DEVCLASS_SYSCTL_PARENT: 223 value = dc->parent ? dc->parent->name : ""; 224 break; 225 default: 226 return (EINVAL); 227 } 228 return (SYSCTL_OUT_STR(req, value)); 229 } 230 231 static void 232 devclass_sysctl_init(devclass_t dc) 233 { 234 235 if (dc->sysctl_tree != NULL) 236 return; 237 sysctl_ctx_init(&dc->sysctl_ctx); 238 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 239 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 240 CTLFLAG_RD, NULL, ""); 241 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 242 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 243 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 244 "parent class"); 245 } 246 247 enum { 248 DEVICE_SYSCTL_DESC, 249 DEVICE_SYSCTL_DRIVER, 250 DEVICE_SYSCTL_LOCATION, 251 DEVICE_SYSCTL_PNPINFO, 252 DEVICE_SYSCTL_PARENT, 253 }; 254 255 static int 256 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 257 { 258 device_t dev = (device_t)arg1; 259 const char *value; 260 char *buf; 261 int error; 262 263 buf = NULL; 264 switch (arg2) { 265 case DEVICE_SYSCTL_DESC: 266 value = dev->desc ? dev->desc : ""; 267 break; 268 case DEVICE_SYSCTL_DRIVER: 269 value = dev->driver ? dev->driver->name : ""; 270 break; 271 case DEVICE_SYSCTL_LOCATION: 272 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 273 bus_child_location_str(dev, buf, 1024); 274 break; 275 case DEVICE_SYSCTL_PNPINFO: 276 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 277 bus_child_pnpinfo_str(dev, buf, 1024); 278 break; 279 case DEVICE_SYSCTL_PARENT: 280 value = dev->parent ? dev->parent->nameunit : ""; 281 break; 282 default: 283 return (EINVAL); 284 } 285 error = SYSCTL_OUT_STR(req, value); 286 if (buf != NULL) 287 free(buf, M_BUS); 288 return (error); 289 } 290 291 static void 292 device_sysctl_init(device_t dev) 293 { 294 devclass_t dc = dev->devclass; 295 int domain; 296 297 if (dev->sysctl_tree != NULL) 298 return; 299 devclass_sysctl_init(dc); 300 sysctl_ctx_init(&dev->sysctl_ctx); 301 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 302 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 303 dev->nameunit + strlen(dc->name), 304 CTLFLAG_RD, NULL, "", "device_index"); 305 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 306 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 307 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 308 "device description"); 309 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 310 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 311 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 312 "device driver name"); 313 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 314 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 315 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 316 "device location relative to parent"); 317 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 318 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 319 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 320 "device identification"); 321 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 322 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 323 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 324 "parent device"); 325 if (bus_get_domain(dev, &domain) == 0) 326 SYSCTL_ADD_INT(&dev->sysctl_ctx, 327 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 328 CTLFLAG_RD, NULL, domain, "NUMA domain"); 329 } 330 331 static void 332 device_sysctl_update(device_t dev) 333 { 334 devclass_t dc = dev->devclass; 335 336 if (dev->sysctl_tree == NULL) 337 return; 338 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 339 } 340 341 static void 342 device_sysctl_fini(device_t dev) 343 { 344 if (dev->sysctl_tree == NULL) 345 return; 346 sysctl_ctx_free(&dev->sysctl_ctx); 347 dev->sysctl_tree = NULL; 348 } 349 350 /* 351 * /dev/devctl implementation 352 */ 353 354 /* 355 * This design allows only one reader for /dev/devctl. This is not desirable 356 * in the long run, but will get a lot of hair out of this implementation. 357 * Maybe we should make this device a clonable device. 358 * 359 * Also note: we specifically do not attach a device to the device_t tree 360 * to avoid potential chicken and egg problems. One could argue that all 361 * of this belongs to the root node. One could also further argue that the 362 * sysctl interface that we have not might more properly be an ioctl 363 * interface, but at this stage of the game, I'm not inclined to rock that 364 * boat. 365 * 366 * I'm also not sure that the SIGIO support is done correctly or not, as 367 * I copied it from a driver that had SIGIO support that likely hasn't been 368 * tested since 3.4 or 2.2.8! 369 */ 370 371 /* Deprecated way to adjust queue length */ 372 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 373 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN | 374 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I", 375 "devctl disable -- deprecated"); 376 377 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 378 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 379 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 380 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 381 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 382 383 static d_open_t devopen; 384 static d_close_t devclose; 385 static d_read_t devread; 386 static d_ioctl_t devioctl; 387 static d_poll_t devpoll; 388 static d_kqfilter_t devkqfilter; 389 390 static struct cdevsw dev_cdevsw = { 391 .d_version = D_VERSION, 392 .d_open = devopen, 393 .d_close = devclose, 394 .d_read = devread, 395 .d_ioctl = devioctl, 396 .d_poll = devpoll, 397 .d_kqfilter = devkqfilter, 398 .d_name = "devctl", 399 }; 400 401 struct dev_event_info 402 { 403 char *dei_data; 404 TAILQ_ENTRY(dev_event_info) dei_link; 405 }; 406 407 TAILQ_HEAD(devq, dev_event_info); 408 409 static struct dev_softc 410 { 411 int inuse; 412 int nonblock; 413 int queued; 414 int async; 415 struct mtx mtx; 416 struct cv cv; 417 struct selinfo sel; 418 struct devq devq; 419 struct sigio *sigio; 420 } devsoftc; 421 422 static void filt_devctl_detach(struct knote *kn); 423 static int filt_devctl_read(struct knote *kn, long hint); 424 425 struct filterops devctl_rfiltops = { 426 .f_isfd = 1, 427 .f_detach = filt_devctl_detach, 428 .f_event = filt_devctl_read, 429 }; 430 431 static struct cdev *devctl_dev; 432 433 static void 434 devinit(void) 435 { 436 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 437 UID_ROOT, GID_WHEEL, 0600, "devctl"); 438 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 439 cv_init(&devsoftc.cv, "dev cv"); 440 TAILQ_INIT(&devsoftc.devq); 441 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 442 devctl2_init(); 443 } 444 445 static int 446 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 447 { 448 449 mtx_lock(&devsoftc.mtx); 450 if (devsoftc.inuse) { 451 mtx_unlock(&devsoftc.mtx); 452 return (EBUSY); 453 } 454 /* move to init */ 455 devsoftc.inuse = 1; 456 mtx_unlock(&devsoftc.mtx); 457 return (0); 458 } 459 460 static int 461 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 462 { 463 464 mtx_lock(&devsoftc.mtx); 465 devsoftc.inuse = 0; 466 devsoftc.nonblock = 0; 467 devsoftc.async = 0; 468 cv_broadcast(&devsoftc.cv); 469 funsetown(&devsoftc.sigio); 470 mtx_unlock(&devsoftc.mtx); 471 return (0); 472 } 473 474 /* 475 * The read channel for this device is used to report changes to 476 * userland in realtime. We are required to free the data as well as 477 * the n1 object because we allocate them separately. Also note that 478 * we return one record at a time. If you try to read this device a 479 * character at a time, you will lose the rest of the data. Listening 480 * programs are expected to cope. 481 */ 482 static int 483 devread(struct cdev *dev, struct uio *uio, int ioflag) 484 { 485 struct dev_event_info *n1; 486 int rv; 487 488 mtx_lock(&devsoftc.mtx); 489 while (TAILQ_EMPTY(&devsoftc.devq)) { 490 if (devsoftc.nonblock) { 491 mtx_unlock(&devsoftc.mtx); 492 return (EAGAIN); 493 } 494 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 495 if (rv) { 496 /* 497 * Need to translate ERESTART to EINTR here? -- jake 498 */ 499 mtx_unlock(&devsoftc.mtx); 500 return (rv); 501 } 502 } 503 n1 = TAILQ_FIRST(&devsoftc.devq); 504 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 505 devsoftc.queued--; 506 mtx_unlock(&devsoftc.mtx); 507 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 508 free(n1->dei_data, M_BUS); 509 free(n1, M_BUS); 510 return (rv); 511 } 512 513 static int 514 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 515 { 516 switch (cmd) { 517 518 case FIONBIO: 519 if (*(int*)data) 520 devsoftc.nonblock = 1; 521 else 522 devsoftc.nonblock = 0; 523 return (0); 524 case FIOASYNC: 525 if (*(int*)data) 526 devsoftc.async = 1; 527 else 528 devsoftc.async = 0; 529 return (0); 530 case FIOSETOWN: 531 return fsetown(*(int *)data, &devsoftc.sigio); 532 case FIOGETOWN: 533 *(int *)data = fgetown(&devsoftc.sigio); 534 return (0); 535 536 /* (un)Support for other fcntl() calls. */ 537 case FIOCLEX: 538 case FIONCLEX: 539 case FIONREAD: 540 default: 541 break; 542 } 543 return (ENOTTY); 544 } 545 546 static int 547 devpoll(struct cdev *dev, int events, struct thread *td) 548 { 549 int revents = 0; 550 551 mtx_lock(&devsoftc.mtx); 552 if (events & (POLLIN | POLLRDNORM)) { 553 if (!TAILQ_EMPTY(&devsoftc.devq)) 554 revents = events & (POLLIN | POLLRDNORM); 555 else 556 selrecord(td, &devsoftc.sel); 557 } 558 mtx_unlock(&devsoftc.mtx); 559 560 return (revents); 561 } 562 563 static int 564 devkqfilter(struct cdev *dev, struct knote *kn) 565 { 566 int error; 567 568 if (kn->kn_filter == EVFILT_READ) { 569 kn->kn_fop = &devctl_rfiltops; 570 knlist_add(&devsoftc.sel.si_note, kn, 0); 571 error = 0; 572 } else 573 error = EINVAL; 574 return (error); 575 } 576 577 static void 578 filt_devctl_detach(struct knote *kn) 579 { 580 581 knlist_remove(&devsoftc.sel.si_note, kn, 0); 582 } 583 584 static int 585 filt_devctl_read(struct knote *kn, long hint) 586 { 587 kn->kn_data = devsoftc.queued; 588 return (kn->kn_data != 0); 589 } 590 591 /** 592 * @brief Return whether the userland process is running 593 */ 594 boolean_t 595 devctl_process_running(void) 596 { 597 return (devsoftc.inuse == 1); 598 } 599 600 /** 601 * @brief Queue data to be read from the devctl device 602 * 603 * Generic interface to queue data to the devctl device. It is 604 * assumed that @p data is properly formatted. It is further assumed 605 * that @p data is allocated using the M_BUS malloc type. 606 */ 607 void 608 devctl_queue_data_f(char *data, int flags) 609 { 610 struct dev_event_info *n1 = NULL, *n2 = NULL; 611 612 if (strlen(data) == 0) 613 goto out; 614 if (devctl_queue_length == 0) 615 goto out; 616 n1 = malloc(sizeof(*n1), M_BUS, flags); 617 if (n1 == NULL) 618 goto out; 619 n1->dei_data = data; 620 mtx_lock(&devsoftc.mtx); 621 if (devctl_queue_length == 0) { 622 mtx_unlock(&devsoftc.mtx); 623 free(n1->dei_data, M_BUS); 624 free(n1, M_BUS); 625 return; 626 } 627 /* Leave at least one spot in the queue... */ 628 while (devsoftc.queued > devctl_queue_length - 1) { 629 n2 = TAILQ_FIRST(&devsoftc.devq); 630 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 631 free(n2->dei_data, M_BUS); 632 free(n2, M_BUS); 633 devsoftc.queued--; 634 } 635 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 636 devsoftc.queued++; 637 cv_broadcast(&devsoftc.cv); 638 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 639 mtx_unlock(&devsoftc.mtx); 640 selwakeup(&devsoftc.sel); 641 if (devsoftc.async && devsoftc.sigio != NULL) 642 pgsigio(&devsoftc.sigio, SIGIO, 0); 643 return; 644 out: 645 /* 646 * We have to free data on all error paths since the caller 647 * assumes it will be free'd when this item is dequeued. 648 */ 649 free(data, M_BUS); 650 return; 651 } 652 653 void 654 devctl_queue_data(char *data) 655 { 656 657 devctl_queue_data_f(data, M_NOWAIT); 658 } 659 660 /** 661 * @brief Send a 'notification' to userland, using standard ways 662 */ 663 void 664 devctl_notify_f(const char *system, const char *subsystem, const char *type, 665 const char *data, int flags) 666 { 667 int len = 0; 668 char *msg; 669 670 if (system == NULL) 671 return; /* BOGUS! Must specify system. */ 672 if (subsystem == NULL) 673 return; /* BOGUS! Must specify subsystem. */ 674 if (type == NULL) 675 return; /* BOGUS! Must specify type. */ 676 len += strlen(" system=") + strlen(system); 677 len += strlen(" subsystem=") + strlen(subsystem); 678 len += strlen(" type=") + strlen(type); 679 /* add in the data message plus newline. */ 680 if (data != NULL) 681 len += strlen(data); 682 len += 3; /* '!', '\n', and NUL */ 683 msg = malloc(len, M_BUS, flags); 684 if (msg == NULL) 685 return; /* Drop it on the floor */ 686 if (data != NULL) 687 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 688 system, subsystem, type, data); 689 else 690 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 691 system, subsystem, type); 692 devctl_queue_data_f(msg, flags); 693 } 694 695 void 696 devctl_notify(const char *system, const char *subsystem, const char *type, 697 const char *data) 698 { 699 700 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 701 } 702 703 /* 704 * Common routine that tries to make sending messages as easy as possible. 705 * We allocate memory for the data, copy strings into that, but do not 706 * free it unless there's an error. The dequeue part of the driver should 707 * free the data. We don't send data when the device is disabled. We do 708 * send data, even when we have no listeners, because we wish to avoid 709 * races relating to startup and restart of listening applications. 710 * 711 * devaddq is designed to string together the type of event, with the 712 * object of that event, plus the plug and play info and location info 713 * for that event. This is likely most useful for devices, but less 714 * useful for other consumers of this interface. Those should use 715 * the devctl_queue_data() interface instead. 716 */ 717 static void 718 devaddq(const char *type, const char *what, device_t dev) 719 { 720 char *data = NULL; 721 char *loc = NULL; 722 char *pnp = NULL; 723 const char *parstr; 724 725 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 726 return; 727 data = malloc(1024, M_BUS, M_NOWAIT); 728 if (data == NULL) 729 goto bad; 730 731 /* get the bus specific location of this device */ 732 loc = malloc(1024, M_BUS, M_NOWAIT); 733 if (loc == NULL) 734 goto bad; 735 *loc = '\0'; 736 bus_child_location_str(dev, loc, 1024); 737 738 /* Get the bus specific pnp info of this device */ 739 pnp = malloc(1024, M_BUS, M_NOWAIT); 740 if (pnp == NULL) 741 goto bad; 742 *pnp = '\0'; 743 bus_child_pnpinfo_str(dev, pnp, 1024); 744 745 /* Get the parent of this device, or / if high enough in the tree. */ 746 if (device_get_parent(dev) == NULL) 747 parstr = "."; /* Or '/' ? */ 748 else 749 parstr = device_get_nameunit(device_get_parent(dev)); 750 /* String it all together. */ 751 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 752 parstr); 753 free(loc, M_BUS); 754 free(pnp, M_BUS); 755 devctl_queue_data(data); 756 return; 757 bad: 758 free(pnp, M_BUS); 759 free(loc, M_BUS); 760 free(data, M_BUS); 761 return; 762 } 763 764 /* 765 * A device was added to the tree. We are called just after it successfully 766 * attaches (that is, probe and attach success for this device). No call 767 * is made if a device is merely parented into the tree. See devnomatch 768 * if probe fails. If attach fails, no notification is sent (but maybe 769 * we should have a different message for this). 770 */ 771 static void 772 devadded(device_t dev) 773 { 774 devaddq("+", device_get_nameunit(dev), dev); 775 } 776 777 /* 778 * A device was removed from the tree. We are called just before this 779 * happens. 780 */ 781 static void 782 devremoved(device_t dev) 783 { 784 devaddq("-", device_get_nameunit(dev), dev); 785 } 786 787 /* 788 * Called when there's no match for this device. This is only called 789 * the first time that no match happens, so we don't keep getting this 790 * message. Should that prove to be undesirable, we can change it. 791 * This is called when all drivers that can attach to a given bus 792 * decline to accept this device. Other errors may not be detected. 793 */ 794 static void 795 devnomatch(device_t dev) 796 { 797 devaddq("?", "", dev); 798 } 799 800 static int 801 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 802 { 803 struct dev_event_info *n1; 804 int dis, error; 805 806 dis = (devctl_queue_length == 0); 807 error = sysctl_handle_int(oidp, &dis, 0, req); 808 if (error || !req->newptr) 809 return (error); 810 if (mtx_initialized(&devsoftc.mtx)) 811 mtx_lock(&devsoftc.mtx); 812 if (dis) { 813 while (!TAILQ_EMPTY(&devsoftc.devq)) { 814 n1 = TAILQ_FIRST(&devsoftc.devq); 815 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 816 free(n1->dei_data, M_BUS); 817 free(n1, M_BUS); 818 } 819 devsoftc.queued = 0; 820 devctl_queue_length = 0; 821 } else { 822 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 823 } 824 if (mtx_initialized(&devsoftc.mtx)) 825 mtx_unlock(&devsoftc.mtx); 826 return (0); 827 } 828 829 static int 830 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 831 { 832 struct dev_event_info *n1; 833 int q, error; 834 835 q = devctl_queue_length; 836 error = sysctl_handle_int(oidp, &q, 0, req); 837 if (error || !req->newptr) 838 return (error); 839 if (q < 0) 840 return (EINVAL); 841 if (mtx_initialized(&devsoftc.mtx)) 842 mtx_lock(&devsoftc.mtx); 843 devctl_queue_length = q; 844 while (devsoftc.queued > devctl_queue_length) { 845 n1 = TAILQ_FIRST(&devsoftc.devq); 846 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 847 free(n1->dei_data, M_BUS); 848 free(n1, M_BUS); 849 devsoftc.queued--; 850 } 851 if (mtx_initialized(&devsoftc.mtx)) 852 mtx_unlock(&devsoftc.mtx); 853 return (0); 854 } 855 856 /** 857 * @brief safely quotes strings that might have double quotes in them. 858 * 859 * The devctl protocol relies on quoted strings having matching quotes. 860 * This routine quotes any internal quotes so the resulting string 861 * is safe to pass to snprintf to construct, for example pnp info strings. 862 * Strings are always terminated with a NUL, but may be truncated if longer 863 * than @p len bytes after quotes. 864 * 865 * @param sb sbuf to place the characters into 866 * @param src Original buffer. 867 */ 868 void 869 devctl_safe_quote_sb(struct sbuf *sb, const char *src) 870 { 871 872 while (*src != '\0') { 873 if (*src == '"' || *src == '\\') 874 sbuf_putc(sb, '\\'); 875 sbuf_putc(sb, *src++); 876 } 877 } 878 879 /* End of /dev/devctl code */ 880 881 static TAILQ_HEAD(,device) bus_data_devices; 882 static int bus_data_generation = 1; 883 884 static kobj_method_t null_methods[] = { 885 KOBJMETHOD_END 886 }; 887 888 DEFINE_CLASS(null, null_methods, 0); 889 890 /* 891 * Bus pass implementation 892 */ 893 894 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 895 int bus_current_pass = BUS_PASS_ROOT; 896 897 /** 898 * @internal 899 * @brief Register the pass level of a new driver attachment 900 * 901 * Register a new driver attachment's pass level. If no driver 902 * attachment with the same pass level has been added, then @p new 903 * will be added to the global passes list. 904 * 905 * @param new the new driver attachment 906 */ 907 static void 908 driver_register_pass(struct driverlink *new) 909 { 910 struct driverlink *dl; 911 912 /* We only consider pass numbers during boot. */ 913 if (bus_current_pass == BUS_PASS_DEFAULT) 914 return; 915 916 /* 917 * Walk the passes list. If we already know about this pass 918 * then there is nothing to do. If we don't, then insert this 919 * driver link into the list. 920 */ 921 TAILQ_FOREACH(dl, &passes, passlink) { 922 if (dl->pass < new->pass) 923 continue; 924 if (dl->pass == new->pass) 925 return; 926 TAILQ_INSERT_BEFORE(dl, new, passlink); 927 return; 928 } 929 TAILQ_INSERT_TAIL(&passes, new, passlink); 930 } 931 932 /** 933 * @brief Raise the current bus pass 934 * 935 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 936 * method on the root bus to kick off a new device tree scan for each 937 * new pass level that has at least one driver. 938 */ 939 void 940 bus_set_pass(int pass) 941 { 942 struct driverlink *dl; 943 944 if (bus_current_pass > pass) 945 panic("Attempt to lower bus pass level"); 946 947 TAILQ_FOREACH(dl, &passes, passlink) { 948 /* Skip pass values below the current pass level. */ 949 if (dl->pass <= bus_current_pass) 950 continue; 951 952 /* 953 * Bail once we hit a driver with a pass level that is 954 * too high. 955 */ 956 if (dl->pass > pass) 957 break; 958 959 /* 960 * Raise the pass level to the next level and rescan 961 * the tree. 962 */ 963 bus_current_pass = dl->pass; 964 BUS_NEW_PASS(root_bus); 965 } 966 967 /* 968 * If there isn't a driver registered for the requested pass, 969 * then bus_current_pass might still be less than 'pass'. Set 970 * it to 'pass' in that case. 971 */ 972 if (bus_current_pass < pass) 973 bus_current_pass = pass; 974 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 975 } 976 977 /* 978 * Devclass implementation 979 */ 980 981 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 982 983 /** 984 * @internal 985 * @brief Find or create a device class 986 * 987 * If a device class with the name @p classname exists, return it, 988 * otherwise if @p create is non-zero create and return a new device 989 * class. 990 * 991 * If @p parentname is non-NULL, the parent of the devclass is set to 992 * the devclass of that name. 993 * 994 * @param classname the devclass name to find or create 995 * @param parentname the parent devclass name or @c NULL 996 * @param create non-zero to create a devclass 997 */ 998 static devclass_t 999 devclass_find_internal(const char *classname, const char *parentname, 1000 int create) 1001 { 1002 devclass_t dc; 1003 1004 PDEBUG(("looking for %s", classname)); 1005 if (!classname) 1006 return (NULL); 1007 1008 TAILQ_FOREACH(dc, &devclasses, link) { 1009 if (!strcmp(dc->name, classname)) 1010 break; 1011 } 1012 1013 if (create && !dc) { 1014 PDEBUG(("creating %s", classname)); 1015 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 1016 M_BUS, M_NOWAIT | M_ZERO); 1017 if (!dc) 1018 return (NULL); 1019 dc->parent = NULL; 1020 dc->name = (char*) (dc + 1); 1021 strcpy(dc->name, classname); 1022 TAILQ_INIT(&dc->drivers); 1023 TAILQ_INSERT_TAIL(&devclasses, dc, link); 1024 1025 bus_data_generation_update(); 1026 } 1027 1028 /* 1029 * If a parent class is specified, then set that as our parent so 1030 * that this devclass will support drivers for the parent class as 1031 * well. If the parent class has the same name don't do this though 1032 * as it creates a cycle that can trigger an infinite loop in 1033 * device_probe_child() if a device exists for which there is no 1034 * suitable driver. 1035 */ 1036 if (parentname && dc && !dc->parent && 1037 strcmp(classname, parentname) != 0) { 1038 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1039 dc->parent->flags |= DC_HAS_CHILDREN; 1040 } 1041 1042 return (dc); 1043 } 1044 1045 /** 1046 * @brief Create a device class 1047 * 1048 * If a device class with the name @p classname exists, return it, 1049 * otherwise create and return a new device class. 1050 * 1051 * @param classname the devclass name to find or create 1052 */ 1053 devclass_t 1054 devclass_create(const char *classname) 1055 { 1056 return (devclass_find_internal(classname, NULL, TRUE)); 1057 } 1058 1059 /** 1060 * @brief Find a device class 1061 * 1062 * If a device class with the name @p classname exists, return it, 1063 * otherwise return @c NULL. 1064 * 1065 * @param classname the devclass name to find 1066 */ 1067 devclass_t 1068 devclass_find(const char *classname) 1069 { 1070 return (devclass_find_internal(classname, NULL, FALSE)); 1071 } 1072 1073 /** 1074 * @brief Register that a device driver has been added to a devclass 1075 * 1076 * Register that a device driver has been added to a devclass. This 1077 * is called by devclass_add_driver to accomplish the recursive 1078 * notification of all the children classes of dc, as well as dc. 1079 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1080 * the devclass. 1081 * 1082 * We do a full search here of the devclass list at each iteration 1083 * level to save storing children-lists in the devclass structure. If 1084 * we ever move beyond a few dozen devices doing this, we may need to 1085 * reevaluate... 1086 * 1087 * @param dc the devclass to edit 1088 * @param driver the driver that was just added 1089 */ 1090 static void 1091 devclass_driver_added(devclass_t dc, driver_t *driver) 1092 { 1093 devclass_t parent; 1094 int i; 1095 1096 /* 1097 * Call BUS_DRIVER_ADDED for any existing buses in this class. 1098 */ 1099 for (i = 0; i < dc->maxunit; i++) 1100 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1101 BUS_DRIVER_ADDED(dc->devices[i], driver); 1102 1103 /* 1104 * Walk through the children classes. Since we only keep a 1105 * single parent pointer around, we walk the entire list of 1106 * devclasses looking for children. We set the 1107 * DC_HAS_CHILDREN flag when a child devclass is created on 1108 * the parent, so we only walk the list for those devclasses 1109 * that have children. 1110 */ 1111 if (!(dc->flags & DC_HAS_CHILDREN)) 1112 return; 1113 parent = dc; 1114 TAILQ_FOREACH(dc, &devclasses, link) { 1115 if (dc->parent == parent) 1116 devclass_driver_added(dc, driver); 1117 } 1118 } 1119 1120 /** 1121 * @brief Add a device driver to a device class 1122 * 1123 * Add a device driver to a devclass. This is normally called 1124 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1125 * all devices in the devclass will be called to allow them to attempt 1126 * to re-probe any unmatched children. 1127 * 1128 * @param dc the devclass to edit 1129 * @param driver the driver to register 1130 */ 1131 int 1132 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1133 { 1134 driverlink_t dl; 1135 const char *parentname; 1136 1137 PDEBUG(("%s", DRIVERNAME(driver))); 1138 1139 /* Don't allow invalid pass values. */ 1140 if (pass <= BUS_PASS_ROOT) 1141 return (EINVAL); 1142 1143 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1144 if (!dl) 1145 return (ENOMEM); 1146 1147 /* 1148 * Compile the driver's methods. Also increase the reference count 1149 * so that the class doesn't get freed when the last instance 1150 * goes. This means we can safely use static methods and avoids a 1151 * double-free in devclass_delete_driver. 1152 */ 1153 kobj_class_compile((kobj_class_t) driver); 1154 1155 /* 1156 * If the driver has any base classes, make the 1157 * devclass inherit from the devclass of the driver's 1158 * first base class. This will allow the system to 1159 * search for drivers in both devclasses for children 1160 * of a device using this driver. 1161 */ 1162 if (driver->baseclasses) 1163 parentname = driver->baseclasses[0]->name; 1164 else 1165 parentname = NULL; 1166 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1167 1168 dl->driver = driver; 1169 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1170 driver->refs++; /* XXX: kobj_mtx */ 1171 dl->pass = pass; 1172 driver_register_pass(dl); 1173 1174 if (device_frozen) { 1175 dl->flags |= DL_DEFERRED_PROBE; 1176 } else { 1177 devclass_driver_added(dc, driver); 1178 } 1179 bus_data_generation_update(); 1180 return (0); 1181 } 1182 1183 /** 1184 * @brief Register that a device driver has been deleted from a devclass 1185 * 1186 * Register that a device driver has been removed from a devclass. 1187 * This is called by devclass_delete_driver to accomplish the 1188 * recursive notification of all the children classes of busclass, as 1189 * well as busclass. Each layer will attempt to detach the driver 1190 * from any devices that are children of the bus's devclass. The function 1191 * will return an error if a device fails to detach. 1192 * 1193 * We do a full search here of the devclass list at each iteration 1194 * level to save storing children-lists in the devclass structure. If 1195 * we ever move beyond a few dozen devices doing this, we may need to 1196 * reevaluate... 1197 * 1198 * @param busclass the devclass of the parent bus 1199 * @param dc the devclass of the driver being deleted 1200 * @param driver the driver being deleted 1201 */ 1202 static int 1203 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1204 { 1205 devclass_t parent; 1206 device_t dev; 1207 int error, i; 1208 1209 /* 1210 * Disassociate from any devices. We iterate through all the 1211 * devices in the devclass of the driver and detach any which are 1212 * using the driver and which have a parent in the devclass which 1213 * we are deleting from. 1214 * 1215 * Note that since a driver can be in multiple devclasses, we 1216 * should not detach devices which are not children of devices in 1217 * the affected devclass. 1218 * 1219 * If we're frozen, we don't generate NOMATCH events. Mark to 1220 * generate later. 1221 */ 1222 for (i = 0; i < dc->maxunit; i++) { 1223 if (dc->devices[i]) { 1224 dev = dc->devices[i]; 1225 if (dev->driver == driver && dev->parent && 1226 dev->parent->devclass == busclass) { 1227 if ((error = device_detach(dev)) != 0) 1228 return (error); 1229 if (device_frozen) { 1230 dev->flags &= ~DF_DONENOMATCH; 1231 dev->flags |= DF_NEEDNOMATCH; 1232 } else { 1233 BUS_PROBE_NOMATCH(dev->parent, dev); 1234 devnomatch(dev); 1235 dev->flags |= DF_DONENOMATCH; 1236 } 1237 } 1238 } 1239 } 1240 1241 /* 1242 * Walk through the children classes. Since we only keep a 1243 * single parent pointer around, we walk the entire list of 1244 * devclasses looking for children. We set the 1245 * DC_HAS_CHILDREN flag when a child devclass is created on 1246 * the parent, so we only walk the list for those devclasses 1247 * that have children. 1248 */ 1249 if (!(busclass->flags & DC_HAS_CHILDREN)) 1250 return (0); 1251 parent = busclass; 1252 TAILQ_FOREACH(busclass, &devclasses, link) { 1253 if (busclass->parent == parent) { 1254 error = devclass_driver_deleted(busclass, dc, driver); 1255 if (error) 1256 return (error); 1257 } 1258 } 1259 return (0); 1260 } 1261 1262 /** 1263 * @brief Delete a device driver from a device class 1264 * 1265 * Delete a device driver from a devclass. This is normally called 1266 * automatically by DRIVER_MODULE(). 1267 * 1268 * If the driver is currently attached to any devices, 1269 * devclass_delete_driver() will first attempt to detach from each 1270 * device. If one of the detach calls fails, the driver will not be 1271 * deleted. 1272 * 1273 * @param dc the devclass to edit 1274 * @param driver the driver to unregister 1275 */ 1276 int 1277 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1278 { 1279 devclass_t dc = devclass_find(driver->name); 1280 driverlink_t dl; 1281 int error; 1282 1283 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1284 1285 if (!dc) 1286 return (0); 1287 1288 /* 1289 * Find the link structure in the bus' list of drivers. 1290 */ 1291 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1292 if (dl->driver == driver) 1293 break; 1294 } 1295 1296 if (!dl) { 1297 PDEBUG(("%s not found in %s list", driver->name, 1298 busclass->name)); 1299 return (ENOENT); 1300 } 1301 1302 error = devclass_driver_deleted(busclass, dc, driver); 1303 if (error != 0) 1304 return (error); 1305 1306 TAILQ_REMOVE(&busclass->drivers, dl, link); 1307 free(dl, M_BUS); 1308 1309 /* XXX: kobj_mtx */ 1310 driver->refs--; 1311 if (driver->refs == 0) 1312 kobj_class_free((kobj_class_t) driver); 1313 1314 bus_data_generation_update(); 1315 return (0); 1316 } 1317 1318 /** 1319 * @brief Quiesces a set of device drivers from a device class 1320 * 1321 * Quiesce a device driver from a devclass. This is normally called 1322 * automatically by DRIVER_MODULE(). 1323 * 1324 * If the driver is currently attached to any devices, 1325 * devclass_quiesece_driver() will first attempt to quiesce each 1326 * device. 1327 * 1328 * @param dc the devclass to edit 1329 * @param driver the driver to unregister 1330 */ 1331 static int 1332 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1333 { 1334 devclass_t dc = devclass_find(driver->name); 1335 driverlink_t dl; 1336 device_t dev; 1337 int i; 1338 int error; 1339 1340 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1341 1342 if (!dc) 1343 return (0); 1344 1345 /* 1346 * Find the link structure in the bus' list of drivers. 1347 */ 1348 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1349 if (dl->driver == driver) 1350 break; 1351 } 1352 1353 if (!dl) { 1354 PDEBUG(("%s not found in %s list", driver->name, 1355 busclass->name)); 1356 return (ENOENT); 1357 } 1358 1359 /* 1360 * Quiesce all devices. We iterate through all the devices in 1361 * the devclass of the driver and quiesce any which are using 1362 * the driver and which have a parent in the devclass which we 1363 * are quiescing. 1364 * 1365 * Note that since a driver can be in multiple devclasses, we 1366 * should not quiesce devices which are not children of 1367 * devices in the affected devclass. 1368 */ 1369 for (i = 0; i < dc->maxunit; i++) { 1370 if (dc->devices[i]) { 1371 dev = dc->devices[i]; 1372 if (dev->driver == driver && dev->parent && 1373 dev->parent->devclass == busclass) { 1374 if ((error = device_quiesce(dev)) != 0) 1375 return (error); 1376 } 1377 } 1378 } 1379 1380 return (0); 1381 } 1382 1383 /** 1384 * @internal 1385 */ 1386 static driverlink_t 1387 devclass_find_driver_internal(devclass_t dc, const char *classname) 1388 { 1389 driverlink_t dl; 1390 1391 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1392 1393 TAILQ_FOREACH(dl, &dc->drivers, link) { 1394 if (!strcmp(dl->driver->name, classname)) 1395 return (dl); 1396 } 1397 1398 PDEBUG(("not found")); 1399 return (NULL); 1400 } 1401 1402 /** 1403 * @brief Return the name of the devclass 1404 */ 1405 const char * 1406 devclass_get_name(devclass_t dc) 1407 { 1408 return (dc->name); 1409 } 1410 1411 /** 1412 * @brief Find a device given a unit number 1413 * 1414 * @param dc the devclass to search 1415 * @param unit the unit number to search for 1416 * 1417 * @returns the device with the given unit number or @c 1418 * NULL if there is no such device 1419 */ 1420 device_t 1421 devclass_get_device(devclass_t dc, int unit) 1422 { 1423 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1424 return (NULL); 1425 return (dc->devices[unit]); 1426 } 1427 1428 /** 1429 * @brief Find the softc field of a device given a unit number 1430 * 1431 * @param dc the devclass to search 1432 * @param unit the unit number to search for 1433 * 1434 * @returns the softc field of the device with the given 1435 * unit number or @c NULL if there is no such 1436 * device 1437 */ 1438 void * 1439 devclass_get_softc(devclass_t dc, int unit) 1440 { 1441 device_t dev; 1442 1443 dev = devclass_get_device(dc, unit); 1444 if (!dev) 1445 return (NULL); 1446 1447 return (device_get_softc(dev)); 1448 } 1449 1450 /** 1451 * @brief Get a list of devices in the devclass 1452 * 1453 * An array containing a list of all the devices in the given devclass 1454 * is allocated and returned in @p *devlistp. The number of devices 1455 * in the array is returned in @p *devcountp. The caller should free 1456 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1457 * 1458 * @param dc the devclass to examine 1459 * @param devlistp points at location for array pointer return 1460 * value 1461 * @param devcountp points at location for array size return value 1462 * 1463 * @retval 0 success 1464 * @retval ENOMEM the array allocation failed 1465 */ 1466 int 1467 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1468 { 1469 int count, i; 1470 device_t *list; 1471 1472 count = devclass_get_count(dc); 1473 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1474 if (!list) 1475 return (ENOMEM); 1476 1477 count = 0; 1478 for (i = 0; i < dc->maxunit; i++) { 1479 if (dc->devices[i]) { 1480 list[count] = dc->devices[i]; 1481 count++; 1482 } 1483 } 1484 1485 *devlistp = list; 1486 *devcountp = count; 1487 1488 return (0); 1489 } 1490 1491 /** 1492 * @brief Get a list of drivers in the devclass 1493 * 1494 * An array containing a list of pointers to all the drivers in the 1495 * given devclass is allocated and returned in @p *listp. The number 1496 * of drivers in the array is returned in @p *countp. The caller should 1497 * free the array using @c free(p, M_TEMP). 1498 * 1499 * @param dc the devclass to examine 1500 * @param listp gives location for array pointer return value 1501 * @param countp gives location for number of array elements 1502 * return value 1503 * 1504 * @retval 0 success 1505 * @retval ENOMEM the array allocation failed 1506 */ 1507 int 1508 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1509 { 1510 driverlink_t dl; 1511 driver_t **list; 1512 int count; 1513 1514 count = 0; 1515 TAILQ_FOREACH(dl, &dc->drivers, link) 1516 count++; 1517 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1518 if (list == NULL) 1519 return (ENOMEM); 1520 1521 count = 0; 1522 TAILQ_FOREACH(dl, &dc->drivers, link) { 1523 list[count] = dl->driver; 1524 count++; 1525 } 1526 *listp = list; 1527 *countp = count; 1528 1529 return (0); 1530 } 1531 1532 /** 1533 * @brief Get the number of devices in a devclass 1534 * 1535 * @param dc the devclass to examine 1536 */ 1537 int 1538 devclass_get_count(devclass_t dc) 1539 { 1540 int count, i; 1541 1542 count = 0; 1543 for (i = 0; i < dc->maxunit; i++) 1544 if (dc->devices[i]) 1545 count++; 1546 return (count); 1547 } 1548 1549 /** 1550 * @brief Get the maximum unit number used in a devclass 1551 * 1552 * Note that this is one greater than the highest currently-allocated 1553 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1554 * that not even the devclass has been allocated yet. 1555 * 1556 * @param dc the devclass to examine 1557 */ 1558 int 1559 devclass_get_maxunit(devclass_t dc) 1560 { 1561 if (dc == NULL) 1562 return (-1); 1563 return (dc->maxunit); 1564 } 1565 1566 /** 1567 * @brief Find a free unit number in a devclass 1568 * 1569 * This function searches for the first unused unit number greater 1570 * that or equal to @p unit. 1571 * 1572 * @param dc the devclass to examine 1573 * @param unit the first unit number to check 1574 */ 1575 int 1576 devclass_find_free_unit(devclass_t dc, int unit) 1577 { 1578 if (dc == NULL) 1579 return (unit); 1580 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1581 unit++; 1582 return (unit); 1583 } 1584 1585 /** 1586 * @brief Set the parent of a devclass 1587 * 1588 * The parent class is normally initialised automatically by 1589 * DRIVER_MODULE(). 1590 * 1591 * @param dc the devclass to edit 1592 * @param pdc the new parent devclass 1593 */ 1594 void 1595 devclass_set_parent(devclass_t dc, devclass_t pdc) 1596 { 1597 dc->parent = pdc; 1598 } 1599 1600 /** 1601 * @brief Get the parent of a devclass 1602 * 1603 * @param dc the devclass to examine 1604 */ 1605 devclass_t 1606 devclass_get_parent(devclass_t dc) 1607 { 1608 return (dc->parent); 1609 } 1610 1611 struct sysctl_ctx_list * 1612 devclass_get_sysctl_ctx(devclass_t dc) 1613 { 1614 return (&dc->sysctl_ctx); 1615 } 1616 1617 struct sysctl_oid * 1618 devclass_get_sysctl_tree(devclass_t dc) 1619 { 1620 return (dc->sysctl_tree); 1621 } 1622 1623 /** 1624 * @internal 1625 * @brief Allocate a unit number 1626 * 1627 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1628 * will do). The allocated unit number is returned in @p *unitp. 1629 1630 * @param dc the devclass to allocate from 1631 * @param unitp points at the location for the allocated unit 1632 * number 1633 * 1634 * @retval 0 success 1635 * @retval EEXIST the requested unit number is already allocated 1636 * @retval ENOMEM memory allocation failure 1637 */ 1638 static int 1639 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1640 { 1641 const char *s; 1642 int unit = *unitp; 1643 1644 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1645 1646 /* Ask the parent bus if it wants to wire this device. */ 1647 if (unit == -1) 1648 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1649 &unit); 1650 1651 /* If we were given a wired unit number, check for existing device */ 1652 /* XXX imp XXX */ 1653 if (unit != -1) { 1654 if (unit >= 0 && unit < dc->maxunit && 1655 dc->devices[unit] != NULL) { 1656 if (bootverbose) 1657 printf("%s: %s%d already exists; skipping it\n", 1658 dc->name, dc->name, *unitp); 1659 return (EEXIST); 1660 } 1661 } else { 1662 /* Unwired device, find the next available slot for it */ 1663 unit = 0; 1664 for (unit = 0;; unit++) { 1665 /* If there is an "at" hint for a unit then skip it. */ 1666 if (resource_string_value(dc->name, unit, "at", &s) == 1667 0) 1668 continue; 1669 1670 /* If this device slot is already in use, skip it. */ 1671 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1672 continue; 1673 1674 break; 1675 } 1676 } 1677 1678 /* 1679 * We've selected a unit beyond the length of the table, so let's 1680 * extend the table to make room for all units up to and including 1681 * this one. 1682 */ 1683 if (unit >= dc->maxunit) { 1684 device_t *newlist, *oldlist; 1685 int newsize; 1686 1687 oldlist = dc->devices; 1688 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1689 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1690 if (!newlist) 1691 return (ENOMEM); 1692 if (oldlist != NULL) 1693 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1694 bzero(newlist + dc->maxunit, 1695 sizeof(device_t) * (newsize - dc->maxunit)); 1696 dc->devices = newlist; 1697 dc->maxunit = newsize; 1698 if (oldlist != NULL) 1699 free(oldlist, M_BUS); 1700 } 1701 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1702 1703 *unitp = unit; 1704 return (0); 1705 } 1706 1707 /** 1708 * @internal 1709 * @brief Add a device to a devclass 1710 * 1711 * A unit number is allocated for the device (using the device's 1712 * preferred unit number if any) and the device is registered in the 1713 * devclass. This allows the device to be looked up by its unit 1714 * number, e.g. by decoding a dev_t minor number. 1715 * 1716 * @param dc the devclass to add to 1717 * @param dev the device to add 1718 * 1719 * @retval 0 success 1720 * @retval EEXIST the requested unit number is already allocated 1721 * @retval ENOMEM memory allocation failure 1722 */ 1723 static int 1724 devclass_add_device(devclass_t dc, device_t dev) 1725 { 1726 int buflen, error; 1727 1728 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1729 1730 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1731 if (buflen < 0) 1732 return (ENOMEM); 1733 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1734 if (!dev->nameunit) 1735 return (ENOMEM); 1736 1737 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1738 free(dev->nameunit, M_BUS); 1739 dev->nameunit = NULL; 1740 return (error); 1741 } 1742 dc->devices[dev->unit] = dev; 1743 dev->devclass = dc; 1744 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1745 1746 return (0); 1747 } 1748 1749 /** 1750 * @internal 1751 * @brief Delete a device from a devclass 1752 * 1753 * The device is removed from the devclass's device list and its unit 1754 * number is freed. 1755 1756 * @param dc the devclass to delete from 1757 * @param dev the device to delete 1758 * 1759 * @retval 0 success 1760 */ 1761 static int 1762 devclass_delete_device(devclass_t dc, device_t dev) 1763 { 1764 if (!dc || !dev) 1765 return (0); 1766 1767 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1768 1769 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1770 panic("devclass_delete_device: inconsistent device class"); 1771 dc->devices[dev->unit] = NULL; 1772 if (dev->flags & DF_WILDCARD) 1773 dev->unit = -1; 1774 dev->devclass = NULL; 1775 free(dev->nameunit, M_BUS); 1776 dev->nameunit = NULL; 1777 1778 return (0); 1779 } 1780 1781 /** 1782 * @internal 1783 * @brief Make a new device and add it as a child of @p parent 1784 * 1785 * @param parent the parent of the new device 1786 * @param name the devclass name of the new device or @c NULL 1787 * to leave the devclass unspecified 1788 * @parem unit the unit number of the new device of @c -1 to 1789 * leave the unit number unspecified 1790 * 1791 * @returns the new device 1792 */ 1793 static device_t 1794 make_device(device_t parent, const char *name, int unit) 1795 { 1796 device_t dev; 1797 devclass_t dc; 1798 1799 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1800 1801 if (name) { 1802 dc = devclass_find_internal(name, NULL, TRUE); 1803 if (!dc) { 1804 printf("make_device: can't find device class %s\n", 1805 name); 1806 return (NULL); 1807 } 1808 } else { 1809 dc = NULL; 1810 } 1811 1812 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1813 if (!dev) 1814 return (NULL); 1815 1816 dev->parent = parent; 1817 TAILQ_INIT(&dev->children); 1818 kobj_init((kobj_t) dev, &null_class); 1819 dev->driver = NULL; 1820 dev->devclass = NULL; 1821 dev->unit = unit; 1822 dev->nameunit = NULL; 1823 dev->desc = NULL; 1824 dev->busy = 0; 1825 dev->devflags = 0; 1826 dev->flags = DF_ENABLED; 1827 dev->order = 0; 1828 if (unit == -1) 1829 dev->flags |= DF_WILDCARD; 1830 if (name) { 1831 dev->flags |= DF_FIXEDCLASS; 1832 if (devclass_add_device(dc, dev)) { 1833 kobj_delete((kobj_t) dev, M_BUS); 1834 return (NULL); 1835 } 1836 } 1837 if (parent != NULL && device_has_quiet_children(parent)) 1838 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1839 dev->ivars = NULL; 1840 dev->softc = NULL; 1841 1842 dev->state = DS_NOTPRESENT; 1843 1844 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1845 bus_data_generation_update(); 1846 1847 return (dev); 1848 } 1849 1850 /** 1851 * @internal 1852 * @brief Print a description of a device. 1853 */ 1854 static int 1855 device_print_child(device_t dev, device_t child) 1856 { 1857 int retval = 0; 1858 1859 if (device_is_alive(child)) 1860 retval += BUS_PRINT_CHILD(dev, child); 1861 else 1862 retval += device_printf(child, " not found\n"); 1863 1864 return (retval); 1865 } 1866 1867 /** 1868 * @brief Create a new device 1869 * 1870 * This creates a new device and adds it as a child of an existing 1871 * parent device. The new device will be added after the last existing 1872 * child with order zero. 1873 * 1874 * @param dev the device which will be the parent of the 1875 * new child device 1876 * @param name devclass name for new device or @c NULL if not 1877 * specified 1878 * @param unit unit number for new device or @c -1 if not 1879 * specified 1880 * 1881 * @returns the new device 1882 */ 1883 device_t 1884 device_add_child(device_t dev, const char *name, int unit) 1885 { 1886 return (device_add_child_ordered(dev, 0, name, unit)); 1887 } 1888 1889 /** 1890 * @brief Create a new device 1891 * 1892 * This creates a new device and adds it as a child of an existing 1893 * parent device. The new device will be added after the last existing 1894 * child with the same order. 1895 * 1896 * @param dev the device which will be the parent of the 1897 * new child device 1898 * @param order a value which is used to partially sort the 1899 * children of @p dev - devices created using 1900 * lower values of @p order appear first in @p 1901 * dev's list of children 1902 * @param name devclass name for new device or @c NULL if not 1903 * specified 1904 * @param unit unit number for new device or @c -1 if not 1905 * specified 1906 * 1907 * @returns the new device 1908 */ 1909 device_t 1910 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1911 { 1912 device_t child; 1913 device_t place; 1914 1915 PDEBUG(("%s at %s with order %u as unit %d", 1916 name, DEVICENAME(dev), order, unit)); 1917 KASSERT(name != NULL || unit == -1, 1918 ("child device with wildcard name and specific unit number")); 1919 1920 child = make_device(dev, name, unit); 1921 if (child == NULL) 1922 return (child); 1923 child->order = order; 1924 1925 TAILQ_FOREACH(place, &dev->children, link) { 1926 if (place->order > order) 1927 break; 1928 } 1929 1930 if (place) { 1931 /* 1932 * The device 'place' is the first device whose order is 1933 * greater than the new child. 1934 */ 1935 TAILQ_INSERT_BEFORE(place, child, link); 1936 } else { 1937 /* 1938 * The new child's order is greater or equal to the order of 1939 * any existing device. Add the child to the tail of the list. 1940 */ 1941 TAILQ_INSERT_TAIL(&dev->children, child, link); 1942 } 1943 1944 bus_data_generation_update(); 1945 return (child); 1946 } 1947 1948 /** 1949 * @brief Delete a device 1950 * 1951 * This function deletes a device along with all of its children. If 1952 * the device currently has a driver attached to it, the device is 1953 * detached first using device_detach(). 1954 * 1955 * @param dev the parent device 1956 * @param child the device to delete 1957 * 1958 * @retval 0 success 1959 * @retval non-zero a unit error code describing the error 1960 */ 1961 int 1962 device_delete_child(device_t dev, device_t child) 1963 { 1964 int error; 1965 device_t grandchild; 1966 1967 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1968 1969 /* detach parent before deleting children, if any */ 1970 if ((error = device_detach(child)) != 0) 1971 return (error); 1972 1973 /* remove children second */ 1974 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1975 error = device_delete_child(child, grandchild); 1976 if (error) 1977 return (error); 1978 } 1979 1980 if (child->devclass) 1981 devclass_delete_device(child->devclass, child); 1982 if (child->parent) 1983 BUS_CHILD_DELETED(dev, child); 1984 TAILQ_REMOVE(&dev->children, child, link); 1985 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1986 kobj_delete((kobj_t) child, M_BUS); 1987 1988 bus_data_generation_update(); 1989 return (0); 1990 } 1991 1992 /** 1993 * @brief Delete all children devices of the given device, if any. 1994 * 1995 * This function deletes all children devices of the given device, if 1996 * any, using the device_delete_child() function for each device it 1997 * finds. If a child device cannot be deleted, this function will 1998 * return an error code. 1999 * 2000 * @param dev the parent device 2001 * 2002 * @retval 0 success 2003 * @retval non-zero a device would not detach 2004 */ 2005 int 2006 device_delete_children(device_t dev) 2007 { 2008 device_t child; 2009 int error; 2010 2011 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 2012 2013 error = 0; 2014 2015 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 2016 error = device_delete_child(dev, child); 2017 if (error) { 2018 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 2019 break; 2020 } 2021 } 2022 return (error); 2023 } 2024 2025 /** 2026 * @brief Find a device given a unit number 2027 * 2028 * This is similar to devclass_get_devices() but only searches for 2029 * devices which have @p dev as a parent. 2030 * 2031 * @param dev the parent device to search 2032 * @param unit the unit number to search for. If the unit is -1, 2033 * return the first child of @p dev which has name 2034 * @p classname (that is, the one with the lowest unit.) 2035 * 2036 * @returns the device with the given unit number or @c 2037 * NULL if there is no such device 2038 */ 2039 device_t 2040 device_find_child(device_t dev, const char *classname, int unit) 2041 { 2042 devclass_t dc; 2043 device_t child; 2044 2045 dc = devclass_find(classname); 2046 if (!dc) 2047 return (NULL); 2048 2049 if (unit != -1) { 2050 child = devclass_get_device(dc, unit); 2051 if (child && child->parent == dev) 2052 return (child); 2053 } else { 2054 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2055 child = devclass_get_device(dc, unit); 2056 if (child && child->parent == dev) 2057 return (child); 2058 } 2059 } 2060 return (NULL); 2061 } 2062 2063 /** 2064 * @internal 2065 */ 2066 static driverlink_t 2067 first_matching_driver(devclass_t dc, device_t dev) 2068 { 2069 if (dev->devclass) 2070 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2071 return (TAILQ_FIRST(&dc->drivers)); 2072 } 2073 2074 /** 2075 * @internal 2076 */ 2077 static driverlink_t 2078 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2079 { 2080 if (dev->devclass) { 2081 driverlink_t dl; 2082 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2083 if (!strcmp(dev->devclass->name, dl->driver->name)) 2084 return (dl); 2085 return (NULL); 2086 } 2087 return (TAILQ_NEXT(last, link)); 2088 } 2089 2090 /** 2091 * @internal 2092 */ 2093 int 2094 device_probe_child(device_t dev, device_t child) 2095 { 2096 devclass_t dc; 2097 driverlink_t best = NULL; 2098 driverlink_t dl; 2099 int result, pri = 0; 2100 int hasclass = (child->devclass != NULL); 2101 2102 GIANT_REQUIRED; 2103 2104 dc = dev->devclass; 2105 if (!dc) 2106 panic("device_probe_child: parent device has no devclass"); 2107 2108 /* 2109 * If the state is already probed, then return. However, don't 2110 * return if we can rebid this object. 2111 */ 2112 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2113 return (0); 2114 2115 for (; dc; dc = dc->parent) { 2116 for (dl = first_matching_driver(dc, child); 2117 dl; 2118 dl = next_matching_driver(dc, child, dl)) { 2119 /* If this driver's pass is too high, then ignore it. */ 2120 if (dl->pass > bus_current_pass) 2121 continue; 2122 2123 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2124 result = device_set_driver(child, dl->driver); 2125 if (result == ENOMEM) 2126 return (result); 2127 else if (result != 0) 2128 continue; 2129 if (!hasclass) { 2130 if (device_set_devclass(child, 2131 dl->driver->name) != 0) { 2132 char const * devname = 2133 device_get_name(child); 2134 if (devname == NULL) 2135 devname = "(unknown)"; 2136 printf("driver bug: Unable to set " 2137 "devclass (class: %s " 2138 "devname: %s)\n", 2139 dl->driver->name, 2140 devname); 2141 (void)device_set_driver(child, NULL); 2142 continue; 2143 } 2144 } 2145 2146 /* Fetch any flags for the device before probing. */ 2147 resource_int_value(dl->driver->name, child->unit, 2148 "flags", &child->devflags); 2149 2150 result = DEVICE_PROBE(child); 2151 2152 /* Reset flags and devclass before the next probe. */ 2153 child->devflags = 0; 2154 if (!hasclass) 2155 (void)device_set_devclass(child, NULL); 2156 2157 /* 2158 * If the driver returns SUCCESS, there can be 2159 * no higher match for this device. 2160 */ 2161 if (result == 0) { 2162 best = dl; 2163 pri = 0; 2164 break; 2165 } 2166 2167 /* 2168 * Reset DF_QUIET in case this driver doesn't 2169 * end up as the best driver. 2170 */ 2171 device_verbose(child); 2172 2173 /* 2174 * Probes that return BUS_PROBE_NOWILDCARD or lower 2175 * only match on devices whose driver was explicitly 2176 * specified. 2177 */ 2178 if (result <= BUS_PROBE_NOWILDCARD && 2179 !(child->flags & DF_FIXEDCLASS)) { 2180 result = ENXIO; 2181 } 2182 2183 /* 2184 * The driver returned an error so it 2185 * certainly doesn't match. 2186 */ 2187 if (result > 0) { 2188 (void)device_set_driver(child, NULL); 2189 continue; 2190 } 2191 2192 /* 2193 * A priority lower than SUCCESS, remember the 2194 * best matching driver. Initialise the value 2195 * of pri for the first match. 2196 */ 2197 if (best == NULL || result > pri) { 2198 best = dl; 2199 pri = result; 2200 continue; 2201 } 2202 } 2203 /* 2204 * If we have an unambiguous match in this devclass, 2205 * don't look in the parent. 2206 */ 2207 if (best && pri == 0) 2208 break; 2209 } 2210 2211 /* 2212 * If we found a driver, change state and initialise the devclass. 2213 */ 2214 /* XXX What happens if we rebid and got no best? */ 2215 if (best) { 2216 /* 2217 * If this device was attached, and we were asked to 2218 * rescan, and it is a different driver, then we have 2219 * to detach the old driver and reattach this new one. 2220 * Note, we don't have to check for DF_REBID here 2221 * because if the state is > DS_ALIVE, we know it must 2222 * be. 2223 * 2224 * This assumes that all DF_REBID drivers can have 2225 * their probe routine called at any time and that 2226 * they are idempotent as well as completely benign in 2227 * normal operations. 2228 * 2229 * We also have to make sure that the detach 2230 * succeeded, otherwise we fail the operation (or 2231 * maybe it should just fail silently? I'm torn). 2232 */ 2233 if (child->state > DS_ALIVE && best->driver != child->driver) 2234 if ((result = device_detach(dev)) != 0) 2235 return (result); 2236 2237 /* Set the winning driver, devclass, and flags. */ 2238 if (!child->devclass) { 2239 result = device_set_devclass(child, best->driver->name); 2240 if (result != 0) 2241 return (result); 2242 } 2243 result = device_set_driver(child, best->driver); 2244 if (result != 0) 2245 return (result); 2246 resource_int_value(best->driver->name, child->unit, 2247 "flags", &child->devflags); 2248 2249 if (pri < 0) { 2250 /* 2251 * A bit bogus. Call the probe method again to make 2252 * sure that we have the right description. 2253 */ 2254 DEVICE_PROBE(child); 2255 #if 0 2256 child->flags |= DF_REBID; 2257 #endif 2258 } else 2259 child->flags &= ~DF_REBID; 2260 child->state = DS_ALIVE; 2261 2262 bus_data_generation_update(); 2263 return (0); 2264 } 2265 2266 return (ENXIO); 2267 } 2268 2269 /** 2270 * @brief Return the parent of a device 2271 */ 2272 device_t 2273 device_get_parent(device_t dev) 2274 { 2275 return (dev->parent); 2276 } 2277 2278 /** 2279 * @brief Get a list of children of a device 2280 * 2281 * An array containing a list of all the children of the given device 2282 * is allocated and returned in @p *devlistp. The number of devices 2283 * in the array is returned in @p *devcountp. The caller should free 2284 * the array using @c free(p, M_TEMP). 2285 * 2286 * @param dev the device to examine 2287 * @param devlistp points at location for array pointer return 2288 * value 2289 * @param devcountp points at location for array size return value 2290 * 2291 * @retval 0 success 2292 * @retval ENOMEM the array allocation failed 2293 */ 2294 int 2295 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2296 { 2297 int count; 2298 device_t child; 2299 device_t *list; 2300 2301 count = 0; 2302 TAILQ_FOREACH(child, &dev->children, link) { 2303 count++; 2304 } 2305 if (count == 0) { 2306 *devlistp = NULL; 2307 *devcountp = 0; 2308 return (0); 2309 } 2310 2311 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2312 if (!list) 2313 return (ENOMEM); 2314 2315 count = 0; 2316 TAILQ_FOREACH(child, &dev->children, link) { 2317 list[count] = child; 2318 count++; 2319 } 2320 2321 *devlistp = list; 2322 *devcountp = count; 2323 2324 return (0); 2325 } 2326 2327 /** 2328 * @brief Return the current driver for the device or @c NULL if there 2329 * is no driver currently attached 2330 */ 2331 driver_t * 2332 device_get_driver(device_t dev) 2333 { 2334 return (dev->driver); 2335 } 2336 2337 /** 2338 * @brief Return the current devclass for the device or @c NULL if 2339 * there is none. 2340 */ 2341 devclass_t 2342 device_get_devclass(device_t dev) 2343 { 2344 return (dev->devclass); 2345 } 2346 2347 /** 2348 * @brief Return the name of the device's devclass or @c NULL if there 2349 * is none. 2350 */ 2351 const char * 2352 device_get_name(device_t dev) 2353 { 2354 if (dev != NULL && dev->devclass) 2355 return (devclass_get_name(dev->devclass)); 2356 return (NULL); 2357 } 2358 2359 /** 2360 * @brief Return a string containing the device's devclass name 2361 * followed by an ascii representation of the device's unit number 2362 * (e.g. @c "foo2"). 2363 */ 2364 const char * 2365 device_get_nameunit(device_t dev) 2366 { 2367 return (dev->nameunit); 2368 } 2369 2370 /** 2371 * @brief Return the device's unit number. 2372 */ 2373 int 2374 device_get_unit(device_t dev) 2375 { 2376 return (dev->unit); 2377 } 2378 2379 /** 2380 * @brief Return the device's description string 2381 */ 2382 const char * 2383 device_get_desc(device_t dev) 2384 { 2385 return (dev->desc); 2386 } 2387 2388 /** 2389 * @brief Return the device's flags 2390 */ 2391 uint32_t 2392 device_get_flags(device_t dev) 2393 { 2394 return (dev->devflags); 2395 } 2396 2397 struct sysctl_ctx_list * 2398 device_get_sysctl_ctx(device_t dev) 2399 { 2400 return (&dev->sysctl_ctx); 2401 } 2402 2403 struct sysctl_oid * 2404 device_get_sysctl_tree(device_t dev) 2405 { 2406 return (dev->sysctl_tree); 2407 } 2408 2409 /** 2410 * @brief Print the name of the device followed by a colon and a space 2411 * 2412 * @returns the number of characters printed 2413 */ 2414 int 2415 device_print_prettyname(device_t dev) 2416 { 2417 const char *name = device_get_name(dev); 2418 2419 if (name == NULL) 2420 return (printf("unknown: ")); 2421 return (printf("%s%d: ", name, device_get_unit(dev))); 2422 } 2423 2424 /** 2425 * @brief Print the name of the device followed by a colon, a space 2426 * and the result of calling vprintf() with the value of @p fmt and 2427 * the following arguments. 2428 * 2429 * @returns the number of characters printed 2430 */ 2431 int 2432 device_printf(device_t dev, const char * fmt, ...) 2433 { 2434 va_list ap; 2435 int retval; 2436 2437 retval = device_print_prettyname(dev); 2438 va_start(ap, fmt); 2439 retval += vprintf(fmt, ap); 2440 va_end(ap); 2441 return (retval); 2442 } 2443 2444 /** 2445 * @internal 2446 */ 2447 static void 2448 device_set_desc_internal(device_t dev, const char* desc, int copy) 2449 { 2450 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2451 free(dev->desc, M_BUS); 2452 dev->flags &= ~DF_DESCMALLOCED; 2453 dev->desc = NULL; 2454 } 2455 2456 if (copy && desc) { 2457 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2458 if (dev->desc) { 2459 strcpy(dev->desc, desc); 2460 dev->flags |= DF_DESCMALLOCED; 2461 } 2462 } else { 2463 /* Avoid a -Wcast-qual warning */ 2464 dev->desc = (char *)(uintptr_t) desc; 2465 } 2466 2467 bus_data_generation_update(); 2468 } 2469 2470 /** 2471 * @brief Set the device's description 2472 * 2473 * The value of @c desc should be a string constant that will not 2474 * change (at least until the description is changed in a subsequent 2475 * call to device_set_desc() or device_set_desc_copy()). 2476 */ 2477 void 2478 device_set_desc(device_t dev, const char* desc) 2479 { 2480 device_set_desc_internal(dev, desc, FALSE); 2481 } 2482 2483 /** 2484 * @brief Set the device's description 2485 * 2486 * The string pointed to by @c desc is copied. Use this function if 2487 * the device description is generated, (e.g. with sprintf()). 2488 */ 2489 void 2490 device_set_desc_copy(device_t dev, const char* desc) 2491 { 2492 device_set_desc_internal(dev, desc, TRUE); 2493 } 2494 2495 /** 2496 * @brief Set the device's flags 2497 */ 2498 void 2499 device_set_flags(device_t dev, uint32_t flags) 2500 { 2501 dev->devflags = flags; 2502 } 2503 2504 /** 2505 * @brief Return the device's softc field 2506 * 2507 * The softc is allocated and zeroed when a driver is attached, based 2508 * on the size field of the driver. 2509 */ 2510 void * 2511 device_get_softc(device_t dev) 2512 { 2513 return (dev->softc); 2514 } 2515 2516 /** 2517 * @brief Set the device's softc field 2518 * 2519 * Most drivers do not need to use this since the softc is allocated 2520 * automatically when the driver is attached. 2521 */ 2522 void 2523 device_set_softc(device_t dev, void *softc) 2524 { 2525 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2526 free(dev->softc, M_BUS_SC); 2527 dev->softc = softc; 2528 if (dev->softc) 2529 dev->flags |= DF_EXTERNALSOFTC; 2530 else 2531 dev->flags &= ~DF_EXTERNALSOFTC; 2532 } 2533 2534 /** 2535 * @brief Free claimed softc 2536 * 2537 * Most drivers do not need to use this since the softc is freed 2538 * automatically when the driver is detached. 2539 */ 2540 void 2541 device_free_softc(void *softc) 2542 { 2543 free(softc, M_BUS_SC); 2544 } 2545 2546 /** 2547 * @brief Claim softc 2548 * 2549 * This function can be used to let the driver free the automatically 2550 * allocated softc using "device_free_softc()". This function is 2551 * useful when the driver is refcounting the softc and the softc 2552 * cannot be freed when the "device_detach" method is called. 2553 */ 2554 void 2555 device_claim_softc(device_t dev) 2556 { 2557 if (dev->softc) 2558 dev->flags |= DF_EXTERNALSOFTC; 2559 else 2560 dev->flags &= ~DF_EXTERNALSOFTC; 2561 } 2562 2563 /** 2564 * @brief Get the device's ivars field 2565 * 2566 * The ivars field is used by the parent device to store per-device 2567 * state (e.g. the physical location of the device or a list of 2568 * resources). 2569 */ 2570 void * 2571 device_get_ivars(device_t dev) 2572 { 2573 2574 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2575 return (dev->ivars); 2576 } 2577 2578 /** 2579 * @brief Set the device's ivars field 2580 */ 2581 void 2582 device_set_ivars(device_t dev, void * ivars) 2583 { 2584 2585 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2586 dev->ivars = ivars; 2587 } 2588 2589 /** 2590 * @brief Return the device's state 2591 */ 2592 device_state_t 2593 device_get_state(device_t dev) 2594 { 2595 return (dev->state); 2596 } 2597 2598 /** 2599 * @brief Set the DF_ENABLED flag for the device 2600 */ 2601 void 2602 device_enable(device_t dev) 2603 { 2604 dev->flags |= DF_ENABLED; 2605 } 2606 2607 /** 2608 * @brief Clear the DF_ENABLED flag for the device 2609 */ 2610 void 2611 device_disable(device_t dev) 2612 { 2613 dev->flags &= ~DF_ENABLED; 2614 } 2615 2616 /** 2617 * @brief Increment the busy counter for the device 2618 */ 2619 void 2620 device_busy(device_t dev) 2621 { 2622 if (dev->state < DS_ATTACHING) 2623 panic("device_busy: called for unattached device"); 2624 if (dev->busy == 0 && dev->parent) 2625 device_busy(dev->parent); 2626 dev->busy++; 2627 if (dev->state == DS_ATTACHED) 2628 dev->state = DS_BUSY; 2629 } 2630 2631 /** 2632 * @brief Decrement the busy counter for the device 2633 */ 2634 void 2635 device_unbusy(device_t dev) 2636 { 2637 if (dev->busy != 0 && dev->state != DS_BUSY && 2638 dev->state != DS_ATTACHING) 2639 panic("device_unbusy: called for non-busy device %s", 2640 device_get_nameunit(dev)); 2641 dev->busy--; 2642 if (dev->busy == 0) { 2643 if (dev->parent) 2644 device_unbusy(dev->parent); 2645 if (dev->state == DS_BUSY) 2646 dev->state = DS_ATTACHED; 2647 } 2648 } 2649 2650 /** 2651 * @brief Set the DF_QUIET flag for the device 2652 */ 2653 void 2654 device_quiet(device_t dev) 2655 { 2656 dev->flags |= DF_QUIET; 2657 } 2658 2659 /** 2660 * @brief Set the DF_QUIET_CHILDREN flag for the device 2661 */ 2662 void 2663 device_quiet_children(device_t dev) 2664 { 2665 dev->flags |= DF_QUIET_CHILDREN; 2666 } 2667 2668 /** 2669 * @brief Clear the DF_QUIET flag for the device 2670 */ 2671 void 2672 device_verbose(device_t dev) 2673 { 2674 dev->flags &= ~DF_QUIET; 2675 } 2676 2677 /** 2678 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2679 */ 2680 int 2681 device_has_quiet_children(device_t dev) 2682 { 2683 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2684 } 2685 2686 /** 2687 * @brief Return non-zero if the DF_QUIET flag is set on the device 2688 */ 2689 int 2690 device_is_quiet(device_t dev) 2691 { 2692 return ((dev->flags & DF_QUIET) != 0); 2693 } 2694 2695 /** 2696 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2697 */ 2698 int 2699 device_is_enabled(device_t dev) 2700 { 2701 return ((dev->flags & DF_ENABLED) != 0); 2702 } 2703 2704 /** 2705 * @brief Return non-zero if the device was successfully probed 2706 */ 2707 int 2708 device_is_alive(device_t dev) 2709 { 2710 return (dev->state >= DS_ALIVE); 2711 } 2712 2713 /** 2714 * @brief Return non-zero if the device currently has a driver 2715 * attached to it 2716 */ 2717 int 2718 device_is_attached(device_t dev) 2719 { 2720 return (dev->state >= DS_ATTACHED); 2721 } 2722 2723 /** 2724 * @brief Return non-zero if the device is currently suspended. 2725 */ 2726 int 2727 device_is_suspended(device_t dev) 2728 { 2729 return ((dev->flags & DF_SUSPENDED) != 0); 2730 } 2731 2732 /** 2733 * @brief Set the devclass of a device 2734 * @see devclass_add_device(). 2735 */ 2736 int 2737 device_set_devclass(device_t dev, const char *classname) 2738 { 2739 devclass_t dc; 2740 int error; 2741 2742 if (!classname) { 2743 if (dev->devclass) 2744 devclass_delete_device(dev->devclass, dev); 2745 return (0); 2746 } 2747 2748 if (dev->devclass) { 2749 printf("device_set_devclass: device class already set\n"); 2750 return (EINVAL); 2751 } 2752 2753 dc = devclass_find_internal(classname, NULL, TRUE); 2754 if (!dc) 2755 return (ENOMEM); 2756 2757 error = devclass_add_device(dc, dev); 2758 2759 bus_data_generation_update(); 2760 return (error); 2761 } 2762 2763 /** 2764 * @brief Set the devclass of a device and mark the devclass fixed. 2765 * @see device_set_devclass() 2766 */ 2767 int 2768 device_set_devclass_fixed(device_t dev, const char *classname) 2769 { 2770 int error; 2771 2772 if (classname == NULL) 2773 return (EINVAL); 2774 2775 error = device_set_devclass(dev, classname); 2776 if (error) 2777 return (error); 2778 dev->flags |= DF_FIXEDCLASS; 2779 return (0); 2780 } 2781 2782 /** 2783 * @brief Query the device to determine if it's of a fixed devclass 2784 * @see device_set_devclass_fixed() 2785 */ 2786 bool 2787 device_is_devclass_fixed(device_t dev) 2788 { 2789 return ((dev->flags & DF_FIXEDCLASS) != 0); 2790 } 2791 2792 /** 2793 * @brief Set the driver of a device 2794 * 2795 * @retval 0 success 2796 * @retval EBUSY the device already has a driver attached 2797 * @retval ENOMEM a memory allocation failure occurred 2798 */ 2799 int 2800 device_set_driver(device_t dev, driver_t *driver) 2801 { 2802 if (dev->state >= DS_ATTACHED) 2803 return (EBUSY); 2804 2805 if (dev->driver == driver) 2806 return (0); 2807 2808 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2809 free(dev->softc, M_BUS_SC); 2810 dev->softc = NULL; 2811 } 2812 device_set_desc(dev, NULL); 2813 kobj_delete((kobj_t) dev, NULL); 2814 dev->driver = driver; 2815 if (driver) { 2816 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2817 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2818 dev->softc = malloc(driver->size, M_BUS_SC, 2819 M_NOWAIT | M_ZERO); 2820 if (!dev->softc) { 2821 kobj_delete((kobj_t) dev, NULL); 2822 kobj_init((kobj_t) dev, &null_class); 2823 dev->driver = NULL; 2824 return (ENOMEM); 2825 } 2826 } 2827 } else { 2828 kobj_init((kobj_t) dev, &null_class); 2829 } 2830 2831 bus_data_generation_update(); 2832 return (0); 2833 } 2834 2835 /** 2836 * @brief Probe a device, and return this status. 2837 * 2838 * This function is the core of the device autoconfiguration 2839 * system. Its purpose is to select a suitable driver for a device and 2840 * then call that driver to initialise the hardware appropriately. The 2841 * driver is selected by calling the DEVICE_PROBE() method of a set of 2842 * candidate drivers and then choosing the driver which returned the 2843 * best value. This driver is then attached to the device using 2844 * device_attach(). 2845 * 2846 * The set of suitable drivers is taken from the list of drivers in 2847 * the parent device's devclass. If the device was originally created 2848 * with a specific class name (see device_add_child()), only drivers 2849 * with that name are probed, otherwise all drivers in the devclass 2850 * are probed. If no drivers return successful probe values in the 2851 * parent devclass, the search continues in the parent of that 2852 * devclass (see devclass_get_parent()) if any. 2853 * 2854 * @param dev the device to initialise 2855 * 2856 * @retval 0 success 2857 * @retval ENXIO no driver was found 2858 * @retval ENOMEM memory allocation failure 2859 * @retval non-zero some other unix error code 2860 * @retval -1 Device already attached 2861 */ 2862 int 2863 device_probe(device_t dev) 2864 { 2865 int error; 2866 2867 GIANT_REQUIRED; 2868 2869 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2870 return (-1); 2871 2872 if (!(dev->flags & DF_ENABLED)) { 2873 if (bootverbose && device_get_name(dev) != NULL) { 2874 device_print_prettyname(dev); 2875 printf("not probed (disabled)\n"); 2876 } 2877 return (-1); 2878 } 2879 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2880 if (bus_current_pass == BUS_PASS_DEFAULT && 2881 !(dev->flags & DF_DONENOMATCH)) { 2882 BUS_PROBE_NOMATCH(dev->parent, dev); 2883 devnomatch(dev); 2884 dev->flags |= DF_DONENOMATCH; 2885 } 2886 return (error); 2887 } 2888 return (0); 2889 } 2890 2891 /** 2892 * @brief Probe a device and attach a driver if possible 2893 * 2894 * calls device_probe() and attaches if that was successful. 2895 */ 2896 int 2897 device_probe_and_attach(device_t dev) 2898 { 2899 int error; 2900 2901 GIANT_REQUIRED; 2902 2903 error = device_probe(dev); 2904 if (error == -1) 2905 return (0); 2906 else if (error != 0) 2907 return (error); 2908 2909 CURVNET_SET_QUIET(vnet0); 2910 error = device_attach(dev); 2911 CURVNET_RESTORE(); 2912 return error; 2913 } 2914 2915 /** 2916 * @brief Attach a device driver to a device 2917 * 2918 * This function is a wrapper around the DEVICE_ATTACH() driver 2919 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2920 * device's sysctl tree, optionally prints a description of the device 2921 * and queues a notification event for user-based device management 2922 * services. 2923 * 2924 * Normally this function is only called internally from 2925 * device_probe_and_attach(). 2926 * 2927 * @param dev the device to initialise 2928 * 2929 * @retval 0 success 2930 * @retval ENXIO no driver was found 2931 * @retval ENOMEM memory allocation failure 2932 * @retval non-zero some other unix error code 2933 */ 2934 int 2935 device_attach(device_t dev) 2936 { 2937 uint64_t attachtime; 2938 uint16_t attachentropy; 2939 int error; 2940 2941 if (resource_disabled(dev->driver->name, dev->unit)) { 2942 device_disable(dev); 2943 if (bootverbose) 2944 device_printf(dev, "disabled via hints entry\n"); 2945 return (ENXIO); 2946 } 2947 2948 device_sysctl_init(dev); 2949 if (!device_is_quiet(dev)) 2950 device_print_child(dev->parent, dev); 2951 attachtime = get_cyclecount(); 2952 dev->state = DS_ATTACHING; 2953 if ((error = DEVICE_ATTACH(dev)) != 0) { 2954 printf("device_attach: %s%d attach returned %d\n", 2955 dev->driver->name, dev->unit, error); 2956 if (!(dev->flags & DF_FIXEDCLASS)) 2957 devclass_delete_device(dev->devclass, dev); 2958 (void)device_set_driver(dev, NULL); 2959 device_sysctl_fini(dev); 2960 KASSERT(dev->busy == 0, ("attach failed but busy")); 2961 dev->state = DS_NOTPRESENT; 2962 return (error); 2963 } 2964 dev->flags |= DF_ATTACHED_ONCE; 2965 /* We only need the low bits of this time, but ranges from tens to thousands 2966 * have been seen, so keep 2 bytes' worth. 2967 */ 2968 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 2969 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 2970 device_sysctl_update(dev); 2971 if (dev->busy) 2972 dev->state = DS_BUSY; 2973 else 2974 dev->state = DS_ATTACHED; 2975 dev->flags &= ~DF_DONENOMATCH; 2976 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 2977 devadded(dev); 2978 return (0); 2979 } 2980 2981 /** 2982 * @brief Detach a driver from a device 2983 * 2984 * This function is a wrapper around the DEVICE_DETACH() driver 2985 * method. If the call to DEVICE_DETACH() succeeds, it calls 2986 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2987 * notification event for user-based device management services and 2988 * cleans up the device's sysctl tree. 2989 * 2990 * @param dev the device to un-initialise 2991 * 2992 * @retval 0 success 2993 * @retval ENXIO no driver was found 2994 * @retval ENOMEM memory allocation failure 2995 * @retval non-zero some other unix error code 2996 */ 2997 int 2998 device_detach(device_t dev) 2999 { 3000 int error; 3001 3002 GIANT_REQUIRED; 3003 3004 PDEBUG(("%s", DEVICENAME(dev))); 3005 if (dev->state == DS_BUSY) 3006 return (EBUSY); 3007 if (dev->state != DS_ATTACHED) 3008 return (0); 3009 3010 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 3011 if ((error = DEVICE_DETACH(dev)) != 0) { 3012 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3013 EVHDEV_DETACH_FAILED); 3014 return (error); 3015 } else { 3016 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3017 EVHDEV_DETACH_COMPLETE); 3018 } 3019 devremoved(dev); 3020 if (!device_is_quiet(dev)) 3021 device_printf(dev, "detached\n"); 3022 if (dev->parent) 3023 BUS_CHILD_DETACHED(dev->parent, dev); 3024 3025 if (!(dev->flags & DF_FIXEDCLASS)) 3026 devclass_delete_device(dev->devclass, dev); 3027 3028 device_verbose(dev); 3029 dev->state = DS_NOTPRESENT; 3030 (void)device_set_driver(dev, NULL); 3031 device_sysctl_fini(dev); 3032 3033 return (0); 3034 } 3035 3036 /** 3037 * @brief Tells a driver to quiesce itself. 3038 * 3039 * This function is a wrapper around the DEVICE_QUIESCE() driver 3040 * method. If the call to DEVICE_QUIESCE() succeeds. 3041 * 3042 * @param dev the device to quiesce 3043 * 3044 * @retval 0 success 3045 * @retval ENXIO no driver was found 3046 * @retval ENOMEM memory allocation failure 3047 * @retval non-zero some other unix error code 3048 */ 3049 int 3050 device_quiesce(device_t dev) 3051 { 3052 3053 PDEBUG(("%s", DEVICENAME(dev))); 3054 if (dev->state == DS_BUSY) 3055 return (EBUSY); 3056 if (dev->state != DS_ATTACHED) 3057 return (0); 3058 3059 return (DEVICE_QUIESCE(dev)); 3060 } 3061 3062 /** 3063 * @brief Notify a device of system shutdown 3064 * 3065 * This function calls the DEVICE_SHUTDOWN() driver method if the 3066 * device currently has an attached driver. 3067 * 3068 * @returns the value returned by DEVICE_SHUTDOWN() 3069 */ 3070 int 3071 device_shutdown(device_t dev) 3072 { 3073 if (dev->state < DS_ATTACHED) 3074 return (0); 3075 return (DEVICE_SHUTDOWN(dev)); 3076 } 3077 3078 /** 3079 * @brief Set the unit number of a device 3080 * 3081 * This function can be used to override the unit number used for a 3082 * device (e.g. to wire a device to a pre-configured unit number). 3083 */ 3084 int 3085 device_set_unit(device_t dev, int unit) 3086 { 3087 devclass_t dc; 3088 int err; 3089 3090 dc = device_get_devclass(dev); 3091 if (unit < dc->maxunit && dc->devices[unit]) 3092 return (EBUSY); 3093 err = devclass_delete_device(dc, dev); 3094 if (err) 3095 return (err); 3096 dev->unit = unit; 3097 err = devclass_add_device(dc, dev); 3098 if (err) 3099 return (err); 3100 3101 bus_data_generation_update(); 3102 return (0); 3103 } 3104 3105 /*======================================*/ 3106 /* 3107 * Some useful method implementations to make life easier for bus drivers. 3108 */ 3109 3110 void 3111 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 3112 { 3113 3114 bzero(args, sz); 3115 args->size = sz; 3116 args->memattr = VM_MEMATTR_UNCACHEABLE; 3117 } 3118 3119 /** 3120 * @brief Initialise a resource list. 3121 * 3122 * @param rl the resource list to initialise 3123 */ 3124 void 3125 resource_list_init(struct resource_list *rl) 3126 { 3127 STAILQ_INIT(rl); 3128 } 3129 3130 /** 3131 * @brief Reclaim memory used by a resource list. 3132 * 3133 * This function frees the memory for all resource entries on the list 3134 * (if any). 3135 * 3136 * @param rl the resource list to free 3137 */ 3138 void 3139 resource_list_free(struct resource_list *rl) 3140 { 3141 struct resource_list_entry *rle; 3142 3143 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3144 if (rle->res) 3145 panic("resource_list_free: resource entry is busy"); 3146 STAILQ_REMOVE_HEAD(rl, link); 3147 free(rle, M_BUS); 3148 } 3149 } 3150 3151 /** 3152 * @brief Add a resource entry. 3153 * 3154 * This function adds a resource entry using the given @p type, @p 3155 * start, @p end and @p count values. A rid value is chosen by 3156 * searching sequentially for the first unused rid starting at zero. 3157 * 3158 * @param rl the resource list to edit 3159 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3160 * @param start the start address of the resource 3161 * @param end the end address of the resource 3162 * @param count XXX end-start+1 3163 */ 3164 int 3165 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 3166 rman_res_t end, rman_res_t count) 3167 { 3168 int rid; 3169 3170 rid = 0; 3171 while (resource_list_find(rl, type, rid) != NULL) 3172 rid++; 3173 resource_list_add(rl, type, rid, start, end, count); 3174 return (rid); 3175 } 3176 3177 /** 3178 * @brief Add or modify a resource entry. 3179 * 3180 * If an existing entry exists with the same type and rid, it will be 3181 * modified using the given values of @p start, @p end and @p 3182 * count. If no entry exists, a new one will be created using the 3183 * given values. The resource list entry that matches is then returned. 3184 * 3185 * @param rl the resource list to edit 3186 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3187 * @param rid the resource identifier 3188 * @param start the start address of the resource 3189 * @param end the end address of the resource 3190 * @param count XXX end-start+1 3191 */ 3192 struct resource_list_entry * 3193 resource_list_add(struct resource_list *rl, int type, int rid, 3194 rman_res_t start, rman_res_t end, rman_res_t count) 3195 { 3196 struct resource_list_entry *rle; 3197 3198 rle = resource_list_find(rl, type, rid); 3199 if (!rle) { 3200 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3201 M_NOWAIT); 3202 if (!rle) 3203 panic("resource_list_add: can't record entry"); 3204 STAILQ_INSERT_TAIL(rl, rle, link); 3205 rle->type = type; 3206 rle->rid = rid; 3207 rle->res = NULL; 3208 rle->flags = 0; 3209 } 3210 3211 if (rle->res) 3212 panic("resource_list_add: resource entry is busy"); 3213 3214 rle->start = start; 3215 rle->end = end; 3216 rle->count = count; 3217 return (rle); 3218 } 3219 3220 /** 3221 * @brief Determine if a resource entry is busy. 3222 * 3223 * Returns true if a resource entry is busy meaning that it has an 3224 * associated resource that is not an unallocated "reserved" resource. 3225 * 3226 * @param rl the resource list to search 3227 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3228 * @param rid the resource identifier 3229 * 3230 * @returns Non-zero if the entry is busy, zero otherwise. 3231 */ 3232 int 3233 resource_list_busy(struct resource_list *rl, int type, int rid) 3234 { 3235 struct resource_list_entry *rle; 3236 3237 rle = resource_list_find(rl, type, rid); 3238 if (rle == NULL || rle->res == NULL) 3239 return (0); 3240 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3241 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3242 ("reserved resource is active")); 3243 return (0); 3244 } 3245 return (1); 3246 } 3247 3248 /** 3249 * @brief Determine if a resource entry is reserved. 3250 * 3251 * Returns true if a resource entry is reserved meaning that it has an 3252 * associated "reserved" resource. The resource can either be 3253 * allocated or unallocated. 3254 * 3255 * @param rl the resource list to search 3256 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3257 * @param rid the resource identifier 3258 * 3259 * @returns Non-zero if the entry is reserved, zero otherwise. 3260 */ 3261 int 3262 resource_list_reserved(struct resource_list *rl, int type, int rid) 3263 { 3264 struct resource_list_entry *rle; 3265 3266 rle = resource_list_find(rl, type, rid); 3267 if (rle != NULL && rle->flags & RLE_RESERVED) 3268 return (1); 3269 return (0); 3270 } 3271 3272 /** 3273 * @brief Find a resource entry by type and rid. 3274 * 3275 * @param rl the resource list to search 3276 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3277 * @param rid the resource identifier 3278 * 3279 * @returns the resource entry pointer or NULL if there is no such 3280 * entry. 3281 */ 3282 struct resource_list_entry * 3283 resource_list_find(struct resource_list *rl, int type, int rid) 3284 { 3285 struct resource_list_entry *rle; 3286 3287 STAILQ_FOREACH(rle, rl, link) { 3288 if (rle->type == type && rle->rid == rid) 3289 return (rle); 3290 } 3291 return (NULL); 3292 } 3293 3294 /** 3295 * @brief Delete a resource entry. 3296 * 3297 * @param rl the resource list to edit 3298 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3299 * @param rid the resource identifier 3300 */ 3301 void 3302 resource_list_delete(struct resource_list *rl, int type, int rid) 3303 { 3304 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3305 3306 if (rle) { 3307 if (rle->res != NULL) 3308 panic("resource_list_delete: resource has not been released"); 3309 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3310 free(rle, M_BUS); 3311 } 3312 } 3313 3314 /** 3315 * @brief Allocate a reserved resource 3316 * 3317 * This can be used by buses to force the allocation of resources 3318 * that are always active in the system even if they are not allocated 3319 * by a driver (e.g. PCI BARs). This function is usually called when 3320 * adding a new child to the bus. The resource is allocated from the 3321 * parent bus when it is reserved. The resource list entry is marked 3322 * with RLE_RESERVED to note that it is a reserved resource. 3323 * 3324 * Subsequent attempts to allocate the resource with 3325 * resource_list_alloc() will succeed the first time and will set 3326 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3327 * resource that has been allocated is released with 3328 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3329 * the actual resource remains allocated. The resource can be released to 3330 * the parent bus by calling resource_list_unreserve(). 3331 * 3332 * @param rl the resource list to allocate from 3333 * @param bus the parent device of @p child 3334 * @param child the device for which the resource is being reserved 3335 * @param type the type of resource to allocate 3336 * @param rid a pointer to the resource identifier 3337 * @param start hint at the start of the resource range - pass 3338 * @c 0 for any start address 3339 * @param end hint at the end of the resource range - pass 3340 * @c ~0 for any end address 3341 * @param count hint at the size of range required - pass @c 1 3342 * for any size 3343 * @param flags any extra flags to control the resource 3344 * allocation - see @c RF_XXX flags in 3345 * <sys/rman.h> for details 3346 * 3347 * @returns the resource which was allocated or @c NULL if no 3348 * resource could be allocated 3349 */ 3350 struct resource * 3351 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3352 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3353 { 3354 struct resource_list_entry *rle = NULL; 3355 int passthrough = (device_get_parent(child) != bus); 3356 struct resource *r; 3357 3358 if (passthrough) 3359 panic( 3360 "resource_list_reserve() should only be called for direct children"); 3361 if (flags & RF_ACTIVE) 3362 panic( 3363 "resource_list_reserve() should only reserve inactive resources"); 3364 3365 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3366 flags); 3367 if (r != NULL) { 3368 rle = resource_list_find(rl, type, *rid); 3369 rle->flags |= RLE_RESERVED; 3370 } 3371 return (r); 3372 } 3373 3374 /** 3375 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3376 * 3377 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3378 * and passing the allocation up to the parent of @p bus. This assumes 3379 * that the first entry of @c device_get_ivars(child) is a struct 3380 * resource_list. This also handles 'passthrough' allocations where a 3381 * child is a remote descendant of bus by passing the allocation up to 3382 * the parent of bus. 3383 * 3384 * Typically, a bus driver would store a list of child resources 3385 * somewhere in the child device's ivars (see device_get_ivars()) and 3386 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3387 * then call resource_list_alloc() to perform the allocation. 3388 * 3389 * @param rl the resource list to allocate from 3390 * @param bus the parent device of @p child 3391 * @param child the device which is requesting an allocation 3392 * @param type the type of resource to allocate 3393 * @param rid a pointer to the resource identifier 3394 * @param start hint at the start of the resource range - pass 3395 * @c 0 for any start address 3396 * @param end hint at the end of the resource range - pass 3397 * @c ~0 for any end address 3398 * @param count hint at the size of range required - pass @c 1 3399 * for any size 3400 * @param flags any extra flags to control the resource 3401 * allocation - see @c RF_XXX flags in 3402 * <sys/rman.h> for details 3403 * 3404 * @returns the resource which was allocated or @c NULL if no 3405 * resource could be allocated 3406 */ 3407 struct resource * 3408 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3409 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3410 { 3411 struct resource_list_entry *rle = NULL; 3412 int passthrough = (device_get_parent(child) != bus); 3413 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3414 3415 if (passthrough) { 3416 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3417 type, rid, start, end, count, flags)); 3418 } 3419 3420 rle = resource_list_find(rl, type, *rid); 3421 3422 if (!rle) 3423 return (NULL); /* no resource of that type/rid */ 3424 3425 if (rle->res) { 3426 if (rle->flags & RLE_RESERVED) { 3427 if (rle->flags & RLE_ALLOCATED) 3428 return (NULL); 3429 if ((flags & RF_ACTIVE) && 3430 bus_activate_resource(child, type, *rid, 3431 rle->res) != 0) 3432 return (NULL); 3433 rle->flags |= RLE_ALLOCATED; 3434 return (rle->res); 3435 } 3436 device_printf(bus, 3437 "resource entry %#x type %d for child %s is busy\n", *rid, 3438 type, device_get_nameunit(child)); 3439 return (NULL); 3440 } 3441 3442 if (isdefault) { 3443 start = rle->start; 3444 count = ulmax(count, rle->count); 3445 end = ulmax(rle->end, start + count - 1); 3446 } 3447 3448 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3449 type, rid, start, end, count, flags); 3450 3451 /* 3452 * Record the new range. 3453 */ 3454 if (rle->res) { 3455 rle->start = rman_get_start(rle->res); 3456 rle->end = rman_get_end(rle->res); 3457 rle->count = count; 3458 } 3459 3460 return (rle->res); 3461 } 3462 3463 /** 3464 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3465 * 3466 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3467 * used with resource_list_alloc(). 3468 * 3469 * @param rl the resource list which was allocated from 3470 * @param bus the parent device of @p child 3471 * @param child the device which is requesting a release 3472 * @param type the type of resource to release 3473 * @param rid the resource identifier 3474 * @param res the resource to release 3475 * 3476 * @retval 0 success 3477 * @retval non-zero a standard unix error code indicating what 3478 * error condition prevented the operation 3479 */ 3480 int 3481 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3482 int type, int rid, struct resource *res) 3483 { 3484 struct resource_list_entry *rle = NULL; 3485 int passthrough = (device_get_parent(child) != bus); 3486 int error; 3487 3488 if (passthrough) { 3489 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3490 type, rid, res)); 3491 } 3492 3493 rle = resource_list_find(rl, type, rid); 3494 3495 if (!rle) 3496 panic("resource_list_release: can't find resource"); 3497 if (!rle->res) 3498 panic("resource_list_release: resource entry is not busy"); 3499 if (rle->flags & RLE_RESERVED) { 3500 if (rle->flags & RLE_ALLOCATED) { 3501 if (rman_get_flags(res) & RF_ACTIVE) { 3502 error = bus_deactivate_resource(child, type, 3503 rid, res); 3504 if (error) 3505 return (error); 3506 } 3507 rle->flags &= ~RLE_ALLOCATED; 3508 return (0); 3509 } 3510 return (EINVAL); 3511 } 3512 3513 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3514 type, rid, res); 3515 if (error) 3516 return (error); 3517 3518 rle->res = NULL; 3519 return (0); 3520 } 3521 3522 /** 3523 * @brief Release all active resources of a given type 3524 * 3525 * Release all active resources of a specified type. This is intended 3526 * to be used to cleanup resources leaked by a driver after detach or 3527 * a failed attach. 3528 * 3529 * @param rl the resource list which was allocated from 3530 * @param bus the parent device of @p child 3531 * @param child the device whose active resources are being released 3532 * @param type the type of resources to release 3533 * 3534 * @retval 0 success 3535 * @retval EBUSY at least one resource was active 3536 */ 3537 int 3538 resource_list_release_active(struct resource_list *rl, device_t bus, 3539 device_t child, int type) 3540 { 3541 struct resource_list_entry *rle; 3542 int error, retval; 3543 3544 retval = 0; 3545 STAILQ_FOREACH(rle, rl, link) { 3546 if (rle->type != type) 3547 continue; 3548 if (rle->res == NULL) 3549 continue; 3550 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3551 RLE_RESERVED) 3552 continue; 3553 retval = EBUSY; 3554 error = resource_list_release(rl, bus, child, type, 3555 rman_get_rid(rle->res), rle->res); 3556 if (error != 0) 3557 device_printf(bus, 3558 "Failed to release active resource: %d\n", error); 3559 } 3560 return (retval); 3561 } 3562 3563 3564 /** 3565 * @brief Fully release a reserved resource 3566 * 3567 * Fully releases a resource reserved via resource_list_reserve(). 3568 * 3569 * @param rl the resource list which was allocated from 3570 * @param bus the parent device of @p child 3571 * @param child the device whose reserved resource is being released 3572 * @param type the type of resource to release 3573 * @param rid the resource identifier 3574 * @param res the resource to release 3575 * 3576 * @retval 0 success 3577 * @retval non-zero a standard unix error code indicating what 3578 * error condition prevented the operation 3579 */ 3580 int 3581 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3582 int type, int rid) 3583 { 3584 struct resource_list_entry *rle = NULL; 3585 int passthrough = (device_get_parent(child) != bus); 3586 3587 if (passthrough) 3588 panic( 3589 "resource_list_unreserve() should only be called for direct children"); 3590 3591 rle = resource_list_find(rl, type, rid); 3592 3593 if (!rle) 3594 panic("resource_list_unreserve: can't find resource"); 3595 if (!(rle->flags & RLE_RESERVED)) 3596 return (EINVAL); 3597 if (rle->flags & RLE_ALLOCATED) 3598 return (EBUSY); 3599 rle->flags &= ~RLE_RESERVED; 3600 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3601 } 3602 3603 /** 3604 * @brief Print a description of resources in a resource list 3605 * 3606 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3607 * The name is printed if at least one resource of the given type is available. 3608 * The format is used to print resource start and end. 3609 * 3610 * @param rl the resource list to print 3611 * @param name the name of @p type, e.g. @c "memory" 3612 * @param type type type of resource entry to print 3613 * @param format printf(9) format string to print resource 3614 * start and end values 3615 * 3616 * @returns the number of characters printed 3617 */ 3618 int 3619 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3620 const char *format) 3621 { 3622 struct resource_list_entry *rle; 3623 int printed, retval; 3624 3625 printed = 0; 3626 retval = 0; 3627 /* Yes, this is kinda cheating */ 3628 STAILQ_FOREACH(rle, rl, link) { 3629 if (rle->type == type) { 3630 if (printed == 0) 3631 retval += printf(" %s ", name); 3632 else 3633 retval += printf(","); 3634 printed++; 3635 retval += printf(format, rle->start); 3636 if (rle->count > 1) { 3637 retval += printf("-"); 3638 retval += printf(format, rle->start + 3639 rle->count - 1); 3640 } 3641 } 3642 } 3643 return (retval); 3644 } 3645 3646 /** 3647 * @brief Releases all the resources in a list. 3648 * 3649 * @param rl The resource list to purge. 3650 * 3651 * @returns nothing 3652 */ 3653 void 3654 resource_list_purge(struct resource_list *rl) 3655 { 3656 struct resource_list_entry *rle; 3657 3658 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3659 if (rle->res) 3660 bus_release_resource(rman_get_device(rle->res), 3661 rle->type, rle->rid, rle->res); 3662 STAILQ_REMOVE_HEAD(rl, link); 3663 free(rle, M_BUS); 3664 } 3665 } 3666 3667 device_t 3668 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3669 { 3670 3671 return (device_add_child_ordered(dev, order, name, unit)); 3672 } 3673 3674 /** 3675 * @brief Helper function for implementing DEVICE_PROBE() 3676 * 3677 * This function can be used to help implement the DEVICE_PROBE() for 3678 * a bus (i.e. a device which has other devices attached to it). It 3679 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3680 * devclass. 3681 */ 3682 int 3683 bus_generic_probe(device_t dev) 3684 { 3685 devclass_t dc = dev->devclass; 3686 driverlink_t dl; 3687 3688 TAILQ_FOREACH(dl, &dc->drivers, link) { 3689 /* 3690 * If this driver's pass is too high, then ignore it. 3691 * For most drivers in the default pass, this will 3692 * never be true. For early-pass drivers they will 3693 * only call the identify routines of eligible drivers 3694 * when this routine is called. Drivers for later 3695 * passes should have their identify routines called 3696 * on early-pass buses during BUS_NEW_PASS(). 3697 */ 3698 if (dl->pass > bus_current_pass) 3699 continue; 3700 DEVICE_IDENTIFY(dl->driver, dev); 3701 } 3702 3703 return (0); 3704 } 3705 3706 /** 3707 * @brief Helper function for implementing DEVICE_ATTACH() 3708 * 3709 * This function can be used to help implement the DEVICE_ATTACH() for 3710 * a bus. It calls device_probe_and_attach() for each of the device's 3711 * children. 3712 */ 3713 int 3714 bus_generic_attach(device_t dev) 3715 { 3716 device_t child; 3717 3718 TAILQ_FOREACH(child, &dev->children, link) { 3719 device_probe_and_attach(child); 3720 } 3721 3722 return (0); 3723 } 3724 3725 /** 3726 * @brief Helper function for implementing DEVICE_DETACH() 3727 * 3728 * This function can be used to help implement the DEVICE_DETACH() for 3729 * a bus. It calls device_detach() for each of the device's 3730 * children. 3731 */ 3732 int 3733 bus_generic_detach(device_t dev) 3734 { 3735 device_t child; 3736 int error; 3737 3738 if (dev->state != DS_ATTACHED) 3739 return (EBUSY); 3740 3741 /* 3742 * Detach children in the reverse order. 3743 * See bus_generic_suspend for details. 3744 */ 3745 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3746 if ((error = device_detach(child)) != 0) 3747 return (error); 3748 } 3749 3750 return (0); 3751 } 3752 3753 /** 3754 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3755 * 3756 * This function can be used to help implement the DEVICE_SHUTDOWN() 3757 * for a bus. It calls device_shutdown() for each of the device's 3758 * children. 3759 */ 3760 int 3761 bus_generic_shutdown(device_t dev) 3762 { 3763 device_t child; 3764 3765 /* 3766 * Shut down children in the reverse order. 3767 * See bus_generic_suspend for details. 3768 */ 3769 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3770 device_shutdown(child); 3771 } 3772 3773 return (0); 3774 } 3775 3776 /** 3777 * @brief Default function for suspending a child device. 3778 * 3779 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3780 */ 3781 int 3782 bus_generic_suspend_child(device_t dev, device_t child) 3783 { 3784 int error; 3785 3786 error = DEVICE_SUSPEND(child); 3787 3788 if (error == 0) 3789 child->flags |= DF_SUSPENDED; 3790 3791 return (error); 3792 } 3793 3794 /** 3795 * @brief Default function for resuming a child device. 3796 * 3797 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3798 */ 3799 int 3800 bus_generic_resume_child(device_t dev, device_t child) 3801 { 3802 3803 DEVICE_RESUME(child); 3804 child->flags &= ~DF_SUSPENDED; 3805 3806 return (0); 3807 } 3808 3809 /** 3810 * @brief Helper function for implementing DEVICE_SUSPEND() 3811 * 3812 * This function can be used to help implement the DEVICE_SUSPEND() 3813 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3814 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3815 * operation is aborted and any devices which were suspended are 3816 * resumed immediately by calling their DEVICE_RESUME() methods. 3817 */ 3818 int 3819 bus_generic_suspend(device_t dev) 3820 { 3821 int error; 3822 device_t child; 3823 3824 /* 3825 * Suspend children in the reverse order. 3826 * For most buses all children are equal, so the order does not matter. 3827 * Other buses, such as acpi, carefully order their child devices to 3828 * express implicit dependencies between them. For such buses it is 3829 * safer to bring down devices in the reverse order. 3830 */ 3831 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3832 error = BUS_SUSPEND_CHILD(dev, child); 3833 if (error != 0) { 3834 child = TAILQ_NEXT(child, link); 3835 if (child != NULL) { 3836 TAILQ_FOREACH_FROM(child, &dev->children, link) 3837 BUS_RESUME_CHILD(dev, child); 3838 } 3839 return (error); 3840 } 3841 } 3842 return (0); 3843 } 3844 3845 /** 3846 * @brief Helper function for implementing DEVICE_RESUME() 3847 * 3848 * This function can be used to help implement the DEVICE_RESUME() for 3849 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3850 */ 3851 int 3852 bus_generic_resume(device_t dev) 3853 { 3854 device_t child; 3855 3856 TAILQ_FOREACH(child, &dev->children, link) { 3857 BUS_RESUME_CHILD(dev, child); 3858 /* if resume fails, there's nothing we can usefully do... */ 3859 } 3860 return (0); 3861 } 3862 3863 /** 3864 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3865 * 3866 * This function prints the first part of the ascii representation of 3867 * @p child, including its name, unit and description (if any - see 3868 * device_set_desc()). 3869 * 3870 * @returns the number of characters printed 3871 */ 3872 int 3873 bus_print_child_header(device_t dev, device_t child) 3874 { 3875 int retval = 0; 3876 3877 if (device_get_desc(child)) { 3878 retval += device_printf(child, "<%s>", device_get_desc(child)); 3879 } else { 3880 retval += printf("%s", device_get_nameunit(child)); 3881 } 3882 3883 return (retval); 3884 } 3885 3886 /** 3887 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3888 * 3889 * This function prints the last part of the ascii representation of 3890 * @p child, which consists of the string @c " on " followed by the 3891 * name and unit of the @p dev. 3892 * 3893 * @returns the number of characters printed 3894 */ 3895 int 3896 bus_print_child_footer(device_t dev, device_t child) 3897 { 3898 return (printf(" on %s\n", device_get_nameunit(dev))); 3899 } 3900 3901 /** 3902 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3903 * 3904 * This function prints out the VM domain for the given device. 3905 * 3906 * @returns the number of characters printed 3907 */ 3908 int 3909 bus_print_child_domain(device_t dev, device_t child) 3910 { 3911 int domain; 3912 3913 /* No domain? Don't print anything */ 3914 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3915 return (0); 3916 3917 return (printf(" numa-domain %d", domain)); 3918 } 3919 3920 /** 3921 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3922 * 3923 * This function simply calls bus_print_child_header() followed by 3924 * bus_print_child_footer(). 3925 * 3926 * @returns the number of characters printed 3927 */ 3928 int 3929 bus_generic_print_child(device_t dev, device_t child) 3930 { 3931 int retval = 0; 3932 3933 retval += bus_print_child_header(dev, child); 3934 retval += bus_print_child_domain(dev, child); 3935 retval += bus_print_child_footer(dev, child); 3936 3937 return (retval); 3938 } 3939 3940 /** 3941 * @brief Stub function for implementing BUS_READ_IVAR(). 3942 * 3943 * @returns ENOENT 3944 */ 3945 int 3946 bus_generic_read_ivar(device_t dev, device_t child, int index, 3947 uintptr_t * result) 3948 { 3949 return (ENOENT); 3950 } 3951 3952 /** 3953 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3954 * 3955 * @returns ENOENT 3956 */ 3957 int 3958 bus_generic_write_ivar(device_t dev, device_t child, int index, 3959 uintptr_t value) 3960 { 3961 return (ENOENT); 3962 } 3963 3964 /** 3965 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3966 * 3967 * @returns NULL 3968 */ 3969 struct resource_list * 3970 bus_generic_get_resource_list(device_t dev, device_t child) 3971 { 3972 return (NULL); 3973 } 3974 3975 /** 3976 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3977 * 3978 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3979 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3980 * and then calls device_probe_and_attach() for each unattached child. 3981 */ 3982 void 3983 bus_generic_driver_added(device_t dev, driver_t *driver) 3984 { 3985 device_t child; 3986 3987 DEVICE_IDENTIFY(driver, dev); 3988 TAILQ_FOREACH(child, &dev->children, link) { 3989 if (child->state == DS_NOTPRESENT || 3990 (child->flags & DF_REBID)) 3991 device_probe_and_attach(child); 3992 } 3993 } 3994 3995 /** 3996 * @brief Helper function for implementing BUS_NEW_PASS(). 3997 * 3998 * This implementing of BUS_NEW_PASS() first calls the identify 3999 * routines for any drivers that probe at the current pass. Then it 4000 * walks the list of devices for this bus. If a device is already 4001 * attached, then it calls BUS_NEW_PASS() on that device. If the 4002 * device is not already attached, it attempts to attach a driver to 4003 * it. 4004 */ 4005 void 4006 bus_generic_new_pass(device_t dev) 4007 { 4008 driverlink_t dl; 4009 devclass_t dc; 4010 device_t child; 4011 4012 dc = dev->devclass; 4013 TAILQ_FOREACH(dl, &dc->drivers, link) { 4014 if (dl->pass == bus_current_pass) 4015 DEVICE_IDENTIFY(dl->driver, dev); 4016 } 4017 TAILQ_FOREACH(child, &dev->children, link) { 4018 if (child->state >= DS_ATTACHED) 4019 BUS_NEW_PASS(child); 4020 else if (child->state == DS_NOTPRESENT) 4021 device_probe_and_attach(child); 4022 } 4023 } 4024 4025 /** 4026 * @brief Helper function for implementing BUS_SETUP_INTR(). 4027 * 4028 * This simple implementation of BUS_SETUP_INTR() simply calls the 4029 * BUS_SETUP_INTR() method of the parent of @p dev. 4030 */ 4031 int 4032 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 4033 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 4034 void **cookiep) 4035 { 4036 /* Propagate up the bus hierarchy until someone handles it. */ 4037 if (dev->parent) 4038 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 4039 filter, intr, arg, cookiep)); 4040 return (EINVAL); 4041 } 4042 4043 /** 4044 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 4045 * 4046 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 4047 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 4048 */ 4049 int 4050 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 4051 void *cookie) 4052 { 4053 /* Propagate up the bus hierarchy until someone handles it. */ 4054 if (dev->parent) 4055 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 4056 return (EINVAL); 4057 } 4058 4059 /** 4060 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 4061 * 4062 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 4063 * BUS_SUSPEND_INTR() method of the parent of @p dev. 4064 */ 4065 int 4066 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 4067 { 4068 /* Propagate up the bus hierarchy until someone handles it. */ 4069 if (dev->parent) 4070 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 4071 return (EINVAL); 4072 } 4073 4074 /** 4075 * @brief Helper function for implementing BUS_RESUME_INTR(). 4076 * 4077 * This simple implementation of BUS_RESUME_INTR() simply calls the 4078 * BUS_RESUME_INTR() method of the parent of @p dev. 4079 */ 4080 int 4081 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 4082 { 4083 /* Propagate up the bus hierarchy until someone handles it. */ 4084 if (dev->parent) 4085 return (BUS_RESUME_INTR(dev->parent, child, irq)); 4086 return (EINVAL); 4087 } 4088 4089 /** 4090 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4091 * 4092 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 4093 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 4094 */ 4095 int 4096 bus_generic_adjust_resource(device_t dev, device_t child, int type, 4097 struct resource *r, rman_res_t start, rman_res_t end) 4098 { 4099 /* Propagate up the bus hierarchy until someone handles it. */ 4100 if (dev->parent) 4101 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 4102 end)); 4103 return (EINVAL); 4104 } 4105 4106 /** 4107 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4108 * 4109 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 4110 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 4111 */ 4112 struct resource * 4113 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4114 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4115 { 4116 /* Propagate up the bus hierarchy until someone handles it. */ 4117 if (dev->parent) 4118 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4119 start, end, count, flags)); 4120 return (NULL); 4121 } 4122 4123 /** 4124 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4125 * 4126 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4127 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4128 */ 4129 int 4130 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 4131 struct resource *r) 4132 { 4133 /* Propagate up the bus hierarchy until someone handles it. */ 4134 if (dev->parent) 4135 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 4136 r)); 4137 return (EINVAL); 4138 } 4139 4140 /** 4141 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4142 * 4143 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4144 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4145 */ 4146 int 4147 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 4148 struct resource *r) 4149 { 4150 /* Propagate up the bus hierarchy until someone handles it. */ 4151 if (dev->parent) 4152 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 4153 r)); 4154 return (EINVAL); 4155 } 4156 4157 /** 4158 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4159 * 4160 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4161 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4162 */ 4163 int 4164 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 4165 int rid, struct resource *r) 4166 { 4167 /* Propagate up the bus hierarchy until someone handles it. */ 4168 if (dev->parent) 4169 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4170 r)); 4171 return (EINVAL); 4172 } 4173 4174 /** 4175 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4176 * 4177 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4178 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4179 */ 4180 int 4181 bus_generic_map_resource(device_t dev, device_t child, int type, 4182 struct resource *r, struct resource_map_request *args, 4183 struct resource_map *map) 4184 { 4185 /* Propagate up the bus hierarchy until someone handles it. */ 4186 if (dev->parent) 4187 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 4188 map)); 4189 return (EINVAL); 4190 } 4191 4192 /** 4193 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4194 * 4195 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4196 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4197 */ 4198 int 4199 bus_generic_unmap_resource(device_t dev, device_t child, int type, 4200 struct resource *r, struct resource_map *map) 4201 { 4202 /* Propagate up the bus hierarchy until someone handles it. */ 4203 if (dev->parent) 4204 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 4205 return (EINVAL); 4206 } 4207 4208 /** 4209 * @brief Helper function for implementing BUS_BIND_INTR(). 4210 * 4211 * This simple implementation of BUS_BIND_INTR() simply calls the 4212 * BUS_BIND_INTR() method of the parent of @p dev. 4213 */ 4214 int 4215 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4216 int cpu) 4217 { 4218 4219 /* Propagate up the bus hierarchy until someone handles it. */ 4220 if (dev->parent) 4221 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4222 return (EINVAL); 4223 } 4224 4225 /** 4226 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4227 * 4228 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4229 * BUS_CONFIG_INTR() method of the parent of @p dev. 4230 */ 4231 int 4232 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4233 enum intr_polarity pol) 4234 { 4235 4236 /* Propagate up the bus hierarchy until someone handles it. */ 4237 if (dev->parent) 4238 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4239 return (EINVAL); 4240 } 4241 4242 /** 4243 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4244 * 4245 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4246 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4247 */ 4248 int 4249 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4250 void *cookie, const char *descr) 4251 { 4252 4253 /* Propagate up the bus hierarchy until someone handles it. */ 4254 if (dev->parent) 4255 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4256 descr)); 4257 return (EINVAL); 4258 } 4259 4260 /** 4261 * @brief Helper function for implementing BUS_GET_CPUS(). 4262 * 4263 * This simple implementation of BUS_GET_CPUS() simply calls the 4264 * BUS_GET_CPUS() method of the parent of @p dev. 4265 */ 4266 int 4267 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4268 size_t setsize, cpuset_t *cpuset) 4269 { 4270 4271 /* Propagate up the bus hierarchy until someone handles it. */ 4272 if (dev->parent != NULL) 4273 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4274 return (EINVAL); 4275 } 4276 4277 /** 4278 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4279 * 4280 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4281 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4282 */ 4283 bus_dma_tag_t 4284 bus_generic_get_dma_tag(device_t dev, device_t child) 4285 { 4286 4287 /* Propagate up the bus hierarchy until someone handles it. */ 4288 if (dev->parent != NULL) 4289 return (BUS_GET_DMA_TAG(dev->parent, child)); 4290 return (NULL); 4291 } 4292 4293 /** 4294 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4295 * 4296 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4297 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4298 */ 4299 bus_space_tag_t 4300 bus_generic_get_bus_tag(device_t dev, device_t child) 4301 { 4302 4303 /* Propagate up the bus hierarchy until someone handles it. */ 4304 if (dev->parent != NULL) 4305 return (BUS_GET_BUS_TAG(dev->parent, child)); 4306 return ((bus_space_tag_t)0); 4307 } 4308 4309 /** 4310 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4311 * 4312 * This implementation of BUS_GET_RESOURCE() uses the 4313 * resource_list_find() function to do most of the work. It calls 4314 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4315 * search. 4316 */ 4317 int 4318 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4319 rman_res_t *startp, rman_res_t *countp) 4320 { 4321 struct resource_list * rl = NULL; 4322 struct resource_list_entry * rle = NULL; 4323 4324 rl = BUS_GET_RESOURCE_LIST(dev, child); 4325 if (!rl) 4326 return (EINVAL); 4327 4328 rle = resource_list_find(rl, type, rid); 4329 if (!rle) 4330 return (ENOENT); 4331 4332 if (startp) 4333 *startp = rle->start; 4334 if (countp) 4335 *countp = rle->count; 4336 4337 return (0); 4338 } 4339 4340 /** 4341 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4342 * 4343 * This implementation of BUS_SET_RESOURCE() uses the 4344 * resource_list_add() function to do most of the work. It calls 4345 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4346 * edit. 4347 */ 4348 int 4349 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4350 rman_res_t start, rman_res_t count) 4351 { 4352 struct resource_list * rl = NULL; 4353 4354 rl = BUS_GET_RESOURCE_LIST(dev, child); 4355 if (!rl) 4356 return (EINVAL); 4357 4358 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4359 4360 return (0); 4361 } 4362 4363 /** 4364 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4365 * 4366 * This implementation of BUS_DELETE_RESOURCE() uses the 4367 * resource_list_delete() function to do most of the work. It calls 4368 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4369 * edit. 4370 */ 4371 void 4372 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4373 { 4374 struct resource_list * rl = NULL; 4375 4376 rl = BUS_GET_RESOURCE_LIST(dev, child); 4377 if (!rl) 4378 return; 4379 4380 resource_list_delete(rl, type, rid); 4381 4382 return; 4383 } 4384 4385 /** 4386 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4387 * 4388 * This implementation of BUS_RELEASE_RESOURCE() uses the 4389 * resource_list_release() function to do most of the work. It calls 4390 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4391 */ 4392 int 4393 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4394 int rid, struct resource *r) 4395 { 4396 struct resource_list * rl = NULL; 4397 4398 if (device_get_parent(child) != dev) 4399 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4400 type, rid, r)); 4401 4402 rl = BUS_GET_RESOURCE_LIST(dev, child); 4403 if (!rl) 4404 return (EINVAL); 4405 4406 return (resource_list_release(rl, dev, child, type, rid, r)); 4407 } 4408 4409 /** 4410 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4411 * 4412 * This implementation of BUS_ALLOC_RESOURCE() uses the 4413 * resource_list_alloc() function to do most of the work. It calls 4414 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4415 */ 4416 struct resource * 4417 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4418 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4419 { 4420 struct resource_list * rl = NULL; 4421 4422 if (device_get_parent(child) != dev) 4423 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4424 type, rid, start, end, count, flags)); 4425 4426 rl = BUS_GET_RESOURCE_LIST(dev, child); 4427 if (!rl) 4428 return (NULL); 4429 4430 return (resource_list_alloc(rl, dev, child, type, rid, 4431 start, end, count, flags)); 4432 } 4433 4434 /** 4435 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4436 * 4437 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4438 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4439 */ 4440 int 4441 bus_generic_child_present(device_t dev, device_t child) 4442 { 4443 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4444 } 4445 4446 int 4447 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4448 { 4449 4450 if (dev->parent) 4451 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4452 4453 return (ENOENT); 4454 } 4455 4456 /** 4457 * @brief Helper function for implementing BUS_RESCAN(). 4458 * 4459 * This null implementation of BUS_RESCAN() always fails to indicate 4460 * the bus does not support rescanning. 4461 */ 4462 int 4463 bus_null_rescan(device_t dev) 4464 { 4465 4466 return (ENXIO); 4467 } 4468 4469 /* 4470 * Some convenience functions to make it easier for drivers to use the 4471 * resource-management functions. All these really do is hide the 4472 * indirection through the parent's method table, making for slightly 4473 * less-wordy code. In the future, it might make sense for this code 4474 * to maintain some sort of a list of resources allocated by each device. 4475 */ 4476 4477 int 4478 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4479 struct resource **res) 4480 { 4481 int i; 4482 4483 for (i = 0; rs[i].type != -1; i++) 4484 res[i] = NULL; 4485 for (i = 0; rs[i].type != -1; i++) { 4486 res[i] = bus_alloc_resource_any(dev, 4487 rs[i].type, &rs[i].rid, rs[i].flags); 4488 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4489 bus_release_resources(dev, rs, res); 4490 return (ENXIO); 4491 } 4492 } 4493 return (0); 4494 } 4495 4496 void 4497 bus_release_resources(device_t dev, const struct resource_spec *rs, 4498 struct resource **res) 4499 { 4500 int i; 4501 4502 for (i = 0; rs[i].type != -1; i++) 4503 if (res[i] != NULL) { 4504 bus_release_resource( 4505 dev, rs[i].type, rs[i].rid, res[i]); 4506 res[i] = NULL; 4507 } 4508 } 4509 4510 /** 4511 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4512 * 4513 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4514 * parent of @p dev. 4515 */ 4516 struct resource * 4517 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4518 rman_res_t end, rman_res_t count, u_int flags) 4519 { 4520 struct resource *res; 4521 4522 if (dev->parent == NULL) 4523 return (NULL); 4524 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4525 count, flags); 4526 return (res); 4527 } 4528 4529 /** 4530 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4531 * 4532 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4533 * parent of @p dev. 4534 */ 4535 int 4536 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4537 rman_res_t end) 4538 { 4539 if (dev->parent == NULL) 4540 return (EINVAL); 4541 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4542 } 4543 4544 /** 4545 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4546 * 4547 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4548 * parent of @p dev. 4549 */ 4550 int 4551 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4552 { 4553 if (dev->parent == NULL) 4554 return (EINVAL); 4555 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4556 } 4557 4558 /** 4559 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4560 * 4561 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4562 * parent of @p dev. 4563 */ 4564 int 4565 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4566 { 4567 if (dev->parent == NULL) 4568 return (EINVAL); 4569 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4570 } 4571 4572 /** 4573 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4574 * 4575 * This function simply calls the BUS_MAP_RESOURCE() method of the 4576 * parent of @p dev. 4577 */ 4578 int 4579 bus_map_resource(device_t dev, int type, struct resource *r, 4580 struct resource_map_request *args, struct resource_map *map) 4581 { 4582 if (dev->parent == NULL) 4583 return (EINVAL); 4584 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4585 } 4586 4587 /** 4588 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4589 * 4590 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4591 * parent of @p dev. 4592 */ 4593 int 4594 bus_unmap_resource(device_t dev, int type, struct resource *r, 4595 struct resource_map *map) 4596 { 4597 if (dev->parent == NULL) 4598 return (EINVAL); 4599 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4600 } 4601 4602 /** 4603 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4604 * 4605 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4606 * parent of @p dev. 4607 */ 4608 int 4609 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4610 { 4611 int rv; 4612 4613 if (dev->parent == NULL) 4614 return (EINVAL); 4615 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4616 return (rv); 4617 } 4618 4619 /** 4620 * @brief Wrapper function for BUS_SETUP_INTR(). 4621 * 4622 * This function simply calls the BUS_SETUP_INTR() method of the 4623 * parent of @p dev. 4624 */ 4625 int 4626 bus_setup_intr(device_t dev, struct resource *r, int flags, 4627 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4628 { 4629 int error; 4630 4631 if (dev->parent == NULL) 4632 return (EINVAL); 4633 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4634 arg, cookiep); 4635 if (error != 0) 4636 return (error); 4637 if (handler != NULL && !(flags & INTR_MPSAFE)) 4638 device_printf(dev, "[GIANT-LOCKED]\n"); 4639 return (0); 4640 } 4641 4642 /** 4643 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4644 * 4645 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4646 * parent of @p dev. 4647 */ 4648 int 4649 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4650 { 4651 if (dev->parent == NULL) 4652 return (EINVAL); 4653 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4654 } 4655 4656 /** 4657 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4658 * 4659 * This function simply calls the BUS_SUSPEND_INTR() method of the 4660 * parent of @p dev. 4661 */ 4662 int 4663 bus_suspend_intr(device_t dev, struct resource *r) 4664 { 4665 if (dev->parent == NULL) 4666 return (EINVAL); 4667 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4668 } 4669 4670 /** 4671 * @brief Wrapper function for BUS_RESUME_INTR(). 4672 * 4673 * This function simply calls the BUS_RESUME_INTR() method of the 4674 * parent of @p dev. 4675 */ 4676 int 4677 bus_resume_intr(device_t dev, struct resource *r) 4678 { 4679 if (dev->parent == NULL) 4680 return (EINVAL); 4681 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4682 } 4683 4684 /** 4685 * @brief Wrapper function for BUS_BIND_INTR(). 4686 * 4687 * This function simply calls the BUS_BIND_INTR() method of the 4688 * parent of @p dev. 4689 */ 4690 int 4691 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4692 { 4693 if (dev->parent == NULL) 4694 return (EINVAL); 4695 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4696 } 4697 4698 /** 4699 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4700 * 4701 * This function first formats the requested description into a 4702 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4703 * the parent of @p dev. 4704 */ 4705 int 4706 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4707 const char *fmt, ...) 4708 { 4709 va_list ap; 4710 char descr[MAXCOMLEN + 1]; 4711 4712 if (dev->parent == NULL) 4713 return (EINVAL); 4714 va_start(ap, fmt); 4715 vsnprintf(descr, sizeof(descr), fmt, ap); 4716 va_end(ap); 4717 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4718 } 4719 4720 /** 4721 * @brief Wrapper function for BUS_SET_RESOURCE(). 4722 * 4723 * This function simply calls the BUS_SET_RESOURCE() method of the 4724 * parent of @p dev. 4725 */ 4726 int 4727 bus_set_resource(device_t dev, int type, int rid, 4728 rman_res_t start, rman_res_t count) 4729 { 4730 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4731 start, count)); 4732 } 4733 4734 /** 4735 * @brief Wrapper function for BUS_GET_RESOURCE(). 4736 * 4737 * This function simply calls the BUS_GET_RESOURCE() method of the 4738 * parent of @p dev. 4739 */ 4740 int 4741 bus_get_resource(device_t dev, int type, int rid, 4742 rman_res_t *startp, rman_res_t *countp) 4743 { 4744 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4745 startp, countp)); 4746 } 4747 4748 /** 4749 * @brief Wrapper function for BUS_GET_RESOURCE(). 4750 * 4751 * This function simply calls the BUS_GET_RESOURCE() method of the 4752 * parent of @p dev and returns the start value. 4753 */ 4754 rman_res_t 4755 bus_get_resource_start(device_t dev, int type, int rid) 4756 { 4757 rman_res_t start; 4758 rman_res_t count; 4759 int error; 4760 4761 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4762 &start, &count); 4763 if (error) 4764 return (0); 4765 return (start); 4766 } 4767 4768 /** 4769 * @brief Wrapper function for BUS_GET_RESOURCE(). 4770 * 4771 * This function simply calls the BUS_GET_RESOURCE() method of the 4772 * parent of @p dev and returns the count value. 4773 */ 4774 rman_res_t 4775 bus_get_resource_count(device_t dev, int type, int rid) 4776 { 4777 rman_res_t start; 4778 rman_res_t count; 4779 int error; 4780 4781 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4782 &start, &count); 4783 if (error) 4784 return (0); 4785 return (count); 4786 } 4787 4788 /** 4789 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4790 * 4791 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4792 * parent of @p dev. 4793 */ 4794 void 4795 bus_delete_resource(device_t dev, int type, int rid) 4796 { 4797 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4798 } 4799 4800 /** 4801 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4802 * 4803 * This function simply calls the BUS_CHILD_PRESENT() method of the 4804 * parent of @p dev. 4805 */ 4806 int 4807 bus_child_present(device_t child) 4808 { 4809 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4810 } 4811 4812 /** 4813 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4814 * 4815 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4816 * parent of @p dev. 4817 */ 4818 int 4819 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4820 { 4821 device_t parent; 4822 4823 parent = device_get_parent(child); 4824 if (parent == NULL) { 4825 *buf = '\0'; 4826 return (0); 4827 } 4828 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4829 } 4830 4831 /** 4832 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4833 * 4834 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4835 * parent of @p dev. 4836 */ 4837 int 4838 bus_child_location_str(device_t child, char *buf, size_t buflen) 4839 { 4840 device_t parent; 4841 4842 parent = device_get_parent(child); 4843 if (parent == NULL) { 4844 *buf = '\0'; 4845 return (0); 4846 } 4847 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4848 } 4849 4850 /** 4851 * @brief Wrapper function for BUS_GET_CPUS(). 4852 * 4853 * This function simply calls the BUS_GET_CPUS() method of the 4854 * parent of @p dev. 4855 */ 4856 int 4857 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 4858 { 4859 device_t parent; 4860 4861 parent = device_get_parent(dev); 4862 if (parent == NULL) 4863 return (EINVAL); 4864 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 4865 } 4866 4867 /** 4868 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4869 * 4870 * This function simply calls the BUS_GET_DMA_TAG() method of the 4871 * parent of @p dev. 4872 */ 4873 bus_dma_tag_t 4874 bus_get_dma_tag(device_t dev) 4875 { 4876 device_t parent; 4877 4878 parent = device_get_parent(dev); 4879 if (parent == NULL) 4880 return (NULL); 4881 return (BUS_GET_DMA_TAG(parent, dev)); 4882 } 4883 4884 /** 4885 * @brief Wrapper function for BUS_GET_BUS_TAG(). 4886 * 4887 * This function simply calls the BUS_GET_BUS_TAG() method of the 4888 * parent of @p dev. 4889 */ 4890 bus_space_tag_t 4891 bus_get_bus_tag(device_t dev) 4892 { 4893 device_t parent; 4894 4895 parent = device_get_parent(dev); 4896 if (parent == NULL) 4897 return ((bus_space_tag_t)0); 4898 return (BUS_GET_BUS_TAG(parent, dev)); 4899 } 4900 4901 /** 4902 * @brief Wrapper function for BUS_GET_DOMAIN(). 4903 * 4904 * This function simply calls the BUS_GET_DOMAIN() method of the 4905 * parent of @p dev. 4906 */ 4907 int 4908 bus_get_domain(device_t dev, int *domain) 4909 { 4910 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 4911 } 4912 4913 /* Resume all devices and then notify userland that we're up again. */ 4914 static int 4915 root_resume(device_t dev) 4916 { 4917 int error; 4918 4919 error = bus_generic_resume(dev); 4920 if (error == 0) 4921 devctl_notify("kern", "power", "resume", NULL); 4922 return (error); 4923 } 4924 4925 static int 4926 root_print_child(device_t dev, device_t child) 4927 { 4928 int retval = 0; 4929 4930 retval += bus_print_child_header(dev, child); 4931 retval += printf("\n"); 4932 4933 return (retval); 4934 } 4935 4936 static int 4937 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4938 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4939 { 4940 /* 4941 * If an interrupt mapping gets to here something bad has happened. 4942 */ 4943 panic("root_setup_intr"); 4944 } 4945 4946 /* 4947 * If we get here, assume that the device is permanent and really is 4948 * present in the system. Removable bus drivers are expected to intercept 4949 * this call long before it gets here. We return -1 so that drivers that 4950 * really care can check vs -1 or some ERRNO returned higher in the food 4951 * chain. 4952 */ 4953 static int 4954 root_child_present(device_t dev, device_t child) 4955 { 4956 return (-1); 4957 } 4958 4959 static int 4960 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 4961 cpuset_t *cpuset) 4962 { 4963 4964 switch (op) { 4965 case INTR_CPUS: 4966 /* Default to returning the set of all CPUs. */ 4967 if (setsize != sizeof(cpuset_t)) 4968 return (EINVAL); 4969 *cpuset = all_cpus; 4970 return (0); 4971 default: 4972 return (EINVAL); 4973 } 4974 } 4975 4976 static kobj_method_t root_methods[] = { 4977 /* Device interface */ 4978 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4979 KOBJMETHOD(device_suspend, bus_generic_suspend), 4980 KOBJMETHOD(device_resume, root_resume), 4981 4982 /* Bus interface */ 4983 KOBJMETHOD(bus_print_child, root_print_child), 4984 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4985 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4986 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4987 KOBJMETHOD(bus_child_present, root_child_present), 4988 KOBJMETHOD(bus_get_cpus, root_get_cpus), 4989 4990 KOBJMETHOD_END 4991 }; 4992 4993 static driver_t root_driver = { 4994 "root", 4995 root_methods, 4996 1, /* no softc */ 4997 }; 4998 4999 device_t root_bus; 5000 devclass_t root_devclass; 5001 5002 static int 5003 root_bus_module_handler(module_t mod, int what, void* arg) 5004 { 5005 switch (what) { 5006 case MOD_LOAD: 5007 TAILQ_INIT(&bus_data_devices); 5008 kobj_class_compile((kobj_class_t) &root_driver); 5009 root_bus = make_device(NULL, "root", 0); 5010 root_bus->desc = "System root bus"; 5011 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 5012 root_bus->driver = &root_driver; 5013 root_bus->state = DS_ATTACHED; 5014 root_devclass = devclass_find_internal("root", NULL, FALSE); 5015 devinit(); 5016 return (0); 5017 5018 case MOD_SHUTDOWN: 5019 device_shutdown(root_bus); 5020 return (0); 5021 default: 5022 return (EOPNOTSUPP); 5023 } 5024 5025 return (0); 5026 } 5027 5028 static moduledata_t root_bus_mod = { 5029 "rootbus", 5030 root_bus_module_handler, 5031 NULL 5032 }; 5033 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 5034 5035 /** 5036 * @brief Automatically configure devices 5037 * 5038 * This function begins the autoconfiguration process by calling 5039 * device_probe_and_attach() for each child of the @c root0 device. 5040 */ 5041 void 5042 root_bus_configure(void) 5043 { 5044 5045 PDEBUG((".")); 5046 5047 /* Eventually this will be split up, but this is sufficient for now. */ 5048 bus_set_pass(BUS_PASS_DEFAULT); 5049 } 5050 5051 /** 5052 * @brief Module handler for registering device drivers 5053 * 5054 * This module handler is used to automatically register device 5055 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 5056 * devclass_add_driver() for the driver described by the 5057 * driver_module_data structure pointed to by @p arg 5058 */ 5059 int 5060 driver_module_handler(module_t mod, int what, void *arg) 5061 { 5062 struct driver_module_data *dmd; 5063 devclass_t bus_devclass; 5064 kobj_class_t driver; 5065 int error, pass; 5066 5067 dmd = (struct driver_module_data *)arg; 5068 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 5069 error = 0; 5070 5071 switch (what) { 5072 case MOD_LOAD: 5073 if (dmd->dmd_chainevh) 5074 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5075 5076 pass = dmd->dmd_pass; 5077 driver = dmd->dmd_driver; 5078 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 5079 DRIVERNAME(driver), dmd->dmd_busname, pass)); 5080 error = devclass_add_driver(bus_devclass, driver, pass, 5081 dmd->dmd_devclass); 5082 break; 5083 5084 case MOD_UNLOAD: 5085 PDEBUG(("Unloading module: driver %s from bus %s", 5086 DRIVERNAME(dmd->dmd_driver), 5087 dmd->dmd_busname)); 5088 error = devclass_delete_driver(bus_devclass, 5089 dmd->dmd_driver); 5090 5091 if (!error && dmd->dmd_chainevh) 5092 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5093 break; 5094 case MOD_QUIESCE: 5095 PDEBUG(("Quiesce module: driver %s from bus %s", 5096 DRIVERNAME(dmd->dmd_driver), 5097 dmd->dmd_busname)); 5098 error = devclass_quiesce_driver(bus_devclass, 5099 dmd->dmd_driver); 5100 5101 if (!error && dmd->dmd_chainevh) 5102 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5103 break; 5104 default: 5105 error = EOPNOTSUPP; 5106 break; 5107 } 5108 5109 return (error); 5110 } 5111 5112 /** 5113 * @brief Enumerate all hinted devices for this bus. 5114 * 5115 * Walks through the hints for this bus and calls the bus_hinted_child 5116 * routine for each one it fines. It searches first for the specific 5117 * bus that's being probed for hinted children (eg isa0), and then for 5118 * generic children (eg isa). 5119 * 5120 * @param dev bus device to enumerate 5121 */ 5122 void 5123 bus_enumerate_hinted_children(device_t bus) 5124 { 5125 int i; 5126 const char *dname, *busname; 5127 int dunit; 5128 5129 /* 5130 * enumerate all devices on the specific bus 5131 */ 5132 busname = device_get_nameunit(bus); 5133 i = 0; 5134 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5135 BUS_HINTED_CHILD(bus, dname, dunit); 5136 5137 /* 5138 * and all the generic ones. 5139 */ 5140 busname = device_get_name(bus); 5141 i = 0; 5142 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5143 BUS_HINTED_CHILD(bus, dname, dunit); 5144 } 5145 5146 #ifdef BUS_DEBUG 5147 5148 /* the _short versions avoid iteration by not calling anything that prints 5149 * more than oneliners. I love oneliners. 5150 */ 5151 5152 static void 5153 print_device_short(device_t dev, int indent) 5154 { 5155 if (!dev) 5156 return; 5157 5158 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5159 dev->unit, dev->desc, 5160 (dev->parent? "":"no "), 5161 (TAILQ_EMPTY(&dev->children)? "no ":""), 5162 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5163 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5164 (dev->flags&DF_WILDCARD? "wildcard,":""), 5165 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5166 (dev->flags&DF_REBID? "rebiddable,":""), 5167 (dev->flags&DF_SUSPENDED? "suspended,":""), 5168 (dev->ivars? "":"no "), 5169 (dev->softc? "":"no "), 5170 dev->busy)); 5171 } 5172 5173 static void 5174 print_device(device_t dev, int indent) 5175 { 5176 if (!dev) 5177 return; 5178 5179 print_device_short(dev, indent); 5180 5181 indentprintf(("Parent:\n")); 5182 print_device_short(dev->parent, indent+1); 5183 indentprintf(("Driver:\n")); 5184 print_driver_short(dev->driver, indent+1); 5185 indentprintf(("Devclass:\n")); 5186 print_devclass_short(dev->devclass, indent+1); 5187 } 5188 5189 void 5190 print_device_tree_short(device_t dev, int indent) 5191 /* print the device and all its children (indented) */ 5192 { 5193 device_t child; 5194 5195 if (!dev) 5196 return; 5197 5198 print_device_short(dev, indent); 5199 5200 TAILQ_FOREACH(child, &dev->children, link) { 5201 print_device_tree_short(child, indent+1); 5202 } 5203 } 5204 5205 void 5206 print_device_tree(device_t dev, int indent) 5207 /* print the device and all its children (indented) */ 5208 { 5209 device_t child; 5210 5211 if (!dev) 5212 return; 5213 5214 print_device(dev, indent); 5215 5216 TAILQ_FOREACH(child, &dev->children, link) { 5217 print_device_tree(child, indent+1); 5218 } 5219 } 5220 5221 static void 5222 print_driver_short(driver_t *driver, int indent) 5223 { 5224 if (!driver) 5225 return; 5226 5227 indentprintf(("driver %s: softc size = %zd\n", 5228 driver->name, driver->size)); 5229 } 5230 5231 static void 5232 print_driver(driver_t *driver, int indent) 5233 { 5234 if (!driver) 5235 return; 5236 5237 print_driver_short(driver, indent); 5238 } 5239 5240 static void 5241 print_driver_list(driver_list_t drivers, int indent) 5242 { 5243 driverlink_t driver; 5244 5245 TAILQ_FOREACH(driver, &drivers, link) { 5246 print_driver(driver->driver, indent); 5247 } 5248 } 5249 5250 static void 5251 print_devclass_short(devclass_t dc, int indent) 5252 { 5253 if ( !dc ) 5254 return; 5255 5256 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5257 } 5258 5259 static void 5260 print_devclass(devclass_t dc, int indent) 5261 { 5262 int i; 5263 5264 if ( !dc ) 5265 return; 5266 5267 print_devclass_short(dc, indent); 5268 indentprintf(("Drivers:\n")); 5269 print_driver_list(dc->drivers, indent+1); 5270 5271 indentprintf(("Devices:\n")); 5272 for (i = 0; i < dc->maxunit; i++) 5273 if (dc->devices[i]) 5274 print_device(dc->devices[i], indent+1); 5275 } 5276 5277 void 5278 print_devclass_list_short(void) 5279 { 5280 devclass_t dc; 5281 5282 printf("Short listing of devclasses, drivers & devices:\n"); 5283 TAILQ_FOREACH(dc, &devclasses, link) { 5284 print_devclass_short(dc, 0); 5285 } 5286 } 5287 5288 void 5289 print_devclass_list(void) 5290 { 5291 devclass_t dc; 5292 5293 printf("Full listing of devclasses, drivers & devices:\n"); 5294 TAILQ_FOREACH(dc, &devclasses, link) { 5295 print_devclass(dc, 0); 5296 } 5297 } 5298 5299 #endif 5300 5301 /* 5302 * User-space access to the device tree. 5303 * 5304 * We implement a small set of nodes: 5305 * 5306 * hw.bus Single integer read method to obtain the 5307 * current generation count. 5308 * hw.bus.devices Reads the entire device tree in flat space. 5309 * hw.bus.rman Resource manager interface 5310 * 5311 * We might like to add the ability to scan devclasses and/or drivers to 5312 * determine what else is currently loaded/available. 5313 */ 5314 5315 static int 5316 sysctl_bus(SYSCTL_HANDLER_ARGS) 5317 { 5318 struct u_businfo ubus; 5319 5320 ubus.ub_version = BUS_USER_VERSION; 5321 ubus.ub_generation = bus_data_generation; 5322 5323 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5324 } 5325 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 5326 "bus-related data"); 5327 5328 static int 5329 sysctl_devices(SYSCTL_HANDLER_ARGS) 5330 { 5331 int *name = (int *)arg1; 5332 u_int namelen = arg2; 5333 int index; 5334 device_t dev; 5335 struct u_device *udev; 5336 int error; 5337 char *walker, *ep; 5338 5339 if (namelen != 2) 5340 return (EINVAL); 5341 5342 if (bus_data_generation_check(name[0])) 5343 return (EINVAL); 5344 5345 index = name[1]; 5346 5347 /* 5348 * Scan the list of devices, looking for the requested index. 5349 */ 5350 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5351 if (index-- == 0) 5352 break; 5353 } 5354 if (dev == NULL) 5355 return (ENOENT); 5356 5357 /* 5358 * Populate the return item, careful not to overflow the buffer. 5359 */ 5360 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5361 if (udev == NULL) 5362 return (ENOMEM); 5363 udev->dv_handle = (uintptr_t)dev; 5364 udev->dv_parent = (uintptr_t)dev->parent; 5365 udev->dv_devflags = dev->devflags; 5366 udev->dv_flags = dev->flags; 5367 udev->dv_state = dev->state; 5368 walker = udev->dv_fields; 5369 ep = walker + sizeof(udev->dv_fields); 5370 #define CP(src) \ 5371 if ((src) == NULL) \ 5372 *walker++ = '\0'; \ 5373 else { \ 5374 strlcpy(walker, (src), ep - walker); \ 5375 walker += strlen(walker) + 1; \ 5376 } \ 5377 if (walker >= ep) \ 5378 break; 5379 5380 do { 5381 CP(dev->nameunit); 5382 CP(dev->desc); 5383 CP(dev->driver != NULL ? dev->driver->name : NULL); 5384 bus_child_pnpinfo_str(dev, walker, ep - walker); 5385 walker += strlen(walker) + 1; 5386 if (walker >= ep) 5387 break; 5388 bus_child_location_str(dev, walker, ep - walker); 5389 walker += strlen(walker) + 1; 5390 if (walker >= ep) 5391 break; 5392 *walker++ = '\0'; 5393 } while (0); 5394 #undef CP 5395 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5396 free(udev, M_BUS); 5397 return (error); 5398 } 5399 5400 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 5401 "system device tree"); 5402 5403 int 5404 bus_data_generation_check(int generation) 5405 { 5406 if (generation != bus_data_generation) 5407 return (1); 5408 5409 /* XXX generate optimised lists here? */ 5410 return (0); 5411 } 5412 5413 void 5414 bus_data_generation_update(void) 5415 { 5416 bus_data_generation++; 5417 } 5418 5419 int 5420 bus_free_resource(device_t dev, int type, struct resource *r) 5421 { 5422 if (r == NULL) 5423 return (0); 5424 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5425 } 5426 5427 device_t 5428 device_lookup_by_name(const char *name) 5429 { 5430 device_t dev; 5431 5432 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5433 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5434 return (dev); 5435 } 5436 return (NULL); 5437 } 5438 5439 /* 5440 * /dev/devctl2 implementation. The existing /dev/devctl device has 5441 * implicit semantics on open, so it could not be reused for this. 5442 * Another option would be to call this /dev/bus? 5443 */ 5444 static int 5445 find_device(struct devreq *req, device_t *devp) 5446 { 5447 device_t dev; 5448 5449 /* 5450 * First, ensure that the name is nul terminated. 5451 */ 5452 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5453 return (EINVAL); 5454 5455 /* 5456 * Second, try to find an attached device whose name matches 5457 * 'name'. 5458 */ 5459 dev = device_lookup_by_name(req->dr_name); 5460 if (dev != NULL) { 5461 *devp = dev; 5462 return (0); 5463 } 5464 5465 /* Finally, give device enumerators a chance. */ 5466 dev = NULL; 5467 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5468 if (dev == NULL) 5469 return (ENOENT); 5470 *devp = dev; 5471 return (0); 5472 } 5473 5474 static bool 5475 driver_exists(device_t bus, const char *driver) 5476 { 5477 devclass_t dc; 5478 5479 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5480 if (devclass_find_driver_internal(dc, driver) != NULL) 5481 return (true); 5482 } 5483 return (false); 5484 } 5485 5486 static void 5487 device_gen_nomatch(device_t dev) 5488 { 5489 device_t child; 5490 5491 if (dev->flags & DF_NEEDNOMATCH && 5492 dev->state == DS_NOTPRESENT) { 5493 BUS_PROBE_NOMATCH(dev->parent, dev); 5494 devnomatch(dev); 5495 dev->flags |= DF_DONENOMATCH; 5496 } 5497 dev->flags &= ~DF_NEEDNOMATCH; 5498 TAILQ_FOREACH(child, &dev->children, link) { 5499 device_gen_nomatch(child); 5500 } 5501 } 5502 5503 static void 5504 device_do_deferred_actions(void) 5505 { 5506 devclass_t dc; 5507 driverlink_t dl; 5508 5509 /* 5510 * Walk through the devclasses to find all the drivers we've tagged as 5511 * deferred during the freeze and call the driver added routines. They 5512 * have already been added to the lists in the background, so the driver 5513 * added routines that trigger a probe will have all the right bidders 5514 * for the probe auction. 5515 */ 5516 TAILQ_FOREACH(dc, &devclasses, link) { 5517 TAILQ_FOREACH(dl, &dc->drivers, link) { 5518 if (dl->flags & DL_DEFERRED_PROBE) { 5519 devclass_driver_added(dc, dl->driver); 5520 dl->flags &= ~DL_DEFERRED_PROBE; 5521 } 5522 } 5523 } 5524 5525 /* 5526 * We also defer no-match events during a freeze. Walk the tree and 5527 * generate all the pent-up events that are still relevant. 5528 */ 5529 device_gen_nomatch(root_bus); 5530 bus_data_generation_update(); 5531 } 5532 5533 static int 5534 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5535 struct thread *td) 5536 { 5537 struct devreq *req; 5538 device_t dev; 5539 int error, old; 5540 5541 /* Locate the device to control. */ 5542 mtx_lock(&Giant); 5543 req = (struct devreq *)data; 5544 switch (cmd) { 5545 case DEV_ATTACH: 5546 case DEV_DETACH: 5547 case DEV_ENABLE: 5548 case DEV_DISABLE: 5549 case DEV_SUSPEND: 5550 case DEV_RESUME: 5551 case DEV_SET_DRIVER: 5552 case DEV_CLEAR_DRIVER: 5553 case DEV_RESCAN: 5554 case DEV_DELETE: 5555 error = priv_check(td, PRIV_DRIVER); 5556 if (error == 0) 5557 error = find_device(req, &dev); 5558 break; 5559 case DEV_FREEZE: 5560 case DEV_THAW: 5561 error = priv_check(td, PRIV_DRIVER); 5562 break; 5563 default: 5564 error = ENOTTY; 5565 break; 5566 } 5567 if (error) { 5568 mtx_unlock(&Giant); 5569 return (error); 5570 } 5571 5572 /* Perform the requested operation. */ 5573 switch (cmd) { 5574 case DEV_ATTACH: 5575 if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0) 5576 error = EBUSY; 5577 else if (!device_is_enabled(dev)) 5578 error = ENXIO; 5579 else 5580 error = device_probe_and_attach(dev); 5581 break; 5582 case DEV_DETACH: 5583 if (!device_is_attached(dev)) { 5584 error = ENXIO; 5585 break; 5586 } 5587 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5588 error = device_quiesce(dev); 5589 if (error) 5590 break; 5591 } 5592 error = device_detach(dev); 5593 break; 5594 case DEV_ENABLE: 5595 if (device_is_enabled(dev)) { 5596 error = EBUSY; 5597 break; 5598 } 5599 5600 /* 5601 * If the device has been probed but not attached (e.g. 5602 * when it has been disabled by a loader hint), just 5603 * attach the device rather than doing a full probe. 5604 */ 5605 device_enable(dev); 5606 if (device_is_alive(dev)) { 5607 /* 5608 * If the device was disabled via a hint, clear 5609 * the hint. 5610 */ 5611 if (resource_disabled(dev->driver->name, dev->unit)) 5612 resource_unset_value(dev->driver->name, 5613 dev->unit, "disabled"); 5614 error = device_attach(dev); 5615 } else 5616 error = device_probe_and_attach(dev); 5617 break; 5618 case DEV_DISABLE: 5619 if (!device_is_enabled(dev)) { 5620 error = ENXIO; 5621 break; 5622 } 5623 5624 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5625 error = device_quiesce(dev); 5626 if (error) 5627 break; 5628 } 5629 5630 /* 5631 * Force DF_FIXEDCLASS on around detach to preserve 5632 * the existing name. 5633 */ 5634 old = dev->flags; 5635 dev->flags |= DF_FIXEDCLASS; 5636 error = device_detach(dev); 5637 if (!(old & DF_FIXEDCLASS)) 5638 dev->flags &= ~DF_FIXEDCLASS; 5639 if (error == 0) 5640 device_disable(dev); 5641 break; 5642 case DEV_SUSPEND: 5643 if (device_is_suspended(dev)) { 5644 error = EBUSY; 5645 break; 5646 } 5647 if (device_get_parent(dev) == NULL) { 5648 error = EINVAL; 5649 break; 5650 } 5651 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5652 break; 5653 case DEV_RESUME: 5654 if (!device_is_suspended(dev)) { 5655 error = EINVAL; 5656 break; 5657 } 5658 if (device_get_parent(dev) == NULL) { 5659 error = EINVAL; 5660 break; 5661 } 5662 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5663 break; 5664 case DEV_SET_DRIVER: { 5665 devclass_t dc; 5666 char driver[128]; 5667 5668 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5669 if (error) 5670 break; 5671 if (driver[0] == '\0') { 5672 error = EINVAL; 5673 break; 5674 } 5675 if (dev->devclass != NULL && 5676 strcmp(driver, dev->devclass->name) == 0) 5677 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5678 break; 5679 5680 /* 5681 * Scan drivers for this device's bus looking for at 5682 * least one matching driver. 5683 */ 5684 if (dev->parent == NULL) { 5685 error = EINVAL; 5686 break; 5687 } 5688 if (!driver_exists(dev->parent, driver)) { 5689 error = ENOENT; 5690 break; 5691 } 5692 dc = devclass_create(driver); 5693 if (dc == NULL) { 5694 error = ENOMEM; 5695 break; 5696 } 5697 5698 /* Detach device if necessary. */ 5699 if (device_is_attached(dev)) { 5700 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5701 error = device_detach(dev); 5702 else 5703 error = EBUSY; 5704 if (error) 5705 break; 5706 } 5707 5708 /* Clear any previously-fixed device class and unit. */ 5709 if (dev->flags & DF_FIXEDCLASS) 5710 devclass_delete_device(dev->devclass, dev); 5711 dev->flags |= DF_WILDCARD; 5712 dev->unit = -1; 5713 5714 /* Force the new device class. */ 5715 error = devclass_add_device(dc, dev); 5716 if (error) 5717 break; 5718 dev->flags |= DF_FIXEDCLASS; 5719 error = device_probe_and_attach(dev); 5720 break; 5721 } 5722 case DEV_CLEAR_DRIVER: 5723 if (!(dev->flags & DF_FIXEDCLASS)) { 5724 error = 0; 5725 break; 5726 } 5727 if (device_is_attached(dev)) { 5728 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5729 error = device_detach(dev); 5730 else 5731 error = EBUSY; 5732 if (error) 5733 break; 5734 } 5735 5736 dev->flags &= ~DF_FIXEDCLASS; 5737 dev->flags |= DF_WILDCARD; 5738 devclass_delete_device(dev->devclass, dev); 5739 error = device_probe_and_attach(dev); 5740 break; 5741 case DEV_RESCAN: 5742 if (!device_is_attached(dev)) { 5743 error = ENXIO; 5744 break; 5745 } 5746 error = BUS_RESCAN(dev); 5747 break; 5748 case DEV_DELETE: { 5749 device_t parent; 5750 5751 parent = device_get_parent(dev); 5752 if (parent == NULL) { 5753 error = EINVAL; 5754 break; 5755 } 5756 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5757 if (bus_child_present(dev) != 0) { 5758 error = EBUSY; 5759 break; 5760 } 5761 } 5762 5763 error = device_delete_child(parent, dev); 5764 break; 5765 } 5766 case DEV_FREEZE: 5767 if (device_frozen) 5768 error = EBUSY; 5769 else 5770 device_frozen = true; 5771 break; 5772 case DEV_THAW: 5773 if (!device_frozen) 5774 error = EBUSY; 5775 else { 5776 device_do_deferred_actions(); 5777 device_frozen = false; 5778 } 5779 break; 5780 } 5781 mtx_unlock(&Giant); 5782 return (error); 5783 } 5784 5785 static struct cdevsw devctl2_cdevsw = { 5786 .d_version = D_VERSION, 5787 .d_ioctl = devctl2_ioctl, 5788 .d_name = "devctl2", 5789 }; 5790 5791 static void 5792 devctl2_init(void) 5793 { 5794 5795 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5796 UID_ROOT, GID_WHEEL, 0600, "devctl2"); 5797 } 5798 5799 /* 5800 * APIs to manage deprecation and obsolescence. 5801 */ 5802 static int obsolete_panic = 0; 5803 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 5804 "Bus debug level"); 5805 /* 0 - don't panic, 1 - panic if already obsolete, 2 - panic if deprecated */ 5806 static void 5807 gone_panic(int major, int running, const char *msg) 5808 { 5809 5810 switch (obsolete_panic) 5811 { 5812 case 0: 5813 return; 5814 case 1: 5815 if (running < major) 5816 return; 5817 /* FALLTHROUGH */ 5818 default: 5819 panic("%s", msg); 5820 } 5821 } 5822 5823 void 5824 _gone_in(int major, const char *msg) 5825 { 5826 5827 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5828 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5829 printf("Obsolete code will removed soon: %s\n", msg); 5830 else if (P_OSREL_MAJOR(__FreeBSD_version) + 1 == major) 5831 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 5832 major, msg); 5833 } 5834 5835 void 5836 _gone_in_dev(device_t dev, int major, const char *msg) 5837 { 5838 5839 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5840 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5841 device_printf(dev, 5842 "Obsolete code will removed soon: %s\n", msg); 5843 else if (P_OSREL_MAJOR(__FreeBSD_version) + 1 == major) 5844 device_printf(dev, 5845 "Deprecated code (to be removed in FreeBSD %d): %s\n", 5846 major, msg); 5847 } 5848 5849 #ifdef DDB 5850 DB_SHOW_COMMAND(device, db_show_device) 5851 { 5852 device_t dev; 5853 5854 if (!have_addr) 5855 return; 5856 5857 dev = (device_t)addr; 5858 5859 db_printf("name: %s\n", device_get_nameunit(dev)); 5860 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 5861 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 5862 db_printf(" addr: %p\n", dev); 5863 db_printf(" parent: %p\n", dev->parent); 5864 db_printf(" softc: %p\n", dev->softc); 5865 db_printf(" ivars: %p\n", dev->ivars); 5866 } 5867 5868 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 5869 { 5870 device_t dev; 5871 5872 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5873 db_show_device((db_expr_t)dev, true, count, modif); 5874 } 5875 } 5876 #endif 5877