1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_bus.h" 31 #include "opt_ddb.h" 32 #include "opt_iommu.h" 33 34 #include <sys/param.h> 35 #include <sys/conf.h> 36 #include <sys/domainset.h> 37 #include <sys/eventhandler.h> 38 #include <sys/jail.h> 39 #include <sys/lock.h> 40 #include <sys/kernel.h> 41 #include <sys/limits.h> 42 #include <sys/malloc.h> 43 #include <sys/module.h> 44 #include <sys/mutex.h> 45 #include <sys/priv.h> 46 #include <machine/bus.h> 47 #include <sys/random.h> 48 #include <sys/refcount.h> 49 #include <sys/rman.h> 50 #include <sys/sbuf.h> 51 #include <sys/smp.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 #include <sys/bus.h> 55 #include <sys/cpuset.h> 56 #ifdef INTRNG 57 #include <sys/intr.h> 58 #endif 59 60 #include <net/vnet.h> 61 62 #include <machine/cpu.h> 63 #include <machine/stdarg.h> 64 65 #include <vm/uma.h> 66 #include <vm/vm.h> 67 68 #include <dev/iommu/iommu.h> 69 70 #include <ddb/ddb.h> 71 72 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 73 NULL); 74 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 75 NULL); 76 77 static bool disable_failed_devs = false; 78 SYSCTL_BOOL(_hw_bus, OID_AUTO, disable_failed_devices, CTLFLAG_RWTUN, &disable_failed_devs, 79 0, "Do not retry attaching devices that return an error from DEVICE_ATTACH the first time"); 80 81 /* 82 * Used to attach drivers to devclasses. 83 */ 84 typedef struct driverlink *driverlink_t; 85 struct driverlink { 86 kobj_class_t driver; 87 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 88 int pass; 89 int flags; 90 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 91 TAILQ_ENTRY(driverlink) passlink; 92 }; 93 94 /* 95 * Forward declarations 96 */ 97 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 98 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 99 typedef TAILQ_HEAD(device_list, _device) device_list_t; 100 101 struct devclass { 102 TAILQ_ENTRY(devclass) link; 103 devclass_t parent; /* parent in devclass hierarchy */ 104 driver_list_t drivers; /* bus devclasses store drivers for bus */ 105 char *name; 106 device_t *devices; /* array of devices indexed by unit */ 107 int maxunit; /* size of devices array */ 108 int flags; 109 #define DC_HAS_CHILDREN 1 110 111 struct sysctl_ctx_list sysctl_ctx; 112 struct sysctl_oid *sysctl_tree; 113 }; 114 115 struct device_prop_elm { 116 const char *name; 117 void *val; 118 void *dtr_ctx; 119 device_prop_dtr_t dtr; 120 LIST_ENTRY(device_prop_elm) link; 121 }; 122 123 static void device_destroy_props(device_t dev); 124 125 /** 126 * @brief Implementation of _device. 127 * 128 * The structure is named "_device" instead of "device" to avoid type confusion 129 * caused by other subsystems defining a (struct device). 130 */ 131 struct _device { 132 /* 133 * A device is a kernel object. The first field must be the 134 * current ops table for the object. 135 */ 136 KOBJ_FIELDS; 137 138 /* 139 * Device hierarchy. 140 */ 141 TAILQ_ENTRY(_device) link; /**< list of devices in parent */ 142 TAILQ_ENTRY(_device) devlink; /**< global device list membership */ 143 device_t parent; /**< parent of this device */ 144 device_list_t children; /**< list of child devices */ 145 146 /* 147 * Details of this device. 148 */ 149 driver_t *driver; /**< current driver */ 150 devclass_t devclass; /**< current device class */ 151 int unit; /**< current unit number */ 152 char* nameunit; /**< name+unit e.g. foodev0 */ 153 char* desc; /**< driver specific description */ 154 u_int busy; /**< count of calls to device_busy() */ 155 device_state_t state; /**< current device state */ 156 uint32_t devflags; /**< api level flags for device_get_flags() */ 157 u_int flags; /**< internal device flags */ 158 u_int order; /**< order from device_add_child_ordered() */ 159 void *ivars; /**< instance variables */ 160 void *softc; /**< current driver's variables */ 161 LIST_HEAD(, device_prop_elm) props; 162 163 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 164 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 165 }; 166 167 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 168 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 169 170 EVENTHANDLER_LIST_DEFINE(device_attach); 171 EVENTHANDLER_LIST_DEFINE(device_detach); 172 EVENTHANDLER_LIST_DEFINE(device_nomatch); 173 EVENTHANDLER_LIST_DEFINE(dev_lookup); 174 175 static void devctl2_init(void); 176 static bool device_frozen; 177 178 #define DRIVERNAME(d) ((d)? d->name : "no driver") 179 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 180 181 #ifdef BUS_DEBUG 182 183 static int bus_debug = 1; 184 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 185 "Bus debug level"); 186 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 187 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 188 189 /** 190 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 191 * prevent syslog from deleting initial spaces 192 */ 193 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 194 195 static void print_device_short(device_t dev, int indent); 196 static void print_device(device_t dev, int indent); 197 void print_device_tree_short(device_t dev, int indent); 198 void print_device_tree(device_t dev, int indent); 199 static void print_driver_short(driver_t *driver, int indent); 200 static void print_driver(driver_t *driver, int indent); 201 static void print_driver_list(driver_list_t drivers, int indent); 202 static void print_devclass_short(devclass_t dc, int indent); 203 static void print_devclass(devclass_t dc, int indent); 204 void print_devclass_list_short(void); 205 void print_devclass_list(void); 206 207 #else 208 /* Make the compiler ignore the function calls */ 209 #define PDEBUG(a) /* nop */ 210 #define DEVICENAME(d) /* nop */ 211 212 #define print_device_short(d,i) /* nop */ 213 #define print_device(d,i) /* nop */ 214 #define print_device_tree_short(d,i) /* nop */ 215 #define print_device_tree(d,i) /* nop */ 216 #define print_driver_short(d,i) /* nop */ 217 #define print_driver(d,i) /* nop */ 218 #define print_driver_list(d,i) /* nop */ 219 #define print_devclass_short(d,i) /* nop */ 220 #define print_devclass(d,i) /* nop */ 221 #define print_devclass_list_short() /* nop */ 222 #define print_devclass_list() /* nop */ 223 #endif 224 225 /* 226 * dev sysctl tree 227 */ 228 229 enum { 230 DEVCLASS_SYSCTL_PARENT, 231 }; 232 233 static int 234 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 235 { 236 devclass_t dc = (devclass_t)arg1; 237 const char *value; 238 239 switch (arg2) { 240 case DEVCLASS_SYSCTL_PARENT: 241 value = dc->parent ? dc->parent->name : ""; 242 break; 243 default: 244 return (EINVAL); 245 } 246 return (SYSCTL_OUT_STR(req, value)); 247 } 248 249 static void 250 devclass_sysctl_init(devclass_t dc) 251 { 252 if (dc->sysctl_tree != NULL) 253 return; 254 sysctl_ctx_init(&dc->sysctl_ctx); 255 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 256 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 257 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 258 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 259 OID_AUTO, "%parent", 260 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 261 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 262 "parent class"); 263 } 264 265 enum { 266 DEVICE_SYSCTL_DESC, 267 DEVICE_SYSCTL_DRIVER, 268 DEVICE_SYSCTL_LOCATION, 269 DEVICE_SYSCTL_PNPINFO, 270 DEVICE_SYSCTL_PARENT, 271 DEVICE_SYSCTL_IOMMU, 272 }; 273 274 static int 275 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 276 { 277 struct sbuf sb; 278 device_t dev = (device_t)arg1; 279 device_t iommu; 280 int error; 281 uint16_t rid; 282 const char *c; 283 284 sbuf_new_for_sysctl(&sb, NULL, 1024, req); 285 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 286 bus_topo_lock(); 287 switch (arg2) { 288 case DEVICE_SYSCTL_DESC: 289 sbuf_cat(&sb, dev->desc ? dev->desc : ""); 290 break; 291 case DEVICE_SYSCTL_DRIVER: 292 sbuf_cat(&sb, dev->driver ? dev->driver->name : ""); 293 break; 294 case DEVICE_SYSCTL_LOCATION: 295 bus_child_location(dev, &sb); 296 break; 297 case DEVICE_SYSCTL_PNPINFO: 298 bus_child_pnpinfo(dev, &sb); 299 break; 300 case DEVICE_SYSCTL_PARENT: 301 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : ""); 302 break; 303 case DEVICE_SYSCTL_IOMMU: 304 iommu = NULL; 305 error = device_get_prop(dev, DEV_PROP_NAME_IOMMU, 306 (void **)&iommu); 307 c = ""; 308 if (error == 0 && iommu != NULL) { 309 sbuf_printf(&sb, "unit=%s", device_get_nameunit(iommu)); 310 c = " "; 311 } 312 rid = 0; 313 #ifdef IOMMU 314 iommu_get_requester(dev, &rid); 315 #endif 316 if (rid != 0) 317 sbuf_printf(&sb, "%srid=%#x", c, rid); 318 break; 319 default: 320 error = EINVAL; 321 goto out; 322 } 323 error = sbuf_finish(&sb); 324 out: 325 bus_topo_unlock(); 326 sbuf_delete(&sb); 327 return (error); 328 } 329 330 static void 331 device_sysctl_init(device_t dev) 332 { 333 devclass_t dc = dev->devclass; 334 int domain; 335 336 if (dev->sysctl_tree != NULL) 337 return; 338 devclass_sysctl_init(dc); 339 sysctl_ctx_init(&dev->sysctl_ctx); 340 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 341 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 342 dev->nameunit + strlen(dc->name), 343 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); 344 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 345 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 346 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 347 "device description"); 348 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 349 OID_AUTO, "%driver", 350 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 351 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 352 "device driver name"); 353 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 354 OID_AUTO, "%location", 355 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 356 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 357 "device location relative to parent"); 358 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 359 OID_AUTO, "%pnpinfo", 360 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 361 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 362 "device identification"); 363 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 364 OID_AUTO, "%parent", 365 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 366 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 367 "parent device"); 368 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 369 OID_AUTO, "%iommu", 370 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 371 dev, DEVICE_SYSCTL_IOMMU, device_sysctl_handler, "A", 372 "iommu unit handling the device requests"); 373 if (bus_get_domain(dev, &domain) == 0) 374 SYSCTL_ADD_INT(&dev->sysctl_ctx, 375 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 376 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain"); 377 } 378 379 static void 380 device_sysctl_update(device_t dev) 381 { 382 devclass_t dc = dev->devclass; 383 384 if (dev->sysctl_tree == NULL) 385 return; 386 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 387 } 388 389 static void 390 device_sysctl_fini(device_t dev) 391 { 392 if (dev->sysctl_tree == NULL) 393 return; 394 sysctl_ctx_free(&dev->sysctl_ctx); 395 dev->sysctl_tree = NULL; 396 } 397 398 static struct device_list bus_data_devices; 399 static int bus_data_generation = 1; 400 401 static kobj_method_t null_methods[] = { 402 KOBJMETHOD_END 403 }; 404 405 DEFINE_CLASS(null, null_methods, 0); 406 407 void 408 bus_topo_assert(void) 409 { 410 411 GIANT_REQUIRED; 412 } 413 414 struct mtx * 415 bus_topo_mtx(void) 416 { 417 418 return (&Giant); 419 } 420 421 void 422 bus_topo_lock(void) 423 { 424 425 mtx_lock(bus_topo_mtx()); 426 } 427 428 void 429 bus_topo_unlock(void) 430 { 431 432 mtx_unlock(bus_topo_mtx()); 433 } 434 435 /* 436 * Bus pass implementation 437 */ 438 439 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 440 int bus_current_pass = BUS_PASS_ROOT; 441 442 /** 443 * @internal 444 * @brief Register the pass level of a new driver attachment 445 * 446 * Register a new driver attachment's pass level. If no driver 447 * attachment with the same pass level has been added, then @p new 448 * will be added to the global passes list. 449 * 450 * @param new the new driver attachment 451 */ 452 static void 453 driver_register_pass(struct driverlink *new) 454 { 455 struct driverlink *dl; 456 457 /* We only consider pass numbers during boot. */ 458 if (bus_current_pass == BUS_PASS_DEFAULT) 459 return; 460 461 /* 462 * Walk the passes list. If we already know about this pass 463 * then there is nothing to do. If we don't, then insert this 464 * driver link into the list. 465 */ 466 TAILQ_FOREACH(dl, &passes, passlink) { 467 if (dl->pass < new->pass) 468 continue; 469 if (dl->pass == new->pass) 470 return; 471 TAILQ_INSERT_BEFORE(dl, new, passlink); 472 return; 473 } 474 TAILQ_INSERT_TAIL(&passes, new, passlink); 475 } 476 477 /** 478 * @brief Raise the current bus pass 479 * 480 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 481 * method on the root bus to kick off a new device tree scan for each 482 * new pass level that has at least one driver. 483 */ 484 void 485 bus_set_pass(int pass) 486 { 487 struct driverlink *dl; 488 489 if (bus_current_pass > pass) 490 panic("Attempt to lower bus pass level"); 491 492 TAILQ_FOREACH(dl, &passes, passlink) { 493 /* Skip pass values below the current pass level. */ 494 if (dl->pass <= bus_current_pass) 495 continue; 496 497 /* 498 * Bail once we hit a driver with a pass level that is 499 * too high. 500 */ 501 if (dl->pass > pass) 502 break; 503 504 /* 505 * Raise the pass level to the next level and rescan 506 * the tree. 507 */ 508 bus_current_pass = dl->pass; 509 BUS_NEW_PASS(root_bus); 510 } 511 512 /* 513 * If there isn't a driver registered for the requested pass, 514 * then bus_current_pass might still be less than 'pass'. Set 515 * it to 'pass' in that case. 516 */ 517 if (bus_current_pass < pass) 518 bus_current_pass = pass; 519 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 520 } 521 522 /* 523 * Devclass implementation 524 */ 525 526 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 527 528 /** 529 * @internal 530 * @brief Find or create a device class 531 * 532 * If a device class with the name @p classname exists, return it, 533 * otherwise if @p create is non-zero create and return a new device 534 * class. 535 * 536 * If @p parentname is non-NULL, the parent of the devclass is set to 537 * the devclass of that name. 538 * 539 * @param classname the devclass name to find or create 540 * @param parentname the parent devclass name or @c NULL 541 * @param create non-zero to create a devclass 542 */ 543 static devclass_t 544 devclass_find_internal(const char *classname, const char *parentname, 545 int create) 546 { 547 devclass_t dc; 548 549 PDEBUG(("looking for %s", classname)); 550 if (!classname) 551 return (NULL); 552 553 TAILQ_FOREACH(dc, &devclasses, link) { 554 if (!strcmp(dc->name, classname)) 555 break; 556 } 557 558 if (create && !dc) { 559 PDEBUG(("creating %s", classname)); 560 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 561 M_BUS, M_NOWAIT | M_ZERO); 562 if (!dc) 563 return (NULL); 564 dc->parent = NULL; 565 dc->name = (char*) (dc + 1); 566 strcpy(dc->name, classname); 567 TAILQ_INIT(&dc->drivers); 568 TAILQ_INSERT_TAIL(&devclasses, dc, link); 569 570 bus_data_generation_update(); 571 } 572 573 /* 574 * If a parent class is specified, then set that as our parent so 575 * that this devclass will support drivers for the parent class as 576 * well. If the parent class has the same name don't do this though 577 * as it creates a cycle that can trigger an infinite loop in 578 * device_probe_child() if a device exists for which there is no 579 * suitable driver. 580 */ 581 if (parentname && dc && !dc->parent && 582 strcmp(classname, parentname) != 0) { 583 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 584 dc->parent->flags |= DC_HAS_CHILDREN; 585 } 586 587 return (dc); 588 } 589 590 /** 591 * @brief Create a device class 592 * 593 * If a device class with the name @p classname exists, return it, 594 * otherwise create and return a new device class. 595 * 596 * @param classname the devclass name to find or create 597 */ 598 devclass_t 599 devclass_create(const char *classname) 600 { 601 return (devclass_find_internal(classname, NULL, TRUE)); 602 } 603 604 /** 605 * @brief Find a device class 606 * 607 * If a device class with the name @p classname exists, return it, 608 * otherwise return @c NULL. 609 * 610 * @param classname the devclass name to find 611 */ 612 devclass_t 613 devclass_find(const char *classname) 614 { 615 return (devclass_find_internal(classname, NULL, FALSE)); 616 } 617 618 /** 619 * @brief Register that a device driver has been added to a devclass 620 * 621 * Register that a device driver has been added to a devclass. This 622 * is called by devclass_add_driver to accomplish the recursive 623 * notification of all the children classes of dc, as well as dc. 624 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 625 * the devclass. 626 * 627 * We do a full search here of the devclass list at each iteration 628 * level to save storing children-lists in the devclass structure. If 629 * we ever move beyond a few dozen devices doing this, we may need to 630 * reevaluate... 631 * 632 * @param dc the devclass to edit 633 * @param driver the driver that was just added 634 */ 635 static void 636 devclass_driver_added(devclass_t dc, driver_t *driver) 637 { 638 devclass_t parent; 639 int i; 640 641 /* 642 * Call BUS_DRIVER_ADDED for any existing buses in this class. 643 */ 644 for (i = 0; i < dc->maxunit; i++) 645 if (dc->devices[i] && device_is_attached(dc->devices[i])) 646 BUS_DRIVER_ADDED(dc->devices[i], driver); 647 648 /* 649 * Walk through the children classes. Since we only keep a 650 * single parent pointer around, we walk the entire list of 651 * devclasses looking for children. We set the 652 * DC_HAS_CHILDREN flag when a child devclass is created on 653 * the parent, so we only walk the list for those devclasses 654 * that have children. 655 */ 656 if (!(dc->flags & DC_HAS_CHILDREN)) 657 return; 658 parent = dc; 659 TAILQ_FOREACH(dc, &devclasses, link) { 660 if (dc->parent == parent) 661 devclass_driver_added(dc, driver); 662 } 663 } 664 665 static void 666 device_handle_nomatch(device_t dev) 667 { 668 BUS_PROBE_NOMATCH(dev->parent, dev); 669 EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev); 670 dev->flags |= DF_DONENOMATCH; 671 } 672 673 /** 674 * @brief Add a device driver to a device class 675 * 676 * Add a device driver to a devclass. This is normally called 677 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 678 * all devices in the devclass will be called to allow them to attempt 679 * to re-probe any unmatched children. 680 * 681 * @param dc the devclass to edit 682 * @param driver the driver to register 683 */ 684 int 685 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 686 { 687 driverlink_t dl; 688 devclass_t child_dc; 689 const char *parentname; 690 691 PDEBUG(("%s", DRIVERNAME(driver))); 692 693 /* Don't allow invalid pass values. */ 694 if (pass <= BUS_PASS_ROOT) 695 return (EINVAL); 696 697 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 698 if (!dl) 699 return (ENOMEM); 700 701 /* 702 * Compile the driver's methods. Also increase the reference count 703 * so that the class doesn't get freed when the last instance 704 * goes. This means we can safely use static methods and avoids a 705 * double-free in devclass_delete_driver. 706 */ 707 kobj_class_compile((kobj_class_t) driver); 708 709 /* 710 * If the driver has any base classes, make the 711 * devclass inherit from the devclass of the driver's 712 * first base class. This will allow the system to 713 * search for drivers in both devclasses for children 714 * of a device using this driver. 715 */ 716 if (driver->baseclasses) 717 parentname = driver->baseclasses[0]->name; 718 else 719 parentname = NULL; 720 child_dc = devclass_find_internal(driver->name, parentname, TRUE); 721 if (dcp != NULL) 722 *dcp = child_dc; 723 724 dl->driver = driver; 725 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 726 driver->refs++; /* XXX: kobj_mtx */ 727 dl->pass = pass; 728 driver_register_pass(dl); 729 730 if (device_frozen) { 731 dl->flags |= DL_DEFERRED_PROBE; 732 } else { 733 devclass_driver_added(dc, driver); 734 } 735 bus_data_generation_update(); 736 return (0); 737 } 738 739 /** 740 * @brief Register that a device driver has been deleted from a devclass 741 * 742 * Register that a device driver has been removed from a devclass. 743 * This is called by devclass_delete_driver to accomplish the 744 * recursive notification of all the children classes of busclass, as 745 * well as busclass. Each layer will attempt to detach the driver 746 * from any devices that are children of the bus's devclass. The function 747 * will return an error if a device fails to detach. 748 * 749 * We do a full search here of the devclass list at each iteration 750 * level to save storing children-lists in the devclass structure. If 751 * we ever move beyond a few dozen devices doing this, we may need to 752 * reevaluate... 753 * 754 * @param busclass the devclass of the parent bus 755 * @param dc the devclass of the driver being deleted 756 * @param driver the driver being deleted 757 */ 758 static int 759 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 760 { 761 devclass_t parent; 762 device_t dev; 763 int error, i; 764 765 /* 766 * Disassociate from any devices. We iterate through all the 767 * devices in the devclass of the driver and detach any which are 768 * using the driver and which have a parent in the devclass which 769 * we are deleting from. 770 * 771 * Note that since a driver can be in multiple devclasses, we 772 * should not detach devices which are not children of devices in 773 * the affected devclass. 774 * 775 * If we're frozen, we don't generate NOMATCH events. Mark to 776 * generate later. 777 */ 778 for (i = 0; i < dc->maxunit; i++) { 779 if (dc->devices[i]) { 780 dev = dc->devices[i]; 781 if (dev->driver == driver && dev->parent && 782 dev->parent->devclass == busclass) { 783 if ((error = device_detach(dev)) != 0) 784 return (error); 785 if (device_frozen) { 786 dev->flags &= ~DF_DONENOMATCH; 787 dev->flags |= DF_NEEDNOMATCH; 788 } else { 789 device_handle_nomatch(dev); 790 } 791 } 792 } 793 } 794 795 /* 796 * Walk through the children classes. Since we only keep a 797 * single parent pointer around, we walk the entire list of 798 * devclasses looking for children. We set the 799 * DC_HAS_CHILDREN flag when a child devclass is created on 800 * the parent, so we only walk the list for those devclasses 801 * that have children. 802 */ 803 if (!(busclass->flags & DC_HAS_CHILDREN)) 804 return (0); 805 parent = busclass; 806 TAILQ_FOREACH(busclass, &devclasses, link) { 807 if (busclass->parent == parent) { 808 error = devclass_driver_deleted(busclass, dc, driver); 809 if (error) 810 return (error); 811 } 812 } 813 return (0); 814 } 815 816 /** 817 * @brief Delete a device driver from a device class 818 * 819 * Delete a device driver from a devclass. This is normally called 820 * automatically by DRIVER_MODULE(). 821 * 822 * If the driver is currently attached to any devices, 823 * devclass_delete_driver() will first attempt to detach from each 824 * device. If one of the detach calls fails, the driver will not be 825 * deleted. 826 * 827 * @param dc the devclass to edit 828 * @param driver the driver to unregister 829 */ 830 int 831 devclass_delete_driver(devclass_t busclass, driver_t *driver) 832 { 833 devclass_t dc = devclass_find(driver->name); 834 driverlink_t dl; 835 int error; 836 837 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 838 839 if (!dc) 840 return (0); 841 842 /* 843 * Find the link structure in the bus' list of drivers. 844 */ 845 TAILQ_FOREACH(dl, &busclass->drivers, link) { 846 if (dl->driver == driver) 847 break; 848 } 849 850 if (!dl) { 851 PDEBUG(("%s not found in %s list", driver->name, 852 busclass->name)); 853 return (ENOENT); 854 } 855 856 error = devclass_driver_deleted(busclass, dc, driver); 857 if (error != 0) 858 return (error); 859 860 TAILQ_REMOVE(&busclass->drivers, dl, link); 861 free(dl, M_BUS); 862 863 /* XXX: kobj_mtx */ 864 driver->refs--; 865 if (driver->refs == 0) 866 kobj_class_free((kobj_class_t) driver); 867 868 bus_data_generation_update(); 869 return (0); 870 } 871 872 /** 873 * @brief Quiesces a set of device drivers from a device class 874 * 875 * Quiesce a device driver from a devclass. This is normally called 876 * automatically by DRIVER_MODULE(). 877 * 878 * If the driver is currently attached to any devices, 879 * devclass_quiesece_driver() will first attempt to quiesce each 880 * device. 881 * 882 * @param dc the devclass to edit 883 * @param driver the driver to unregister 884 */ 885 static int 886 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 887 { 888 devclass_t dc = devclass_find(driver->name); 889 driverlink_t dl; 890 device_t dev; 891 int i; 892 int error; 893 894 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 895 896 if (!dc) 897 return (0); 898 899 /* 900 * Find the link structure in the bus' list of drivers. 901 */ 902 TAILQ_FOREACH(dl, &busclass->drivers, link) { 903 if (dl->driver == driver) 904 break; 905 } 906 907 if (!dl) { 908 PDEBUG(("%s not found in %s list", driver->name, 909 busclass->name)); 910 return (ENOENT); 911 } 912 913 /* 914 * Quiesce all devices. We iterate through all the devices in 915 * the devclass of the driver and quiesce any which are using 916 * the driver and which have a parent in the devclass which we 917 * are quiescing. 918 * 919 * Note that since a driver can be in multiple devclasses, we 920 * should not quiesce devices which are not children of 921 * devices in the affected devclass. 922 */ 923 for (i = 0; i < dc->maxunit; i++) { 924 if (dc->devices[i]) { 925 dev = dc->devices[i]; 926 if (dev->driver == driver && dev->parent && 927 dev->parent->devclass == busclass) { 928 if ((error = device_quiesce(dev)) != 0) 929 return (error); 930 } 931 } 932 } 933 934 return (0); 935 } 936 937 /** 938 * @internal 939 */ 940 static driverlink_t 941 devclass_find_driver_internal(devclass_t dc, const char *classname) 942 { 943 driverlink_t dl; 944 945 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 946 947 TAILQ_FOREACH(dl, &dc->drivers, link) { 948 if (!strcmp(dl->driver->name, classname)) 949 return (dl); 950 } 951 952 PDEBUG(("not found")); 953 return (NULL); 954 } 955 956 /** 957 * @brief Return the name of the devclass 958 */ 959 const char * 960 devclass_get_name(devclass_t dc) 961 { 962 return (dc->name); 963 } 964 965 /** 966 * @brief Find a device given a unit number 967 * 968 * @param dc the devclass to search 969 * @param unit the unit number to search for 970 * 971 * @returns the device with the given unit number or @c 972 * NULL if there is no such device 973 */ 974 device_t 975 devclass_get_device(devclass_t dc, int unit) 976 { 977 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 978 return (NULL); 979 return (dc->devices[unit]); 980 } 981 982 /** 983 * @brief Find the softc field of a device given a unit number 984 * 985 * @param dc the devclass to search 986 * @param unit the unit number to search for 987 * 988 * @returns the softc field of the device with the given 989 * unit number or @c NULL if there is no such 990 * device 991 */ 992 void * 993 devclass_get_softc(devclass_t dc, int unit) 994 { 995 device_t dev; 996 997 dev = devclass_get_device(dc, unit); 998 if (!dev) 999 return (NULL); 1000 1001 return (device_get_softc(dev)); 1002 } 1003 1004 /** 1005 * @brief Get a list of devices in the devclass 1006 * 1007 * An array containing a list of all the devices in the given devclass 1008 * is allocated and returned in @p *devlistp. The number of devices 1009 * in the array is returned in @p *devcountp. The caller should free 1010 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1011 * 1012 * @param dc the devclass to examine 1013 * @param devlistp points at location for array pointer return 1014 * value 1015 * @param devcountp points at location for array size return value 1016 * 1017 * @retval 0 success 1018 * @retval ENOMEM the array allocation failed 1019 */ 1020 int 1021 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1022 { 1023 int count, i; 1024 device_t *list; 1025 1026 count = devclass_get_count(dc); 1027 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1028 if (!list) 1029 return (ENOMEM); 1030 1031 count = 0; 1032 for (i = 0; i < dc->maxunit; i++) { 1033 if (dc->devices[i]) { 1034 list[count] = dc->devices[i]; 1035 count++; 1036 } 1037 } 1038 1039 *devlistp = list; 1040 *devcountp = count; 1041 1042 return (0); 1043 } 1044 1045 /** 1046 * @brief Get a list of drivers in the devclass 1047 * 1048 * An array containing a list of pointers to all the drivers in the 1049 * given devclass is allocated and returned in @p *listp. The number 1050 * of drivers in the array is returned in @p *countp. The caller should 1051 * free the array using @c free(p, M_TEMP). 1052 * 1053 * @param dc the devclass to examine 1054 * @param listp gives location for array pointer return value 1055 * @param countp gives location for number of array elements 1056 * return value 1057 * 1058 * @retval 0 success 1059 * @retval ENOMEM the array allocation failed 1060 */ 1061 int 1062 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1063 { 1064 driverlink_t dl; 1065 driver_t **list; 1066 int count; 1067 1068 count = 0; 1069 TAILQ_FOREACH(dl, &dc->drivers, link) 1070 count++; 1071 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1072 if (list == NULL) 1073 return (ENOMEM); 1074 1075 count = 0; 1076 TAILQ_FOREACH(dl, &dc->drivers, link) { 1077 list[count] = dl->driver; 1078 count++; 1079 } 1080 *listp = list; 1081 *countp = count; 1082 1083 return (0); 1084 } 1085 1086 /** 1087 * @brief Get the number of devices in a devclass 1088 * 1089 * @param dc the devclass to examine 1090 */ 1091 int 1092 devclass_get_count(devclass_t dc) 1093 { 1094 int count, i; 1095 1096 count = 0; 1097 for (i = 0; i < dc->maxunit; i++) 1098 if (dc->devices[i]) 1099 count++; 1100 return (count); 1101 } 1102 1103 /** 1104 * @brief Get the maximum unit number used in a devclass 1105 * 1106 * Note that this is one greater than the highest currently-allocated unit. If 1107 * @p dc is NULL, @c -1 is returned to indicate that not even the devclass has 1108 * been allocated yet. 1109 * 1110 * @param dc the devclass to examine 1111 */ 1112 int 1113 devclass_get_maxunit(devclass_t dc) 1114 { 1115 if (dc == NULL) 1116 return (-1); 1117 return (dc->maxunit); 1118 } 1119 1120 /** 1121 * @brief Find a free unit number in a devclass 1122 * 1123 * This function searches for the first unused unit number greater 1124 * that or equal to @p unit. Note: This can return INT_MAX which 1125 * may be rejected elsewhere. 1126 * 1127 * @param dc the devclass to examine 1128 * @param unit the first unit number to check 1129 */ 1130 int 1131 devclass_find_free_unit(devclass_t dc, int unit) 1132 { 1133 if (dc == NULL) 1134 return (unit); 1135 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1136 unit++; 1137 return (unit); 1138 } 1139 1140 /** 1141 * @brief Set the parent of a devclass 1142 * 1143 * The parent class is normally initialised automatically by 1144 * DRIVER_MODULE(). 1145 * 1146 * @param dc the devclass to edit 1147 * @param pdc the new parent devclass 1148 */ 1149 void 1150 devclass_set_parent(devclass_t dc, devclass_t pdc) 1151 { 1152 dc->parent = pdc; 1153 } 1154 1155 /** 1156 * @brief Get the parent of a devclass 1157 * 1158 * @param dc the devclass to examine 1159 */ 1160 devclass_t 1161 devclass_get_parent(devclass_t dc) 1162 { 1163 return (dc->parent); 1164 } 1165 1166 struct sysctl_ctx_list * 1167 devclass_get_sysctl_ctx(devclass_t dc) 1168 { 1169 return (&dc->sysctl_ctx); 1170 } 1171 1172 struct sysctl_oid * 1173 devclass_get_sysctl_tree(devclass_t dc) 1174 { 1175 return (dc->sysctl_tree); 1176 } 1177 1178 /** 1179 * @internal 1180 * @brief Allocate a unit number 1181 * 1182 * On entry, @p *unitp is the desired unit number (or @c DEVICE_UNIT_ANY if any 1183 * will do). The allocated unit number is returned in @p *unitp. 1184 * 1185 * @param dc the devclass to allocate from 1186 * @param unitp points at the location for the allocated unit 1187 * number 1188 * 1189 * @retval 0 success 1190 * @retval EEXIST the requested unit number is already allocated 1191 * @retval ENOMEM memory allocation failure 1192 * @retval EINVAL unit is negative or we've run out of units 1193 */ 1194 static int 1195 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1196 { 1197 const char *s; 1198 int unit = *unitp; 1199 1200 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1201 1202 /* Ask the parent bus if it wants to wire this device. */ 1203 if (unit == DEVICE_UNIT_ANY) 1204 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1205 &unit); 1206 1207 /* Unit numbers are either DEVICE_UNIT_ANY or in [0,INT_MAX) */ 1208 if ((unit < 0 && unit != DEVICE_UNIT_ANY) || unit == INT_MAX) 1209 return (EINVAL); 1210 1211 /* If we were given a wired unit number, check for existing device */ 1212 if (unit != DEVICE_UNIT_ANY) { 1213 if (unit < dc->maxunit && dc->devices[unit] != NULL) { 1214 if (bootverbose) 1215 printf("%s: %s%d already exists; skipping it\n", 1216 dc->name, dc->name, *unitp); 1217 return (EEXIST); 1218 } 1219 } else { 1220 /* Unwired device, find the next available slot for it */ 1221 unit = 0; 1222 for (unit = 0; unit < INT_MAX; unit++) { 1223 /* If this device slot is already in use, skip it. */ 1224 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1225 continue; 1226 1227 /* If there is an "at" hint for a unit then skip it. */ 1228 if (resource_string_value(dc->name, unit, "at", &s) == 1229 0) 1230 continue; 1231 1232 break; 1233 } 1234 } 1235 1236 /* 1237 * Unit numbers must be in the range [0, INT_MAX), so exclude INT_MAX as 1238 * too large. We constrain maxunit below to be <= INT_MAX. This means we 1239 * can treat unit and maxunit as normal integers with normal math 1240 * everywhere and we only have to flag INT_MAX as invalid. 1241 */ 1242 if (unit == INT_MAX) 1243 return (EINVAL); 1244 1245 /* 1246 * We've selected a unit beyond the length of the table, so let's extend 1247 * the table to make room for all units up to and including this one. 1248 */ 1249 if (unit >= dc->maxunit) { 1250 int newsize; 1251 1252 newsize = unit + 1; 1253 dc->devices = reallocf(dc->devices, 1254 newsize * sizeof(*dc->devices), M_BUS, M_WAITOK); 1255 memset(dc->devices + dc->maxunit, 0, 1256 sizeof(device_t) * (newsize - dc->maxunit)); 1257 dc->maxunit = newsize; 1258 } 1259 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1260 1261 *unitp = unit; 1262 return (0); 1263 } 1264 1265 /** 1266 * @internal 1267 * @brief Add a device to a devclass 1268 * 1269 * A unit number is allocated for the device (using the device's 1270 * preferred unit number if any) and the device is registered in the 1271 * devclass. This allows the device to be looked up by its unit 1272 * number, e.g. by decoding a dev_t minor number. 1273 * 1274 * @param dc the devclass to add to 1275 * @param dev the device to add 1276 * 1277 * @retval 0 success 1278 * @retval EEXIST the requested unit number is already allocated 1279 * @retval ENOMEM memory allocation failure 1280 * @retval EINVAL Unit number invalid or too many units 1281 */ 1282 static int 1283 devclass_add_device(devclass_t dc, device_t dev) 1284 { 1285 int buflen, error; 1286 1287 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1288 1289 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1290 if (buflen < 0) 1291 return (ENOMEM); 1292 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1293 if (!dev->nameunit) 1294 return (ENOMEM); 1295 1296 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1297 free(dev->nameunit, M_BUS); 1298 dev->nameunit = NULL; 1299 return (error); 1300 } 1301 dc->devices[dev->unit] = dev; 1302 dev->devclass = dc; 1303 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1304 1305 return (0); 1306 } 1307 1308 /** 1309 * @internal 1310 * @brief Delete a device from a devclass 1311 * 1312 * The device is removed from the devclass's device list and its unit 1313 * number is freed. 1314 1315 * @param dc the devclass to delete from 1316 * @param dev the device to delete 1317 * 1318 * @retval 0 success 1319 */ 1320 static int 1321 devclass_delete_device(devclass_t dc, device_t dev) 1322 { 1323 if (!dc || !dev) 1324 return (0); 1325 1326 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1327 1328 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1329 panic("devclass_delete_device: inconsistent device class"); 1330 dc->devices[dev->unit] = NULL; 1331 if (dev->flags & DF_WILDCARD) 1332 dev->unit = DEVICE_UNIT_ANY; 1333 dev->devclass = NULL; 1334 free(dev->nameunit, M_BUS); 1335 dev->nameunit = NULL; 1336 1337 return (0); 1338 } 1339 1340 /** 1341 * @internal 1342 * @brief Make a new device and add it as a child of @p parent 1343 * 1344 * @param parent the parent of the new device 1345 * @param name the devclass name of the new device or @c NULL 1346 * to leave the devclass unspecified 1347 * @parem unit the unit number of the new device of @c DEVICE_UNIT_ANY 1348 * to leave the unit number unspecified 1349 * 1350 * @returns the new device 1351 */ 1352 static device_t 1353 make_device(device_t parent, const char *name, int unit) 1354 { 1355 device_t dev; 1356 devclass_t dc; 1357 1358 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1359 1360 if (name) { 1361 dc = devclass_find_internal(name, NULL, TRUE); 1362 if (!dc) { 1363 printf("make_device: can't find device class %s\n", 1364 name); 1365 return (NULL); 1366 } 1367 } else { 1368 dc = NULL; 1369 } 1370 1371 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1372 if (!dev) 1373 return (NULL); 1374 1375 dev->parent = parent; 1376 TAILQ_INIT(&dev->children); 1377 kobj_init((kobj_t) dev, &null_class); 1378 dev->driver = NULL; 1379 dev->devclass = NULL; 1380 dev->unit = unit; 1381 dev->nameunit = NULL; 1382 dev->desc = NULL; 1383 dev->busy = 0; 1384 dev->devflags = 0; 1385 dev->flags = DF_ENABLED; 1386 dev->order = 0; 1387 if (unit == DEVICE_UNIT_ANY) 1388 dev->flags |= DF_WILDCARD; 1389 if (name) { 1390 dev->flags |= DF_FIXEDCLASS; 1391 if (devclass_add_device(dc, dev)) { 1392 kobj_delete((kobj_t) dev, M_BUS); 1393 return (NULL); 1394 } 1395 } 1396 if (parent != NULL && device_has_quiet_children(parent)) 1397 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1398 dev->ivars = NULL; 1399 dev->softc = NULL; 1400 LIST_INIT(&dev->props); 1401 1402 dev->state = DS_NOTPRESENT; 1403 1404 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1405 bus_data_generation_update(); 1406 1407 return (dev); 1408 } 1409 1410 /** 1411 * @internal 1412 * @brief Print a description of a device. 1413 */ 1414 static int 1415 device_print_child(device_t dev, device_t child) 1416 { 1417 int retval = 0; 1418 1419 if (device_is_alive(child)) 1420 retval += BUS_PRINT_CHILD(dev, child); 1421 else 1422 retval += device_printf(child, " not found\n"); 1423 1424 return (retval); 1425 } 1426 1427 /** 1428 * @brief Create a new device 1429 * 1430 * This creates a new device and adds it as a child of an existing 1431 * parent device. The new device will be added after the last existing 1432 * child with order zero. 1433 * 1434 * @param dev the device which will be the parent of the 1435 * new child device 1436 * @param name devclass name for new device or @c NULL if not 1437 * specified 1438 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not 1439 * specified 1440 * 1441 * @returns the new device 1442 */ 1443 device_t 1444 device_add_child(device_t dev, const char *name, int unit) 1445 { 1446 return (device_add_child_ordered(dev, 0, name, unit)); 1447 } 1448 1449 /** 1450 * @brief Create a new device 1451 * 1452 * This creates a new device and adds it as a child of an existing 1453 * parent device. The new device will be added after the last existing 1454 * child with the same order. 1455 * 1456 * @param dev the device which will be the parent of the 1457 * new child device 1458 * @param order a value which is used to partially sort the 1459 * children of @p dev - devices created using 1460 * lower values of @p order appear first in @p 1461 * dev's list of children 1462 * @param name devclass name for new device or @c NULL if not 1463 * specified 1464 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not 1465 * specified 1466 * 1467 * @returns the new device 1468 */ 1469 device_t 1470 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1471 { 1472 device_t child; 1473 device_t place; 1474 1475 PDEBUG(("%s at %s with order %u as unit %d", 1476 name, DEVICENAME(dev), order, unit)); 1477 KASSERT(name != NULL || unit == DEVICE_UNIT_ANY, 1478 ("child device with wildcard name and specific unit number")); 1479 1480 child = make_device(dev, name, unit); 1481 if (child == NULL) 1482 return (child); 1483 child->order = order; 1484 1485 TAILQ_FOREACH(place, &dev->children, link) { 1486 if (place->order > order) 1487 break; 1488 } 1489 1490 if (place) { 1491 /* 1492 * The device 'place' is the first device whose order is 1493 * greater than the new child. 1494 */ 1495 TAILQ_INSERT_BEFORE(place, child, link); 1496 } else { 1497 /* 1498 * The new child's order is greater or equal to the order of 1499 * any existing device. Add the child to the tail of the list. 1500 */ 1501 TAILQ_INSERT_TAIL(&dev->children, child, link); 1502 } 1503 1504 bus_data_generation_update(); 1505 return (child); 1506 } 1507 1508 /** 1509 * @brief Delete a device 1510 * 1511 * This function deletes a device along with all of its children. If 1512 * the device currently has a driver attached to it, the device is 1513 * detached first using device_detach(). 1514 * 1515 * @param dev the parent device 1516 * @param child the device to delete 1517 * 1518 * @retval 0 success 1519 * @retval non-zero a unit error code describing the error 1520 */ 1521 int 1522 device_delete_child(device_t dev, device_t child) 1523 { 1524 int error; 1525 device_t grandchild; 1526 1527 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1528 1529 /* 1530 * Detach child. Ideally this cleans up any grandchild 1531 * devices. 1532 */ 1533 if ((error = device_detach(child)) != 0) 1534 return (error); 1535 1536 /* Delete any grandchildren left after detach. */ 1537 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1538 error = device_delete_child(child, grandchild); 1539 if (error) 1540 return (error); 1541 } 1542 1543 device_destroy_props(dev); 1544 if (child->devclass) 1545 devclass_delete_device(child->devclass, child); 1546 if (child->parent) 1547 BUS_CHILD_DELETED(dev, child); 1548 TAILQ_REMOVE(&dev->children, child, link); 1549 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1550 kobj_delete((kobj_t) child, M_BUS); 1551 1552 bus_data_generation_update(); 1553 return (0); 1554 } 1555 1556 /** 1557 * @brief Delete all children devices of the given device, if any. 1558 * 1559 * This function deletes all children devices of the given device, if 1560 * any, using the device_delete_child() function for each device it 1561 * finds. If a child device cannot be deleted, this function will 1562 * return an error code. 1563 * 1564 * @param dev the parent device 1565 * 1566 * @retval 0 success 1567 * @retval non-zero a device would not detach 1568 */ 1569 int 1570 device_delete_children(device_t dev) 1571 { 1572 device_t child; 1573 int error; 1574 1575 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1576 1577 error = 0; 1578 1579 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1580 error = device_delete_child(dev, child); 1581 if (error) { 1582 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1583 break; 1584 } 1585 } 1586 return (error); 1587 } 1588 1589 /** 1590 * @brief Find a device given a unit number 1591 * 1592 * This is similar to devclass_get_devices() but only searches for 1593 * devices which have @p dev as a parent. 1594 * 1595 * @param dev the parent device to search 1596 * @param unit the unit number to search for. If the unit is 1597 * @c DEVICE_UNIT_ANY, return the first child of @p dev 1598 * which has name @p classname (that is, the one with the 1599 * lowest unit.) 1600 * 1601 * @returns the device with the given unit number or @c 1602 * NULL if there is no such device 1603 */ 1604 device_t 1605 device_find_child(device_t dev, const char *classname, int unit) 1606 { 1607 devclass_t dc; 1608 device_t child; 1609 1610 dc = devclass_find(classname); 1611 if (!dc) 1612 return (NULL); 1613 1614 if (unit != DEVICE_UNIT_ANY) { 1615 child = devclass_get_device(dc, unit); 1616 if (child && child->parent == dev) 1617 return (child); 1618 } else { 1619 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1620 child = devclass_get_device(dc, unit); 1621 if (child && child->parent == dev) 1622 return (child); 1623 } 1624 } 1625 return (NULL); 1626 } 1627 1628 /** 1629 * @internal 1630 */ 1631 static driverlink_t 1632 first_matching_driver(devclass_t dc, device_t dev) 1633 { 1634 if (dev->devclass) 1635 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1636 return (TAILQ_FIRST(&dc->drivers)); 1637 } 1638 1639 /** 1640 * @internal 1641 */ 1642 static driverlink_t 1643 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1644 { 1645 if (dev->devclass) { 1646 driverlink_t dl; 1647 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1648 if (!strcmp(dev->devclass->name, dl->driver->name)) 1649 return (dl); 1650 return (NULL); 1651 } 1652 return (TAILQ_NEXT(last, link)); 1653 } 1654 1655 /** 1656 * @internal 1657 */ 1658 int 1659 device_probe_child(device_t dev, device_t child) 1660 { 1661 devclass_t dc; 1662 driverlink_t best = NULL; 1663 driverlink_t dl; 1664 int result, pri = 0; 1665 /* We should preserve the devclass (or lack of) set by the bus. */ 1666 int hasclass = (child->devclass != NULL); 1667 1668 bus_topo_assert(); 1669 1670 dc = dev->devclass; 1671 if (!dc) 1672 panic("device_probe_child: parent device has no devclass"); 1673 1674 /* 1675 * If the state is already probed, then return. 1676 */ 1677 if (child->state == DS_ALIVE) 1678 return (0); 1679 1680 for (; dc; dc = dc->parent) { 1681 for (dl = first_matching_driver(dc, child); 1682 dl; 1683 dl = next_matching_driver(dc, child, dl)) { 1684 /* If this driver's pass is too high, then ignore it. */ 1685 if (dl->pass > bus_current_pass) 1686 continue; 1687 1688 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1689 result = device_set_driver(child, dl->driver); 1690 if (result == ENOMEM) 1691 return (result); 1692 else if (result != 0) 1693 continue; 1694 if (!hasclass) { 1695 if (device_set_devclass(child, 1696 dl->driver->name) != 0) { 1697 char const * devname = 1698 device_get_name(child); 1699 if (devname == NULL) 1700 devname = "(unknown)"; 1701 printf("driver bug: Unable to set " 1702 "devclass (class: %s " 1703 "devname: %s)\n", 1704 dl->driver->name, 1705 devname); 1706 (void)device_set_driver(child, NULL); 1707 continue; 1708 } 1709 } 1710 1711 /* Fetch any flags for the device before probing. */ 1712 resource_int_value(dl->driver->name, child->unit, 1713 "flags", &child->devflags); 1714 1715 result = DEVICE_PROBE(child); 1716 1717 /* 1718 * If probe returns 0, this is the driver that wins this 1719 * device. 1720 */ 1721 if (result == 0) { 1722 best = dl; 1723 pri = 0; 1724 goto exact_match; /* C doesn't have break 2 */ 1725 } 1726 1727 /* Reset flags and devclass before the next probe. */ 1728 child->devflags = 0; 1729 if (!hasclass) 1730 (void)device_set_devclass(child, NULL); 1731 1732 /* 1733 * Reset DF_QUIET in case this driver doesn't 1734 * end up as the best driver. 1735 */ 1736 device_verbose(child); 1737 1738 /* 1739 * Probes that return BUS_PROBE_NOWILDCARD or lower 1740 * only match on devices whose driver was explicitly 1741 * specified. 1742 */ 1743 if (result <= BUS_PROBE_NOWILDCARD && 1744 !(child->flags & DF_FIXEDCLASS)) { 1745 result = ENXIO; 1746 } 1747 1748 /* 1749 * The driver returned an error so it 1750 * certainly doesn't match. 1751 */ 1752 if (result > 0) { 1753 (void)device_set_driver(child, NULL); 1754 continue; 1755 } 1756 1757 /* 1758 * A priority lower than SUCCESS, remember the 1759 * best matching driver. Initialise the value 1760 * of pri for the first match. 1761 */ 1762 if (best == NULL || result > pri) { 1763 best = dl; 1764 pri = result; 1765 continue; 1766 } 1767 } 1768 } 1769 1770 if (best == NULL) 1771 return (ENXIO); 1772 1773 /* 1774 * If we found a driver, change state and initialise the devclass. 1775 * Set the winning driver, devclass, and flags. 1776 */ 1777 result = device_set_driver(child, best->driver); 1778 if (result != 0) 1779 return (result); 1780 if (!child->devclass) { 1781 result = device_set_devclass(child, best->driver->name); 1782 if (result != 0) { 1783 (void)device_set_driver(child, NULL); 1784 return (result); 1785 } 1786 } 1787 resource_int_value(best->driver->name, child->unit, 1788 "flags", &child->devflags); 1789 1790 /* 1791 * A bit bogus. Call the probe method again to make sure that we have 1792 * the right description for the device. 1793 */ 1794 result = DEVICE_PROBE(child); 1795 if (result > 0) { 1796 if (!hasclass) 1797 (void)device_set_devclass(child, NULL); 1798 (void)device_set_driver(child, NULL); 1799 return (result); 1800 } 1801 1802 exact_match: 1803 child->state = DS_ALIVE; 1804 bus_data_generation_update(); 1805 return (0); 1806 } 1807 1808 /** 1809 * @brief Return the parent of a device 1810 */ 1811 device_t 1812 device_get_parent(device_t dev) 1813 { 1814 return (dev->parent); 1815 } 1816 1817 /** 1818 * @brief Get a list of children of a device 1819 * 1820 * An array containing a list of all the children of the given device 1821 * is allocated and returned in @p *devlistp. The number of devices 1822 * in the array is returned in @p *devcountp. The caller should free 1823 * the array using @c free(p, M_TEMP). 1824 * 1825 * @param dev the device to examine 1826 * @param devlistp points at location for array pointer return 1827 * value 1828 * @param devcountp points at location for array size return value 1829 * 1830 * @retval 0 success 1831 * @retval ENOMEM the array allocation failed 1832 */ 1833 int 1834 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1835 { 1836 int count; 1837 device_t child; 1838 device_t *list; 1839 1840 count = 0; 1841 TAILQ_FOREACH(child, &dev->children, link) { 1842 count++; 1843 } 1844 if (count == 0) { 1845 *devlistp = NULL; 1846 *devcountp = 0; 1847 return (0); 1848 } 1849 1850 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1851 if (!list) 1852 return (ENOMEM); 1853 1854 count = 0; 1855 TAILQ_FOREACH(child, &dev->children, link) { 1856 list[count] = child; 1857 count++; 1858 } 1859 1860 *devlistp = list; 1861 *devcountp = count; 1862 1863 return (0); 1864 } 1865 1866 /** 1867 * @brief Return the current driver for the device or @c NULL if there 1868 * is no driver currently attached 1869 */ 1870 driver_t * 1871 device_get_driver(device_t dev) 1872 { 1873 return (dev->driver); 1874 } 1875 1876 /** 1877 * @brief Return the current devclass for the device or @c NULL if 1878 * there is none. 1879 */ 1880 devclass_t 1881 device_get_devclass(device_t dev) 1882 { 1883 return (dev->devclass); 1884 } 1885 1886 /** 1887 * @brief Return the name of the device's devclass or @c NULL if there 1888 * is none. 1889 */ 1890 const char * 1891 device_get_name(device_t dev) 1892 { 1893 if (dev != NULL && dev->devclass) 1894 return (devclass_get_name(dev->devclass)); 1895 return (NULL); 1896 } 1897 1898 /** 1899 * @brief Return a string containing the device's devclass name 1900 * followed by an ascii representation of the device's unit number 1901 * (e.g. @c "foo2"). 1902 */ 1903 const char * 1904 device_get_nameunit(device_t dev) 1905 { 1906 return (dev->nameunit); 1907 } 1908 1909 /** 1910 * @brief Return the device's unit number. 1911 */ 1912 int 1913 device_get_unit(device_t dev) 1914 { 1915 return (dev->unit); 1916 } 1917 1918 /** 1919 * @brief Return the device's description string 1920 */ 1921 const char * 1922 device_get_desc(device_t dev) 1923 { 1924 return (dev->desc); 1925 } 1926 1927 /** 1928 * @brief Return the device's flags 1929 */ 1930 uint32_t 1931 device_get_flags(device_t dev) 1932 { 1933 return (dev->devflags); 1934 } 1935 1936 struct sysctl_ctx_list * 1937 device_get_sysctl_ctx(device_t dev) 1938 { 1939 return (&dev->sysctl_ctx); 1940 } 1941 1942 struct sysctl_oid * 1943 device_get_sysctl_tree(device_t dev) 1944 { 1945 return (dev->sysctl_tree); 1946 } 1947 1948 /** 1949 * @brief Print the name of the device followed by a colon and a space 1950 * 1951 * @returns the number of characters printed 1952 */ 1953 int 1954 device_print_prettyname(device_t dev) 1955 { 1956 const char *name = device_get_name(dev); 1957 1958 if (name == NULL) 1959 return (printf("unknown: ")); 1960 return (printf("%s%d: ", name, device_get_unit(dev))); 1961 } 1962 1963 /** 1964 * @brief Print the name of the device followed by a colon, a space 1965 * and the result of calling vprintf() with the value of @p fmt and 1966 * the following arguments. 1967 * 1968 * @returns the number of characters printed 1969 */ 1970 int 1971 device_printf(device_t dev, const char * fmt, ...) 1972 { 1973 char buf[128]; 1974 struct sbuf sb; 1975 const char *name; 1976 va_list ap; 1977 size_t retval; 1978 1979 retval = 0; 1980 1981 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1982 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 1983 1984 name = device_get_name(dev); 1985 1986 if (name == NULL) 1987 sbuf_cat(&sb, "unknown: "); 1988 else 1989 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 1990 1991 va_start(ap, fmt); 1992 sbuf_vprintf(&sb, fmt, ap); 1993 va_end(ap); 1994 1995 sbuf_finish(&sb); 1996 sbuf_delete(&sb); 1997 1998 return (retval); 1999 } 2000 2001 /** 2002 * @brief Print the name of the device followed by a colon, a space 2003 * and the result of calling log() with the value of @p fmt and 2004 * the following arguments. 2005 * 2006 * @returns the number of characters printed 2007 */ 2008 int 2009 device_log(device_t dev, int pri, const char * fmt, ...) 2010 { 2011 char buf[128]; 2012 struct sbuf sb; 2013 const char *name; 2014 va_list ap; 2015 size_t retval; 2016 2017 retval = 0; 2018 2019 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2020 2021 name = device_get_name(dev); 2022 2023 if (name == NULL) 2024 sbuf_cat(&sb, "unknown: "); 2025 else 2026 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2027 2028 va_start(ap, fmt); 2029 sbuf_vprintf(&sb, fmt, ap); 2030 va_end(ap); 2031 2032 sbuf_finish(&sb); 2033 2034 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb)); 2035 retval = sbuf_len(&sb); 2036 2037 sbuf_delete(&sb); 2038 2039 return (retval); 2040 } 2041 2042 /** 2043 * @internal 2044 */ 2045 static void 2046 device_set_desc_internal(device_t dev, const char *desc, bool allocated) 2047 { 2048 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2049 free(dev->desc, M_BUS); 2050 dev->flags &= ~DF_DESCMALLOCED; 2051 dev->desc = NULL; 2052 } 2053 2054 if (allocated && desc) 2055 dev->flags |= DF_DESCMALLOCED; 2056 dev->desc = __DECONST(char *, desc); 2057 2058 bus_data_generation_update(); 2059 } 2060 2061 /** 2062 * @brief Set the device's description 2063 * 2064 * The value of @c desc should be a string constant that will not 2065 * change (at least until the description is changed in a subsequent 2066 * call to device_set_desc() or device_set_desc_copy()). 2067 */ 2068 void 2069 device_set_desc(device_t dev, const char *desc) 2070 { 2071 device_set_desc_internal(dev, desc, false); 2072 } 2073 2074 /** 2075 * @brief Set the device's description 2076 * 2077 * A printf-like version of device_set_desc(). 2078 */ 2079 void 2080 device_set_descf(device_t dev, const char *fmt, ...) 2081 { 2082 va_list ap; 2083 char *buf = NULL; 2084 2085 va_start(ap, fmt); 2086 vasprintf(&buf, M_BUS, fmt, ap); 2087 va_end(ap); 2088 device_set_desc_internal(dev, buf, true); 2089 } 2090 2091 /** 2092 * @brief Set the device's description 2093 * 2094 * The string pointed to by @c desc is copied. Use this function if 2095 * the device description is generated, (e.g. with sprintf()). 2096 */ 2097 void 2098 device_set_desc_copy(device_t dev, const char *desc) 2099 { 2100 char *buf; 2101 2102 buf = strdup_flags(desc, M_BUS, M_NOWAIT); 2103 device_set_desc_internal(dev, buf, true); 2104 } 2105 2106 /** 2107 * @brief Set the device's flags 2108 */ 2109 void 2110 device_set_flags(device_t dev, uint32_t flags) 2111 { 2112 dev->devflags = flags; 2113 } 2114 2115 /** 2116 * @brief Return the device's softc field 2117 * 2118 * The softc is allocated and zeroed when a driver is attached, based 2119 * on the size field of the driver. 2120 */ 2121 void * 2122 device_get_softc(device_t dev) 2123 { 2124 return (dev->softc); 2125 } 2126 2127 /** 2128 * @brief Set the device's softc field 2129 * 2130 * Most drivers do not need to use this since the softc is allocated 2131 * automatically when the driver is attached. 2132 */ 2133 void 2134 device_set_softc(device_t dev, void *softc) 2135 { 2136 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2137 free(dev->softc, M_BUS_SC); 2138 dev->softc = softc; 2139 if (dev->softc) 2140 dev->flags |= DF_EXTERNALSOFTC; 2141 else 2142 dev->flags &= ~DF_EXTERNALSOFTC; 2143 } 2144 2145 /** 2146 * @brief Free claimed softc 2147 * 2148 * Most drivers do not need to use this since the softc is freed 2149 * automatically when the driver is detached. 2150 */ 2151 void 2152 device_free_softc(void *softc) 2153 { 2154 free(softc, M_BUS_SC); 2155 } 2156 2157 /** 2158 * @brief Claim softc 2159 * 2160 * This function can be used to let the driver free the automatically 2161 * allocated softc using "device_free_softc()". This function is 2162 * useful when the driver is refcounting the softc and the softc 2163 * cannot be freed when the "device_detach" method is called. 2164 */ 2165 void 2166 device_claim_softc(device_t dev) 2167 { 2168 if (dev->softc) 2169 dev->flags |= DF_EXTERNALSOFTC; 2170 else 2171 dev->flags &= ~DF_EXTERNALSOFTC; 2172 } 2173 2174 /** 2175 * @brief Get the device's ivars field 2176 * 2177 * The ivars field is used by the parent device to store per-device 2178 * state (e.g. the physical location of the device or a list of 2179 * resources). 2180 */ 2181 void * 2182 device_get_ivars(device_t dev) 2183 { 2184 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2185 return (dev->ivars); 2186 } 2187 2188 /** 2189 * @brief Set the device's ivars field 2190 */ 2191 void 2192 device_set_ivars(device_t dev, void * ivars) 2193 { 2194 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2195 dev->ivars = ivars; 2196 } 2197 2198 /** 2199 * @brief Return the device's state 2200 */ 2201 device_state_t 2202 device_get_state(device_t dev) 2203 { 2204 return (dev->state); 2205 } 2206 2207 /** 2208 * @brief Set the DF_ENABLED flag for the device 2209 */ 2210 void 2211 device_enable(device_t dev) 2212 { 2213 dev->flags |= DF_ENABLED; 2214 } 2215 2216 /** 2217 * @brief Clear the DF_ENABLED flag for the device 2218 */ 2219 void 2220 device_disable(device_t dev) 2221 { 2222 dev->flags &= ~DF_ENABLED; 2223 } 2224 2225 /** 2226 * @brief Increment the busy counter for the device 2227 */ 2228 void 2229 device_busy(device_t dev) 2230 { 2231 2232 /* 2233 * Mark the device as busy, recursively up the tree if this busy count 2234 * goes 0->1. 2235 */ 2236 if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL) 2237 device_busy(dev->parent); 2238 } 2239 2240 /** 2241 * @brief Decrement the busy counter for the device 2242 */ 2243 void 2244 device_unbusy(device_t dev) 2245 { 2246 2247 /* 2248 * Mark the device as unbsy, recursively if this is the last busy count. 2249 */ 2250 if (refcount_release(&dev->busy) && dev->parent != NULL) 2251 device_unbusy(dev->parent); 2252 } 2253 2254 /** 2255 * @brief Set the DF_QUIET flag for the device 2256 */ 2257 void 2258 device_quiet(device_t dev) 2259 { 2260 dev->flags |= DF_QUIET; 2261 } 2262 2263 /** 2264 * @brief Set the DF_QUIET_CHILDREN flag for the device 2265 */ 2266 void 2267 device_quiet_children(device_t dev) 2268 { 2269 dev->flags |= DF_QUIET_CHILDREN; 2270 } 2271 2272 /** 2273 * @brief Clear the DF_QUIET flag for the device 2274 */ 2275 void 2276 device_verbose(device_t dev) 2277 { 2278 dev->flags &= ~DF_QUIET; 2279 } 2280 2281 ssize_t 2282 device_get_property(device_t dev, const char *prop, void *val, size_t sz, 2283 device_property_type_t type) 2284 { 2285 device_t bus = device_get_parent(dev); 2286 2287 switch (type) { 2288 case DEVICE_PROP_ANY: 2289 case DEVICE_PROP_BUFFER: 2290 case DEVICE_PROP_HANDLE: /* Size checks done in implementation. */ 2291 break; 2292 case DEVICE_PROP_UINT32: 2293 if (sz % 4 != 0) 2294 return (-1); 2295 break; 2296 case DEVICE_PROP_UINT64: 2297 if (sz % 8 != 0) 2298 return (-1); 2299 break; 2300 default: 2301 return (-1); 2302 } 2303 2304 return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type)); 2305 } 2306 2307 bool 2308 device_has_property(device_t dev, const char *prop) 2309 { 2310 return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0); 2311 } 2312 2313 /** 2314 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2315 */ 2316 int 2317 device_has_quiet_children(device_t dev) 2318 { 2319 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2320 } 2321 2322 /** 2323 * @brief Return non-zero if the DF_QUIET flag is set on the device 2324 */ 2325 int 2326 device_is_quiet(device_t dev) 2327 { 2328 return ((dev->flags & DF_QUIET) != 0); 2329 } 2330 2331 /** 2332 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2333 */ 2334 int 2335 device_is_enabled(device_t dev) 2336 { 2337 return ((dev->flags & DF_ENABLED) != 0); 2338 } 2339 2340 /** 2341 * @brief Return non-zero if the device was successfully probed 2342 */ 2343 int 2344 device_is_alive(device_t dev) 2345 { 2346 return (dev->state >= DS_ALIVE); 2347 } 2348 2349 /** 2350 * @brief Return non-zero if the device currently has a driver 2351 * attached to it 2352 */ 2353 int 2354 device_is_attached(device_t dev) 2355 { 2356 return (dev->state >= DS_ATTACHED); 2357 } 2358 2359 /** 2360 * @brief Return non-zero if the device is currently suspended. 2361 */ 2362 int 2363 device_is_suspended(device_t dev) 2364 { 2365 return ((dev->flags & DF_SUSPENDED) != 0); 2366 } 2367 2368 /** 2369 * @brief Set the devclass of a device 2370 * @see devclass_add_device(). 2371 */ 2372 int 2373 device_set_devclass(device_t dev, const char *classname) 2374 { 2375 devclass_t dc; 2376 int error; 2377 2378 if (!classname) { 2379 if (dev->devclass) 2380 devclass_delete_device(dev->devclass, dev); 2381 return (0); 2382 } 2383 2384 if (dev->devclass) { 2385 printf("device_set_devclass: device class already set\n"); 2386 return (EINVAL); 2387 } 2388 2389 dc = devclass_find_internal(classname, NULL, TRUE); 2390 if (!dc) 2391 return (ENOMEM); 2392 2393 error = devclass_add_device(dc, dev); 2394 2395 bus_data_generation_update(); 2396 return (error); 2397 } 2398 2399 /** 2400 * @brief Set the devclass of a device and mark the devclass fixed. 2401 * @see device_set_devclass() 2402 */ 2403 int 2404 device_set_devclass_fixed(device_t dev, const char *classname) 2405 { 2406 int error; 2407 2408 if (classname == NULL) 2409 return (EINVAL); 2410 2411 error = device_set_devclass(dev, classname); 2412 if (error) 2413 return (error); 2414 dev->flags |= DF_FIXEDCLASS; 2415 return (0); 2416 } 2417 2418 /** 2419 * @brief Query the device to determine if it's of a fixed devclass 2420 * @see device_set_devclass_fixed() 2421 */ 2422 bool 2423 device_is_devclass_fixed(device_t dev) 2424 { 2425 return ((dev->flags & DF_FIXEDCLASS) != 0); 2426 } 2427 2428 /** 2429 * @brief Set the driver of a device 2430 * 2431 * @retval 0 success 2432 * @retval EBUSY the device already has a driver attached 2433 * @retval ENOMEM a memory allocation failure occurred 2434 */ 2435 int 2436 device_set_driver(device_t dev, driver_t *driver) 2437 { 2438 int domain; 2439 struct domainset *policy; 2440 2441 if (dev->state >= DS_ATTACHED) 2442 return (EBUSY); 2443 2444 if (dev->driver == driver) 2445 return (0); 2446 2447 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2448 free(dev->softc, M_BUS_SC); 2449 dev->softc = NULL; 2450 } 2451 device_set_desc(dev, NULL); 2452 kobj_delete((kobj_t) dev, NULL); 2453 dev->driver = driver; 2454 if (driver) { 2455 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2456 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2457 if (bus_get_domain(dev, &domain) == 0) 2458 policy = DOMAINSET_PREF(domain); 2459 else 2460 policy = DOMAINSET_RR(); 2461 dev->softc = malloc_domainset(driver->size, M_BUS_SC, 2462 policy, M_NOWAIT | M_ZERO); 2463 if (!dev->softc) { 2464 kobj_delete((kobj_t) dev, NULL); 2465 kobj_init((kobj_t) dev, &null_class); 2466 dev->driver = NULL; 2467 return (ENOMEM); 2468 } 2469 } 2470 } else { 2471 kobj_init((kobj_t) dev, &null_class); 2472 } 2473 2474 bus_data_generation_update(); 2475 return (0); 2476 } 2477 2478 /** 2479 * @brief Probe a device, and return this status. 2480 * 2481 * This function is the core of the device autoconfiguration 2482 * system. Its purpose is to select a suitable driver for a device and 2483 * then call that driver to initialise the hardware appropriately. The 2484 * driver is selected by calling the DEVICE_PROBE() method of a set of 2485 * candidate drivers and then choosing the driver which returned the 2486 * best value. This driver is then attached to the device using 2487 * device_attach(). 2488 * 2489 * The set of suitable drivers is taken from the list of drivers in 2490 * the parent device's devclass. If the device was originally created 2491 * with a specific class name (see device_add_child()), only drivers 2492 * with that name are probed, otherwise all drivers in the devclass 2493 * are probed. If no drivers return successful probe values in the 2494 * parent devclass, the search continues in the parent of that 2495 * devclass (see devclass_get_parent()) if any. 2496 * 2497 * @param dev the device to initialise 2498 * 2499 * @retval 0 success 2500 * @retval ENXIO no driver was found 2501 * @retval ENOMEM memory allocation failure 2502 * @retval non-zero some other unix error code 2503 * @retval -1 Device already attached 2504 */ 2505 int 2506 device_probe(device_t dev) 2507 { 2508 int error; 2509 2510 bus_topo_assert(); 2511 2512 if (dev->state >= DS_ALIVE) 2513 return (-1); 2514 2515 if (!(dev->flags & DF_ENABLED)) { 2516 if (bootverbose && device_get_name(dev) != NULL) { 2517 device_print_prettyname(dev); 2518 printf("not probed (disabled)\n"); 2519 } 2520 return (-1); 2521 } 2522 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2523 if (bus_current_pass == BUS_PASS_DEFAULT && 2524 !(dev->flags & DF_DONENOMATCH)) { 2525 device_handle_nomatch(dev); 2526 } 2527 return (error); 2528 } 2529 return (0); 2530 } 2531 2532 /** 2533 * @brief Probe a device and attach a driver if possible 2534 * 2535 * calls device_probe() and attaches if that was successful. 2536 */ 2537 int 2538 device_probe_and_attach(device_t dev) 2539 { 2540 int error; 2541 2542 bus_topo_assert(); 2543 2544 error = device_probe(dev); 2545 if (error == -1) 2546 return (0); 2547 else if (error != 0) 2548 return (error); 2549 2550 return (device_attach(dev)); 2551 } 2552 2553 /** 2554 * @brief Attach a device driver to a device 2555 * 2556 * This function is a wrapper around the DEVICE_ATTACH() driver 2557 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2558 * device's sysctl tree, optionally prints a description of the device 2559 * and queues a notification event for user-based device management 2560 * services. 2561 * 2562 * Normally this function is only called internally from 2563 * device_probe_and_attach(). 2564 * 2565 * @param dev the device to initialise 2566 * 2567 * @retval 0 success 2568 * @retval ENXIO no driver was found 2569 * @retval ENOMEM memory allocation failure 2570 * @retval non-zero some other unix error code 2571 */ 2572 int 2573 device_attach(device_t dev) 2574 { 2575 uint64_t attachtime; 2576 uint16_t attachentropy; 2577 int error; 2578 2579 if (resource_disabled(dev->driver->name, dev->unit)) { 2580 device_disable(dev); 2581 if (bootverbose) 2582 device_printf(dev, "disabled via hints entry\n"); 2583 return (ENXIO); 2584 } 2585 2586 KASSERT(IS_DEFAULT_VNET(TD_TO_VNET(curthread)), 2587 ("device_attach: curthread is not in default vnet")); 2588 CURVNET_SET_QUIET(TD_TO_VNET(curthread)); 2589 2590 device_sysctl_init(dev); 2591 if (!device_is_quiet(dev)) 2592 device_print_child(dev->parent, dev); 2593 attachtime = get_cyclecount(); 2594 dev->state = DS_ATTACHING; 2595 if ((error = DEVICE_ATTACH(dev)) != 0) { 2596 printf("device_attach: %s%d attach returned %d\n", 2597 dev->driver->name, dev->unit, error); 2598 BUS_CHILD_DETACHED(dev->parent, dev); 2599 if (disable_failed_devs) { 2600 /* 2601 * When the user has asked to disable failed devices, we 2602 * directly disable the device, but leave it in the 2603 * attaching state. It will not try to probe/attach the 2604 * device further. This leaves the device numbering 2605 * intact for other similar devices in the system. It 2606 * can be removed from this state with devctl. 2607 */ 2608 device_disable(dev); 2609 } else { 2610 /* 2611 * Otherwise, when attach fails, tear down the state 2612 * around that so we can retry when, for example, new 2613 * drivers are loaded. 2614 */ 2615 if (!(dev->flags & DF_FIXEDCLASS)) 2616 devclass_delete_device(dev->devclass, dev); 2617 (void)device_set_driver(dev, NULL); 2618 device_sysctl_fini(dev); 2619 KASSERT(dev->busy == 0, ("attach failed but busy")); 2620 dev->state = DS_NOTPRESENT; 2621 } 2622 CURVNET_RESTORE(); 2623 return (error); 2624 } 2625 CURVNET_RESTORE(); 2626 dev->flags |= DF_ATTACHED_ONCE; 2627 /* 2628 * We only need the low bits of this time, but ranges from tens to thousands 2629 * have been seen, so keep 2 bytes' worth. 2630 */ 2631 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 2632 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 2633 device_sysctl_update(dev); 2634 dev->state = DS_ATTACHED; 2635 dev->flags &= ~DF_DONENOMATCH; 2636 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 2637 return (0); 2638 } 2639 2640 /** 2641 * @brief Detach a driver from a device 2642 * 2643 * This function is a wrapper around the DEVICE_DETACH() driver 2644 * method. If the call to DEVICE_DETACH() succeeds, it calls 2645 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2646 * notification event for user-based device management services and 2647 * cleans up the device's sysctl tree. 2648 * 2649 * @param dev the device to un-initialise 2650 * 2651 * @retval 0 success 2652 * @retval ENXIO no driver was found 2653 * @retval ENOMEM memory allocation failure 2654 * @retval non-zero some other unix error code 2655 */ 2656 int 2657 device_detach(device_t dev) 2658 { 2659 int error; 2660 2661 bus_topo_assert(); 2662 2663 PDEBUG(("%s", DEVICENAME(dev))); 2664 if (dev->busy > 0) 2665 return (EBUSY); 2666 if (dev->state == DS_ATTACHING) { 2667 device_printf(dev, "device in attaching state! Deferring detach.\n"); 2668 return (EBUSY); 2669 } 2670 if (dev->state != DS_ATTACHED) 2671 return (0); 2672 2673 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 2674 if ((error = DEVICE_DETACH(dev)) != 0) { 2675 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2676 EVHDEV_DETACH_FAILED); 2677 return (error); 2678 } else { 2679 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2680 EVHDEV_DETACH_COMPLETE); 2681 } 2682 if (!device_is_quiet(dev)) 2683 device_printf(dev, "detached\n"); 2684 if (dev->parent) 2685 BUS_CHILD_DETACHED(dev->parent, dev); 2686 2687 if (!(dev->flags & DF_FIXEDCLASS)) 2688 devclass_delete_device(dev->devclass, dev); 2689 2690 device_verbose(dev); 2691 dev->state = DS_NOTPRESENT; 2692 (void)device_set_driver(dev, NULL); 2693 device_sysctl_fini(dev); 2694 2695 return (0); 2696 } 2697 2698 /** 2699 * @brief Tells a driver to quiesce itself. 2700 * 2701 * This function is a wrapper around the DEVICE_QUIESCE() driver 2702 * method. If the call to DEVICE_QUIESCE() succeeds. 2703 * 2704 * @param dev the device to quiesce 2705 * 2706 * @retval 0 success 2707 * @retval ENXIO no driver was found 2708 * @retval ENOMEM memory allocation failure 2709 * @retval non-zero some other unix error code 2710 */ 2711 int 2712 device_quiesce(device_t dev) 2713 { 2714 PDEBUG(("%s", DEVICENAME(dev))); 2715 if (dev->busy > 0) 2716 return (EBUSY); 2717 if (dev->state != DS_ATTACHED) 2718 return (0); 2719 2720 return (DEVICE_QUIESCE(dev)); 2721 } 2722 2723 /** 2724 * @brief Notify a device of system shutdown 2725 * 2726 * This function calls the DEVICE_SHUTDOWN() driver method if the 2727 * device currently has an attached driver. 2728 * 2729 * @returns the value returned by DEVICE_SHUTDOWN() 2730 */ 2731 int 2732 device_shutdown(device_t dev) 2733 { 2734 if (dev->state < DS_ATTACHED) 2735 return (0); 2736 return (DEVICE_SHUTDOWN(dev)); 2737 } 2738 2739 /** 2740 * @brief Set the unit number of a device 2741 * 2742 * This function can be used to override the unit number used for a 2743 * device (e.g. to wire a device to a pre-configured unit number). 2744 */ 2745 int 2746 device_set_unit(device_t dev, int unit) 2747 { 2748 devclass_t dc; 2749 int err; 2750 2751 if (unit == dev->unit) 2752 return (0); 2753 dc = device_get_devclass(dev); 2754 if (unit < dc->maxunit && dc->devices[unit]) 2755 return (EBUSY); 2756 err = devclass_delete_device(dc, dev); 2757 if (err) 2758 return (err); 2759 dev->unit = unit; 2760 err = devclass_add_device(dc, dev); 2761 if (err) 2762 return (err); 2763 2764 bus_data_generation_update(); 2765 return (0); 2766 } 2767 2768 /*======================================*/ 2769 /* 2770 * Some useful method implementations to make life easier for bus drivers. 2771 */ 2772 2773 /** 2774 * @brief Initialize a resource mapping request 2775 * 2776 * This is the internal implementation of the public API 2777 * resource_init_map_request. Callers may be using a different layout 2778 * of struct resource_map_request than the kernel, so callers pass in 2779 * the size of the structure they are using to identify the structure 2780 * layout. 2781 */ 2782 void 2783 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 2784 { 2785 bzero(args, sz); 2786 args->size = sz; 2787 args->memattr = VM_MEMATTR_DEVICE; 2788 } 2789 2790 /** 2791 * @brief Validate a resource mapping request 2792 * 2793 * Translate a device driver's mapping request (@p in) to a struct 2794 * resource_map_request using the current structure layout (@p out). 2795 * In addition, validate the offset and length from the mapping 2796 * request against the bounds of the resource @p r. If the offset or 2797 * length are invalid, fail with EINVAL. If the offset and length are 2798 * valid, the absolute starting address of the requested mapping is 2799 * returned in @p startp and the length of the requested mapping is 2800 * returned in @p lengthp. 2801 */ 2802 int 2803 resource_validate_map_request(struct resource *r, 2804 struct resource_map_request *in, struct resource_map_request *out, 2805 rman_res_t *startp, rman_res_t *lengthp) 2806 { 2807 rman_res_t end, length, start; 2808 2809 /* 2810 * This assumes that any callers of this function are compiled 2811 * into the kernel and use the same version of the structure 2812 * as this file. 2813 */ 2814 MPASS(out->size == sizeof(struct resource_map_request)); 2815 2816 if (in != NULL) 2817 bcopy(in, out, imin(in->size, out->size)); 2818 start = rman_get_start(r) + out->offset; 2819 if (out->length == 0) 2820 length = rman_get_size(r); 2821 else 2822 length = out->length; 2823 end = start + length - 1; 2824 if (start > rman_get_end(r) || start < rman_get_start(r)) 2825 return (EINVAL); 2826 if (end > rman_get_end(r) || end < start) 2827 return (EINVAL); 2828 *lengthp = length; 2829 *startp = start; 2830 return (0); 2831 } 2832 2833 /** 2834 * @brief Initialise a resource list. 2835 * 2836 * @param rl the resource list to initialise 2837 */ 2838 void 2839 resource_list_init(struct resource_list *rl) 2840 { 2841 STAILQ_INIT(rl); 2842 } 2843 2844 /** 2845 * @brief Reclaim memory used by a resource list. 2846 * 2847 * This function frees the memory for all resource entries on the list 2848 * (if any). 2849 * 2850 * @param rl the resource list to free 2851 */ 2852 void 2853 resource_list_free(struct resource_list *rl) 2854 { 2855 struct resource_list_entry *rle; 2856 2857 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2858 if (rle->res) 2859 panic("resource_list_free: resource entry is busy"); 2860 STAILQ_REMOVE_HEAD(rl, link); 2861 free(rle, M_BUS); 2862 } 2863 } 2864 2865 /** 2866 * @brief Add a resource entry. 2867 * 2868 * This function adds a resource entry using the given @p type, @p 2869 * start, @p end and @p count values. A rid value is chosen by 2870 * searching sequentially for the first unused rid starting at zero. 2871 * 2872 * @param rl the resource list to edit 2873 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2874 * @param start the start address of the resource 2875 * @param end the end address of the resource 2876 * @param count XXX end-start+1 2877 */ 2878 int 2879 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 2880 rman_res_t end, rman_res_t count) 2881 { 2882 int rid; 2883 2884 rid = 0; 2885 while (resource_list_find(rl, type, rid) != NULL) 2886 rid++; 2887 resource_list_add(rl, type, rid, start, end, count); 2888 return (rid); 2889 } 2890 2891 /** 2892 * @brief Add or modify a resource entry. 2893 * 2894 * If an existing entry exists with the same type and rid, it will be 2895 * modified using the given values of @p start, @p end and @p 2896 * count. If no entry exists, a new one will be created using the 2897 * given values. The resource list entry that matches is then returned. 2898 * 2899 * @param rl the resource list to edit 2900 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2901 * @param rid the resource identifier 2902 * @param start the start address of the resource 2903 * @param end the end address of the resource 2904 * @param count XXX end-start+1 2905 */ 2906 struct resource_list_entry * 2907 resource_list_add(struct resource_list *rl, int type, int rid, 2908 rman_res_t start, rman_res_t end, rman_res_t count) 2909 { 2910 struct resource_list_entry *rle; 2911 2912 rle = resource_list_find(rl, type, rid); 2913 if (!rle) { 2914 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2915 M_NOWAIT); 2916 if (!rle) 2917 panic("resource_list_add: can't record entry"); 2918 STAILQ_INSERT_TAIL(rl, rle, link); 2919 rle->type = type; 2920 rle->rid = rid; 2921 rle->res = NULL; 2922 rle->flags = 0; 2923 } 2924 2925 if (rle->res) 2926 panic("resource_list_add: resource entry is busy"); 2927 2928 rle->start = start; 2929 rle->end = end; 2930 rle->count = count; 2931 return (rle); 2932 } 2933 2934 /** 2935 * @brief Determine if a resource entry is busy. 2936 * 2937 * Returns true if a resource entry is busy meaning that it has an 2938 * associated resource that is not an unallocated "reserved" resource. 2939 * 2940 * @param rl the resource list to search 2941 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2942 * @param rid the resource identifier 2943 * 2944 * @returns Non-zero if the entry is busy, zero otherwise. 2945 */ 2946 int 2947 resource_list_busy(struct resource_list *rl, int type, int rid) 2948 { 2949 struct resource_list_entry *rle; 2950 2951 rle = resource_list_find(rl, type, rid); 2952 if (rle == NULL || rle->res == NULL) 2953 return (0); 2954 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 2955 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 2956 ("reserved resource is active")); 2957 return (0); 2958 } 2959 return (1); 2960 } 2961 2962 /** 2963 * @brief Determine if a resource entry is reserved. 2964 * 2965 * Returns true if a resource entry is reserved meaning that it has an 2966 * associated "reserved" resource. The resource can either be 2967 * allocated or unallocated. 2968 * 2969 * @param rl the resource list to search 2970 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2971 * @param rid the resource identifier 2972 * 2973 * @returns Non-zero if the entry is reserved, zero otherwise. 2974 */ 2975 int 2976 resource_list_reserved(struct resource_list *rl, int type, int rid) 2977 { 2978 struct resource_list_entry *rle; 2979 2980 rle = resource_list_find(rl, type, rid); 2981 if (rle != NULL && rle->flags & RLE_RESERVED) 2982 return (1); 2983 return (0); 2984 } 2985 2986 /** 2987 * @brief Find a resource entry by type and rid. 2988 * 2989 * @param rl the resource list to search 2990 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2991 * @param rid the resource identifier 2992 * 2993 * @returns the resource entry pointer or NULL if there is no such 2994 * entry. 2995 */ 2996 struct resource_list_entry * 2997 resource_list_find(struct resource_list *rl, int type, int rid) 2998 { 2999 struct resource_list_entry *rle; 3000 3001 STAILQ_FOREACH(rle, rl, link) { 3002 if (rle->type == type && rle->rid == rid) 3003 return (rle); 3004 } 3005 return (NULL); 3006 } 3007 3008 /** 3009 * @brief Delete a resource entry. 3010 * 3011 * @param rl the resource list to edit 3012 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3013 * @param rid the resource identifier 3014 */ 3015 void 3016 resource_list_delete(struct resource_list *rl, int type, int rid) 3017 { 3018 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3019 3020 if (rle) { 3021 if (rle->res != NULL) 3022 panic("resource_list_delete: resource has not been released"); 3023 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3024 free(rle, M_BUS); 3025 } 3026 } 3027 3028 /** 3029 * @brief Allocate a reserved resource 3030 * 3031 * This can be used by buses to force the allocation of resources 3032 * that are always active in the system even if they are not allocated 3033 * by a driver (e.g. PCI BARs). This function is usually called when 3034 * adding a new child to the bus. The resource is allocated from the 3035 * parent bus when it is reserved. The resource list entry is marked 3036 * with RLE_RESERVED to note that it is a reserved resource. 3037 * 3038 * Subsequent attempts to allocate the resource with 3039 * resource_list_alloc() will succeed the first time and will set 3040 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3041 * resource that has been allocated is released with 3042 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3043 * the actual resource remains allocated. The resource can be released to 3044 * the parent bus by calling resource_list_unreserve(). 3045 * 3046 * @param rl the resource list to allocate from 3047 * @param bus the parent device of @p child 3048 * @param child the device for which the resource is being reserved 3049 * @param type the type of resource to allocate 3050 * @param rid a pointer to the resource identifier 3051 * @param start hint at the start of the resource range - pass 3052 * @c 0 for any start address 3053 * @param end hint at the end of the resource range - pass 3054 * @c ~0 for any end address 3055 * @param count hint at the size of range required - pass @c 1 3056 * for any size 3057 * @param flags any extra flags to control the resource 3058 * allocation - see @c RF_XXX flags in 3059 * <sys/rman.h> for details 3060 * 3061 * @returns the resource which was allocated or @c NULL if no 3062 * resource could be allocated 3063 */ 3064 struct resource * 3065 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3066 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3067 { 3068 struct resource_list_entry *rle = NULL; 3069 int passthrough = (device_get_parent(child) != bus); 3070 struct resource *r; 3071 3072 if (passthrough) 3073 panic( 3074 "resource_list_reserve() should only be called for direct children"); 3075 if (flags & RF_ACTIVE) 3076 panic( 3077 "resource_list_reserve() should only reserve inactive resources"); 3078 3079 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3080 flags); 3081 if (r != NULL) { 3082 rle = resource_list_find(rl, type, *rid); 3083 rle->flags |= RLE_RESERVED; 3084 } 3085 return (r); 3086 } 3087 3088 /** 3089 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3090 * 3091 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3092 * and passing the allocation up to the parent of @p bus. This assumes 3093 * that the first entry of @c device_get_ivars(child) is a struct 3094 * resource_list. This also handles 'passthrough' allocations where a 3095 * child is a remote descendant of bus by passing the allocation up to 3096 * the parent of bus. 3097 * 3098 * Typically, a bus driver would store a list of child resources 3099 * somewhere in the child device's ivars (see device_get_ivars()) and 3100 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3101 * then call resource_list_alloc() to perform the allocation. 3102 * 3103 * @param rl the resource list to allocate from 3104 * @param bus the parent device of @p child 3105 * @param child the device which is requesting an allocation 3106 * @param type the type of resource to allocate 3107 * @param rid a pointer to the resource identifier 3108 * @param start hint at the start of the resource range - pass 3109 * @c 0 for any start address 3110 * @param end hint at the end of the resource range - pass 3111 * @c ~0 for any end address 3112 * @param count hint at the size of range required - pass @c 1 3113 * for any size 3114 * @param flags any extra flags to control the resource 3115 * allocation - see @c RF_XXX flags in 3116 * <sys/rman.h> for details 3117 * 3118 * @returns the resource which was allocated or @c NULL if no 3119 * resource could be allocated 3120 */ 3121 struct resource * 3122 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3123 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3124 { 3125 struct resource_list_entry *rle = NULL; 3126 int passthrough = (device_get_parent(child) != bus); 3127 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3128 3129 if (passthrough) { 3130 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3131 type, rid, start, end, count, flags)); 3132 } 3133 3134 rle = resource_list_find(rl, type, *rid); 3135 3136 if (!rle) 3137 return (NULL); /* no resource of that type/rid */ 3138 3139 if (rle->res) { 3140 if (rle->flags & RLE_RESERVED) { 3141 if (rle->flags & RLE_ALLOCATED) 3142 return (NULL); 3143 if ((flags & RF_ACTIVE) && 3144 bus_activate_resource(child, type, *rid, 3145 rle->res) != 0) 3146 return (NULL); 3147 rle->flags |= RLE_ALLOCATED; 3148 return (rle->res); 3149 } 3150 device_printf(bus, 3151 "resource entry %#x type %d for child %s is busy\n", *rid, 3152 type, device_get_nameunit(child)); 3153 return (NULL); 3154 } 3155 3156 if (isdefault) { 3157 start = rle->start; 3158 count = ulmax(count, rle->count); 3159 end = ulmax(rle->end, start + count - 1); 3160 } 3161 3162 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3163 type, rid, start, end, count, flags); 3164 3165 /* 3166 * Record the new range. 3167 */ 3168 if (rle->res) { 3169 rle->start = rman_get_start(rle->res); 3170 rle->end = rman_get_end(rle->res); 3171 rle->count = count; 3172 } 3173 3174 return (rle->res); 3175 } 3176 3177 /** 3178 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3179 * 3180 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3181 * used with resource_list_alloc(). 3182 * 3183 * @param rl the resource list which was allocated from 3184 * @param bus the parent device of @p child 3185 * @param child the device which is requesting a release 3186 * @param res the resource to release 3187 * 3188 * @retval 0 success 3189 * @retval non-zero a standard unix error code indicating what 3190 * error condition prevented the operation 3191 */ 3192 int 3193 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3194 struct resource *res) 3195 { 3196 struct resource_list_entry *rle = NULL; 3197 int passthrough = (device_get_parent(child) != bus); 3198 int error; 3199 3200 if (passthrough) { 3201 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3202 res)); 3203 } 3204 3205 rle = resource_list_find(rl, rman_get_type(res), rman_get_rid(res)); 3206 3207 if (!rle) 3208 panic("resource_list_release: can't find resource"); 3209 if (!rle->res) 3210 panic("resource_list_release: resource entry is not busy"); 3211 if (rle->flags & RLE_RESERVED) { 3212 if (rle->flags & RLE_ALLOCATED) { 3213 if (rman_get_flags(res) & RF_ACTIVE) { 3214 error = bus_deactivate_resource(child, res); 3215 if (error) 3216 return (error); 3217 } 3218 rle->flags &= ~RLE_ALLOCATED; 3219 return (0); 3220 } 3221 return (EINVAL); 3222 } 3223 3224 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, res); 3225 if (error) 3226 return (error); 3227 3228 rle->res = NULL; 3229 return (0); 3230 } 3231 3232 /** 3233 * @brief Release all active resources of a given type 3234 * 3235 * Release all active resources of a specified type. This is intended 3236 * to be used to cleanup resources leaked by a driver after detach or 3237 * a failed attach. 3238 * 3239 * @param rl the resource list which was allocated from 3240 * @param bus the parent device of @p child 3241 * @param child the device whose active resources are being released 3242 * @param type the type of resources to release 3243 * 3244 * @retval 0 success 3245 * @retval EBUSY at least one resource was active 3246 */ 3247 int 3248 resource_list_release_active(struct resource_list *rl, device_t bus, 3249 device_t child, int type) 3250 { 3251 struct resource_list_entry *rle; 3252 int error, retval; 3253 3254 retval = 0; 3255 STAILQ_FOREACH(rle, rl, link) { 3256 if (rle->type != type) 3257 continue; 3258 if (rle->res == NULL) 3259 continue; 3260 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3261 RLE_RESERVED) 3262 continue; 3263 retval = EBUSY; 3264 error = resource_list_release(rl, bus, child, rle->res); 3265 if (error != 0) 3266 device_printf(bus, 3267 "Failed to release active resource: %d\n", error); 3268 } 3269 return (retval); 3270 } 3271 3272 /** 3273 * @brief Fully release a reserved resource 3274 * 3275 * Fully releases a resource reserved via resource_list_reserve(). 3276 * 3277 * @param rl the resource list which was allocated from 3278 * @param bus the parent device of @p child 3279 * @param child the device whose reserved resource is being released 3280 * @param type the type of resource to release 3281 * @param rid the resource identifier 3282 * @param res the resource to release 3283 * 3284 * @retval 0 success 3285 * @retval non-zero a standard unix error code indicating what 3286 * error condition prevented the operation 3287 */ 3288 int 3289 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3290 int type, int rid) 3291 { 3292 struct resource_list_entry *rle = NULL; 3293 int passthrough = (device_get_parent(child) != bus); 3294 3295 if (passthrough) 3296 panic( 3297 "resource_list_unreserve() should only be called for direct children"); 3298 3299 rle = resource_list_find(rl, type, rid); 3300 3301 if (!rle) 3302 panic("resource_list_unreserve: can't find resource"); 3303 if (!(rle->flags & RLE_RESERVED)) 3304 return (EINVAL); 3305 if (rle->flags & RLE_ALLOCATED) 3306 return (EBUSY); 3307 rle->flags &= ~RLE_RESERVED; 3308 return (resource_list_release(rl, bus, child, rle->res)); 3309 } 3310 3311 /** 3312 * @brief Print a description of resources in a resource list 3313 * 3314 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3315 * The name is printed if at least one resource of the given type is available. 3316 * The format is used to print resource start and end. 3317 * 3318 * @param rl the resource list to print 3319 * @param name the name of @p type, e.g. @c "memory" 3320 * @param type type type of resource entry to print 3321 * @param format printf(9) format string to print resource 3322 * start and end values 3323 * 3324 * @returns the number of characters printed 3325 */ 3326 int 3327 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3328 const char *format) 3329 { 3330 struct resource_list_entry *rle; 3331 int printed, retval; 3332 3333 printed = 0; 3334 retval = 0; 3335 /* Yes, this is kinda cheating */ 3336 STAILQ_FOREACH(rle, rl, link) { 3337 if (rle->type == type) { 3338 if (printed == 0) 3339 retval += printf(" %s ", name); 3340 else 3341 retval += printf(","); 3342 printed++; 3343 retval += printf(format, rle->start); 3344 if (rle->count > 1) { 3345 retval += printf("-"); 3346 retval += printf(format, rle->start + 3347 rle->count - 1); 3348 } 3349 } 3350 } 3351 return (retval); 3352 } 3353 3354 /** 3355 * @brief Releases all the resources in a list. 3356 * 3357 * @param rl The resource list to purge. 3358 * 3359 * @returns nothing 3360 */ 3361 void 3362 resource_list_purge(struct resource_list *rl) 3363 { 3364 struct resource_list_entry *rle; 3365 3366 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3367 if (rle->res) 3368 bus_release_resource(rman_get_device(rle->res), 3369 rle->type, rle->rid, rle->res); 3370 STAILQ_REMOVE_HEAD(rl, link); 3371 free(rle, M_BUS); 3372 } 3373 } 3374 3375 device_t 3376 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3377 { 3378 return (device_add_child_ordered(dev, order, name, unit)); 3379 } 3380 3381 /** 3382 * @brief Helper function for implementing DEVICE_PROBE() 3383 * 3384 * This function can be used to help implement the DEVICE_PROBE() for 3385 * a bus (i.e. a device which has other devices attached to it). It 3386 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3387 * devclass. 3388 */ 3389 int 3390 bus_generic_probe(device_t dev) 3391 { 3392 devclass_t dc = dev->devclass; 3393 driverlink_t dl; 3394 3395 TAILQ_FOREACH(dl, &dc->drivers, link) { 3396 /* 3397 * If this driver's pass is too high, then ignore it. 3398 * For most drivers in the default pass, this will 3399 * never be true. For early-pass drivers they will 3400 * only call the identify routines of eligible drivers 3401 * when this routine is called. Drivers for later 3402 * passes should have their identify routines called 3403 * on early-pass buses during BUS_NEW_PASS(). 3404 */ 3405 if (dl->pass > bus_current_pass) 3406 continue; 3407 DEVICE_IDENTIFY(dl->driver, dev); 3408 } 3409 3410 return (0); 3411 } 3412 3413 /** 3414 * @brief Helper function for implementing DEVICE_ATTACH() 3415 * 3416 * This function can be used to help implement the DEVICE_ATTACH() for 3417 * a bus. It calls device_probe_and_attach() for each of the device's 3418 * children. 3419 */ 3420 int 3421 bus_generic_attach(device_t dev) 3422 { 3423 device_t child; 3424 3425 TAILQ_FOREACH(child, &dev->children, link) { 3426 device_probe_and_attach(child); 3427 } 3428 3429 return (0); 3430 } 3431 3432 /** 3433 * @brief Helper function for delaying attaching children 3434 * 3435 * Many buses can't run transactions on the bus which children need to probe and 3436 * attach until after interrupts and/or timers are running. This function 3437 * delays their attach until interrupts and timers are enabled. 3438 */ 3439 int 3440 bus_delayed_attach_children(device_t dev) 3441 { 3442 /* Probe and attach the bus children when interrupts are available */ 3443 config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev); 3444 3445 return (0); 3446 } 3447 3448 /** 3449 * @brief Helper function for implementing DEVICE_DETACH() 3450 * 3451 * This function can be used to help implement the DEVICE_DETACH() for 3452 * a bus. It calls device_detach() for each of the device's 3453 * children. 3454 */ 3455 int 3456 bus_generic_detach(device_t dev) 3457 { 3458 device_t child; 3459 int error; 3460 3461 /* 3462 * Detach children in the reverse order. 3463 * See bus_generic_suspend for details. 3464 */ 3465 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3466 if ((error = device_detach(child)) != 0) 3467 return (error); 3468 } 3469 3470 return (0); 3471 } 3472 3473 /** 3474 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3475 * 3476 * This function can be used to help implement the DEVICE_SHUTDOWN() 3477 * for a bus. It calls device_shutdown() for each of the device's 3478 * children. 3479 */ 3480 int 3481 bus_generic_shutdown(device_t dev) 3482 { 3483 device_t child; 3484 3485 /* 3486 * Shut down children in the reverse order. 3487 * See bus_generic_suspend for details. 3488 */ 3489 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3490 device_shutdown(child); 3491 } 3492 3493 return (0); 3494 } 3495 3496 /** 3497 * @brief Default function for suspending a child device. 3498 * 3499 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3500 */ 3501 int 3502 bus_generic_suspend_child(device_t dev, device_t child) 3503 { 3504 int error; 3505 3506 error = DEVICE_SUSPEND(child); 3507 3508 if (error == 0) { 3509 child->flags |= DF_SUSPENDED; 3510 } else { 3511 printf("DEVICE_SUSPEND(%s) failed: %d\n", 3512 device_get_nameunit(child), error); 3513 } 3514 3515 return (error); 3516 } 3517 3518 /** 3519 * @brief Default function for resuming a child device. 3520 * 3521 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3522 */ 3523 int 3524 bus_generic_resume_child(device_t dev, device_t child) 3525 { 3526 DEVICE_RESUME(child); 3527 child->flags &= ~DF_SUSPENDED; 3528 3529 return (0); 3530 } 3531 3532 /** 3533 * @brief Helper function for implementing DEVICE_SUSPEND() 3534 * 3535 * This function can be used to help implement the DEVICE_SUSPEND() 3536 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3537 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3538 * operation is aborted and any devices which were suspended are 3539 * resumed immediately by calling their DEVICE_RESUME() methods. 3540 */ 3541 int 3542 bus_generic_suspend(device_t dev) 3543 { 3544 int error; 3545 device_t child; 3546 3547 /* 3548 * Suspend children in the reverse order. 3549 * For most buses all children are equal, so the order does not matter. 3550 * Other buses, such as acpi, carefully order their child devices to 3551 * express implicit dependencies between them. For such buses it is 3552 * safer to bring down devices in the reverse order. 3553 */ 3554 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3555 error = BUS_SUSPEND_CHILD(dev, child); 3556 if (error != 0) { 3557 child = TAILQ_NEXT(child, link); 3558 if (child != NULL) { 3559 TAILQ_FOREACH_FROM(child, &dev->children, link) 3560 BUS_RESUME_CHILD(dev, child); 3561 } 3562 return (error); 3563 } 3564 } 3565 return (0); 3566 } 3567 3568 /** 3569 * @brief Helper function for implementing DEVICE_RESUME() 3570 * 3571 * This function can be used to help implement the DEVICE_RESUME() for 3572 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3573 */ 3574 int 3575 bus_generic_resume(device_t dev) 3576 { 3577 device_t child; 3578 3579 TAILQ_FOREACH(child, &dev->children, link) { 3580 BUS_RESUME_CHILD(dev, child); 3581 /* if resume fails, there's nothing we can usefully do... */ 3582 } 3583 return (0); 3584 } 3585 3586 /** 3587 * @brief Helper function for implementing BUS_RESET_POST 3588 * 3589 * Bus can use this function to implement common operations of 3590 * re-attaching or resuming the children after the bus itself was 3591 * reset, and after restoring bus-unique state of children. 3592 * 3593 * @param dev The bus 3594 * #param flags DEVF_RESET_* 3595 */ 3596 int 3597 bus_helper_reset_post(device_t dev, int flags) 3598 { 3599 device_t child; 3600 int error, error1; 3601 3602 error = 0; 3603 TAILQ_FOREACH(child, &dev->children,link) { 3604 BUS_RESET_POST(dev, child); 3605 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3606 device_probe_and_attach(child) : 3607 BUS_RESUME_CHILD(dev, child); 3608 if (error == 0 && error1 != 0) 3609 error = error1; 3610 } 3611 return (error); 3612 } 3613 3614 static void 3615 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3616 { 3617 child = TAILQ_NEXT(child, link); 3618 if (child == NULL) 3619 return; 3620 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3621 BUS_RESET_POST(dev, child); 3622 if ((flags & DEVF_RESET_DETACH) != 0) 3623 device_probe_and_attach(child); 3624 else 3625 BUS_RESUME_CHILD(dev, child); 3626 } 3627 } 3628 3629 /** 3630 * @brief Helper function for implementing BUS_RESET_PREPARE 3631 * 3632 * Bus can use this function to implement common operations of 3633 * detaching or suspending the children before the bus itself is 3634 * reset, and then save bus-unique state of children that must 3635 * persists around reset. 3636 * 3637 * @param dev The bus 3638 * #param flags DEVF_RESET_* 3639 */ 3640 int 3641 bus_helper_reset_prepare(device_t dev, int flags) 3642 { 3643 device_t child; 3644 int error; 3645 3646 if (dev->state != DS_ATTACHED) 3647 return (EBUSY); 3648 3649 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3650 if ((flags & DEVF_RESET_DETACH) != 0) { 3651 error = device_get_state(child) == DS_ATTACHED ? 3652 device_detach(child) : 0; 3653 } else { 3654 error = BUS_SUSPEND_CHILD(dev, child); 3655 } 3656 if (error == 0) { 3657 error = BUS_RESET_PREPARE(dev, child); 3658 if (error != 0) { 3659 if ((flags & DEVF_RESET_DETACH) != 0) 3660 device_probe_and_attach(child); 3661 else 3662 BUS_RESUME_CHILD(dev, child); 3663 } 3664 } 3665 if (error != 0) { 3666 bus_helper_reset_prepare_rollback(dev, child, flags); 3667 return (error); 3668 } 3669 } 3670 return (0); 3671 } 3672 3673 /** 3674 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3675 * 3676 * This function prints the first part of the ascii representation of 3677 * @p child, including its name, unit and description (if any - see 3678 * device_set_desc()). 3679 * 3680 * @returns the number of characters printed 3681 */ 3682 int 3683 bus_print_child_header(device_t dev, device_t child) 3684 { 3685 int retval = 0; 3686 3687 if (device_get_desc(child)) { 3688 retval += device_printf(child, "<%s>", device_get_desc(child)); 3689 } else { 3690 retval += printf("%s", device_get_nameunit(child)); 3691 } 3692 3693 return (retval); 3694 } 3695 3696 /** 3697 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3698 * 3699 * This function prints the last part of the ascii representation of 3700 * @p child, which consists of the string @c " on " followed by the 3701 * name and unit of the @p dev. 3702 * 3703 * @returns the number of characters printed 3704 */ 3705 int 3706 bus_print_child_footer(device_t dev, device_t child) 3707 { 3708 return (printf(" on %s\n", device_get_nameunit(dev))); 3709 } 3710 3711 /** 3712 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3713 * 3714 * This function prints out the VM domain for the given device. 3715 * 3716 * @returns the number of characters printed 3717 */ 3718 int 3719 bus_print_child_domain(device_t dev, device_t child) 3720 { 3721 int domain; 3722 3723 /* No domain? Don't print anything */ 3724 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3725 return (0); 3726 3727 return (printf(" numa-domain %d", domain)); 3728 } 3729 3730 /** 3731 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3732 * 3733 * This function simply calls bus_print_child_header() followed by 3734 * bus_print_child_footer(). 3735 * 3736 * @returns the number of characters printed 3737 */ 3738 int 3739 bus_generic_print_child(device_t dev, device_t child) 3740 { 3741 int retval = 0; 3742 3743 retval += bus_print_child_header(dev, child); 3744 retval += bus_print_child_domain(dev, child); 3745 retval += bus_print_child_footer(dev, child); 3746 3747 return (retval); 3748 } 3749 3750 /** 3751 * @brief Stub function for implementing BUS_READ_IVAR(). 3752 * 3753 * @returns ENOENT 3754 */ 3755 int 3756 bus_generic_read_ivar(device_t dev, device_t child, int index, 3757 uintptr_t * result) 3758 { 3759 return (ENOENT); 3760 } 3761 3762 /** 3763 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3764 * 3765 * @returns ENOENT 3766 */ 3767 int 3768 bus_generic_write_ivar(device_t dev, device_t child, int index, 3769 uintptr_t value) 3770 { 3771 return (ENOENT); 3772 } 3773 3774 /** 3775 * @brief Helper function for implementing BUS_GET_PROPERTY(). 3776 * 3777 * This simply calls the BUS_GET_PROPERTY of the parent of dev, 3778 * until a non-default implementation is found. 3779 */ 3780 ssize_t 3781 bus_generic_get_property(device_t dev, device_t child, const char *propname, 3782 void *propvalue, size_t size, device_property_type_t type) 3783 { 3784 if (device_get_parent(dev) != NULL) 3785 return (BUS_GET_PROPERTY(device_get_parent(dev), child, 3786 propname, propvalue, size, type)); 3787 3788 return (-1); 3789 } 3790 3791 /** 3792 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3793 * 3794 * @returns NULL 3795 */ 3796 struct resource_list * 3797 bus_generic_get_resource_list(device_t dev, device_t child) 3798 { 3799 return (NULL); 3800 } 3801 3802 /** 3803 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3804 * 3805 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3806 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3807 * and then calls device_probe_and_attach() for each unattached child. 3808 */ 3809 void 3810 bus_generic_driver_added(device_t dev, driver_t *driver) 3811 { 3812 device_t child; 3813 3814 DEVICE_IDENTIFY(driver, dev); 3815 TAILQ_FOREACH(child, &dev->children, link) { 3816 if (child->state == DS_NOTPRESENT) 3817 device_probe_and_attach(child); 3818 } 3819 } 3820 3821 /** 3822 * @brief Helper function for implementing BUS_NEW_PASS(). 3823 * 3824 * This implementing of BUS_NEW_PASS() first calls the identify 3825 * routines for any drivers that probe at the current pass. Then it 3826 * walks the list of devices for this bus. If a device is already 3827 * attached, then it calls BUS_NEW_PASS() on that device. If the 3828 * device is not already attached, it attempts to attach a driver to 3829 * it. 3830 */ 3831 void 3832 bus_generic_new_pass(device_t dev) 3833 { 3834 driverlink_t dl; 3835 devclass_t dc; 3836 device_t child; 3837 3838 dc = dev->devclass; 3839 TAILQ_FOREACH(dl, &dc->drivers, link) { 3840 if (dl->pass == bus_current_pass) 3841 DEVICE_IDENTIFY(dl->driver, dev); 3842 } 3843 TAILQ_FOREACH(child, &dev->children, link) { 3844 if (child->state >= DS_ATTACHED) 3845 BUS_NEW_PASS(child); 3846 else if (child->state == DS_NOTPRESENT) 3847 device_probe_and_attach(child); 3848 } 3849 } 3850 3851 /** 3852 * @brief Helper function for implementing BUS_SETUP_INTR(). 3853 * 3854 * This simple implementation of BUS_SETUP_INTR() simply calls the 3855 * BUS_SETUP_INTR() method of the parent of @p dev. 3856 */ 3857 int 3858 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3859 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3860 void **cookiep) 3861 { 3862 /* Propagate up the bus hierarchy until someone handles it. */ 3863 if (dev->parent) 3864 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3865 filter, intr, arg, cookiep)); 3866 return (EINVAL); 3867 } 3868 3869 /** 3870 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3871 * 3872 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3873 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3874 */ 3875 int 3876 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3877 void *cookie) 3878 { 3879 /* Propagate up the bus hierarchy until someone handles it. */ 3880 if (dev->parent) 3881 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3882 return (EINVAL); 3883 } 3884 3885 /** 3886 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 3887 * 3888 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 3889 * BUS_SUSPEND_INTR() method of the parent of @p dev. 3890 */ 3891 int 3892 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 3893 { 3894 /* Propagate up the bus hierarchy until someone handles it. */ 3895 if (dev->parent) 3896 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 3897 return (EINVAL); 3898 } 3899 3900 /** 3901 * @brief Helper function for implementing BUS_RESUME_INTR(). 3902 * 3903 * This simple implementation of BUS_RESUME_INTR() simply calls the 3904 * BUS_RESUME_INTR() method of the parent of @p dev. 3905 */ 3906 int 3907 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 3908 { 3909 /* Propagate up the bus hierarchy until someone handles it. */ 3910 if (dev->parent) 3911 return (BUS_RESUME_INTR(dev->parent, child, irq)); 3912 return (EINVAL); 3913 } 3914 3915 /** 3916 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3917 * 3918 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3919 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3920 */ 3921 int 3922 bus_generic_adjust_resource(device_t dev, device_t child, struct resource *r, 3923 rman_res_t start, rman_res_t end) 3924 { 3925 /* Propagate up the bus hierarchy until someone handles it. */ 3926 if (dev->parent) 3927 return (BUS_ADJUST_RESOURCE(dev->parent, child, r, start, end)); 3928 return (EINVAL); 3929 } 3930 3931 /* 3932 * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE(). 3933 * 3934 * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the 3935 * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev. If there is no 3936 * parent, no translation happens. 3937 */ 3938 int 3939 bus_generic_translate_resource(device_t dev, int type, rman_res_t start, 3940 rman_res_t *newstart) 3941 { 3942 if (dev->parent) 3943 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, 3944 newstart)); 3945 *newstart = start; 3946 return (0); 3947 } 3948 3949 /** 3950 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3951 * 3952 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3953 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3954 */ 3955 struct resource * 3956 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3957 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3958 { 3959 /* Propagate up the bus hierarchy until someone handles it. */ 3960 if (dev->parent) 3961 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3962 start, end, count, flags)); 3963 return (NULL); 3964 } 3965 3966 /** 3967 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3968 * 3969 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3970 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3971 */ 3972 int 3973 bus_generic_release_resource(device_t dev, device_t child, struct resource *r) 3974 { 3975 /* Propagate up the bus hierarchy until someone handles it. */ 3976 if (dev->parent) 3977 return (BUS_RELEASE_RESOURCE(dev->parent, child, r)); 3978 return (EINVAL); 3979 } 3980 3981 /** 3982 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3983 * 3984 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3985 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3986 */ 3987 int 3988 bus_generic_activate_resource(device_t dev, device_t child, struct resource *r) 3989 { 3990 /* Propagate up the bus hierarchy until someone handles it. */ 3991 if (dev->parent) 3992 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, r)); 3993 return (EINVAL); 3994 } 3995 3996 /** 3997 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3998 * 3999 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4000 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4001 */ 4002 int 4003 bus_generic_deactivate_resource(device_t dev, device_t child, 4004 struct resource *r) 4005 { 4006 /* Propagate up the bus hierarchy until someone handles it. */ 4007 if (dev->parent) 4008 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, r)); 4009 return (EINVAL); 4010 } 4011 4012 /** 4013 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4014 * 4015 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4016 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4017 */ 4018 int 4019 bus_generic_map_resource(device_t dev, device_t child, struct resource *r, 4020 struct resource_map_request *args, struct resource_map *map) 4021 { 4022 /* Propagate up the bus hierarchy until someone handles it. */ 4023 if (dev->parent) 4024 return (BUS_MAP_RESOURCE(dev->parent, child, r, args, map)); 4025 return (EINVAL); 4026 } 4027 4028 /** 4029 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4030 * 4031 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4032 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4033 */ 4034 int 4035 bus_generic_unmap_resource(device_t dev, device_t child, struct resource *r, 4036 struct resource_map *map) 4037 { 4038 /* Propagate up the bus hierarchy until someone handles it. */ 4039 if (dev->parent) 4040 return (BUS_UNMAP_RESOURCE(dev->parent, child, r, map)); 4041 return (EINVAL); 4042 } 4043 4044 /** 4045 * @brief Helper function for implementing BUS_BIND_INTR(). 4046 * 4047 * This simple implementation of BUS_BIND_INTR() simply calls the 4048 * BUS_BIND_INTR() method of the parent of @p dev. 4049 */ 4050 int 4051 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4052 int cpu) 4053 { 4054 /* Propagate up the bus hierarchy until someone handles it. */ 4055 if (dev->parent) 4056 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4057 return (EINVAL); 4058 } 4059 4060 /** 4061 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4062 * 4063 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4064 * BUS_CONFIG_INTR() method of the parent of @p dev. 4065 */ 4066 int 4067 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4068 enum intr_polarity pol) 4069 { 4070 /* Propagate up the bus hierarchy until someone handles it. */ 4071 if (dev->parent) 4072 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4073 return (EINVAL); 4074 } 4075 4076 /** 4077 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4078 * 4079 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4080 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4081 */ 4082 int 4083 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4084 void *cookie, const char *descr) 4085 { 4086 /* Propagate up the bus hierarchy until someone handles it. */ 4087 if (dev->parent) 4088 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4089 descr)); 4090 return (EINVAL); 4091 } 4092 4093 /** 4094 * @brief Helper function for implementing BUS_GET_CPUS(). 4095 * 4096 * This simple implementation of BUS_GET_CPUS() simply calls the 4097 * BUS_GET_CPUS() method of the parent of @p dev. 4098 */ 4099 int 4100 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4101 size_t setsize, cpuset_t *cpuset) 4102 { 4103 /* Propagate up the bus hierarchy until someone handles it. */ 4104 if (dev->parent != NULL) 4105 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4106 return (EINVAL); 4107 } 4108 4109 /** 4110 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4111 * 4112 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4113 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4114 */ 4115 bus_dma_tag_t 4116 bus_generic_get_dma_tag(device_t dev, device_t child) 4117 { 4118 /* Propagate up the bus hierarchy until someone handles it. */ 4119 if (dev->parent != NULL) 4120 return (BUS_GET_DMA_TAG(dev->parent, child)); 4121 return (NULL); 4122 } 4123 4124 /** 4125 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4126 * 4127 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4128 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4129 */ 4130 bus_space_tag_t 4131 bus_generic_get_bus_tag(device_t dev, device_t child) 4132 { 4133 /* Propagate up the bus hierarchy until someone handles it. */ 4134 if (dev->parent != NULL) 4135 return (BUS_GET_BUS_TAG(dev->parent, child)); 4136 return ((bus_space_tag_t)0); 4137 } 4138 4139 /** 4140 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4141 * 4142 * This implementation of BUS_GET_RESOURCE() uses the 4143 * resource_list_find() function to do most of the work. It calls 4144 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4145 * search. 4146 */ 4147 int 4148 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4149 rman_res_t *startp, rman_res_t *countp) 4150 { 4151 struct resource_list * rl = NULL; 4152 struct resource_list_entry * rle = NULL; 4153 4154 rl = BUS_GET_RESOURCE_LIST(dev, child); 4155 if (!rl) 4156 return (EINVAL); 4157 4158 rle = resource_list_find(rl, type, rid); 4159 if (!rle) 4160 return (ENOENT); 4161 4162 if (startp) 4163 *startp = rle->start; 4164 if (countp) 4165 *countp = rle->count; 4166 4167 return (0); 4168 } 4169 4170 /** 4171 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4172 * 4173 * This implementation of BUS_SET_RESOURCE() uses the 4174 * resource_list_add() function to do most of the work. It calls 4175 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4176 * edit. 4177 */ 4178 int 4179 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4180 rman_res_t start, rman_res_t count) 4181 { 4182 struct resource_list * rl = NULL; 4183 4184 rl = BUS_GET_RESOURCE_LIST(dev, child); 4185 if (!rl) 4186 return (EINVAL); 4187 4188 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4189 4190 return (0); 4191 } 4192 4193 /** 4194 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4195 * 4196 * This implementation of BUS_DELETE_RESOURCE() uses the 4197 * resource_list_delete() function to do most of the work. It calls 4198 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4199 * edit. 4200 */ 4201 void 4202 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4203 { 4204 struct resource_list * rl = NULL; 4205 4206 rl = BUS_GET_RESOURCE_LIST(dev, child); 4207 if (!rl) 4208 return; 4209 4210 resource_list_delete(rl, type, rid); 4211 4212 return; 4213 } 4214 4215 /** 4216 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4217 * 4218 * This implementation of BUS_RELEASE_RESOURCE() uses the 4219 * resource_list_release() function to do most of the work. It calls 4220 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4221 */ 4222 int 4223 bus_generic_rl_release_resource(device_t dev, device_t child, 4224 struct resource *r) 4225 { 4226 struct resource_list * rl = NULL; 4227 4228 if (device_get_parent(child) != dev) 4229 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, r)); 4230 4231 rl = BUS_GET_RESOURCE_LIST(dev, child); 4232 if (!rl) 4233 return (EINVAL); 4234 4235 return (resource_list_release(rl, dev, child, r)); 4236 } 4237 4238 /** 4239 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4240 * 4241 * This implementation of BUS_ALLOC_RESOURCE() uses the 4242 * resource_list_alloc() function to do most of the work. It calls 4243 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4244 */ 4245 struct resource * 4246 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4247 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4248 { 4249 struct resource_list * rl = NULL; 4250 4251 if (device_get_parent(child) != dev) 4252 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4253 type, rid, start, end, count, flags)); 4254 4255 rl = BUS_GET_RESOURCE_LIST(dev, child); 4256 if (!rl) 4257 return (NULL); 4258 4259 return (resource_list_alloc(rl, dev, child, type, rid, 4260 start, end, count, flags)); 4261 } 4262 4263 /** 4264 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4265 * 4266 * This implementation of BUS_ALLOC_RESOURCE() allocates a 4267 * resource from a resource manager. It uses BUS_GET_RMAN() 4268 * to obtain the resource manager. 4269 */ 4270 struct resource * 4271 bus_generic_rman_alloc_resource(device_t dev, device_t child, int type, 4272 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4273 { 4274 struct resource *r; 4275 struct rman *rm; 4276 4277 rm = BUS_GET_RMAN(dev, type, flags); 4278 if (rm == NULL) 4279 return (NULL); 4280 4281 r = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 4282 child); 4283 if (r == NULL) 4284 return (NULL); 4285 rman_set_rid(r, *rid); 4286 rman_set_type(r, type); 4287 4288 if (flags & RF_ACTIVE) { 4289 if (bus_activate_resource(child, type, *rid, r) != 0) { 4290 rman_release_resource(r); 4291 return (NULL); 4292 } 4293 } 4294 4295 return (r); 4296 } 4297 4298 /** 4299 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4300 * 4301 * This implementation of BUS_ADJUST_RESOURCE() adjusts resources only 4302 * if they were allocated from the resource manager returned by 4303 * BUS_GET_RMAN(). 4304 */ 4305 int 4306 bus_generic_rman_adjust_resource(device_t dev, device_t child, 4307 struct resource *r, rman_res_t start, rman_res_t end) 4308 { 4309 struct rman *rm; 4310 4311 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r)); 4312 if (rm == NULL) 4313 return (ENXIO); 4314 if (!rman_is_region_manager(r, rm)) 4315 return (EINVAL); 4316 return (rman_adjust_resource(r, start, end)); 4317 } 4318 4319 /** 4320 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4321 * 4322 * This implementation of BUS_RELEASE_RESOURCE() releases resources 4323 * allocated by bus_generic_rman_alloc_resource. 4324 */ 4325 int 4326 bus_generic_rman_release_resource(device_t dev, device_t child, 4327 struct resource *r) 4328 { 4329 #ifdef INVARIANTS 4330 struct rman *rm; 4331 #endif 4332 int error; 4333 4334 #ifdef INVARIANTS 4335 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r)); 4336 KASSERT(rman_is_region_manager(r, rm), 4337 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4338 #endif 4339 4340 if (rman_get_flags(r) & RF_ACTIVE) { 4341 error = bus_deactivate_resource(child, r); 4342 if (error != 0) 4343 return (error); 4344 } 4345 return (rman_release_resource(r)); 4346 } 4347 4348 /** 4349 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4350 * 4351 * This implementation of BUS_ACTIVATE_RESOURCE() activates resources 4352 * allocated by bus_generic_rman_alloc_resource. 4353 */ 4354 int 4355 bus_generic_rman_activate_resource(device_t dev, device_t child, 4356 struct resource *r) 4357 { 4358 struct resource_map map; 4359 #ifdef INVARIANTS 4360 struct rman *rm; 4361 #endif 4362 int error, type; 4363 4364 type = rman_get_type(r); 4365 #ifdef INVARIANTS 4366 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r)); 4367 KASSERT(rman_is_region_manager(r, rm), 4368 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4369 #endif 4370 4371 error = rman_activate_resource(r); 4372 if (error != 0) 4373 return (error); 4374 4375 switch (type) { 4376 case SYS_RES_IOPORT: 4377 case SYS_RES_MEMORY: 4378 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) { 4379 error = BUS_MAP_RESOURCE(dev, child, r, NULL, &map); 4380 if (error != 0) 4381 break; 4382 4383 rman_set_mapping(r, &map); 4384 } 4385 break; 4386 #ifdef INTRNG 4387 case SYS_RES_IRQ: 4388 error = intr_activate_irq(child, r); 4389 break; 4390 #endif 4391 } 4392 if (error != 0) 4393 rman_deactivate_resource(r); 4394 return (error); 4395 } 4396 4397 /** 4398 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4399 * 4400 * This implementation of BUS_DEACTIVATE_RESOURCE() deactivates 4401 * resources allocated by bus_generic_rman_alloc_resource. 4402 */ 4403 int 4404 bus_generic_rman_deactivate_resource(device_t dev, device_t child, 4405 struct resource *r) 4406 { 4407 struct resource_map map; 4408 #ifdef INVARIANTS 4409 struct rman *rm; 4410 #endif 4411 int error, type; 4412 4413 type = rman_get_type(r); 4414 #ifdef INVARIANTS 4415 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r)); 4416 KASSERT(rman_is_region_manager(r, rm), 4417 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4418 #endif 4419 4420 error = rman_deactivate_resource(r); 4421 if (error != 0) 4422 return (error); 4423 4424 switch (type) { 4425 case SYS_RES_IOPORT: 4426 case SYS_RES_MEMORY: 4427 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) { 4428 rman_get_mapping(r, &map); 4429 BUS_UNMAP_RESOURCE(dev, child, r, &map); 4430 } 4431 break; 4432 #ifdef INTRNG 4433 case SYS_RES_IRQ: 4434 intr_deactivate_irq(child, r); 4435 break; 4436 #endif 4437 } 4438 return (0); 4439 } 4440 4441 /** 4442 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4443 * 4444 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4445 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4446 */ 4447 int 4448 bus_generic_child_present(device_t dev, device_t child) 4449 { 4450 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4451 } 4452 4453 /** 4454 * @brief Helper function for implementing BUS_GET_DOMAIN(). 4455 * 4456 * This simple implementation of BUS_GET_DOMAIN() calls the 4457 * BUS_GET_DOMAIN() method of the parent of @p dev. If @p dev 4458 * does not have a parent, the function fails with ENOENT. 4459 */ 4460 int 4461 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4462 { 4463 if (dev->parent) 4464 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4465 4466 return (ENOENT); 4467 } 4468 4469 /** 4470 * @brief Helper function to implement normal BUS_GET_DEVICE_PATH() 4471 * 4472 * This function knows how to (a) pass the request up the tree if there's 4473 * a parent and (b) Knows how to supply a FreeBSD locator. 4474 * 4475 * @param bus bus in the walk up the tree 4476 * @param child leaf node to print information about 4477 * @param locator BUS_LOCATOR_xxx string for locator 4478 * @param sb Buffer to print information into 4479 */ 4480 int 4481 bus_generic_get_device_path(device_t bus, device_t child, const char *locator, 4482 struct sbuf *sb) 4483 { 4484 int rv = 0; 4485 device_t parent; 4486 4487 /* 4488 * We don't recurse on ACPI since either we know the handle for the 4489 * device or we don't. And if we're in the generic routine, we don't 4490 * have a ACPI override. All other locators build up a path by having 4491 * their parents create a path and then adding the path element for this 4492 * node. That's why we recurse with parent, bus rather than the typical 4493 * parent, child: each spot in the tree is independent of what our child 4494 * will do with this path. 4495 */ 4496 parent = device_get_parent(bus); 4497 if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) { 4498 rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb); 4499 } 4500 if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) { 4501 if (rv == 0) { 4502 sbuf_printf(sb, "/%s", device_get_nameunit(child)); 4503 } 4504 return (rv); 4505 } 4506 /* 4507 * Don't know what to do. So assume we do nothing. Not sure that's 4508 * the right thing, but keeps us from having a big list here. 4509 */ 4510 return (0); 4511 } 4512 4513 4514 /** 4515 * @brief Helper function for implementing BUS_RESCAN(). 4516 * 4517 * This null implementation of BUS_RESCAN() always fails to indicate 4518 * the bus does not support rescanning. 4519 */ 4520 int 4521 bus_null_rescan(device_t dev) 4522 { 4523 return (ENODEV); 4524 } 4525 4526 /* 4527 * Some convenience functions to make it easier for drivers to use the 4528 * resource-management functions. All these really do is hide the 4529 * indirection through the parent's method table, making for slightly 4530 * less-wordy code. In the future, it might make sense for this code 4531 * to maintain some sort of a list of resources allocated by each device. 4532 */ 4533 4534 int 4535 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4536 struct resource **res) 4537 { 4538 int i; 4539 4540 for (i = 0; rs[i].type != -1; i++) 4541 res[i] = NULL; 4542 for (i = 0; rs[i].type != -1; i++) { 4543 res[i] = bus_alloc_resource_any(dev, 4544 rs[i].type, &rs[i].rid, rs[i].flags); 4545 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4546 bus_release_resources(dev, rs, res); 4547 return (ENXIO); 4548 } 4549 } 4550 return (0); 4551 } 4552 4553 void 4554 bus_release_resources(device_t dev, const struct resource_spec *rs, 4555 struct resource **res) 4556 { 4557 int i; 4558 4559 for (i = 0; rs[i].type != -1; i++) 4560 if (res[i] != NULL) { 4561 bus_release_resource( 4562 dev, rs[i].type, rs[i].rid, res[i]); 4563 res[i] = NULL; 4564 } 4565 } 4566 4567 /** 4568 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4569 * 4570 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4571 * parent of @p dev. 4572 */ 4573 struct resource * 4574 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4575 rman_res_t end, rman_res_t count, u_int flags) 4576 { 4577 struct resource *res; 4578 4579 if (dev->parent == NULL) 4580 return (NULL); 4581 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4582 count, flags); 4583 return (res); 4584 } 4585 4586 /** 4587 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4588 * 4589 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4590 * parent of @p dev. 4591 */ 4592 int 4593 bus_adjust_resource(device_t dev, struct resource *r, rman_res_t start, 4594 rman_res_t end) 4595 { 4596 if (dev->parent == NULL) 4597 return (EINVAL); 4598 return (BUS_ADJUST_RESOURCE(dev->parent, dev, r, start, end)); 4599 } 4600 4601 int 4602 bus_adjust_resource_old(device_t dev, int type __unused, struct resource *r, 4603 rman_res_t start, rman_res_t end) 4604 { 4605 return (bus_adjust_resource(dev, r, start, end)); 4606 } 4607 4608 /** 4609 * @brief Wrapper function for BUS_TRANSLATE_RESOURCE(). 4610 * 4611 * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the 4612 * parent of @p dev. 4613 */ 4614 int 4615 bus_translate_resource(device_t dev, int type, rman_res_t start, 4616 rman_res_t *newstart) 4617 { 4618 if (dev->parent == NULL) 4619 return (EINVAL); 4620 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart)); 4621 } 4622 4623 /** 4624 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4625 * 4626 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4627 * parent of @p dev. 4628 */ 4629 int 4630 bus_activate_resource(device_t dev, struct resource *r) 4631 { 4632 if (dev->parent == NULL) 4633 return (EINVAL); 4634 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, r)); 4635 } 4636 4637 int 4638 bus_activate_resource_old(device_t dev, int type, int rid, struct resource *r) 4639 { 4640 return (bus_activate_resource(dev, r)); 4641 } 4642 4643 /** 4644 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4645 * 4646 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4647 * parent of @p dev. 4648 */ 4649 int 4650 bus_deactivate_resource(device_t dev, struct resource *r) 4651 { 4652 if (dev->parent == NULL) 4653 return (EINVAL); 4654 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, r)); 4655 } 4656 4657 int 4658 bus_deactivate_resource_old(device_t dev, int type, int rid, struct resource *r) 4659 { 4660 return (bus_deactivate_resource(dev, r)); 4661 } 4662 4663 /** 4664 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4665 * 4666 * This function simply calls the BUS_MAP_RESOURCE() method of the 4667 * parent of @p dev. 4668 */ 4669 int 4670 bus_map_resource(device_t dev, struct resource *r, 4671 struct resource_map_request *args, struct resource_map *map) 4672 { 4673 if (dev->parent == NULL) 4674 return (EINVAL); 4675 return (BUS_MAP_RESOURCE(dev->parent, dev, r, args, map)); 4676 } 4677 4678 int 4679 bus_map_resource_old(device_t dev, int type, struct resource *r, 4680 struct resource_map_request *args, struct resource_map *map) 4681 { 4682 return (bus_map_resource(dev, r, args, map)); 4683 } 4684 4685 /** 4686 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4687 * 4688 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4689 * parent of @p dev. 4690 */ 4691 int 4692 bus_unmap_resource(device_t dev, struct resource *r, struct resource_map *map) 4693 { 4694 if (dev->parent == NULL) 4695 return (EINVAL); 4696 return (BUS_UNMAP_RESOURCE(dev->parent, dev, r, map)); 4697 } 4698 4699 int 4700 bus_unmap_resource_old(device_t dev, int type, struct resource *r, 4701 struct resource_map *map) 4702 { 4703 return (bus_unmap_resource(dev, r, map)); 4704 } 4705 4706 /** 4707 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4708 * 4709 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4710 * parent of @p dev. 4711 */ 4712 int 4713 bus_release_resource(device_t dev, struct resource *r) 4714 { 4715 int rv; 4716 4717 if (dev->parent == NULL) 4718 return (EINVAL); 4719 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, r); 4720 return (rv); 4721 } 4722 4723 int 4724 bus_release_resource_old(device_t dev, int type, int rid, struct resource *r) 4725 { 4726 return (bus_release_resource(dev, r)); 4727 } 4728 4729 /** 4730 * @brief Wrapper function for BUS_SETUP_INTR(). 4731 * 4732 * This function simply calls the BUS_SETUP_INTR() method of the 4733 * parent of @p dev. 4734 */ 4735 int 4736 bus_setup_intr(device_t dev, struct resource *r, int flags, 4737 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4738 { 4739 int error; 4740 4741 if (dev->parent == NULL) 4742 return (EINVAL); 4743 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4744 arg, cookiep); 4745 if (error != 0) 4746 return (error); 4747 if (handler != NULL && !(flags & INTR_MPSAFE)) 4748 device_printf(dev, "[GIANT-LOCKED]\n"); 4749 return (0); 4750 } 4751 4752 /** 4753 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4754 * 4755 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4756 * parent of @p dev. 4757 */ 4758 int 4759 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4760 { 4761 if (dev->parent == NULL) 4762 return (EINVAL); 4763 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4764 } 4765 4766 /** 4767 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4768 * 4769 * This function simply calls the BUS_SUSPEND_INTR() method of the 4770 * parent of @p dev. 4771 */ 4772 int 4773 bus_suspend_intr(device_t dev, struct resource *r) 4774 { 4775 if (dev->parent == NULL) 4776 return (EINVAL); 4777 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4778 } 4779 4780 /** 4781 * @brief Wrapper function for BUS_RESUME_INTR(). 4782 * 4783 * This function simply calls the BUS_RESUME_INTR() method of the 4784 * parent of @p dev. 4785 */ 4786 int 4787 bus_resume_intr(device_t dev, struct resource *r) 4788 { 4789 if (dev->parent == NULL) 4790 return (EINVAL); 4791 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4792 } 4793 4794 /** 4795 * @brief Wrapper function for BUS_BIND_INTR(). 4796 * 4797 * This function simply calls the BUS_BIND_INTR() method of the 4798 * parent of @p dev. 4799 */ 4800 int 4801 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4802 { 4803 if (dev->parent == NULL) 4804 return (EINVAL); 4805 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4806 } 4807 4808 /** 4809 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4810 * 4811 * This function first formats the requested description into a 4812 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4813 * the parent of @p dev. 4814 */ 4815 int 4816 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4817 const char *fmt, ...) 4818 { 4819 va_list ap; 4820 char descr[MAXCOMLEN + 1]; 4821 4822 if (dev->parent == NULL) 4823 return (EINVAL); 4824 va_start(ap, fmt); 4825 vsnprintf(descr, sizeof(descr), fmt, ap); 4826 va_end(ap); 4827 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4828 } 4829 4830 /** 4831 * @brief Wrapper function for BUS_SET_RESOURCE(). 4832 * 4833 * This function simply calls the BUS_SET_RESOURCE() method of the 4834 * parent of @p dev. 4835 */ 4836 int 4837 bus_set_resource(device_t dev, int type, int rid, 4838 rman_res_t start, rman_res_t count) 4839 { 4840 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4841 start, count)); 4842 } 4843 4844 /** 4845 * @brief Wrapper function for BUS_GET_RESOURCE(). 4846 * 4847 * This function simply calls the BUS_GET_RESOURCE() method of the 4848 * parent of @p dev. 4849 */ 4850 int 4851 bus_get_resource(device_t dev, int type, int rid, 4852 rman_res_t *startp, rman_res_t *countp) 4853 { 4854 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4855 startp, countp)); 4856 } 4857 4858 /** 4859 * @brief Wrapper function for BUS_GET_RESOURCE(). 4860 * 4861 * This function simply calls the BUS_GET_RESOURCE() method of the 4862 * parent of @p dev and returns the start value. 4863 */ 4864 rman_res_t 4865 bus_get_resource_start(device_t dev, int type, int rid) 4866 { 4867 rman_res_t start; 4868 rman_res_t count; 4869 int error; 4870 4871 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4872 &start, &count); 4873 if (error) 4874 return (0); 4875 return (start); 4876 } 4877 4878 /** 4879 * @brief Wrapper function for BUS_GET_RESOURCE(). 4880 * 4881 * This function simply calls the BUS_GET_RESOURCE() method of the 4882 * parent of @p dev and returns the count value. 4883 */ 4884 rman_res_t 4885 bus_get_resource_count(device_t dev, int type, int rid) 4886 { 4887 rman_res_t start; 4888 rman_res_t count; 4889 int error; 4890 4891 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4892 &start, &count); 4893 if (error) 4894 return (0); 4895 return (count); 4896 } 4897 4898 /** 4899 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4900 * 4901 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4902 * parent of @p dev. 4903 */ 4904 void 4905 bus_delete_resource(device_t dev, int type, int rid) 4906 { 4907 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4908 } 4909 4910 /** 4911 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4912 * 4913 * This function simply calls the BUS_CHILD_PRESENT() method of the 4914 * parent of @p dev. 4915 */ 4916 int 4917 bus_child_present(device_t child) 4918 { 4919 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4920 } 4921 4922 /** 4923 * @brief Wrapper function for BUS_CHILD_PNPINFO(). 4924 * 4925 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p 4926 * dev. 4927 */ 4928 int 4929 bus_child_pnpinfo(device_t child, struct sbuf *sb) 4930 { 4931 device_t parent; 4932 4933 parent = device_get_parent(child); 4934 if (parent == NULL) 4935 return (0); 4936 return (BUS_CHILD_PNPINFO(parent, child, sb)); 4937 } 4938 4939 /** 4940 * @brief Generic implementation that does nothing for bus_child_pnpinfo 4941 * 4942 * This function has the right signature and returns 0 since the sbuf is passed 4943 * to us to append to. 4944 */ 4945 int 4946 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb) 4947 { 4948 return (0); 4949 } 4950 4951 /** 4952 * @brief Wrapper function for BUS_CHILD_LOCATION(). 4953 * 4954 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of 4955 * @p dev. 4956 */ 4957 int 4958 bus_child_location(device_t child, struct sbuf *sb) 4959 { 4960 device_t parent; 4961 4962 parent = device_get_parent(child); 4963 if (parent == NULL) 4964 return (0); 4965 return (BUS_CHILD_LOCATION(parent, child, sb)); 4966 } 4967 4968 /** 4969 * @brief Generic implementation that does nothing for bus_child_location 4970 * 4971 * This function has the right signature and returns 0 since the sbuf is passed 4972 * to us to append to. 4973 */ 4974 int 4975 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb) 4976 { 4977 return (0); 4978 } 4979 4980 /** 4981 * @brief Wrapper function for BUS_GET_CPUS(). 4982 * 4983 * This function simply calls the BUS_GET_CPUS() method of the 4984 * parent of @p dev. 4985 */ 4986 int 4987 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 4988 { 4989 device_t parent; 4990 4991 parent = device_get_parent(dev); 4992 if (parent == NULL) 4993 return (EINVAL); 4994 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 4995 } 4996 4997 /** 4998 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4999 * 5000 * This function simply calls the BUS_GET_DMA_TAG() method of the 5001 * parent of @p dev. 5002 */ 5003 bus_dma_tag_t 5004 bus_get_dma_tag(device_t dev) 5005 { 5006 device_t parent; 5007 5008 parent = device_get_parent(dev); 5009 if (parent == NULL) 5010 return (NULL); 5011 return (BUS_GET_DMA_TAG(parent, dev)); 5012 } 5013 5014 /** 5015 * @brief Wrapper function for BUS_GET_BUS_TAG(). 5016 * 5017 * This function simply calls the BUS_GET_BUS_TAG() method of the 5018 * parent of @p dev. 5019 */ 5020 bus_space_tag_t 5021 bus_get_bus_tag(device_t dev) 5022 { 5023 device_t parent; 5024 5025 parent = device_get_parent(dev); 5026 if (parent == NULL) 5027 return ((bus_space_tag_t)0); 5028 return (BUS_GET_BUS_TAG(parent, dev)); 5029 } 5030 5031 /** 5032 * @brief Wrapper function for BUS_GET_DOMAIN(). 5033 * 5034 * This function simply calls the BUS_GET_DOMAIN() method of the 5035 * parent of @p dev. 5036 */ 5037 int 5038 bus_get_domain(device_t dev, int *domain) 5039 { 5040 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 5041 } 5042 5043 /* Resume all devices and then notify userland that we're up again. */ 5044 static int 5045 root_resume(device_t dev) 5046 { 5047 int error; 5048 5049 error = bus_generic_resume(dev); 5050 if (error == 0) { 5051 devctl_notify("kernel", "power", "resume", NULL); 5052 } 5053 return (error); 5054 } 5055 5056 static int 5057 root_print_child(device_t dev, device_t child) 5058 { 5059 int retval = 0; 5060 5061 retval += bus_print_child_header(dev, child); 5062 retval += printf("\n"); 5063 5064 return (retval); 5065 } 5066 5067 static int 5068 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 5069 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 5070 { 5071 /* 5072 * If an interrupt mapping gets to here something bad has happened. 5073 */ 5074 panic("root_setup_intr"); 5075 } 5076 5077 /* 5078 * If we get here, assume that the device is permanent and really is 5079 * present in the system. Removable bus drivers are expected to intercept 5080 * this call long before it gets here. We return -1 so that drivers that 5081 * really care can check vs -1 or some ERRNO returned higher in the food 5082 * chain. 5083 */ 5084 static int 5085 root_child_present(device_t dev, device_t child) 5086 { 5087 return (-1); 5088 } 5089 5090 static int 5091 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 5092 cpuset_t *cpuset) 5093 { 5094 switch (op) { 5095 case INTR_CPUS: 5096 /* Default to returning the set of all CPUs. */ 5097 if (setsize != sizeof(cpuset_t)) 5098 return (EINVAL); 5099 *cpuset = all_cpus; 5100 return (0); 5101 default: 5102 return (EINVAL); 5103 } 5104 } 5105 5106 static kobj_method_t root_methods[] = { 5107 /* Device interface */ 5108 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 5109 KOBJMETHOD(device_suspend, bus_generic_suspend), 5110 KOBJMETHOD(device_resume, root_resume), 5111 5112 /* Bus interface */ 5113 KOBJMETHOD(bus_print_child, root_print_child), 5114 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 5115 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 5116 KOBJMETHOD(bus_setup_intr, root_setup_intr), 5117 KOBJMETHOD(bus_child_present, root_child_present), 5118 KOBJMETHOD(bus_get_cpus, root_get_cpus), 5119 5120 KOBJMETHOD_END 5121 }; 5122 5123 static driver_t root_driver = { 5124 "root", 5125 root_methods, 5126 1, /* no softc */ 5127 }; 5128 5129 device_t root_bus; 5130 devclass_t root_devclass; 5131 5132 static int 5133 root_bus_module_handler(module_t mod, int what, void* arg) 5134 { 5135 switch (what) { 5136 case MOD_LOAD: 5137 TAILQ_INIT(&bus_data_devices); 5138 kobj_class_compile((kobj_class_t) &root_driver); 5139 root_bus = make_device(NULL, "root", 0); 5140 root_bus->desc = "System root bus"; 5141 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 5142 root_bus->driver = &root_driver; 5143 root_bus->state = DS_ATTACHED; 5144 root_devclass = devclass_find_internal("root", NULL, FALSE); 5145 devctl2_init(); 5146 return (0); 5147 5148 case MOD_SHUTDOWN: 5149 device_shutdown(root_bus); 5150 return (0); 5151 default: 5152 return (EOPNOTSUPP); 5153 } 5154 5155 return (0); 5156 } 5157 5158 static moduledata_t root_bus_mod = { 5159 "rootbus", 5160 root_bus_module_handler, 5161 NULL 5162 }; 5163 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 5164 5165 /** 5166 * @brief Automatically configure devices 5167 * 5168 * This function begins the autoconfiguration process by calling 5169 * device_probe_and_attach() for each child of the @c root0 device. 5170 */ 5171 void 5172 root_bus_configure(void) 5173 { 5174 PDEBUG((".")); 5175 5176 /* Eventually this will be split up, but this is sufficient for now. */ 5177 bus_set_pass(BUS_PASS_DEFAULT); 5178 } 5179 5180 /** 5181 * @brief Module handler for registering device drivers 5182 * 5183 * This module handler is used to automatically register device 5184 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 5185 * devclass_add_driver() for the driver described by the 5186 * driver_module_data structure pointed to by @p arg 5187 */ 5188 int 5189 driver_module_handler(module_t mod, int what, void *arg) 5190 { 5191 struct driver_module_data *dmd; 5192 devclass_t bus_devclass; 5193 kobj_class_t driver; 5194 int error, pass; 5195 5196 dmd = (struct driver_module_data *)arg; 5197 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 5198 error = 0; 5199 5200 switch (what) { 5201 case MOD_LOAD: 5202 if (dmd->dmd_chainevh) 5203 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5204 5205 pass = dmd->dmd_pass; 5206 driver = dmd->dmd_driver; 5207 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 5208 DRIVERNAME(driver), dmd->dmd_busname, pass)); 5209 error = devclass_add_driver(bus_devclass, driver, pass, 5210 dmd->dmd_devclass); 5211 break; 5212 5213 case MOD_UNLOAD: 5214 PDEBUG(("Unloading module: driver %s from bus %s", 5215 DRIVERNAME(dmd->dmd_driver), 5216 dmd->dmd_busname)); 5217 error = devclass_delete_driver(bus_devclass, 5218 dmd->dmd_driver); 5219 5220 if (!error && dmd->dmd_chainevh) 5221 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5222 break; 5223 case MOD_QUIESCE: 5224 PDEBUG(("Quiesce module: driver %s from bus %s", 5225 DRIVERNAME(dmd->dmd_driver), 5226 dmd->dmd_busname)); 5227 error = devclass_quiesce_driver(bus_devclass, 5228 dmd->dmd_driver); 5229 5230 if (!error && dmd->dmd_chainevh) 5231 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5232 break; 5233 default: 5234 error = EOPNOTSUPP; 5235 break; 5236 } 5237 5238 return (error); 5239 } 5240 5241 /** 5242 * @brief Enumerate all hinted devices for this bus. 5243 * 5244 * Walks through the hints for this bus and calls the bus_hinted_child 5245 * routine for each one it fines. It searches first for the specific 5246 * bus that's being probed for hinted children (eg isa0), and then for 5247 * generic children (eg isa). 5248 * 5249 * @param dev bus device to enumerate 5250 */ 5251 void 5252 bus_enumerate_hinted_children(device_t bus) 5253 { 5254 int i; 5255 const char *dname, *busname; 5256 int dunit; 5257 5258 /* 5259 * enumerate all devices on the specific bus 5260 */ 5261 busname = device_get_nameunit(bus); 5262 i = 0; 5263 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5264 BUS_HINTED_CHILD(bus, dname, dunit); 5265 5266 /* 5267 * and all the generic ones. 5268 */ 5269 busname = device_get_name(bus); 5270 i = 0; 5271 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5272 BUS_HINTED_CHILD(bus, dname, dunit); 5273 } 5274 5275 #ifdef BUS_DEBUG 5276 5277 /* the _short versions avoid iteration by not calling anything that prints 5278 * more than oneliners. I love oneliners. 5279 */ 5280 5281 static void 5282 print_device_short(device_t dev, int indent) 5283 { 5284 if (!dev) 5285 return; 5286 5287 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5288 dev->unit, dev->desc, 5289 (dev->parent? "":"no "), 5290 (TAILQ_EMPTY(&dev->children)? "no ":""), 5291 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5292 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5293 (dev->flags&DF_WILDCARD? "wildcard,":""), 5294 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5295 (dev->flags&DF_SUSPENDED? "suspended,":""), 5296 (dev->ivars? "":"no "), 5297 (dev->softc? "":"no "), 5298 dev->busy)); 5299 } 5300 5301 static void 5302 print_device(device_t dev, int indent) 5303 { 5304 if (!dev) 5305 return; 5306 5307 print_device_short(dev, indent); 5308 5309 indentprintf(("Parent:\n")); 5310 print_device_short(dev->parent, indent+1); 5311 indentprintf(("Driver:\n")); 5312 print_driver_short(dev->driver, indent+1); 5313 indentprintf(("Devclass:\n")); 5314 print_devclass_short(dev->devclass, indent+1); 5315 } 5316 5317 void 5318 print_device_tree_short(device_t dev, int indent) 5319 /* print the device and all its children (indented) */ 5320 { 5321 device_t child; 5322 5323 if (!dev) 5324 return; 5325 5326 print_device_short(dev, indent); 5327 5328 TAILQ_FOREACH(child, &dev->children, link) { 5329 print_device_tree_short(child, indent+1); 5330 } 5331 } 5332 5333 void 5334 print_device_tree(device_t dev, int indent) 5335 /* print the device and all its children (indented) */ 5336 { 5337 device_t child; 5338 5339 if (!dev) 5340 return; 5341 5342 print_device(dev, indent); 5343 5344 TAILQ_FOREACH(child, &dev->children, link) { 5345 print_device_tree(child, indent+1); 5346 } 5347 } 5348 5349 static void 5350 print_driver_short(driver_t *driver, int indent) 5351 { 5352 if (!driver) 5353 return; 5354 5355 indentprintf(("driver %s: softc size = %zd\n", 5356 driver->name, driver->size)); 5357 } 5358 5359 static void 5360 print_driver(driver_t *driver, int indent) 5361 { 5362 if (!driver) 5363 return; 5364 5365 print_driver_short(driver, indent); 5366 } 5367 5368 static void 5369 print_driver_list(driver_list_t drivers, int indent) 5370 { 5371 driverlink_t driver; 5372 5373 TAILQ_FOREACH(driver, &drivers, link) { 5374 print_driver(driver->driver, indent); 5375 } 5376 } 5377 5378 static void 5379 print_devclass_short(devclass_t dc, int indent) 5380 { 5381 if ( !dc ) 5382 return; 5383 5384 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5385 } 5386 5387 static void 5388 print_devclass(devclass_t dc, int indent) 5389 { 5390 int i; 5391 5392 if ( !dc ) 5393 return; 5394 5395 print_devclass_short(dc, indent); 5396 indentprintf(("Drivers:\n")); 5397 print_driver_list(dc->drivers, indent+1); 5398 5399 indentprintf(("Devices:\n")); 5400 for (i = 0; i < dc->maxunit; i++) 5401 if (dc->devices[i]) 5402 print_device(dc->devices[i], indent+1); 5403 } 5404 5405 void 5406 print_devclass_list_short(void) 5407 { 5408 devclass_t dc; 5409 5410 printf("Short listing of devclasses, drivers & devices:\n"); 5411 TAILQ_FOREACH(dc, &devclasses, link) { 5412 print_devclass_short(dc, 0); 5413 } 5414 } 5415 5416 void 5417 print_devclass_list(void) 5418 { 5419 devclass_t dc; 5420 5421 printf("Full listing of devclasses, drivers & devices:\n"); 5422 TAILQ_FOREACH(dc, &devclasses, link) { 5423 print_devclass(dc, 0); 5424 } 5425 } 5426 5427 #endif 5428 5429 /* 5430 * User-space access to the device tree. 5431 * 5432 * We implement a small set of nodes: 5433 * 5434 * hw.bus Single integer read method to obtain the 5435 * current generation count. 5436 * hw.bus.devices Reads the entire device tree in flat space. 5437 * hw.bus.rman Resource manager interface 5438 * 5439 * We might like to add the ability to scan devclasses and/or drivers to 5440 * determine what else is currently loaded/available. 5441 */ 5442 5443 static int 5444 sysctl_bus_info(SYSCTL_HANDLER_ARGS) 5445 { 5446 struct u_businfo ubus; 5447 5448 ubus.ub_version = BUS_USER_VERSION; 5449 ubus.ub_generation = bus_data_generation; 5450 5451 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5452 } 5453 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | 5454 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", 5455 "bus-related data"); 5456 5457 static int 5458 sysctl_devices(SYSCTL_HANDLER_ARGS) 5459 { 5460 struct sbuf sb; 5461 int *name = (int *)arg1; 5462 u_int namelen = arg2; 5463 int index; 5464 device_t dev; 5465 struct u_device *udev; 5466 int error; 5467 5468 if (namelen != 2) 5469 return (EINVAL); 5470 5471 if (bus_data_generation_check(name[0])) 5472 return (EINVAL); 5473 5474 index = name[1]; 5475 5476 /* 5477 * Scan the list of devices, looking for the requested index. 5478 */ 5479 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5480 if (index-- == 0) 5481 break; 5482 } 5483 if (dev == NULL) 5484 return (ENOENT); 5485 5486 /* 5487 * Populate the return item, careful not to overflow the buffer. 5488 */ 5489 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5490 udev->dv_handle = (uintptr_t)dev; 5491 udev->dv_parent = (uintptr_t)dev->parent; 5492 udev->dv_devflags = dev->devflags; 5493 udev->dv_flags = dev->flags; 5494 udev->dv_state = dev->state; 5495 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN); 5496 if (dev->nameunit != NULL) 5497 sbuf_cat(&sb, dev->nameunit); 5498 sbuf_putc(&sb, '\0'); 5499 if (dev->desc != NULL) 5500 sbuf_cat(&sb, dev->desc); 5501 sbuf_putc(&sb, '\0'); 5502 if (dev->driver != NULL) 5503 sbuf_cat(&sb, dev->driver->name); 5504 sbuf_putc(&sb, '\0'); 5505 bus_child_pnpinfo(dev, &sb); 5506 sbuf_putc(&sb, '\0'); 5507 bus_child_location(dev, &sb); 5508 sbuf_putc(&sb, '\0'); 5509 error = sbuf_finish(&sb); 5510 if (error == 0) 5511 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5512 sbuf_delete(&sb); 5513 free(udev, M_BUS); 5514 return (error); 5515 } 5516 5517 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, 5518 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, 5519 "system device tree"); 5520 5521 int 5522 bus_data_generation_check(int generation) 5523 { 5524 if (generation != bus_data_generation) 5525 return (1); 5526 5527 /* XXX generate optimised lists here? */ 5528 return (0); 5529 } 5530 5531 void 5532 bus_data_generation_update(void) 5533 { 5534 atomic_add_int(&bus_data_generation, 1); 5535 } 5536 5537 int 5538 bus_free_resource(device_t dev, int type, struct resource *r) 5539 { 5540 if (r == NULL) 5541 return (0); 5542 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5543 } 5544 5545 device_t 5546 device_lookup_by_name(const char *name) 5547 { 5548 device_t dev; 5549 5550 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5551 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5552 return (dev); 5553 } 5554 return (NULL); 5555 } 5556 5557 /* 5558 * /dev/devctl2 implementation. The existing /dev/devctl device has 5559 * implicit semantics on open, so it could not be reused for this. 5560 * Another option would be to call this /dev/bus? 5561 */ 5562 static int 5563 find_device(struct devreq *req, device_t *devp) 5564 { 5565 device_t dev; 5566 5567 /* 5568 * First, ensure that the name is nul terminated. 5569 */ 5570 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5571 return (EINVAL); 5572 5573 /* 5574 * Second, try to find an attached device whose name matches 5575 * 'name'. 5576 */ 5577 dev = device_lookup_by_name(req->dr_name); 5578 if (dev != NULL) { 5579 *devp = dev; 5580 return (0); 5581 } 5582 5583 /* Finally, give device enumerators a chance. */ 5584 dev = NULL; 5585 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5586 if (dev == NULL) 5587 return (ENOENT); 5588 *devp = dev; 5589 return (0); 5590 } 5591 5592 static bool 5593 driver_exists(device_t bus, const char *driver) 5594 { 5595 devclass_t dc; 5596 5597 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5598 if (devclass_find_driver_internal(dc, driver) != NULL) 5599 return (true); 5600 } 5601 return (false); 5602 } 5603 5604 static void 5605 device_gen_nomatch(device_t dev) 5606 { 5607 device_t child; 5608 5609 if (dev->flags & DF_NEEDNOMATCH && 5610 dev->state == DS_NOTPRESENT) { 5611 device_handle_nomatch(dev); 5612 } 5613 dev->flags &= ~DF_NEEDNOMATCH; 5614 TAILQ_FOREACH(child, &dev->children, link) { 5615 device_gen_nomatch(child); 5616 } 5617 } 5618 5619 static void 5620 device_do_deferred_actions(void) 5621 { 5622 devclass_t dc; 5623 driverlink_t dl; 5624 5625 /* 5626 * Walk through the devclasses to find all the drivers we've tagged as 5627 * deferred during the freeze and call the driver added routines. They 5628 * have already been added to the lists in the background, so the driver 5629 * added routines that trigger a probe will have all the right bidders 5630 * for the probe auction. 5631 */ 5632 TAILQ_FOREACH(dc, &devclasses, link) { 5633 TAILQ_FOREACH(dl, &dc->drivers, link) { 5634 if (dl->flags & DL_DEFERRED_PROBE) { 5635 devclass_driver_added(dc, dl->driver); 5636 dl->flags &= ~DL_DEFERRED_PROBE; 5637 } 5638 } 5639 } 5640 5641 /* 5642 * We also defer no-match events during a freeze. Walk the tree and 5643 * generate all the pent-up events that are still relevant. 5644 */ 5645 device_gen_nomatch(root_bus); 5646 bus_data_generation_update(); 5647 } 5648 5649 static int 5650 device_get_path(device_t dev, const char *locator, struct sbuf *sb) 5651 { 5652 device_t parent; 5653 int error; 5654 5655 KASSERT(sb != NULL, ("sb is NULL")); 5656 parent = device_get_parent(dev); 5657 if (parent == NULL) { 5658 error = sbuf_putc(sb, '/'); 5659 } else { 5660 error = BUS_GET_DEVICE_PATH(parent, dev, locator, sb); 5661 if (error == 0) { 5662 error = sbuf_error(sb); 5663 if (error == 0 && sbuf_len(sb) <= 1) 5664 error = EIO; 5665 } 5666 } 5667 sbuf_finish(sb); 5668 return (error); 5669 } 5670 5671 static int 5672 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5673 struct thread *td) 5674 { 5675 struct devreq *req; 5676 device_t dev; 5677 int error, old; 5678 5679 /* Locate the device to control. */ 5680 bus_topo_lock(); 5681 req = (struct devreq *)data; 5682 switch (cmd) { 5683 case DEV_ATTACH: 5684 case DEV_DETACH: 5685 case DEV_ENABLE: 5686 case DEV_DISABLE: 5687 case DEV_SUSPEND: 5688 case DEV_RESUME: 5689 case DEV_SET_DRIVER: 5690 case DEV_CLEAR_DRIVER: 5691 case DEV_RESCAN: 5692 case DEV_DELETE: 5693 case DEV_RESET: 5694 error = priv_check(td, PRIV_DRIVER); 5695 if (error == 0) 5696 error = find_device(req, &dev); 5697 break; 5698 case DEV_FREEZE: 5699 case DEV_THAW: 5700 error = priv_check(td, PRIV_DRIVER); 5701 break; 5702 case DEV_GET_PATH: 5703 error = find_device(req, &dev); 5704 break; 5705 default: 5706 error = ENOTTY; 5707 break; 5708 } 5709 if (error) { 5710 bus_topo_unlock(); 5711 return (error); 5712 } 5713 5714 /* Perform the requested operation. */ 5715 switch (cmd) { 5716 case DEV_ATTACH: 5717 if (device_is_attached(dev)) 5718 error = EBUSY; 5719 else if (!device_is_enabled(dev)) 5720 error = ENXIO; 5721 else 5722 error = device_probe_and_attach(dev); 5723 break; 5724 case DEV_DETACH: 5725 if (!device_is_attached(dev)) { 5726 error = ENXIO; 5727 break; 5728 } 5729 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5730 error = device_quiesce(dev); 5731 if (error) 5732 break; 5733 } 5734 error = device_detach(dev); 5735 break; 5736 case DEV_ENABLE: 5737 if (device_is_enabled(dev)) { 5738 error = EBUSY; 5739 break; 5740 } 5741 5742 /* 5743 * If the device has been probed but not attached (e.g. 5744 * when it has been disabled by a loader hint), just 5745 * attach the device rather than doing a full probe. 5746 */ 5747 device_enable(dev); 5748 if (device_is_alive(dev)) { 5749 /* 5750 * If the device was disabled via a hint, clear 5751 * the hint. 5752 */ 5753 if (resource_disabled(dev->driver->name, dev->unit)) 5754 resource_unset_value(dev->driver->name, 5755 dev->unit, "disabled"); 5756 error = device_attach(dev); 5757 } else 5758 error = device_probe_and_attach(dev); 5759 break; 5760 case DEV_DISABLE: 5761 if (!device_is_enabled(dev)) { 5762 error = ENXIO; 5763 break; 5764 } 5765 5766 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5767 error = device_quiesce(dev); 5768 if (error) 5769 break; 5770 } 5771 5772 /* 5773 * Force DF_FIXEDCLASS on around detach to preserve 5774 * the existing name. 5775 */ 5776 old = dev->flags; 5777 dev->flags |= DF_FIXEDCLASS; 5778 error = device_detach(dev); 5779 if (!(old & DF_FIXEDCLASS)) 5780 dev->flags &= ~DF_FIXEDCLASS; 5781 if (error == 0) 5782 device_disable(dev); 5783 break; 5784 case DEV_SUSPEND: 5785 if (device_is_suspended(dev)) { 5786 error = EBUSY; 5787 break; 5788 } 5789 if (device_get_parent(dev) == NULL) { 5790 error = EINVAL; 5791 break; 5792 } 5793 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5794 break; 5795 case DEV_RESUME: 5796 if (!device_is_suspended(dev)) { 5797 error = EINVAL; 5798 break; 5799 } 5800 if (device_get_parent(dev) == NULL) { 5801 error = EINVAL; 5802 break; 5803 } 5804 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5805 break; 5806 case DEV_SET_DRIVER: { 5807 devclass_t dc; 5808 char driver[128]; 5809 5810 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5811 if (error) 5812 break; 5813 if (driver[0] == '\0') { 5814 error = EINVAL; 5815 break; 5816 } 5817 if (dev->devclass != NULL && 5818 strcmp(driver, dev->devclass->name) == 0) 5819 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5820 break; 5821 5822 /* 5823 * Scan drivers for this device's bus looking for at 5824 * least one matching driver. 5825 */ 5826 if (dev->parent == NULL) { 5827 error = EINVAL; 5828 break; 5829 } 5830 if (!driver_exists(dev->parent, driver)) { 5831 error = ENOENT; 5832 break; 5833 } 5834 dc = devclass_create(driver); 5835 if (dc == NULL) { 5836 error = ENOMEM; 5837 break; 5838 } 5839 5840 /* Detach device if necessary. */ 5841 if (device_is_attached(dev)) { 5842 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5843 error = device_detach(dev); 5844 else 5845 error = EBUSY; 5846 if (error) 5847 break; 5848 } 5849 5850 /* Clear any previously-fixed device class and unit. */ 5851 if (dev->flags & DF_FIXEDCLASS) 5852 devclass_delete_device(dev->devclass, dev); 5853 dev->flags |= DF_WILDCARD; 5854 dev->unit = DEVICE_UNIT_ANY; 5855 5856 /* Force the new device class. */ 5857 error = devclass_add_device(dc, dev); 5858 if (error) 5859 break; 5860 dev->flags |= DF_FIXEDCLASS; 5861 error = device_probe_and_attach(dev); 5862 break; 5863 } 5864 case DEV_CLEAR_DRIVER: 5865 if (!(dev->flags & DF_FIXEDCLASS)) { 5866 error = 0; 5867 break; 5868 } 5869 if (device_is_attached(dev)) { 5870 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5871 error = device_detach(dev); 5872 else 5873 error = EBUSY; 5874 if (error) 5875 break; 5876 } 5877 5878 dev->flags &= ~DF_FIXEDCLASS; 5879 dev->flags |= DF_WILDCARD; 5880 devclass_delete_device(dev->devclass, dev); 5881 error = device_probe_and_attach(dev); 5882 break; 5883 case DEV_RESCAN: 5884 if (!device_is_attached(dev)) { 5885 error = ENXIO; 5886 break; 5887 } 5888 error = BUS_RESCAN(dev); 5889 break; 5890 case DEV_DELETE: { 5891 device_t parent; 5892 5893 parent = device_get_parent(dev); 5894 if (parent == NULL) { 5895 error = EINVAL; 5896 break; 5897 } 5898 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5899 if (bus_child_present(dev) != 0) { 5900 error = EBUSY; 5901 break; 5902 } 5903 } 5904 5905 error = device_delete_child(parent, dev); 5906 break; 5907 } 5908 case DEV_FREEZE: 5909 if (device_frozen) 5910 error = EBUSY; 5911 else 5912 device_frozen = true; 5913 break; 5914 case DEV_THAW: 5915 if (!device_frozen) 5916 error = EBUSY; 5917 else { 5918 device_do_deferred_actions(); 5919 device_frozen = false; 5920 } 5921 break; 5922 case DEV_RESET: 5923 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 5924 error = EINVAL; 5925 break; 5926 } 5927 if (device_get_parent(dev) == NULL) { 5928 error = EINVAL; 5929 break; 5930 } 5931 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 5932 req->dr_flags); 5933 break; 5934 case DEV_GET_PATH: { 5935 struct sbuf *sb; 5936 char locator[64]; 5937 ssize_t len; 5938 5939 error = copyinstr(req->dr_buffer.buffer, locator, 5940 sizeof(locator), NULL); 5941 if (error != 0) 5942 break; 5943 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | 5944 SBUF_INCLUDENUL /* | SBUF_WAITOK */); 5945 error = device_get_path(dev, locator, sb); 5946 if (error == 0) { 5947 len = sbuf_len(sb); 5948 if (req->dr_buffer.length < len) { 5949 error = ENAMETOOLONG; 5950 } else { 5951 error = copyout(sbuf_data(sb), 5952 req->dr_buffer.buffer, len); 5953 } 5954 req->dr_buffer.length = len; 5955 } 5956 sbuf_delete(sb); 5957 break; 5958 } 5959 } 5960 bus_topo_unlock(); 5961 return (error); 5962 } 5963 5964 static struct cdevsw devctl2_cdevsw = { 5965 .d_version = D_VERSION, 5966 .d_ioctl = devctl2_ioctl, 5967 .d_name = "devctl2", 5968 }; 5969 5970 static void 5971 devctl2_init(void) 5972 { 5973 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5974 UID_ROOT, GID_WHEEL, 0644, "devctl2"); 5975 } 5976 5977 /* 5978 * For maintaining device 'at' location info to avoid recomputing it 5979 */ 5980 struct device_location_node { 5981 const char *dln_locator; 5982 const char *dln_path; 5983 TAILQ_ENTRY(device_location_node) dln_link; 5984 }; 5985 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t; 5986 5987 struct device_location_cache { 5988 device_location_list_t dlc_list; 5989 }; 5990 5991 5992 /* 5993 * Location cache for wired devices. 5994 */ 5995 device_location_cache_t * 5996 dev_wired_cache_init(void) 5997 { 5998 device_location_cache_t *dcp; 5999 6000 dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO); 6001 TAILQ_INIT(&dcp->dlc_list); 6002 6003 return (dcp); 6004 } 6005 6006 void 6007 dev_wired_cache_fini(device_location_cache_t *dcp) 6008 { 6009 struct device_location_node *dln, *tdln; 6010 6011 TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) { 6012 free(dln, M_BUS); 6013 } 6014 free(dcp, M_BUS); 6015 } 6016 6017 static struct device_location_node * 6018 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator) 6019 { 6020 struct device_location_node *dln; 6021 6022 TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) { 6023 if (strcmp(locator, dln->dln_locator) == 0) 6024 return (dln); 6025 } 6026 6027 return (NULL); 6028 } 6029 6030 static struct device_location_node * 6031 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path) 6032 { 6033 struct device_location_node *dln; 6034 size_t loclen, pathlen; 6035 6036 loclen = strlen(locator) + 1; 6037 pathlen = strlen(path) + 1; 6038 dln = malloc(sizeof(*dln) + loclen + pathlen, M_BUS, M_WAITOK | M_ZERO); 6039 dln->dln_locator = (char *)(dln + 1); 6040 memcpy(__DECONST(char *, dln->dln_locator), locator, loclen); 6041 dln->dln_path = dln->dln_locator + loclen; 6042 memcpy(__DECONST(char *, dln->dln_path), path, pathlen); 6043 TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link); 6044 6045 return (dln); 6046 } 6047 6048 bool 6049 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev, 6050 const char *at) 6051 { 6052 struct sbuf *sb; 6053 const char *cp; 6054 char locator[32]; 6055 int error, len; 6056 struct device_location_node *res; 6057 6058 cp = strchr(at, ':'); 6059 if (cp == NULL) 6060 return (false); 6061 len = cp - at; 6062 if (len > sizeof(locator) - 1) /* Skip too long locator */ 6063 return (false); 6064 memcpy(locator, at, len); 6065 locator[len] = '\0'; 6066 cp++; 6067 6068 error = 0; 6069 /* maybe cache this inside device_t and look that up, but not yet */ 6070 res = dev_wired_cache_lookup(dcp, locator); 6071 if (res == NULL) { 6072 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | 6073 SBUF_INCLUDENUL | SBUF_NOWAIT); 6074 if (sb != NULL) { 6075 error = device_get_path(dev, locator, sb); 6076 if (error == 0) { 6077 res = dev_wired_cache_add(dcp, locator, 6078 sbuf_data(sb)); 6079 } 6080 sbuf_delete(sb); 6081 } 6082 } 6083 if (error != 0 || res == NULL || res->dln_path == NULL) 6084 return (false); 6085 6086 return (strcmp(res->dln_path, cp) == 0); 6087 } 6088 6089 static struct device_prop_elm * 6090 device_prop_find(device_t dev, const char *name) 6091 { 6092 struct device_prop_elm *e; 6093 6094 bus_topo_assert(); 6095 6096 LIST_FOREACH(e, &dev->props, link) { 6097 if (strcmp(name, e->name) == 0) 6098 return (e); 6099 } 6100 return (NULL); 6101 } 6102 6103 int 6104 device_set_prop(device_t dev, const char *name, void *val, 6105 device_prop_dtr_t dtr, void *dtr_ctx) 6106 { 6107 struct device_prop_elm *e, *e1; 6108 6109 bus_topo_assert(); 6110 6111 e = device_prop_find(dev, name); 6112 if (e != NULL) 6113 goto found; 6114 6115 e1 = malloc(sizeof(*e), M_BUS, M_WAITOK); 6116 e = device_prop_find(dev, name); 6117 if (e != NULL) { 6118 free(e1, M_BUS); 6119 goto found; 6120 } 6121 6122 e1->name = name; 6123 e1->val = val; 6124 e1->dtr = dtr; 6125 e1->dtr_ctx = dtr_ctx; 6126 LIST_INSERT_HEAD(&dev->props, e1, link); 6127 return (0); 6128 6129 found: 6130 LIST_REMOVE(e, link); 6131 if (e->dtr != NULL) 6132 e->dtr(dev, name, e->val, e->dtr_ctx); 6133 e->val = val; 6134 e->dtr = dtr; 6135 e->dtr_ctx = dtr_ctx; 6136 LIST_INSERT_HEAD(&dev->props, e, link); 6137 return (EEXIST); 6138 } 6139 6140 int 6141 device_get_prop(device_t dev, const char *name, void **valp) 6142 { 6143 struct device_prop_elm *e; 6144 6145 bus_topo_assert(); 6146 6147 e = device_prop_find(dev, name); 6148 if (e == NULL) 6149 return (ENOENT); 6150 *valp = e->val; 6151 return (0); 6152 } 6153 6154 int 6155 device_clear_prop(device_t dev, const char *name) 6156 { 6157 struct device_prop_elm *e; 6158 6159 bus_topo_assert(); 6160 6161 e = device_prop_find(dev, name); 6162 if (e == NULL) 6163 return (ENOENT); 6164 LIST_REMOVE(e, link); 6165 if (e->dtr != NULL) 6166 e->dtr(dev, e->name, e->val, e->dtr_ctx); 6167 free(e, M_BUS); 6168 return (0); 6169 } 6170 6171 static void 6172 device_destroy_props(device_t dev) 6173 { 6174 struct device_prop_elm *e; 6175 6176 bus_topo_assert(); 6177 6178 while ((e = LIST_FIRST(&dev->props)) != NULL) { 6179 LIST_REMOVE_HEAD(&dev->props, link); 6180 if (e->dtr != NULL) 6181 e->dtr(dev, e->name, e->val, e->dtr_ctx); 6182 free(e, M_BUS); 6183 } 6184 } 6185 6186 void 6187 device_clear_prop_alldev(const char *name) 6188 { 6189 device_t dev; 6190 6191 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 6192 device_clear_prop(dev, name); 6193 } 6194 } 6195 6196 /* 6197 * APIs to manage deprecation and obsolescence. 6198 */ 6199 static int obsolete_panic = 0; 6200 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 6201 "Panic when obsolete features are used (0 = never, 1 = if obsolete, " 6202 "2 = if deprecated)"); 6203 6204 static void 6205 gone_panic(int major, int running, const char *msg) 6206 { 6207 switch (obsolete_panic) 6208 { 6209 case 0: 6210 return; 6211 case 1: 6212 if (running < major) 6213 return; 6214 /* FALLTHROUGH */ 6215 default: 6216 panic("%s", msg); 6217 } 6218 } 6219 6220 void 6221 _gone_in(int major, const char *msg) 6222 { 6223 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 6224 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 6225 printf("Obsolete code will be removed soon: %s\n", msg); 6226 else 6227 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 6228 major, msg); 6229 } 6230 6231 void 6232 _gone_in_dev(device_t dev, int major, const char *msg) 6233 { 6234 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 6235 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 6236 device_printf(dev, 6237 "Obsolete code will be removed soon: %s\n", msg); 6238 else 6239 device_printf(dev, 6240 "Deprecated code (to be removed in FreeBSD %d): %s\n", 6241 major, msg); 6242 } 6243 6244 #ifdef DDB 6245 DB_SHOW_COMMAND(device, db_show_device) 6246 { 6247 device_t dev; 6248 6249 if (!have_addr) 6250 return; 6251 6252 dev = (device_t)addr; 6253 6254 db_printf("name: %s\n", device_get_nameunit(dev)); 6255 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 6256 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 6257 db_printf(" addr: %p\n", dev); 6258 db_printf(" parent: %p\n", dev->parent); 6259 db_printf(" softc: %p\n", dev->softc); 6260 db_printf(" ivars: %p\n", dev->ivars); 6261 } 6262 6263 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 6264 { 6265 device_t dev; 6266 6267 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 6268 db_show_device((db_expr_t)dev, true, count, modif); 6269 } 6270 } 6271 #endif 6272