1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_bus.h" 31 #include "opt_ddb.h" 32 #include "opt_iommu.h" 33 34 #include <sys/param.h> 35 #include <sys/conf.h> 36 #include <sys/domainset.h> 37 #include <sys/eventhandler.h> 38 #include <sys/jail.h> 39 #include <sys/lock.h> 40 #include <sys/kernel.h> 41 #include <sys/limits.h> 42 #include <sys/malloc.h> 43 #include <sys/module.h> 44 #include <sys/mutex.h> 45 #include <sys/priv.h> 46 #include <machine/bus.h> 47 #include <sys/random.h> 48 #include <sys/refcount.h> 49 #include <sys/rman.h> 50 #include <sys/sbuf.h> 51 #include <sys/smp.h> 52 #include <sys/stdarg.h> 53 #include <sys/sysctl.h> 54 #include <sys/systm.h> 55 #include <sys/taskqueue.h> 56 #include <sys/bus.h> 57 #include <sys/cpuset.h> 58 #ifdef INTRNG 59 #include <sys/intr.h> 60 #endif 61 62 #include <net/vnet.h> 63 64 #include <machine/cpu.h> 65 66 #include <vm/uma.h> 67 #include <vm/vm.h> 68 69 #include <dev/iommu/iommu.h> 70 71 #include <ddb/ddb.h> 72 73 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 74 NULL); 75 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 76 NULL); 77 78 static bool disable_failed_devs = false; 79 SYSCTL_BOOL(_hw_bus, OID_AUTO, disable_failed_devices, CTLFLAG_RWTUN, &disable_failed_devs, 80 0, "Do not retry attaching devices that return an error from DEVICE_ATTACH the first time"); 81 82 /* 83 * Used to attach drivers to devclasses. 84 */ 85 typedef struct driverlink *driverlink_t; 86 struct driverlink { 87 kobj_class_t driver; 88 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 89 int pass; 90 int flags; 91 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 92 TAILQ_ENTRY(driverlink) passlink; 93 }; 94 95 /* 96 * Forward declarations 97 */ 98 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 99 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 100 typedef TAILQ_HEAD(device_list, _device) device_list_t; 101 102 struct devclass { 103 TAILQ_ENTRY(devclass) link; 104 devclass_t parent; /* parent in devclass hierarchy */ 105 driver_list_t drivers; /* bus devclasses store drivers for bus */ 106 char *name; 107 device_t *devices; /* array of devices indexed by unit */ 108 int maxunit; /* size of devices array */ 109 int flags; 110 #define DC_HAS_CHILDREN 1 111 112 struct sysctl_ctx_list sysctl_ctx; 113 struct sysctl_oid *sysctl_tree; 114 }; 115 116 struct device_prop_elm { 117 const char *name; 118 void *val; 119 void *dtr_ctx; 120 device_prop_dtr_t dtr; 121 LIST_ENTRY(device_prop_elm) link; 122 }; 123 124 TASKQUEUE_DEFINE_THREAD(bus); 125 126 static void device_destroy_props(device_t dev); 127 128 /** 129 * @brief Implementation of _device. 130 * 131 * The structure is named "_device" instead of "device" to avoid type confusion 132 * caused by other subsystems defining a (struct device). 133 */ 134 struct _device { 135 /* 136 * A device is a kernel object. The first field must be the 137 * current ops table for the object. 138 */ 139 KOBJ_FIELDS; 140 141 /* 142 * Device hierarchy. 143 */ 144 TAILQ_ENTRY(_device) link; /**< list of devices in parent */ 145 TAILQ_ENTRY(_device) devlink; /**< global device list membership */ 146 device_t parent; /**< parent of this device */ 147 device_list_t children; /**< list of child devices */ 148 149 /* 150 * Details of this device. 151 */ 152 driver_t *driver; /**< current driver */ 153 devclass_t devclass; /**< current device class */ 154 int unit; /**< current unit number */ 155 char* nameunit; /**< name+unit e.g. foodev0 */ 156 char* desc; /**< driver specific description */ 157 u_int busy; /**< count of calls to device_busy() */ 158 device_state_t state; /**< current device state */ 159 uint32_t devflags; /**< api level flags for device_get_flags() */ 160 u_int flags; /**< internal device flags */ 161 u_int order; /**< order from device_add_child_ordered() */ 162 void *ivars; /**< instance variables */ 163 void *softc; /**< current driver's variables */ 164 LIST_HEAD(, device_prop_elm) props; 165 166 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 167 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 168 }; 169 170 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 171 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 172 173 EVENTHANDLER_LIST_DEFINE(device_attach); 174 EVENTHANDLER_LIST_DEFINE(device_detach); 175 EVENTHANDLER_LIST_DEFINE(device_nomatch); 176 EVENTHANDLER_LIST_DEFINE(dev_lookup); 177 178 static void devctl2_init(void); 179 static bool device_frozen; 180 181 #define DRIVERNAME(d) ((d)? d->name : "no driver") 182 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 183 184 #ifdef BUS_DEBUG 185 186 static int bus_debug = 1; 187 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 188 "Bus debug level"); 189 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 190 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 191 192 /** 193 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 194 * prevent syslog from deleting initial spaces 195 */ 196 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 197 198 static void print_device_short(device_t dev, int indent); 199 static void print_device(device_t dev, int indent); 200 void print_device_tree_short(device_t dev, int indent); 201 void print_device_tree(device_t dev, int indent); 202 static void print_driver_short(driver_t *driver, int indent); 203 static void print_driver(driver_t *driver, int indent); 204 static void print_driver_list(driver_list_t drivers, int indent); 205 static void print_devclass_short(devclass_t dc, int indent); 206 static void print_devclass(devclass_t dc, int indent); 207 void print_devclass_list_short(void); 208 void print_devclass_list(void); 209 210 #else 211 /* Make the compiler ignore the function calls */ 212 #define PDEBUG(a) /* nop */ 213 #define DEVICENAME(d) /* nop */ 214 215 #define print_device_short(d,i) /* nop */ 216 #define print_device(d,i) /* nop */ 217 #define print_device_tree_short(d,i) /* nop */ 218 #define print_device_tree(d,i) /* nop */ 219 #define print_driver_short(d,i) /* nop */ 220 #define print_driver(d,i) /* nop */ 221 #define print_driver_list(d,i) /* nop */ 222 #define print_devclass_short(d,i) /* nop */ 223 #define print_devclass(d,i) /* nop */ 224 #define print_devclass_list_short() /* nop */ 225 #define print_devclass_list() /* nop */ 226 #endif 227 228 /* 229 * dev sysctl tree 230 */ 231 232 enum { 233 DEVCLASS_SYSCTL_PARENT, 234 }; 235 236 static int 237 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 238 { 239 devclass_t dc = (devclass_t)arg1; 240 const char *value; 241 242 switch (arg2) { 243 case DEVCLASS_SYSCTL_PARENT: 244 value = dc->parent ? dc->parent->name : ""; 245 break; 246 default: 247 return (EINVAL); 248 } 249 return (SYSCTL_OUT_STR(req, value)); 250 } 251 252 static void 253 devclass_sysctl_init(devclass_t dc) 254 { 255 if (dc->sysctl_tree != NULL) 256 return; 257 sysctl_ctx_init(&dc->sysctl_ctx); 258 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 259 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 260 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 261 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 262 OID_AUTO, "%parent", 263 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 264 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 265 "parent class"); 266 } 267 268 enum { 269 DEVICE_SYSCTL_DESC, 270 DEVICE_SYSCTL_DRIVER, 271 DEVICE_SYSCTL_LOCATION, 272 DEVICE_SYSCTL_PNPINFO, 273 DEVICE_SYSCTL_PARENT, 274 DEVICE_SYSCTL_IOMMU, 275 }; 276 277 static int 278 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 279 { 280 struct sbuf sb; 281 device_t dev = (device_t)arg1; 282 device_t iommu; 283 #ifdef IOMMU 284 device_t requester; 285 #endif 286 int error; 287 uint16_t rid; 288 const char *c; 289 290 sbuf_new_for_sysctl(&sb, NULL, 1024, req); 291 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 292 bus_topo_lock(); 293 switch (arg2) { 294 case DEVICE_SYSCTL_DESC: 295 sbuf_cat(&sb, dev->desc ? dev->desc : ""); 296 break; 297 case DEVICE_SYSCTL_DRIVER: 298 sbuf_cat(&sb, dev->driver ? dev->driver->name : ""); 299 break; 300 case DEVICE_SYSCTL_LOCATION: 301 bus_child_location(dev, &sb); 302 break; 303 case DEVICE_SYSCTL_PNPINFO: 304 bus_child_pnpinfo(dev, &sb); 305 break; 306 case DEVICE_SYSCTL_PARENT: 307 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : ""); 308 break; 309 case DEVICE_SYSCTL_IOMMU: 310 iommu = NULL; 311 error = device_get_prop(dev, DEV_PROP_NAME_IOMMU, 312 (void **)&iommu); 313 c = ""; 314 if (error == 0 && iommu != NULL) { 315 sbuf_printf(&sb, "unit=%s", device_get_nameunit(iommu)); 316 c = " "; 317 } 318 rid = 0; 319 #ifdef IOMMU 320 error = iommu_get_requester(dev, &requester, &rid); 321 /* 322 * Do not return requester error from sysctl, iommu 323 * unit might be assigned by other means. 324 */ 325 #else 326 error = ENXIO; 327 #endif 328 if (error == 0) 329 sbuf_printf(&sb, "%srid=%#x", c, rid); 330 break; 331 default: 332 error = EINVAL; 333 goto out; 334 } 335 error = sbuf_finish(&sb); 336 out: 337 bus_topo_unlock(); 338 sbuf_delete(&sb); 339 return (error); 340 } 341 342 static void 343 device_sysctl_init(device_t dev) 344 { 345 devclass_t dc = dev->devclass; 346 int domain; 347 348 if (dev->sysctl_tree != NULL) 349 return; 350 devclass_sysctl_init(dc); 351 sysctl_ctx_init(&dev->sysctl_ctx); 352 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 353 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 354 dev->nameunit + strlen(dc->name), 355 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); 356 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 357 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 358 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 359 "device description"); 360 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 361 OID_AUTO, "%driver", 362 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 363 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 364 "device driver name"); 365 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 366 OID_AUTO, "%location", 367 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 368 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 369 "device location relative to parent"); 370 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 371 OID_AUTO, "%pnpinfo", 372 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 373 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 374 "device identification"); 375 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 376 OID_AUTO, "%parent", 377 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 378 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 379 "parent device"); 380 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 381 OID_AUTO, "%iommu", 382 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 383 dev, DEVICE_SYSCTL_IOMMU, device_sysctl_handler, "A", 384 "iommu unit handling the device requests"); 385 if (bus_get_domain(dev, &domain) == 0) 386 SYSCTL_ADD_INT(&dev->sysctl_ctx, 387 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 388 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain"); 389 } 390 391 static void 392 device_sysctl_update(device_t dev) 393 { 394 devclass_t dc = dev->devclass; 395 396 if (dev->sysctl_tree == NULL) 397 return; 398 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 399 } 400 401 static void 402 device_sysctl_fini(device_t dev) 403 { 404 if (dev->sysctl_tree == NULL) 405 return; 406 sysctl_ctx_free(&dev->sysctl_ctx); 407 dev->sysctl_tree = NULL; 408 } 409 410 static struct device_list bus_data_devices; 411 static int bus_data_generation = 1; 412 413 static kobj_method_t null_methods[] = { 414 KOBJMETHOD_END 415 }; 416 417 DEFINE_CLASS(null, null_methods, 0); 418 419 void 420 bus_topo_assert(void) 421 { 422 423 GIANT_REQUIRED; 424 } 425 426 struct mtx * 427 bus_topo_mtx(void) 428 { 429 430 return (&Giant); 431 } 432 433 void 434 bus_topo_lock(void) 435 { 436 437 mtx_lock(bus_topo_mtx()); 438 } 439 440 void 441 bus_topo_unlock(void) 442 { 443 444 mtx_unlock(bus_topo_mtx()); 445 } 446 447 /* 448 * Bus pass implementation 449 */ 450 451 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 452 static int bus_current_pass = BUS_PASS_ROOT; 453 454 /** 455 * @internal 456 * @brief Register the pass level of a new driver attachment 457 * 458 * Register a new driver attachment's pass level. If no driver 459 * attachment with the same pass level has been added, then @p new 460 * will be added to the global passes list. 461 * 462 * @param new the new driver attachment 463 */ 464 static void 465 driver_register_pass(struct driverlink *new) 466 { 467 struct driverlink *dl; 468 469 /* We only consider pass numbers during boot. */ 470 if (bus_current_pass == BUS_PASS_DEFAULT) 471 return; 472 473 /* 474 * Walk the passes list. If we already know about this pass 475 * then there is nothing to do. If we don't, then insert this 476 * driver link into the list. 477 */ 478 TAILQ_FOREACH(dl, &passes, passlink) { 479 if (dl->pass < new->pass) 480 continue; 481 if (dl->pass == new->pass) 482 return; 483 TAILQ_INSERT_BEFORE(dl, new, passlink); 484 return; 485 } 486 TAILQ_INSERT_TAIL(&passes, new, passlink); 487 } 488 489 /** 490 * @brief Retrieve the current bus pass 491 * 492 * Retrieves the current bus pass level. Call the BUS_NEW_PASS() 493 * method on the root bus to kick off a new device tree scan for each 494 * new pass level that has at least one driver. 495 */ 496 int 497 bus_get_pass(void) 498 { 499 500 return (bus_current_pass); 501 } 502 503 /** 504 * @brief Raise the current bus pass 505 * 506 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 507 * method on the root bus to kick off a new device tree scan for each 508 * new pass level that has at least one driver. 509 */ 510 static void 511 bus_set_pass(int pass) 512 { 513 struct driverlink *dl; 514 515 if (bus_current_pass > pass) 516 panic("Attempt to lower bus pass level"); 517 518 TAILQ_FOREACH(dl, &passes, passlink) { 519 /* Skip pass values below the current pass level. */ 520 if (dl->pass <= bus_current_pass) 521 continue; 522 523 /* 524 * Bail once we hit a driver with a pass level that is 525 * too high. 526 */ 527 if (dl->pass > pass) 528 break; 529 530 /* 531 * Raise the pass level to the next level and rescan 532 * the tree. 533 */ 534 bus_current_pass = dl->pass; 535 BUS_NEW_PASS(root_bus); 536 } 537 538 /* 539 * If there isn't a driver registered for the requested pass, 540 * then bus_current_pass might still be less than 'pass'. Set 541 * it to 'pass' in that case. 542 */ 543 if (bus_current_pass < pass) 544 bus_current_pass = pass; 545 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 546 } 547 548 /* 549 * Devclass implementation 550 */ 551 552 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 553 554 /** 555 * @internal 556 * @brief Find or create a device class 557 * 558 * If a device class with the name @p classname exists, return it, 559 * otherwise if @p create is non-zero create and return a new device 560 * class. 561 * 562 * If @p parentname is non-NULL, the parent of the devclass is set to 563 * the devclass of that name. 564 * 565 * @param classname the devclass name to find or create 566 * @param parentname the parent devclass name or @c NULL 567 * @param create non-zero to create a devclass 568 */ 569 static devclass_t 570 devclass_find_internal(const char *classname, const char *parentname, 571 int create) 572 { 573 devclass_t dc; 574 575 PDEBUG(("looking for %s", classname)); 576 if (!classname) 577 return (NULL); 578 579 TAILQ_FOREACH(dc, &devclasses, link) { 580 if (!strcmp(dc->name, classname)) 581 break; 582 } 583 584 if (create && !dc) { 585 PDEBUG(("creating %s", classname)); 586 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 587 M_BUS, M_WAITOK | M_ZERO); 588 dc->parent = NULL; 589 dc->name = (char*) (dc + 1); 590 strcpy(dc->name, classname); 591 TAILQ_INIT(&dc->drivers); 592 TAILQ_INSERT_TAIL(&devclasses, dc, link); 593 594 bus_data_generation_update(); 595 } 596 597 /* 598 * If a parent class is specified, then set that as our parent so 599 * that this devclass will support drivers for the parent class as 600 * well. If the parent class has the same name don't do this though 601 * as it creates a cycle that can trigger an infinite loop in 602 * device_probe_child() if a device exists for which there is no 603 * suitable driver. 604 */ 605 if (parentname && dc && !dc->parent && 606 strcmp(classname, parentname) != 0) { 607 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 608 dc->parent->flags |= DC_HAS_CHILDREN; 609 } 610 611 return (dc); 612 } 613 614 /** 615 * @brief Create a device class 616 * 617 * If a device class with the name @p classname exists, return it, 618 * otherwise create and return a new device class. 619 * 620 * @param classname the devclass name to find or create 621 */ 622 devclass_t 623 devclass_create(const char *classname) 624 { 625 return (devclass_find_internal(classname, NULL, TRUE)); 626 } 627 628 /** 629 * @brief Find a device class 630 * 631 * If a device class with the name @p classname exists, return it, 632 * otherwise return @c NULL. 633 * 634 * @param classname the devclass name to find 635 */ 636 devclass_t 637 devclass_find(const char *classname) 638 { 639 return (devclass_find_internal(classname, NULL, FALSE)); 640 } 641 642 /** 643 * @brief Register that a device driver has been added to a devclass 644 * 645 * Register that a device driver has been added to a devclass. This 646 * is called by devclass_add_driver to accomplish the recursive 647 * notification of all the children classes of dc, as well as dc. 648 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 649 * the devclass. 650 * 651 * We do a full search here of the devclass list at each iteration 652 * level to save storing children-lists in the devclass structure. If 653 * we ever move beyond a few dozen devices doing this, we may need to 654 * reevaluate... 655 * 656 * @param dc the devclass to edit 657 * @param driver the driver that was just added 658 */ 659 static void 660 devclass_driver_added(devclass_t dc, driver_t *driver) 661 { 662 devclass_t parent; 663 int i; 664 665 /* 666 * Call BUS_DRIVER_ADDED for any existing buses in this class. 667 */ 668 for (i = 0; i < dc->maxunit; i++) 669 if (dc->devices[i] && device_is_attached(dc->devices[i])) 670 BUS_DRIVER_ADDED(dc->devices[i], driver); 671 672 /* 673 * Walk through the children classes. Since we only keep a 674 * single parent pointer around, we walk the entire list of 675 * devclasses looking for children. We set the 676 * DC_HAS_CHILDREN flag when a child devclass is created on 677 * the parent, so we only walk the list for those devclasses 678 * that have children. 679 */ 680 if (!(dc->flags & DC_HAS_CHILDREN)) 681 return; 682 parent = dc; 683 TAILQ_FOREACH(dc, &devclasses, link) { 684 if (dc->parent == parent) 685 devclass_driver_added(dc, driver); 686 } 687 } 688 689 static void 690 device_handle_nomatch(device_t dev) 691 { 692 BUS_PROBE_NOMATCH(dev->parent, dev); 693 EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev); 694 dev->flags |= DF_DONENOMATCH; 695 } 696 697 /** 698 * @brief Add a device driver to a device class 699 * 700 * Add a device driver to a devclass. This is normally called 701 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 702 * all devices in the devclass will be called to allow them to attempt 703 * to re-probe any unmatched children. 704 * 705 * @param dc the devclass to edit 706 * @param driver the driver to register 707 */ 708 int 709 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 710 { 711 driverlink_t dl; 712 devclass_t child_dc; 713 const char *parentname; 714 715 PDEBUG(("%s", DRIVERNAME(driver))); 716 717 /* Don't allow invalid pass values. */ 718 if (pass <= BUS_PASS_ROOT) 719 return (EINVAL); 720 721 dl = malloc(sizeof *dl, M_BUS, M_WAITOK|M_ZERO); 722 723 /* 724 * Compile the driver's methods. Also increase the reference count 725 * so that the class doesn't get freed when the last instance 726 * goes. This means we can safely use static methods and avoids a 727 * double-free in devclass_delete_driver. 728 */ 729 kobj_class_compile((kobj_class_t) driver); 730 731 /* 732 * If the driver has any base classes, make the 733 * devclass inherit from the devclass of the driver's 734 * first base class. This will allow the system to 735 * search for drivers in both devclasses for children 736 * of a device using this driver. 737 */ 738 if (driver->baseclasses) 739 parentname = driver->baseclasses[0]->name; 740 else 741 parentname = NULL; 742 child_dc = devclass_find_internal(driver->name, parentname, TRUE); 743 if (dcp != NULL) 744 *dcp = child_dc; 745 746 dl->driver = driver; 747 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 748 driver->refs++; /* XXX: kobj_mtx */ 749 dl->pass = pass; 750 driver_register_pass(dl); 751 752 if (device_frozen) { 753 dl->flags |= DL_DEFERRED_PROBE; 754 } else { 755 devclass_driver_added(dc, driver); 756 } 757 bus_data_generation_update(); 758 return (0); 759 } 760 761 /** 762 * @brief Register that a device driver has been deleted from a devclass 763 * 764 * Register that a device driver has been removed from a devclass. 765 * This is called by devclass_delete_driver to accomplish the 766 * recursive notification of all the children classes of busclass, as 767 * well as busclass. Each layer will attempt to detach the driver 768 * from any devices that are children of the bus's devclass. The function 769 * will return an error if a device fails to detach. 770 * 771 * We do a full search here of the devclass list at each iteration 772 * level to save storing children-lists in the devclass structure. If 773 * we ever move beyond a few dozen devices doing this, we may need to 774 * reevaluate... 775 * 776 * @param busclass the devclass of the parent bus 777 * @param dc the devclass of the driver being deleted 778 * @param driver the driver being deleted 779 */ 780 static int 781 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 782 { 783 devclass_t parent; 784 device_t dev; 785 int error, i; 786 787 /* 788 * Disassociate from any devices. We iterate through all the 789 * devices in the devclass of the driver and detach any which are 790 * using the driver and which have a parent in the devclass which 791 * we are deleting from. 792 * 793 * Note that since a driver can be in multiple devclasses, we 794 * should not detach devices which are not children of devices in 795 * the affected devclass. 796 * 797 * If we're frozen, we don't generate NOMATCH events. Mark to 798 * generate later. 799 */ 800 for (i = 0; i < dc->maxunit; i++) { 801 if (dc->devices[i]) { 802 dev = dc->devices[i]; 803 if (dev->driver == driver && dev->parent && 804 dev->parent->devclass == busclass) { 805 if ((error = device_detach(dev)) != 0) 806 return (error); 807 if (device_frozen) { 808 dev->flags &= ~DF_DONENOMATCH; 809 dev->flags |= DF_NEEDNOMATCH; 810 } else { 811 device_handle_nomatch(dev); 812 } 813 } 814 } 815 } 816 817 /* 818 * Walk through the children classes. Since we only keep a 819 * single parent pointer around, we walk the entire list of 820 * devclasses looking for children. We set the 821 * DC_HAS_CHILDREN flag when a child devclass is created on 822 * the parent, so we only walk the list for those devclasses 823 * that have children. 824 */ 825 if (!(busclass->flags & DC_HAS_CHILDREN)) 826 return (0); 827 parent = busclass; 828 TAILQ_FOREACH(busclass, &devclasses, link) { 829 if (busclass->parent == parent) { 830 error = devclass_driver_deleted(busclass, dc, driver); 831 if (error) 832 return (error); 833 } 834 } 835 return (0); 836 } 837 838 /** 839 * @brief Delete a device driver from a device class 840 * 841 * Delete a device driver from a devclass. This is normally called 842 * automatically by DRIVER_MODULE(). 843 * 844 * If the driver is currently attached to any devices, 845 * devclass_delete_driver() will first attempt to detach from each 846 * device. If one of the detach calls fails, the driver will not be 847 * deleted. 848 * 849 * @param dc the devclass to edit 850 * @param driver the driver to unregister 851 */ 852 int 853 devclass_delete_driver(devclass_t busclass, driver_t *driver) 854 { 855 devclass_t dc = devclass_find(driver->name); 856 driverlink_t dl; 857 int error; 858 859 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 860 861 if (!dc) 862 return (0); 863 864 /* 865 * Find the link structure in the bus' list of drivers. 866 */ 867 TAILQ_FOREACH(dl, &busclass->drivers, link) { 868 if (dl->driver == driver) 869 break; 870 } 871 872 if (!dl) { 873 PDEBUG(("%s not found in %s list", driver->name, 874 busclass->name)); 875 return (ENOENT); 876 } 877 878 error = devclass_driver_deleted(busclass, dc, driver); 879 if (error != 0) 880 return (error); 881 882 TAILQ_REMOVE(&busclass->drivers, dl, link); 883 free(dl, M_BUS); 884 885 /* XXX: kobj_mtx */ 886 driver->refs--; 887 if (driver->refs == 0) 888 kobj_class_free((kobj_class_t) driver); 889 890 bus_data_generation_update(); 891 return (0); 892 } 893 894 /** 895 * @brief Quiesces a set of device drivers from a device class 896 * 897 * Quiesce a device driver from a devclass. This is normally called 898 * automatically by DRIVER_MODULE(). 899 * 900 * If the driver is currently attached to any devices, 901 * devclass_quiesece_driver() will first attempt to quiesce each 902 * device. 903 * 904 * @param dc the devclass to edit 905 * @param driver the driver to unregister 906 */ 907 static int 908 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 909 { 910 devclass_t dc = devclass_find(driver->name); 911 driverlink_t dl; 912 device_t dev; 913 int i; 914 int error; 915 916 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 917 918 if (!dc) 919 return (0); 920 921 /* 922 * Find the link structure in the bus' list of drivers. 923 */ 924 TAILQ_FOREACH(dl, &busclass->drivers, link) { 925 if (dl->driver == driver) 926 break; 927 } 928 929 if (!dl) { 930 PDEBUG(("%s not found in %s list", driver->name, 931 busclass->name)); 932 return (ENOENT); 933 } 934 935 /* 936 * Quiesce all devices. We iterate through all the devices in 937 * the devclass of the driver and quiesce any which are using 938 * the driver and which have a parent in the devclass which we 939 * are quiescing. 940 * 941 * Note that since a driver can be in multiple devclasses, we 942 * should not quiesce devices which are not children of 943 * devices in the affected devclass. 944 */ 945 for (i = 0; i < dc->maxunit; i++) { 946 if (dc->devices[i]) { 947 dev = dc->devices[i]; 948 if (dev->driver == driver && dev->parent && 949 dev->parent->devclass == busclass) { 950 if ((error = device_quiesce(dev)) != 0) 951 return (error); 952 } 953 } 954 } 955 956 return (0); 957 } 958 959 /** 960 * @internal 961 */ 962 static driverlink_t 963 devclass_find_driver_internal(devclass_t dc, const char *classname) 964 { 965 driverlink_t dl; 966 967 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 968 969 TAILQ_FOREACH(dl, &dc->drivers, link) { 970 if (!strcmp(dl->driver->name, classname)) 971 return (dl); 972 } 973 974 PDEBUG(("not found")); 975 return (NULL); 976 } 977 978 /** 979 * @brief Return the name of the devclass 980 */ 981 const char * 982 devclass_get_name(devclass_t dc) 983 { 984 return (dc->name); 985 } 986 987 /** 988 * @brief Find a device given a unit number 989 * 990 * @param dc the devclass to search 991 * @param unit the unit number to search for 992 * 993 * @returns the device with the given unit number or @c 994 * NULL if there is no such device 995 */ 996 device_t 997 devclass_get_device(devclass_t dc, int unit) 998 { 999 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1000 return (NULL); 1001 return (dc->devices[unit]); 1002 } 1003 1004 /** 1005 * @brief Find the softc field of a device given a unit number 1006 * 1007 * @param dc the devclass to search 1008 * @param unit the unit number to search for 1009 * 1010 * @returns the softc field of the device with the given 1011 * unit number or @c NULL if there is no such 1012 * device 1013 */ 1014 void * 1015 devclass_get_softc(devclass_t dc, int unit) 1016 { 1017 device_t dev; 1018 1019 dev = devclass_get_device(dc, unit); 1020 if (!dev) 1021 return (NULL); 1022 1023 return (device_get_softc(dev)); 1024 } 1025 1026 /** 1027 * @brief Get a list of devices in the devclass 1028 * 1029 * An array containing a list of all the devices in the given devclass 1030 * is allocated and returned in @p *devlistp. The number of devices 1031 * in the array is returned in @p *devcountp. The caller should free 1032 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1033 * 1034 * @param dc the devclass to examine 1035 * @param devlistp points at location for array pointer return 1036 * value 1037 * @param devcountp points at location for array size return value 1038 * 1039 * @retval 0 success 1040 * @retval ENOMEM the array allocation failed 1041 */ 1042 int 1043 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1044 { 1045 int count, i; 1046 device_t *list; 1047 1048 count = devclass_get_count(dc); 1049 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1050 if (!list) 1051 return (ENOMEM); 1052 1053 count = 0; 1054 for (i = 0; i < dc->maxunit; i++) { 1055 if (dc->devices[i]) { 1056 list[count] = dc->devices[i]; 1057 count++; 1058 } 1059 } 1060 1061 *devlistp = list; 1062 *devcountp = count; 1063 1064 return (0); 1065 } 1066 1067 /** 1068 * @brief Get a list of drivers in the devclass 1069 * 1070 * An array containing a list of pointers to all the drivers in the 1071 * given devclass is allocated and returned in @p *listp. The number 1072 * of drivers in the array is returned in @p *countp. The caller should 1073 * free the array using @c free(p, M_TEMP). 1074 * 1075 * @param dc the devclass to examine 1076 * @param listp gives location for array pointer return value 1077 * @param countp gives location for number of array elements 1078 * return value 1079 * 1080 * @retval 0 success 1081 * @retval ENOMEM the array allocation failed 1082 */ 1083 int 1084 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1085 { 1086 driverlink_t dl; 1087 driver_t **list; 1088 int count; 1089 1090 count = 0; 1091 TAILQ_FOREACH(dl, &dc->drivers, link) 1092 count++; 1093 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1094 if (list == NULL) 1095 return (ENOMEM); 1096 1097 count = 0; 1098 TAILQ_FOREACH(dl, &dc->drivers, link) { 1099 list[count] = dl->driver; 1100 count++; 1101 } 1102 *listp = list; 1103 *countp = count; 1104 1105 return (0); 1106 } 1107 1108 /** 1109 * @brief Get the number of devices in a devclass 1110 * 1111 * @param dc the devclass to examine 1112 */ 1113 int 1114 devclass_get_count(devclass_t dc) 1115 { 1116 int count, i; 1117 1118 count = 0; 1119 for (i = 0; i < dc->maxunit; i++) 1120 if (dc->devices[i]) 1121 count++; 1122 return (count); 1123 } 1124 1125 /** 1126 * @brief Get the maximum unit number used in a devclass 1127 * 1128 * Note that this is one greater than the highest currently-allocated unit. If 1129 * @p dc is NULL, @c -1 is returned to indicate that not even the devclass has 1130 * been allocated yet. 1131 * 1132 * @param dc the devclass to examine 1133 */ 1134 int 1135 devclass_get_maxunit(devclass_t dc) 1136 { 1137 if (dc == NULL) 1138 return (-1); 1139 return (dc->maxunit); 1140 } 1141 1142 /** 1143 * @brief Find a free unit number in a devclass 1144 * 1145 * This function searches for the first unused unit number greater 1146 * that or equal to @p unit. Note: This can return INT_MAX which 1147 * may be rejected elsewhere. 1148 * 1149 * @param dc the devclass to examine 1150 * @param unit the first unit number to check 1151 */ 1152 int 1153 devclass_find_free_unit(devclass_t dc, int unit) 1154 { 1155 if (dc == NULL) 1156 return (unit); 1157 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1158 unit++; 1159 return (unit); 1160 } 1161 1162 /** 1163 * @brief Set the parent of a devclass 1164 * 1165 * The parent class is normally initialised automatically by 1166 * DRIVER_MODULE(). 1167 * 1168 * @param dc the devclass to edit 1169 * @param pdc the new parent devclass 1170 */ 1171 void 1172 devclass_set_parent(devclass_t dc, devclass_t pdc) 1173 { 1174 dc->parent = pdc; 1175 } 1176 1177 /** 1178 * @brief Get the parent of a devclass 1179 * 1180 * @param dc the devclass to examine 1181 */ 1182 devclass_t 1183 devclass_get_parent(devclass_t dc) 1184 { 1185 return (dc->parent); 1186 } 1187 1188 struct sysctl_ctx_list * 1189 devclass_get_sysctl_ctx(devclass_t dc) 1190 { 1191 return (&dc->sysctl_ctx); 1192 } 1193 1194 struct sysctl_oid * 1195 devclass_get_sysctl_tree(devclass_t dc) 1196 { 1197 return (dc->sysctl_tree); 1198 } 1199 1200 /** 1201 * @internal 1202 * @brief Allocate a unit number 1203 * 1204 * On entry, @p *unitp is the desired unit number (or @c DEVICE_UNIT_ANY if any 1205 * will do). The allocated unit number is returned in @p *unitp. 1206 * 1207 * @param dc the devclass to allocate from 1208 * @param unitp points at the location for the allocated unit 1209 * number 1210 * 1211 * @retval 0 success 1212 * @retval EEXIST the requested unit number is already allocated 1213 * @retval ENOMEM memory allocation failure 1214 * @retval EINVAL unit is negative or we've run out of units 1215 */ 1216 static int 1217 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1218 { 1219 const char *s; 1220 int unit = *unitp; 1221 1222 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1223 1224 /* Ask the parent bus if it wants to wire this device. */ 1225 if (unit == DEVICE_UNIT_ANY) 1226 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1227 &unit); 1228 1229 /* Unit numbers are either DEVICE_UNIT_ANY or in [0,INT_MAX) */ 1230 if ((unit < 0 && unit != DEVICE_UNIT_ANY) || unit == INT_MAX) 1231 return (EINVAL); 1232 1233 /* If we were given a wired unit number, check for existing device */ 1234 if (unit != DEVICE_UNIT_ANY) { 1235 if (unit < dc->maxunit && dc->devices[unit] != NULL) { 1236 if (bootverbose) 1237 printf("%s: %s%d already exists; skipping it\n", 1238 dc->name, dc->name, *unitp); 1239 return (EEXIST); 1240 } 1241 } else { 1242 /* Unwired device, find the next available slot for it */ 1243 unit = 0; 1244 for (unit = 0; unit < INT_MAX; unit++) { 1245 /* If this device slot is already in use, skip it. */ 1246 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1247 continue; 1248 1249 /* If there is an "at" hint for a unit then skip it. */ 1250 if (resource_string_value(dc->name, unit, "at", &s) == 1251 0) 1252 continue; 1253 1254 break; 1255 } 1256 } 1257 1258 /* 1259 * Unit numbers must be in the range [0, INT_MAX), so exclude INT_MAX as 1260 * too large. We constrain maxunit below to be <= INT_MAX. This means we 1261 * can treat unit and maxunit as normal integers with normal math 1262 * everywhere and we only have to flag INT_MAX as invalid. 1263 */ 1264 if (unit == INT_MAX) 1265 return (EINVAL); 1266 1267 /* 1268 * We've selected a unit beyond the length of the table, so let's extend 1269 * the table to make room for all units up to and including this one. 1270 */ 1271 if (unit >= dc->maxunit) { 1272 int newsize; 1273 1274 newsize = unit + 1; 1275 dc->devices = reallocf(dc->devices, 1276 newsize * sizeof(*dc->devices), M_BUS, M_WAITOK); 1277 memset(dc->devices + dc->maxunit, 0, 1278 sizeof(device_t) * (newsize - dc->maxunit)); 1279 dc->maxunit = newsize; 1280 } 1281 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1282 1283 *unitp = unit; 1284 return (0); 1285 } 1286 1287 /** 1288 * @internal 1289 * @brief Add a device to a devclass 1290 * 1291 * A unit number is allocated for the device (using the device's 1292 * preferred unit number if any) and the device is registered in the 1293 * devclass. This allows the device to be looked up by its unit 1294 * number, e.g. by decoding a dev_t minor number. 1295 * 1296 * @param dc the devclass to add to 1297 * @param dev the device to add 1298 * 1299 * @retval 0 success 1300 * @retval EEXIST the requested unit number is already allocated 1301 * @retval ENOMEM memory allocation failure 1302 * @retval EINVAL Unit number invalid or too many units 1303 */ 1304 static int 1305 devclass_add_device(devclass_t dc, device_t dev) 1306 { 1307 int buflen, error; 1308 1309 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1310 1311 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1312 if (buflen < 0) 1313 return (ENOMEM); 1314 dev->nameunit = malloc(buflen, M_BUS, M_WAITOK|M_ZERO); 1315 1316 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1317 free(dev->nameunit, M_BUS); 1318 dev->nameunit = NULL; 1319 return (error); 1320 } 1321 dc->devices[dev->unit] = dev; 1322 dev->devclass = dc; 1323 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1324 1325 return (0); 1326 } 1327 1328 /** 1329 * @internal 1330 * @brief Delete a device from a devclass 1331 * 1332 * The device is removed from the devclass's device list and its unit 1333 * number is freed. 1334 1335 * @param dc the devclass to delete from 1336 * @param dev the device to delete 1337 * 1338 * @retval 0 success 1339 */ 1340 static int 1341 devclass_delete_device(devclass_t dc, device_t dev) 1342 { 1343 if (!dc || !dev) 1344 return (0); 1345 1346 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1347 1348 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1349 panic("devclass_delete_device: inconsistent device class"); 1350 dc->devices[dev->unit] = NULL; 1351 if (dev->flags & DF_WILDCARD) 1352 dev->unit = DEVICE_UNIT_ANY; 1353 dev->devclass = NULL; 1354 free(dev->nameunit, M_BUS); 1355 dev->nameunit = NULL; 1356 1357 return (0); 1358 } 1359 1360 /** 1361 * @internal 1362 * @brief Make a new device and add it as a child of @p parent 1363 * 1364 * @param parent the parent of the new device 1365 * @param name the devclass name of the new device or @c NULL 1366 * to leave the devclass unspecified 1367 * @parem unit the unit number of the new device of @c DEVICE_UNIT_ANY 1368 * to leave the unit number unspecified 1369 * 1370 * @returns the new device 1371 */ 1372 static device_t 1373 make_device(device_t parent, const char *name, int unit) 1374 { 1375 device_t dev; 1376 devclass_t dc; 1377 1378 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1379 1380 if (name) { 1381 dc = devclass_find_internal(name, NULL, TRUE); 1382 if (!dc) { 1383 printf("make_device: can't find device class %s\n", 1384 name); 1385 return (NULL); 1386 } 1387 } else { 1388 dc = NULL; 1389 } 1390 1391 dev = malloc(sizeof(*dev), M_BUS, M_WAITOK|M_ZERO); 1392 dev->parent = parent; 1393 TAILQ_INIT(&dev->children); 1394 kobj_init((kobj_t) dev, &null_class); 1395 dev->driver = NULL; 1396 dev->devclass = NULL; 1397 dev->unit = unit; 1398 dev->nameunit = NULL; 1399 dev->desc = NULL; 1400 dev->busy = 0; 1401 dev->devflags = 0; 1402 dev->flags = DF_ENABLED; 1403 dev->order = 0; 1404 if (unit == DEVICE_UNIT_ANY) 1405 dev->flags |= DF_WILDCARD; 1406 if (name) { 1407 dev->flags |= DF_FIXEDCLASS; 1408 if (devclass_add_device(dc, dev)) { 1409 kobj_delete((kobj_t) dev, M_BUS); 1410 return (NULL); 1411 } 1412 } 1413 if (parent != NULL && device_has_quiet_children(parent)) 1414 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1415 dev->ivars = NULL; 1416 dev->softc = NULL; 1417 LIST_INIT(&dev->props); 1418 1419 dev->state = DS_NOTPRESENT; 1420 1421 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1422 bus_data_generation_update(); 1423 1424 return (dev); 1425 } 1426 1427 /** 1428 * @internal 1429 * @brief Print a description of a device. 1430 */ 1431 static int 1432 device_print_child(device_t dev, device_t child) 1433 { 1434 int retval = 0; 1435 1436 if (device_is_alive(child)) 1437 retval += BUS_PRINT_CHILD(dev, child); 1438 else 1439 retval += device_printf(child, " not found\n"); 1440 1441 return (retval); 1442 } 1443 1444 /** 1445 * @brief Create a new device 1446 * 1447 * This creates a new device and adds it as a child of an existing 1448 * parent device. The new device will be added after the last existing 1449 * child with order zero. 1450 * 1451 * @param dev the device which will be the parent of the 1452 * new child device 1453 * @param name devclass name for new device or @c NULL if not 1454 * specified 1455 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not 1456 * specified 1457 * 1458 * @returns the new device 1459 */ 1460 device_t 1461 device_add_child(device_t dev, const char *name, int unit) 1462 { 1463 return (device_add_child_ordered(dev, 0, name, unit)); 1464 } 1465 1466 /** 1467 * @brief Create a new device 1468 * 1469 * This creates a new device and adds it as a child of an existing 1470 * parent device. The new device will be added after the last existing 1471 * child with the same order. 1472 * 1473 * @param dev the device which will be the parent of the 1474 * new child device 1475 * @param order a value which is used to partially sort the 1476 * children of @p dev - devices created using 1477 * lower values of @p order appear first in @p 1478 * dev's list of children 1479 * @param name devclass name for new device or @c NULL if not 1480 * specified 1481 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not 1482 * specified 1483 * 1484 * @returns the new device 1485 */ 1486 device_t 1487 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1488 { 1489 device_t child; 1490 device_t place; 1491 1492 PDEBUG(("%s at %s with order %u as unit %d", 1493 name, DEVICENAME(dev), order, unit)); 1494 KASSERT(name != NULL || unit == DEVICE_UNIT_ANY, 1495 ("child device with wildcard name and specific unit number")); 1496 1497 child = make_device(dev, name, unit); 1498 if (child == NULL) 1499 return (child); 1500 child->order = order; 1501 1502 TAILQ_FOREACH(place, &dev->children, link) { 1503 if (place->order > order) 1504 break; 1505 } 1506 1507 if (place) { 1508 /* 1509 * The device 'place' is the first device whose order is 1510 * greater than the new child. 1511 */ 1512 TAILQ_INSERT_BEFORE(place, child, link); 1513 } else { 1514 /* 1515 * The new child's order is greater or equal to the order of 1516 * any existing device. Add the child to the tail of the list. 1517 */ 1518 TAILQ_INSERT_TAIL(&dev->children, child, link); 1519 } 1520 1521 bus_data_generation_update(); 1522 return (child); 1523 } 1524 1525 /** 1526 * @brief Delete a device 1527 * 1528 * This function deletes a device along with all of its children. If 1529 * the device currently has a driver attached to it, the device is 1530 * detached first using device_detach(). 1531 * 1532 * @param dev the parent device 1533 * @param child the device to delete 1534 * 1535 * @retval 0 success 1536 * @retval non-zero a unit error code describing the error 1537 */ 1538 int 1539 device_delete_child(device_t dev, device_t child) 1540 { 1541 int error; 1542 device_t grandchild; 1543 1544 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1545 1546 /* 1547 * Detach child. Ideally this cleans up any grandchild 1548 * devices. 1549 */ 1550 if ((error = device_detach(child)) != 0) 1551 return (error); 1552 1553 /* Delete any grandchildren left after detach. */ 1554 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1555 error = device_delete_child(child, grandchild); 1556 if (error) 1557 return (error); 1558 } 1559 1560 device_destroy_props(dev); 1561 if (child->devclass) 1562 devclass_delete_device(child->devclass, child); 1563 if (child->parent) 1564 BUS_CHILD_DELETED(dev, child); 1565 TAILQ_REMOVE(&dev->children, child, link); 1566 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1567 kobj_delete((kobj_t) child, M_BUS); 1568 1569 bus_data_generation_update(); 1570 return (0); 1571 } 1572 1573 /** 1574 * @brief Delete all children devices of the given device, if any. 1575 * 1576 * This function deletes all children devices of the given device, if 1577 * any, using the device_delete_child() function for each device it 1578 * finds. If a child device cannot be deleted, this function will 1579 * return an error code. 1580 * 1581 * @param dev the parent device 1582 * 1583 * @retval 0 success 1584 * @retval non-zero a device would not detach 1585 */ 1586 int 1587 device_delete_children(device_t dev) 1588 { 1589 device_t child; 1590 int error; 1591 1592 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1593 1594 error = 0; 1595 1596 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1597 error = device_delete_child(dev, child); 1598 if (error) { 1599 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1600 break; 1601 } 1602 } 1603 return (error); 1604 } 1605 1606 /** 1607 * @brief Find a device given a unit number 1608 * 1609 * This is similar to devclass_get_devices() but only searches for 1610 * devices which have @p dev as a parent. 1611 * 1612 * @param dev the parent device to search 1613 * @param unit the unit number to search for. If the unit is 1614 * @c DEVICE_UNIT_ANY, return the first child of @p dev 1615 * which has name @p classname (that is, the one with the 1616 * lowest unit.) 1617 * 1618 * @returns the device with the given unit number or @c 1619 * NULL if there is no such device 1620 */ 1621 device_t 1622 device_find_child(device_t dev, const char *classname, int unit) 1623 { 1624 devclass_t dc; 1625 device_t child; 1626 1627 dc = devclass_find(classname); 1628 if (!dc) 1629 return (NULL); 1630 1631 if (unit != DEVICE_UNIT_ANY) { 1632 child = devclass_get_device(dc, unit); 1633 if (child && child->parent == dev) 1634 return (child); 1635 } else { 1636 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1637 child = devclass_get_device(dc, unit); 1638 if (child && child->parent == dev) 1639 return (child); 1640 } 1641 } 1642 return (NULL); 1643 } 1644 1645 /** 1646 * @internal 1647 */ 1648 static driverlink_t 1649 first_matching_driver(devclass_t dc, device_t dev) 1650 { 1651 if (dev->devclass) 1652 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1653 return (TAILQ_FIRST(&dc->drivers)); 1654 } 1655 1656 /** 1657 * @internal 1658 */ 1659 static driverlink_t 1660 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1661 { 1662 if (dev->devclass) { 1663 driverlink_t dl; 1664 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1665 if (!strcmp(dev->devclass->name, dl->driver->name)) 1666 return (dl); 1667 return (NULL); 1668 } 1669 return (TAILQ_NEXT(last, link)); 1670 } 1671 1672 /** 1673 * @internal 1674 */ 1675 int 1676 device_probe_child(device_t dev, device_t child) 1677 { 1678 devclass_t dc; 1679 driverlink_t best = NULL; 1680 driverlink_t dl; 1681 int result, pri = 0; 1682 /* We should preserve the devclass (or lack of) set by the bus. */ 1683 int hasclass = (child->devclass != NULL); 1684 1685 bus_topo_assert(); 1686 1687 dc = dev->devclass; 1688 if (!dc) 1689 panic("device_probe_child: parent device has no devclass"); 1690 1691 /* 1692 * If the state is already probed, then return. 1693 */ 1694 if (child->state == DS_ALIVE) 1695 return (0); 1696 1697 for (; dc; dc = dc->parent) { 1698 for (dl = first_matching_driver(dc, child); 1699 dl; 1700 dl = next_matching_driver(dc, child, dl)) { 1701 /* If this driver's pass is too high, then ignore it. */ 1702 if (dl->pass > bus_current_pass) 1703 continue; 1704 1705 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1706 result = device_set_driver(child, dl->driver); 1707 if (result == ENOMEM) 1708 return (result); 1709 else if (result != 0) 1710 continue; 1711 if (!hasclass) { 1712 if (device_set_devclass(child, 1713 dl->driver->name) != 0) { 1714 char const * devname = 1715 device_get_name(child); 1716 if (devname == NULL) 1717 devname = "(unknown)"; 1718 printf("driver bug: Unable to set " 1719 "devclass (class: %s " 1720 "devname: %s)\n", 1721 dl->driver->name, 1722 devname); 1723 (void)device_set_driver(child, NULL); 1724 continue; 1725 } 1726 } 1727 1728 /* Fetch any flags for the device before probing. */ 1729 resource_int_value(dl->driver->name, child->unit, 1730 "flags", &child->devflags); 1731 1732 result = DEVICE_PROBE(child); 1733 1734 /* 1735 * If probe returns 0, this is the driver that wins this 1736 * device. 1737 */ 1738 if (result == 0) { 1739 best = dl; 1740 pri = 0; 1741 goto exact_match; /* C doesn't have break 2 */ 1742 } 1743 1744 /* Reset flags and devclass before the next probe. */ 1745 child->devflags = 0; 1746 if (!hasclass) 1747 (void)device_set_devclass(child, NULL); 1748 1749 /* 1750 * Reset DF_QUIET in case this driver doesn't 1751 * end up as the best driver. 1752 */ 1753 device_verbose(child); 1754 1755 /* 1756 * Probes that return BUS_PROBE_NOWILDCARD or lower 1757 * only match on devices whose driver was explicitly 1758 * specified. 1759 */ 1760 if (result <= BUS_PROBE_NOWILDCARD && 1761 !(child->flags & DF_FIXEDCLASS)) { 1762 result = ENXIO; 1763 } 1764 1765 /* 1766 * The driver returned an error so it 1767 * certainly doesn't match. 1768 */ 1769 if (result > 0) { 1770 (void)device_set_driver(child, NULL); 1771 continue; 1772 } 1773 1774 /* 1775 * A priority lower than SUCCESS, remember the 1776 * best matching driver. Initialise the value 1777 * of pri for the first match. 1778 */ 1779 if (best == NULL || result > pri) { 1780 best = dl; 1781 pri = result; 1782 continue; 1783 } 1784 } 1785 } 1786 1787 if (best == NULL) 1788 return (ENXIO); 1789 1790 /* 1791 * If we found a driver, change state and initialise the devclass. 1792 * Set the winning driver, devclass, and flags. 1793 */ 1794 result = device_set_driver(child, best->driver); 1795 if (result != 0) 1796 return (result); 1797 if (!child->devclass) { 1798 result = device_set_devclass(child, best->driver->name); 1799 if (result != 0) { 1800 (void)device_set_driver(child, NULL); 1801 return (result); 1802 } 1803 } 1804 resource_int_value(best->driver->name, child->unit, 1805 "flags", &child->devflags); 1806 1807 /* 1808 * A bit bogus. Call the probe method again to make sure that we have 1809 * the right description for the device. 1810 */ 1811 result = DEVICE_PROBE(child); 1812 if (result > 0) { 1813 if (!hasclass) 1814 (void)device_set_devclass(child, NULL); 1815 (void)device_set_driver(child, NULL); 1816 return (result); 1817 } 1818 1819 exact_match: 1820 child->state = DS_ALIVE; 1821 bus_data_generation_update(); 1822 return (0); 1823 } 1824 1825 /** 1826 * @brief Return the parent of a device 1827 */ 1828 device_t 1829 device_get_parent(device_t dev) 1830 { 1831 return (dev->parent); 1832 } 1833 1834 /** 1835 * @brief Get a list of children of a device 1836 * 1837 * An array containing a list of all the children of the given device 1838 * is allocated and returned in @p *devlistp. The number of devices 1839 * in the array is returned in @p *devcountp. The caller should free 1840 * the array using @c free(p, M_TEMP). 1841 * 1842 * @param dev the device to examine 1843 * @param devlistp points at location for array pointer return 1844 * value 1845 * @param devcountp points at location for array size return value 1846 * 1847 * @retval 0 success 1848 * @retval ENOMEM the array allocation failed 1849 */ 1850 int 1851 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1852 { 1853 int count; 1854 device_t child; 1855 device_t *list; 1856 1857 count = 0; 1858 TAILQ_FOREACH(child, &dev->children, link) { 1859 count++; 1860 } 1861 if (count == 0) { 1862 *devlistp = NULL; 1863 *devcountp = 0; 1864 return (0); 1865 } 1866 1867 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1868 if (!list) 1869 return (ENOMEM); 1870 1871 count = 0; 1872 TAILQ_FOREACH(child, &dev->children, link) { 1873 list[count] = child; 1874 count++; 1875 } 1876 1877 *devlistp = list; 1878 *devcountp = count; 1879 1880 return (0); 1881 } 1882 1883 /** 1884 * @brief Return the current driver for the device or @c NULL if there 1885 * is no driver currently attached 1886 */ 1887 driver_t * 1888 device_get_driver(device_t dev) 1889 { 1890 return (dev->driver); 1891 } 1892 1893 /** 1894 * @brief Return the current devclass for the device or @c NULL if 1895 * there is none. 1896 */ 1897 devclass_t 1898 device_get_devclass(device_t dev) 1899 { 1900 return (dev->devclass); 1901 } 1902 1903 /** 1904 * @brief Return the name of the device's devclass or @c NULL if there 1905 * is none. 1906 */ 1907 const char * 1908 device_get_name(device_t dev) 1909 { 1910 if (dev != NULL && dev->devclass) 1911 return (devclass_get_name(dev->devclass)); 1912 return (NULL); 1913 } 1914 1915 /** 1916 * @brief Return a string containing the device's devclass name 1917 * followed by an ascii representation of the device's unit number 1918 * (e.g. @c "foo2"). 1919 */ 1920 const char * 1921 device_get_nameunit(device_t dev) 1922 { 1923 return (dev->nameunit); 1924 } 1925 1926 /** 1927 * @brief Return the device's unit number. 1928 */ 1929 int 1930 device_get_unit(device_t dev) 1931 { 1932 return (dev->unit); 1933 } 1934 1935 /** 1936 * @brief Return the device's description string 1937 */ 1938 const char * 1939 device_get_desc(device_t dev) 1940 { 1941 return (dev->desc); 1942 } 1943 1944 /** 1945 * @brief Return the device's flags 1946 */ 1947 uint32_t 1948 device_get_flags(device_t dev) 1949 { 1950 return (dev->devflags); 1951 } 1952 1953 struct sysctl_ctx_list * 1954 device_get_sysctl_ctx(device_t dev) 1955 { 1956 return (&dev->sysctl_ctx); 1957 } 1958 1959 struct sysctl_oid * 1960 device_get_sysctl_tree(device_t dev) 1961 { 1962 return (dev->sysctl_tree); 1963 } 1964 1965 /** 1966 * @brief Print the name of the device followed by a colon and a space 1967 * 1968 * @returns the number of characters printed 1969 */ 1970 int 1971 device_print_prettyname(device_t dev) 1972 { 1973 const char *name = device_get_name(dev); 1974 1975 if (name == NULL) 1976 return (printf("unknown: ")); 1977 return (printf("%s%d: ", name, device_get_unit(dev))); 1978 } 1979 1980 /** 1981 * @brief Print the name of the device followed by a colon, a space 1982 * and the result of calling vprintf() with the value of @p fmt and 1983 * the following arguments. 1984 * 1985 * @returns the number of characters printed 1986 */ 1987 int 1988 device_printf(device_t dev, const char * fmt, ...) 1989 { 1990 char buf[128]; 1991 struct sbuf sb; 1992 const char *name; 1993 va_list ap; 1994 size_t retval; 1995 1996 retval = 0; 1997 1998 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1999 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 2000 2001 name = device_get_name(dev); 2002 2003 if (name == NULL) 2004 sbuf_cat(&sb, "unknown: "); 2005 else 2006 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2007 2008 va_start(ap, fmt); 2009 sbuf_vprintf(&sb, fmt, ap); 2010 va_end(ap); 2011 2012 sbuf_finish(&sb); 2013 sbuf_delete(&sb); 2014 2015 return (retval); 2016 } 2017 2018 /** 2019 * @brief Print the name of the device followed by a colon, a space 2020 * and the result of calling log() with the value of @p fmt and 2021 * the following arguments. 2022 * 2023 * @returns the number of characters printed 2024 */ 2025 int 2026 device_log(device_t dev, int pri, const char * fmt, ...) 2027 { 2028 char buf[128]; 2029 struct sbuf sb; 2030 const char *name; 2031 va_list ap; 2032 size_t retval; 2033 2034 retval = 0; 2035 2036 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2037 2038 name = device_get_name(dev); 2039 2040 if (name == NULL) 2041 sbuf_cat(&sb, "unknown: "); 2042 else 2043 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2044 2045 va_start(ap, fmt); 2046 sbuf_vprintf(&sb, fmt, ap); 2047 va_end(ap); 2048 2049 sbuf_finish(&sb); 2050 2051 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb)); 2052 retval = sbuf_len(&sb); 2053 2054 sbuf_delete(&sb); 2055 2056 return (retval); 2057 } 2058 2059 /** 2060 * @internal 2061 */ 2062 static void 2063 device_set_desc_internal(device_t dev, const char *desc, bool allocated) 2064 { 2065 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2066 free(dev->desc, M_BUS); 2067 dev->flags &= ~DF_DESCMALLOCED; 2068 dev->desc = NULL; 2069 } 2070 2071 if (allocated && desc) 2072 dev->flags |= DF_DESCMALLOCED; 2073 dev->desc = __DECONST(char *, desc); 2074 2075 bus_data_generation_update(); 2076 } 2077 2078 /** 2079 * @brief Set the device's description 2080 * 2081 * The value of @c desc should be a string constant that will not 2082 * change (at least until the description is changed in a subsequent 2083 * call to device_set_desc() or device_set_desc_copy()). 2084 */ 2085 void 2086 device_set_desc(device_t dev, const char *desc) 2087 { 2088 device_set_desc_internal(dev, desc, false); 2089 } 2090 2091 /** 2092 * @brief Set the device's description 2093 * 2094 * A printf-like version of device_set_desc(). 2095 */ 2096 void 2097 device_set_descf(device_t dev, const char *fmt, ...) 2098 { 2099 va_list ap; 2100 char *buf = NULL; 2101 2102 va_start(ap, fmt); 2103 vasprintf(&buf, M_BUS, fmt, ap); 2104 va_end(ap); 2105 device_set_desc_internal(dev, buf, true); 2106 } 2107 2108 /** 2109 * @brief Set the device's description 2110 * 2111 * The string pointed to by @c desc is copied. Use this function if 2112 * the device description is generated, (e.g. with sprintf()). 2113 */ 2114 void 2115 device_set_desc_copy(device_t dev, const char *desc) 2116 { 2117 char *buf; 2118 2119 buf = strdup_flags(desc, M_BUS, M_WAITOK); 2120 device_set_desc_internal(dev, buf, true); 2121 } 2122 2123 /** 2124 * @brief Set the device's flags 2125 */ 2126 void 2127 device_set_flags(device_t dev, uint32_t flags) 2128 { 2129 dev->devflags = flags; 2130 } 2131 2132 /** 2133 * @brief Return the device's softc field 2134 * 2135 * The softc is allocated and zeroed when a driver is attached, based 2136 * on the size field of the driver. 2137 */ 2138 void * 2139 device_get_softc(device_t dev) 2140 { 2141 return (dev->softc); 2142 } 2143 2144 /** 2145 * @brief Set the device's softc field 2146 * 2147 * Most drivers do not need to use this since the softc is allocated 2148 * automatically when the driver is attached. 2149 */ 2150 void 2151 device_set_softc(device_t dev, void *softc) 2152 { 2153 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2154 free(dev->softc, M_BUS_SC); 2155 dev->softc = softc; 2156 if (dev->softc) 2157 dev->flags |= DF_EXTERNALSOFTC; 2158 else 2159 dev->flags &= ~DF_EXTERNALSOFTC; 2160 } 2161 2162 /** 2163 * @brief Free claimed softc 2164 * 2165 * Most drivers do not need to use this since the softc is freed 2166 * automatically when the driver is detached. 2167 */ 2168 void 2169 device_free_softc(void *softc) 2170 { 2171 free(softc, M_BUS_SC); 2172 } 2173 2174 /** 2175 * @brief Claim softc 2176 * 2177 * This function can be used to let the driver free the automatically 2178 * allocated softc using "device_free_softc()". This function is 2179 * useful when the driver is refcounting the softc and the softc 2180 * cannot be freed when the "device_detach" method is called. 2181 */ 2182 void 2183 device_claim_softc(device_t dev) 2184 { 2185 if (dev->softc) 2186 dev->flags |= DF_EXTERNALSOFTC; 2187 else 2188 dev->flags &= ~DF_EXTERNALSOFTC; 2189 } 2190 2191 /** 2192 * @brief Get the device's ivars field 2193 * 2194 * The ivars field is used by the parent device to store per-device 2195 * state (e.g. the physical location of the device or a list of 2196 * resources). 2197 */ 2198 void * 2199 device_get_ivars(device_t dev) 2200 { 2201 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2202 return (dev->ivars); 2203 } 2204 2205 /** 2206 * @brief Set the device's ivars field 2207 */ 2208 void 2209 device_set_ivars(device_t dev, void * ivars) 2210 { 2211 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2212 dev->ivars = ivars; 2213 } 2214 2215 /** 2216 * @brief Return the device's state 2217 */ 2218 device_state_t 2219 device_get_state(device_t dev) 2220 { 2221 return (dev->state); 2222 } 2223 2224 /** 2225 * @brief Set the DF_ENABLED flag for the device 2226 */ 2227 void 2228 device_enable(device_t dev) 2229 { 2230 dev->flags |= DF_ENABLED; 2231 } 2232 2233 /** 2234 * @brief Clear the DF_ENABLED flag for the device 2235 */ 2236 void 2237 device_disable(device_t dev) 2238 { 2239 dev->flags &= ~DF_ENABLED; 2240 } 2241 2242 /** 2243 * @brief Increment the busy counter for the device 2244 */ 2245 void 2246 device_busy(device_t dev) 2247 { 2248 2249 /* 2250 * Mark the device as busy, recursively up the tree if this busy count 2251 * goes 0->1. 2252 */ 2253 if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL) 2254 device_busy(dev->parent); 2255 } 2256 2257 /** 2258 * @brief Decrement the busy counter for the device 2259 */ 2260 void 2261 device_unbusy(device_t dev) 2262 { 2263 2264 /* 2265 * Mark the device as unbsy, recursively if this is the last busy count. 2266 */ 2267 if (refcount_release(&dev->busy) && dev->parent != NULL) 2268 device_unbusy(dev->parent); 2269 } 2270 2271 /** 2272 * @brief Set the DF_QUIET flag for the device 2273 */ 2274 void 2275 device_quiet(device_t dev) 2276 { 2277 dev->flags |= DF_QUIET; 2278 } 2279 2280 /** 2281 * @brief Set the DF_QUIET_CHILDREN flag for the device 2282 */ 2283 void 2284 device_quiet_children(device_t dev) 2285 { 2286 dev->flags |= DF_QUIET_CHILDREN; 2287 } 2288 2289 /** 2290 * @brief Clear the DF_QUIET flag for the device 2291 */ 2292 void 2293 device_verbose(device_t dev) 2294 { 2295 dev->flags &= ~DF_QUIET; 2296 } 2297 2298 ssize_t 2299 device_get_property(device_t dev, const char *prop, void *val, size_t sz, 2300 device_property_type_t type) 2301 { 2302 device_t bus = device_get_parent(dev); 2303 2304 switch (type) { 2305 case DEVICE_PROP_ANY: 2306 case DEVICE_PROP_BUFFER: 2307 case DEVICE_PROP_HANDLE: /* Size checks done in implementation. */ 2308 break; 2309 case DEVICE_PROP_UINT32: 2310 if (sz % 4 != 0) 2311 return (-1); 2312 break; 2313 case DEVICE_PROP_UINT64: 2314 if (sz % 8 != 0) 2315 return (-1); 2316 break; 2317 default: 2318 return (-1); 2319 } 2320 2321 return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type)); 2322 } 2323 2324 bool 2325 device_has_property(device_t dev, const char *prop) 2326 { 2327 return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0); 2328 } 2329 2330 /** 2331 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2332 */ 2333 int 2334 device_has_quiet_children(device_t dev) 2335 { 2336 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2337 } 2338 2339 /** 2340 * @brief Return non-zero if the DF_QUIET flag is set on the device 2341 */ 2342 int 2343 device_is_quiet(device_t dev) 2344 { 2345 return ((dev->flags & DF_QUIET) != 0); 2346 } 2347 2348 /** 2349 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2350 */ 2351 int 2352 device_is_enabled(device_t dev) 2353 { 2354 return ((dev->flags & DF_ENABLED) != 0); 2355 } 2356 2357 /** 2358 * @brief Return non-zero if the device was successfully probed 2359 */ 2360 int 2361 device_is_alive(device_t dev) 2362 { 2363 return (dev->state >= DS_ALIVE); 2364 } 2365 2366 /** 2367 * @brief Return non-zero if the device currently has a driver 2368 * attached to it 2369 */ 2370 int 2371 device_is_attached(device_t dev) 2372 { 2373 return (dev->state >= DS_ATTACHED); 2374 } 2375 2376 /** 2377 * @brief Return non-zero if the device is currently suspended. 2378 */ 2379 int 2380 device_is_suspended(device_t dev) 2381 { 2382 return ((dev->flags & DF_SUSPENDED) != 0); 2383 } 2384 2385 /** 2386 * @brief Set the devclass of a device 2387 * @see devclass_add_device(). 2388 */ 2389 int 2390 device_set_devclass(device_t dev, const char *classname) 2391 { 2392 devclass_t dc; 2393 int error; 2394 2395 if (!classname) { 2396 if (dev->devclass) 2397 devclass_delete_device(dev->devclass, dev); 2398 return (0); 2399 } 2400 2401 if (dev->devclass) { 2402 printf("device_set_devclass: device class already set\n"); 2403 return (EINVAL); 2404 } 2405 2406 dc = devclass_find_internal(classname, NULL, TRUE); 2407 if (!dc) 2408 return (ENOMEM); 2409 2410 error = devclass_add_device(dc, dev); 2411 2412 bus_data_generation_update(); 2413 return (error); 2414 } 2415 2416 /** 2417 * @brief Set the devclass of a device and mark the devclass fixed. 2418 * @see device_set_devclass() 2419 */ 2420 int 2421 device_set_devclass_fixed(device_t dev, const char *classname) 2422 { 2423 int error; 2424 2425 if (classname == NULL) 2426 return (EINVAL); 2427 2428 error = device_set_devclass(dev, classname); 2429 if (error) 2430 return (error); 2431 dev->flags |= DF_FIXEDCLASS; 2432 return (0); 2433 } 2434 2435 /** 2436 * @brief Query the device to determine if it's of a fixed devclass 2437 * @see device_set_devclass_fixed() 2438 */ 2439 bool 2440 device_is_devclass_fixed(device_t dev) 2441 { 2442 return ((dev->flags & DF_FIXEDCLASS) != 0); 2443 } 2444 2445 /** 2446 * @brief Set the driver of a device 2447 * 2448 * @retval 0 success 2449 * @retval EBUSY the device already has a driver attached 2450 * @retval ENOMEM a memory allocation failure occurred 2451 */ 2452 int 2453 device_set_driver(device_t dev, driver_t *driver) 2454 { 2455 int domain; 2456 struct domainset *policy; 2457 2458 if (dev->state >= DS_ATTACHED) 2459 return (EBUSY); 2460 2461 if (dev->driver == driver) 2462 return (0); 2463 2464 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2465 free(dev->softc, M_BUS_SC); 2466 dev->softc = NULL; 2467 } 2468 device_set_desc(dev, NULL); 2469 kobj_delete((kobj_t) dev, NULL); 2470 dev->driver = driver; 2471 if (driver) { 2472 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2473 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2474 if (bus_get_domain(dev, &domain) == 0) 2475 policy = DOMAINSET_PREF(domain); 2476 else 2477 policy = DOMAINSET_RR(); 2478 dev->softc = malloc_domainset(driver->size, M_BUS_SC, 2479 policy, M_WAITOK | M_ZERO); 2480 } 2481 } else { 2482 kobj_init((kobj_t) dev, &null_class); 2483 } 2484 2485 bus_data_generation_update(); 2486 return (0); 2487 } 2488 2489 /** 2490 * @brief Probe a device, and return this status. 2491 * 2492 * This function is the core of the device autoconfiguration 2493 * system. Its purpose is to select a suitable driver for a device and 2494 * then call that driver to initialise the hardware appropriately. The 2495 * driver is selected by calling the DEVICE_PROBE() method of a set of 2496 * candidate drivers and then choosing the driver which returned the 2497 * best value. This driver is then attached to the device using 2498 * device_attach(). 2499 * 2500 * The set of suitable drivers is taken from the list of drivers in 2501 * the parent device's devclass. If the device was originally created 2502 * with a specific class name (see device_add_child()), only drivers 2503 * with that name are probed, otherwise all drivers in the devclass 2504 * are probed. If no drivers return successful probe values in the 2505 * parent devclass, the search continues in the parent of that 2506 * devclass (see devclass_get_parent()) if any. 2507 * 2508 * @param dev the device to initialise 2509 * 2510 * @retval 0 success 2511 * @retval ENXIO no driver was found 2512 * @retval ENOMEM memory allocation failure 2513 * @retval non-zero some other unix error code 2514 * @retval -1 Device already attached 2515 */ 2516 int 2517 device_probe(device_t dev) 2518 { 2519 int error; 2520 2521 bus_topo_assert(); 2522 2523 if (dev->state >= DS_ALIVE) 2524 return (-1); 2525 2526 if (!(dev->flags & DF_ENABLED)) { 2527 if (bootverbose && device_get_name(dev) != NULL) { 2528 device_print_prettyname(dev); 2529 printf("not probed (disabled)\n"); 2530 } 2531 return (-1); 2532 } 2533 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2534 if (bus_current_pass == BUS_PASS_DEFAULT && 2535 !(dev->flags & DF_DONENOMATCH)) { 2536 device_handle_nomatch(dev); 2537 } 2538 return (error); 2539 } 2540 return (0); 2541 } 2542 2543 /** 2544 * @brief Probe a device and attach a driver if possible 2545 * 2546 * calls device_probe() and attaches if that was successful. 2547 */ 2548 int 2549 device_probe_and_attach(device_t dev) 2550 { 2551 int error; 2552 2553 bus_topo_assert(); 2554 2555 error = device_probe(dev); 2556 if (error == -1) 2557 return (0); 2558 else if (error != 0) 2559 return (error); 2560 2561 return (device_attach(dev)); 2562 } 2563 2564 /** 2565 * @brief Attach a device driver to a device 2566 * 2567 * This function is a wrapper around the DEVICE_ATTACH() driver 2568 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2569 * device's sysctl tree, optionally prints a description of the device 2570 * and queues a notification event for user-based device management 2571 * services. 2572 * 2573 * Normally this function is only called internally from 2574 * device_probe_and_attach(). 2575 * 2576 * @param dev the device to initialise 2577 * 2578 * @retval 0 success 2579 * @retval ENXIO no driver was found 2580 * @retval ENOMEM memory allocation failure 2581 * @retval non-zero some other unix error code 2582 */ 2583 int 2584 device_attach(device_t dev) 2585 { 2586 uint64_t attachtime; 2587 uint16_t attachentropy; 2588 int error; 2589 2590 if (resource_disabled(dev->driver->name, dev->unit)) { 2591 /* 2592 * Mostly detach the device, but leave it attached to 2593 * the devclass to reserve the name and unit. 2594 */ 2595 device_disable(dev); 2596 (void)device_set_driver(dev, NULL); 2597 dev->state = DS_NOTPRESENT; 2598 if (bootverbose) 2599 device_printf(dev, "disabled via hints entry\n"); 2600 return (ENXIO); 2601 } 2602 2603 KASSERT(IS_DEFAULT_VNET(TD_TO_VNET(curthread)), 2604 ("device_attach: curthread is not in default vnet")); 2605 CURVNET_SET_QUIET(TD_TO_VNET(curthread)); 2606 2607 device_sysctl_init(dev); 2608 if (!device_is_quiet(dev)) 2609 device_print_child(dev->parent, dev); 2610 attachtime = get_cyclecount(); 2611 dev->state = DS_ATTACHING; 2612 if ((error = DEVICE_ATTACH(dev)) != 0) { 2613 printf("device_attach: %s%d attach returned %d\n", 2614 dev->driver->name, dev->unit, error); 2615 BUS_CHILD_DETACHED(dev->parent, dev); 2616 if (disable_failed_devs) { 2617 /* 2618 * When the user has asked to disable failed devices, we 2619 * directly disable the device, but leave it in the 2620 * attaching state. It will not try to probe/attach the 2621 * device further. This leaves the device numbering 2622 * intact for other similar devices in the system. It 2623 * can be removed from this state with devctl. 2624 */ 2625 device_disable(dev); 2626 } else { 2627 /* 2628 * Otherwise, when attach fails, tear down the state 2629 * around that so we can retry when, for example, new 2630 * drivers are loaded. 2631 */ 2632 if (!(dev->flags & DF_FIXEDCLASS)) 2633 devclass_delete_device(dev->devclass, dev); 2634 (void)device_set_driver(dev, NULL); 2635 device_sysctl_fini(dev); 2636 KASSERT(dev->busy == 0, ("attach failed but busy")); 2637 dev->state = DS_NOTPRESENT; 2638 } 2639 CURVNET_RESTORE(); 2640 return (error); 2641 } 2642 CURVNET_RESTORE(); 2643 dev->flags |= DF_ATTACHED_ONCE; 2644 /* 2645 * We only need the low bits of this time, but ranges from tens to thousands 2646 * have been seen, so keep 2 bytes' worth. 2647 */ 2648 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 2649 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 2650 device_sysctl_update(dev); 2651 dev->state = DS_ATTACHED; 2652 dev->flags &= ~DF_DONENOMATCH; 2653 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 2654 return (0); 2655 } 2656 2657 /** 2658 * @brief Detach a driver from a device 2659 * 2660 * This function is a wrapper around the DEVICE_DETACH() driver 2661 * method. If the call to DEVICE_DETACH() succeeds, it calls 2662 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2663 * notification event for user-based device management services and 2664 * cleans up the device's sysctl tree. 2665 * 2666 * @param dev the device to un-initialise 2667 * 2668 * @retval 0 success 2669 * @retval ENXIO no driver was found 2670 * @retval ENOMEM memory allocation failure 2671 * @retval non-zero some other unix error code 2672 */ 2673 int 2674 device_detach(device_t dev) 2675 { 2676 int error; 2677 2678 bus_topo_assert(); 2679 2680 PDEBUG(("%s", DEVICENAME(dev))); 2681 if (dev->busy > 0) 2682 return (EBUSY); 2683 if (dev->state == DS_ATTACHING) { 2684 device_printf(dev, "device in attaching state! Deferring detach.\n"); 2685 return (EBUSY); 2686 } 2687 if (dev->state != DS_ATTACHED) 2688 return (0); 2689 2690 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 2691 if ((error = DEVICE_DETACH(dev)) != 0) { 2692 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2693 EVHDEV_DETACH_FAILED); 2694 return (error); 2695 } else { 2696 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2697 EVHDEV_DETACH_COMPLETE); 2698 } 2699 if (!device_is_quiet(dev)) 2700 device_printf(dev, "detached\n"); 2701 if (dev->parent) 2702 BUS_CHILD_DETACHED(dev->parent, dev); 2703 2704 if (!(dev->flags & DF_FIXEDCLASS)) 2705 devclass_delete_device(dev->devclass, dev); 2706 2707 device_verbose(dev); 2708 dev->state = DS_NOTPRESENT; 2709 (void)device_set_driver(dev, NULL); 2710 device_sysctl_fini(dev); 2711 2712 return (0); 2713 } 2714 2715 /** 2716 * @brief Tells a driver to quiesce itself. 2717 * 2718 * This function is a wrapper around the DEVICE_QUIESCE() driver 2719 * method. If the call to DEVICE_QUIESCE() succeeds. 2720 * 2721 * @param dev the device to quiesce 2722 * 2723 * @retval 0 success 2724 * @retval ENXIO no driver was found 2725 * @retval ENOMEM memory allocation failure 2726 * @retval non-zero some other unix error code 2727 */ 2728 int 2729 device_quiesce(device_t dev) 2730 { 2731 PDEBUG(("%s", DEVICENAME(dev))); 2732 if (dev->busy > 0) 2733 return (EBUSY); 2734 if (dev->state != DS_ATTACHED) 2735 return (0); 2736 2737 return (DEVICE_QUIESCE(dev)); 2738 } 2739 2740 /** 2741 * @brief Notify a device of system shutdown 2742 * 2743 * This function calls the DEVICE_SHUTDOWN() driver method if the 2744 * device currently has an attached driver. 2745 * 2746 * @returns the value returned by DEVICE_SHUTDOWN() 2747 */ 2748 int 2749 device_shutdown(device_t dev) 2750 { 2751 if (dev->state < DS_ATTACHED) 2752 return (0); 2753 return (DEVICE_SHUTDOWN(dev)); 2754 } 2755 2756 /** 2757 * @brief Set the unit number of a device 2758 * 2759 * This function can be used to override the unit number used for a 2760 * device (e.g. to wire a device to a pre-configured unit number). 2761 */ 2762 int 2763 device_set_unit(device_t dev, int unit) 2764 { 2765 devclass_t dc; 2766 int err; 2767 2768 if (unit == dev->unit) 2769 return (0); 2770 dc = device_get_devclass(dev); 2771 if (unit < dc->maxunit && dc->devices[unit]) 2772 return (EBUSY); 2773 err = devclass_delete_device(dc, dev); 2774 if (err) 2775 return (err); 2776 dev->unit = unit; 2777 err = devclass_add_device(dc, dev); 2778 if (err) 2779 return (err); 2780 2781 bus_data_generation_update(); 2782 return (0); 2783 } 2784 2785 /*======================================*/ 2786 /* 2787 * Some useful method implementations to make life easier for bus drivers. 2788 */ 2789 2790 /** 2791 * @brief Initialize a resource mapping request 2792 * 2793 * This is the internal implementation of the public API 2794 * resource_init_map_request. Callers may be using a different layout 2795 * of struct resource_map_request than the kernel, so callers pass in 2796 * the size of the structure they are using to identify the structure 2797 * layout. 2798 */ 2799 void 2800 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 2801 { 2802 bzero(args, sz); 2803 args->size = sz; 2804 args->memattr = VM_MEMATTR_DEVICE; 2805 } 2806 2807 /** 2808 * @brief Validate a resource mapping request 2809 * 2810 * Translate a device driver's mapping request (@p in) to a struct 2811 * resource_map_request using the current structure layout (@p out). 2812 * In addition, validate the offset and length from the mapping 2813 * request against the bounds of the resource @p r. If the offset or 2814 * length are invalid, fail with EINVAL. If the offset and length are 2815 * valid, the absolute starting address of the requested mapping is 2816 * returned in @p startp and the length of the requested mapping is 2817 * returned in @p lengthp. 2818 */ 2819 int 2820 resource_validate_map_request(struct resource *r, 2821 struct resource_map_request *in, struct resource_map_request *out, 2822 rman_res_t *startp, rman_res_t *lengthp) 2823 { 2824 rman_res_t end, length, start; 2825 2826 /* 2827 * This assumes that any callers of this function are compiled 2828 * into the kernel and use the same version of the structure 2829 * as this file. 2830 */ 2831 MPASS(out->size == sizeof(struct resource_map_request)); 2832 2833 if (in != NULL) 2834 bcopy(in, out, imin(in->size, out->size)); 2835 start = rman_get_start(r) + out->offset; 2836 if (out->length == 0) 2837 length = rman_get_size(r); 2838 else 2839 length = out->length; 2840 end = start + length - 1; 2841 if (start > rman_get_end(r) || start < rman_get_start(r)) 2842 return (EINVAL); 2843 if (end > rman_get_end(r) || end < start) 2844 return (EINVAL); 2845 *lengthp = length; 2846 *startp = start; 2847 return (0); 2848 } 2849 2850 /** 2851 * @brief Initialise a resource list. 2852 * 2853 * @param rl the resource list to initialise 2854 */ 2855 void 2856 resource_list_init(struct resource_list *rl) 2857 { 2858 STAILQ_INIT(rl); 2859 } 2860 2861 /** 2862 * @brief Reclaim memory used by a resource list. 2863 * 2864 * This function frees the memory for all resource entries on the list 2865 * (if any). 2866 * 2867 * @param rl the resource list to free 2868 */ 2869 void 2870 resource_list_free(struct resource_list *rl) 2871 { 2872 struct resource_list_entry *rle; 2873 2874 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2875 if (rle->res) 2876 panic("resource_list_free: resource entry is busy"); 2877 STAILQ_REMOVE_HEAD(rl, link); 2878 free(rle, M_BUS); 2879 } 2880 } 2881 2882 /** 2883 * @brief Add a resource entry. 2884 * 2885 * This function adds a resource entry using the given @p type, @p 2886 * start, @p end and @p count values. A rid value is chosen by 2887 * searching sequentially for the first unused rid starting at zero. 2888 * 2889 * @param rl the resource list to edit 2890 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2891 * @param start the start address of the resource 2892 * @param end the end address of the resource 2893 * @param count XXX end-start+1 2894 */ 2895 int 2896 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 2897 rman_res_t end, rman_res_t count) 2898 { 2899 int rid; 2900 2901 rid = 0; 2902 while (resource_list_find(rl, type, rid) != NULL) 2903 rid++; 2904 resource_list_add(rl, type, rid, start, end, count); 2905 return (rid); 2906 } 2907 2908 /** 2909 * @brief Add or modify a resource entry. 2910 * 2911 * If an existing entry exists with the same type and rid, it will be 2912 * modified using the given values of @p start, @p end and @p 2913 * count. If no entry exists, a new one will be created using the 2914 * given values. The resource list entry that matches is then returned. 2915 * 2916 * @param rl the resource list to edit 2917 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2918 * @param rid the resource identifier 2919 * @param start the start address of the resource 2920 * @param end the end address of the resource 2921 * @param count XXX end-start+1 2922 */ 2923 struct resource_list_entry * 2924 resource_list_add(struct resource_list *rl, int type, int rid, 2925 rman_res_t start, rman_res_t end, rman_res_t count) 2926 { 2927 struct resource_list_entry *rle; 2928 2929 rle = resource_list_find(rl, type, rid); 2930 if (!rle) { 2931 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2932 M_WAITOK); 2933 STAILQ_INSERT_TAIL(rl, rle, link); 2934 rle->type = type; 2935 rle->rid = rid; 2936 rle->res = NULL; 2937 rle->flags = 0; 2938 } 2939 2940 if (rle->res) 2941 panic("resource_list_add: resource entry is busy"); 2942 2943 rle->start = start; 2944 rle->end = end; 2945 rle->count = count; 2946 return (rle); 2947 } 2948 2949 /** 2950 * @brief Determine if a resource entry is busy. 2951 * 2952 * Returns true if a resource entry is busy meaning that it has an 2953 * associated resource that is not an unallocated "reserved" resource. 2954 * 2955 * @param rl the resource list to search 2956 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2957 * @param rid the resource identifier 2958 * 2959 * @returns Non-zero if the entry is busy, zero otherwise. 2960 */ 2961 int 2962 resource_list_busy(struct resource_list *rl, int type, int rid) 2963 { 2964 struct resource_list_entry *rle; 2965 2966 rle = resource_list_find(rl, type, rid); 2967 if (rle == NULL || rle->res == NULL) 2968 return (0); 2969 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 2970 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 2971 ("reserved resource is active")); 2972 return (0); 2973 } 2974 return (1); 2975 } 2976 2977 /** 2978 * @brief Determine if a resource entry is reserved. 2979 * 2980 * Returns true if a resource entry is reserved meaning that it has an 2981 * associated "reserved" resource. The resource can either be 2982 * allocated or unallocated. 2983 * 2984 * @param rl the resource list to search 2985 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2986 * @param rid the resource identifier 2987 * 2988 * @returns Non-zero if the entry is reserved, zero otherwise. 2989 */ 2990 int 2991 resource_list_reserved(struct resource_list *rl, int type, int rid) 2992 { 2993 struct resource_list_entry *rle; 2994 2995 rle = resource_list_find(rl, type, rid); 2996 if (rle != NULL && rle->flags & RLE_RESERVED) 2997 return (1); 2998 return (0); 2999 } 3000 3001 /** 3002 * @brief Find a resource entry by type and rid. 3003 * 3004 * @param rl the resource list to search 3005 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3006 * @param rid the resource identifier 3007 * 3008 * @returns the resource entry pointer or NULL if there is no such 3009 * entry. 3010 */ 3011 struct resource_list_entry * 3012 resource_list_find(struct resource_list *rl, int type, int rid) 3013 { 3014 struct resource_list_entry *rle; 3015 3016 STAILQ_FOREACH(rle, rl, link) { 3017 if (rle->type == type && rle->rid == rid) 3018 return (rle); 3019 } 3020 return (NULL); 3021 } 3022 3023 /** 3024 * @brief Delete a resource entry. 3025 * 3026 * @param rl the resource list to edit 3027 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3028 * @param rid the resource identifier 3029 */ 3030 void 3031 resource_list_delete(struct resource_list *rl, int type, int rid) 3032 { 3033 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3034 3035 if (rle) { 3036 if (rle->res != NULL) 3037 panic("resource_list_delete: resource has not been released"); 3038 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3039 free(rle, M_BUS); 3040 } 3041 } 3042 3043 /** 3044 * @brief Allocate a reserved resource 3045 * 3046 * This can be used by buses to force the allocation of resources 3047 * that are always active in the system even if they are not allocated 3048 * by a driver (e.g. PCI BARs). This function is usually called when 3049 * adding a new child to the bus. The resource is allocated from the 3050 * parent bus when it is reserved. The resource list entry is marked 3051 * with RLE_RESERVED to note that it is a reserved resource. 3052 * 3053 * Subsequent attempts to allocate the resource with 3054 * resource_list_alloc() will succeed the first time and will set 3055 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3056 * resource that has been allocated is released with 3057 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3058 * the actual resource remains allocated. The resource can be released to 3059 * the parent bus by calling resource_list_unreserve(). 3060 * 3061 * @param rl the resource list to allocate from 3062 * @param bus the parent device of @p child 3063 * @param child the device for which the resource is being reserved 3064 * @param type the type of resource to allocate 3065 * @param rid a pointer to the resource identifier 3066 * @param start hint at the start of the resource range - pass 3067 * @c 0 for any start address 3068 * @param end hint at the end of the resource range - pass 3069 * @c ~0 for any end address 3070 * @param count hint at the size of range required - pass @c 1 3071 * for any size 3072 * @param flags any extra flags to control the resource 3073 * allocation - see @c RF_XXX flags in 3074 * <sys/rman.h> for details 3075 * 3076 * @returns the resource which was allocated or @c NULL if no 3077 * resource could be allocated 3078 */ 3079 struct resource * 3080 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3081 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3082 { 3083 struct resource_list_entry *rle = NULL; 3084 int passthrough = (device_get_parent(child) != bus); 3085 struct resource *r; 3086 3087 if (passthrough) 3088 panic( 3089 "resource_list_reserve() should only be called for direct children"); 3090 if (flags & RF_ACTIVE) 3091 panic( 3092 "resource_list_reserve() should only reserve inactive resources"); 3093 3094 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3095 flags); 3096 if (r != NULL) { 3097 rle = resource_list_find(rl, type, *rid); 3098 rle->flags |= RLE_RESERVED; 3099 } 3100 return (r); 3101 } 3102 3103 /** 3104 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3105 * 3106 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3107 * and passing the allocation up to the parent of @p bus. This assumes 3108 * that the first entry of @c device_get_ivars(child) is a struct 3109 * resource_list. This also handles 'passthrough' allocations where a 3110 * child is a remote descendant of bus by passing the allocation up to 3111 * the parent of bus. 3112 * 3113 * Typically, a bus driver would store a list of child resources 3114 * somewhere in the child device's ivars (see device_get_ivars()) and 3115 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3116 * then call resource_list_alloc() to perform the allocation. 3117 * 3118 * @param rl the resource list to allocate from 3119 * @param bus the parent device of @p child 3120 * @param child the device which is requesting an allocation 3121 * @param type the type of resource to allocate 3122 * @param rid a pointer to the resource identifier 3123 * @param start hint at the start of the resource range - pass 3124 * @c 0 for any start address 3125 * @param end hint at the end of the resource range - pass 3126 * @c ~0 for any end address 3127 * @param count hint at the size of range required - pass @c 1 3128 * for any size 3129 * @param flags any extra flags to control the resource 3130 * allocation - see @c RF_XXX flags in 3131 * <sys/rman.h> for details 3132 * 3133 * @returns the resource which was allocated or @c NULL if no 3134 * resource could be allocated 3135 */ 3136 struct resource * 3137 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3138 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3139 { 3140 struct resource_list_entry *rle = NULL; 3141 int passthrough = (device_get_parent(child) != bus); 3142 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3143 3144 if (passthrough) { 3145 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3146 type, rid, start, end, count, flags)); 3147 } 3148 3149 rle = resource_list_find(rl, type, *rid); 3150 3151 if (!rle) 3152 return (NULL); /* no resource of that type/rid */ 3153 3154 if (rle->res) { 3155 if (rle->flags & RLE_RESERVED) { 3156 if (rle->flags & RLE_ALLOCATED) 3157 return (NULL); 3158 if ((flags & RF_ACTIVE) && 3159 bus_activate_resource(child, type, *rid, 3160 rle->res) != 0) 3161 return (NULL); 3162 rle->flags |= RLE_ALLOCATED; 3163 return (rle->res); 3164 } 3165 device_printf(bus, 3166 "resource entry %#x type %d for child %s is busy\n", *rid, 3167 type, device_get_nameunit(child)); 3168 return (NULL); 3169 } 3170 3171 if (isdefault) { 3172 start = rle->start; 3173 count = ulmax(count, rle->count); 3174 end = ulmax(rle->end, start + count - 1); 3175 } 3176 3177 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3178 type, rid, start, end, count, flags); 3179 3180 /* 3181 * Record the new range. 3182 */ 3183 if (rle->res) { 3184 rle->start = rman_get_start(rle->res); 3185 rle->end = rman_get_end(rle->res); 3186 rle->count = count; 3187 } 3188 3189 return (rle->res); 3190 } 3191 3192 /** 3193 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3194 * 3195 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3196 * used with resource_list_alloc(). 3197 * 3198 * @param rl the resource list which was allocated from 3199 * @param bus the parent device of @p child 3200 * @param child the device which is requesting a release 3201 * @param res the resource to release 3202 * 3203 * @retval 0 success 3204 * @retval non-zero a standard unix error code indicating what 3205 * error condition prevented the operation 3206 */ 3207 int 3208 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3209 struct resource *res) 3210 { 3211 struct resource_list_entry *rle = NULL; 3212 int passthrough = (device_get_parent(child) != bus); 3213 int error; 3214 3215 if (passthrough) { 3216 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3217 res)); 3218 } 3219 3220 rle = resource_list_find(rl, rman_get_type(res), rman_get_rid(res)); 3221 3222 if (!rle) 3223 panic("resource_list_release: can't find resource"); 3224 if (!rle->res) 3225 panic("resource_list_release: resource entry is not busy"); 3226 if (rle->flags & RLE_RESERVED) { 3227 if (rle->flags & RLE_ALLOCATED) { 3228 if (rman_get_flags(res) & RF_ACTIVE) { 3229 error = bus_deactivate_resource(child, res); 3230 if (error) 3231 return (error); 3232 } 3233 rle->flags &= ~RLE_ALLOCATED; 3234 return (0); 3235 } 3236 return (EINVAL); 3237 } 3238 3239 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, res); 3240 if (error) 3241 return (error); 3242 3243 rle->res = NULL; 3244 return (0); 3245 } 3246 3247 /** 3248 * @brief Release all active resources of a given type 3249 * 3250 * Release all active resources of a specified type. This is intended 3251 * to be used to cleanup resources leaked by a driver after detach or 3252 * a failed attach. 3253 * 3254 * @param rl the resource list which was allocated from 3255 * @param bus the parent device of @p child 3256 * @param child the device whose active resources are being released 3257 * @param type the type of resources to release 3258 * 3259 * @retval 0 success 3260 * @retval EBUSY at least one resource was active 3261 */ 3262 int 3263 resource_list_release_active(struct resource_list *rl, device_t bus, 3264 device_t child, int type) 3265 { 3266 struct resource_list_entry *rle; 3267 int error, retval; 3268 3269 retval = 0; 3270 STAILQ_FOREACH(rle, rl, link) { 3271 if (rle->type != type) 3272 continue; 3273 if (rle->res == NULL) 3274 continue; 3275 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3276 RLE_RESERVED) 3277 continue; 3278 retval = EBUSY; 3279 error = resource_list_release(rl, bus, child, rle->res); 3280 if (error != 0) 3281 device_printf(bus, 3282 "Failed to release active resource: %d\n", error); 3283 } 3284 return (retval); 3285 } 3286 3287 /** 3288 * @brief Fully release a reserved resource 3289 * 3290 * Fully releases a resource reserved via resource_list_reserve(). 3291 * 3292 * @param rl the resource list which was allocated from 3293 * @param bus the parent device of @p child 3294 * @param child the device whose reserved resource is being released 3295 * @param type the type of resource to release 3296 * @param rid the resource identifier 3297 * @param res the resource to release 3298 * 3299 * @retval 0 success 3300 * @retval non-zero a standard unix error code indicating what 3301 * error condition prevented the operation 3302 */ 3303 int 3304 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3305 int type, int rid) 3306 { 3307 struct resource_list_entry *rle = NULL; 3308 int passthrough = (device_get_parent(child) != bus); 3309 3310 if (passthrough) 3311 panic( 3312 "resource_list_unreserve() should only be called for direct children"); 3313 3314 rle = resource_list_find(rl, type, rid); 3315 3316 if (!rle) 3317 panic("resource_list_unreserve: can't find resource"); 3318 if (!(rle->flags & RLE_RESERVED)) 3319 return (EINVAL); 3320 if (rle->flags & RLE_ALLOCATED) 3321 return (EBUSY); 3322 rle->flags &= ~RLE_RESERVED; 3323 return (resource_list_release(rl, bus, child, rle->res)); 3324 } 3325 3326 /** 3327 * @brief Print a description of resources in a resource list 3328 * 3329 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3330 * The name is printed if at least one resource of the given type is available. 3331 * The format is used to print resource start and end. 3332 * 3333 * @param rl the resource list to print 3334 * @param name the name of @p type, e.g. @c "memory" 3335 * @param type type type of resource entry to print 3336 * @param format printf(9) format string to print resource 3337 * start and end values 3338 * 3339 * @returns the number of characters printed 3340 */ 3341 int 3342 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3343 const char *format) 3344 { 3345 struct resource_list_entry *rle; 3346 int printed, retval; 3347 3348 printed = 0; 3349 retval = 0; 3350 /* Yes, this is kinda cheating */ 3351 STAILQ_FOREACH(rle, rl, link) { 3352 if (rle->type == type) { 3353 if (printed == 0) 3354 retval += printf(" %s ", name); 3355 else 3356 retval += printf(","); 3357 printed++; 3358 retval += printf(format, rle->start); 3359 if (rle->count > 1) { 3360 retval += printf("-"); 3361 retval += printf(format, rle->start + 3362 rle->count - 1); 3363 } 3364 } 3365 } 3366 return (retval); 3367 } 3368 3369 /** 3370 * @brief Releases all the resources in a list. 3371 * 3372 * @param rl The resource list to purge. 3373 * 3374 * @returns nothing 3375 */ 3376 void 3377 resource_list_purge(struct resource_list *rl) 3378 { 3379 struct resource_list_entry *rle; 3380 3381 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3382 if (rle->res) 3383 bus_release_resource(rman_get_device(rle->res), 3384 rle->type, rle->rid, rle->res); 3385 STAILQ_REMOVE_HEAD(rl, link); 3386 free(rle, M_BUS); 3387 } 3388 } 3389 3390 device_t 3391 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3392 { 3393 return (device_add_child_ordered(dev, order, name, unit)); 3394 } 3395 3396 /** 3397 * @brief Helper function for implementing DEVICE_PROBE() 3398 * 3399 * This function can be used to help implement the DEVICE_PROBE() for 3400 * a bus (i.e. a device which has other devices attached to it). It 3401 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3402 * devclass. 3403 */ 3404 int 3405 bus_generic_probe(device_t dev) 3406 { 3407 bus_identify_children(dev); 3408 return (0); 3409 } 3410 3411 /** 3412 * @brief Ask drivers to add child devices of the given device. 3413 * 3414 * This function allows drivers for child devices of a bus to identify 3415 * child devices and add them as children of the given device. NB: 3416 * The driver for @param dev must implement the BUS_ADD_CHILD method. 3417 * 3418 * @param dev the parent device 3419 */ 3420 void 3421 bus_identify_children(device_t dev) 3422 { 3423 devclass_t dc = dev->devclass; 3424 driverlink_t dl; 3425 3426 TAILQ_FOREACH(dl, &dc->drivers, link) { 3427 /* 3428 * If this driver's pass is too high, then ignore it. 3429 * For most drivers in the default pass, this will 3430 * never be true. For early-pass drivers they will 3431 * only call the identify routines of eligible drivers 3432 * when this routine is called. Drivers for later 3433 * passes should have their identify routines called 3434 * on early-pass buses during BUS_NEW_PASS(). 3435 */ 3436 if (dl->pass > bus_current_pass) 3437 continue; 3438 DEVICE_IDENTIFY(dl->driver, dev); 3439 } 3440 } 3441 3442 /** 3443 * @brief Helper function for implementing DEVICE_ATTACH() 3444 * 3445 * This function can be used to help implement the DEVICE_ATTACH() for 3446 * a bus. It calls device_probe_and_attach() for each of the device's 3447 * children. 3448 */ 3449 int 3450 bus_generic_attach(device_t dev) 3451 { 3452 bus_attach_children(dev); 3453 return (0); 3454 } 3455 3456 /** 3457 * @brief Probe and attach all children of the given device 3458 * 3459 * This function attempts to attach a device driver to each unattached 3460 * child of the given device using device_probe_and_attach(). If an 3461 * individual child fails to attach this function continues attaching 3462 * other children. 3463 * 3464 * @param dev the parent device 3465 */ 3466 void 3467 bus_attach_children(device_t dev) 3468 { 3469 device_t child; 3470 3471 TAILQ_FOREACH(child, &dev->children, link) { 3472 device_probe_and_attach(child); 3473 } 3474 } 3475 3476 /** 3477 * @brief Helper function for delaying attaching children 3478 * 3479 * Many buses can't run transactions on the bus which children need to probe and 3480 * attach until after interrupts and/or timers are running. This function 3481 * delays their attach until interrupts and timers are enabled. 3482 */ 3483 void 3484 bus_delayed_attach_children(device_t dev) 3485 { 3486 /* Probe and attach the bus children when interrupts are available */ 3487 config_intrhook_oneshot((ich_func_t)bus_attach_children, dev); 3488 } 3489 3490 /** 3491 * @brief Helper function for implementing DEVICE_DETACH() 3492 * 3493 * This function can be used to help implement the DEVICE_DETACH() for 3494 * a bus. It detaches and deletes all children. If an individual 3495 * child fails to detach, this function stops and returns an error. 3496 * 3497 * @param dev the parent device 3498 * 3499 * @retval 0 success 3500 * @retval non-zero a device would not detach 3501 */ 3502 int 3503 bus_generic_detach(device_t dev) 3504 { 3505 int error; 3506 3507 error = bus_detach_children(dev); 3508 if (error != 0) 3509 return (error); 3510 3511 return (device_delete_children(dev)); 3512 } 3513 3514 /** 3515 * @brief Detach drivers from all children of a device 3516 * 3517 * This function attempts to detach a device driver from each attached 3518 * child of the given device using device_detach(). If an individual 3519 * child fails to detach this function stops and returns an error. 3520 * NB: Children that were successfully detached are not re-attached if 3521 * an error occurs. 3522 * 3523 * @param dev the parent device 3524 * 3525 * @retval 0 success 3526 * @retval non-zero a device would not detach 3527 */ 3528 int 3529 bus_detach_children(device_t dev) 3530 { 3531 device_t child; 3532 int error; 3533 3534 /* 3535 * Detach children in the reverse order. 3536 * See bus_generic_suspend for details. 3537 */ 3538 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3539 if ((error = device_detach(child)) != 0) 3540 return (error); 3541 } 3542 3543 return (0); 3544 } 3545 3546 /** 3547 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3548 * 3549 * This function can be used to help implement the DEVICE_SHUTDOWN() 3550 * for a bus. It calls device_shutdown() for each of the device's 3551 * children. 3552 */ 3553 int 3554 bus_generic_shutdown(device_t dev) 3555 { 3556 device_t child; 3557 3558 /* 3559 * Shut down children in the reverse order. 3560 * See bus_generic_suspend for details. 3561 */ 3562 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3563 device_shutdown(child); 3564 } 3565 3566 return (0); 3567 } 3568 3569 /** 3570 * @brief Default function for suspending a child device. 3571 * 3572 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3573 */ 3574 int 3575 bus_generic_suspend_child(device_t dev, device_t child) 3576 { 3577 int error; 3578 3579 error = DEVICE_SUSPEND(child); 3580 3581 if (error == 0) { 3582 child->flags |= DF_SUSPENDED; 3583 } else { 3584 printf("DEVICE_SUSPEND(%s) failed: %d\n", 3585 device_get_nameunit(child), error); 3586 } 3587 3588 return (error); 3589 } 3590 3591 /** 3592 * @brief Default function for resuming a child device. 3593 * 3594 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3595 */ 3596 int 3597 bus_generic_resume_child(device_t dev, device_t child) 3598 { 3599 DEVICE_RESUME(child); 3600 child->flags &= ~DF_SUSPENDED; 3601 3602 return (0); 3603 } 3604 3605 /** 3606 * @brief Helper function for implementing DEVICE_SUSPEND() 3607 * 3608 * This function can be used to help implement the DEVICE_SUSPEND() 3609 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3610 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3611 * operation is aborted and any devices which were suspended are 3612 * resumed immediately by calling their DEVICE_RESUME() methods. 3613 */ 3614 int 3615 bus_generic_suspend(device_t dev) 3616 { 3617 int error; 3618 device_t child; 3619 3620 /* 3621 * Suspend children in the reverse order. 3622 * For most buses all children are equal, so the order does not matter. 3623 * Other buses, such as acpi, carefully order their child devices to 3624 * express implicit dependencies between them. For such buses it is 3625 * safer to bring down devices in the reverse order. 3626 */ 3627 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3628 error = BUS_SUSPEND_CHILD(dev, child); 3629 if (error != 0) { 3630 child = TAILQ_NEXT(child, link); 3631 if (child != NULL) { 3632 TAILQ_FOREACH_FROM(child, &dev->children, link) 3633 BUS_RESUME_CHILD(dev, child); 3634 } 3635 return (error); 3636 } 3637 } 3638 return (0); 3639 } 3640 3641 /** 3642 * @brief Helper function for implementing DEVICE_RESUME() 3643 * 3644 * This function can be used to help implement the DEVICE_RESUME() for 3645 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3646 */ 3647 int 3648 bus_generic_resume(device_t dev) 3649 { 3650 device_t child; 3651 3652 TAILQ_FOREACH(child, &dev->children, link) { 3653 BUS_RESUME_CHILD(dev, child); 3654 /* if resume fails, there's nothing we can usefully do... */ 3655 } 3656 return (0); 3657 } 3658 3659 /** 3660 * @brief Helper function for implementing BUS_RESET_POST 3661 * 3662 * Bus can use this function to implement common operations of 3663 * re-attaching or resuming the children after the bus itself was 3664 * reset, and after restoring bus-unique state of children. 3665 * 3666 * @param dev The bus 3667 * #param flags DEVF_RESET_* 3668 */ 3669 int 3670 bus_helper_reset_post(device_t dev, int flags) 3671 { 3672 device_t child; 3673 int error, error1; 3674 3675 error = 0; 3676 TAILQ_FOREACH(child, &dev->children,link) { 3677 BUS_RESET_POST(dev, child); 3678 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3679 device_probe_and_attach(child) : 3680 BUS_RESUME_CHILD(dev, child); 3681 if (error == 0 && error1 != 0) 3682 error = error1; 3683 } 3684 return (error); 3685 } 3686 3687 static void 3688 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3689 { 3690 child = TAILQ_NEXT(child, link); 3691 if (child == NULL) 3692 return; 3693 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3694 BUS_RESET_POST(dev, child); 3695 if ((flags & DEVF_RESET_DETACH) != 0) 3696 device_probe_and_attach(child); 3697 else 3698 BUS_RESUME_CHILD(dev, child); 3699 } 3700 } 3701 3702 /** 3703 * @brief Helper function for implementing BUS_RESET_PREPARE 3704 * 3705 * Bus can use this function to implement common operations of 3706 * detaching or suspending the children before the bus itself is 3707 * reset, and then save bus-unique state of children that must 3708 * persists around reset. 3709 * 3710 * @param dev The bus 3711 * #param flags DEVF_RESET_* 3712 */ 3713 int 3714 bus_helper_reset_prepare(device_t dev, int flags) 3715 { 3716 device_t child; 3717 int error; 3718 3719 if (dev->state != DS_ATTACHED) 3720 return (EBUSY); 3721 3722 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3723 if ((flags & DEVF_RESET_DETACH) != 0) { 3724 error = device_get_state(child) == DS_ATTACHED ? 3725 device_detach(child) : 0; 3726 } else { 3727 error = BUS_SUSPEND_CHILD(dev, child); 3728 } 3729 if (error == 0) { 3730 error = BUS_RESET_PREPARE(dev, child); 3731 if (error != 0) { 3732 if ((flags & DEVF_RESET_DETACH) != 0) 3733 device_probe_and_attach(child); 3734 else 3735 BUS_RESUME_CHILD(dev, child); 3736 } 3737 } 3738 if (error != 0) { 3739 bus_helper_reset_prepare_rollback(dev, child, flags); 3740 return (error); 3741 } 3742 } 3743 return (0); 3744 } 3745 3746 /** 3747 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3748 * 3749 * This function prints the first part of the ascii representation of 3750 * @p child, including its name, unit and description (if any - see 3751 * device_set_desc()). 3752 * 3753 * @returns the number of characters printed 3754 */ 3755 int 3756 bus_print_child_header(device_t dev, device_t child) 3757 { 3758 int retval = 0; 3759 3760 if (device_get_desc(child)) { 3761 retval += device_printf(child, "<%s>", device_get_desc(child)); 3762 } else { 3763 retval += printf("%s", device_get_nameunit(child)); 3764 } 3765 3766 return (retval); 3767 } 3768 3769 /** 3770 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3771 * 3772 * This function prints the last part of the ascii representation of 3773 * @p child, which consists of the string @c " on " followed by the 3774 * name and unit of the @p dev. 3775 * 3776 * @returns the number of characters printed 3777 */ 3778 int 3779 bus_print_child_footer(device_t dev, device_t child) 3780 { 3781 return (printf(" on %s\n", device_get_nameunit(dev))); 3782 } 3783 3784 /** 3785 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3786 * 3787 * This function prints out the VM domain for the given device. 3788 * 3789 * @returns the number of characters printed 3790 */ 3791 int 3792 bus_print_child_domain(device_t dev, device_t child) 3793 { 3794 int domain; 3795 3796 /* No domain? Don't print anything */ 3797 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3798 return (0); 3799 3800 return (printf(" numa-domain %d", domain)); 3801 } 3802 3803 /** 3804 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3805 * 3806 * This function simply calls bus_print_child_header() followed by 3807 * bus_print_child_footer(). 3808 * 3809 * @returns the number of characters printed 3810 */ 3811 int 3812 bus_generic_print_child(device_t dev, device_t child) 3813 { 3814 int retval = 0; 3815 3816 retval += bus_print_child_header(dev, child); 3817 retval += bus_print_child_domain(dev, child); 3818 retval += bus_print_child_footer(dev, child); 3819 3820 return (retval); 3821 } 3822 3823 /** 3824 * @brief Stub function for implementing BUS_READ_IVAR(). 3825 * 3826 * @returns ENOENT 3827 */ 3828 int 3829 bus_generic_read_ivar(device_t dev, device_t child, int index, 3830 uintptr_t * result) 3831 { 3832 return (ENOENT); 3833 } 3834 3835 /** 3836 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3837 * 3838 * @returns ENOENT 3839 */ 3840 int 3841 bus_generic_write_ivar(device_t dev, device_t child, int index, 3842 uintptr_t value) 3843 { 3844 return (ENOENT); 3845 } 3846 3847 /** 3848 * @brief Helper function for implementing BUS_GET_PROPERTY(). 3849 * 3850 * This simply calls the BUS_GET_PROPERTY of the parent of dev, 3851 * until a non-default implementation is found. 3852 */ 3853 ssize_t 3854 bus_generic_get_property(device_t dev, device_t child, const char *propname, 3855 void *propvalue, size_t size, device_property_type_t type) 3856 { 3857 if (device_get_parent(dev) != NULL) 3858 return (BUS_GET_PROPERTY(device_get_parent(dev), child, 3859 propname, propvalue, size, type)); 3860 3861 return (-1); 3862 } 3863 3864 /** 3865 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3866 * 3867 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3868 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3869 * and then calls device_probe_and_attach() for each unattached child. 3870 */ 3871 void 3872 bus_generic_driver_added(device_t dev, driver_t *driver) 3873 { 3874 device_t child; 3875 3876 DEVICE_IDENTIFY(driver, dev); 3877 TAILQ_FOREACH(child, &dev->children, link) { 3878 if (child->state == DS_NOTPRESENT) 3879 device_probe_and_attach(child); 3880 } 3881 } 3882 3883 /** 3884 * @brief Helper function for implementing BUS_NEW_PASS(). 3885 * 3886 * This implementing of BUS_NEW_PASS() first calls the identify 3887 * routines for any drivers that probe at the current pass. Then it 3888 * walks the list of devices for this bus. If a device is already 3889 * attached, then it calls BUS_NEW_PASS() on that device. If the 3890 * device is not already attached, it attempts to attach a driver to 3891 * it. 3892 */ 3893 void 3894 bus_generic_new_pass(device_t dev) 3895 { 3896 driverlink_t dl; 3897 devclass_t dc; 3898 device_t child; 3899 3900 dc = dev->devclass; 3901 TAILQ_FOREACH(dl, &dc->drivers, link) { 3902 if (dl->pass == bus_current_pass) 3903 DEVICE_IDENTIFY(dl->driver, dev); 3904 } 3905 TAILQ_FOREACH(child, &dev->children, link) { 3906 if (child->state >= DS_ATTACHED) 3907 BUS_NEW_PASS(child); 3908 else if (child->state == DS_NOTPRESENT) 3909 device_probe_and_attach(child); 3910 } 3911 } 3912 3913 /** 3914 * @brief Helper function for implementing BUS_SETUP_INTR(). 3915 * 3916 * This simple implementation of BUS_SETUP_INTR() simply calls the 3917 * BUS_SETUP_INTR() method of the parent of @p dev. 3918 */ 3919 int 3920 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3921 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3922 void **cookiep) 3923 { 3924 /* Propagate up the bus hierarchy until someone handles it. */ 3925 if (dev->parent) 3926 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3927 filter, intr, arg, cookiep)); 3928 return (EINVAL); 3929 } 3930 3931 /** 3932 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3933 * 3934 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3935 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3936 */ 3937 int 3938 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3939 void *cookie) 3940 { 3941 /* Propagate up the bus hierarchy until someone handles it. */ 3942 if (dev->parent) 3943 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3944 return (EINVAL); 3945 } 3946 3947 /** 3948 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 3949 * 3950 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 3951 * BUS_SUSPEND_INTR() method of the parent of @p dev. 3952 */ 3953 int 3954 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 3955 { 3956 /* Propagate up the bus hierarchy until someone handles it. */ 3957 if (dev->parent) 3958 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 3959 return (EINVAL); 3960 } 3961 3962 /** 3963 * @brief Helper function for implementing BUS_RESUME_INTR(). 3964 * 3965 * This simple implementation of BUS_RESUME_INTR() simply calls the 3966 * BUS_RESUME_INTR() method of the parent of @p dev. 3967 */ 3968 int 3969 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 3970 { 3971 /* Propagate up the bus hierarchy until someone handles it. */ 3972 if (dev->parent) 3973 return (BUS_RESUME_INTR(dev->parent, child, irq)); 3974 return (EINVAL); 3975 } 3976 3977 /** 3978 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3979 * 3980 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3981 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3982 */ 3983 int 3984 bus_generic_adjust_resource(device_t dev, device_t child, struct resource *r, 3985 rman_res_t start, rman_res_t end) 3986 { 3987 /* Propagate up the bus hierarchy until someone handles it. */ 3988 if (dev->parent) 3989 return (BUS_ADJUST_RESOURCE(dev->parent, child, r, start, end)); 3990 return (EINVAL); 3991 } 3992 3993 /* 3994 * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE(). 3995 * 3996 * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the 3997 * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev. If there is no 3998 * parent, no translation happens. 3999 */ 4000 int 4001 bus_generic_translate_resource(device_t dev, int type, rman_res_t start, 4002 rman_res_t *newstart) 4003 { 4004 if (dev->parent) 4005 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, 4006 newstart)); 4007 *newstart = start; 4008 return (0); 4009 } 4010 4011 /** 4012 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4013 * 4014 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 4015 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 4016 */ 4017 struct resource * 4018 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4019 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4020 { 4021 /* Propagate up the bus hierarchy until someone handles it. */ 4022 if (dev->parent) 4023 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4024 start, end, count, flags)); 4025 return (NULL); 4026 } 4027 4028 /** 4029 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4030 * 4031 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4032 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4033 */ 4034 int 4035 bus_generic_release_resource(device_t dev, device_t child, struct resource *r) 4036 { 4037 /* Propagate up the bus hierarchy until someone handles it. */ 4038 if (dev->parent) 4039 return (BUS_RELEASE_RESOURCE(dev->parent, child, r)); 4040 return (EINVAL); 4041 } 4042 4043 /** 4044 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4045 * 4046 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4047 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4048 */ 4049 int 4050 bus_generic_activate_resource(device_t dev, device_t child, struct resource *r) 4051 { 4052 /* Propagate up the bus hierarchy until someone handles it. */ 4053 if (dev->parent) 4054 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, r)); 4055 return (EINVAL); 4056 } 4057 4058 /** 4059 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4060 * 4061 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4062 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4063 */ 4064 int 4065 bus_generic_deactivate_resource(device_t dev, device_t child, 4066 struct resource *r) 4067 { 4068 /* Propagate up the bus hierarchy until someone handles it. */ 4069 if (dev->parent) 4070 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, r)); 4071 return (EINVAL); 4072 } 4073 4074 /** 4075 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4076 * 4077 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4078 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4079 */ 4080 int 4081 bus_generic_map_resource(device_t dev, device_t child, struct resource *r, 4082 struct resource_map_request *args, struct resource_map *map) 4083 { 4084 /* Propagate up the bus hierarchy until someone handles it. */ 4085 if (dev->parent) 4086 return (BUS_MAP_RESOURCE(dev->parent, child, r, args, map)); 4087 return (EINVAL); 4088 } 4089 4090 /** 4091 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4092 * 4093 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4094 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4095 */ 4096 int 4097 bus_generic_unmap_resource(device_t dev, device_t child, struct resource *r, 4098 struct resource_map *map) 4099 { 4100 /* Propagate up the bus hierarchy until someone handles it. */ 4101 if (dev->parent) 4102 return (BUS_UNMAP_RESOURCE(dev->parent, child, r, map)); 4103 return (EINVAL); 4104 } 4105 4106 /** 4107 * @brief Helper function for implementing BUS_BIND_INTR(). 4108 * 4109 * This simple implementation of BUS_BIND_INTR() simply calls the 4110 * BUS_BIND_INTR() method of the parent of @p dev. 4111 */ 4112 int 4113 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4114 int cpu) 4115 { 4116 /* Propagate up the bus hierarchy until someone handles it. */ 4117 if (dev->parent) 4118 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4119 return (EINVAL); 4120 } 4121 4122 /** 4123 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4124 * 4125 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4126 * BUS_CONFIG_INTR() method of the parent of @p dev. 4127 */ 4128 int 4129 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4130 enum intr_polarity pol) 4131 { 4132 /* Propagate up the bus hierarchy until someone handles it. */ 4133 if (dev->parent) 4134 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4135 return (EINVAL); 4136 } 4137 4138 /** 4139 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4140 * 4141 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4142 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4143 */ 4144 int 4145 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4146 void *cookie, const char *descr) 4147 { 4148 /* Propagate up the bus hierarchy until someone handles it. */ 4149 if (dev->parent) 4150 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4151 descr)); 4152 return (EINVAL); 4153 } 4154 4155 /** 4156 * @brief Helper function for implementing BUS_GET_CPUS(). 4157 * 4158 * This simple implementation of BUS_GET_CPUS() simply calls the 4159 * BUS_GET_CPUS() method of the parent of @p dev. 4160 */ 4161 int 4162 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4163 size_t setsize, cpuset_t *cpuset) 4164 { 4165 /* Propagate up the bus hierarchy until someone handles it. */ 4166 if (dev->parent != NULL) 4167 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4168 return (EINVAL); 4169 } 4170 4171 /** 4172 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4173 * 4174 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4175 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4176 */ 4177 bus_dma_tag_t 4178 bus_generic_get_dma_tag(device_t dev, device_t child) 4179 { 4180 /* Propagate up the bus hierarchy until someone handles it. */ 4181 if (dev->parent != NULL) 4182 return (BUS_GET_DMA_TAG(dev->parent, child)); 4183 return (NULL); 4184 } 4185 4186 /** 4187 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4188 * 4189 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4190 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4191 */ 4192 bus_space_tag_t 4193 bus_generic_get_bus_tag(device_t dev, device_t child) 4194 { 4195 /* Propagate up the bus hierarchy until someone handles it. */ 4196 if (dev->parent != NULL) 4197 return (BUS_GET_BUS_TAG(dev->parent, child)); 4198 return ((bus_space_tag_t)0); 4199 } 4200 4201 /** 4202 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4203 * 4204 * This implementation of BUS_GET_RESOURCE() uses the 4205 * resource_list_find() function to do most of the work. It calls 4206 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4207 * search. 4208 */ 4209 int 4210 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4211 rman_res_t *startp, rman_res_t *countp) 4212 { 4213 struct resource_list * rl = NULL; 4214 struct resource_list_entry * rle = NULL; 4215 4216 rl = BUS_GET_RESOURCE_LIST(dev, child); 4217 if (!rl) 4218 return (EINVAL); 4219 4220 rle = resource_list_find(rl, type, rid); 4221 if (!rle) 4222 return (ENOENT); 4223 4224 if (startp) 4225 *startp = rle->start; 4226 if (countp) 4227 *countp = rle->count; 4228 4229 return (0); 4230 } 4231 4232 /** 4233 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4234 * 4235 * This implementation of BUS_SET_RESOURCE() uses the 4236 * resource_list_add() function to do most of the work. It calls 4237 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4238 * edit. 4239 */ 4240 int 4241 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4242 rman_res_t start, rman_res_t count) 4243 { 4244 struct resource_list * rl = NULL; 4245 4246 rl = BUS_GET_RESOURCE_LIST(dev, child); 4247 if (!rl) 4248 return (EINVAL); 4249 4250 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4251 4252 return (0); 4253 } 4254 4255 /** 4256 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4257 * 4258 * This implementation of BUS_DELETE_RESOURCE() uses the 4259 * resource_list_delete() function to do most of the work. It calls 4260 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4261 * edit. 4262 */ 4263 void 4264 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4265 { 4266 struct resource_list * rl = NULL; 4267 4268 rl = BUS_GET_RESOURCE_LIST(dev, child); 4269 if (!rl) 4270 return; 4271 4272 resource_list_delete(rl, type, rid); 4273 4274 return; 4275 } 4276 4277 /** 4278 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4279 * 4280 * This implementation of BUS_RELEASE_RESOURCE() uses the 4281 * resource_list_release() function to do most of the work. It calls 4282 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4283 */ 4284 int 4285 bus_generic_rl_release_resource(device_t dev, device_t child, 4286 struct resource *r) 4287 { 4288 struct resource_list * rl = NULL; 4289 4290 if (device_get_parent(child) != dev) 4291 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, r)); 4292 4293 rl = BUS_GET_RESOURCE_LIST(dev, child); 4294 if (!rl) 4295 return (EINVAL); 4296 4297 return (resource_list_release(rl, dev, child, r)); 4298 } 4299 4300 /** 4301 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4302 * 4303 * This implementation of BUS_ALLOC_RESOURCE() uses the 4304 * resource_list_alloc() function to do most of the work. It calls 4305 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4306 */ 4307 struct resource * 4308 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4309 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4310 { 4311 struct resource_list * rl = NULL; 4312 4313 if (device_get_parent(child) != dev) 4314 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4315 type, rid, start, end, count, flags)); 4316 4317 rl = BUS_GET_RESOURCE_LIST(dev, child); 4318 if (!rl) 4319 return (NULL); 4320 4321 return (resource_list_alloc(rl, dev, child, type, rid, 4322 start, end, count, flags)); 4323 } 4324 4325 /** 4326 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4327 * 4328 * This implementation of BUS_ALLOC_RESOURCE() allocates a 4329 * resource from a resource manager. It uses BUS_GET_RMAN() 4330 * to obtain the resource manager. 4331 */ 4332 struct resource * 4333 bus_generic_rman_alloc_resource(device_t dev, device_t child, int type, 4334 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4335 { 4336 struct resource *r; 4337 struct rman *rm; 4338 4339 rm = BUS_GET_RMAN(dev, type, flags); 4340 if (rm == NULL) 4341 return (NULL); 4342 4343 r = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 4344 child); 4345 if (r == NULL) 4346 return (NULL); 4347 rman_set_rid(r, *rid); 4348 rman_set_type(r, type); 4349 4350 if (flags & RF_ACTIVE) { 4351 if (bus_activate_resource(child, type, *rid, r) != 0) { 4352 rman_release_resource(r); 4353 return (NULL); 4354 } 4355 } 4356 4357 return (r); 4358 } 4359 4360 /** 4361 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4362 * 4363 * This implementation of BUS_ADJUST_RESOURCE() adjusts resources only 4364 * if they were allocated from the resource manager returned by 4365 * BUS_GET_RMAN(). 4366 */ 4367 int 4368 bus_generic_rman_adjust_resource(device_t dev, device_t child, 4369 struct resource *r, rman_res_t start, rman_res_t end) 4370 { 4371 struct rman *rm; 4372 4373 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r)); 4374 if (rm == NULL) 4375 return (ENXIO); 4376 if (!rman_is_region_manager(r, rm)) 4377 return (EINVAL); 4378 return (rman_adjust_resource(r, start, end)); 4379 } 4380 4381 /** 4382 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4383 * 4384 * This implementation of BUS_RELEASE_RESOURCE() releases resources 4385 * allocated by bus_generic_rman_alloc_resource. 4386 */ 4387 int 4388 bus_generic_rman_release_resource(device_t dev, device_t child, 4389 struct resource *r) 4390 { 4391 #ifdef INVARIANTS 4392 struct rman *rm; 4393 #endif 4394 int error; 4395 4396 #ifdef INVARIANTS 4397 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r)); 4398 KASSERT(rman_is_region_manager(r, rm), 4399 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4400 #endif 4401 4402 if (rman_get_flags(r) & RF_ACTIVE) { 4403 error = bus_deactivate_resource(child, r); 4404 if (error != 0) 4405 return (error); 4406 } 4407 return (rman_release_resource(r)); 4408 } 4409 4410 /** 4411 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4412 * 4413 * This implementation of BUS_ACTIVATE_RESOURCE() activates resources 4414 * allocated by bus_generic_rman_alloc_resource. 4415 */ 4416 int 4417 bus_generic_rman_activate_resource(device_t dev, device_t child, 4418 struct resource *r) 4419 { 4420 struct resource_map map; 4421 #ifdef INVARIANTS 4422 struct rman *rm; 4423 #endif 4424 int error, type; 4425 4426 type = rman_get_type(r); 4427 #ifdef INVARIANTS 4428 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r)); 4429 KASSERT(rman_is_region_manager(r, rm), 4430 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4431 #endif 4432 4433 error = rman_activate_resource(r); 4434 if (error != 0) 4435 return (error); 4436 4437 switch (type) { 4438 case SYS_RES_IOPORT: 4439 case SYS_RES_MEMORY: 4440 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) { 4441 error = BUS_MAP_RESOURCE(dev, child, r, NULL, &map); 4442 if (error != 0) 4443 break; 4444 4445 rman_set_mapping(r, &map); 4446 } 4447 break; 4448 #ifdef INTRNG 4449 case SYS_RES_IRQ: 4450 error = intr_activate_irq(child, r); 4451 break; 4452 #endif 4453 } 4454 if (error != 0) 4455 rman_deactivate_resource(r); 4456 return (error); 4457 } 4458 4459 /** 4460 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4461 * 4462 * This implementation of BUS_DEACTIVATE_RESOURCE() deactivates 4463 * resources allocated by bus_generic_rman_alloc_resource. 4464 */ 4465 int 4466 bus_generic_rman_deactivate_resource(device_t dev, device_t child, 4467 struct resource *r) 4468 { 4469 struct resource_map map; 4470 #ifdef INVARIANTS 4471 struct rman *rm; 4472 #endif 4473 int error, type; 4474 4475 type = rman_get_type(r); 4476 #ifdef INVARIANTS 4477 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r)); 4478 KASSERT(rman_is_region_manager(r, rm), 4479 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4480 #endif 4481 4482 error = rman_deactivate_resource(r); 4483 if (error != 0) 4484 return (error); 4485 4486 switch (type) { 4487 case SYS_RES_IOPORT: 4488 case SYS_RES_MEMORY: 4489 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) { 4490 rman_get_mapping(r, &map); 4491 BUS_UNMAP_RESOURCE(dev, child, r, &map); 4492 } 4493 break; 4494 #ifdef INTRNG 4495 case SYS_RES_IRQ: 4496 intr_deactivate_irq(child, r); 4497 break; 4498 #endif 4499 } 4500 return (0); 4501 } 4502 4503 /** 4504 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4505 * 4506 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4507 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4508 */ 4509 int 4510 bus_generic_child_present(device_t dev, device_t child) 4511 { 4512 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4513 } 4514 4515 /** 4516 * @brief Helper function for implementing BUS_GET_DOMAIN(). 4517 * 4518 * This simple implementation of BUS_GET_DOMAIN() calls the 4519 * BUS_GET_DOMAIN() method of the parent of @p dev. If @p dev 4520 * does not have a parent, the function fails with ENOENT. 4521 */ 4522 int 4523 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4524 { 4525 if (dev->parent) 4526 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4527 4528 return (ENOENT); 4529 } 4530 4531 /** 4532 * @brief Helper function to implement normal BUS_GET_DEVICE_PATH() 4533 * 4534 * This function knows how to (a) pass the request up the tree if there's 4535 * a parent and (b) Knows how to supply a FreeBSD locator. 4536 * 4537 * @param bus bus in the walk up the tree 4538 * @param child leaf node to print information about 4539 * @param locator BUS_LOCATOR_xxx string for locator 4540 * @param sb Buffer to print information into 4541 */ 4542 int 4543 bus_generic_get_device_path(device_t bus, device_t child, const char *locator, 4544 struct sbuf *sb) 4545 { 4546 int rv = 0; 4547 device_t parent; 4548 4549 /* 4550 * We don't recurse on ACPI since either we know the handle for the 4551 * device or we don't. And if we're in the generic routine, we don't 4552 * have a ACPI override. All other locators build up a path by having 4553 * their parents create a path and then adding the path element for this 4554 * node. That's why we recurse with parent, bus rather than the typical 4555 * parent, child: each spot in the tree is independent of what our child 4556 * will do with this path. 4557 */ 4558 parent = device_get_parent(bus); 4559 if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) { 4560 rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb); 4561 } 4562 if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) { 4563 if (rv == 0) { 4564 sbuf_printf(sb, "/%s", device_get_nameunit(child)); 4565 } 4566 return (rv); 4567 } 4568 /* 4569 * Don't know what to do. So assume we do nothing. Not sure that's 4570 * the right thing, but keeps us from having a big list here. 4571 */ 4572 return (0); 4573 } 4574 4575 4576 /** 4577 * @brief Helper function for implementing BUS_RESCAN(). 4578 * 4579 * This null implementation of BUS_RESCAN() always fails to indicate 4580 * the bus does not support rescanning. 4581 */ 4582 int 4583 bus_null_rescan(device_t dev) 4584 { 4585 return (ENODEV); 4586 } 4587 4588 /* 4589 * Some convenience functions to make it easier for drivers to use the 4590 * resource-management functions. All these really do is hide the 4591 * indirection through the parent's method table, making for slightly 4592 * less-wordy code. In the future, it might make sense for this code 4593 * to maintain some sort of a list of resources allocated by each device. 4594 */ 4595 4596 int 4597 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4598 struct resource **res) 4599 { 4600 int i; 4601 4602 for (i = 0; rs[i].type != -1; i++) 4603 res[i] = NULL; 4604 for (i = 0; rs[i].type != -1; i++) { 4605 res[i] = bus_alloc_resource_any(dev, 4606 rs[i].type, &rs[i].rid, rs[i].flags); 4607 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4608 bus_release_resources(dev, rs, res); 4609 return (ENXIO); 4610 } 4611 } 4612 return (0); 4613 } 4614 4615 void 4616 bus_release_resources(device_t dev, const struct resource_spec *rs, 4617 struct resource **res) 4618 { 4619 int i; 4620 4621 for (i = 0; rs[i].type != -1; i++) 4622 if (res[i] != NULL) { 4623 bus_release_resource( 4624 dev, rs[i].type, rs[i].rid, res[i]); 4625 res[i] = NULL; 4626 } 4627 } 4628 4629 /** 4630 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4631 * 4632 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4633 * parent of @p dev. 4634 */ 4635 struct resource * 4636 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4637 rman_res_t end, rman_res_t count, u_int flags) 4638 { 4639 struct resource *res; 4640 4641 if (dev->parent == NULL) 4642 return (NULL); 4643 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4644 count, flags); 4645 return (res); 4646 } 4647 4648 /** 4649 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4650 * 4651 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4652 * parent of @p dev. 4653 */ 4654 int 4655 bus_adjust_resource(device_t dev, struct resource *r, rman_res_t start, 4656 rman_res_t end) 4657 { 4658 if (dev->parent == NULL) 4659 return (EINVAL); 4660 return (BUS_ADJUST_RESOURCE(dev->parent, dev, r, start, end)); 4661 } 4662 4663 int 4664 bus_adjust_resource_old(device_t dev, int type __unused, struct resource *r, 4665 rman_res_t start, rman_res_t end) 4666 { 4667 return (bus_adjust_resource(dev, r, start, end)); 4668 } 4669 4670 /** 4671 * @brief Wrapper function for BUS_TRANSLATE_RESOURCE(). 4672 * 4673 * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the 4674 * parent of @p dev. 4675 */ 4676 int 4677 bus_translate_resource(device_t dev, int type, rman_res_t start, 4678 rman_res_t *newstart) 4679 { 4680 if (dev->parent == NULL) 4681 return (EINVAL); 4682 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart)); 4683 } 4684 4685 /** 4686 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4687 * 4688 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4689 * parent of @p dev. 4690 */ 4691 int 4692 bus_activate_resource(device_t dev, struct resource *r) 4693 { 4694 if (dev->parent == NULL) 4695 return (EINVAL); 4696 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, r)); 4697 } 4698 4699 int 4700 bus_activate_resource_old(device_t dev, int type, int rid, struct resource *r) 4701 { 4702 return (bus_activate_resource(dev, r)); 4703 } 4704 4705 /** 4706 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4707 * 4708 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4709 * parent of @p dev. 4710 */ 4711 int 4712 bus_deactivate_resource(device_t dev, struct resource *r) 4713 { 4714 if (dev->parent == NULL) 4715 return (EINVAL); 4716 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, r)); 4717 } 4718 4719 int 4720 bus_deactivate_resource_old(device_t dev, int type, int rid, struct resource *r) 4721 { 4722 return (bus_deactivate_resource(dev, r)); 4723 } 4724 4725 /** 4726 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4727 * 4728 * This function simply calls the BUS_MAP_RESOURCE() method of the 4729 * parent of @p dev. 4730 */ 4731 int 4732 bus_map_resource(device_t dev, struct resource *r, 4733 struct resource_map_request *args, struct resource_map *map) 4734 { 4735 if (dev->parent == NULL) 4736 return (EINVAL); 4737 return (BUS_MAP_RESOURCE(dev->parent, dev, r, args, map)); 4738 } 4739 4740 int 4741 bus_map_resource_old(device_t dev, int type, struct resource *r, 4742 struct resource_map_request *args, struct resource_map *map) 4743 { 4744 return (bus_map_resource(dev, r, args, map)); 4745 } 4746 4747 /** 4748 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4749 * 4750 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4751 * parent of @p dev. 4752 */ 4753 int 4754 bus_unmap_resource(device_t dev, struct resource *r, struct resource_map *map) 4755 { 4756 if (dev->parent == NULL) 4757 return (EINVAL); 4758 return (BUS_UNMAP_RESOURCE(dev->parent, dev, r, map)); 4759 } 4760 4761 int 4762 bus_unmap_resource_old(device_t dev, int type, struct resource *r, 4763 struct resource_map *map) 4764 { 4765 return (bus_unmap_resource(dev, r, map)); 4766 } 4767 4768 /** 4769 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4770 * 4771 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4772 * parent of @p dev. 4773 */ 4774 int 4775 bus_release_resource(device_t dev, struct resource *r) 4776 { 4777 int rv; 4778 4779 if (dev->parent == NULL) 4780 return (EINVAL); 4781 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, r); 4782 return (rv); 4783 } 4784 4785 int 4786 bus_release_resource_old(device_t dev, int type, int rid, struct resource *r) 4787 { 4788 return (bus_release_resource(dev, r)); 4789 } 4790 4791 /** 4792 * @brief Wrapper function for BUS_SETUP_INTR(). 4793 * 4794 * This function simply calls the BUS_SETUP_INTR() method of the 4795 * parent of @p dev. 4796 */ 4797 int 4798 bus_setup_intr(device_t dev, struct resource *r, int flags, 4799 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4800 { 4801 int error; 4802 4803 if (dev->parent == NULL) 4804 return (EINVAL); 4805 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4806 arg, cookiep); 4807 if (error != 0) 4808 return (error); 4809 if (handler != NULL && !(flags & INTR_MPSAFE)) 4810 device_printf(dev, "[GIANT-LOCKED]\n"); 4811 return (0); 4812 } 4813 4814 /** 4815 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4816 * 4817 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4818 * parent of @p dev. 4819 */ 4820 int 4821 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4822 { 4823 if (dev->parent == NULL) 4824 return (EINVAL); 4825 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4826 } 4827 4828 /** 4829 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4830 * 4831 * This function simply calls the BUS_SUSPEND_INTR() method of the 4832 * parent of @p dev. 4833 */ 4834 int 4835 bus_suspend_intr(device_t dev, struct resource *r) 4836 { 4837 if (dev->parent == NULL) 4838 return (EINVAL); 4839 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4840 } 4841 4842 /** 4843 * @brief Wrapper function for BUS_RESUME_INTR(). 4844 * 4845 * This function simply calls the BUS_RESUME_INTR() method of the 4846 * parent of @p dev. 4847 */ 4848 int 4849 bus_resume_intr(device_t dev, struct resource *r) 4850 { 4851 if (dev->parent == NULL) 4852 return (EINVAL); 4853 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4854 } 4855 4856 /** 4857 * @brief Wrapper function for BUS_BIND_INTR(). 4858 * 4859 * This function simply calls the BUS_BIND_INTR() method of the 4860 * parent of @p dev. 4861 */ 4862 int 4863 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4864 { 4865 if (dev->parent == NULL) 4866 return (EINVAL); 4867 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4868 } 4869 4870 /** 4871 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4872 * 4873 * This function first formats the requested description into a 4874 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4875 * the parent of @p dev. 4876 */ 4877 int 4878 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4879 const char *fmt, ...) 4880 { 4881 va_list ap; 4882 char descr[MAXCOMLEN + 1]; 4883 4884 if (dev->parent == NULL) 4885 return (EINVAL); 4886 va_start(ap, fmt); 4887 vsnprintf(descr, sizeof(descr), fmt, ap); 4888 va_end(ap); 4889 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4890 } 4891 4892 /** 4893 * @brief Wrapper function for BUS_SET_RESOURCE(). 4894 * 4895 * This function simply calls the BUS_SET_RESOURCE() method of the 4896 * parent of @p dev. 4897 */ 4898 int 4899 bus_set_resource(device_t dev, int type, int rid, 4900 rman_res_t start, rman_res_t count) 4901 { 4902 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4903 start, count)); 4904 } 4905 4906 /** 4907 * @brief Wrapper function for BUS_GET_RESOURCE(). 4908 * 4909 * This function simply calls the BUS_GET_RESOURCE() method of the 4910 * parent of @p dev. 4911 */ 4912 int 4913 bus_get_resource(device_t dev, int type, int rid, 4914 rman_res_t *startp, rman_res_t *countp) 4915 { 4916 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4917 startp, countp)); 4918 } 4919 4920 /** 4921 * @brief Wrapper function for BUS_GET_RESOURCE(). 4922 * 4923 * This function simply calls the BUS_GET_RESOURCE() method of the 4924 * parent of @p dev and returns the start value. 4925 */ 4926 rman_res_t 4927 bus_get_resource_start(device_t dev, int type, int rid) 4928 { 4929 rman_res_t start; 4930 rman_res_t count; 4931 int error; 4932 4933 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4934 &start, &count); 4935 if (error) 4936 return (0); 4937 return (start); 4938 } 4939 4940 /** 4941 * @brief Wrapper function for BUS_GET_RESOURCE(). 4942 * 4943 * This function simply calls the BUS_GET_RESOURCE() method of the 4944 * parent of @p dev and returns the count value. 4945 */ 4946 rman_res_t 4947 bus_get_resource_count(device_t dev, int type, int rid) 4948 { 4949 rman_res_t start; 4950 rman_res_t count; 4951 int error; 4952 4953 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4954 &start, &count); 4955 if (error) 4956 return (0); 4957 return (count); 4958 } 4959 4960 /** 4961 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4962 * 4963 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4964 * parent of @p dev. 4965 */ 4966 void 4967 bus_delete_resource(device_t dev, int type, int rid) 4968 { 4969 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4970 } 4971 4972 /** 4973 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4974 * 4975 * This function simply calls the BUS_CHILD_PRESENT() method of the 4976 * parent of @p dev. 4977 */ 4978 int 4979 bus_child_present(device_t child) 4980 { 4981 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4982 } 4983 4984 /** 4985 * @brief Wrapper function for BUS_CHILD_PNPINFO(). 4986 * 4987 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p 4988 * dev. 4989 */ 4990 int 4991 bus_child_pnpinfo(device_t child, struct sbuf *sb) 4992 { 4993 device_t parent; 4994 4995 parent = device_get_parent(child); 4996 if (parent == NULL) 4997 return (0); 4998 return (BUS_CHILD_PNPINFO(parent, child, sb)); 4999 } 5000 5001 /** 5002 * @brief Generic implementation that does nothing for bus_child_pnpinfo 5003 * 5004 * This function has the right signature and returns 0 since the sbuf is passed 5005 * to us to append to. 5006 */ 5007 int 5008 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb) 5009 { 5010 return (0); 5011 } 5012 5013 /** 5014 * @brief Wrapper function for BUS_CHILD_LOCATION(). 5015 * 5016 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of 5017 * @p dev. 5018 */ 5019 int 5020 bus_child_location(device_t child, struct sbuf *sb) 5021 { 5022 device_t parent; 5023 5024 parent = device_get_parent(child); 5025 if (parent == NULL) 5026 return (0); 5027 return (BUS_CHILD_LOCATION(parent, child, sb)); 5028 } 5029 5030 /** 5031 * @brief Generic implementation that does nothing for bus_child_location 5032 * 5033 * This function has the right signature and returns 0 since the sbuf is passed 5034 * to us to append to. 5035 */ 5036 int 5037 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb) 5038 { 5039 return (0); 5040 } 5041 5042 /** 5043 * @brief Wrapper function for BUS_GET_CPUS(). 5044 * 5045 * This function simply calls the BUS_GET_CPUS() method of the 5046 * parent of @p dev. 5047 */ 5048 int 5049 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 5050 { 5051 device_t parent; 5052 5053 parent = device_get_parent(dev); 5054 if (parent == NULL) 5055 return (EINVAL); 5056 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 5057 } 5058 5059 /** 5060 * @brief Wrapper function for BUS_GET_DMA_TAG(). 5061 * 5062 * This function simply calls the BUS_GET_DMA_TAG() method of the 5063 * parent of @p dev. 5064 */ 5065 bus_dma_tag_t 5066 bus_get_dma_tag(device_t dev) 5067 { 5068 device_t parent; 5069 5070 parent = device_get_parent(dev); 5071 if (parent == NULL) 5072 return (NULL); 5073 return (BUS_GET_DMA_TAG(parent, dev)); 5074 } 5075 5076 /** 5077 * @brief Wrapper function for BUS_GET_BUS_TAG(). 5078 * 5079 * This function simply calls the BUS_GET_BUS_TAG() method of the 5080 * parent of @p dev. 5081 */ 5082 bus_space_tag_t 5083 bus_get_bus_tag(device_t dev) 5084 { 5085 device_t parent; 5086 5087 parent = device_get_parent(dev); 5088 if (parent == NULL) 5089 return ((bus_space_tag_t)0); 5090 return (BUS_GET_BUS_TAG(parent, dev)); 5091 } 5092 5093 /** 5094 * @brief Wrapper function for BUS_GET_DOMAIN(). 5095 * 5096 * This function simply calls the BUS_GET_DOMAIN() method of the 5097 * parent of @p dev. 5098 */ 5099 int 5100 bus_get_domain(device_t dev, int *domain) 5101 { 5102 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 5103 } 5104 5105 /* Resume all devices and then notify userland that we're up again. */ 5106 static int 5107 root_resume(device_t dev) 5108 { 5109 int error; 5110 5111 error = bus_generic_resume(dev); 5112 if (error == 0) { 5113 devctl_notify("kernel", "power", "resume", NULL); 5114 } 5115 return (error); 5116 } 5117 5118 static int 5119 root_print_child(device_t dev, device_t child) 5120 { 5121 int retval = 0; 5122 5123 retval += bus_print_child_header(dev, child); 5124 retval += printf("\n"); 5125 5126 return (retval); 5127 } 5128 5129 static int 5130 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 5131 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 5132 { 5133 /* 5134 * If an interrupt mapping gets to here something bad has happened. 5135 */ 5136 panic("root_setup_intr"); 5137 } 5138 5139 /* 5140 * If we get here, assume that the device is permanent and really is 5141 * present in the system. Removable bus drivers are expected to intercept 5142 * this call long before it gets here. We return -1 so that drivers that 5143 * really care can check vs -1 or some ERRNO returned higher in the food 5144 * chain. 5145 */ 5146 static int 5147 root_child_present(device_t dev, device_t child) 5148 { 5149 return (-1); 5150 } 5151 5152 static int 5153 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 5154 cpuset_t *cpuset) 5155 { 5156 switch (op) { 5157 case INTR_CPUS: 5158 /* Default to returning the set of all CPUs. */ 5159 if (setsize != sizeof(cpuset_t)) 5160 return (EINVAL); 5161 *cpuset = all_cpus; 5162 return (0); 5163 default: 5164 return (EINVAL); 5165 } 5166 } 5167 5168 static kobj_method_t root_methods[] = { 5169 /* Device interface */ 5170 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 5171 KOBJMETHOD(device_suspend, bus_generic_suspend), 5172 KOBJMETHOD(device_resume, root_resume), 5173 5174 /* Bus interface */ 5175 KOBJMETHOD(bus_print_child, root_print_child), 5176 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 5177 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 5178 KOBJMETHOD(bus_setup_intr, root_setup_intr), 5179 KOBJMETHOD(bus_child_present, root_child_present), 5180 KOBJMETHOD(bus_get_cpus, root_get_cpus), 5181 5182 KOBJMETHOD_END 5183 }; 5184 5185 static driver_t root_driver = { 5186 "root", 5187 root_methods, 5188 1, /* no softc */ 5189 }; 5190 5191 device_t root_bus; 5192 devclass_t root_devclass; 5193 5194 static int 5195 root_bus_module_handler(module_t mod, int what, void* arg) 5196 { 5197 switch (what) { 5198 case MOD_LOAD: 5199 TAILQ_INIT(&bus_data_devices); 5200 kobj_class_compile((kobj_class_t) &root_driver); 5201 root_bus = make_device(NULL, "root", 0); 5202 root_bus->desc = "System root bus"; 5203 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 5204 root_bus->driver = &root_driver; 5205 root_bus->state = DS_ATTACHED; 5206 root_devclass = devclass_find_internal("root", NULL, FALSE); 5207 devctl2_init(); 5208 return (0); 5209 5210 case MOD_SHUTDOWN: 5211 device_shutdown(root_bus); 5212 return (0); 5213 default: 5214 return (EOPNOTSUPP); 5215 } 5216 5217 return (0); 5218 } 5219 5220 static moduledata_t root_bus_mod = { 5221 "rootbus", 5222 root_bus_module_handler, 5223 NULL 5224 }; 5225 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 5226 5227 /** 5228 * @brief Automatically configure devices 5229 * 5230 * This function begins the autoconfiguration process by calling 5231 * device_probe_and_attach() for each child of the @c root0 device. 5232 */ 5233 void 5234 root_bus_configure(void) 5235 { 5236 PDEBUG((".")); 5237 5238 /* Eventually this will be split up, but this is sufficient for now. */ 5239 bus_set_pass(BUS_PASS_DEFAULT); 5240 } 5241 5242 /** 5243 * @brief Module handler for registering device drivers 5244 * 5245 * This module handler is used to automatically register device 5246 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 5247 * devclass_add_driver() for the driver described by the 5248 * driver_module_data structure pointed to by @p arg 5249 */ 5250 int 5251 driver_module_handler(module_t mod, int what, void *arg) 5252 { 5253 struct driver_module_data *dmd; 5254 devclass_t bus_devclass; 5255 kobj_class_t driver; 5256 int error, pass; 5257 5258 dmd = (struct driver_module_data *)arg; 5259 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 5260 error = 0; 5261 5262 switch (what) { 5263 case MOD_LOAD: 5264 if (dmd->dmd_chainevh) 5265 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5266 5267 pass = dmd->dmd_pass; 5268 driver = dmd->dmd_driver; 5269 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 5270 DRIVERNAME(driver), dmd->dmd_busname, pass)); 5271 error = devclass_add_driver(bus_devclass, driver, pass, 5272 dmd->dmd_devclass); 5273 break; 5274 5275 case MOD_UNLOAD: 5276 PDEBUG(("Unloading module: driver %s from bus %s", 5277 DRIVERNAME(dmd->dmd_driver), 5278 dmd->dmd_busname)); 5279 error = devclass_delete_driver(bus_devclass, 5280 dmd->dmd_driver); 5281 5282 if (!error && dmd->dmd_chainevh) 5283 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5284 break; 5285 case MOD_QUIESCE: 5286 PDEBUG(("Quiesce module: driver %s from bus %s", 5287 DRIVERNAME(dmd->dmd_driver), 5288 dmd->dmd_busname)); 5289 error = devclass_quiesce_driver(bus_devclass, 5290 dmd->dmd_driver); 5291 5292 if (!error && dmd->dmd_chainevh) 5293 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5294 break; 5295 default: 5296 error = EOPNOTSUPP; 5297 break; 5298 } 5299 5300 return (error); 5301 } 5302 5303 /** 5304 * @brief Enumerate all hinted devices for this bus. 5305 * 5306 * Walks through the hints for this bus and calls the bus_hinted_child 5307 * routine for each one it fines. It searches first for the specific 5308 * bus that's being probed for hinted children (eg isa0), and then for 5309 * generic children (eg isa). 5310 * 5311 * @param dev bus device to enumerate 5312 */ 5313 void 5314 bus_enumerate_hinted_children(device_t bus) 5315 { 5316 int i; 5317 const char *dname, *busname; 5318 int dunit; 5319 5320 /* 5321 * enumerate all devices on the specific bus 5322 */ 5323 busname = device_get_nameunit(bus); 5324 i = 0; 5325 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5326 BUS_HINTED_CHILD(bus, dname, dunit); 5327 5328 /* 5329 * and all the generic ones. 5330 */ 5331 busname = device_get_name(bus); 5332 i = 0; 5333 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5334 BUS_HINTED_CHILD(bus, dname, dunit); 5335 } 5336 5337 #ifdef BUS_DEBUG 5338 5339 /* the _short versions avoid iteration by not calling anything that prints 5340 * more than oneliners. I love oneliners. 5341 */ 5342 5343 static void 5344 print_device_short(device_t dev, int indent) 5345 { 5346 if (!dev) 5347 return; 5348 5349 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5350 dev->unit, dev->desc, 5351 (dev->parent? "":"no "), 5352 (TAILQ_EMPTY(&dev->children)? "no ":""), 5353 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5354 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5355 (dev->flags&DF_WILDCARD? "wildcard,":""), 5356 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5357 (dev->flags&DF_SUSPENDED? "suspended,":""), 5358 (dev->ivars? "":"no "), 5359 (dev->softc? "":"no "), 5360 dev->busy)); 5361 } 5362 5363 static void 5364 print_device(device_t dev, int indent) 5365 { 5366 if (!dev) 5367 return; 5368 5369 print_device_short(dev, indent); 5370 5371 indentprintf(("Parent:\n")); 5372 print_device_short(dev->parent, indent+1); 5373 indentprintf(("Driver:\n")); 5374 print_driver_short(dev->driver, indent+1); 5375 indentprintf(("Devclass:\n")); 5376 print_devclass_short(dev->devclass, indent+1); 5377 } 5378 5379 void 5380 print_device_tree_short(device_t dev, int indent) 5381 /* print the device and all its children (indented) */ 5382 { 5383 device_t child; 5384 5385 if (!dev) 5386 return; 5387 5388 print_device_short(dev, indent); 5389 5390 TAILQ_FOREACH(child, &dev->children, link) { 5391 print_device_tree_short(child, indent+1); 5392 } 5393 } 5394 5395 void 5396 print_device_tree(device_t dev, int indent) 5397 /* print the device and all its children (indented) */ 5398 { 5399 device_t child; 5400 5401 if (!dev) 5402 return; 5403 5404 print_device(dev, indent); 5405 5406 TAILQ_FOREACH(child, &dev->children, link) { 5407 print_device_tree(child, indent+1); 5408 } 5409 } 5410 5411 static void 5412 print_driver_short(driver_t *driver, int indent) 5413 { 5414 if (!driver) 5415 return; 5416 5417 indentprintf(("driver %s: softc size = %zd\n", 5418 driver->name, driver->size)); 5419 } 5420 5421 static void 5422 print_driver(driver_t *driver, int indent) 5423 { 5424 if (!driver) 5425 return; 5426 5427 print_driver_short(driver, indent); 5428 } 5429 5430 static void 5431 print_driver_list(driver_list_t drivers, int indent) 5432 { 5433 driverlink_t driver; 5434 5435 TAILQ_FOREACH(driver, &drivers, link) { 5436 print_driver(driver->driver, indent); 5437 } 5438 } 5439 5440 static void 5441 print_devclass_short(devclass_t dc, int indent) 5442 { 5443 if ( !dc ) 5444 return; 5445 5446 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5447 } 5448 5449 static void 5450 print_devclass(devclass_t dc, int indent) 5451 { 5452 int i; 5453 5454 if ( !dc ) 5455 return; 5456 5457 print_devclass_short(dc, indent); 5458 indentprintf(("Drivers:\n")); 5459 print_driver_list(dc->drivers, indent+1); 5460 5461 indentprintf(("Devices:\n")); 5462 for (i = 0; i < dc->maxunit; i++) 5463 if (dc->devices[i]) 5464 print_device(dc->devices[i], indent+1); 5465 } 5466 5467 void 5468 print_devclass_list_short(void) 5469 { 5470 devclass_t dc; 5471 5472 printf("Short listing of devclasses, drivers & devices:\n"); 5473 TAILQ_FOREACH(dc, &devclasses, link) { 5474 print_devclass_short(dc, 0); 5475 } 5476 } 5477 5478 void 5479 print_devclass_list(void) 5480 { 5481 devclass_t dc; 5482 5483 printf("Full listing of devclasses, drivers & devices:\n"); 5484 TAILQ_FOREACH(dc, &devclasses, link) { 5485 print_devclass(dc, 0); 5486 } 5487 } 5488 5489 #endif 5490 5491 /* 5492 * User-space access to the device tree. 5493 * 5494 * We implement a small set of nodes: 5495 * 5496 * hw.bus Single integer read method to obtain the 5497 * current generation count. 5498 * hw.bus.devices Reads the entire device tree in flat space. 5499 * hw.bus.rman Resource manager interface 5500 * 5501 * We might like to add the ability to scan devclasses and/or drivers to 5502 * determine what else is currently loaded/available. 5503 */ 5504 5505 static int 5506 sysctl_bus_info(SYSCTL_HANDLER_ARGS) 5507 { 5508 struct u_businfo ubus; 5509 5510 ubus.ub_version = BUS_USER_VERSION; 5511 ubus.ub_generation = bus_data_generation; 5512 5513 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5514 } 5515 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | 5516 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", 5517 "bus-related data"); 5518 5519 static int 5520 sysctl_devices(SYSCTL_HANDLER_ARGS) 5521 { 5522 struct sbuf sb; 5523 int *name = (int *)arg1; 5524 u_int namelen = arg2; 5525 int index; 5526 device_t dev; 5527 struct u_device *udev; 5528 int error; 5529 5530 if (namelen != 2) 5531 return (EINVAL); 5532 5533 if (bus_data_generation_check(name[0])) 5534 return (EINVAL); 5535 5536 index = name[1]; 5537 5538 /* 5539 * Scan the list of devices, looking for the requested index. 5540 */ 5541 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5542 if (index-- == 0) 5543 break; 5544 } 5545 if (dev == NULL) 5546 return (ENOENT); 5547 5548 /* 5549 * Populate the return item, careful not to overflow the buffer. 5550 */ 5551 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5552 udev->dv_handle = (uintptr_t)dev; 5553 udev->dv_parent = (uintptr_t)dev->parent; 5554 udev->dv_devflags = dev->devflags; 5555 udev->dv_flags = dev->flags; 5556 udev->dv_state = dev->state; 5557 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN); 5558 if (dev->nameunit != NULL) 5559 sbuf_cat(&sb, dev->nameunit); 5560 sbuf_putc(&sb, '\0'); 5561 if (dev->desc != NULL) 5562 sbuf_cat(&sb, dev->desc); 5563 sbuf_putc(&sb, '\0'); 5564 if (dev->driver != NULL) 5565 sbuf_cat(&sb, dev->driver->name); 5566 sbuf_putc(&sb, '\0'); 5567 bus_child_pnpinfo(dev, &sb); 5568 sbuf_putc(&sb, '\0'); 5569 bus_child_location(dev, &sb); 5570 sbuf_putc(&sb, '\0'); 5571 error = sbuf_finish(&sb); 5572 if (error == 0) 5573 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5574 sbuf_delete(&sb); 5575 free(udev, M_BUS); 5576 return (error); 5577 } 5578 5579 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, 5580 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, 5581 "system device tree"); 5582 5583 int 5584 bus_data_generation_check(int generation) 5585 { 5586 if (generation != bus_data_generation) 5587 return (1); 5588 5589 /* XXX generate optimised lists here? */ 5590 return (0); 5591 } 5592 5593 void 5594 bus_data_generation_update(void) 5595 { 5596 atomic_add_int(&bus_data_generation, 1); 5597 } 5598 5599 int 5600 bus_free_resource(device_t dev, int type, struct resource *r) 5601 { 5602 if (r == NULL) 5603 return (0); 5604 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5605 } 5606 5607 device_t 5608 device_lookup_by_name(const char *name) 5609 { 5610 device_t dev; 5611 5612 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5613 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5614 return (dev); 5615 } 5616 return (NULL); 5617 } 5618 5619 /* 5620 * /dev/devctl2 implementation. The existing /dev/devctl device has 5621 * implicit semantics on open, so it could not be reused for this. 5622 * Another option would be to call this /dev/bus? 5623 */ 5624 static int 5625 find_device(struct devreq *req, device_t *devp) 5626 { 5627 device_t dev; 5628 5629 /* 5630 * First, ensure that the name is nul terminated. 5631 */ 5632 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5633 return (EINVAL); 5634 5635 /* 5636 * Second, try to find an attached device whose name matches 5637 * 'name'. 5638 */ 5639 dev = device_lookup_by_name(req->dr_name); 5640 if (dev != NULL) { 5641 *devp = dev; 5642 return (0); 5643 } 5644 5645 /* Finally, give device enumerators a chance. */ 5646 dev = NULL; 5647 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5648 if (dev == NULL) 5649 return (ENOENT); 5650 *devp = dev; 5651 return (0); 5652 } 5653 5654 static bool 5655 driver_exists(device_t bus, const char *driver) 5656 { 5657 devclass_t dc; 5658 5659 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5660 if (devclass_find_driver_internal(dc, driver) != NULL) 5661 return (true); 5662 } 5663 return (false); 5664 } 5665 5666 static void 5667 device_gen_nomatch(device_t dev) 5668 { 5669 device_t child; 5670 5671 if (dev->flags & DF_NEEDNOMATCH && 5672 dev->state == DS_NOTPRESENT) { 5673 device_handle_nomatch(dev); 5674 } 5675 dev->flags &= ~DF_NEEDNOMATCH; 5676 TAILQ_FOREACH(child, &dev->children, link) { 5677 device_gen_nomatch(child); 5678 } 5679 } 5680 5681 static void 5682 device_do_deferred_actions(void) 5683 { 5684 devclass_t dc; 5685 driverlink_t dl; 5686 5687 /* 5688 * Walk through the devclasses to find all the drivers we've tagged as 5689 * deferred during the freeze and call the driver added routines. They 5690 * have already been added to the lists in the background, so the driver 5691 * added routines that trigger a probe will have all the right bidders 5692 * for the probe auction. 5693 */ 5694 TAILQ_FOREACH(dc, &devclasses, link) { 5695 TAILQ_FOREACH(dl, &dc->drivers, link) { 5696 if (dl->flags & DL_DEFERRED_PROBE) { 5697 devclass_driver_added(dc, dl->driver); 5698 dl->flags &= ~DL_DEFERRED_PROBE; 5699 } 5700 } 5701 } 5702 5703 /* 5704 * We also defer no-match events during a freeze. Walk the tree and 5705 * generate all the pent-up events that are still relevant. 5706 */ 5707 device_gen_nomatch(root_bus); 5708 bus_data_generation_update(); 5709 } 5710 5711 static int 5712 device_get_path(device_t dev, const char *locator, struct sbuf *sb) 5713 { 5714 device_t parent; 5715 int error; 5716 5717 KASSERT(sb != NULL, ("sb is NULL")); 5718 parent = device_get_parent(dev); 5719 if (parent == NULL) { 5720 error = sbuf_putc(sb, '/'); 5721 } else { 5722 error = BUS_GET_DEVICE_PATH(parent, dev, locator, sb); 5723 if (error == 0) { 5724 error = sbuf_error(sb); 5725 if (error == 0 && sbuf_len(sb) <= 1) 5726 error = EIO; 5727 } 5728 } 5729 sbuf_finish(sb); 5730 return (error); 5731 } 5732 5733 static int 5734 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5735 struct thread *td) 5736 { 5737 struct devreq *req; 5738 device_t dev; 5739 int error, old; 5740 5741 /* Locate the device to control. */ 5742 bus_topo_lock(); 5743 req = (struct devreq *)data; 5744 switch (cmd) { 5745 case DEV_ATTACH: 5746 case DEV_DETACH: 5747 case DEV_ENABLE: 5748 case DEV_DISABLE: 5749 case DEV_SUSPEND: 5750 case DEV_RESUME: 5751 case DEV_SET_DRIVER: 5752 case DEV_CLEAR_DRIVER: 5753 case DEV_RESCAN: 5754 case DEV_DELETE: 5755 case DEV_RESET: 5756 error = priv_check(td, PRIV_DRIVER); 5757 if (error == 0) 5758 error = find_device(req, &dev); 5759 break; 5760 case DEV_FREEZE: 5761 case DEV_THAW: 5762 error = priv_check(td, PRIV_DRIVER); 5763 break; 5764 case DEV_GET_PATH: 5765 error = find_device(req, &dev); 5766 break; 5767 default: 5768 error = ENOTTY; 5769 break; 5770 } 5771 if (error) { 5772 bus_topo_unlock(); 5773 return (error); 5774 } 5775 5776 /* Perform the requested operation. */ 5777 switch (cmd) { 5778 case DEV_ATTACH: 5779 if (device_is_attached(dev)) 5780 error = EBUSY; 5781 else if (!device_is_enabled(dev)) 5782 error = ENXIO; 5783 else 5784 error = device_probe_and_attach(dev); 5785 break; 5786 case DEV_DETACH: 5787 if (!device_is_attached(dev)) { 5788 error = ENXIO; 5789 break; 5790 } 5791 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5792 error = device_quiesce(dev); 5793 if (error) 5794 break; 5795 } 5796 error = device_detach(dev); 5797 break; 5798 case DEV_ENABLE: 5799 if (device_is_enabled(dev)) { 5800 error = EBUSY; 5801 break; 5802 } 5803 5804 /* 5805 * If the device has been probed but not attached (e.g. 5806 * when it has been disabled by a loader hint), just 5807 * attach the device rather than doing a full probe. 5808 */ 5809 device_enable(dev); 5810 if (dev->devclass != NULL) { 5811 /* 5812 * If the device was disabled via a hint, clear 5813 * the hint. 5814 */ 5815 if (resource_disabled(dev->devclass->name, dev->unit)) 5816 resource_unset_value(dev->devclass->name, 5817 dev->unit, "disabled"); 5818 5819 /* Allow any drivers to rebid. */ 5820 if (!(dev->flags & DF_FIXEDCLASS)) 5821 devclass_delete_device(dev->devclass, dev); 5822 } 5823 error = device_probe_and_attach(dev); 5824 break; 5825 case DEV_DISABLE: 5826 if (!device_is_enabled(dev)) { 5827 error = ENXIO; 5828 break; 5829 } 5830 5831 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5832 error = device_quiesce(dev); 5833 if (error) 5834 break; 5835 } 5836 5837 /* 5838 * Force DF_FIXEDCLASS on around detach to preserve 5839 * the existing name. 5840 */ 5841 old = dev->flags; 5842 dev->flags |= DF_FIXEDCLASS; 5843 error = device_detach(dev); 5844 if (!(old & DF_FIXEDCLASS)) 5845 dev->flags &= ~DF_FIXEDCLASS; 5846 if (error == 0) 5847 device_disable(dev); 5848 break; 5849 case DEV_SUSPEND: 5850 if (device_is_suspended(dev)) { 5851 error = EBUSY; 5852 break; 5853 } 5854 if (device_get_parent(dev) == NULL) { 5855 error = EINVAL; 5856 break; 5857 } 5858 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5859 break; 5860 case DEV_RESUME: 5861 if (!device_is_suspended(dev)) { 5862 error = EINVAL; 5863 break; 5864 } 5865 if (device_get_parent(dev) == NULL) { 5866 error = EINVAL; 5867 break; 5868 } 5869 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5870 break; 5871 case DEV_SET_DRIVER: { 5872 devclass_t dc; 5873 char driver[128]; 5874 5875 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5876 if (error) 5877 break; 5878 if (driver[0] == '\0') { 5879 error = EINVAL; 5880 break; 5881 } 5882 if (dev->devclass != NULL && 5883 strcmp(driver, dev->devclass->name) == 0) 5884 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5885 break; 5886 5887 /* 5888 * Scan drivers for this device's bus looking for at 5889 * least one matching driver. 5890 */ 5891 if (dev->parent == NULL) { 5892 error = EINVAL; 5893 break; 5894 } 5895 if (!driver_exists(dev->parent, driver)) { 5896 error = ENOENT; 5897 break; 5898 } 5899 dc = devclass_create(driver); 5900 if (dc == NULL) { 5901 error = ENOMEM; 5902 break; 5903 } 5904 5905 /* Detach device if necessary. */ 5906 if (device_is_attached(dev)) { 5907 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5908 error = device_detach(dev); 5909 else 5910 error = EBUSY; 5911 if (error) 5912 break; 5913 } 5914 5915 /* Clear any previously-fixed device class and unit. */ 5916 if (dev->flags & DF_FIXEDCLASS) 5917 devclass_delete_device(dev->devclass, dev); 5918 dev->flags |= DF_WILDCARD; 5919 dev->unit = DEVICE_UNIT_ANY; 5920 5921 /* Force the new device class. */ 5922 error = devclass_add_device(dc, dev); 5923 if (error) 5924 break; 5925 dev->flags |= DF_FIXEDCLASS; 5926 error = device_probe_and_attach(dev); 5927 break; 5928 } 5929 case DEV_CLEAR_DRIVER: 5930 if (!(dev->flags & DF_FIXEDCLASS)) { 5931 error = 0; 5932 break; 5933 } 5934 if (device_is_attached(dev)) { 5935 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5936 error = device_detach(dev); 5937 else 5938 error = EBUSY; 5939 if (error) 5940 break; 5941 } 5942 5943 dev->flags &= ~DF_FIXEDCLASS; 5944 dev->flags |= DF_WILDCARD; 5945 devclass_delete_device(dev->devclass, dev); 5946 error = device_probe_and_attach(dev); 5947 break; 5948 case DEV_RESCAN: 5949 if (!device_is_attached(dev)) { 5950 error = ENXIO; 5951 break; 5952 } 5953 error = BUS_RESCAN(dev); 5954 break; 5955 case DEV_DELETE: { 5956 device_t parent; 5957 5958 parent = device_get_parent(dev); 5959 if (parent == NULL) { 5960 error = EINVAL; 5961 break; 5962 } 5963 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5964 if (bus_child_present(dev) != 0) { 5965 error = EBUSY; 5966 break; 5967 } 5968 } 5969 5970 error = device_delete_child(parent, dev); 5971 break; 5972 } 5973 case DEV_FREEZE: 5974 if (device_frozen) 5975 error = EBUSY; 5976 else 5977 device_frozen = true; 5978 break; 5979 case DEV_THAW: 5980 if (!device_frozen) 5981 error = EBUSY; 5982 else { 5983 device_do_deferred_actions(); 5984 device_frozen = false; 5985 } 5986 break; 5987 case DEV_RESET: 5988 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 5989 error = EINVAL; 5990 break; 5991 } 5992 if (device_get_parent(dev) == NULL) { 5993 error = EINVAL; 5994 break; 5995 } 5996 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 5997 req->dr_flags); 5998 break; 5999 case DEV_GET_PATH: { 6000 struct sbuf *sb; 6001 char locator[64]; 6002 ssize_t len; 6003 6004 error = copyinstr(req->dr_buffer.buffer, locator, 6005 sizeof(locator), NULL); 6006 if (error != 0) 6007 break; 6008 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | 6009 SBUF_INCLUDENUL /* | SBUF_WAITOK */); 6010 error = device_get_path(dev, locator, sb); 6011 if (error == 0) { 6012 len = sbuf_len(sb); 6013 if (req->dr_buffer.length < len) { 6014 error = ENAMETOOLONG; 6015 } else { 6016 error = copyout(sbuf_data(sb), 6017 req->dr_buffer.buffer, len); 6018 } 6019 req->dr_buffer.length = len; 6020 } 6021 sbuf_delete(sb); 6022 break; 6023 } 6024 } 6025 bus_topo_unlock(); 6026 return (error); 6027 } 6028 6029 static struct cdevsw devctl2_cdevsw = { 6030 .d_version = D_VERSION, 6031 .d_ioctl = devctl2_ioctl, 6032 .d_name = "devctl2", 6033 }; 6034 6035 static void 6036 devctl2_init(void) 6037 { 6038 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 6039 UID_ROOT, GID_WHEEL, 0644, "devctl2"); 6040 } 6041 6042 /* 6043 * For maintaining device 'at' location info to avoid recomputing it 6044 */ 6045 struct device_location_node { 6046 const char *dln_locator; 6047 const char *dln_path; 6048 TAILQ_ENTRY(device_location_node) dln_link; 6049 }; 6050 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t; 6051 6052 struct device_location_cache { 6053 device_location_list_t dlc_list; 6054 }; 6055 6056 6057 /* 6058 * Location cache for wired devices. 6059 */ 6060 device_location_cache_t * 6061 dev_wired_cache_init(void) 6062 { 6063 device_location_cache_t *dcp; 6064 6065 dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO); 6066 TAILQ_INIT(&dcp->dlc_list); 6067 6068 return (dcp); 6069 } 6070 6071 void 6072 dev_wired_cache_fini(device_location_cache_t *dcp) 6073 { 6074 struct device_location_node *dln, *tdln; 6075 6076 TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) { 6077 free(dln, M_BUS); 6078 } 6079 free(dcp, M_BUS); 6080 } 6081 6082 static struct device_location_node * 6083 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator) 6084 { 6085 struct device_location_node *dln; 6086 6087 TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) { 6088 if (strcmp(locator, dln->dln_locator) == 0) 6089 return (dln); 6090 } 6091 6092 return (NULL); 6093 } 6094 6095 static struct device_location_node * 6096 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path) 6097 { 6098 struct device_location_node *dln; 6099 size_t loclen, pathlen; 6100 6101 loclen = strlen(locator) + 1; 6102 pathlen = strlen(path) + 1; 6103 dln = malloc(sizeof(*dln) + loclen + pathlen, M_BUS, M_WAITOK | M_ZERO); 6104 dln->dln_locator = (char *)(dln + 1); 6105 memcpy(__DECONST(char *, dln->dln_locator), locator, loclen); 6106 dln->dln_path = dln->dln_locator + loclen; 6107 memcpy(__DECONST(char *, dln->dln_path), path, pathlen); 6108 TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link); 6109 6110 return (dln); 6111 } 6112 6113 bool 6114 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev, 6115 const char *at) 6116 { 6117 struct sbuf *sb; 6118 const char *cp; 6119 char locator[32]; 6120 int error, len; 6121 struct device_location_node *res; 6122 6123 cp = strchr(at, ':'); 6124 if (cp == NULL) 6125 return (false); 6126 len = cp - at; 6127 if (len > sizeof(locator) - 1) /* Skip too long locator */ 6128 return (false); 6129 memcpy(locator, at, len); 6130 locator[len] = '\0'; 6131 cp++; 6132 6133 error = 0; 6134 /* maybe cache this inside device_t and look that up, but not yet */ 6135 res = dev_wired_cache_lookup(dcp, locator); 6136 if (res == NULL) { 6137 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | 6138 SBUF_INCLUDENUL | SBUF_NOWAIT); 6139 if (sb != NULL) { 6140 error = device_get_path(dev, locator, sb); 6141 if (error == 0) { 6142 res = dev_wired_cache_add(dcp, locator, 6143 sbuf_data(sb)); 6144 } 6145 sbuf_delete(sb); 6146 } 6147 } 6148 if (error != 0 || res == NULL || res->dln_path == NULL) 6149 return (false); 6150 6151 return (strcmp(res->dln_path, cp) == 0); 6152 } 6153 6154 static struct device_prop_elm * 6155 device_prop_find(device_t dev, const char *name) 6156 { 6157 struct device_prop_elm *e; 6158 6159 bus_topo_assert(); 6160 6161 LIST_FOREACH(e, &dev->props, link) { 6162 if (strcmp(name, e->name) == 0) 6163 return (e); 6164 } 6165 return (NULL); 6166 } 6167 6168 int 6169 device_set_prop(device_t dev, const char *name, void *val, 6170 device_prop_dtr_t dtr, void *dtr_ctx) 6171 { 6172 struct device_prop_elm *e, *e1; 6173 6174 bus_topo_assert(); 6175 6176 e = device_prop_find(dev, name); 6177 if (e != NULL) 6178 goto found; 6179 6180 e1 = malloc(sizeof(*e), M_BUS, M_WAITOK); 6181 e = device_prop_find(dev, name); 6182 if (e != NULL) { 6183 free(e1, M_BUS); 6184 goto found; 6185 } 6186 6187 e1->name = name; 6188 e1->val = val; 6189 e1->dtr = dtr; 6190 e1->dtr_ctx = dtr_ctx; 6191 LIST_INSERT_HEAD(&dev->props, e1, link); 6192 return (0); 6193 6194 found: 6195 LIST_REMOVE(e, link); 6196 if (e->dtr != NULL) 6197 e->dtr(dev, name, e->val, e->dtr_ctx); 6198 e->val = val; 6199 e->dtr = dtr; 6200 e->dtr_ctx = dtr_ctx; 6201 LIST_INSERT_HEAD(&dev->props, e, link); 6202 return (EEXIST); 6203 } 6204 6205 int 6206 device_get_prop(device_t dev, const char *name, void **valp) 6207 { 6208 struct device_prop_elm *e; 6209 6210 bus_topo_assert(); 6211 6212 e = device_prop_find(dev, name); 6213 if (e == NULL) 6214 return (ENOENT); 6215 *valp = e->val; 6216 return (0); 6217 } 6218 6219 int 6220 device_clear_prop(device_t dev, const char *name) 6221 { 6222 struct device_prop_elm *e; 6223 6224 bus_topo_assert(); 6225 6226 e = device_prop_find(dev, name); 6227 if (e == NULL) 6228 return (ENOENT); 6229 LIST_REMOVE(e, link); 6230 if (e->dtr != NULL) 6231 e->dtr(dev, e->name, e->val, e->dtr_ctx); 6232 free(e, M_BUS); 6233 return (0); 6234 } 6235 6236 static void 6237 device_destroy_props(device_t dev) 6238 { 6239 struct device_prop_elm *e; 6240 6241 bus_topo_assert(); 6242 6243 while ((e = LIST_FIRST(&dev->props)) != NULL) { 6244 LIST_REMOVE_HEAD(&dev->props, link); 6245 if (e->dtr != NULL) 6246 e->dtr(dev, e->name, e->val, e->dtr_ctx); 6247 free(e, M_BUS); 6248 } 6249 } 6250 6251 void 6252 device_clear_prop_alldev(const char *name) 6253 { 6254 device_t dev; 6255 6256 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 6257 device_clear_prop(dev, name); 6258 } 6259 } 6260 6261 /* 6262 * APIs to manage deprecation and obsolescence. 6263 */ 6264 static int obsolete_panic = 0; 6265 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 6266 "Panic when obsolete features are used (0 = never, 1 = if obsolete, " 6267 "2 = if deprecated)"); 6268 6269 static void 6270 gone_panic(int major, int running, const char *msg, ...) 6271 { 6272 va_list ap; 6273 6274 switch (obsolete_panic) 6275 { 6276 case 0: 6277 return; 6278 case 1: 6279 if (running < major) 6280 return; 6281 /* FALLTHROUGH */ 6282 default: 6283 va_start(ap, msg); 6284 vpanic(msg, ap); 6285 } 6286 } 6287 6288 void 6289 _gone_in(int major, const char *msg, ...) 6290 { 6291 va_list ap; 6292 6293 va_start(ap, msg); 6294 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg, ap); 6295 vprintf(msg, ap); 6296 va_end(ap); 6297 if (P_OSREL_MAJOR(__FreeBSD_version) < major) 6298 printf("To be removed in FreeBSD %d\n", major); 6299 } 6300 6301 void 6302 _gone_in_dev(device_t dev, int major, const char *msg, ...) 6303 { 6304 va_list ap; 6305 6306 va_start(ap, msg); 6307 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg, ap); 6308 device_printf(dev, msg, ap); 6309 va_end(ap); 6310 if (P_OSREL_MAJOR(__FreeBSD_version) < major) 6311 device_printf(dev, 6312 "to be removed in FreeBSD %d\n", major); 6313 } 6314 6315 #ifdef DDB 6316 DB_SHOW_COMMAND(device, db_show_device) 6317 { 6318 device_t dev; 6319 6320 if (!have_addr) 6321 return; 6322 6323 dev = (device_t)addr; 6324 6325 db_printf("name: %s\n", device_get_nameunit(dev)); 6326 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 6327 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 6328 db_printf(" addr: %p\n", dev); 6329 db_printf(" parent: %p\n", dev->parent); 6330 db_printf(" softc: %p\n", dev->softc); 6331 db_printf(" ivars: %p\n", dev->ivars); 6332 } 6333 6334 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 6335 { 6336 device_t dev; 6337 6338 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 6339 db_show_device((db_expr_t)dev, true, count, modif); 6340 } 6341 } 6342 #endif 6343