xref: /freebsd/sys/kern/subr_bus.c (revision 86aa9539fef591a363b06a0ebd3aa7a07f4c1579)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997,1998,2003 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_bus.h"
33 #include "opt_ddb.h"
34 
35 #include <sys/param.h>
36 #include <sys/conf.h>
37 #include <sys/eventhandler.h>
38 #include <sys/filio.h>
39 #include <sys/lock.h>
40 #include <sys/kernel.h>
41 #include <sys/kobj.h>
42 #include <sys/limits.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/mutex.h>
46 #include <sys/poll.h>
47 #include <sys/priv.h>
48 #include <sys/proc.h>
49 #include <sys/condvar.h>
50 #include <sys/queue.h>
51 #include <machine/bus.h>
52 #include <sys/random.h>
53 #include <sys/rman.h>
54 #include <sys/sbuf.h>
55 #include <sys/selinfo.h>
56 #include <sys/signalvar.h>
57 #include <sys/smp.h>
58 #include <sys/sysctl.h>
59 #include <sys/systm.h>
60 #include <sys/uio.h>
61 #include <sys/bus.h>
62 #include <sys/cpuset.h>
63 
64 #include <net/vnet.h>
65 
66 #include <machine/cpu.h>
67 #include <machine/stdarg.h>
68 
69 #include <vm/uma.h>
70 #include <vm/vm.h>
71 
72 #include <ddb/ddb.h>
73 
74 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
75 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
76 
77 /*
78  * Used to attach drivers to devclasses.
79  */
80 typedef struct driverlink *driverlink_t;
81 struct driverlink {
82 	kobj_class_t	driver;
83 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
84 	int		pass;
85 	int		flags;
86 #define DL_DEFERRED_PROBE	1	/* Probe deferred on this */
87 	TAILQ_ENTRY(driverlink) passlink;
88 };
89 
90 /*
91  * Forward declarations
92  */
93 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
94 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
95 typedef TAILQ_HEAD(device_list, device) device_list_t;
96 
97 struct devclass {
98 	TAILQ_ENTRY(devclass) link;
99 	devclass_t	parent;		/* parent in devclass hierarchy */
100 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
101 	char		*name;
102 	device_t	*devices;	/* array of devices indexed by unit */
103 	int		maxunit;	/* size of devices array */
104 	int		flags;
105 #define DC_HAS_CHILDREN		1
106 
107 	struct sysctl_ctx_list sysctl_ctx;
108 	struct sysctl_oid *sysctl_tree;
109 };
110 
111 /**
112  * @brief Implementation of device.
113  */
114 struct device {
115 	/*
116 	 * A device is a kernel object. The first field must be the
117 	 * current ops table for the object.
118 	 */
119 	KOBJ_FIELDS;
120 
121 	/*
122 	 * Device hierarchy.
123 	 */
124 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
125 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
126 	device_t	parent;		/**< parent of this device  */
127 	device_list_t	children;	/**< list of child devices */
128 
129 	/*
130 	 * Details of this device.
131 	 */
132 	driver_t	*driver;	/**< current driver */
133 	devclass_t	devclass;	/**< current device class */
134 	int		unit;		/**< current unit number */
135 	char*		nameunit;	/**< name+unit e.g. foodev0 */
136 	char*		desc;		/**< driver specific description */
137 	int		busy;		/**< count of calls to device_busy() */
138 	device_state_t	state;		/**< current device state  */
139 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
140 	u_int		flags;		/**< internal device flags  */
141 	u_int	order;			/**< order from device_add_child_ordered() */
142 	void	*ivars;			/**< instance variables  */
143 	void	*softc;			/**< current driver's variables  */
144 
145 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
146 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
147 };
148 
149 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
150 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
151 
152 EVENTHANDLER_LIST_DEFINE(device_attach);
153 EVENTHANDLER_LIST_DEFINE(device_detach);
154 EVENTHANDLER_LIST_DEFINE(dev_lookup);
155 
156 static void devctl2_init(void);
157 static bool device_frozen;
158 
159 #define DRIVERNAME(d)	((d)? d->name : "no driver")
160 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
161 
162 #ifdef BUS_DEBUG
163 
164 static int bus_debug = 1;
165 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
166     "Bus debug level");
167 
168 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
169 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
170 
171 /**
172  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
173  * prevent syslog from deleting initial spaces
174  */
175 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
176 
177 static void print_device_short(device_t dev, int indent);
178 static void print_device(device_t dev, int indent);
179 void print_device_tree_short(device_t dev, int indent);
180 void print_device_tree(device_t dev, int indent);
181 static void print_driver_short(driver_t *driver, int indent);
182 static void print_driver(driver_t *driver, int indent);
183 static void print_driver_list(driver_list_t drivers, int indent);
184 static void print_devclass_short(devclass_t dc, int indent);
185 static void print_devclass(devclass_t dc, int indent);
186 void print_devclass_list_short(void);
187 void print_devclass_list(void);
188 
189 #else
190 /* Make the compiler ignore the function calls */
191 #define PDEBUG(a)			/* nop */
192 #define DEVICENAME(d)			/* nop */
193 
194 #define print_device_short(d,i)		/* nop */
195 #define print_device(d,i)		/* nop */
196 #define print_device_tree_short(d,i)	/* nop */
197 #define print_device_tree(d,i)		/* nop */
198 #define print_driver_short(d,i)		/* nop */
199 #define print_driver(d,i)		/* nop */
200 #define print_driver_list(d,i)		/* nop */
201 #define print_devclass_short(d,i)	/* nop */
202 #define print_devclass(d,i)		/* nop */
203 #define print_devclass_list_short()	/* nop */
204 #define print_devclass_list()		/* nop */
205 #endif
206 
207 /*
208  * dev sysctl tree
209  */
210 
211 enum {
212 	DEVCLASS_SYSCTL_PARENT,
213 };
214 
215 static int
216 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
217 {
218 	devclass_t dc = (devclass_t)arg1;
219 	const char *value;
220 
221 	switch (arg2) {
222 	case DEVCLASS_SYSCTL_PARENT:
223 		value = dc->parent ? dc->parent->name : "";
224 		break;
225 	default:
226 		return (EINVAL);
227 	}
228 	return (SYSCTL_OUT_STR(req, value));
229 }
230 
231 static void
232 devclass_sysctl_init(devclass_t dc)
233 {
234 
235 	if (dc->sysctl_tree != NULL)
236 		return;
237 	sysctl_ctx_init(&dc->sysctl_ctx);
238 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
239 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
240 	    CTLFLAG_RD, NULL, "");
241 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
242 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
243 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
244 	    "parent class");
245 }
246 
247 enum {
248 	DEVICE_SYSCTL_DESC,
249 	DEVICE_SYSCTL_DRIVER,
250 	DEVICE_SYSCTL_LOCATION,
251 	DEVICE_SYSCTL_PNPINFO,
252 	DEVICE_SYSCTL_PARENT,
253 };
254 
255 static int
256 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
257 {
258 	device_t dev = (device_t)arg1;
259 	const char *value;
260 	char *buf;
261 	int error;
262 
263 	buf = NULL;
264 	switch (arg2) {
265 	case DEVICE_SYSCTL_DESC:
266 		value = dev->desc ? dev->desc : "";
267 		break;
268 	case DEVICE_SYSCTL_DRIVER:
269 		value = dev->driver ? dev->driver->name : "";
270 		break;
271 	case DEVICE_SYSCTL_LOCATION:
272 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
273 		bus_child_location_str(dev, buf, 1024);
274 		break;
275 	case DEVICE_SYSCTL_PNPINFO:
276 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
277 		bus_child_pnpinfo_str(dev, buf, 1024);
278 		break;
279 	case DEVICE_SYSCTL_PARENT:
280 		value = dev->parent ? dev->parent->nameunit : "";
281 		break;
282 	default:
283 		return (EINVAL);
284 	}
285 	error = SYSCTL_OUT_STR(req, value);
286 	if (buf != NULL)
287 		free(buf, M_BUS);
288 	return (error);
289 }
290 
291 static void
292 device_sysctl_init(device_t dev)
293 {
294 	devclass_t dc = dev->devclass;
295 	int domain;
296 
297 	if (dev->sysctl_tree != NULL)
298 		return;
299 	devclass_sysctl_init(dc);
300 	sysctl_ctx_init(&dev->sysctl_ctx);
301 	dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
302 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
303 	    dev->nameunit + strlen(dc->name),
304 	    CTLFLAG_RD, NULL, "", "device_index");
305 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
306 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
307 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
308 	    "device description");
309 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
310 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
311 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
312 	    "device driver name");
313 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
314 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
315 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
316 	    "device location relative to parent");
317 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
318 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
319 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
320 	    "device identification");
321 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
322 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
323 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
324 	    "parent device");
325 	if (bus_get_domain(dev, &domain) == 0)
326 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
327 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
328 		    CTLFLAG_RD, NULL, domain, "NUMA domain");
329 }
330 
331 static void
332 device_sysctl_update(device_t dev)
333 {
334 	devclass_t dc = dev->devclass;
335 
336 	if (dev->sysctl_tree == NULL)
337 		return;
338 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
339 }
340 
341 static void
342 device_sysctl_fini(device_t dev)
343 {
344 	if (dev->sysctl_tree == NULL)
345 		return;
346 	sysctl_ctx_free(&dev->sysctl_ctx);
347 	dev->sysctl_tree = NULL;
348 }
349 
350 /*
351  * /dev/devctl implementation
352  */
353 
354 /*
355  * This design allows only one reader for /dev/devctl.  This is not desirable
356  * in the long run, but will get a lot of hair out of this implementation.
357  * Maybe we should make this device a clonable device.
358  *
359  * Also note: we specifically do not attach a device to the device_t tree
360  * to avoid potential chicken and egg problems.  One could argue that all
361  * of this belongs to the root node.  One could also further argue that the
362  * sysctl interface that we have not might more properly be an ioctl
363  * interface, but at this stage of the game, I'm not inclined to rock that
364  * boat.
365  *
366  * I'm also not sure that the SIGIO support is done correctly or not, as
367  * I copied it from a driver that had SIGIO support that likely hasn't been
368  * tested since 3.4 or 2.2.8!
369  */
370 
371 /* Deprecated way to adjust queue length */
372 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
373 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
374     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
375     "devctl disable -- deprecated");
376 
377 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
378 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
379 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
380 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
381     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
382 
383 static d_open_t		devopen;
384 static d_close_t	devclose;
385 static d_read_t		devread;
386 static d_ioctl_t	devioctl;
387 static d_poll_t		devpoll;
388 static d_kqfilter_t	devkqfilter;
389 
390 static struct cdevsw dev_cdevsw = {
391 	.d_version =	D_VERSION,
392 	.d_open =	devopen,
393 	.d_close =	devclose,
394 	.d_read =	devread,
395 	.d_ioctl =	devioctl,
396 	.d_poll =	devpoll,
397 	.d_kqfilter =	devkqfilter,
398 	.d_name =	"devctl",
399 };
400 
401 struct dev_event_info
402 {
403 	char *dei_data;
404 	TAILQ_ENTRY(dev_event_info) dei_link;
405 };
406 
407 TAILQ_HEAD(devq, dev_event_info);
408 
409 static struct dev_softc
410 {
411 	int	inuse;
412 	int	nonblock;
413 	int	queued;
414 	int	async;
415 	struct mtx mtx;
416 	struct cv cv;
417 	struct selinfo sel;
418 	struct devq devq;
419 	struct sigio *sigio;
420 } devsoftc;
421 
422 static void	filt_devctl_detach(struct knote *kn);
423 static int	filt_devctl_read(struct knote *kn, long hint);
424 
425 struct filterops devctl_rfiltops = {
426 	.f_isfd = 1,
427 	.f_detach = filt_devctl_detach,
428 	.f_event = filt_devctl_read,
429 };
430 
431 static struct cdev *devctl_dev;
432 
433 static void
434 devinit(void)
435 {
436 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
437 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
438 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
439 	cv_init(&devsoftc.cv, "dev cv");
440 	TAILQ_INIT(&devsoftc.devq);
441 	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
442 	devctl2_init();
443 }
444 
445 static int
446 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
447 {
448 
449 	mtx_lock(&devsoftc.mtx);
450 	if (devsoftc.inuse) {
451 		mtx_unlock(&devsoftc.mtx);
452 		return (EBUSY);
453 	}
454 	/* move to init */
455 	devsoftc.inuse = 1;
456 	mtx_unlock(&devsoftc.mtx);
457 	return (0);
458 }
459 
460 static int
461 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
462 {
463 
464 	mtx_lock(&devsoftc.mtx);
465 	devsoftc.inuse = 0;
466 	devsoftc.nonblock = 0;
467 	devsoftc.async = 0;
468 	cv_broadcast(&devsoftc.cv);
469 	funsetown(&devsoftc.sigio);
470 	mtx_unlock(&devsoftc.mtx);
471 	return (0);
472 }
473 
474 /*
475  * The read channel for this device is used to report changes to
476  * userland in realtime.  We are required to free the data as well as
477  * the n1 object because we allocate them separately.  Also note that
478  * we return one record at a time.  If you try to read this device a
479  * character at a time, you will lose the rest of the data.  Listening
480  * programs are expected to cope.
481  */
482 static int
483 devread(struct cdev *dev, struct uio *uio, int ioflag)
484 {
485 	struct dev_event_info *n1;
486 	int rv;
487 
488 	mtx_lock(&devsoftc.mtx);
489 	while (TAILQ_EMPTY(&devsoftc.devq)) {
490 		if (devsoftc.nonblock) {
491 			mtx_unlock(&devsoftc.mtx);
492 			return (EAGAIN);
493 		}
494 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
495 		if (rv) {
496 			/*
497 			 * Need to translate ERESTART to EINTR here? -- jake
498 			 */
499 			mtx_unlock(&devsoftc.mtx);
500 			return (rv);
501 		}
502 	}
503 	n1 = TAILQ_FIRST(&devsoftc.devq);
504 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
505 	devsoftc.queued--;
506 	mtx_unlock(&devsoftc.mtx);
507 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
508 	free(n1->dei_data, M_BUS);
509 	free(n1, M_BUS);
510 	return (rv);
511 }
512 
513 static	int
514 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
515 {
516 	switch (cmd) {
517 
518 	case FIONBIO:
519 		if (*(int*)data)
520 			devsoftc.nonblock = 1;
521 		else
522 			devsoftc.nonblock = 0;
523 		return (0);
524 	case FIOASYNC:
525 		if (*(int*)data)
526 			devsoftc.async = 1;
527 		else
528 			devsoftc.async = 0;
529 		return (0);
530 	case FIOSETOWN:
531 		return fsetown(*(int *)data, &devsoftc.sigio);
532 	case FIOGETOWN:
533 		*(int *)data = fgetown(&devsoftc.sigio);
534 		return (0);
535 
536 		/* (un)Support for other fcntl() calls. */
537 	case FIOCLEX:
538 	case FIONCLEX:
539 	case FIONREAD:
540 	default:
541 		break;
542 	}
543 	return (ENOTTY);
544 }
545 
546 static	int
547 devpoll(struct cdev *dev, int events, struct thread *td)
548 {
549 	int	revents = 0;
550 
551 	mtx_lock(&devsoftc.mtx);
552 	if (events & (POLLIN | POLLRDNORM)) {
553 		if (!TAILQ_EMPTY(&devsoftc.devq))
554 			revents = events & (POLLIN | POLLRDNORM);
555 		else
556 			selrecord(td, &devsoftc.sel);
557 	}
558 	mtx_unlock(&devsoftc.mtx);
559 
560 	return (revents);
561 }
562 
563 static int
564 devkqfilter(struct cdev *dev, struct knote *kn)
565 {
566 	int error;
567 
568 	if (kn->kn_filter == EVFILT_READ) {
569 		kn->kn_fop = &devctl_rfiltops;
570 		knlist_add(&devsoftc.sel.si_note, kn, 0);
571 		error = 0;
572 	} else
573 		error = EINVAL;
574 	return (error);
575 }
576 
577 static void
578 filt_devctl_detach(struct knote *kn)
579 {
580 
581 	knlist_remove(&devsoftc.sel.si_note, kn, 0);
582 }
583 
584 static int
585 filt_devctl_read(struct knote *kn, long hint)
586 {
587 	kn->kn_data = devsoftc.queued;
588 	return (kn->kn_data != 0);
589 }
590 
591 /**
592  * @brief Return whether the userland process is running
593  */
594 boolean_t
595 devctl_process_running(void)
596 {
597 	return (devsoftc.inuse == 1);
598 }
599 
600 /**
601  * @brief Queue data to be read from the devctl device
602  *
603  * Generic interface to queue data to the devctl device.  It is
604  * assumed that @p data is properly formatted.  It is further assumed
605  * that @p data is allocated using the M_BUS malloc type.
606  */
607 void
608 devctl_queue_data_f(char *data, int flags)
609 {
610 	struct dev_event_info *n1 = NULL, *n2 = NULL;
611 
612 	if (strlen(data) == 0)
613 		goto out;
614 	if (devctl_queue_length == 0)
615 		goto out;
616 	n1 = malloc(sizeof(*n1), M_BUS, flags);
617 	if (n1 == NULL)
618 		goto out;
619 	n1->dei_data = data;
620 	mtx_lock(&devsoftc.mtx);
621 	if (devctl_queue_length == 0) {
622 		mtx_unlock(&devsoftc.mtx);
623 		free(n1->dei_data, M_BUS);
624 		free(n1, M_BUS);
625 		return;
626 	}
627 	/* Leave at least one spot in the queue... */
628 	while (devsoftc.queued > devctl_queue_length - 1) {
629 		n2 = TAILQ_FIRST(&devsoftc.devq);
630 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
631 		free(n2->dei_data, M_BUS);
632 		free(n2, M_BUS);
633 		devsoftc.queued--;
634 	}
635 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
636 	devsoftc.queued++;
637 	cv_broadcast(&devsoftc.cv);
638 	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
639 	mtx_unlock(&devsoftc.mtx);
640 	selwakeup(&devsoftc.sel);
641 	if (devsoftc.async && devsoftc.sigio != NULL)
642 		pgsigio(&devsoftc.sigio, SIGIO, 0);
643 	return;
644 out:
645 	/*
646 	 * We have to free data on all error paths since the caller
647 	 * assumes it will be free'd when this item is dequeued.
648 	 */
649 	free(data, M_BUS);
650 	return;
651 }
652 
653 void
654 devctl_queue_data(char *data)
655 {
656 
657 	devctl_queue_data_f(data, M_NOWAIT);
658 }
659 
660 /**
661  * @brief Send a 'notification' to userland, using standard ways
662  */
663 void
664 devctl_notify_f(const char *system, const char *subsystem, const char *type,
665     const char *data, int flags)
666 {
667 	int len = 0;
668 	char *msg;
669 
670 	if (system == NULL)
671 		return;		/* BOGUS!  Must specify system. */
672 	if (subsystem == NULL)
673 		return;		/* BOGUS!  Must specify subsystem. */
674 	if (type == NULL)
675 		return;		/* BOGUS!  Must specify type. */
676 	len += strlen(" system=") + strlen(system);
677 	len += strlen(" subsystem=") + strlen(subsystem);
678 	len += strlen(" type=") + strlen(type);
679 	/* add in the data message plus newline. */
680 	if (data != NULL)
681 		len += strlen(data);
682 	len += 3;	/* '!', '\n', and NUL */
683 	msg = malloc(len, M_BUS, flags);
684 	if (msg == NULL)
685 		return;		/* Drop it on the floor */
686 	if (data != NULL)
687 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
688 		    system, subsystem, type, data);
689 	else
690 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
691 		    system, subsystem, type);
692 	devctl_queue_data_f(msg, flags);
693 }
694 
695 void
696 devctl_notify(const char *system, const char *subsystem, const char *type,
697     const char *data)
698 {
699 
700 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
701 }
702 
703 /*
704  * Common routine that tries to make sending messages as easy as possible.
705  * We allocate memory for the data, copy strings into that, but do not
706  * free it unless there's an error.  The dequeue part of the driver should
707  * free the data.  We don't send data when the device is disabled.  We do
708  * send data, even when we have no listeners, because we wish to avoid
709  * races relating to startup and restart of listening applications.
710  *
711  * devaddq is designed to string together the type of event, with the
712  * object of that event, plus the plug and play info and location info
713  * for that event.  This is likely most useful for devices, but less
714  * useful for other consumers of this interface.  Those should use
715  * the devctl_queue_data() interface instead.
716  */
717 static void
718 devaddq(const char *type, const char *what, device_t dev)
719 {
720 	char *data = NULL;
721 	char *loc = NULL;
722 	char *pnp = NULL;
723 	const char *parstr;
724 
725 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
726 		return;
727 	data = malloc(1024, M_BUS, M_NOWAIT);
728 	if (data == NULL)
729 		goto bad;
730 
731 	/* get the bus specific location of this device */
732 	loc = malloc(1024, M_BUS, M_NOWAIT);
733 	if (loc == NULL)
734 		goto bad;
735 	*loc = '\0';
736 	bus_child_location_str(dev, loc, 1024);
737 
738 	/* Get the bus specific pnp info of this device */
739 	pnp = malloc(1024, M_BUS, M_NOWAIT);
740 	if (pnp == NULL)
741 		goto bad;
742 	*pnp = '\0';
743 	bus_child_pnpinfo_str(dev, pnp, 1024);
744 
745 	/* Get the parent of this device, or / if high enough in the tree. */
746 	if (device_get_parent(dev) == NULL)
747 		parstr = ".";	/* Or '/' ? */
748 	else
749 		parstr = device_get_nameunit(device_get_parent(dev));
750 	/* String it all together. */
751 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
752 	  parstr);
753 	free(loc, M_BUS);
754 	free(pnp, M_BUS);
755 	devctl_queue_data(data);
756 	return;
757 bad:
758 	free(pnp, M_BUS);
759 	free(loc, M_BUS);
760 	free(data, M_BUS);
761 	return;
762 }
763 
764 /*
765  * A device was added to the tree.  We are called just after it successfully
766  * attaches (that is, probe and attach success for this device).  No call
767  * is made if a device is merely parented into the tree.  See devnomatch
768  * if probe fails.  If attach fails, no notification is sent (but maybe
769  * we should have a different message for this).
770  */
771 static void
772 devadded(device_t dev)
773 {
774 	devaddq("+", device_get_nameunit(dev), dev);
775 }
776 
777 /*
778  * A device was removed from the tree.  We are called just before this
779  * happens.
780  */
781 static void
782 devremoved(device_t dev)
783 {
784 	devaddq("-", device_get_nameunit(dev), dev);
785 }
786 
787 /*
788  * Called when there's no match for this device.  This is only called
789  * the first time that no match happens, so we don't keep getting this
790  * message.  Should that prove to be undesirable, we can change it.
791  * This is called when all drivers that can attach to a given bus
792  * decline to accept this device.  Other errors may not be detected.
793  */
794 static void
795 devnomatch(device_t dev)
796 {
797 	devaddq("?", "", dev);
798 }
799 
800 static int
801 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
802 {
803 	struct dev_event_info *n1;
804 	int dis, error;
805 
806 	dis = (devctl_queue_length == 0);
807 	error = sysctl_handle_int(oidp, &dis, 0, req);
808 	if (error || !req->newptr)
809 		return (error);
810 	if (mtx_initialized(&devsoftc.mtx))
811 		mtx_lock(&devsoftc.mtx);
812 	if (dis) {
813 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
814 			n1 = TAILQ_FIRST(&devsoftc.devq);
815 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
816 			free(n1->dei_data, M_BUS);
817 			free(n1, M_BUS);
818 		}
819 		devsoftc.queued = 0;
820 		devctl_queue_length = 0;
821 	} else {
822 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
823 	}
824 	if (mtx_initialized(&devsoftc.mtx))
825 		mtx_unlock(&devsoftc.mtx);
826 	return (0);
827 }
828 
829 static int
830 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
831 {
832 	struct dev_event_info *n1;
833 	int q, error;
834 
835 	q = devctl_queue_length;
836 	error = sysctl_handle_int(oidp, &q, 0, req);
837 	if (error || !req->newptr)
838 		return (error);
839 	if (q < 0)
840 		return (EINVAL);
841 	if (mtx_initialized(&devsoftc.mtx))
842 		mtx_lock(&devsoftc.mtx);
843 	devctl_queue_length = q;
844 	while (devsoftc.queued > devctl_queue_length) {
845 		n1 = TAILQ_FIRST(&devsoftc.devq);
846 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
847 		free(n1->dei_data, M_BUS);
848 		free(n1, M_BUS);
849 		devsoftc.queued--;
850 	}
851 	if (mtx_initialized(&devsoftc.mtx))
852 		mtx_unlock(&devsoftc.mtx);
853 	return (0);
854 }
855 
856 /**
857  * @brief safely quotes strings that might have double quotes in them.
858  *
859  * The devctl protocol relies on quoted strings having matching quotes.
860  * This routine quotes any internal quotes so the resulting string
861  * is safe to pass to snprintf to construct, for example pnp info strings.
862  * Strings are always terminated with a NUL, but may be truncated if longer
863  * than @p len bytes after quotes.
864  *
865  * @param sb	sbuf to place the characters into
866  * @param src	Original buffer.
867  */
868 void
869 devctl_safe_quote_sb(struct sbuf *sb, const char *src)
870 {
871 
872 	while (*src != '\0') {
873 		if (*src == '"' || *src == '\\')
874 			sbuf_putc(sb, '\\');
875 		sbuf_putc(sb, *src++);
876 	}
877 }
878 
879 /* End of /dev/devctl code */
880 
881 static TAILQ_HEAD(,device)	bus_data_devices;
882 static int bus_data_generation = 1;
883 
884 static kobj_method_t null_methods[] = {
885 	KOBJMETHOD_END
886 };
887 
888 DEFINE_CLASS(null, null_methods, 0);
889 
890 /*
891  * Bus pass implementation
892  */
893 
894 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
895 int bus_current_pass = BUS_PASS_ROOT;
896 
897 /**
898  * @internal
899  * @brief Register the pass level of a new driver attachment
900  *
901  * Register a new driver attachment's pass level.  If no driver
902  * attachment with the same pass level has been added, then @p new
903  * will be added to the global passes list.
904  *
905  * @param new		the new driver attachment
906  */
907 static void
908 driver_register_pass(struct driverlink *new)
909 {
910 	struct driverlink *dl;
911 
912 	/* We only consider pass numbers during boot. */
913 	if (bus_current_pass == BUS_PASS_DEFAULT)
914 		return;
915 
916 	/*
917 	 * Walk the passes list.  If we already know about this pass
918 	 * then there is nothing to do.  If we don't, then insert this
919 	 * driver link into the list.
920 	 */
921 	TAILQ_FOREACH(dl, &passes, passlink) {
922 		if (dl->pass < new->pass)
923 			continue;
924 		if (dl->pass == new->pass)
925 			return;
926 		TAILQ_INSERT_BEFORE(dl, new, passlink);
927 		return;
928 	}
929 	TAILQ_INSERT_TAIL(&passes, new, passlink);
930 }
931 
932 /**
933  * @brief Raise the current bus pass
934  *
935  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
936  * method on the root bus to kick off a new device tree scan for each
937  * new pass level that has at least one driver.
938  */
939 void
940 bus_set_pass(int pass)
941 {
942 	struct driverlink *dl;
943 
944 	if (bus_current_pass > pass)
945 		panic("Attempt to lower bus pass level");
946 
947 	TAILQ_FOREACH(dl, &passes, passlink) {
948 		/* Skip pass values below the current pass level. */
949 		if (dl->pass <= bus_current_pass)
950 			continue;
951 
952 		/*
953 		 * Bail once we hit a driver with a pass level that is
954 		 * too high.
955 		 */
956 		if (dl->pass > pass)
957 			break;
958 
959 		/*
960 		 * Raise the pass level to the next level and rescan
961 		 * the tree.
962 		 */
963 		bus_current_pass = dl->pass;
964 		BUS_NEW_PASS(root_bus);
965 	}
966 
967 	/*
968 	 * If there isn't a driver registered for the requested pass,
969 	 * then bus_current_pass might still be less than 'pass'.  Set
970 	 * it to 'pass' in that case.
971 	 */
972 	if (bus_current_pass < pass)
973 		bus_current_pass = pass;
974 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
975 }
976 
977 /*
978  * Devclass implementation
979  */
980 
981 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
982 
983 /**
984  * @internal
985  * @brief Find or create a device class
986  *
987  * If a device class with the name @p classname exists, return it,
988  * otherwise if @p create is non-zero create and return a new device
989  * class.
990  *
991  * If @p parentname is non-NULL, the parent of the devclass is set to
992  * the devclass of that name.
993  *
994  * @param classname	the devclass name to find or create
995  * @param parentname	the parent devclass name or @c NULL
996  * @param create	non-zero to create a devclass
997  */
998 static devclass_t
999 devclass_find_internal(const char *classname, const char *parentname,
1000 		       int create)
1001 {
1002 	devclass_t dc;
1003 
1004 	PDEBUG(("looking for %s", classname));
1005 	if (!classname)
1006 		return (NULL);
1007 
1008 	TAILQ_FOREACH(dc, &devclasses, link) {
1009 		if (!strcmp(dc->name, classname))
1010 			break;
1011 	}
1012 
1013 	if (create && !dc) {
1014 		PDEBUG(("creating %s", classname));
1015 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
1016 		    M_BUS, M_NOWAIT | M_ZERO);
1017 		if (!dc)
1018 			return (NULL);
1019 		dc->parent = NULL;
1020 		dc->name = (char*) (dc + 1);
1021 		strcpy(dc->name, classname);
1022 		TAILQ_INIT(&dc->drivers);
1023 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
1024 
1025 		bus_data_generation_update();
1026 	}
1027 
1028 	/*
1029 	 * If a parent class is specified, then set that as our parent so
1030 	 * that this devclass will support drivers for the parent class as
1031 	 * well.  If the parent class has the same name don't do this though
1032 	 * as it creates a cycle that can trigger an infinite loop in
1033 	 * device_probe_child() if a device exists for which there is no
1034 	 * suitable driver.
1035 	 */
1036 	if (parentname && dc && !dc->parent &&
1037 	    strcmp(classname, parentname) != 0) {
1038 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1039 		dc->parent->flags |= DC_HAS_CHILDREN;
1040 	}
1041 
1042 	return (dc);
1043 }
1044 
1045 /**
1046  * @brief Create a device class
1047  *
1048  * If a device class with the name @p classname exists, return it,
1049  * otherwise create and return a new device class.
1050  *
1051  * @param classname	the devclass name to find or create
1052  */
1053 devclass_t
1054 devclass_create(const char *classname)
1055 {
1056 	return (devclass_find_internal(classname, NULL, TRUE));
1057 }
1058 
1059 /**
1060  * @brief Find a device class
1061  *
1062  * If a device class with the name @p classname exists, return it,
1063  * otherwise return @c NULL.
1064  *
1065  * @param classname	the devclass name to find
1066  */
1067 devclass_t
1068 devclass_find(const char *classname)
1069 {
1070 	return (devclass_find_internal(classname, NULL, FALSE));
1071 }
1072 
1073 /**
1074  * @brief Register that a device driver has been added to a devclass
1075  *
1076  * Register that a device driver has been added to a devclass.  This
1077  * is called by devclass_add_driver to accomplish the recursive
1078  * notification of all the children classes of dc, as well as dc.
1079  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1080  * the devclass.
1081  *
1082  * We do a full search here of the devclass list at each iteration
1083  * level to save storing children-lists in the devclass structure.  If
1084  * we ever move beyond a few dozen devices doing this, we may need to
1085  * reevaluate...
1086  *
1087  * @param dc		the devclass to edit
1088  * @param driver	the driver that was just added
1089  */
1090 static void
1091 devclass_driver_added(devclass_t dc, driver_t *driver)
1092 {
1093 	devclass_t parent;
1094 	int i;
1095 
1096 	/*
1097 	 * Call BUS_DRIVER_ADDED for any existing buses in this class.
1098 	 */
1099 	for (i = 0; i < dc->maxunit; i++)
1100 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1101 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1102 
1103 	/*
1104 	 * Walk through the children classes.  Since we only keep a
1105 	 * single parent pointer around, we walk the entire list of
1106 	 * devclasses looking for children.  We set the
1107 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1108 	 * the parent, so we only walk the list for those devclasses
1109 	 * that have children.
1110 	 */
1111 	if (!(dc->flags & DC_HAS_CHILDREN))
1112 		return;
1113 	parent = dc;
1114 	TAILQ_FOREACH(dc, &devclasses, link) {
1115 		if (dc->parent == parent)
1116 			devclass_driver_added(dc, driver);
1117 	}
1118 }
1119 
1120 /**
1121  * @brief Add a device driver to a device class
1122  *
1123  * Add a device driver to a devclass. This is normally called
1124  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1125  * all devices in the devclass will be called to allow them to attempt
1126  * to re-probe any unmatched children.
1127  *
1128  * @param dc		the devclass to edit
1129  * @param driver	the driver to register
1130  */
1131 int
1132 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1133 {
1134 	driverlink_t dl;
1135 	const char *parentname;
1136 
1137 	PDEBUG(("%s", DRIVERNAME(driver)));
1138 
1139 	/* Don't allow invalid pass values. */
1140 	if (pass <= BUS_PASS_ROOT)
1141 		return (EINVAL);
1142 
1143 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1144 	if (!dl)
1145 		return (ENOMEM);
1146 
1147 	/*
1148 	 * Compile the driver's methods. Also increase the reference count
1149 	 * so that the class doesn't get freed when the last instance
1150 	 * goes. This means we can safely use static methods and avoids a
1151 	 * double-free in devclass_delete_driver.
1152 	 */
1153 	kobj_class_compile((kobj_class_t) driver);
1154 
1155 	/*
1156 	 * If the driver has any base classes, make the
1157 	 * devclass inherit from the devclass of the driver's
1158 	 * first base class. This will allow the system to
1159 	 * search for drivers in both devclasses for children
1160 	 * of a device using this driver.
1161 	 */
1162 	if (driver->baseclasses)
1163 		parentname = driver->baseclasses[0]->name;
1164 	else
1165 		parentname = NULL;
1166 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1167 
1168 	dl->driver = driver;
1169 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1170 	driver->refs++;		/* XXX: kobj_mtx */
1171 	dl->pass = pass;
1172 	driver_register_pass(dl);
1173 
1174 	if (device_frozen) {
1175 		dl->flags |= DL_DEFERRED_PROBE;
1176 	} else {
1177 		devclass_driver_added(dc, driver);
1178 	}
1179 	bus_data_generation_update();
1180 	return (0);
1181 }
1182 
1183 /**
1184  * @brief Register that a device driver has been deleted from a devclass
1185  *
1186  * Register that a device driver has been removed from a devclass.
1187  * This is called by devclass_delete_driver to accomplish the
1188  * recursive notification of all the children classes of busclass, as
1189  * well as busclass.  Each layer will attempt to detach the driver
1190  * from any devices that are children of the bus's devclass.  The function
1191  * will return an error if a device fails to detach.
1192  *
1193  * We do a full search here of the devclass list at each iteration
1194  * level to save storing children-lists in the devclass structure.  If
1195  * we ever move beyond a few dozen devices doing this, we may need to
1196  * reevaluate...
1197  *
1198  * @param busclass	the devclass of the parent bus
1199  * @param dc		the devclass of the driver being deleted
1200  * @param driver	the driver being deleted
1201  */
1202 static int
1203 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1204 {
1205 	devclass_t parent;
1206 	device_t dev;
1207 	int error, i;
1208 
1209 	/*
1210 	 * Disassociate from any devices.  We iterate through all the
1211 	 * devices in the devclass of the driver and detach any which are
1212 	 * using the driver and which have a parent in the devclass which
1213 	 * we are deleting from.
1214 	 *
1215 	 * Note that since a driver can be in multiple devclasses, we
1216 	 * should not detach devices which are not children of devices in
1217 	 * the affected devclass.
1218 	 *
1219 	 * If we're frozen, we don't generate NOMATCH events. Mark to
1220 	 * generate later.
1221 	 */
1222 	for (i = 0; i < dc->maxunit; i++) {
1223 		if (dc->devices[i]) {
1224 			dev = dc->devices[i];
1225 			if (dev->driver == driver && dev->parent &&
1226 			    dev->parent->devclass == busclass) {
1227 				if ((error = device_detach(dev)) != 0)
1228 					return (error);
1229 				if (device_frozen) {
1230 					dev->flags &= ~DF_DONENOMATCH;
1231 					dev->flags |= DF_NEEDNOMATCH;
1232 				} else {
1233 					BUS_PROBE_NOMATCH(dev->parent, dev);
1234 					devnomatch(dev);
1235 					dev->flags |= DF_DONENOMATCH;
1236 				}
1237 			}
1238 		}
1239 	}
1240 
1241 	/*
1242 	 * Walk through the children classes.  Since we only keep a
1243 	 * single parent pointer around, we walk the entire list of
1244 	 * devclasses looking for children.  We set the
1245 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1246 	 * the parent, so we only walk the list for those devclasses
1247 	 * that have children.
1248 	 */
1249 	if (!(busclass->flags & DC_HAS_CHILDREN))
1250 		return (0);
1251 	parent = busclass;
1252 	TAILQ_FOREACH(busclass, &devclasses, link) {
1253 		if (busclass->parent == parent) {
1254 			error = devclass_driver_deleted(busclass, dc, driver);
1255 			if (error)
1256 				return (error);
1257 		}
1258 	}
1259 	return (0);
1260 }
1261 
1262 /**
1263  * @brief Delete a device driver from a device class
1264  *
1265  * Delete a device driver from a devclass. This is normally called
1266  * automatically by DRIVER_MODULE().
1267  *
1268  * If the driver is currently attached to any devices,
1269  * devclass_delete_driver() will first attempt to detach from each
1270  * device. If one of the detach calls fails, the driver will not be
1271  * deleted.
1272  *
1273  * @param dc		the devclass to edit
1274  * @param driver	the driver to unregister
1275  */
1276 int
1277 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1278 {
1279 	devclass_t dc = devclass_find(driver->name);
1280 	driverlink_t dl;
1281 	int error;
1282 
1283 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1284 
1285 	if (!dc)
1286 		return (0);
1287 
1288 	/*
1289 	 * Find the link structure in the bus' list of drivers.
1290 	 */
1291 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1292 		if (dl->driver == driver)
1293 			break;
1294 	}
1295 
1296 	if (!dl) {
1297 		PDEBUG(("%s not found in %s list", driver->name,
1298 		    busclass->name));
1299 		return (ENOENT);
1300 	}
1301 
1302 	error = devclass_driver_deleted(busclass, dc, driver);
1303 	if (error != 0)
1304 		return (error);
1305 
1306 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1307 	free(dl, M_BUS);
1308 
1309 	/* XXX: kobj_mtx */
1310 	driver->refs--;
1311 	if (driver->refs == 0)
1312 		kobj_class_free((kobj_class_t) driver);
1313 
1314 	bus_data_generation_update();
1315 	return (0);
1316 }
1317 
1318 /**
1319  * @brief Quiesces a set of device drivers from a device class
1320  *
1321  * Quiesce a device driver from a devclass. This is normally called
1322  * automatically by DRIVER_MODULE().
1323  *
1324  * If the driver is currently attached to any devices,
1325  * devclass_quiesece_driver() will first attempt to quiesce each
1326  * device.
1327  *
1328  * @param dc		the devclass to edit
1329  * @param driver	the driver to unregister
1330  */
1331 static int
1332 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1333 {
1334 	devclass_t dc = devclass_find(driver->name);
1335 	driverlink_t dl;
1336 	device_t dev;
1337 	int i;
1338 	int error;
1339 
1340 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1341 
1342 	if (!dc)
1343 		return (0);
1344 
1345 	/*
1346 	 * Find the link structure in the bus' list of drivers.
1347 	 */
1348 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1349 		if (dl->driver == driver)
1350 			break;
1351 	}
1352 
1353 	if (!dl) {
1354 		PDEBUG(("%s not found in %s list", driver->name,
1355 		    busclass->name));
1356 		return (ENOENT);
1357 	}
1358 
1359 	/*
1360 	 * Quiesce all devices.  We iterate through all the devices in
1361 	 * the devclass of the driver and quiesce any which are using
1362 	 * the driver and which have a parent in the devclass which we
1363 	 * are quiescing.
1364 	 *
1365 	 * Note that since a driver can be in multiple devclasses, we
1366 	 * should not quiesce devices which are not children of
1367 	 * devices in the affected devclass.
1368 	 */
1369 	for (i = 0; i < dc->maxunit; i++) {
1370 		if (dc->devices[i]) {
1371 			dev = dc->devices[i];
1372 			if (dev->driver == driver && dev->parent &&
1373 			    dev->parent->devclass == busclass) {
1374 				if ((error = device_quiesce(dev)) != 0)
1375 					return (error);
1376 			}
1377 		}
1378 	}
1379 
1380 	return (0);
1381 }
1382 
1383 /**
1384  * @internal
1385  */
1386 static driverlink_t
1387 devclass_find_driver_internal(devclass_t dc, const char *classname)
1388 {
1389 	driverlink_t dl;
1390 
1391 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1392 
1393 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1394 		if (!strcmp(dl->driver->name, classname))
1395 			return (dl);
1396 	}
1397 
1398 	PDEBUG(("not found"));
1399 	return (NULL);
1400 }
1401 
1402 /**
1403  * @brief Return the name of the devclass
1404  */
1405 const char *
1406 devclass_get_name(devclass_t dc)
1407 {
1408 	return (dc->name);
1409 }
1410 
1411 /**
1412  * @brief Find a device given a unit number
1413  *
1414  * @param dc		the devclass to search
1415  * @param unit		the unit number to search for
1416  *
1417  * @returns		the device with the given unit number or @c
1418  *			NULL if there is no such device
1419  */
1420 device_t
1421 devclass_get_device(devclass_t dc, int unit)
1422 {
1423 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1424 		return (NULL);
1425 	return (dc->devices[unit]);
1426 }
1427 
1428 /**
1429  * @brief Find the softc field of a device given a unit number
1430  *
1431  * @param dc		the devclass to search
1432  * @param unit		the unit number to search for
1433  *
1434  * @returns		the softc field of the device with the given
1435  *			unit number or @c NULL if there is no such
1436  *			device
1437  */
1438 void *
1439 devclass_get_softc(devclass_t dc, int unit)
1440 {
1441 	device_t dev;
1442 
1443 	dev = devclass_get_device(dc, unit);
1444 	if (!dev)
1445 		return (NULL);
1446 
1447 	return (device_get_softc(dev));
1448 }
1449 
1450 /**
1451  * @brief Get a list of devices in the devclass
1452  *
1453  * An array containing a list of all the devices in the given devclass
1454  * is allocated and returned in @p *devlistp. The number of devices
1455  * in the array is returned in @p *devcountp. The caller should free
1456  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1457  *
1458  * @param dc		the devclass to examine
1459  * @param devlistp	points at location for array pointer return
1460  *			value
1461  * @param devcountp	points at location for array size return value
1462  *
1463  * @retval 0		success
1464  * @retval ENOMEM	the array allocation failed
1465  */
1466 int
1467 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1468 {
1469 	int count, i;
1470 	device_t *list;
1471 
1472 	count = devclass_get_count(dc);
1473 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1474 	if (!list)
1475 		return (ENOMEM);
1476 
1477 	count = 0;
1478 	for (i = 0; i < dc->maxunit; i++) {
1479 		if (dc->devices[i]) {
1480 			list[count] = dc->devices[i];
1481 			count++;
1482 		}
1483 	}
1484 
1485 	*devlistp = list;
1486 	*devcountp = count;
1487 
1488 	return (0);
1489 }
1490 
1491 /**
1492  * @brief Get a list of drivers in the devclass
1493  *
1494  * An array containing a list of pointers to all the drivers in the
1495  * given devclass is allocated and returned in @p *listp.  The number
1496  * of drivers in the array is returned in @p *countp. The caller should
1497  * free the array using @c free(p, M_TEMP).
1498  *
1499  * @param dc		the devclass to examine
1500  * @param listp		gives location for array pointer return value
1501  * @param countp	gives location for number of array elements
1502  *			return value
1503  *
1504  * @retval 0		success
1505  * @retval ENOMEM	the array allocation failed
1506  */
1507 int
1508 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1509 {
1510 	driverlink_t dl;
1511 	driver_t **list;
1512 	int count;
1513 
1514 	count = 0;
1515 	TAILQ_FOREACH(dl, &dc->drivers, link)
1516 		count++;
1517 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1518 	if (list == NULL)
1519 		return (ENOMEM);
1520 
1521 	count = 0;
1522 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1523 		list[count] = dl->driver;
1524 		count++;
1525 	}
1526 	*listp = list;
1527 	*countp = count;
1528 
1529 	return (0);
1530 }
1531 
1532 /**
1533  * @brief Get the number of devices in a devclass
1534  *
1535  * @param dc		the devclass to examine
1536  */
1537 int
1538 devclass_get_count(devclass_t dc)
1539 {
1540 	int count, i;
1541 
1542 	count = 0;
1543 	for (i = 0; i < dc->maxunit; i++)
1544 		if (dc->devices[i])
1545 			count++;
1546 	return (count);
1547 }
1548 
1549 /**
1550  * @brief Get the maximum unit number used in a devclass
1551  *
1552  * Note that this is one greater than the highest currently-allocated
1553  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1554  * that not even the devclass has been allocated yet.
1555  *
1556  * @param dc		the devclass to examine
1557  */
1558 int
1559 devclass_get_maxunit(devclass_t dc)
1560 {
1561 	if (dc == NULL)
1562 		return (-1);
1563 	return (dc->maxunit);
1564 }
1565 
1566 /**
1567  * @brief Find a free unit number in a devclass
1568  *
1569  * This function searches for the first unused unit number greater
1570  * that or equal to @p unit.
1571  *
1572  * @param dc		the devclass to examine
1573  * @param unit		the first unit number to check
1574  */
1575 int
1576 devclass_find_free_unit(devclass_t dc, int unit)
1577 {
1578 	if (dc == NULL)
1579 		return (unit);
1580 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1581 		unit++;
1582 	return (unit);
1583 }
1584 
1585 /**
1586  * @brief Set the parent of a devclass
1587  *
1588  * The parent class is normally initialised automatically by
1589  * DRIVER_MODULE().
1590  *
1591  * @param dc		the devclass to edit
1592  * @param pdc		the new parent devclass
1593  */
1594 void
1595 devclass_set_parent(devclass_t dc, devclass_t pdc)
1596 {
1597 	dc->parent = pdc;
1598 }
1599 
1600 /**
1601  * @brief Get the parent of a devclass
1602  *
1603  * @param dc		the devclass to examine
1604  */
1605 devclass_t
1606 devclass_get_parent(devclass_t dc)
1607 {
1608 	return (dc->parent);
1609 }
1610 
1611 struct sysctl_ctx_list *
1612 devclass_get_sysctl_ctx(devclass_t dc)
1613 {
1614 	return (&dc->sysctl_ctx);
1615 }
1616 
1617 struct sysctl_oid *
1618 devclass_get_sysctl_tree(devclass_t dc)
1619 {
1620 	return (dc->sysctl_tree);
1621 }
1622 
1623 /**
1624  * @internal
1625  * @brief Allocate a unit number
1626  *
1627  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1628  * will do). The allocated unit number is returned in @p *unitp.
1629 
1630  * @param dc		the devclass to allocate from
1631  * @param unitp		points at the location for the allocated unit
1632  *			number
1633  *
1634  * @retval 0		success
1635  * @retval EEXIST	the requested unit number is already allocated
1636  * @retval ENOMEM	memory allocation failure
1637  */
1638 static int
1639 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1640 {
1641 	const char *s;
1642 	int unit = *unitp;
1643 
1644 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1645 
1646 	/* Ask the parent bus if it wants to wire this device. */
1647 	if (unit == -1)
1648 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1649 		    &unit);
1650 
1651 	/* If we were given a wired unit number, check for existing device */
1652 	/* XXX imp XXX */
1653 	if (unit != -1) {
1654 		if (unit >= 0 && unit < dc->maxunit &&
1655 		    dc->devices[unit] != NULL) {
1656 			if (bootverbose)
1657 				printf("%s: %s%d already exists; skipping it\n",
1658 				    dc->name, dc->name, *unitp);
1659 			return (EEXIST);
1660 		}
1661 	} else {
1662 		/* Unwired device, find the next available slot for it */
1663 		unit = 0;
1664 		for (unit = 0;; unit++) {
1665 			/* If there is an "at" hint for a unit then skip it. */
1666 			if (resource_string_value(dc->name, unit, "at", &s) ==
1667 			    0)
1668 				continue;
1669 
1670 			/* If this device slot is already in use, skip it. */
1671 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1672 				continue;
1673 
1674 			break;
1675 		}
1676 	}
1677 
1678 	/*
1679 	 * We've selected a unit beyond the length of the table, so let's
1680 	 * extend the table to make room for all units up to and including
1681 	 * this one.
1682 	 */
1683 	if (unit >= dc->maxunit) {
1684 		device_t *newlist, *oldlist;
1685 		int newsize;
1686 
1687 		oldlist = dc->devices;
1688 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1689 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1690 		if (!newlist)
1691 			return (ENOMEM);
1692 		if (oldlist != NULL)
1693 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1694 		bzero(newlist + dc->maxunit,
1695 		    sizeof(device_t) * (newsize - dc->maxunit));
1696 		dc->devices = newlist;
1697 		dc->maxunit = newsize;
1698 		if (oldlist != NULL)
1699 			free(oldlist, M_BUS);
1700 	}
1701 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1702 
1703 	*unitp = unit;
1704 	return (0);
1705 }
1706 
1707 /**
1708  * @internal
1709  * @brief Add a device to a devclass
1710  *
1711  * A unit number is allocated for the device (using the device's
1712  * preferred unit number if any) and the device is registered in the
1713  * devclass. This allows the device to be looked up by its unit
1714  * number, e.g. by decoding a dev_t minor number.
1715  *
1716  * @param dc		the devclass to add to
1717  * @param dev		the device to add
1718  *
1719  * @retval 0		success
1720  * @retval EEXIST	the requested unit number is already allocated
1721  * @retval ENOMEM	memory allocation failure
1722  */
1723 static int
1724 devclass_add_device(devclass_t dc, device_t dev)
1725 {
1726 	int buflen, error;
1727 
1728 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1729 
1730 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1731 	if (buflen < 0)
1732 		return (ENOMEM);
1733 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1734 	if (!dev->nameunit)
1735 		return (ENOMEM);
1736 
1737 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1738 		free(dev->nameunit, M_BUS);
1739 		dev->nameunit = NULL;
1740 		return (error);
1741 	}
1742 	dc->devices[dev->unit] = dev;
1743 	dev->devclass = dc;
1744 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1745 
1746 	return (0);
1747 }
1748 
1749 /**
1750  * @internal
1751  * @brief Delete a device from a devclass
1752  *
1753  * The device is removed from the devclass's device list and its unit
1754  * number is freed.
1755 
1756  * @param dc		the devclass to delete from
1757  * @param dev		the device to delete
1758  *
1759  * @retval 0		success
1760  */
1761 static int
1762 devclass_delete_device(devclass_t dc, device_t dev)
1763 {
1764 	if (!dc || !dev)
1765 		return (0);
1766 
1767 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1768 
1769 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1770 		panic("devclass_delete_device: inconsistent device class");
1771 	dc->devices[dev->unit] = NULL;
1772 	if (dev->flags & DF_WILDCARD)
1773 		dev->unit = -1;
1774 	dev->devclass = NULL;
1775 	free(dev->nameunit, M_BUS);
1776 	dev->nameunit = NULL;
1777 
1778 	return (0);
1779 }
1780 
1781 /**
1782  * @internal
1783  * @brief Make a new device and add it as a child of @p parent
1784  *
1785  * @param parent	the parent of the new device
1786  * @param name		the devclass name of the new device or @c NULL
1787  *			to leave the devclass unspecified
1788  * @parem unit		the unit number of the new device of @c -1 to
1789  *			leave the unit number unspecified
1790  *
1791  * @returns the new device
1792  */
1793 static device_t
1794 make_device(device_t parent, const char *name, int unit)
1795 {
1796 	device_t dev;
1797 	devclass_t dc;
1798 
1799 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1800 
1801 	if (name) {
1802 		dc = devclass_find_internal(name, NULL, TRUE);
1803 		if (!dc) {
1804 			printf("make_device: can't find device class %s\n",
1805 			    name);
1806 			return (NULL);
1807 		}
1808 	} else {
1809 		dc = NULL;
1810 	}
1811 
1812 	dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1813 	if (!dev)
1814 		return (NULL);
1815 
1816 	dev->parent = parent;
1817 	TAILQ_INIT(&dev->children);
1818 	kobj_init((kobj_t) dev, &null_class);
1819 	dev->driver = NULL;
1820 	dev->devclass = NULL;
1821 	dev->unit = unit;
1822 	dev->nameunit = NULL;
1823 	dev->desc = NULL;
1824 	dev->busy = 0;
1825 	dev->devflags = 0;
1826 	dev->flags = DF_ENABLED;
1827 	dev->order = 0;
1828 	if (unit == -1)
1829 		dev->flags |= DF_WILDCARD;
1830 	if (name) {
1831 		dev->flags |= DF_FIXEDCLASS;
1832 		if (devclass_add_device(dc, dev)) {
1833 			kobj_delete((kobj_t) dev, M_BUS);
1834 			return (NULL);
1835 		}
1836 	}
1837 	if (parent != NULL && device_has_quiet_children(parent))
1838 		dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1839 	dev->ivars = NULL;
1840 	dev->softc = NULL;
1841 
1842 	dev->state = DS_NOTPRESENT;
1843 
1844 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1845 	bus_data_generation_update();
1846 
1847 	return (dev);
1848 }
1849 
1850 /**
1851  * @internal
1852  * @brief Print a description of a device.
1853  */
1854 static int
1855 device_print_child(device_t dev, device_t child)
1856 {
1857 	int retval = 0;
1858 
1859 	if (device_is_alive(child))
1860 		retval += BUS_PRINT_CHILD(dev, child);
1861 	else
1862 		retval += device_printf(child, " not found\n");
1863 
1864 	return (retval);
1865 }
1866 
1867 /**
1868  * @brief Create a new device
1869  *
1870  * This creates a new device and adds it as a child of an existing
1871  * parent device. The new device will be added after the last existing
1872  * child with order zero.
1873  *
1874  * @param dev		the device which will be the parent of the
1875  *			new child device
1876  * @param name		devclass name for new device or @c NULL if not
1877  *			specified
1878  * @param unit		unit number for new device or @c -1 if not
1879  *			specified
1880  *
1881  * @returns		the new device
1882  */
1883 device_t
1884 device_add_child(device_t dev, const char *name, int unit)
1885 {
1886 	return (device_add_child_ordered(dev, 0, name, unit));
1887 }
1888 
1889 /**
1890  * @brief Create a new device
1891  *
1892  * This creates a new device and adds it as a child of an existing
1893  * parent device. The new device will be added after the last existing
1894  * child with the same order.
1895  *
1896  * @param dev		the device which will be the parent of the
1897  *			new child device
1898  * @param order		a value which is used to partially sort the
1899  *			children of @p dev - devices created using
1900  *			lower values of @p order appear first in @p
1901  *			dev's list of children
1902  * @param name		devclass name for new device or @c NULL if not
1903  *			specified
1904  * @param unit		unit number for new device or @c -1 if not
1905  *			specified
1906  *
1907  * @returns		the new device
1908  */
1909 device_t
1910 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1911 {
1912 	device_t child;
1913 	device_t place;
1914 
1915 	PDEBUG(("%s at %s with order %u as unit %d",
1916 	    name, DEVICENAME(dev), order, unit));
1917 	KASSERT(name != NULL || unit == -1,
1918 	    ("child device with wildcard name and specific unit number"));
1919 
1920 	child = make_device(dev, name, unit);
1921 	if (child == NULL)
1922 		return (child);
1923 	child->order = order;
1924 
1925 	TAILQ_FOREACH(place, &dev->children, link) {
1926 		if (place->order > order)
1927 			break;
1928 	}
1929 
1930 	if (place) {
1931 		/*
1932 		 * The device 'place' is the first device whose order is
1933 		 * greater than the new child.
1934 		 */
1935 		TAILQ_INSERT_BEFORE(place, child, link);
1936 	} else {
1937 		/*
1938 		 * The new child's order is greater or equal to the order of
1939 		 * any existing device. Add the child to the tail of the list.
1940 		 */
1941 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1942 	}
1943 
1944 	bus_data_generation_update();
1945 	return (child);
1946 }
1947 
1948 /**
1949  * @brief Delete a device
1950  *
1951  * This function deletes a device along with all of its children. If
1952  * the device currently has a driver attached to it, the device is
1953  * detached first using device_detach().
1954  *
1955  * @param dev		the parent device
1956  * @param child		the device to delete
1957  *
1958  * @retval 0		success
1959  * @retval non-zero	a unit error code describing the error
1960  */
1961 int
1962 device_delete_child(device_t dev, device_t child)
1963 {
1964 	int error;
1965 	device_t grandchild;
1966 
1967 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1968 
1969 	/* detach parent before deleting children, if any */
1970 	if ((error = device_detach(child)) != 0)
1971 		return (error);
1972 
1973 	/* remove children second */
1974 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1975 		error = device_delete_child(child, grandchild);
1976 		if (error)
1977 			return (error);
1978 	}
1979 
1980 	if (child->devclass)
1981 		devclass_delete_device(child->devclass, child);
1982 	if (child->parent)
1983 		BUS_CHILD_DELETED(dev, child);
1984 	TAILQ_REMOVE(&dev->children, child, link);
1985 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1986 	kobj_delete((kobj_t) child, M_BUS);
1987 
1988 	bus_data_generation_update();
1989 	return (0);
1990 }
1991 
1992 /**
1993  * @brief Delete all children devices of the given device, if any.
1994  *
1995  * This function deletes all children devices of the given device, if
1996  * any, using the device_delete_child() function for each device it
1997  * finds. If a child device cannot be deleted, this function will
1998  * return an error code.
1999  *
2000  * @param dev		the parent device
2001  *
2002  * @retval 0		success
2003  * @retval non-zero	a device would not detach
2004  */
2005 int
2006 device_delete_children(device_t dev)
2007 {
2008 	device_t child;
2009 	int error;
2010 
2011 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
2012 
2013 	error = 0;
2014 
2015 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
2016 		error = device_delete_child(dev, child);
2017 		if (error) {
2018 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
2019 			break;
2020 		}
2021 	}
2022 	return (error);
2023 }
2024 
2025 /**
2026  * @brief Find a device given a unit number
2027  *
2028  * This is similar to devclass_get_devices() but only searches for
2029  * devices which have @p dev as a parent.
2030  *
2031  * @param dev		the parent device to search
2032  * @param unit		the unit number to search for.  If the unit is -1,
2033  *			return the first child of @p dev which has name
2034  *			@p classname (that is, the one with the lowest unit.)
2035  *
2036  * @returns		the device with the given unit number or @c
2037  *			NULL if there is no such device
2038  */
2039 device_t
2040 device_find_child(device_t dev, const char *classname, int unit)
2041 {
2042 	devclass_t dc;
2043 	device_t child;
2044 
2045 	dc = devclass_find(classname);
2046 	if (!dc)
2047 		return (NULL);
2048 
2049 	if (unit != -1) {
2050 		child = devclass_get_device(dc, unit);
2051 		if (child && child->parent == dev)
2052 			return (child);
2053 	} else {
2054 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2055 			child = devclass_get_device(dc, unit);
2056 			if (child && child->parent == dev)
2057 				return (child);
2058 		}
2059 	}
2060 	return (NULL);
2061 }
2062 
2063 /**
2064  * @internal
2065  */
2066 static driverlink_t
2067 first_matching_driver(devclass_t dc, device_t dev)
2068 {
2069 	if (dev->devclass)
2070 		return (devclass_find_driver_internal(dc, dev->devclass->name));
2071 	return (TAILQ_FIRST(&dc->drivers));
2072 }
2073 
2074 /**
2075  * @internal
2076  */
2077 static driverlink_t
2078 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2079 {
2080 	if (dev->devclass) {
2081 		driverlink_t dl;
2082 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2083 			if (!strcmp(dev->devclass->name, dl->driver->name))
2084 				return (dl);
2085 		return (NULL);
2086 	}
2087 	return (TAILQ_NEXT(last, link));
2088 }
2089 
2090 /**
2091  * @internal
2092  */
2093 int
2094 device_probe_child(device_t dev, device_t child)
2095 {
2096 	devclass_t dc;
2097 	driverlink_t best = NULL;
2098 	driverlink_t dl;
2099 	int result, pri = 0;
2100 	int hasclass = (child->devclass != NULL);
2101 
2102 	GIANT_REQUIRED;
2103 
2104 	dc = dev->devclass;
2105 	if (!dc)
2106 		panic("device_probe_child: parent device has no devclass");
2107 
2108 	/*
2109 	 * If the state is already probed, then return.  However, don't
2110 	 * return if we can rebid this object.
2111 	 */
2112 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2113 		return (0);
2114 
2115 	for (; dc; dc = dc->parent) {
2116 		for (dl = first_matching_driver(dc, child);
2117 		     dl;
2118 		     dl = next_matching_driver(dc, child, dl)) {
2119 			/* If this driver's pass is too high, then ignore it. */
2120 			if (dl->pass > bus_current_pass)
2121 				continue;
2122 
2123 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2124 			result = device_set_driver(child, dl->driver);
2125 			if (result == ENOMEM)
2126 				return (result);
2127 			else if (result != 0)
2128 				continue;
2129 			if (!hasclass) {
2130 				if (device_set_devclass(child,
2131 				    dl->driver->name) != 0) {
2132 					char const * devname =
2133 					    device_get_name(child);
2134 					if (devname == NULL)
2135 						devname = "(unknown)";
2136 					printf("driver bug: Unable to set "
2137 					    "devclass (class: %s "
2138 					    "devname: %s)\n",
2139 					    dl->driver->name,
2140 					    devname);
2141 					(void)device_set_driver(child, NULL);
2142 					continue;
2143 				}
2144 			}
2145 
2146 			/* Fetch any flags for the device before probing. */
2147 			resource_int_value(dl->driver->name, child->unit,
2148 			    "flags", &child->devflags);
2149 
2150 			result = DEVICE_PROBE(child);
2151 
2152 			/* Reset flags and devclass before the next probe. */
2153 			child->devflags = 0;
2154 			if (!hasclass)
2155 				(void)device_set_devclass(child, NULL);
2156 
2157 			/*
2158 			 * If the driver returns SUCCESS, there can be
2159 			 * no higher match for this device.
2160 			 */
2161 			if (result == 0) {
2162 				best = dl;
2163 				pri = 0;
2164 				break;
2165 			}
2166 
2167 			/*
2168 			 * Reset DF_QUIET in case this driver doesn't
2169 			 * end up as the best driver.
2170 			 */
2171 			device_verbose(child);
2172 
2173 			/*
2174 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2175 			 * only match on devices whose driver was explicitly
2176 			 * specified.
2177 			 */
2178 			if (result <= BUS_PROBE_NOWILDCARD &&
2179 			    !(child->flags & DF_FIXEDCLASS)) {
2180 				result = ENXIO;
2181 			}
2182 
2183 			/*
2184 			 * The driver returned an error so it
2185 			 * certainly doesn't match.
2186 			 */
2187 			if (result > 0) {
2188 				(void)device_set_driver(child, NULL);
2189 				continue;
2190 			}
2191 
2192 			/*
2193 			 * A priority lower than SUCCESS, remember the
2194 			 * best matching driver. Initialise the value
2195 			 * of pri for the first match.
2196 			 */
2197 			if (best == NULL || result > pri) {
2198 				best = dl;
2199 				pri = result;
2200 				continue;
2201 			}
2202 		}
2203 		/*
2204 		 * If we have an unambiguous match in this devclass,
2205 		 * don't look in the parent.
2206 		 */
2207 		if (best && pri == 0)
2208 			break;
2209 	}
2210 
2211 	/*
2212 	 * If we found a driver, change state and initialise the devclass.
2213 	 */
2214 	/* XXX What happens if we rebid and got no best? */
2215 	if (best) {
2216 		/*
2217 		 * If this device was attached, and we were asked to
2218 		 * rescan, and it is a different driver, then we have
2219 		 * to detach the old driver and reattach this new one.
2220 		 * Note, we don't have to check for DF_REBID here
2221 		 * because if the state is > DS_ALIVE, we know it must
2222 		 * be.
2223 		 *
2224 		 * This assumes that all DF_REBID drivers can have
2225 		 * their probe routine called at any time and that
2226 		 * they are idempotent as well as completely benign in
2227 		 * normal operations.
2228 		 *
2229 		 * We also have to make sure that the detach
2230 		 * succeeded, otherwise we fail the operation (or
2231 		 * maybe it should just fail silently?  I'm torn).
2232 		 */
2233 		if (child->state > DS_ALIVE && best->driver != child->driver)
2234 			if ((result = device_detach(dev)) != 0)
2235 				return (result);
2236 
2237 		/* Set the winning driver, devclass, and flags. */
2238 		if (!child->devclass) {
2239 			result = device_set_devclass(child, best->driver->name);
2240 			if (result != 0)
2241 				return (result);
2242 		}
2243 		result = device_set_driver(child, best->driver);
2244 		if (result != 0)
2245 			return (result);
2246 		resource_int_value(best->driver->name, child->unit,
2247 		    "flags", &child->devflags);
2248 
2249 		if (pri < 0) {
2250 			/*
2251 			 * A bit bogus. Call the probe method again to make
2252 			 * sure that we have the right description.
2253 			 */
2254 			DEVICE_PROBE(child);
2255 #if 0
2256 			child->flags |= DF_REBID;
2257 #endif
2258 		} else
2259 			child->flags &= ~DF_REBID;
2260 		child->state = DS_ALIVE;
2261 
2262 		bus_data_generation_update();
2263 		return (0);
2264 	}
2265 
2266 	return (ENXIO);
2267 }
2268 
2269 /**
2270  * @brief Return the parent of a device
2271  */
2272 device_t
2273 device_get_parent(device_t dev)
2274 {
2275 	return (dev->parent);
2276 }
2277 
2278 /**
2279  * @brief Get a list of children of a device
2280  *
2281  * An array containing a list of all the children of the given device
2282  * is allocated and returned in @p *devlistp. The number of devices
2283  * in the array is returned in @p *devcountp. The caller should free
2284  * the array using @c free(p, M_TEMP).
2285  *
2286  * @param dev		the device to examine
2287  * @param devlistp	points at location for array pointer return
2288  *			value
2289  * @param devcountp	points at location for array size return value
2290  *
2291  * @retval 0		success
2292  * @retval ENOMEM	the array allocation failed
2293  */
2294 int
2295 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2296 {
2297 	int count;
2298 	device_t child;
2299 	device_t *list;
2300 
2301 	count = 0;
2302 	TAILQ_FOREACH(child, &dev->children, link) {
2303 		count++;
2304 	}
2305 	if (count == 0) {
2306 		*devlistp = NULL;
2307 		*devcountp = 0;
2308 		return (0);
2309 	}
2310 
2311 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2312 	if (!list)
2313 		return (ENOMEM);
2314 
2315 	count = 0;
2316 	TAILQ_FOREACH(child, &dev->children, link) {
2317 		list[count] = child;
2318 		count++;
2319 	}
2320 
2321 	*devlistp = list;
2322 	*devcountp = count;
2323 
2324 	return (0);
2325 }
2326 
2327 /**
2328  * @brief Return the current driver for the device or @c NULL if there
2329  * is no driver currently attached
2330  */
2331 driver_t *
2332 device_get_driver(device_t dev)
2333 {
2334 	return (dev->driver);
2335 }
2336 
2337 /**
2338  * @brief Return the current devclass for the device or @c NULL if
2339  * there is none.
2340  */
2341 devclass_t
2342 device_get_devclass(device_t dev)
2343 {
2344 	return (dev->devclass);
2345 }
2346 
2347 /**
2348  * @brief Return the name of the device's devclass or @c NULL if there
2349  * is none.
2350  */
2351 const char *
2352 device_get_name(device_t dev)
2353 {
2354 	if (dev != NULL && dev->devclass)
2355 		return (devclass_get_name(dev->devclass));
2356 	return (NULL);
2357 }
2358 
2359 /**
2360  * @brief Return a string containing the device's devclass name
2361  * followed by an ascii representation of the device's unit number
2362  * (e.g. @c "foo2").
2363  */
2364 const char *
2365 device_get_nameunit(device_t dev)
2366 {
2367 	return (dev->nameunit);
2368 }
2369 
2370 /**
2371  * @brief Return the device's unit number.
2372  */
2373 int
2374 device_get_unit(device_t dev)
2375 {
2376 	return (dev->unit);
2377 }
2378 
2379 /**
2380  * @brief Return the device's description string
2381  */
2382 const char *
2383 device_get_desc(device_t dev)
2384 {
2385 	return (dev->desc);
2386 }
2387 
2388 /**
2389  * @brief Return the device's flags
2390  */
2391 uint32_t
2392 device_get_flags(device_t dev)
2393 {
2394 	return (dev->devflags);
2395 }
2396 
2397 struct sysctl_ctx_list *
2398 device_get_sysctl_ctx(device_t dev)
2399 {
2400 	return (&dev->sysctl_ctx);
2401 }
2402 
2403 struct sysctl_oid *
2404 device_get_sysctl_tree(device_t dev)
2405 {
2406 	return (dev->sysctl_tree);
2407 }
2408 
2409 /**
2410  * @brief Print the name of the device followed by a colon and a space
2411  *
2412  * @returns the number of characters printed
2413  */
2414 int
2415 device_print_prettyname(device_t dev)
2416 {
2417 	const char *name = device_get_name(dev);
2418 
2419 	if (name == NULL)
2420 		return (printf("unknown: "));
2421 	return (printf("%s%d: ", name, device_get_unit(dev)));
2422 }
2423 
2424 /**
2425  * @brief Print the name of the device followed by a colon, a space
2426  * and the result of calling vprintf() with the value of @p fmt and
2427  * the following arguments.
2428  *
2429  * @returns the number of characters printed
2430  */
2431 int
2432 device_printf(device_t dev, const char * fmt, ...)
2433 {
2434 	char buf[128];
2435 	struct sbuf sb;
2436 	const char *name;
2437 	va_list ap;
2438 	size_t retval;
2439 
2440 	retval = 0;
2441 
2442 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
2443 	sbuf_set_drain(&sb, sbuf_printf_drain, &retval);
2444 
2445 	name = device_get_name(dev);
2446 
2447 	if (name == NULL)
2448 		sbuf_cat(&sb, "unknown: ");
2449 	else
2450 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2451 
2452 	va_start(ap, fmt);
2453 	sbuf_vprintf(&sb, fmt, ap);
2454 	va_end(ap);
2455 
2456 	sbuf_finish(&sb);
2457 	sbuf_delete(&sb);
2458 
2459 	return (retval);
2460 }
2461 
2462 /**
2463  * @internal
2464  */
2465 static void
2466 device_set_desc_internal(device_t dev, const char* desc, int copy)
2467 {
2468 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2469 		free(dev->desc, M_BUS);
2470 		dev->flags &= ~DF_DESCMALLOCED;
2471 		dev->desc = NULL;
2472 	}
2473 
2474 	if (copy && desc) {
2475 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2476 		if (dev->desc) {
2477 			strcpy(dev->desc, desc);
2478 			dev->flags |= DF_DESCMALLOCED;
2479 		}
2480 	} else {
2481 		/* Avoid a -Wcast-qual warning */
2482 		dev->desc = (char *)(uintptr_t) desc;
2483 	}
2484 
2485 	bus_data_generation_update();
2486 }
2487 
2488 /**
2489  * @brief Set the device's description
2490  *
2491  * The value of @c desc should be a string constant that will not
2492  * change (at least until the description is changed in a subsequent
2493  * call to device_set_desc() or device_set_desc_copy()).
2494  */
2495 void
2496 device_set_desc(device_t dev, const char* desc)
2497 {
2498 	device_set_desc_internal(dev, desc, FALSE);
2499 }
2500 
2501 /**
2502  * @brief Set the device's description
2503  *
2504  * The string pointed to by @c desc is copied. Use this function if
2505  * the device description is generated, (e.g. with sprintf()).
2506  */
2507 void
2508 device_set_desc_copy(device_t dev, const char* desc)
2509 {
2510 	device_set_desc_internal(dev, desc, TRUE);
2511 }
2512 
2513 /**
2514  * @brief Set the device's flags
2515  */
2516 void
2517 device_set_flags(device_t dev, uint32_t flags)
2518 {
2519 	dev->devflags = flags;
2520 }
2521 
2522 /**
2523  * @brief Return the device's softc field
2524  *
2525  * The softc is allocated and zeroed when a driver is attached, based
2526  * on the size field of the driver.
2527  */
2528 void *
2529 device_get_softc(device_t dev)
2530 {
2531 	return (dev->softc);
2532 }
2533 
2534 /**
2535  * @brief Set the device's softc field
2536  *
2537  * Most drivers do not need to use this since the softc is allocated
2538  * automatically when the driver is attached.
2539  */
2540 void
2541 device_set_softc(device_t dev, void *softc)
2542 {
2543 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2544 		free(dev->softc, M_BUS_SC);
2545 	dev->softc = softc;
2546 	if (dev->softc)
2547 		dev->flags |= DF_EXTERNALSOFTC;
2548 	else
2549 		dev->flags &= ~DF_EXTERNALSOFTC;
2550 }
2551 
2552 /**
2553  * @brief Free claimed softc
2554  *
2555  * Most drivers do not need to use this since the softc is freed
2556  * automatically when the driver is detached.
2557  */
2558 void
2559 device_free_softc(void *softc)
2560 {
2561 	free(softc, M_BUS_SC);
2562 }
2563 
2564 /**
2565  * @brief Claim softc
2566  *
2567  * This function can be used to let the driver free the automatically
2568  * allocated softc using "device_free_softc()". This function is
2569  * useful when the driver is refcounting the softc and the softc
2570  * cannot be freed when the "device_detach" method is called.
2571  */
2572 void
2573 device_claim_softc(device_t dev)
2574 {
2575 	if (dev->softc)
2576 		dev->flags |= DF_EXTERNALSOFTC;
2577 	else
2578 		dev->flags &= ~DF_EXTERNALSOFTC;
2579 }
2580 
2581 /**
2582  * @brief Get the device's ivars field
2583  *
2584  * The ivars field is used by the parent device to store per-device
2585  * state (e.g. the physical location of the device or a list of
2586  * resources).
2587  */
2588 void *
2589 device_get_ivars(device_t dev)
2590 {
2591 
2592 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2593 	return (dev->ivars);
2594 }
2595 
2596 /**
2597  * @brief Set the device's ivars field
2598  */
2599 void
2600 device_set_ivars(device_t dev, void * ivars)
2601 {
2602 
2603 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2604 	dev->ivars = ivars;
2605 }
2606 
2607 /**
2608  * @brief Return the device's state
2609  */
2610 device_state_t
2611 device_get_state(device_t dev)
2612 {
2613 	return (dev->state);
2614 }
2615 
2616 /**
2617  * @brief Set the DF_ENABLED flag for the device
2618  */
2619 void
2620 device_enable(device_t dev)
2621 {
2622 	dev->flags |= DF_ENABLED;
2623 }
2624 
2625 /**
2626  * @brief Clear the DF_ENABLED flag for the device
2627  */
2628 void
2629 device_disable(device_t dev)
2630 {
2631 	dev->flags &= ~DF_ENABLED;
2632 }
2633 
2634 /**
2635  * @brief Increment the busy counter for the device
2636  */
2637 void
2638 device_busy(device_t dev)
2639 {
2640 	if (dev->state < DS_ATTACHING)
2641 		panic("device_busy: called for unattached device");
2642 	if (dev->busy == 0 && dev->parent)
2643 		device_busy(dev->parent);
2644 	dev->busy++;
2645 	if (dev->state == DS_ATTACHED)
2646 		dev->state = DS_BUSY;
2647 }
2648 
2649 /**
2650  * @brief Decrement the busy counter for the device
2651  */
2652 void
2653 device_unbusy(device_t dev)
2654 {
2655 	if (dev->busy != 0 && dev->state != DS_BUSY &&
2656 	    dev->state != DS_ATTACHING)
2657 		panic("device_unbusy: called for non-busy device %s",
2658 		    device_get_nameunit(dev));
2659 	dev->busy--;
2660 	if (dev->busy == 0) {
2661 		if (dev->parent)
2662 			device_unbusy(dev->parent);
2663 		if (dev->state == DS_BUSY)
2664 			dev->state = DS_ATTACHED;
2665 	}
2666 }
2667 
2668 /**
2669  * @brief Set the DF_QUIET flag for the device
2670  */
2671 void
2672 device_quiet(device_t dev)
2673 {
2674 	dev->flags |= DF_QUIET;
2675 }
2676 
2677 /**
2678  * @brief Set the DF_QUIET_CHILDREN flag for the device
2679  */
2680 void
2681 device_quiet_children(device_t dev)
2682 {
2683 	dev->flags |= DF_QUIET_CHILDREN;
2684 }
2685 
2686 /**
2687  * @brief Clear the DF_QUIET flag for the device
2688  */
2689 void
2690 device_verbose(device_t dev)
2691 {
2692 	dev->flags &= ~DF_QUIET;
2693 }
2694 
2695 /**
2696  * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2697  */
2698 int
2699 device_has_quiet_children(device_t dev)
2700 {
2701 	return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2702 }
2703 
2704 /**
2705  * @brief Return non-zero if the DF_QUIET flag is set on the device
2706  */
2707 int
2708 device_is_quiet(device_t dev)
2709 {
2710 	return ((dev->flags & DF_QUIET) != 0);
2711 }
2712 
2713 /**
2714  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2715  */
2716 int
2717 device_is_enabled(device_t dev)
2718 {
2719 	return ((dev->flags & DF_ENABLED) != 0);
2720 }
2721 
2722 /**
2723  * @brief Return non-zero if the device was successfully probed
2724  */
2725 int
2726 device_is_alive(device_t dev)
2727 {
2728 	return (dev->state >= DS_ALIVE);
2729 }
2730 
2731 /**
2732  * @brief Return non-zero if the device currently has a driver
2733  * attached to it
2734  */
2735 int
2736 device_is_attached(device_t dev)
2737 {
2738 	return (dev->state >= DS_ATTACHED);
2739 }
2740 
2741 /**
2742  * @brief Return non-zero if the device is currently suspended.
2743  */
2744 int
2745 device_is_suspended(device_t dev)
2746 {
2747 	return ((dev->flags & DF_SUSPENDED) != 0);
2748 }
2749 
2750 /**
2751  * @brief Set the devclass of a device
2752  * @see devclass_add_device().
2753  */
2754 int
2755 device_set_devclass(device_t dev, const char *classname)
2756 {
2757 	devclass_t dc;
2758 	int error;
2759 
2760 	if (!classname) {
2761 		if (dev->devclass)
2762 			devclass_delete_device(dev->devclass, dev);
2763 		return (0);
2764 	}
2765 
2766 	if (dev->devclass) {
2767 		printf("device_set_devclass: device class already set\n");
2768 		return (EINVAL);
2769 	}
2770 
2771 	dc = devclass_find_internal(classname, NULL, TRUE);
2772 	if (!dc)
2773 		return (ENOMEM);
2774 
2775 	error = devclass_add_device(dc, dev);
2776 
2777 	bus_data_generation_update();
2778 	return (error);
2779 }
2780 
2781 /**
2782  * @brief Set the devclass of a device and mark the devclass fixed.
2783  * @see device_set_devclass()
2784  */
2785 int
2786 device_set_devclass_fixed(device_t dev, const char *classname)
2787 {
2788 	int error;
2789 
2790 	if (classname == NULL)
2791 		return (EINVAL);
2792 
2793 	error = device_set_devclass(dev, classname);
2794 	if (error)
2795 		return (error);
2796 	dev->flags |= DF_FIXEDCLASS;
2797 	return (0);
2798 }
2799 
2800 /**
2801  * @brief Query the device to determine if it's of a fixed devclass
2802  * @see device_set_devclass_fixed()
2803  */
2804 bool
2805 device_is_devclass_fixed(device_t dev)
2806 {
2807 	return ((dev->flags & DF_FIXEDCLASS) != 0);
2808 }
2809 
2810 /**
2811  * @brief Set the driver of a device
2812  *
2813  * @retval 0		success
2814  * @retval EBUSY	the device already has a driver attached
2815  * @retval ENOMEM	a memory allocation failure occurred
2816  */
2817 int
2818 device_set_driver(device_t dev, driver_t *driver)
2819 {
2820 	if (dev->state >= DS_ATTACHED)
2821 		return (EBUSY);
2822 
2823 	if (dev->driver == driver)
2824 		return (0);
2825 
2826 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2827 		free(dev->softc, M_BUS_SC);
2828 		dev->softc = NULL;
2829 	}
2830 	device_set_desc(dev, NULL);
2831 	kobj_delete((kobj_t) dev, NULL);
2832 	dev->driver = driver;
2833 	if (driver) {
2834 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2835 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2836 			dev->softc = malloc(driver->size, M_BUS_SC,
2837 			    M_NOWAIT | M_ZERO);
2838 			if (!dev->softc) {
2839 				kobj_delete((kobj_t) dev, NULL);
2840 				kobj_init((kobj_t) dev, &null_class);
2841 				dev->driver = NULL;
2842 				return (ENOMEM);
2843 			}
2844 		}
2845 	} else {
2846 		kobj_init((kobj_t) dev, &null_class);
2847 	}
2848 
2849 	bus_data_generation_update();
2850 	return (0);
2851 }
2852 
2853 /**
2854  * @brief Probe a device, and return this status.
2855  *
2856  * This function is the core of the device autoconfiguration
2857  * system. Its purpose is to select a suitable driver for a device and
2858  * then call that driver to initialise the hardware appropriately. The
2859  * driver is selected by calling the DEVICE_PROBE() method of a set of
2860  * candidate drivers and then choosing the driver which returned the
2861  * best value. This driver is then attached to the device using
2862  * device_attach().
2863  *
2864  * The set of suitable drivers is taken from the list of drivers in
2865  * the parent device's devclass. If the device was originally created
2866  * with a specific class name (see device_add_child()), only drivers
2867  * with that name are probed, otherwise all drivers in the devclass
2868  * are probed. If no drivers return successful probe values in the
2869  * parent devclass, the search continues in the parent of that
2870  * devclass (see devclass_get_parent()) if any.
2871  *
2872  * @param dev		the device to initialise
2873  *
2874  * @retval 0		success
2875  * @retval ENXIO	no driver was found
2876  * @retval ENOMEM	memory allocation failure
2877  * @retval non-zero	some other unix error code
2878  * @retval -1		Device already attached
2879  */
2880 int
2881 device_probe(device_t dev)
2882 {
2883 	int error;
2884 
2885 	GIANT_REQUIRED;
2886 
2887 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2888 		return (-1);
2889 
2890 	if (!(dev->flags & DF_ENABLED)) {
2891 		if (bootverbose && device_get_name(dev) != NULL) {
2892 			device_print_prettyname(dev);
2893 			printf("not probed (disabled)\n");
2894 		}
2895 		return (-1);
2896 	}
2897 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2898 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2899 		    !(dev->flags & DF_DONENOMATCH)) {
2900 			BUS_PROBE_NOMATCH(dev->parent, dev);
2901 			devnomatch(dev);
2902 			dev->flags |= DF_DONENOMATCH;
2903 		}
2904 		return (error);
2905 	}
2906 	return (0);
2907 }
2908 
2909 /**
2910  * @brief Probe a device and attach a driver if possible
2911  *
2912  * calls device_probe() and attaches if that was successful.
2913  */
2914 int
2915 device_probe_and_attach(device_t dev)
2916 {
2917 	int error;
2918 
2919 	GIANT_REQUIRED;
2920 
2921 	error = device_probe(dev);
2922 	if (error == -1)
2923 		return (0);
2924 	else if (error != 0)
2925 		return (error);
2926 
2927 	CURVNET_SET_QUIET(vnet0);
2928 	error = device_attach(dev);
2929 	CURVNET_RESTORE();
2930 	return error;
2931 }
2932 
2933 /**
2934  * @brief Attach a device driver to a device
2935  *
2936  * This function is a wrapper around the DEVICE_ATTACH() driver
2937  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2938  * device's sysctl tree, optionally prints a description of the device
2939  * and queues a notification event for user-based device management
2940  * services.
2941  *
2942  * Normally this function is only called internally from
2943  * device_probe_and_attach().
2944  *
2945  * @param dev		the device to initialise
2946  *
2947  * @retval 0		success
2948  * @retval ENXIO	no driver was found
2949  * @retval ENOMEM	memory allocation failure
2950  * @retval non-zero	some other unix error code
2951  */
2952 int
2953 device_attach(device_t dev)
2954 {
2955 	uint64_t attachtime;
2956 	uint16_t attachentropy;
2957 	int error;
2958 
2959 	if (resource_disabled(dev->driver->name, dev->unit)) {
2960 		device_disable(dev);
2961 		if (bootverbose)
2962 			 device_printf(dev, "disabled via hints entry\n");
2963 		return (ENXIO);
2964 	}
2965 
2966 	device_sysctl_init(dev);
2967 	if (!device_is_quiet(dev))
2968 		device_print_child(dev->parent, dev);
2969 	attachtime = get_cyclecount();
2970 	dev->state = DS_ATTACHING;
2971 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2972 		printf("device_attach: %s%d attach returned %d\n",
2973 		    dev->driver->name, dev->unit, error);
2974 		if (!(dev->flags & DF_FIXEDCLASS))
2975 			devclass_delete_device(dev->devclass, dev);
2976 		(void)device_set_driver(dev, NULL);
2977 		device_sysctl_fini(dev);
2978 		KASSERT(dev->busy == 0, ("attach failed but busy"));
2979 		dev->state = DS_NOTPRESENT;
2980 		return (error);
2981 	}
2982 	dev->flags |= DF_ATTACHED_ONCE;
2983 	/* We only need the low bits of this time, but ranges from tens to thousands
2984 	 * have been seen, so keep 2 bytes' worth.
2985 	 */
2986 	attachentropy = (uint16_t)(get_cyclecount() - attachtime);
2987 	random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
2988 	device_sysctl_update(dev);
2989 	if (dev->busy)
2990 		dev->state = DS_BUSY;
2991 	else
2992 		dev->state = DS_ATTACHED;
2993 	dev->flags &= ~DF_DONENOMATCH;
2994 	EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
2995 	devadded(dev);
2996 	return (0);
2997 }
2998 
2999 /**
3000  * @brief Detach a driver from a device
3001  *
3002  * This function is a wrapper around the DEVICE_DETACH() driver
3003  * method. If the call to DEVICE_DETACH() succeeds, it calls
3004  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
3005  * notification event for user-based device management services and
3006  * cleans up the device's sysctl tree.
3007  *
3008  * @param dev		the device to un-initialise
3009  *
3010  * @retval 0		success
3011  * @retval ENXIO	no driver was found
3012  * @retval ENOMEM	memory allocation failure
3013  * @retval non-zero	some other unix error code
3014  */
3015 int
3016 device_detach(device_t dev)
3017 {
3018 	int error;
3019 
3020 	GIANT_REQUIRED;
3021 
3022 	PDEBUG(("%s", DEVICENAME(dev)));
3023 	if (dev->state == DS_BUSY)
3024 		return (EBUSY);
3025 	if (dev->state == DS_ATTACHING) {
3026 		device_printf(dev, "device in attaching state! Deferring detach.\n");
3027 		return (EBUSY);
3028 	}
3029 	if (dev->state != DS_ATTACHED)
3030 		return (0);
3031 
3032 	EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
3033 	if ((error = DEVICE_DETACH(dev)) != 0) {
3034 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
3035 		    EVHDEV_DETACH_FAILED);
3036 		return (error);
3037 	} else {
3038 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
3039 		    EVHDEV_DETACH_COMPLETE);
3040 	}
3041 	devremoved(dev);
3042 	if (!device_is_quiet(dev))
3043 		device_printf(dev, "detached\n");
3044 	if (dev->parent)
3045 		BUS_CHILD_DETACHED(dev->parent, dev);
3046 
3047 	if (!(dev->flags & DF_FIXEDCLASS))
3048 		devclass_delete_device(dev->devclass, dev);
3049 
3050 	device_verbose(dev);
3051 	dev->state = DS_NOTPRESENT;
3052 	(void)device_set_driver(dev, NULL);
3053 	device_sysctl_fini(dev);
3054 
3055 	return (0);
3056 }
3057 
3058 /**
3059  * @brief Tells a driver to quiesce itself.
3060  *
3061  * This function is a wrapper around the DEVICE_QUIESCE() driver
3062  * method. If the call to DEVICE_QUIESCE() succeeds.
3063  *
3064  * @param dev		the device to quiesce
3065  *
3066  * @retval 0		success
3067  * @retval ENXIO	no driver was found
3068  * @retval ENOMEM	memory allocation failure
3069  * @retval non-zero	some other unix error code
3070  */
3071 int
3072 device_quiesce(device_t dev)
3073 {
3074 
3075 	PDEBUG(("%s", DEVICENAME(dev)));
3076 	if (dev->state == DS_BUSY)
3077 		return (EBUSY);
3078 	if (dev->state != DS_ATTACHED)
3079 		return (0);
3080 
3081 	return (DEVICE_QUIESCE(dev));
3082 }
3083 
3084 /**
3085  * @brief Notify a device of system shutdown
3086  *
3087  * This function calls the DEVICE_SHUTDOWN() driver method if the
3088  * device currently has an attached driver.
3089  *
3090  * @returns the value returned by DEVICE_SHUTDOWN()
3091  */
3092 int
3093 device_shutdown(device_t dev)
3094 {
3095 	if (dev->state < DS_ATTACHED)
3096 		return (0);
3097 	return (DEVICE_SHUTDOWN(dev));
3098 }
3099 
3100 /**
3101  * @brief Set the unit number of a device
3102  *
3103  * This function can be used to override the unit number used for a
3104  * device (e.g. to wire a device to a pre-configured unit number).
3105  */
3106 int
3107 device_set_unit(device_t dev, int unit)
3108 {
3109 	devclass_t dc;
3110 	int err;
3111 
3112 	dc = device_get_devclass(dev);
3113 	if (unit < dc->maxunit && dc->devices[unit])
3114 		return (EBUSY);
3115 	err = devclass_delete_device(dc, dev);
3116 	if (err)
3117 		return (err);
3118 	dev->unit = unit;
3119 	err = devclass_add_device(dc, dev);
3120 	if (err)
3121 		return (err);
3122 
3123 	bus_data_generation_update();
3124 	return (0);
3125 }
3126 
3127 /*======================================*/
3128 /*
3129  * Some useful method implementations to make life easier for bus drivers.
3130  */
3131 
3132 void
3133 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
3134 {
3135 
3136 	bzero(args, sz);
3137 	args->size = sz;
3138 	args->memattr = VM_MEMATTR_UNCACHEABLE;
3139 }
3140 
3141 /**
3142  * @brief Initialise a resource list.
3143  *
3144  * @param rl		the resource list to initialise
3145  */
3146 void
3147 resource_list_init(struct resource_list *rl)
3148 {
3149 	STAILQ_INIT(rl);
3150 }
3151 
3152 /**
3153  * @brief Reclaim memory used by a resource list.
3154  *
3155  * This function frees the memory for all resource entries on the list
3156  * (if any).
3157  *
3158  * @param rl		the resource list to free
3159  */
3160 void
3161 resource_list_free(struct resource_list *rl)
3162 {
3163 	struct resource_list_entry *rle;
3164 
3165 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3166 		if (rle->res)
3167 			panic("resource_list_free: resource entry is busy");
3168 		STAILQ_REMOVE_HEAD(rl, link);
3169 		free(rle, M_BUS);
3170 	}
3171 }
3172 
3173 /**
3174  * @brief Add a resource entry.
3175  *
3176  * This function adds a resource entry using the given @p type, @p
3177  * start, @p end and @p count values. A rid value is chosen by
3178  * searching sequentially for the first unused rid starting at zero.
3179  *
3180  * @param rl		the resource list to edit
3181  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3182  * @param start		the start address of the resource
3183  * @param end		the end address of the resource
3184  * @param count		XXX end-start+1
3185  */
3186 int
3187 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3188     rman_res_t end, rman_res_t count)
3189 {
3190 	int rid;
3191 
3192 	rid = 0;
3193 	while (resource_list_find(rl, type, rid) != NULL)
3194 		rid++;
3195 	resource_list_add(rl, type, rid, start, end, count);
3196 	return (rid);
3197 }
3198 
3199 /**
3200  * @brief Add or modify a resource entry.
3201  *
3202  * If an existing entry exists with the same type and rid, it will be
3203  * modified using the given values of @p start, @p end and @p
3204  * count. If no entry exists, a new one will be created using the
3205  * given values.  The resource list entry that matches is then returned.
3206  *
3207  * @param rl		the resource list to edit
3208  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3209  * @param rid		the resource identifier
3210  * @param start		the start address of the resource
3211  * @param end		the end address of the resource
3212  * @param count		XXX end-start+1
3213  */
3214 struct resource_list_entry *
3215 resource_list_add(struct resource_list *rl, int type, int rid,
3216     rman_res_t start, rman_res_t end, rman_res_t count)
3217 {
3218 	struct resource_list_entry *rle;
3219 
3220 	rle = resource_list_find(rl, type, rid);
3221 	if (!rle) {
3222 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3223 		    M_NOWAIT);
3224 		if (!rle)
3225 			panic("resource_list_add: can't record entry");
3226 		STAILQ_INSERT_TAIL(rl, rle, link);
3227 		rle->type = type;
3228 		rle->rid = rid;
3229 		rle->res = NULL;
3230 		rle->flags = 0;
3231 	}
3232 
3233 	if (rle->res)
3234 		panic("resource_list_add: resource entry is busy");
3235 
3236 	rle->start = start;
3237 	rle->end = end;
3238 	rle->count = count;
3239 	return (rle);
3240 }
3241 
3242 /**
3243  * @brief Determine if a resource entry is busy.
3244  *
3245  * Returns true if a resource entry is busy meaning that it has an
3246  * associated resource that is not an unallocated "reserved" resource.
3247  *
3248  * @param rl		the resource list to search
3249  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3250  * @param rid		the resource identifier
3251  *
3252  * @returns Non-zero if the entry is busy, zero otherwise.
3253  */
3254 int
3255 resource_list_busy(struct resource_list *rl, int type, int rid)
3256 {
3257 	struct resource_list_entry *rle;
3258 
3259 	rle = resource_list_find(rl, type, rid);
3260 	if (rle == NULL || rle->res == NULL)
3261 		return (0);
3262 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3263 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3264 		    ("reserved resource is active"));
3265 		return (0);
3266 	}
3267 	return (1);
3268 }
3269 
3270 /**
3271  * @brief Determine if a resource entry is reserved.
3272  *
3273  * Returns true if a resource entry is reserved meaning that it has an
3274  * associated "reserved" resource.  The resource can either be
3275  * allocated or unallocated.
3276  *
3277  * @param rl		the resource list to search
3278  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3279  * @param rid		the resource identifier
3280  *
3281  * @returns Non-zero if the entry is reserved, zero otherwise.
3282  */
3283 int
3284 resource_list_reserved(struct resource_list *rl, int type, int rid)
3285 {
3286 	struct resource_list_entry *rle;
3287 
3288 	rle = resource_list_find(rl, type, rid);
3289 	if (rle != NULL && rle->flags & RLE_RESERVED)
3290 		return (1);
3291 	return (0);
3292 }
3293 
3294 /**
3295  * @brief Find a resource entry by type and rid.
3296  *
3297  * @param rl		the resource list to search
3298  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3299  * @param rid		the resource identifier
3300  *
3301  * @returns the resource entry pointer or NULL if there is no such
3302  * entry.
3303  */
3304 struct resource_list_entry *
3305 resource_list_find(struct resource_list *rl, int type, int rid)
3306 {
3307 	struct resource_list_entry *rle;
3308 
3309 	STAILQ_FOREACH(rle, rl, link) {
3310 		if (rle->type == type && rle->rid == rid)
3311 			return (rle);
3312 	}
3313 	return (NULL);
3314 }
3315 
3316 /**
3317  * @brief Delete a resource entry.
3318  *
3319  * @param rl		the resource list to edit
3320  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3321  * @param rid		the resource identifier
3322  */
3323 void
3324 resource_list_delete(struct resource_list *rl, int type, int rid)
3325 {
3326 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3327 
3328 	if (rle) {
3329 		if (rle->res != NULL)
3330 			panic("resource_list_delete: resource has not been released");
3331 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3332 		free(rle, M_BUS);
3333 	}
3334 }
3335 
3336 /**
3337  * @brief Allocate a reserved resource
3338  *
3339  * This can be used by buses to force the allocation of resources
3340  * that are always active in the system even if they are not allocated
3341  * by a driver (e.g. PCI BARs).  This function is usually called when
3342  * adding a new child to the bus.  The resource is allocated from the
3343  * parent bus when it is reserved.  The resource list entry is marked
3344  * with RLE_RESERVED to note that it is a reserved resource.
3345  *
3346  * Subsequent attempts to allocate the resource with
3347  * resource_list_alloc() will succeed the first time and will set
3348  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3349  * resource that has been allocated is released with
3350  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3351  * the actual resource remains allocated.  The resource can be released to
3352  * the parent bus by calling resource_list_unreserve().
3353  *
3354  * @param rl		the resource list to allocate from
3355  * @param bus		the parent device of @p child
3356  * @param child		the device for which the resource is being reserved
3357  * @param type		the type of resource to allocate
3358  * @param rid		a pointer to the resource identifier
3359  * @param start		hint at the start of the resource range - pass
3360  *			@c 0 for any start address
3361  * @param end		hint at the end of the resource range - pass
3362  *			@c ~0 for any end address
3363  * @param count		hint at the size of range required - pass @c 1
3364  *			for any size
3365  * @param flags		any extra flags to control the resource
3366  *			allocation - see @c RF_XXX flags in
3367  *			<sys/rman.h> for details
3368  *
3369  * @returns		the resource which was allocated or @c NULL if no
3370  *			resource could be allocated
3371  */
3372 struct resource *
3373 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3374     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3375 {
3376 	struct resource_list_entry *rle = NULL;
3377 	int passthrough = (device_get_parent(child) != bus);
3378 	struct resource *r;
3379 
3380 	if (passthrough)
3381 		panic(
3382     "resource_list_reserve() should only be called for direct children");
3383 	if (flags & RF_ACTIVE)
3384 		panic(
3385     "resource_list_reserve() should only reserve inactive resources");
3386 
3387 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3388 	    flags);
3389 	if (r != NULL) {
3390 		rle = resource_list_find(rl, type, *rid);
3391 		rle->flags |= RLE_RESERVED;
3392 	}
3393 	return (r);
3394 }
3395 
3396 /**
3397  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3398  *
3399  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3400  * and passing the allocation up to the parent of @p bus. This assumes
3401  * that the first entry of @c device_get_ivars(child) is a struct
3402  * resource_list. This also handles 'passthrough' allocations where a
3403  * child is a remote descendant of bus by passing the allocation up to
3404  * the parent of bus.
3405  *
3406  * Typically, a bus driver would store a list of child resources
3407  * somewhere in the child device's ivars (see device_get_ivars()) and
3408  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3409  * then call resource_list_alloc() to perform the allocation.
3410  *
3411  * @param rl		the resource list to allocate from
3412  * @param bus		the parent device of @p child
3413  * @param child		the device which is requesting an allocation
3414  * @param type		the type of resource to allocate
3415  * @param rid		a pointer to the resource identifier
3416  * @param start		hint at the start of the resource range - pass
3417  *			@c 0 for any start address
3418  * @param end		hint at the end of the resource range - pass
3419  *			@c ~0 for any end address
3420  * @param count		hint at the size of range required - pass @c 1
3421  *			for any size
3422  * @param flags		any extra flags to control the resource
3423  *			allocation - see @c RF_XXX flags in
3424  *			<sys/rman.h> for details
3425  *
3426  * @returns		the resource which was allocated or @c NULL if no
3427  *			resource could be allocated
3428  */
3429 struct resource *
3430 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3431     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3432 {
3433 	struct resource_list_entry *rle = NULL;
3434 	int passthrough = (device_get_parent(child) != bus);
3435 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3436 
3437 	if (passthrough) {
3438 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3439 		    type, rid, start, end, count, flags));
3440 	}
3441 
3442 	rle = resource_list_find(rl, type, *rid);
3443 
3444 	if (!rle)
3445 		return (NULL);		/* no resource of that type/rid */
3446 
3447 	if (rle->res) {
3448 		if (rle->flags & RLE_RESERVED) {
3449 			if (rle->flags & RLE_ALLOCATED)
3450 				return (NULL);
3451 			if ((flags & RF_ACTIVE) &&
3452 			    bus_activate_resource(child, type, *rid,
3453 			    rle->res) != 0)
3454 				return (NULL);
3455 			rle->flags |= RLE_ALLOCATED;
3456 			return (rle->res);
3457 		}
3458 		device_printf(bus,
3459 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3460 		    type, device_get_nameunit(child));
3461 		return (NULL);
3462 	}
3463 
3464 	if (isdefault) {
3465 		start = rle->start;
3466 		count = ulmax(count, rle->count);
3467 		end = ulmax(rle->end, start + count - 1);
3468 	}
3469 
3470 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3471 	    type, rid, start, end, count, flags);
3472 
3473 	/*
3474 	 * Record the new range.
3475 	 */
3476 	if (rle->res) {
3477 		rle->start = rman_get_start(rle->res);
3478 		rle->end = rman_get_end(rle->res);
3479 		rle->count = count;
3480 	}
3481 
3482 	return (rle->res);
3483 }
3484 
3485 /**
3486  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3487  *
3488  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3489  * used with resource_list_alloc().
3490  *
3491  * @param rl		the resource list which was allocated from
3492  * @param bus		the parent device of @p child
3493  * @param child		the device which is requesting a release
3494  * @param type		the type of resource to release
3495  * @param rid		the resource identifier
3496  * @param res		the resource to release
3497  *
3498  * @retval 0		success
3499  * @retval non-zero	a standard unix error code indicating what
3500  *			error condition prevented the operation
3501  */
3502 int
3503 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3504     int type, int rid, struct resource *res)
3505 {
3506 	struct resource_list_entry *rle = NULL;
3507 	int passthrough = (device_get_parent(child) != bus);
3508 	int error;
3509 
3510 	if (passthrough) {
3511 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3512 		    type, rid, res));
3513 	}
3514 
3515 	rle = resource_list_find(rl, type, rid);
3516 
3517 	if (!rle)
3518 		panic("resource_list_release: can't find resource");
3519 	if (!rle->res)
3520 		panic("resource_list_release: resource entry is not busy");
3521 	if (rle->flags & RLE_RESERVED) {
3522 		if (rle->flags & RLE_ALLOCATED) {
3523 			if (rman_get_flags(res) & RF_ACTIVE) {
3524 				error = bus_deactivate_resource(child, type,
3525 				    rid, res);
3526 				if (error)
3527 					return (error);
3528 			}
3529 			rle->flags &= ~RLE_ALLOCATED;
3530 			return (0);
3531 		}
3532 		return (EINVAL);
3533 	}
3534 
3535 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3536 	    type, rid, res);
3537 	if (error)
3538 		return (error);
3539 
3540 	rle->res = NULL;
3541 	return (0);
3542 }
3543 
3544 /**
3545  * @brief Release all active resources of a given type
3546  *
3547  * Release all active resources of a specified type.  This is intended
3548  * to be used to cleanup resources leaked by a driver after detach or
3549  * a failed attach.
3550  *
3551  * @param rl		the resource list which was allocated from
3552  * @param bus		the parent device of @p child
3553  * @param child		the device whose active resources are being released
3554  * @param type		the type of resources to release
3555  *
3556  * @retval 0		success
3557  * @retval EBUSY	at least one resource was active
3558  */
3559 int
3560 resource_list_release_active(struct resource_list *rl, device_t bus,
3561     device_t child, int type)
3562 {
3563 	struct resource_list_entry *rle;
3564 	int error, retval;
3565 
3566 	retval = 0;
3567 	STAILQ_FOREACH(rle, rl, link) {
3568 		if (rle->type != type)
3569 			continue;
3570 		if (rle->res == NULL)
3571 			continue;
3572 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3573 		    RLE_RESERVED)
3574 			continue;
3575 		retval = EBUSY;
3576 		error = resource_list_release(rl, bus, child, type,
3577 		    rman_get_rid(rle->res), rle->res);
3578 		if (error != 0)
3579 			device_printf(bus,
3580 			    "Failed to release active resource: %d\n", error);
3581 	}
3582 	return (retval);
3583 }
3584 
3585 
3586 /**
3587  * @brief Fully release a reserved resource
3588  *
3589  * Fully releases a resource reserved via resource_list_reserve().
3590  *
3591  * @param rl		the resource list which was allocated from
3592  * @param bus		the parent device of @p child
3593  * @param child		the device whose reserved resource is being released
3594  * @param type		the type of resource to release
3595  * @param rid		the resource identifier
3596  * @param res		the resource to release
3597  *
3598  * @retval 0		success
3599  * @retval non-zero	a standard unix error code indicating what
3600  *			error condition prevented the operation
3601  */
3602 int
3603 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3604     int type, int rid)
3605 {
3606 	struct resource_list_entry *rle = NULL;
3607 	int passthrough = (device_get_parent(child) != bus);
3608 
3609 	if (passthrough)
3610 		panic(
3611     "resource_list_unreserve() should only be called for direct children");
3612 
3613 	rle = resource_list_find(rl, type, rid);
3614 
3615 	if (!rle)
3616 		panic("resource_list_unreserve: can't find resource");
3617 	if (!(rle->flags & RLE_RESERVED))
3618 		return (EINVAL);
3619 	if (rle->flags & RLE_ALLOCATED)
3620 		return (EBUSY);
3621 	rle->flags &= ~RLE_RESERVED;
3622 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3623 }
3624 
3625 /**
3626  * @brief Print a description of resources in a resource list
3627  *
3628  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3629  * The name is printed if at least one resource of the given type is available.
3630  * The format is used to print resource start and end.
3631  *
3632  * @param rl		the resource list to print
3633  * @param name		the name of @p type, e.g. @c "memory"
3634  * @param type		type type of resource entry to print
3635  * @param format	printf(9) format string to print resource
3636  *			start and end values
3637  *
3638  * @returns		the number of characters printed
3639  */
3640 int
3641 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3642     const char *format)
3643 {
3644 	struct resource_list_entry *rle;
3645 	int printed, retval;
3646 
3647 	printed = 0;
3648 	retval = 0;
3649 	/* Yes, this is kinda cheating */
3650 	STAILQ_FOREACH(rle, rl, link) {
3651 		if (rle->type == type) {
3652 			if (printed == 0)
3653 				retval += printf(" %s ", name);
3654 			else
3655 				retval += printf(",");
3656 			printed++;
3657 			retval += printf(format, rle->start);
3658 			if (rle->count > 1) {
3659 				retval += printf("-");
3660 				retval += printf(format, rle->start +
3661 						 rle->count - 1);
3662 			}
3663 		}
3664 	}
3665 	return (retval);
3666 }
3667 
3668 /**
3669  * @brief Releases all the resources in a list.
3670  *
3671  * @param rl		The resource list to purge.
3672  *
3673  * @returns		nothing
3674  */
3675 void
3676 resource_list_purge(struct resource_list *rl)
3677 {
3678 	struct resource_list_entry *rle;
3679 
3680 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3681 		if (rle->res)
3682 			bus_release_resource(rman_get_device(rle->res),
3683 			    rle->type, rle->rid, rle->res);
3684 		STAILQ_REMOVE_HEAD(rl, link);
3685 		free(rle, M_BUS);
3686 	}
3687 }
3688 
3689 device_t
3690 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3691 {
3692 
3693 	return (device_add_child_ordered(dev, order, name, unit));
3694 }
3695 
3696 /**
3697  * @brief Helper function for implementing DEVICE_PROBE()
3698  *
3699  * This function can be used to help implement the DEVICE_PROBE() for
3700  * a bus (i.e. a device which has other devices attached to it). It
3701  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3702  * devclass.
3703  */
3704 int
3705 bus_generic_probe(device_t dev)
3706 {
3707 	devclass_t dc = dev->devclass;
3708 	driverlink_t dl;
3709 
3710 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3711 		/*
3712 		 * If this driver's pass is too high, then ignore it.
3713 		 * For most drivers in the default pass, this will
3714 		 * never be true.  For early-pass drivers they will
3715 		 * only call the identify routines of eligible drivers
3716 		 * when this routine is called.  Drivers for later
3717 		 * passes should have their identify routines called
3718 		 * on early-pass buses during BUS_NEW_PASS().
3719 		 */
3720 		if (dl->pass > bus_current_pass)
3721 			continue;
3722 		DEVICE_IDENTIFY(dl->driver, dev);
3723 	}
3724 
3725 	return (0);
3726 }
3727 
3728 /**
3729  * @brief Helper function for implementing DEVICE_ATTACH()
3730  *
3731  * This function can be used to help implement the DEVICE_ATTACH() for
3732  * a bus. It calls device_probe_and_attach() for each of the device's
3733  * children.
3734  */
3735 int
3736 bus_generic_attach(device_t dev)
3737 {
3738 	device_t child;
3739 
3740 	TAILQ_FOREACH(child, &dev->children, link) {
3741 		device_probe_and_attach(child);
3742 	}
3743 
3744 	return (0);
3745 }
3746 
3747 /**
3748  * @brief Helper function for implementing DEVICE_DETACH()
3749  *
3750  * This function can be used to help implement the DEVICE_DETACH() for
3751  * a bus. It calls device_detach() for each of the device's
3752  * children.
3753  */
3754 int
3755 bus_generic_detach(device_t dev)
3756 {
3757 	device_t child;
3758 	int error;
3759 
3760 	if (dev->state != DS_ATTACHED)
3761 		return (EBUSY);
3762 
3763 	/*
3764 	 * Detach children in the reverse order.
3765 	 * See bus_generic_suspend for details.
3766 	 */
3767 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3768 		if ((error = device_detach(child)) != 0)
3769 			return (error);
3770 	}
3771 
3772 	return (0);
3773 }
3774 
3775 /**
3776  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3777  *
3778  * This function can be used to help implement the DEVICE_SHUTDOWN()
3779  * for a bus. It calls device_shutdown() for each of the device's
3780  * children.
3781  */
3782 int
3783 bus_generic_shutdown(device_t dev)
3784 {
3785 	device_t child;
3786 
3787 	/*
3788 	 * Shut down children in the reverse order.
3789 	 * See bus_generic_suspend for details.
3790 	 */
3791 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3792 		device_shutdown(child);
3793 	}
3794 
3795 	return (0);
3796 }
3797 
3798 /**
3799  * @brief Default function for suspending a child device.
3800  *
3801  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3802  */
3803 int
3804 bus_generic_suspend_child(device_t dev, device_t child)
3805 {
3806 	int	error;
3807 
3808 	error = DEVICE_SUSPEND(child);
3809 
3810 	if (error == 0)
3811 		child->flags |= DF_SUSPENDED;
3812 
3813 	return (error);
3814 }
3815 
3816 /**
3817  * @brief Default function for resuming a child device.
3818  *
3819  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3820  */
3821 int
3822 bus_generic_resume_child(device_t dev, device_t child)
3823 {
3824 
3825 	DEVICE_RESUME(child);
3826 	child->flags &= ~DF_SUSPENDED;
3827 
3828 	return (0);
3829 }
3830 
3831 /**
3832  * @brief Helper function for implementing DEVICE_SUSPEND()
3833  *
3834  * This function can be used to help implement the DEVICE_SUSPEND()
3835  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3836  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3837  * operation is aborted and any devices which were suspended are
3838  * resumed immediately by calling their DEVICE_RESUME() methods.
3839  */
3840 int
3841 bus_generic_suspend(device_t dev)
3842 {
3843 	int		error;
3844 	device_t	child;
3845 
3846 	/*
3847 	 * Suspend children in the reverse order.
3848 	 * For most buses all children are equal, so the order does not matter.
3849 	 * Other buses, such as acpi, carefully order their child devices to
3850 	 * express implicit dependencies between them.  For such buses it is
3851 	 * safer to bring down devices in the reverse order.
3852 	 */
3853 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3854 		error = BUS_SUSPEND_CHILD(dev, child);
3855 		if (error != 0) {
3856 			child = TAILQ_NEXT(child, link);
3857 			if (child != NULL) {
3858 				TAILQ_FOREACH_FROM(child, &dev->children, link)
3859 					BUS_RESUME_CHILD(dev, child);
3860 			}
3861 			return (error);
3862 		}
3863 	}
3864 	return (0);
3865 }
3866 
3867 /**
3868  * @brief Helper function for implementing DEVICE_RESUME()
3869  *
3870  * This function can be used to help implement the DEVICE_RESUME() for
3871  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3872  */
3873 int
3874 bus_generic_resume(device_t dev)
3875 {
3876 	device_t	child;
3877 
3878 	TAILQ_FOREACH(child, &dev->children, link) {
3879 		BUS_RESUME_CHILD(dev, child);
3880 		/* if resume fails, there's nothing we can usefully do... */
3881 	}
3882 	return (0);
3883 }
3884 
3885 
3886 /**
3887  * @brief Helper function for implementing BUS_RESET_POST
3888  *
3889  * Bus can use this function to implement common operations of
3890  * re-attaching or resuming the children after the bus itself was
3891  * reset, and after restoring bus-unique state of children.
3892  *
3893  * @param dev	The bus
3894  * #param flags	DEVF_RESET_*
3895  */
3896 int
3897 bus_helper_reset_post(device_t dev, int flags)
3898 {
3899 	device_t child;
3900 	int error, error1;
3901 
3902 	error = 0;
3903 	TAILQ_FOREACH(child, &dev->children,link) {
3904 		BUS_RESET_POST(dev, child);
3905 		error1 = (flags & DEVF_RESET_DETACH) != 0 ?
3906 		    device_probe_and_attach(child) :
3907 		    BUS_RESUME_CHILD(dev, child);
3908 		if (error == 0 && error1 != 0)
3909 			error = error1;
3910 	}
3911 	return (error);
3912 }
3913 
3914 static void
3915 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
3916 {
3917 
3918 	child = TAILQ_NEXT(child, link);
3919 	if (child == NULL)
3920 		return;
3921 	TAILQ_FOREACH_FROM(child, &dev->children,link) {
3922 		BUS_RESET_POST(dev, child);
3923 		if ((flags & DEVF_RESET_DETACH) != 0)
3924 			device_probe_and_attach(child);
3925 		else
3926 			BUS_RESUME_CHILD(dev, child);
3927 	}
3928 }
3929 
3930 /**
3931  * @brief Helper function for implementing BUS_RESET_PREPARE
3932  *
3933  * Bus can use this function to implement common operations of
3934  * detaching or suspending the children before the bus itself is
3935  * reset, and then save bus-unique state of children that must
3936  * persists around reset.
3937  *
3938  * @param dev	The bus
3939  * #param flags	DEVF_RESET_*
3940  */
3941 int
3942 bus_helper_reset_prepare(device_t dev, int flags)
3943 {
3944 	device_t child;
3945 	int error;
3946 
3947 	if (dev->state != DS_ATTACHED)
3948 		return (EBUSY);
3949 
3950 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3951 		if ((flags & DEVF_RESET_DETACH) != 0) {
3952 			error = device_get_state(child) == DS_ATTACHED ?
3953 			    device_detach(child) : 0;
3954 		} else {
3955 			error = BUS_SUSPEND_CHILD(dev, child);
3956 		}
3957 		if (error == 0) {
3958 			error = BUS_RESET_PREPARE(dev, child);
3959 			if (error != 0) {
3960 				if ((flags & DEVF_RESET_DETACH) != 0)
3961 					device_probe_and_attach(child);
3962 				else
3963 					BUS_RESUME_CHILD(dev, child);
3964 			}
3965 		}
3966 		if (error != 0) {
3967 			bus_helper_reset_prepare_rollback(dev, child, flags);
3968 			return (error);
3969 		}
3970 	}
3971 	return (0);
3972 }
3973 
3974 /**
3975  * @brief Helper function for implementing BUS_PRINT_CHILD().
3976  *
3977  * This function prints the first part of the ascii representation of
3978  * @p child, including its name, unit and description (if any - see
3979  * device_set_desc()).
3980  *
3981  * @returns the number of characters printed
3982  */
3983 int
3984 bus_print_child_header(device_t dev, device_t child)
3985 {
3986 	int	retval = 0;
3987 
3988 	if (device_get_desc(child)) {
3989 		retval += device_printf(child, "<%s>", device_get_desc(child));
3990 	} else {
3991 		retval += printf("%s", device_get_nameunit(child));
3992 	}
3993 
3994 	return (retval);
3995 }
3996 
3997 /**
3998  * @brief Helper function for implementing BUS_PRINT_CHILD().
3999  *
4000  * This function prints the last part of the ascii representation of
4001  * @p child, which consists of the string @c " on " followed by the
4002  * name and unit of the @p dev.
4003  *
4004  * @returns the number of characters printed
4005  */
4006 int
4007 bus_print_child_footer(device_t dev, device_t child)
4008 {
4009 	return (printf(" on %s\n", device_get_nameunit(dev)));
4010 }
4011 
4012 /**
4013  * @brief Helper function for implementing BUS_PRINT_CHILD().
4014  *
4015  * This function prints out the VM domain for the given device.
4016  *
4017  * @returns the number of characters printed
4018  */
4019 int
4020 bus_print_child_domain(device_t dev, device_t child)
4021 {
4022 	int domain;
4023 
4024 	/* No domain? Don't print anything */
4025 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
4026 		return (0);
4027 
4028 	return (printf(" numa-domain %d", domain));
4029 }
4030 
4031 /**
4032  * @brief Helper function for implementing BUS_PRINT_CHILD().
4033  *
4034  * This function simply calls bus_print_child_header() followed by
4035  * bus_print_child_footer().
4036  *
4037  * @returns the number of characters printed
4038  */
4039 int
4040 bus_generic_print_child(device_t dev, device_t child)
4041 {
4042 	int	retval = 0;
4043 
4044 	retval += bus_print_child_header(dev, child);
4045 	retval += bus_print_child_domain(dev, child);
4046 	retval += bus_print_child_footer(dev, child);
4047 
4048 	return (retval);
4049 }
4050 
4051 /**
4052  * @brief Stub function for implementing BUS_READ_IVAR().
4053  *
4054  * @returns ENOENT
4055  */
4056 int
4057 bus_generic_read_ivar(device_t dev, device_t child, int index,
4058     uintptr_t * result)
4059 {
4060 	return (ENOENT);
4061 }
4062 
4063 /**
4064  * @brief Stub function for implementing BUS_WRITE_IVAR().
4065  *
4066  * @returns ENOENT
4067  */
4068 int
4069 bus_generic_write_ivar(device_t dev, device_t child, int index,
4070     uintptr_t value)
4071 {
4072 	return (ENOENT);
4073 }
4074 
4075 /**
4076  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
4077  *
4078  * @returns NULL
4079  */
4080 struct resource_list *
4081 bus_generic_get_resource_list(device_t dev, device_t child)
4082 {
4083 	return (NULL);
4084 }
4085 
4086 /**
4087  * @brief Helper function for implementing BUS_DRIVER_ADDED().
4088  *
4089  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
4090  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
4091  * and then calls device_probe_and_attach() for each unattached child.
4092  */
4093 void
4094 bus_generic_driver_added(device_t dev, driver_t *driver)
4095 {
4096 	device_t child;
4097 
4098 	DEVICE_IDENTIFY(driver, dev);
4099 	TAILQ_FOREACH(child, &dev->children, link) {
4100 		if (child->state == DS_NOTPRESENT ||
4101 		    (child->flags & DF_REBID))
4102 			device_probe_and_attach(child);
4103 	}
4104 }
4105 
4106 /**
4107  * @brief Helper function for implementing BUS_NEW_PASS().
4108  *
4109  * This implementing of BUS_NEW_PASS() first calls the identify
4110  * routines for any drivers that probe at the current pass.  Then it
4111  * walks the list of devices for this bus.  If a device is already
4112  * attached, then it calls BUS_NEW_PASS() on that device.  If the
4113  * device is not already attached, it attempts to attach a driver to
4114  * it.
4115  */
4116 void
4117 bus_generic_new_pass(device_t dev)
4118 {
4119 	driverlink_t dl;
4120 	devclass_t dc;
4121 	device_t child;
4122 
4123 	dc = dev->devclass;
4124 	TAILQ_FOREACH(dl, &dc->drivers, link) {
4125 		if (dl->pass == bus_current_pass)
4126 			DEVICE_IDENTIFY(dl->driver, dev);
4127 	}
4128 	TAILQ_FOREACH(child, &dev->children, link) {
4129 		if (child->state >= DS_ATTACHED)
4130 			BUS_NEW_PASS(child);
4131 		else if (child->state == DS_NOTPRESENT)
4132 			device_probe_and_attach(child);
4133 	}
4134 }
4135 
4136 /**
4137  * @brief Helper function for implementing BUS_SETUP_INTR().
4138  *
4139  * This simple implementation of BUS_SETUP_INTR() simply calls the
4140  * BUS_SETUP_INTR() method of the parent of @p dev.
4141  */
4142 int
4143 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
4144     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
4145     void **cookiep)
4146 {
4147 	/* Propagate up the bus hierarchy until someone handles it. */
4148 	if (dev->parent)
4149 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
4150 		    filter, intr, arg, cookiep));
4151 	return (EINVAL);
4152 }
4153 
4154 /**
4155  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
4156  *
4157  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
4158  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
4159  */
4160 int
4161 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
4162     void *cookie)
4163 {
4164 	/* Propagate up the bus hierarchy until someone handles it. */
4165 	if (dev->parent)
4166 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
4167 	return (EINVAL);
4168 }
4169 
4170 /**
4171  * @brief Helper function for implementing BUS_SUSPEND_INTR().
4172  *
4173  * This simple implementation of BUS_SUSPEND_INTR() simply calls the
4174  * BUS_SUSPEND_INTR() method of the parent of @p dev.
4175  */
4176 int
4177 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
4178 {
4179 	/* Propagate up the bus hierarchy until someone handles it. */
4180 	if (dev->parent)
4181 		return (BUS_SUSPEND_INTR(dev->parent, child, irq));
4182 	return (EINVAL);
4183 }
4184 
4185 /**
4186  * @brief Helper function for implementing BUS_RESUME_INTR().
4187  *
4188  * This simple implementation of BUS_RESUME_INTR() simply calls the
4189  * BUS_RESUME_INTR() method of the parent of @p dev.
4190  */
4191 int
4192 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
4193 {
4194 	/* Propagate up the bus hierarchy until someone handles it. */
4195 	if (dev->parent)
4196 		return (BUS_RESUME_INTR(dev->parent, child, irq));
4197 	return (EINVAL);
4198 }
4199 
4200 /**
4201  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4202  *
4203  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
4204  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
4205  */
4206 int
4207 bus_generic_adjust_resource(device_t dev, device_t child, int type,
4208     struct resource *r, rman_res_t start, rman_res_t end)
4209 {
4210 	/* Propagate up the bus hierarchy until someone handles it. */
4211 	if (dev->parent)
4212 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
4213 		    end));
4214 	return (EINVAL);
4215 }
4216 
4217 /**
4218  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4219  *
4220  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4221  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4222  */
4223 struct resource *
4224 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4225     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4226 {
4227 	/* Propagate up the bus hierarchy until someone handles it. */
4228 	if (dev->parent)
4229 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4230 		    start, end, count, flags));
4231 	return (NULL);
4232 }
4233 
4234 /**
4235  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4236  *
4237  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4238  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4239  */
4240 int
4241 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
4242     struct resource *r)
4243 {
4244 	/* Propagate up the bus hierarchy until someone handles it. */
4245 	if (dev->parent)
4246 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
4247 		    r));
4248 	return (EINVAL);
4249 }
4250 
4251 /**
4252  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4253  *
4254  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4255  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4256  */
4257 int
4258 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4259     struct resource *r)
4260 {
4261 	/* Propagate up the bus hierarchy until someone handles it. */
4262 	if (dev->parent)
4263 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4264 		    r));
4265 	return (EINVAL);
4266 }
4267 
4268 /**
4269  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4270  *
4271  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4272  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4273  */
4274 int
4275 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4276     int rid, struct resource *r)
4277 {
4278 	/* Propagate up the bus hierarchy until someone handles it. */
4279 	if (dev->parent)
4280 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4281 		    r));
4282 	return (EINVAL);
4283 }
4284 
4285 /**
4286  * @brief Helper function for implementing BUS_MAP_RESOURCE().
4287  *
4288  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4289  * BUS_MAP_RESOURCE() method of the parent of @p dev.
4290  */
4291 int
4292 bus_generic_map_resource(device_t dev, device_t child, int type,
4293     struct resource *r, struct resource_map_request *args,
4294     struct resource_map *map)
4295 {
4296 	/* Propagate up the bus hierarchy until someone handles it. */
4297 	if (dev->parent)
4298 		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
4299 		    map));
4300 	return (EINVAL);
4301 }
4302 
4303 /**
4304  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4305  *
4306  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4307  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4308  */
4309 int
4310 bus_generic_unmap_resource(device_t dev, device_t child, int type,
4311     struct resource *r, struct resource_map *map)
4312 {
4313 	/* Propagate up the bus hierarchy until someone handles it. */
4314 	if (dev->parent)
4315 		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
4316 	return (EINVAL);
4317 }
4318 
4319 /**
4320  * @brief Helper function for implementing BUS_BIND_INTR().
4321  *
4322  * This simple implementation of BUS_BIND_INTR() simply calls the
4323  * BUS_BIND_INTR() method of the parent of @p dev.
4324  */
4325 int
4326 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4327     int cpu)
4328 {
4329 
4330 	/* Propagate up the bus hierarchy until someone handles it. */
4331 	if (dev->parent)
4332 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4333 	return (EINVAL);
4334 }
4335 
4336 /**
4337  * @brief Helper function for implementing BUS_CONFIG_INTR().
4338  *
4339  * This simple implementation of BUS_CONFIG_INTR() simply calls the
4340  * BUS_CONFIG_INTR() method of the parent of @p dev.
4341  */
4342 int
4343 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4344     enum intr_polarity pol)
4345 {
4346 
4347 	/* Propagate up the bus hierarchy until someone handles it. */
4348 	if (dev->parent)
4349 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4350 	return (EINVAL);
4351 }
4352 
4353 /**
4354  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4355  *
4356  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4357  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4358  */
4359 int
4360 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4361     void *cookie, const char *descr)
4362 {
4363 
4364 	/* Propagate up the bus hierarchy until someone handles it. */
4365 	if (dev->parent)
4366 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4367 		    descr));
4368 	return (EINVAL);
4369 }
4370 
4371 /**
4372  * @brief Helper function for implementing BUS_GET_CPUS().
4373  *
4374  * This simple implementation of BUS_GET_CPUS() simply calls the
4375  * BUS_GET_CPUS() method of the parent of @p dev.
4376  */
4377 int
4378 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4379     size_t setsize, cpuset_t *cpuset)
4380 {
4381 
4382 	/* Propagate up the bus hierarchy until someone handles it. */
4383 	if (dev->parent != NULL)
4384 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4385 	return (EINVAL);
4386 }
4387 
4388 /**
4389  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4390  *
4391  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4392  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4393  */
4394 bus_dma_tag_t
4395 bus_generic_get_dma_tag(device_t dev, device_t child)
4396 {
4397 
4398 	/* Propagate up the bus hierarchy until someone handles it. */
4399 	if (dev->parent != NULL)
4400 		return (BUS_GET_DMA_TAG(dev->parent, child));
4401 	return (NULL);
4402 }
4403 
4404 /**
4405  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4406  *
4407  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4408  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4409  */
4410 bus_space_tag_t
4411 bus_generic_get_bus_tag(device_t dev, device_t child)
4412 {
4413 
4414 	/* Propagate up the bus hierarchy until someone handles it. */
4415 	if (dev->parent != NULL)
4416 		return (BUS_GET_BUS_TAG(dev->parent, child));
4417 	return ((bus_space_tag_t)0);
4418 }
4419 
4420 /**
4421  * @brief Helper function for implementing BUS_GET_RESOURCE().
4422  *
4423  * This implementation of BUS_GET_RESOURCE() uses the
4424  * resource_list_find() function to do most of the work. It calls
4425  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4426  * search.
4427  */
4428 int
4429 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4430     rman_res_t *startp, rman_res_t *countp)
4431 {
4432 	struct resource_list *		rl = NULL;
4433 	struct resource_list_entry *	rle = NULL;
4434 
4435 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4436 	if (!rl)
4437 		return (EINVAL);
4438 
4439 	rle = resource_list_find(rl, type, rid);
4440 	if (!rle)
4441 		return (ENOENT);
4442 
4443 	if (startp)
4444 		*startp = rle->start;
4445 	if (countp)
4446 		*countp = rle->count;
4447 
4448 	return (0);
4449 }
4450 
4451 /**
4452  * @brief Helper function for implementing BUS_SET_RESOURCE().
4453  *
4454  * This implementation of BUS_SET_RESOURCE() uses the
4455  * resource_list_add() function to do most of the work. It calls
4456  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4457  * edit.
4458  */
4459 int
4460 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4461     rman_res_t start, rman_res_t count)
4462 {
4463 	struct resource_list *		rl = NULL;
4464 
4465 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4466 	if (!rl)
4467 		return (EINVAL);
4468 
4469 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4470 
4471 	return (0);
4472 }
4473 
4474 /**
4475  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4476  *
4477  * This implementation of BUS_DELETE_RESOURCE() uses the
4478  * resource_list_delete() function to do most of the work. It calls
4479  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4480  * edit.
4481  */
4482 void
4483 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4484 {
4485 	struct resource_list *		rl = NULL;
4486 
4487 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4488 	if (!rl)
4489 		return;
4490 
4491 	resource_list_delete(rl, type, rid);
4492 
4493 	return;
4494 }
4495 
4496 /**
4497  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4498  *
4499  * This implementation of BUS_RELEASE_RESOURCE() uses the
4500  * resource_list_release() function to do most of the work. It calls
4501  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4502  */
4503 int
4504 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4505     int rid, struct resource *r)
4506 {
4507 	struct resource_list *		rl = NULL;
4508 
4509 	if (device_get_parent(child) != dev)
4510 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4511 		    type, rid, r));
4512 
4513 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4514 	if (!rl)
4515 		return (EINVAL);
4516 
4517 	return (resource_list_release(rl, dev, child, type, rid, r));
4518 }
4519 
4520 /**
4521  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4522  *
4523  * This implementation of BUS_ALLOC_RESOURCE() uses the
4524  * resource_list_alloc() function to do most of the work. It calls
4525  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4526  */
4527 struct resource *
4528 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4529     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4530 {
4531 	struct resource_list *		rl = NULL;
4532 
4533 	if (device_get_parent(child) != dev)
4534 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4535 		    type, rid, start, end, count, flags));
4536 
4537 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4538 	if (!rl)
4539 		return (NULL);
4540 
4541 	return (resource_list_alloc(rl, dev, child, type, rid,
4542 	    start, end, count, flags));
4543 }
4544 
4545 /**
4546  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4547  *
4548  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4549  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4550  */
4551 int
4552 bus_generic_child_present(device_t dev, device_t child)
4553 {
4554 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4555 }
4556 
4557 int
4558 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4559 {
4560 
4561 	if (dev->parent)
4562 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4563 
4564 	return (ENOENT);
4565 }
4566 
4567 /**
4568  * @brief Helper function for implementing BUS_RESCAN().
4569  *
4570  * This null implementation of BUS_RESCAN() always fails to indicate
4571  * the bus does not support rescanning.
4572  */
4573 int
4574 bus_null_rescan(device_t dev)
4575 {
4576 
4577 	return (ENXIO);
4578 }
4579 
4580 /*
4581  * Some convenience functions to make it easier for drivers to use the
4582  * resource-management functions.  All these really do is hide the
4583  * indirection through the parent's method table, making for slightly
4584  * less-wordy code.  In the future, it might make sense for this code
4585  * to maintain some sort of a list of resources allocated by each device.
4586  */
4587 
4588 int
4589 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4590     struct resource **res)
4591 {
4592 	int i;
4593 
4594 	for (i = 0; rs[i].type != -1; i++)
4595 		res[i] = NULL;
4596 	for (i = 0; rs[i].type != -1; i++) {
4597 		res[i] = bus_alloc_resource_any(dev,
4598 		    rs[i].type, &rs[i].rid, rs[i].flags);
4599 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4600 			bus_release_resources(dev, rs, res);
4601 			return (ENXIO);
4602 		}
4603 	}
4604 	return (0);
4605 }
4606 
4607 void
4608 bus_release_resources(device_t dev, const struct resource_spec *rs,
4609     struct resource **res)
4610 {
4611 	int i;
4612 
4613 	for (i = 0; rs[i].type != -1; i++)
4614 		if (res[i] != NULL) {
4615 			bus_release_resource(
4616 			    dev, rs[i].type, rs[i].rid, res[i]);
4617 			res[i] = NULL;
4618 		}
4619 }
4620 
4621 /**
4622  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4623  *
4624  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4625  * parent of @p dev.
4626  */
4627 struct resource *
4628 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4629     rman_res_t end, rman_res_t count, u_int flags)
4630 {
4631 	struct resource *res;
4632 
4633 	if (dev->parent == NULL)
4634 		return (NULL);
4635 	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4636 	    count, flags);
4637 	return (res);
4638 }
4639 
4640 /**
4641  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4642  *
4643  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4644  * parent of @p dev.
4645  */
4646 int
4647 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4648     rman_res_t end)
4649 {
4650 	if (dev->parent == NULL)
4651 		return (EINVAL);
4652 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4653 }
4654 
4655 /**
4656  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4657  *
4658  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4659  * parent of @p dev.
4660  */
4661 int
4662 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4663 {
4664 	if (dev->parent == NULL)
4665 		return (EINVAL);
4666 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4667 }
4668 
4669 /**
4670  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4671  *
4672  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4673  * parent of @p dev.
4674  */
4675 int
4676 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4677 {
4678 	if (dev->parent == NULL)
4679 		return (EINVAL);
4680 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4681 }
4682 
4683 /**
4684  * @brief Wrapper function for BUS_MAP_RESOURCE().
4685  *
4686  * This function simply calls the BUS_MAP_RESOURCE() method of the
4687  * parent of @p dev.
4688  */
4689 int
4690 bus_map_resource(device_t dev, int type, struct resource *r,
4691     struct resource_map_request *args, struct resource_map *map)
4692 {
4693 	if (dev->parent == NULL)
4694 		return (EINVAL);
4695 	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
4696 }
4697 
4698 /**
4699  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4700  *
4701  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4702  * parent of @p dev.
4703  */
4704 int
4705 bus_unmap_resource(device_t dev, int type, struct resource *r,
4706     struct resource_map *map)
4707 {
4708 	if (dev->parent == NULL)
4709 		return (EINVAL);
4710 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
4711 }
4712 
4713 /**
4714  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4715  *
4716  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4717  * parent of @p dev.
4718  */
4719 int
4720 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4721 {
4722 	int rv;
4723 
4724 	if (dev->parent == NULL)
4725 		return (EINVAL);
4726 	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
4727 	return (rv);
4728 }
4729 
4730 /**
4731  * @brief Wrapper function for BUS_SETUP_INTR().
4732  *
4733  * This function simply calls the BUS_SETUP_INTR() method of the
4734  * parent of @p dev.
4735  */
4736 int
4737 bus_setup_intr(device_t dev, struct resource *r, int flags,
4738     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4739 {
4740 	int error;
4741 
4742 	if (dev->parent == NULL)
4743 		return (EINVAL);
4744 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4745 	    arg, cookiep);
4746 	if (error != 0)
4747 		return (error);
4748 	if (handler != NULL && !(flags & INTR_MPSAFE))
4749 		device_printf(dev, "[GIANT-LOCKED]\n");
4750 	return (0);
4751 }
4752 
4753 /**
4754  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4755  *
4756  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4757  * parent of @p dev.
4758  */
4759 int
4760 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4761 {
4762 	if (dev->parent == NULL)
4763 		return (EINVAL);
4764 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4765 }
4766 
4767 /**
4768  * @brief Wrapper function for BUS_SUSPEND_INTR().
4769  *
4770  * This function simply calls the BUS_SUSPEND_INTR() method of the
4771  * parent of @p dev.
4772  */
4773 int
4774 bus_suspend_intr(device_t dev, struct resource *r)
4775 {
4776 	if (dev->parent == NULL)
4777 		return (EINVAL);
4778 	return (BUS_SUSPEND_INTR(dev->parent, dev, r));
4779 }
4780 
4781 /**
4782  * @brief Wrapper function for BUS_RESUME_INTR().
4783  *
4784  * This function simply calls the BUS_RESUME_INTR() method of the
4785  * parent of @p dev.
4786  */
4787 int
4788 bus_resume_intr(device_t dev, struct resource *r)
4789 {
4790 	if (dev->parent == NULL)
4791 		return (EINVAL);
4792 	return (BUS_RESUME_INTR(dev->parent, dev, r));
4793 }
4794 
4795 /**
4796  * @brief Wrapper function for BUS_BIND_INTR().
4797  *
4798  * This function simply calls the BUS_BIND_INTR() method of the
4799  * parent of @p dev.
4800  */
4801 int
4802 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4803 {
4804 	if (dev->parent == NULL)
4805 		return (EINVAL);
4806 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4807 }
4808 
4809 /**
4810  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4811  *
4812  * This function first formats the requested description into a
4813  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4814  * the parent of @p dev.
4815  */
4816 int
4817 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4818     const char *fmt, ...)
4819 {
4820 	va_list ap;
4821 	char descr[MAXCOMLEN + 1];
4822 
4823 	if (dev->parent == NULL)
4824 		return (EINVAL);
4825 	va_start(ap, fmt);
4826 	vsnprintf(descr, sizeof(descr), fmt, ap);
4827 	va_end(ap);
4828 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4829 }
4830 
4831 /**
4832  * @brief Wrapper function for BUS_SET_RESOURCE().
4833  *
4834  * This function simply calls the BUS_SET_RESOURCE() method of the
4835  * parent of @p dev.
4836  */
4837 int
4838 bus_set_resource(device_t dev, int type, int rid,
4839     rman_res_t start, rman_res_t count)
4840 {
4841 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4842 	    start, count));
4843 }
4844 
4845 /**
4846  * @brief Wrapper function for BUS_GET_RESOURCE().
4847  *
4848  * This function simply calls the BUS_GET_RESOURCE() method of the
4849  * parent of @p dev.
4850  */
4851 int
4852 bus_get_resource(device_t dev, int type, int rid,
4853     rman_res_t *startp, rman_res_t *countp)
4854 {
4855 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4856 	    startp, countp));
4857 }
4858 
4859 /**
4860  * @brief Wrapper function for BUS_GET_RESOURCE().
4861  *
4862  * This function simply calls the BUS_GET_RESOURCE() method of the
4863  * parent of @p dev and returns the start value.
4864  */
4865 rman_res_t
4866 bus_get_resource_start(device_t dev, int type, int rid)
4867 {
4868 	rman_res_t start;
4869 	rman_res_t count;
4870 	int error;
4871 
4872 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4873 	    &start, &count);
4874 	if (error)
4875 		return (0);
4876 	return (start);
4877 }
4878 
4879 /**
4880  * @brief Wrapper function for BUS_GET_RESOURCE().
4881  *
4882  * This function simply calls the BUS_GET_RESOURCE() method of the
4883  * parent of @p dev and returns the count value.
4884  */
4885 rman_res_t
4886 bus_get_resource_count(device_t dev, int type, int rid)
4887 {
4888 	rman_res_t start;
4889 	rman_res_t count;
4890 	int error;
4891 
4892 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4893 	    &start, &count);
4894 	if (error)
4895 		return (0);
4896 	return (count);
4897 }
4898 
4899 /**
4900  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4901  *
4902  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4903  * parent of @p dev.
4904  */
4905 void
4906 bus_delete_resource(device_t dev, int type, int rid)
4907 {
4908 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4909 }
4910 
4911 /**
4912  * @brief Wrapper function for BUS_CHILD_PRESENT().
4913  *
4914  * This function simply calls the BUS_CHILD_PRESENT() method of the
4915  * parent of @p dev.
4916  */
4917 int
4918 bus_child_present(device_t child)
4919 {
4920 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4921 }
4922 
4923 /**
4924  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4925  *
4926  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4927  * parent of @p dev.
4928  */
4929 int
4930 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4931 {
4932 	device_t parent;
4933 
4934 	parent = device_get_parent(child);
4935 	if (parent == NULL) {
4936 		*buf = '\0';
4937 		return (0);
4938 	}
4939 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4940 }
4941 
4942 /**
4943  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4944  *
4945  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4946  * parent of @p dev.
4947  */
4948 int
4949 bus_child_location_str(device_t child, char *buf, size_t buflen)
4950 {
4951 	device_t parent;
4952 
4953 	parent = device_get_parent(child);
4954 	if (parent == NULL) {
4955 		*buf = '\0';
4956 		return (0);
4957 	}
4958 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4959 }
4960 
4961 /**
4962  * @brief Wrapper function for BUS_GET_CPUS().
4963  *
4964  * This function simply calls the BUS_GET_CPUS() method of the
4965  * parent of @p dev.
4966  */
4967 int
4968 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4969 {
4970 	device_t parent;
4971 
4972 	parent = device_get_parent(dev);
4973 	if (parent == NULL)
4974 		return (EINVAL);
4975 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4976 }
4977 
4978 /**
4979  * @brief Wrapper function for BUS_GET_DMA_TAG().
4980  *
4981  * This function simply calls the BUS_GET_DMA_TAG() method of the
4982  * parent of @p dev.
4983  */
4984 bus_dma_tag_t
4985 bus_get_dma_tag(device_t dev)
4986 {
4987 	device_t parent;
4988 
4989 	parent = device_get_parent(dev);
4990 	if (parent == NULL)
4991 		return (NULL);
4992 	return (BUS_GET_DMA_TAG(parent, dev));
4993 }
4994 
4995 /**
4996  * @brief Wrapper function for BUS_GET_BUS_TAG().
4997  *
4998  * This function simply calls the BUS_GET_BUS_TAG() method of the
4999  * parent of @p dev.
5000  */
5001 bus_space_tag_t
5002 bus_get_bus_tag(device_t dev)
5003 {
5004 	device_t parent;
5005 
5006 	parent = device_get_parent(dev);
5007 	if (parent == NULL)
5008 		return ((bus_space_tag_t)0);
5009 	return (BUS_GET_BUS_TAG(parent, dev));
5010 }
5011 
5012 /**
5013  * @brief Wrapper function for BUS_GET_DOMAIN().
5014  *
5015  * This function simply calls the BUS_GET_DOMAIN() method of the
5016  * parent of @p dev.
5017  */
5018 int
5019 bus_get_domain(device_t dev, int *domain)
5020 {
5021 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
5022 }
5023 
5024 /* Resume all devices and then notify userland that we're up again. */
5025 static int
5026 root_resume(device_t dev)
5027 {
5028 	int error;
5029 
5030 	error = bus_generic_resume(dev);
5031 	if (error == 0)
5032 		devctl_notify("kern", "power", "resume", NULL);
5033 	return (error);
5034 }
5035 
5036 static int
5037 root_print_child(device_t dev, device_t child)
5038 {
5039 	int	retval = 0;
5040 
5041 	retval += bus_print_child_header(dev, child);
5042 	retval += printf("\n");
5043 
5044 	return (retval);
5045 }
5046 
5047 static int
5048 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
5049     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
5050 {
5051 	/*
5052 	 * If an interrupt mapping gets to here something bad has happened.
5053 	 */
5054 	panic("root_setup_intr");
5055 }
5056 
5057 /*
5058  * If we get here, assume that the device is permanent and really is
5059  * present in the system.  Removable bus drivers are expected to intercept
5060  * this call long before it gets here.  We return -1 so that drivers that
5061  * really care can check vs -1 or some ERRNO returned higher in the food
5062  * chain.
5063  */
5064 static int
5065 root_child_present(device_t dev, device_t child)
5066 {
5067 	return (-1);
5068 }
5069 
5070 static int
5071 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
5072     cpuset_t *cpuset)
5073 {
5074 
5075 	switch (op) {
5076 	case INTR_CPUS:
5077 		/* Default to returning the set of all CPUs. */
5078 		if (setsize != sizeof(cpuset_t))
5079 			return (EINVAL);
5080 		*cpuset = all_cpus;
5081 		return (0);
5082 	default:
5083 		return (EINVAL);
5084 	}
5085 }
5086 
5087 static kobj_method_t root_methods[] = {
5088 	/* Device interface */
5089 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
5090 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
5091 	KOBJMETHOD(device_resume,	root_resume),
5092 
5093 	/* Bus interface */
5094 	KOBJMETHOD(bus_print_child,	root_print_child),
5095 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
5096 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
5097 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
5098 	KOBJMETHOD(bus_child_present,	root_child_present),
5099 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
5100 
5101 	KOBJMETHOD_END
5102 };
5103 
5104 static driver_t root_driver = {
5105 	"root",
5106 	root_methods,
5107 	1,			/* no softc */
5108 };
5109 
5110 device_t	root_bus;
5111 devclass_t	root_devclass;
5112 
5113 static int
5114 root_bus_module_handler(module_t mod, int what, void* arg)
5115 {
5116 	switch (what) {
5117 	case MOD_LOAD:
5118 		TAILQ_INIT(&bus_data_devices);
5119 		kobj_class_compile((kobj_class_t) &root_driver);
5120 		root_bus = make_device(NULL, "root", 0);
5121 		root_bus->desc = "System root bus";
5122 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
5123 		root_bus->driver = &root_driver;
5124 		root_bus->state = DS_ATTACHED;
5125 		root_devclass = devclass_find_internal("root", NULL, FALSE);
5126 		devinit();
5127 		return (0);
5128 
5129 	case MOD_SHUTDOWN:
5130 		device_shutdown(root_bus);
5131 		return (0);
5132 	default:
5133 		return (EOPNOTSUPP);
5134 	}
5135 
5136 	return (0);
5137 }
5138 
5139 static moduledata_t root_bus_mod = {
5140 	"rootbus",
5141 	root_bus_module_handler,
5142 	NULL
5143 };
5144 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5145 
5146 /**
5147  * @brief Automatically configure devices
5148  *
5149  * This function begins the autoconfiguration process by calling
5150  * device_probe_and_attach() for each child of the @c root0 device.
5151  */
5152 void
5153 root_bus_configure(void)
5154 {
5155 
5156 	PDEBUG(("."));
5157 
5158 	/* Eventually this will be split up, but this is sufficient for now. */
5159 	bus_set_pass(BUS_PASS_DEFAULT);
5160 }
5161 
5162 /**
5163  * @brief Module handler for registering device drivers
5164  *
5165  * This module handler is used to automatically register device
5166  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
5167  * devclass_add_driver() for the driver described by the
5168  * driver_module_data structure pointed to by @p arg
5169  */
5170 int
5171 driver_module_handler(module_t mod, int what, void *arg)
5172 {
5173 	struct driver_module_data *dmd;
5174 	devclass_t bus_devclass;
5175 	kobj_class_t driver;
5176 	int error, pass;
5177 
5178 	dmd = (struct driver_module_data *)arg;
5179 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
5180 	error = 0;
5181 
5182 	switch (what) {
5183 	case MOD_LOAD:
5184 		if (dmd->dmd_chainevh)
5185 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5186 
5187 		pass = dmd->dmd_pass;
5188 		driver = dmd->dmd_driver;
5189 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5190 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
5191 		error = devclass_add_driver(bus_devclass, driver, pass,
5192 		    dmd->dmd_devclass);
5193 		break;
5194 
5195 	case MOD_UNLOAD:
5196 		PDEBUG(("Unloading module: driver %s from bus %s",
5197 		    DRIVERNAME(dmd->dmd_driver),
5198 		    dmd->dmd_busname));
5199 		error = devclass_delete_driver(bus_devclass,
5200 		    dmd->dmd_driver);
5201 
5202 		if (!error && dmd->dmd_chainevh)
5203 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5204 		break;
5205 	case MOD_QUIESCE:
5206 		PDEBUG(("Quiesce module: driver %s from bus %s",
5207 		    DRIVERNAME(dmd->dmd_driver),
5208 		    dmd->dmd_busname));
5209 		error = devclass_quiesce_driver(bus_devclass,
5210 		    dmd->dmd_driver);
5211 
5212 		if (!error && dmd->dmd_chainevh)
5213 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5214 		break;
5215 	default:
5216 		error = EOPNOTSUPP;
5217 		break;
5218 	}
5219 
5220 	return (error);
5221 }
5222 
5223 /**
5224  * @brief Enumerate all hinted devices for this bus.
5225  *
5226  * Walks through the hints for this bus and calls the bus_hinted_child
5227  * routine for each one it fines.  It searches first for the specific
5228  * bus that's being probed for hinted children (eg isa0), and then for
5229  * generic children (eg isa).
5230  *
5231  * @param	dev	bus device to enumerate
5232  */
5233 void
5234 bus_enumerate_hinted_children(device_t bus)
5235 {
5236 	int i;
5237 	const char *dname, *busname;
5238 	int dunit;
5239 
5240 	/*
5241 	 * enumerate all devices on the specific bus
5242 	 */
5243 	busname = device_get_nameunit(bus);
5244 	i = 0;
5245 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5246 		BUS_HINTED_CHILD(bus, dname, dunit);
5247 
5248 	/*
5249 	 * and all the generic ones.
5250 	 */
5251 	busname = device_get_name(bus);
5252 	i = 0;
5253 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5254 		BUS_HINTED_CHILD(bus, dname, dunit);
5255 }
5256 
5257 #ifdef BUS_DEBUG
5258 
5259 /* the _short versions avoid iteration by not calling anything that prints
5260  * more than oneliners. I love oneliners.
5261  */
5262 
5263 static void
5264 print_device_short(device_t dev, int indent)
5265 {
5266 	if (!dev)
5267 		return;
5268 
5269 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5270 	    dev->unit, dev->desc,
5271 	    (dev->parent? "":"no "),
5272 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5273 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5274 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5275 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5276 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5277 	    (dev->flags&DF_REBID? "rebiddable,":""),
5278 	    (dev->flags&DF_SUSPENDED? "suspended,":""),
5279 	    (dev->ivars? "":"no "),
5280 	    (dev->softc? "":"no "),
5281 	    dev->busy));
5282 }
5283 
5284 static void
5285 print_device(device_t dev, int indent)
5286 {
5287 	if (!dev)
5288 		return;
5289 
5290 	print_device_short(dev, indent);
5291 
5292 	indentprintf(("Parent:\n"));
5293 	print_device_short(dev->parent, indent+1);
5294 	indentprintf(("Driver:\n"));
5295 	print_driver_short(dev->driver, indent+1);
5296 	indentprintf(("Devclass:\n"));
5297 	print_devclass_short(dev->devclass, indent+1);
5298 }
5299 
5300 void
5301 print_device_tree_short(device_t dev, int indent)
5302 /* print the device and all its children (indented) */
5303 {
5304 	device_t child;
5305 
5306 	if (!dev)
5307 		return;
5308 
5309 	print_device_short(dev, indent);
5310 
5311 	TAILQ_FOREACH(child, &dev->children, link) {
5312 		print_device_tree_short(child, indent+1);
5313 	}
5314 }
5315 
5316 void
5317 print_device_tree(device_t dev, int indent)
5318 /* print the device and all its children (indented) */
5319 {
5320 	device_t child;
5321 
5322 	if (!dev)
5323 		return;
5324 
5325 	print_device(dev, indent);
5326 
5327 	TAILQ_FOREACH(child, &dev->children, link) {
5328 		print_device_tree(child, indent+1);
5329 	}
5330 }
5331 
5332 static void
5333 print_driver_short(driver_t *driver, int indent)
5334 {
5335 	if (!driver)
5336 		return;
5337 
5338 	indentprintf(("driver %s: softc size = %zd\n",
5339 	    driver->name, driver->size));
5340 }
5341 
5342 static void
5343 print_driver(driver_t *driver, int indent)
5344 {
5345 	if (!driver)
5346 		return;
5347 
5348 	print_driver_short(driver, indent);
5349 }
5350 
5351 static void
5352 print_driver_list(driver_list_t drivers, int indent)
5353 {
5354 	driverlink_t driver;
5355 
5356 	TAILQ_FOREACH(driver, &drivers, link) {
5357 		print_driver(driver->driver, indent);
5358 	}
5359 }
5360 
5361 static void
5362 print_devclass_short(devclass_t dc, int indent)
5363 {
5364 	if ( !dc )
5365 		return;
5366 
5367 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5368 }
5369 
5370 static void
5371 print_devclass(devclass_t dc, int indent)
5372 {
5373 	int i;
5374 
5375 	if ( !dc )
5376 		return;
5377 
5378 	print_devclass_short(dc, indent);
5379 	indentprintf(("Drivers:\n"));
5380 	print_driver_list(dc->drivers, indent+1);
5381 
5382 	indentprintf(("Devices:\n"));
5383 	for (i = 0; i < dc->maxunit; i++)
5384 		if (dc->devices[i])
5385 			print_device(dc->devices[i], indent+1);
5386 }
5387 
5388 void
5389 print_devclass_list_short(void)
5390 {
5391 	devclass_t dc;
5392 
5393 	printf("Short listing of devclasses, drivers & devices:\n");
5394 	TAILQ_FOREACH(dc, &devclasses, link) {
5395 		print_devclass_short(dc, 0);
5396 	}
5397 }
5398 
5399 void
5400 print_devclass_list(void)
5401 {
5402 	devclass_t dc;
5403 
5404 	printf("Full listing of devclasses, drivers & devices:\n");
5405 	TAILQ_FOREACH(dc, &devclasses, link) {
5406 		print_devclass(dc, 0);
5407 	}
5408 }
5409 
5410 #endif
5411 
5412 /*
5413  * User-space access to the device tree.
5414  *
5415  * We implement a small set of nodes:
5416  *
5417  * hw.bus			Single integer read method to obtain the
5418  *				current generation count.
5419  * hw.bus.devices		Reads the entire device tree in flat space.
5420  * hw.bus.rman			Resource manager interface
5421  *
5422  * We might like to add the ability to scan devclasses and/or drivers to
5423  * determine what else is currently loaded/available.
5424  */
5425 
5426 static int
5427 sysctl_bus(SYSCTL_HANDLER_ARGS)
5428 {
5429 	struct u_businfo	ubus;
5430 
5431 	ubus.ub_version = BUS_USER_VERSION;
5432 	ubus.ub_generation = bus_data_generation;
5433 
5434 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5435 }
5436 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
5437     "bus-related data");
5438 
5439 static int
5440 sysctl_devices(SYSCTL_HANDLER_ARGS)
5441 {
5442 	int			*name = (int *)arg1;
5443 	u_int			namelen = arg2;
5444 	int			index;
5445 	device_t		dev;
5446 	struct u_device		*udev;
5447 	int			error;
5448 	char			*walker, *ep;
5449 
5450 	if (namelen != 2)
5451 		return (EINVAL);
5452 
5453 	if (bus_data_generation_check(name[0]))
5454 		return (EINVAL);
5455 
5456 	index = name[1];
5457 
5458 	/*
5459 	 * Scan the list of devices, looking for the requested index.
5460 	 */
5461 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5462 		if (index-- == 0)
5463 			break;
5464 	}
5465 	if (dev == NULL)
5466 		return (ENOENT);
5467 
5468 	/*
5469 	 * Populate the return item, careful not to overflow the buffer.
5470 	 */
5471 	udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5472 	if (udev == NULL)
5473 		return (ENOMEM);
5474 	udev->dv_handle = (uintptr_t)dev;
5475 	udev->dv_parent = (uintptr_t)dev->parent;
5476 	udev->dv_devflags = dev->devflags;
5477 	udev->dv_flags = dev->flags;
5478 	udev->dv_state = dev->state;
5479 	walker = udev->dv_fields;
5480 	ep = walker + sizeof(udev->dv_fields);
5481 #define CP(src)						\
5482 	if ((src) == NULL)				\
5483 		*walker++ = '\0';			\
5484 	else {						\
5485 		strlcpy(walker, (src), ep - walker);	\
5486 		walker += strlen(walker) + 1;		\
5487 	}						\
5488 	if (walker >= ep)				\
5489 		break;
5490 
5491 	do {
5492 		CP(dev->nameunit);
5493 		CP(dev->desc);
5494 		CP(dev->driver != NULL ? dev->driver->name : NULL);
5495 		bus_child_pnpinfo_str(dev, walker, ep - walker);
5496 		walker += strlen(walker) + 1;
5497 		if (walker >= ep)
5498 			break;
5499 		bus_child_location_str(dev, walker, ep - walker);
5500 		walker += strlen(walker) + 1;
5501 		if (walker >= ep)
5502 			break;
5503 		*walker++ = '\0';
5504 	} while (0);
5505 #undef CP
5506 	error = SYSCTL_OUT(req, udev, sizeof(*udev));
5507 	free(udev, M_BUS);
5508 	return (error);
5509 }
5510 
5511 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
5512     "system device tree");
5513 
5514 int
5515 bus_data_generation_check(int generation)
5516 {
5517 	if (generation != bus_data_generation)
5518 		return (1);
5519 
5520 	/* XXX generate optimised lists here? */
5521 	return (0);
5522 }
5523 
5524 void
5525 bus_data_generation_update(void)
5526 {
5527 	bus_data_generation++;
5528 }
5529 
5530 int
5531 bus_free_resource(device_t dev, int type, struct resource *r)
5532 {
5533 	if (r == NULL)
5534 		return (0);
5535 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5536 }
5537 
5538 device_t
5539 device_lookup_by_name(const char *name)
5540 {
5541 	device_t dev;
5542 
5543 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5544 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5545 			return (dev);
5546 	}
5547 	return (NULL);
5548 }
5549 
5550 /*
5551  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5552  * implicit semantics on open, so it could not be reused for this.
5553  * Another option would be to call this /dev/bus?
5554  */
5555 static int
5556 find_device(struct devreq *req, device_t *devp)
5557 {
5558 	device_t dev;
5559 
5560 	/*
5561 	 * First, ensure that the name is nul terminated.
5562 	 */
5563 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5564 		return (EINVAL);
5565 
5566 	/*
5567 	 * Second, try to find an attached device whose name matches
5568 	 * 'name'.
5569 	 */
5570 	dev = device_lookup_by_name(req->dr_name);
5571 	if (dev != NULL) {
5572 		*devp = dev;
5573 		return (0);
5574 	}
5575 
5576 	/* Finally, give device enumerators a chance. */
5577 	dev = NULL;
5578 	EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5579 	if (dev == NULL)
5580 		return (ENOENT);
5581 	*devp = dev;
5582 	return (0);
5583 }
5584 
5585 static bool
5586 driver_exists(device_t bus, const char *driver)
5587 {
5588 	devclass_t dc;
5589 
5590 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5591 		if (devclass_find_driver_internal(dc, driver) != NULL)
5592 			return (true);
5593 	}
5594 	return (false);
5595 }
5596 
5597 static void
5598 device_gen_nomatch(device_t dev)
5599 {
5600 	device_t child;
5601 
5602 	if (dev->flags & DF_NEEDNOMATCH &&
5603 	    dev->state == DS_NOTPRESENT) {
5604 		BUS_PROBE_NOMATCH(dev->parent, dev);
5605 		devnomatch(dev);
5606 		dev->flags |= DF_DONENOMATCH;
5607 	}
5608 	dev->flags &= ~DF_NEEDNOMATCH;
5609 	TAILQ_FOREACH(child, &dev->children, link) {
5610 		device_gen_nomatch(child);
5611 	}
5612 }
5613 
5614 static void
5615 device_do_deferred_actions(void)
5616 {
5617 	devclass_t dc;
5618 	driverlink_t dl;
5619 
5620 	/*
5621 	 * Walk through the devclasses to find all the drivers we've tagged as
5622 	 * deferred during the freeze and call the driver added routines. They
5623 	 * have already been added to the lists in the background, so the driver
5624 	 * added routines that trigger a probe will have all the right bidders
5625 	 * for the probe auction.
5626 	 */
5627 	TAILQ_FOREACH(dc, &devclasses, link) {
5628 		TAILQ_FOREACH(dl, &dc->drivers, link) {
5629 			if (dl->flags & DL_DEFERRED_PROBE) {
5630 				devclass_driver_added(dc, dl->driver);
5631 				dl->flags &= ~DL_DEFERRED_PROBE;
5632 			}
5633 		}
5634 	}
5635 
5636 	/*
5637 	 * We also defer no-match events during a freeze. Walk the tree and
5638 	 * generate all the pent-up events that are still relevant.
5639 	 */
5640 	device_gen_nomatch(root_bus);
5641 	bus_data_generation_update();
5642 }
5643 
5644 static int
5645 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5646     struct thread *td)
5647 {
5648 	struct devreq *req;
5649 	device_t dev;
5650 	int error, old;
5651 
5652 	/* Locate the device to control. */
5653 	mtx_lock(&Giant);
5654 	req = (struct devreq *)data;
5655 	switch (cmd) {
5656 	case DEV_ATTACH:
5657 	case DEV_DETACH:
5658 	case DEV_ENABLE:
5659 	case DEV_DISABLE:
5660 	case DEV_SUSPEND:
5661 	case DEV_RESUME:
5662 	case DEV_SET_DRIVER:
5663 	case DEV_CLEAR_DRIVER:
5664 	case DEV_RESCAN:
5665 	case DEV_DELETE:
5666 	case DEV_RESET:
5667 		error = priv_check(td, PRIV_DRIVER);
5668 		if (error == 0)
5669 			error = find_device(req, &dev);
5670 		break;
5671 	case DEV_FREEZE:
5672 	case DEV_THAW:
5673 		error = priv_check(td, PRIV_DRIVER);
5674 		break;
5675 	default:
5676 		error = ENOTTY;
5677 		break;
5678 	}
5679 	if (error) {
5680 		mtx_unlock(&Giant);
5681 		return (error);
5682 	}
5683 
5684 	/* Perform the requested operation. */
5685 	switch (cmd) {
5686 	case DEV_ATTACH:
5687 		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5688 			error = EBUSY;
5689 		else if (!device_is_enabled(dev))
5690 			error = ENXIO;
5691 		else
5692 			error = device_probe_and_attach(dev);
5693 		break;
5694 	case DEV_DETACH:
5695 		if (!device_is_attached(dev)) {
5696 			error = ENXIO;
5697 			break;
5698 		}
5699 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5700 			error = device_quiesce(dev);
5701 			if (error)
5702 				break;
5703 		}
5704 		error = device_detach(dev);
5705 		break;
5706 	case DEV_ENABLE:
5707 		if (device_is_enabled(dev)) {
5708 			error = EBUSY;
5709 			break;
5710 		}
5711 
5712 		/*
5713 		 * If the device has been probed but not attached (e.g.
5714 		 * when it has been disabled by a loader hint), just
5715 		 * attach the device rather than doing a full probe.
5716 		 */
5717 		device_enable(dev);
5718 		if (device_is_alive(dev)) {
5719 			/*
5720 			 * If the device was disabled via a hint, clear
5721 			 * the hint.
5722 			 */
5723 			if (resource_disabled(dev->driver->name, dev->unit))
5724 				resource_unset_value(dev->driver->name,
5725 				    dev->unit, "disabled");
5726 			error = device_attach(dev);
5727 		} else
5728 			error = device_probe_and_attach(dev);
5729 		break;
5730 	case DEV_DISABLE:
5731 		if (!device_is_enabled(dev)) {
5732 			error = ENXIO;
5733 			break;
5734 		}
5735 
5736 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5737 			error = device_quiesce(dev);
5738 			if (error)
5739 				break;
5740 		}
5741 
5742 		/*
5743 		 * Force DF_FIXEDCLASS on around detach to preserve
5744 		 * the existing name.
5745 		 */
5746 		old = dev->flags;
5747 		dev->flags |= DF_FIXEDCLASS;
5748 		error = device_detach(dev);
5749 		if (!(old & DF_FIXEDCLASS))
5750 			dev->flags &= ~DF_FIXEDCLASS;
5751 		if (error == 0)
5752 			device_disable(dev);
5753 		break;
5754 	case DEV_SUSPEND:
5755 		if (device_is_suspended(dev)) {
5756 			error = EBUSY;
5757 			break;
5758 		}
5759 		if (device_get_parent(dev) == NULL) {
5760 			error = EINVAL;
5761 			break;
5762 		}
5763 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5764 		break;
5765 	case DEV_RESUME:
5766 		if (!device_is_suspended(dev)) {
5767 			error = EINVAL;
5768 			break;
5769 		}
5770 		if (device_get_parent(dev) == NULL) {
5771 			error = EINVAL;
5772 			break;
5773 		}
5774 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5775 		break;
5776 	case DEV_SET_DRIVER: {
5777 		devclass_t dc;
5778 		char driver[128];
5779 
5780 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5781 		if (error)
5782 			break;
5783 		if (driver[0] == '\0') {
5784 			error = EINVAL;
5785 			break;
5786 		}
5787 		if (dev->devclass != NULL &&
5788 		    strcmp(driver, dev->devclass->name) == 0)
5789 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5790 			break;
5791 
5792 		/*
5793 		 * Scan drivers for this device's bus looking for at
5794 		 * least one matching driver.
5795 		 */
5796 		if (dev->parent == NULL) {
5797 			error = EINVAL;
5798 			break;
5799 		}
5800 		if (!driver_exists(dev->parent, driver)) {
5801 			error = ENOENT;
5802 			break;
5803 		}
5804 		dc = devclass_create(driver);
5805 		if (dc == NULL) {
5806 			error = ENOMEM;
5807 			break;
5808 		}
5809 
5810 		/* Detach device if necessary. */
5811 		if (device_is_attached(dev)) {
5812 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5813 				error = device_detach(dev);
5814 			else
5815 				error = EBUSY;
5816 			if (error)
5817 				break;
5818 		}
5819 
5820 		/* Clear any previously-fixed device class and unit. */
5821 		if (dev->flags & DF_FIXEDCLASS)
5822 			devclass_delete_device(dev->devclass, dev);
5823 		dev->flags |= DF_WILDCARD;
5824 		dev->unit = -1;
5825 
5826 		/* Force the new device class. */
5827 		error = devclass_add_device(dc, dev);
5828 		if (error)
5829 			break;
5830 		dev->flags |= DF_FIXEDCLASS;
5831 		error = device_probe_and_attach(dev);
5832 		break;
5833 	}
5834 	case DEV_CLEAR_DRIVER:
5835 		if (!(dev->flags & DF_FIXEDCLASS)) {
5836 			error = 0;
5837 			break;
5838 		}
5839 		if (device_is_attached(dev)) {
5840 			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5841 				error = device_detach(dev);
5842 			else
5843 				error = EBUSY;
5844 			if (error)
5845 				break;
5846 		}
5847 
5848 		dev->flags &= ~DF_FIXEDCLASS;
5849 		dev->flags |= DF_WILDCARD;
5850 		devclass_delete_device(dev->devclass, dev);
5851 		error = device_probe_and_attach(dev);
5852 		break;
5853 	case DEV_RESCAN:
5854 		if (!device_is_attached(dev)) {
5855 			error = ENXIO;
5856 			break;
5857 		}
5858 		error = BUS_RESCAN(dev);
5859 		break;
5860 	case DEV_DELETE: {
5861 		device_t parent;
5862 
5863 		parent = device_get_parent(dev);
5864 		if (parent == NULL) {
5865 			error = EINVAL;
5866 			break;
5867 		}
5868 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5869 			if (bus_child_present(dev) != 0) {
5870 				error = EBUSY;
5871 				break;
5872 			}
5873 		}
5874 
5875 		error = device_delete_child(parent, dev);
5876 		break;
5877 	}
5878 	case DEV_FREEZE:
5879 		if (device_frozen)
5880 			error = EBUSY;
5881 		else
5882 			device_frozen = true;
5883 		break;
5884 	case DEV_THAW:
5885 		if (!device_frozen)
5886 			error = EBUSY;
5887 		else {
5888 			device_do_deferred_actions();
5889 			device_frozen = false;
5890 		}
5891 		break;
5892 	case DEV_RESET:
5893 		if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
5894 			error = EINVAL;
5895 			break;
5896 		}
5897 		error = BUS_RESET_CHILD(device_get_parent(dev), dev,
5898 		    req->dr_flags);
5899 		break;
5900 	}
5901 	mtx_unlock(&Giant);
5902 	return (error);
5903 }
5904 
5905 static struct cdevsw devctl2_cdevsw = {
5906 	.d_version =	D_VERSION,
5907 	.d_ioctl =	devctl2_ioctl,
5908 	.d_name =	"devctl2",
5909 };
5910 
5911 static void
5912 devctl2_init(void)
5913 {
5914 
5915 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5916 	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5917 }
5918 
5919 /*
5920  * APIs to manage deprecation and obsolescence.
5921  */
5922 static int obsolete_panic = 0;
5923 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
5924     "Panic when obsolete features are used (0 = never, 1 = if osbolete, "
5925     "2 = if deprecated)");
5926 
5927 static void
5928 gone_panic(int major, int running, const char *msg)
5929 {
5930 
5931 	switch (obsolete_panic)
5932 	{
5933 	case 0:
5934 		return;
5935 	case 1:
5936 		if (running < major)
5937 			return;
5938 		/* FALLTHROUGH */
5939 	default:
5940 		panic("%s", msg);
5941 	}
5942 }
5943 
5944 void
5945 _gone_in(int major, const char *msg)
5946 {
5947 
5948 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
5949 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
5950 		printf("Obsolete code will removed soon: %s\n", msg);
5951 	else
5952 		printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
5953 		    major, msg);
5954 }
5955 
5956 void
5957 _gone_in_dev(device_t dev, int major, const char *msg)
5958 {
5959 
5960 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
5961 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
5962 		device_printf(dev,
5963 		    "Obsolete code will removed soon: %s\n", msg);
5964 	else
5965 		device_printf(dev,
5966 		    "Deprecated code (to be removed in FreeBSD %d): %s\n",
5967 		    major, msg);
5968 }
5969 
5970 #ifdef DDB
5971 DB_SHOW_COMMAND(device, db_show_device)
5972 {
5973 	device_t dev;
5974 
5975 	if (!have_addr)
5976 		return;
5977 
5978 	dev = (device_t)addr;
5979 
5980 	db_printf("name:    %s\n", device_get_nameunit(dev));
5981 	db_printf("  driver:  %s\n", DRIVERNAME(dev->driver));
5982 	db_printf("  class:   %s\n", DEVCLANAME(dev->devclass));
5983 	db_printf("  addr:    %p\n", dev);
5984 	db_printf("  parent:  %p\n", dev->parent);
5985 	db_printf("  softc:   %p\n", dev->softc);
5986 	db_printf("  ivars:   %p\n", dev->ivars);
5987 }
5988 
5989 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
5990 {
5991 	device_t dev;
5992 
5993 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5994 		db_show_device((db_expr_t)dev, true, count, modif);
5995 	}
5996 }
5997 #endif
5998