1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 #include "opt_ddb.h" 32 33 #include <sys/param.h> 34 #include <sys/conf.h> 35 #include <sys/filio.h> 36 #include <sys/lock.h> 37 #include <sys/kernel.h> 38 #include <sys/kobj.h> 39 #include <sys/limits.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/mutex.h> 43 #include <sys/poll.h> 44 #include <sys/priv.h> 45 #include <sys/proc.h> 46 #include <sys/condvar.h> 47 #include <sys/queue.h> 48 #include <machine/bus.h> 49 #include <sys/random.h> 50 #include <sys/rman.h> 51 #include <sys/selinfo.h> 52 #include <sys/signalvar.h> 53 #include <sys/smp.h> 54 #include <sys/sysctl.h> 55 #include <sys/systm.h> 56 #include <sys/uio.h> 57 #include <sys/bus.h> 58 #include <sys/interrupt.h> 59 #include <sys/cpuset.h> 60 61 #include <net/vnet.h> 62 63 #include <machine/cpu.h> 64 #include <machine/stdarg.h> 65 66 #include <vm/uma.h> 67 #include <vm/vm.h> 68 69 #include <ddb/ddb.h> 70 71 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 72 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 73 74 /* 75 * Used to attach drivers to devclasses. 76 */ 77 typedef struct driverlink *driverlink_t; 78 struct driverlink { 79 kobj_class_t driver; 80 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 81 int pass; 82 TAILQ_ENTRY(driverlink) passlink; 83 }; 84 85 /* 86 * Forward declarations 87 */ 88 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 89 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 90 typedef TAILQ_HEAD(device_list, device) device_list_t; 91 92 struct devclass { 93 TAILQ_ENTRY(devclass) link; 94 devclass_t parent; /* parent in devclass hierarchy */ 95 driver_list_t drivers; /* bus devclasses store drivers for bus */ 96 char *name; 97 device_t *devices; /* array of devices indexed by unit */ 98 int maxunit; /* size of devices array */ 99 int flags; 100 #define DC_HAS_CHILDREN 1 101 102 struct sysctl_ctx_list sysctl_ctx; 103 struct sysctl_oid *sysctl_tree; 104 }; 105 106 /** 107 * @brief Implementation of device. 108 */ 109 struct device { 110 /* 111 * A device is a kernel object. The first field must be the 112 * current ops table for the object. 113 */ 114 KOBJ_FIELDS; 115 116 /* 117 * Device hierarchy. 118 */ 119 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 120 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 121 device_t parent; /**< parent of this device */ 122 device_list_t children; /**< list of child devices */ 123 124 /* 125 * Details of this device. 126 */ 127 driver_t *driver; /**< current driver */ 128 devclass_t devclass; /**< current device class */ 129 int unit; /**< current unit number */ 130 char* nameunit; /**< name+unit e.g. foodev0 */ 131 char* desc; /**< driver specific description */ 132 int busy; /**< count of calls to device_busy() */ 133 device_state_t state; /**< current device state */ 134 uint32_t devflags; /**< api level flags for device_get_flags() */ 135 u_int flags; /**< internal device flags */ 136 u_int order; /**< order from device_add_child_ordered() */ 137 void *ivars; /**< instance variables */ 138 void *softc; /**< current driver's variables */ 139 140 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 141 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 142 }; 143 144 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 145 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 146 147 static void devctl2_init(void); 148 149 #define DRIVERNAME(d) ((d)? d->name : "no driver") 150 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 151 152 #ifdef BUS_DEBUG 153 154 static int bus_debug = 1; 155 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 156 "Bus debug level"); 157 158 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 159 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 160 161 /** 162 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 163 * prevent syslog from deleting initial spaces 164 */ 165 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 166 167 static void print_device_short(device_t dev, int indent); 168 static void print_device(device_t dev, int indent); 169 void print_device_tree_short(device_t dev, int indent); 170 void print_device_tree(device_t dev, int indent); 171 static void print_driver_short(driver_t *driver, int indent); 172 static void print_driver(driver_t *driver, int indent); 173 static void print_driver_list(driver_list_t drivers, int indent); 174 static void print_devclass_short(devclass_t dc, int indent); 175 static void print_devclass(devclass_t dc, int indent); 176 void print_devclass_list_short(void); 177 void print_devclass_list(void); 178 179 #else 180 /* Make the compiler ignore the function calls */ 181 #define PDEBUG(a) /* nop */ 182 #define DEVICENAME(d) /* nop */ 183 184 #define print_device_short(d,i) /* nop */ 185 #define print_device(d,i) /* nop */ 186 #define print_device_tree_short(d,i) /* nop */ 187 #define print_device_tree(d,i) /* nop */ 188 #define print_driver_short(d,i) /* nop */ 189 #define print_driver(d,i) /* nop */ 190 #define print_driver_list(d,i) /* nop */ 191 #define print_devclass_short(d,i) /* nop */ 192 #define print_devclass(d,i) /* nop */ 193 #define print_devclass_list_short() /* nop */ 194 #define print_devclass_list() /* nop */ 195 #endif 196 197 /* 198 * dev sysctl tree 199 */ 200 201 enum { 202 DEVCLASS_SYSCTL_PARENT, 203 }; 204 205 static int 206 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 207 { 208 devclass_t dc = (devclass_t)arg1; 209 const char *value; 210 211 switch (arg2) { 212 case DEVCLASS_SYSCTL_PARENT: 213 value = dc->parent ? dc->parent->name : ""; 214 break; 215 default: 216 return (EINVAL); 217 } 218 return (SYSCTL_OUT_STR(req, value)); 219 } 220 221 static void 222 devclass_sysctl_init(devclass_t dc) 223 { 224 225 if (dc->sysctl_tree != NULL) 226 return; 227 sysctl_ctx_init(&dc->sysctl_ctx); 228 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 229 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 230 CTLFLAG_RD, NULL, ""); 231 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 232 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 233 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 234 "parent class"); 235 } 236 237 enum { 238 DEVICE_SYSCTL_DESC, 239 DEVICE_SYSCTL_DRIVER, 240 DEVICE_SYSCTL_LOCATION, 241 DEVICE_SYSCTL_PNPINFO, 242 DEVICE_SYSCTL_PARENT, 243 }; 244 245 static int 246 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 247 { 248 device_t dev = (device_t)arg1; 249 const char *value; 250 char *buf; 251 int error; 252 253 buf = NULL; 254 switch (arg2) { 255 case DEVICE_SYSCTL_DESC: 256 value = dev->desc ? dev->desc : ""; 257 break; 258 case DEVICE_SYSCTL_DRIVER: 259 value = dev->driver ? dev->driver->name : ""; 260 break; 261 case DEVICE_SYSCTL_LOCATION: 262 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 263 bus_child_location_str(dev, buf, 1024); 264 break; 265 case DEVICE_SYSCTL_PNPINFO: 266 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 267 bus_child_pnpinfo_str(dev, buf, 1024); 268 break; 269 case DEVICE_SYSCTL_PARENT: 270 value = dev->parent ? dev->parent->nameunit : ""; 271 break; 272 default: 273 return (EINVAL); 274 } 275 error = SYSCTL_OUT_STR(req, value); 276 if (buf != NULL) 277 free(buf, M_BUS); 278 return (error); 279 } 280 281 static void 282 device_sysctl_init(device_t dev) 283 { 284 devclass_t dc = dev->devclass; 285 int domain; 286 287 if (dev->sysctl_tree != NULL) 288 return; 289 devclass_sysctl_init(dc); 290 sysctl_ctx_init(&dev->sysctl_ctx); 291 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 292 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 293 dev->nameunit + strlen(dc->name), 294 CTLFLAG_RD, NULL, "", "device_index"); 295 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 296 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 297 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 298 "device description"); 299 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 300 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 301 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 302 "device driver name"); 303 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 304 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 305 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 306 "device location relative to parent"); 307 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 308 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 309 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 310 "device identification"); 311 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 312 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 313 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 314 "parent device"); 315 if (bus_get_domain(dev, &domain) == 0) 316 SYSCTL_ADD_INT(&dev->sysctl_ctx, 317 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 318 CTLFLAG_RD, NULL, domain, "NUMA domain"); 319 } 320 321 static void 322 device_sysctl_update(device_t dev) 323 { 324 devclass_t dc = dev->devclass; 325 326 if (dev->sysctl_tree == NULL) 327 return; 328 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 329 } 330 331 static void 332 device_sysctl_fini(device_t dev) 333 { 334 if (dev->sysctl_tree == NULL) 335 return; 336 sysctl_ctx_free(&dev->sysctl_ctx); 337 dev->sysctl_tree = NULL; 338 } 339 340 /* 341 * /dev/devctl implementation 342 */ 343 344 /* 345 * This design allows only one reader for /dev/devctl. This is not desirable 346 * in the long run, but will get a lot of hair out of this implementation. 347 * Maybe we should make this device a clonable device. 348 * 349 * Also note: we specifically do not attach a device to the device_t tree 350 * to avoid potential chicken and egg problems. One could argue that all 351 * of this belongs to the root node. One could also further argue that the 352 * sysctl interface that we have not might more properly be an ioctl 353 * interface, but at this stage of the game, I'm not inclined to rock that 354 * boat. 355 * 356 * I'm also not sure that the SIGIO support is done correctly or not, as 357 * I copied it from a driver that had SIGIO support that likely hasn't been 358 * tested since 3.4 or 2.2.8! 359 */ 360 361 /* Deprecated way to adjust queue length */ 362 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN | 364 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I", 365 "devctl disable -- deprecated"); 366 367 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 368 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 369 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 370 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 371 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 372 373 static d_open_t devopen; 374 static d_close_t devclose; 375 static d_read_t devread; 376 static d_ioctl_t devioctl; 377 static d_poll_t devpoll; 378 static d_kqfilter_t devkqfilter; 379 380 static struct cdevsw dev_cdevsw = { 381 .d_version = D_VERSION, 382 .d_open = devopen, 383 .d_close = devclose, 384 .d_read = devread, 385 .d_ioctl = devioctl, 386 .d_poll = devpoll, 387 .d_kqfilter = devkqfilter, 388 .d_name = "devctl", 389 }; 390 391 struct dev_event_info 392 { 393 char *dei_data; 394 TAILQ_ENTRY(dev_event_info) dei_link; 395 }; 396 397 TAILQ_HEAD(devq, dev_event_info); 398 399 static struct dev_softc 400 { 401 int inuse; 402 int nonblock; 403 int queued; 404 int async; 405 struct mtx mtx; 406 struct cv cv; 407 struct selinfo sel; 408 struct devq devq; 409 struct sigio *sigio; 410 } devsoftc; 411 412 static void filt_devctl_detach(struct knote *kn); 413 static int filt_devctl_read(struct knote *kn, long hint); 414 415 struct filterops devctl_rfiltops = { 416 .f_isfd = 1, 417 .f_detach = filt_devctl_detach, 418 .f_event = filt_devctl_read, 419 }; 420 421 static struct cdev *devctl_dev; 422 423 static void 424 devinit(void) 425 { 426 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 427 UID_ROOT, GID_WHEEL, 0600, "devctl"); 428 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 429 cv_init(&devsoftc.cv, "dev cv"); 430 TAILQ_INIT(&devsoftc.devq); 431 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 432 devctl2_init(); 433 } 434 435 static int 436 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 437 { 438 439 mtx_lock(&devsoftc.mtx); 440 if (devsoftc.inuse) { 441 mtx_unlock(&devsoftc.mtx); 442 return (EBUSY); 443 } 444 /* move to init */ 445 devsoftc.inuse = 1; 446 mtx_unlock(&devsoftc.mtx); 447 return (0); 448 } 449 450 static int 451 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 452 { 453 454 mtx_lock(&devsoftc.mtx); 455 devsoftc.inuse = 0; 456 devsoftc.nonblock = 0; 457 devsoftc.async = 0; 458 cv_broadcast(&devsoftc.cv); 459 funsetown(&devsoftc.sigio); 460 mtx_unlock(&devsoftc.mtx); 461 return (0); 462 } 463 464 /* 465 * The read channel for this device is used to report changes to 466 * userland in realtime. We are required to free the data as well as 467 * the n1 object because we allocate them separately. Also note that 468 * we return one record at a time. If you try to read this device a 469 * character at a time, you will lose the rest of the data. Listening 470 * programs are expected to cope. 471 */ 472 static int 473 devread(struct cdev *dev, struct uio *uio, int ioflag) 474 { 475 struct dev_event_info *n1; 476 int rv; 477 478 mtx_lock(&devsoftc.mtx); 479 while (TAILQ_EMPTY(&devsoftc.devq)) { 480 if (devsoftc.nonblock) { 481 mtx_unlock(&devsoftc.mtx); 482 return (EAGAIN); 483 } 484 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 485 if (rv) { 486 /* 487 * Need to translate ERESTART to EINTR here? -- jake 488 */ 489 mtx_unlock(&devsoftc.mtx); 490 return (rv); 491 } 492 } 493 n1 = TAILQ_FIRST(&devsoftc.devq); 494 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 495 devsoftc.queued--; 496 mtx_unlock(&devsoftc.mtx); 497 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 498 free(n1->dei_data, M_BUS); 499 free(n1, M_BUS); 500 return (rv); 501 } 502 503 static int 504 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 505 { 506 switch (cmd) { 507 508 case FIONBIO: 509 if (*(int*)data) 510 devsoftc.nonblock = 1; 511 else 512 devsoftc.nonblock = 0; 513 return (0); 514 case FIOASYNC: 515 if (*(int*)data) 516 devsoftc.async = 1; 517 else 518 devsoftc.async = 0; 519 return (0); 520 case FIOSETOWN: 521 return fsetown(*(int *)data, &devsoftc.sigio); 522 case FIOGETOWN: 523 *(int *)data = fgetown(&devsoftc.sigio); 524 return (0); 525 526 /* (un)Support for other fcntl() calls. */ 527 case FIOCLEX: 528 case FIONCLEX: 529 case FIONREAD: 530 default: 531 break; 532 } 533 return (ENOTTY); 534 } 535 536 static int 537 devpoll(struct cdev *dev, int events, struct thread *td) 538 { 539 int revents = 0; 540 541 mtx_lock(&devsoftc.mtx); 542 if (events & (POLLIN | POLLRDNORM)) { 543 if (!TAILQ_EMPTY(&devsoftc.devq)) 544 revents = events & (POLLIN | POLLRDNORM); 545 else 546 selrecord(td, &devsoftc.sel); 547 } 548 mtx_unlock(&devsoftc.mtx); 549 550 return (revents); 551 } 552 553 static int 554 devkqfilter(struct cdev *dev, struct knote *kn) 555 { 556 int error; 557 558 if (kn->kn_filter == EVFILT_READ) { 559 kn->kn_fop = &devctl_rfiltops; 560 knlist_add(&devsoftc.sel.si_note, kn, 0); 561 error = 0; 562 } else 563 error = EINVAL; 564 return (error); 565 } 566 567 static void 568 filt_devctl_detach(struct knote *kn) 569 { 570 571 knlist_remove(&devsoftc.sel.si_note, kn, 0); 572 } 573 574 static int 575 filt_devctl_read(struct knote *kn, long hint) 576 { 577 kn->kn_data = devsoftc.queued; 578 return (kn->kn_data != 0); 579 } 580 581 /** 582 * @brief Return whether the userland process is running 583 */ 584 boolean_t 585 devctl_process_running(void) 586 { 587 return (devsoftc.inuse == 1); 588 } 589 590 /** 591 * @brief Queue data to be read from the devctl device 592 * 593 * Generic interface to queue data to the devctl device. It is 594 * assumed that @p data is properly formatted. It is further assumed 595 * that @p data is allocated using the M_BUS malloc type. 596 */ 597 void 598 devctl_queue_data_f(char *data, int flags) 599 { 600 struct dev_event_info *n1 = NULL, *n2 = NULL; 601 602 if (strlen(data) == 0) 603 goto out; 604 if (devctl_queue_length == 0) 605 goto out; 606 n1 = malloc(sizeof(*n1), M_BUS, flags); 607 if (n1 == NULL) 608 goto out; 609 n1->dei_data = data; 610 mtx_lock(&devsoftc.mtx); 611 if (devctl_queue_length == 0) { 612 mtx_unlock(&devsoftc.mtx); 613 free(n1->dei_data, M_BUS); 614 free(n1, M_BUS); 615 return; 616 } 617 /* Leave at least one spot in the queue... */ 618 while (devsoftc.queued > devctl_queue_length - 1) { 619 n2 = TAILQ_FIRST(&devsoftc.devq); 620 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 621 free(n2->dei_data, M_BUS); 622 free(n2, M_BUS); 623 devsoftc.queued--; 624 } 625 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 626 devsoftc.queued++; 627 cv_broadcast(&devsoftc.cv); 628 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 629 mtx_unlock(&devsoftc.mtx); 630 selwakeup(&devsoftc.sel); 631 if (devsoftc.async && devsoftc.sigio != NULL) 632 pgsigio(&devsoftc.sigio, SIGIO, 0); 633 return; 634 out: 635 /* 636 * We have to free data on all error paths since the caller 637 * assumes it will be free'd when this item is dequeued. 638 */ 639 free(data, M_BUS); 640 return; 641 } 642 643 void 644 devctl_queue_data(char *data) 645 { 646 647 devctl_queue_data_f(data, M_NOWAIT); 648 } 649 650 /** 651 * @brief Send a 'notification' to userland, using standard ways 652 */ 653 void 654 devctl_notify_f(const char *system, const char *subsystem, const char *type, 655 const char *data, int flags) 656 { 657 int len = 0; 658 char *msg; 659 660 if (system == NULL) 661 return; /* BOGUS! Must specify system. */ 662 if (subsystem == NULL) 663 return; /* BOGUS! Must specify subsystem. */ 664 if (type == NULL) 665 return; /* BOGUS! Must specify type. */ 666 len += strlen(" system=") + strlen(system); 667 len += strlen(" subsystem=") + strlen(subsystem); 668 len += strlen(" type=") + strlen(type); 669 /* add in the data message plus newline. */ 670 if (data != NULL) 671 len += strlen(data); 672 len += 3; /* '!', '\n', and NUL */ 673 msg = malloc(len, M_BUS, flags); 674 if (msg == NULL) 675 return; /* Drop it on the floor */ 676 if (data != NULL) 677 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 678 system, subsystem, type, data); 679 else 680 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 681 system, subsystem, type); 682 devctl_queue_data_f(msg, flags); 683 } 684 685 void 686 devctl_notify(const char *system, const char *subsystem, const char *type, 687 const char *data) 688 { 689 690 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 691 } 692 693 /* 694 * Common routine that tries to make sending messages as easy as possible. 695 * We allocate memory for the data, copy strings into that, but do not 696 * free it unless there's an error. The dequeue part of the driver should 697 * free the data. We don't send data when the device is disabled. We do 698 * send data, even when we have no listeners, because we wish to avoid 699 * races relating to startup and restart of listening applications. 700 * 701 * devaddq is designed to string together the type of event, with the 702 * object of that event, plus the plug and play info and location info 703 * for that event. This is likely most useful for devices, but less 704 * useful for other consumers of this interface. Those should use 705 * the devctl_queue_data() interface instead. 706 */ 707 static void 708 devaddq(const char *type, const char *what, device_t dev) 709 { 710 char *data = NULL; 711 char *loc = NULL; 712 char *pnp = NULL; 713 const char *parstr; 714 715 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 716 return; 717 data = malloc(1024, M_BUS, M_NOWAIT); 718 if (data == NULL) 719 goto bad; 720 721 /* get the bus specific location of this device */ 722 loc = malloc(1024, M_BUS, M_NOWAIT); 723 if (loc == NULL) 724 goto bad; 725 *loc = '\0'; 726 bus_child_location_str(dev, loc, 1024); 727 728 /* Get the bus specific pnp info of this device */ 729 pnp = malloc(1024, M_BUS, M_NOWAIT); 730 if (pnp == NULL) 731 goto bad; 732 *pnp = '\0'; 733 bus_child_pnpinfo_str(dev, pnp, 1024); 734 735 /* Get the parent of this device, or / if high enough in the tree. */ 736 if (device_get_parent(dev) == NULL) 737 parstr = "."; /* Or '/' ? */ 738 else 739 parstr = device_get_nameunit(device_get_parent(dev)); 740 /* String it all together. */ 741 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 742 parstr); 743 free(loc, M_BUS); 744 free(pnp, M_BUS); 745 devctl_queue_data(data); 746 return; 747 bad: 748 free(pnp, M_BUS); 749 free(loc, M_BUS); 750 free(data, M_BUS); 751 return; 752 } 753 754 /* 755 * A device was added to the tree. We are called just after it successfully 756 * attaches (that is, probe and attach success for this device). No call 757 * is made if a device is merely parented into the tree. See devnomatch 758 * if probe fails. If attach fails, no notification is sent (but maybe 759 * we should have a different message for this). 760 */ 761 static void 762 devadded(device_t dev) 763 { 764 devaddq("+", device_get_nameunit(dev), dev); 765 } 766 767 /* 768 * A device was removed from the tree. We are called just before this 769 * happens. 770 */ 771 static void 772 devremoved(device_t dev) 773 { 774 devaddq("-", device_get_nameunit(dev), dev); 775 } 776 777 /* 778 * Called when there's no match for this device. This is only called 779 * the first time that no match happens, so we don't keep getting this 780 * message. Should that prove to be undesirable, we can change it. 781 * This is called when all drivers that can attach to a given bus 782 * decline to accept this device. Other errors may not be detected. 783 */ 784 static void 785 devnomatch(device_t dev) 786 { 787 devaddq("?", "", dev); 788 } 789 790 static int 791 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 792 { 793 struct dev_event_info *n1; 794 int dis, error; 795 796 dis = (devctl_queue_length == 0); 797 error = sysctl_handle_int(oidp, &dis, 0, req); 798 if (error || !req->newptr) 799 return (error); 800 if (mtx_initialized(&devsoftc.mtx)) 801 mtx_lock(&devsoftc.mtx); 802 if (dis) { 803 while (!TAILQ_EMPTY(&devsoftc.devq)) { 804 n1 = TAILQ_FIRST(&devsoftc.devq); 805 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 806 free(n1->dei_data, M_BUS); 807 free(n1, M_BUS); 808 } 809 devsoftc.queued = 0; 810 devctl_queue_length = 0; 811 } else { 812 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 813 } 814 if (mtx_initialized(&devsoftc.mtx)) 815 mtx_unlock(&devsoftc.mtx); 816 return (0); 817 } 818 819 static int 820 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 821 { 822 struct dev_event_info *n1; 823 int q, error; 824 825 q = devctl_queue_length; 826 error = sysctl_handle_int(oidp, &q, 0, req); 827 if (error || !req->newptr) 828 return (error); 829 if (q < 0) 830 return (EINVAL); 831 if (mtx_initialized(&devsoftc.mtx)) 832 mtx_lock(&devsoftc.mtx); 833 devctl_queue_length = q; 834 while (devsoftc.queued > devctl_queue_length) { 835 n1 = TAILQ_FIRST(&devsoftc.devq); 836 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 837 free(n1->dei_data, M_BUS); 838 free(n1, M_BUS); 839 devsoftc.queued--; 840 } 841 if (mtx_initialized(&devsoftc.mtx)) 842 mtx_unlock(&devsoftc.mtx); 843 return (0); 844 } 845 846 /** 847 * @brief safely quotes strings that might have double quotes in them. 848 * 849 * The devctl protocol relies on quoted strings having matching quotes. 850 * This routine quotes any internal quotes so the resulting string 851 * is safe to pass to snprintf to construct, for example pnp info strings. 852 * Strings are always terminated with a NUL, but may be truncated if longer 853 * than @p len bytes after quotes. 854 * 855 * @param dst Buffer to hold the string. Must be at least @p len bytes long 856 * @param src Original buffer. 857 * @param len Length of buffer pointed to by @dst, including trailing NUL 858 */ 859 void 860 devctl_safe_quote(char *dst, const char *src, size_t len) 861 { 862 char *walker = dst, *ep = dst + len - 1; 863 864 if (len == 0) 865 return; 866 while (src != NULL && walker < ep) 867 { 868 if (*src == '"' || *src == '\\') { 869 if (ep - walker < 2) 870 break; 871 *walker++ = '\\'; 872 } 873 *walker++ = *src++; 874 } 875 *walker = '\0'; 876 } 877 878 /* End of /dev/devctl code */ 879 880 static TAILQ_HEAD(,device) bus_data_devices; 881 static int bus_data_generation = 1; 882 883 static kobj_method_t null_methods[] = { 884 KOBJMETHOD_END 885 }; 886 887 DEFINE_CLASS(null, null_methods, 0); 888 889 /* 890 * Bus pass implementation 891 */ 892 893 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 894 int bus_current_pass = BUS_PASS_ROOT; 895 896 /** 897 * @internal 898 * @brief Register the pass level of a new driver attachment 899 * 900 * Register a new driver attachment's pass level. If no driver 901 * attachment with the same pass level has been added, then @p new 902 * will be added to the global passes list. 903 * 904 * @param new the new driver attachment 905 */ 906 static void 907 driver_register_pass(struct driverlink *new) 908 { 909 struct driverlink *dl; 910 911 /* We only consider pass numbers during boot. */ 912 if (bus_current_pass == BUS_PASS_DEFAULT) 913 return; 914 915 /* 916 * Walk the passes list. If we already know about this pass 917 * then there is nothing to do. If we don't, then insert this 918 * driver link into the list. 919 */ 920 TAILQ_FOREACH(dl, &passes, passlink) { 921 if (dl->pass < new->pass) 922 continue; 923 if (dl->pass == new->pass) 924 return; 925 TAILQ_INSERT_BEFORE(dl, new, passlink); 926 return; 927 } 928 TAILQ_INSERT_TAIL(&passes, new, passlink); 929 } 930 931 /** 932 * @brief Raise the current bus pass 933 * 934 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 935 * method on the root bus to kick off a new device tree scan for each 936 * new pass level that has at least one driver. 937 */ 938 void 939 bus_set_pass(int pass) 940 { 941 struct driverlink *dl; 942 943 if (bus_current_pass > pass) 944 panic("Attempt to lower bus pass level"); 945 946 TAILQ_FOREACH(dl, &passes, passlink) { 947 /* Skip pass values below the current pass level. */ 948 if (dl->pass <= bus_current_pass) 949 continue; 950 951 /* 952 * Bail once we hit a driver with a pass level that is 953 * too high. 954 */ 955 if (dl->pass > pass) 956 break; 957 958 /* 959 * Raise the pass level to the next level and rescan 960 * the tree. 961 */ 962 bus_current_pass = dl->pass; 963 BUS_NEW_PASS(root_bus); 964 } 965 966 /* 967 * If there isn't a driver registered for the requested pass, 968 * then bus_current_pass might still be less than 'pass'. Set 969 * it to 'pass' in that case. 970 */ 971 if (bus_current_pass < pass) 972 bus_current_pass = pass; 973 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 974 } 975 976 /* 977 * Devclass implementation 978 */ 979 980 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 981 982 /** 983 * @internal 984 * @brief Find or create a device class 985 * 986 * If a device class with the name @p classname exists, return it, 987 * otherwise if @p create is non-zero create and return a new device 988 * class. 989 * 990 * If @p parentname is non-NULL, the parent of the devclass is set to 991 * the devclass of that name. 992 * 993 * @param classname the devclass name to find or create 994 * @param parentname the parent devclass name or @c NULL 995 * @param create non-zero to create a devclass 996 */ 997 static devclass_t 998 devclass_find_internal(const char *classname, const char *parentname, 999 int create) 1000 { 1001 devclass_t dc; 1002 1003 PDEBUG(("looking for %s", classname)); 1004 if (!classname) 1005 return (NULL); 1006 1007 TAILQ_FOREACH(dc, &devclasses, link) { 1008 if (!strcmp(dc->name, classname)) 1009 break; 1010 } 1011 1012 if (create && !dc) { 1013 PDEBUG(("creating %s", classname)); 1014 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 1015 M_BUS, M_NOWAIT | M_ZERO); 1016 if (!dc) 1017 return (NULL); 1018 dc->parent = NULL; 1019 dc->name = (char*) (dc + 1); 1020 strcpy(dc->name, classname); 1021 TAILQ_INIT(&dc->drivers); 1022 TAILQ_INSERT_TAIL(&devclasses, dc, link); 1023 1024 bus_data_generation_update(); 1025 } 1026 1027 /* 1028 * If a parent class is specified, then set that as our parent so 1029 * that this devclass will support drivers for the parent class as 1030 * well. If the parent class has the same name don't do this though 1031 * as it creates a cycle that can trigger an infinite loop in 1032 * device_probe_child() if a device exists for which there is no 1033 * suitable driver. 1034 */ 1035 if (parentname && dc && !dc->parent && 1036 strcmp(classname, parentname) != 0) { 1037 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1038 dc->parent->flags |= DC_HAS_CHILDREN; 1039 } 1040 1041 return (dc); 1042 } 1043 1044 /** 1045 * @brief Create a device class 1046 * 1047 * If a device class with the name @p classname exists, return it, 1048 * otherwise create and return a new device class. 1049 * 1050 * @param classname the devclass name to find or create 1051 */ 1052 devclass_t 1053 devclass_create(const char *classname) 1054 { 1055 return (devclass_find_internal(classname, NULL, TRUE)); 1056 } 1057 1058 /** 1059 * @brief Find a device class 1060 * 1061 * If a device class with the name @p classname exists, return it, 1062 * otherwise return @c NULL. 1063 * 1064 * @param classname the devclass name to find 1065 */ 1066 devclass_t 1067 devclass_find(const char *classname) 1068 { 1069 return (devclass_find_internal(classname, NULL, FALSE)); 1070 } 1071 1072 /** 1073 * @brief Register that a device driver has been added to a devclass 1074 * 1075 * Register that a device driver has been added to a devclass. This 1076 * is called by devclass_add_driver to accomplish the recursive 1077 * notification of all the children classes of dc, as well as dc. 1078 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1079 * the devclass. 1080 * 1081 * We do a full search here of the devclass list at each iteration 1082 * level to save storing children-lists in the devclass structure. If 1083 * we ever move beyond a few dozen devices doing this, we may need to 1084 * reevaluate... 1085 * 1086 * @param dc the devclass to edit 1087 * @param driver the driver that was just added 1088 */ 1089 static void 1090 devclass_driver_added(devclass_t dc, driver_t *driver) 1091 { 1092 devclass_t parent; 1093 int i; 1094 1095 /* 1096 * Call BUS_DRIVER_ADDED for any existing busses in this class. 1097 */ 1098 for (i = 0; i < dc->maxunit; i++) 1099 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1100 BUS_DRIVER_ADDED(dc->devices[i], driver); 1101 1102 /* 1103 * Walk through the children classes. Since we only keep a 1104 * single parent pointer around, we walk the entire list of 1105 * devclasses looking for children. We set the 1106 * DC_HAS_CHILDREN flag when a child devclass is created on 1107 * the parent, so we only walk the list for those devclasses 1108 * that have children. 1109 */ 1110 if (!(dc->flags & DC_HAS_CHILDREN)) 1111 return; 1112 parent = dc; 1113 TAILQ_FOREACH(dc, &devclasses, link) { 1114 if (dc->parent == parent) 1115 devclass_driver_added(dc, driver); 1116 } 1117 } 1118 1119 /** 1120 * @brief Add a device driver to a device class 1121 * 1122 * Add a device driver to a devclass. This is normally called 1123 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1124 * all devices in the devclass will be called to allow them to attempt 1125 * to re-probe any unmatched children. 1126 * 1127 * @param dc the devclass to edit 1128 * @param driver the driver to register 1129 */ 1130 int 1131 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1132 { 1133 driverlink_t dl; 1134 const char *parentname; 1135 1136 PDEBUG(("%s", DRIVERNAME(driver))); 1137 1138 /* Don't allow invalid pass values. */ 1139 if (pass <= BUS_PASS_ROOT) 1140 return (EINVAL); 1141 1142 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1143 if (!dl) 1144 return (ENOMEM); 1145 1146 /* 1147 * Compile the driver's methods. Also increase the reference count 1148 * so that the class doesn't get freed when the last instance 1149 * goes. This means we can safely use static methods and avoids a 1150 * double-free in devclass_delete_driver. 1151 */ 1152 kobj_class_compile((kobj_class_t) driver); 1153 1154 /* 1155 * If the driver has any base classes, make the 1156 * devclass inherit from the devclass of the driver's 1157 * first base class. This will allow the system to 1158 * search for drivers in both devclasses for children 1159 * of a device using this driver. 1160 */ 1161 if (driver->baseclasses) 1162 parentname = driver->baseclasses[0]->name; 1163 else 1164 parentname = NULL; 1165 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1166 1167 dl->driver = driver; 1168 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1169 driver->refs++; /* XXX: kobj_mtx */ 1170 dl->pass = pass; 1171 driver_register_pass(dl); 1172 1173 devclass_driver_added(dc, driver); 1174 bus_data_generation_update(); 1175 return (0); 1176 } 1177 1178 /** 1179 * @brief Register that a device driver has been deleted from a devclass 1180 * 1181 * Register that a device driver has been removed from a devclass. 1182 * This is called by devclass_delete_driver to accomplish the 1183 * recursive notification of all the children classes of busclass, as 1184 * well as busclass. Each layer will attempt to detach the driver 1185 * from any devices that are children of the bus's devclass. The function 1186 * will return an error if a device fails to detach. 1187 * 1188 * We do a full search here of the devclass list at each iteration 1189 * level to save storing children-lists in the devclass structure. If 1190 * we ever move beyond a few dozen devices doing this, we may need to 1191 * reevaluate... 1192 * 1193 * @param busclass the devclass of the parent bus 1194 * @param dc the devclass of the driver being deleted 1195 * @param driver the driver being deleted 1196 */ 1197 static int 1198 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1199 { 1200 devclass_t parent; 1201 device_t dev; 1202 int error, i; 1203 1204 /* 1205 * Disassociate from any devices. We iterate through all the 1206 * devices in the devclass of the driver and detach any which are 1207 * using the driver and which have a parent in the devclass which 1208 * we are deleting from. 1209 * 1210 * Note that since a driver can be in multiple devclasses, we 1211 * should not detach devices which are not children of devices in 1212 * the affected devclass. 1213 */ 1214 for (i = 0; i < dc->maxunit; i++) { 1215 if (dc->devices[i]) { 1216 dev = dc->devices[i]; 1217 if (dev->driver == driver && dev->parent && 1218 dev->parent->devclass == busclass) { 1219 if ((error = device_detach(dev)) != 0) 1220 return (error); 1221 BUS_PROBE_NOMATCH(dev->parent, dev); 1222 devnomatch(dev); 1223 dev->flags |= DF_DONENOMATCH; 1224 } 1225 } 1226 } 1227 1228 /* 1229 * Walk through the children classes. Since we only keep a 1230 * single parent pointer around, we walk the entire list of 1231 * devclasses looking for children. We set the 1232 * DC_HAS_CHILDREN flag when a child devclass is created on 1233 * the parent, so we only walk the list for those devclasses 1234 * that have children. 1235 */ 1236 if (!(busclass->flags & DC_HAS_CHILDREN)) 1237 return (0); 1238 parent = busclass; 1239 TAILQ_FOREACH(busclass, &devclasses, link) { 1240 if (busclass->parent == parent) { 1241 error = devclass_driver_deleted(busclass, dc, driver); 1242 if (error) 1243 return (error); 1244 } 1245 } 1246 return (0); 1247 } 1248 1249 /** 1250 * @brief Delete a device driver from a device class 1251 * 1252 * Delete a device driver from a devclass. This is normally called 1253 * automatically by DRIVER_MODULE(). 1254 * 1255 * If the driver is currently attached to any devices, 1256 * devclass_delete_driver() will first attempt to detach from each 1257 * device. If one of the detach calls fails, the driver will not be 1258 * deleted. 1259 * 1260 * @param dc the devclass to edit 1261 * @param driver the driver to unregister 1262 */ 1263 int 1264 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1265 { 1266 devclass_t dc = devclass_find(driver->name); 1267 driverlink_t dl; 1268 int error; 1269 1270 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1271 1272 if (!dc) 1273 return (0); 1274 1275 /* 1276 * Find the link structure in the bus' list of drivers. 1277 */ 1278 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1279 if (dl->driver == driver) 1280 break; 1281 } 1282 1283 if (!dl) { 1284 PDEBUG(("%s not found in %s list", driver->name, 1285 busclass->name)); 1286 return (ENOENT); 1287 } 1288 1289 error = devclass_driver_deleted(busclass, dc, driver); 1290 if (error != 0) 1291 return (error); 1292 1293 TAILQ_REMOVE(&busclass->drivers, dl, link); 1294 free(dl, M_BUS); 1295 1296 /* XXX: kobj_mtx */ 1297 driver->refs--; 1298 if (driver->refs == 0) 1299 kobj_class_free((kobj_class_t) driver); 1300 1301 bus_data_generation_update(); 1302 return (0); 1303 } 1304 1305 /** 1306 * @brief Quiesces a set of device drivers from a device class 1307 * 1308 * Quiesce a device driver from a devclass. This is normally called 1309 * automatically by DRIVER_MODULE(). 1310 * 1311 * If the driver is currently attached to any devices, 1312 * devclass_quiesece_driver() will first attempt to quiesce each 1313 * device. 1314 * 1315 * @param dc the devclass to edit 1316 * @param driver the driver to unregister 1317 */ 1318 static int 1319 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1320 { 1321 devclass_t dc = devclass_find(driver->name); 1322 driverlink_t dl; 1323 device_t dev; 1324 int i; 1325 int error; 1326 1327 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1328 1329 if (!dc) 1330 return (0); 1331 1332 /* 1333 * Find the link structure in the bus' list of drivers. 1334 */ 1335 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1336 if (dl->driver == driver) 1337 break; 1338 } 1339 1340 if (!dl) { 1341 PDEBUG(("%s not found in %s list", driver->name, 1342 busclass->name)); 1343 return (ENOENT); 1344 } 1345 1346 /* 1347 * Quiesce all devices. We iterate through all the devices in 1348 * the devclass of the driver and quiesce any which are using 1349 * the driver and which have a parent in the devclass which we 1350 * are quiescing. 1351 * 1352 * Note that since a driver can be in multiple devclasses, we 1353 * should not quiesce devices which are not children of 1354 * devices in the affected devclass. 1355 */ 1356 for (i = 0; i < dc->maxunit; i++) { 1357 if (dc->devices[i]) { 1358 dev = dc->devices[i]; 1359 if (dev->driver == driver && dev->parent && 1360 dev->parent->devclass == busclass) { 1361 if ((error = device_quiesce(dev)) != 0) 1362 return (error); 1363 } 1364 } 1365 } 1366 1367 return (0); 1368 } 1369 1370 /** 1371 * @internal 1372 */ 1373 static driverlink_t 1374 devclass_find_driver_internal(devclass_t dc, const char *classname) 1375 { 1376 driverlink_t dl; 1377 1378 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1379 1380 TAILQ_FOREACH(dl, &dc->drivers, link) { 1381 if (!strcmp(dl->driver->name, classname)) 1382 return (dl); 1383 } 1384 1385 PDEBUG(("not found")); 1386 return (NULL); 1387 } 1388 1389 /** 1390 * @brief Return the name of the devclass 1391 */ 1392 const char * 1393 devclass_get_name(devclass_t dc) 1394 { 1395 return (dc->name); 1396 } 1397 1398 /** 1399 * @brief Find a device given a unit number 1400 * 1401 * @param dc the devclass to search 1402 * @param unit the unit number to search for 1403 * 1404 * @returns the device with the given unit number or @c 1405 * NULL if there is no such device 1406 */ 1407 device_t 1408 devclass_get_device(devclass_t dc, int unit) 1409 { 1410 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1411 return (NULL); 1412 return (dc->devices[unit]); 1413 } 1414 1415 /** 1416 * @brief Find the softc field of a device given a unit number 1417 * 1418 * @param dc the devclass to search 1419 * @param unit the unit number to search for 1420 * 1421 * @returns the softc field of the device with the given 1422 * unit number or @c NULL if there is no such 1423 * device 1424 */ 1425 void * 1426 devclass_get_softc(devclass_t dc, int unit) 1427 { 1428 device_t dev; 1429 1430 dev = devclass_get_device(dc, unit); 1431 if (!dev) 1432 return (NULL); 1433 1434 return (device_get_softc(dev)); 1435 } 1436 1437 /** 1438 * @brief Get a list of devices in the devclass 1439 * 1440 * An array containing a list of all the devices in the given devclass 1441 * is allocated and returned in @p *devlistp. The number of devices 1442 * in the array is returned in @p *devcountp. The caller should free 1443 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1444 * 1445 * @param dc the devclass to examine 1446 * @param devlistp points at location for array pointer return 1447 * value 1448 * @param devcountp points at location for array size return value 1449 * 1450 * @retval 0 success 1451 * @retval ENOMEM the array allocation failed 1452 */ 1453 int 1454 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1455 { 1456 int count, i; 1457 device_t *list; 1458 1459 count = devclass_get_count(dc); 1460 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1461 if (!list) 1462 return (ENOMEM); 1463 1464 count = 0; 1465 for (i = 0; i < dc->maxunit; i++) { 1466 if (dc->devices[i]) { 1467 list[count] = dc->devices[i]; 1468 count++; 1469 } 1470 } 1471 1472 *devlistp = list; 1473 *devcountp = count; 1474 1475 return (0); 1476 } 1477 1478 /** 1479 * @brief Get a list of drivers in the devclass 1480 * 1481 * An array containing a list of pointers to all the drivers in the 1482 * given devclass is allocated and returned in @p *listp. The number 1483 * of drivers in the array is returned in @p *countp. The caller should 1484 * free the array using @c free(p, M_TEMP). 1485 * 1486 * @param dc the devclass to examine 1487 * @param listp gives location for array pointer return value 1488 * @param countp gives location for number of array elements 1489 * return value 1490 * 1491 * @retval 0 success 1492 * @retval ENOMEM the array allocation failed 1493 */ 1494 int 1495 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1496 { 1497 driverlink_t dl; 1498 driver_t **list; 1499 int count; 1500 1501 count = 0; 1502 TAILQ_FOREACH(dl, &dc->drivers, link) 1503 count++; 1504 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1505 if (list == NULL) 1506 return (ENOMEM); 1507 1508 count = 0; 1509 TAILQ_FOREACH(dl, &dc->drivers, link) { 1510 list[count] = dl->driver; 1511 count++; 1512 } 1513 *listp = list; 1514 *countp = count; 1515 1516 return (0); 1517 } 1518 1519 /** 1520 * @brief Get the number of devices in a devclass 1521 * 1522 * @param dc the devclass to examine 1523 */ 1524 int 1525 devclass_get_count(devclass_t dc) 1526 { 1527 int count, i; 1528 1529 count = 0; 1530 for (i = 0; i < dc->maxunit; i++) 1531 if (dc->devices[i]) 1532 count++; 1533 return (count); 1534 } 1535 1536 /** 1537 * @brief Get the maximum unit number used in a devclass 1538 * 1539 * Note that this is one greater than the highest currently-allocated 1540 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1541 * that not even the devclass has been allocated yet. 1542 * 1543 * @param dc the devclass to examine 1544 */ 1545 int 1546 devclass_get_maxunit(devclass_t dc) 1547 { 1548 if (dc == NULL) 1549 return (-1); 1550 return (dc->maxunit); 1551 } 1552 1553 /** 1554 * @brief Find a free unit number in a devclass 1555 * 1556 * This function searches for the first unused unit number greater 1557 * that or equal to @p unit. 1558 * 1559 * @param dc the devclass to examine 1560 * @param unit the first unit number to check 1561 */ 1562 int 1563 devclass_find_free_unit(devclass_t dc, int unit) 1564 { 1565 if (dc == NULL) 1566 return (unit); 1567 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1568 unit++; 1569 return (unit); 1570 } 1571 1572 /** 1573 * @brief Set the parent of a devclass 1574 * 1575 * The parent class is normally initialised automatically by 1576 * DRIVER_MODULE(). 1577 * 1578 * @param dc the devclass to edit 1579 * @param pdc the new parent devclass 1580 */ 1581 void 1582 devclass_set_parent(devclass_t dc, devclass_t pdc) 1583 { 1584 dc->parent = pdc; 1585 } 1586 1587 /** 1588 * @brief Get the parent of a devclass 1589 * 1590 * @param dc the devclass to examine 1591 */ 1592 devclass_t 1593 devclass_get_parent(devclass_t dc) 1594 { 1595 return (dc->parent); 1596 } 1597 1598 struct sysctl_ctx_list * 1599 devclass_get_sysctl_ctx(devclass_t dc) 1600 { 1601 return (&dc->sysctl_ctx); 1602 } 1603 1604 struct sysctl_oid * 1605 devclass_get_sysctl_tree(devclass_t dc) 1606 { 1607 return (dc->sysctl_tree); 1608 } 1609 1610 /** 1611 * @internal 1612 * @brief Allocate a unit number 1613 * 1614 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1615 * will do). The allocated unit number is returned in @p *unitp. 1616 1617 * @param dc the devclass to allocate from 1618 * @param unitp points at the location for the allocated unit 1619 * number 1620 * 1621 * @retval 0 success 1622 * @retval EEXIST the requested unit number is already allocated 1623 * @retval ENOMEM memory allocation failure 1624 */ 1625 static int 1626 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1627 { 1628 const char *s; 1629 int unit = *unitp; 1630 1631 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1632 1633 /* Ask the parent bus if it wants to wire this device. */ 1634 if (unit == -1) 1635 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1636 &unit); 1637 1638 /* If we were given a wired unit number, check for existing device */ 1639 /* XXX imp XXX */ 1640 if (unit != -1) { 1641 if (unit >= 0 && unit < dc->maxunit && 1642 dc->devices[unit] != NULL) { 1643 if (bootverbose) 1644 printf("%s: %s%d already exists; skipping it\n", 1645 dc->name, dc->name, *unitp); 1646 return (EEXIST); 1647 } 1648 } else { 1649 /* Unwired device, find the next available slot for it */ 1650 unit = 0; 1651 for (unit = 0;; unit++) { 1652 /* If there is an "at" hint for a unit then skip it. */ 1653 if (resource_string_value(dc->name, unit, "at", &s) == 1654 0) 1655 continue; 1656 1657 /* If this device slot is already in use, skip it. */ 1658 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1659 continue; 1660 1661 break; 1662 } 1663 } 1664 1665 /* 1666 * We've selected a unit beyond the length of the table, so let's 1667 * extend the table to make room for all units up to and including 1668 * this one. 1669 */ 1670 if (unit >= dc->maxunit) { 1671 device_t *newlist, *oldlist; 1672 int newsize; 1673 1674 oldlist = dc->devices; 1675 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1676 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1677 if (!newlist) 1678 return (ENOMEM); 1679 if (oldlist != NULL) 1680 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1681 bzero(newlist + dc->maxunit, 1682 sizeof(device_t) * (newsize - dc->maxunit)); 1683 dc->devices = newlist; 1684 dc->maxunit = newsize; 1685 if (oldlist != NULL) 1686 free(oldlist, M_BUS); 1687 } 1688 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1689 1690 *unitp = unit; 1691 return (0); 1692 } 1693 1694 /** 1695 * @internal 1696 * @brief Add a device to a devclass 1697 * 1698 * A unit number is allocated for the device (using the device's 1699 * preferred unit number if any) and the device is registered in the 1700 * devclass. This allows the device to be looked up by its unit 1701 * number, e.g. by decoding a dev_t minor number. 1702 * 1703 * @param dc the devclass to add to 1704 * @param dev the device to add 1705 * 1706 * @retval 0 success 1707 * @retval EEXIST the requested unit number is already allocated 1708 * @retval ENOMEM memory allocation failure 1709 */ 1710 static int 1711 devclass_add_device(devclass_t dc, device_t dev) 1712 { 1713 int buflen, error; 1714 1715 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1716 1717 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1718 if (buflen < 0) 1719 return (ENOMEM); 1720 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1721 if (!dev->nameunit) 1722 return (ENOMEM); 1723 1724 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1725 free(dev->nameunit, M_BUS); 1726 dev->nameunit = NULL; 1727 return (error); 1728 } 1729 dc->devices[dev->unit] = dev; 1730 dev->devclass = dc; 1731 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1732 1733 return (0); 1734 } 1735 1736 /** 1737 * @internal 1738 * @brief Delete a device from a devclass 1739 * 1740 * The device is removed from the devclass's device list and its unit 1741 * number is freed. 1742 1743 * @param dc the devclass to delete from 1744 * @param dev the device to delete 1745 * 1746 * @retval 0 success 1747 */ 1748 static int 1749 devclass_delete_device(devclass_t dc, device_t dev) 1750 { 1751 if (!dc || !dev) 1752 return (0); 1753 1754 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1755 1756 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1757 panic("devclass_delete_device: inconsistent device class"); 1758 dc->devices[dev->unit] = NULL; 1759 if (dev->flags & DF_WILDCARD) 1760 dev->unit = -1; 1761 dev->devclass = NULL; 1762 free(dev->nameunit, M_BUS); 1763 dev->nameunit = NULL; 1764 1765 return (0); 1766 } 1767 1768 /** 1769 * @internal 1770 * @brief Make a new device and add it as a child of @p parent 1771 * 1772 * @param parent the parent of the new device 1773 * @param name the devclass name of the new device or @c NULL 1774 * to leave the devclass unspecified 1775 * @parem unit the unit number of the new device of @c -1 to 1776 * leave the unit number unspecified 1777 * 1778 * @returns the new device 1779 */ 1780 static device_t 1781 make_device(device_t parent, const char *name, int unit) 1782 { 1783 device_t dev; 1784 devclass_t dc; 1785 1786 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1787 1788 if (name) { 1789 dc = devclass_find_internal(name, NULL, TRUE); 1790 if (!dc) { 1791 printf("make_device: can't find device class %s\n", 1792 name); 1793 return (NULL); 1794 } 1795 } else { 1796 dc = NULL; 1797 } 1798 1799 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1800 if (!dev) 1801 return (NULL); 1802 1803 dev->parent = parent; 1804 TAILQ_INIT(&dev->children); 1805 kobj_init((kobj_t) dev, &null_class); 1806 dev->driver = NULL; 1807 dev->devclass = NULL; 1808 dev->unit = unit; 1809 dev->nameunit = NULL; 1810 dev->desc = NULL; 1811 dev->busy = 0; 1812 dev->devflags = 0; 1813 dev->flags = DF_ENABLED; 1814 dev->order = 0; 1815 if (unit == -1) 1816 dev->flags |= DF_WILDCARD; 1817 if (name) { 1818 dev->flags |= DF_FIXEDCLASS; 1819 if (devclass_add_device(dc, dev)) { 1820 kobj_delete((kobj_t) dev, M_BUS); 1821 return (NULL); 1822 } 1823 } 1824 dev->ivars = NULL; 1825 dev->softc = NULL; 1826 1827 dev->state = DS_NOTPRESENT; 1828 1829 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1830 bus_data_generation_update(); 1831 1832 return (dev); 1833 } 1834 1835 /** 1836 * @internal 1837 * @brief Print a description of a device. 1838 */ 1839 static int 1840 device_print_child(device_t dev, device_t child) 1841 { 1842 int retval = 0; 1843 1844 if (device_is_alive(child)) 1845 retval += BUS_PRINT_CHILD(dev, child); 1846 else 1847 retval += device_printf(child, " not found\n"); 1848 1849 return (retval); 1850 } 1851 1852 /** 1853 * @brief Create a new device 1854 * 1855 * This creates a new device and adds it as a child of an existing 1856 * parent device. The new device will be added after the last existing 1857 * child with order zero. 1858 * 1859 * @param dev the device which will be the parent of the 1860 * new child device 1861 * @param name devclass name for new device or @c NULL if not 1862 * specified 1863 * @param unit unit number for new device or @c -1 if not 1864 * specified 1865 * 1866 * @returns the new device 1867 */ 1868 device_t 1869 device_add_child(device_t dev, const char *name, int unit) 1870 { 1871 return (device_add_child_ordered(dev, 0, name, unit)); 1872 } 1873 1874 /** 1875 * @brief Create a new device 1876 * 1877 * This creates a new device and adds it as a child of an existing 1878 * parent device. The new device will be added after the last existing 1879 * child with the same order. 1880 * 1881 * @param dev the device which will be the parent of the 1882 * new child device 1883 * @param order a value which is used to partially sort the 1884 * children of @p dev - devices created using 1885 * lower values of @p order appear first in @p 1886 * dev's list of children 1887 * @param name devclass name for new device or @c NULL if not 1888 * specified 1889 * @param unit unit number for new device or @c -1 if not 1890 * specified 1891 * 1892 * @returns the new device 1893 */ 1894 device_t 1895 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1896 { 1897 device_t child; 1898 device_t place; 1899 1900 PDEBUG(("%s at %s with order %u as unit %d", 1901 name, DEVICENAME(dev), order, unit)); 1902 KASSERT(name != NULL || unit == -1, 1903 ("child device with wildcard name and specific unit number")); 1904 1905 child = make_device(dev, name, unit); 1906 if (child == NULL) 1907 return (child); 1908 child->order = order; 1909 1910 TAILQ_FOREACH(place, &dev->children, link) { 1911 if (place->order > order) 1912 break; 1913 } 1914 1915 if (place) { 1916 /* 1917 * The device 'place' is the first device whose order is 1918 * greater than the new child. 1919 */ 1920 TAILQ_INSERT_BEFORE(place, child, link); 1921 } else { 1922 /* 1923 * The new child's order is greater or equal to the order of 1924 * any existing device. Add the child to the tail of the list. 1925 */ 1926 TAILQ_INSERT_TAIL(&dev->children, child, link); 1927 } 1928 1929 bus_data_generation_update(); 1930 return (child); 1931 } 1932 1933 /** 1934 * @brief Delete a device 1935 * 1936 * This function deletes a device along with all of its children. If 1937 * the device currently has a driver attached to it, the device is 1938 * detached first using device_detach(). 1939 * 1940 * @param dev the parent device 1941 * @param child the device to delete 1942 * 1943 * @retval 0 success 1944 * @retval non-zero a unit error code describing the error 1945 */ 1946 int 1947 device_delete_child(device_t dev, device_t child) 1948 { 1949 int error; 1950 device_t grandchild; 1951 1952 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1953 1954 /* detach parent before deleting children, if any */ 1955 if ((error = device_detach(child)) != 0) 1956 return (error); 1957 1958 /* remove children second */ 1959 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1960 error = device_delete_child(child, grandchild); 1961 if (error) 1962 return (error); 1963 } 1964 1965 if (child->devclass) 1966 devclass_delete_device(child->devclass, child); 1967 if (child->parent) 1968 BUS_CHILD_DELETED(dev, child); 1969 TAILQ_REMOVE(&dev->children, child, link); 1970 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1971 kobj_delete((kobj_t) child, M_BUS); 1972 1973 bus_data_generation_update(); 1974 return (0); 1975 } 1976 1977 /** 1978 * @brief Delete all children devices of the given device, if any. 1979 * 1980 * This function deletes all children devices of the given device, if 1981 * any, using the device_delete_child() function for each device it 1982 * finds. If a child device cannot be deleted, this function will 1983 * return an error code. 1984 * 1985 * @param dev the parent device 1986 * 1987 * @retval 0 success 1988 * @retval non-zero a device would not detach 1989 */ 1990 int 1991 device_delete_children(device_t dev) 1992 { 1993 device_t child; 1994 int error; 1995 1996 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1997 1998 error = 0; 1999 2000 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 2001 error = device_delete_child(dev, child); 2002 if (error) { 2003 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 2004 break; 2005 } 2006 } 2007 return (error); 2008 } 2009 2010 /** 2011 * @brief Find a device given a unit number 2012 * 2013 * This is similar to devclass_get_devices() but only searches for 2014 * devices which have @p dev as a parent. 2015 * 2016 * @param dev the parent device to search 2017 * @param unit the unit number to search for. If the unit is -1, 2018 * return the first child of @p dev which has name 2019 * @p classname (that is, the one with the lowest unit.) 2020 * 2021 * @returns the device with the given unit number or @c 2022 * NULL if there is no such device 2023 */ 2024 device_t 2025 device_find_child(device_t dev, const char *classname, int unit) 2026 { 2027 devclass_t dc; 2028 device_t child; 2029 2030 dc = devclass_find(classname); 2031 if (!dc) 2032 return (NULL); 2033 2034 if (unit != -1) { 2035 child = devclass_get_device(dc, unit); 2036 if (child && child->parent == dev) 2037 return (child); 2038 } else { 2039 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2040 child = devclass_get_device(dc, unit); 2041 if (child && child->parent == dev) 2042 return (child); 2043 } 2044 } 2045 return (NULL); 2046 } 2047 2048 /** 2049 * @internal 2050 */ 2051 static driverlink_t 2052 first_matching_driver(devclass_t dc, device_t dev) 2053 { 2054 if (dev->devclass) 2055 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2056 return (TAILQ_FIRST(&dc->drivers)); 2057 } 2058 2059 /** 2060 * @internal 2061 */ 2062 static driverlink_t 2063 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2064 { 2065 if (dev->devclass) { 2066 driverlink_t dl; 2067 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2068 if (!strcmp(dev->devclass->name, dl->driver->name)) 2069 return (dl); 2070 return (NULL); 2071 } 2072 return (TAILQ_NEXT(last, link)); 2073 } 2074 2075 /** 2076 * @internal 2077 */ 2078 int 2079 device_probe_child(device_t dev, device_t child) 2080 { 2081 devclass_t dc; 2082 driverlink_t best = NULL; 2083 driverlink_t dl; 2084 int result, pri = 0; 2085 int hasclass = (child->devclass != NULL); 2086 2087 GIANT_REQUIRED; 2088 2089 dc = dev->devclass; 2090 if (!dc) 2091 panic("device_probe_child: parent device has no devclass"); 2092 2093 /* 2094 * If the state is already probed, then return. However, don't 2095 * return if we can rebid this object. 2096 */ 2097 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2098 return (0); 2099 2100 for (; dc; dc = dc->parent) { 2101 for (dl = first_matching_driver(dc, child); 2102 dl; 2103 dl = next_matching_driver(dc, child, dl)) { 2104 /* If this driver's pass is too high, then ignore it. */ 2105 if (dl->pass > bus_current_pass) 2106 continue; 2107 2108 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2109 result = device_set_driver(child, dl->driver); 2110 if (result == ENOMEM) 2111 return (result); 2112 else if (result != 0) 2113 continue; 2114 if (!hasclass) { 2115 if (device_set_devclass(child, 2116 dl->driver->name) != 0) { 2117 char const * devname = 2118 device_get_name(child); 2119 if (devname == NULL) 2120 devname = "(unknown)"; 2121 printf("driver bug: Unable to set " 2122 "devclass (class: %s " 2123 "devname: %s)\n", 2124 dl->driver->name, 2125 devname); 2126 (void)device_set_driver(child, NULL); 2127 continue; 2128 } 2129 } 2130 2131 /* Fetch any flags for the device before probing. */ 2132 resource_int_value(dl->driver->name, child->unit, 2133 "flags", &child->devflags); 2134 2135 result = DEVICE_PROBE(child); 2136 2137 /* Reset flags and devclass before the next probe. */ 2138 child->devflags = 0; 2139 if (!hasclass) 2140 (void)device_set_devclass(child, NULL); 2141 2142 /* 2143 * If the driver returns SUCCESS, there can be 2144 * no higher match for this device. 2145 */ 2146 if (result == 0) { 2147 best = dl; 2148 pri = 0; 2149 break; 2150 } 2151 2152 /* 2153 * Reset DF_QUIET in case this driver doesn't 2154 * end up as the best driver. 2155 */ 2156 device_verbose(child); 2157 2158 /* 2159 * Probes that return BUS_PROBE_NOWILDCARD or lower 2160 * only match on devices whose driver was explicitly 2161 * specified. 2162 */ 2163 if (result <= BUS_PROBE_NOWILDCARD && 2164 !(child->flags & DF_FIXEDCLASS)) { 2165 result = ENXIO; 2166 } 2167 2168 /* 2169 * The driver returned an error so it 2170 * certainly doesn't match. 2171 */ 2172 if (result > 0) { 2173 (void)device_set_driver(child, NULL); 2174 continue; 2175 } 2176 2177 /* 2178 * A priority lower than SUCCESS, remember the 2179 * best matching driver. Initialise the value 2180 * of pri for the first match. 2181 */ 2182 if (best == NULL || result > pri) { 2183 best = dl; 2184 pri = result; 2185 continue; 2186 } 2187 } 2188 /* 2189 * If we have an unambiguous match in this devclass, 2190 * don't look in the parent. 2191 */ 2192 if (best && pri == 0) 2193 break; 2194 } 2195 2196 /* 2197 * If we found a driver, change state and initialise the devclass. 2198 */ 2199 /* XXX What happens if we rebid and got no best? */ 2200 if (best) { 2201 /* 2202 * If this device was attached, and we were asked to 2203 * rescan, and it is a different driver, then we have 2204 * to detach the old driver and reattach this new one. 2205 * Note, we don't have to check for DF_REBID here 2206 * because if the state is > DS_ALIVE, we know it must 2207 * be. 2208 * 2209 * This assumes that all DF_REBID drivers can have 2210 * their probe routine called at any time and that 2211 * they are idempotent as well as completely benign in 2212 * normal operations. 2213 * 2214 * We also have to make sure that the detach 2215 * succeeded, otherwise we fail the operation (or 2216 * maybe it should just fail silently? I'm torn). 2217 */ 2218 if (child->state > DS_ALIVE && best->driver != child->driver) 2219 if ((result = device_detach(dev)) != 0) 2220 return (result); 2221 2222 /* Set the winning driver, devclass, and flags. */ 2223 if (!child->devclass) { 2224 result = device_set_devclass(child, best->driver->name); 2225 if (result != 0) 2226 return (result); 2227 } 2228 result = device_set_driver(child, best->driver); 2229 if (result != 0) 2230 return (result); 2231 resource_int_value(best->driver->name, child->unit, 2232 "flags", &child->devflags); 2233 2234 if (pri < 0) { 2235 /* 2236 * A bit bogus. Call the probe method again to make 2237 * sure that we have the right description. 2238 */ 2239 DEVICE_PROBE(child); 2240 #if 0 2241 child->flags |= DF_REBID; 2242 #endif 2243 } else 2244 child->flags &= ~DF_REBID; 2245 child->state = DS_ALIVE; 2246 2247 bus_data_generation_update(); 2248 return (0); 2249 } 2250 2251 return (ENXIO); 2252 } 2253 2254 /** 2255 * @brief Return the parent of a device 2256 */ 2257 device_t 2258 device_get_parent(device_t dev) 2259 { 2260 return (dev->parent); 2261 } 2262 2263 /** 2264 * @brief Get a list of children of a device 2265 * 2266 * An array containing a list of all the children of the given device 2267 * is allocated and returned in @p *devlistp. The number of devices 2268 * in the array is returned in @p *devcountp. The caller should free 2269 * the array using @c free(p, M_TEMP). 2270 * 2271 * @param dev the device to examine 2272 * @param devlistp points at location for array pointer return 2273 * value 2274 * @param devcountp points at location for array size return value 2275 * 2276 * @retval 0 success 2277 * @retval ENOMEM the array allocation failed 2278 */ 2279 int 2280 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2281 { 2282 int count; 2283 device_t child; 2284 device_t *list; 2285 2286 count = 0; 2287 TAILQ_FOREACH(child, &dev->children, link) { 2288 count++; 2289 } 2290 if (count == 0) { 2291 *devlistp = NULL; 2292 *devcountp = 0; 2293 return (0); 2294 } 2295 2296 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2297 if (!list) 2298 return (ENOMEM); 2299 2300 count = 0; 2301 TAILQ_FOREACH(child, &dev->children, link) { 2302 list[count] = child; 2303 count++; 2304 } 2305 2306 *devlistp = list; 2307 *devcountp = count; 2308 2309 return (0); 2310 } 2311 2312 /** 2313 * @brief Return the current driver for the device or @c NULL if there 2314 * is no driver currently attached 2315 */ 2316 driver_t * 2317 device_get_driver(device_t dev) 2318 { 2319 return (dev->driver); 2320 } 2321 2322 /** 2323 * @brief Return the current devclass for the device or @c NULL if 2324 * there is none. 2325 */ 2326 devclass_t 2327 device_get_devclass(device_t dev) 2328 { 2329 return (dev->devclass); 2330 } 2331 2332 /** 2333 * @brief Return the name of the device's devclass or @c NULL if there 2334 * is none. 2335 */ 2336 const char * 2337 device_get_name(device_t dev) 2338 { 2339 if (dev != NULL && dev->devclass) 2340 return (devclass_get_name(dev->devclass)); 2341 return (NULL); 2342 } 2343 2344 /** 2345 * @brief Return a string containing the device's devclass name 2346 * followed by an ascii representation of the device's unit number 2347 * (e.g. @c "foo2"). 2348 */ 2349 const char * 2350 device_get_nameunit(device_t dev) 2351 { 2352 return (dev->nameunit); 2353 } 2354 2355 /** 2356 * @brief Return the device's unit number. 2357 */ 2358 int 2359 device_get_unit(device_t dev) 2360 { 2361 return (dev->unit); 2362 } 2363 2364 /** 2365 * @brief Return the device's description string 2366 */ 2367 const char * 2368 device_get_desc(device_t dev) 2369 { 2370 return (dev->desc); 2371 } 2372 2373 /** 2374 * @brief Return the device's flags 2375 */ 2376 uint32_t 2377 device_get_flags(device_t dev) 2378 { 2379 return (dev->devflags); 2380 } 2381 2382 struct sysctl_ctx_list * 2383 device_get_sysctl_ctx(device_t dev) 2384 { 2385 return (&dev->sysctl_ctx); 2386 } 2387 2388 struct sysctl_oid * 2389 device_get_sysctl_tree(device_t dev) 2390 { 2391 return (dev->sysctl_tree); 2392 } 2393 2394 /** 2395 * @brief Print the name of the device followed by a colon and a space 2396 * 2397 * @returns the number of characters printed 2398 */ 2399 int 2400 device_print_prettyname(device_t dev) 2401 { 2402 const char *name = device_get_name(dev); 2403 2404 if (name == NULL) 2405 return (printf("unknown: ")); 2406 return (printf("%s%d: ", name, device_get_unit(dev))); 2407 } 2408 2409 /** 2410 * @brief Print the name of the device followed by a colon, a space 2411 * and the result of calling vprintf() with the value of @p fmt and 2412 * the following arguments. 2413 * 2414 * @returns the number of characters printed 2415 */ 2416 int 2417 device_printf(device_t dev, const char * fmt, ...) 2418 { 2419 va_list ap; 2420 int retval; 2421 2422 retval = device_print_prettyname(dev); 2423 va_start(ap, fmt); 2424 retval += vprintf(fmt, ap); 2425 va_end(ap); 2426 return (retval); 2427 } 2428 2429 /** 2430 * @internal 2431 */ 2432 static void 2433 device_set_desc_internal(device_t dev, const char* desc, int copy) 2434 { 2435 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2436 free(dev->desc, M_BUS); 2437 dev->flags &= ~DF_DESCMALLOCED; 2438 dev->desc = NULL; 2439 } 2440 2441 if (copy && desc) { 2442 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2443 if (dev->desc) { 2444 strcpy(dev->desc, desc); 2445 dev->flags |= DF_DESCMALLOCED; 2446 } 2447 } else { 2448 /* Avoid a -Wcast-qual warning */ 2449 dev->desc = (char *)(uintptr_t) desc; 2450 } 2451 2452 bus_data_generation_update(); 2453 } 2454 2455 /** 2456 * @brief Set the device's description 2457 * 2458 * The value of @c desc should be a string constant that will not 2459 * change (at least until the description is changed in a subsequent 2460 * call to device_set_desc() or device_set_desc_copy()). 2461 */ 2462 void 2463 device_set_desc(device_t dev, const char* desc) 2464 { 2465 device_set_desc_internal(dev, desc, FALSE); 2466 } 2467 2468 /** 2469 * @brief Set the device's description 2470 * 2471 * The string pointed to by @c desc is copied. Use this function if 2472 * the device description is generated, (e.g. with sprintf()). 2473 */ 2474 void 2475 device_set_desc_copy(device_t dev, const char* desc) 2476 { 2477 device_set_desc_internal(dev, desc, TRUE); 2478 } 2479 2480 /** 2481 * @brief Set the device's flags 2482 */ 2483 void 2484 device_set_flags(device_t dev, uint32_t flags) 2485 { 2486 dev->devflags = flags; 2487 } 2488 2489 /** 2490 * @brief Return the device's softc field 2491 * 2492 * The softc is allocated and zeroed when a driver is attached, based 2493 * on the size field of the driver. 2494 */ 2495 void * 2496 device_get_softc(device_t dev) 2497 { 2498 return (dev->softc); 2499 } 2500 2501 /** 2502 * @brief Set the device's softc field 2503 * 2504 * Most drivers do not need to use this since the softc is allocated 2505 * automatically when the driver is attached. 2506 */ 2507 void 2508 device_set_softc(device_t dev, void *softc) 2509 { 2510 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2511 free(dev->softc, M_BUS_SC); 2512 dev->softc = softc; 2513 if (dev->softc) 2514 dev->flags |= DF_EXTERNALSOFTC; 2515 else 2516 dev->flags &= ~DF_EXTERNALSOFTC; 2517 } 2518 2519 /** 2520 * @brief Free claimed softc 2521 * 2522 * Most drivers do not need to use this since the softc is freed 2523 * automatically when the driver is detached. 2524 */ 2525 void 2526 device_free_softc(void *softc) 2527 { 2528 free(softc, M_BUS_SC); 2529 } 2530 2531 /** 2532 * @brief Claim softc 2533 * 2534 * This function can be used to let the driver free the automatically 2535 * allocated softc using "device_free_softc()". This function is 2536 * useful when the driver is refcounting the softc and the softc 2537 * cannot be freed when the "device_detach" method is called. 2538 */ 2539 void 2540 device_claim_softc(device_t dev) 2541 { 2542 if (dev->softc) 2543 dev->flags |= DF_EXTERNALSOFTC; 2544 else 2545 dev->flags &= ~DF_EXTERNALSOFTC; 2546 } 2547 2548 /** 2549 * @brief Get the device's ivars field 2550 * 2551 * The ivars field is used by the parent device to store per-device 2552 * state (e.g. the physical location of the device or a list of 2553 * resources). 2554 */ 2555 void * 2556 device_get_ivars(device_t dev) 2557 { 2558 2559 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2560 return (dev->ivars); 2561 } 2562 2563 /** 2564 * @brief Set the device's ivars field 2565 */ 2566 void 2567 device_set_ivars(device_t dev, void * ivars) 2568 { 2569 2570 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2571 dev->ivars = ivars; 2572 } 2573 2574 /** 2575 * @brief Return the device's state 2576 */ 2577 device_state_t 2578 device_get_state(device_t dev) 2579 { 2580 return (dev->state); 2581 } 2582 2583 /** 2584 * @brief Set the DF_ENABLED flag for the device 2585 */ 2586 void 2587 device_enable(device_t dev) 2588 { 2589 dev->flags |= DF_ENABLED; 2590 } 2591 2592 /** 2593 * @brief Clear the DF_ENABLED flag for the device 2594 */ 2595 void 2596 device_disable(device_t dev) 2597 { 2598 dev->flags &= ~DF_ENABLED; 2599 } 2600 2601 /** 2602 * @brief Increment the busy counter for the device 2603 */ 2604 void 2605 device_busy(device_t dev) 2606 { 2607 if (dev->state < DS_ATTACHING) 2608 panic("device_busy: called for unattached device"); 2609 if (dev->busy == 0 && dev->parent) 2610 device_busy(dev->parent); 2611 dev->busy++; 2612 if (dev->state == DS_ATTACHED) 2613 dev->state = DS_BUSY; 2614 } 2615 2616 /** 2617 * @brief Decrement the busy counter for the device 2618 */ 2619 void 2620 device_unbusy(device_t dev) 2621 { 2622 if (dev->busy != 0 && dev->state != DS_BUSY && 2623 dev->state != DS_ATTACHING) 2624 panic("device_unbusy: called for non-busy device %s", 2625 device_get_nameunit(dev)); 2626 dev->busy--; 2627 if (dev->busy == 0) { 2628 if (dev->parent) 2629 device_unbusy(dev->parent); 2630 if (dev->state == DS_BUSY) 2631 dev->state = DS_ATTACHED; 2632 } 2633 } 2634 2635 /** 2636 * @brief Set the DF_QUIET flag for the device 2637 */ 2638 void 2639 device_quiet(device_t dev) 2640 { 2641 dev->flags |= DF_QUIET; 2642 } 2643 2644 /** 2645 * @brief Clear the DF_QUIET flag for the device 2646 */ 2647 void 2648 device_verbose(device_t dev) 2649 { 2650 dev->flags &= ~DF_QUIET; 2651 } 2652 2653 /** 2654 * @brief Return non-zero if the DF_QUIET flag is set on the device 2655 */ 2656 int 2657 device_is_quiet(device_t dev) 2658 { 2659 return ((dev->flags & DF_QUIET) != 0); 2660 } 2661 2662 /** 2663 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2664 */ 2665 int 2666 device_is_enabled(device_t dev) 2667 { 2668 return ((dev->flags & DF_ENABLED) != 0); 2669 } 2670 2671 /** 2672 * @brief Return non-zero if the device was successfully probed 2673 */ 2674 int 2675 device_is_alive(device_t dev) 2676 { 2677 return (dev->state >= DS_ALIVE); 2678 } 2679 2680 /** 2681 * @brief Return non-zero if the device currently has a driver 2682 * attached to it 2683 */ 2684 int 2685 device_is_attached(device_t dev) 2686 { 2687 return (dev->state >= DS_ATTACHED); 2688 } 2689 2690 /** 2691 * @brief Return non-zero if the device is currently suspended. 2692 */ 2693 int 2694 device_is_suspended(device_t dev) 2695 { 2696 return ((dev->flags & DF_SUSPENDED) != 0); 2697 } 2698 2699 /** 2700 * @brief Set the devclass of a device 2701 * @see devclass_add_device(). 2702 */ 2703 int 2704 device_set_devclass(device_t dev, const char *classname) 2705 { 2706 devclass_t dc; 2707 int error; 2708 2709 if (!classname) { 2710 if (dev->devclass) 2711 devclass_delete_device(dev->devclass, dev); 2712 return (0); 2713 } 2714 2715 if (dev->devclass) { 2716 printf("device_set_devclass: device class already set\n"); 2717 return (EINVAL); 2718 } 2719 2720 dc = devclass_find_internal(classname, NULL, TRUE); 2721 if (!dc) 2722 return (ENOMEM); 2723 2724 error = devclass_add_device(dc, dev); 2725 2726 bus_data_generation_update(); 2727 return (error); 2728 } 2729 2730 /** 2731 * @brief Set the devclass of a device and mark the devclass fixed. 2732 * @see device_set_devclass() 2733 */ 2734 int 2735 device_set_devclass_fixed(device_t dev, const char *classname) 2736 { 2737 int error; 2738 2739 if (classname == NULL) 2740 return (EINVAL); 2741 2742 error = device_set_devclass(dev, classname); 2743 if (error) 2744 return (error); 2745 dev->flags |= DF_FIXEDCLASS; 2746 return (0); 2747 } 2748 2749 /** 2750 * @brief Set the driver of a device 2751 * 2752 * @retval 0 success 2753 * @retval EBUSY the device already has a driver attached 2754 * @retval ENOMEM a memory allocation failure occurred 2755 */ 2756 int 2757 device_set_driver(device_t dev, driver_t *driver) 2758 { 2759 if (dev->state >= DS_ATTACHED) 2760 return (EBUSY); 2761 2762 if (dev->driver == driver) 2763 return (0); 2764 2765 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2766 free(dev->softc, M_BUS_SC); 2767 dev->softc = NULL; 2768 } 2769 device_set_desc(dev, NULL); 2770 kobj_delete((kobj_t) dev, NULL); 2771 dev->driver = driver; 2772 if (driver) { 2773 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2774 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2775 dev->softc = malloc(driver->size, M_BUS_SC, 2776 M_NOWAIT | M_ZERO); 2777 if (!dev->softc) { 2778 kobj_delete((kobj_t) dev, NULL); 2779 kobj_init((kobj_t) dev, &null_class); 2780 dev->driver = NULL; 2781 return (ENOMEM); 2782 } 2783 } 2784 } else { 2785 kobj_init((kobj_t) dev, &null_class); 2786 } 2787 2788 bus_data_generation_update(); 2789 return (0); 2790 } 2791 2792 /** 2793 * @brief Probe a device, and return this status. 2794 * 2795 * This function is the core of the device autoconfiguration 2796 * system. Its purpose is to select a suitable driver for a device and 2797 * then call that driver to initialise the hardware appropriately. The 2798 * driver is selected by calling the DEVICE_PROBE() method of a set of 2799 * candidate drivers and then choosing the driver which returned the 2800 * best value. This driver is then attached to the device using 2801 * device_attach(). 2802 * 2803 * The set of suitable drivers is taken from the list of drivers in 2804 * the parent device's devclass. If the device was originally created 2805 * with a specific class name (see device_add_child()), only drivers 2806 * with that name are probed, otherwise all drivers in the devclass 2807 * are probed. If no drivers return successful probe values in the 2808 * parent devclass, the search continues in the parent of that 2809 * devclass (see devclass_get_parent()) if any. 2810 * 2811 * @param dev the device to initialise 2812 * 2813 * @retval 0 success 2814 * @retval ENXIO no driver was found 2815 * @retval ENOMEM memory allocation failure 2816 * @retval non-zero some other unix error code 2817 * @retval -1 Device already attached 2818 */ 2819 int 2820 device_probe(device_t dev) 2821 { 2822 int error; 2823 2824 GIANT_REQUIRED; 2825 2826 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2827 return (-1); 2828 2829 if (!(dev->flags & DF_ENABLED)) { 2830 if (bootverbose && device_get_name(dev) != NULL) { 2831 device_print_prettyname(dev); 2832 printf("not probed (disabled)\n"); 2833 } 2834 return (-1); 2835 } 2836 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2837 if (bus_current_pass == BUS_PASS_DEFAULT && 2838 !(dev->flags & DF_DONENOMATCH)) { 2839 BUS_PROBE_NOMATCH(dev->parent, dev); 2840 devnomatch(dev); 2841 dev->flags |= DF_DONENOMATCH; 2842 } 2843 return (error); 2844 } 2845 return (0); 2846 } 2847 2848 /** 2849 * @brief Probe a device and attach a driver if possible 2850 * 2851 * calls device_probe() and attaches if that was successful. 2852 */ 2853 int 2854 device_probe_and_attach(device_t dev) 2855 { 2856 int error; 2857 2858 GIANT_REQUIRED; 2859 2860 error = device_probe(dev); 2861 if (error == -1) 2862 return (0); 2863 else if (error != 0) 2864 return (error); 2865 2866 CURVNET_SET_QUIET(vnet0); 2867 error = device_attach(dev); 2868 CURVNET_RESTORE(); 2869 return error; 2870 } 2871 2872 /** 2873 * @brief Attach a device driver to a device 2874 * 2875 * This function is a wrapper around the DEVICE_ATTACH() driver 2876 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2877 * device's sysctl tree, optionally prints a description of the device 2878 * and queues a notification event for user-based device management 2879 * services. 2880 * 2881 * Normally this function is only called internally from 2882 * device_probe_and_attach(). 2883 * 2884 * @param dev the device to initialise 2885 * 2886 * @retval 0 success 2887 * @retval ENXIO no driver was found 2888 * @retval ENOMEM memory allocation failure 2889 * @retval non-zero some other unix error code 2890 */ 2891 int 2892 device_attach(device_t dev) 2893 { 2894 uint64_t attachtime; 2895 int error; 2896 2897 if (resource_disabled(dev->driver->name, dev->unit)) { 2898 device_disable(dev); 2899 if (bootverbose) 2900 device_printf(dev, "disabled via hints entry\n"); 2901 return (ENXIO); 2902 } 2903 2904 device_sysctl_init(dev); 2905 if (!device_is_quiet(dev)) 2906 device_print_child(dev->parent, dev); 2907 attachtime = get_cyclecount(); 2908 dev->state = DS_ATTACHING; 2909 if ((error = DEVICE_ATTACH(dev)) != 0) { 2910 printf("device_attach: %s%d attach returned %d\n", 2911 dev->driver->name, dev->unit, error); 2912 if (!(dev->flags & DF_FIXEDCLASS)) 2913 devclass_delete_device(dev->devclass, dev); 2914 (void)device_set_driver(dev, NULL); 2915 device_sysctl_fini(dev); 2916 KASSERT(dev->busy == 0, ("attach failed but busy")); 2917 dev->state = DS_NOTPRESENT; 2918 return (error); 2919 } 2920 attachtime = get_cyclecount() - attachtime; 2921 /* 2922 * 4 bits per device is a reasonable value for desktop and server 2923 * hardware with good get_cyclecount() implementations, but WILL 2924 * need to be adjusted on other platforms. 2925 */ 2926 #define RANDOM_PROBE_BIT_GUESS 4 2927 if (bootverbose) 2928 printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n", 2929 sizeof(attachtime), RANDOM_PROBE_BIT_GUESS, 2930 dev->driver->name, dev->unit); 2931 random_harvest_direct(&attachtime, sizeof(attachtime), 2932 RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH); 2933 device_sysctl_update(dev); 2934 if (dev->busy) 2935 dev->state = DS_BUSY; 2936 else 2937 dev->state = DS_ATTACHED; 2938 dev->flags &= ~DF_DONENOMATCH; 2939 devadded(dev); 2940 return (0); 2941 } 2942 2943 /** 2944 * @brief Detach a driver from a device 2945 * 2946 * This function is a wrapper around the DEVICE_DETACH() driver 2947 * method. If the call to DEVICE_DETACH() succeeds, it calls 2948 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2949 * notification event for user-based device management services and 2950 * cleans up the device's sysctl tree. 2951 * 2952 * @param dev the device to un-initialise 2953 * 2954 * @retval 0 success 2955 * @retval ENXIO no driver was found 2956 * @retval ENOMEM memory allocation failure 2957 * @retval non-zero some other unix error code 2958 */ 2959 int 2960 device_detach(device_t dev) 2961 { 2962 int error; 2963 2964 GIANT_REQUIRED; 2965 2966 PDEBUG(("%s", DEVICENAME(dev))); 2967 if (dev->state == DS_BUSY) 2968 return (EBUSY); 2969 if (dev->state != DS_ATTACHED) 2970 return (0); 2971 2972 if ((error = DEVICE_DETACH(dev)) != 0) 2973 return (error); 2974 devremoved(dev); 2975 if (!device_is_quiet(dev)) 2976 device_printf(dev, "detached\n"); 2977 if (dev->parent) 2978 BUS_CHILD_DETACHED(dev->parent, dev); 2979 2980 if (!(dev->flags & DF_FIXEDCLASS)) 2981 devclass_delete_device(dev->devclass, dev); 2982 2983 device_verbose(dev); 2984 dev->state = DS_NOTPRESENT; 2985 (void)device_set_driver(dev, NULL); 2986 device_sysctl_fini(dev); 2987 2988 return (0); 2989 } 2990 2991 /** 2992 * @brief Tells a driver to quiesce itself. 2993 * 2994 * This function is a wrapper around the DEVICE_QUIESCE() driver 2995 * method. If the call to DEVICE_QUIESCE() succeeds. 2996 * 2997 * @param dev the device to quiesce 2998 * 2999 * @retval 0 success 3000 * @retval ENXIO no driver was found 3001 * @retval ENOMEM memory allocation failure 3002 * @retval non-zero some other unix error code 3003 */ 3004 int 3005 device_quiesce(device_t dev) 3006 { 3007 3008 PDEBUG(("%s", DEVICENAME(dev))); 3009 if (dev->state == DS_BUSY) 3010 return (EBUSY); 3011 if (dev->state != DS_ATTACHED) 3012 return (0); 3013 3014 return (DEVICE_QUIESCE(dev)); 3015 } 3016 3017 /** 3018 * @brief Notify a device of system shutdown 3019 * 3020 * This function calls the DEVICE_SHUTDOWN() driver method if the 3021 * device currently has an attached driver. 3022 * 3023 * @returns the value returned by DEVICE_SHUTDOWN() 3024 */ 3025 int 3026 device_shutdown(device_t dev) 3027 { 3028 if (dev->state < DS_ATTACHED) 3029 return (0); 3030 return (DEVICE_SHUTDOWN(dev)); 3031 } 3032 3033 /** 3034 * @brief Set the unit number of a device 3035 * 3036 * This function can be used to override the unit number used for a 3037 * device (e.g. to wire a device to a pre-configured unit number). 3038 */ 3039 int 3040 device_set_unit(device_t dev, int unit) 3041 { 3042 devclass_t dc; 3043 int err; 3044 3045 dc = device_get_devclass(dev); 3046 if (unit < dc->maxunit && dc->devices[unit]) 3047 return (EBUSY); 3048 err = devclass_delete_device(dc, dev); 3049 if (err) 3050 return (err); 3051 dev->unit = unit; 3052 err = devclass_add_device(dc, dev); 3053 if (err) 3054 return (err); 3055 3056 bus_data_generation_update(); 3057 return (0); 3058 } 3059 3060 /*======================================*/ 3061 /* 3062 * Some useful method implementations to make life easier for bus drivers. 3063 */ 3064 3065 void 3066 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 3067 { 3068 3069 bzero(args, sz); 3070 args->size = sz; 3071 args->memattr = VM_MEMATTR_UNCACHEABLE; 3072 } 3073 3074 /** 3075 * @brief Initialise a resource list. 3076 * 3077 * @param rl the resource list to initialise 3078 */ 3079 void 3080 resource_list_init(struct resource_list *rl) 3081 { 3082 STAILQ_INIT(rl); 3083 } 3084 3085 /** 3086 * @brief Reclaim memory used by a resource list. 3087 * 3088 * This function frees the memory for all resource entries on the list 3089 * (if any). 3090 * 3091 * @param rl the resource list to free 3092 */ 3093 void 3094 resource_list_free(struct resource_list *rl) 3095 { 3096 struct resource_list_entry *rle; 3097 3098 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3099 if (rle->res) 3100 panic("resource_list_free: resource entry is busy"); 3101 STAILQ_REMOVE_HEAD(rl, link); 3102 free(rle, M_BUS); 3103 } 3104 } 3105 3106 /** 3107 * @brief Add a resource entry. 3108 * 3109 * This function adds a resource entry using the given @p type, @p 3110 * start, @p end and @p count values. A rid value is chosen by 3111 * searching sequentially for the first unused rid starting at zero. 3112 * 3113 * @param rl the resource list to edit 3114 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3115 * @param start the start address of the resource 3116 * @param end the end address of the resource 3117 * @param count XXX end-start+1 3118 */ 3119 int 3120 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 3121 rman_res_t end, rman_res_t count) 3122 { 3123 int rid; 3124 3125 rid = 0; 3126 while (resource_list_find(rl, type, rid) != NULL) 3127 rid++; 3128 resource_list_add(rl, type, rid, start, end, count); 3129 return (rid); 3130 } 3131 3132 /** 3133 * @brief Add or modify a resource entry. 3134 * 3135 * If an existing entry exists with the same type and rid, it will be 3136 * modified using the given values of @p start, @p end and @p 3137 * count. If no entry exists, a new one will be created using the 3138 * given values. The resource list entry that matches is then returned. 3139 * 3140 * @param rl the resource list to edit 3141 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3142 * @param rid the resource identifier 3143 * @param start the start address of the resource 3144 * @param end the end address of the resource 3145 * @param count XXX end-start+1 3146 */ 3147 struct resource_list_entry * 3148 resource_list_add(struct resource_list *rl, int type, int rid, 3149 rman_res_t start, rman_res_t end, rman_res_t count) 3150 { 3151 struct resource_list_entry *rle; 3152 3153 rle = resource_list_find(rl, type, rid); 3154 if (!rle) { 3155 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3156 M_NOWAIT); 3157 if (!rle) 3158 panic("resource_list_add: can't record entry"); 3159 STAILQ_INSERT_TAIL(rl, rle, link); 3160 rle->type = type; 3161 rle->rid = rid; 3162 rle->res = NULL; 3163 rle->flags = 0; 3164 } 3165 3166 if (rle->res) 3167 panic("resource_list_add: resource entry is busy"); 3168 3169 rle->start = start; 3170 rle->end = end; 3171 rle->count = count; 3172 return (rle); 3173 } 3174 3175 /** 3176 * @brief Determine if a resource entry is busy. 3177 * 3178 * Returns true if a resource entry is busy meaning that it has an 3179 * associated resource that is not an unallocated "reserved" resource. 3180 * 3181 * @param rl the resource list to search 3182 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3183 * @param rid the resource identifier 3184 * 3185 * @returns Non-zero if the entry is busy, zero otherwise. 3186 */ 3187 int 3188 resource_list_busy(struct resource_list *rl, int type, int rid) 3189 { 3190 struct resource_list_entry *rle; 3191 3192 rle = resource_list_find(rl, type, rid); 3193 if (rle == NULL || rle->res == NULL) 3194 return (0); 3195 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3196 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3197 ("reserved resource is active")); 3198 return (0); 3199 } 3200 return (1); 3201 } 3202 3203 /** 3204 * @brief Determine if a resource entry is reserved. 3205 * 3206 * Returns true if a resource entry is reserved meaning that it has an 3207 * associated "reserved" resource. The resource can either be 3208 * allocated or unallocated. 3209 * 3210 * @param rl the resource list to search 3211 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3212 * @param rid the resource identifier 3213 * 3214 * @returns Non-zero if the entry is reserved, zero otherwise. 3215 */ 3216 int 3217 resource_list_reserved(struct resource_list *rl, int type, int rid) 3218 { 3219 struct resource_list_entry *rle; 3220 3221 rle = resource_list_find(rl, type, rid); 3222 if (rle != NULL && rle->flags & RLE_RESERVED) 3223 return (1); 3224 return (0); 3225 } 3226 3227 /** 3228 * @brief Find a resource entry by type and rid. 3229 * 3230 * @param rl the resource list to search 3231 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3232 * @param rid the resource identifier 3233 * 3234 * @returns the resource entry pointer or NULL if there is no such 3235 * entry. 3236 */ 3237 struct resource_list_entry * 3238 resource_list_find(struct resource_list *rl, int type, int rid) 3239 { 3240 struct resource_list_entry *rle; 3241 3242 STAILQ_FOREACH(rle, rl, link) { 3243 if (rle->type == type && rle->rid == rid) 3244 return (rle); 3245 } 3246 return (NULL); 3247 } 3248 3249 /** 3250 * @brief Delete a resource entry. 3251 * 3252 * @param rl the resource list to edit 3253 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3254 * @param rid the resource identifier 3255 */ 3256 void 3257 resource_list_delete(struct resource_list *rl, int type, int rid) 3258 { 3259 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3260 3261 if (rle) { 3262 if (rle->res != NULL) 3263 panic("resource_list_delete: resource has not been released"); 3264 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3265 free(rle, M_BUS); 3266 } 3267 } 3268 3269 /** 3270 * @brief Allocate a reserved resource 3271 * 3272 * This can be used by busses to force the allocation of resources 3273 * that are always active in the system even if they are not allocated 3274 * by a driver (e.g. PCI BARs). This function is usually called when 3275 * adding a new child to the bus. The resource is allocated from the 3276 * parent bus when it is reserved. The resource list entry is marked 3277 * with RLE_RESERVED to note that it is a reserved resource. 3278 * 3279 * Subsequent attempts to allocate the resource with 3280 * resource_list_alloc() will succeed the first time and will set 3281 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3282 * resource that has been allocated is released with 3283 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3284 * the actual resource remains allocated. The resource can be released to 3285 * the parent bus by calling resource_list_unreserve(). 3286 * 3287 * @param rl the resource list to allocate from 3288 * @param bus the parent device of @p child 3289 * @param child the device for which the resource is being reserved 3290 * @param type the type of resource to allocate 3291 * @param rid a pointer to the resource identifier 3292 * @param start hint at the start of the resource range - pass 3293 * @c 0 for any start address 3294 * @param end hint at the end of the resource range - pass 3295 * @c ~0 for any end address 3296 * @param count hint at the size of range required - pass @c 1 3297 * for any size 3298 * @param flags any extra flags to control the resource 3299 * allocation - see @c RF_XXX flags in 3300 * <sys/rman.h> for details 3301 * 3302 * @returns the resource which was allocated or @c NULL if no 3303 * resource could be allocated 3304 */ 3305 struct resource * 3306 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3307 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3308 { 3309 struct resource_list_entry *rle = NULL; 3310 int passthrough = (device_get_parent(child) != bus); 3311 struct resource *r; 3312 3313 if (passthrough) 3314 panic( 3315 "resource_list_reserve() should only be called for direct children"); 3316 if (flags & RF_ACTIVE) 3317 panic( 3318 "resource_list_reserve() should only reserve inactive resources"); 3319 3320 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3321 flags); 3322 if (r != NULL) { 3323 rle = resource_list_find(rl, type, *rid); 3324 rle->flags |= RLE_RESERVED; 3325 } 3326 return (r); 3327 } 3328 3329 /** 3330 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3331 * 3332 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3333 * and passing the allocation up to the parent of @p bus. This assumes 3334 * that the first entry of @c device_get_ivars(child) is a struct 3335 * resource_list. This also handles 'passthrough' allocations where a 3336 * child is a remote descendant of bus by passing the allocation up to 3337 * the parent of bus. 3338 * 3339 * Typically, a bus driver would store a list of child resources 3340 * somewhere in the child device's ivars (see device_get_ivars()) and 3341 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3342 * then call resource_list_alloc() to perform the allocation. 3343 * 3344 * @param rl the resource list to allocate from 3345 * @param bus the parent device of @p child 3346 * @param child the device which is requesting an allocation 3347 * @param type the type of resource to allocate 3348 * @param rid a pointer to the resource identifier 3349 * @param start hint at the start of the resource range - pass 3350 * @c 0 for any start address 3351 * @param end hint at the end of the resource range - pass 3352 * @c ~0 for any end address 3353 * @param count hint at the size of range required - pass @c 1 3354 * for any size 3355 * @param flags any extra flags to control the resource 3356 * allocation - see @c RF_XXX flags in 3357 * <sys/rman.h> for details 3358 * 3359 * @returns the resource which was allocated or @c NULL if no 3360 * resource could be allocated 3361 */ 3362 struct resource * 3363 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3364 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3365 { 3366 struct resource_list_entry *rle = NULL; 3367 int passthrough = (device_get_parent(child) != bus); 3368 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3369 3370 if (passthrough) { 3371 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3372 type, rid, start, end, count, flags)); 3373 } 3374 3375 rle = resource_list_find(rl, type, *rid); 3376 3377 if (!rle) 3378 return (NULL); /* no resource of that type/rid */ 3379 3380 if (rle->res) { 3381 if (rle->flags & RLE_RESERVED) { 3382 if (rle->flags & RLE_ALLOCATED) 3383 return (NULL); 3384 if ((flags & RF_ACTIVE) && 3385 bus_activate_resource(child, type, *rid, 3386 rle->res) != 0) 3387 return (NULL); 3388 rle->flags |= RLE_ALLOCATED; 3389 return (rle->res); 3390 } 3391 device_printf(bus, 3392 "resource entry %#x type %d for child %s is busy\n", *rid, 3393 type, device_get_nameunit(child)); 3394 return (NULL); 3395 } 3396 3397 if (isdefault) { 3398 start = rle->start; 3399 count = ulmax(count, rle->count); 3400 end = ulmax(rle->end, start + count - 1); 3401 } 3402 3403 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3404 type, rid, start, end, count, flags); 3405 3406 /* 3407 * Record the new range. 3408 */ 3409 if (rle->res) { 3410 rle->start = rman_get_start(rle->res); 3411 rle->end = rman_get_end(rle->res); 3412 rle->count = count; 3413 } 3414 3415 return (rle->res); 3416 } 3417 3418 /** 3419 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3420 * 3421 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3422 * used with resource_list_alloc(). 3423 * 3424 * @param rl the resource list which was allocated from 3425 * @param bus the parent device of @p child 3426 * @param child the device which is requesting a release 3427 * @param type the type of resource to release 3428 * @param rid the resource identifier 3429 * @param res the resource to release 3430 * 3431 * @retval 0 success 3432 * @retval non-zero a standard unix error code indicating what 3433 * error condition prevented the operation 3434 */ 3435 int 3436 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3437 int type, int rid, struct resource *res) 3438 { 3439 struct resource_list_entry *rle = NULL; 3440 int passthrough = (device_get_parent(child) != bus); 3441 int error; 3442 3443 if (passthrough) { 3444 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3445 type, rid, res)); 3446 } 3447 3448 rle = resource_list_find(rl, type, rid); 3449 3450 if (!rle) 3451 panic("resource_list_release: can't find resource"); 3452 if (!rle->res) 3453 panic("resource_list_release: resource entry is not busy"); 3454 if (rle->flags & RLE_RESERVED) { 3455 if (rle->flags & RLE_ALLOCATED) { 3456 if (rman_get_flags(res) & RF_ACTIVE) { 3457 error = bus_deactivate_resource(child, type, 3458 rid, res); 3459 if (error) 3460 return (error); 3461 } 3462 rle->flags &= ~RLE_ALLOCATED; 3463 return (0); 3464 } 3465 return (EINVAL); 3466 } 3467 3468 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3469 type, rid, res); 3470 if (error) 3471 return (error); 3472 3473 rle->res = NULL; 3474 return (0); 3475 } 3476 3477 /** 3478 * @brief Release all active resources of a given type 3479 * 3480 * Release all active resources of a specified type. This is intended 3481 * to be used to cleanup resources leaked by a driver after detach or 3482 * a failed attach. 3483 * 3484 * @param rl the resource list which was allocated from 3485 * @param bus the parent device of @p child 3486 * @param child the device whose active resources are being released 3487 * @param type the type of resources to release 3488 * 3489 * @retval 0 success 3490 * @retval EBUSY at least one resource was active 3491 */ 3492 int 3493 resource_list_release_active(struct resource_list *rl, device_t bus, 3494 device_t child, int type) 3495 { 3496 struct resource_list_entry *rle; 3497 int error, retval; 3498 3499 retval = 0; 3500 STAILQ_FOREACH(rle, rl, link) { 3501 if (rle->type != type) 3502 continue; 3503 if (rle->res == NULL) 3504 continue; 3505 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3506 RLE_RESERVED) 3507 continue; 3508 retval = EBUSY; 3509 error = resource_list_release(rl, bus, child, type, 3510 rman_get_rid(rle->res), rle->res); 3511 if (error != 0) 3512 device_printf(bus, 3513 "Failed to release active resource: %d\n", error); 3514 } 3515 return (retval); 3516 } 3517 3518 3519 /** 3520 * @brief Fully release a reserved resource 3521 * 3522 * Fully releases a resource reserved via resource_list_reserve(). 3523 * 3524 * @param rl the resource list which was allocated from 3525 * @param bus the parent device of @p child 3526 * @param child the device whose reserved resource is being released 3527 * @param type the type of resource to release 3528 * @param rid the resource identifier 3529 * @param res the resource to release 3530 * 3531 * @retval 0 success 3532 * @retval non-zero a standard unix error code indicating what 3533 * error condition prevented the operation 3534 */ 3535 int 3536 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3537 int type, int rid) 3538 { 3539 struct resource_list_entry *rle = NULL; 3540 int passthrough = (device_get_parent(child) != bus); 3541 3542 if (passthrough) 3543 panic( 3544 "resource_list_unreserve() should only be called for direct children"); 3545 3546 rle = resource_list_find(rl, type, rid); 3547 3548 if (!rle) 3549 panic("resource_list_unreserve: can't find resource"); 3550 if (!(rle->flags & RLE_RESERVED)) 3551 return (EINVAL); 3552 if (rle->flags & RLE_ALLOCATED) 3553 return (EBUSY); 3554 rle->flags &= ~RLE_RESERVED; 3555 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3556 } 3557 3558 /** 3559 * @brief Print a description of resources in a resource list 3560 * 3561 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3562 * The name is printed if at least one resource of the given type is available. 3563 * The format is used to print resource start and end. 3564 * 3565 * @param rl the resource list to print 3566 * @param name the name of @p type, e.g. @c "memory" 3567 * @param type type type of resource entry to print 3568 * @param format printf(9) format string to print resource 3569 * start and end values 3570 * 3571 * @returns the number of characters printed 3572 */ 3573 int 3574 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3575 const char *format) 3576 { 3577 struct resource_list_entry *rle; 3578 int printed, retval; 3579 3580 printed = 0; 3581 retval = 0; 3582 /* Yes, this is kinda cheating */ 3583 STAILQ_FOREACH(rle, rl, link) { 3584 if (rle->type == type) { 3585 if (printed == 0) 3586 retval += printf(" %s ", name); 3587 else 3588 retval += printf(","); 3589 printed++; 3590 retval += printf(format, rle->start); 3591 if (rle->count > 1) { 3592 retval += printf("-"); 3593 retval += printf(format, rle->start + 3594 rle->count - 1); 3595 } 3596 } 3597 } 3598 return (retval); 3599 } 3600 3601 /** 3602 * @brief Releases all the resources in a list. 3603 * 3604 * @param rl The resource list to purge. 3605 * 3606 * @returns nothing 3607 */ 3608 void 3609 resource_list_purge(struct resource_list *rl) 3610 { 3611 struct resource_list_entry *rle; 3612 3613 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3614 if (rle->res) 3615 bus_release_resource(rman_get_device(rle->res), 3616 rle->type, rle->rid, rle->res); 3617 STAILQ_REMOVE_HEAD(rl, link); 3618 free(rle, M_BUS); 3619 } 3620 } 3621 3622 device_t 3623 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3624 { 3625 3626 return (device_add_child_ordered(dev, order, name, unit)); 3627 } 3628 3629 /** 3630 * @brief Helper function for implementing DEVICE_PROBE() 3631 * 3632 * This function can be used to help implement the DEVICE_PROBE() for 3633 * a bus (i.e. a device which has other devices attached to it). It 3634 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3635 * devclass. 3636 */ 3637 int 3638 bus_generic_probe(device_t dev) 3639 { 3640 devclass_t dc = dev->devclass; 3641 driverlink_t dl; 3642 3643 TAILQ_FOREACH(dl, &dc->drivers, link) { 3644 /* 3645 * If this driver's pass is too high, then ignore it. 3646 * For most drivers in the default pass, this will 3647 * never be true. For early-pass drivers they will 3648 * only call the identify routines of eligible drivers 3649 * when this routine is called. Drivers for later 3650 * passes should have their identify routines called 3651 * on early-pass busses during BUS_NEW_PASS(). 3652 */ 3653 if (dl->pass > bus_current_pass) 3654 continue; 3655 DEVICE_IDENTIFY(dl->driver, dev); 3656 } 3657 3658 return (0); 3659 } 3660 3661 /** 3662 * @brief Helper function for implementing DEVICE_ATTACH() 3663 * 3664 * This function can be used to help implement the DEVICE_ATTACH() for 3665 * a bus. It calls device_probe_and_attach() for each of the device's 3666 * children. 3667 */ 3668 int 3669 bus_generic_attach(device_t dev) 3670 { 3671 device_t child; 3672 3673 TAILQ_FOREACH(child, &dev->children, link) { 3674 device_probe_and_attach(child); 3675 } 3676 3677 return (0); 3678 } 3679 3680 /** 3681 * @brief Helper function for implementing DEVICE_DETACH() 3682 * 3683 * This function can be used to help implement the DEVICE_DETACH() for 3684 * a bus. It calls device_detach() for each of the device's 3685 * children. 3686 */ 3687 int 3688 bus_generic_detach(device_t dev) 3689 { 3690 device_t child; 3691 int error; 3692 3693 if (dev->state != DS_ATTACHED) 3694 return (EBUSY); 3695 3696 TAILQ_FOREACH(child, &dev->children, link) { 3697 if ((error = device_detach(child)) != 0) 3698 return (error); 3699 } 3700 3701 return (0); 3702 } 3703 3704 /** 3705 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3706 * 3707 * This function can be used to help implement the DEVICE_SHUTDOWN() 3708 * for a bus. It calls device_shutdown() for each of the device's 3709 * children. 3710 */ 3711 int 3712 bus_generic_shutdown(device_t dev) 3713 { 3714 device_t child; 3715 3716 TAILQ_FOREACH(child, &dev->children, link) { 3717 device_shutdown(child); 3718 } 3719 3720 return (0); 3721 } 3722 3723 /** 3724 * @brief Default function for suspending a child device. 3725 * 3726 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3727 */ 3728 int 3729 bus_generic_suspend_child(device_t dev, device_t child) 3730 { 3731 int error; 3732 3733 error = DEVICE_SUSPEND(child); 3734 3735 if (error == 0) 3736 child->flags |= DF_SUSPENDED; 3737 3738 return (error); 3739 } 3740 3741 /** 3742 * @brief Default function for resuming a child device. 3743 * 3744 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3745 */ 3746 int 3747 bus_generic_resume_child(device_t dev, device_t child) 3748 { 3749 3750 DEVICE_RESUME(child); 3751 child->flags &= ~DF_SUSPENDED; 3752 3753 return (0); 3754 } 3755 3756 /** 3757 * @brief Helper function for implementing DEVICE_SUSPEND() 3758 * 3759 * This function can be used to help implement the DEVICE_SUSPEND() 3760 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3761 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3762 * operation is aborted and any devices which were suspended are 3763 * resumed immediately by calling their DEVICE_RESUME() methods. 3764 */ 3765 int 3766 bus_generic_suspend(device_t dev) 3767 { 3768 int error; 3769 device_t child, child2; 3770 3771 TAILQ_FOREACH(child, &dev->children, link) { 3772 error = BUS_SUSPEND_CHILD(dev, child); 3773 if (error) { 3774 for (child2 = TAILQ_FIRST(&dev->children); 3775 child2 && child2 != child; 3776 child2 = TAILQ_NEXT(child2, link)) 3777 BUS_RESUME_CHILD(dev, child2); 3778 return (error); 3779 } 3780 } 3781 return (0); 3782 } 3783 3784 /** 3785 * @brief Helper function for implementing DEVICE_RESUME() 3786 * 3787 * This function can be used to help implement the DEVICE_RESUME() for 3788 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3789 */ 3790 int 3791 bus_generic_resume(device_t dev) 3792 { 3793 device_t child; 3794 3795 TAILQ_FOREACH(child, &dev->children, link) { 3796 BUS_RESUME_CHILD(dev, child); 3797 /* if resume fails, there's nothing we can usefully do... */ 3798 } 3799 return (0); 3800 } 3801 3802 /** 3803 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3804 * 3805 * This function prints the first part of the ascii representation of 3806 * @p child, including its name, unit and description (if any - see 3807 * device_set_desc()). 3808 * 3809 * @returns the number of characters printed 3810 */ 3811 int 3812 bus_print_child_header(device_t dev, device_t child) 3813 { 3814 int retval = 0; 3815 3816 if (device_get_desc(child)) { 3817 retval += device_printf(child, "<%s>", device_get_desc(child)); 3818 } else { 3819 retval += printf("%s", device_get_nameunit(child)); 3820 } 3821 3822 return (retval); 3823 } 3824 3825 /** 3826 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3827 * 3828 * This function prints the last part of the ascii representation of 3829 * @p child, which consists of the string @c " on " followed by the 3830 * name and unit of the @p dev. 3831 * 3832 * @returns the number of characters printed 3833 */ 3834 int 3835 bus_print_child_footer(device_t dev, device_t child) 3836 { 3837 return (printf(" on %s\n", device_get_nameunit(dev))); 3838 } 3839 3840 /** 3841 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3842 * 3843 * This function prints out the VM domain for the given device. 3844 * 3845 * @returns the number of characters printed 3846 */ 3847 int 3848 bus_print_child_domain(device_t dev, device_t child) 3849 { 3850 int domain; 3851 3852 /* No domain? Don't print anything */ 3853 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3854 return (0); 3855 3856 return (printf(" numa-domain %d", domain)); 3857 } 3858 3859 /** 3860 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3861 * 3862 * This function simply calls bus_print_child_header() followed by 3863 * bus_print_child_footer(). 3864 * 3865 * @returns the number of characters printed 3866 */ 3867 int 3868 bus_generic_print_child(device_t dev, device_t child) 3869 { 3870 int retval = 0; 3871 3872 retval += bus_print_child_header(dev, child); 3873 retval += bus_print_child_domain(dev, child); 3874 retval += bus_print_child_footer(dev, child); 3875 3876 return (retval); 3877 } 3878 3879 /** 3880 * @brief Stub function for implementing BUS_READ_IVAR(). 3881 * 3882 * @returns ENOENT 3883 */ 3884 int 3885 bus_generic_read_ivar(device_t dev, device_t child, int index, 3886 uintptr_t * result) 3887 { 3888 return (ENOENT); 3889 } 3890 3891 /** 3892 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3893 * 3894 * @returns ENOENT 3895 */ 3896 int 3897 bus_generic_write_ivar(device_t dev, device_t child, int index, 3898 uintptr_t value) 3899 { 3900 return (ENOENT); 3901 } 3902 3903 /** 3904 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3905 * 3906 * @returns NULL 3907 */ 3908 struct resource_list * 3909 bus_generic_get_resource_list(device_t dev, device_t child) 3910 { 3911 return (NULL); 3912 } 3913 3914 /** 3915 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3916 * 3917 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3918 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3919 * and then calls device_probe_and_attach() for each unattached child. 3920 */ 3921 void 3922 bus_generic_driver_added(device_t dev, driver_t *driver) 3923 { 3924 device_t child; 3925 3926 DEVICE_IDENTIFY(driver, dev); 3927 TAILQ_FOREACH(child, &dev->children, link) { 3928 if (child->state == DS_NOTPRESENT || 3929 (child->flags & DF_REBID)) 3930 device_probe_and_attach(child); 3931 } 3932 } 3933 3934 /** 3935 * @brief Helper function for implementing BUS_NEW_PASS(). 3936 * 3937 * This implementing of BUS_NEW_PASS() first calls the identify 3938 * routines for any drivers that probe at the current pass. Then it 3939 * walks the list of devices for this bus. If a device is already 3940 * attached, then it calls BUS_NEW_PASS() on that device. If the 3941 * device is not already attached, it attempts to attach a driver to 3942 * it. 3943 */ 3944 void 3945 bus_generic_new_pass(device_t dev) 3946 { 3947 driverlink_t dl; 3948 devclass_t dc; 3949 device_t child; 3950 3951 dc = dev->devclass; 3952 TAILQ_FOREACH(dl, &dc->drivers, link) { 3953 if (dl->pass == bus_current_pass) 3954 DEVICE_IDENTIFY(dl->driver, dev); 3955 } 3956 TAILQ_FOREACH(child, &dev->children, link) { 3957 if (child->state >= DS_ATTACHED) 3958 BUS_NEW_PASS(child); 3959 else if (child->state == DS_NOTPRESENT) 3960 device_probe_and_attach(child); 3961 } 3962 } 3963 3964 /** 3965 * @brief Helper function for implementing BUS_SETUP_INTR(). 3966 * 3967 * This simple implementation of BUS_SETUP_INTR() simply calls the 3968 * BUS_SETUP_INTR() method of the parent of @p dev. 3969 */ 3970 int 3971 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3972 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3973 void **cookiep) 3974 { 3975 /* Propagate up the bus hierarchy until someone handles it. */ 3976 if (dev->parent) 3977 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3978 filter, intr, arg, cookiep)); 3979 return (EINVAL); 3980 } 3981 3982 /** 3983 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3984 * 3985 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3986 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3987 */ 3988 int 3989 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3990 void *cookie) 3991 { 3992 /* Propagate up the bus hierarchy until someone handles it. */ 3993 if (dev->parent) 3994 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3995 return (EINVAL); 3996 } 3997 3998 /** 3999 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4000 * 4001 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 4002 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 4003 */ 4004 int 4005 bus_generic_adjust_resource(device_t dev, device_t child, int type, 4006 struct resource *r, rman_res_t start, rman_res_t end) 4007 { 4008 /* Propagate up the bus hierarchy until someone handles it. */ 4009 if (dev->parent) 4010 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 4011 end)); 4012 return (EINVAL); 4013 } 4014 4015 /** 4016 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4017 * 4018 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 4019 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 4020 */ 4021 struct resource * 4022 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4023 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4024 { 4025 /* Propagate up the bus hierarchy until someone handles it. */ 4026 if (dev->parent) 4027 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4028 start, end, count, flags)); 4029 return (NULL); 4030 } 4031 4032 /** 4033 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4034 * 4035 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4036 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4037 */ 4038 int 4039 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 4040 struct resource *r) 4041 { 4042 /* Propagate up the bus hierarchy until someone handles it. */ 4043 if (dev->parent) 4044 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 4045 r)); 4046 return (EINVAL); 4047 } 4048 4049 /** 4050 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4051 * 4052 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4053 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4054 */ 4055 int 4056 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 4057 struct resource *r) 4058 { 4059 /* Propagate up the bus hierarchy until someone handles it. */ 4060 if (dev->parent) 4061 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 4062 r)); 4063 return (EINVAL); 4064 } 4065 4066 /** 4067 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4068 * 4069 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4070 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4071 */ 4072 int 4073 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 4074 int rid, struct resource *r) 4075 { 4076 /* Propagate up the bus hierarchy until someone handles it. */ 4077 if (dev->parent) 4078 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4079 r)); 4080 return (EINVAL); 4081 } 4082 4083 /** 4084 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4085 * 4086 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4087 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4088 */ 4089 int 4090 bus_generic_map_resource(device_t dev, device_t child, int type, 4091 struct resource *r, struct resource_map_request *args, 4092 struct resource_map *map) 4093 { 4094 /* Propagate up the bus hierarchy until someone handles it. */ 4095 if (dev->parent) 4096 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 4097 map)); 4098 return (EINVAL); 4099 } 4100 4101 /** 4102 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4103 * 4104 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4105 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4106 */ 4107 int 4108 bus_generic_unmap_resource(device_t dev, device_t child, int type, 4109 struct resource *r, struct resource_map *map) 4110 { 4111 /* Propagate up the bus hierarchy until someone handles it. */ 4112 if (dev->parent) 4113 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 4114 return (EINVAL); 4115 } 4116 4117 /** 4118 * @brief Helper function for implementing BUS_BIND_INTR(). 4119 * 4120 * This simple implementation of BUS_BIND_INTR() simply calls the 4121 * BUS_BIND_INTR() method of the parent of @p dev. 4122 */ 4123 int 4124 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4125 int cpu) 4126 { 4127 4128 /* Propagate up the bus hierarchy until someone handles it. */ 4129 if (dev->parent) 4130 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4131 return (EINVAL); 4132 } 4133 4134 /** 4135 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4136 * 4137 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4138 * BUS_CONFIG_INTR() method of the parent of @p dev. 4139 */ 4140 int 4141 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4142 enum intr_polarity pol) 4143 { 4144 4145 /* Propagate up the bus hierarchy until someone handles it. */ 4146 if (dev->parent) 4147 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4148 return (EINVAL); 4149 } 4150 4151 /** 4152 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4153 * 4154 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4155 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4156 */ 4157 int 4158 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4159 void *cookie, const char *descr) 4160 { 4161 4162 /* Propagate up the bus hierarchy until someone handles it. */ 4163 if (dev->parent) 4164 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4165 descr)); 4166 return (EINVAL); 4167 } 4168 4169 /** 4170 * @brief Helper function for implementing BUS_GET_CPUS(). 4171 * 4172 * This simple implementation of BUS_GET_CPUS() simply calls the 4173 * BUS_GET_CPUS() method of the parent of @p dev. 4174 */ 4175 int 4176 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4177 size_t setsize, cpuset_t *cpuset) 4178 { 4179 4180 /* Propagate up the bus hierarchy until someone handles it. */ 4181 if (dev->parent != NULL) 4182 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4183 return (EINVAL); 4184 } 4185 4186 /** 4187 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4188 * 4189 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4190 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4191 */ 4192 bus_dma_tag_t 4193 bus_generic_get_dma_tag(device_t dev, device_t child) 4194 { 4195 4196 /* Propagate up the bus hierarchy until someone handles it. */ 4197 if (dev->parent != NULL) 4198 return (BUS_GET_DMA_TAG(dev->parent, child)); 4199 return (NULL); 4200 } 4201 4202 /** 4203 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4204 * 4205 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4206 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4207 */ 4208 bus_space_tag_t 4209 bus_generic_get_bus_tag(device_t dev, device_t child) 4210 { 4211 4212 /* Propagate up the bus hierarchy until someone handles it. */ 4213 if (dev->parent != NULL) 4214 return (BUS_GET_BUS_TAG(dev->parent, child)); 4215 return ((bus_space_tag_t)0); 4216 } 4217 4218 /** 4219 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4220 * 4221 * This implementation of BUS_GET_RESOURCE() uses the 4222 * resource_list_find() function to do most of the work. It calls 4223 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4224 * search. 4225 */ 4226 int 4227 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4228 rman_res_t *startp, rman_res_t *countp) 4229 { 4230 struct resource_list * rl = NULL; 4231 struct resource_list_entry * rle = NULL; 4232 4233 rl = BUS_GET_RESOURCE_LIST(dev, child); 4234 if (!rl) 4235 return (EINVAL); 4236 4237 rle = resource_list_find(rl, type, rid); 4238 if (!rle) 4239 return (ENOENT); 4240 4241 if (startp) 4242 *startp = rle->start; 4243 if (countp) 4244 *countp = rle->count; 4245 4246 return (0); 4247 } 4248 4249 /** 4250 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4251 * 4252 * This implementation of BUS_SET_RESOURCE() uses the 4253 * resource_list_add() function to do most of the work. It calls 4254 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4255 * edit. 4256 */ 4257 int 4258 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4259 rman_res_t start, rman_res_t count) 4260 { 4261 struct resource_list * rl = NULL; 4262 4263 rl = BUS_GET_RESOURCE_LIST(dev, child); 4264 if (!rl) 4265 return (EINVAL); 4266 4267 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4268 4269 return (0); 4270 } 4271 4272 /** 4273 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4274 * 4275 * This implementation of BUS_DELETE_RESOURCE() uses the 4276 * resource_list_delete() function to do most of the work. It calls 4277 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4278 * edit. 4279 */ 4280 void 4281 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4282 { 4283 struct resource_list * rl = NULL; 4284 4285 rl = BUS_GET_RESOURCE_LIST(dev, child); 4286 if (!rl) 4287 return; 4288 4289 resource_list_delete(rl, type, rid); 4290 4291 return; 4292 } 4293 4294 /** 4295 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4296 * 4297 * This implementation of BUS_RELEASE_RESOURCE() uses the 4298 * resource_list_release() function to do most of the work. It calls 4299 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4300 */ 4301 int 4302 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4303 int rid, struct resource *r) 4304 { 4305 struct resource_list * rl = NULL; 4306 4307 if (device_get_parent(child) != dev) 4308 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4309 type, rid, r)); 4310 4311 rl = BUS_GET_RESOURCE_LIST(dev, child); 4312 if (!rl) 4313 return (EINVAL); 4314 4315 return (resource_list_release(rl, dev, child, type, rid, r)); 4316 } 4317 4318 /** 4319 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4320 * 4321 * This implementation of BUS_ALLOC_RESOURCE() uses the 4322 * resource_list_alloc() function to do most of the work. It calls 4323 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4324 */ 4325 struct resource * 4326 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4327 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4328 { 4329 struct resource_list * rl = NULL; 4330 4331 if (device_get_parent(child) != dev) 4332 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4333 type, rid, start, end, count, flags)); 4334 4335 rl = BUS_GET_RESOURCE_LIST(dev, child); 4336 if (!rl) 4337 return (NULL); 4338 4339 return (resource_list_alloc(rl, dev, child, type, rid, 4340 start, end, count, flags)); 4341 } 4342 4343 /** 4344 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4345 * 4346 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4347 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4348 */ 4349 int 4350 bus_generic_child_present(device_t dev, device_t child) 4351 { 4352 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4353 } 4354 4355 int 4356 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4357 { 4358 4359 if (dev->parent) 4360 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4361 4362 return (ENOENT); 4363 } 4364 4365 /** 4366 * @brief Helper function for implementing BUS_RESCAN(). 4367 * 4368 * This null implementation of BUS_RESCAN() always fails to indicate 4369 * the bus does not support rescanning. 4370 */ 4371 int 4372 bus_null_rescan(device_t dev) 4373 { 4374 4375 return (ENXIO); 4376 } 4377 4378 /* 4379 * Some convenience functions to make it easier for drivers to use the 4380 * resource-management functions. All these really do is hide the 4381 * indirection through the parent's method table, making for slightly 4382 * less-wordy code. In the future, it might make sense for this code 4383 * to maintain some sort of a list of resources allocated by each device. 4384 */ 4385 4386 int 4387 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4388 struct resource **res) 4389 { 4390 int i; 4391 4392 for (i = 0; rs[i].type != -1; i++) 4393 res[i] = NULL; 4394 for (i = 0; rs[i].type != -1; i++) { 4395 res[i] = bus_alloc_resource_any(dev, 4396 rs[i].type, &rs[i].rid, rs[i].flags); 4397 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4398 bus_release_resources(dev, rs, res); 4399 return (ENXIO); 4400 } 4401 } 4402 return (0); 4403 } 4404 4405 void 4406 bus_release_resources(device_t dev, const struct resource_spec *rs, 4407 struct resource **res) 4408 { 4409 int i; 4410 4411 for (i = 0; rs[i].type != -1; i++) 4412 if (res[i] != NULL) { 4413 bus_release_resource( 4414 dev, rs[i].type, rs[i].rid, res[i]); 4415 res[i] = NULL; 4416 } 4417 } 4418 4419 /** 4420 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4421 * 4422 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4423 * parent of @p dev. 4424 */ 4425 struct resource * 4426 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4427 rman_res_t end, rman_res_t count, u_int flags) 4428 { 4429 struct resource *res; 4430 4431 if (dev->parent == NULL) 4432 return (NULL); 4433 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4434 count, flags); 4435 return (res); 4436 } 4437 4438 /** 4439 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4440 * 4441 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4442 * parent of @p dev. 4443 */ 4444 int 4445 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4446 rman_res_t end) 4447 { 4448 if (dev->parent == NULL) 4449 return (EINVAL); 4450 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4451 } 4452 4453 /** 4454 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4455 * 4456 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4457 * parent of @p dev. 4458 */ 4459 int 4460 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4461 { 4462 if (dev->parent == NULL) 4463 return (EINVAL); 4464 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4465 } 4466 4467 /** 4468 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4469 * 4470 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4471 * parent of @p dev. 4472 */ 4473 int 4474 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4475 { 4476 if (dev->parent == NULL) 4477 return (EINVAL); 4478 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4479 } 4480 4481 /** 4482 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4483 * 4484 * This function simply calls the BUS_MAP_RESOURCE() method of the 4485 * parent of @p dev. 4486 */ 4487 int 4488 bus_map_resource(device_t dev, int type, struct resource *r, 4489 struct resource_map_request *args, struct resource_map *map) 4490 { 4491 if (dev->parent == NULL) 4492 return (EINVAL); 4493 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4494 } 4495 4496 /** 4497 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4498 * 4499 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4500 * parent of @p dev. 4501 */ 4502 int 4503 bus_unmap_resource(device_t dev, int type, struct resource *r, 4504 struct resource_map *map) 4505 { 4506 if (dev->parent == NULL) 4507 return (EINVAL); 4508 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4509 } 4510 4511 /** 4512 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4513 * 4514 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4515 * parent of @p dev. 4516 */ 4517 int 4518 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4519 { 4520 int rv; 4521 4522 if (dev->parent == NULL) 4523 return (EINVAL); 4524 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4525 return (rv); 4526 } 4527 4528 /** 4529 * @brief Wrapper function for BUS_SETUP_INTR(). 4530 * 4531 * This function simply calls the BUS_SETUP_INTR() method of the 4532 * parent of @p dev. 4533 */ 4534 int 4535 bus_setup_intr(device_t dev, struct resource *r, int flags, 4536 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4537 { 4538 int error; 4539 4540 if (dev->parent == NULL) 4541 return (EINVAL); 4542 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4543 arg, cookiep); 4544 if (error != 0) 4545 return (error); 4546 if (handler != NULL && !(flags & INTR_MPSAFE)) 4547 device_printf(dev, "[GIANT-LOCKED]\n"); 4548 return (0); 4549 } 4550 4551 /** 4552 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4553 * 4554 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4555 * parent of @p dev. 4556 */ 4557 int 4558 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4559 { 4560 if (dev->parent == NULL) 4561 return (EINVAL); 4562 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4563 } 4564 4565 /** 4566 * @brief Wrapper function for BUS_BIND_INTR(). 4567 * 4568 * This function simply calls the BUS_BIND_INTR() method of the 4569 * parent of @p dev. 4570 */ 4571 int 4572 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4573 { 4574 if (dev->parent == NULL) 4575 return (EINVAL); 4576 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4577 } 4578 4579 /** 4580 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4581 * 4582 * This function first formats the requested description into a 4583 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4584 * the parent of @p dev. 4585 */ 4586 int 4587 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4588 const char *fmt, ...) 4589 { 4590 va_list ap; 4591 char descr[MAXCOMLEN + 1]; 4592 4593 if (dev->parent == NULL) 4594 return (EINVAL); 4595 va_start(ap, fmt); 4596 vsnprintf(descr, sizeof(descr), fmt, ap); 4597 va_end(ap); 4598 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4599 } 4600 4601 /** 4602 * @brief Wrapper function for BUS_SET_RESOURCE(). 4603 * 4604 * This function simply calls the BUS_SET_RESOURCE() method of the 4605 * parent of @p dev. 4606 */ 4607 int 4608 bus_set_resource(device_t dev, int type, int rid, 4609 rman_res_t start, rman_res_t count) 4610 { 4611 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4612 start, count)); 4613 } 4614 4615 /** 4616 * @brief Wrapper function for BUS_GET_RESOURCE(). 4617 * 4618 * This function simply calls the BUS_GET_RESOURCE() method of the 4619 * parent of @p dev. 4620 */ 4621 int 4622 bus_get_resource(device_t dev, int type, int rid, 4623 rman_res_t *startp, rman_res_t *countp) 4624 { 4625 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4626 startp, countp)); 4627 } 4628 4629 /** 4630 * @brief Wrapper function for BUS_GET_RESOURCE(). 4631 * 4632 * This function simply calls the BUS_GET_RESOURCE() method of the 4633 * parent of @p dev and returns the start value. 4634 */ 4635 rman_res_t 4636 bus_get_resource_start(device_t dev, int type, int rid) 4637 { 4638 rman_res_t start; 4639 rman_res_t count; 4640 int error; 4641 4642 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4643 &start, &count); 4644 if (error) 4645 return (0); 4646 return (start); 4647 } 4648 4649 /** 4650 * @brief Wrapper function for BUS_GET_RESOURCE(). 4651 * 4652 * This function simply calls the BUS_GET_RESOURCE() method of the 4653 * parent of @p dev and returns the count value. 4654 */ 4655 rman_res_t 4656 bus_get_resource_count(device_t dev, int type, int rid) 4657 { 4658 rman_res_t start; 4659 rman_res_t count; 4660 int error; 4661 4662 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4663 &start, &count); 4664 if (error) 4665 return (0); 4666 return (count); 4667 } 4668 4669 /** 4670 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4671 * 4672 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4673 * parent of @p dev. 4674 */ 4675 void 4676 bus_delete_resource(device_t dev, int type, int rid) 4677 { 4678 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4679 } 4680 4681 /** 4682 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4683 * 4684 * This function simply calls the BUS_CHILD_PRESENT() method of the 4685 * parent of @p dev. 4686 */ 4687 int 4688 bus_child_present(device_t child) 4689 { 4690 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4691 } 4692 4693 /** 4694 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4695 * 4696 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4697 * parent of @p dev. 4698 */ 4699 int 4700 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4701 { 4702 device_t parent; 4703 4704 parent = device_get_parent(child); 4705 if (parent == NULL) { 4706 *buf = '\0'; 4707 return (0); 4708 } 4709 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4710 } 4711 4712 /** 4713 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4714 * 4715 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4716 * parent of @p dev. 4717 */ 4718 int 4719 bus_child_location_str(device_t child, char *buf, size_t buflen) 4720 { 4721 device_t parent; 4722 4723 parent = device_get_parent(child); 4724 if (parent == NULL) { 4725 *buf = '\0'; 4726 return (0); 4727 } 4728 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4729 } 4730 4731 /** 4732 * @brief Wrapper function for BUS_GET_CPUS(). 4733 * 4734 * This function simply calls the BUS_GET_CPUS() method of the 4735 * parent of @p dev. 4736 */ 4737 int 4738 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 4739 { 4740 device_t parent; 4741 4742 parent = device_get_parent(dev); 4743 if (parent == NULL) 4744 return (EINVAL); 4745 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 4746 } 4747 4748 /** 4749 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4750 * 4751 * This function simply calls the BUS_GET_DMA_TAG() method of the 4752 * parent of @p dev. 4753 */ 4754 bus_dma_tag_t 4755 bus_get_dma_tag(device_t dev) 4756 { 4757 device_t parent; 4758 4759 parent = device_get_parent(dev); 4760 if (parent == NULL) 4761 return (NULL); 4762 return (BUS_GET_DMA_TAG(parent, dev)); 4763 } 4764 4765 /** 4766 * @brief Wrapper function for BUS_GET_BUS_TAG(). 4767 * 4768 * This function simply calls the BUS_GET_BUS_TAG() method of the 4769 * parent of @p dev. 4770 */ 4771 bus_space_tag_t 4772 bus_get_bus_tag(device_t dev) 4773 { 4774 device_t parent; 4775 4776 parent = device_get_parent(dev); 4777 if (parent == NULL) 4778 return ((bus_space_tag_t)0); 4779 return (BUS_GET_BUS_TAG(parent, dev)); 4780 } 4781 4782 /** 4783 * @brief Wrapper function for BUS_GET_DOMAIN(). 4784 * 4785 * This function simply calls the BUS_GET_DOMAIN() method of the 4786 * parent of @p dev. 4787 */ 4788 int 4789 bus_get_domain(device_t dev, int *domain) 4790 { 4791 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 4792 } 4793 4794 /* Resume all devices and then notify userland that we're up again. */ 4795 static int 4796 root_resume(device_t dev) 4797 { 4798 int error; 4799 4800 error = bus_generic_resume(dev); 4801 if (error == 0) 4802 devctl_notify("kern", "power", "resume", NULL); 4803 return (error); 4804 } 4805 4806 static int 4807 root_print_child(device_t dev, device_t child) 4808 { 4809 int retval = 0; 4810 4811 retval += bus_print_child_header(dev, child); 4812 retval += printf("\n"); 4813 4814 return (retval); 4815 } 4816 4817 static int 4818 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4819 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4820 { 4821 /* 4822 * If an interrupt mapping gets to here something bad has happened. 4823 */ 4824 panic("root_setup_intr"); 4825 } 4826 4827 /* 4828 * If we get here, assume that the device is permanent and really is 4829 * present in the system. Removable bus drivers are expected to intercept 4830 * this call long before it gets here. We return -1 so that drivers that 4831 * really care can check vs -1 or some ERRNO returned higher in the food 4832 * chain. 4833 */ 4834 static int 4835 root_child_present(device_t dev, device_t child) 4836 { 4837 return (-1); 4838 } 4839 4840 static int 4841 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 4842 cpuset_t *cpuset) 4843 { 4844 4845 switch (op) { 4846 case INTR_CPUS: 4847 /* Default to returning the set of all CPUs. */ 4848 if (setsize != sizeof(cpuset_t)) 4849 return (EINVAL); 4850 *cpuset = all_cpus; 4851 return (0); 4852 default: 4853 return (EINVAL); 4854 } 4855 } 4856 4857 static kobj_method_t root_methods[] = { 4858 /* Device interface */ 4859 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4860 KOBJMETHOD(device_suspend, bus_generic_suspend), 4861 KOBJMETHOD(device_resume, root_resume), 4862 4863 /* Bus interface */ 4864 KOBJMETHOD(bus_print_child, root_print_child), 4865 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4866 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4867 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4868 KOBJMETHOD(bus_child_present, root_child_present), 4869 KOBJMETHOD(bus_get_cpus, root_get_cpus), 4870 4871 KOBJMETHOD_END 4872 }; 4873 4874 static driver_t root_driver = { 4875 "root", 4876 root_methods, 4877 1, /* no softc */ 4878 }; 4879 4880 device_t root_bus; 4881 devclass_t root_devclass; 4882 4883 static int 4884 root_bus_module_handler(module_t mod, int what, void* arg) 4885 { 4886 switch (what) { 4887 case MOD_LOAD: 4888 TAILQ_INIT(&bus_data_devices); 4889 kobj_class_compile((kobj_class_t) &root_driver); 4890 root_bus = make_device(NULL, "root", 0); 4891 root_bus->desc = "System root bus"; 4892 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4893 root_bus->driver = &root_driver; 4894 root_bus->state = DS_ATTACHED; 4895 root_devclass = devclass_find_internal("root", NULL, FALSE); 4896 devinit(); 4897 return (0); 4898 4899 case MOD_SHUTDOWN: 4900 device_shutdown(root_bus); 4901 return (0); 4902 default: 4903 return (EOPNOTSUPP); 4904 } 4905 4906 return (0); 4907 } 4908 4909 static moduledata_t root_bus_mod = { 4910 "rootbus", 4911 root_bus_module_handler, 4912 NULL 4913 }; 4914 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4915 4916 /** 4917 * @brief Automatically configure devices 4918 * 4919 * This function begins the autoconfiguration process by calling 4920 * device_probe_and_attach() for each child of the @c root0 device. 4921 */ 4922 void 4923 root_bus_configure(void) 4924 { 4925 4926 PDEBUG((".")); 4927 4928 /* Eventually this will be split up, but this is sufficient for now. */ 4929 bus_set_pass(BUS_PASS_DEFAULT); 4930 } 4931 4932 /** 4933 * @brief Module handler for registering device drivers 4934 * 4935 * This module handler is used to automatically register device 4936 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4937 * devclass_add_driver() for the driver described by the 4938 * driver_module_data structure pointed to by @p arg 4939 */ 4940 int 4941 driver_module_handler(module_t mod, int what, void *arg) 4942 { 4943 struct driver_module_data *dmd; 4944 devclass_t bus_devclass; 4945 kobj_class_t driver; 4946 int error, pass; 4947 4948 dmd = (struct driver_module_data *)arg; 4949 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4950 error = 0; 4951 4952 switch (what) { 4953 case MOD_LOAD: 4954 if (dmd->dmd_chainevh) 4955 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4956 4957 pass = dmd->dmd_pass; 4958 driver = dmd->dmd_driver; 4959 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4960 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4961 error = devclass_add_driver(bus_devclass, driver, pass, 4962 dmd->dmd_devclass); 4963 break; 4964 4965 case MOD_UNLOAD: 4966 PDEBUG(("Unloading module: driver %s from bus %s", 4967 DRIVERNAME(dmd->dmd_driver), 4968 dmd->dmd_busname)); 4969 error = devclass_delete_driver(bus_devclass, 4970 dmd->dmd_driver); 4971 4972 if (!error && dmd->dmd_chainevh) 4973 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4974 break; 4975 case MOD_QUIESCE: 4976 PDEBUG(("Quiesce module: driver %s from bus %s", 4977 DRIVERNAME(dmd->dmd_driver), 4978 dmd->dmd_busname)); 4979 error = devclass_quiesce_driver(bus_devclass, 4980 dmd->dmd_driver); 4981 4982 if (!error && dmd->dmd_chainevh) 4983 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4984 break; 4985 default: 4986 error = EOPNOTSUPP; 4987 break; 4988 } 4989 4990 return (error); 4991 } 4992 4993 /** 4994 * @brief Enumerate all hinted devices for this bus. 4995 * 4996 * Walks through the hints for this bus and calls the bus_hinted_child 4997 * routine for each one it fines. It searches first for the specific 4998 * bus that's being probed for hinted children (eg isa0), and then for 4999 * generic children (eg isa). 5000 * 5001 * @param dev bus device to enumerate 5002 */ 5003 void 5004 bus_enumerate_hinted_children(device_t bus) 5005 { 5006 int i; 5007 const char *dname, *busname; 5008 int dunit; 5009 5010 /* 5011 * enumerate all devices on the specific bus 5012 */ 5013 busname = device_get_nameunit(bus); 5014 i = 0; 5015 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5016 BUS_HINTED_CHILD(bus, dname, dunit); 5017 5018 /* 5019 * and all the generic ones. 5020 */ 5021 busname = device_get_name(bus); 5022 i = 0; 5023 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5024 BUS_HINTED_CHILD(bus, dname, dunit); 5025 } 5026 5027 #ifdef BUS_DEBUG 5028 5029 /* the _short versions avoid iteration by not calling anything that prints 5030 * more than oneliners. I love oneliners. 5031 */ 5032 5033 static void 5034 print_device_short(device_t dev, int indent) 5035 { 5036 if (!dev) 5037 return; 5038 5039 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5040 dev->unit, dev->desc, 5041 (dev->parent? "":"no "), 5042 (TAILQ_EMPTY(&dev->children)? "no ":""), 5043 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5044 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5045 (dev->flags&DF_WILDCARD? "wildcard,":""), 5046 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5047 (dev->flags&DF_REBID? "rebiddable,":""), 5048 (dev->ivars? "":"no "), 5049 (dev->softc? "":"no "), 5050 dev->busy)); 5051 } 5052 5053 static void 5054 print_device(device_t dev, int indent) 5055 { 5056 if (!dev) 5057 return; 5058 5059 print_device_short(dev, indent); 5060 5061 indentprintf(("Parent:\n")); 5062 print_device_short(dev->parent, indent+1); 5063 indentprintf(("Driver:\n")); 5064 print_driver_short(dev->driver, indent+1); 5065 indentprintf(("Devclass:\n")); 5066 print_devclass_short(dev->devclass, indent+1); 5067 } 5068 5069 void 5070 print_device_tree_short(device_t dev, int indent) 5071 /* print the device and all its children (indented) */ 5072 { 5073 device_t child; 5074 5075 if (!dev) 5076 return; 5077 5078 print_device_short(dev, indent); 5079 5080 TAILQ_FOREACH(child, &dev->children, link) { 5081 print_device_tree_short(child, indent+1); 5082 } 5083 } 5084 5085 void 5086 print_device_tree(device_t dev, int indent) 5087 /* print the device and all its children (indented) */ 5088 { 5089 device_t child; 5090 5091 if (!dev) 5092 return; 5093 5094 print_device(dev, indent); 5095 5096 TAILQ_FOREACH(child, &dev->children, link) { 5097 print_device_tree(child, indent+1); 5098 } 5099 } 5100 5101 static void 5102 print_driver_short(driver_t *driver, int indent) 5103 { 5104 if (!driver) 5105 return; 5106 5107 indentprintf(("driver %s: softc size = %zd\n", 5108 driver->name, driver->size)); 5109 } 5110 5111 static void 5112 print_driver(driver_t *driver, int indent) 5113 { 5114 if (!driver) 5115 return; 5116 5117 print_driver_short(driver, indent); 5118 } 5119 5120 static void 5121 print_driver_list(driver_list_t drivers, int indent) 5122 { 5123 driverlink_t driver; 5124 5125 TAILQ_FOREACH(driver, &drivers, link) { 5126 print_driver(driver->driver, indent); 5127 } 5128 } 5129 5130 static void 5131 print_devclass_short(devclass_t dc, int indent) 5132 { 5133 if ( !dc ) 5134 return; 5135 5136 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5137 } 5138 5139 static void 5140 print_devclass(devclass_t dc, int indent) 5141 { 5142 int i; 5143 5144 if ( !dc ) 5145 return; 5146 5147 print_devclass_short(dc, indent); 5148 indentprintf(("Drivers:\n")); 5149 print_driver_list(dc->drivers, indent+1); 5150 5151 indentprintf(("Devices:\n")); 5152 for (i = 0; i < dc->maxunit; i++) 5153 if (dc->devices[i]) 5154 print_device(dc->devices[i], indent+1); 5155 } 5156 5157 void 5158 print_devclass_list_short(void) 5159 { 5160 devclass_t dc; 5161 5162 printf("Short listing of devclasses, drivers & devices:\n"); 5163 TAILQ_FOREACH(dc, &devclasses, link) { 5164 print_devclass_short(dc, 0); 5165 } 5166 } 5167 5168 void 5169 print_devclass_list(void) 5170 { 5171 devclass_t dc; 5172 5173 printf("Full listing of devclasses, drivers & devices:\n"); 5174 TAILQ_FOREACH(dc, &devclasses, link) { 5175 print_devclass(dc, 0); 5176 } 5177 } 5178 5179 #endif 5180 5181 /* 5182 * User-space access to the device tree. 5183 * 5184 * We implement a small set of nodes: 5185 * 5186 * hw.bus Single integer read method to obtain the 5187 * current generation count. 5188 * hw.bus.devices Reads the entire device tree in flat space. 5189 * hw.bus.rman Resource manager interface 5190 * 5191 * We might like to add the ability to scan devclasses and/or drivers to 5192 * determine what else is currently loaded/available. 5193 */ 5194 5195 static int 5196 sysctl_bus(SYSCTL_HANDLER_ARGS) 5197 { 5198 struct u_businfo ubus; 5199 5200 ubus.ub_version = BUS_USER_VERSION; 5201 ubus.ub_generation = bus_data_generation; 5202 5203 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5204 } 5205 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 5206 "bus-related data"); 5207 5208 static int 5209 sysctl_devices(SYSCTL_HANDLER_ARGS) 5210 { 5211 int *name = (int *)arg1; 5212 u_int namelen = arg2; 5213 int index; 5214 device_t dev; 5215 struct u_device udev; /* XXX this is a bit big */ 5216 int error; 5217 5218 if (namelen != 2) 5219 return (EINVAL); 5220 5221 if (bus_data_generation_check(name[0])) 5222 return (EINVAL); 5223 5224 index = name[1]; 5225 5226 /* 5227 * Scan the list of devices, looking for the requested index. 5228 */ 5229 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5230 if (index-- == 0) 5231 break; 5232 } 5233 if (dev == NULL) 5234 return (ENOENT); 5235 5236 /* 5237 * Populate the return array. 5238 */ 5239 bzero(&udev, sizeof(udev)); 5240 udev.dv_handle = (uintptr_t)dev; 5241 udev.dv_parent = (uintptr_t)dev->parent; 5242 if (dev->nameunit != NULL) 5243 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 5244 if (dev->desc != NULL) 5245 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 5246 if (dev->driver != NULL && dev->driver->name != NULL) 5247 strlcpy(udev.dv_drivername, dev->driver->name, 5248 sizeof(udev.dv_drivername)); 5249 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 5250 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 5251 udev.dv_devflags = dev->devflags; 5252 udev.dv_flags = dev->flags; 5253 udev.dv_state = dev->state; 5254 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 5255 return (error); 5256 } 5257 5258 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 5259 "system device tree"); 5260 5261 int 5262 bus_data_generation_check(int generation) 5263 { 5264 if (generation != bus_data_generation) 5265 return (1); 5266 5267 /* XXX generate optimised lists here? */ 5268 return (0); 5269 } 5270 5271 void 5272 bus_data_generation_update(void) 5273 { 5274 bus_data_generation++; 5275 } 5276 5277 int 5278 bus_free_resource(device_t dev, int type, struct resource *r) 5279 { 5280 if (r == NULL) 5281 return (0); 5282 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5283 } 5284 5285 device_t 5286 device_lookup_by_name(const char *name) 5287 { 5288 device_t dev; 5289 5290 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5291 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5292 return (dev); 5293 } 5294 return (NULL); 5295 } 5296 5297 /* 5298 * /dev/devctl2 implementation. The existing /dev/devctl device has 5299 * implicit semantics on open, so it could not be reused for this. 5300 * Another option would be to call this /dev/bus? 5301 */ 5302 static int 5303 find_device(struct devreq *req, device_t *devp) 5304 { 5305 device_t dev; 5306 5307 /* 5308 * First, ensure that the name is nul terminated. 5309 */ 5310 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5311 return (EINVAL); 5312 5313 /* 5314 * Second, try to find an attached device whose name matches 5315 * 'name'. 5316 */ 5317 dev = device_lookup_by_name(req->dr_name); 5318 if (dev != NULL) { 5319 *devp = dev; 5320 return (0); 5321 } 5322 5323 /* Finally, give device enumerators a chance. */ 5324 dev = NULL; 5325 EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev); 5326 if (dev == NULL) 5327 return (ENOENT); 5328 *devp = dev; 5329 return (0); 5330 } 5331 5332 static bool 5333 driver_exists(device_t bus, const char *driver) 5334 { 5335 devclass_t dc; 5336 5337 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5338 if (devclass_find_driver_internal(dc, driver) != NULL) 5339 return (true); 5340 } 5341 return (false); 5342 } 5343 5344 static int 5345 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5346 struct thread *td) 5347 { 5348 struct devreq *req; 5349 device_t dev; 5350 int error, old; 5351 5352 /* Locate the device to control. */ 5353 mtx_lock(&Giant); 5354 req = (struct devreq *)data; 5355 switch (cmd) { 5356 case DEV_ATTACH: 5357 case DEV_DETACH: 5358 case DEV_ENABLE: 5359 case DEV_DISABLE: 5360 case DEV_SUSPEND: 5361 case DEV_RESUME: 5362 case DEV_SET_DRIVER: 5363 case DEV_CLEAR_DRIVER: 5364 case DEV_RESCAN: 5365 case DEV_DELETE: 5366 error = priv_check(td, PRIV_DRIVER); 5367 if (error == 0) 5368 error = find_device(req, &dev); 5369 break; 5370 default: 5371 error = ENOTTY; 5372 break; 5373 } 5374 if (error) { 5375 mtx_unlock(&Giant); 5376 return (error); 5377 } 5378 5379 /* Perform the requested operation. */ 5380 switch (cmd) { 5381 case DEV_ATTACH: 5382 if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0) 5383 error = EBUSY; 5384 else if (!device_is_enabled(dev)) 5385 error = ENXIO; 5386 else 5387 error = device_probe_and_attach(dev); 5388 break; 5389 case DEV_DETACH: 5390 if (!device_is_attached(dev)) { 5391 error = ENXIO; 5392 break; 5393 } 5394 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5395 error = device_quiesce(dev); 5396 if (error) 5397 break; 5398 } 5399 error = device_detach(dev); 5400 break; 5401 case DEV_ENABLE: 5402 if (device_is_enabled(dev)) { 5403 error = EBUSY; 5404 break; 5405 } 5406 5407 /* 5408 * If the device has been probed but not attached (e.g. 5409 * when it has been disabled by a loader hint), just 5410 * attach the device rather than doing a full probe. 5411 */ 5412 device_enable(dev); 5413 if (device_is_alive(dev)) { 5414 /* 5415 * If the device was disabled via a hint, clear 5416 * the hint. 5417 */ 5418 if (resource_disabled(dev->driver->name, dev->unit)) 5419 resource_unset_value(dev->driver->name, 5420 dev->unit, "disabled"); 5421 error = device_attach(dev); 5422 } else 5423 error = device_probe_and_attach(dev); 5424 break; 5425 case DEV_DISABLE: 5426 if (!device_is_enabled(dev)) { 5427 error = ENXIO; 5428 break; 5429 } 5430 5431 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5432 error = device_quiesce(dev); 5433 if (error) 5434 break; 5435 } 5436 5437 /* 5438 * Force DF_FIXEDCLASS on around detach to preserve 5439 * the existing name. 5440 */ 5441 old = dev->flags; 5442 dev->flags |= DF_FIXEDCLASS; 5443 error = device_detach(dev); 5444 if (!(old & DF_FIXEDCLASS)) 5445 dev->flags &= ~DF_FIXEDCLASS; 5446 if (error == 0) 5447 device_disable(dev); 5448 break; 5449 case DEV_SUSPEND: 5450 if (device_is_suspended(dev)) { 5451 error = EBUSY; 5452 break; 5453 } 5454 if (device_get_parent(dev) == NULL) { 5455 error = EINVAL; 5456 break; 5457 } 5458 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5459 break; 5460 case DEV_RESUME: 5461 if (!device_is_suspended(dev)) { 5462 error = EINVAL; 5463 break; 5464 } 5465 if (device_get_parent(dev) == NULL) { 5466 error = EINVAL; 5467 break; 5468 } 5469 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5470 break; 5471 case DEV_SET_DRIVER: { 5472 devclass_t dc; 5473 char driver[128]; 5474 5475 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5476 if (error) 5477 break; 5478 if (driver[0] == '\0') { 5479 error = EINVAL; 5480 break; 5481 } 5482 if (dev->devclass != NULL && 5483 strcmp(driver, dev->devclass->name) == 0) 5484 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5485 break; 5486 5487 /* 5488 * Scan drivers for this device's bus looking for at 5489 * least one matching driver. 5490 */ 5491 if (dev->parent == NULL) { 5492 error = EINVAL; 5493 break; 5494 } 5495 if (!driver_exists(dev->parent, driver)) { 5496 error = ENOENT; 5497 break; 5498 } 5499 dc = devclass_create(driver); 5500 if (dc == NULL) { 5501 error = ENOMEM; 5502 break; 5503 } 5504 5505 /* Detach device if necessary. */ 5506 if (device_is_attached(dev)) { 5507 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5508 error = device_detach(dev); 5509 else 5510 error = EBUSY; 5511 if (error) 5512 break; 5513 } 5514 5515 /* Clear any previously-fixed device class and unit. */ 5516 if (dev->flags & DF_FIXEDCLASS) 5517 devclass_delete_device(dev->devclass, dev); 5518 dev->flags |= DF_WILDCARD; 5519 dev->unit = -1; 5520 5521 /* Force the new device class. */ 5522 error = devclass_add_device(dc, dev); 5523 if (error) 5524 break; 5525 dev->flags |= DF_FIXEDCLASS; 5526 error = device_probe_and_attach(dev); 5527 break; 5528 } 5529 case DEV_CLEAR_DRIVER: 5530 if (!(dev->flags & DF_FIXEDCLASS)) { 5531 error = 0; 5532 break; 5533 } 5534 if (device_is_attached(dev)) { 5535 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5536 error = device_detach(dev); 5537 else 5538 error = EBUSY; 5539 if (error) 5540 break; 5541 } 5542 5543 dev->flags &= ~DF_FIXEDCLASS; 5544 dev->flags |= DF_WILDCARD; 5545 devclass_delete_device(dev->devclass, dev); 5546 error = device_probe_and_attach(dev); 5547 break; 5548 case DEV_RESCAN: 5549 if (!device_is_attached(dev)) { 5550 error = ENXIO; 5551 break; 5552 } 5553 error = BUS_RESCAN(dev); 5554 break; 5555 case DEV_DELETE: { 5556 device_t parent; 5557 5558 parent = device_get_parent(dev); 5559 if (parent == NULL) { 5560 error = EINVAL; 5561 break; 5562 } 5563 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5564 if (bus_child_present(dev) != 0) { 5565 error = EBUSY; 5566 break; 5567 } 5568 } 5569 5570 error = device_delete_child(parent, dev); 5571 break; 5572 } 5573 } 5574 mtx_unlock(&Giant); 5575 return (error); 5576 } 5577 5578 static struct cdevsw devctl2_cdevsw = { 5579 .d_version = D_VERSION, 5580 .d_ioctl = devctl2_ioctl, 5581 .d_name = "devctl2", 5582 }; 5583 5584 static void 5585 devctl2_init(void) 5586 { 5587 5588 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5589 UID_ROOT, GID_WHEEL, 0600, "devctl2"); 5590 } 5591 5592 #ifdef DDB 5593 DB_SHOW_COMMAND(device, db_show_device) 5594 { 5595 device_t dev; 5596 5597 if (!have_addr) 5598 return; 5599 5600 dev = (device_t)addr; 5601 5602 db_printf("name: %s\n", device_get_nameunit(dev)); 5603 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 5604 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 5605 db_printf(" addr: %p\n", dev); 5606 db_printf(" parent: %p\n", dev->parent); 5607 db_printf(" softc: %p\n", dev->softc); 5608 db_printf(" ivars: %p\n", dev->ivars); 5609 } 5610 5611 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 5612 { 5613 device_t dev; 5614 5615 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5616 db_show_device((db_expr_t)dev, true, count, modif); 5617 } 5618 } 5619 #endif 5620