1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/conf.h> 34 #include <sys/filio.h> 35 #include <sys/lock.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/limits.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/mutex.h> 42 #include <sys/poll.h> 43 #include <sys/proc.h> 44 #include <sys/condvar.h> 45 #include <sys/queue.h> 46 #include <machine/bus.h> 47 #include <sys/rman.h> 48 #include <sys/selinfo.h> 49 #include <sys/signalvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/systm.h> 52 #include <sys/uio.h> 53 #include <sys/bus.h> 54 #include <sys/interrupt.h> 55 56 #include <machine/stdarg.h> 57 58 #include <vm/uma.h> 59 60 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 61 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 62 63 /* 64 * Used to attach drivers to devclasses. 65 */ 66 typedef struct driverlink *driverlink_t; 67 struct driverlink { 68 kobj_class_t driver; 69 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 70 int pass; 71 TAILQ_ENTRY(driverlink) passlink; 72 }; 73 74 /* 75 * Forward declarations 76 */ 77 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 78 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 79 typedef TAILQ_HEAD(device_list, device) device_list_t; 80 81 struct devclass { 82 TAILQ_ENTRY(devclass) link; 83 devclass_t parent; /* parent in devclass hierarchy */ 84 driver_list_t drivers; /* bus devclasses store drivers for bus */ 85 char *name; 86 device_t *devices; /* array of devices indexed by unit */ 87 int maxunit; /* size of devices array */ 88 int flags; 89 #define DC_HAS_CHILDREN 1 90 91 struct sysctl_ctx_list sysctl_ctx; 92 struct sysctl_oid *sysctl_tree; 93 }; 94 95 /** 96 * @brief Implementation of device. 97 */ 98 struct device { 99 /* 100 * A device is a kernel object. The first field must be the 101 * current ops table for the object. 102 */ 103 KOBJ_FIELDS; 104 105 /* 106 * Device hierarchy. 107 */ 108 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 109 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 110 device_t parent; /**< parent of this device */ 111 device_list_t children; /**< list of child devices */ 112 113 /* 114 * Details of this device. 115 */ 116 driver_t *driver; /**< current driver */ 117 devclass_t devclass; /**< current device class */ 118 int unit; /**< current unit number */ 119 char* nameunit; /**< name+unit e.g. foodev0 */ 120 char* desc; /**< driver specific description */ 121 int busy; /**< count of calls to device_busy() */ 122 device_state_t state; /**< current device state */ 123 uint32_t devflags; /**< api level flags for device_get_flags() */ 124 u_int flags; /**< internal device flags */ 125 #define DF_ENABLED 0x01 /* device should be probed/attached */ 126 #define DF_FIXEDCLASS 0x02 /* devclass specified at create time */ 127 #define DF_WILDCARD 0x04 /* unit was originally wildcard */ 128 #define DF_DESCMALLOCED 0x08 /* description was malloced */ 129 #define DF_QUIET 0x10 /* don't print verbose attach message */ 130 #define DF_DONENOMATCH 0x20 /* don't execute DEVICE_NOMATCH again */ 131 #define DF_EXTERNALSOFTC 0x40 /* softc not allocated by us */ 132 #define DF_REBID 0x80 /* Can rebid after attach */ 133 u_int order; /**< order from device_add_child_ordered() */ 134 void *ivars; /**< instance variables */ 135 void *softc; /**< current driver's variables */ 136 137 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 138 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 139 }; 140 141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 143 144 #ifdef BUS_DEBUG 145 146 static int bus_debug = 1; 147 TUNABLE_INT("bus.debug", &bus_debug); 148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0, 149 "Debug bus code"); 150 151 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 152 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 153 #define DRIVERNAME(d) ((d)? d->name : "no driver") 154 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 155 156 /** 157 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 158 * prevent syslog from deleting initial spaces 159 */ 160 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 161 162 static void print_device_short(device_t dev, int indent); 163 static void print_device(device_t dev, int indent); 164 void print_device_tree_short(device_t dev, int indent); 165 void print_device_tree(device_t dev, int indent); 166 static void print_driver_short(driver_t *driver, int indent); 167 static void print_driver(driver_t *driver, int indent); 168 static void print_driver_list(driver_list_t drivers, int indent); 169 static void print_devclass_short(devclass_t dc, int indent); 170 static void print_devclass(devclass_t dc, int indent); 171 void print_devclass_list_short(void); 172 void print_devclass_list(void); 173 174 #else 175 /* Make the compiler ignore the function calls */ 176 #define PDEBUG(a) /* nop */ 177 #define DEVICENAME(d) /* nop */ 178 #define DRIVERNAME(d) /* nop */ 179 #define DEVCLANAME(d) /* nop */ 180 181 #define print_device_short(d,i) /* nop */ 182 #define print_device(d,i) /* nop */ 183 #define print_device_tree_short(d,i) /* nop */ 184 #define print_device_tree(d,i) /* nop */ 185 #define print_driver_short(d,i) /* nop */ 186 #define print_driver(d,i) /* nop */ 187 #define print_driver_list(d,i) /* nop */ 188 #define print_devclass_short(d,i) /* nop */ 189 #define print_devclass(d,i) /* nop */ 190 #define print_devclass_list_short() /* nop */ 191 #define print_devclass_list() /* nop */ 192 #endif 193 194 /* 195 * dev sysctl tree 196 */ 197 198 enum { 199 DEVCLASS_SYSCTL_PARENT, 200 }; 201 202 static int 203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 204 { 205 devclass_t dc = (devclass_t)arg1; 206 const char *value; 207 208 switch (arg2) { 209 case DEVCLASS_SYSCTL_PARENT: 210 value = dc->parent ? dc->parent->name : ""; 211 break; 212 default: 213 return (EINVAL); 214 } 215 return (SYSCTL_OUT(req, value, strlen(value))); 216 } 217 218 static void 219 devclass_sysctl_init(devclass_t dc) 220 { 221 222 if (dc->sysctl_tree != NULL) 223 return; 224 sysctl_ctx_init(&dc->sysctl_ctx); 225 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 226 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 227 CTLFLAG_RD, NULL, ""); 228 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 229 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 230 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 231 "parent class"); 232 } 233 234 enum { 235 DEVICE_SYSCTL_DESC, 236 DEVICE_SYSCTL_DRIVER, 237 DEVICE_SYSCTL_LOCATION, 238 DEVICE_SYSCTL_PNPINFO, 239 DEVICE_SYSCTL_PARENT, 240 }; 241 242 static int 243 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 244 { 245 device_t dev = (device_t)arg1; 246 const char *value; 247 char *buf; 248 int error; 249 250 buf = NULL; 251 switch (arg2) { 252 case DEVICE_SYSCTL_DESC: 253 value = dev->desc ? dev->desc : ""; 254 break; 255 case DEVICE_SYSCTL_DRIVER: 256 value = dev->driver ? dev->driver->name : ""; 257 break; 258 case DEVICE_SYSCTL_LOCATION: 259 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 260 bus_child_location_str(dev, buf, 1024); 261 break; 262 case DEVICE_SYSCTL_PNPINFO: 263 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 264 bus_child_pnpinfo_str(dev, buf, 1024); 265 break; 266 case DEVICE_SYSCTL_PARENT: 267 value = dev->parent ? dev->parent->nameunit : ""; 268 break; 269 default: 270 return (EINVAL); 271 } 272 error = SYSCTL_OUT(req, value, strlen(value)); 273 if (buf != NULL) 274 free(buf, M_BUS); 275 return (error); 276 } 277 278 static void 279 device_sysctl_init(device_t dev) 280 { 281 devclass_t dc = dev->devclass; 282 283 if (dev->sysctl_tree != NULL) 284 return; 285 devclass_sysctl_init(dc); 286 sysctl_ctx_init(&dev->sysctl_ctx); 287 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 288 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 289 dev->nameunit + strlen(dc->name), 290 CTLFLAG_RD, NULL, ""); 291 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 292 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 293 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 294 "device description"); 295 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 296 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 297 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 298 "device driver name"); 299 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 300 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 301 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 302 "device location relative to parent"); 303 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 304 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 305 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 306 "device identification"); 307 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 308 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 309 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 310 "parent device"); 311 } 312 313 static void 314 device_sysctl_update(device_t dev) 315 { 316 devclass_t dc = dev->devclass; 317 318 if (dev->sysctl_tree == NULL) 319 return; 320 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 321 } 322 323 static void 324 device_sysctl_fini(device_t dev) 325 { 326 if (dev->sysctl_tree == NULL) 327 return; 328 sysctl_ctx_free(&dev->sysctl_ctx); 329 dev->sysctl_tree = NULL; 330 } 331 332 /* 333 * /dev/devctl implementation 334 */ 335 336 /* 337 * This design allows only one reader for /dev/devctl. This is not desirable 338 * in the long run, but will get a lot of hair out of this implementation. 339 * Maybe we should make this device a clonable device. 340 * 341 * Also note: we specifically do not attach a device to the device_t tree 342 * to avoid potential chicken and egg problems. One could argue that all 343 * of this belongs to the root node. One could also further argue that the 344 * sysctl interface that we have not might more properly be an ioctl 345 * interface, but at this stage of the game, I'm not inclined to rock that 346 * boat. 347 * 348 * I'm also not sure that the SIGIO support is done correctly or not, as 349 * I copied it from a driver that had SIGIO support that likely hasn't been 350 * tested since 3.4 or 2.2.8! 351 */ 352 353 /* Deprecated way to adjust queue length */ 354 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 355 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */ 356 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL, 357 0, sysctl_devctl_disable, "I", "devctl disable -- deprecated"); 358 359 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 360 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 361 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 362 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length); 363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL, 364 0, sysctl_devctl_queue, "I", "devctl queue length"); 365 366 static d_open_t devopen; 367 static d_close_t devclose; 368 static d_read_t devread; 369 static d_ioctl_t devioctl; 370 static d_poll_t devpoll; 371 372 static struct cdevsw dev_cdevsw = { 373 .d_version = D_VERSION, 374 .d_flags = D_NEEDGIANT, 375 .d_open = devopen, 376 .d_close = devclose, 377 .d_read = devread, 378 .d_ioctl = devioctl, 379 .d_poll = devpoll, 380 .d_name = "devctl", 381 }; 382 383 struct dev_event_info 384 { 385 char *dei_data; 386 TAILQ_ENTRY(dev_event_info) dei_link; 387 }; 388 389 TAILQ_HEAD(devq, dev_event_info); 390 391 static struct dev_softc 392 { 393 int inuse; 394 int nonblock; 395 int queued; 396 struct mtx mtx; 397 struct cv cv; 398 struct selinfo sel; 399 struct devq devq; 400 struct proc *async_proc; 401 } devsoftc; 402 403 static struct cdev *devctl_dev; 404 405 static void 406 devinit(void) 407 { 408 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 409 UID_ROOT, GID_WHEEL, 0600, "devctl"); 410 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 411 cv_init(&devsoftc.cv, "dev cv"); 412 TAILQ_INIT(&devsoftc.devq); 413 } 414 415 static int 416 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 417 { 418 if (devsoftc.inuse) 419 return (EBUSY); 420 /* move to init */ 421 devsoftc.inuse = 1; 422 devsoftc.nonblock = 0; 423 devsoftc.async_proc = NULL; 424 return (0); 425 } 426 427 static int 428 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 429 { 430 devsoftc.inuse = 0; 431 mtx_lock(&devsoftc.mtx); 432 cv_broadcast(&devsoftc.cv); 433 mtx_unlock(&devsoftc.mtx); 434 devsoftc.async_proc = NULL; 435 return (0); 436 } 437 438 /* 439 * The read channel for this device is used to report changes to 440 * userland in realtime. We are required to free the data as well as 441 * the n1 object because we allocate them separately. Also note that 442 * we return one record at a time. If you try to read this device a 443 * character at a time, you will lose the rest of the data. Listening 444 * programs are expected to cope. 445 */ 446 static int 447 devread(struct cdev *dev, struct uio *uio, int ioflag) 448 { 449 struct dev_event_info *n1; 450 int rv; 451 452 mtx_lock(&devsoftc.mtx); 453 while (TAILQ_EMPTY(&devsoftc.devq)) { 454 if (devsoftc.nonblock) { 455 mtx_unlock(&devsoftc.mtx); 456 return (EAGAIN); 457 } 458 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 459 if (rv) { 460 /* 461 * Need to translate ERESTART to EINTR here? -- jake 462 */ 463 mtx_unlock(&devsoftc.mtx); 464 return (rv); 465 } 466 } 467 n1 = TAILQ_FIRST(&devsoftc.devq); 468 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 469 devsoftc.queued--; 470 mtx_unlock(&devsoftc.mtx); 471 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 472 free(n1->dei_data, M_BUS); 473 free(n1, M_BUS); 474 return (rv); 475 } 476 477 static int 478 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 479 { 480 switch (cmd) { 481 482 case FIONBIO: 483 if (*(int*)data) 484 devsoftc.nonblock = 1; 485 else 486 devsoftc.nonblock = 0; 487 return (0); 488 case FIOASYNC: 489 if (*(int*)data) 490 devsoftc.async_proc = td->td_proc; 491 else 492 devsoftc.async_proc = NULL; 493 return (0); 494 495 /* (un)Support for other fcntl() calls. */ 496 case FIOCLEX: 497 case FIONCLEX: 498 case FIONREAD: 499 case FIOSETOWN: 500 case FIOGETOWN: 501 default: 502 break; 503 } 504 return (ENOTTY); 505 } 506 507 static int 508 devpoll(struct cdev *dev, int events, struct thread *td) 509 { 510 int revents = 0; 511 512 mtx_lock(&devsoftc.mtx); 513 if (events & (POLLIN | POLLRDNORM)) { 514 if (!TAILQ_EMPTY(&devsoftc.devq)) 515 revents = events & (POLLIN | POLLRDNORM); 516 else 517 selrecord(td, &devsoftc.sel); 518 } 519 mtx_unlock(&devsoftc.mtx); 520 521 return (revents); 522 } 523 524 /** 525 * @brief Return whether the userland process is running 526 */ 527 boolean_t 528 devctl_process_running(void) 529 { 530 return (devsoftc.inuse == 1); 531 } 532 533 /** 534 * @brief Queue data to be read from the devctl device 535 * 536 * Generic interface to queue data to the devctl device. It is 537 * assumed that @p data is properly formatted. It is further assumed 538 * that @p data is allocated using the M_BUS malloc type. 539 */ 540 void 541 devctl_queue_data_f(char *data, int flags) 542 { 543 struct dev_event_info *n1 = NULL, *n2 = NULL; 544 struct proc *p; 545 546 if (strlen(data) == 0) 547 goto out; 548 if (devctl_queue_length == 0) 549 goto out; 550 n1 = malloc(sizeof(*n1), M_BUS, flags); 551 if (n1 == NULL) 552 goto out; 553 n1->dei_data = data; 554 mtx_lock(&devsoftc.mtx); 555 if (devctl_queue_length == 0) { 556 mtx_unlock(&devsoftc.mtx); 557 free(n1->dei_data, M_BUS); 558 free(n1, M_BUS); 559 return; 560 } 561 /* Leave at least one spot in the queue... */ 562 while (devsoftc.queued > devctl_queue_length - 1) { 563 n2 = TAILQ_FIRST(&devsoftc.devq); 564 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 565 free(n2->dei_data, M_BUS); 566 free(n2, M_BUS); 567 devsoftc.queued--; 568 } 569 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 570 devsoftc.queued++; 571 cv_broadcast(&devsoftc.cv); 572 mtx_unlock(&devsoftc.mtx); 573 selwakeup(&devsoftc.sel); 574 p = devsoftc.async_proc; 575 if (p != NULL) { 576 PROC_LOCK(p); 577 kern_psignal(p, SIGIO); 578 PROC_UNLOCK(p); 579 } 580 return; 581 out: 582 /* 583 * We have to free data on all error paths since the caller 584 * assumes it will be free'd when this item is dequeued. 585 */ 586 free(data, M_BUS); 587 return; 588 } 589 590 void 591 devctl_queue_data(char *data) 592 { 593 594 devctl_queue_data_f(data, M_NOWAIT); 595 } 596 597 /** 598 * @brief Send a 'notification' to userland, using standard ways 599 */ 600 void 601 devctl_notify_f(const char *system, const char *subsystem, const char *type, 602 const char *data, int flags) 603 { 604 int len = 0; 605 char *msg; 606 607 if (system == NULL) 608 return; /* BOGUS! Must specify system. */ 609 if (subsystem == NULL) 610 return; /* BOGUS! Must specify subsystem. */ 611 if (type == NULL) 612 return; /* BOGUS! Must specify type. */ 613 len += strlen(" system=") + strlen(system); 614 len += strlen(" subsystem=") + strlen(subsystem); 615 len += strlen(" type=") + strlen(type); 616 /* add in the data message plus newline. */ 617 if (data != NULL) 618 len += strlen(data); 619 len += 3; /* '!', '\n', and NUL */ 620 msg = malloc(len, M_BUS, flags); 621 if (msg == NULL) 622 return; /* Drop it on the floor */ 623 if (data != NULL) 624 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 625 system, subsystem, type, data); 626 else 627 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 628 system, subsystem, type); 629 devctl_queue_data_f(msg, flags); 630 } 631 632 void 633 devctl_notify(const char *system, const char *subsystem, const char *type, 634 const char *data) 635 { 636 637 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 638 } 639 640 /* 641 * Common routine that tries to make sending messages as easy as possible. 642 * We allocate memory for the data, copy strings into that, but do not 643 * free it unless there's an error. The dequeue part of the driver should 644 * free the data. We don't send data when the device is disabled. We do 645 * send data, even when we have no listeners, because we wish to avoid 646 * races relating to startup and restart of listening applications. 647 * 648 * devaddq is designed to string together the type of event, with the 649 * object of that event, plus the plug and play info and location info 650 * for that event. This is likely most useful for devices, but less 651 * useful for other consumers of this interface. Those should use 652 * the devctl_queue_data() interface instead. 653 */ 654 static void 655 devaddq(const char *type, const char *what, device_t dev) 656 { 657 char *data = NULL; 658 char *loc = NULL; 659 char *pnp = NULL; 660 const char *parstr; 661 662 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 663 return; 664 data = malloc(1024, M_BUS, M_NOWAIT); 665 if (data == NULL) 666 goto bad; 667 668 /* get the bus specific location of this device */ 669 loc = malloc(1024, M_BUS, M_NOWAIT); 670 if (loc == NULL) 671 goto bad; 672 *loc = '\0'; 673 bus_child_location_str(dev, loc, 1024); 674 675 /* Get the bus specific pnp info of this device */ 676 pnp = malloc(1024, M_BUS, M_NOWAIT); 677 if (pnp == NULL) 678 goto bad; 679 *pnp = '\0'; 680 bus_child_pnpinfo_str(dev, pnp, 1024); 681 682 /* Get the parent of this device, or / if high enough in the tree. */ 683 if (device_get_parent(dev) == NULL) 684 parstr = "."; /* Or '/' ? */ 685 else 686 parstr = device_get_nameunit(device_get_parent(dev)); 687 /* String it all together. */ 688 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 689 parstr); 690 free(loc, M_BUS); 691 free(pnp, M_BUS); 692 devctl_queue_data(data); 693 return; 694 bad: 695 free(pnp, M_BUS); 696 free(loc, M_BUS); 697 free(data, M_BUS); 698 return; 699 } 700 701 /* 702 * A device was added to the tree. We are called just after it successfully 703 * attaches (that is, probe and attach success for this device). No call 704 * is made if a device is merely parented into the tree. See devnomatch 705 * if probe fails. If attach fails, no notification is sent (but maybe 706 * we should have a different message for this). 707 */ 708 static void 709 devadded(device_t dev) 710 { 711 devaddq("+", device_get_nameunit(dev), dev); 712 } 713 714 /* 715 * A device was removed from the tree. We are called just before this 716 * happens. 717 */ 718 static void 719 devremoved(device_t dev) 720 { 721 devaddq("-", device_get_nameunit(dev), dev); 722 } 723 724 /* 725 * Called when there's no match for this device. This is only called 726 * the first time that no match happens, so we don't keep getting this 727 * message. Should that prove to be undesirable, we can change it. 728 * This is called when all drivers that can attach to a given bus 729 * decline to accept this device. Other errors may not be detected. 730 */ 731 static void 732 devnomatch(device_t dev) 733 { 734 devaddq("?", "", dev); 735 } 736 737 static int 738 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 739 { 740 struct dev_event_info *n1; 741 int dis, error; 742 743 dis = devctl_queue_length == 0; 744 error = sysctl_handle_int(oidp, &dis, 0, req); 745 if (error || !req->newptr) 746 return (error); 747 mtx_lock(&devsoftc.mtx); 748 if (dis) { 749 while (!TAILQ_EMPTY(&devsoftc.devq)) { 750 n1 = TAILQ_FIRST(&devsoftc.devq); 751 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 752 free(n1->dei_data, M_BUS); 753 free(n1, M_BUS); 754 } 755 devsoftc.queued = 0; 756 devctl_queue_length = 0; 757 } else { 758 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 759 } 760 mtx_unlock(&devsoftc.mtx); 761 return (0); 762 } 763 764 static int 765 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 766 { 767 struct dev_event_info *n1; 768 int q, error; 769 770 q = devctl_queue_length; 771 error = sysctl_handle_int(oidp, &q, 0, req); 772 if (error || !req->newptr) 773 return (error); 774 if (q < 0) 775 return (EINVAL); 776 mtx_lock(&devsoftc.mtx); 777 devctl_queue_length = q; 778 while (devsoftc.queued > devctl_queue_length) { 779 n1 = TAILQ_FIRST(&devsoftc.devq); 780 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 781 free(n1->dei_data, M_BUS); 782 free(n1, M_BUS); 783 devsoftc.queued--; 784 } 785 mtx_unlock(&devsoftc.mtx); 786 return (0); 787 } 788 789 /* End of /dev/devctl code */ 790 791 static TAILQ_HEAD(,device) bus_data_devices; 792 static int bus_data_generation = 1; 793 794 static kobj_method_t null_methods[] = { 795 KOBJMETHOD_END 796 }; 797 798 DEFINE_CLASS(null, null_methods, 0); 799 800 /* 801 * Bus pass implementation 802 */ 803 804 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 805 int bus_current_pass = BUS_PASS_ROOT; 806 807 /** 808 * @internal 809 * @brief Register the pass level of a new driver attachment 810 * 811 * Register a new driver attachment's pass level. If no driver 812 * attachment with the same pass level has been added, then @p new 813 * will be added to the global passes list. 814 * 815 * @param new the new driver attachment 816 */ 817 static void 818 driver_register_pass(struct driverlink *new) 819 { 820 struct driverlink *dl; 821 822 /* We only consider pass numbers during boot. */ 823 if (bus_current_pass == BUS_PASS_DEFAULT) 824 return; 825 826 /* 827 * Walk the passes list. If we already know about this pass 828 * then there is nothing to do. If we don't, then insert this 829 * driver link into the list. 830 */ 831 TAILQ_FOREACH(dl, &passes, passlink) { 832 if (dl->pass < new->pass) 833 continue; 834 if (dl->pass == new->pass) 835 return; 836 TAILQ_INSERT_BEFORE(dl, new, passlink); 837 return; 838 } 839 TAILQ_INSERT_TAIL(&passes, new, passlink); 840 } 841 842 /** 843 * @brief Raise the current bus pass 844 * 845 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 846 * method on the root bus to kick off a new device tree scan for each 847 * new pass level that has at least one driver. 848 */ 849 void 850 bus_set_pass(int pass) 851 { 852 struct driverlink *dl; 853 854 if (bus_current_pass > pass) 855 panic("Attempt to lower bus pass level"); 856 857 TAILQ_FOREACH(dl, &passes, passlink) { 858 /* Skip pass values below the current pass level. */ 859 if (dl->pass <= bus_current_pass) 860 continue; 861 862 /* 863 * Bail once we hit a driver with a pass level that is 864 * too high. 865 */ 866 if (dl->pass > pass) 867 break; 868 869 /* 870 * Raise the pass level to the next level and rescan 871 * the tree. 872 */ 873 bus_current_pass = dl->pass; 874 BUS_NEW_PASS(root_bus); 875 } 876 877 /* 878 * If there isn't a driver registered for the requested pass, 879 * then bus_current_pass might still be less than 'pass'. Set 880 * it to 'pass' in that case. 881 */ 882 if (bus_current_pass < pass) 883 bus_current_pass = pass; 884 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 885 } 886 887 /* 888 * Devclass implementation 889 */ 890 891 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 892 893 /** 894 * @internal 895 * @brief Find or create a device class 896 * 897 * If a device class with the name @p classname exists, return it, 898 * otherwise if @p create is non-zero create and return a new device 899 * class. 900 * 901 * If @p parentname is non-NULL, the parent of the devclass is set to 902 * the devclass of that name. 903 * 904 * @param classname the devclass name to find or create 905 * @param parentname the parent devclass name or @c NULL 906 * @param create non-zero to create a devclass 907 */ 908 static devclass_t 909 devclass_find_internal(const char *classname, const char *parentname, 910 int create) 911 { 912 devclass_t dc; 913 914 PDEBUG(("looking for %s", classname)); 915 if (!classname) 916 return (NULL); 917 918 TAILQ_FOREACH(dc, &devclasses, link) { 919 if (!strcmp(dc->name, classname)) 920 break; 921 } 922 923 if (create && !dc) { 924 PDEBUG(("creating %s", classname)); 925 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 926 M_BUS, M_NOWAIT | M_ZERO); 927 if (!dc) 928 return (NULL); 929 dc->parent = NULL; 930 dc->name = (char*) (dc + 1); 931 strcpy(dc->name, classname); 932 TAILQ_INIT(&dc->drivers); 933 TAILQ_INSERT_TAIL(&devclasses, dc, link); 934 935 bus_data_generation_update(); 936 } 937 938 /* 939 * If a parent class is specified, then set that as our parent so 940 * that this devclass will support drivers for the parent class as 941 * well. If the parent class has the same name don't do this though 942 * as it creates a cycle that can trigger an infinite loop in 943 * device_probe_child() if a device exists for which there is no 944 * suitable driver. 945 */ 946 if (parentname && dc && !dc->parent && 947 strcmp(classname, parentname) != 0) { 948 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 949 dc->parent->flags |= DC_HAS_CHILDREN; 950 } 951 952 return (dc); 953 } 954 955 /** 956 * @brief Create a device class 957 * 958 * If a device class with the name @p classname exists, return it, 959 * otherwise create and return a new device class. 960 * 961 * @param classname the devclass name to find or create 962 */ 963 devclass_t 964 devclass_create(const char *classname) 965 { 966 return (devclass_find_internal(classname, NULL, TRUE)); 967 } 968 969 /** 970 * @brief Find a device class 971 * 972 * If a device class with the name @p classname exists, return it, 973 * otherwise return @c NULL. 974 * 975 * @param classname the devclass name to find 976 */ 977 devclass_t 978 devclass_find(const char *classname) 979 { 980 return (devclass_find_internal(classname, NULL, FALSE)); 981 } 982 983 /** 984 * @brief Register that a device driver has been added to a devclass 985 * 986 * Register that a device driver has been added to a devclass. This 987 * is called by devclass_add_driver to accomplish the recursive 988 * notification of all the children classes of dc, as well as dc. 989 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 990 * the devclass. 991 * 992 * We do a full search here of the devclass list at each iteration 993 * level to save storing children-lists in the devclass structure. If 994 * we ever move beyond a few dozen devices doing this, we may need to 995 * reevaluate... 996 * 997 * @param dc the devclass to edit 998 * @param driver the driver that was just added 999 */ 1000 static void 1001 devclass_driver_added(devclass_t dc, driver_t *driver) 1002 { 1003 devclass_t parent; 1004 int i; 1005 1006 /* 1007 * Call BUS_DRIVER_ADDED for any existing busses in this class. 1008 */ 1009 for (i = 0; i < dc->maxunit; i++) 1010 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1011 BUS_DRIVER_ADDED(dc->devices[i], driver); 1012 1013 /* 1014 * Walk through the children classes. Since we only keep a 1015 * single parent pointer around, we walk the entire list of 1016 * devclasses looking for children. We set the 1017 * DC_HAS_CHILDREN flag when a child devclass is created on 1018 * the parent, so we only walk the list for those devclasses 1019 * that have children. 1020 */ 1021 if (!(dc->flags & DC_HAS_CHILDREN)) 1022 return; 1023 parent = dc; 1024 TAILQ_FOREACH(dc, &devclasses, link) { 1025 if (dc->parent == parent) 1026 devclass_driver_added(dc, driver); 1027 } 1028 } 1029 1030 /** 1031 * @brief Add a device driver to a device class 1032 * 1033 * Add a device driver to a devclass. This is normally called 1034 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1035 * all devices in the devclass will be called to allow them to attempt 1036 * to re-probe any unmatched children. 1037 * 1038 * @param dc the devclass to edit 1039 * @param driver the driver to register 1040 */ 1041 int 1042 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1043 { 1044 driverlink_t dl; 1045 const char *parentname; 1046 1047 PDEBUG(("%s", DRIVERNAME(driver))); 1048 1049 /* Don't allow invalid pass values. */ 1050 if (pass <= BUS_PASS_ROOT) 1051 return (EINVAL); 1052 1053 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1054 if (!dl) 1055 return (ENOMEM); 1056 1057 /* 1058 * Compile the driver's methods. Also increase the reference count 1059 * so that the class doesn't get freed when the last instance 1060 * goes. This means we can safely use static methods and avoids a 1061 * double-free in devclass_delete_driver. 1062 */ 1063 kobj_class_compile((kobj_class_t) driver); 1064 1065 /* 1066 * If the driver has any base classes, make the 1067 * devclass inherit from the devclass of the driver's 1068 * first base class. This will allow the system to 1069 * search for drivers in both devclasses for children 1070 * of a device using this driver. 1071 */ 1072 if (driver->baseclasses) 1073 parentname = driver->baseclasses[0]->name; 1074 else 1075 parentname = NULL; 1076 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1077 1078 dl->driver = driver; 1079 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1080 driver->refs++; /* XXX: kobj_mtx */ 1081 dl->pass = pass; 1082 driver_register_pass(dl); 1083 1084 devclass_driver_added(dc, driver); 1085 bus_data_generation_update(); 1086 return (0); 1087 } 1088 1089 /** 1090 * @brief Register that a device driver has been deleted from a devclass 1091 * 1092 * Register that a device driver has been removed from a devclass. 1093 * This is called by devclass_delete_driver to accomplish the 1094 * recursive notification of all the children classes of busclass, as 1095 * well as busclass. Each layer will attempt to detach the driver 1096 * from any devices that are children of the bus's devclass. The function 1097 * will return an error if a device fails to detach. 1098 * 1099 * We do a full search here of the devclass list at each iteration 1100 * level to save storing children-lists in the devclass structure. If 1101 * we ever move beyond a few dozen devices doing this, we may need to 1102 * reevaluate... 1103 * 1104 * @param busclass the devclass of the parent bus 1105 * @param dc the devclass of the driver being deleted 1106 * @param driver the driver being deleted 1107 */ 1108 static int 1109 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1110 { 1111 devclass_t parent; 1112 device_t dev; 1113 int error, i; 1114 1115 /* 1116 * Disassociate from any devices. We iterate through all the 1117 * devices in the devclass of the driver and detach any which are 1118 * using the driver and which have a parent in the devclass which 1119 * we are deleting from. 1120 * 1121 * Note that since a driver can be in multiple devclasses, we 1122 * should not detach devices which are not children of devices in 1123 * the affected devclass. 1124 */ 1125 for (i = 0; i < dc->maxunit; i++) { 1126 if (dc->devices[i]) { 1127 dev = dc->devices[i]; 1128 if (dev->driver == driver && dev->parent && 1129 dev->parent->devclass == busclass) { 1130 if ((error = device_detach(dev)) != 0) 1131 return (error); 1132 device_set_driver(dev, NULL); 1133 BUS_PROBE_NOMATCH(dev->parent, dev); 1134 devnomatch(dev); 1135 dev->flags |= DF_DONENOMATCH; 1136 } 1137 } 1138 } 1139 1140 /* 1141 * Walk through the children classes. Since we only keep a 1142 * single parent pointer around, we walk the entire list of 1143 * devclasses looking for children. We set the 1144 * DC_HAS_CHILDREN flag when a child devclass is created on 1145 * the parent, so we only walk the list for those devclasses 1146 * that have children. 1147 */ 1148 if (!(busclass->flags & DC_HAS_CHILDREN)) 1149 return (0); 1150 parent = busclass; 1151 TAILQ_FOREACH(busclass, &devclasses, link) { 1152 if (busclass->parent == parent) { 1153 error = devclass_driver_deleted(busclass, dc, driver); 1154 if (error) 1155 return (error); 1156 } 1157 } 1158 return (0); 1159 } 1160 1161 /** 1162 * @brief Delete a device driver from a device class 1163 * 1164 * Delete a device driver from a devclass. This is normally called 1165 * automatically by DRIVER_MODULE(). 1166 * 1167 * If the driver is currently attached to any devices, 1168 * devclass_delete_driver() will first attempt to detach from each 1169 * device. If one of the detach calls fails, the driver will not be 1170 * deleted. 1171 * 1172 * @param dc the devclass to edit 1173 * @param driver the driver to unregister 1174 */ 1175 int 1176 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1177 { 1178 devclass_t dc = devclass_find(driver->name); 1179 driverlink_t dl; 1180 int error; 1181 1182 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1183 1184 if (!dc) 1185 return (0); 1186 1187 /* 1188 * Find the link structure in the bus' list of drivers. 1189 */ 1190 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1191 if (dl->driver == driver) 1192 break; 1193 } 1194 1195 if (!dl) { 1196 PDEBUG(("%s not found in %s list", driver->name, 1197 busclass->name)); 1198 return (ENOENT); 1199 } 1200 1201 error = devclass_driver_deleted(busclass, dc, driver); 1202 if (error != 0) 1203 return (error); 1204 1205 TAILQ_REMOVE(&busclass->drivers, dl, link); 1206 free(dl, M_BUS); 1207 1208 /* XXX: kobj_mtx */ 1209 driver->refs--; 1210 if (driver->refs == 0) 1211 kobj_class_free((kobj_class_t) driver); 1212 1213 bus_data_generation_update(); 1214 return (0); 1215 } 1216 1217 /** 1218 * @brief Quiesces a set of device drivers from a device class 1219 * 1220 * Quiesce a device driver from a devclass. This is normally called 1221 * automatically by DRIVER_MODULE(). 1222 * 1223 * If the driver is currently attached to any devices, 1224 * devclass_quiesece_driver() will first attempt to quiesce each 1225 * device. 1226 * 1227 * @param dc the devclass to edit 1228 * @param driver the driver to unregister 1229 */ 1230 static int 1231 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1232 { 1233 devclass_t dc = devclass_find(driver->name); 1234 driverlink_t dl; 1235 device_t dev; 1236 int i; 1237 int error; 1238 1239 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1240 1241 if (!dc) 1242 return (0); 1243 1244 /* 1245 * Find the link structure in the bus' list of drivers. 1246 */ 1247 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1248 if (dl->driver == driver) 1249 break; 1250 } 1251 1252 if (!dl) { 1253 PDEBUG(("%s not found in %s list", driver->name, 1254 busclass->name)); 1255 return (ENOENT); 1256 } 1257 1258 /* 1259 * Quiesce all devices. We iterate through all the devices in 1260 * the devclass of the driver and quiesce any which are using 1261 * the driver and which have a parent in the devclass which we 1262 * are quiescing. 1263 * 1264 * Note that since a driver can be in multiple devclasses, we 1265 * should not quiesce devices which are not children of 1266 * devices in the affected devclass. 1267 */ 1268 for (i = 0; i < dc->maxunit; i++) { 1269 if (dc->devices[i]) { 1270 dev = dc->devices[i]; 1271 if (dev->driver == driver && dev->parent && 1272 dev->parent->devclass == busclass) { 1273 if ((error = device_quiesce(dev)) != 0) 1274 return (error); 1275 } 1276 } 1277 } 1278 1279 return (0); 1280 } 1281 1282 /** 1283 * @internal 1284 */ 1285 static driverlink_t 1286 devclass_find_driver_internal(devclass_t dc, const char *classname) 1287 { 1288 driverlink_t dl; 1289 1290 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1291 1292 TAILQ_FOREACH(dl, &dc->drivers, link) { 1293 if (!strcmp(dl->driver->name, classname)) 1294 return (dl); 1295 } 1296 1297 PDEBUG(("not found")); 1298 return (NULL); 1299 } 1300 1301 /** 1302 * @brief Return the name of the devclass 1303 */ 1304 const char * 1305 devclass_get_name(devclass_t dc) 1306 { 1307 return (dc->name); 1308 } 1309 1310 /** 1311 * @brief Find a device given a unit number 1312 * 1313 * @param dc the devclass to search 1314 * @param unit the unit number to search for 1315 * 1316 * @returns the device with the given unit number or @c 1317 * NULL if there is no such device 1318 */ 1319 device_t 1320 devclass_get_device(devclass_t dc, int unit) 1321 { 1322 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1323 return (NULL); 1324 return (dc->devices[unit]); 1325 } 1326 1327 /** 1328 * @brief Find the softc field of a device given a unit number 1329 * 1330 * @param dc the devclass to search 1331 * @param unit the unit number to search for 1332 * 1333 * @returns the softc field of the device with the given 1334 * unit number or @c NULL if there is no such 1335 * device 1336 */ 1337 void * 1338 devclass_get_softc(devclass_t dc, int unit) 1339 { 1340 device_t dev; 1341 1342 dev = devclass_get_device(dc, unit); 1343 if (!dev) 1344 return (NULL); 1345 1346 return (device_get_softc(dev)); 1347 } 1348 1349 /** 1350 * @brief Get a list of devices in the devclass 1351 * 1352 * An array containing a list of all the devices in the given devclass 1353 * is allocated and returned in @p *devlistp. The number of devices 1354 * in the array is returned in @p *devcountp. The caller should free 1355 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1356 * 1357 * @param dc the devclass to examine 1358 * @param devlistp points at location for array pointer return 1359 * value 1360 * @param devcountp points at location for array size return value 1361 * 1362 * @retval 0 success 1363 * @retval ENOMEM the array allocation failed 1364 */ 1365 int 1366 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1367 { 1368 int count, i; 1369 device_t *list; 1370 1371 count = devclass_get_count(dc); 1372 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1373 if (!list) 1374 return (ENOMEM); 1375 1376 count = 0; 1377 for (i = 0; i < dc->maxunit; i++) { 1378 if (dc->devices[i]) { 1379 list[count] = dc->devices[i]; 1380 count++; 1381 } 1382 } 1383 1384 *devlistp = list; 1385 *devcountp = count; 1386 1387 return (0); 1388 } 1389 1390 /** 1391 * @brief Get a list of drivers in the devclass 1392 * 1393 * An array containing a list of pointers to all the drivers in the 1394 * given devclass is allocated and returned in @p *listp. The number 1395 * of drivers in the array is returned in @p *countp. The caller should 1396 * free the array using @c free(p, M_TEMP). 1397 * 1398 * @param dc the devclass to examine 1399 * @param listp gives location for array pointer return value 1400 * @param countp gives location for number of array elements 1401 * return value 1402 * 1403 * @retval 0 success 1404 * @retval ENOMEM the array allocation failed 1405 */ 1406 int 1407 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1408 { 1409 driverlink_t dl; 1410 driver_t **list; 1411 int count; 1412 1413 count = 0; 1414 TAILQ_FOREACH(dl, &dc->drivers, link) 1415 count++; 1416 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1417 if (list == NULL) 1418 return (ENOMEM); 1419 1420 count = 0; 1421 TAILQ_FOREACH(dl, &dc->drivers, link) { 1422 list[count] = dl->driver; 1423 count++; 1424 } 1425 *listp = list; 1426 *countp = count; 1427 1428 return (0); 1429 } 1430 1431 /** 1432 * @brief Get the number of devices in a devclass 1433 * 1434 * @param dc the devclass to examine 1435 */ 1436 int 1437 devclass_get_count(devclass_t dc) 1438 { 1439 int count, i; 1440 1441 count = 0; 1442 for (i = 0; i < dc->maxunit; i++) 1443 if (dc->devices[i]) 1444 count++; 1445 return (count); 1446 } 1447 1448 /** 1449 * @brief Get the maximum unit number used in a devclass 1450 * 1451 * Note that this is one greater than the highest currently-allocated 1452 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1453 * that not even the devclass has been allocated yet. 1454 * 1455 * @param dc the devclass to examine 1456 */ 1457 int 1458 devclass_get_maxunit(devclass_t dc) 1459 { 1460 if (dc == NULL) 1461 return (-1); 1462 return (dc->maxunit); 1463 } 1464 1465 /** 1466 * @brief Find a free unit number in a devclass 1467 * 1468 * This function searches for the first unused unit number greater 1469 * that or equal to @p unit. 1470 * 1471 * @param dc the devclass to examine 1472 * @param unit the first unit number to check 1473 */ 1474 int 1475 devclass_find_free_unit(devclass_t dc, int unit) 1476 { 1477 if (dc == NULL) 1478 return (unit); 1479 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1480 unit++; 1481 return (unit); 1482 } 1483 1484 /** 1485 * @brief Set the parent of a devclass 1486 * 1487 * The parent class is normally initialised automatically by 1488 * DRIVER_MODULE(). 1489 * 1490 * @param dc the devclass to edit 1491 * @param pdc the new parent devclass 1492 */ 1493 void 1494 devclass_set_parent(devclass_t dc, devclass_t pdc) 1495 { 1496 dc->parent = pdc; 1497 } 1498 1499 /** 1500 * @brief Get the parent of a devclass 1501 * 1502 * @param dc the devclass to examine 1503 */ 1504 devclass_t 1505 devclass_get_parent(devclass_t dc) 1506 { 1507 return (dc->parent); 1508 } 1509 1510 struct sysctl_ctx_list * 1511 devclass_get_sysctl_ctx(devclass_t dc) 1512 { 1513 return (&dc->sysctl_ctx); 1514 } 1515 1516 struct sysctl_oid * 1517 devclass_get_sysctl_tree(devclass_t dc) 1518 { 1519 return (dc->sysctl_tree); 1520 } 1521 1522 /** 1523 * @internal 1524 * @brief Allocate a unit number 1525 * 1526 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1527 * will do). The allocated unit number is returned in @p *unitp. 1528 1529 * @param dc the devclass to allocate from 1530 * @param unitp points at the location for the allocated unit 1531 * number 1532 * 1533 * @retval 0 success 1534 * @retval EEXIST the requested unit number is already allocated 1535 * @retval ENOMEM memory allocation failure 1536 */ 1537 static int 1538 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1539 { 1540 const char *s; 1541 int unit = *unitp; 1542 1543 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1544 1545 /* Ask the parent bus if it wants to wire this device. */ 1546 if (unit == -1) 1547 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1548 &unit); 1549 1550 /* If we were given a wired unit number, check for existing device */ 1551 /* XXX imp XXX */ 1552 if (unit != -1) { 1553 if (unit >= 0 && unit < dc->maxunit && 1554 dc->devices[unit] != NULL) { 1555 if (bootverbose) 1556 printf("%s: %s%d already exists; skipping it\n", 1557 dc->name, dc->name, *unitp); 1558 return (EEXIST); 1559 } 1560 } else { 1561 /* Unwired device, find the next available slot for it */ 1562 unit = 0; 1563 for (unit = 0;; unit++) { 1564 /* If there is an "at" hint for a unit then skip it. */ 1565 if (resource_string_value(dc->name, unit, "at", &s) == 1566 0) 1567 continue; 1568 1569 /* If this device slot is already in use, skip it. */ 1570 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1571 continue; 1572 1573 break; 1574 } 1575 } 1576 1577 /* 1578 * We've selected a unit beyond the length of the table, so let's 1579 * extend the table to make room for all units up to and including 1580 * this one. 1581 */ 1582 if (unit >= dc->maxunit) { 1583 device_t *newlist, *oldlist; 1584 int newsize; 1585 1586 oldlist = dc->devices; 1587 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1588 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1589 if (!newlist) 1590 return (ENOMEM); 1591 if (oldlist != NULL) 1592 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1593 bzero(newlist + dc->maxunit, 1594 sizeof(device_t) * (newsize - dc->maxunit)); 1595 dc->devices = newlist; 1596 dc->maxunit = newsize; 1597 if (oldlist != NULL) 1598 free(oldlist, M_BUS); 1599 } 1600 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1601 1602 *unitp = unit; 1603 return (0); 1604 } 1605 1606 /** 1607 * @internal 1608 * @brief Add a device to a devclass 1609 * 1610 * A unit number is allocated for the device (using the device's 1611 * preferred unit number if any) and the device is registered in the 1612 * devclass. This allows the device to be looked up by its unit 1613 * number, e.g. by decoding a dev_t minor number. 1614 * 1615 * @param dc the devclass to add to 1616 * @param dev the device to add 1617 * 1618 * @retval 0 success 1619 * @retval EEXIST the requested unit number is already allocated 1620 * @retval ENOMEM memory allocation failure 1621 */ 1622 static int 1623 devclass_add_device(devclass_t dc, device_t dev) 1624 { 1625 int buflen, error; 1626 1627 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1628 1629 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1630 if (buflen < 0) 1631 return (ENOMEM); 1632 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1633 if (!dev->nameunit) 1634 return (ENOMEM); 1635 1636 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1637 free(dev->nameunit, M_BUS); 1638 dev->nameunit = NULL; 1639 return (error); 1640 } 1641 dc->devices[dev->unit] = dev; 1642 dev->devclass = dc; 1643 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1644 1645 return (0); 1646 } 1647 1648 /** 1649 * @internal 1650 * @brief Delete a device from a devclass 1651 * 1652 * The device is removed from the devclass's device list and its unit 1653 * number is freed. 1654 1655 * @param dc the devclass to delete from 1656 * @param dev the device to delete 1657 * 1658 * @retval 0 success 1659 */ 1660 static int 1661 devclass_delete_device(devclass_t dc, device_t dev) 1662 { 1663 if (!dc || !dev) 1664 return (0); 1665 1666 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1667 1668 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1669 panic("devclass_delete_device: inconsistent device class"); 1670 dc->devices[dev->unit] = NULL; 1671 if (dev->flags & DF_WILDCARD) 1672 dev->unit = -1; 1673 dev->devclass = NULL; 1674 free(dev->nameunit, M_BUS); 1675 dev->nameunit = NULL; 1676 1677 return (0); 1678 } 1679 1680 /** 1681 * @internal 1682 * @brief Make a new device and add it as a child of @p parent 1683 * 1684 * @param parent the parent of the new device 1685 * @param name the devclass name of the new device or @c NULL 1686 * to leave the devclass unspecified 1687 * @parem unit the unit number of the new device of @c -1 to 1688 * leave the unit number unspecified 1689 * 1690 * @returns the new device 1691 */ 1692 static device_t 1693 make_device(device_t parent, const char *name, int unit) 1694 { 1695 device_t dev; 1696 devclass_t dc; 1697 1698 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1699 1700 if (name) { 1701 dc = devclass_find_internal(name, NULL, TRUE); 1702 if (!dc) { 1703 printf("make_device: can't find device class %s\n", 1704 name); 1705 return (NULL); 1706 } 1707 } else { 1708 dc = NULL; 1709 } 1710 1711 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1712 if (!dev) 1713 return (NULL); 1714 1715 dev->parent = parent; 1716 TAILQ_INIT(&dev->children); 1717 kobj_init((kobj_t) dev, &null_class); 1718 dev->driver = NULL; 1719 dev->devclass = NULL; 1720 dev->unit = unit; 1721 dev->nameunit = NULL; 1722 dev->desc = NULL; 1723 dev->busy = 0; 1724 dev->devflags = 0; 1725 dev->flags = DF_ENABLED; 1726 dev->order = 0; 1727 if (unit == -1) 1728 dev->flags |= DF_WILDCARD; 1729 if (name) { 1730 dev->flags |= DF_FIXEDCLASS; 1731 if (devclass_add_device(dc, dev)) { 1732 kobj_delete((kobj_t) dev, M_BUS); 1733 return (NULL); 1734 } 1735 } 1736 dev->ivars = NULL; 1737 dev->softc = NULL; 1738 1739 dev->state = DS_NOTPRESENT; 1740 1741 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1742 bus_data_generation_update(); 1743 1744 return (dev); 1745 } 1746 1747 /** 1748 * @internal 1749 * @brief Print a description of a device. 1750 */ 1751 static int 1752 device_print_child(device_t dev, device_t child) 1753 { 1754 int retval = 0; 1755 1756 if (device_is_alive(child)) 1757 retval += BUS_PRINT_CHILD(dev, child); 1758 else 1759 retval += device_printf(child, " not found\n"); 1760 1761 return (retval); 1762 } 1763 1764 /** 1765 * @brief Create a new device 1766 * 1767 * This creates a new device and adds it as a child of an existing 1768 * parent device. The new device will be added after the last existing 1769 * child with order zero. 1770 * 1771 * @param dev the device which will be the parent of the 1772 * new child device 1773 * @param name devclass name for new device or @c NULL if not 1774 * specified 1775 * @param unit unit number for new device or @c -1 if not 1776 * specified 1777 * 1778 * @returns the new device 1779 */ 1780 device_t 1781 device_add_child(device_t dev, const char *name, int unit) 1782 { 1783 return (device_add_child_ordered(dev, 0, name, unit)); 1784 } 1785 1786 /** 1787 * @brief Create a new device 1788 * 1789 * This creates a new device and adds it as a child of an existing 1790 * parent device. The new device will be added after the last existing 1791 * child with the same order. 1792 * 1793 * @param dev the device which will be the parent of the 1794 * new child device 1795 * @param order a value which is used to partially sort the 1796 * children of @p dev - devices created using 1797 * lower values of @p order appear first in @p 1798 * dev's list of children 1799 * @param name devclass name for new device or @c NULL if not 1800 * specified 1801 * @param unit unit number for new device or @c -1 if not 1802 * specified 1803 * 1804 * @returns the new device 1805 */ 1806 device_t 1807 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1808 { 1809 device_t child; 1810 device_t place; 1811 1812 PDEBUG(("%s at %s with order %u as unit %d", 1813 name, DEVICENAME(dev), order, unit)); 1814 1815 child = make_device(dev, name, unit); 1816 if (child == NULL) 1817 return (child); 1818 child->order = order; 1819 1820 TAILQ_FOREACH(place, &dev->children, link) { 1821 if (place->order > order) 1822 break; 1823 } 1824 1825 if (place) { 1826 /* 1827 * The device 'place' is the first device whose order is 1828 * greater than the new child. 1829 */ 1830 TAILQ_INSERT_BEFORE(place, child, link); 1831 } else { 1832 /* 1833 * The new child's order is greater or equal to the order of 1834 * any existing device. Add the child to the tail of the list. 1835 */ 1836 TAILQ_INSERT_TAIL(&dev->children, child, link); 1837 } 1838 1839 bus_data_generation_update(); 1840 return (child); 1841 } 1842 1843 /** 1844 * @brief Delete a device 1845 * 1846 * This function deletes a device along with all of its children. If 1847 * the device currently has a driver attached to it, the device is 1848 * detached first using device_detach(). 1849 * 1850 * @param dev the parent device 1851 * @param child the device to delete 1852 * 1853 * @retval 0 success 1854 * @retval non-zero a unit error code describing the error 1855 */ 1856 int 1857 device_delete_child(device_t dev, device_t child) 1858 { 1859 int error; 1860 device_t grandchild; 1861 1862 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1863 1864 /* remove children first */ 1865 while ( (grandchild = TAILQ_FIRST(&child->children)) ) { 1866 error = device_delete_child(child, grandchild); 1867 if (error) 1868 return (error); 1869 } 1870 1871 if ((error = device_detach(child)) != 0) 1872 return (error); 1873 if (child->devclass) 1874 devclass_delete_device(child->devclass, child); 1875 TAILQ_REMOVE(&dev->children, child, link); 1876 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1877 kobj_delete((kobj_t) child, M_BUS); 1878 1879 bus_data_generation_update(); 1880 return (0); 1881 } 1882 1883 /** 1884 * @brief Find a device given a unit number 1885 * 1886 * This is similar to devclass_get_devices() but only searches for 1887 * devices which have @p dev as a parent. 1888 * 1889 * @param dev the parent device to search 1890 * @param unit the unit number to search for. If the unit is -1, 1891 * return the first child of @p dev which has name 1892 * @p classname (that is, the one with the lowest unit.) 1893 * 1894 * @returns the device with the given unit number or @c 1895 * NULL if there is no such device 1896 */ 1897 device_t 1898 device_find_child(device_t dev, const char *classname, int unit) 1899 { 1900 devclass_t dc; 1901 device_t child; 1902 1903 dc = devclass_find(classname); 1904 if (!dc) 1905 return (NULL); 1906 1907 if (unit != -1) { 1908 child = devclass_get_device(dc, unit); 1909 if (child && child->parent == dev) 1910 return (child); 1911 } else { 1912 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1913 child = devclass_get_device(dc, unit); 1914 if (child && child->parent == dev) 1915 return (child); 1916 } 1917 } 1918 return (NULL); 1919 } 1920 1921 /** 1922 * @internal 1923 */ 1924 static driverlink_t 1925 first_matching_driver(devclass_t dc, device_t dev) 1926 { 1927 if (dev->devclass) 1928 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1929 return (TAILQ_FIRST(&dc->drivers)); 1930 } 1931 1932 /** 1933 * @internal 1934 */ 1935 static driverlink_t 1936 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1937 { 1938 if (dev->devclass) { 1939 driverlink_t dl; 1940 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1941 if (!strcmp(dev->devclass->name, dl->driver->name)) 1942 return (dl); 1943 return (NULL); 1944 } 1945 return (TAILQ_NEXT(last, link)); 1946 } 1947 1948 /** 1949 * @internal 1950 */ 1951 int 1952 device_probe_child(device_t dev, device_t child) 1953 { 1954 devclass_t dc; 1955 driverlink_t best = NULL; 1956 driverlink_t dl; 1957 int result, pri = 0; 1958 int hasclass = (child->devclass != NULL); 1959 1960 GIANT_REQUIRED; 1961 1962 dc = dev->devclass; 1963 if (!dc) 1964 panic("device_probe_child: parent device has no devclass"); 1965 1966 /* 1967 * If the state is already probed, then return. However, don't 1968 * return if we can rebid this object. 1969 */ 1970 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 1971 return (0); 1972 1973 for (; dc; dc = dc->parent) { 1974 for (dl = first_matching_driver(dc, child); 1975 dl; 1976 dl = next_matching_driver(dc, child, dl)) { 1977 1978 /* If this driver's pass is too high, then ignore it. */ 1979 if (dl->pass > bus_current_pass) 1980 continue; 1981 1982 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1983 device_set_driver(child, dl->driver); 1984 if (!hasclass) { 1985 if (device_set_devclass(child, dl->driver->name)) { 1986 printf("driver bug: Unable to set devclass (devname: %s)\n", 1987 (child ? device_get_name(child) : 1988 "no device")); 1989 device_set_driver(child, NULL); 1990 continue; 1991 } 1992 } 1993 1994 /* Fetch any flags for the device before probing. */ 1995 resource_int_value(dl->driver->name, child->unit, 1996 "flags", &child->devflags); 1997 1998 result = DEVICE_PROBE(child); 1999 2000 /* Reset flags and devclass before the next probe. */ 2001 child->devflags = 0; 2002 if (!hasclass) 2003 device_set_devclass(child, NULL); 2004 2005 /* 2006 * If the driver returns SUCCESS, there can be 2007 * no higher match for this device. 2008 */ 2009 if (result == 0) { 2010 best = dl; 2011 pri = 0; 2012 break; 2013 } 2014 2015 /* 2016 * The driver returned an error so it 2017 * certainly doesn't match. 2018 */ 2019 if (result > 0) { 2020 device_set_driver(child, NULL); 2021 continue; 2022 } 2023 2024 /* 2025 * A priority lower than SUCCESS, remember the 2026 * best matching driver. Initialise the value 2027 * of pri for the first match. 2028 */ 2029 if (best == NULL || result > pri) { 2030 /* 2031 * Probes that return BUS_PROBE_NOWILDCARD 2032 * or lower only match when they are set 2033 * in stone by the parent bus. 2034 */ 2035 if (result <= BUS_PROBE_NOWILDCARD && 2036 child->flags & DF_WILDCARD) 2037 continue; 2038 best = dl; 2039 pri = result; 2040 continue; 2041 } 2042 } 2043 /* 2044 * If we have an unambiguous match in this devclass, 2045 * don't look in the parent. 2046 */ 2047 if (best && pri == 0) 2048 break; 2049 } 2050 2051 /* 2052 * If we found a driver, change state and initialise the devclass. 2053 */ 2054 /* XXX What happens if we rebid and got no best? */ 2055 if (best) { 2056 /* 2057 * If this device was atached, and we were asked to 2058 * rescan, and it is a different driver, then we have 2059 * to detach the old driver and reattach this new one. 2060 * Note, we don't have to check for DF_REBID here 2061 * because if the state is > DS_ALIVE, we know it must 2062 * be. 2063 * 2064 * This assumes that all DF_REBID drivers can have 2065 * their probe routine called at any time and that 2066 * they are idempotent as well as completely benign in 2067 * normal operations. 2068 * 2069 * We also have to make sure that the detach 2070 * succeeded, otherwise we fail the operation (or 2071 * maybe it should just fail silently? I'm torn). 2072 */ 2073 if (child->state > DS_ALIVE && best->driver != child->driver) 2074 if ((result = device_detach(dev)) != 0) 2075 return (result); 2076 2077 /* Set the winning driver, devclass, and flags. */ 2078 if (!child->devclass) { 2079 result = device_set_devclass(child, best->driver->name); 2080 if (result != 0) 2081 return (result); 2082 } 2083 device_set_driver(child, best->driver); 2084 resource_int_value(best->driver->name, child->unit, 2085 "flags", &child->devflags); 2086 2087 if (pri < 0) { 2088 /* 2089 * A bit bogus. Call the probe method again to make 2090 * sure that we have the right description. 2091 */ 2092 DEVICE_PROBE(child); 2093 #if 0 2094 child->flags |= DF_REBID; 2095 #endif 2096 } else 2097 child->flags &= ~DF_REBID; 2098 child->state = DS_ALIVE; 2099 2100 bus_data_generation_update(); 2101 return (0); 2102 } 2103 2104 return (ENXIO); 2105 } 2106 2107 /** 2108 * @brief Return the parent of a device 2109 */ 2110 device_t 2111 device_get_parent(device_t dev) 2112 { 2113 return (dev->parent); 2114 } 2115 2116 /** 2117 * @brief Get a list of children of a device 2118 * 2119 * An array containing a list of all the children of the given device 2120 * is allocated and returned in @p *devlistp. The number of devices 2121 * in the array is returned in @p *devcountp. The caller should free 2122 * the array using @c free(p, M_TEMP). 2123 * 2124 * @param dev the device to examine 2125 * @param devlistp points at location for array pointer return 2126 * value 2127 * @param devcountp points at location for array size return value 2128 * 2129 * @retval 0 success 2130 * @retval ENOMEM the array allocation failed 2131 */ 2132 int 2133 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2134 { 2135 int count; 2136 device_t child; 2137 device_t *list; 2138 2139 count = 0; 2140 TAILQ_FOREACH(child, &dev->children, link) { 2141 count++; 2142 } 2143 2144 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2145 if (!list) 2146 return (ENOMEM); 2147 2148 count = 0; 2149 TAILQ_FOREACH(child, &dev->children, link) { 2150 list[count] = child; 2151 count++; 2152 } 2153 2154 *devlistp = list; 2155 *devcountp = count; 2156 2157 return (0); 2158 } 2159 2160 /** 2161 * @brief Return the current driver for the device or @c NULL if there 2162 * is no driver currently attached 2163 */ 2164 driver_t * 2165 device_get_driver(device_t dev) 2166 { 2167 return (dev->driver); 2168 } 2169 2170 /** 2171 * @brief Return the current devclass for the device or @c NULL if 2172 * there is none. 2173 */ 2174 devclass_t 2175 device_get_devclass(device_t dev) 2176 { 2177 return (dev->devclass); 2178 } 2179 2180 /** 2181 * @brief Return the name of the device's devclass or @c NULL if there 2182 * is none. 2183 */ 2184 const char * 2185 device_get_name(device_t dev) 2186 { 2187 if (dev != NULL && dev->devclass) 2188 return (devclass_get_name(dev->devclass)); 2189 return (NULL); 2190 } 2191 2192 /** 2193 * @brief Return a string containing the device's devclass name 2194 * followed by an ascii representation of the device's unit number 2195 * (e.g. @c "foo2"). 2196 */ 2197 const char * 2198 device_get_nameunit(device_t dev) 2199 { 2200 return (dev->nameunit); 2201 } 2202 2203 /** 2204 * @brief Return the device's unit number. 2205 */ 2206 int 2207 device_get_unit(device_t dev) 2208 { 2209 return (dev->unit); 2210 } 2211 2212 /** 2213 * @brief Return the device's description string 2214 */ 2215 const char * 2216 device_get_desc(device_t dev) 2217 { 2218 return (dev->desc); 2219 } 2220 2221 /** 2222 * @brief Return the device's flags 2223 */ 2224 uint32_t 2225 device_get_flags(device_t dev) 2226 { 2227 return (dev->devflags); 2228 } 2229 2230 struct sysctl_ctx_list * 2231 device_get_sysctl_ctx(device_t dev) 2232 { 2233 return (&dev->sysctl_ctx); 2234 } 2235 2236 struct sysctl_oid * 2237 device_get_sysctl_tree(device_t dev) 2238 { 2239 return (dev->sysctl_tree); 2240 } 2241 2242 /** 2243 * @brief Print the name of the device followed by a colon and a space 2244 * 2245 * @returns the number of characters printed 2246 */ 2247 int 2248 device_print_prettyname(device_t dev) 2249 { 2250 const char *name = device_get_name(dev); 2251 2252 if (name == NULL) 2253 return (printf("unknown: ")); 2254 return (printf("%s%d: ", name, device_get_unit(dev))); 2255 } 2256 2257 /** 2258 * @brief Print the name of the device followed by a colon, a space 2259 * and the result of calling vprintf() with the value of @p fmt and 2260 * the following arguments. 2261 * 2262 * @returns the number of characters printed 2263 */ 2264 int 2265 device_printf(device_t dev, const char * fmt, ...) 2266 { 2267 va_list ap; 2268 int retval; 2269 2270 retval = device_print_prettyname(dev); 2271 va_start(ap, fmt); 2272 retval += vprintf(fmt, ap); 2273 va_end(ap); 2274 return (retval); 2275 } 2276 2277 /** 2278 * @internal 2279 */ 2280 static void 2281 device_set_desc_internal(device_t dev, const char* desc, int copy) 2282 { 2283 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2284 free(dev->desc, M_BUS); 2285 dev->flags &= ~DF_DESCMALLOCED; 2286 dev->desc = NULL; 2287 } 2288 2289 if (copy && desc) { 2290 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2291 if (dev->desc) { 2292 strcpy(dev->desc, desc); 2293 dev->flags |= DF_DESCMALLOCED; 2294 } 2295 } else { 2296 /* Avoid a -Wcast-qual warning */ 2297 dev->desc = (char *)(uintptr_t) desc; 2298 } 2299 2300 bus_data_generation_update(); 2301 } 2302 2303 /** 2304 * @brief Set the device's description 2305 * 2306 * The value of @c desc should be a string constant that will not 2307 * change (at least until the description is changed in a subsequent 2308 * call to device_set_desc() or device_set_desc_copy()). 2309 */ 2310 void 2311 device_set_desc(device_t dev, const char* desc) 2312 { 2313 device_set_desc_internal(dev, desc, FALSE); 2314 } 2315 2316 /** 2317 * @brief Set the device's description 2318 * 2319 * The string pointed to by @c desc is copied. Use this function if 2320 * the device description is generated, (e.g. with sprintf()). 2321 */ 2322 void 2323 device_set_desc_copy(device_t dev, const char* desc) 2324 { 2325 device_set_desc_internal(dev, desc, TRUE); 2326 } 2327 2328 /** 2329 * @brief Set the device's flags 2330 */ 2331 void 2332 device_set_flags(device_t dev, uint32_t flags) 2333 { 2334 dev->devflags = flags; 2335 } 2336 2337 /** 2338 * @brief Return the device's softc field 2339 * 2340 * The softc is allocated and zeroed when a driver is attached, based 2341 * on the size field of the driver. 2342 */ 2343 void * 2344 device_get_softc(device_t dev) 2345 { 2346 return (dev->softc); 2347 } 2348 2349 /** 2350 * @brief Set the device's softc field 2351 * 2352 * Most drivers do not need to use this since the softc is allocated 2353 * automatically when the driver is attached. 2354 */ 2355 void 2356 device_set_softc(device_t dev, void *softc) 2357 { 2358 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2359 free(dev->softc, M_BUS_SC); 2360 dev->softc = softc; 2361 if (dev->softc) 2362 dev->flags |= DF_EXTERNALSOFTC; 2363 else 2364 dev->flags &= ~DF_EXTERNALSOFTC; 2365 } 2366 2367 /** 2368 * @brief Get the device's ivars field 2369 * 2370 * The ivars field is used by the parent device to store per-device 2371 * state (e.g. the physical location of the device or a list of 2372 * resources). 2373 */ 2374 void * 2375 device_get_ivars(device_t dev) 2376 { 2377 2378 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2379 return (dev->ivars); 2380 } 2381 2382 /** 2383 * @brief Set the device's ivars field 2384 */ 2385 void 2386 device_set_ivars(device_t dev, void * ivars) 2387 { 2388 2389 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2390 dev->ivars = ivars; 2391 } 2392 2393 /** 2394 * @brief Return the device's state 2395 */ 2396 device_state_t 2397 device_get_state(device_t dev) 2398 { 2399 return (dev->state); 2400 } 2401 2402 /** 2403 * @brief Set the DF_ENABLED flag for the device 2404 */ 2405 void 2406 device_enable(device_t dev) 2407 { 2408 dev->flags |= DF_ENABLED; 2409 } 2410 2411 /** 2412 * @brief Clear the DF_ENABLED flag for the device 2413 */ 2414 void 2415 device_disable(device_t dev) 2416 { 2417 dev->flags &= ~DF_ENABLED; 2418 } 2419 2420 /** 2421 * @brief Increment the busy counter for the device 2422 */ 2423 void 2424 device_busy(device_t dev) 2425 { 2426 if (dev->state < DS_ATTACHED) 2427 panic("device_busy: called for unattached device"); 2428 if (dev->busy == 0 && dev->parent) 2429 device_busy(dev->parent); 2430 dev->busy++; 2431 dev->state = DS_BUSY; 2432 } 2433 2434 /** 2435 * @brief Decrement the busy counter for the device 2436 */ 2437 void 2438 device_unbusy(device_t dev) 2439 { 2440 if (dev->state != DS_BUSY) 2441 panic("device_unbusy: called for non-busy device %s", 2442 device_get_nameunit(dev)); 2443 dev->busy--; 2444 if (dev->busy == 0) { 2445 if (dev->parent) 2446 device_unbusy(dev->parent); 2447 dev->state = DS_ATTACHED; 2448 } 2449 } 2450 2451 /** 2452 * @brief Set the DF_QUIET flag for the device 2453 */ 2454 void 2455 device_quiet(device_t dev) 2456 { 2457 dev->flags |= DF_QUIET; 2458 } 2459 2460 /** 2461 * @brief Clear the DF_QUIET flag for the device 2462 */ 2463 void 2464 device_verbose(device_t dev) 2465 { 2466 dev->flags &= ~DF_QUIET; 2467 } 2468 2469 /** 2470 * @brief Return non-zero if the DF_QUIET flag is set on the device 2471 */ 2472 int 2473 device_is_quiet(device_t dev) 2474 { 2475 return ((dev->flags & DF_QUIET) != 0); 2476 } 2477 2478 /** 2479 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2480 */ 2481 int 2482 device_is_enabled(device_t dev) 2483 { 2484 return ((dev->flags & DF_ENABLED) != 0); 2485 } 2486 2487 /** 2488 * @brief Return non-zero if the device was successfully probed 2489 */ 2490 int 2491 device_is_alive(device_t dev) 2492 { 2493 return (dev->state >= DS_ALIVE); 2494 } 2495 2496 /** 2497 * @brief Return non-zero if the device currently has a driver 2498 * attached to it 2499 */ 2500 int 2501 device_is_attached(device_t dev) 2502 { 2503 return (dev->state >= DS_ATTACHED); 2504 } 2505 2506 /** 2507 * @brief Set the devclass of a device 2508 * @see devclass_add_device(). 2509 */ 2510 int 2511 device_set_devclass(device_t dev, const char *classname) 2512 { 2513 devclass_t dc; 2514 int error; 2515 2516 if (!classname) { 2517 if (dev->devclass) 2518 devclass_delete_device(dev->devclass, dev); 2519 return (0); 2520 } 2521 2522 if (dev->devclass) { 2523 printf("device_set_devclass: device class already set\n"); 2524 return (EINVAL); 2525 } 2526 2527 dc = devclass_find_internal(classname, NULL, TRUE); 2528 if (!dc) 2529 return (ENOMEM); 2530 2531 error = devclass_add_device(dc, dev); 2532 2533 bus_data_generation_update(); 2534 return (error); 2535 } 2536 2537 /** 2538 * @brief Set the driver of a device 2539 * 2540 * @retval 0 success 2541 * @retval EBUSY the device already has a driver attached 2542 * @retval ENOMEM a memory allocation failure occurred 2543 */ 2544 int 2545 device_set_driver(device_t dev, driver_t *driver) 2546 { 2547 if (dev->state >= DS_ATTACHED) 2548 return (EBUSY); 2549 2550 if (dev->driver == driver) 2551 return (0); 2552 2553 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2554 free(dev->softc, M_BUS_SC); 2555 dev->softc = NULL; 2556 } 2557 kobj_delete((kobj_t) dev, NULL); 2558 dev->driver = driver; 2559 if (driver) { 2560 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2561 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2562 dev->softc = malloc(driver->size, M_BUS_SC, 2563 M_NOWAIT | M_ZERO); 2564 if (!dev->softc) { 2565 kobj_delete((kobj_t) dev, NULL); 2566 kobj_init((kobj_t) dev, &null_class); 2567 dev->driver = NULL; 2568 return (ENOMEM); 2569 } 2570 } 2571 } else { 2572 kobj_init((kobj_t) dev, &null_class); 2573 } 2574 2575 bus_data_generation_update(); 2576 return (0); 2577 } 2578 2579 /** 2580 * @brief Probe a device, and return this status. 2581 * 2582 * This function is the core of the device autoconfiguration 2583 * system. Its purpose is to select a suitable driver for a device and 2584 * then call that driver to initialise the hardware appropriately. The 2585 * driver is selected by calling the DEVICE_PROBE() method of a set of 2586 * candidate drivers and then choosing the driver which returned the 2587 * best value. This driver is then attached to the device using 2588 * device_attach(). 2589 * 2590 * The set of suitable drivers is taken from the list of drivers in 2591 * the parent device's devclass. If the device was originally created 2592 * with a specific class name (see device_add_child()), only drivers 2593 * with that name are probed, otherwise all drivers in the devclass 2594 * are probed. If no drivers return successful probe values in the 2595 * parent devclass, the search continues in the parent of that 2596 * devclass (see devclass_get_parent()) if any. 2597 * 2598 * @param dev the device to initialise 2599 * 2600 * @retval 0 success 2601 * @retval ENXIO no driver was found 2602 * @retval ENOMEM memory allocation failure 2603 * @retval non-zero some other unix error code 2604 * @retval -1 Device already attached 2605 */ 2606 int 2607 device_probe(device_t dev) 2608 { 2609 int error; 2610 2611 GIANT_REQUIRED; 2612 2613 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2614 return (-1); 2615 2616 if (!(dev->flags & DF_ENABLED)) { 2617 if (bootverbose && device_get_name(dev) != NULL) { 2618 device_print_prettyname(dev); 2619 printf("not probed (disabled)\n"); 2620 } 2621 return (-1); 2622 } 2623 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2624 if (bus_current_pass == BUS_PASS_DEFAULT && 2625 !(dev->flags & DF_DONENOMATCH)) { 2626 BUS_PROBE_NOMATCH(dev->parent, dev); 2627 devnomatch(dev); 2628 dev->flags |= DF_DONENOMATCH; 2629 } 2630 return (error); 2631 } 2632 return (0); 2633 } 2634 2635 /** 2636 * @brief Probe a device and attach a driver if possible 2637 * 2638 * calls device_probe() and attaches if that was successful. 2639 */ 2640 int 2641 device_probe_and_attach(device_t dev) 2642 { 2643 int error; 2644 2645 GIANT_REQUIRED; 2646 2647 error = device_probe(dev); 2648 if (error == -1) 2649 return (0); 2650 else if (error != 0) 2651 return (error); 2652 return (device_attach(dev)); 2653 } 2654 2655 /** 2656 * @brief Attach a device driver to a device 2657 * 2658 * This function is a wrapper around the DEVICE_ATTACH() driver 2659 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2660 * device's sysctl tree, optionally prints a description of the device 2661 * and queues a notification event for user-based device management 2662 * services. 2663 * 2664 * Normally this function is only called internally from 2665 * device_probe_and_attach(). 2666 * 2667 * @param dev the device to initialise 2668 * 2669 * @retval 0 success 2670 * @retval ENXIO no driver was found 2671 * @retval ENOMEM memory allocation failure 2672 * @retval non-zero some other unix error code 2673 */ 2674 int 2675 device_attach(device_t dev) 2676 { 2677 int error; 2678 2679 device_sysctl_init(dev); 2680 if (!device_is_quiet(dev)) 2681 device_print_child(dev->parent, dev); 2682 if ((error = DEVICE_ATTACH(dev)) != 0) { 2683 printf("device_attach: %s%d attach returned %d\n", 2684 dev->driver->name, dev->unit, error); 2685 /* Unset the class; set in device_probe_child */ 2686 if (dev->devclass == NULL) 2687 device_set_devclass(dev, NULL); 2688 device_set_driver(dev, NULL); 2689 device_sysctl_fini(dev); 2690 dev->state = DS_NOTPRESENT; 2691 return (error); 2692 } 2693 device_sysctl_update(dev); 2694 dev->state = DS_ATTACHED; 2695 dev->flags &= ~DF_DONENOMATCH; 2696 devadded(dev); 2697 return (0); 2698 } 2699 2700 /** 2701 * @brief Detach a driver from a device 2702 * 2703 * This function is a wrapper around the DEVICE_DETACH() driver 2704 * method. If the call to DEVICE_DETACH() succeeds, it calls 2705 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2706 * notification event for user-based device management services and 2707 * cleans up the device's sysctl tree. 2708 * 2709 * @param dev the device to un-initialise 2710 * 2711 * @retval 0 success 2712 * @retval ENXIO no driver was found 2713 * @retval ENOMEM memory allocation failure 2714 * @retval non-zero some other unix error code 2715 */ 2716 int 2717 device_detach(device_t dev) 2718 { 2719 int error; 2720 2721 GIANT_REQUIRED; 2722 2723 PDEBUG(("%s", DEVICENAME(dev))); 2724 if (dev->state == DS_BUSY) 2725 return (EBUSY); 2726 if (dev->state != DS_ATTACHED) 2727 return (0); 2728 2729 if ((error = DEVICE_DETACH(dev)) != 0) 2730 return (error); 2731 devremoved(dev); 2732 if (!device_is_quiet(dev)) 2733 device_printf(dev, "detached\n"); 2734 if (dev->parent) 2735 BUS_CHILD_DETACHED(dev->parent, dev); 2736 2737 if (!(dev->flags & DF_FIXEDCLASS)) 2738 devclass_delete_device(dev->devclass, dev); 2739 2740 dev->state = DS_NOTPRESENT; 2741 device_set_driver(dev, NULL); 2742 device_set_desc(dev, NULL); 2743 device_sysctl_fini(dev); 2744 2745 return (0); 2746 } 2747 2748 /** 2749 * @brief Tells a driver to quiesce itself. 2750 * 2751 * This function is a wrapper around the DEVICE_QUIESCE() driver 2752 * method. If the call to DEVICE_QUIESCE() succeeds. 2753 * 2754 * @param dev the device to quiesce 2755 * 2756 * @retval 0 success 2757 * @retval ENXIO no driver was found 2758 * @retval ENOMEM memory allocation failure 2759 * @retval non-zero some other unix error code 2760 */ 2761 int 2762 device_quiesce(device_t dev) 2763 { 2764 2765 PDEBUG(("%s", DEVICENAME(dev))); 2766 if (dev->state == DS_BUSY) 2767 return (EBUSY); 2768 if (dev->state != DS_ATTACHED) 2769 return (0); 2770 2771 return (DEVICE_QUIESCE(dev)); 2772 } 2773 2774 /** 2775 * @brief Notify a device of system shutdown 2776 * 2777 * This function calls the DEVICE_SHUTDOWN() driver method if the 2778 * device currently has an attached driver. 2779 * 2780 * @returns the value returned by DEVICE_SHUTDOWN() 2781 */ 2782 int 2783 device_shutdown(device_t dev) 2784 { 2785 if (dev->state < DS_ATTACHED) 2786 return (0); 2787 return (DEVICE_SHUTDOWN(dev)); 2788 } 2789 2790 /** 2791 * @brief Set the unit number of a device 2792 * 2793 * This function can be used to override the unit number used for a 2794 * device (e.g. to wire a device to a pre-configured unit number). 2795 */ 2796 int 2797 device_set_unit(device_t dev, int unit) 2798 { 2799 devclass_t dc; 2800 int err; 2801 2802 dc = device_get_devclass(dev); 2803 if (unit < dc->maxunit && dc->devices[unit]) 2804 return (EBUSY); 2805 err = devclass_delete_device(dc, dev); 2806 if (err) 2807 return (err); 2808 dev->unit = unit; 2809 err = devclass_add_device(dc, dev); 2810 if (err) 2811 return (err); 2812 2813 bus_data_generation_update(); 2814 return (0); 2815 } 2816 2817 /*======================================*/ 2818 /* 2819 * Some useful method implementations to make life easier for bus drivers. 2820 */ 2821 2822 /** 2823 * @brief Initialise a resource list. 2824 * 2825 * @param rl the resource list to initialise 2826 */ 2827 void 2828 resource_list_init(struct resource_list *rl) 2829 { 2830 STAILQ_INIT(rl); 2831 } 2832 2833 /** 2834 * @brief Reclaim memory used by a resource list. 2835 * 2836 * This function frees the memory for all resource entries on the list 2837 * (if any). 2838 * 2839 * @param rl the resource list to free 2840 */ 2841 void 2842 resource_list_free(struct resource_list *rl) 2843 { 2844 struct resource_list_entry *rle; 2845 2846 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2847 if (rle->res) 2848 panic("resource_list_free: resource entry is busy"); 2849 STAILQ_REMOVE_HEAD(rl, link); 2850 free(rle, M_BUS); 2851 } 2852 } 2853 2854 /** 2855 * @brief Add a resource entry. 2856 * 2857 * This function adds a resource entry using the given @p type, @p 2858 * start, @p end and @p count values. A rid value is chosen by 2859 * searching sequentially for the first unused rid starting at zero. 2860 * 2861 * @param rl the resource list to edit 2862 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2863 * @param start the start address of the resource 2864 * @param end the end address of the resource 2865 * @param count XXX end-start+1 2866 */ 2867 int 2868 resource_list_add_next(struct resource_list *rl, int type, u_long start, 2869 u_long end, u_long count) 2870 { 2871 int rid; 2872 2873 rid = 0; 2874 while (resource_list_find(rl, type, rid) != NULL) 2875 rid++; 2876 resource_list_add(rl, type, rid, start, end, count); 2877 return (rid); 2878 } 2879 2880 /** 2881 * @brief Add or modify a resource entry. 2882 * 2883 * If an existing entry exists with the same type and rid, it will be 2884 * modified using the given values of @p start, @p end and @p 2885 * count. If no entry exists, a new one will be created using the 2886 * given values. The resource list entry that matches is then returned. 2887 * 2888 * @param rl the resource list to edit 2889 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2890 * @param rid the resource identifier 2891 * @param start the start address of the resource 2892 * @param end the end address of the resource 2893 * @param count XXX end-start+1 2894 */ 2895 struct resource_list_entry * 2896 resource_list_add(struct resource_list *rl, int type, int rid, 2897 u_long start, u_long end, u_long count) 2898 { 2899 struct resource_list_entry *rle; 2900 2901 rle = resource_list_find(rl, type, rid); 2902 if (!rle) { 2903 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2904 M_NOWAIT); 2905 if (!rle) 2906 panic("resource_list_add: can't record entry"); 2907 STAILQ_INSERT_TAIL(rl, rle, link); 2908 rle->type = type; 2909 rle->rid = rid; 2910 rle->res = NULL; 2911 rle->flags = 0; 2912 } 2913 2914 if (rle->res) 2915 panic("resource_list_add: resource entry is busy"); 2916 2917 rle->start = start; 2918 rle->end = end; 2919 rle->count = count; 2920 return (rle); 2921 } 2922 2923 /** 2924 * @brief Determine if a resource entry is busy. 2925 * 2926 * Returns true if a resource entry is busy meaning that it has an 2927 * associated resource that is not an unallocated "reserved" resource. 2928 * 2929 * @param rl the resource list to search 2930 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2931 * @param rid the resource identifier 2932 * 2933 * @returns Non-zero if the entry is busy, zero otherwise. 2934 */ 2935 int 2936 resource_list_busy(struct resource_list *rl, int type, int rid) 2937 { 2938 struct resource_list_entry *rle; 2939 2940 rle = resource_list_find(rl, type, rid); 2941 if (rle == NULL || rle->res == NULL) 2942 return (0); 2943 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 2944 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 2945 ("reserved resource is active")); 2946 return (0); 2947 } 2948 return (1); 2949 } 2950 2951 /** 2952 * @brief Determine if a resource entry is reserved. 2953 * 2954 * Returns true if a resource entry is reserved meaning that it has an 2955 * associated "reserved" resource. The resource can either be 2956 * allocated or unallocated. 2957 * 2958 * @param rl the resource list to search 2959 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2960 * @param rid the resource identifier 2961 * 2962 * @returns Non-zero if the entry is reserved, zero otherwise. 2963 */ 2964 int 2965 resource_list_reserved(struct resource_list *rl, int type, int rid) 2966 { 2967 struct resource_list_entry *rle; 2968 2969 rle = resource_list_find(rl, type, rid); 2970 if (rle != NULL && rle->flags & RLE_RESERVED) 2971 return (1); 2972 return (0); 2973 } 2974 2975 /** 2976 * @brief Find a resource entry by type and rid. 2977 * 2978 * @param rl the resource list to search 2979 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2980 * @param rid the resource identifier 2981 * 2982 * @returns the resource entry pointer or NULL if there is no such 2983 * entry. 2984 */ 2985 struct resource_list_entry * 2986 resource_list_find(struct resource_list *rl, int type, int rid) 2987 { 2988 struct resource_list_entry *rle; 2989 2990 STAILQ_FOREACH(rle, rl, link) { 2991 if (rle->type == type && rle->rid == rid) 2992 return (rle); 2993 } 2994 return (NULL); 2995 } 2996 2997 /** 2998 * @brief Delete a resource entry. 2999 * 3000 * @param rl the resource list to edit 3001 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3002 * @param rid the resource identifier 3003 */ 3004 void 3005 resource_list_delete(struct resource_list *rl, int type, int rid) 3006 { 3007 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3008 3009 if (rle) { 3010 if (rle->res != NULL) 3011 panic("resource_list_delete: resource has not been released"); 3012 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3013 free(rle, M_BUS); 3014 } 3015 } 3016 3017 /** 3018 * @brief Allocate a reserved resource 3019 * 3020 * This can be used by busses to force the allocation of resources 3021 * that are always active in the system even if they are not allocated 3022 * by a driver (e.g. PCI BARs). This function is usually called when 3023 * adding a new child to the bus. The resource is allocated from the 3024 * parent bus when it is reserved. The resource list entry is marked 3025 * with RLE_RESERVED to note that it is a reserved resource. 3026 * 3027 * Subsequent attempts to allocate the resource with 3028 * resource_list_alloc() will succeed the first time and will set 3029 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3030 * resource that has been allocated is released with 3031 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3032 * the actual resource remains allocated. The resource can be released to 3033 * the parent bus by calling resource_list_unreserve(). 3034 * 3035 * @param rl the resource list to allocate from 3036 * @param bus the parent device of @p child 3037 * @param child the device for which the resource is being reserved 3038 * @param type the type of resource to allocate 3039 * @param rid a pointer to the resource identifier 3040 * @param start hint at the start of the resource range - pass 3041 * @c 0UL for any start address 3042 * @param end hint at the end of the resource range - pass 3043 * @c ~0UL for any end address 3044 * @param count hint at the size of range required - pass @c 1 3045 * for any size 3046 * @param flags any extra flags to control the resource 3047 * allocation - see @c RF_XXX flags in 3048 * <sys/rman.h> for details 3049 * 3050 * @returns the resource which was allocated or @c NULL if no 3051 * resource could be allocated 3052 */ 3053 struct resource * 3054 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3055 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3056 { 3057 struct resource_list_entry *rle = NULL; 3058 int passthrough = (device_get_parent(child) != bus); 3059 struct resource *r; 3060 3061 if (passthrough) 3062 panic( 3063 "resource_list_reserve() should only be called for direct children"); 3064 if (flags & RF_ACTIVE) 3065 panic( 3066 "resource_list_reserve() should only reserve inactive resources"); 3067 3068 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3069 flags); 3070 if (r != NULL) { 3071 rle = resource_list_find(rl, type, *rid); 3072 rle->flags |= RLE_RESERVED; 3073 } 3074 return (r); 3075 } 3076 3077 /** 3078 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3079 * 3080 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3081 * and passing the allocation up to the parent of @p bus. This assumes 3082 * that the first entry of @c device_get_ivars(child) is a struct 3083 * resource_list. This also handles 'passthrough' allocations where a 3084 * child is a remote descendant of bus by passing the allocation up to 3085 * the parent of bus. 3086 * 3087 * Typically, a bus driver would store a list of child resources 3088 * somewhere in the child device's ivars (see device_get_ivars()) and 3089 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3090 * then call resource_list_alloc() to perform the allocation. 3091 * 3092 * @param rl the resource list to allocate from 3093 * @param bus the parent device of @p child 3094 * @param child the device which is requesting an allocation 3095 * @param type the type of resource to allocate 3096 * @param rid a pointer to the resource identifier 3097 * @param start hint at the start of the resource range - pass 3098 * @c 0UL for any start address 3099 * @param end hint at the end of the resource range - pass 3100 * @c ~0UL for any end address 3101 * @param count hint at the size of range required - pass @c 1 3102 * for any size 3103 * @param flags any extra flags to control the resource 3104 * allocation - see @c RF_XXX flags in 3105 * <sys/rman.h> for details 3106 * 3107 * @returns the resource which was allocated or @c NULL if no 3108 * resource could be allocated 3109 */ 3110 struct resource * 3111 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3112 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3113 { 3114 struct resource_list_entry *rle = NULL; 3115 int passthrough = (device_get_parent(child) != bus); 3116 int isdefault = (start == 0UL && end == ~0UL); 3117 3118 if (passthrough) { 3119 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3120 type, rid, start, end, count, flags)); 3121 } 3122 3123 rle = resource_list_find(rl, type, *rid); 3124 3125 if (!rle) 3126 return (NULL); /* no resource of that type/rid */ 3127 3128 if (rle->res) { 3129 if (rle->flags & RLE_RESERVED) { 3130 if (rle->flags & RLE_ALLOCATED) 3131 return (NULL); 3132 if ((flags & RF_ACTIVE) && 3133 bus_activate_resource(child, type, *rid, 3134 rle->res) != 0) 3135 return (NULL); 3136 rle->flags |= RLE_ALLOCATED; 3137 return (rle->res); 3138 } 3139 panic("resource_list_alloc: resource entry is busy"); 3140 } 3141 3142 if (isdefault) { 3143 start = rle->start; 3144 count = ulmax(count, rle->count); 3145 end = ulmax(rle->end, start + count - 1); 3146 } 3147 3148 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3149 type, rid, start, end, count, flags); 3150 3151 /* 3152 * Record the new range. 3153 */ 3154 if (rle->res) { 3155 rle->start = rman_get_start(rle->res); 3156 rle->end = rman_get_end(rle->res); 3157 rle->count = count; 3158 } 3159 3160 return (rle->res); 3161 } 3162 3163 /** 3164 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3165 * 3166 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3167 * used with resource_list_alloc(). 3168 * 3169 * @param rl the resource list which was allocated from 3170 * @param bus the parent device of @p child 3171 * @param child the device which is requesting a release 3172 * @param type the type of resource to release 3173 * @param rid the resource identifier 3174 * @param res the resource to release 3175 * 3176 * @retval 0 success 3177 * @retval non-zero a standard unix error code indicating what 3178 * error condition prevented the operation 3179 */ 3180 int 3181 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3182 int type, int rid, struct resource *res) 3183 { 3184 struct resource_list_entry *rle = NULL; 3185 int passthrough = (device_get_parent(child) != bus); 3186 int error; 3187 3188 if (passthrough) { 3189 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3190 type, rid, res)); 3191 } 3192 3193 rle = resource_list_find(rl, type, rid); 3194 3195 if (!rle) 3196 panic("resource_list_release: can't find resource"); 3197 if (!rle->res) 3198 panic("resource_list_release: resource entry is not busy"); 3199 if (rle->flags & RLE_RESERVED) { 3200 if (rle->flags & RLE_ALLOCATED) { 3201 if (rman_get_flags(res) & RF_ACTIVE) { 3202 error = bus_deactivate_resource(child, type, 3203 rid, res); 3204 if (error) 3205 return (error); 3206 } 3207 rle->flags &= ~RLE_ALLOCATED; 3208 return (0); 3209 } 3210 return (EINVAL); 3211 } 3212 3213 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3214 type, rid, res); 3215 if (error) 3216 return (error); 3217 3218 rle->res = NULL; 3219 return (0); 3220 } 3221 3222 /** 3223 * @brief Fully release a reserved resource 3224 * 3225 * Fully releases a resouce reserved via resource_list_reserve(). 3226 * 3227 * @param rl the resource list which was allocated from 3228 * @param bus the parent device of @p child 3229 * @param child the device whose reserved resource is being released 3230 * @param type the type of resource to release 3231 * @param rid the resource identifier 3232 * @param res the resource to release 3233 * 3234 * @retval 0 success 3235 * @retval non-zero a standard unix error code indicating what 3236 * error condition prevented the operation 3237 */ 3238 int 3239 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3240 int type, int rid) 3241 { 3242 struct resource_list_entry *rle = NULL; 3243 int passthrough = (device_get_parent(child) != bus); 3244 3245 if (passthrough) 3246 panic( 3247 "resource_list_unreserve() should only be called for direct children"); 3248 3249 rle = resource_list_find(rl, type, rid); 3250 3251 if (!rle) 3252 panic("resource_list_unreserve: can't find resource"); 3253 if (!(rle->flags & RLE_RESERVED)) 3254 return (EINVAL); 3255 if (rle->flags & RLE_ALLOCATED) 3256 return (EBUSY); 3257 rle->flags &= ~RLE_RESERVED; 3258 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3259 } 3260 3261 /** 3262 * @brief Print a description of resources in a resource list 3263 * 3264 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3265 * The name is printed if at least one resource of the given type is available. 3266 * The format is used to print resource start and end. 3267 * 3268 * @param rl the resource list to print 3269 * @param name the name of @p type, e.g. @c "memory" 3270 * @param type type type of resource entry to print 3271 * @param format printf(9) format string to print resource 3272 * start and end values 3273 * 3274 * @returns the number of characters printed 3275 */ 3276 int 3277 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3278 const char *format) 3279 { 3280 struct resource_list_entry *rle; 3281 int printed, retval; 3282 3283 printed = 0; 3284 retval = 0; 3285 /* Yes, this is kinda cheating */ 3286 STAILQ_FOREACH(rle, rl, link) { 3287 if (rle->type == type) { 3288 if (printed == 0) 3289 retval += printf(" %s ", name); 3290 else 3291 retval += printf(","); 3292 printed++; 3293 retval += printf(format, rle->start); 3294 if (rle->count > 1) { 3295 retval += printf("-"); 3296 retval += printf(format, rle->start + 3297 rle->count - 1); 3298 } 3299 } 3300 } 3301 return (retval); 3302 } 3303 3304 /** 3305 * @brief Releases all the resources in a list. 3306 * 3307 * @param rl The resource list to purge. 3308 * 3309 * @returns nothing 3310 */ 3311 void 3312 resource_list_purge(struct resource_list *rl) 3313 { 3314 struct resource_list_entry *rle; 3315 3316 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3317 if (rle->res) 3318 bus_release_resource(rman_get_device(rle->res), 3319 rle->type, rle->rid, rle->res); 3320 STAILQ_REMOVE_HEAD(rl, link); 3321 free(rle, M_BUS); 3322 } 3323 } 3324 3325 device_t 3326 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3327 { 3328 3329 return (device_add_child_ordered(dev, order, name, unit)); 3330 } 3331 3332 /** 3333 * @brief Helper function for implementing DEVICE_PROBE() 3334 * 3335 * This function can be used to help implement the DEVICE_PROBE() for 3336 * a bus (i.e. a device which has other devices attached to it). It 3337 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3338 * devclass. 3339 */ 3340 int 3341 bus_generic_probe(device_t dev) 3342 { 3343 devclass_t dc = dev->devclass; 3344 driverlink_t dl; 3345 3346 TAILQ_FOREACH(dl, &dc->drivers, link) { 3347 /* 3348 * If this driver's pass is too high, then ignore it. 3349 * For most drivers in the default pass, this will 3350 * never be true. For early-pass drivers they will 3351 * only call the identify routines of eligible drivers 3352 * when this routine is called. Drivers for later 3353 * passes should have their identify routines called 3354 * on early-pass busses during BUS_NEW_PASS(). 3355 */ 3356 if (dl->pass > bus_current_pass) 3357 continue; 3358 DEVICE_IDENTIFY(dl->driver, dev); 3359 } 3360 3361 return (0); 3362 } 3363 3364 /** 3365 * @brief Helper function for implementing DEVICE_ATTACH() 3366 * 3367 * This function can be used to help implement the DEVICE_ATTACH() for 3368 * a bus. It calls device_probe_and_attach() for each of the device's 3369 * children. 3370 */ 3371 int 3372 bus_generic_attach(device_t dev) 3373 { 3374 device_t child; 3375 3376 TAILQ_FOREACH(child, &dev->children, link) { 3377 device_probe_and_attach(child); 3378 } 3379 3380 return (0); 3381 } 3382 3383 /** 3384 * @brief Helper function for implementing DEVICE_DETACH() 3385 * 3386 * This function can be used to help implement the DEVICE_DETACH() for 3387 * a bus. It calls device_detach() for each of the device's 3388 * children. 3389 */ 3390 int 3391 bus_generic_detach(device_t dev) 3392 { 3393 device_t child; 3394 int error; 3395 3396 if (dev->state != DS_ATTACHED) 3397 return (EBUSY); 3398 3399 TAILQ_FOREACH(child, &dev->children, link) { 3400 if ((error = device_detach(child)) != 0) 3401 return (error); 3402 } 3403 3404 return (0); 3405 } 3406 3407 /** 3408 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3409 * 3410 * This function can be used to help implement the DEVICE_SHUTDOWN() 3411 * for a bus. It calls device_shutdown() for each of the device's 3412 * children. 3413 */ 3414 int 3415 bus_generic_shutdown(device_t dev) 3416 { 3417 device_t child; 3418 3419 TAILQ_FOREACH(child, &dev->children, link) { 3420 device_shutdown(child); 3421 } 3422 3423 return (0); 3424 } 3425 3426 /** 3427 * @brief Helper function for implementing DEVICE_SUSPEND() 3428 * 3429 * This function can be used to help implement the DEVICE_SUSPEND() 3430 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3431 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3432 * operation is aborted and any devices which were suspended are 3433 * resumed immediately by calling their DEVICE_RESUME() methods. 3434 */ 3435 int 3436 bus_generic_suspend(device_t dev) 3437 { 3438 int error; 3439 device_t child, child2; 3440 3441 TAILQ_FOREACH(child, &dev->children, link) { 3442 error = DEVICE_SUSPEND(child); 3443 if (error) { 3444 for (child2 = TAILQ_FIRST(&dev->children); 3445 child2 && child2 != child; 3446 child2 = TAILQ_NEXT(child2, link)) 3447 DEVICE_RESUME(child2); 3448 return (error); 3449 } 3450 } 3451 return (0); 3452 } 3453 3454 /** 3455 * @brief Helper function for implementing DEVICE_RESUME() 3456 * 3457 * This function can be used to help implement the DEVICE_RESUME() for 3458 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3459 */ 3460 int 3461 bus_generic_resume(device_t dev) 3462 { 3463 device_t child; 3464 3465 TAILQ_FOREACH(child, &dev->children, link) { 3466 DEVICE_RESUME(child); 3467 /* if resume fails, there's nothing we can usefully do... */ 3468 } 3469 return (0); 3470 } 3471 3472 /** 3473 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3474 * 3475 * This function prints the first part of the ascii representation of 3476 * @p child, including its name, unit and description (if any - see 3477 * device_set_desc()). 3478 * 3479 * @returns the number of characters printed 3480 */ 3481 int 3482 bus_print_child_header(device_t dev, device_t child) 3483 { 3484 int retval = 0; 3485 3486 if (device_get_desc(child)) { 3487 retval += device_printf(child, "<%s>", device_get_desc(child)); 3488 } else { 3489 retval += printf("%s", device_get_nameunit(child)); 3490 } 3491 3492 return (retval); 3493 } 3494 3495 /** 3496 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3497 * 3498 * This function prints the last part of the ascii representation of 3499 * @p child, which consists of the string @c " on " followed by the 3500 * name and unit of the @p dev. 3501 * 3502 * @returns the number of characters printed 3503 */ 3504 int 3505 bus_print_child_footer(device_t dev, device_t child) 3506 { 3507 return (printf(" on %s\n", device_get_nameunit(dev))); 3508 } 3509 3510 /** 3511 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3512 * 3513 * This function simply calls bus_print_child_header() followed by 3514 * bus_print_child_footer(). 3515 * 3516 * @returns the number of characters printed 3517 */ 3518 int 3519 bus_generic_print_child(device_t dev, device_t child) 3520 { 3521 int retval = 0; 3522 3523 retval += bus_print_child_header(dev, child); 3524 retval += bus_print_child_footer(dev, child); 3525 3526 return (retval); 3527 } 3528 3529 /** 3530 * @brief Stub function for implementing BUS_READ_IVAR(). 3531 * 3532 * @returns ENOENT 3533 */ 3534 int 3535 bus_generic_read_ivar(device_t dev, device_t child, int index, 3536 uintptr_t * result) 3537 { 3538 return (ENOENT); 3539 } 3540 3541 /** 3542 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3543 * 3544 * @returns ENOENT 3545 */ 3546 int 3547 bus_generic_write_ivar(device_t dev, device_t child, int index, 3548 uintptr_t value) 3549 { 3550 return (ENOENT); 3551 } 3552 3553 /** 3554 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3555 * 3556 * @returns NULL 3557 */ 3558 struct resource_list * 3559 bus_generic_get_resource_list(device_t dev, device_t child) 3560 { 3561 return (NULL); 3562 } 3563 3564 /** 3565 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3566 * 3567 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3568 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3569 * and then calls device_probe_and_attach() for each unattached child. 3570 */ 3571 void 3572 bus_generic_driver_added(device_t dev, driver_t *driver) 3573 { 3574 device_t child; 3575 3576 DEVICE_IDENTIFY(driver, dev); 3577 TAILQ_FOREACH(child, &dev->children, link) { 3578 if (child->state == DS_NOTPRESENT || 3579 (child->flags & DF_REBID)) 3580 device_probe_and_attach(child); 3581 } 3582 } 3583 3584 /** 3585 * @brief Helper function for implementing BUS_NEW_PASS(). 3586 * 3587 * This implementing of BUS_NEW_PASS() first calls the identify 3588 * routines for any drivers that probe at the current pass. Then it 3589 * walks the list of devices for this bus. If a device is already 3590 * attached, then it calls BUS_NEW_PASS() on that device. If the 3591 * device is not already attached, it attempts to attach a driver to 3592 * it. 3593 */ 3594 void 3595 bus_generic_new_pass(device_t dev) 3596 { 3597 driverlink_t dl; 3598 devclass_t dc; 3599 device_t child; 3600 3601 dc = dev->devclass; 3602 TAILQ_FOREACH(dl, &dc->drivers, link) { 3603 if (dl->pass == bus_current_pass) 3604 DEVICE_IDENTIFY(dl->driver, dev); 3605 } 3606 TAILQ_FOREACH(child, &dev->children, link) { 3607 if (child->state >= DS_ATTACHED) 3608 BUS_NEW_PASS(child); 3609 else if (child->state == DS_NOTPRESENT) 3610 device_probe_and_attach(child); 3611 } 3612 } 3613 3614 /** 3615 * @brief Helper function for implementing BUS_SETUP_INTR(). 3616 * 3617 * This simple implementation of BUS_SETUP_INTR() simply calls the 3618 * BUS_SETUP_INTR() method of the parent of @p dev. 3619 */ 3620 int 3621 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3622 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3623 void **cookiep) 3624 { 3625 /* Propagate up the bus hierarchy until someone handles it. */ 3626 if (dev->parent) 3627 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3628 filter, intr, arg, cookiep)); 3629 return (EINVAL); 3630 } 3631 3632 /** 3633 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3634 * 3635 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3636 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3637 */ 3638 int 3639 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3640 void *cookie) 3641 { 3642 /* Propagate up the bus hierarchy until someone handles it. */ 3643 if (dev->parent) 3644 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3645 return (EINVAL); 3646 } 3647 3648 /** 3649 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3650 * 3651 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3652 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3653 */ 3654 int 3655 bus_generic_adjust_resource(device_t dev, device_t child, int type, 3656 struct resource *r, u_long start, u_long end) 3657 { 3658 /* Propagate up the bus hierarchy until someone handles it. */ 3659 if (dev->parent) 3660 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 3661 end)); 3662 return (EINVAL); 3663 } 3664 3665 /** 3666 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3667 * 3668 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3669 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3670 */ 3671 struct resource * 3672 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3673 u_long start, u_long end, u_long count, u_int flags) 3674 { 3675 /* Propagate up the bus hierarchy until someone handles it. */ 3676 if (dev->parent) 3677 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3678 start, end, count, flags)); 3679 return (NULL); 3680 } 3681 3682 /** 3683 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3684 * 3685 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3686 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3687 */ 3688 int 3689 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3690 struct resource *r) 3691 { 3692 /* Propagate up the bus hierarchy until someone handles it. */ 3693 if (dev->parent) 3694 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3695 r)); 3696 return (EINVAL); 3697 } 3698 3699 /** 3700 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3701 * 3702 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3703 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3704 */ 3705 int 3706 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3707 struct resource *r) 3708 { 3709 /* Propagate up the bus hierarchy until someone handles it. */ 3710 if (dev->parent) 3711 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3712 r)); 3713 return (EINVAL); 3714 } 3715 3716 /** 3717 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3718 * 3719 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3720 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3721 */ 3722 int 3723 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3724 int rid, struct resource *r) 3725 { 3726 /* Propagate up the bus hierarchy until someone handles it. */ 3727 if (dev->parent) 3728 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3729 r)); 3730 return (EINVAL); 3731 } 3732 3733 /** 3734 * @brief Helper function for implementing BUS_BIND_INTR(). 3735 * 3736 * This simple implementation of BUS_BIND_INTR() simply calls the 3737 * BUS_BIND_INTR() method of the parent of @p dev. 3738 */ 3739 int 3740 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 3741 int cpu) 3742 { 3743 3744 /* Propagate up the bus hierarchy until someone handles it. */ 3745 if (dev->parent) 3746 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 3747 return (EINVAL); 3748 } 3749 3750 /** 3751 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3752 * 3753 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3754 * BUS_CONFIG_INTR() method of the parent of @p dev. 3755 */ 3756 int 3757 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3758 enum intr_polarity pol) 3759 { 3760 3761 /* Propagate up the bus hierarchy until someone handles it. */ 3762 if (dev->parent) 3763 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3764 return (EINVAL); 3765 } 3766 3767 /** 3768 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 3769 * 3770 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 3771 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 3772 */ 3773 int 3774 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 3775 void *cookie, const char *descr) 3776 { 3777 3778 /* Propagate up the bus hierarchy until someone handles it. */ 3779 if (dev->parent) 3780 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 3781 descr)); 3782 return (EINVAL); 3783 } 3784 3785 /** 3786 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 3787 * 3788 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 3789 * BUS_GET_DMA_TAG() method of the parent of @p dev. 3790 */ 3791 bus_dma_tag_t 3792 bus_generic_get_dma_tag(device_t dev, device_t child) 3793 { 3794 3795 /* Propagate up the bus hierarchy until someone handles it. */ 3796 if (dev->parent != NULL) 3797 return (BUS_GET_DMA_TAG(dev->parent, child)); 3798 return (NULL); 3799 } 3800 3801 /** 3802 * @brief Helper function for implementing BUS_GET_RESOURCE(). 3803 * 3804 * This implementation of BUS_GET_RESOURCE() uses the 3805 * resource_list_find() function to do most of the work. It calls 3806 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3807 * search. 3808 */ 3809 int 3810 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 3811 u_long *startp, u_long *countp) 3812 { 3813 struct resource_list * rl = NULL; 3814 struct resource_list_entry * rle = NULL; 3815 3816 rl = BUS_GET_RESOURCE_LIST(dev, child); 3817 if (!rl) 3818 return (EINVAL); 3819 3820 rle = resource_list_find(rl, type, rid); 3821 if (!rle) 3822 return (ENOENT); 3823 3824 if (startp) 3825 *startp = rle->start; 3826 if (countp) 3827 *countp = rle->count; 3828 3829 return (0); 3830 } 3831 3832 /** 3833 * @brief Helper function for implementing BUS_SET_RESOURCE(). 3834 * 3835 * This implementation of BUS_SET_RESOURCE() uses the 3836 * resource_list_add() function to do most of the work. It calls 3837 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3838 * edit. 3839 */ 3840 int 3841 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 3842 u_long start, u_long count) 3843 { 3844 struct resource_list * rl = NULL; 3845 3846 rl = BUS_GET_RESOURCE_LIST(dev, child); 3847 if (!rl) 3848 return (EINVAL); 3849 3850 resource_list_add(rl, type, rid, start, (start + count - 1), count); 3851 3852 return (0); 3853 } 3854 3855 /** 3856 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 3857 * 3858 * This implementation of BUS_DELETE_RESOURCE() uses the 3859 * resource_list_delete() function to do most of the work. It calls 3860 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3861 * edit. 3862 */ 3863 void 3864 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 3865 { 3866 struct resource_list * rl = NULL; 3867 3868 rl = BUS_GET_RESOURCE_LIST(dev, child); 3869 if (!rl) 3870 return; 3871 3872 resource_list_delete(rl, type, rid); 3873 3874 return; 3875 } 3876 3877 /** 3878 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3879 * 3880 * This implementation of BUS_RELEASE_RESOURCE() uses the 3881 * resource_list_release() function to do most of the work. It calls 3882 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3883 */ 3884 int 3885 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 3886 int rid, struct resource *r) 3887 { 3888 struct resource_list * rl = NULL; 3889 3890 if (device_get_parent(child) != dev) 3891 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 3892 type, rid, r)); 3893 3894 rl = BUS_GET_RESOURCE_LIST(dev, child); 3895 if (!rl) 3896 return (EINVAL); 3897 3898 return (resource_list_release(rl, dev, child, type, rid, r)); 3899 } 3900 3901 /** 3902 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3903 * 3904 * This implementation of BUS_ALLOC_RESOURCE() uses the 3905 * resource_list_alloc() function to do most of the work. It calls 3906 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3907 */ 3908 struct resource * 3909 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 3910 int *rid, u_long start, u_long end, u_long count, u_int flags) 3911 { 3912 struct resource_list * rl = NULL; 3913 3914 if (device_get_parent(child) != dev) 3915 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 3916 type, rid, start, end, count, flags)); 3917 3918 rl = BUS_GET_RESOURCE_LIST(dev, child); 3919 if (!rl) 3920 return (NULL); 3921 3922 return (resource_list_alloc(rl, dev, child, type, rid, 3923 start, end, count, flags)); 3924 } 3925 3926 /** 3927 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 3928 * 3929 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 3930 * BUS_CHILD_PRESENT() method of the parent of @p dev. 3931 */ 3932 int 3933 bus_generic_child_present(device_t dev, device_t child) 3934 { 3935 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 3936 } 3937 3938 /* 3939 * Some convenience functions to make it easier for drivers to use the 3940 * resource-management functions. All these really do is hide the 3941 * indirection through the parent's method table, making for slightly 3942 * less-wordy code. In the future, it might make sense for this code 3943 * to maintain some sort of a list of resources allocated by each device. 3944 */ 3945 3946 int 3947 bus_alloc_resources(device_t dev, struct resource_spec *rs, 3948 struct resource **res) 3949 { 3950 int i; 3951 3952 for (i = 0; rs[i].type != -1; i++) 3953 res[i] = NULL; 3954 for (i = 0; rs[i].type != -1; i++) { 3955 res[i] = bus_alloc_resource_any(dev, 3956 rs[i].type, &rs[i].rid, rs[i].flags); 3957 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 3958 bus_release_resources(dev, rs, res); 3959 return (ENXIO); 3960 } 3961 } 3962 return (0); 3963 } 3964 3965 void 3966 bus_release_resources(device_t dev, const struct resource_spec *rs, 3967 struct resource **res) 3968 { 3969 int i; 3970 3971 for (i = 0; rs[i].type != -1; i++) 3972 if (res[i] != NULL) { 3973 bus_release_resource( 3974 dev, rs[i].type, rs[i].rid, res[i]); 3975 res[i] = NULL; 3976 } 3977 } 3978 3979 /** 3980 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 3981 * 3982 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 3983 * parent of @p dev. 3984 */ 3985 struct resource * 3986 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 3987 u_long count, u_int flags) 3988 { 3989 if (dev->parent == NULL) 3990 return (NULL); 3991 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 3992 count, flags)); 3993 } 3994 3995 /** 3996 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 3997 * 3998 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 3999 * parent of @p dev. 4000 */ 4001 int 4002 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start, 4003 u_long end) 4004 { 4005 if (dev->parent == NULL) 4006 return (EINVAL); 4007 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4008 } 4009 4010 /** 4011 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4012 * 4013 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4014 * parent of @p dev. 4015 */ 4016 int 4017 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4018 { 4019 if (dev->parent == NULL) 4020 return (EINVAL); 4021 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4022 } 4023 4024 /** 4025 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4026 * 4027 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4028 * parent of @p dev. 4029 */ 4030 int 4031 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4032 { 4033 if (dev->parent == NULL) 4034 return (EINVAL); 4035 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4036 } 4037 4038 /** 4039 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4040 * 4041 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4042 * parent of @p dev. 4043 */ 4044 int 4045 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4046 { 4047 if (dev->parent == NULL) 4048 return (EINVAL); 4049 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 4050 } 4051 4052 /** 4053 * @brief Wrapper function for BUS_SETUP_INTR(). 4054 * 4055 * This function simply calls the BUS_SETUP_INTR() method of the 4056 * parent of @p dev. 4057 */ 4058 int 4059 bus_setup_intr(device_t dev, struct resource *r, int flags, 4060 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4061 { 4062 int error; 4063 4064 if (dev->parent == NULL) 4065 return (EINVAL); 4066 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4067 arg, cookiep); 4068 if (error != 0) 4069 return (error); 4070 if (handler != NULL && !(flags & INTR_MPSAFE)) 4071 device_printf(dev, "[GIANT-LOCKED]\n"); 4072 return (0); 4073 } 4074 4075 /** 4076 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4077 * 4078 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4079 * parent of @p dev. 4080 */ 4081 int 4082 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4083 { 4084 if (dev->parent == NULL) 4085 return (EINVAL); 4086 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4087 } 4088 4089 /** 4090 * @brief Wrapper function for BUS_BIND_INTR(). 4091 * 4092 * This function simply calls the BUS_BIND_INTR() method of the 4093 * parent of @p dev. 4094 */ 4095 int 4096 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4097 { 4098 if (dev->parent == NULL) 4099 return (EINVAL); 4100 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4101 } 4102 4103 /** 4104 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4105 * 4106 * This function first formats the requested description into a 4107 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4108 * the parent of @p dev. 4109 */ 4110 int 4111 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4112 const char *fmt, ...) 4113 { 4114 va_list ap; 4115 char descr[MAXCOMLEN + 1]; 4116 4117 if (dev->parent == NULL) 4118 return (EINVAL); 4119 va_start(ap, fmt); 4120 vsnprintf(descr, sizeof(descr), fmt, ap); 4121 va_end(ap); 4122 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4123 } 4124 4125 /** 4126 * @brief Wrapper function for BUS_SET_RESOURCE(). 4127 * 4128 * This function simply calls the BUS_SET_RESOURCE() method of the 4129 * parent of @p dev. 4130 */ 4131 int 4132 bus_set_resource(device_t dev, int type, int rid, 4133 u_long start, u_long count) 4134 { 4135 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4136 start, count)); 4137 } 4138 4139 /** 4140 * @brief Wrapper function for BUS_GET_RESOURCE(). 4141 * 4142 * This function simply calls the BUS_GET_RESOURCE() method of the 4143 * parent of @p dev. 4144 */ 4145 int 4146 bus_get_resource(device_t dev, int type, int rid, 4147 u_long *startp, u_long *countp) 4148 { 4149 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4150 startp, countp)); 4151 } 4152 4153 /** 4154 * @brief Wrapper function for BUS_GET_RESOURCE(). 4155 * 4156 * This function simply calls the BUS_GET_RESOURCE() method of the 4157 * parent of @p dev and returns the start value. 4158 */ 4159 u_long 4160 bus_get_resource_start(device_t dev, int type, int rid) 4161 { 4162 u_long start, count; 4163 int error; 4164 4165 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4166 &start, &count); 4167 if (error) 4168 return (0); 4169 return (start); 4170 } 4171 4172 /** 4173 * @brief Wrapper function for BUS_GET_RESOURCE(). 4174 * 4175 * This function simply calls the BUS_GET_RESOURCE() method of the 4176 * parent of @p dev and returns the count value. 4177 */ 4178 u_long 4179 bus_get_resource_count(device_t dev, int type, int rid) 4180 { 4181 u_long start, count; 4182 int error; 4183 4184 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4185 &start, &count); 4186 if (error) 4187 return (0); 4188 return (count); 4189 } 4190 4191 /** 4192 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4193 * 4194 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4195 * parent of @p dev. 4196 */ 4197 void 4198 bus_delete_resource(device_t dev, int type, int rid) 4199 { 4200 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4201 } 4202 4203 /** 4204 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4205 * 4206 * This function simply calls the BUS_CHILD_PRESENT() method of the 4207 * parent of @p dev. 4208 */ 4209 int 4210 bus_child_present(device_t child) 4211 { 4212 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4213 } 4214 4215 /** 4216 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4217 * 4218 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4219 * parent of @p dev. 4220 */ 4221 int 4222 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4223 { 4224 device_t parent; 4225 4226 parent = device_get_parent(child); 4227 if (parent == NULL) { 4228 *buf = '\0'; 4229 return (0); 4230 } 4231 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4232 } 4233 4234 /** 4235 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4236 * 4237 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4238 * parent of @p dev. 4239 */ 4240 int 4241 bus_child_location_str(device_t child, char *buf, size_t buflen) 4242 { 4243 device_t parent; 4244 4245 parent = device_get_parent(child); 4246 if (parent == NULL) { 4247 *buf = '\0'; 4248 return (0); 4249 } 4250 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4251 } 4252 4253 /** 4254 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4255 * 4256 * This function simply calls the BUS_GET_DMA_TAG() method of the 4257 * parent of @p dev. 4258 */ 4259 bus_dma_tag_t 4260 bus_get_dma_tag(device_t dev) 4261 { 4262 device_t parent; 4263 4264 parent = device_get_parent(dev); 4265 if (parent == NULL) 4266 return (NULL); 4267 return (BUS_GET_DMA_TAG(parent, dev)); 4268 } 4269 4270 /* Resume all devices and then notify userland that we're up again. */ 4271 static int 4272 root_resume(device_t dev) 4273 { 4274 int error; 4275 4276 error = bus_generic_resume(dev); 4277 if (error == 0) 4278 devctl_notify("kern", "power", "resume", NULL); 4279 return (error); 4280 } 4281 4282 static int 4283 root_print_child(device_t dev, device_t child) 4284 { 4285 int retval = 0; 4286 4287 retval += bus_print_child_header(dev, child); 4288 retval += printf("\n"); 4289 4290 return (retval); 4291 } 4292 4293 static int 4294 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4295 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4296 { 4297 /* 4298 * If an interrupt mapping gets to here something bad has happened. 4299 */ 4300 panic("root_setup_intr"); 4301 } 4302 4303 /* 4304 * If we get here, assume that the device is permanant and really is 4305 * present in the system. Removable bus drivers are expected to intercept 4306 * this call long before it gets here. We return -1 so that drivers that 4307 * really care can check vs -1 or some ERRNO returned higher in the food 4308 * chain. 4309 */ 4310 static int 4311 root_child_present(device_t dev, device_t child) 4312 { 4313 return (-1); 4314 } 4315 4316 static kobj_method_t root_methods[] = { 4317 /* Device interface */ 4318 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4319 KOBJMETHOD(device_suspend, bus_generic_suspend), 4320 KOBJMETHOD(device_resume, root_resume), 4321 4322 /* Bus interface */ 4323 KOBJMETHOD(bus_print_child, root_print_child), 4324 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4325 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4326 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4327 KOBJMETHOD(bus_child_present, root_child_present), 4328 4329 KOBJMETHOD_END 4330 }; 4331 4332 static driver_t root_driver = { 4333 "root", 4334 root_methods, 4335 1, /* no softc */ 4336 }; 4337 4338 device_t root_bus; 4339 devclass_t root_devclass; 4340 4341 static int 4342 root_bus_module_handler(module_t mod, int what, void* arg) 4343 { 4344 switch (what) { 4345 case MOD_LOAD: 4346 TAILQ_INIT(&bus_data_devices); 4347 kobj_class_compile((kobj_class_t) &root_driver); 4348 root_bus = make_device(NULL, "root", 0); 4349 root_bus->desc = "System root bus"; 4350 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4351 root_bus->driver = &root_driver; 4352 root_bus->state = DS_ATTACHED; 4353 root_devclass = devclass_find_internal("root", NULL, FALSE); 4354 devinit(); 4355 return (0); 4356 4357 case MOD_SHUTDOWN: 4358 device_shutdown(root_bus); 4359 return (0); 4360 default: 4361 return (EOPNOTSUPP); 4362 } 4363 4364 return (0); 4365 } 4366 4367 static moduledata_t root_bus_mod = { 4368 "rootbus", 4369 root_bus_module_handler, 4370 NULL 4371 }; 4372 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4373 4374 /** 4375 * @brief Automatically configure devices 4376 * 4377 * This function begins the autoconfiguration process by calling 4378 * device_probe_and_attach() for each child of the @c root0 device. 4379 */ 4380 void 4381 root_bus_configure(void) 4382 { 4383 4384 PDEBUG((".")); 4385 4386 /* Eventually this will be split up, but this is sufficient for now. */ 4387 bus_set_pass(BUS_PASS_DEFAULT); 4388 } 4389 4390 /** 4391 * @brief Module handler for registering device drivers 4392 * 4393 * This module handler is used to automatically register device 4394 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4395 * devclass_add_driver() for the driver described by the 4396 * driver_module_data structure pointed to by @p arg 4397 */ 4398 int 4399 driver_module_handler(module_t mod, int what, void *arg) 4400 { 4401 struct driver_module_data *dmd; 4402 devclass_t bus_devclass; 4403 kobj_class_t driver; 4404 int error, pass; 4405 4406 dmd = (struct driver_module_data *)arg; 4407 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4408 error = 0; 4409 4410 switch (what) { 4411 case MOD_LOAD: 4412 if (dmd->dmd_chainevh) 4413 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4414 4415 pass = dmd->dmd_pass; 4416 driver = dmd->dmd_driver; 4417 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4418 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4419 error = devclass_add_driver(bus_devclass, driver, pass, 4420 dmd->dmd_devclass); 4421 break; 4422 4423 case MOD_UNLOAD: 4424 PDEBUG(("Unloading module: driver %s from bus %s", 4425 DRIVERNAME(dmd->dmd_driver), 4426 dmd->dmd_busname)); 4427 error = devclass_delete_driver(bus_devclass, 4428 dmd->dmd_driver); 4429 4430 if (!error && dmd->dmd_chainevh) 4431 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4432 break; 4433 case MOD_QUIESCE: 4434 PDEBUG(("Quiesce module: driver %s from bus %s", 4435 DRIVERNAME(dmd->dmd_driver), 4436 dmd->dmd_busname)); 4437 error = devclass_quiesce_driver(bus_devclass, 4438 dmd->dmd_driver); 4439 4440 if (!error && dmd->dmd_chainevh) 4441 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4442 break; 4443 default: 4444 error = EOPNOTSUPP; 4445 break; 4446 } 4447 4448 return (error); 4449 } 4450 4451 /** 4452 * @brief Enumerate all hinted devices for this bus. 4453 * 4454 * Walks through the hints for this bus and calls the bus_hinted_child 4455 * routine for each one it fines. It searches first for the specific 4456 * bus that's being probed for hinted children (eg isa0), and then for 4457 * generic children (eg isa). 4458 * 4459 * @param dev bus device to enumerate 4460 */ 4461 void 4462 bus_enumerate_hinted_children(device_t bus) 4463 { 4464 int i; 4465 const char *dname, *busname; 4466 int dunit; 4467 4468 /* 4469 * enumerate all devices on the specific bus 4470 */ 4471 busname = device_get_nameunit(bus); 4472 i = 0; 4473 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4474 BUS_HINTED_CHILD(bus, dname, dunit); 4475 4476 /* 4477 * and all the generic ones. 4478 */ 4479 busname = device_get_name(bus); 4480 i = 0; 4481 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4482 BUS_HINTED_CHILD(bus, dname, dunit); 4483 } 4484 4485 #ifdef BUS_DEBUG 4486 4487 /* the _short versions avoid iteration by not calling anything that prints 4488 * more than oneliners. I love oneliners. 4489 */ 4490 4491 static void 4492 print_device_short(device_t dev, int indent) 4493 { 4494 if (!dev) 4495 return; 4496 4497 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4498 dev->unit, dev->desc, 4499 (dev->parent? "":"no "), 4500 (TAILQ_EMPTY(&dev->children)? "no ":""), 4501 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4502 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4503 (dev->flags&DF_WILDCARD? "wildcard,":""), 4504 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4505 (dev->flags&DF_REBID? "rebiddable,":""), 4506 (dev->ivars? "":"no "), 4507 (dev->softc? "":"no "), 4508 dev->busy)); 4509 } 4510 4511 static void 4512 print_device(device_t dev, int indent) 4513 { 4514 if (!dev) 4515 return; 4516 4517 print_device_short(dev, indent); 4518 4519 indentprintf(("Parent:\n")); 4520 print_device_short(dev->parent, indent+1); 4521 indentprintf(("Driver:\n")); 4522 print_driver_short(dev->driver, indent+1); 4523 indentprintf(("Devclass:\n")); 4524 print_devclass_short(dev->devclass, indent+1); 4525 } 4526 4527 void 4528 print_device_tree_short(device_t dev, int indent) 4529 /* print the device and all its children (indented) */ 4530 { 4531 device_t child; 4532 4533 if (!dev) 4534 return; 4535 4536 print_device_short(dev, indent); 4537 4538 TAILQ_FOREACH(child, &dev->children, link) { 4539 print_device_tree_short(child, indent+1); 4540 } 4541 } 4542 4543 void 4544 print_device_tree(device_t dev, int indent) 4545 /* print the device and all its children (indented) */ 4546 { 4547 device_t child; 4548 4549 if (!dev) 4550 return; 4551 4552 print_device(dev, indent); 4553 4554 TAILQ_FOREACH(child, &dev->children, link) { 4555 print_device_tree(child, indent+1); 4556 } 4557 } 4558 4559 static void 4560 print_driver_short(driver_t *driver, int indent) 4561 { 4562 if (!driver) 4563 return; 4564 4565 indentprintf(("driver %s: softc size = %zd\n", 4566 driver->name, driver->size)); 4567 } 4568 4569 static void 4570 print_driver(driver_t *driver, int indent) 4571 { 4572 if (!driver) 4573 return; 4574 4575 print_driver_short(driver, indent); 4576 } 4577 4578 4579 static void 4580 print_driver_list(driver_list_t drivers, int indent) 4581 { 4582 driverlink_t driver; 4583 4584 TAILQ_FOREACH(driver, &drivers, link) { 4585 print_driver(driver->driver, indent); 4586 } 4587 } 4588 4589 static void 4590 print_devclass_short(devclass_t dc, int indent) 4591 { 4592 if ( !dc ) 4593 return; 4594 4595 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4596 } 4597 4598 static void 4599 print_devclass(devclass_t dc, int indent) 4600 { 4601 int i; 4602 4603 if ( !dc ) 4604 return; 4605 4606 print_devclass_short(dc, indent); 4607 indentprintf(("Drivers:\n")); 4608 print_driver_list(dc->drivers, indent+1); 4609 4610 indentprintf(("Devices:\n")); 4611 for (i = 0; i < dc->maxunit; i++) 4612 if (dc->devices[i]) 4613 print_device(dc->devices[i], indent+1); 4614 } 4615 4616 void 4617 print_devclass_list_short(void) 4618 { 4619 devclass_t dc; 4620 4621 printf("Short listing of devclasses, drivers & devices:\n"); 4622 TAILQ_FOREACH(dc, &devclasses, link) { 4623 print_devclass_short(dc, 0); 4624 } 4625 } 4626 4627 void 4628 print_devclass_list(void) 4629 { 4630 devclass_t dc; 4631 4632 printf("Full listing of devclasses, drivers & devices:\n"); 4633 TAILQ_FOREACH(dc, &devclasses, link) { 4634 print_devclass(dc, 0); 4635 } 4636 } 4637 4638 #endif 4639 4640 /* 4641 * User-space access to the device tree. 4642 * 4643 * We implement a small set of nodes: 4644 * 4645 * hw.bus Single integer read method to obtain the 4646 * current generation count. 4647 * hw.bus.devices Reads the entire device tree in flat space. 4648 * hw.bus.rman Resource manager interface 4649 * 4650 * We might like to add the ability to scan devclasses and/or drivers to 4651 * determine what else is currently loaded/available. 4652 */ 4653 4654 static int 4655 sysctl_bus(SYSCTL_HANDLER_ARGS) 4656 { 4657 struct u_businfo ubus; 4658 4659 ubus.ub_version = BUS_USER_VERSION; 4660 ubus.ub_generation = bus_data_generation; 4661 4662 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4663 } 4664 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4665 "bus-related data"); 4666 4667 static int 4668 sysctl_devices(SYSCTL_HANDLER_ARGS) 4669 { 4670 int *name = (int *)arg1; 4671 u_int namelen = arg2; 4672 int index; 4673 struct device *dev; 4674 struct u_device udev; /* XXX this is a bit big */ 4675 int error; 4676 4677 if (namelen != 2) 4678 return (EINVAL); 4679 4680 if (bus_data_generation_check(name[0])) 4681 return (EINVAL); 4682 4683 index = name[1]; 4684 4685 /* 4686 * Scan the list of devices, looking for the requested index. 4687 */ 4688 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 4689 if (index-- == 0) 4690 break; 4691 } 4692 if (dev == NULL) 4693 return (ENOENT); 4694 4695 /* 4696 * Populate the return array. 4697 */ 4698 bzero(&udev, sizeof(udev)); 4699 udev.dv_handle = (uintptr_t)dev; 4700 udev.dv_parent = (uintptr_t)dev->parent; 4701 if (dev->nameunit != NULL) 4702 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 4703 if (dev->desc != NULL) 4704 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 4705 if (dev->driver != NULL && dev->driver->name != NULL) 4706 strlcpy(udev.dv_drivername, dev->driver->name, 4707 sizeof(udev.dv_drivername)); 4708 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 4709 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 4710 udev.dv_devflags = dev->devflags; 4711 udev.dv_flags = dev->flags; 4712 udev.dv_state = dev->state; 4713 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 4714 return (error); 4715 } 4716 4717 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 4718 "system device tree"); 4719 4720 int 4721 bus_data_generation_check(int generation) 4722 { 4723 if (generation != bus_data_generation) 4724 return (1); 4725 4726 /* XXX generate optimised lists here? */ 4727 return (0); 4728 } 4729 4730 void 4731 bus_data_generation_update(void) 4732 { 4733 bus_data_generation++; 4734 } 4735 4736 int 4737 bus_free_resource(device_t dev, int type, struct resource *r) 4738 { 4739 if (r == NULL) 4740 return (0); 4741 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 4742 } 4743