1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #define __RMAN_RESOURCE_VISIBLE 33 #include <sys/param.h> 34 #include <sys/conf.h> 35 #include <sys/filio.h> 36 #include <sys/lock.h> 37 #include <sys/kernel.h> 38 #include <sys/kobj.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/mutex.h> 42 #include <sys/poll.h> 43 #include <sys/proc.h> 44 #include <sys/condvar.h> 45 #include <sys/queue.h> 46 #include <machine/bus.h> 47 #include <sys/rman.h> 48 #include <sys/selinfo.h> 49 #include <sys/signalvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/systm.h> 52 #include <sys/uio.h> 53 #include <sys/bus.h> 54 55 #include <machine/stdarg.h> 56 57 #include <vm/uma.h> 58 59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 61 62 /* 63 * Used to attach drivers to devclasses. 64 */ 65 typedef struct driverlink *driverlink_t; 66 struct driverlink { 67 kobj_class_t driver; 68 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 69 }; 70 71 /* 72 * Forward declarations 73 */ 74 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 75 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 76 typedef TAILQ_HEAD(device_list, device) device_list_t; 77 78 struct devclass { 79 TAILQ_ENTRY(devclass) link; 80 devclass_t parent; /* parent in devclass hierarchy */ 81 driver_list_t drivers; /* bus devclasses store drivers for bus */ 82 char *name; 83 device_t *devices; /* array of devices indexed by unit */ 84 int maxunit; /* size of devices array */ 85 86 struct sysctl_ctx_list sysctl_ctx; 87 struct sysctl_oid *sysctl_tree; 88 }; 89 90 /** 91 * @brief Implementation of device. 92 */ 93 struct device { 94 /* 95 * A device is a kernel object. The first field must be the 96 * current ops table for the object. 97 */ 98 KOBJ_FIELDS; 99 100 /* 101 * Device hierarchy. 102 */ 103 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 104 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 105 device_t parent; /**< parent of this device */ 106 device_list_t children; /**< list of child devices */ 107 108 /* 109 * Details of this device. 110 */ 111 driver_t *driver; /**< current driver */ 112 devclass_t devclass; /**< current device class */ 113 int unit; /**< current unit number */ 114 char* nameunit; /**< name+unit e.g. foodev0 */ 115 char* desc; /**< driver specific description */ 116 int busy; /**< count of calls to device_busy() */ 117 device_state_t state; /**< current device state */ 118 u_int32_t devflags; /**< api level flags for device_get_flags() */ 119 u_short flags; /**< internal device flags */ 120 #define DF_ENABLED 1 /* device should be probed/attached */ 121 #define DF_FIXEDCLASS 2 /* devclass specified at create time */ 122 #define DF_WILDCARD 4 /* unit was originally wildcard */ 123 #define DF_DESCMALLOCED 8 /* description was malloced */ 124 #define DF_QUIET 16 /* don't print verbose attach message */ 125 #define DF_DONENOMATCH 32 /* don't execute DEVICE_NOMATCH again */ 126 #define DF_EXTERNALSOFTC 64 /* softc not allocated by us */ 127 #define DF_REBID 128 /* Can rebid after attach */ 128 u_char order; /**< order from device_add_child_ordered() */ 129 u_char pad; 130 void *ivars; /**< instance variables */ 131 void *softc; /**< current driver's variables */ 132 133 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 134 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 135 }; 136 137 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 138 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 139 140 #ifdef BUS_DEBUG 141 142 static int bus_debug = 1; 143 TUNABLE_INT("bus.debug", &bus_debug); 144 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0, 145 "Debug bus code"); 146 147 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 148 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 149 #define DRIVERNAME(d) ((d)? d->name : "no driver") 150 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 151 152 /** 153 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 154 * prevent syslog from deleting initial spaces 155 */ 156 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 157 158 static void print_device_short(device_t dev, int indent); 159 static void print_device(device_t dev, int indent); 160 void print_device_tree_short(device_t dev, int indent); 161 void print_device_tree(device_t dev, int indent); 162 static void print_driver_short(driver_t *driver, int indent); 163 static void print_driver(driver_t *driver, int indent); 164 static void print_driver_list(driver_list_t drivers, int indent); 165 static void print_devclass_short(devclass_t dc, int indent); 166 static void print_devclass(devclass_t dc, int indent); 167 void print_devclass_list_short(void); 168 void print_devclass_list(void); 169 170 #else 171 /* Make the compiler ignore the function calls */ 172 #define PDEBUG(a) /* nop */ 173 #define DEVICENAME(d) /* nop */ 174 #define DRIVERNAME(d) /* nop */ 175 #define DEVCLANAME(d) /* nop */ 176 177 #define print_device_short(d,i) /* nop */ 178 #define print_device(d,i) /* nop */ 179 #define print_device_tree_short(d,i) /* nop */ 180 #define print_device_tree(d,i) /* nop */ 181 #define print_driver_short(d,i) /* nop */ 182 #define print_driver(d,i) /* nop */ 183 #define print_driver_list(d,i) /* nop */ 184 #define print_devclass_short(d,i) /* nop */ 185 #define print_devclass(d,i) /* nop */ 186 #define print_devclass_list_short() /* nop */ 187 #define print_devclass_list() /* nop */ 188 #endif 189 190 /* 191 * dev sysctl tree 192 */ 193 194 enum { 195 DEVCLASS_SYSCTL_PARENT, 196 }; 197 198 static int 199 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 200 { 201 devclass_t dc = (devclass_t)arg1; 202 const char *value; 203 char *buf; 204 int error; 205 206 buf = NULL; 207 switch (arg2) { 208 case DEVCLASS_SYSCTL_PARENT: 209 value = dc->parent ? dc->parent->name : ""; 210 break; 211 default: 212 return (EINVAL); 213 } 214 error = SYSCTL_OUT(req, value, strlen(value)); 215 if (buf != NULL) 216 free(buf, M_BUS); 217 return (error); 218 } 219 220 static void 221 devclass_sysctl_init(devclass_t dc) 222 { 223 224 if (dc->sysctl_tree != NULL) 225 return; 226 sysctl_ctx_init(&dc->sysctl_ctx); 227 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 228 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 229 CTLFLAG_RD, 0, ""); 230 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 231 OID_AUTO, "%parent", CTLFLAG_RD, 232 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 233 "parent class"); 234 } 235 236 enum { 237 DEVICE_SYSCTL_DESC, 238 DEVICE_SYSCTL_DRIVER, 239 DEVICE_SYSCTL_LOCATION, 240 DEVICE_SYSCTL_PNPINFO, 241 DEVICE_SYSCTL_PARENT, 242 }; 243 244 static int 245 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 246 { 247 device_t dev = (device_t)arg1; 248 const char *value; 249 char *buf; 250 int error; 251 252 buf = NULL; 253 switch (arg2) { 254 case DEVICE_SYSCTL_DESC: 255 value = dev->desc ? dev->desc : ""; 256 break; 257 case DEVICE_SYSCTL_DRIVER: 258 value = dev->driver ? dev->driver->name : ""; 259 break; 260 case DEVICE_SYSCTL_LOCATION: 261 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 262 bus_child_location_str(dev, buf, 1024); 263 break; 264 case DEVICE_SYSCTL_PNPINFO: 265 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 266 bus_child_pnpinfo_str(dev, buf, 1024); 267 break; 268 case DEVICE_SYSCTL_PARENT: 269 value = dev->parent ? dev->parent->nameunit : ""; 270 break; 271 default: 272 return (EINVAL); 273 } 274 error = SYSCTL_OUT(req, value, strlen(value)); 275 if (buf != NULL) 276 free(buf, M_BUS); 277 return (error); 278 } 279 280 static void 281 device_sysctl_init(device_t dev) 282 { 283 devclass_t dc = dev->devclass; 284 285 if (dev->sysctl_tree != NULL) 286 return; 287 devclass_sysctl_init(dc); 288 sysctl_ctx_init(&dev->sysctl_ctx); 289 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 290 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 291 dev->nameunit + strlen(dc->name), 292 CTLFLAG_RD, 0, ""); 293 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 294 OID_AUTO, "%desc", CTLFLAG_RD, 295 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 296 "device description"); 297 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 298 OID_AUTO, "%driver", CTLFLAG_RD, 299 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 300 "device driver name"); 301 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 302 OID_AUTO, "%location", CTLFLAG_RD, 303 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 304 "device location relative to parent"); 305 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 306 OID_AUTO, "%pnpinfo", CTLFLAG_RD, 307 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 308 "device identification"); 309 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 310 OID_AUTO, "%parent", CTLFLAG_RD, 311 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 312 "parent device"); 313 } 314 315 static void 316 device_sysctl_fini(device_t dev) 317 { 318 if (dev->sysctl_tree == NULL) 319 return; 320 sysctl_ctx_free(&dev->sysctl_ctx); 321 dev->sysctl_tree = NULL; 322 } 323 324 /* 325 * /dev/devctl implementation 326 */ 327 328 /* 329 * This design allows only one reader for /dev/devctl. This is not desirable 330 * in the long run, but will get a lot of hair out of this implementation. 331 * Maybe we should make this device a clonable device. 332 * 333 * Also note: we specifically do not attach a device to the device_t tree 334 * to avoid potential chicken and egg problems. One could argue that all 335 * of this belongs to the root node. One could also further argue that the 336 * sysctl interface that we have not might more properly be an ioctl 337 * interface, but at this stage of the game, I'm not inclined to rock that 338 * boat. 339 * 340 * I'm also not sure that the SIGIO support is done correctly or not, as 341 * I copied it from a driver that had SIGIO support that likely hasn't been 342 * tested since 3.4 or 2.2.8! 343 */ 344 345 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 346 static int devctl_disable = 0; 347 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable); 348 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 349 sysctl_devctl_disable, "I", "devctl disable"); 350 351 static d_open_t devopen; 352 static d_close_t devclose; 353 static d_read_t devread; 354 static d_ioctl_t devioctl; 355 static d_poll_t devpoll; 356 357 #define CDEV_MAJOR 173 358 static struct cdevsw dev_cdevsw = { 359 .d_version = D_VERSION, 360 .d_flags = D_NEEDGIANT, 361 .d_open = devopen, 362 .d_close = devclose, 363 .d_read = devread, 364 .d_ioctl = devioctl, 365 .d_poll = devpoll, 366 .d_name = "devctl", 367 .d_maj = CDEV_MAJOR, 368 }; 369 370 struct dev_event_info 371 { 372 char *dei_data; 373 TAILQ_ENTRY(dev_event_info) dei_link; 374 }; 375 376 TAILQ_HEAD(devq, dev_event_info); 377 378 static struct dev_softc 379 { 380 int inuse; 381 int nonblock; 382 struct mtx mtx; 383 struct cv cv; 384 struct selinfo sel; 385 struct devq devq; 386 struct proc *async_proc; 387 } devsoftc; 388 389 static struct cdev *devctl_dev; 390 391 static void 392 devinit(void) 393 { 394 devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, 395 "devctl"); 396 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 397 cv_init(&devsoftc.cv, "dev cv"); 398 TAILQ_INIT(&devsoftc.devq); 399 } 400 401 static int 402 devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td) 403 { 404 if (devsoftc.inuse) 405 return (EBUSY); 406 /* move to init */ 407 devsoftc.inuse = 1; 408 devsoftc.nonblock = 0; 409 devsoftc.async_proc = NULL; 410 return (0); 411 } 412 413 static int 414 devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td) 415 { 416 devsoftc.inuse = 0; 417 mtx_lock(&devsoftc.mtx); 418 cv_broadcast(&devsoftc.cv); 419 mtx_unlock(&devsoftc.mtx); 420 421 return (0); 422 } 423 424 /* 425 * The read channel for this device is used to report changes to 426 * userland in realtime. We are required to free the data as well as 427 * the n1 object because we allocate them separately. Also note that 428 * we return one record at a time. If you try to read this device a 429 * character at a time, you will loose the rest of the data. Listening 430 * programs are expected to cope. 431 */ 432 static int 433 devread(struct cdev *dev, struct uio *uio, int ioflag) 434 { 435 struct dev_event_info *n1; 436 int rv; 437 438 mtx_lock(&devsoftc.mtx); 439 while (TAILQ_EMPTY(&devsoftc.devq)) { 440 if (devsoftc.nonblock) { 441 mtx_unlock(&devsoftc.mtx); 442 return (EAGAIN); 443 } 444 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 445 if (rv) { 446 /* 447 * Need to translate ERESTART to EINTR here? -- jake 448 */ 449 mtx_unlock(&devsoftc.mtx); 450 return (rv); 451 } 452 } 453 n1 = TAILQ_FIRST(&devsoftc.devq); 454 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 455 mtx_unlock(&devsoftc.mtx); 456 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 457 free(n1->dei_data, M_BUS); 458 free(n1, M_BUS); 459 return (rv); 460 } 461 462 static int 463 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td) 464 { 465 switch (cmd) { 466 467 case FIONBIO: 468 if (*(int*)data) 469 devsoftc.nonblock = 1; 470 else 471 devsoftc.nonblock = 0; 472 return (0); 473 case FIOASYNC: 474 if (*(int*)data) 475 devsoftc.async_proc = td->td_proc; 476 else 477 devsoftc.async_proc = NULL; 478 return (0); 479 480 /* (un)Support for other fcntl() calls. */ 481 case FIOCLEX: 482 case FIONCLEX: 483 case FIONREAD: 484 case FIOSETOWN: 485 case FIOGETOWN: 486 default: 487 break; 488 } 489 return (ENOTTY); 490 } 491 492 static int 493 devpoll(struct cdev *dev, int events, d_thread_t *td) 494 { 495 int revents = 0; 496 497 mtx_lock(&devsoftc.mtx); 498 if (events & (POLLIN | POLLRDNORM)) { 499 if (!TAILQ_EMPTY(&devsoftc.devq)) 500 revents = events & (POLLIN | POLLRDNORM); 501 else 502 selrecord(td, &devsoftc.sel); 503 } 504 mtx_unlock(&devsoftc.mtx); 505 506 return (revents); 507 } 508 509 /** 510 * @brief Queue data to be read from the devctl device 511 * 512 * Generic interface to queue data to the devctl device. It is 513 * assumed that @p data is properly formatted. It is further assumed 514 * that @p data is allocated using the M_BUS malloc type. 515 */ 516 void 517 devctl_queue_data(char *data) 518 { 519 struct dev_event_info *n1 = NULL; 520 struct proc *p; 521 522 n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT); 523 if (n1 == NULL) 524 return; 525 n1->dei_data = data; 526 mtx_lock(&devsoftc.mtx); 527 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 528 cv_broadcast(&devsoftc.cv); 529 mtx_unlock(&devsoftc.mtx); 530 selwakeup(&devsoftc.sel); 531 p = devsoftc.async_proc; 532 if (p != NULL) { 533 PROC_LOCK(p); 534 psignal(p, SIGIO); 535 PROC_UNLOCK(p); 536 } 537 } 538 539 /** 540 * @brief Send a 'notification' to userland, using standard ways 541 */ 542 void 543 devctl_notify(const char *system, const char *subsystem, const char *type, 544 const char *data) 545 { 546 int len = 0; 547 char *msg; 548 549 if (system == NULL) 550 return; /* BOGUS! Must specify system. */ 551 if (subsystem == NULL) 552 return; /* BOGUS! Must specify subsystem. */ 553 if (type == NULL) 554 return; /* BOGUS! Must specify type. */ 555 len += strlen(" system=") + strlen(system); 556 len += strlen(" subsystem=") + strlen(subsystem); 557 len += strlen(" type=") + strlen(type); 558 /* add in the data message plus newline. */ 559 if (data != NULL) 560 len += strlen(data); 561 len += 3; /* '!', '\n', and NUL */ 562 msg = malloc(len, M_BUS, M_NOWAIT); 563 if (msg == NULL) 564 return; /* Drop it on the floor */ 565 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", system, 566 subsystem, type, data); 567 devctl_queue_data(msg); 568 } 569 570 /* 571 * Common routine that tries to make sending messages as easy as possible. 572 * We allocate memory for the data, copy strings into that, but do not 573 * free it unless there's an error. The dequeue part of the driver should 574 * free the data. We don't send data when the device is disabled. We do 575 * send data, even when we have no listeners, because we wish to avoid 576 * races relating to startup and restart of listening applications. 577 * 578 * devaddq is designed to string together the type of event, with the 579 * object of that event, plus the plug and play info and location info 580 * for that event. This is likely most useful for devices, but less 581 * useful for other consumers of this interface. Those should use 582 * the devctl_queue_data() interface instead. 583 */ 584 static void 585 devaddq(const char *type, const char *what, device_t dev) 586 { 587 char *data = NULL; 588 char *loc = NULL; 589 char *pnp = NULL; 590 const char *parstr; 591 592 if (devctl_disable) 593 return; 594 data = malloc(1024, M_BUS, M_NOWAIT); 595 if (data == NULL) 596 goto bad; 597 598 /* get the bus specific location of this device */ 599 loc = malloc(1024, M_BUS, M_NOWAIT); 600 if (loc == NULL) 601 goto bad; 602 *loc = '\0'; 603 bus_child_location_str(dev, loc, 1024); 604 605 /* Get the bus specific pnp info of this device */ 606 pnp = malloc(1024, M_BUS, M_NOWAIT); 607 if (pnp == NULL) 608 goto bad; 609 *pnp = '\0'; 610 bus_child_pnpinfo_str(dev, pnp, 1024); 611 612 /* Get the parent of this device, or / if high enough in the tree. */ 613 if (device_get_parent(dev) == NULL) 614 parstr = "."; /* Or '/' ? */ 615 else 616 parstr = device_get_nameunit(device_get_parent(dev)); 617 /* String it all together. */ 618 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 619 parstr); 620 free(loc, M_BUS); 621 free(pnp, M_BUS); 622 devctl_queue_data(data); 623 return; 624 bad: 625 free(pnp, M_BUS); 626 free(loc, M_BUS); 627 free(data, M_BUS); 628 return; 629 } 630 631 /* 632 * A device was added to the tree. We are called just after it successfully 633 * attaches (that is, probe and attach success for this device). No call 634 * is made if a device is merely parented into the tree. See devnomatch 635 * if probe fails. If attach fails, no notification is sent (but maybe 636 * we should have a different message for this). 637 */ 638 static void 639 devadded(device_t dev) 640 { 641 char *pnp = NULL; 642 char *tmp = NULL; 643 644 pnp = malloc(1024, M_BUS, M_NOWAIT); 645 if (pnp == NULL) 646 goto fail; 647 tmp = malloc(1024, M_BUS, M_NOWAIT); 648 if (tmp == NULL) 649 goto fail; 650 *pnp = '\0'; 651 bus_child_pnpinfo_str(dev, pnp, 1024); 652 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 653 devaddq("+", tmp, dev); 654 fail: 655 if (pnp != NULL) 656 free(pnp, M_BUS); 657 if (tmp != NULL) 658 free(tmp, M_BUS); 659 return; 660 } 661 662 /* 663 * A device was removed from the tree. We are called just before this 664 * happens. 665 */ 666 static void 667 devremoved(device_t dev) 668 { 669 char *pnp = NULL; 670 char *tmp = NULL; 671 672 pnp = malloc(1024, M_BUS, M_NOWAIT); 673 if (pnp == NULL) 674 goto fail; 675 tmp = malloc(1024, M_BUS, M_NOWAIT); 676 if (tmp == NULL) 677 goto fail; 678 *pnp = '\0'; 679 bus_child_pnpinfo_str(dev, pnp, 1024); 680 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 681 devaddq("-", tmp, dev); 682 fail: 683 if (pnp != NULL) 684 free(pnp, M_BUS); 685 if (tmp != NULL) 686 free(tmp, M_BUS); 687 return; 688 } 689 690 /* 691 * Called when there's no match for this device. This is only called 692 * the first time that no match happens, so we don't keep getitng this 693 * message. Should that prove to be undesirable, we can change it. 694 * This is called when all drivers that can attach to a given bus 695 * decline to accept this device. Other errrors may not be detected. 696 */ 697 static void 698 devnomatch(device_t dev) 699 { 700 devaddq("?", "", dev); 701 } 702 703 static int 704 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 705 { 706 struct dev_event_info *n1; 707 int dis, error; 708 709 dis = devctl_disable; 710 error = sysctl_handle_int(oidp, &dis, 0, req); 711 if (error || !req->newptr) 712 return (error); 713 mtx_lock(&devsoftc.mtx); 714 devctl_disable = dis; 715 if (dis) { 716 while (!TAILQ_EMPTY(&devsoftc.devq)) { 717 n1 = TAILQ_FIRST(&devsoftc.devq); 718 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 719 free(n1->dei_data, M_BUS); 720 free(n1, M_BUS); 721 } 722 } 723 mtx_unlock(&devsoftc.mtx); 724 return (0); 725 } 726 727 /* End of /dev/devctl code */ 728 729 TAILQ_HEAD(,device) bus_data_devices; 730 static int bus_data_generation = 1; 731 732 kobj_method_t null_methods[] = { 733 { 0, 0 } 734 }; 735 736 DEFINE_CLASS(null, null_methods, 0); 737 738 /* 739 * Devclass implementation 740 */ 741 742 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 743 744 745 /** 746 * @internal 747 * @brief Find or create a device class 748 * 749 * If a device class with the name @p classname exists, return it, 750 * otherwise if @p create is non-zero create and return a new device 751 * class. 752 * 753 * If @p parentname is non-NULL, the parent of the devclass is set to 754 * the devclass of that name. 755 * 756 * @param classname the devclass name to find or create 757 * @param parentname the parent devclass name or @c NULL 758 * @param create non-zero to create a devclass 759 */ 760 static devclass_t 761 devclass_find_internal(const char *classname, const char *parentname, 762 int create) 763 { 764 devclass_t dc; 765 766 PDEBUG(("looking for %s", classname)); 767 if (!classname) 768 return (NULL); 769 770 TAILQ_FOREACH(dc, &devclasses, link) { 771 if (!strcmp(dc->name, classname)) 772 break; 773 } 774 775 if (create && !dc) { 776 PDEBUG(("creating %s", classname)); 777 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 778 M_BUS, M_NOWAIT|M_ZERO); 779 if (!dc) 780 return (NULL); 781 dc->parent = NULL; 782 dc->name = (char*) (dc + 1); 783 strcpy(dc->name, classname); 784 TAILQ_INIT(&dc->drivers); 785 TAILQ_INSERT_TAIL(&devclasses, dc, link); 786 787 bus_data_generation_update(); 788 } 789 if (parentname && dc && !dc->parent) { 790 dc->parent = devclass_find_internal(parentname, 0, FALSE); 791 } 792 793 return (dc); 794 } 795 796 /** 797 * @brief Create a device class 798 * 799 * If a device class with the name @p classname exists, return it, 800 * otherwise create and return a new device class. 801 * 802 * @param classname the devclass name to find or create 803 */ 804 devclass_t 805 devclass_create(const char *classname) 806 { 807 return (devclass_find_internal(classname, 0, TRUE)); 808 } 809 810 /** 811 * @brief Find a device class 812 * 813 * If a device class with the name @p classname exists, return it, 814 * otherwise return @c NULL. 815 * 816 * @param classname the devclass name to find 817 */ 818 devclass_t 819 devclass_find(const char *classname) 820 { 821 return (devclass_find_internal(classname, 0, FALSE)); 822 } 823 824 /** 825 * @brief Add a device driver to a device class 826 * 827 * Add a device driver to a devclass. This is normally called 828 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 829 * all devices in the devclass will be called to allow them to attempt 830 * to re-probe any unmatched children. 831 * 832 * @param dc the devclass to edit 833 * @param driver the driver to register 834 */ 835 int 836 devclass_add_driver(devclass_t dc, driver_t *driver) 837 { 838 driverlink_t dl; 839 int i; 840 841 PDEBUG(("%s", DRIVERNAME(driver))); 842 843 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 844 if (!dl) 845 return (ENOMEM); 846 847 /* 848 * Compile the driver's methods. Also increase the reference count 849 * so that the class doesn't get freed when the last instance 850 * goes. This means we can safely use static methods and avoids a 851 * double-free in devclass_delete_driver. 852 */ 853 kobj_class_compile((kobj_class_t) driver); 854 855 /* 856 * Make sure the devclass which the driver is implementing exists. 857 */ 858 devclass_find_internal(driver->name, 0, TRUE); 859 860 dl->driver = driver; 861 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 862 driver->refs++; 863 864 /* 865 * Call BUS_DRIVER_ADDED for any existing busses in this class. 866 */ 867 for (i = 0; i < dc->maxunit; i++) 868 if (dc->devices[i]) 869 BUS_DRIVER_ADDED(dc->devices[i], driver); 870 871 bus_data_generation_update(); 872 return (0); 873 } 874 875 /** 876 * @brief Delete a device driver from a device class 877 * 878 * Delete a device driver from a devclass. This is normally called 879 * automatically by DRIVER_MODULE(). 880 * 881 * If the driver is currently attached to any devices, 882 * devclass_delete_driver() will first attempt to detach from each 883 * device. If one of the detach calls fails, the driver will not be 884 * deleted. 885 * 886 * @param dc the devclass to edit 887 * @param driver the driver to unregister 888 */ 889 int 890 devclass_delete_driver(devclass_t busclass, driver_t *driver) 891 { 892 devclass_t dc = devclass_find(driver->name); 893 driverlink_t dl; 894 device_t dev; 895 int i; 896 int error; 897 898 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 899 900 if (!dc) 901 return (0); 902 903 /* 904 * Find the link structure in the bus' list of drivers. 905 */ 906 TAILQ_FOREACH(dl, &busclass->drivers, link) { 907 if (dl->driver == driver) 908 break; 909 } 910 911 if (!dl) { 912 PDEBUG(("%s not found in %s list", driver->name, 913 busclass->name)); 914 return (ENOENT); 915 } 916 917 /* 918 * Disassociate from any devices. We iterate through all the 919 * devices in the devclass of the driver and detach any which are 920 * using the driver and which have a parent in the devclass which 921 * we are deleting from. 922 * 923 * Note that since a driver can be in multiple devclasses, we 924 * should not detach devices which are not children of devices in 925 * the affected devclass. 926 */ 927 for (i = 0; i < dc->maxunit; i++) { 928 if (dc->devices[i]) { 929 dev = dc->devices[i]; 930 if (dev->driver == driver && dev->parent && 931 dev->parent->devclass == busclass) { 932 if ((error = device_detach(dev)) != 0) 933 return (error); 934 device_set_driver(dev, NULL); 935 } 936 } 937 } 938 939 TAILQ_REMOVE(&busclass->drivers, dl, link); 940 free(dl, M_BUS); 941 942 driver->refs--; 943 if (driver->refs == 0) 944 kobj_class_free((kobj_class_t) driver); 945 946 bus_data_generation_update(); 947 return (0); 948 } 949 950 /** 951 * @internal 952 */ 953 static driverlink_t 954 devclass_find_driver_internal(devclass_t dc, const char *classname) 955 { 956 driverlink_t dl; 957 958 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 959 960 TAILQ_FOREACH(dl, &dc->drivers, link) { 961 if (!strcmp(dl->driver->name, classname)) 962 return (dl); 963 } 964 965 PDEBUG(("not found")); 966 return (NULL); 967 } 968 969 /** 970 * @brief Search a devclass for a driver 971 * 972 * This function searches the devclass's list of drivers and returns 973 * the first driver whose name is @p classname or @c NULL if there is 974 * no driver of that name. 975 * 976 * @param dc the devclass to search 977 * @param classname the driver name to search for 978 */ 979 kobj_class_t 980 devclass_find_driver(devclass_t dc, const char *classname) 981 { 982 driverlink_t dl; 983 984 dl = devclass_find_driver_internal(dc, classname); 985 if (dl) 986 return (dl->driver); 987 return (NULL); 988 } 989 990 /** 991 * @brief Return the name of the devclass 992 */ 993 const char * 994 devclass_get_name(devclass_t dc) 995 { 996 return (dc->name); 997 } 998 999 /** 1000 * @brief Find a device given a unit number 1001 * 1002 * @param dc the devclass to search 1003 * @param unit the unit number to search for 1004 * 1005 * @returns the device with the given unit number or @c 1006 * NULL if there is no such device 1007 */ 1008 device_t 1009 devclass_get_device(devclass_t dc, int unit) 1010 { 1011 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1012 return (NULL); 1013 return (dc->devices[unit]); 1014 } 1015 1016 /** 1017 * @brief Find the softc field of a device given a unit number 1018 * 1019 * @param dc the devclass to search 1020 * @param unit the unit number to search for 1021 * 1022 * @returns the softc field of the device with the given 1023 * unit number or @c NULL if there is no such 1024 * device 1025 */ 1026 void * 1027 devclass_get_softc(devclass_t dc, int unit) 1028 { 1029 device_t dev; 1030 1031 dev = devclass_get_device(dc, unit); 1032 if (!dev) 1033 return (NULL); 1034 1035 return (device_get_softc(dev)); 1036 } 1037 1038 /** 1039 * @brief Get a list of devices in the devclass 1040 * 1041 * An array containing a list of all the devices in the given devclass 1042 * is allocated and returned in @p *devlistp. The number of devices 1043 * in the array is returned in @p *devcountp. The caller should free 1044 * the array using @c free(p, M_TEMP). 1045 * 1046 * @param dc the devclass to examine 1047 * @param devlistp points at location for array pointer return 1048 * value 1049 * @param devcountp points at location for array size return value 1050 * 1051 * @retval 0 success 1052 * @retval ENOMEM the array allocation failed 1053 */ 1054 int 1055 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1056 { 1057 int i; 1058 int count; 1059 device_t *list; 1060 1061 count = 0; 1062 for (i = 0; i < dc->maxunit; i++) 1063 if (dc->devices[i]) 1064 count++; 1065 1066 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1067 if (!list) 1068 return (ENOMEM); 1069 1070 count = 0; 1071 for (i = 0; i < dc->maxunit; i++) { 1072 if (dc->devices[i]) { 1073 list[count] = dc->devices[i]; 1074 count++; 1075 } 1076 } 1077 1078 *devlistp = list; 1079 *devcountp = count; 1080 1081 return (0); 1082 } 1083 1084 /** 1085 * @brief Get the maximum unit number used in a devclass 1086 * 1087 * @param dc the devclass to examine 1088 */ 1089 int 1090 devclass_get_maxunit(devclass_t dc) 1091 { 1092 return (dc->maxunit); 1093 } 1094 1095 /** 1096 * @brief Find a free unit number in a devclass 1097 * 1098 * This function searches for the first unused unit number greater 1099 * that or equal to @p unit. 1100 * 1101 * @param dc the devclass to examine 1102 * @param unit the first unit number to check 1103 */ 1104 int 1105 devclass_find_free_unit(devclass_t dc, int unit) 1106 { 1107 if (dc == NULL) 1108 return (unit); 1109 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1110 unit++; 1111 return (unit); 1112 } 1113 1114 /** 1115 * @brief Set the parent of a devclass 1116 * 1117 * The parent class is normally initialised automatically by 1118 * DRIVER_MODULE(). 1119 * 1120 * @param dc the devclass to edit 1121 * @param pdc the new parent devclass 1122 */ 1123 void 1124 devclass_set_parent(devclass_t dc, devclass_t pdc) 1125 { 1126 dc->parent = pdc; 1127 } 1128 1129 /** 1130 * @brief Get the parent of a devclass 1131 * 1132 * @param dc the devclass to examine 1133 */ 1134 devclass_t 1135 devclass_get_parent(devclass_t dc) 1136 { 1137 return (dc->parent); 1138 } 1139 1140 struct sysctl_ctx_list * 1141 devclass_get_sysctl_ctx(devclass_t dc) 1142 { 1143 return (&dc->sysctl_ctx); 1144 } 1145 1146 struct sysctl_oid * 1147 devclass_get_sysctl_tree(devclass_t dc) 1148 { 1149 return (dc->sysctl_tree); 1150 } 1151 1152 /** 1153 * @internal 1154 * @brief Allocate a unit number 1155 * 1156 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1157 * will do). The allocated unit number is returned in @p *unitp. 1158 1159 * @param dc the devclass to allocate from 1160 * @param unitp points at the location for the allocated unit 1161 * number 1162 * 1163 * @retval 0 success 1164 * @retval EEXIST the requested unit number is already allocated 1165 * @retval ENOMEM memory allocation failure 1166 */ 1167 static int 1168 devclass_alloc_unit(devclass_t dc, int *unitp) 1169 { 1170 int unit = *unitp; 1171 1172 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1173 1174 /* If we were given a wired unit number, check for existing device */ 1175 /* XXX imp XXX */ 1176 if (unit != -1) { 1177 if (unit >= 0 && unit < dc->maxunit && 1178 dc->devices[unit] != NULL) { 1179 if (bootverbose) 1180 printf("%s: %s%d already exists; skipping it\n", 1181 dc->name, dc->name, *unitp); 1182 return (EEXIST); 1183 } 1184 } else { 1185 /* Unwired device, find the next available slot for it */ 1186 unit = 0; 1187 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1188 unit++; 1189 } 1190 1191 /* 1192 * We've selected a unit beyond the length of the table, so let's 1193 * extend the table to make room for all units up to and including 1194 * this one. 1195 */ 1196 if (unit >= dc->maxunit) { 1197 device_t *newlist; 1198 int newsize; 1199 1200 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1201 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1202 if (!newlist) 1203 return (ENOMEM); 1204 bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit); 1205 bzero(newlist + dc->maxunit, 1206 sizeof(device_t) * (newsize - dc->maxunit)); 1207 if (dc->devices) 1208 free(dc->devices, M_BUS); 1209 dc->devices = newlist; 1210 dc->maxunit = newsize; 1211 } 1212 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1213 1214 *unitp = unit; 1215 return (0); 1216 } 1217 1218 /** 1219 * @internal 1220 * @brief Add a device to a devclass 1221 * 1222 * A unit number is allocated for the device (using the device's 1223 * preferred unit number if any) and the device is registered in the 1224 * devclass. This allows the device to be looked up by its unit 1225 * number, e.g. by decoding a dev_t minor number. 1226 * 1227 * @param dc the devclass to add to 1228 * @param dev the device to add 1229 * 1230 * @retval 0 success 1231 * @retval EEXIST the requested unit number is already allocated 1232 * @retval ENOMEM memory allocation failure 1233 */ 1234 static int 1235 devclass_add_device(devclass_t dc, device_t dev) 1236 { 1237 int buflen, error; 1238 1239 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1240 1241 buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit); 1242 if (buflen < 0) 1243 return (ENOMEM); 1244 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1245 if (!dev->nameunit) 1246 return (ENOMEM); 1247 1248 if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) { 1249 free(dev->nameunit, M_BUS); 1250 dev->nameunit = NULL; 1251 return (error); 1252 } 1253 dc->devices[dev->unit] = dev; 1254 dev->devclass = dc; 1255 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1256 1257 return (0); 1258 } 1259 1260 /** 1261 * @internal 1262 * @brief Delete a device from a devclass 1263 * 1264 * The device is removed from the devclass's device list and its unit 1265 * number is freed. 1266 1267 * @param dc the devclass to delete from 1268 * @param dev the device to delete 1269 * 1270 * @retval 0 success 1271 */ 1272 static int 1273 devclass_delete_device(devclass_t dc, device_t dev) 1274 { 1275 if (!dc || !dev) 1276 return (0); 1277 1278 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1279 1280 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1281 panic("devclass_delete_device: inconsistent device class"); 1282 dc->devices[dev->unit] = NULL; 1283 if (dev->flags & DF_WILDCARD) 1284 dev->unit = -1; 1285 dev->devclass = NULL; 1286 free(dev->nameunit, M_BUS); 1287 dev->nameunit = NULL; 1288 1289 return (0); 1290 } 1291 1292 /** 1293 * @internal 1294 * @brief Make a new device and add it as a child of @p parent 1295 * 1296 * @param parent the parent of the new device 1297 * @param name the devclass name of the new device or @c NULL 1298 * to leave the devclass unspecified 1299 * @parem unit the unit number of the new device of @c -1 to 1300 * leave the unit number unspecified 1301 * 1302 * @returns the new device 1303 */ 1304 static device_t 1305 make_device(device_t parent, const char *name, int unit) 1306 { 1307 device_t dev; 1308 devclass_t dc; 1309 1310 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1311 1312 if (name) { 1313 dc = devclass_find_internal(name, 0, TRUE); 1314 if (!dc) { 1315 printf("make_device: can't find device class %s\n", 1316 name); 1317 return (NULL); 1318 } 1319 } else { 1320 dc = NULL; 1321 } 1322 1323 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1324 if (!dev) 1325 return (NULL); 1326 1327 dev->parent = parent; 1328 TAILQ_INIT(&dev->children); 1329 kobj_init((kobj_t) dev, &null_class); 1330 dev->driver = NULL; 1331 dev->devclass = NULL; 1332 dev->unit = unit; 1333 dev->nameunit = NULL; 1334 dev->desc = NULL; 1335 dev->busy = 0; 1336 dev->devflags = 0; 1337 dev->flags = DF_ENABLED; 1338 dev->order = 0; 1339 if (unit == -1) 1340 dev->flags |= DF_WILDCARD; 1341 if (name) { 1342 dev->flags |= DF_FIXEDCLASS; 1343 if (devclass_add_device(dc, dev)) { 1344 kobj_delete((kobj_t) dev, M_BUS); 1345 return (NULL); 1346 } 1347 } 1348 dev->ivars = NULL; 1349 dev->softc = NULL; 1350 1351 dev->state = DS_NOTPRESENT; 1352 1353 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1354 bus_data_generation_update(); 1355 1356 return (dev); 1357 } 1358 1359 /** 1360 * @internal 1361 * @brief Print a description of a device. 1362 */ 1363 static int 1364 device_print_child(device_t dev, device_t child) 1365 { 1366 int retval = 0; 1367 1368 if (device_is_alive(child)) 1369 retval += BUS_PRINT_CHILD(dev, child); 1370 else 1371 retval += device_printf(child, " not found\n"); 1372 1373 return (retval); 1374 } 1375 1376 /** 1377 * @brief Create a new device 1378 * 1379 * This creates a new device and adds it as a child of an existing 1380 * parent device. The new device will be added after the last existing 1381 * child with order zero. 1382 * 1383 * @param dev the device which will be the parent of the 1384 * new child device 1385 * @param name devclass name for new device or @c NULL if not 1386 * specified 1387 * @param unit unit number for new device or @c -1 if not 1388 * specified 1389 * 1390 * @returns the new device 1391 */ 1392 device_t 1393 device_add_child(device_t dev, const char *name, int unit) 1394 { 1395 return (device_add_child_ordered(dev, 0, name, unit)); 1396 } 1397 1398 /** 1399 * @brief Create a new device 1400 * 1401 * This creates a new device and adds it as a child of an existing 1402 * parent device. The new device will be added after the last existing 1403 * child with the same order. 1404 * 1405 * @param dev the device which will be the parent of the 1406 * new child device 1407 * @param order a value which is used to partially sort the 1408 * children of @p dev - devices created using 1409 * lower values of @p order appear first in @p 1410 * dev's list of children 1411 * @param name devclass name for new device or @c NULL if not 1412 * specified 1413 * @param unit unit number for new device or @c -1 if not 1414 * specified 1415 * 1416 * @returns the new device 1417 */ 1418 device_t 1419 device_add_child_ordered(device_t dev, int order, const char *name, int unit) 1420 { 1421 device_t child; 1422 device_t place; 1423 1424 PDEBUG(("%s at %s with order %d as unit %d", 1425 name, DEVICENAME(dev), order, unit)); 1426 1427 child = make_device(dev, name, unit); 1428 if (child == NULL) 1429 return (child); 1430 child->order = order; 1431 1432 TAILQ_FOREACH(place, &dev->children, link) { 1433 if (place->order > order) 1434 break; 1435 } 1436 1437 if (place) { 1438 /* 1439 * The device 'place' is the first device whose order is 1440 * greater than the new child. 1441 */ 1442 TAILQ_INSERT_BEFORE(place, child, link); 1443 } else { 1444 /* 1445 * The new child's order is greater or equal to the order of 1446 * any existing device. Add the child to the tail of the list. 1447 */ 1448 TAILQ_INSERT_TAIL(&dev->children, child, link); 1449 } 1450 1451 bus_data_generation_update(); 1452 return (child); 1453 } 1454 1455 /** 1456 * @brief Delete a device 1457 * 1458 * This function deletes a device along with all of its children. If 1459 * the device currently has a driver attached to it, the device is 1460 * detached first using device_detach(). 1461 * 1462 * @param dev the parent device 1463 * @param child the device to delete 1464 * 1465 * @retval 0 success 1466 * @retval non-zero a unit error code describing the error 1467 */ 1468 int 1469 device_delete_child(device_t dev, device_t child) 1470 { 1471 int error; 1472 device_t grandchild; 1473 1474 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1475 1476 /* remove children first */ 1477 while ( (grandchild = TAILQ_FIRST(&child->children)) ) { 1478 error = device_delete_child(child, grandchild); 1479 if (error) 1480 return (error); 1481 } 1482 1483 if ((error = device_detach(child)) != 0) 1484 return (error); 1485 if (child->devclass) 1486 devclass_delete_device(child->devclass, child); 1487 TAILQ_REMOVE(&dev->children, child, link); 1488 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1489 kobj_delete((kobj_t) child, M_BUS); 1490 1491 bus_data_generation_update(); 1492 return (0); 1493 } 1494 1495 /** 1496 * @brief Find a device given a unit number 1497 * 1498 * This is similar to devclass_get_devices() but only searches for 1499 * devices which have @p dev as a parent. 1500 * 1501 * @param dev the parent device to search 1502 * @param unit the unit number to search for 1503 * 1504 * @returns the device with the given unit number or @c 1505 * NULL if there is no such device 1506 */ 1507 device_t 1508 device_find_child(device_t dev, const char *classname, int unit) 1509 { 1510 devclass_t dc; 1511 device_t child; 1512 1513 dc = devclass_find(classname); 1514 if (!dc) 1515 return (NULL); 1516 1517 child = devclass_get_device(dc, unit); 1518 if (child && child->parent == dev) 1519 return (child); 1520 return (NULL); 1521 } 1522 1523 /** 1524 * @internal 1525 */ 1526 static driverlink_t 1527 first_matching_driver(devclass_t dc, device_t dev) 1528 { 1529 if (dev->devclass) 1530 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1531 return (TAILQ_FIRST(&dc->drivers)); 1532 } 1533 1534 /** 1535 * @internal 1536 */ 1537 static driverlink_t 1538 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1539 { 1540 if (dev->devclass) { 1541 driverlink_t dl; 1542 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1543 if (!strcmp(dev->devclass->name, dl->driver->name)) 1544 return (dl); 1545 return (NULL); 1546 } 1547 return (TAILQ_NEXT(last, link)); 1548 } 1549 1550 /** 1551 * @internal 1552 */ 1553 static int 1554 device_probe_child(device_t dev, device_t child) 1555 { 1556 devclass_t dc; 1557 driverlink_t best = 0; 1558 driverlink_t dl; 1559 int result, pri = 0; 1560 int hasclass = (child->devclass != 0); 1561 1562 dc = dev->devclass; 1563 if (!dc) 1564 panic("device_probe_child: parent device has no devclass"); 1565 1566 /* 1567 * If the state is already probed, then return. However, don't 1568 * return if we can rebid this object. 1569 */ 1570 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 1571 return (0); 1572 1573 for (; dc; dc = dc->parent) { 1574 for (dl = first_matching_driver(dc, child); 1575 dl; 1576 dl = next_matching_driver(dc, child, dl)) { 1577 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1578 device_set_driver(child, dl->driver); 1579 if (!hasclass) 1580 device_set_devclass(child, dl->driver->name); 1581 1582 /* Fetch any flags for the device before probing. */ 1583 resource_int_value(dl->driver->name, child->unit, 1584 "flags", &child->devflags); 1585 1586 result = DEVICE_PROBE(child); 1587 1588 /* Reset flags and devclass before the next probe. */ 1589 child->devflags = 0; 1590 if (!hasclass) 1591 device_set_devclass(child, 0); 1592 1593 /* 1594 * If the driver returns SUCCESS, there can be 1595 * no higher match for this device. 1596 */ 1597 if (result == 0) { 1598 best = dl; 1599 pri = 0; 1600 break; 1601 } 1602 1603 /* 1604 * The driver returned an error so it 1605 * certainly doesn't match. 1606 */ 1607 if (result > 0) { 1608 device_set_driver(child, 0); 1609 continue; 1610 } 1611 1612 /* 1613 * A priority lower than SUCCESS, remember the 1614 * best matching driver. Initialise the value 1615 * of pri for the first match. 1616 */ 1617 if (best == 0 || result > pri) { 1618 best = dl; 1619 pri = result; 1620 continue; 1621 } 1622 } 1623 /* 1624 * If we have an unambiguous match in this devclass, 1625 * don't look in the parent. 1626 */ 1627 if (best && pri == 0) 1628 break; 1629 } 1630 1631 /* 1632 * If we found a driver, change state and initialise the devclass. 1633 */ 1634 /* XXX What happens if we rebid and got no best? */ 1635 if (best) { 1636 /* 1637 * If this device was atached, and we were asked to 1638 * rescan, and it is a different driver, then we have 1639 * to detach the old driver and reattach this new one. 1640 * Note, we don't have to check for DF_REBID here 1641 * because if the state is > DS_ALIVE, we know it must 1642 * be. 1643 * 1644 * This assumes that all DF_REBID drivers can have 1645 * their probe routine called at any time and that 1646 * they are idempotent as well as completely benign in 1647 * normal operations. 1648 * 1649 * We also have to make sure that the detach 1650 * succeeded, otherwise we fail the operation (or 1651 * maybe it should just fail silently? I'm torn). 1652 */ 1653 if (child->state > DS_ALIVE && best->driver != child->driver) 1654 if ((result = device_detach(dev)) != 0) 1655 return (result); 1656 1657 /* Set the winning driver, devclass, and flags. */ 1658 if (!child->devclass) 1659 device_set_devclass(child, best->driver->name); 1660 device_set_driver(child, best->driver); 1661 resource_int_value(best->driver->name, child->unit, 1662 "flags", &child->devflags); 1663 1664 if (pri < 0) { 1665 /* 1666 * A bit bogus. Call the probe method again to make 1667 * sure that we have the right description. 1668 */ 1669 DEVICE_PROBE(child); 1670 #if 0 1671 child->flags |= DF_REBID; 1672 #endif 1673 } else 1674 child->flags &= ~DF_REBID; 1675 child->state = DS_ALIVE; 1676 1677 bus_data_generation_update(); 1678 return (0); 1679 } 1680 1681 return (ENXIO); 1682 } 1683 1684 /** 1685 * @brief Return the parent of a device 1686 */ 1687 device_t 1688 device_get_parent(device_t dev) 1689 { 1690 return (dev->parent); 1691 } 1692 1693 /** 1694 * @brief Get a list of children of a device 1695 * 1696 * An array containing a list of all the children of the given device 1697 * is allocated and returned in @p *devlistp. The number of devices 1698 * in the array is returned in @p *devcountp. The caller should free 1699 * the array using @c free(p, M_TEMP). 1700 * 1701 * @param dev the device to examine 1702 * @param devlistp points at location for array pointer return 1703 * value 1704 * @param devcountp points at location for array size return value 1705 * 1706 * @retval 0 success 1707 * @retval ENOMEM the array allocation failed 1708 */ 1709 int 1710 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1711 { 1712 int count; 1713 device_t child; 1714 device_t *list; 1715 1716 count = 0; 1717 TAILQ_FOREACH(child, &dev->children, link) { 1718 count++; 1719 } 1720 1721 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1722 if (!list) 1723 return (ENOMEM); 1724 1725 count = 0; 1726 TAILQ_FOREACH(child, &dev->children, link) { 1727 list[count] = child; 1728 count++; 1729 } 1730 1731 *devlistp = list; 1732 *devcountp = count; 1733 1734 return (0); 1735 } 1736 1737 /** 1738 * @brief Return the current driver for the device or @c NULL if there 1739 * is no driver currently attached 1740 */ 1741 driver_t * 1742 device_get_driver(device_t dev) 1743 { 1744 return (dev->driver); 1745 } 1746 1747 /** 1748 * @brief Return the current devclass for the device or @c NULL if 1749 * there is none. 1750 */ 1751 devclass_t 1752 device_get_devclass(device_t dev) 1753 { 1754 return (dev->devclass); 1755 } 1756 1757 /** 1758 * @brief Return the name of the device's devclass or @c NULL if there 1759 * is none. 1760 */ 1761 const char * 1762 device_get_name(device_t dev) 1763 { 1764 if (dev != NULL && dev->devclass) 1765 return (devclass_get_name(dev->devclass)); 1766 return (NULL); 1767 } 1768 1769 /** 1770 * @brief Return a string containing the device's devclass name 1771 * followed by an ascii representation of the device's unit number 1772 * (e.g. @c "foo2"). 1773 */ 1774 const char * 1775 device_get_nameunit(device_t dev) 1776 { 1777 return (dev->nameunit); 1778 } 1779 1780 /** 1781 * @brief Return the device's unit number. 1782 */ 1783 int 1784 device_get_unit(device_t dev) 1785 { 1786 return (dev->unit); 1787 } 1788 1789 /** 1790 * @brief Return the device's description string 1791 */ 1792 const char * 1793 device_get_desc(device_t dev) 1794 { 1795 return (dev->desc); 1796 } 1797 1798 /** 1799 * @brief Return the device's flags 1800 */ 1801 u_int32_t 1802 device_get_flags(device_t dev) 1803 { 1804 return (dev->devflags); 1805 } 1806 1807 struct sysctl_ctx_list * 1808 device_get_sysctl_ctx(device_t dev) 1809 { 1810 return (&dev->sysctl_ctx); 1811 } 1812 1813 struct sysctl_oid * 1814 device_get_sysctl_tree(device_t dev) 1815 { 1816 return (dev->sysctl_tree); 1817 } 1818 1819 /** 1820 * @brief Print the name of the device followed by a colon and a space 1821 * 1822 * @returns the number of characters printed 1823 */ 1824 int 1825 device_print_prettyname(device_t dev) 1826 { 1827 const char *name = device_get_name(dev); 1828 1829 if (name == 0) 1830 return (printf("unknown: ")); 1831 return (printf("%s%d: ", name, device_get_unit(dev))); 1832 } 1833 1834 /** 1835 * @brief Print the name of the device followed by a colon, a space 1836 * and the result of calling vprintf() with the value of @p fmt and 1837 * the following arguments. 1838 * 1839 * @returns the number of characters printed 1840 */ 1841 int 1842 device_printf(device_t dev, const char * fmt, ...) 1843 { 1844 va_list ap; 1845 int retval; 1846 1847 retval = device_print_prettyname(dev); 1848 va_start(ap, fmt); 1849 retval += vprintf(fmt, ap); 1850 va_end(ap); 1851 return (retval); 1852 } 1853 1854 /** 1855 * @internal 1856 */ 1857 static void 1858 device_set_desc_internal(device_t dev, const char* desc, int copy) 1859 { 1860 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 1861 free(dev->desc, M_BUS); 1862 dev->flags &= ~DF_DESCMALLOCED; 1863 dev->desc = NULL; 1864 } 1865 1866 if (copy && desc) { 1867 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 1868 if (dev->desc) { 1869 strcpy(dev->desc, desc); 1870 dev->flags |= DF_DESCMALLOCED; 1871 } 1872 } else { 1873 /* Avoid a -Wcast-qual warning */ 1874 dev->desc = (char *)(uintptr_t) desc; 1875 } 1876 1877 bus_data_generation_update(); 1878 } 1879 1880 /** 1881 * @brief Set the device's description 1882 * 1883 * The value of @c desc should be a string constant that will not 1884 * change (at least until the description is changed in a subsequent 1885 * call to device_set_desc() or device_set_desc_copy()). 1886 */ 1887 void 1888 device_set_desc(device_t dev, const char* desc) 1889 { 1890 device_set_desc_internal(dev, desc, FALSE); 1891 } 1892 1893 /** 1894 * @brief Set the device's description 1895 * 1896 * The string pointed to by @c desc is copied. Use this function if 1897 * the device description is generated, (e.g. with sprintf()). 1898 */ 1899 void 1900 device_set_desc_copy(device_t dev, const char* desc) 1901 { 1902 device_set_desc_internal(dev, desc, TRUE); 1903 } 1904 1905 /** 1906 * @brief Set the device's flags 1907 */ 1908 void 1909 device_set_flags(device_t dev, u_int32_t flags) 1910 { 1911 dev->devflags = flags; 1912 } 1913 1914 /** 1915 * @brief Return the device's softc field 1916 * 1917 * The softc is allocated and zeroed when a driver is attached, based 1918 * on the size field of the driver. 1919 */ 1920 void * 1921 device_get_softc(device_t dev) 1922 { 1923 return (dev->softc); 1924 } 1925 1926 /** 1927 * @brief Set the device's softc field 1928 * 1929 * Most drivers do not need to use this since the softc is allocated 1930 * automatically when the driver is attached. 1931 */ 1932 void 1933 device_set_softc(device_t dev, void *softc) 1934 { 1935 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 1936 free(dev->softc, M_BUS_SC); 1937 dev->softc = softc; 1938 if (dev->softc) 1939 dev->flags |= DF_EXTERNALSOFTC; 1940 else 1941 dev->flags &= ~DF_EXTERNALSOFTC; 1942 } 1943 1944 /** 1945 * @brief Get the device's ivars field 1946 * 1947 * The ivars field is used by the parent device to store per-device 1948 * state (e.g. the physical location of the device or a list of 1949 * resources). 1950 */ 1951 void * 1952 device_get_ivars(device_t dev) 1953 { 1954 1955 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 1956 return (dev->ivars); 1957 } 1958 1959 /** 1960 * @brief Set the device's ivars field 1961 */ 1962 void 1963 device_set_ivars(device_t dev, void * ivars) 1964 { 1965 1966 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 1967 dev->ivars = ivars; 1968 } 1969 1970 /** 1971 * @brief Return the device's state 1972 */ 1973 device_state_t 1974 device_get_state(device_t dev) 1975 { 1976 return (dev->state); 1977 } 1978 1979 /** 1980 * @brief Set the DF_ENABLED flag for the device 1981 */ 1982 void 1983 device_enable(device_t dev) 1984 { 1985 dev->flags |= DF_ENABLED; 1986 } 1987 1988 /** 1989 * @brief Clear the DF_ENABLED flag for the device 1990 */ 1991 void 1992 device_disable(device_t dev) 1993 { 1994 dev->flags &= ~DF_ENABLED; 1995 } 1996 1997 /** 1998 * @brief Increment the busy counter for the device 1999 */ 2000 void 2001 device_busy(device_t dev) 2002 { 2003 if (dev->state < DS_ATTACHED) 2004 panic("device_busy: called for unattached device"); 2005 if (dev->busy == 0 && dev->parent) 2006 device_busy(dev->parent); 2007 dev->busy++; 2008 dev->state = DS_BUSY; 2009 } 2010 2011 /** 2012 * @brief Decrement the busy counter for the device 2013 */ 2014 void 2015 device_unbusy(device_t dev) 2016 { 2017 if (dev->state != DS_BUSY) 2018 panic("device_unbusy: called for non-busy device"); 2019 dev->busy--; 2020 if (dev->busy == 0) { 2021 if (dev->parent) 2022 device_unbusy(dev->parent); 2023 dev->state = DS_ATTACHED; 2024 } 2025 } 2026 2027 /** 2028 * @brief Set the DF_QUIET flag for the device 2029 */ 2030 void 2031 device_quiet(device_t dev) 2032 { 2033 dev->flags |= DF_QUIET; 2034 } 2035 2036 /** 2037 * @brief Clear the DF_QUIET flag for the device 2038 */ 2039 void 2040 device_verbose(device_t dev) 2041 { 2042 dev->flags &= ~DF_QUIET; 2043 } 2044 2045 /** 2046 * @brief Return non-zero if the DF_QUIET flag is set on the device 2047 */ 2048 int 2049 device_is_quiet(device_t dev) 2050 { 2051 return ((dev->flags & DF_QUIET) != 0); 2052 } 2053 2054 /** 2055 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2056 */ 2057 int 2058 device_is_enabled(device_t dev) 2059 { 2060 return ((dev->flags & DF_ENABLED) != 0); 2061 } 2062 2063 /** 2064 * @brief Return non-zero if the device was successfully probed 2065 */ 2066 int 2067 device_is_alive(device_t dev) 2068 { 2069 return (dev->state >= DS_ALIVE); 2070 } 2071 2072 /** 2073 * @brief Return non-zero if the device currently has a driver 2074 * attached to it 2075 */ 2076 int 2077 device_is_attached(device_t dev) 2078 { 2079 return (dev->state >= DS_ATTACHED); 2080 } 2081 2082 /** 2083 * @brief Set the devclass of a device 2084 * @see devclass_add_device(). 2085 */ 2086 int 2087 device_set_devclass(device_t dev, const char *classname) 2088 { 2089 devclass_t dc; 2090 int error; 2091 2092 if (!classname) { 2093 if (dev->devclass) 2094 devclass_delete_device(dev->devclass, dev); 2095 return (0); 2096 } 2097 2098 if (dev->devclass) { 2099 printf("device_set_devclass: device class already set\n"); 2100 return (EINVAL); 2101 } 2102 2103 dc = devclass_find_internal(classname, 0, TRUE); 2104 if (!dc) 2105 return (ENOMEM); 2106 2107 error = devclass_add_device(dc, dev); 2108 2109 bus_data_generation_update(); 2110 return (error); 2111 } 2112 2113 /** 2114 * @brief Set the driver of a device 2115 * 2116 * @retval 0 success 2117 * @retval EBUSY the device already has a driver attached 2118 * @retval ENOMEM a memory allocation failure occurred 2119 */ 2120 int 2121 device_set_driver(device_t dev, driver_t *driver) 2122 { 2123 if (dev->state >= DS_ATTACHED) 2124 return (EBUSY); 2125 2126 if (dev->driver == driver) 2127 return (0); 2128 2129 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2130 free(dev->softc, M_BUS_SC); 2131 dev->softc = NULL; 2132 } 2133 kobj_delete((kobj_t) dev, 0); 2134 dev->driver = driver; 2135 if (driver) { 2136 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2137 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2138 dev->softc = malloc(driver->size, M_BUS_SC, 2139 M_NOWAIT | M_ZERO); 2140 if (!dev->softc) { 2141 kobj_delete((kobj_t) dev, 0); 2142 kobj_init((kobj_t) dev, &null_class); 2143 dev->driver = NULL; 2144 return (ENOMEM); 2145 } 2146 } 2147 } else { 2148 kobj_init((kobj_t) dev, &null_class); 2149 } 2150 2151 bus_data_generation_update(); 2152 return (0); 2153 } 2154 2155 /** 2156 * @brief Probe a device and attach a driver if possible 2157 * 2158 * This function is the core of the device autoconfiguration 2159 * system. Its purpose is to select a suitable driver for a device and 2160 * then call that driver to initialise the hardware appropriately. The 2161 * driver is selected by calling the DEVICE_PROBE() method of a set of 2162 * candidate drivers and then choosing the driver which returned the 2163 * best value. This driver is then attached to the device using 2164 * device_attach(). 2165 * 2166 * The set of suitable drivers is taken from the list of drivers in 2167 * the parent device's devclass. If the device was originally created 2168 * with a specific class name (see device_add_child()), only drivers 2169 * with that name are probed, otherwise all drivers in the devclass 2170 * are probed. If no drivers return successful probe values in the 2171 * parent devclass, the search continues in the parent of that 2172 * devclass (see devclass_get_parent()) if any. 2173 * 2174 * @param dev the device to initialise 2175 * 2176 * @retval 0 success 2177 * @retval ENXIO no driver was found 2178 * @retval ENOMEM memory allocation failure 2179 * @retval non-zero some other unix error code 2180 */ 2181 int 2182 device_probe_and_attach(device_t dev) 2183 { 2184 int error; 2185 2186 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2187 return (0); 2188 2189 if (!(dev->flags & DF_ENABLED)) { 2190 if (bootverbose && device_get_name(dev) != NULL) { 2191 device_print_prettyname(dev); 2192 printf("not probed (disabled)\n"); 2193 } 2194 return (0); 2195 } 2196 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2197 if (!(dev->flags & DF_DONENOMATCH)) { 2198 BUS_PROBE_NOMATCH(dev->parent, dev); 2199 devnomatch(dev); 2200 dev->flags |= DF_DONENOMATCH; 2201 } 2202 return (error); 2203 } 2204 error = device_attach(dev); 2205 2206 return (error); 2207 } 2208 2209 /** 2210 * @brief Attach a device driver to a device 2211 * 2212 * This function is a wrapper around the DEVICE_ATTACH() driver 2213 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2214 * device's sysctl tree, optionally prints a description of the device 2215 * and queues a notification event for user-based device management 2216 * services. 2217 * 2218 * Normally this function is only called internally from 2219 * device_probe_and_attach(). 2220 * 2221 * @param dev the device to initialise 2222 * 2223 * @retval 0 success 2224 * @retval ENXIO no driver was found 2225 * @retval ENOMEM memory allocation failure 2226 * @retval non-zero some other unix error code 2227 */ 2228 int 2229 device_attach(device_t dev) 2230 { 2231 int error; 2232 2233 device_sysctl_init(dev); 2234 if (!device_is_quiet(dev)) 2235 device_print_child(dev->parent, dev); 2236 if ((error = DEVICE_ATTACH(dev)) != 0) { 2237 printf("device_attach: %s%d attach returned %d\n", 2238 dev->driver->name, dev->unit, error); 2239 /* Unset the class; set in device_probe_child */ 2240 if (dev->devclass == 0) 2241 device_set_devclass(dev, 0); 2242 device_set_driver(dev, NULL); 2243 device_sysctl_fini(dev); 2244 dev->state = DS_NOTPRESENT; 2245 return (error); 2246 } 2247 dev->state = DS_ATTACHED; 2248 devadded(dev); 2249 return (0); 2250 } 2251 2252 /** 2253 * @brief Detach a driver from a device 2254 * 2255 * This function is a wrapper around the DEVICE_DETACH() driver 2256 * method. If the call to DEVICE_DETACH() succeeds, it calls 2257 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2258 * notification event for user-based device management services and 2259 * cleans up the device's sysctl tree. 2260 * 2261 * @param dev the device to un-initialise 2262 * 2263 * @retval 0 success 2264 * @retval ENXIO no driver was found 2265 * @retval ENOMEM memory allocation failure 2266 * @retval non-zero some other unix error code 2267 */ 2268 int 2269 device_detach(device_t dev) 2270 { 2271 int error; 2272 2273 PDEBUG(("%s", DEVICENAME(dev))); 2274 if (dev->state == DS_BUSY) 2275 return (EBUSY); 2276 if (dev->state != DS_ATTACHED) 2277 return (0); 2278 2279 if ((error = DEVICE_DETACH(dev)) != 0) 2280 return (error); 2281 devremoved(dev); 2282 device_printf(dev, "detached\n"); 2283 if (dev->parent) 2284 BUS_CHILD_DETACHED(dev->parent, dev); 2285 2286 if (!(dev->flags & DF_FIXEDCLASS)) 2287 devclass_delete_device(dev->devclass, dev); 2288 2289 dev->state = DS_NOTPRESENT; 2290 device_set_driver(dev, NULL); 2291 device_set_desc(dev, NULL); 2292 device_sysctl_fini(dev); 2293 2294 return (0); 2295 } 2296 2297 /** 2298 * @brief Notify a device of system shutdown 2299 * 2300 * This function calls the DEVICE_SHUTDOWN() driver method if the 2301 * device currently has an attached driver. 2302 * 2303 * @returns the value returned by DEVICE_SHUTDOWN() 2304 */ 2305 int 2306 device_shutdown(device_t dev) 2307 { 2308 if (dev->state < DS_ATTACHED) 2309 return (0); 2310 return (DEVICE_SHUTDOWN(dev)); 2311 } 2312 2313 /** 2314 * @brief Set the unit number of a device 2315 * 2316 * This function can be used to override the unit number used for a 2317 * device (e.g. to wire a device to a pre-configured unit number). 2318 */ 2319 int 2320 device_set_unit(device_t dev, int unit) 2321 { 2322 devclass_t dc; 2323 int err; 2324 2325 dc = device_get_devclass(dev); 2326 if (unit < dc->maxunit && dc->devices[unit]) 2327 return (EBUSY); 2328 err = devclass_delete_device(dc, dev); 2329 if (err) 2330 return (err); 2331 dev->unit = unit; 2332 err = devclass_add_device(dc, dev); 2333 if (err) 2334 return (err); 2335 2336 bus_data_generation_update(); 2337 return (0); 2338 } 2339 2340 /*======================================*/ 2341 /* 2342 * Some useful method implementations to make life easier for bus drivers. 2343 */ 2344 2345 /** 2346 * @brief Initialise a resource list. 2347 * 2348 * @param rl the resource list to initialise 2349 */ 2350 void 2351 resource_list_init(struct resource_list *rl) 2352 { 2353 SLIST_INIT(rl); 2354 } 2355 2356 /** 2357 * @brief Reclaim memory used by a resource list. 2358 * 2359 * This function frees the memory for all resource entries on the list 2360 * (if any). 2361 * 2362 * @param rl the resource list to free 2363 */ 2364 void 2365 resource_list_free(struct resource_list *rl) 2366 { 2367 struct resource_list_entry *rle; 2368 2369 while ((rle = SLIST_FIRST(rl)) != NULL) { 2370 if (rle->res) 2371 panic("resource_list_free: resource entry is busy"); 2372 SLIST_REMOVE_HEAD(rl, link); 2373 free(rle, M_BUS); 2374 } 2375 } 2376 2377 /** 2378 * @brief Add a resource entry. 2379 * 2380 * This function adds a resource entry using the given @p type, @p 2381 * start, @p end and @p count values. A rid value is chosen by 2382 * searching sequentially for the first unused rid starting at zero. 2383 * 2384 * @param rl the resource list to edit 2385 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2386 * @param start the start address of the resource 2387 * @param end the end address of the resource 2388 * @param count XXX end-start+1 2389 */ 2390 int 2391 resource_list_add_next(struct resource_list *rl, int type, u_long start, 2392 u_long end, u_long count) 2393 { 2394 int rid; 2395 2396 rid = 0; 2397 while (resource_list_find(rl, type, rid) != NULL) 2398 rid++; 2399 resource_list_add(rl, type, rid, start, end, count); 2400 return (rid); 2401 } 2402 2403 /** 2404 * @brief Add or modify a resource entry. 2405 * 2406 * If an existing entry exists with the same type and rid, it will be 2407 * modified using the given values of @p start, @p end and @p 2408 * count. If no entry exists, a new one will be created using the 2409 * given values. 2410 * 2411 * @param rl the resource list to edit 2412 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2413 * @param rid the resource identifier 2414 * @param start the start address of the resource 2415 * @param end the end address of the resource 2416 * @param count XXX end-start+1 2417 */ 2418 void 2419 resource_list_add(struct resource_list *rl, int type, int rid, 2420 u_long start, u_long end, u_long count) 2421 { 2422 struct resource_list_entry *rle; 2423 2424 rle = resource_list_find(rl, type, rid); 2425 if (!rle) { 2426 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2427 M_NOWAIT); 2428 if (!rle) 2429 panic("resource_list_add: can't record entry"); 2430 SLIST_INSERT_HEAD(rl, rle, link); 2431 rle->type = type; 2432 rle->rid = rid; 2433 rle->res = NULL; 2434 } 2435 2436 if (rle->res) 2437 panic("resource_list_add: resource entry is busy"); 2438 2439 rle->start = start; 2440 rle->end = end; 2441 rle->count = count; 2442 } 2443 2444 /** 2445 * @brief Find a resource entry by type and rid. 2446 * 2447 * @param rl the resource list to search 2448 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2449 * @param rid the resource identifier 2450 * 2451 * @returns the resource entry pointer or NULL if there is no such 2452 * entry. 2453 */ 2454 struct resource_list_entry * 2455 resource_list_find(struct resource_list *rl, int type, int rid) 2456 { 2457 struct resource_list_entry *rle; 2458 2459 SLIST_FOREACH(rle, rl, link) { 2460 if (rle->type == type && rle->rid == rid) 2461 return (rle); 2462 } 2463 return (NULL); 2464 } 2465 2466 /** 2467 * @brief Delete a resource entry. 2468 * 2469 * @param rl the resource list to edit 2470 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2471 * @param rid the resource identifier 2472 */ 2473 void 2474 resource_list_delete(struct resource_list *rl, int type, int rid) 2475 { 2476 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2477 2478 if (rle) { 2479 if (rle->res != NULL) 2480 panic("resource_list_delete: resource has not been released"); 2481 SLIST_REMOVE(rl, rle, resource_list_entry, link); 2482 free(rle, M_BUS); 2483 } 2484 } 2485 2486 /** 2487 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 2488 * 2489 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 2490 * and passing the allocation up to the parent of @p bus. This assumes 2491 * that the first entry of @c device_get_ivars(child) is a struct 2492 * resource_list. This also handles 'passthrough' allocations where a 2493 * child is a remote descendant of bus by passing the allocation up to 2494 * the parent of bus. 2495 * 2496 * Typically, a bus driver would store a list of child resources 2497 * somewhere in the child device's ivars (see device_get_ivars()) and 2498 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 2499 * then call resource_list_alloc() to perform the allocation. 2500 * 2501 * @param rl the resource list to allocate from 2502 * @param bus the parent device of @p child 2503 * @param child the device which is requesting an allocation 2504 * @param type the type of resource to allocate 2505 * @param rid a pointer to the resource identifier 2506 * @param start hint at the start of the resource range - pass 2507 * @c 0UL for any start address 2508 * @param end hint at the end of the resource range - pass 2509 * @c ~0UL for any end address 2510 * @param count hint at the size of range required - pass @c 1 2511 * for any size 2512 * @param flags any extra flags to control the resource 2513 * allocation - see @c RF_XXX flags in 2514 * <sys/rman.h> for details 2515 * 2516 * @returns the resource which was allocated or @c NULL if no 2517 * resource could be allocated 2518 */ 2519 struct resource * 2520 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 2521 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 2522 { 2523 struct resource_list_entry *rle = 0; 2524 int passthrough = (device_get_parent(child) != bus); 2525 int isdefault = (start == 0UL && end == ~0UL); 2526 2527 if (passthrough) { 2528 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2529 type, rid, start, end, count, flags)); 2530 } 2531 2532 rle = resource_list_find(rl, type, *rid); 2533 2534 if (!rle) 2535 return (NULL); /* no resource of that type/rid */ 2536 2537 if (rle->res) 2538 panic("resource_list_alloc: resource entry is busy"); 2539 2540 if (isdefault) { 2541 start = rle->start; 2542 count = ulmax(count, rle->count); 2543 end = ulmax(rle->end, start + count - 1); 2544 } 2545 2546 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2547 type, rid, start, end, count, flags); 2548 2549 /* 2550 * Record the new range. 2551 */ 2552 if (rle->res) { 2553 rle->start = rman_get_start(rle->res); 2554 rle->end = rman_get_end(rle->res); 2555 rle->count = count; 2556 } 2557 2558 return (rle->res); 2559 } 2560 2561 /** 2562 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 2563 * 2564 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 2565 * used with resource_list_alloc(). 2566 * 2567 * @param rl the resource list which was allocated from 2568 * @param bus the parent device of @p child 2569 * @param child the device which is requesting a release 2570 * @param type the type of resource to allocate 2571 * @param rid the resource identifier 2572 * @param res the resource to release 2573 * 2574 * @retval 0 success 2575 * @retval non-zero a standard unix error code indicating what 2576 * error condition prevented the operation 2577 */ 2578 int 2579 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 2580 int type, int rid, struct resource *res) 2581 { 2582 struct resource_list_entry *rle = 0; 2583 int passthrough = (device_get_parent(child) != bus); 2584 int error; 2585 2586 if (passthrough) { 2587 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2588 type, rid, res)); 2589 } 2590 2591 rle = resource_list_find(rl, type, rid); 2592 2593 if (!rle) 2594 panic("resource_list_release: can't find resource"); 2595 if (!rle->res) 2596 panic("resource_list_release: resource entry is not busy"); 2597 2598 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2599 type, rid, res); 2600 if (error) 2601 return (error); 2602 2603 rle->res = NULL; 2604 return (0); 2605 } 2606 2607 /** 2608 * @brief Print a description of resources in a resource list 2609 * 2610 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 2611 * The name is printed if at least one resource of the given type is available. 2612 * The format is used to print resource start and end. 2613 * 2614 * @param rl the resource list to print 2615 * @param name the name of @p type, e.g. @c "memory" 2616 * @param type type type of resource entry to print 2617 * @param format printf(9) format string to print resource 2618 * start and end values 2619 * 2620 * @returns the number of characters printed 2621 */ 2622 int 2623 resource_list_print_type(struct resource_list *rl, const char *name, int type, 2624 const char *format) 2625 { 2626 struct resource_list_entry *rle; 2627 int printed, retval; 2628 2629 printed = 0; 2630 retval = 0; 2631 /* Yes, this is kinda cheating */ 2632 SLIST_FOREACH(rle, rl, link) { 2633 if (rle->type == type) { 2634 if (printed == 0) 2635 retval += printf(" %s ", name); 2636 else 2637 retval += printf(","); 2638 printed++; 2639 retval += printf(format, rle->start); 2640 if (rle->count > 1) { 2641 retval += printf("-"); 2642 retval += printf(format, rle->start + 2643 rle->count - 1); 2644 } 2645 } 2646 } 2647 return (retval); 2648 } 2649 2650 /** 2651 * @brief Helper function for implementing DEVICE_PROBE() 2652 * 2653 * This function can be used to help implement the DEVICE_PROBE() for 2654 * a bus (i.e. a device which has other devices attached to it). It 2655 * calls the DEVICE_IDENTIFY() method of each driver in the device's 2656 * devclass. 2657 */ 2658 int 2659 bus_generic_probe(device_t dev) 2660 { 2661 devclass_t dc = dev->devclass; 2662 driverlink_t dl; 2663 2664 TAILQ_FOREACH(dl, &dc->drivers, link) { 2665 DEVICE_IDENTIFY(dl->driver, dev); 2666 } 2667 2668 return (0); 2669 } 2670 2671 /** 2672 * @brief Helper function for implementing DEVICE_ATTACH() 2673 * 2674 * This function can be used to help implement the DEVICE_ATTACH() for 2675 * a bus. It calls device_probe_and_attach() for each of the device's 2676 * children. 2677 */ 2678 int 2679 bus_generic_attach(device_t dev) 2680 { 2681 device_t child; 2682 2683 TAILQ_FOREACH(child, &dev->children, link) { 2684 device_probe_and_attach(child); 2685 } 2686 2687 return (0); 2688 } 2689 2690 /** 2691 * @brief Helper function for implementing DEVICE_DETACH() 2692 * 2693 * This function can be used to help implement the DEVICE_DETACH() for 2694 * a bus. It calls device_detach() for each of the device's 2695 * children. 2696 */ 2697 int 2698 bus_generic_detach(device_t dev) 2699 { 2700 device_t child; 2701 int error; 2702 2703 if (dev->state != DS_ATTACHED) 2704 return (EBUSY); 2705 2706 TAILQ_FOREACH(child, &dev->children, link) { 2707 if ((error = device_detach(child)) != 0) 2708 return (error); 2709 } 2710 2711 return (0); 2712 } 2713 2714 /** 2715 * @brief Helper function for implementing DEVICE_SHUTDOWN() 2716 * 2717 * This function can be used to help implement the DEVICE_SHUTDOWN() 2718 * for a bus. It calls device_shutdown() for each of the device's 2719 * children. 2720 */ 2721 int 2722 bus_generic_shutdown(device_t dev) 2723 { 2724 device_t child; 2725 2726 TAILQ_FOREACH(child, &dev->children, link) { 2727 device_shutdown(child); 2728 } 2729 2730 return (0); 2731 } 2732 2733 /** 2734 * @brief Helper function for implementing DEVICE_SUSPEND() 2735 * 2736 * This function can be used to help implement the DEVICE_SUSPEND() 2737 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 2738 * children. If any call to DEVICE_SUSPEND() fails, the suspend 2739 * operation is aborted and any devices which were suspended are 2740 * resumed immediately by calling their DEVICE_RESUME() methods. 2741 */ 2742 int 2743 bus_generic_suspend(device_t dev) 2744 { 2745 int error; 2746 device_t child, child2; 2747 2748 TAILQ_FOREACH(child, &dev->children, link) { 2749 error = DEVICE_SUSPEND(child); 2750 if (error) { 2751 for (child2 = TAILQ_FIRST(&dev->children); 2752 child2 && child2 != child; 2753 child2 = TAILQ_NEXT(child2, link)) 2754 DEVICE_RESUME(child2); 2755 return (error); 2756 } 2757 } 2758 return (0); 2759 } 2760 2761 /** 2762 * @brief Helper function for implementing DEVICE_RESUME() 2763 * 2764 * This function can be used to help implement the DEVICE_RESUME() for 2765 * a bus. It calls DEVICE_RESUME() on each of the device's children. 2766 */ 2767 int 2768 bus_generic_resume(device_t dev) 2769 { 2770 device_t child; 2771 2772 TAILQ_FOREACH(child, &dev->children, link) { 2773 DEVICE_RESUME(child); 2774 /* if resume fails, there's nothing we can usefully do... */ 2775 } 2776 return (0); 2777 } 2778 2779 /** 2780 * @brief Helper function for implementing BUS_PRINT_CHILD(). 2781 * 2782 * This function prints the first part of the ascii representation of 2783 * @p child, including its name, unit and description (if any - see 2784 * device_set_desc()). 2785 * 2786 * @returns the number of characters printed 2787 */ 2788 int 2789 bus_print_child_header(device_t dev, device_t child) 2790 { 2791 int retval = 0; 2792 2793 if (device_get_desc(child)) { 2794 retval += device_printf(child, "<%s>", device_get_desc(child)); 2795 } else { 2796 retval += printf("%s", device_get_nameunit(child)); 2797 } 2798 2799 return (retval); 2800 } 2801 2802 /** 2803 * @brief Helper function for implementing BUS_PRINT_CHILD(). 2804 * 2805 * This function prints the last part of the ascii representation of 2806 * @p child, which consists of the string @c " on " followed by the 2807 * name and unit of the @p dev. 2808 * 2809 * @returns the number of characters printed 2810 */ 2811 int 2812 bus_print_child_footer(device_t dev, device_t child) 2813 { 2814 return (printf(" on %s\n", device_get_nameunit(dev))); 2815 } 2816 2817 /** 2818 * @brief Helper function for implementing BUS_PRINT_CHILD(). 2819 * 2820 * This function simply calls bus_print_child_header() followed by 2821 * bus_print_child_footer(). 2822 * 2823 * @returns the number of characters printed 2824 */ 2825 int 2826 bus_generic_print_child(device_t dev, device_t child) 2827 { 2828 int retval = 0; 2829 2830 retval += bus_print_child_header(dev, child); 2831 retval += bus_print_child_footer(dev, child); 2832 2833 return (retval); 2834 } 2835 2836 /** 2837 * @brief Stub function for implementing BUS_READ_IVAR(). 2838 * 2839 * @returns ENOENT 2840 */ 2841 int 2842 bus_generic_read_ivar(device_t dev, device_t child, int index, 2843 uintptr_t * result) 2844 { 2845 return (ENOENT); 2846 } 2847 2848 /** 2849 * @brief Stub function for implementing BUS_WRITE_IVAR(). 2850 * 2851 * @returns ENOENT 2852 */ 2853 int 2854 bus_generic_write_ivar(device_t dev, device_t child, int index, 2855 uintptr_t value) 2856 { 2857 return (ENOENT); 2858 } 2859 2860 /** 2861 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 2862 * 2863 * @returns NULL 2864 */ 2865 struct resource_list * 2866 bus_generic_get_resource_list(device_t dev, device_t child) 2867 { 2868 return (NULL); 2869 } 2870 2871 /** 2872 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 2873 * 2874 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 2875 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 2876 * and then calls device_probe_and_attach() for each unattached child. 2877 */ 2878 void 2879 bus_generic_driver_added(device_t dev, driver_t *driver) 2880 { 2881 device_t child; 2882 2883 DEVICE_IDENTIFY(driver, dev); 2884 TAILQ_FOREACH(child, &dev->children, link) { 2885 if (child->state == DS_NOTPRESENT || 2886 (child->flags & DF_REBID)) 2887 device_probe_and_attach(child); 2888 } 2889 } 2890 2891 /** 2892 * @brief Helper function for implementing BUS_SETUP_INTR(). 2893 * 2894 * This simple implementation of BUS_SETUP_INTR() simply calls the 2895 * BUS_SETUP_INTR() method of the parent of @p dev. 2896 */ 2897 int 2898 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 2899 int flags, driver_intr_t *intr, void *arg, void **cookiep) 2900 { 2901 /* Propagate up the bus hierarchy until someone handles it. */ 2902 if (dev->parent) 2903 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 2904 intr, arg, cookiep)); 2905 return (EINVAL); 2906 } 2907 2908 /** 2909 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 2910 * 2911 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 2912 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 2913 */ 2914 int 2915 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 2916 void *cookie) 2917 { 2918 /* Propagate up the bus hierarchy until someone handles it. */ 2919 if (dev->parent) 2920 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 2921 return (EINVAL); 2922 } 2923 2924 /** 2925 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 2926 * 2927 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 2928 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 2929 */ 2930 struct resource * 2931 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 2932 u_long start, u_long end, u_long count, u_int flags) 2933 { 2934 /* Propagate up the bus hierarchy until someone handles it. */ 2935 if (dev->parent) 2936 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 2937 start, end, count, flags)); 2938 return (NULL); 2939 } 2940 2941 /** 2942 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 2943 * 2944 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 2945 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 2946 */ 2947 int 2948 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 2949 struct resource *r) 2950 { 2951 /* Propagate up the bus hierarchy until someone handles it. */ 2952 if (dev->parent) 2953 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 2954 r)); 2955 return (EINVAL); 2956 } 2957 2958 /** 2959 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 2960 * 2961 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 2962 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 2963 */ 2964 int 2965 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 2966 struct resource *r) 2967 { 2968 /* Propagate up the bus hierarchy until someone handles it. */ 2969 if (dev->parent) 2970 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 2971 r)); 2972 return (EINVAL); 2973 } 2974 2975 /** 2976 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 2977 * 2978 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 2979 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 2980 */ 2981 int 2982 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 2983 int rid, struct resource *r) 2984 { 2985 /* Propagate up the bus hierarchy until someone handles it. */ 2986 if (dev->parent) 2987 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 2988 r)); 2989 return (EINVAL); 2990 } 2991 2992 /** 2993 * @brief Helper function for implementing BUS_CONFIG_INTR(). 2994 * 2995 * This simple implementation of BUS_CONFIG_INTR() simply calls the 2996 * BUS_CONFIG_INTR() method of the parent of @p dev. 2997 */ 2998 int 2999 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3000 enum intr_polarity pol) 3001 { 3002 3003 /* Propagate up the bus hierarchy until someone handles it. */ 3004 if (dev->parent) 3005 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3006 return (EINVAL); 3007 } 3008 3009 /** 3010 * @brief Helper function for implementing BUS_GET_RESOURCE(). 3011 * 3012 * This implementation of BUS_GET_RESOURCE() uses the 3013 * resource_list_find() function to do most of the work. It calls 3014 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3015 * search. 3016 */ 3017 int 3018 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 3019 u_long *startp, u_long *countp) 3020 { 3021 struct resource_list * rl = NULL; 3022 struct resource_list_entry * rle = NULL; 3023 3024 rl = BUS_GET_RESOURCE_LIST(dev, child); 3025 if (!rl) 3026 return (EINVAL); 3027 3028 rle = resource_list_find(rl, type, rid); 3029 if (!rle) 3030 return (ENOENT); 3031 3032 if (startp) 3033 *startp = rle->start; 3034 if (countp) 3035 *countp = rle->count; 3036 3037 return (0); 3038 } 3039 3040 /** 3041 * @brief Helper function for implementing BUS_SET_RESOURCE(). 3042 * 3043 * This implementation of BUS_SET_RESOURCE() uses the 3044 * resource_list_add() function to do most of the work. It calls 3045 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3046 * edit. 3047 */ 3048 int 3049 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 3050 u_long start, u_long count) 3051 { 3052 struct resource_list * rl = NULL; 3053 3054 rl = BUS_GET_RESOURCE_LIST(dev, child); 3055 if (!rl) 3056 return (EINVAL); 3057 3058 resource_list_add(rl, type, rid, start, (start + count - 1), count); 3059 3060 return (0); 3061 } 3062 3063 /** 3064 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 3065 * 3066 * This implementation of BUS_DELETE_RESOURCE() uses the 3067 * resource_list_delete() function to do most of the work. It calls 3068 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3069 * edit. 3070 */ 3071 void 3072 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 3073 { 3074 struct resource_list * rl = NULL; 3075 3076 rl = BUS_GET_RESOURCE_LIST(dev, child); 3077 if (!rl) 3078 return; 3079 3080 resource_list_delete(rl, type, rid); 3081 3082 return; 3083 } 3084 3085 /** 3086 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3087 * 3088 * This implementation of BUS_RELEASE_RESOURCE() uses the 3089 * resource_list_release() function to do most of the work. It calls 3090 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3091 */ 3092 int 3093 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 3094 int rid, struct resource *r) 3095 { 3096 struct resource_list * rl = NULL; 3097 3098 rl = BUS_GET_RESOURCE_LIST(dev, child); 3099 if (!rl) 3100 return (EINVAL); 3101 3102 return (resource_list_release(rl, dev, child, type, rid, r)); 3103 } 3104 3105 /** 3106 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3107 * 3108 * This implementation of BUS_ALLOC_RESOURCE() uses the 3109 * resource_list_alloc() function to do most of the work. It calls 3110 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3111 */ 3112 struct resource * 3113 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 3114 int *rid, u_long start, u_long end, u_long count, u_int flags) 3115 { 3116 struct resource_list * rl = NULL; 3117 3118 rl = BUS_GET_RESOURCE_LIST(dev, child); 3119 if (!rl) 3120 return (NULL); 3121 3122 return (resource_list_alloc(rl, dev, child, type, rid, 3123 start, end, count, flags)); 3124 } 3125 3126 /** 3127 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 3128 * 3129 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 3130 * BUS_CHILD_PRESENT() method of the parent of @p dev. 3131 */ 3132 int 3133 bus_generic_child_present(device_t dev, device_t child) 3134 { 3135 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 3136 } 3137 3138 /* 3139 * Some convenience functions to make it easier for drivers to use the 3140 * resource-management functions. All these really do is hide the 3141 * indirection through the parent's method table, making for slightly 3142 * less-wordy code. In the future, it might make sense for this code 3143 * to maintain some sort of a list of resources allocated by each device. 3144 */ 3145 3146 /** 3147 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 3148 * 3149 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 3150 * parent of @p dev. 3151 */ 3152 struct resource * 3153 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 3154 u_long count, u_int flags) 3155 { 3156 if (dev->parent == 0) 3157 return (0); 3158 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 3159 count, flags)); 3160 } 3161 3162 /** 3163 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 3164 * 3165 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 3166 * parent of @p dev. 3167 */ 3168 int 3169 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 3170 { 3171 if (dev->parent == 0) 3172 return (EINVAL); 3173 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3174 } 3175 3176 /** 3177 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 3178 * 3179 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 3180 * parent of @p dev. 3181 */ 3182 int 3183 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 3184 { 3185 if (dev->parent == 0) 3186 return (EINVAL); 3187 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3188 } 3189 3190 /** 3191 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 3192 * 3193 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 3194 * parent of @p dev. 3195 */ 3196 int 3197 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 3198 { 3199 if (dev->parent == 0) 3200 return (EINVAL); 3201 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 3202 } 3203 3204 /** 3205 * @brief Wrapper function for BUS_SETUP_INTR(). 3206 * 3207 * This function simply calls the BUS_SETUP_INTR() method of the 3208 * parent of @p dev. 3209 */ 3210 int 3211 bus_setup_intr(device_t dev, struct resource *r, int flags, 3212 driver_intr_t handler, void *arg, void **cookiep) 3213 { 3214 int error; 3215 3216 if (dev->parent != 0) { 3217 if ((flags &~ INTR_ENTROPY) == (INTR_TYPE_NET | INTR_MPSAFE) && 3218 !debug_mpsafenet) 3219 flags &= ~INTR_MPSAFE; 3220 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, 3221 handler, arg, cookiep); 3222 if (error == 0) { 3223 if (!(flags & (INTR_MPSAFE | INTR_FAST))) 3224 device_printf(dev, "[GIANT-LOCKED]\n"); 3225 if (bootverbose && (flags & INTR_MPSAFE)) 3226 device_printf(dev, "[MPSAFE]\n"); 3227 if (flags & INTR_FAST) 3228 device_printf(dev, "[FAST]\n"); 3229 } 3230 } else 3231 error = EINVAL; 3232 return (error); 3233 } 3234 3235 /** 3236 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 3237 * 3238 * This function simply calls the BUS_TEARDOWN_INTR() method of the 3239 * parent of @p dev. 3240 */ 3241 int 3242 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 3243 { 3244 if (dev->parent == 0) 3245 return (EINVAL); 3246 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 3247 } 3248 3249 /** 3250 * @brief Wrapper function for BUS_SET_RESOURCE(). 3251 * 3252 * This function simply calls the BUS_SET_RESOURCE() method of the 3253 * parent of @p dev. 3254 */ 3255 int 3256 bus_set_resource(device_t dev, int type, int rid, 3257 u_long start, u_long count) 3258 { 3259 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 3260 start, count)); 3261 } 3262 3263 /** 3264 * @brief Wrapper function for BUS_GET_RESOURCE(). 3265 * 3266 * This function simply calls the BUS_GET_RESOURCE() method of the 3267 * parent of @p dev. 3268 */ 3269 int 3270 bus_get_resource(device_t dev, int type, int rid, 3271 u_long *startp, u_long *countp) 3272 { 3273 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3274 startp, countp)); 3275 } 3276 3277 /** 3278 * @brief Wrapper function for BUS_GET_RESOURCE(). 3279 * 3280 * This function simply calls the BUS_GET_RESOURCE() method of the 3281 * parent of @p dev and returns the start value. 3282 */ 3283 u_long 3284 bus_get_resource_start(device_t dev, int type, int rid) 3285 { 3286 u_long start, count; 3287 int error; 3288 3289 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3290 &start, &count); 3291 if (error) 3292 return (0); 3293 return (start); 3294 } 3295 3296 /** 3297 * @brief Wrapper function for BUS_GET_RESOURCE(). 3298 * 3299 * This function simply calls the BUS_GET_RESOURCE() method of the 3300 * parent of @p dev and returns the count value. 3301 */ 3302 u_long 3303 bus_get_resource_count(device_t dev, int type, int rid) 3304 { 3305 u_long start, count; 3306 int error; 3307 3308 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3309 &start, &count); 3310 if (error) 3311 return (0); 3312 return (count); 3313 } 3314 3315 /** 3316 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 3317 * 3318 * This function simply calls the BUS_DELETE_RESOURCE() method of the 3319 * parent of @p dev. 3320 */ 3321 void 3322 bus_delete_resource(device_t dev, int type, int rid) 3323 { 3324 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 3325 } 3326 3327 /** 3328 * @brief Wrapper function for BUS_CHILD_PRESENT(). 3329 * 3330 * This function simply calls the BUS_CHILD_PRESENT() method of the 3331 * parent of @p dev. 3332 */ 3333 int 3334 bus_child_present(device_t child) 3335 { 3336 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 3337 } 3338 3339 /** 3340 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 3341 * 3342 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 3343 * parent of @p dev. 3344 */ 3345 int 3346 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 3347 { 3348 device_t parent; 3349 3350 parent = device_get_parent(child); 3351 if (parent == NULL) { 3352 *buf = '\0'; 3353 return (0); 3354 } 3355 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 3356 } 3357 3358 /** 3359 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 3360 * 3361 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 3362 * parent of @p dev. 3363 */ 3364 int 3365 bus_child_location_str(device_t child, char *buf, size_t buflen) 3366 { 3367 device_t parent; 3368 3369 parent = device_get_parent(child); 3370 if (parent == NULL) { 3371 *buf = '\0'; 3372 return (0); 3373 } 3374 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 3375 } 3376 3377 static int 3378 root_print_child(device_t dev, device_t child) 3379 { 3380 int retval = 0; 3381 3382 retval += bus_print_child_header(dev, child); 3383 retval += printf("\n"); 3384 3385 return (retval); 3386 } 3387 3388 static int 3389 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg, 3390 void **cookiep) 3391 { 3392 /* 3393 * If an interrupt mapping gets to here something bad has happened. 3394 */ 3395 panic("root_setup_intr"); 3396 } 3397 3398 /* 3399 * If we get here, assume that the device is permanant and really is 3400 * present in the system. Removable bus drivers are expected to intercept 3401 * this call long before it gets here. We return -1 so that drivers that 3402 * really care can check vs -1 or some ERRNO returned higher in the food 3403 * chain. 3404 */ 3405 static int 3406 root_child_present(device_t dev, device_t child) 3407 { 3408 return (-1); 3409 } 3410 3411 static kobj_method_t root_methods[] = { 3412 /* Device interface */ 3413 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 3414 KOBJMETHOD(device_suspend, bus_generic_suspend), 3415 KOBJMETHOD(device_resume, bus_generic_resume), 3416 3417 /* Bus interface */ 3418 KOBJMETHOD(bus_print_child, root_print_child), 3419 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 3420 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 3421 KOBJMETHOD(bus_setup_intr, root_setup_intr), 3422 KOBJMETHOD(bus_child_present, root_child_present), 3423 3424 { 0, 0 } 3425 }; 3426 3427 static driver_t root_driver = { 3428 "root", 3429 root_methods, 3430 1, /* no softc */ 3431 }; 3432 3433 device_t root_bus; 3434 devclass_t root_devclass; 3435 3436 static int 3437 root_bus_module_handler(module_t mod, int what, void* arg) 3438 { 3439 switch (what) { 3440 case MOD_LOAD: 3441 TAILQ_INIT(&bus_data_devices); 3442 kobj_class_compile((kobj_class_t) &root_driver); 3443 root_bus = make_device(NULL, "root", 0); 3444 root_bus->desc = "System root bus"; 3445 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 3446 root_bus->driver = &root_driver; 3447 root_bus->state = DS_ATTACHED; 3448 root_devclass = devclass_find_internal("root", 0, FALSE); 3449 devinit(); 3450 return (0); 3451 3452 case MOD_SHUTDOWN: 3453 device_shutdown(root_bus); 3454 return (0); 3455 default: 3456 return (EOPNOTSUPP); 3457 } 3458 3459 return (0); 3460 } 3461 3462 static moduledata_t root_bus_mod = { 3463 "rootbus", 3464 root_bus_module_handler, 3465 0 3466 }; 3467 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 3468 3469 /** 3470 * @brief Automatically configure devices 3471 * 3472 * This function begins the autoconfiguration process by calling 3473 * device_probe_and_attach() for each child of the @c root0 device. 3474 */ 3475 void 3476 root_bus_configure(void) 3477 { 3478 device_t dev; 3479 3480 PDEBUG((".")); 3481 3482 TAILQ_FOREACH(dev, &root_bus->children, link) { 3483 device_probe_and_attach(dev); 3484 } 3485 } 3486 3487 /** 3488 * @brief Module handler for registering device drivers 3489 * 3490 * This module handler is used to automatically register device 3491 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 3492 * devclass_add_driver() for the driver described by the 3493 * driver_module_data structure pointed to by @p arg 3494 */ 3495 int 3496 driver_module_handler(module_t mod, int what, void *arg) 3497 { 3498 int error; 3499 struct driver_module_data *dmd; 3500 devclass_t bus_devclass; 3501 kobj_class_t driver; 3502 3503 dmd = (struct driver_module_data *)arg; 3504 bus_devclass = devclass_find_internal(dmd->dmd_busname, 0, TRUE); 3505 error = 0; 3506 3507 switch (what) { 3508 case MOD_LOAD: 3509 if (dmd->dmd_chainevh) 3510 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3511 3512 driver = dmd->dmd_driver; 3513 PDEBUG(("Loading module: driver %s on bus %s", 3514 DRIVERNAME(driver), dmd->dmd_busname)); 3515 error = devclass_add_driver(bus_devclass, driver); 3516 if (error) 3517 break; 3518 3519 /* 3520 * If the driver has any base classes, make the 3521 * devclass inherit from the devclass of the driver's 3522 * first base class. This will allow the system to 3523 * search for drivers in both devclasses for children 3524 * of a device using this driver. 3525 */ 3526 if (driver->baseclasses) { 3527 const char *parentname; 3528 parentname = driver->baseclasses[0]->name; 3529 *dmd->dmd_devclass = 3530 devclass_find_internal(driver->name, 3531 parentname, TRUE); 3532 } else { 3533 *dmd->dmd_devclass = 3534 devclass_find_internal(driver->name, 0, TRUE); 3535 } 3536 break; 3537 3538 case MOD_UNLOAD: 3539 PDEBUG(("Unloading module: driver %s from bus %s", 3540 DRIVERNAME(dmd->dmd_driver), 3541 dmd->dmd_busname)); 3542 error = devclass_delete_driver(bus_devclass, 3543 dmd->dmd_driver); 3544 3545 if (!error && dmd->dmd_chainevh) 3546 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3547 break; 3548 default: 3549 error = EOPNOTSUPP; 3550 break; 3551 } 3552 3553 return (error); 3554 } 3555 3556 #ifdef BUS_DEBUG 3557 3558 /* the _short versions avoid iteration by not calling anything that prints 3559 * more than oneliners. I love oneliners. 3560 */ 3561 3562 static void 3563 print_device_short(device_t dev, int indent) 3564 { 3565 if (!dev) 3566 return; 3567 3568 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 3569 dev->unit, dev->desc, 3570 (dev->parent? "":"no "), 3571 (TAILQ_EMPTY(&dev->children)? "no ":""), 3572 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 3573 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 3574 (dev->flags&DF_WILDCARD? "wildcard,":""), 3575 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 3576 (dev->flags&DF_REBID? "rebiddable,":""), 3577 (dev->ivars? "":"no "), 3578 (dev->softc? "":"no "), 3579 dev->busy)); 3580 } 3581 3582 static void 3583 print_device(device_t dev, int indent) 3584 { 3585 if (!dev) 3586 return; 3587 3588 print_device_short(dev, indent); 3589 3590 indentprintf(("Parent:\n")); 3591 print_device_short(dev->parent, indent+1); 3592 indentprintf(("Driver:\n")); 3593 print_driver_short(dev->driver, indent+1); 3594 indentprintf(("Devclass:\n")); 3595 print_devclass_short(dev->devclass, indent+1); 3596 } 3597 3598 void 3599 print_device_tree_short(device_t dev, int indent) 3600 /* print the device and all its children (indented) */ 3601 { 3602 device_t child; 3603 3604 if (!dev) 3605 return; 3606 3607 print_device_short(dev, indent); 3608 3609 TAILQ_FOREACH(child, &dev->children, link) { 3610 print_device_tree_short(child, indent+1); 3611 } 3612 } 3613 3614 void 3615 print_device_tree(device_t dev, int indent) 3616 /* print the device and all its children (indented) */ 3617 { 3618 device_t child; 3619 3620 if (!dev) 3621 return; 3622 3623 print_device(dev, indent); 3624 3625 TAILQ_FOREACH(child, &dev->children, link) { 3626 print_device_tree(child, indent+1); 3627 } 3628 } 3629 3630 static void 3631 print_driver_short(driver_t *driver, int indent) 3632 { 3633 if (!driver) 3634 return; 3635 3636 indentprintf(("driver %s: softc size = %zd\n", 3637 driver->name, driver->size)); 3638 } 3639 3640 static void 3641 print_driver(driver_t *driver, int indent) 3642 { 3643 if (!driver) 3644 return; 3645 3646 print_driver_short(driver, indent); 3647 } 3648 3649 3650 static void 3651 print_driver_list(driver_list_t drivers, int indent) 3652 { 3653 driverlink_t driver; 3654 3655 TAILQ_FOREACH(driver, &drivers, link) { 3656 print_driver(driver->driver, indent); 3657 } 3658 } 3659 3660 static void 3661 print_devclass_short(devclass_t dc, int indent) 3662 { 3663 if ( !dc ) 3664 return; 3665 3666 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 3667 } 3668 3669 static void 3670 print_devclass(devclass_t dc, int indent) 3671 { 3672 int i; 3673 3674 if ( !dc ) 3675 return; 3676 3677 print_devclass_short(dc, indent); 3678 indentprintf(("Drivers:\n")); 3679 print_driver_list(dc->drivers, indent+1); 3680 3681 indentprintf(("Devices:\n")); 3682 for (i = 0; i < dc->maxunit; i++) 3683 if (dc->devices[i]) 3684 print_device(dc->devices[i], indent+1); 3685 } 3686 3687 void 3688 print_devclass_list_short(void) 3689 { 3690 devclass_t dc; 3691 3692 printf("Short listing of devclasses, drivers & devices:\n"); 3693 TAILQ_FOREACH(dc, &devclasses, link) { 3694 print_devclass_short(dc, 0); 3695 } 3696 } 3697 3698 void 3699 print_devclass_list(void) 3700 { 3701 devclass_t dc; 3702 3703 printf("Full listing of devclasses, drivers & devices:\n"); 3704 TAILQ_FOREACH(dc, &devclasses, link) { 3705 print_devclass(dc, 0); 3706 } 3707 } 3708 3709 #endif 3710 3711 /* 3712 * User-space access to the device tree. 3713 * 3714 * We implement a small set of nodes: 3715 * 3716 * hw.bus Single integer read method to obtain the 3717 * current generation count. 3718 * hw.bus.devices Reads the entire device tree in flat space. 3719 * hw.bus.rman Resource manager interface 3720 * 3721 * We might like to add the ability to scan devclasses and/or drivers to 3722 * determine what else is currently loaded/available. 3723 */ 3724 3725 static int 3726 sysctl_bus(SYSCTL_HANDLER_ARGS) 3727 { 3728 struct u_businfo ubus; 3729 3730 ubus.ub_version = BUS_USER_VERSION; 3731 ubus.ub_generation = bus_data_generation; 3732 3733 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 3734 } 3735 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 3736 "bus-related data"); 3737 3738 static int 3739 sysctl_devices(SYSCTL_HANDLER_ARGS) 3740 { 3741 int *name = (int *)arg1; 3742 u_int namelen = arg2; 3743 int index; 3744 struct device *dev; 3745 struct u_device udev; /* XXX this is a bit big */ 3746 int error; 3747 3748 if (namelen != 2) 3749 return (EINVAL); 3750 3751 if (bus_data_generation_check(name[0])) 3752 return (EINVAL); 3753 3754 index = name[1]; 3755 3756 /* 3757 * Scan the list of devices, looking for the requested index. 3758 */ 3759 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 3760 if (index-- == 0) 3761 break; 3762 } 3763 if (dev == NULL) 3764 return (ENOENT); 3765 3766 /* 3767 * Populate the return array. 3768 */ 3769 udev.dv_handle = (uintptr_t)dev; 3770 udev.dv_parent = (uintptr_t)dev->parent; 3771 if (dev->nameunit == NULL) 3772 udev.dv_name[0] = '\0'; 3773 else 3774 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 3775 3776 if (dev->desc == NULL) 3777 udev.dv_desc[0] = '\0'; 3778 else 3779 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 3780 if (dev->driver == NULL || dev->driver->name == NULL) 3781 udev.dv_drivername[0] = '\0'; 3782 else 3783 strlcpy(udev.dv_drivername, dev->driver->name, 3784 sizeof(udev.dv_drivername)); 3785 udev.dv_pnpinfo[0] = '\0'; 3786 udev.dv_location[0] = '\0'; 3787 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 3788 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 3789 udev.dv_devflags = dev->devflags; 3790 udev.dv_flags = dev->flags; 3791 udev.dv_state = dev->state; 3792 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 3793 return (error); 3794 } 3795 3796 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 3797 "system device tree"); 3798 3799 /* 3800 * Sysctl interface for scanning the resource lists. 3801 * 3802 * We take two input parameters; the index into the list of resource 3803 * managers, and the resource offset into the list. 3804 */ 3805 static int 3806 sysctl_rman(SYSCTL_HANDLER_ARGS) 3807 { 3808 int *name = (int *)arg1; 3809 u_int namelen = arg2; 3810 int rman_idx, res_idx; 3811 struct rman *rm; 3812 struct resource *res; 3813 struct u_rman urm; 3814 struct u_resource ures; 3815 int error; 3816 3817 if (namelen != 3) 3818 return (EINVAL); 3819 3820 if (bus_data_generation_check(name[0])) 3821 return (EINVAL); 3822 rman_idx = name[1]; 3823 res_idx = name[2]; 3824 3825 /* 3826 * Find the indexed resource manager 3827 */ 3828 TAILQ_FOREACH(rm, &rman_head, rm_link) { 3829 if (rman_idx-- == 0) 3830 break; 3831 } 3832 if (rm == NULL) 3833 return (ENOENT); 3834 3835 /* 3836 * If the resource index is -1, we want details on the 3837 * resource manager. 3838 */ 3839 if (res_idx == -1) { 3840 urm.rm_handle = (uintptr_t)rm; 3841 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); 3842 urm.rm_start = rm->rm_start; 3843 urm.rm_size = rm->rm_end - rm->rm_start + 1; 3844 urm.rm_type = rm->rm_type; 3845 3846 error = SYSCTL_OUT(req, &urm, sizeof(urm)); 3847 return (error); 3848 } 3849 3850 /* 3851 * Find the indexed resource and return it. 3852 */ 3853 TAILQ_FOREACH(res, &rm->rm_list, r_link) { 3854 if (res_idx-- == 0) { 3855 ures.r_handle = (uintptr_t)res; 3856 ures.r_parent = (uintptr_t)res->r_rm; 3857 ures.r_device = (uintptr_t)res->r_dev; 3858 if (res->r_dev != NULL) { 3859 if (device_get_name(res->r_dev) != NULL) { 3860 snprintf(ures.r_devname, RM_TEXTLEN, 3861 "%s%d", 3862 device_get_name(res->r_dev), 3863 device_get_unit(res->r_dev)); 3864 } else { 3865 strlcpy(ures.r_devname, "nomatch", 3866 RM_TEXTLEN); 3867 } 3868 } else { 3869 ures.r_devname[0] = '\0'; 3870 } 3871 ures.r_start = res->r_start; 3872 ures.r_size = res->r_end - res->r_start + 1; 3873 ures.r_flags = res->r_flags; 3874 3875 error = SYSCTL_OUT(req, &ures, sizeof(ures)); 3876 return (error); 3877 } 3878 } 3879 return (ENOENT); 3880 } 3881 3882 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman, 3883 "kernel resource manager"); 3884 3885 int 3886 bus_data_generation_check(int generation) 3887 { 3888 if (generation != bus_data_generation) 3889 return (1); 3890 3891 /* XXX generate optimised lists here? */ 3892 return (0); 3893 } 3894 3895 void 3896 bus_data_generation_update(void) 3897 { 3898 bus_data_generation++; 3899 } 3900