1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #define __RMAN_RESOURCE_VISIBLE 33 #include <sys/param.h> 34 #include <sys/conf.h> 35 #include <sys/filio.h> 36 #include <sys/lock.h> 37 #include <sys/kernel.h> 38 #include <sys/kobj.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/mutex.h> 42 #include <sys/poll.h> 43 #include <sys/proc.h> 44 #include <sys/condvar.h> 45 #include <sys/queue.h> 46 #include <machine/bus.h> 47 #include <sys/rman.h> 48 #include <sys/selinfo.h> 49 #include <sys/signalvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/systm.h> 52 #include <sys/uio.h> 53 #include <sys/bus.h> 54 55 #include <machine/stdarg.h> 56 57 #include <vm/uma.h> 58 59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 61 62 /* 63 * Used to attach drivers to devclasses. 64 */ 65 typedef struct driverlink *driverlink_t; 66 struct driverlink { 67 kobj_class_t driver; 68 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 69 }; 70 71 /* 72 * Forward declarations 73 */ 74 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 75 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 76 typedef TAILQ_HEAD(device_list, device) device_list_t; 77 78 struct devclass { 79 TAILQ_ENTRY(devclass) link; 80 devclass_t parent; /* parent in devclass hierarchy */ 81 driver_list_t drivers; /* bus devclasses store drivers for bus */ 82 char *name; 83 device_t *devices; /* array of devices indexed by unit */ 84 int maxunit; /* size of devices array */ 85 86 struct sysctl_ctx_list sysctl_ctx; 87 struct sysctl_oid *sysctl_tree; 88 }; 89 90 /** 91 * @brief Implementation of device. 92 */ 93 struct device { 94 /* 95 * A device is a kernel object. The first field must be the 96 * current ops table for the object. 97 */ 98 KOBJ_FIELDS; 99 100 /* 101 * Device hierarchy. 102 */ 103 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 104 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 105 device_t parent; /**< parent of this device */ 106 device_list_t children; /**< list of child devices */ 107 108 /* 109 * Details of this device. 110 */ 111 driver_t *driver; /**< current driver */ 112 devclass_t devclass; /**< current device class */ 113 int unit; /**< current unit number */ 114 char* nameunit; /**< name+unit e.g. foodev0 */ 115 char* desc; /**< driver specific description */ 116 int busy; /**< count of calls to device_busy() */ 117 device_state_t state; /**< current device state */ 118 u_int32_t devflags; /**< api level flags for device_get_flags() */ 119 u_short flags; /**< internal device flags */ 120 #define DF_ENABLED 1 /* device should be probed/attached */ 121 #define DF_FIXEDCLASS 2 /* devclass specified at create time */ 122 #define DF_WILDCARD 4 /* unit was originally wildcard */ 123 #define DF_DESCMALLOCED 8 /* description was malloced */ 124 #define DF_QUIET 16 /* don't print verbose attach message */ 125 #define DF_DONENOMATCH 32 /* don't execute DEVICE_NOMATCH again */ 126 #define DF_EXTERNALSOFTC 64 /* softc not allocated by us */ 127 #define DF_REBID 128 /* Can rebid after attach */ 128 u_char order; /**< order from device_add_child_ordered() */ 129 u_char pad; 130 void *ivars; /**< instance variables */ 131 void *softc; /**< current driver's variables */ 132 133 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 134 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 135 }; 136 137 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 138 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 139 140 #ifdef BUS_DEBUG 141 142 static int bus_debug = 1; 143 TUNABLE_INT("bus.debug", &bus_debug); 144 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0, 145 "Debug bus code"); 146 147 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 148 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 149 #define DRIVERNAME(d) ((d)? d->name : "no driver") 150 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 151 152 /** 153 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 154 * prevent syslog from deleting initial spaces 155 */ 156 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 157 158 static void print_device_short(device_t dev, int indent); 159 static void print_device(device_t dev, int indent); 160 void print_device_tree_short(device_t dev, int indent); 161 void print_device_tree(device_t dev, int indent); 162 static void print_driver_short(driver_t *driver, int indent); 163 static void print_driver(driver_t *driver, int indent); 164 static void print_driver_list(driver_list_t drivers, int indent); 165 static void print_devclass_short(devclass_t dc, int indent); 166 static void print_devclass(devclass_t dc, int indent); 167 void print_devclass_list_short(void); 168 void print_devclass_list(void); 169 170 #else 171 /* Make the compiler ignore the function calls */ 172 #define PDEBUG(a) /* nop */ 173 #define DEVICENAME(d) /* nop */ 174 #define DRIVERNAME(d) /* nop */ 175 #define DEVCLANAME(d) /* nop */ 176 177 #define print_device_short(d,i) /* nop */ 178 #define print_device(d,i) /* nop */ 179 #define print_device_tree_short(d,i) /* nop */ 180 #define print_device_tree(d,i) /* nop */ 181 #define print_driver_short(d,i) /* nop */ 182 #define print_driver(d,i) /* nop */ 183 #define print_driver_list(d,i) /* nop */ 184 #define print_devclass_short(d,i) /* nop */ 185 #define print_devclass(d,i) /* nop */ 186 #define print_devclass_list_short() /* nop */ 187 #define print_devclass_list() /* nop */ 188 #endif 189 190 /* 191 * dev sysctl tree 192 */ 193 194 enum { 195 DEVCLASS_SYSCTL_PARENT, 196 }; 197 198 static int 199 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 200 { 201 devclass_t dc = (devclass_t)arg1; 202 const char *value; 203 char *buf; 204 int error; 205 206 buf = NULL; 207 switch (arg2) { 208 case DEVCLASS_SYSCTL_PARENT: 209 value = dc->parent ? dc->parent->name : ""; 210 break; 211 default: 212 return (EINVAL); 213 } 214 error = SYSCTL_OUT(req, value, strlen(value)); 215 if (buf != NULL) 216 free(buf, M_BUS); 217 return (error); 218 } 219 220 static void 221 devclass_sysctl_init(devclass_t dc) 222 { 223 224 if (dc->sysctl_tree != NULL) 225 return; 226 sysctl_ctx_init(&dc->sysctl_ctx); 227 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 228 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 229 CTLFLAG_RD, 0, ""); 230 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 231 OID_AUTO, "%parent", CTLFLAG_RD, 232 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 233 "parent class"); 234 } 235 236 enum { 237 DEVICE_SYSCTL_DESC, 238 DEVICE_SYSCTL_DRIVER, 239 DEVICE_SYSCTL_LOCATION, 240 DEVICE_SYSCTL_PNPINFO, 241 DEVICE_SYSCTL_PARENT, 242 }; 243 244 static int 245 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 246 { 247 device_t dev = (device_t)arg1; 248 const char *value; 249 char *buf; 250 int error; 251 252 buf = NULL; 253 switch (arg2) { 254 case DEVICE_SYSCTL_DESC: 255 value = dev->desc ? dev->desc : ""; 256 break; 257 case DEVICE_SYSCTL_DRIVER: 258 value = dev->driver ? dev->driver->name : ""; 259 break; 260 case DEVICE_SYSCTL_LOCATION: 261 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 262 bus_child_location_str(dev, buf, 1024); 263 break; 264 case DEVICE_SYSCTL_PNPINFO: 265 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 266 bus_child_pnpinfo_str(dev, buf, 1024); 267 break; 268 case DEVICE_SYSCTL_PARENT: 269 value = dev->parent ? dev->parent->nameunit : ""; 270 break; 271 default: 272 return (EINVAL); 273 } 274 error = SYSCTL_OUT(req, value, strlen(value)); 275 if (buf != NULL) 276 free(buf, M_BUS); 277 return (error); 278 } 279 280 static void 281 device_sysctl_init(device_t dev) 282 { 283 devclass_t dc = dev->devclass; 284 285 if (dev->sysctl_tree != NULL) 286 return; 287 devclass_sysctl_init(dc); 288 sysctl_ctx_init(&dev->sysctl_ctx); 289 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 290 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 291 dev->nameunit + strlen(dc->name), 292 CTLFLAG_RD, 0, ""); 293 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 294 OID_AUTO, "%desc", CTLFLAG_RD, 295 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 296 "device description"); 297 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 298 OID_AUTO, "%driver", CTLFLAG_RD, 299 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 300 "device driver name"); 301 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 302 OID_AUTO, "%location", CTLFLAG_RD, 303 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 304 "device location relative to parent"); 305 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 306 OID_AUTO, "%pnpinfo", CTLFLAG_RD, 307 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 308 "device identification"); 309 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 310 OID_AUTO, "%parent", CTLFLAG_RD, 311 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 312 "parent device"); 313 } 314 315 static void 316 device_sysctl_fini(device_t dev) 317 { 318 if (dev->sysctl_tree == NULL) 319 return; 320 sysctl_ctx_free(&dev->sysctl_ctx); 321 dev->sysctl_tree = NULL; 322 } 323 324 /* 325 * /dev/devctl implementation 326 */ 327 328 /* 329 * This design allows only one reader for /dev/devctl. This is not desirable 330 * in the long run, but will get a lot of hair out of this implementation. 331 * Maybe we should make this device a clonable device. 332 * 333 * Also note: we specifically do not attach a device to the device_t tree 334 * to avoid potential chicken and egg problems. One could argue that all 335 * of this belongs to the root node. One could also further argue that the 336 * sysctl interface that we have not might more properly be an ioctl 337 * interface, but at this stage of the game, I'm not inclined to rock that 338 * boat. 339 * 340 * I'm also not sure that the SIGIO support is done correctly or not, as 341 * I copied it from a driver that had SIGIO support that likely hasn't been 342 * tested since 3.4 or 2.2.8! 343 */ 344 345 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 346 static int devctl_disable = 0; 347 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable); 348 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 349 sysctl_devctl_disable, "I", "devctl disable"); 350 351 static d_open_t devopen; 352 static d_close_t devclose; 353 static d_read_t devread; 354 static d_ioctl_t devioctl; 355 static d_poll_t devpoll; 356 357 #define CDEV_MAJOR 173 358 static struct cdevsw dev_cdevsw = { 359 .d_version = D_VERSION, 360 .d_flags = D_NEEDGIANT, 361 .d_open = devopen, 362 .d_close = devclose, 363 .d_read = devread, 364 .d_ioctl = devioctl, 365 .d_poll = devpoll, 366 .d_name = "devctl", 367 .d_maj = CDEV_MAJOR, 368 }; 369 370 struct dev_event_info 371 { 372 char *dei_data; 373 TAILQ_ENTRY(dev_event_info) dei_link; 374 }; 375 376 TAILQ_HEAD(devq, dev_event_info); 377 378 static struct dev_softc 379 { 380 int inuse; 381 int nonblock; 382 struct mtx mtx; 383 struct cv cv; 384 struct selinfo sel; 385 struct devq devq; 386 struct proc *async_proc; 387 } devsoftc; 388 389 static struct cdev *devctl_dev; 390 391 static void 392 devinit(void) 393 { 394 devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, 395 "devctl"); 396 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 397 cv_init(&devsoftc.cv, "dev cv"); 398 TAILQ_INIT(&devsoftc.devq); 399 } 400 401 static int 402 devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td) 403 { 404 if (devsoftc.inuse) 405 return (EBUSY); 406 /* move to init */ 407 devsoftc.inuse = 1; 408 devsoftc.nonblock = 0; 409 devsoftc.async_proc = NULL; 410 return (0); 411 } 412 413 static int 414 devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td) 415 { 416 devsoftc.inuse = 0; 417 mtx_lock(&devsoftc.mtx); 418 cv_broadcast(&devsoftc.cv); 419 mtx_unlock(&devsoftc.mtx); 420 421 return (0); 422 } 423 424 /* 425 * The read channel for this device is used to report changes to 426 * userland in realtime. We are required to free the data as well as 427 * the n1 object because we allocate them separately. Also note that 428 * we return one record at a time. If you try to read this device a 429 * character at a time, you will loose the rest of the data. Listening 430 * programs are expected to cope. 431 */ 432 static int 433 devread(struct cdev *dev, struct uio *uio, int ioflag) 434 { 435 struct dev_event_info *n1; 436 int rv; 437 438 mtx_lock(&devsoftc.mtx); 439 while (TAILQ_EMPTY(&devsoftc.devq)) { 440 if (devsoftc.nonblock) { 441 mtx_unlock(&devsoftc.mtx); 442 return (EAGAIN); 443 } 444 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 445 if (rv) { 446 /* 447 * Need to translate ERESTART to EINTR here? -- jake 448 */ 449 mtx_unlock(&devsoftc.mtx); 450 return (rv); 451 } 452 } 453 n1 = TAILQ_FIRST(&devsoftc.devq); 454 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 455 mtx_unlock(&devsoftc.mtx); 456 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 457 free(n1->dei_data, M_BUS); 458 free(n1, M_BUS); 459 return (rv); 460 } 461 462 static int 463 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td) 464 { 465 switch (cmd) { 466 467 case FIONBIO: 468 if (*(int*)data) 469 devsoftc.nonblock = 1; 470 else 471 devsoftc.nonblock = 0; 472 return (0); 473 case FIOASYNC: 474 if (*(int*)data) 475 devsoftc.async_proc = td->td_proc; 476 else 477 devsoftc.async_proc = NULL; 478 return (0); 479 480 /* (un)Support for other fcntl() calls. */ 481 case FIOCLEX: 482 case FIONCLEX: 483 case FIONREAD: 484 case FIOSETOWN: 485 case FIOGETOWN: 486 default: 487 break; 488 } 489 return (ENOTTY); 490 } 491 492 static int 493 devpoll(struct cdev *dev, int events, d_thread_t *td) 494 { 495 int revents = 0; 496 497 mtx_lock(&devsoftc.mtx); 498 if (events & (POLLIN | POLLRDNORM)) { 499 if (!TAILQ_EMPTY(&devsoftc.devq)) 500 revents = events & (POLLIN | POLLRDNORM); 501 else 502 selrecord(td, &devsoftc.sel); 503 } 504 mtx_unlock(&devsoftc.mtx); 505 506 return (revents); 507 } 508 509 /** 510 * @brief Queue data to be read from the devctl device 511 * 512 * Generic interface to queue data to the devctl device. It is 513 * assumed that @p data is properly formatted. It is further assumed 514 * that @p data is allocated using the M_BUS malloc type. 515 */ 516 void 517 devctl_queue_data(char *data) 518 { 519 struct dev_event_info *n1 = NULL; 520 struct proc *p; 521 522 n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT); 523 if (n1 == NULL) 524 return; 525 n1->dei_data = data; 526 mtx_lock(&devsoftc.mtx); 527 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 528 cv_broadcast(&devsoftc.cv); 529 mtx_unlock(&devsoftc.mtx); 530 selwakeup(&devsoftc.sel); 531 p = devsoftc.async_proc; 532 if (p != NULL) { 533 PROC_LOCK(p); 534 psignal(p, SIGIO); 535 PROC_UNLOCK(p); 536 } 537 } 538 539 /** 540 * @brief Send a 'notification' to userland, using standard ways 541 */ 542 void 543 devctl_notify(const char *system, const char *subsystem, const char *type, 544 const char *data) 545 { 546 int len = 0; 547 char *msg; 548 549 if (system == NULL) 550 return; /* BOGUS! Must specify system. */ 551 if (subsystem == NULL) 552 return; /* BOGUS! Must specify subsystem. */ 553 if (type == NULL) 554 return; /* BOGUS! Must specify type. */ 555 len += strlen(" system=") + strlen(system); 556 len += strlen(" subsystem=") + strlen(subsystem); 557 len += strlen(" type=") + strlen(type); 558 /* add in the data message plus newline. */ 559 if (data != NULL) 560 len += strlen(data); 561 len += 3; /* '!', '\n', and NUL */ 562 msg = malloc(len, M_BUS, M_NOWAIT); 563 if (msg == NULL) 564 return; /* Drop it on the floor */ 565 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", system, 566 subsystem, type, data); 567 devctl_queue_data(msg); 568 } 569 570 /* 571 * Common routine that tries to make sending messages as easy as possible. 572 * We allocate memory for the data, copy strings into that, but do not 573 * free it unless there's an error. The dequeue part of the driver should 574 * free the data. We don't send data when the device is disabled. We do 575 * send data, even when we have no listeners, because we wish to avoid 576 * races relating to startup and restart of listening applications. 577 * 578 * devaddq is designed to string together the type of event, with the 579 * object of that event, plus the plug and play info and location info 580 * for that event. This is likely most useful for devices, but less 581 * useful for other consumers of this interface. Those should use 582 * the devctl_queue_data() interface instead. 583 */ 584 static void 585 devaddq(const char *type, const char *what, device_t dev) 586 { 587 char *data = NULL; 588 char *loc = NULL; 589 char *pnp = NULL; 590 const char *parstr; 591 592 if (devctl_disable) 593 return; 594 data = malloc(1024, M_BUS, M_NOWAIT); 595 if (data == NULL) 596 goto bad; 597 598 /* get the bus specific location of this device */ 599 loc = malloc(1024, M_BUS, M_NOWAIT); 600 if (loc == NULL) 601 goto bad; 602 *loc = '\0'; 603 bus_child_location_str(dev, loc, 1024); 604 605 /* Get the bus specific pnp info of this device */ 606 pnp = malloc(1024, M_BUS, M_NOWAIT); 607 if (pnp == NULL) 608 goto bad; 609 *pnp = '\0'; 610 bus_child_pnpinfo_str(dev, pnp, 1024); 611 612 /* Get the parent of this device, or / if high enough in the tree. */ 613 if (device_get_parent(dev) == NULL) 614 parstr = "."; /* Or '/' ? */ 615 else 616 parstr = device_get_nameunit(device_get_parent(dev)); 617 /* String it all together. */ 618 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 619 parstr); 620 free(loc, M_BUS); 621 free(pnp, M_BUS); 622 devctl_queue_data(data); 623 return; 624 bad: 625 free(pnp, M_BUS); 626 free(loc, M_BUS); 627 free(data, M_BUS); 628 return; 629 } 630 631 /* 632 * A device was added to the tree. We are called just after it successfully 633 * attaches (that is, probe and attach success for this device). No call 634 * is made if a device is merely parented into the tree. See devnomatch 635 * if probe fails. If attach fails, no notification is sent (but maybe 636 * we should have a different message for this). 637 */ 638 static void 639 devadded(device_t dev) 640 { 641 char *pnp = NULL; 642 char *tmp = NULL; 643 644 pnp = malloc(1024, M_BUS, M_NOWAIT); 645 if (pnp == NULL) 646 goto fail; 647 tmp = malloc(1024, M_BUS, M_NOWAIT); 648 if (tmp == NULL) 649 goto fail; 650 *pnp = '\0'; 651 bus_child_pnpinfo_str(dev, pnp, 1024); 652 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 653 devaddq("+", tmp, dev); 654 fail: 655 if (pnp != NULL) 656 free(pnp, M_BUS); 657 if (tmp != NULL) 658 free(tmp, M_BUS); 659 return; 660 } 661 662 /* 663 * A device was removed from the tree. We are called just before this 664 * happens. 665 */ 666 static void 667 devremoved(device_t dev) 668 { 669 char *pnp = NULL; 670 char *tmp = NULL; 671 672 pnp = malloc(1024, M_BUS, M_NOWAIT); 673 if (pnp == NULL) 674 goto fail; 675 tmp = malloc(1024, M_BUS, M_NOWAIT); 676 if (tmp == NULL) 677 goto fail; 678 *pnp = '\0'; 679 bus_child_pnpinfo_str(dev, pnp, 1024); 680 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 681 devaddq("-", tmp, dev); 682 fail: 683 if (pnp != NULL) 684 free(pnp, M_BUS); 685 if (tmp != NULL) 686 free(tmp, M_BUS); 687 return; 688 } 689 690 /* 691 * Called when there's no match for this device. This is only called 692 * the first time that no match happens, so we don't keep getitng this 693 * message. Should that prove to be undesirable, we can change it. 694 * This is called when all drivers that can attach to a given bus 695 * decline to accept this device. Other errrors may not be detected. 696 */ 697 static void 698 devnomatch(device_t dev) 699 { 700 devaddq("?", "", dev); 701 } 702 703 static int 704 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 705 { 706 struct dev_event_info *n1; 707 int dis, error; 708 709 dis = devctl_disable; 710 error = sysctl_handle_int(oidp, &dis, 0, req); 711 if (error || !req->newptr) 712 return (error); 713 mtx_lock(&devsoftc.mtx); 714 devctl_disable = dis; 715 if (dis) { 716 while (!TAILQ_EMPTY(&devsoftc.devq)) { 717 n1 = TAILQ_FIRST(&devsoftc.devq); 718 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 719 free(n1->dei_data, M_BUS); 720 free(n1, M_BUS); 721 } 722 } 723 mtx_unlock(&devsoftc.mtx); 724 return (0); 725 } 726 727 /* End of /dev/devctl code */ 728 729 TAILQ_HEAD(,device) bus_data_devices; 730 static int bus_data_generation = 1; 731 732 kobj_method_t null_methods[] = { 733 { 0, 0 } 734 }; 735 736 DEFINE_CLASS(null, null_methods, 0); 737 738 /* 739 * Devclass implementation 740 */ 741 742 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 743 744 745 /** 746 * @internal 747 * @brief Find or create a device class 748 * 749 * If a device class with the name @p classname exists, return it, 750 * otherwise if @p create is non-zero create and return a new device 751 * class. 752 * 753 * If @p parentname is non-NULL, the parent of the devclass is set to 754 * the devclass of that name. 755 * 756 * @param classname the devclass name to find or create 757 * @param parentname the parent devclass name or @c NULL 758 * @param create non-zero to create a devclass 759 */ 760 static devclass_t 761 devclass_find_internal(const char *classname, const char *parentname, 762 int create) 763 { 764 devclass_t dc; 765 766 PDEBUG(("looking for %s", classname)); 767 if (!classname) 768 return (NULL); 769 770 TAILQ_FOREACH(dc, &devclasses, link) { 771 if (!strcmp(dc->name, classname)) 772 break; 773 } 774 775 if (create && !dc) { 776 PDEBUG(("creating %s", classname)); 777 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 778 M_BUS, M_NOWAIT|M_ZERO); 779 if (!dc) 780 return (NULL); 781 dc->parent = NULL; 782 dc->name = (char*) (dc + 1); 783 strcpy(dc->name, classname); 784 TAILQ_INIT(&dc->drivers); 785 TAILQ_INSERT_TAIL(&devclasses, dc, link); 786 787 bus_data_generation_update(); 788 } 789 if (parentname && dc && !dc->parent) { 790 dc->parent = devclass_find_internal(parentname, 0, FALSE); 791 } 792 793 return (dc); 794 } 795 796 /** 797 * @brief Create a device class 798 * 799 * If a device class with the name @p classname exists, return it, 800 * otherwise create and return a new device class. 801 * 802 * @param classname the devclass name to find or create 803 */ 804 devclass_t 805 devclass_create(const char *classname) 806 { 807 return (devclass_find_internal(classname, 0, TRUE)); 808 } 809 810 /** 811 * @brief Find a device class 812 * 813 * If a device class with the name @p classname exists, return it, 814 * otherwise return @c NULL. 815 * 816 * @param classname the devclass name to find 817 */ 818 devclass_t 819 devclass_find(const char *classname) 820 { 821 return (devclass_find_internal(classname, 0, FALSE)); 822 } 823 824 /** 825 * @brief Add a device driver to a device class 826 * 827 * Add a device driver to a devclass. This is normally called 828 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 829 * all devices in the devclass will be called to allow them to attempt 830 * to re-probe any unmatched children. 831 * 832 * @param dc the devclass to edit 833 * @param driver the driver to register 834 */ 835 int 836 devclass_add_driver(devclass_t dc, driver_t *driver) 837 { 838 driverlink_t dl; 839 int i; 840 841 PDEBUG(("%s", DRIVERNAME(driver))); 842 843 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 844 if (!dl) 845 return (ENOMEM); 846 847 /* 848 * Compile the driver's methods. Also increase the reference count 849 * so that the class doesn't get freed when the last instance 850 * goes. This means we can safely use static methods and avoids a 851 * double-free in devclass_delete_driver. 852 */ 853 kobj_class_compile((kobj_class_t) driver); 854 855 /* 856 * Make sure the devclass which the driver is implementing exists. 857 */ 858 devclass_find_internal(driver->name, 0, TRUE); 859 860 dl->driver = driver; 861 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 862 driver->refs++; 863 864 /* 865 * Call BUS_DRIVER_ADDED for any existing busses in this class. 866 */ 867 for (i = 0; i < dc->maxunit; i++) 868 if (dc->devices[i]) 869 BUS_DRIVER_ADDED(dc->devices[i], driver); 870 871 bus_data_generation_update(); 872 return (0); 873 } 874 875 /** 876 * @brief Delete a device driver from a device class 877 * 878 * Delete a device driver from a devclass. This is normally called 879 * automatically by DRIVER_MODULE(). 880 * 881 * If the driver is currently attached to any devices, 882 * devclass_delete_driver() will first attempt to detach from each 883 * device. If one of the detach calls fails, the driver will not be 884 * deleted. 885 * 886 * @param dc the devclass to edit 887 * @param driver the driver to unregister 888 */ 889 int 890 devclass_delete_driver(devclass_t busclass, driver_t *driver) 891 { 892 devclass_t dc = devclass_find(driver->name); 893 driverlink_t dl; 894 device_t dev; 895 int i; 896 int error; 897 898 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 899 900 if (!dc) 901 return (0); 902 903 /* 904 * Find the link structure in the bus' list of drivers. 905 */ 906 TAILQ_FOREACH(dl, &busclass->drivers, link) { 907 if (dl->driver == driver) 908 break; 909 } 910 911 if (!dl) { 912 PDEBUG(("%s not found in %s list", driver->name, 913 busclass->name)); 914 return (ENOENT); 915 } 916 917 /* 918 * Disassociate from any devices. We iterate through all the 919 * devices in the devclass of the driver and detach any which are 920 * using the driver and which have a parent in the devclass which 921 * we are deleting from. 922 * 923 * Note that since a driver can be in multiple devclasses, we 924 * should not detach devices which are not children of devices in 925 * the affected devclass. 926 */ 927 for (i = 0; i < dc->maxunit; i++) { 928 if (dc->devices[i]) { 929 dev = dc->devices[i]; 930 if (dev->driver == driver && dev->parent && 931 dev->parent->devclass == busclass) { 932 if ((error = device_detach(dev)) != 0) 933 return (error); 934 device_set_driver(dev, NULL); 935 } 936 } 937 } 938 939 TAILQ_REMOVE(&busclass->drivers, dl, link); 940 free(dl, M_BUS); 941 942 driver->refs--; 943 if (driver->refs == 0) 944 kobj_class_free((kobj_class_t) driver); 945 946 bus_data_generation_update(); 947 return (0); 948 } 949 950 /** 951 * @internal 952 */ 953 static driverlink_t 954 devclass_find_driver_internal(devclass_t dc, const char *classname) 955 { 956 driverlink_t dl; 957 958 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 959 960 TAILQ_FOREACH(dl, &dc->drivers, link) { 961 if (!strcmp(dl->driver->name, classname)) 962 return (dl); 963 } 964 965 PDEBUG(("not found")); 966 return (NULL); 967 } 968 969 /** 970 * @brief Search a devclass for a driver 971 * 972 * This function searches the devclass's list of drivers and returns 973 * the first driver whose name is @p classname or @c NULL if there is 974 * no driver of that name. 975 * 976 * @param dc the devclass to search 977 * @param classname the driver name to search for 978 */ 979 kobj_class_t 980 devclass_find_driver(devclass_t dc, const char *classname) 981 { 982 driverlink_t dl; 983 984 dl = devclass_find_driver_internal(dc, classname); 985 if (dl) 986 return (dl->driver); 987 return (NULL); 988 } 989 990 /** 991 * @brief Return the name of the devclass 992 */ 993 const char * 994 devclass_get_name(devclass_t dc) 995 { 996 return (dc->name); 997 } 998 999 /** 1000 * @brief Find a device given a unit number 1001 * 1002 * @param dc the devclass to search 1003 * @param unit the unit number to search for 1004 * 1005 * @returns the device with the given unit number or @c 1006 * NULL if there is no such device 1007 */ 1008 device_t 1009 devclass_get_device(devclass_t dc, int unit) 1010 { 1011 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1012 return (NULL); 1013 return (dc->devices[unit]); 1014 } 1015 1016 /** 1017 * @brief Find the softc field of a device given a unit number 1018 * 1019 * @param dc the devclass to search 1020 * @param unit the unit number to search for 1021 * 1022 * @returns the softc field of the device with the given 1023 * unit number or @c NULL if there is no such 1024 * device 1025 */ 1026 void * 1027 devclass_get_softc(devclass_t dc, int unit) 1028 { 1029 device_t dev; 1030 1031 dev = devclass_get_device(dc, unit); 1032 if (!dev) 1033 return (NULL); 1034 1035 return (device_get_softc(dev)); 1036 } 1037 1038 /** 1039 * @brief Get a list of devices in the devclass 1040 * 1041 * An array containing a list of all the devices in the given devclass 1042 * is allocated and returned in @p *devlistp. The number of devices 1043 * in the array is returned in @p *devcountp. The caller should free 1044 * the array using @c free(p, M_TEMP). 1045 * 1046 * @param dc the devclass to examine 1047 * @param devlistp points at location for array pointer return 1048 * value 1049 * @param devcountp points at location for array size return value 1050 * 1051 * @retval 0 success 1052 * @retval ENOMEM the array allocation failed 1053 */ 1054 int 1055 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1056 { 1057 int i; 1058 int count; 1059 device_t *list; 1060 1061 count = 0; 1062 for (i = 0; i < dc->maxunit; i++) 1063 if (dc->devices[i]) 1064 count++; 1065 1066 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1067 if (!list) 1068 return (ENOMEM); 1069 1070 count = 0; 1071 for (i = 0; i < dc->maxunit; i++) { 1072 if (dc->devices[i]) { 1073 list[count] = dc->devices[i]; 1074 count++; 1075 } 1076 } 1077 1078 *devlistp = list; 1079 *devcountp = count; 1080 1081 return (0); 1082 } 1083 1084 /** 1085 * @brief Get the maximum unit number used in a devclass 1086 * 1087 * @param dc the devclass to examine 1088 */ 1089 int 1090 devclass_get_maxunit(devclass_t dc) 1091 { 1092 return (dc->maxunit); 1093 } 1094 1095 /** 1096 * @brief Find a free unit number in a devclass 1097 * 1098 * This function searches for the first unused unit number greater 1099 * that or equal to @p unit. 1100 * 1101 * @param dc the devclass to examine 1102 * @param unit the first unit number to check 1103 */ 1104 int 1105 devclass_find_free_unit(devclass_t dc, int unit) 1106 { 1107 if (dc == NULL) 1108 return (unit); 1109 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1110 unit++; 1111 return (unit); 1112 } 1113 1114 /** 1115 * @brief Set the parent of a devclass 1116 * 1117 * The parent class is normally initialised automatically by 1118 * DRIVER_MODULE(). 1119 * 1120 * @param dc the devclass to edit 1121 * @param pdc the new parent devclass 1122 */ 1123 void 1124 devclass_set_parent(devclass_t dc, devclass_t pdc) 1125 { 1126 dc->parent = pdc; 1127 } 1128 1129 /** 1130 * @brief Get the parent of a devclass 1131 * 1132 * @param dc the devclass to examine 1133 */ 1134 devclass_t 1135 devclass_get_parent(devclass_t dc) 1136 { 1137 return (dc->parent); 1138 } 1139 1140 struct sysctl_ctx_list * 1141 devclass_get_sysctl_ctx(devclass_t dc) 1142 { 1143 return (&dc->sysctl_ctx); 1144 } 1145 1146 struct sysctl_oid * 1147 devclass_get_sysctl_tree(devclass_t dc) 1148 { 1149 return (dc->sysctl_tree); 1150 } 1151 1152 /** 1153 * @internal 1154 * @brief Allocate a unit number 1155 * 1156 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1157 * will do). The allocated unit number is returned in @p *unitp. 1158 1159 * @param dc the devclass to allocate from 1160 * @param unitp points at the location for the allocated unit 1161 * number 1162 * 1163 * @retval 0 success 1164 * @retval EEXIST the requested unit number is already allocated 1165 * @retval ENOMEM memory allocation failure 1166 */ 1167 static int 1168 devclass_alloc_unit(devclass_t dc, int *unitp) 1169 { 1170 int unit = *unitp; 1171 1172 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1173 1174 /* If we were given a wired unit number, check for existing device */ 1175 /* XXX imp XXX */ 1176 if (unit != -1) { 1177 if (unit >= 0 && unit < dc->maxunit && 1178 dc->devices[unit] != NULL) { 1179 if (bootverbose) 1180 printf("%s: %s%d already exists; skipping it\n", 1181 dc->name, dc->name, *unitp); 1182 return (EEXIST); 1183 } 1184 } else { 1185 /* Unwired device, find the next available slot for it */ 1186 unit = 0; 1187 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1188 unit++; 1189 } 1190 1191 /* 1192 * We've selected a unit beyond the length of the table, so let's 1193 * extend the table to make room for all units up to and including 1194 * this one. 1195 */ 1196 if (unit >= dc->maxunit) { 1197 device_t *newlist; 1198 int newsize; 1199 1200 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1201 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1202 if (!newlist) 1203 return (ENOMEM); 1204 bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit); 1205 bzero(newlist + dc->maxunit, 1206 sizeof(device_t) * (newsize - dc->maxunit)); 1207 if (dc->devices) 1208 free(dc->devices, M_BUS); 1209 dc->devices = newlist; 1210 dc->maxunit = newsize; 1211 } 1212 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1213 1214 *unitp = unit; 1215 return (0); 1216 } 1217 1218 /** 1219 * @internal 1220 * @brief Add a device to a devclass 1221 * 1222 * A unit number is allocated for the device (using the device's 1223 * preferred unit number if any) and the device is registered in the 1224 * devclass. This allows the device to be looked up by its unit 1225 * number, e.g. by decoding a dev_t minor number. 1226 * 1227 * @param dc the devclass to add to 1228 * @param dev the device to add 1229 * 1230 * @retval 0 success 1231 * @retval EEXIST the requested unit number is already allocated 1232 * @retval ENOMEM memory allocation failure 1233 */ 1234 static int 1235 devclass_add_device(devclass_t dc, device_t dev) 1236 { 1237 int buflen, error; 1238 1239 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1240 1241 buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit); 1242 if (buflen < 0) 1243 return (ENOMEM); 1244 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1245 if (!dev->nameunit) 1246 return (ENOMEM); 1247 1248 if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) { 1249 free(dev->nameunit, M_BUS); 1250 dev->nameunit = NULL; 1251 return (error); 1252 } 1253 dc->devices[dev->unit] = dev; 1254 dev->devclass = dc; 1255 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1256 1257 return (0); 1258 } 1259 1260 /** 1261 * @internal 1262 * @brief Delete a device from a devclass 1263 * 1264 * The device is removed from the devclass's device list and its unit 1265 * number is freed. 1266 1267 * @param dc the devclass to delete from 1268 * @param dev the device to delete 1269 * 1270 * @retval 0 success 1271 */ 1272 static int 1273 devclass_delete_device(devclass_t dc, device_t dev) 1274 { 1275 if (!dc || !dev) 1276 return (0); 1277 1278 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1279 1280 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1281 panic("devclass_delete_device: inconsistent device class"); 1282 dc->devices[dev->unit] = NULL; 1283 if (dev->flags & DF_WILDCARD) 1284 dev->unit = -1; 1285 dev->devclass = NULL; 1286 free(dev->nameunit, M_BUS); 1287 dev->nameunit = NULL; 1288 1289 return (0); 1290 } 1291 1292 /** 1293 * @internal 1294 * @brief Make a new device and add it as a child of @p parent 1295 * 1296 * @param parent the parent of the new device 1297 * @param name the devclass name of the new device or @c NULL 1298 * to leave the devclass unspecified 1299 * @parem unit the unit number of the new device of @c -1 to 1300 * leave the unit number unspecified 1301 * 1302 * @returns the new device 1303 */ 1304 static device_t 1305 make_device(device_t parent, const char *name, int unit) 1306 { 1307 device_t dev; 1308 devclass_t dc; 1309 1310 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1311 1312 if (name) { 1313 dc = devclass_find_internal(name, 0, TRUE); 1314 if (!dc) { 1315 printf("make_device: can't find device class %s\n", 1316 name); 1317 return (NULL); 1318 } 1319 } else { 1320 dc = NULL; 1321 } 1322 1323 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1324 if (!dev) 1325 return (NULL); 1326 1327 dev->parent = parent; 1328 TAILQ_INIT(&dev->children); 1329 kobj_init((kobj_t) dev, &null_class); 1330 dev->driver = NULL; 1331 dev->devclass = NULL; 1332 dev->unit = unit; 1333 dev->nameunit = NULL; 1334 dev->desc = NULL; 1335 dev->busy = 0; 1336 dev->devflags = 0; 1337 dev->flags = DF_ENABLED; 1338 dev->order = 0; 1339 if (unit == -1) 1340 dev->flags |= DF_WILDCARD; 1341 if (name) { 1342 dev->flags |= DF_FIXEDCLASS; 1343 if (devclass_add_device(dc, dev)) { 1344 kobj_delete((kobj_t) dev, M_BUS); 1345 return (NULL); 1346 } 1347 } 1348 dev->ivars = NULL; 1349 dev->softc = NULL; 1350 1351 dev->state = DS_NOTPRESENT; 1352 1353 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1354 bus_data_generation_update(); 1355 1356 return (dev); 1357 } 1358 1359 /** 1360 * @internal 1361 * @brief Print a description of a device. 1362 */ 1363 static int 1364 device_print_child(device_t dev, device_t child) 1365 { 1366 int retval = 0; 1367 1368 if (device_is_alive(child)) 1369 retval += BUS_PRINT_CHILD(dev, child); 1370 else 1371 retval += device_printf(child, " not found\n"); 1372 1373 return (retval); 1374 } 1375 1376 /** 1377 * @brief Create a new device 1378 * 1379 * This creates a new device and adds it as a child of an existing 1380 * parent device. The new device will be added after the last existing 1381 * child with order zero. 1382 * 1383 * @param dev the device which will be the parent of the 1384 * new child device 1385 * @param name devclass name for new device or @c NULL if not 1386 * specified 1387 * @param unit unit number for new device or @c -1 if not 1388 * specified 1389 * 1390 * @returns the new device 1391 */ 1392 device_t 1393 device_add_child(device_t dev, const char *name, int unit) 1394 { 1395 return (device_add_child_ordered(dev, 0, name, unit)); 1396 } 1397 1398 /** 1399 * @brief Create a new device 1400 * 1401 * This creates a new device and adds it as a child of an existing 1402 * parent device. The new device will be added after the last existing 1403 * child with the same order. 1404 * 1405 * @param dev the device which will be the parent of the 1406 * new child device 1407 * @param order a value which is used to partially sort the 1408 * children of @p dev - devices created using 1409 * lower values of @p order appear first in @p 1410 * dev's list of children 1411 * @param name devclass name for new device or @c NULL if not 1412 * specified 1413 * @param unit unit number for new device or @c -1 if not 1414 * specified 1415 * 1416 * @returns the new device 1417 */ 1418 device_t 1419 device_add_child_ordered(device_t dev, int order, const char *name, int unit) 1420 { 1421 device_t child; 1422 device_t place; 1423 1424 PDEBUG(("%s at %s with order %d as unit %d", 1425 name, DEVICENAME(dev), order, unit)); 1426 1427 child = make_device(dev, name, unit); 1428 if (child == NULL) 1429 return (child); 1430 child->order = order; 1431 1432 TAILQ_FOREACH(place, &dev->children, link) { 1433 if (place->order > order) 1434 break; 1435 } 1436 1437 if (place) { 1438 /* 1439 * The device 'place' is the first device whose order is 1440 * greater than the new child. 1441 */ 1442 TAILQ_INSERT_BEFORE(place, child, link); 1443 } else { 1444 /* 1445 * The new child's order is greater or equal to the order of 1446 * any existing device. Add the child to the tail of the list. 1447 */ 1448 TAILQ_INSERT_TAIL(&dev->children, child, link); 1449 } 1450 1451 bus_data_generation_update(); 1452 return (child); 1453 } 1454 1455 /** 1456 * @brief Delete a device 1457 * 1458 * This function deletes a device along with all of its children. If 1459 * the device currently has a driver attached to it, the device is 1460 * detached first using device_detach(). 1461 * 1462 * @param dev the parent device 1463 * @param child the device to delete 1464 * 1465 * @retval 0 success 1466 * @retval non-zero a unit error code describing the error 1467 */ 1468 int 1469 device_delete_child(device_t dev, device_t child) 1470 { 1471 int error; 1472 device_t grandchild; 1473 1474 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1475 1476 /* remove children first */ 1477 while ( (grandchild = TAILQ_FIRST(&child->children)) ) { 1478 error = device_delete_child(child, grandchild); 1479 if (error) 1480 return (error); 1481 } 1482 1483 if ((error = device_detach(child)) != 0) 1484 return (error); 1485 if (child->devclass) 1486 devclass_delete_device(child->devclass, child); 1487 TAILQ_REMOVE(&dev->children, child, link); 1488 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1489 kobj_delete((kobj_t) child, M_BUS); 1490 1491 bus_data_generation_update(); 1492 return (0); 1493 } 1494 1495 /** 1496 * @brief Find a device given a unit number 1497 * 1498 * This is similar to devclass_get_devices() but only searches for 1499 * devices which have @p dev as a parent. 1500 * 1501 * @param dev the parent device to search 1502 * @param unit the unit number to search for 1503 * 1504 * @returns the device with the given unit number or @c 1505 * NULL if there is no such device 1506 */ 1507 device_t 1508 device_find_child(device_t dev, const char *classname, int unit) 1509 { 1510 devclass_t dc; 1511 device_t child; 1512 1513 dc = devclass_find(classname); 1514 if (!dc) 1515 return (NULL); 1516 1517 child = devclass_get_device(dc, unit); 1518 if (child && child->parent == dev) 1519 return (child); 1520 return (NULL); 1521 } 1522 1523 /** 1524 * @internal 1525 */ 1526 static driverlink_t 1527 first_matching_driver(devclass_t dc, device_t dev) 1528 { 1529 if (dev->devclass) 1530 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1531 return (TAILQ_FIRST(&dc->drivers)); 1532 } 1533 1534 /** 1535 * @internal 1536 */ 1537 static driverlink_t 1538 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1539 { 1540 if (dev->devclass) { 1541 driverlink_t dl; 1542 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1543 if (!strcmp(dev->devclass->name, dl->driver->name)) 1544 return (dl); 1545 return (NULL); 1546 } 1547 return (TAILQ_NEXT(last, link)); 1548 } 1549 1550 /** 1551 * @internal 1552 */ 1553 static int 1554 device_probe_child(device_t dev, device_t child) 1555 { 1556 devclass_t dc; 1557 driverlink_t best = 0; 1558 driverlink_t dl; 1559 int result, pri = 0; 1560 int hasclass = (child->devclass != 0); 1561 1562 dc = dev->devclass; 1563 if (!dc) 1564 panic("device_probe_child: parent device has no devclass"); 1565 1566 /* 1567 * If the state is already probed, then return. However, don't 1568 * return if we can rebid this object. 1569 */ 1570 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 1571 return (0); 1572 1573 for (; dc; dc = dc->parent) { 1574 for (dl = first_matching_driver(dc, child); 1575 dl; 1576 dl = next_matching_driver(dc, child, dl)) { 1577 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1578 device_set_driver(child, dl->driver); 1579 if (!hasclass) 1580 device_set_devclass(child, dl->driver->name); 1581 result = DEVICE_PROBE(child); 1582 if (!hasclass) 1583 device_set_devclass(child, 0); 1584 1585 /* 1586 * If the driver returns SUCCESS, there can be 1587 * no higher match for this device. 1588 */ 1589 if (result == 0) { 1590 best = dl; 1591 pri = 0; 1592 break; 1593 } 1594 1595 /* 1596 * The driver returned an error so it 1597 * certainly doesn't match. 1598 */ 1599 if (result > 0) { 1600 device_set_driver(child, 0); 1601 continue; 1602 } 1603 1604 /* 1605 * A priority lower than SUCCESS, remember the 1606 * best matching driver. Initialise the value 1607 * of pri for the first match. 1608 */ 1609 if (best == 0 || result > pri) { 1610 best = dl; 1611 pri = result; 1612 continue; 1613 } 1614 } 1615 /* 1616 * If we have an unambiguous match in this devclass, 1617 * don't look in the parent. 1618 */ 1619 if (best && pri == 0) 1620 break; 1621 } 1622 1623 /* 1624 * If we found a driver, change state and initialise the devclass. 1625 */ 1626 /* XXX What happens if we rebid and got no best? */ 1627 if (best) { 1628 /* 1629 * If this device was atached, and we were asked to 1630 * rescan, and it is a different driver, then we have 1631 * to detach the old driver and reattach this new one. 1632 * Note, we don't have to check for DF_REBID here 1633 * because if the state is > DS_ALIVE, we know it must 1634 * be. 1635 * 1636 * This assumes that all DF_REBID drivers can have 1637 * their probe routine called at any time and that 1638 * they are idempotent as well as completely benign in 1639 * normal operations. 1640 * 1641 * We also have to make sure that the detach 1642 * succeeded, otherwise we fail the operation (or 1643 * maybe it should just fail silently? I'm torn). 1644 */ 1645 if (child->state > DS_ALIVE && best->driver != child->driver) 1646 if ((result = device_detach(dev)) != 0) 1647 return (result); 1648 if (!child->devclass) 1649 device_set_devclass(child, best->driver->name); 1650 device_set_driver(child, best->driver); 1651 if (pri < 0) { 1652 /* 1653 * A bit bogus. Call the probe method again to make 1654 * sure that we have the right description. 1655 */ 1656 DEVICE_PROBE(child); 1657 #if 0 1658 child->flags |= DF_REBID; 1659 #endif 1660 } else 1661 child->flags &= ~DF_REBID; 1662 child->state = DS_ALIVE; 1663 1664 bus_data_generation_update(); 1665 return (0); 1666 } 1667 1668 return (ENXIO); 1669 } 1670 1671 /** 1672 * @brief Return the parent of a device 1673 */ 1674 device_t 1675 device_get_parent(device_t dev) 1676 { 1677 return (dev->parent); 1678 } 1679 1680 /** 1681 * @brief Get a list of children of a device 1682 * 1683 * An array containing a list of all the children of the given device 1684 * is allocated and returned in @p *devlistp. The number of devices 1685 * in the array is returned in @p *devcountp. The caller should free 1686 * the array using @c free(p, M_TEMP). 1687 * 1688 * @param dev the device to examine 1689 * @param devlistp points at location for array pointer return 1690 * value 1691 * @param devcountp points at location for array size return value 1692 * 1693 * @retval 0 success 1694 * @retval ENOMEM the array allocation failed 1695 */ 1696 int 1697 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1698 { 1699 int count; 1700 device_t child; 1701 device_t *list; 1702 1703 count = 0; 1704 TAILQ_FOREACH(child, &dev->children, link) { 1705 count++; 1706 } 1707 1708 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1709 if (!list) 1710 return (ENOMEM); 1711 1712 count = 0; 1713 TAILQ_FOREACH(child, &dev->children, link) { 1714 list[count] = child; 1715 count++; 1716 } 1717 1718 *devlistp = list; 1719 *devcountp = count; 1720 1721 return (0); 1722 } 1723 1724 /** 1725 * @brief Return the current driver for the device or @c NULL if there 1726 * is no driver currently attached 1727 */ 1728 driver_t * 1729 device_get_driver(device_t dev) 1730 { 1731 return (dev->driver); 1732 } 1733 1734 /** 1735 * @brief Return the current devclass for the device or @c NULL if 1736 * there is none. 1737 */ 1738 devclass_t 1739 device_get_devclass(device_t dev) 1740 { 1741 return (dev->devclass); 1742 } 1743 1744 /** 1745 * @brief Return the name of the device's devclass or @c NULL if there 1746 * is none. 1747 */ 1748 const char * 1749 device_get_name(device_t dev) 1750 { 1751 if (dev != NULL && dev->devclass) 1752 return (devclass_get_name(dev->devclass)); 1753 return (NULL); 1754 } 1755 1756 /** 1757 * @brief Return a string containing the device's devclass name 1758 * followed by an ascii representation of the device's unit number 1759 * (e.g. @c "foo2"). 1760 */ 1761 const char * 1762 device_get_nameunit(device_t dev) 1763 { 1764 return (dev->nameunit); 1765 } 1766 1767 /** 1768 * @brief Return the device's unit number. 1769 */ 1770 int 1771 device_get_unit(device_t dev) 1772 { 1773 return (dev->unit); 1774 } 1775 1776 /** 1777 * @brief Return the device's description string 1778 */ 1779 const char * 1780 device_get_desc(device_t dev) 1781 { 1782 return (dev->desc); 1783 } 1784 1785 /** 1786 * @brief Return the device's flags 1787 */ 1788 u_int32_t 1789 device_get_flags(device_t dev) 1790 { 1791 return (dev->devflags); 1792 } 1793 1794 struct sysctl_ctx_list * 1795 device_get_sysctl_ctx(device_t dev) 1796 { 1797 return (&dev->sysctl_ctx); 1798 } 1799 1800 struct sysctl_oid * 1801 device_get_sysctl_tree(device_t dev) 1802 { 1803 return (dev->sysctl_tree); 1804 } 1805 1806 /** 1807 * @brief Print the name of the device followed by a colon and a space 1808 * 1809 * @returns the number of characters printed 1810 */ 1811 int 1812 device_print_prettyname(device_t dev) 1813 { 1814 const char *name = device_get_name(dev); 1815 1816 if (name == 0) 1817 return (printf("unknown: ")); 1818 return (printf("%s%d: ", name, device_get_unit(dev))); 1819 } 1820 1821 /** 1822 * @brief Print the name of the device followed by a colon, a space 1823 * and the result of calling vprintf() with the value of @p fmt and 1824 * the following arguments. 1825 * 1826 * @returns the number of characters printed 1827 */ 1828 int 1829 device_printf(device_t dev, const char * fmt, ...) 1830 { 1831 va_list ap; 1832 int retval; 1833 1834 retval = device_print_prettyname(dev); 1835 va_start(ap, fmt); 1836 retval += vprintf(fmt, ap); 1837 va_end(ap); 1838 return (retval); 1839 } 1840 1841 /** 1842 * @internal 1843 */ 1844 static void 1845 device_set_desc_internal(device_t dev, const char* desc, int copy) 1846 { 1847 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 1848 free(dev->desc, M_BUS); 1849 dev->flags &= ~DF_DESCMALLOCED; 1850 dev->desc = NULL; 1851 } 1852 1853 if (copy && desc) { 1854 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 1855 if (dev->desc) { 1856 strcpy(dev->desc, desc); 1857 dev->flags |= DF_DESCMALLOCED; 1858 } 1859 } else { 1860 /* Avoid a -Wcast-qual warning */ 1861 dev->desc = (char *)(uintptr_t) desc; 1862 } 1863 1864 bus_data_generation_update(); 1865 } 1866 1867 /** 1868 * @brief Set the device's description 1869 * 1870 * The value of @c desc should be a string constant that will not 1871 * change (at least until the description is changed in a subsequent 1872 * call to device_set_desc() or device_set_desc_copy()). 1873 */ 1874 void 1875 device_set_desc(device_t dev, const char* desc) 1876 { 1877 device_set_desc_internal(dev, desc, FALSE); 1878 } 1879 1880 /** 1881 * @brief Set the device's description 1882 * 1883 * The string pointed to by @c desc is copied. Use this function if 1884 * the device description is generated, (e.g. with sprintf()). 1885 */ 1886 void 1887 device_set_desc_copy(device_t dev, const char* desc) 1888 { 1889 device_set_desc_internal(dev, desc, TRUE); 1890 } 1891 1892 /** 1893 * @brief Set the device's flags 1894 */ 1895 void 1896 device_set_flags(device_t dev, u_int32_t flags) 1897 { 1898 dev->devflags = flags; 1899 } 1900 1901 /** 1902 * @brief Return the device's softc field 1903 * 1904 * The softc is allocated and zeroed when a driver is attached, based 1905 * on the size field of the driver. 1906 */ 1907 void * 1908 device_get_softc(device_t dev) 1909 { 1910 return (dev->softc); 1911 } 1912 1913 /** 1914 * @brief Set the device's softc field 1915 * 1916 * Most drivers do not need to use this since the softc is allocated 1917 * automatically when the driver is attached. 1918 */ 1919 void 1920 device_set_softc(device_t dev, void *softc) 1921 { 1922 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 1923 free(dev->softc, M_BUS_SC); 1924 dev->softc = softc; 1925 if (dev->softc) 1926 dev->flags |= DF_EXTERNALSOFTC; 1927 else 1928 dev->flags &= ~DF_EXTERNALSOFTC; 1929 } 1930 1931 /** 1932 * @brief Get the device's ivars field 1933 * 1934 * The ivars field is used by the parent device to store per-device 1935 * state (e.g. the physical location of the device or a list of 1936 * resources). 1937 */ 1938 void * 1939 device_get_ivars(device_t dev) 1940 { 1941 1942 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 1943 return (dev->ivars); 1944 } 1945 1946 /** 1947 * @brief Set the device's ivars field 1948 */ 1949 void 1950 device_set_ivars(device_t dev, void * ivars) 1951 { 1952 1953 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 1954 dev->ivars = ivars; 1955 } 1956 1957 /** 1958 * @brief Return the device's state 1959 */ 1960 device_state_t 1961 device_get_state(device_t dev) 1962 { 1963 return (dev->state); 1964 } 1965 1966 /** 1967 * @brief Set the DF_ENABLED flag for the device 1968 */ 1969 void 1970 device_enable(device_t dev) 1971 { 1972 dev->flags |= DF_ENABLED; 1973 } 1974 1975 /** 1976 * @brief Clear the DF_ENABLED flag for the device 1977 */ 1978 void 1979 device_disable(device_t dev) 1980 { 1981 dev->flags &= ~DF_ENABLED; 1982 } 1983 1984 /** 1985 * @brief Increment the busy counter for the device 1986 */ 1987 void 1988 device_busy(device_t dev) 1989 { 1990 if (dev->state < DS_ATTACHED) 1991 panic("device_busy: called for unattached device"); 1992 if (dev->busy == 0 && dev->parent) 1993 device_busy(dev->parent); 1994 dev->busy++; 1995 dev->state = DS_BUSY; 1996 } 1997 1998 /** 1999 * @brief Decrement the busy counter for the device 2000 */ 2001 void 2002 device_unbusy(device_t dev) 2003 { 2004 if (dev->state != DS_BUSY) 2005 panic("device_unbusy: called for non-busy device"); 2006 dev->busy--; 2007 if (dev->busy == 0) { 2008 if (dev->parent) 2009 device_unbusy(dev->parent); 2010 dev->state = DS_ATTACHED; 2011 } 2012 } 2013 2014 /** 2015 * @brief Set the DF_QUIET flag for the device 2016 */ 2017 void 2018 device_quiet(device_t dev) 2019 { 2020 dev->flags |= DF_QUIET; 2021 } 2022 2023 /** 2024 * @brief Clear the DF_QUIET flag for the device 2025 */ 2026 void 2027 device_verbose(device_t dev) 2028 { 2029 dev->flags &= ~DF_QUIET; 2030 } 2031 2032 /** 2033 * @brief Return non-zero if the DF_QUIET flag is set on the device 2034 */ 2035 int 2036 device_is_quiet(device_t dev) 2037 { 2038 return ((dev->flags & DF_QUIET) != 0); 2039 } 2040 2041 /** 2042 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2043 */ 2044 int 2045 device_is_enabled(device_t dev) 2046 { 2047 return ((dev->flags & DF_ENABLED) != 0); 2048 } 2049 2050 /** 2051 * @brief Return non-zero if the device was successfully probed 2052 */ 2053 int 2054 device_is_alive(device_t dev) 2055 { 2056 return (dev->state >= DS_ALIVE); 2057 } 2058 2059 /** 2060 * @brief Return non-zero if the device currently has a driver 2061 * attached to it 2062 */ 2063 int 2064 device_is_attached(device_t dev) 2065 { 2066 return (dev->state >= DS_ATTACHED); 2067 } 2068 2069 /** 2070 * @brief Set the devclass of a device 2071 * @see devclass_add_device(). 2072 */ 2073 int 2074 device_set_devclass(device_t dev, const char *classname) 2075 { 2076 devclass_t dc; 2077 int error; 2078 2079 if (!classname) { 2080 if (dev->devclass) 2081 devclass_delete_device(dev->devclass, dev); 2082 return (0); 2083 } 2084 2085 if (dev->devclass) { 2086 printf("device_set_devclass: device class already set\n"); 2087 return (EINVAL); 2088 } 2089 2090 dc = devclass_find_internal(classname, 0, TRUE); 2091 if (!dc) 2092 return (ENOMEM); 2093 2094 error = devclass_add_device(dc, dev); 2095 2096 bus_data_generation_update(); 2097 return (error); 2098 } 2099 2100 /** 2101 * @brief Set the driver of a device 2102 * 2103 * @retval 0 success 2104 * @retval EBUSY the device already has a driver attached 2105 * @retval ENOMEM a memory allocation failure occurred 2106 */ 2107 int 2108 device_set_driver(device_t dev, driver_t *driver) 2109 { 2110 if (dev->state >= DS_ATTACHED) 2111 return (EBUSY); 2112 2113 if (dev->driver == driver) 2114 return (0); 2115 2116 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2117 free(dev->softc, M_BUS_SC); 2118 dev->softc = NULL; 2119 } 2120 kobj_delete((kobj_t) dev, 0); 2121 dev->driver = driver; 2122 if (driver) { 2123 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2124 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2125 dev->softc = malloc(driver->size, M_BUS_SC, 2126 M_NOWAIT | M_ZERO); 2127 if (!dev->softc) { 2128 kobj_delete((kobj_t) dev, 0); 2129 kobj_init((kobj_t) dev, &null_class); 2130 dev->driver = NULL; 2131 return (ENOMEM); 2132 } 2133 } 2134 } else { 2135 kobj_init((kobj_t) dev, &null_class); 2136 } 2137 2138 bus_data_generation_update(); 2139 return (0); 2140 } 2141 2142 /** 2143 * @brief Probe a device and attach a driver if possible 2144 * 2145 * This function is the core of the device autoconfiguration 2146 * system. Its purpose is to select a suitable driver for a device and 2147 * then call that driver to initialise the hardware appropriately. The 2148 * driver is selected by calling the DEVICE_PROBE() method of a set of 2149 * candidate drivers and then choosing the driver which returned the 2150 * best value. This driver is then attached to the device using 2151 * device_attach(). 2152 * 2153 * The set of suitable drivers is taken from the list of drivers in 2154 * the parent device's devclass. If the device was originally created 2155 * with a specific class name (see device_add_child()), only drivers 2156 * with that name are probed, otherwise all drivers in the devclass 2157 * are probed. If no drivers return successful probe values in the 2158 * parent devclass, the search continues in the parent of that 2159 * devclass (see devclass_get_parent()) if any. 2160 * 2161 * @param dev the device to initialise 2162 * 2163 * @retval 0 success 2164 * @retval ENXIO no driver was found 2165 * @retval ENOMEM memory allocation failure 2166 * @retval non-zero some other unix error code 2167 */ 2168 int 2169 device_probe_and_attach(device_t dev) 2170 { 2171 int error; 2172 2173 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2174 return (0); 2175 2176 if (!(dev->flags & DF_ENABLED)) { 2177 if (bootverbose) { 2178 device_print_prettyname(dev); 2179 printf("not probed (disabled)\n"); 2180 } 2181 return (0); 2182 } 2183 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2184 if (!(dev->flags & DF_DONENOMATCH)) { 2185 BUS_PROBE_NOMATCH(dev->parent, dev); 2186 devnomatch(dev); 2187 dev->flags |= DF_DONENOMATCH; 2188 } 2189 return (error); 2190 } 2191 error = device_attach(dev); 2192 2193 return (error); 2194 } 2195 2196 /** 2197 * @brief Attach a device driver to a device 2198 * 2199 * This function is a wrapper around the DEVICE_ATTACH() driver 2200 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2201 * device's sysctl tree, optionally prints a description of the device 2202 * and queues a notification event for user-based device management 2203 * services. 2204 * 2205 * Normally this function is only called internally from 2206 * device_probe_and_attach(). 2207 * 2208 * @param dev the device to initialise 2209 * 2210 * @retval 0 success 2211 * @retval ENXIO no driver was found 2212 * @retval ENOMEM memory allocation failure 2213 * @retval non-zero some other unix error code 2214 */ 2215 int 2216 device_attach(device_t dev) 2217 { 2218 int error; 2219 2220 device_sysctl_init(dev); 2221 if (!device_is_quiet(dev)) 2222 device_print_child(dev->parent, dev); 2223 if ((error = DEVICE_ATTACH(dev)) != 0) { 2224 printf("device_attach: %s%d attach returned %d\n", 2225 dev->driver->name, dev->unit, error); 2226 /* Unset the class; set in device_probe_child */ 2227 if (dev->devclass == 0) 2228 device_set_devclass(dev, 0); 2229 device_set_driver(dev, NULL); 2230 device_sysctl_fini(dev); 2231 dev->state = DS_NOTPRESENT; 2232 return (error); 2233 } 2234 dev->state = DS_ATTACHED; 2235 devadded(dev); 2236 return (0); 2237 } 2238 2239 /** 2240 * @brief Detach a driver from a device 2241 * 2242 * This function is a wrapper around the DEVICE_DETACH() driver 2243 * method. If the call to DEVICE_DETACH() succeeds, it calls 2244 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2245 * notification event for user-based device management services and 2246 * cleans up the device's sysctl tree. 2247 * 2248 * @param dev the device to un-initialise 2249 * 2250 * @retval 0 success 2251 * @retval ENXIO no driver was found 2252 * @retval ENOMEM memory allocation failure 2253 * @retval non-zero some other unix error code 2254 */ 2255 int 2256 device_detach(device_t dev) 2257 { 2258 int error; 2259 2260 PDEBUG(("%s", DEVICENAME(dev))); 2261 if (dev->state == DS_BUSY) 2262 return (EBUSY); 2263 if (dev->state != DS_ATTACHED) 2264 return (0); 2265 2266 if ((error = DEVICE_DETACH(dev)) != 0) 2267 return (error); 2268 devremoved(dev); 2269 device_printf(dev, "detached\n"); 2270 if (dev->parent) 2271 BUS_CHILD_DETACHED(dev->parent, dev); 2272 2273 if (!(dev->flags & DF_FIXEDCLASS)) 2274 devclass_delete_device(dev->devclass, dev); 2275 2276 dev->state = DS_NOTPRESENT; 2277 device_set_driver(dev, NULL); 2278 device_set_desc(dev, NULL); 2279 device_sysctl_fini(dev); 2280 2281 return (0); 2282 } 2283 2284 /** 2285 * @brief Notify a device of system shutdown 2286 * 2287 * This function calls the DEVICE_SHUTDOWN() driver method if the 2288 * device currently has an attached driver. 2289 * 2290 * @returns the value returned by DEVICE_SHUTDOWN() 2291 */ 2292 int 2293 device_shutdown(device_t dev) 2294 { 2295 if (dev->state < DS_ATTACHED) 2296 return (0); 2297 return (DEVICE_SHUTDOWN(dev)); 2298 } 2299 2300 /** 2301 * @brief Set the unit number of a device 2302 * 2303 * This function can be used to override the unit number used for a 2304 * device (e.g. to wire a device to a pre-configured unit number). 2305 */ 2306 int 2307 device_set_unit(device_t dev, int unit) 2308 { 2309 devclass_t dc; 2310 int err; 2311 2312 dc = device_get_devclass(dev); 2313 if (unit < dc->maxunit && dc->devices[unit]) 2314 return (EBUSY); 2315 err = devclass_delete_device(dc, dev); 2316 if (err) 2317 return (err); 2318 dev->unit = unit; 2319 err = devclass_add_device(dc, dev); 2320 if (err) 2321 return (err); 2322 2323 bus_data_generation_update(); 2324 return (0); 2325 } 2326 2327 /*======================================*/ 2328 /* 2329 * Some useful method implementations to make life easier for bus drivers. 2330 */ 2331 2332 /** 2333 * @brief Initialise a resource list. 2334 * 2335 * @param rl the resource list to initialise 2336 */ 2337 void 2338 resource_list_init(struct resource_list *rl) 2339 { 2340 SLIST_INIT(rl); 2341 } 2342 2343 /** 2344 * @brief Reclaim memory used by a resource list. 2345 * 2346 * This function frees the memory for all resource entries on the list 2347 * (if any). 2348 * 2349 * @param rl the resource list to free 2350 */ 2351 void 2352 resource_list_free(struct resource_list *rl) 2353 { 2354 struct resource_list_entry *rle; 2355 2356 while ((rle = SLIST_FIRST(rl)) != NULL) { 2357 if (rle->res) 2358 panic("resource_list_free: resource entry is busy"); 2359 SLIST_REMOVE_HEAD(rl, link); 2360 free(rle, M_BUS); 2361 } 2362 } 2363 2364 /** 2365 * @brief Add a resource entry. 2366 * 2367 * This function adds a resource entry using the given @p type, @p 2368 * start, @p end and @p count values. A rid value is chosen by 2369 * searching sequentially for the first unused rid starting at zero. 2370 * 2371 * @param rl the resource list to edit 2372 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2373 * @param start the start address of the resource 2374 * @param end the end address of the resource 2375 * @param count XXX end-start+1 2376 */ 2377 int 2378 resource_list_add_next(struct resource_list *rl, int type, u_long start, 2379 u_long end, u_long count) 2380 { 2381 int rid; 2382 2383 rid = 0; 2384 while (resource_list_find(rl, type, rid) != NULL) 2385 rid++; 2386 resource_list_add(rl, type, rid, start, end, count); 2387 return (rid); 2388 } 2389 2390 /** 2391 * @brief Add or modify a resource entry. 2392 * 2393 * If an existing entry exists with the same type and rid, it will be 2394 * modified using the given values of @p start, @p end and @p 2395 * count. If no entry exists, a new one will be created using the 2396 * given values. 2397 * 2398 * @param rl the resource list to edit 2399 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2400 * @param rid the resource identifier 2401 * @param start the start address of the resource 2402 * @param end the end address of the resource 2403 * @param count XXX end-start+1 2404 */ 2405 void 2406 resource_list_add(struct resource_list *rl, int type, int rid, 2407 u_long start, u_long end, u_long count) 2408 { 2409 struct resource_list_entry *rle; 2410 2411 rle = resource_list_find(rl, type, rid); 2412 if (!rle) { 2413 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2414 M_NOWAIT); 2415 if (!rle) 2416 panic("resource_list_add: can't record entry"); 2417 SLIST_INSERT_HEAD(rl, rle, link); 2418 rle->type = type; 2419 rle->rid = rid; 2420 rle->res = NULL; 2421 } 2422 2423 if (rle->res) 2424 panic("resource_list_add: resource entry is busy"); 2425 2426 rle->start = start; 2427 rle->end = end; 2428 rle->count = count; 2429 } 2430 2431 /** 2432 * @brief Find a resource entry by type and rid. 2433 * 2434 * @param rl the resource list to search 2435 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2436 * @param rid the resource identifier 2437 * 2438 * @returns the resource entry pointer or NULL if there is no such 2439 * entry. 2440 */ 2441 struct resource_list_entry * 2442 resource_list_find(struct resource_list *rl, int type, int rid) 2443 { 2444 struct resource_list_entry *rle; 2445 2446 SLIST_FOREACH(rle, rl, link) { 2447 if (rle->type == type && rle->rid == rid) 2448 return (rle); 2449 } 2450 return (NULL); 2451 } 2452 2453 /** 2454 * @brief Delete a resource entry. 2455 * 2456 * @param rl the resource list to edit 2457 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2458 * @param rid the resource identifier 2459 */ 2460 void 2461 resource_list_delete(struct resource_list *rl, int type, int rid) 2462 { 2463 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2464 2465 if (rle) { 2466 if (rle->res != NULL) 2467 panic("resource_list_delete: resource has not been released"); 2468 SLIST_REMOVE(rl, rle, resource_list_entry, link); 2469 free(rle, M_BUS); 2470 } 2471 } 2472 2473 /** 2474 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 2475 * 2476 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 2477 * and passing the allocation up to the parent of @p bus. This assumes 2478 * that the first entry of @c device_get_ivars(child) is a struct 2479 * resource_list. This also handles 'passthrough' allocations where a 2480 * child is a remote descendant of bus by passing the allocation up to 2481 * the parent of bus. 2482 * 2483 * Typically, a bus driver would store a list of child resources 2484 * somewhere in the child device's ivars (see device_get_ivars()) and 2485 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 2486 * then call resource_list_alloc() to perform the allocation. 2487 * 2488 * @param rl the resource list to allocate from 2489 * @param bus the parent device of @p child 2490 * @param child the device which is requesting an allocation 2491 * @param type the type of resource to allocate 2492 * @param rid a pointer to the resource identifier 2493 * @param start hint at the start of the resource range - pass 2494 * @c 0UL for any start address 2495 * @param end hint at the end of the resource range - pass 2496 * @c ~0UL for any end address 2497 * @param count hint at the size of range required - pass @c 1 2498 * for any size 2499 * @param flags any extra flags to control the resource 2500 * allocation - see @c RF_XXX flags in 2501 * <sys/rman.h> for details 2502 * 2503 * @returns the resource which was allocated or @c NULL if no 2504 * resource could be allocated 2505 */ 2506 struct resource * 2507 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 2508 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 2509 { 2510 struct resource_list_entry *rle = 0; 2511 int passthrough = (device_get_parent(child) != bus); 2512 int isdefault = (start == 0UL && end == ~0UL); 2513 2514 if (passthrough) { 2515 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2516 type, rid, start, end, count, flags)); 2517 } 2518 2519 rle = resource_list_find(rl, type, *rid); 2520 2521 if (!rle) 2522 return (NULL); /* no resource of that type/rid */ 2523 2524 if (rle->res) 2525 panic("resource_list_alloc: resource entry is busy"); 2526 2527 if (isdefault) { 2528 start = rle->start; 2529 count = ulmax(count, rle->count); 2530 end = ulmax(rle->end, start + count - 1); 2531 } 2532 2533 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2534 type, rid, start, end, count, flags); 2535 2536 /* 2537 * Record the new range. 2538 */ 2539 if (rle->res) { 2540 rle->start = rman_get_start(rle->res); 2541 rle->end = rman_get_end(rle->res); 2542 rle->count = count; 2543 } 2544 2545 return (rle->res); 2546 } 2547 2548 /** 2549 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 2550 * 2551 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 2552 * used with resource_list_alloc(). 2553 * 2554 * @param rl the resource list which was allocated from 2555 * @param bus the parent device of @p child 2556 * @param child the device which is requesting a release 2557 * @param type the type of resource to allocate 2558 * @param rid the resource identifier 2559 * @param res the resource to release 2560 * 2561 * @retval 0 success 2562 * @retval non-zero a standard unix error code indicating what 2563 * error condition prevented the operation 2564 */ 2565 int 2566 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 2567 int type, int rid, struct resource *res) 2568 { 2569 struct resource_list_entry *rle = 0; 2570 int passthrough = (device_get_parent(child) != bus); 2571 int error; 2572 2573 if (passthrough) { 2574 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2575 type, rid, res)); 2576 } 2577 2578 rle = resource_list_find(rl, type, rid); 2579 2580 if (!rle) 2581 panic("resource_list_release: can't find resource"); 2582 if (!rle->res) 2583 panic("resource_list_release: resource entry is not busy"); 2584 2585 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2586 type, rid, res); 2587 if (error) 2588 return (error); 2589 2590 rle->res = NULL; 2591 return (0); 2592 } 2593 2594 /** 2595 * @brief Print a description of resources in a resource list 2596 * 2597 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 2598 * The name is printed if at least one resource of the given type is available. 2599 * The format is used to print resource start and end. 2600 * 2601 * @param rl the resource list to print 2602 * @param name the name of @p type, e.g. @c "memory" 2603 * @param type type type of resource entry to print 2604 * @param format printf(9) format string to print resource 2605 * start and end values 2606 * 2607 * @returns the number of characters printed 2608 */ 2609 int 2610 resource_list_print_type(struct resource_list *rl, const char *name, int type, 2611 const char *format) 2612 { 2613 struct resource_list_entry *rle; 2614 int printed, retval; 2615 2616 printed = 0; 2617 retval = 0; 2618 /* Yes, this is kinda cheating */ 2619 SLIST_FOREACH(rle, rl, link) { 2620 if (rle->type == type) { 2621 if (printed == 0) 2622 retval += printf(" %s ", name); 2623 else 2624 retval += printf(","); 2625 printed++; 2626 retval += printf(format, rle->start); 2627 if (rle->count > 1) { 2628 retval += printf("-"); 2629 retval += printf(format, rle->start + 2630 rle->count - 1); 2631 } 2632 } 2633 } 2634 return (retval); 2635 } 2636 2637 /** 2638 * @brief Helper function for implementing DEVICE_PROBE() 2639 * 2640 * This function can be used to help implement the DEVICE_PROBE() for 2641 * a bus (i.e. a device which has other devices attached to it). It 2642 * calls the DEVICE_IDENTIFY() method of each driver in the device's 2643 * devclass. 2644 */ 2645 int 2646 bus_generic_probe(device_t dev) 2647 { 2648 devclass_t dc = dev->devclass; 2649 driverlink_t dl; 2650 2651 TAILQ_FOREACH(dl, &dc->drivers, link) { 2652 DEVICE_IDENTIFY(dl->driver, dev); 2653 } 2654 2655 return (0); 2656 } 2657 2658 /** 2659 * @brief Helper function for implementing DEVICE_ATTACH() 2660 * 2661 * This function can be used to help implement the DEVICE_ATTACH() for 2662 * a bus. It calls device_probe_and_attach() for each of the device's 2663 * children. 2664 */ 2665 int 2666 bus_generic_attach(device_t dev) 2667 { 2668 device_t child; 2669 2670 TAILQ_FOREACH(child, &dev->children, link) { 2671 device_probe_and_attach(child); 2672 } 2673 2674 return (0); 2675 } 2676 2677 /** 2678 * @brief Helper function for implementing DEVICE_DETACH() 2679 * 2680 * This function can be used to help implement the DEVICE_DETACH() for 2681 * a bus. It calls device_detach() for each of the device's 2682 * children. 2683 */ 2684 int 2685 bus_generic_detach(device_t dev) 2686 { 2687 device_t child; 2688 int error; 2689 2690 if (dev->state != DS_ATTACHED) 2691 return (EBUSY); 2692 2693 TAILQ_FOREACH(child, &dev->children, link) { 2694 if ((error = device_detach(child)) != 0) 2695 return (error); 2696 } 2697 2698 return (0); 2699 } 2700 2701 /** 2702 * @brief Helper function for implementing DEVICE_SHUTDOWN() 2703 * 2704 * This function can be used to help implement the DEVICE_SHUTDOWN() 2705 * for a bus. It calls device_shutdown() for each of the device's 2706 * children. 2707 */ 2708 int 2709 bus_generic_shutdown(device_t dev) 2710 { 2711 device_t child; 2712 2713 TAILQ_FOREACH(child, &dev->children, link) { 2714 device_shutdown(child); 2715 } 2716 2717 return (0); 2718 } 2719 2720 /** 2721 * @brief Helper function for implementing DEVICE_SUSPEND() 2722 * 2723 * This function can be used to help implement the DEVICE_SUSPEND() 2724 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 2725 * children. If any call to DEVICE_SUSPEND() fails, the suspend 2726 * operation is aborted and any devices which were suspended are 2727 * resumed immediately by calling their DEVICE_RESUME() methods. 2728 */ 2729 int 2730 bus_generic_suspend(device_t dev) 2731 { 2732 int error; 2733 device_t child, child2; 2734 2735 TAILQ_FOREACH(child, &dev->children, link) { 2736 error = DEVICE_SUSPEND(child); 2737 if (error) { 2738 for (child2 = TAILQ_FIRST(&dev->children); 2739 child2 && child2 != child; 2740 child2 = TAILQ_NEXT(child2, link)) 2741 DEVICE_RESUME(child2); 2742 return (error); 2743 } 2744 } 2745 return (0); 2746 } 2747 2748 /** 2749 * @brief Helper function for implementing DEVICE_RESUME() 2750 * 2751 * This function can be used to help implement the DEVICE_RESUME() for 2752 * a bus. It calls DEVICE_RESUME() on each of the device's children. 2753 */ 2754 int 2755 bus_generic_resume(device_t dev) 2756 { 2757 device_t child; 2758 2759 TAILQ_FOREACH(child, &dev->children, link) { 2760 DEVICE_RESUME(child); 2761 /* if resume fails, there's nothing we can usefully do... */ 2762 } 2763 return (0); 2764 } 2765 2766 /** 2767 * @brief Helper function for implementing BUS_PRINT_CHILD(). 2768 * 2769 * This function prints the first part of the ascii representation of 2770 * @p child, including its name, unit and description (if any - see 2771 * device_set_desc()). 2772 * 2773 * @returns the number of characters printed 2774 */ 2775 int 2776 bus_print_child_header(device_t dev, device_t child) 2777 { 2778 int retval = 0; 2779 2780 if (device_get_desc(child)) { 2781 retval += device_printf(child, "<%s>", device_get_desc(child)); 2782 } else { 2783 retval += printf("%s", device_get_nameunit(child)); 2784 } 2785 2786 return (retval); 2787 } 2788 2789 /** 2790 * @brief Helper function for implementing BUS_PRINT_CHILD(). 2791 * 2792 * This function prints the last part of the ascii representation of 2793 * @p child, which consists of the string @c " on " followed by the 2794 * name and unit of the @p dev. 2795 * 2796 * @returns the number of characters printed 2797 */ 2798 int 2799 bus_print_child_footer(device_t dev, device_t child) 2800 { 2801 return (printf(" on %s\n", device_get_nameunit(dev))); 2802 } 2803 2804 /** 2805 * @brief Helper function for implementing BUS_PRINT_CHILD(). 2806 * 2807 * This function simply calls bus_print_child_header() followed by 2808 * bus_print_child_footer(). 2809 * 2810 * @returns the number of characters printed 2811 */ 2812 int 2813 bus_generic_print_child(device_t dev, device_t child) 2814 { 2815 int retval = 0; 2816 2817 retval += bus_print_child_header(dev, child); 2818 retval += bus_print_child_footer(dev, child); 2819 2820 return (retval); 2821 } 2822 2823 /** 2824 * @brief Stub function for implementing BUS_READ_IVAR(). 2825 * 2826 * @returns ENOENT 2827 */ 2828 int 2829 bus_generic_read_ivar(device_t dev, device_t child, int index, 2830 uintptr_t * result) 2831 { 2832 return (ENOENT); 2833 } 2834 2835 /** 2836 * @brief Stub function for implementing BUS_WRITE_IVAR(). 2837 * 2838 * @returns ENOENT 2839 */ 2840 int 2841 bus_generic_write_ivar(device_t dev, device_t child, int index, 2842 uintptr_t value) 2843 { 2844 return (ENOENT); 2845 } 2846 2847 /** 2848 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 2849 * 2850 * @returns NULL 2851 */ 2852 struct resource_list * 2853 bus_generic_get_resource_list(device_t dev, device_t child) 2854 { 2855 return (NULL); 2856 } 2857 2858 /** 2859 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 2860 * 2861 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 2862 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 2863 * and then calls device_probe_and_attach() for each unattached child. 2864 */ 2865 void 2866 bus_generic_driver_added(device_t dev, driver_t *driver) 2867 { 2868 device_t child; 2869 2870 DEVICE_IDENTIFY(driver, dev); 2871 TAILQ_FOREACH(child, &dev->children, link) { 2872 if (child->state == DS_NOTPRESENT || 2873 (child->flags & DF_REBID)) 2874 device_probe_and_attach(child); 2875 } 2876 } 2877 2878 /** 2879 * @brief Helper function for implementing BUS_SETUP_INTR(). 2880 * 2881 * This simple implementation of BUS_SETUP_INTR() simply calls the 2882 * BUS_SETUP_INTR() method of the parent of @p dev. 2883 */ 2884 int 2885 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 2886 int flags, driver_intr_t *intr, void *arg, void **cookiep) 2887 { 2888 /* Propagate up the bus hierarchy until someone handles it. */ 2889 if (dev->parent) 2890 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 2891 intr, arg, cookiep)); 2892 return (EINVAL); 2893 } 2894 2895 /** 2896 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 2897 * 2898 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 2899 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 2900 */ 2901 int 2902 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 2903 void *cookie) 2904 { 2905 /* Propagate up the bus hierarchy until someone handles it. */ 2906 if (dev->parent) 2907 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 2908 return (EINVAL); 2909 } 2910 2911 /** 2912 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 2913 * 2914 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 2915 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 2916 */ 2917 struct resource * 2918 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 2919 u_long start, u_long end, u_long count, u_int flags) 2920 { 2921 /* Propagate up the bus hierarchy until someone handles it. */ 2922 if (dev->parent) 2923 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 2924 start, end, count, flags)); 2925 return (NULL); 2926 } 2927 2928 /** 2929 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 2930 * 2931 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 2932 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 2933 */ 2934 int 2935 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 2936 struct resource *r) 2937 { 2938 /* Propagate up the bus hierarchy until someone handles it. */ 2939 if (dev->parent) 2940 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 2941 r)); 2942 return (EINVAL); 2943 } 2944 2945 /** 2946 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 2947 * 2948 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 2949 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 2950 */ 2951 int 2952 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 2953 struct resource *r) 2954 { 2955 /* Propagate up the bus hierarchy until someone handles it. */ 2956 if (dev->parent) 2957 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 2958 r)); 2959 return (EINVAL); 2960 } 2961 2962 /** 2963 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 2964 * 2965 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 2966 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 2967 */ 2968 int 2969 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 2970 int rid, struct resource *r) 2971 { 2972 /* Propagate up the bus hierarchy until someone handles it. */ 2973 if (dev->parent) 2974 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 2975 r)); 2976 return (EINVAL); 2977 } 2978 2979 /** 2980 * @brief Helper function for implementing BUS_CONFIG_INTR(). 2981 * 2982 * This simple implementation of BUS_CONFIG_INTR() simply calls the 2983 * BUS_CONFIG_INTR() method of the parent of @p dev. 2984 */ 2985 int 2986 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 2987 enum intr_polarity pol) 2988 { 2989 2990 /* Propagate up the bus hierarchy until someone handles it. */ 2991 if (dev->parent) 2992 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 2993 return (EINVAL); 2994 } 2995 2996 /** 2997 * @brief Helper function for implementing BUS_GET_RESOURCE(). 2998 * 2999 * This implementation of BUS_GET_RESOURCE() uses the 3000 * resource_list_find() function to do most of the work. It calls 3001 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3002 * search. 3003 */ 3004 int 3005 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 3006 u_long *startp, u_long *countp) 3007 { 3008 struct resource_list * rl = NULL; 3009 struct resource_list_entry * rle = NULL; 3010 3011 rl = BUS_GET_RESOURCE_LIST(dev, child); 3012 if (!rl) 3013 return (EINVAL); 3014 3015 rle = resource_list_find(rl, type, rid); 3016 if (!rle) 3017 return (ENOENT); 3018 3019 if (startp) 3020 *startp = rle->start; 3021 if (countp) 3022 *countp = rle->count; 3023 3024 return (0); 3025 } 3026 3027 /** 3028 * @brief Helper function for implementing BUS_SET_RESOURCE(). 3029 * 3030 * This implementation of BUS_SET_RESOURCE() uses the 3031 * resource_list_add() function to do most of the work. It calls 3032 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3033 * edit. 3034 */ 3035 int 3036 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 3037 u_long start, u_long count) 3038 { 3039 struct resource_list * rl = NULL; 3040 3041 rl = BUS_GET_RESOURCE_LIST(dev, child); 3042 if (!rl) 3043 return (EINVAL); 3044 3045 resource_list_add(rl, type, rid, start, (start + count - 1), count); 3046 3047 return (0); 3048 } 3049 3050 /** 3051 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 3052 * 3053 * This implementation of BUS_DELETE_RESOURCE() uses the 3054 * resource_list_delete() function to do most of the work. It calls 3055 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3056 * edit. 3057 */ 3058 void 3059 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 3060 { 3061 struct resource_list * rl = NULL; 3062 3063 rl = BUS_GET_RESOURCE_LIST(dev, child); 3064 if (!rl) 3065 return; 3066 3067 resource_list_delete(rl, type, rid); 3068 3069 return; 3070 } 3071 3072 /** 3073 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3074 * 3075 * This implementation of BUS_RELEASE_RESOURCE() uses the 3076 * resource_list_release() function to do most of the work. It calls 3077 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3078 */ 3079 int 3080 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 3081 int rid, struct resource *r) 3082 { 3083 struct resource_list * rl = NULL; 3084 3085 rl = BUS_GET_RESOURCE_LIST(dev, child); 3086 if (!rl) 3087 return (EINVAL); 3088 3089 return (resource_list_release(rl, dev, child, type, rid, r)); 3090 } 3091 3092 /** 3093 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3094 * 3095 * This implementation of BUS_ALLOC_RESOURCE() uses the 3096 * resource_list_alloc() function to do most of the work. It calls 3097 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3098 */ 3099 struct resource * 3100 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 3101 int *rid, u_long start, u_long end, u_long count, u_int flags) 3102 { 3103 struct resource_list * rl = NULL; 3104 3105 rl = BUS_GET_RESOURCE_LIST(dev, child); 3106 if (!rl) 3107 return (NULL); 3108 3109 return (resource_list_alloc(rl, dev, child, type, rid, 3110 start, end, count, flags)); 3111 } 3112 3113 /** 3114 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 3115 * 3116 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 3117 * BUS_CHILD_PRESENT() method of the parent of @p dev. 3118 */ 3119 int 3120 bus_generic_child_present(device_t dev, device_t child) 3121 { 3122 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 3123 } 3124 3125 /* 3126 * Some convenience functions to make it easier for drivers to use the 3127 * resource-management functions. All these really do is hide the 3128 * indirection through the parent's method table, making for slightly 3129 * less-wordy code. In the future, it might make sense for this code 3130 * to maintain some sort of a list of resources allocated by each device. 3131 */ 3132 3133 /** 3134 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 3135 * 3136 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 3137 * parent of @p dev. 3138 */ 3139 struct resource * 3140 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 3141 u_long count, u_int flags) 3142 { 3143 if (dev->parent == 0) 3144 return (0); 3145 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 3146 count, flags)); 3147 } 3148 3149 /** 3150 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 3151 * 3152 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 3153 * parent of @p dev. 3154 */ 3155 int 3156 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 3157 { 3158 if (dev->parent == 0) 3159 return (EINVAL); 3160 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3161 } 3162 3163 /** 3164 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 3165 * 3166 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 3167 * parent of @p dev. 3168 */ 3169 int 3170 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 3171 { 3172 if (dev->parent == 0) 3173 return (EINVAL); 3174 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3175 } 3176 3177 /** 3178 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 3179 * 3180 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 3181 * parent of @p dev. 3182 */ 3183 int 3184 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 3185 { 3186 if (dev->parent == 0) 3187 return (EINVAL); 3188 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 3189 } 3190 3191 /** 3192 * @brief Wrapper function for BUS_SETUP_INTR(). 3193 * 3194 * This function simply calls the BUS_SETUP_INTR() method of the 3195 * parent of @p dev. 3196 */ 3197 int 3198 bus_setup_intr(device_t dev, struct resource *r, int flags, 3199 driver_intr_t handler, void *arg, void **cookiep) 3200 { 3201 int error; 3202 3203 if (dev->parent != 0) { 3204 if ((flags &~ INTR_ENTROPY) == (INTR_TYPE_NET | INTR_MPSAFE) && 3205 !debug_mpsafenet) 3206 flags &= ~INTR_MPSAFE; 3207 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, 3208 handler, arg, cookiep); 3209 if (error == 0) { 3210 if (!(flags & (INTR_MPSAFE | INTR_FAST))) 3211 device_printf(dev, "[GIANT-LOCKED]\n"); 3212 if (bootverbose && (flags & INTR_MPSAFE)) 3213 device_printf(dev, "[MPSAFE]\n"); 3214 if (flags & INTR_FAST) 3215 device_printf(dev, "[FAST]\n"); 3216 } 3217 } else 3218 error = EINVAL; 3219 return (error); 3220 } 3221 3222 /** 3223 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 3224 * 3225 * This function simply calls the BUS_TEARDOWN_INTR() method of the 3226 * parent of @p dev. 3227 */ 3228 int 3229 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 3230 { 3231 if (dev->parent == 0) 3232 return (EINVAL); 3233 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 3234 } 3235 3236 /** 3237 * @brief Wrapper function for BUS_SET_RESOURCE(). 3238 * 3239 * This function simply calls the BUS_SET_RESOURCE() method of the 3240 * parent of @p dev. 3241 */ 3242 int 3243 bus_set_resource(device_t dev, int type, int rid, 3244 u_long start, u_long count) 3245 { 3246 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 3247 start, count)); 3248 } 3249 3250 /** 3251 * @brief Wrapper function for BUS_GET_RESOURCE(). 3252 * 3253 * This function simply calls the BUS_GET_RESOURCE() method of the 3254 * parent of @p dev. 3255 */ 3256 int 3257 bus_get_resource(device_t dev, int type, int rid, 3258 u_long *startp, u_long *countp) 3259 { 3260 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3261 startp, countp)); 3262 } 3263 3264 /** 3265 * @brief Wrapper function for BUS_GET_RESOURCE(). 3266 * 3267 * This function simply calls the BUS_GET_RESOURCE() method of the 3268 * parent of @p dev and returns the start value. 3269 */ 3270 u_long 3271 bus_get_resource_start(device_t dev, int type, int rid) 3272 { 3273 u_long start, count; 3274 int error; 3275 3276 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3277 &start, &count); 3278 if (error) 3279 return (0); 3280 return (start); 3281 } 3282 3283 /** 3284 * @brief Wrapper function for BUS_GET_RESOURCE(). 3285 * 3286 * This function simply calls the BUS_GET_RESOURCE() method of the 3287 * parent of @p dev and returns the count value. 3288 */ 3289 u_long 3290 bus_get_resource_count(device_t dev, int type, int rid) 3291 { 3292 u_long start, count; 3293 int error; 3294 3295 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3296 &start, &count); 3297 if (error) 3298 return (0); 3299 return (count); 3300 } 3301 3302 /** 3303 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 3304 * 3305 * This function simply calls the BUS_DELETE_RESOURCE() method of the 3306 * parent of @p dev. 3307 */ 3308 void 3309 bus_delete_resource(device_t dev, int type, int rid) 3310 { 3311 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 3312 } 3313 3314 /** 3315 * @brief Wrapper function for BUS_CHILD_PRESENT(). 3316 * 3317 * This function simply calls the BUS_CHILD_PRESENT() method of the 3318 * parent of @p dev. 3319 */ 3320 int 3321 bus_child_present(device_t child) 3322 { 3323 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 3324 } 3325 3326 /** 3327 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 3328 * 3329 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 3330 * parent of @p dev. 3331 */ 3332 int 3333 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 3334 { 3335 device_t parent; 3336 3337 parent = device_get_parent(child); 3338 if (parent == NULL) { 3339 *buf = '\0'; 3340 return (0); 3341 } 3342 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 3343 } 3344 3345 /** 3346 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 3347 * 3348 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 3349 * parent of @p dev. 3350 */ 3351 int 3352 bus_child_location_str(device_t child, char *buf, size_t buflen) 3353 { 3354 device_t parent; 3355 3356 parent = device_get_parent(child); 3357 if (parent == NULL) { 3358 *buf = '\0'; 3359 return (0); 3360 } 3361 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 3362 } 3363 3364 static int 3365 root_print_child(device_t dev, device_t child) 3366 { 3367 int retval = 0; 3368 3369 retval += bus_print_child_header(dev, child); 3370 retval += printf("\n"); 3371 3372 return (retval); 3373 } 3374 3375 static int 3376 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg, 3377 void **cookiep) 3378 { 3379 /* 3380 * If an interrupt mapping gets to here something bad has happened. 3381 */ 3382 panic("root_setup_intr"); 3383 } 3384 3385 /* 3386 * If we get here, assume that the device is permanant and really is 3387 * present in the system. Removable bus drivers are expected to intercept 3388 * this call long before it gets here. We return -1 so that drivers that 3389 * really care can check vs -1 or some ERRNO returned higher in the food 3390 * chain. 3391 */ 3392 static int 3393 root_child_present(device_t dev, device_t child) 3394 { 3395 return (-1); 3396 } 3397 3398 static kobj_method_t root_methods[] = { 3399 /* Device interface */ 3400 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 3401 KOBJMETHOD(device_suspend, bus_generic_suspend), 3402 KOBJMETHOD(device_resume, bus_generic_resume), 3403 3404 /* Bus interface */ 3405 KOBJMETHOD(bus_print_child, root_print_child), 3406 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 3407 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 3408 KOBJMETHOD(bus_setup_intr, root_setup_intr), 3409 KOBJMETHOD(bus_child_present, root_child_present), 3410 3411 { 0, 0 } 3412 }; 3413 3414 static driver_t root_driver = { 3415 "root", 3416 root_methods, 3417 1, /* no softc */ 3418 }; 3419 3420 device_t root_bus; 3421 devclass_t root_devclass; 3422 3423 static int 3424 root_bus_module_handler(module_t mod, int what, void* arg) 3425 { 3426 switch (what) { 3427 case MOD_LOAD: 3428 TAILQ_INIT(&bus_data_devices); 3429 kobj_class_compile((kobj_class_t) &root_driver); 3430 root_bus = make_device(NULL, "root", 0); 3431 root_bus->desc = "System root bus"; 3432 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 3433 root_bus->driver = &root_driver; 3434 root_bus->state = DS_ATTACHED; 3435 root_devclass = devclass_find_internal("root", 0, FALSE); 3436 devinit(); 3437 return (0); 3438 3439 case MOD_SHUTDOWN: 3440 device_shutdown(root_bus); 3441 return (0); 3442 default: 3443 return (EOPNOTSUPP); 3444 } 3445 3446 return (0); 3447 } 3448 3449 static moduledata_t root_bus_mod = { 3450 "rootbus", 3451 root_bus_module_handler, 3452 0 3453 }; 3454 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 3455 3456 /** 3457 * @brief Automatically configure devices 3458 * 3459 * This function begins the autoconfiguration process by calling 3460 * device_probe_and_attach() for each child of the @c root0 device. 3461 */ 3462 void 3463 root_bus_configure(void) 3464 { 3465 device_t dev; 3466 3467 PDEBUG((".")); 3468 3469 TAILQ_FOREACH(dev, &root_bus->children, link) { 3470 device_probe_and_attach(dev); 3471 } 3472 } 3473 3474 /** 3475 * @brief Module handler for registering device drivers 3476 * 3477 * This module handler is used to automatically register device 3478 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 3479 * devclass_add_driver() for the driver described by the 3480 * driver_module_data structure pointed to by @p arg 3481 */ 3482 int 3483 driver_module_handler(module_t mod, int what, void *arg) 3484 { 3485 int error; 3486 struct driver_module_data *dmd; 3487 devclass_t bus_devclass; 3488 kobj_class_t driver; 3489 3490 dmd = (struct driver_module_data *)arg; 3491 bus_devclass = devclass_find_internal(dmd->dmd_busname, 0, TRUE); 3492 error = 0; 3493 3494 switch (what) { 3495 case MOD_LOAD: 3496 if (dmd->dmd_chainevh) 3497 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3498 3499 driver = dmd->dmd_driver; 3500 PDEBUG(("Loading module: driver %s on bus %s", 3501 DRIVERNAME(driver), dmd->dmd_busname)); 3502 error = devclass_add_driver(bus_devclass, driver); 3503 if (error) 3504 break; 3505 3506 /* 3507 * If the driver has any base classes, make the 3508 * devclass inherit from the devclass of the driver's 3509 * first base class. This will allow the system to 3510 * search for drivers in both devclasses for children 3511 * of a device using this driver. 3512 */ 3513 if (driver->baseclasses) { 3514 const char *parentname; 3515 parentname = driver->baseclasses[0]->name; 3516 *dmd->dmd_devclass = 3517 devclass_find_internal(driver->name, 3518 parentname, TRUE); 3519 } else { 3520 *dmd->dmd_devclass = 3521 devclass_find_internal(driver->name, 0, TRUE); 3522 } 3523 break; 3524 3525 case MOD_UNLOAD: 3526 PDEBUG(("Unloading module: driver %s from bus %s", 3527 DRIVERNAME(dmd->dmd_driver), 3528 dmd->dmd_busname)); 3529 error = devclass_delete_driver(bus_devclass, 3530 dmd->dmd_driver); 3531 3532 if (!error && dmd->dmd_chainevh) 3533 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3534 break; 3535 default: 3536 error = EOPNOTSUPP; 3537 break; 3538 } 3539 3540 return (error); 3541 } 3542 3543 #ifdef BUS_DEBUG 3544 3545 /* the _short versions avoid iteration by not calling anything that prints 3546 * more than oneliners. I love oneliners. 3547 */ 3548 3549 static void 3550 print_device_short(device_t dev, int indent) 3551 { 3552 if (!dev) 3553 return; 3554 3555 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 3556 dev->unit, dev->desc, 3557 (dev->parent? "":"no "), 3558 (TAILQ_EMPTY(&dev->children)? "no ":""), 3559 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 3560 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 3561 (dev->flags&DF_WILDCARD? "wildcard,":""), 3562 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 3563 (dev->flags&DF_REBID? "rebiddable,":""), 3564 (dev->ivars? "":"no "), 3565 (dev->softc? "":"no "), 3566 dev->busy)); 3567 } 3568 3569 static void 3570 print_device(device_t dev, int indent) 3571 { 3572 if (!dev) 3573 return; 3574 3575 print_device_short(dev, indent); 3576 3577 indentprintf(("Parent:\n")); 3578 print_device_short(dev->parent, indent+1); 3579 indentprintf(("Driver:\n")); 3580 print_driver_short(dev->driver, indent+1); 3581 indentprintf(("Devclass:\n")); 3582 print_devclass_short(dev->devclass, indent+1); 3583 } 3584 3585 void 3586 print_device_tree_short(device_t dev, int indent) 3587 /* print the device and all its children (indented) */ 3588 { 3589 device_t child; 3590 3591 if (!dev) 3592 return; 3593 3594 print_device_short(dev, indent); 3595 3596 TAILQ_FOREACH(child, &dev->children, link) { 3597 print_device_tree_short(child, indent+1); 3598 } 3599 } 3600 3601 void 3602 print_device_tree(device_t dev, int indent) 3603 /* print the device and all its children (indented) */ 3604 { 3605 device_t child; 3606 3607 if (!dev) 3608 return; 3609 3610 print_device(dev, indent); 3611 3612 TAILQ_FOREACH(child, &dev->children, link) { 3613 print_device_tree(child, indent+1); 3614 } 3615 } 3616 3617 static void 3618 print_driver_short(driver_t *driver, int indent) 3619 { 3620 if (!driver) 3621 return; 3622 3623 indentprintf(("driver %s: softc size = %zd\n", 3624 driver->name, driver->size)); 3625 } 3626 3627 static void 3628 print_driver(driver_t *driver, int indent) 3629 { 3630 if (!driver) 3631 return; 3632 3633 print_driver_short(driver, indent); 3634 } 3635 3636 3637 static void 3638 print_driver_list(driver_list_t drivers, int indent) 3639 { 3640 driverlink_t driver; 3641 3642 TAILQ_FOREACH(driver, &drivers, link) { 3643 print_driver(driver->driver, indent); 3644 } 3645 } 3646 3647 static void 3648 print_devclass_short(devclass_t dc, int indent) 3649 { 3650 if ( !dc ) 3651 return; 3652 3653 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 3654 } 3655 3656 static void 3657 print_devclass(devclass_t dc, int indent) 3658 { 3659 int i; 3660 3661 if ( !dc ) 3662 return; 3663 3664 print_devclass_short(dc, indent); 3665 indentprintf(("Drivers:\n")); 3666 print_driver_list(dc->drivers, indent+1); 3667 3668 indentprintf(("Devices:\n")); 3669 for (i = 0; i < dc->maxunit; i++) 3670 if (dc->devices[i]) 3671 print_device(dc->devices[i], indent+1); 3672 } 3673 3674 void 3675 print_devclass_list_short(void) 3676 { 3677 devclass_t dc; 3678 3679 printf("Short listing of devclasses, drivers & devices:\n"); 3680 TAILQ_FOREACH(dc, &devclasses, link) { 3681 print_devclass_short(dc, 0); 3682 } 3683 } 3684 3685 void 3686 print_devclass_list(void) 3687 { 3688 devclass_t dc; 3689 3690 printf("Full listing of devclasses, drivers & devices:\n"); 3691 TAILQ_FOREACH(dc, &devclasses, link) { 3692 print_devclass(dc, 0); 3693 } 3694 } 3695 3696 #endif 3697 3698 /* 3699 * User-space access to the device tree. 3700 * 3701 * We implement a small set of nodes: 3702 * 3703 * hw.bus Single integer read method to obtain the 3704 * current generation count. 3705 * hw.bus.devices Reads the entire device tree in flat space. 3706 * hw.bus.rman Resource manager interface 3707 * 3708 * We might like to add the ability to scan devclasses and/or drivers to 3709 * determine what else is currently loaded/available. 3710 */ 3711 3712 static int 3713 sysctl_bus(SYSCTL_HANDLER_ARGS) 3714 { 3715 struct u_businfo ubus; 3716 3717 ubus.ub_version = BUS_USER_VERSION; 3718 ubus.ub_generation = bus_data_generation; 3719 3720 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 3721 } 3722 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 3723 "bus-related data"); 3724 3725 static int 3726 sysctl_devices(SYSCTL_HANDLER_ARGS) 3727 { 3728 int *name = (int *)arg1; 3729 u_int namelen = arg2; 3730 int index; 3731 struct device *dev; 3732 struct u_device udev; /* XXX this is a bit big */ 3733 int error; 3734 3735 if (namelen != 2) 3736 return (EINVAL); 3737 3738 if (bus_data_generation_check(name[0])) 3739 return (EINVAL); 3740 3741 index = name[1]; 3742 3743 /* 3744 * Scan the list of devices, looking for the requested index. 3745 */ 3746 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 3747 if (index-- == 0) 3748 break; 3749 } 3750 if (dev == NULL) 3751 return (ENOENT); 3752 3753 /* 3754 * Populate the return array. 3755 */ 3756 udev.dv_handle = (uintptr_t)dev; 3757 udev.dv_parent = (uintptr_t)dev->parent; 3758 if (dev->nameunit == NULL) 3759 udev.dv_name[0] = '\0'; 3760 else 3761 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 3762 3763 if (dev->desc == NULL) 3764 udev.dv_desc[0] = '\0'; 3765 else 3766 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 3767 if (dev->driver == NULL || dev->driver->name == NULL) 3768 udev.dv_drivername[0] = '\0'; 3769 else 3770 strlcpy(udev.dv_drivername, dev->driver->name, 3771 sizeof(udev.dv_drivername)); 3772 udev.dv_pnpinfo[0] = '\0'; 3773 udev.dv_location[0] = '\0'; 3774 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 3775 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 3776 udev.dv_devflags = dev->devflags; 3777 udev.dv_flags = dev->flags; 3778 udev.dv_state = dev->state; 3779 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 3780 return (error); 3781 } 3782 3783 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 3784 "system device tree"); 3785 3786 /* 3787 * Sysctl interface for scanning the resource lists. 3788 * 3789 * We take two input parameters; the index into the list of resource 3790 * managers, and the resource offset into the list. 3791 */ 3792 static int 3793 sysctl_rman(SYSCTL_HANDLER_ARGS) 3794 { 3795 int *name = (int *)arg1; 3796 u_int namelen = arg2; 3797 int rman_idx, res_idx; 3798 struct rman *rm; 3799 struct resource *res; 3800 struct u_rman urm; 3801 struct u_resource ures; 3802 int error; 3803 3804 if (namelen != 3) 3805 return (EINVAL); 3806 3807 if (bus_data_generation_check(name[0])) 3808 return (EINVAL); 3809 rman_idx = name[1]; 3810 res_idx = name[2]; 3811 3812 /* 3813 * Find the indexed resource manager 3814 */ 3815 TAILQ_FOREACH(rm, &rman_head, rm_link) { 3816 if (rman_idx-- == 0) 3817 break; 3818 } 3819 if (rm == NULL) 3820 return (ENOENT); 3821 3822 /* 3823 * If the resource index is -1, we want details on the 3824 * resource manager. 3825 */ 3826 if (res_idx == -1) { 3827 urm.rm_handle = (uintptr_t)rm; 3828 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); 3829 urm.rm_start = rm->rm_start; 3830 urm.rm_size = rm->rm_end - rm->rm_start + 1; 3831 urm.rm_type = rm->rm_type; 3832 3833 error = SYSCTL_OUT(req, &urm, sizeof(urm)); 3834 return (error); 3835 } 3836 3837 /* 3838 * Find the indexed resource and return it. 3839 */ 3840 TAILQ_FOREACH(res, &rm->rm_list, r_link) { 3841 if (res_idx-- == 0) { 3842 ures.r_handle = (uintptr_t)res; 3843 ures.r_parent = (uintptr_t)res->r_rm; 3844 ures.r_device = (uintptr_t)res->r_dev; 3845 if (res->r_dev != NULL) { 3846 if (device_get_name(res->r_dev) != NULL) { 3847 snprintf(ures.r_devname, RM_TEXTLEN, 3848 "%s%d", 3849 device_get_name(res->r_dev), 3850 device_get_unit(res->r_dev)); 3851 } else { 3852 strlcpy(ures.r_devname, "nomatch", 3853 RM_TEXTLEN); 3854 } 3855 } else { 3856 ures.r_devname[0] = '\0'; 3857 } 3858 ures.r_start = res->r_start; 3859 ures.r_size = res->r_end - res->r_start + 1; 3860 ures.r_flags = res->r_flags; 3861 3862 error = SYSCTL_OUT(req, &ures, sizeof(ures)); 3863 return (error); 3864 } 3865 } 3866 return (ENOENT); 3867 } 3868 3869 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman, 3870 "kernel resource manager"); 3871 3872 int 3873 bus_data_generation_check(int generation) 3874 { 3875 if (generation != bus_data_generation) 3876 return (1); 3877 3878 /* XXX generate optimised lists here? */ 3879 return (0); 3880 } 3881 3882 void 3883 bus_data_generation_update(void) 3884 { 3885 bus_data_generation++; 3886 } 3887