xref: /freebsd/sys/kern/subr_bus.c (revision 74bf4e164ba5851606a27d4feff27717452583e5)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #define __RMAN_RESOURCE_VISIBLE
33 #include <sys/param.h>
34 #include <sys/conf.h>
35 #include <sys/filio.h>
36 #include <sys/lock.h>
37 #include <sys/kernel.h>
38 #include <sys/kobj.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/poll.h>
43 #include <sys/proc.h>
44 #include <sys/condvar.h>
45 #include <sys/queue.h>
46 #include <machine/bus.h>
47 #include <sys/rman.h>
48 #include <sys/selinfo.h>
49 #include <sys/signalvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/uio.h>
53 #include <sys/bus.h>
54 
55 #include <machine/stdarg.h>
56 
57 #include <vm/uma.h>
58 
59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
61 
62 /*
63  * Used to attach drivers to devclasses.
64  */
65 typedef struct driverlink *driverlink_t;
66 struct driverlink {
67 	kobj_class_t	driver;
68 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
69 };
70 
71 /*
72  * Forward declarations
73  */
74 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
75 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
76 typedef TAILQ_HEAD(device_list, device) device_list_t;
77 
78 struct devclass {
79 	TAILQ_ENTRY(devclass) link;
80 	devclass_t	parent;		/* parent in devclass hierarchy */
81 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
82 	char		*name;
83 	device_t	*devices;	/* array of devices indexed by unit */
84 	int		maxunit;	/* size of devices array */
85 
86 	struct sysctl_ctx_list sysctl_ctx;
87 	struct sysctl_oid *sysctl_tree;
88 };
89 
90 /**
91  * @brief Implementation of device.
92  */
93 struct device {
94 	/*
95 	 * A device is a kernel object. The first field must be the
96 	 * current ops table for the object.
97 	 */
98 	KOBJ_FIELDS;
99 
100 	/*
101 	 * Device hierarchy.
102 	 */
103 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
104 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
105 	device_t	parent;		/**< parent of this device  */
106 	device_list_t	children;	/**< list of child devices */
107 
108 	/*
109 	 * Details of this device.
110 	 */
111 	driver_t	*driver;	/**< current driver */
112 	devclass_t	devclass;	/**< current device class */
113 	int		unit;		/**< current unit number */
114 	char*		nameunit;	/**< name+unit e.g. foodev0 */
115 	char*		desc;		/**< driver specific description */
116 	int		busy;		/**< count of calls to device_busy() */
117 	device_state_t	state;		/**< current device state  */
118 	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
119 	u_short		flags;		/**< internal device flags  */
120 #define	DF_ENABLED	1		/* device should be probed/attached */
121 #define	DF_FIXEDCLASS	2		/* devclass specified at create time */
122 #define	DF_WILDCARD	4		/* unit was originally wildcard */
123 #define	DF_DESCMALLOCED	8		/* description was malloced */
124 #define	DF_QUIET	16		/* don't print verbose attach message */
125 #define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
126 #define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
127 #define DF_REBID	128	/* Can rebid after attach */
128 	u_char	order;			/**< order from device_add_child_ordered() */
129 	u_char	pad;
130 	void	*ivars;			/**< instance variables  */
131 	void	*softc;			/**< current driver's variables  */
132 
133 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
134 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
135 };
136 
137 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
138 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
139 
140 #ifdef BUS_DEBUG
141 
142 static int bus_debug = 1;
143 TUNABLE_INT("bus.debug", &bus_debug);
144 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
145     "Debug bus code");
146 
147 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
148 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
149 #define DRIVERNAME(d)	((d)? d->name : "no driver")
150 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
151 
152 /**
153  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
154  * prevent syslog from deleting initial spaces
155  */
156 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
157 
158 static void print_device_short(device_t dev, int indent);
159 static void print_device(device_t dev, int indent);
160 void print_device_tree_short(device_t dev, int indent);
161 void print_device_tree(device_t dev, int indent);
162 static void print_driver_short(driver_t *driver, int indent);
163 static void print_driver(driver_t *driver, int indent);
164 static void print_driver_list(driver_list_t drivers, int indent);
165 static void print_devclass_short(devclass_t dc, int indent);
166 static void print_devclass(devclass_t dc, int indent);
167 void print_devclass_list_short(void);
168 void print_devclass_list(void);
169 
170 #else
171 /* Make the compiler ignore the function calls */
172 #define PDEBUG(a)			/* nop */
173 #define DEVICENAME(d)			/* nop */
174 #define DRIVERNAME(d)			/* nop */
175 #define DEVCLANAME(d)			/* nop */
176 
177 #define print_device_short(d,i)		/* nop */
178 #define print_device(d,i)		/* nop */
179 #define print_device_tree_short(d,i)	/* nop */
180 #define print_device_tree(d,i)		/* nop */
181 #define print_driver_short(d,i)		/* nop */
182 #define print_driver(d,i)		/* nop */
183 #define print_driver_list(d,i)		/* nop */
184 #define print_devclass_short(d,i)	/* nop */
185 #define print_devclass(d,i)		/* nop */
186 #define print_devclass_list_short()	/* nop */
187 #define print_devclass_list()		/* nop */
188 #endif
189 
190 /*
191  * dev sysctl tree
192  */
193 
194 enum {
195 	DEVCLASS_SYSCTL_PARENT,
196 };
197 
198 static int
199 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
200 {
201 	devclass_t dc = (devclass_t)arg1;
202 	const char *value;
203 	char *buf;
204 	int error;
205 
206 	buf = NULL;
207 	switch (arg2) {
208 	case DEVCLASS_SYSCTL_PARENT:
209 		value = dc->parent ? dc->parent->name : "";
210 		break;
211 	default:
212 		return (EINVAL);
213 	}
214 	error = SYSCTL_OUT(req, value, strlen(value));
215 	if (buf != NULL)
216 		free(buf, M_BUS);
217 	return (error);
218 }
219 
220 static void
221 devclass_sysctl_init(devclass_t dc)
222 {
223 
224 	if (dc->sysctl_tree != NULL)
225 		return;
226 	sysctl_ctx_init(&dc->sysctl_ctx);
227 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
228 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
229 	    CTLFLAG_RD, 0, "");
230 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
231 	    OID_AUTO, "%parent", CTLFLAG_RD,
232 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
233 	    "parent class");
234 }
235 
236 enum {
237 	DEVICE_SYSCTL_DESC,
238 	DEVICE_SYSCTL_DRIVER,
239 	DEVICE_SYSCTL_LOCATION,
240 	DEVICE_SYSCTL_PNPINFO,
241 	DEVICE_SYSCTL_PARENT,
242 };
243 
244 static int
245 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
246 {
247 	device_t dev = (device_t)arg1;
248 	const char *value;
249 	char *buf;
250 	int error;
251 
252 	buf = NULL;
253 	switch (arg2) {
254 	case DEVICE_SYSCTL_DESC:
255 		value = dev->desc ? dev->desc : "";
256 		break;
257 	case DEVICE_SYSCTL_DRIVER:
258 		value = dev->driver ? dev->driver->name : "";
259 		break;
260 	case DEVICE_SYSCTL_LOCATION:
261 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
262 		bus_child_location_str(dev, buf, 1024);
263 		break;
264 	case DEVICE_SYSCTL_PNPINFO:
265 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
266 		bus_child_pnpinfo_str(dev, buf, 1024);
267 		break;
268 	case DEVICE_SYSCTL_PARENT:
269 		value = dev->parent ? dev->parent->nameunit : "";
270 		break;
271 	default:
272 		return (EINVAL);
273 	}
274 	error = SYSCTL_OUT(req, value, strlen(value));
275 	if (buf != NULL)
276 		free(buf, M_BUS);
277 	return (error);
278 }
279 
280 static void
281 device_sysctl_init(device_t dev)
282 {
283 	devclass_t dc = dev->devclass;
284 
285 	if (dev->sysctl_tree != NULL)
286 		return;
287 	devclass_sysctl_init(dc);
288 	sysctl_ctx_init(&dev->sysctl_ctx);
289 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
290 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
291 	    dev->nameunit + strlen(dc->name),
292 	    CTLFLAG_RD, 0, "");
293 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
294 	    OID_AUTO, "%desc", CTLFLAG_RD,
295 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
296 	    "device description");
297 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
298 	    OID_AUTO, "%driver", CTLFLAG_RD,
299 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
300 	    "device driver name");
301 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
302 	    OID_AUTO, "%location", CTLFLAG_RD,
303 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
304 	    "device location relative to parent");
305 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
306 	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
307 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
308 	    "device identification");
309 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
310 	    OID_AUTO, "%parent", CTLFLAG_RD,
311 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
312 	    "parent device");
313 }
314 
315 static void
316 device_sysctl_fini(device_t dev)
317 {
318 	if (dev->sysctl_tree == NULL)
319 		return;
320 	sysctl_ctx_free(&dev->sysctl_ctx);
321 	dev->sysctl_tree = NULL;
322 }
323 
324 /*
325  * /dev/devctl implementation
326  */
327 
328 /*
329  * This design allows only one reader for /dev/devctl.  This is not desirable
330  * in the long run, but will get a lot of hair out of this implementation.
331  * Maybe we should make this device a clonable device.
332  *
333  * Also note: we specifically do not attach a device to the device_t tree
334  * to avoid potential chicken and egg problems.  One could argue that all
335  * of this belongs to the root node.  One could also further argue that the
336  * sysctl interface that we have not might more properly be an ioctl
337  * interface, but at this stage of the game, I'm not inclined to rock that
338  * boat.
339  *
340  * I'm also not sure that the SIGIO support is done correctly or not, as
341  * I copied it from a driver that had SIGIO support that likely hasn't been
342  * tested since 3.4 or 2.2.8!
343  */
344 
345 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
346 static int devctl_disable = 0;
347 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
348 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
349     sysctl_devctl_disable, "I", "devctl disable");
350 
351 static d_open_t		devopen;
352 static d_close_t	devclose;
353 static d_read_t		devread;
354 static d_ioctl_t	devioctl;
355 static d_poll_t		devpoll;
356 
357 #define CDEV_MAJOR 173
358 static struct cdevsw dev_cdevsw = {
359 	.d_version =	D_VERSION,
360 	.d_flags =	D_NEEDGIANT,
361 	.d_open =	devopen,
362 	.d_close =	devclose,
363 	.d_read =	devread,
364 	.d_ioctl =	devioctl,
365 	.d_poll =	devpoll,
366 	.d_name =	"devctl",
367 	.d_maj =	CDEV_MAJOR,
368 };
369 
370 struct dev_event_info
371 {
372 	char *dei_data;
373 	TAILQ_ENTRY(dev_event_info) dei_link;
374 };
375 
376 TAILQ_HEAD(devq, dev_event_info);
377 
378 static struct dev_softc
379 {
380 	int	inuse;
381 	int	nonblock;
382 	struct mtx mtx;
383 	struct cv cv;
384 	struct selinfo sel;
385 	struct devq devq;
386 	struct proc *async_proc;
387 } devsoftc;
388 
389 static struct cdev *devctl_dev;
390 
391 static void
392 devinit(void)
393 {
394 	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
395 	    "devctl");
396 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
397 	cv_init(&devsoftc.cv, "dev cv");
398 	TAILQ_INIT(&devsoftc.devq);
399 }
400 
401 static int
402 devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td)
403 {
404 	if (devsoftc.inuse)
405 		return (EBUSY);
406 	/* move to init */
407 	devsoftc.inuse = 1;
408 	devsoftc.nonblock = 0;
409 	devsoftc.async_proc = NULL;
410 	return (0);
411 }
412 
413 static int
414 devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td)
415 {
416 	devsoftc.inuse = 0;
417 	mtx_lock(&devsoftc.mtx);
418 	cv_broadcast(&devsoftc.cv);
419 	mtx_unlock(&devsoftc.mtx);
420 
421 	return (0);
422 }
423 
424 /*
425  * The read channel for this device is used to report changes to
426  * userland in realtime.  We are required to free the data as well as
427  * the n1 object because we allocate them separately.  Also note that
428  * we return one record at a time.  If you try to read this device a
429  * character at a time, you will loose the rest of the data.  Listening
430  * programs are expected to cope.
431  */
432 static int
433 devread(struct cdev *dev, struct uio *uio, int ioflag)
434 {
435 	struct dev_event_info *n1;
436 	int rv;
437 
438 	mtx_lock(&devsoftc.mtx);
439 	while (TAILQ_EMPTY(&devsoftc.devq)) {
440 		if (devsoftc.nonblock) {
441 			mtx_unlock(&devsoftc.mtx);
442 			return (EAGAIN);
443 		}
444 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
445 		if (rv) {
446 			/*
447 			 * Need to translate ERESTART to EINTR here? -- jake
448 			 */
449 			mtx_unlock(&devsoftc.mtx);
450 			return (rv);
451 		}
452 	}
453 	n1 = TAILQ_FIRST(&devsoftc.devq);
454 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
455 	mtx_unlock(&devsoftc.mtx);
456 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
457 	free(n1->dei_data, M_BUS);
458 	free(n1, M_BUS);
459 	return (rv);
460 }
461 
462 static	int
463 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td)
464 {
465 	switch (cmd) {
466 
467 	case FIONBIO:
468 		if (*(int*)data)
469 			devsoftc.nonblock = 1;
470 		else
471 			devsoftc.nonblock = 0;
472 		return (0);
473 	case FIOASYNC:
474 		if (*(int*)data)
475 			devsoftc.async_proc = td->td_proc;
476 		else
477 			devsoftc.async_proc = NULL;
478 		return (0);
479 
480 		/* (un)Support for other fcntl() calls. */
481 	case FIOCLEX:
482 	case FIONCLEX:
483 	case FIONREAD:
484 	case FIOSETOWN:
485 	case FIOGETOWN:
486 	default:
487 		break;
488 	}
489 	return (ENOTTY);
490 }
491 
492 static	int
493 devpoll(struct cdev *dev, int events, d_thread_t *td)
494 {
495 	int	revents = 0;
496 
497 	mtx_lock(&devsoftc.mtx);
498 	if (events & (POLLIN | POLLRDNORM)) {
499 		if (!TAILQ_EMPTY(&devsoftc.devq))
500 			revents = events & (POLLIN | POLLRDNORM);
501 		else
502 			selrecord(td, &devsoftc.sel);
503 	}
504 	mtx_unlock(&devsoftc.mtx);
505 
506 	return (revents);
507 }
508 
509 /**
510  * @brief Queue data to be read from the devctl device
511  *
512  * Generic interface to queue data to the devctl device.  It is
513  * assumed that @p data is properly formatted.  It is further assumed
514  * that @p data is allocated using the M_BUS malloc type.
515  */
516 void
517 devctl_queue_data(char *data)
518 {
519 	struct dev_event_info *n1 = NULL;
520 	struct proc *p;
521 
522 	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
523 	if (n1 == NULL)
524 		return;
525 	n1->dei_data = data;
526 	mtx_lock(&devsoftc.mtx);
527 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
528 	cv_broadcast(&devsoftc.cv);
529 	mtx_unlock(&devsoftc.mtx);
530 	selwakeup(&devsoftc.sel);
531 	p = devsoftc.async_proc;
532 	if (p != NULL) {
533 		PROC_LOCK(p);
534 		psignal(p, SIGIO);
535 		PROC_UNLOCK(p);
536 	}
537 }
538 
539 /**
540  * @brief Send a 'notification' to userland, using standard ways
541  */
542 void
543 devctl_notify(const char *system, const char *subsystem, const char *type,
544     const char *data)
545 {
546 	int len = 0;
547 	char *msg;
548 
549 	if (system == NULL)
550 		return;		/* BOGUS!  Must specify system. */
551 	if (subsystem == NULL)
552 		return;		/* BOGUS!  Must specify subsystem. */
553 	if (type == NULL)
554 		return;		/* BOGUS!  Must specify type. */
555 	len += strlen(" system=") + strlen(system);
556 	len += strlen(" subsystem=") + strlen(subsystem);
557 	len += strlen(" type=") + strlen(type);
558 	/* add in the data message plus newline. */
559 	if (data != NULL)
560 		len += strlen(data);
561 	len += 3;	/* '!', '\n', and NUL */
562 	msg = malloc(len, M_BUS, M_NOWAIT);
563 	if (msg == NULL)
564 		return;		/* Drop it on the floor */
565 	snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", system,
566 	    subsystem, type, data);
567 	devctl_queue_data(msg);
568 }
569 
570 /*
571  * Common routine that tries to make sending messages as easy as possible.
572  * We allocate memory for the data, copy strings into that, but do not
573  * free it unless there's an error.  The dequeue part of the driver should
574  * free the data.  We don't send data when the device is disabled.  We do
575  * send data, even when we have no listeners, because we wish to avoid
576  * races relating to startup and restart of listening applications.
577  *
578  * devaddq is designed to string together the type of event, with the
579  * object of that event, plus the plug and play info and location info
580  * for that event.  This is likely most useful for devices, but less
581  * useful for other consumers of this interface.  Those should use
582  * the devctl_queue_data() interface instead.
583  */
584 static void
585 devaddq(const char *type, const char *what, device_t dev)
586 {
587 	char *data = NULL;
588 	char *loc = NULL;
589 	char *pnp = NULL;
590 	const char *parstr;
591 
592 	if (devctl_disable)
593 		return;
594 	data = malloc(1024, M_BUS, M_NOWAIT);
595 	if (data == NULL)
596 		goto bad;
597 
598 	/* get the bus specific location of this device */
599 	loc = malloc(1024, M_BUS, M_NOWAIT);
600 	if (loc == NULL)
601 		goto bad;
602 	*loc = '\0';
603 	bus_child_location_str(dev, loc, 1024);
604 
605 	/* Get the bus specific pnp info of this device */
606 	pnp = malloc(1024, M_BUS, M_NOWAIT);
607 	if (pnp == NULL)
608 		goto bad;
609 	*pnp = '\0';
610 	bus_child_pnpinfo_str(dev, pnp, 1024);
611 
612 	/* Get the parent of this device, or / if high enough in the tree. */
613 	if (device_get_parent(dev) == NULL)
614 		parstr = ".";	/* Or '/' ? */
615 	else
616 		parstr = device_get_nameunit(device_get_parent(dev));
617 	/* String it all together. */
618 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
619 	  parstr);
620 	free(loc, M_BUS);
621 	free(pnp, M_BUS);
622 	devctl_queue_data(data);
623 	return;
624 bad:
625 	free(pnp, M_BUS);
626 	free(loc, M_BUS);
627 	free(data, M_BUS);
628 	return;
629 }
630 
631 /*
632  * A device was added to the tree.  We are called just after it successfully
633  * attaches (that is, probe and attach success for this device).  No call
634  * is made if a device is merely parented into the tree.  See devnomatch
635  * if probe fails.  If attach fails, no notification is sent (but maybe
636  * we should have a different message for this).
637  */
638 static void
639 devadded(device_t dev)
640 {
641 	char *pnp = NULL;
642 	char *tmp = NULL;
643 
644 	pnp = malloc(1024, M_BUS, M_NOWAIT);
645 	if (pnp == NULL)
646 		goto fail;
647 	tmp = malloc(1024, M_BUS, M_NOWAIT);
648 	if (tmp == NULL)
649 		goto fail;
650 	*pnp = '\0';
651 	bus_child_pnpinfo_str(dev, pnp, 1024);
652 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
653 	devaddq("+", tmp, dev);
654 fail:
655 	if (pnp != NULL)
656 		free(pnp, M_BUS);
657 	if (tmp != NULL)
658 		free(tmp, M_BUS);
659 	return;
660 }
661 
662 /*
663  * A device was removed from the tree.  We are called just before this
664  * happens.
665  */
666 static void
667 devremoved(device_t dev)
668 {
669 	char *pnp = NULL;
670 	char *tmp = NULL;
671 
672 	pnp = malloc(1024, M_BUS, M_NOWAIT);
673 	if (pnp == NULL)
674 		goto fail;
675 	tmp = malloc(1024, M_BUS, M_NOWAIT);
676 	if (tmp == NULL)
677 		goto fail;
678 	*pnp = '\0';
679 	bus_child_pnpinfo_str(dev, pnp, 1024);
680 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
681 	devaddq("-", tmp, dev);
682 fail:
683 	if (pnp != NULL)
684 		free(pnp, M_BUS);
685 	if (tmp != NULL)
686 		free(tmp, M_BUS);
687 	return;
688 }
689 
690 /*
691  * Called when there's no match for this device.  This is only called
692  * the first time that no match happens, so we don't keep getitng this
693  * message.  Should that prove to be undesirable, we can change it.
694  * This is called when all drivers that can attach to a given bus
695  * decline to accept this device.  Other errrors may not be detected.
696  */
697 static void
698 devnomatch(device_t dev)
699 {
700 	devaddq("?", "", dev);
701 }
702 
703 static int
704 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
705 {
706 	struct dev_event_info *n1;
707 	int dis, error;
708 
709 	dis = devctl_disable;
710 	error = sysctl_handle_int(oidp, &dis, 0, req);
711 	if (error || !req->newptr)
712 		return (error);
713 	mtx_lock(&devsoftc.mtx);
714 	devctl_disable = dis;
715 	if (dis) {
716 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
717 			n1 = TAILQ_FIRST(&devsoftc.devq);
718 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
719 			free(n1->dei_data, M_BUS);
720 			free(n1, M_BUS);
721 		}
722 	}
723 	mtx_unlock(&devsoftc.mtx);
724 	return (0);
725 }
726 
727 /* End of /dev/devctl code */
728 
729 TAILQ_HEAD(,device)	bus_data_devices;
730 static int bus_data_generation = 1;
731 
732 kobj_method_t null_methods[] = {
733 	{ 0, 0 }
734 };
735 
736 DEFINE_CLASS(null, null_methods, 0);
737 
738 /*
739  * Devclass implementation
740  */
741 
742 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
743 
744 
745 /**
746  * @internal
747  * @brief Find or create a device class
748  *
749  * If a device class with the name @p classname exists, return it,
750  * otherwise if @p create is non-zero create and return a new device
751  * class.
752  *
753  * If @p parentname is non-NULL, the parent of the devclass is set to
754  * the devclass of that name.
755  *
756  * @param classname	the devclass name to find or create
757  * @param parentname	the parent devclass name or @c NULL
758  * @param create	non-zero to create a devclass
759  */
760 static devclass_t
761 devclass_find_internal(const char *classname, const char *parentname,
762 		       int create)
763 {
764 	devclass_t dc;
765 
766 	PDEBUG(("looking for %s", classname));
767 	if (!classname)
768 		return (NULL);
769 
770 	TAILQ_FOREACH(dc, &devclasses, link) {
771 		if (!strcmp(dc->name, classname))
772 			break;
773 	}
774 
775 	if (create && !dc) {
776 		PDEBUG(("creating %s", classname));
777 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
778 		    M_BUS, M_NOWAIT|M_ZERO);
779 		if (!dc)
780 			return (NULL);
781 		dc->parent = NULL;
782 		dc->name = (char*) (dc + 1);
783 		strcpy(dc->name, classname);
784 		TAILQ_INIT(&dc->drivers);
785 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
786 
787 		bus_data_generation_update();
788 	}
789 	if (parentname && dc && !dc->parent) {
790 		dc->parent = devclass_find_internal(parentname, 0, FALSE);
791 	}
792 
793 	return (dc);
794 }
795 
796 /**
797  * @brief Create a device class
798  *
799  * If a device class with the name @p classname exists, return it,
800  * otherwise create and return a new device class.
801  *
802  * @param classname	the devclass name to find or create
803  */
804 devclass_t
805 devclass_create(const char *classname)
806 {
807 	return (devclass_find_internal(classname, 0, TRUE));
808 }
809 
810 /**
811  * @brief Find a device class
812  *
813  * If a device class with the name @p classname exists, return it,
814  * otherwise return @c NULL.
815  *
816  * @param classname	the devclass name to find
817  */
818 devclass_t
819 devclass_find(const char *classname)
820 {
821 	return (devclass_find_internal(classname, 0, FALSE));
822 }
823 
824 /**
825  * @brief Add a device driver to a device class
826  *
827  * Add a device driver to a devclass. This is normally called
828  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
829  * all devices in the devclass will be called to allow them to attempt
830  * to re-probe any unmatched children.
831  *
832  * @param dc		the devclass to edit
833  * @param driver	the driver to register
834  */
835 int
836 devclass_add_driver(devclass_t dc, driver_t *driver)
837 {
838 	driverlink_t dl;
839 	int i;
840 
841 	PDEBUG(("%s", DRIVERNAME(driver)));
842 
843 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
844 	if (!dl)
845 		return (ENOMEM);
846 
847 	/*
848 	 * Compile the driver's methods. Also increase the reference count
849 	 * so that the class doesn't get freed when the last instance
850 	 * goes. This means we can safely use static methods and avoids a
851 	 * double-free in devclass_delete_driver.
852 	 */
853 	kobj_class_compile((kobj_class_t) driver);
854 
855 	/*
856 	 * Make sure the devclass which the driver is implementing exists.
857 	 */
858 	devclass_find_internal(driver->name, 0, TRUE);
859 
860 	dl->driver = driver;
861 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
862 	driver->refs++;
863 
864 	/*
865 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
866 	 */
867 	for (i = 0; i < dc->maxunit; i++)
868 		if (dc->devices[i])
869 			BUS_DRIVER_ADDED(dc->devices[i], driver);
870 
871 	bus_data_generation_update();
872 	return (0);
873 }
874 
875 /**
876  * @brief Delete a device driver from a device class
877  *
878  * Delete a device driver from a devclass. This is normally called
879  * automatically by DRIVER_MODULE().
880  *
881  * If the driver is currently attached to any devices,
882  * devclass_delete_driver() will first attempt to detach from each
883  * device. If one of the detach calls fails, the driver will not be
884  * deleted.
885  *
886  * @param dc		the devclass to edit
887  * @param driver	the driver to unregister
888  */
889 int
890 devclass_delete_driver(devclass_t busclass, driver_t *driver)
891 {
892 	devclass_t dc = devclass_find(driver->name);
893 	driverlink_t dl;
894 	device_t dev;
895 	int i;
896 	int error;
897 
898 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
899 
900 	if (!dc)
901 		return (0);
902 
903 	/*
904 	 * Find the link structure in the bus' list of drivers.
905 	 */
906 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
907 		if (dl->driver == driver)
908 			break;
909 	}
910 
911 	if (!dl) {
912 		PDEBUG(("%s not found in %s list", driver->name,
913 		    busclass->name));
914 		return (ENOENT);
915 	}
916 
917 	/*
918 	 * Disassociate from any devices.  We iterate through all the
919 	 * devices in the devclass of the driver and detach any which are
920 	 * using the driver and which have a parent in the devclass which
921 	 * we are deleting from.
922 	 *
923 	 * Note that since a driver can be in multiple devclasses, we
924 	 * should not detach devices which are not children of devices in
925 	 * the affected devclass.
926 	 */
927 	for (i = 0; i < dc->maxunit; i++) {
928 		if (dc->devices[i]) {
929 			dev = dc->devices[i];
930 			if (dev->driver == driver && dev->parent &&
931 			    dev->parent->devclass == busclass) {
932 				if ((error = device_detach(dev)) != 0)
933 					return (error);
934 				device_set_driver(dev, NULL);
935 			}
936 		}
937 	}
938 
939 	TAILQ_REMOVE(&busclass->drivers, dl, link);
940 	free(dl, M_BUS);
941 
942 	driver->refs--;
943 	if (driver->refs == 0)
944 		kobj_class_free((kobj_class_t) driver);
945 
946 	bus_data_generation_update();
947 	return (0);
948 }
949 
950 /**
951  * @internal
952  */
953 static driverlink_t
954 devclass_find_driver_internal(devclass_t dc, const char *classname)
955 {
956 	driverlink_t dl;
957 
958 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
959 
960 	TAILQ_FOREACH(dl, &dc->drivers, link) {
961 		if (!strcmp(dl->driver->name, classname))
962 			return (dl);
963 	}
964 
965 	PDEBUG(("not found"));
966 	return (NULL);
967 }
968 
969 /**
970  * @brief Search a devclass for a driver
971  *
972  * This function searches the devclass's list of drivers and returns
973  * the first driver whose name is @p classname or @c NULL if there is
974  * no driver of that name.
975  *
976  * @param dc		the devclass to search
977  * @param classname	the driver name to search for
978  */
979 kobj_class_t
980 devclass_find_driver(devclass_t dc, const char *classname)
981 {
982 	driverlink_t dl;
983 
984 	dl = devclass_find_driver_internal(dc, classname);
985 	if (dl)
986 		return (dl->driver);
987 	return (NULL);
988 }
989 
990 /**
991  * @brief Return the name of the devclass
992  */
993 const char *
994 devclass_get_name(devclass_t dc)
995 {
996 	return (dc->name);
997 }
998 
999 /**
1000  * @brief Find a device given a unit number
1001  *
1002  * @param dc		the devclass to search
1003  * @param unit		the unit number to search for
1004  *
1005  * @returns		the device with the given unit number or @c
1006  *			NULL if there is no such device
1007  */
1008 device_t
1009 devclass_get_device(devclass_t dc, int unit)
1010 {
1011 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1012 		return (NULL);
1013 	return (dc->devices[unit]);
1014 }
1015 
1016 /**
1017  * @brief Find the softc field of a device given a unit number
1018  *
1019  * @param dc		the devclass to search
1020  * @param unit		the unit number to search for
1021  *
1022  * @returns		the softc field of the device with the given
1023  *			unit number or @c NULL if there is no such
1024  *			device
1025  */
1026 void *
1027 devclass_get_softc(devclass_t dc, int unit)
1028 {
1029 	device_t dev;
1030 
1031 	dev = devclass_get_device(dc, unit);
1032 	if (!dev)
1033 		return (NULL);
1034 
1035 	return (device_get_softc(dev));
1036 }
1037 
1038 /**
1039  * @brief Get a list of devices in the devclass
1040  *
1041  * An array containing a list of all the devices in the given devclass
1042  * is allocated and returned in @p *devlistp. The number of devices
1043  * in the array is returned in @p *devcountp. The caller should free
1044  * the array using @c free(p, M_TEMP).
1045  *
1046  * @param dc		the devclass to examine
1047  * @param devlistp	points at location for array pointer return
1048  *			value
1049  * @param devcountp	points at location for array size return value
1050  *
1051  * @retval 0		success
1052  * @retval ENOMEM	the array allocation failed
1053  */
1054 int
1055 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1056 {
1057 	int i;
1058 	int count;
1059 	device_t *list;
1060 
1061 	count = 0;
1062 	for (i = 0; i < dc->maxunit; i++)
1063 		if (dc->devices[i])
1064 			count++;
1065 
1066 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1067 	if (!list)
1068 		return (ENOMEM);
1069 
1070 	count = 0;
1071 	for (i = 0; i < dc->maxunit; i++) {
1072 		if (dc->devices[i]) {
1073 			list[count] = dc->devices[i];
1074 			count++;
1075 		}
1076 	}
1077 
1078 	*devlistp = list;
1079 	*devcountp = count;
1080 
1081 	return (0);
1082 }
1083 
1084 /**
1085  * @brief Get the maximum unit number used in a devclass
1086  *
1087  * @param dc		the devclass to examine
1088  */
1089 int
1090 devclass_get_maxunit(devclass_t dc)
1091 {
1092 	return (dc->maxunit);
1093 }
1094 
1095 /**
1096  * @brief Find a free unit number in a devclass
1097  *
1098  * This function searches for the first unused unit number greater
1099  * that or equal to @p unit.
1100  *
1101  * @param dc		the devclass to examine
1102  * @param unit		the first unit number to check
1103  */
1104 int
1105 devclass_find_free_unit(devclass_t dc, int unit)
1106 {
1107 	if (dc == NULL)
1108 		return (unit);
1109 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1110 		unit++;
1111 	return (unit);
1112 }
1113 
1114 /**
1115  * @brief Set the parent of a devclass
1116  *
1117  * The parent class is normally initialised automatically by
1118  * DRIVER_MODULE().
1119  *
1120  * @param dc		the devclass to edit
1121  * @param pdc		the new parent devclass
1122  */
1123 void
1124 devclass_set_parent(devclass_t dc, devclass_t pdc)
1125 {
1126 	dc->parent = pdc;
1127 }
1128 
1129 /**
1130  * @brief Get the parent of a devclass
1131  *
1132  * @param dc		the devclass to examine
1133  */
1134 devclass_t
1135 devclass_get_parent(devclass_t dc)
1136 {
1137 	return (dc->parent);
1138 }
1139 
1140 struct sysctl_ctx_list *
1141 devclass_get_sysctl_ctx(devclass_t dc)
1142 {
1143 	return (&dc->sysctl_ctx);
1144 }
1145 
1146 struct sysctl_oid *
1147 devclass_get_sysctl_tree(devclass_t dc)
1148 {
1149 	return (dc->sysctl_tree);
1150 }
1151 
1152 /**
1153  * @internal
1154  * @brief Allocate a unit number
1155  *
1156  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1157  * will do). The allocated unit number is returned in @p *unitp.
1158 
1159  * @param dc		the devclass to allocate from
1160  * @param unitp		points at the location for the allocated unit
1161  *			number
1162  *
1163  * @retval 0		success
1164  * @retval EEXIST	the requested unit number is already allocated
1165  * @retval ENOMEM	memory allocation failure
1166  */
1167 static int
1168 devclass_alloc_unit(devclass_t dc, int *unitp)
1169 {
1170 	int unit = *unitp;
1171 
1172 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1173 
1174 	/* If we were given a wired unit number, check for existing device */
1175 	/* XXX imp XXX */
1176 	if (unit != -1) {
1177 		if (unit >= 0 && unit < dc->maxunit &&
1178 		    dc->devices[unit] != NULL) {
1179 			if (bootverbose)
1180 				printf("%s: %s%d already exists; skipping it\n",
1181 				    dc->name, dc->name, *unitp);
1182 			return (EEXIST);
1183 		}
1184 	} else {
1185 		/* Unwired device, find the next available slot for it */
1186 		unit = 0;
1187 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1188 			unit++;
1189 	}
1190 
1191 	/*
1192 	 * We've selected a unit beyond the length of the table, so let's
1193 	 * extend the table to make room for all units up to and including
1194 	 * this one.
1195 	 */
1196 	if (unit >= dc->maxunit) {
1197 		device_t *newlist;
1198 		int newsize;
1199 
1200 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1201 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1202 		if (!newlist)
1203 			return (ENOMEM);
1204 		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
1205 		bzero(newlist + dc->maxunit,
1206 		    sizeof(device_t) * (newsize - dc->maxunit));
1207 		if (dc->devices)
1208 			free(dc->devices, M_BUS);
1209 		dc->devices = newlist;
1210 		dc->maxunit = newsize;
1211 	}
1212 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1213 
1214 	*unitp = unit;
1215 	return (0);
1216 }
1217 
1218 /**
1219  * @internal
1220  * @brief Add a device to a devclass
1221  *
1222  * A unit number is allocated for the device (using the device's
1223  * preferred unit number if any) and the device is registered in the
1224  * devclass. This allows the device to be looked up by its unit
1225  * number, e.g. by decoding a dev_t minor number.
1226  *
1227  * @param dc		the devclass to add to
1228  * @param dev		the device to add
1229  *
1230  * @retval 0		success
1231  * @retval EEXIST	the requested unit number is already allocated
1232  * @retval ENOMEM	memory allocation failure
1233  */
1234 static int
1235 devclass_add_device(devclass_t dc, device_t dev)
1236 {
1237 	int buflen, error;
1238 
1239 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1240 
1241 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
1242 	if (buflen < 0)
1243 		return (ENOMEM);
1244 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1245 	if (!dev->nameunit)
1246 		return (ENOMEM);
1247 
1248 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1249 		free(dev->nameunit, M_BUS);
1250 		dev->nameunit = NULL;
1251 		return (error);
1252 	}
1253 	dc->devices[dev->unit] = dev;
1254 	dev->devclass = dc;
1255 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1256 
1257 	return (0);
1258 }
1259 
1260 /**
1261  * @internal
1262  * @brief Delete a device from a devclass
1263  *
1264  * The device is removed from the devclass's device list and its unit
1265  * number is freed.
1266 
1267  * @param dc		the devclass to delete from
1268  * @param dev		the device to delete
1269  *
1270  * @retval 0		success
1271  */
1272 static int
1273 devclass_delete_device(devclass_t dc, device_t dev)
1274 {
1275 	if (!dc || !dev)
1276 		return (0);
1277 
1278 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1279 
1280 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1281 		panic("devclass_delete_device: inconsistent device class");
1282 	dc->devices[dev->unit] = NULL;
1283 	if (dev->flags & DF_WILDCARD)
1284 		dev->unit = -1;
1285 	dev->devclass = NULL;
1286 	free(dev->nameunit, M_BUS);
1287 	dev->nameunit = NULL;
1288 
1289 	return (0);
1290 }
1291 
1292 /**
1293  * @internal
1294  * @brief Make a new device and add it as a child of @p parent
1295  *
1296  * @param parent	the parent of the new device
1297  * @param name		the devclass name of the new device or @c NULL
1298  *			to leave the devclass unspecified
1299  * @parem unit		the unit number of the new device of @c -1 to
1300  *			leave the unit number unspecified
1301  *
1302  * @returns the new device
1303  */
1304 static device_t
1305 make_device(device_t parent, const char *name, int unit)
1306 {
1307 	device_t dev;
1308 	devclass_t dc;
1309 
1310 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1311 
1312 	if (name) {
1313 		dc = devclass_find_internal(name, 0, TRUE);
1314 		if (!dc) {
1315 			printf("make_device: can't find device class %s\n",
1316 			    name);
1317 			return (NULL);
1318 		}
1319 	} else {
1320 		dc = NULL;
1321 	}
1322 
1323 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1324 	if (!dev)
1325 		return (NULL);
1326 
1327 	dev->parent = parent;
1328 	TAILQ_INIT(&dev->children);
1329 	kobj_init((kobj_t) dev, &null_class);
1330 	dev->driver = NULL;
1331 	dev->devclass = NULL;
1332 	dev->unit = unit;
1333 	dev->nameunit = NULL;
1334 	dev->desc = NULL;
1335 	dev->busy = 0;
1336 	dev->devflags = 0;
1337 	dev->flags = DF_ENABLED;
1338 	dev->order = 0;
1339 	if (unit == -1)
1340 		dev->flags |= DF_WILDCARD;
1341 	if (name) {
1342 		dev->flags |= DF_FIXEDCLASS;
1343 		if (devclass_add_device(dc, dev)) {
1344 			kobj_delete((kobj_t) dev, M_BUS);
1345 			return (NULL);
1346 		}
1347 	}
1348 	dev->ivars = NULL;
1349 	dev->softc = NULL;
1350 
1351 	dev->state = DS_NOTPRESENT;
1352 
1353 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1354 	bus_data_generation_update();
1355 
1356 	return (dev);
1357 }
1358 
1359 /**
1360  * @internal
1361  * @brief Print a description of a device.
1362  */
1363 static int
1364 device_print_child(device_t dev, device_t child)
1365 {
1366 	int retval = 0;
1367 
1368 	if (device_is_alive(child))
1369 		retval += BUS_PRINT_CHILD(dev, child);
1370 	else
1371 		retval += device_printf(child, " not found\n");
1372 
1373 	return (retval);
1374 }
1375 
1376 /**
1377  * @brief Create a new device
1378  *
1379  * This creates a new device and adds it as a child of an existing
1380  * parent device. The new device will be added after the last existing
1381  * child with order zero.
1382  *
1383  * @param dev		the device which will be the parent of the
1384  *			new child device
1385  * @param name		devclass name for new device or @c NULL if not
1386  *			specified
1387  * @param unit		unit number for new device or @c -1 if not
1388  *			specified
1389  *
1390  * @returns		the new device
1391  */
1392 device_t
1393 device_add_child(device_t dev, const char *name, int unit)
1394 {
1395 	return (device_add_child_ordered(dev, 0, name, unit));
1396 }
1397 
1398 /**
1399  * @brief Create a new device
1400  *
1401  * This creates a new device and adds it as a child of an existing
1402  * parent device. The new device will be added after the last existing
1403  * child with the same order.
1404  *
1405  * @param dev		the device which will be the parent of the
1406  *			new child device
1407  * @param order		a value which is used to partially sort the
1408  *			children of @p dev - devices created using
1409  *			lower values of @p order appear first in @p
1410  *			dev's list of children
1411  * @param name		devclass name for new device or @c NULL if not
1412  *			specified
1413  * @param unit		unit number for new device or @c -1 if not
1414  *			specified
1415  *
1416  * @returns		the new device
1417  */
1418 device_t
1419 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1420 {
1421 	device_t child;
1422 	device_t place;
1423 
1424 	PDEBUG(("%s at %s with order %d as unit %d",
1425 	    name, DEVICENAME(dev), order, unit));
1426 
1427 	child = make_device(dev, name, unit);
1428 	if (child == NULL)
1429 		return (child);
1430 	child->order = order;
1431 
1432 	TAILQ_FOREACH(place, &dev->children, link) {
1433 		if (place->order > order)
1434 			break;
1435 	}
1436 
1437 	if (place) {
1438 		/*
1439 		 * The device 'place' is the first device whose order is
1440 		 * greater than the new child.
1441 		 */
1442 		TAILQ_INSERT_BEFORE(place, child, link);
1443 	} else {
1444 		/*
1445 		 * The new child's order is greater or equal to the order of
1446 		 * any existing device. Add the child to the tail of the list.
1447 		 */
1448 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1449 	}
1450 
1451 	bus_data_generation_update();
1452 	return (child);
1453 }
1454 
1455 /**
1456  * @brief Delete a device
1457  *
1458  * This function deletes a device along with all of its children. If
1459  * the device currently has a driver attached to it, the device is
1460  * detached first using device_detach().
1461  *
1462  * @param dev		the parent device
1463  * @param child		the device to delete
1464  *
1465  * @retval 0		success
1466  * @retval non-zero	a unit error code describing the error
1467  */
1468 int
1469 device_delete_child(device_t dev, device_t child)
1470 {
1471 	int error;
1472 	device_t grandchild;
1473 
1474 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1475 
1476 	/* remove children first */
1477 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1478 		error = device_delete_child(child, grandchild);
1479 		if (error)
1480 			return (error);
1481 	}
1482 
1483 	if ((error = device_detach(child)) != 0)
1484 		return (error);
1485 	if (child->devclass)
1486 		devclass_delete_device(child->devclass, child);
1487 	TAILQ_REMOVE(&dev->children, child, link);
1488 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1489 	kobj_delete((kobj_t) child, M_BUS);
1490 
1491 	bus_data_generation_update();
1492 	return (0);
1493 }
1494 
1495 /**
1496  * @brief Find a device given a unit number
1497  *
1498  * This is similar to devclass_get_devices() but only searches for
1499  * devices which have @p dev as a parent.
1500  *
1501  * @param dev		the parent device to search
1502  * @param unit		the unit number to search for
1503  *
1504  * @returns		the device with the given unit number or @c
1505  *			NULL if there is no such device
1506  */
1507 device_t
1508 device_find_child(device_t dev, const char *classname, int unit)
1509 {
1510 	devclass_t dc;
1511 	device_t child;
1512 
1513 	dc = devclass_find(classname);
1514 	if (!dc)
1515 		return (NULL);
1516 
1517 	child = devclass_get_device(dc, unit);
1518 	if (child && child->parent == dev)
1519 		return (child);
1520 	return (NULL);
1521 }
1522 
1523 /**
1524  * @internal
1525  */
1526 static driverlink_t
1527 first_matching_driver(devclass_t dc, device_t dev)
1528 {
1529 	if (dev->devclass)
1530 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1531 	return (TAILQ_FIRST(&dc->drivers));
1532 }
1533 
1534 /**
1535  * @internal
1536  */
1537 static driverlink_t
1538 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1539 {
1540 	if (dev->devclass) {
1541 		driverlink_t dl;
1542 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1543 			if (!strcmp(dev->devclass->name, dl->driver->name))
1544 				return (dl);
1545 		return (NULL);
1546 	}
1547 	return (TAILQ_NEXT(last, link));
1548 }
1549 
1550 /**
1551  * @internal
1552  */
1553 static int
1554 device_probe_child(device_t dev, device_t child)
1555 {
1556 	devclass_t dc;
1557 	driverlink_t best = 0;
1558 	driverlink_t dl;
1559 	int result, pri = 0;
1560 	int hasclass = (child->devclass != 0);
1561 
1562 	dc = dev->devclass;
1563 	if (!dc)
1564 		panic("device_probe_child: parent device has no devclass");
1565 
1566 	/*
1567 	 * If the state is already probed, then return.  However, don't
1568 	 * return if we can rebid this object.
1569 	 */
1570 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1571 		return (0);
1572 
1573 	for (; dc; dc = dc->parent) {
1574 		for (dl = first_matching_driver(dc, child);
1575 		     dl;
1576 		     dl = next_matching_driver(dc, child, dl)) {
1577 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1578 			device_set_driver(child, dl->driver);
1579 			if (!hasclass)
1580 				device_set_devclass(child, dl->driver->name);
1581 			result = DEVICE_PROBE(child);
1582 			if (!hasclass)
1583 				device_set_devclass(child, 0);
1584 
1585 			/*
1586 			 * If the driver returns SUCCESS, there can be
1587 			 * no higher match for this device.
1588 			 */
1589 			if (result == 0) {
1590 				best = dl;
1591 				pri = 0;
1592 				break;
1593 			}
1594 
1595 			/*
1596 			 * The driver returned an error so it
1597 			 * certainly doesn't match.
1598 			 */
1599 			if (result > 0) {
1600 				device_set_driver(child, 0);
1601 				continue;
1602 			}
1603 
1604 			/*
1605 			 * A priority lower than SUCCESS, remember the
1606 			 * best matching driver. Initialise the value
1607 			 * of pri for the first match.
1608 			 */
1609 			if (best == 0 || result > pri) {
1610 				best = dl;
1611 				pri = result;
1612 				continue;
1613 			}
1614 		}
1615 		/*
1616 		 * If we have an unambiguous match in this devclass,
1617 		 * don't look in the parent.
1618 		 */
1619 		if (best && pri == 0)
1620 			break;
1621 	}
1622 
1623 	/*
1624 	 * If we found a driver, change state and initialise the devclass.
1625 	 */
1626 	/* XXX What happens if we rebid and got no best? */
1627 	if (best) {
1628 		/*
1629 		 * If this device was atached, and we were asked to
1630 		 * rescan, and it is a different driver, then we have
1631 		 * to detach the old driver and reattach this new one.
1632 		 * Note, we don't have to check for DF_REBID here
1633 		 * because if the state is > DS_ALIVE, we know it must
1634 		 * be.
1635 		 *
1636 		 * This assumes that all DF_REBID drivers can have
1637 		 * their probe routine called at any time and that
1638 		 * they are idempotent as well as completely benign in
1639 		 * normal operations.
1640 		 *
1641 		 * We also have to make sure that the detach
1642 		 * succeeded, otherwise we fail the operation (or
1643 		 * maybe it should just fail silently?  I'm torn).
1644 		 */
1645 		if (child->state > DS_ALIVE && best->driver != child->driver)
1646 			if ((result = device_detach(dev)) != 0)
1647 				return (result);
1648 		if (!child->devclass)
1649 			device_set_devclass(child, best->driver->name);
1650 		device_set_driver(child, best->driver);
1651 		if (pri < 0) {
1652 			/*
1653 			 * A bit bogus. Call the probe method again to make
1654 			 * sure that we have the right description.
1655 			 */
1656 			DEVICE_PROBE(child);
1657 #if 0
1658 			child->flags |= DF_REBID;
1659 #endif
1660 		} else
1661 			child->flags &= ~DF_REBID;
1662 		child->state = DS_ALIVE;
1663 
1664 		bus_data_generation_update();
1665 		return (0);
1666 	}
1667 
1668 	return (ENXIO);
1669 }
1670 
1671 /**
1672  * @brief Return the parent of a device
1673  */
1674 device_t
1675 device_get_parent(device_t dev)
1676 {
1677 	return (dev->parent);
1678 }
1679 
1680 /**
1681  * @brief Get a list of children of a device
1682  *
1683  * An array containing a list of all the children of the given device
1684  * is allocated and returned in @p *devlistp. The number of devices
1685  * in the array is returned in @p *devcountp. The caller should free
1686  * the array using @c free(p, M_TEMP).
1687  *
1688  * @param dev		the device to examine
1689  * @param devlistp	points at location for array pointer return
1690  *			value
1691  * @param devcountp	points at location for array size return value
1692  *
1693  * @retval 0		success
1694  * @retval ENOMEM	the array allocation failed
1695  */
1696 int
1697 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1698 {
1699 	int count;
1700 	device_t child;
1701 	device_t *list;
1702 
1703 	count = 0;
1704 	TAILQ_FOREACH(child, &dev->children, link) {
1705 		count++;
1706 	}
1707 
1708 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1709 	if (!list)
1710 		return (ENOMEM);
1711 
1712 	count = 0;
1713 	TAILQ_FOREACH(child, &dev->children, link) {
1714 		list[count] = child;
1715 		count++;
1716 	}
1717 
1718 	*devlistp = list;
1719 	*devcountp = count;
1720 
1721 	return (0);
1722 }
1723 
1724 /**
1725  * @brief Return the current driver for the device or @c NULL if there
1726  * is no driver currently attached
1727  */
1728 driver_t *
1729 device_get_driver(device_t dev)
1730 {
1731 	return (dev->driver);
1732 }
1733 
1734 /**
1735  * @brief Return the current devclass for the device or @c NULL if
1736  * there is none.
1737  */
1738 devclass_t
1739 device_get_devclass(device_t dev)
1740 {
1741 	return (dev->devclass);
1742 }
1743 
1744 /**
1745  * @brief Return the name of the device's devclass or @c NULL if there
1746  * is none.
1747  */
1748 const char *
1749 device_get_name(device_t dev)
1750 {
1751 	if (dev != NULL && dev->devclass)
1752 		return (devclass_get_name(dev->devclass));
1753 	return (NULL);
1754 }
1755 
1756 /**
1757  * @brief Return a string containing the device's devclass name
1758  * followed by an ascii representation of the device's unit number
1759  * (e.g. @c "foo2").
1760  */
1761 const char *
1762 device_get_nameunit(device_t dev)
1763 {
1764 	return (dev->nameunit);
1765 }
1766 
1767 /**
1768  * @brief Return the device's unit number.
1769  */
1770 int
1771 device_get_unit(device_t dev)
1772 {
1773 	return (dev->unit);
1774 }
1775 
1776 /**
1777  * @brief Return the device's description string
1778  */
1779 const char *
1780 device_get_desc(device_t dev)
1781 {
1782 	return (dev->desc);
1783 }
1784 
1785 /**
1786  * @brief Return the device's flags
1787  */
1788 u_int32_t
1789 device_get_flags(device_t dev)
1790 {
1791 	return (dev->devflags);
1792 }
1793 
1794 struct sysctl_ctx_list *
1795 device_get_sysctl_ctx(device_t dev)
1796 {
1797 	return (&dev->sysctl_ctx);
1798 }
1799 
1800 struct sysctl_oid *
1801 device_get_sysctl_tree(device_t dev)
1802 {
1803 	return (dev->sysctl_tree);
1804 }
1805 
1806 /**
1807  * @brief Print the name of the device followed by a colon and a space
1808  *
1809  * @returns the number of characters printed
1810  */
1811 int
1812 device_print_prettyname(device_t dev)
1813 {
1814 	const char *name = device_get_name(dev);
1815 
1816 	if (name == 0)
1817 		return (printf("unknown: "));
1818 	return (printf("%s%d: ", name, device_get_unit(dev)));
1819 }
1820 
1821 /**
1822  * @brief Print the name of the device followed by a colon, a space
1823  * and the result of calling vprintf() with the value of @p fmt and
1824  * the following arguments.
1825  *
1826  * @returns the number of characters printed
1827  */
1828 int
1829 device_printf(device_t dev, const char * fmt, ...)
1830 {
1831 	va_list ap;
1832 	int retval;
1833 
1834 	retval = device_print_prettyname(dev);
1835 	va_start(ap, fmt);
1836 	retval += vprintf(fmt, ap);
1837 	va_end(ap);
1838 	return (retval);
1839 }
1840 
1841 /**
1842  * @internal
1843  */
1844 static void
1845 device_set_desc_internal(device_t dev, const char* desc, int copy)
1846 {
1847 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1848 		free(dev->desc, M_BUS);
1849 		dev->flags &= ~DF_DESCMALLOCED;
1850 		dev->desc = NULL;
1851 	}
1852 
1853 	if (copy && desc) {
1854 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
1855 		if (dev->desc) {
1856 			strcpy(dev->desc, desc);
1857 			dev->flags |= DF_DESCMALLOCED;
1858 		}
1859 	} else {
1860 		/* Avoid a -Wcast-qual warning */
1861 		dev->desc = (char *)(uintptr_t) desc;
1862 	}
1863 
1864 	bus_data_generation_update();
1865 }
1866 
1867 /**
1868  * @brief Set the device's description
1869  *
1870  * The value of @c desc should be a string constant that will not
1871  * change (at least until the description is changed in a subsequent
1872  * call to device_set_desc() or device_set_desc_copy()).
1873  */
1874 void
1875 device_set_desc(device_t dev, const char* desc)
1876 {
1877 	device_set_desc_internal(dev, desc, FALSE);
1878 }
1879 
1880 /**
1881  * @brief Set the device's description
1882  *
1883  * The string pointed to by @c desc is copied. Use this function if
1884  * the device description is generated, (e.g. with sprintf()).
1885  */
1886 void
1887 device_set_desc_copy(device_t dev, const char* desc)
1888 {
1889 	device_set_desc_internal(dev, desc, TRUE);
1890 }
1891 
1892 /**
1893  * @brief Set the device's flags
1894  */
1895 void
1896 device_set_flags(device_t dev, u_int32_t flags)
1897 {
1898 	dev->devflags = flags;
1899 }
1900 
1901 /**
1902  * @brief Return the device's softc field
1903  *
1904  * The softc is allocated and zeroed when a driver is attached, based
1905  * on the size field of the driver.
1906  */
1907 void *
1908 device_get_softc(device_t dev)
1909 {
1910 	return (dev->softc);
1911 }
1912 
1913 /**
1914  * @brief Set the device's softc field
1915  *
1916  * Most drivers do not need to use this since the softc is allocated
1917  * automatically when the driver is attached.
1918  */
1919 void
1920 device_set_softc(device_t dev, void *softc)
1921 {
1922 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1923 		free(dev->softc, M_BUS_SC);
1924 	dev->softc = softc;
1925 	if (dev->softc)
1926 		dev->flags |= DF_EXTERNALSOFTC;
1927 	else
1928 		dev->flags &= ~DF_EXTERNALSOFTC;
1929 }
1930 
1931 /**
1932  * @brief Get the device's ivars field
1933  *
1934  * The ivars field is used by the parent device to store per-device
1935  * state (e.g. the physical location of the device or a list of
1936  * resources).
1937  */
1938 void *
1939 device_get_ivars(device_t dev)
1940 {
1941 
1942 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
1943 	return (dev->ivars);
1944 }
1945 
1946 /**
1947  * @brief Set the device's ivars field
1948  */
1949 void
1950 device_set_ivars(device_t dev, void * ivars)
1951 {
1952 
1953 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
1954 	dev->ivars = ivars;
1955 }
1956 
1957 /**
1958  * @brief Return the device's state
1959  */
1960 device_state_t
1961 device_get_state(device_t dev)
1962 {
1963 	return (dev->state);
1964 }
1965 
1966 /**
1967  * @brief Set the DF_ENABLED flag for the device
1968  */
1969 void
1970 device_enable(device_t dev)
1971 {
1972 	dev->flags |= DF_ENABLED;
1973 }
1974 
1975 /**
1976  * @brief Clear the DF_ENABLED flag for the device
1977  */
1978 void
1979 device_disable(device_t dev)
1980 {
1981 	dev->flags &= ~DF_ENABLED;
1982 }
1983 
1984 /**
1985  * @brief Increment the busy counter for the device
1986  */
1987 void
1988 device_busy(device_t dev)
1989 {
1990 	if (dev->state < DS_ATTACHED)
1991 		panic("device_busy: called for unattached device");
1992 	if (dev->busy == 0 && dev->parent)
1993 		device_busy(dev->parent);
1994 	dev->busy++;
1995 	dev->state = DS_BUSY;
1996 }
1997 
1998 /**
1999  * @brief Decrement the busy counter for the device
2000  */
2001 void
2002 device_unbusy(device_t dev)
2003 {
2004 	if (dev->state != DS_BUSY)
2005 		panic("device_unbusy: called for non-busy device");
2006 	dev->busy--;
2007 	if (dev->busy == 0) {
2008 		if (dev->parent)
2009 			device_unbusy(dev->parent);
2010 		dev->state = DS_ATTACHED;
2011 	}
2012 }
2013 
2014 /**
2015  * @brief Set the DF_QUIET flag for the device
2016  */
2017 void
2018 device_quiet(device_t dev)
2019 {
2020 	dev->flags |= DF_QUIET;
2021 }
2022 
2023 /**
2024  * @brief Clear the DF_QUIET flag for the device
2025  */
2026 void
2027 device_verbose(device_t dev)
2028 {
2029 	dev->flags &= ~DF_QUIET;
2030 }
2031 
2032 /**
2033  * @brief Return non-zero if the DF_QUIET flag is set on the device
2034  */
2035 int
2036 device_is_quiet(device_t dev)
2037 {
2038 	return ((dev->flags & DF_QUIET) != 0);
2039 }
2040 
2041 /**
2042  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2043  */
2044 int
2045 device_is_enabled(device_t dev)
2046 {
2047 	return ((dev->flags & DF_ENABLED) != 0);
2048 }
2049 
2050 /**
2051  * @brief Return non-zero if the device was successfully probed
2052  */
2053 int
2054 device_is_alive(device_t dev)
2055 {
2056 	return (dev->state >= DS_ALIVE);
2057 }
2058 
2059 /**
2060  * @brief Return non-zero if the device currently has a driver
2061  * attached to it
2062  */
2063 int
2064 device_is_attached(device_t dev)
2065 {
2066 	return (dev->state >= DS_ATTACHED);
2067 }
2068 
2069 /**
2070  * @brief Set the devclass of a device
2071  * @see devclass_add_device().
2072  */
2073 int
2074 device_set_devclass(device_t dev, const char *classname)
2075 {
2076 	devclass_t dc;
2077 	int error;
2078 
2079 	if (!classname) {
2080 		if (dev->devclass)
2081 			devclass_delete_device(dev->devclass, dev);
2082 		return (0);
2083 	}
2084 
2085 	if (dev->devclass) {
2086 		printf("device_set_devclass: device class already set\n");
2087 		return (EINVAL);
2088 	}
2089 
2090 	dc = devclass_find_internal(classname, 0, TRUE);
2091 	if (!dc)
2092 		return (ENOMEM);
2093 
2094 	error = devclass_add_device(dc, dev);
2095 
2096 	bus_data_generation_update();
2097 	return (error);
2098 }
2099 
2100 /**
2101  * @brief Set the driver of a device
2102  *
2103  * @retval 0		success
2104  * @retval EBUSY	the device already has a driver attached
2105  * @retval ENOMEM	a memory allocation failure occurred
2106  */
2107 int
2108 device_set_driver(device_t dev, driver_t *driver)
2109 {
2110 	if (dev->state >= DS_ATTACHED)
2111 		return (EBUSY);
2112 
2113 	if (dev->driver == driver)
2114 		return (0);
2115 
2116 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2117 		free(dev->softc, M_BUS_SC);
2118 		dev->softc = NULL;
2119 	}
2120 	kobj_delete((kobj_t) dev, 0);
2121 	dev->driver = driver;
2122 	if (driver) {
2123 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2124 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2125 			dev->softc = malloc(driver->size, M_BUS_SC,
2126 			    M_NOWAIT | M_ZERO);
2127 			if (!dev->softc) {
2128 				kobj_delete((kobj_t) dev, 0);
2129 				kobj_init((kobj_t) dev, &null_class);
2130 				dev->driver = NULL;
2131 				return (ENOMEM);
2132 			}
2133 		}
2134 	} else {
2135 		kobj_init((kobj_t) dev, &null_class);
2136 	}
2137 
2138 	bus_data_generation_update();
2139 	return (0);
2140 }
2141 
2142 /**
2143  * @brief Probe a device and attach a driver if possible
2144  *
2145  * This function is the core of the device autoconfiguration
2146  * system. Its purpose is to select a suitable driver for a device and
2147  * then call that driver to initialise the hardware appropriately. The
2148  * driver is selected by calling the DEVICE_PROBE() method of a set of
2149  * candidate drivers and then choosing the driver which returned the
2150  * best value. This driver is then attached to the device using
2151  * device_attach().
2152  *
2153  * The set of suitable drivers is taken from the list of drivers in
2154  * the parent device's devclass. If the device was originally created
2155  * with a specific class name (see device_add_child()), only drivers
2156  * with that name are probed, otherwise all drivers in the devclass
2157  * are probed. If no drivers return successful probe values in the
2158  * parent devclass, the search continues in the parent of that
2159  * devclass (see devclass_get_parent()) if any.
2160  *
2161  * @param dev		the device to initialise
2162  *
2163  * @retval 0		success
2164  * @retval ENXIO	no driver was found
2165  * @retval ENOMEM	memory allocation failure
2166  * @retval non-zero	some other unix error code
2167  */
2168 int
2169 device_probe_and_attach(device_t dev)
2170 {
2171 	int error;
2172 
2173 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2174 		return (0);
2175 
2176 	if (!(dev->flags & DF_ENABLED)) {
2177 		if (bootverbose) {
2178 			device_print_prettyname(dev);
2179 			printf("not probed (disabled)\n");
2180 		}
2181 		return (0);
2182 	}
2183 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2184 		if (!(dev->flags & DF_DONENOMATCH)) {
2185 			BUS_PROBE_NOMATCH(dev->parent, dev);
2186 			devnomatch(dev);
2187 			dev->flags |= DF_DONENOMATCH;
2188 		}
2189 		return (error);
2190 	}
2191 	error = device_attach(dev);
2192 
2193 	return (error);
2194 }
2195 
2196 /**
2197  * @brief Attach a device driver to a device
2198  *
2199  * This function is a wrapper around the DEVICE_ATTACH() driver
2200  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2201  * device's sysctl tree, optionally prints a description of the device
2202  * and queues a notification event for user-based device management
2203  * services.
2204  *
2205  * Normally this function is only called internally from
2206  * device_probe_and_attach().
2207  *
2208  * @param dev		the device to initialise
2209  *
2210  * @retval 0		success
2211  * @retval ENXIO	no driver was found
2212  * @retval ENOMEM	memory allocation failure
2213  * @retval non-zero	some other unix error code
2214  */
2215 int
2216 device_attach(device_t dev)
2217 {
2218 	int error;
2219 
2220 	device_sysctl_init(dev);
2221 	if (!device_is_quiet(dev))
2222 		device_print_child(dev->parent, dev);
2223 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2224 		printf("device_attach: %s%d attach returned %d\n",
2225 		    dev->driver->name, dev->unit, error);
2226 		/* Unset the class; set in device_probe_child */
2227 		if (dev->devclass == 0)
2228 			device_set_devclass(dev, 0);
2229 		device_set_driver(dev, NULL);
2230 		device_sysctl_fini(dev);
2231 		dev->state = DS_NOTPRESENT;
2232 		return (error);
2233 	}
2234 	dev->state = DS_ATTACHED;
2235 	devadded(dev);
2236 	return (0);
2237 }
2238 
2239 /**
2240  * @brief Detach a driver from a device
2241  *
2242  * This function is a wrapper around the DEVICE_DETACH() driver
2243  * method. If the call to DEVICE_DETACH() succeeds, it calls
2244  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2245  * notification event for user-based device management services and
2246  * cleans up the device's sysctl tree.
2247  *
2248  * @param dev		the device to un-initialise
2249  *
2250  * @retval 0		success
2251  * @retval ENXIO	no driver was found
2252  * @retval ENOMEM	memory allocation failure
2253  * @retval non-zero	some other unix error code
2254  */
2255 int
2256 device_detach(device_t dev)
2257 {
2258 	int error;
2259 
2260 	PDEBUG(("%s", DEVICENAME(dev)));
2261 	if (dev->state == DS_BUSY)
2262 		return (EBUSY);
2263 	if (dev->state != DS_ATTACHED)
2264 		return (0);
2265 
2266 	if ((error = DEVICE_DETACH(dev)) != 0)
2267 		return (error);
2268 	devremoved(dev);
2269 	device_printf(dev, "detached\n");
2270 	if (dev->parent)
2271 		BUS_CHILD_DETACHED(dev->parent, dev);
2272 
2273 	if (!(dev->flags & DF_FIXEDCLASS))
2274 		devclass_delete_device(dev->devclass, dev);
2275 
2276 	dev->state = DS_NOTPRESENT;
2277 	device_set_driver(dev, NULL);
2278 	device_set_desc(dev, NULL);
2279 	device_sysctl_fini(dev);
2280 
2281 	return (0);
2282 }
2283 
2284 /**
2285  * @brief Notify a device of system shutdown
2286  *
2287  * This function calls the DEVICE_SHUTDOWN() driver method if the
2288  * device currently has an attached driver.
2289  *
2290  * @returns the value returned by DEVICE_SHUTDOWN()
2291  */
2292 int
2293 device_shutdown(device_t dev)
2294 {
2295 	if (dev->state < DS_ATTACHED)
2296 		return (0);
2297 	return (DEVICE_SHUTDOWN(dev));
2298 }
2299 
2300 /**
2301  * @brief Set the unit number of a device
2302  *
2303  * This function can be used to override the unit number used for a
2304  * device (e.g. to wire a device to a pre-configured unit number).
2305  */
2306 int
2307 device_set_unit(device_t dev, int unit)
2308 {
2309 	devclass_t dc;
2310 	int err;
2311 
2312 	dc = device_get_devclass(dev);
2313 	if (unit < dc->maxunit && dc->devices[unit])
2314 		return (EBUSY);
2315 	err = devclass_delete_device(dc, dev);
2316 	if (err)
2317 		return (err);
2318 	dev->unit = unit;
2319 	err = devclass_add_device(dc, dev);
2320 	if (err)
2321 		return (err);
2322 
2323 	bus_data_generation_update();
2324 	return (0);
2325 }
2326 
2327 /*======================================*/
2328 /*
2329  * Some useful method implementations to make life easier for bus drivers.
2330  */
2331 
2332 /**
2333  * @brief Initialise a resource list.
2334  *
2335  * @param rl		the resource list to initialise
2336  */
2337 void
2338 resource_list_init(struct resource_list *rl)
2339 {
2340 	SLIST_INIT(rl);
2341 }
2342 
2343 /**
2344  * @brief Reclaim memory used by a resource list.
2345  *
2346  * This function frees the memory for all resource entries on the list
2347  * (if any).
2348  *
2349  * @param rl		the resource list to free
2350  */
2351 void
2352 resource_list_free(struct resource_list *rl)
2353 {
2354 	struct resource_list_entry *rle;
2355 
2356 	while ((rle = SLIST_FIRST(rl)) != NULL) {
2357 		if (rle->res)
2358 			panic("resource_list_free: resource entry is busy");
2359 		SLIST_REMOVE_HEAD(rl, link);
2360 		free(rle, M_BUS);
2361 	}
2362 }
2363 
2364 /**
2365  * @brief Add a resource entry.
2366  *
2367  * This function adds a resource entry using the given @p type, @p
2368  * start, @p end and @p count values. A rid value is chosen by
2369  * searching sequentially for the first unused rid starting at zero.
2370  *
2371  * @param rl		the resource list to edit
2372  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2373  * @param start		the start address of the resource
2374  * @param end		the end address of the resource
2375  * @param count		XXX end-start+1
2376  */
2377 int
2378 resource_list_add_next(struct resource_list *rl, int type, u_long start,
2379     u_long end, u_long count)
2380 {
2381 	int rid;
2382 
2383 	rid = 0;
2384 	while (resource_list_find(rl, type, rid) != NULL)
2385 		rid++;
2386 	resource_list_add(rl, type, rid, start, end, count);
2387 	return (rid);
2388 }
2389 
2390 /**
2391  * @brief Add or modify a resource entry.
2392  *
2393  * If an existing entry exists with the same type and rid, it will be
2394  * modified using the given values of @p start, @p end and @p
2395  * count. If no entry exists, a new one will be created using the
2396  * given values.
2397  *
2398  * @param rl		the resource list to edit
2399  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2400  * @param rid		the resource identifier
2401  * @param start		the start address of the resource
2402  * @param end		the end address of the resource
2403  * @param count		XXX end-start+1
2404  */
2405 void
2406 resource_list_add(struct resource_list *rl, int type, int rid,
2407     u_long start, u_long end, u_long count)
2408 {
2409 	struct resource_list_entry *rle;
2410 
2411 	rle = resource_list_find(rl, type, rid);
2412 	if (!rle) {
2413 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2414 		    M_NOWAIT);
2415 		if (!rle)
2416 			panic("resource_list_add: can't record entry");
2417 		SLIST_INSERT_HEAD(rl, rle, link);
2418 		rle->type = type;
2419 		rle->rid = rid;
2420 		rle->res = NULL;
2421 	}
2422 
2423 	if (rle->res)
2424 		panic("resource_list_add: resource entry is busy");
2425 
2426 	rle->start = start;
2427 	rle->end = end;
2428 	rle->count = count;
2429 }
2430 
2431 /**
2432  * @brief Find a resource entry by type and rid.
2433  *
2434  * @param rl		the resource list to search
2435  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2436  * @param rid		the resource identifier
2437  *
2438  * @returns the resource entry pointer or NULL if there is no such
2439  * entry.
2440  */
2441 struct resource_list_entry *
2442 resource_list_find(struct resource_list *rl, int type, int rid)
2443 {
2444 	struct resource_list_entry *rle;
2445 
2446 	SLIST_FOREACH(rle, rl, link) {
2447 		if (rle->type == type && rle->rid == rid)
2448 			return (rle);
2449 	}
2450 	return (NULL);
2451 }
2452 
2453 /**
2454  * @brief Delete a resource entry.
2455  *
2456  * @param rl		the resource list to edit
2457  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2458  * @param rid		the resource identifier
2459  */
2460 void
2461 resource_list_delete(struct resource_list *rl, int type, int rid)
2462 {
2463 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2464 
2465 	if (rle) {
2466 		if (rle->res != NULL)
2467 			panic("resource_list_delete: resource has not been released");
2468 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2469 		free(rle, M_BUS);
2470 	}
2471 }
2472 
2473 /**
2474  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2475  *
2476  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2477  * and passing the allocation up to the parent of @p bus. This assumes
2478  * that the first entry of @c device_get_ivars(child) is a struct
2479  * resource_list. This also handles 'passthrough' allocations where a
2480  * child is a remote descendant of bus by passing the allocation up to
2481  * the parent of bus.
2482  *
2483  * Typically, a bus driver would store a list of child resources
2484  * somewhere in the child device's ivars (see device_get_ivars()) and
2485  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2486  * then call resource_list_alloc() to perform the allocation.
2487  *
2488  * @param rl		the resource list to allocate from
2489  * @param bus		the parent device of @p child
2490  * @param child		the device which is requesting an allocation
2491  * @param type		the type of resource to allocate
2492  * @param rid		a pointer to the resource identifier
2493  * @param start		hint at the start of the resource range - pass
2494  *			@c 0UL for any start address
2495  * @param end		hint at the end of the resource range - pass
2496  *			@c ~0UL for any end address
2497  * @param count		hint at the size of range required - pass @c 1
2498  *			for any size
2499  * @param flags		any extra flags to control the resource
2500  *			allocation - see @c RF_XXX flags in
2501  *			<sys/rman.h> for details
2502  *
2503  * @returns		the resource which was allocated or @c NULL if no
2504  *			resource could be allocated
2505  */
2506 struct resource *
2507 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2508     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2509 {
2510 	struct resource_list_entry *rle = 0;
2511 	int passthrough = (device_get_parent(child) != bus);
2512 	int isdefault = (start == 0UL && end == ~0UL);
2513 
2514 	if (passthrough) {
2515 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2516 		    type, rid, start, end, count, flags));
2517 	}
2518 
2519 	rle = resource_list_find(rl, type, *rid);
2520 
2521 	if (!rle)
2522 		return (NULL);		/* no resource of that type/rid */
2523 
2524 	if (rle->res)
2525 		panic("resource_list_alloc: resource entry is busy");
2526 
2527 	if (isdefault) {
2528 		start = rle->start;
2529 		count = ulmax(count, rle->count);
2530 		end = ulmax(rle->end, start + count - 1);
2531 	}
2532 
2533 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2534 	    type, rid, start, end, count, flags);
2535 
2536 	/*
2537 	 * Record the new range.
2538 	 */
2539 	if (rle->res) {
2540 		rle->start = rman_get_start(rle->res);
2541 		rle->end = rman_get_end(rle->res);
2542 		rle->count = count;
2543 	}
2544 
2545 	return (rle->res);
2546 }
2547 
2548 /**
2549  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
2550  *
2551  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
2552  * used with resource_list_alloc().
2553  *
2554  * @param rl		the resource list which was allocated from
2555  * @param bus		the parent device of @p child
2556  * @param child		the device which is requesting a release
2557  * @param type		the type of resource to allocate
2558  * @param rid		the resource identifier
2559  * @param res		the resource to release
2560  *
2561  * @retval 0		success
2562  * @retval non-zero	a standard unix error code indicating what
2563  *			error condition prevented the operation
2564  */
2565 int
2566 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
2567     int type, int rid, struct resource *res)
2568 {
2569 	struct resource_list_entry *rle = 0;
2570 	int passthrough = (device_get_parent(child) != bus);
2571 	int error;
2572 
2573 	if (passthrough) {
2574 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2575 		    type, rid, res));
2576 	}
2577 
2578 	rle = resource_list_find(rl, type, rid);
2579 
2580 	if (!rle)
2581 		panic("resource_list_release: can't find resource");
2582 	if (!rle->res)
2583 		panic("resource_list_release: resource entry is not busy");
2584 
2585 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2586 	    type, rid, res);
2587 	if (error)
2588 		return (error);
2589 
2590 	rle->res = NULL;
2591 	return (0);
2592 }
2593 
2594 /**
2595  * @brief Print a description of resources in a resource list
2596  *
2597  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
2598  * The name is printed if at least one resource of the given type is available.
2599  * The format is used to print resource start and end.
2600  *
2601  * @param rl		the resource list to print
2602  * @param name		the name of @p type, e.g. @c "memory"
2603  * @param type		type type of resource entry to print
2604  * @param format	printf(9) format string to print resource
2605  *			start and end values
2606  *
2607  * @returns		the number of characters printed
2608  */
2609 int
2610 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2611     const char *format)
2612 {
2613 	struct resource_list_entry *rle;
2614 	int printed, retval;
2615 
2616 	printed = 0;
2617 	retval = 0;
2618 	/* Yes, this is kinda cheating */
2619 	SLIST_FOREACH(rle, rl, link) {
2620 		if (rle->type == type) {
2621 			if (printed == 0)
2622 				retval += printf(" %s ", name);
2623 			else
2624 				retval += printf(",");
2625 			printed++;
2626 			retval += printf(format, rle->start);
2627 			if (rle->count > 1) {
2628 				retval += printf("-");
2629 				retval += printf(format, rle->start +
2630 						 rle->count - 1);
2631 			}
2632 		}
2633 	}
2634 	return (retval);
2635 }
2636 
2637 /**
2638  * @brief Helper function for implementing DEVICE_PROBE()
2639  *
2640  * This function can be used to help implement the DEVICE_PROBE() for
2641  * a bus (i.e. a device which has other devices attached to it). It
2642  * calls the DEVICE_IDENTIFY() method of each driver in the device's
2643  * devclass.
2644  */
2645 int
2646 bus_generic_probe(device_t dev)
2647 {
2648 	devclass_t dc = dev->devclass;
2649 	driverlink_t dl;
2650 
2651 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2652 		DEVICE_IDENTIFY(dl->driver, dev);
2653 	}
2654 
2655 	return (0);
2656 }
2657 
2658 /**
2659  * @brief Helper function for implementing DEVICE_ATTACH()
2660  *
2661  * This function can be used to help implement the DEVICE_ATTACH() for
2662  * a bus. It calls device_probe_and_attach() for each of the device's
2663  * children.
2664  */
2665 int
2666 bus_generic_attach(device_t dev)
2667 {
2668 	device_t child;
2669 
2670 	TAILQ_FOREACH(child, &dev->children, link) {
2671 		device_probe_and_attach(child);
2672 	}
2673 
2674 	return (0);
2675 }
2676 
2677 /**
2678  * @brief Helper function for implementing DEVICE_DETACH()
2679  *
2680  * This function can be used to help implement the DEVICE_DETACH() for
2681  * a bus. It calls device_detach() for each of the device's
2682  * children.
2683  */
2684 int
2685 bus_generic_detach(device_t dev)
2686 {
2687 	device_t child;
2688 	int error;
2689 
2690 	if (dev->state != DS_ATTACHED)
2691 		return (EBUSY);
2692 
2693 	TAILQ_FOREACH(child, &dev->children, link) {
2694 		if ((error = device_detach(child)) != 0)
2695 			return (error);
2696 	}
2697 
2698 	return (0);
2699 }
2700 
2701 /**
2702  * @brief Helper function for implementing DEVICE_SHUTDOWN()
2703  *
2704  * This function can be used to help implement the DEVICE_SHUTDOWN()
2705  * for a bus. It calls device_shutdown() for each of the device's
2706  * children.
2707  */
2708 int
2709 bus_generic_shutdown(device_t dev)
2710 {
2711 	device_t child;
2712 
2713 	TAILQ_FOREACH(child, &dev->children, link) {
2714 		device_shutdown(child);
2715 	}
2716 
2717 	return (0);
2718 }
2719 
2720 /**
2721  * @brief Helper function for implementing DEVICE_SUSPEND()
2722  *
2723  * This function can be used to help implement the DEVICE_SUSPEND()
2724  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
2725  * children. If any call to DEVICE_SUSPEND() fails, the suspend
2726  * operation is aborted and any devices which were suspended are
2727  * resumed immediately by calling their DEVICE_RESUME() methods.
2728  */
2729 int
2730 bus_generic_suspend(device_t dev)
2731 {
2732 	int		error;
2733 	device_t	child, child2;
2734 
2735 	TAILQ_FOREACH(child, &dev->children, link) {
2736 		error = DEVICE_SUSPEND(child);
2737 		if (error) {
2738 			for (child2 = TAILQ_FIRST(&dev->children);
2739 			     child2 && child2 != child;
2740 			     child2 = TAILQ_NEXT(child2, link))
2741 				DEVICE_RESUME(child2);
2742 			return (error);
2743 		}
2744 	}
2745 	return (0);
2746 }
2747 
2748 /**
2749  * @brief Helper function for implementing DEVICE_RESUME()
2750  *
2751  * This function can be used to help implement the DEVICE_RESUME() for
2752  * a bus. It calls DEVICE_RESUME() on each of the device's children.
2753  */
2754 int
2755 bus_generic_resume(device_t dev)
2756 {
2757 	device_t	child;
2758 
2759 	TAILQ_FOREACH(child, &dev->children, link) {
2760 		DEVICE_RESUME(child);
2761 		/* if resume fails, there's nothing we can usefully do... */
2762 	}
2763 	return (0);
2764 }
2765 
2766 /**
2767  * @brief Helper function for implementing BUS_PRINT_CHILD().
2768  *
2769  * This function prints the first part of the ascii representation of
2770  * @p child, including its name, unit and description (if any - see
2771  * device_set_desc()).
2772  *
2773  * @returns the number of characters printed
2774  */
2775 int
2776 bus_print_child_header(device_t dev, device_t child)
2777 {
2778 	int	retval = 0;
2779 
2780 	if (device_get_desc(child)) {
2781 		retval += device_printf(child, "<%s>", device_get_desc(child));
2782 	} else {
2783 		retval += printf("%s", device_get_nameunit(child));
2784 	}
2785 
2786 	return (retval);
2787 }
2788 
2789 /**
2790  * @brief Helper function for implementing BUS_PRINT_CHILD().
2791  *
2792  * This function prints the last part of the ascii representation of
2793  * @p child, which consists of the string @c " on " followed by the
2794  * name and unit of the @p dev.
2795  *
2796  * @returns the number of characters printed
2797  */
2798 int
2799 bus_print_child_footer(device_t dev, device_t child)
2800 {
2801 	return (printf(" on %s\n", device_get_nameunit(dev)));
2802 }
2803 
2804 /**
2805  * @brief Helper function for implementing BUS_PRINT_CHILD().
2806  *
2807  * This function simply calls bus_print_child_header() followed by
2808  * bus_print_child_footer().
2809  *
2810  * @returns the number of characters printed
2811  */
2812 int
2813 bus_generic_print_child(device_t dev, device_t child)
2814 {
2815 	int	retval = 0;
2816 
2817 	retval += bus_print_child_header(dev, child);
2818 	retval += bus_print_child_footer(dev, child);
2819 
2820 	return (retval);
2821 }
2822 
2823 /**
2824  * @brief Stub function for implementing BUS_READ_IVAR().
2825  *
2826  * @returns ENOENT
2827  */
2828 int
2829 bus_generic_read_ivar(device_t dev, device_t child, int index,
2830     uintptr_t * result)
2831 {
2832 	return (ENOENT);
2833 }
2834 
2835 /**
2836  * @brief Stub function for implementing BUS_WRITE_IVAR().
2837  *
2838  * @returns ENOENT
2839  */
2840 int
2841 bus_generic_write_ivar(device_t dev, device_t child, int index,
2842     uintptr_t value)
2843 {
2844 	return (ENOENT);
2845 }
2846 
2847 /**
2848  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
2849  *
2850  * @returns NULL
2851  */
2852 struct resource_list *
2853 bus_generic_get_resource_list(device_t dev, device_t child)
2854 {
2855 	return (NULL);
2856 }
2857 
2858 /**
2859  * @brief Helper function for implementing BUS_DRIVER_ADDED().
2860  *
2861  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
2862  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
2863  * and then calls device_probe_and_attach() for each unattached child.
2864  */
2865 void
2866 bus_generic_driver_added(device_t dev, driver_t *driver)
2867 {
2868 	device_t child;
2869 
2870 	DEVICE_IDENTIFY(driver, dev);
2871 	TAILQ_FOREACH(child, &dev->children, link) {
2872 		if (child->state == DS_NOTPRESENT ||
2873 		    (child->flags & DF_REBID))
2874 			device_probe_and_attach(child);
2875 	}
2876 }
2877 
2878 /**
2879  * @brief Helper function for implementing BUS_SETUP_INTR().
2880  *
2881  * This simple implementation of BUS_SETUP_INTR() simply calls the
2882  * BUS_SETUP_INTR() method of the parent of @p dev.
2883  */
2884 int
2885 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2886     int flags, driver_intr_t *intr, void *arg, void **cookiep)
2887 {
2888 	/* Propagate up the bus hierarchy until someone handles it. */
2889 	if (dev->parent)
2890 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
2891 		    intr, arg, cookiep));
2892 	return (EINVAL);
2893 }
2894 
2895 /**
2896  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
2897  *
2898  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
2899  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
2900  */
2901 int
2902 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2903     void *cookie)
2904 {
2905 	/* Propagate up the bus hierarchy until someone handles it. */
2906 	if (dev->parent)
2907 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2908 	return (EINVAL);
2909 }
2910 
2911 /**
2912  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
2913  *
2914  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
2915  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
2916  */
2917 struct resource *
2918 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
2919     u_long start, u_long end, u_long count, u_int flags)
2920 {
2921 	/* Propagate up the bus hierarchy until someone handles it. */
2922 	if (dev->parent)
2923 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
2924 		    start, end, count, flags));
2925 	return (NULL);
2926 }
2927 
2928 /**
2929  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
2930  *
2931  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
2932  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
2933  */
2934 int
2935 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
2936     struct resource *r)
2937 {
2938 	/* Propagate up the bus hierarchy until someone handles it. */
2939 	if (dev->parent)
2940 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
2941 		    r));
2942 	return (EINVAL);
2943 }
2944 
2945 /**
2946  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
2947  *
2948  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
2949  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
2950  */
2951 int
2952 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
2953     struct resource *r)
2954 {
2955 	/* Propagate up the bus hierarchy until someone handles it. */
2956 	if (dev->parent)
2957 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
2958 		    r));
2959 	return (EINVAL);
2960 }
2961 
2962 /**
2963  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
2964  *
2965  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
2966  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
2967  */
2968 int
2969 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
2970     int rid, struct resource *r)
2971 {
2972 	/* Propagate up the bus hierarchy until someone handles it. */
2973 	if (dev->parent)
2974 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
2975 		    r));
2976 	return (EINVAL);
2977 }
2978 
2979 /**
2980  * @brief Helper function for implementing BUS_CONFIG_INTR().
2981  *
2982  * This simple implementation of BUS_CONFIG_INTR() simply calls the
2983  * BUS_CONFIG_INTR() method of the parent of @p dev.
2984  */
2985 int
2986 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
2987     enum intr_polarity pol)
2988 {
2989 
2990 	/* Propagate up the bus hierarchy until someone handles it. */
2991 	if (dev->parent)
2992 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
2993 	return (EINVAL);
2994 }
2995 
2996 /**
2997  * @brief Helper function for implementing BUS_GET_RESOURCE().
2998  *
2999  * This implementation of BUS_GET_RESOURCE() uses the
3000  * resource_list_find() function to do most of the work. It calls
3001  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3002  * search.
3003  */
3004 int
3005 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3006     u_long *startp, u_long *countp)
3007 {
3008 	struct resource_list *		rl = NULL;
3009 	struct resource_list_entry *	rle = NULL;
3010 
3011 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3012 	if (!rl)
3013 		return (EINVAL);
3014 
3015 	rle = resource_list_find(rl, type, rid);
3016 	if (!rle)
3017 		return (ENOENT);
3018 
3019 	if (startp)
3020 		*startp = rle->start;
3021 	if (countp)
3022 		*countp = rle->count;
3023 
3024 	return (0);
3025 }
3026 
3027 /**
3028  * @brief Helper function for implementing BUS_SET_RESOURCE().
3029  *
3030  * This implementation of BUS_SET_RESOURCE() uses the
3031  * resource_list_add() function to do most of the work. It calls
3032  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3033  * edit.
3034  */
3035 int
3036 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3037     u_long start, u_long count)
3038 {
3039 	struct resource_list *		rl = NULL;
3040 
3041 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3042 	if (!rl)
3043 		return (EINVAL);
3044 
3045 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3046 
3047 	return (0);
3048 }
3049 
3050 /**
3051  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3052  *
3053  * This implementation of BUS_DELETE_RESOURCE() uses the
3054  * resource_list_delete() function to do most of the work. It calls
3055  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3056  * edit.
3057  */
3058 void
3059 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3060 {
3061 	struct resource_list *		rl = NULL;
3062 
3063 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3064 	if (!rl)
3065 		return;
3066 
3067 	resource_list_delete(rl, type, rid);
3068 
3069 	return;
3070 }
3071 
3072 /**
3073  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3074  *
3075  * This implementation of BUS_RELEASE_RESOURCE() uses the
3076  * resource_list_release() function to do most of the work. It calls
3077  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3078  */
3079 int
3080 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3081     int rid, struct resource *r)
3082 {
3083 	struct resource_list *		rl = NULL;
3084 
3085 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3086 	if (!rl)
3087 		return (EINVAL);
3088 
3089 	return (resource_list_release(rl, dev, child, type, rid, r));
3090 }
3091 
3092 /**
3093  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3094  *
3095  * This implementation of BUS_ALLOC_RESOURCE() uses the
3096  * resource_list_alloc() function to do most of the work. It calls
3097  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3098  */
3099 struct resource *
3100 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3101     int *rid, u_long start, u_long end, u_long count, u_int flags)
3102 {
3103 	struct resource_list *		rl = NULL;
3104 
3105 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3106 	if (!rl)
3107 		return (NULL);
3108 
3109 	return (resource_list_alloc(rl, dev, child, type, rid,
3110 	    start, end, count, flags));
3111 }
3112 
3113 /**
3114  * @brief Helper function for implementing BUS_CHILD_PRESENT().
3115  *
3116  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3117  * BUS_CHILD_PRESENT() method of the parent of @p dev.
3118  */
3119 int
3120 bus_generic_child_present(device_t dev, device_t child)
3121 {
3122 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3123 }
3124 
3125 /*
3126  * Some convenience functions to make it easier for drivers to use the
3127  * resource-management functions.  All these really do is hide the
3128  * indirection through the parent's method table, making for slightly
3129  * less-wordy code.  In the future, it might make sense for this code
3130  * to maintain some sort of a list of resources allocated by each device.
3131  */
3132 
3133 /**
3134  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3135  *
3136  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3137  * parent of @p dev.
3138  */
3139 struct resource *
3140 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3141     u_long count, u_int flags)
3142 {
3143 	if (dev->parent == 0)
3144 		return (0);
3145 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3146 	    count, flags));
3147 }
3148 
3149 /**
3150  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3151  *
3152  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3153  * parent of @p dev.
3154  */
3155 int
3156 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3157 {
3158 	if (dev->parent == 0)
3159 		return (EINVAL);
3160 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3161 }
3162 
3163 /**
3164  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3165  *
3166  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3167  * parent of @p dev.
3168  */
3169 int
3170 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3171 {
3172 	if (dev->parent == 0)
3173 		return (EINVAL);
3174 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3175 }
3176 
3177 /**
3178  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3179  *
3180  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3181  * parent of @p dev.
3182  */
3183 int
3184 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3185 {
3186 	if (dev->parent == 0)
3187 		return (EINVAL);
3188 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3189 }
3190 
3191 /**
3192  * @brief Wrapper function for BUS_SETUP_INTR().
3193  *
3194  * This function simply calls the BUS_SETUP_INTR() method of the
3195  * parent of @p dev.
3196  */
3197 int
3198 bus_setup_intr(device_t dev, struct resource *r, int flags,
3199     driver_intr_t handler, void *arg, void **cookiep)
3200 {
3201 	int error;
3202 
3203 	if (dev->parent != 0) {
3204 		if ((flags &~ INTR_ENTROPY) == (INTR_TYPE_NET | INTR_MPSAFE) &&
3205 		    !debug_mpsafenet)
3206 			flags &= ~INTR_MPSAFE;
3207 		error = BUS_SETUP_INTR(dev->parent, dev, r, flags,
3208 		    handler, arg, cookiep);
3209 		if (error == 0) {
3210 			if (!(flags & (INTR_MPSAFE | INTR_FAST)))
3211 				device_printf(dev, "[GIANT-LOCKED]\n");
3212 			if (bootverbose && (flags & INTR_MPSAFE))
3213 				device_printf(dev, "[MPSAFE]\n");
3214 			if (flags & INTR_FAST)
3215 				device_printf(dev, "[FAST]\n");
3216 		}
3217 	} else
3218 		error = EINVAL;
3219 	return (error);
3220 }
3221 
3222 /**
3223  * @brief Wrapper function for BUS_TEARDOWN_INTR().
3224  *
3225  * This function simply calls the BUS_TEARDOWN_INTR() method of the
3226  * parent of @p dev.
3227  */
3228 int
3229 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3230 {
3231 	if (dev->parent == 0)
3232 		return (EINVAL);
3233 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3234 }
3235 
3236 /**
3237  * @brief Wrapper function for BUS_SET_RESOURCE().
3238  *
3239  * This function simply calls the BUS_SET_RESOURCE() method of the
3240  * parent of @p dev.
3241  */
3242 int
3243 bus_set_resource(device_t dev, int type, int rid,
3244     u_long start, u_long count)
3245 {
3246 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3247 	    start, count));
3248 }
3249 
3250 /**
3251  * @brief Wrapper function for BUS_GET_RESOURCE().
3252  *
3253  * This function simply calls the BUS_GET_RESOURCE() method of the
3254  * parent of @p dev.
3255  */
3256 int
3257 bus_get_resource(device_t dev, int type, int rid,
3258     u_long *startp, u_long *countp)
3259 {
3260 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3261 	    startp, countp));
3262 }
3263 
3264 /**
3265  * @brief Wrapper function for BUS_GET_RESOURCE().
3266  *
3267  * This function simply calls the BUS_GET_RESOURCE() method of the
3268  * parent of @p dev and returns the start value.
3269  */
3270 u_long
3271 bus_get_resource_start(device_t dev, int type, int rid)
3272 {
3273 	u_long start, count;
3274 	int error;
3275 
3276 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3277 	    &start, &count);
3278 	if (error)
3279 		return (0);
3280 	return (start);
3281 }
3282 
3283 /**
3284  * @brief Wrapper function for BUS_GET_RESOURCE().
3285  *
3286  * This function simply calls the BUS_GET_RESOURCE() method of the
3287  * parent of @p dev and returns the count value.
3288  */
3289 u_long
3290 bus_get_resource_count(device_t dev, int type, int rid)
3291 {
3292 	u_long start, count;
3293 	int error;
3294 
3295 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3296 	    &start, &count);
3297 	if (error)
3298 		return (0);
3299 	return (count);
3300 }
3301 
3302 /**
3303  * @brief Wrapper function for BUS_DELETE_RESOURCE().
3304  *
3305  * This function simply calls the BUS_DELETE_RESOURCE() method of the
3306  * parent of @p dev.
3307  */
3308 void
3309 bus_delete_resource(device_t dev, int type, int rid)
3310 {
3311 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3312 }
3313 
3314 /**
3315  * @brief Wrapper function for BUS_CHILD_PRESENT().
3316  *
3317  * This function simply calls the BUS_CHILD_PRESENT() method of the
3318  * parent of @p dev.
3319  */
3320 int
3321 bus_child_present(device_t child)
3322 {
3323 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3324 }
3325 
3326 /**
3327  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
3328  *
3329  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
3330  * parent of @p dev.
3331  */
3332 int
3333 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3334 {
3335 	device_t parent;
3336 
3337 	parent = device_get_parent(child);
3338 	if (parent == NULL) {
3339 		*buf = '\0';
3340 		return (0);
3341 	}
3342 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3343 }
3344 
3345 /**
3346  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
3347  *
3348  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
3349  * parent of @p dev.
3350  */
3351 int
3352 bus_child_location_str(device_t child, char *buf, size_t buflen)
3353 {
3354 	device_t parent;
3355 
3356 	parent = device_get_parent(child);
3357 	if (parent == NULL) {
3358 		*buf = '\0';
3359 		return (0);
3360 	}
3361 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3362 }
3363 
3364 static int
3365 root_print_child(device_t dev, device_t child)
3366 {
3367 	int	retval = 0;
3368 
3369 	retval += bus_print_child_header(dev, child);
3370 	retval += printf("\n");
3371 
3372 	return (retval);
3373 }
3374 
3375 static int
3376 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3377     void **cookiep)
3378 {
3379 	/*
3380 	 * If an interrupt mapping gets to here something bad has happened.
3381 	 */
3382 	panic("root_setup_intr");
3383 }
3384 
3385 /*
3386  * If we get here, assume that the device is permanant and really is
3387  * present in the system.  Removable bus drivers are expected to intercept
3388  * this call long before it gets here.  We return -1 so that drivers that
3389  * really care can check vs -1 or some ERRNO returned higher in the food
3390  * chain.
3391  */
3392 static int
3393 root_child_present(device_t dev, device_t child)
3394 {
3395 	return (-1);
3396 }
3397 
3398 static kobj_method_t root_methods[] = {
3399 	/* Device interface */
3400 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3401 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3402 	KOBJMETHOD(device_resume,	bus_generic_resume),
3403 
3404 	/* Bus interface */
3405 	KOBJMETHOD(bus_print_child,	root_print_child),
3406 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3407 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3408 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3409 	KOBJMETHOD(bus_child_present,	root_child_present),
3410 
3411 	{ 0, 0 }
3412 };
3413 
3414 static driver_t root_driver = {
3415 	"root",
3416 	root_methods,
3417 	1,			/* no softc */
3418 };
3419 
3420 device_t	root_bus;
3421 devclass_t	root_devclass;
3422 
3423 static int
3424 root_bus_module_handler(module_t mod, int what, void* arg)
3425 {
3426 	switch (what) {
3427 	case MOD_LOAD:
3428 		TAILQ_INIT(&bus_data_devices);
3429 		kobj_class_compile((kobj_class_t) &root_driver);
3430 		root_bus = make_device(NULL, "root", 0);
3431 		root_bus->desc = "System root bus";
3432 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3433 		root_bus->driver = &root_driver;
3434 		root_bus->state = DS_ATTACHED;
3435 		root_devclass = devclass_find_internal("root", 0, FALSE);
3436 		devinit();
3437 		return (0);
3438 
3439 	case MOD_SHUTDOWN:
3440 		device_shutdown(root_bus);
3441 		return (0);
3442 	default:
3443 		return (EOPNOTSUPP);
3444 	}
3445 
3446 	return (0);
3447 }
3448 
3449 static moduledata_t root_bus_mod = {
3450 	"rootbus",
3451 	root_bus_module_handler,
3452 	0
3453 };
3454 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3455 
3456 /**
3457  * @brief Automatically configure devices
3458  *
3459  * This function begins the autoconfiguration process by calling
3460  * device_probe_and_attach() for each child of the @c root0 device.
3461  */
3462 void
3463 root_bus_configure(void)
3464 {
3465 	device_t dev;
3466 
3467 	PDEBUG(("."));
3468 
3469 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3470 		device_probe_and_attach(dev);
3471 	}
3472 }
3473 
3474 /**
3475  * @brief Module handler for registering device drivers
3476  *
3477  * This module handler is used to automatically register device
3478  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
3479  * devclass_add_driver() for the driver described by the
3480  * driver_module_data structure pointed to by @p arg
3481  */
3482 int
3483 driver_module_handler(module_t mod, int what, void *arg)
3484 {
3485 	int error;
3486 	struct driver_module_data *dmd;
3487 	devclass_t bus_devclass;
3488 	kobj_class_t driver;
3489 
3490 	dmd = (struct driver_module_data *)arg;
3491 	bus_devclass = devclass_find_internal(dmd->dmd_busname, 0, TRUE);
3492 	error = 0;
3493 
3494 	switch (what) {
3495 	case MOD_LOAD:
3496 		if (dmd->dmd_chainevh)
3497 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3498 
3499 		driver = dmd->dmd_driver;
3500 		PDEBUG(("Loading module: driver %s on bus %s",
3501 		    DRIVERNAME(driver), dmd->dmd_busname));
3502 		error = devclass_add_driver(bus_devclass, driver);
3503 		if (error)
3504 			break;
3505 
3506 		/*
3507 		 * If the driver has any base classes, make the
3508 		 * devclass inherit from the devclass of the driver's
3509 		 * first base class. This will allow the system to
3510 		 * search for drivers in both devclasses for children
3511 		 * of a device using this driver.
3512 		 */
3513 		if (driver->baseclasses) {
3514 			const char *parentname;
3515 			parentname = driver->baseclasses[0]->name;
3516 			*dmd->dmd_devclass =
3517 				devclass_find_internal(driver->name,
3518 				    parentname, TRUE);
3519 		} else {
3520 			*dmd->dmd_devclass =
3521 				devclass_find_internal(driver->name, 0, TRUE);
3522 		}
3523 		break;
3524 
3525 	case MOD_UNLOAD:
3526 		PDEBUG(("Unloading module: driver %s from bus %s",
3527 		    DRIVERNAME(dmd->dmd_driver),
3528 		    dmd->dmd_busname));
3529 		error = devclass_delete_driver(bus_devclass,
3530 		    dmd->dmd_driver);
3531 
3532 		if (!error && dmd->dmd_chainevh)
3533 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3534 		break;
3535 	default:
3536 		error = EOPNOTSUPP;
3537 		break;
3538 	}
3539 
3540 	return (error);
3541 }
3542 
3543 #ifdef BUS_DEBUG
3544 
3545 /* the _short versions avoid iteration by not calling anything that prints
3546  * more than oneliners. I love oneliners.
3547  */
3548 
3549 static void
3550 print_device_short(device_t dev, int indent)
3551 {
3552 	if (!dev)
3553 		return;
3554 
3555 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3556 	    dev->unit, dev->desc,
3557 	    (dev->parent? "":"no "),
3558 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
3559 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3560 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3561 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
3562 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3563 	    (dev->flags&DF_REBID? "rebiddable,":""),
3564 	    (dev->ivars? "":"no "),
3565 	    (dev->softc? "":"no "),
3566 	    dev->busy));
3567 }
3568 
3569 static void
3570 print_device(device_t dev, int indent)
3571 {
3572 	if (!dev)
3573 		return;
3574 
3575 	print_device_short(dev, indent);
3576 
3577 	indentprintf(("Parent:\n"));
3578 	print_device_short(dev->parent, indent+1);
3579 	indentprintf(("Driver:\n"));
3580 	print_driver_short(dev->driver, indent+1);
3581 	indentprintf(("Devclass:\n"));
3582 	print_devclass_short(dev->devclass, indent+1);
3583 }
3584 
3585 void
3586 print_device_tree_short(device_t dev, int indent)
3587 /* print the device and all its children (indented) */
3588 {
3589 	device_t child;
3590 
3591 	if (!dev)
3592 		return;
3593 
3594 	print_device_short(dev, indent);
3595 
3596 	TAILQ_FOREACH(child, &dev->children, link) {
3597 		print_device_tree_short(child, indent+1);
3598 	}
3599 }
3600 
3601 void
3602 print_device_tree(device_t dev, int indent)
3603 /* print the device and all its children (indented) */
3604 {
3605 	device_t child;
3606 
3607 	if (!dev)
3608 		return;
3609 
3610 	print_device(dev, indent);
3611 
3612 	TAILQ_FOREACH(child, &dev->children, link) {
3613 		print_device_tree(child, indent+1);
3614 	}
3615 }
3616 
3617 static void
3618 print_driver_short(driver_t *driver, int indent)
3619 {
3620 	if (!driver)
3621 		return;
3622 
3623 	indentprintf(("driver %s: softc size = %zd\n",
3624 	    driver->name, driver->size));
3625 }
3626 
3627 static void
3628 print_driver(driver_t *driver, int indent)
3629 {
3630 	if (!driver)
3631 		return;
3632 
3633 	print_driver_short(driver, indent);
3634 }
3635 
3636 
3637 static void
3638 print_driver_list(driver_list_t drivers, int indent)
3639 {
3640 	driverlink_t driver;
3641 
3642 	TAILQ_FOREACH(driver, &drivers, link) {
3643 		print_driver(driver->driver, indent);
3644 	}
3645 }
3646 
3647 static void
3648 print_devclass_short(devclass_t dc, int indent)
3649 {
3650 	if ( !dc )
3651 		return;
3652 
3653 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3654 }
3655 
3656 static void
3657 print_devclass(devclass_t dc, int indent)
3658 {
3659 	int i;
3660 
3661 	if ( !dc )
3662 		return;
3663 
3664 	print_devclass_short(dc, indent);
3665 	indentprintf(("Drivers:\n"));
3666 	print_driver_list(dc->drivers, indent+1);
3667 
3668 	indentprintf(("Devices:\n"));
3669 	for (i = 0; i < dc->maxunit; i++)
3670 		if (dc->devices[i])
3671 			print_device(dc->devices[i], indent+1);
3672 }
3673 
3674 void
3675 print_devclass_list_short(void)
3676 {
3677 	devclass_t dc;
3678 
3679 	printf("Short listing of devclasses, drivers & devices:\n");
3680 	TAILQ_FOREACH(dc, &devclasses, link) {
3681 		print_devclass_short(dc, 0);
3682 	}
3683 }
3684 
3685 void
3686 print_devclass_list(void)
3687 {
3688 	devclass_t dc;
3689 
3690 	printf("Full listing of devclasses, drivers & devices:\n");
3691 	TAILQ_FOREACH(dc, &devclasses, link) {
3692 		print_devclass(dc, 0);
3693 	}
3694 }
3695 
3696 #endif
3697 
3698 /*
3699  * User-space access to the device tree.
3700  *
3701  * We implement a small set of nodes:
3702  *
3703  * hw.bus			Single integer read method to obtain the
3704  *				current generation count.
3705  * hw.bus.devices		Reads the entire device tree in flat space.
3706  * hw.bus.rman			Resource manager interface
3707  *
3708  * We might like to add the ability to scan devclasses and/or drivers to
3709  * determine what else is currently loaded/available.
3710  */
3711 
3712 static int
3713 sysctl_bus(SYSCTL_HANDLER_ARGS)
3714 {
3715 	struct u_businfo	ubus;
3716 
3717 	ubus.ub_version = BUS_USER_VERSION;
3718 	ubus.ub_generation = bus_data_generation;
3719 
3720 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3721 }
3722 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3723     "bus-related data");
3724 
3725 static int
3726 sysctl_devices(SYSCTL_HANDLER_ARGS)
3727 {
3728 	int			*name = (int *)arg1;
3729 	u_int			namelen = arg2;
3730 	int			index;
3731 	struct device		*dev;
3732 	struct u_device		udev;	/* XXX this is a bit big */
3733 	int			error;
3734 
3735 	if (namelen != 2)
3736 		return (EINVAL);
3737 
3738 	if (bus_data_generation_check(name[0]))
3739 		return (EINVAL);
3740 
3741 	index = name[1];
3742 
3743 	/*
3744 	 * Scan the list of devices, looking for the requested index.
3745 	 */
3746 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3747 		if (index-- == 0)
3748 			break;
3749 	}
3750 	if (dev == NULL)
3751 		return (ENOENT);
3752 
3753 	/*
3754 	 * Populate the return array.
3755 	 */
3756 	udev.dv_handle = (uintptr_t)dev;
3757 	udev.dv_parent = (uintptr_t)dev->parent;
3758 	if (dev->nameunit == NULL)
3759 		udev.dv_name[0] = '\0';
3760 	else
3761 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3762 
3763 	if (dev->desc == NULL)
3764 		udev.dv_desc[0] = '\0';
3765 	else
3766 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3767 	if (dev->driver == NULL || dev->driver->name == NULL)
3768 		udev.dv_drivername[0] = '\0';
3769 	else
3770 		strlcpy(udev.dv_drivername, dev->driver->name,
3771 		    sizeof(udev.dv_drivername));
3772 	udev.dv_pnpinfo[0] = '\0';
3773 	udev.dv_location[0] = '\0';
3774 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3775 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3776 	udev.dv_devflags = dev->devflags;
3777 	udev.dv_flags = dev->flags;
3778 	udev.dv_state = dev->state;
3779 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3780 	return (error);
3781 }
3782 
3783 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3784     "system device tree");
3785 
3786 /*
3787  * Sysctl interface for scanning the resource lists.
3788  *
3789  * We take two input parameters; the index into the list of resource
3790  * managers, and the resource offset into the list.
3791  */
3792 static int
3793 sysctl_rman(SYSCTL_HANDLER_ARGS)
3794 {
3795 	int			*name = (int *)arg1;
3796 	u_int			namelen = arg2;
3797 	int			rman_idx, res_idx;
3798 	struct rman		*rm;
3799 	struct resource		*res;
3800 	struct u_rman		urm;
3801 	struct u_resource	ures;
3802 	int			error;
3803 
3804 	if (namelen != 3)
3805 		return (EINVAL);
3806 
3807 	if (bus_data_generation_check(name[0]))
3808 		return (EINVAL);
3809 	rman_idx = name[1];
3810 	res_idx = name[2];
3811 
3812 	/*
3813 	 * Find the indexed resource manager
3814 	 */
3815 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
3816 		if (rman_idx-- == 0)
3817 			break;
3818 	}
3819 	if (rm == NULL)
3820 		return (ENOENT);
3821 
3822 	/*
3823 	 * If the resource index is -1, we want details on the
3824 	 * resource manager.
3825 	 */
3826 	if (res_idx == -1) {
3827 		urm.rm_handle = (uintptr_t)rm;
3828 		strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
3829 		urm.rm_start = rm->rm_start;
3830 		urm.rm_size = rm->rm_end - rm->rm_start + 1;
3831 		urm.rm_type = rm->rm_type;
3832 
3833 		error = SYSCTL_OUT(req, &urm, sizeof(urm));
3834 		return (error);
3835 	}
3836 
3837 	/*
3838 	 * Find the indexed resource and return it.
3839 	 */
3840 	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
3841 		if (res_idx-- == 0) {
3842 			ures.r_handle = (uintptr_t)res;
3843 			ures.r_parent = (uintptr_t)res->r_rm;
3844 			ures.r_device = (uintptr_t)res->r_dev;
3845 			if (res->r_dev != NULL) {
3846 				if (device_get_name(res->r_dev) != NULL) {
3847 					snprintf(ures.r_devname, RM_TEXTLEN,
3848 					    "%s%d",
3849 					    device_get_name(res->r_dev),
3850 					    device_get_unit(res->r_dev));
3851 				} else {
3852 					strlcpy(ures.r_devname, "nomatch",
3853 					    RM_TEXTLEN);
3854 				}
3855 			} else {
3856 				ures.r_devname[0] = '\0';
3857 			}
3858 			ures.r_start = res->r_start;
3859 			ures.r_size = res->r_end - res->r_start + 1;
3860 			ures.r_flags = res->r_flags;
3861 
3862 			error = SYSCTL_OUT(req, &ures, sizeof(ures));
3863 			return (error);
3864 		}
3865 	}
3866 	return (ENOENT);
3867 }
3868 
3869 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
3870     "kernel resource manager");
3871 
3872 int
3873 bus_data_generation_check(int generation)
3874 {
3875 	if (generation != bus_data_generation)
3876 		return (1);
3877 
3878 	/* XXX generate optimised lists here? */
3879 	return (0);
3880 }
3881 
3882 void
3883 bus_data_generation_update(void)
3884 {
3885 	bus_data_generation++;
3886 }
3887