1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_bus.h" 31 #include "opt_ddb.h" 32 #include "opt_iommu.h" 33 34 #include <sys/param.h> 35 #include <sys/conf.h> 36 #include <sys/domainset.h> 37 #include <sys/eventhandler.h> 38 #include <sys/jail.h> 39 #include <sys/lock.h> 40 #include <sys/kernel.h> 41 #include <sys/limits.h> 42 #include <sys/malloc.h> 43 #include <sys/module.h> 44 #include <sys/mutex.h> 45 #include <sys/priv.h> 46 #include <machine/bus.h> 47 #include <sys/random.h> 48 #include <sys/refcount.h> 49 #include <sys/rman.h> 50 #include <sys/sbuf.h> 51 #include <sys/smp.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 #include <sys/bus.h> 55 #include <sys/cpuset.h> 56 #ifdef INTRNG 57 #include <sys/intr.h> 58 #endif 59 60 #include <net/vnet.h> 61 62 #include <machine/cpu.h> 63 #include <machine/stdarg.h> 64 65 #include <vm/uma.h> 66 #include <vm/vm.h> 67 68 #include <dev/iommu/iommu.h> 69 70 #include <ddb/ddb.h> 71 72 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 73 NULL); 74 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 75 NULL); 76 77 static bool disable_failed_devs = false; 78 SYSCTL_BOOL(_hw_bus, OID_AUTO, disable_failed_devices, CTLFLAG_RWTUN, &disable_failed_devs, 79 0, "Do not retry attaching devices that return an error from DEVICE_ATTACH the first time"); 80 81 /* 82 * Used to attach drivers to devclasses. 83 */ 84 typedef struct driverlink *driverlink_t; 85 struct driverlink { 86 kobj_class_t driver; 87 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 88 int pass; 89 int flags; 90 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 91 TAILQ_ENTRY(driverlink) passlink; 92 }; 93 94 /* 95 * Forward declarations 96 */ 97 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 98 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 99 typedef TAILQ_HEAD(device_list, _device) device_list_t; 100 101 struct devclass { 102 TAILQ_ENTRY(devclass) link; 103 devclass_t parent; /* parent in devclass hierarchy */ 104 driver_list_t drivers; /* bus devclasses store drivers for bus */ 105 char *name; 106 device_t *devices; /* array of devices indexed by unit */ 107 int maxunit; /* size of devices array */ 108 int flags; 109 #define DC_HAS_CHILDREN 1 110 111 struct sysctl_ctx_list sysctl_ctx; 112 struct sysctl_oid *sysctl_tree; 113 }; 114 115 struct device_prop_elm { 116 const char *name; 117 void *val; 118 void *dtr_ctx; 119 device_prop_dtr_t dtr; 120 LIST_ENTRY(device_prop_elm) link; 121 }; 122 123 static void device_destroy_props(device_t dev); 124 125 /** 126 * @brief Implementation of _device. 127 * 128 * The structure is named "_device" instead of "device" to avoid type confusion 129 * caused by other subsystems defining a (struct device). 130 */ 131 struct _device { 132 /* 133 * A device is a kernel object. The first field must be the 134 * current ops table for the object. 135 */ 136 KOBJ_FIELDS; 137 138 /* 139 * Device hierarchy. 140 */ 141 TAILQ_ENTRY(_device) link; /**< list of devices in parent */ 142 TAILQ_ENTRY(_device) devlink; /**< global device list membership */ 143 device_t parent; /**< parent of this device */ 144 device_list_t children; /**< list of child devices */ 145 146 /* 147 * Details of this device. 148 */ 149 driver_t *driver; /**< current driver */ 150 devclass_t devclass; /**< current device class */ 151 int unit; /**< current unit number */ 152 char* nameunit; /**< name+unit e.g. foodev0 */ 153 char* desc; /**< driver specific description */ 154 u_int busy; /**< count of calls to device_busy() */ 155 device_state_t state; /**< current device state */ 156 uint32_t devflags; /**< api level flags for device_get_flags() */ 157 u_int flags; /**< internal device flags */ 158 u_int order; /**< order from device_add_child_ordered() */ 159 void *ivars; /**< instance variables */ 160 void *softc; /**< current driver's variables */ 161 LIST_HEAD(, device_prop_elm) props; 162 163 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 164 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 165 }; 166 167 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 168 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 169 170 EVENTHANDLER_LIST_DEFINE(device_attach); 171 EVENTHANDLER_LIST_DEFINE(device_detach); 172 EVENTHANDLER_LIST_DEFINE(device_nomatch); 173 EVENTHANDLER_LIST_DEFINE(dev_lookup); 174 175 static void devctl2_init(void); 176 static bool device_frozen; 177 178 #define DRIVERNAME(d) ((d)? d->name : "no driver") 179 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 180 181 #ifdef BUS_DEBUG 182 183 static int bus_debug = 1; 184 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 185 "Bus debug level"); 186 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 187 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 188 189 /** 190 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 191 * prevent syslog from deleting initial spaces 192 */ 193 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 194 195 static void print_device_short(device_t dev, int indent); 196 static void print_device(device_t dev, int indent); 197 void print_device_tree_short(device_t dev, int indent); 198 void print_device_tree(device_t dev, int indent); 199 static void print_driver_short(driver_t *driver, int indent); 200 static void print_driver(driver_t *driver, int indent); 201 static void print_driver_list(driver_list_t drivers, int indent); 202 static void print_devclass_short(devclass_t dc, int indent); 203 static void print_devclass(devclass_t dc, int indent); 204 void print_devclass_list_short(void); 205 void print_devclass_list(void); 206 207 #else 208 /* Make the compiler ignore the function calls */ 209 #define PDEBUG(a) /* nop */ 210 #define DEVICENAME(d) /* nop */ 211 212 #define print_device_short(d,i) /* nop */ 213 #define print_device(d,i) /* nop */ 214 #define print_device_tree_short(d,i) /* nop */ 215 #define print_device_tree(d,i) /* nop */ 216 #define print_driver_short(d,i) /* nop */ 217 #define print_driver(d,i) /* nop */ 218 #define print_driver_list(d,i) /* nop */ 219 #define print_devclass_short(d,i) /* nop */ 220 #define print_devclass(d,i) /* nop */ 221 #define print_devclass_list_short() /* nop */ 222 #define print_devclass_list() /* nop */ 223 #endif 224 225 /* 226 * dev sysctl tree 227 */ 228 229 enum { 230 DEVCLASS_SYSCTL_PARENT, 231 }; 232 233 static int 234 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 235 { 236 devclass_t dc = (devclass_t)arg1; 237 const char *value; 238 239 switch (arg2) { 240 case DEVCLASS_SYSCTL_PARENT: 241 value = dc->parent ? dc->parent->name : ""; 242 break; 243 default: 244 return (EINVAL); 245 } 246 return (SYSCTL_OUT_STR(req, value)); 247 } 248 249 static void 250 devclass_sysctl_init(devclass_t dc) 251 { 252 if (dc->sysctl_tree != NULL) 253 return; 254 sysctl_ctx_init(&dc->sysctl_ctx); 255 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 256 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 257 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 258 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 259 OID_AUTO, "%parent", 260 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 261 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 262 "parent class"); 263 } 264 265 enum { 266 DEVICE_SYSCTL_DESC, 267 DEVICE_SYSCTL_DRIVER, 268 DEVICE_SYSCTL_LOCATION, 269 DEVICE_SYSCTL_PNPINFO, 270 DEVICE_SYSCTL_PARENT, 271 DEVICE_SYSCTL_IOMMU, 272 }; 273 274 static int 275 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 276 { 277 struct sbuf sb; 278 device_t dev = (device_t)arg1; 279 device_t iommu; 280 int error; 281 uint16_t rid; 282 const char *c; 283 284 sbuf_new_for_sysctl(&sb, NULL, 1024, req); 285 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 286 bus_topo_lock(); 287 switch (arg2) { 288 case DEVICE_SYSCTL_DESC: 289 sbuf_cat(&sb, dev->desc ? dev->desc : ""); 290 break; 291 case DEVICE_SYSCTL_DRIVER: 292 sbuf_cat(&sb, dev->driver ? dev->driver->name : ""); 293 break; 294 case DEVICE_SYSCTL_LOCATION: 295 bus_child_location(dev, &sb); 296 break; 297 case DEVICE_SYSCTL_PNPINFO: 298 bus_child_pnpinfo(dev, &sb); 299 break; 300 case DEVICE_SYSCTL_PARENT: 301 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : ""); 302 break; 303 case DEVICE_SYSCTL_IOMMU: 304 iommu = NULL; 305 error = device_get_prop(dev, DEV_PROP_NAME_IOMMU, 306 (void **)&iommu); 307 c = ""; 308 if (error == 0 && iommu != NULL) { 309 sbuf_printf(&sb, "unit=%s", device_get_nameunit(iommu)); 310 c = " "; 311 } 312 rid = 0; 313 #ifdef IOMMU 314 iommu_get_requester(dev, &rid); 315 #endif 316 if (rid != 0) 317 sbuf_printf(&sb, "%srid=%#x", c, rid); 318 break; 319 default: 320 error = EINVAL; 321 goto out; 322 } 323 error = sbuf_finish(&sb); 324 out: 325 bus_topo_unlock(); 326 sbuf_delete(&sb); 327 return (error); 328 } 329 330 static void 331 device_sysctl_init(device_t dev) 332 { 333 devclass_t dc = dev->devclass; 334 int domain; 335 336 if (dev->sysctl_tree != NULL) 337 return; 338 devclass_sysctl_init(dc); 339 sysctl_ctx_init(&dev->sysctl_ctx); 340 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 341 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 342 dev->nameunit + strlen(dc->name), 343 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); 344 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 345 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 346 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 347 "device description"); 348 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 349 OID_AUTO, "%driver", 350 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 351 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 352 "device driver name"); 353 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 354 OID_AUTO, "%location", 355 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 356 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 357 "device location relative to parent"); 358 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 359 OID_AUTO, "%pnpinfo", 360 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 361 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 362 "device identification"); 363 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 364 OID_AUTO, "%parent", 365 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 366 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 367 "parent device"); 368 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 369 OID_AUTO, "%iommu", 370 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 371 dev, DEVICE_SYSCTL_IOMMU, device_sysctl_handler, "A", 372 "iommu unit handling the device requests"); 373 if (bus_get_domain(dev, &domain) == 0) 374 SYSCTL_ADD_INT(&dev->sysctl_ctx, 375 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 376 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain"); 377 } 378 379 static void 380 device_sysctl_update(device_t dev) 381 { 382 devclass_t dc = dev->devclass; 383 384 if (dev->sysctl_tree == NULL) 385 return; 386 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 387 } 388 389 static void 390 device_sysctl_fini(device_t dev) 391 { 392 if (dev->sysctl_tree == NULL) 393 return; 394 sysctl_ctx_free(&dev->sysctl_ctx); 395 dev->sysctl_tree = NULL; 396 } 397 398 static struct device_list bus_data_devices; 399 static int bus_data_generation = 1; 400 401 static kobj_method_t null_methods[] = { 402 KOBJMETHOD_END 403 }; 404 405 DEFINE_CLASS(null, null_methods, 0); 406 407 void 408 bus_topo_assert(void) 409 { 410 411 GIANT_REQUIRED; 412 } 413 414 struct mtx * 415 bus_topo_mtx(void) 416 { 417 418 return (&Giant); 419 } 420 421 void 422 bus_topo_lock(void) 423 { 424 425 mtx_lock(bus_topo_mtx()); 426 } 427 428 void 429 bus_topo_unlock(void) 430 { 431 432 mtx_unlock(bus_topo_mtx()); 433 } 434 435 /* 436 * Bus pass implementation 437 */ 438 439 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 440 static int bus_current_pass = BUS_PASS_ROOT; 441 442 /** 443 * @internal 444 * @brief Register the pass level of a new driver attachment 445 * 446 * Register a new driver attachment's pass level. If no driver 447 * attachment with the same pass level has been added, then @p new 448 * will be added to the global passes list. 449 * 450 * @param new the new driver attachment 451 */ 452 static void 453 driver_register_pass(struct driverlink *new) 454 { 455 struct driverlink *dl; 456 457 /* We only consider pass numbers during boot. */ 458 if (bus_current_pass == BUS_PASS_DEFAULT) 459 return; 460 461 /* 462 * Walk the passes list. If we already know about this pass 463 * then there is nothing to do. If we don't, then insert this 464 * driver link into the list. 465 */ 466 TAILQ_FOREACH(dl, &passes, passlink) { 467 if (dl->pass < new->pass) 468 continue; 469 if (dl->pass == new->pass) 470 return; 471 TAILQ_INSERT_BEFORE(dl, new, passlink); 472 return; 473 } 474 TAILQ_INSERT_TAIL(&passes, new, passlink); 475 } 476 477 /** 478 * @brief Retrieve the current bus pass 479 * 480 * Retrieves the current bus pass level. Call the BUS_NEW_PASS() 481 * method on the root bus to kick off a new device tree scan for each 482 * new pass level that has at least one driver. 483 */ 484 int 485 bus_get_pass(void) 486 { 487 488 return (bus_current_pass); 489 } 490 491 /** 492 * @brief Raise the current bus pass 493 * 494 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 495 * method on the root bus to kick off a new device tree scan for each 496 * new pass level that has at least one driver. 497 */ 498 static void 499 bus_set_pass(int pass) 500 { 501 struct driverlink *dl; 502 503 if (bus_current_pass > pass) 504 panic("Attempt to lower bus pass level"); 505 506 TAILQ_FOREACH(dl, &passes, passlink) { 507 /* Skip pass values below the current pass level. */ 508 if (dl->pass <= bus_current_pass) 509 continue; 510 511 /* 512 * Bail once we hit a driver with a pass level that is 513 * too high. 514 */ 515 if (dl->pass > pass) 516 break; 517 518 /* 519 * Raise the pass level to the next level and rescan 520 * the tree. 521 */ 522 bus_current_pass = dl->pass; 523 BUS_NEW_PASS(root_bus); 524 } 525 526 /* 527 * If there isn't a driver registered for the requested pass, 528 * then bus_current_pass might still be less than 'pass'. Set 529 * it to 'pass' in that case. 530 */ 531 if (bus_current_pass < pass) 532 bus_current_pass = pass; 533 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 534 } 535 536 /* 537 * Devclass implementation 538 */ 539 540 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 541 542 /** 543 * @internal 544 * @brief Find or create a device class 545 * 546 * If a device class with the name @p classname exists, return it, 547 * otherwise if @p create is non-zero create and return a new device 548 * class. 549 * 550 * If @p parentname is non-NULL, the parent of the devclass is set to 551 * the devclass of that name. 552 * 553 * @param classname the devclass name to find or create 554 * @param parentname the parent devclass name or @c NULL 555 * @param create non-zero to create a devclass 556 */ 557 static devclass_t 558 devclass_find_internal(const char *classname, const char *parentname, 559 int create) 560 { 561 devclass_t dc; 562 563 PDEBUG(("looking for %s", classname)); 564 if (!classname) 565 return (NULL); 566 567 TAILQ_FOREACH(dc, &devclasses, link) { 568 if (!strcmp(dc->name, classname)) 569 break; 570 } 571 572 if (create && !dc) { 573 PDEBUG(("creating %s", classname)); 574 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 575 M_BUS, M_NOWAIT | M_ZERO); 576 if (!dc) 577 return (NULL); 578 dc->parent = NULL; 579 dc->name = (char*) (dc + 1); 580 strcpy(dc->name, classname); 581 TAILQ_INIT(&dc->drivers); 582 TAILQ_INSERT_TAIL(&devclasses, dc, link); 583 584 bus_data_generation_update(); 585 } 586 587 /* 588 * If a parent class is specified, then set that as our parent so 589 * that this devclass will support drivers for the parent class as 590 * well. If the parent class has the same name don't do this though 591 * as it creates a cycle that can trigger an infinite loop in 592 * device_probe_child() if a device exists for which there is no 593 * suitable driver. 594 */ 595 if (parentname && dc && !dc->parent && 596 strcmp(classname, parentname) != 0) { 597 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 598 dc->parent->flags |= DC_HAS_CHILDREN; 599 } 600 601 return (dc); 602 } 603 604 /** 605 * @brief Create a device class 606 * 607 * If a device class with the name @p classname exists, return it, 608 * otherwise create and return a new device class. 609 * 610 * @param classname the devclass name to find or create 611 */ 612 devclass_t 613 devclass_create(const char *classname) 614 { 615 return (devclass_find_internal(classname, NULL, TRUE)); 616 } 617 618 /** 619 * @brief Find a device class 620 * 621 * If a device class with the name @p classname exists, return it, 622 * otherwise return @c NULL. 623 * 624 * @param classname the devclass name to find 625 */ 626 devclass_t 627 devclass_find(const char *classname) 628 { 629 return (devclass_find_internal(classname, NULL, FALSE)); 630 } 631 632 /** 633 * @brief Register that a device driver has been added to a devclass 634 * 635 * Register that a device driver has been added to a devclass. This 636 * is called by devclass_add_driver to accomplish the recursive 637 * notification of all the children classes of dc, as well as dc. 638 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 639 * the devclass. 640 * 641 * We do a full search here of the devclass list at each iteration 642 * level to save storing children-lists in the devclass structure. If 643 * we ever move beyond a few dozen devices doing this, we may need to 644 * reevaluate... 645 * 646 * @param dc the devclass to edit 647 * @param driver the driver that was just added 648 */ 649 static void 650 devclass_driver_added(devclass_t dc, driver_t *driver) 651 { 652 devclass_t parent; 653 int i; 654 655 /* 656 * Call BUS_DRIVER_ADDED for any existing buses in this class. 657 */ 658 for (i = 0; i < dc->maxunit; i++) 659 if (dc->devices[i] && device_is_attached(dc->devices[i])) 660 BUS_DRIVER_ADDED(dc->devices[i], driver); 661 662 /* 663 * Walk through the children classes. Since we only keep a 664 * single parent pointer around, we walk the entire list of 665 * devclasses looking for children. We set the 666 * DC_HAS_CHILDREN flag when a child devclass is created on 667 * the parent, so we only walk the list for those devclasses 668 * that have children. 669 */ 670 if (!(dc->flags & DC_HAS_CHILDREN)) 671 return; 672 parent = dc; 673 TAILQ_FOREACH(dc, &devclasses, link) { 674 if (dc->parent == parent) 675 devclass_driver_added(dc, driver); 676 } 677 } 678 679 static void 680 device_handle_nomatch(device_t dev) 681 { 682 BUS_PROBE_NOMATCH(dev->parent, dev); 683 EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev); 684 dev->flags |= DF_DONENOMATCH; 685 } 686 687 /** 688 * @brief Add a device driver to a device class 689 * 690 * Add a device driver to a devclass. This is normally called 691 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 692 * all devices in the devclass will be called to allow them to attempt 693 * to re-probe any unmatched children. 694 * 695 * @param dc the devclass to edit 696 * @param driver the driver to register 697 */ 698 int 699 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 700 { 701 driverlink_t dl; 702 devclass_t child_dc; 703 const char *parentname; 704 705 PDEBUG(("%s", DRIVERNAME(driver))); 706 707 /* Don't allow invalid pass values. */ 708 if (pass <= BUS_PASS_ROOT) 709 return (EINVAL); 710 711 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 712 if (!dl) 713 return (ENOMEM); 714 715 /* 716 * Compile the driver's methods. Also increase the reference count 717 * so that the class doesn't get freed when the last instance 718 * goes. This means we can safely use static methods and avoids a 719 * double-free in devclass_delete_driver. 720 */ 721 kobj_class_compile((kobj_class_t) driver); 722 723 /* 724 * If the driver has any base classes, make the 725 * devclass inherit from the devclass of the driver's 726 * first base class. This will allow the system to 727 * search for drivers in both devclasses for children 728 * of a device using this driver. 729 */ 730 if (driver->baseclasses) 731 parentname = driver->baseclasses[0]->name; 732 else 733 parentname = NULL; 734 child_dc = devclass_find_internal(driver->name, parentname, TRUE); 735 if (dcp != NULL) 736 *dcp = child_dc; 737 738 dl->driver = driver; 739 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 740 driver->refs++; /* XXX: kobj_mtx */ 741 dl->pass = pass; 742 driver_register_pass(dl); 743 744 if (device_frozen) { 745 dl->flags |= DL_DEFERRED_PROBE; 746 } else { 747 devclass_driver_added(dc, driver); 748 } 749 bus_data_generation_update(); 750 return (0); 751 } 752 753 /** 754 * @brief Register that a device driver has been deleted from a devclass 755 * 756 * Register that a device driver has been removed from a devclass. 757 * This is called by devclass_delete_driver to accomplish the 758 * recursive notification of all the children classes of busclass, as 759 * well as busclass. Each layer will attempt to detach the driver 760 * from any devices that are children of the bus's devclass. The function 761 * will return an error if a device fails to detach. 762 * 763 * We do a full search here of the devclass list at each iteration 764 * level to save storing children-lists in the devclass structure. If 765 * we ever move beyond a few dozen devices doing this, we may need to 766 * reevaluate... 767 * 768 * @param busclass the devclass of the parent bus 769 * @param dc the devclass of the driver being deleted 770 * @param driver the driver being deleted 771 */ 772 static int 773 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 774 { 775 devclass_t parent; 776 device_t dev; 777 int error, i; 778 779 /* 780 * Disassociate from any devices. We iterate through all the 781 * devices in the devclass of the driver and detach any which are 782 * using the driver and which have a parent in the devclass which 783 * we are deleting from. 784 * 785 * Note that since a driver can be in multiple devclasses, we 786 * should not detach devices which are not children of devices in 787 * the affected devclass. 788 * 789 * If we're frozen, we don't generate NOMATCH events. Mark to 790 * generate later. 791 */ 792 for (i = 0; i < dc->maxunit; i++) { 793 if (dc->devices[i]) { 794 dev = dc->devices[i]; 795 if (dev->driver == driver && dev->parent && 796 dev->parent->devclass == busclass) { 797 if ((error = device_detach(dev)) != 0) 798 return (error); 799 if (device_frozen) { 800 dev->flags &= ~DF_DONENOMATCH; 801 dev->flags |= DF_NEEDNOMATCH; 802 } else { 803 device_handle_nomatch(dev); 804 } 805 } 806 } 807 } 808 809 /* 810 * Walk through the children classes. Since we only keep a 811 * single parent pointer around, we walk the entire list of 812 * devclasses looking for children. We set the 813 * DC_HAS_CHILDREN flag when a child devclass is created on 814 * the parent, so we only walk the list for those devclasses 815 * that have children. 816 */ 817 if (!(busclass->flags & DC_HAS_CHILDREN)) 818 return (0); 819 parent = busclass; 820 TAILQ_FOREACH(busclass, &devclasses, link) { 821 if (busclass->parent == parent) { 822 error = devclass_driver_deleted(busclass, dc, driver); 823 if (error) 824 return (error); 825 } 826 } 827 return (0); 828 } 829 830 /** 831 * @brief Delete a device driver from a device class 832 * 833 * Delete a device driver from a devclass. This is normally called 834 * automatically by DRIVER_MODULE(). 835 * 836 * If the driver is currently attached to any devices, 837 * devclass_delete_driver() will first attempt to detach from each 838 * device. If one of the detach calls fails, the driver will not be 839 * deleted. 840 * 841 * @param dc the devclass to edit 842 * @param driver the driver to unregister 843 */ 844 int 845 devclass_delete_driver(devclass_t busclass, driver_t *driver) 846 { 847 devclass_t dc = devclass_find(driver->name); 848 driverlink_t dl; 849 int error; 850 851 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 852 853 if (!dc) 854 return (0); 855 856 /* 857 * Find the link structure in the bus' list of drivers. 858 */ 859 TAILQ_FOREACH(dl, &busclass->drivers, link) { 860 if (dl->driver == driver) 861 break; 862 } 863 864 if (!dl) { 865 PDEBUG(("%s not found in %s list", driver->name, 866 busclass->name)); 867 return (ENOENT); 868 } 869 870 error = devclass_driver_deleted(busclass, dc, driver); 871 if (error != 0) 872 return (error); 873 874 TAILQ_REMOVE(&busclass->drivers, dl, link); 875 free(dl, M_BUS); 876 877 /* XXX: kobj_mtx */ 878 driver->refs--; 879 if (driver->refs == 0) 880 kobj_class_free((kobj_class_t) driver); 881 882 bus_data_generation_update(); 883 return (0); 884 } 885 886 /** 887 * @brief Quiesces a set of device drivers from a device class 888 * 889 * Quiesce a device driver from a devclass. This is normally called 890 * automatically by DRIVER_MODULE(). 891 * 892 * If the driver is currently attached to any devices, 893 * devclass_quiesece_driver() will first attempt to quiesce each 894 * device. 895 * 896 * @param dc the devclass to edit 897 * @param driver the driver to unregister 898 */ 899 static int 900 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 901 { 902 devclass_t dc = devclass_find(driver->name); 903 driverlink_t dl; 904 device_t dev; 905 int i; 906 int error; 907 908 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 909 910 if (!dc) 911 return (0); 912 913 /* 914 * Find the link structure in the bus' list of drivers. 915 */ 916 TAILQ_FOREACH(dl, &busclass->drivers, link) { 917 if (dl->driver == driver) 918 break; 919 } 920 921 if (!dl) { 922 PDEBUG(("%s not found in %s list", driver->name, 923 busclass->name)); 924 return (ENOENT); 925 } 926 927 /* 928 * Quiesce all devices. We iterate through all the devices in 929 * the devclass of the driver and quiesce any which are using 930 * the driver and which have a parent in the devclass which we 931 * are quiescing. 932 * 933 * Note that since a driver can be in multiple devclasses, we 934 * should not quiesce devices which are not children of 935 * devices in the affected devclass. 936 */ 937 for (i = 0; i < dc->maxunit; i++) { 938 if (dc->devices[i]) { 939 dev = dc->devices[i]; 940 if (dev->driver == driver && dev->parent && 941 dev->parent->devclass == busclass) { 942 if ((error = device_quiesce(dev)) != 0) 943 return (error); 944 } 945 } 946 } 947 948 return (0); 949 } 950 951 /** 952 * @internal 953 */ 954 static driverlink_t 955 devclass_find_driver_internal(devclass_t dc, const char *classname) 956 { 957 driverlink_t dl; 958 959 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 960 961 TAILQ_FOREACH(dl, &dc->drivers, link) { 962 if (!strcmp(dl->driver->name, classname)) 963 return (dl); 964 } 965 966 PDEBUG(("not found")); 967 return (NULL); 968 } 969 970 /** 971 * @brief Return the name of the devclass 972 */ 973 const char * 974 devclass_get_name(devclass_t dc) 975 { 976 return (dc->name); 977 } 978 979 /** 980 * @brief Find a device given a unit number 981 * 982 * @param dc the devclass to search 983 * @param unit the unit number to search for 984 * 985 * @returns the device with the given unit number or @c 986 * NULL if there is no such device 987 */ 988 device_t 989 devclass_get_device(devclass_t dc, int unit) 990 { 991 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 992 return (NULL); 993 return (dc->devices[unit]); 994 } 995 996 /** 997 * @brief Find the softc field of a device given a unit number 998 * 999 * @param dc the devclass to search 1000 * @param unit the unit number to search for 1001 * 1002 * @returns the softc field of the device with the given 1003 * unit number or @c NULL if there is no such 1004 * device 1005 */ 1006 void * 1007 devclass_get_softc(devclass_t dc, int unit) 1008 { 1009 device_t dev; 1010 1011 dev = devclass_get_device(dc, unit); 1012 if (!dev) 1013 return (NULL); 1014 1015 return (device_get_softc(dev)); 1016 } 1017 1018 /** 1019 * @brief Get a list of devices in the devclass 1020 * 1021 * An array containing a list of all the devices in the given devclass 1022 * is allocated and returned in @p *devlistp. The number of devices 1023 * in the array is returned in @p *devcountp. The caller should free 1024 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1025 * 1026 * @param dc the devclass to examine 1027 * @param devlistp points at location for array pointer return 1028 * value 1029 * @param devcountp points at location for array size return value 1030 * 1031 * @retval 0 success 1032 * @retval ENOMEM the array allocation failed 1033 */ 1034 int 1035 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1036 { 1037 int count, i; 1038 device_t *list; 1039 1040 count = devclass_get_count(dc); 1041 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1042 if (!list) 1043 return (ENOMEM); 1044 1045 count = 0; 1046 for (i = 0; i < dc->maxunit; i++) { 1047 if (dc->devices[i]) { 1048 list[count] = dc->devices[i]; 1049 count++; 1050 } 1051 } 1052 1053 *devlistp = list; 1054 *devcountp = count; 1055 1056 return (0); 1057 } 1058 1059 /** 1060 * @brief Get a list of drivers in the devclass 1061 * 1062 * An array containing a list of pointers to all the drivers in the 1063 * given devclass is allocated and returned in @p *listp. The number 1064 * of drivers in the array is returned in @p *countp. The caller should 1065 * free the array using @c free(p, M_TEMP). 1066 * 1067 * @param dc the devclass to examine 1068 * @param listp gives location for array pointer return value 1069 * @param countp gives location for number of array elements 1070 * return value 1071 * 1072 * @retval 0 success 1073 * @retval ENOMEM the array allocation failed 1074 */ 1075 int 1076 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1077 { 1078 driverlink_t dl; 1079 driver_t **list; 1080 int count; 1081 1082 count = 0; 1083 TAILQ_FOREACH(dl, &dc->drivers, link) 1084 count++; 1085 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1086 if (list == NULL) 1087 return (ENOMEM); 1088 1089 count = 0; 1090 TAILQ_FOREACH(dl, &dc->drivers, link) { 1091 list[count] = dl->driver; 1092 count++; 1093 } 1094 *listp = list; 1095 *countp = count; 1096 1097 return (0); 1098 } 1099 1100 /** 1101 * @brief Get the number of devices in a devclass 1102 * 1103 * @param dc the devclass to examine 1104 */ 1105 int 1106 devclass_get_count(devclass_t dc) 1107 { 1108 int count, i; 1109 1110 count = 0; 1111 for (i = 0; i < dc->maxunit; i++) 1112 if (dc->devices[i]) 1113 count++; 1114 return (count); 1115 } 1116 1117 /** 1118 * @brief Get the maximum unit number used in a devclass 1119 * 1120 * Note that this is one greater than the highest currently-allocated unit. If 1121 * @p dc is NULL, @c -1 is returned to indicate that not even the devclass has 1122 * been allocated yet. 1123 * 1124 * @param dc the devclass to examine 1125 */ 1126 int 1127 devclass_get_maxunit(devclass_t dc) 1128 { 1129 if (dc == NULL) 1130 return (-1); 1131 return (dc->maxunit); 1132 } 1133 1134 /** 1135 * @brief Find a free unit number in a devclass 1136 * 1137 * This function searches for the first unused unit number greater 1138 * that or equal to @p unit. Note: This can return INT_MAX which 1139 * may be rejected elsewhere. 1140 * 1141 * @param dc the devclass to examine 1142 * @param unit the first unit number to check 1143 */ 1144 int 1145 devclass_find_free_unit(devclass_t dc, int unit) 1146 { 1147 if (dc == NULL) 1148 return (unit); 1149 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1150 unit++; 1151 return (unit); 1152 } 1153 1154 /** 1155 * @brief Set the parent of a devclass 1156 * 1157 * The parent class is normally initialised automatically by 1158 * DRIVER_MODULE(). 1159 * 1160 * @param dc the devclass to edit 1161 * @param pdc the new parent devclass 1162 */ 1163 void 1164 devclass_set_parent(devclass_t dc, devclass_t pdc) 1165 { 1166 dc->parent = pdc; 1167 } 1168 1169 /** 1170 * @brief Get the parent of a devclass 1171 * 1172 * @param dc the devclass to examine 1173 */ 1174 devclass_t 1175 devclass_get_parent(devclass_t dc) 1176 { 1177 return (dc->parent); 1178 } 1179 1180 struct sysctl_ctx_list * 1181 devclass_get_sysctl_ctx(devclass_t dc) 1182 { 1183 return (&dc->sysctl_ctx); 1184 } 1185 1186 struct sysctl_oid * 1187 devclass_get_sysctl_tree(devclass_t dc) 1188 { 1189 return (dc->sysctl_tree); 1190 } 1191 1192 /** 1193 * @internal 1194 * @brief Allocate a unit number 1195 * 1196 * On entry, @p *unitp is the desired unit number (or @c DEVICE_UNIT_ANY if any 1197 * will do). The allocated unit number is returned in @p *unitp. 1198 * 1199 * @param dc the devclass to allocate from 1200 * @param unitp points at the location for the allocated unit 1201 * number 1202 * 1203 * @retval 0 success 1204 * @retval EEXIST the requested unit number is already allocated 1205 * @retval ENOMEM memory allocation failure 1206 * @retval EINVAL unit is negative or we've run out of units 1207 */ 1208 static int 1209 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1210 { 1211 const char *s; 1212 int unit = *unitp; 1213 1214 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1215 1216 /* Ask the parent bus if it wants to wire this device. */ 1217 if (unit == DEVICE_UNIT_ANY) 1218 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1219 &unit); 1220 1221 /* Unit numbers are either DEVICE_UNIT_ANY or in [0,INT_MAX) */ 1222 if ((unit < 0 && unit != DEVICE_UNIT_ANY) || unit == INT_MAX) 1223 return (EINVAL); 1224 1225 /* If we were given a wired unit number, check for existing device */ 1226 if (unit != DEVICE_UNIT_ANY) { 1227 if (unit < dc->maxunit && dc->devices[unit] != NULL) { 1228 if (bootverbose) 1229 printf("%s: %s%d already exists; skipping it\n", 1230 dc->name, dc->name, *unitp); 1231 return (EEXIST); 1232 } 1233 } else { 1234 /* Unwired device, find the next available slot for it */ 1235 unit = 0; 1236 for (unit = 0; unit < INT_MAX; unit++) { 1237 /* If this device slot is already in use, skip it. */ 1238 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1239 continue; 1240 1241 /* If there is an "at" hint for a unit then skip it. */ 1242 if (resource_string_value(dc->name, unit, "at", &s) == 1243 0) 1244 continue; 1245 1246 break; 1247 } 1248 } 1249 1250 /* 1251 * Unit numbers must be in the range [0, INT_MAX), so exclude INT_MAX as 1252 * too large. We constrain maxunit below to be <= INT_MAX. This means we 1253 * can treat unit and maxunit as normal integers with normal math 1254 * everywhere and we only have to flag INT_MAX as invalid. 1255 */ 1256 if (unit == INT_MAX) 1257 return (EINVAL); 1258 1259 /* 1260 * We've selected a unit beyond the length of the table, so let's extend 1261 * the table to make room for all units up to and including this one. 1262 */ 1263 if (unit >= dc->maxunit) { 1264 int newsize; 1265 1266 newsize = unit + 1; 1267 dc->devices = reallocf(dc->devices, 1268 newsize * sizeof(*dc->devices), M_BUS, M_WAITOK); 1269 memset(dc->devices + dc->maxunit, 0, 1270 sizeof(device_t) * (newsize - dc->maxunit)); 1271 dc->maxunit = newsize; 1272 } 1273 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1274 1275 *unitp = unit; 1276 return (0); 1277 } 1278 1279 /** 1280 * @internal 1281 * @brief Add a device to a devclass 1282 * 1283 * A unit number is allocated for the device (using the device's 1284 * preferred unit number if any) and the device is registered in the 1285 * devclass. This allows the device to be looked up by its unit 1286 * number, e.g. by decoding a dev_t minor number. 1287 * 1288 * @param dc the devclass to add to 1289 * @param dev the device to add 1290 * 1291 * @retval 0 success 1292 * @retval EEXIST the requested unit number is already allocated 1293 * @retval ENOMEM memory allocation failure 1294 * @retval EINVAL Unit number invalid or too many units 1295 */ 1296 static int 1297 devclass_add_device(devclass_t dc, device_t dev) 1298 { 1299 int buflen, error; 1300 1301 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1302 1303 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1304 if (buflen < 0) 1305 return (ENOMEM); 1306 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1307 if (!dev->nameunit) 1308 return (ENOMEM); 1309 1310 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1311 free(dev->nameunit, M_BUS); 1312 dev->nameunit = NULL; 1313 return (error); 1314 } 1315 dc->devices[dev->unit] = dev; 1316 dev->devclass = dc; 1317 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1318 1319 return (0); 1320 } 1321 1322 /** 1323 * @internal 1324 * @brief Delete a device from a devclass 1325 * 1326 * The device is removed from the devclass's device list and its unit 1327 * number is freed. 1328 1329 * @param dc the devclass to delete from 1330 * @param dev the device to delete 1331 * 1332 * @retval 0 success 1333 */ 1334 static int 1335 devclass_delete_device(devclass_t dc, device_t dev) 1336 { 1337 if (!dc || !dev) 1338 return (0); 1339 1340 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1341 1342 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1343 panic("devclass_delete_device: inconsistent device class"); 1344 dc->devices[dev->unit] = NULL; 1345 if (dev->flags & DF_WILDCARD) 1346 dev->unit = DEVICE_UNIT_ANY; 1347 dev->devclass = NULL; 1348 free(dev->nameunit, M_BUS); 1349 dev->nameunit = NULL; 1350 1351 return (0); 1352 } 1353 1354 /** 1355 * @internal 1356 * @brief Make a new device and add it as a child of @p parent 1357 * 1358 * @param parent the parent of the new device 1359 * @param name the devclass name of the new device or @c NULL 1360 * to leave the devclass unspecified 1361 * @parem unit the unit number of the new device of @c DEVICE_UNIT_ANY 1362 * to leave the unit number unspecified 1363 * 1364 * @returns the new device 1365 */ 1366 static device_t 1367 make_device(device_t parent, const char *name, int unit) 1368 { 1369 device_t dev; 1370 devclass_t dc; 1371 1372 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1373 1374 if (name) { 1375 dc = devclass_find_internal(name, NULL, TRUE); 1376 if (!dc) { 1377 printf("make_device: can't find device class %s\n", 1378 name); 1379 return (NULL); 1380 } 1381 } else { 1382 dc = NULL; 1383 } 1384 1385 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1386 if (!dev) 1387 return (NULL); 1388 1389 dev->parent = parent; 1390 TAILQ_INIT(&dev->children); 1391 kobj_init((kobj_t) dev, &null_class); 1392 dev->driver = NULL; 1393 dev->devclass = NULL; 1394 dev->unit = unit; 1395 dev->nameunit = NULL; 1396 dev->desc = NULL; 1397 dev->busy = 0; 1398 dev->devflags = 0; 1399 dev->flags = DF_ENABLED; 1400 dev->order = 0; 1401 if (unit == DEVICE_UNIT_ANY) 1402 dev->flags |= DF_WILDCARD; 1403 if (name) { 1404 dev->flags |= DF_FIXEDCLASS; 1405 if (devclass_add_device(dc, dev)) { 1406 kobj_delete((kobj_t) dev, M_BUS); 1407 return (NULL); 1408 } 1409 } 1410 if (parent != NULL && device_has_quiet_children(parent)) 1411 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1412 dev->ivars = NULL; 1413 dev->softc = NULL; 1414 LIST_INIT(&dev->props); 1415 1416 dev->state = DS_NOTPRESENT; 1417 1418 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1419 bus_data_generation_update(); 1420 1421 return (dev); 1422 } 1423 1424 /** 1425 * @internal 1426 * @brief Print a description of a device. 1427 */ 1428 static int 1429 device_print_child(device_t dev, device_t child) 1430 { 1431 int retval = 0; 1432 1433 if (device_is_alive(child)) 1434 retval += BUS_PRINT_CHILD(dev, child); 1435 else 1436 retval += device_printf(child, " not found\n"); 1437 1438 return (retval); 1439 } 1440 1441 /** 1442 * @brief Create a new device 1443 * 1444 * This creates a new device and adds it as a child of an existing 1445 * parent device. The new device will be added after the last existing 1446 * child with order zero. 1447 * 1448 * @param dev the device which will be the parent of the 1449 * new child device 1450 * @param name devclass name for new device or @c NULL if not 1451 * specified 1452 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not 1453 * specified 1454 * 1455 * @returns the new device 1456 */ 1457 device_t 1458 device_add_child(device_t dev, const char *name, int unit) 1459 { 1460 return (device_add_child_ordered(dev, 0, name, unit)); 1461 } 1462 1463 /** 1464 * @brief Create a new device 1465 * 1466 * This creates a new device and adds it as a child of an existing 1467 * parent device. The new device will be added after the last existing 1468 * child with the same order. 1469 * 1470 * @param dev the device which will be the parent of the 1471 * new child device 1472 * @param order a value which is used to partially sort the 1473 * children of @p dev - devices created using 1474 * lower values of @p order appear first in @p 1475 * dev's list of children 1476 * @param name devclass name for new device or @c NULL if not 1477 * specified 1478 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not 1479 * specified 1480 * 1481 * @returns the new device 1482 */ 1483 device_t 1484 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1485 { 1486 device_t child; 1487 device_t place; 1488 1489 PDEBUG(("%s at %s with order %u as unit %d", 1490 name, DEVICENAME(dev), order, unit)); 1491 KASSERT(name != NULL || unit == DEVICE_UNIT_ANY, 1492 ("child device with wildcard name and specific unit number")); 1493 1494 child = make_device(dev, name, unit); 1495 if (child == NULL) 1496 return (child); 1497 child->order = order; 1498 1499 TAILQ_FOREACH(place, &dev->children, link) { 1500 if (place->order > order) 1501 break; 1502 } 1503 1504 if (place) { 1505 /* 1506 * The device 'place' is the first device whose order is 1507 * greater than the new child. 1508 */ 1509 TAILQ_INSERT_BEFORE(place, child, link); 1510 } else { 1511 /* 1512 * The new child's order is greater or equal to the order of 1513 * any existing device. Add the child to the tail of the list. 1514 */ 1515 TAILQ_INSERT_TAIL(&dev->children, child, link); 1516 } 1517 1518 bus_data_generation_update(); 1519 return (child); 1520 } 1521 1522 /** 1523 * @brief Delete a device 1524 * 1525 * This function deletes a device along with all of its children. If 1526 * the device currently has a driver attached to it, the device is 1527 * detached first using device_detach(). 1528 * 1529 * @param dev the parent device 1530 * @param child the device to delete 1531 * 1532 * @retval 0 success 1533 * @retval non-zero a unit error code describing the error 1534 */ 1535 int 1536 device_delete_child(device_t dev, device_t child) 1537 { 1538 int error; 1539 device_t grandchild; 1540 1541 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1542 1543 /* 1544 * Detach child. Ideally this cleans up any grandchild 1545 * devices. 1546 */ 1547 if ((error = device_detach(child)) != 0) 1548 return (error); 1549 1550 /* Delete any grandchildren left after detach. */ 1551 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1552 error = device_delete_child(child, grandchild); 1553 if (error) 1554 return (error); 1555 } 1556 1557 device_destroy_props(dev); 1558 if (child->devclass) 1559 devclass_delete_device(child->devclass, child); 1560 if (child->parent) 1561 BUS_CHILD_DELETED(dev, child); 1562 TAILQ_REMOVE(&dev->children, child, link); 1563 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1564 kobj_delete((kobj_t) child, M_BUS); 1565 1566 bus_data_generation_update(); 1567 return (0); 1568 } 1569 1570 /** 1571 * @brief Delete all children devices of the given device, if any. 1572 * 1573 * This function deletes all children devices of the given device, if 1574 * any, using the device_delete_child() function for each device it 1575 * finds. If a child device cannot be deleted, this function will 1576 * return an error code. 1577 * 1578 * @param dev the parent device 1579 * 1580 * @retval 0 success 1581 * @retval non-zero a device would not detach 1582 */ 1583 int 1584 device_delete_children(device_t dev) 1585 { 1586 device_t child; 1587 int error; 1588 1589 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1590 1591 error = 0; 1592 1593 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1594 error = device_delete_child(dev, child); 1595 if (error) { 1596 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1597 break; 1598 } 1599 } 1600 return (error); 1601 } 1602 1603 /** 1604 * @brief Find a device given a unit number 1605 * 1606 * This is similar to devclass_get_devices() but only searches for 1607 * devices which have @p dev as a parent. 1608 * 1609 * @param dev the parent device to search 1610 * @param unit the unit number to search for. If the unit is 1611 * @c DEVICE_UNIT_ANY, return the first child of @p dev 1612 * which has name @p classname (that is, the one with the 1613 * lowest unit.) 1614 * 1615 * @returns the device with the given unit number or @c 1616 * NULL if there is no such device 1617 */ 1618 device_t 1619 device_find_child(device_t dev, const char *classname, int unit) 1620 { 1621 devclass_t dc; 1622 device_t child; 1623 1624 dc = devclass_find(classname); 1625 if (!dc) 1626 return (NULL); 1627 1628 if (unit != DEVICE_UNIT_ANY) { 1629 child = devclass_get_device(dc, unit); 1630 if (child && child->parent == dev) 1631 return (child); 1632 } else { 1633 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1634 child = devclass_get_device(dc, unit); 1635 if (child && child->parent == dev) 1636 return (child); 1637 } 1638 } 1639 return (NULL); 1640 } 1641 1642 /** 1643 * @internal 1644 */ 1645 static driverlink_t 1646 first_matching_driver(devclass_t dc, device_t dev) 1647 { 1648 if (dev->devclass) 1649 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1650 return (TAILQ_FIRST(&dc->drivers)); 1651 } 1652 1653 /** 1654 * @internal 1655 */ 1656 static driverlink_t 1657 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1658 { 1659 if (dev->devclass) { 1660 driverlink_t dl; 1661 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1662 if (!strcmp(dev->devclass->name, dl->driver->name)) 1663 return (dl); 1664 return (NULL); 1665 } 1666 return (TAILQ_NEXT(last, link)); 1667 } 1668 1669 /** 1670 * @internal 1671 */ 1672 int 1673 device_probe_child(device_t dev, device_t child) 1674 { 1675 devclass_t dc; 1676 driverlink_t best = NULL; 1677 driverlink_t dl; 1678 int result, pri = 0; 1679 /* We should preserve the devclass (or lack of) set by the bus. */ 1680 int hasclass = (child->devclass != NULL); 1681 1682 bus_topo_assert(); 1683 1684 dc = dev->devclass; 1685 if (!dc) 1686 panic("device_probe_child: parent device has no devclass"); 1687 1688 /* 1689 * If the state is already probed, then return. 1690 */ 1691 if (child->state == DS_ALIVE) 1692 return (0); 1693 1694 for (; dc; dc = dc->parent) { 1695 for (dl = first_matching_driver(dc, child); 1696 dl; 1697 dl = next_matching_driver(dc, child, dl)) { 1698 /* If this driver's pass is too high, then ignore it. */ 1699 if (dl->pass > bus_current_pass) 1700 continue; 1701 1702 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1703 result = device_set_driver(child, dl->driver); 1704 if (result == ENOMEM) 1705 return (result); 1706 else if (result != 0) 1707 continue; 1708 if (!hasclass) { 1709 if (device_set_devclass(child, 1710 dl->driver->name) != 0) { 1711 char const * devname = 1712 device_get_name(child); 1713 if (devname == NULL) 1714 devname = "(unknown)"; 1715 printf("driver bug: Unable to set " 1716 "devclass (class: %s " 1717 "devname: %s)\n", 1718 dl->driver->name, 1719 devname); 1720 (void)device_set_driver(child, NULL); 1721 continue; 1722 } 1723 } 1724 1725 /* Fetch any flags for the device before probing. */ 1726 resource_int_value(dl->driver->name, child->unit, 1727 "flags", &child->devflags); 1728 1729 result = DEVICE_PROBE(child); 1730 1731 /* 1732 * If probe returns 0, this is the driver that wins this 1733 * device. 1734 */ 1735 if (result == 0) { 1736 best = dl; 1737 pri = 0; 1738 goto exact_match; /* C doesn't have break 2 */ 1739 } 1740 1741 /* Reset flags and devclass before the next probe. */ 1742 child->devflags = 0; 1743 if (!hasclass) 1744 (void)device_set_devclass(child, NULL); 1745 1746 /* 1747 * Reset DF_QUIET in case this driver doesn't 1748 * end up as the best driver. 1749 */ 1750 device_verbose(child); 1751 1752 /* 1753 * Probes that return BUS_PROBE_NOWILDCARD or lower 1754 * only match on devices whose driver was explicitly 1755 * specified. 1756 */ 1757 if (result <= BUS_PROBE_NOWILDCARD && 1758 !(child->flags & DF_FIXEDCLASS)) { 1759 result = ENXIO; 1760 } 1761 1762 /* 1763 * The driver returned an error so it 1764 * certainly doesn't match. 1765 */ 1766 if (result > 0) { 1767 (void)device_set_driver(child, NULL); 1768 continue; 1769 } 1770 1771 /* 1772 * A priority lower than SUCCESS, remember the 1773 * best matching driver. Initialise the value 1774 * of pri for the first match. 1775 */ 1776 if (best == NULL || result > pri) { 1777 best = dl; 1778 pri = result; 1779 continue; 1780 } 1781 } 1782 } 1783 1784 if (best == NULL) 1785 return (ENXIO); 1786 1787 /* 1788 * If we found a driver, change state and initialise the devclass. 1789 * Set the winning driver, devclass, and flags. 1790 */ 1791 result = device_set_driver(child, best->driver); 1792 if (result != 0) 1793 return (result); 1794 if (!child->devclass) { 1795 result = device_set_devclass(child, best->driver->name); 1796 if (result != 0) { 1797 (void)device_set_driver(child, NULL); 1798 return (result); 1799 } 1800 } 1801 resource_int_value(best->driver->name, child->unit, 1802 "flags", &child->devflags); 1803 1804 /* 1805 * A bit bogus. Call the probe method again to make sure that we have 1806 * the right description for the device. 1807 */ 1808 result = DEVICE_PROBE(child); 1809 if (result > 0) { 1810 if (!hasclass) 1811 (void)device_set_devclass(child, NULL); 1812 (void)device_set_driver(child, NULL); 1813 return (result); 1814 } 1815 1816 exact_match: 1817 child->state = DS_ALIVE; 1818 bus_data_generation_update(); 1819 return (0); 1820 } 1821 1822 /** 1823 * @brief Return the parent of a device 1824 */ 1825 device_t 1826 device_get_parent(device_t dev) 1827 { 1828 return (dev->parent); 1829 } 1830 1831 /** 1832 * @brief Get a list of children of a device 1833 * 1834 * An array containing a list of all the children of the given device 1835 * is allocated and returned in @p *devlistp. The number of devices 1836 * in the array is returned in @p *devcountp. The caller should free 1837 * the array using @c free(p, M_TEMP). 1838 * 1839 * @param dev the device to examine 1840 * @param devlistp points at location for array pointer return 1841 * value 1842 * @param devcountp points at location for array size return value 1843 * 1844 * @retval 0 success 1845 * @retval ENOMEM the array allocation failed 1846 */ 1847 int 1848 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1849 { 1850 int count; 1851 device_t child; 1852 device_t *list; 1853 1854 count = 0; 1855 TAILQ_FOREACH(child, &dev->children, link) { 1856 count++; 1857 } 1858 if (count == 0) { 1859 *devlistp = NULL; 1860 *devcountp = 0; 1861 return (0); 1862 } 1863 1864 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1865 if (!list) 1866 return (ENOMEM); 1867 1868 count = 0; 1869 TAILQ_FOREACH(child, &dev->children, link) { 1870 list[count] = child; 1871 count++; 1872 } 1873 1874 *devlistp = list; 1875 *devcountp = count; 1876 1877 return (0); 1878 } 1879 1880 /** 1881 * @brief Return the current driver for the device or @c NULL if there 1882 * is no driver currently attached 1883 */ 1884 driver_t * 1885 device_get_driver(device_t dev) 1886 { 1887 return (dev->driver); 1888 } 1889 1890 /** 1891 * @brief Return the current devclass for the device or @c NULL if 1892 * there is none. 1893 */ 1894 devclass_t 1895 device_get_devclass(device_t dev) 1896 { 1897 return (dev->devclass); 1898 } 1899 1900 /** 1901 * @brief Return the name of the device's devclass or @c NULL if there 1902 * is none. 1903 */ 1904 const char * 1905 device_get_name(device_t dev) 1906 { 1907 if (dev != NULL && dev->devclass) 1908 return (devclass_get_name(dev->devclass)); 1909 return (NULL); 1910 } 1911 1912 /** 1913 * @brief Return a string containing the device's devclass name 1914 * followed by an ascii representation of the device's unit number 1915 * (e.g. @c "foo2"). 1916 */ 1917 const char * 1918 device_get_nameunit(device_t dev) 1919 { 1920 return (dev->nameunit); 1921 } 1922 1923 /** 1924 * @brief Return the device's unit number. 1925 */ 1926 int 1927 device_get_unit(device_t dev) 1928 { 1929 return (dev->unit); 1930 } 1931 1932 /** 1933 * @brief Return the device's description string 1934 */ 1935 const char * 1936 device_get_desc(device_t dev) 1937 { 1938 return (dev->desc); 1939 } 1940 1941 /** 1942 * @brief Return the device's flags 1943 */ 1944 uint32_t 1945 device_get_flags(device_t dev) 1946 { 1947 return (dev->devflags); 1948 } 1949 1950 struct sysctl_ctx_list * 1951 device_get_sysctl_ctx(device_t dev) 1952 { 1953 return (&dev->sysctl_ctx); 1954 } 1955 1956 struct sysctl_oid * 1957 device_get_sysctl_tree(device_t dev) 1958 { 1959 return (dev->sysctl_tree); 1960 } 1961 1962 /** 1963 * @brief Print the name of the device followed by a colon and a space 1964 * 1965 * @returns the number of characters printed 1966 */ 1967 int 1968 device_print_prettyname(device_t dev) 1969 { 1970 const char *name = device_get_name(dev); 1971 1972 if (name == NULL) 1973 return (printf("unknown: ")); 1974 return (printf("%s%d: ", name, device_get_unit(dev))); 1975 } 1976 1977 /** 1978 * @brief Print the name of the device followed by a colon, a space 1979 * and the result of calling vprintf() with the value of @p fmt and 1980 * the following arguments. 1981 * 1982 * @returns the number of characters printed 1983 */ 1984 int 1985 device_printf(device_t dev, const char * fmt, ...) 1986 { 1987 char buf[128]; 1988 struct sbuf sb; 1989 const char *name; 1990 va_list ap; 1991 size_t retval; 1992 1993 retval = 0; 1994 1995 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1996 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 1997 1998 name = device_get_name(dev); 1999 2000 if (name == NULL) 2001 sbuf_cat(&sb, "unknown: "); 2002 else 2003 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2004 2005 va_start(ap, fmt); 2006 sbuf_vprintf(&sb, fmt, ap); 2007 va_end(ap); 2008 2009 sbuf_finish(&sb); 2010 sbuf_delete(&sb); 2011 2012 return (retval); 2013 } 2014 2015 /** 2016 * @brief Print the name of the device followed by a colon, a space 2017 * and the result of calling log() with the value of @p fmt and 2018 * the following arguments. 2019 * 2020 * @returns the number of characters printed 2021 */ 2022 int 2023 device_log(device_t dev, int pri, const char * fmt, ...) 2024 { 2025 char buf[128]; 2026 struct sbuf sb; 2027 const char *name; 2028 va_list ap; 2029 size_t retval; 2030 2031 retval = 0; 2032 2033 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2034 2035 name = device_get_name(dev); 2036 2037 if (name == NULL) 2038 sbuf_cat(&sb, "unknown: "); 2039 else 2040 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2041 2042 va_start(ap, fmt); 2043 sbuf_vprintf(&sb, fmt, ap); 2044 va_end(ap); 2045 2046 sbuf_finish(&sb); 2047 2048 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb)); 2049 retval = sbuf_len(&sb); 2050 2051 sbuf_delete(&sb); 2052 2053 return (retval); 2054 } 2055 2056 /** 2057 * @internal 2058 */ 2059 static void 2060 device_set_desc_internal(device_t dev, const char *desc, bool allocated) 2061 { 2062 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2063 free(dev->desc, M_BUS); 2064 dev->flags &= ~DF_DESCMALLOCED; 2065 dev->desc = NULL; 2066 } 2067 2068 if (allocated && desc) 2069 dev->flags |= DF_DESCMALLOCED; 2070 dev->desc = __DECONST(char *, desc); 2071 2072 bus_data_generation_update(); 2073 } 2074 2075 /** 2076 * @brief Set the device's description 2077 * 2078 * The value of @c desc should be a string constant that will not 2079 * change (at least until the description is changed in a subsequent 2080 * call to device_set_desc() or device_set_desc_copy()). 2081 */ 2082 void 2083 device_set_desc(device_t dev, const char *desc) 2084 { 2085 device_set_desc_internal(dev, desc, false); 2086 } 2087 2088 /** 2089 * @brief Set the device's description 2090 * 2091 * A printf-like version of device_set_desc(). 2092 */ 2093 void 2094 device_set_descf(device_t dev, const char *fmt, ...) 2095 { 2096 va_list ap; 2097 char *buf = NULL; 2098 2099 va_start(ap, fmt); 2100 vasprintf(&buf, M_BUS, fmt, ap); 2101 va_end(ap); 2102 device_set_desc_internal(dev, buf, true); 2103 } 2104 2105 /** 2106 * @brief Set the device's description 2107 * 2108 * The string pointed to by @c desc is copied. Use this function if 2109 * the device description is generated, (e.g. with sprintf()). 2110 */ 2111 void 2112 device_set_desc_copy(device_t dev, const char *desc) 2113 { 2114 char *buf; 2115 2116 buf = strdup_flags(desc, M_BUS, M_NOWAIT); 2117 device_set_desc_internal(dev, buf, true); 2118 } 2119 2120 /** 2121 * @brief Set the device's flags 2122 */ 2123 void 2124 device_set_flags(device_t dev, uint32_t flags) 2125 { 2126 dev->devflags = flags; 2127 } 2128 2129 /** 2130 * @brief Return the device's softc field 2131 * 2132 * The softc is allocated and zeroed when a driver is attached, based 2133 * on the size field of the driver. 2134 */ 2135 void * 2136 device_get_softc(device_t dev) 2137 { 2138 return (dev->softc); 2139 } 2140 2141 /** 2142 * @brief Set the device's softc field 2143 * 2144 * Most drivers do not need to use this since the softc is allocated 2145 * automatically when the driver is attached. 2146 */ 2147 void 2148 device_set_softc(device_t dev, void *softc) 2149 { 2150 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2151 free(dev->softc, M_BUS_SC); 2152 dev->softc = softc; 2153 if (dev->softc) 2154 dev->flags |= DF_EXTERNALSOFTC; 2155 else 2156 dev->flags &= ~DF_EXTERNALSOFTC; 2157 } 2158 2159 /** 2160 * @brief Free claimed softc 2161 * 2162 * Most drivers do not need to use this since the softc is freed 2163 * automatically when the driver is detached. 2164 */ 2165 void 2166 device_free_softc(void *softc) 2167 { 2168 free(softc, M_BUS_SC); 2169 } 2170 2171 /** 2172 * @brief Claim softc 2173 * 2174 * This function can be used to let the driver free the automatically 2175 * allocated softc using "device_free_softc()". This function is 2176 * useful when the driver is refcounting the softc and the softc 2177 * cannot be freed when the "device_detach" method is called. 2178 */ 2179 void 2180 device_claim_softc(device_t dev) 2181 { 2182 if (dev->softc) 2183 dev->flags |= DF_EXTERNALSOFTC; 2184 else 2185 dev->flags &= ~DF_EXTERNALSOFTC; 2186 } 2187 2188 /** 2189 * @brief Get the device's ivars field 2190 * 2191 * The ivars field is used by the parent device to store per-device 2192 * state (e.g. the physical location of the device or a list of 2193 * resources). 2194 */ 2195 void * 2196 device_get_ivars(device_t dev) 2197 { 2198 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2199 return (dev->ivars); 2200 } 2201 2202 /** 2203 * @brief Set the device's ivars field 2204 */ 2205 void 2206 device_set_ivars(device_t dev, void * ivars) 2207 { 2208 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2209 dev->ivars = ivars; 2210 } 2211 2212 /** 2213 * @brief Return the device's state 2214 */ 2215 device_state_t 2216 device_get_state(device_t dev) 2217 { 2218 return (dev->state); 2219 } 2220 2221 /** 2222 * @brief Set the DF_ENABLED flag for the device 2223 */ 2224 void 2225 device_enable(device_t dev) 2226 { 2227 dev->flags |= DF_ENABLED; 2228 } 2229 2230 /** 2231 * @brief Clear the DF_ENABLED flag for the device 2232 */ 2233 void 2234 device_disable(device_t dev) 2235 { 2236 dev->flags &= ~DF_ENABLED; 2237 } 2238 2239 /** 2240 * @brief Increment the busy counter for the device 2241 */ 2242 void 2243 device_busy(device_t dev) 2244 { 2245 2246 /* 2247 * Mark the device as busy, recursively up the tree if this busy count 2248 * goes 0->1. 2249 */ 2250 if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL) 2251 device_busy(dev->parent); 2252 } 2253 2254 /** 2255 * @brief Decrement the busy counter for the device 2256 */ 2257 void 2258 device_unbusy(device_t dev) 2259 { 2260 2261 /* 2262 * Mark the device as unbsy, recursively if this is the last busy count. 2263 */ 2264 if (refcount_release(&dev->busy) && dev->parent != NULL) 2265 device_unbusy(dev->parent); 2266 } 2267 2268 /** 2269 * @brief Set the DF_QUIET flag for the device 2270 */ 2271 void 2272 device_quiet(device_t dev) 2273 { 2274 dev->flags |= DF_QUIET; 2275 } 2276 2277 /** 2278 * @brief Set the DF_QUIET_CHILDREN flag for the device 2279 */ 2280 void 2281 device_quiet_children(device_t dev) 2282 { 2283 dev->flags |= DF_QUIET_CHILDREN; 2284 } 2285 2286 /** 2287 * @brief Clear the DF_QUIET flag for the device 2288 */ 2289 void 2290 device_verbose(device_t dev) 2291 { 2292 dev->flags &= ~DF_QUIET; 2293 } 2294 2295 ssize_t 2296 device_get_property(device_t dev, const char *prop, void *val, size_t sz, 2297 device_property_type_t type) 2298 { 2299 device_t bus = device_get_parent(dev); 2300 2301 switch (type) { 2302 case DEVICE_PROP_ANY: 2303 case DEVICE_PROP_BUFFER: 2304 case DEVICE_PROP_HANDLE: /* Size checks done in implementation. */ 2305 break; 2306 case DEVICE_PROP_UINT32: 2307 if (sz % 4 != 0) 2308 return (-1); 2309 break; 2310 case DEVICE_PROP_UINT64: 2311 if (sz % 8 != 0) 2312 return (-1); 2313 break; 2314 default: 2315 return (-1); 2316 } 2317 2318 return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type)); 2319 } 2320 2321 bool 2322 device_has_property(device_t dev, const char *prop) 2323 { 2324 return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0); 2325 } 2326 2327 /** 2328 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2329 */ 2330 int 2331 device_has_quiet_children(device_t dev) 2332 { 2333 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2334 } 2335 2336 /** 2337 * @brief Return non-zero if the DF_QUIET flag is set on the device 2338 */ 2339 int 2340 device_is_quiet(device_t dev) 2341 { 2342 return ((dev->flags & DF_QUIET) != 0); 2343 } 2344 2345 /** 2346 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2347 */ 2348 int 2349 device_is_enabled(device_t dev) 2350 { 2351 return ((dev->flags & DF_ENABLED) != 0); 2352 } 2353 2354 /** 2355 * @brief Return non-zero if the device was successfully probed 2356 */ 2357 int 2358 device_is_alive(device_t dev) 2359 { 2360 return (dev->state >= DS_ALIVE); 2361 } 2362 2363 /** 2364 * @brief Return non-zero if the device currently has a driver 2365 * attached to it 2366 */ 2367 int 2368 device_is_attached(device_t dev) 2369 { 2370 return (dev->state >= DS_ATTACHED); 2371 } 2372 2373 /** 2374 * @brief Return non-zero if the device is currently suspended. 2375 */ 2376 int 2377 device_is_suspended(device_t dev) 2378 { 2379 return ((dev->flags & DF_SUSPENDED) != 0); 2380 } 2381 2382 /** 2383 * @brief Set the devclass of a device 2384 * @see devclass_add_device(). 2385 */ 2386 int 2387 device_set_devclass(device_t dev, const char *classname) 2388 { 2389 devclass_t dc; 2390 int error; 2391 2392 if (!classname) { 2393 if (dev->devclass) 2394 devclass_delete_device(dev->devclass, dev); 2395 return (0); 2396 } 2397 2398 if (dev->devclass) { 2399 printf("device_set_devclass: device class already set\n"); 2400 return (EINVAL); 2401 } 2402 2403 dc = devclass_find_internal(classname, NULL, TRUE); 2404 if (!dc) 2405 return (ENOMEM); 2406 2407 error = devclass_add_device(dc, dev); 2408 2409 bus_data_generation_update(); 2410 return (error); 2411 } 2412 2413 /** 2414 * @brief Set the devclass of a device and mark the devclass fixed. 2415 * @see device_set_devclass() 2416 */ 2417 int 2418 device_set_devclass_fixed(device_t dev, const char *classname) 2419 { 2420 int error; 2421 2422 if (classname == NULL) 2423 return (EINVAL); 2424 2425 error = device_set_devclass(dev, classname); 2426 if (error) 2427 return (error); 2428 dev->flags |= DF_FIXEDCLASS; 2429 return (0); 2430 } 2431 2432 /** 2433 * @brief Query the device to determine if it's of a fixed devclass 2434 * @see device_set_devclass_fixed() 2435 */ 2436 bool 2437 device_is_devclass_fixed(device_t dev) 2438 { 2439 return ((dev->flags & DF_FIXEDCLASS) != 0); 2440 } 2441 2442 /** 2443 * @brief Set the driver of a device 2444 * 2445 * @retval 0 success 2446 * @retval EBUSY the device already has a driver attached 2447 * @retval ENOMEM a memory allocation failure occurred 2448 */ 2449 int 2450 device_set_driver(device_t dev, driver_t *driver) 2451 { 2452 int domain; 2453 struct domainset *policy; 2454 2455 if (dev->state >= DS_ATTACHED) 2456 return (EBUSY); 2457 2458 if (dev->driver == driver) 2459 return (0); 2460 2461 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2462 free(dev->softc, M_BUS_SC); 2463 dev->softc = NULL; 2464 } 2465 device_set_desc(dev, NULL); 2466 kobj_delete((kobj_t) dev, NULL); 2467 dev->driver = driver; 2468 if (driver) { 2469 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2470 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2471 if (bus_get_domain(dev, &domain) == 0) 2472 policy = DOMAINSET_PREF(domain); 2473 else 2474 policy = DOMAINSET_RR(); 2475 dev->softc = malloc_domainset(driver->size, M_BUS_SC, 2476 policy, M_NOWAIT | M_ZERO); 2477 if (!dev->softc) { 2478 kobj_delete((kobj_t) dev, NULL); 2479 kobj_init((kobj_t) dev, &null_class); 2480 dev->driver = NULL; 2481 return (ENOMEM); 2482 } 2483 } 2484 } else { 2485 kobj_init((kobj_t) dev, &null_class); 2486 } 2487 2488 bus_data_generation_update(); 2489 return (0); 2490 } 2491 2492 /** 2493 * @brief Probe a device, and return this status. 2494 * 2495 * This function is the core of the device autoconfiguration 2496 * system. Its purpose is to select a suitable driver for a device and 2497 * then call that driver to initialise the hardware appropriately. The 2498 * driver is selected by calling the DEVICE_PROBE() method of a set of 2499 * candidate drivers and then choosing the driver which returned the 2500 * best value. This driver is then attached to the device using 2501 * device_attach(). 2502 * 2503 * The set of suitable drivers is taken from the list of drivers in 2504 * the parent device's devclass. If the device was originally created 2505 * with a specific class name (see device_add_child()), only drivers 2506 * with that name are probed, otherwise all drivers in the devclass 2507 * are probed. If no drivers return successful probe values in the 2508 * parent devclass, the search continues in the parent of that 2509 * devclass (see devclass_get_parent()) if any. 2510 * 2511 * @param dev the device to initialise 2512 * 2513 * @retval 0 success 2514 * @retval ENXIO no driver was found 2515 * @retval ENOMEM memory allocation failure 2516 * @retval non-zero some other unix error code 2517 * @retval -1 Device already attached 2518 */ 2519 int 2520 device_probe(device_t dev) 2521 { 2522 int error; 2523 2524 bus_topo_assert(); 2525 2526 if (dev->state >= DS_ALIVE) 2527 return (-1); 2528 2529 if (!(dev->flags & DF_ENABLED)) { 2530 if (bootverbose && device_get_name(dev) != NULL) { 2531 device_print_prettyname(dev); 2532 printf("not probed (disabled)\n"); 2533 } 2534 return (-1); 2535 } 2536 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2537 if (bus_current_pass == BUS_PASS_DEFAULT && 2538 !(dev->flags & DF_DONENOMATCH)) { 2539 device_handle_nomatch(dev); 2540 } 2541 return (error); 2542 } 2543 return (0); 2544 } 2545 2546 /** 2547 * @brief Probe a device and attach a driver if possible 2548 * 2549 * calls device_probe() and attaches if that was successful. 2550 */ 2551 int 2552 device_probe_and_attach(device_t dev) 2553 { 2554 int error; 2555 2556 bus_topo_assert(); 2557 2558 error = device_probe(dev); 2559 if (error == -1) 2560 return (0); 2561 else if (error != 0) 2562 return (error); 2563 2564 return (device_attach(dev)); 2565 } 2566 2567 /** 2568 * @brief Attach a device driver to a device 2569 * 2570 * This function is a wrapper around the DEVICE_ATTACH() driver 2571 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2572 * device's sysctl tree, optionally prints a description of the device 2573 * and queues a notification event for user-based device management 2574 * services. 2575 * 2576 * Normally this function is only called internally from 2577 * device_probe_and_attach(). 2578 * 2579 * @param dev the device to initialise 2580 * 2581 * @retval 0 success 2582 * @retval ENXIO no driver was found 2583 * @retval ENOMEM memory allocation failure 2584 * @retval non-zero some other unix error code 2585 */ 2586 int 2587 device_attach(device_t dev) 2588 { 2589 uint64_t attachtime; 2590 uint16_t attachentropy; 2591 int error; 2592 2593 if (resource_disabled(dev->driver->name, dev->unit)) { 2594 /* 2595 * Mostly detach the device, but leave it attached to 2596 * the devclass to reserve the name and unit. 2597 */ 2598 device_disable(dev); 2599 (void)device_set_driver(dev, NULL); 2600 dev->state = DS_NOTPRESENT; 2601 if (bootverbose) 2602 device_printf(dev, "disabled via hints entry\n"); 2603 return (ENXIO); 2604 } 2605 2606 KASSERT(IS_DEFAULT_VNET(TD_TO_VNET(curthread)), 2607 ("device_attach: curthread is not in default vnet")); 2608 CURVNET_SET_QUIET(TD_TO_VNET(curthread)); 2609 2610 device_sysctl_init(dev); 2611 if (!device_is_quiet(dev)) 2612 device_print_child(dev->parent, dev); 2613 attachtime = get_cyclecount(); 2614 dev->state = DS_ATTACHING; 2615 if ((error = DEVICE_ATTACH(dev)) != 0) { 2616 printf("device_attach: %s%d attach returned %d\n", 2617 dev->driver->name, dev->unit, error); 2618 BUS_CHILD_DETACHED(dev->parent, dev); 2619 if (disable_failed_devs) { 2620 /* 2621 * When the user has asked to disable failed devices, we 2622 * directly disable the device, but leave it in the 2623 * attaching state. It will not try to probe/attach the 2624 * device further. This leaves the device numbering 2625 * intact for other similar devices in the system. It 2626 * can be removed from this state with devctl. 2627 */ 2628 device_disable(dev); 2629 } else { 2630 /* 2631 * Otherwise, when attach fails, tear down the state 2632 * around that so we can retry when, for example, new 2633 * drivers are loaded. 2634 */ 2635 if (!(dev->flags & DF_FIXEDCLASS)) 2636 devclass_delete_device(dev->devclass, dev); 2637 (void)device_set_driver(dev, NULL); 2638 device_sysctl_fini(dev); 2639 KASSERT(dev->busy == 0, ("attach failed but busy")); 2640 dev->state = DS_NOTPRESENT; 2641 } 2642 CURVNET_RESTORE(); 2643 return (error); 2644 } 2645 CURVNET_RESTORE(); 2646 dev->flags |= DF_ATTACHED_ONCE; 2647 /* 2648 * We only need the low bits of this time, but ranges from tens to thousands 2649 * have been seen, so keep 2 bytes' worth. 2650 */ 2651 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 2652 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 2653 device_sysctl_update(dev); 2654 dev->state = DS_ATTACHED; 2655 dev->flags &= ~DF_DONENOMATCH; 2656 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 2657 return (0); 2658 } 2659 2660 /** 2661 * @brief Detach a driver from a device 2662 * 2663 * This function is a wrapper around the DEVICE_DETACH() driver 2664 * method. If the call to DEVICE_DETACH() succeeds, it calls 2665 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2666 * notification event for user-based device management services and 2667 * cleans up the device's sysctl tree. 2668 * 2669 * @param dev the device to un-initialise 2670 * 2671 * @retval 0 success 2672 * @retval ENXIO no driver was found 2673 * @retval ENOMEM memory allocation failure 2674 * @retval non-zero some other unix error code 2675 */ 2676 int 2677 device_detach(device_t dev) 2678 { 2679 int error; 2680 2681 bus_topo_assert(); 2682 2683 PDEBUG(("%s", DEVICENAME(dev))); 2684 if (dev->busy > 0) 2685 return (EBUSY); 2686 if (dev->state == DS_ATTACHING) { 2687 device_printf(dev, "device in attaching state! Deferring detach.\n"); 2688 return (EBUSY); 2689 } 2690 if (dev->state != DS_ATTACHED) 2691 return (0); 2692 2693 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 2694 if ((error = DEVICE_DETACH(dev)) != 0) { 2695 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2696 EVHDEV_DETACH_FAILED); 2697 return (error); 2698 } else { 2699 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2700 EVHDEV_DETACH_COMPLETE); 2701 } 2702 if (!device_is_quiet(dev)) 2703 device_printf(dev, "detached\n"); 2704 if (dev->parent) 2705 BUS_CHILD_DETACHED(dev->parent, dev); 2706 2707 if (!(dev->flags & DF_FIXEDCLASS)) 2708 devclass_delete_device(dev->devclass, dev); 2709 2710 device_verbose(dev); 2711 dev->state = DS_NOTPRESENT; 2712 (void)device_set_driver(dev, NULL); 2713 device_sysctl_fini(dev); 2714 2715 return (0); 2716 } 2717 2718 /** 2719 * @brief Tells a driver to quiesce itself. 2720 * 2721 * This function is a wrapper around the DEVICE_QUIESCE() driver 2722 * method. If the call to DEVICE_QUIESCE() succeeds. 2723 * 2724 * @param dev the device to quiesce 2725 * 2726 * @retval 0 success 2727 * @retval ENXIO no driver was found 2728 * @retval ENOMEM memory allocation failure 2729 * @retval non-zero some other unix error code 2730 */ 2731 int 2732 device_quiesce(device_t dev) 2733 { 2734 PDEBUG(("%s", DEVICENAME(dev))); 2735 if (dev->busy > 0) 2736 return (EBUSY); 2737 if (dev->state != DS_ATTACHED) 2738 return (0); 2739 2740 return (DEVICE_QUIESCE(dev)); 2741 } 2742 2743 /** 2744 * @brief Notify a device of system shutdown 2745 * 2746 * This function calls the DEVICE_SHUTDOWN() driver method if the 2747 * device currently has an attached driver. 2748 * 2749 * @returns the value returned by DEVICE_SHUTDOWN() 2750 */ 2751 int 2752 device_shutdown(device_t dev) 2753 { 2754 if (dev->state < DS_ATTACHED) 2755 return (0); 2756 return (DEVICE_SHUTDOWN(dev)); 2757 } 2758 2759 /** 2760 * @brief Set the unit number of a device 2761 * 2762 * This function can be used to override the unit number used for a 2763 * device (e.g. to wire a device to a pre-configured unit number). 2764 */ 2765 int 2766 device_set_unit(device_t dev, int unit) 2767 { 2768 devclass_t dc; 2769 int err; 2770 2771 if (unit == dev->unit) 2772 return (0); 2773 dc = device_get_devclass(dev); 2774 if (unit < dc->maxunit && dc->devices[unit]) 2775 return (EBUSY); 2776 err = devclass_delete_device(dc, dev); 2777 if (err) 2778 return (err); 2779 dev->unit = unit; 2780 err = devclass_add_device(dc, dev); 2781 if (err) 2782 return (err); 2783 2784 bus_data_generation_update(); 2785 return (0); 2786 } 2787 2788 /*======================================*/ 2789 /* 2790 * Some useful method implementations to make life easier for bus drivers. 2791 */ 2792 2793 /** 2794 * @brief Initialize a resource mapping request 2795 * 2796 * This is the internal implementation of the public API 2797 * resource_init_map_request. Callers may be using a different layout 2798 * of struct resource_map_request than the kernel, so callers pass in 2799 * the size of the structure they are using to identify the structure 2800 * layout. 2801 */ 2802 void 2803 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 2804 { 2805 bzero(args, sz); 2806 args->size = sz; 2807 args->memattr = VM_MEMATTR_DEVICE; 2808 } 2809 2810 /** 2811 * @brief Validate a resource mapping request 2812 * 2813 * Translate a device driver's mapping request (@p in) to a struct 2814 * resource_map_request using the current structure layout (@p out). 2815 * In addition, validate the offset and length from the mapping 2816 * request against the bounds of the resource @p r. If the offset or 2817 * length are invalid, fail with EINVAL. If the offset and length are 2818 * valid, the absolute starting address of the requested mapping is 2819 * returned in @p startp and the length of the requested mapping is 2820 * returned in @p lengthp. 2821 */ 2822 int 2823 resource_validate_map_request(struct resource *r, 2824 struct resource_map_request *in, struct resource_map_request *out, 2825 rman_res_t *startp, rman_res_t *lengthp) 2826 { 2827 rman_res_t end, length, start; 2828 2829 /* 2830 * This assumes that any callers of this function are compiled 2831 * into the kernel and use the same version of the structure 2832 * as this file. 2833 */ 2834 MPASS(out->size == sizeof(struct resource_map_request)); 2835 2836 if (in != NULL) 2837 bcopy(in, out, imin(in->size, out->size)); 2838 start = rman_get_start(r) + out->offset; 2839 if (out->length == 0) 2840 length = rman_get_size(r); 2841 else 2842 length = out->length; 2843 end = start + length - 1; 2844 if (start > rman_get_end(r) || start < rman_get_start(r)) 2845 return (EINVAL); 2846 if (end > rman_get_end(r) || end < start) 2847 return (EINVAL); 2848 *lengthp = length; 2849 *startp = start; 2850 return (0); 2851 } 2852 2853 /** 2854 * @brief Initialise a resource list. 2855 * 2856 * @param rl the resource list to initialise 2857 */ 2858 void 2859 resource_list_init(struct resource_list *rl) 2860 { 2861 STAILQ_INIT(rl); 2862 } 2863 2864 /** 2865 * @brief Reclaim memory used by a resource list. 2866 * 2867 * This function frees the memory for all resource entries on the list 2868 * (if any). 2869 * 2870 * @param rl the resource list to free 2871 */ 2872 void 2873 resource_list_free(struct resource_list *rl) 2874 { 2875 struct resource_list_entry *rle; 2876 2877 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2878 if (rle->res) 2879 panic("resource_list_free: resource entry is busy"); 2880 STAILQ_REMOVE_HEAD(rl, link); 2881 free(rle, M_BUS); 2882 } 2883 } 2884 2885 /** 2886 * @brief Add a resource entry. 2887 * 2888 * This function adds a resource entry using the given @p type, @p 2889 * start, @p end and @p count values. A rid value is chosen by 2890 * searching sequentially for the first unused rid starting at zero. 2891 * 2892 * @param rl the resource list to edit 2893 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2894 * @param start the start address of the resource 2895 * @param end the end address of the resource 2896 * @param count XXX end-start+1 2897 */ 2898 int 2899 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 2900 rman_res_t end, rman_res_t count) 2901 { 2902 int rid; 2903 2904 rid = 0; 2905 while (resource_list_find(rl, type, rid) != NULL) 2906 rid++; 2907 resource_list_add(rl, type, rid, start, end, count); 2908 return (rid); 2909 } 2910 2911 /** 2912 * @brief Add or modify a resource entry. 2913 * 2914 * If an existing entry exists with the same type and rid, it will be 2915 * modified using the given values of @p start, @p end and @p 2916 * count. If no entry exists, a new one will be created using the 2917 * given values. The resource list entry that matches is then returned. 2918 * 2919 * @param rl the resource list to edit 2920 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2921 * @param rid the resource identifier 2922 * @param start the start address of the resource 2923 * @param end the end address of the resource 2924 * @param count XXX end-start+1 2925 */ 2926 struct resource_list_entry * 2927 resource_list_add(struct resource_list *rl, int type, int rid, 2928 rman_res_t start, rman_res_t end, rman_res_t count) 2929 { 2930 struct resource_list_entry *rle; 2931 2932 rle = resource_list_find(rl, type, rid); 2933 if (!rle) { 2934 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2935 M_NOWAIT); 2936 if (!rle) 2937 panic("resource_list_add: can't record entry"); 2938 STAILQ_INSERT_TAIL(rl, rle, link); 2939 rle->type = type; 2940 rle->rid = rid; 2941 rle->res = NULL; 2942 rle->flags = 0; 2943 } 2944 2945 if (rle->res) 2946 panic("resource_list_add: resource entry is busy"); 2947 2948 rle->start = start; 2949 rle->end = end; 2950 rle->count = count; 2951 return (rle); 2952 } 2953 2954 /** 2955 * @brief Determine if a resource entry is busy. 2956 * 2957 * Returns true if a resource entry is busy meaning that it has an 2958 * associated resource that is not an unallocated "reserved" resource. 2959 * 2960 * @param rl the resource list to search 2961 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2962 * @param rid the resource identifier 2963 * 2964 * @returns Non-zero if the entry is busy, zero otherwise. 2965 */ 2966 int 2967 resource_list_busy(struct resource_list *rl, int type, int rid) 2968 { 2969 struct resource_list_entry *rle; 2970 2971 rle = resource_list_find(rl, type, rid); 2972 if (rle == NULL || rle->res == NULL) 2973 return (0); 2974 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 2975 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 2976 ("reserved resource is active")); 2977 return (0); 2978 } 2979 return (1); 2980 } 2981 2982 /** 2983 * @brief Determine if a resource entry is reserved. 2984 * 2985 * Returns true if a resource entry is reserved meaning that it has an 2986 * associated "reserved" resource. The resource can either be 2987 * allocated or unallocated. 2988 * 2989 * @param rl the resource list to search 2990 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2991 * @param rid the resource identifier 2992 * 2993 * @returns Non-zero if the entry is reserved, zero otherwise. 2994 */ 2995 int 2996 resource_list_reserved(struct resource_list *rl, int type, int rid) 2997 { 2998 struct resource_list_entry *rle; 2999 3000 rle = resource_list_find(rl, type, rid); 3001 if (rle != NULL && rle->flags & RLE_RESERVED) 3002 return (1); 3003 return (0); 3004 } 3005 3006 /** 3007 * @brief Find a resource entry by type and rid. 3008 * 3009 * @param rl the resource list to search 3010 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3011 * @param rid the resource identifier 3012 * 3013 * @returns the resource entry pointer or NULL if there is no such 3014 * entry. 3015 */ 3016 struct resource_list_entry * 3017 resource_list_find(struct resource_list *rl, int type, int rid) 3018 { 3019 struct resource_list_entry *rle; 3020 3021 STAILQ_FOREACH(rle, rl, link) { 3022 if (rle->type == type && rle->rid == rid) 3023 return (rle); 3024 } 3025 return (NULL); 3026 } 3027 3028 /** 3029 * @brief Delete a resource entry. 3030 * 3031 * @param rl the resource list to edit 3032 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3033 * @param rid the resource identifier 3034 */ 3035 void 3036 resource_list_delete(struct resource_list *rl, int type, int rid) 3037 { 3038 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3039 3040 if (rle) { 3041 if (rle->res != NULL) 3042 panic("resource_list_delete: resource has not been released"); 3043 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3044 free(rle, M_BUS); 3045 } 3046 } 3047 3048 /** 3049 * @brief Allocate a reserved resource 3050 * 3051 * This can be used by buses to force the allocation of resources 3052 * that are always active in the system even if they are not allocated 3053 * by a driver (e.g. PCI BARs). This function is usually called when 3054 * adding a new child to the bus. The resource is allocated from the 3055 * parent bus when it is reserved. The resource list entry is marked 3056 * with RLE_RESERVED to note that it is a reserved resource. 3057 * 3058 * Subsequent attempts to allocate the resource with 3059 * resource_list_alloc() will succeed the first time and will set 3060 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3061 * resource that has been allocated is released with 3062 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3063 * the actual resource remains allocated. The resource can be released to 3064 * the parent bus by calling resource_list_unreserve(). 3065 * 3066 * @param rl the resource list to allocate from 3067 * @param bus the parent device of @p child 3068 * @param child the device for which the resource is being reserved 3069 * @param type the type of resource to allocate 3070 * @param rid a pointer to the resource identifier 3071 * @param start hint at the start of the resource range - pass 3072 * @c 0 for any start address 3073 * @param end hint at the end of the resource range - pass 3074 * @c ~0 for any end address 3075 * @param count hint at the size of range required - pass @c 1 3076 * for any size 3077 * @param flags any extra flags to control the resource 3078 * allocation - see @c RF_XXX flags in 3079 * <sys/rman.h> for details 3080 * 3081 * @returns the resource which was allocated or @c NULL if no 3082 * resource could be allocated 3083 */ 3084 struct resource * 3085 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3086 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3087 { 3088 struct resource_list_entry *rle = NULL; 3089 int passthrough = (device_get_parent(child) != bus); 3090 struct resource *r; 3091 3092 if (passthrough) 3093 panic( 3094 "resource_list_reserve() should only be called for direct children"); 3095 if (flags & RF_ACTIVE) 3096 panic( 3097 "resource_list_reserve() should only reserve inactive resources"); 3098 3099 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3100 flags); 3101 if (r != NULL) { 3102 rle = resource_list_find(rl, type, *rid); 3103 rle->flags |= RLE_RESERVED; 3104 } 3105 return (r); 3106 } 3107 3108 /** 3109 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3110 * 3111 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3112 * and passing the allocation up to the parent of @p bus. This assumes 3113 * that the first entry of @c device_get_ivars(child) is a struct 3114 * resource_list. This also handles 'passthrough' allocations where a 3115 * child is a remote descendant of bus by passing the allocation up to 3116 * the parent of bus. 3117 * 3118 * Typically, a bus driver would store a list of child resources 3119 * somewhere in the child device's ivars (see device_get_ivars()) and 3120 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3121 * then call resource_list_alloc() to perform the allocation. 3122 * 3123 * @param rl the resource list to allocate from 3124 * @param bus the parent device of @p child 3125 * @param child the device which is requesting an allocation 3126 * @param type the type of resource to allocate 3127 * @param rid a pointer to the resource identifier 3128 * @param start hint at the start of the resource range - pass 3129 * @c 0 for any start address 3130 * @param end hint at the end of the resource range - pass 3131 * @c ~0 for any end address 3132 * @param count hint at the size of range required - pass @c 1 3133 * for any size 3134 * @param flags any extra flags to control the resource 3135 * allocation - see @c RF_XXX flags in 3136 * <sys/rman.h> for details 3137 * 3138 * @returns the resource which was allocated or @c NULL if no 3139 * resource could be allocated 3140 */ 3141 struct resource * 3142 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3143 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3144 { 3145 struct resource_list_entry *rle = NULL; 3146 int passthrough = (device_get_parent(child) != bus); 3147 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3148 3149 if (passthrough) { 3150 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3151 type, rid, start, end, count, flags)); 3152 } 3153 3154 rle = resource_list_find(rl, type, *rid); 3155 3156 if (!rle) 3157 return (NULL); /* no resource of that type/rid */ 3158 3159 if (rle->res) { 3160 if (rle->flags & RLE_RESERVED) { 3161 if (rle->flags & RLE_ALLOCATED) 3162 return (NULL); 3163 if ((flags & RF_ACTIVE) && 3164 bus_activate_resource(child, type, *rid, 3165 rle->res) != 0) 3166 return (NULL); 3167 rle->flags |= RLE_ALLOCATED; 3168 return (rle->res); 3169 } 3170 device_printf(bus, 3171 "resource entry %#x type %d for child %s is busy\n", *rid, 3172 type, device_get_nameunit(child)); 3173 return (NULL); 3174 } 3175 3176 if (isdefault) { 3177 start = rle->start; 3178 count = ulmax(count, rle->count); 3179 end = ulmax(rle->end, start + count - 1); 3180 } 3181 3182 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3183 type, rid, start, end, count, flags); 3184 3185 /* 3186 * Record the new range. 3187 */ 3188 if (rle->res) { 3189 rle->start = rman_get_start(rle->res); 3190 rle->end = rman_get_end(rle->res); 3191 rle->count = count; 3192 } 3193 3194 return (rle->res); 3195 } 3196 3197 /** 3198 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3199 * 3200 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3201 * used with resource_list_alloc(). 3202 * 3203 * @param rl the resource list which was allocated from 3204 * @param bus the parent device of @p child 3205 * @param child the device which is requesting a release 3206 * @param res the resource to release 3207 * 3208 * @retval 0 success 3209 * @retval non-zero a standard unix error code indicating what 3210 * error condition prevented the operation 3211 */ 3212 int 3213 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3214 struct resource *res) 3215 { 3216 struct resource_list_entry *rle = NULL; 3217 int passthrough = (device_get_parent(child) != bus); 3218 int error; 3219 3220 if (passthrough) { 3221 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3222 res)); 3223 } 3224 3225 rle = resource_list_find(rl, rman_get_type(res), rman_get_rid(res)); 3226 3227 if (!rle) 3228 panic("resource_list_release: can't find resource"); 3229 if (!rle->res) 3230 panic("resource_list_release: resource entry is not busy"); 3231 if (rle->flags & RLE_RESERVED) { 3232 if (rle->flags & RLE_ALLOCATED) { 3233 if (rman_get_flags(res) & RF_ACTIVE) { 3234 error = bus_deactivate_resource(child, res); 3235 if (error) 3236 return (error); 3237 } 3238 rle->flags &= ~RLE_ALLOCATED; 3239 return (0); 3240 } 3241 return (EINVAL); 3242 } 3243 3244 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, res); 3245 if (error) 3246 return (error); 3247 3248 rle->res = NULL; 3249 return (0); 3250 } 3251 3252 /** 3253 * @brief Release all active resources of a given type 3254 * 3255 * Release all active resources of a specified type. This is intended 3256 * to be used to cleanup resources leaked by a driver after detach or 3257 * a failed attach. 3258 * 3259 * @param rl the resource list which was allocated from 3260 * @param bus the parent device of @p child 3261 * @param child the device whose active resources are being released 3262 * @param type the type of resources to release 3263 * 3264 * @retval 0 success 3265 * @retval EBUSY at least one resource was active 3266 */ 3267 int 3268 resource_list_release_active(struct resource_list *rl, device_t bus, 3269 device_t child, int type) 3270 { 3271 struct resource_list_entry *rle; 3272 int error, retval; 3273 3274 retval = 0; 3275 STAILQ_FOREACH(rle, rl, link) { 3276 if (rle->type != type) 3277 continue; 3278 if (rle->res == NULL) 3279 continue; 3280 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3281 RLE_RESERVED) 3282 continue; 3283 retval = EBUSY; 3284 error = resource_list_release(rl, bus, child, rle->res); 3285 if (error != 0) 3286 device_printf(bus, 3287 "Failed to release active resource: %d\n", error); 3288 } 3289 return (retval); 3290 } 3291 3292 /** 3293 * @brief Fully release a reserved resource 3294 * 3295 * Fully releases a resource reserved via resource_list_reserve(). 3296 * 3297 * @param rl the resource list which was allocated from 3298 * @param bus the parent device of @p child 3299 * @param child the device whose reserved resource is being released 3300 * @param type the type of resource to release 3301 * @param rid the resource identifier 3302 * @param res the resource to release 3303 * 3304 * @retval 0 success 3305 * @retval non-zero a standard unix error code indicating what 3306 * error condition prevented the operation 3307 */ 3308 int 3309 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3310 int type, int rid) 3311 { 3312 struct resource_list_entry *rle = NULL; 3313 int passthrough = (device_get_parent(child) != bus); 3314 3315 if (passthrough) 3316 panic( 3317 "resource_list_unreserve() should only be called for direct children"); 3318 3319 rle = resource_list_find(rl, type, rid); 3320 3321 if (!rle) 3322 panic("resource_list_unreserve: can't find resource"); 3323 if (!(rle->flags & RLE_RESERVED)) 3324 return (EINVAL); 3325 if (rle->flags & RLE_ALLOCATED) 3326 return (EBUSY); 3327 rle->flags &= ~RLE_RESERVED; 3328 return (resource_list_release(rl, bus, child, rle->res)); 3329 } 3330 3331 /** 3332 * @brief Print a description of resources in a resource list 3333 * 3334 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3335 * The name is printed if at least one resource of the given type is available. 3336 * The format is used to print resource start and end. 3337 * 3338 * @param rl the resource list to print 3339 * @param name the name of @p type, e.g. @c "memory" 3340 * @param type type type of resource entry to print 3341 * @param format printf(9) format string to print resource 3342 * start and end values 3343 * 3344 * @returns the number of characters printed 3345 */ 3346 int 3347 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3348 const char *format) 3349 { 3350 struct resource_list_entry *rle; 3351 int printed, retval; 3352 3353 printed = 0; 3354 retval = 0; 3355 /* Yes, this is kinda cheating */ 3356 STAILQ_FOREACH(rle, rl, link) { 3357 if (rle->type == type) { 3358 if (printed == 0) 3359 retval += printf(" %s ", name); 3360 else 3361 retval += printf(","); 3362 printed++; 3363 retval += printf(format, rle->start); 3364 if (rle->count > 1) { 3365 retval += printf("-"); 3366 retval += printf(format, rle->start + 3367 rle->count - 1); 3368 } 3369 } 3370 } 3371 return (retval); 3372 } 3373 3374 /** 3375 * @brief Releases all the resources in a list. 3376 * 3377 * @param rl The resource list to purge. 3378 * 3379 * @returns nothing 3380 */ 3381 void 3382 resource_list_purge(struct resource_list *rl) 3383 { 3384 struct resource_list_entry *rle; 3385 3386 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3387 if (rle->res) 3388 bus_release_resource(rman_get_device(rle->res), 3389 rle->type, rle->rid, rle->res); 3390 STAILQ_REMOVE_HEAD(rl, link); 3391 free(rle, M_BUS); 3392 } 3393 } 3394 3395 device_t 3396 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3397 { 3398 return (device_add_child_ordered(dev, order, name, unit)); 3399 } 3400 3401 /** 3402 * @brief Helper function for implementing DEVICE_PROBE() 3403 * 3404 * This function can be used to help implement the DEVICE_PROBE() for 3405 * a bus (i.e. a device which has other devices attached to it). It 3406 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3407 * devclass. 3408 */ 3409 int 3410 bus_generic_probe(device_t dev) 3411 { 3412 devclass_t dc = dev->devclass; 3413 driverlink_t dl; 3414 3415 TAILQ_FOREACH(dl, &dc->drivers, link) { 3416 /* 3417 * If this driver's pass is too high, then ignore it. 3418 * For most drivers in the default pass, this will 3419 * never be true. For early-pass drivers they will 3420 * only call the identify routines of eligible drivers 3421 * when this routine is called. Drivers for later 3422 * passes should have their identify routines called 3423 * on early-pass buses during BUS_NEW_PASS(). 3424 */ 3425 if (dl->pass > bus_current_pass) 3426 continue; 3427 DEVICE_IDENTIFY(dl->driver, dev); 3428 } 3429 3430 return (0); 3431 } 3432 3433 /** 3434 * @brief Helper function for implementing DEVICE_ATTACH() 3435 * 3436 * This function can be used to help implement the DEVICE_ATTACH() for 3437 * a bus. It calls device_probe_and_attach() for each of the device's 3438 * children. 3439 */ 3440 int 3441 bus_generic_attach(device_t dev) 3442 { 3443 device_t child; 3444 3445 TAILQ_FOREACH(child, &dev->children, link) { 3446 device_probe_and_attach(child); 3447 } 3448 3449 return (0); 3450 } 3451 3452 /** 3453 * @brief Helper function for delaying attaching children 3454 * 3455 * Many buses can't run transactions on the bus which children need to probe and 3456 * attach until after interrupts and/or timers are running. This function 3457 * delays their attach until interrupts and timers are enabled. 3458 */ 3459 int 3460 bus_delayed_attach_children(device_t dev) 3461 { 3462 /* Probe and attach the bus children when interrupts are available */ 3463 config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev); 3464 3465 return (0); 3466 } 3467 3468 /** 3469 * @brief Helper function for implementing DEVICE_DETACH() 3470 * 3471 * This function can be used to help implement the DEVICE_DETACH() for 3472 * a bus. It calls device_detach() for each of the device's 3473 * children. 3474 */ 3475 int 3476 bus_generic_detach(device_t dev) 3477 { 3478 device_t child; 3479 int error; 3480 3481 /* 3482 * Detach children in the reverse order. 3483 * See bus_generic_suspend for details. 3484 */ 3485 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3486 if ((error = device_detach(child)) != 0) 3487 return (error); 3488 } 3489 3490 return (0); 3491 } 3492 3493 /** 3494 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3495 * 3496 * This function can be used to help implement the DEVICE_SHUTDOWN() 3497 * for a bus. It calls device_shutdown() for each of the device's 3498 * children. 3499 */ 3500 int 3501 bus_generic_shutdown(device_t dev) 3502 { 3503 device_t child; 3504 3505 /* 3506 * Shut down children in the reverse order. 3507 * See bus_generic_suspend for details. 3508 */ 3509 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3510 device_shutdown(child); 3511 } 3512 3513 return (0); 3514 } 3515 3516 /** 3517 * @brief Default function for suspending a child device. 3518 * 3519 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3520 */ 3521 int 3522 bus_generic_suspend_child(device_t dev, device_t child) 3523 { 3524 int error; 3525 3526 error = DEVICE_SUSPEND(child); 3527 3528 if (error == 0) { 3529 child->flags |= DF_SUSPENDED; 3530 } else { 3531 printf("DEVICE_SUSPEND(%s) failed: %d\n", 3532 device_get_nameunit(child), error); 3533 } 3534 3535 return (error); 3536 } 3537 3538 /** 3539 * @brief Default function for resuming a child device. 3540 * 3541 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3542 */ 3543 int 3544 bus_generic_resume_child(device_t dev, device_t child) 3545 { 3546 DEVICE_RESUME(child); 3547 child->flags &= ~DF_SUSPENDED; 3548 3549 return (0); 3550 } 3551 3552 /** 3553 * @brief Helper function for implementing DEVICE_SUSPEND() 3554 * 3555 * This function can be used to help implement the DEVICE_SUSPEND() 3556 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3557 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3558 * operation is aborted and any devices which were suspended are 3559 * resumed immediately by calling their DEVICE_RESUME() methods. 3560 */ 3561 int 3562 bus_generic_suspend(device_t dev) 3563 { 3564 int error; 3565 device_t child; 3566 3567 /* 3568 * Suspend children in the reverse order. 3569 * For most buses all children are equal, so the order does not matter. 3570 * Other buses, such as acpi, carefully order their child devices to 3571 * express implicit dependencies between them. For such buses it is 3572 * safer to bring down devices in the reverse order. 3573 */ 3574 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3575 error = BUS_SUSPEND_CHILD(dev, child); 3576 if (error != 0) { 3577 child = TAILQ_NEXT(child, link); 3578 if (child != NULL) { 3579 TAILQ_FOREACH_FROM(child, &dev->children, link) 3580 BUS_RESUME_CHILD(dev, child); 3581 } 3582 return (error); 3583 } 3584 } 3585 return (0); 3586 } 3587 3588 /** 3589 * @brief Helper function for implementing DEVICE_RESUME() 3590 * 3591 * This function can be used to help implement the DEVICE_RESUME() for 3592 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3593 */ 3594 int 3595 bus_generic_resume(device_t dev) 3596 { 3597 device_t child; 3598 3599 TAILQ_FOREACH(child, &dev->children, link) { 3600 BUS_RESUME_CHILD(dev, child); 3601 /* if resume fails, there's nothing we can usefully do... */ 3602 } 3603 return (0); 3604 } 3605 3606 /** 3607 * @brief Helper function for implementing BUS_RESET_POST 3608 * 3609 * Bus can use this function to implement common operations of 3610 * re-attaching or resuming the children after the bus itself was 3611 * reset, and after restoring bus-unique state of children. 3612 * 3613 * @param dev The bus 3614 * #param flags DEVF_RESET_* 3615 */ 3616 int 3617 bus_helper_reset_post(device_t dev, int flags) 3618 { 3619 device_t child; 3620 int error, error1; 3621 3622 error = 0; 3623 TAILQ_FOREACH(child, &dev->children,link) { 3624 BUS_RESET_POST(dev, child); 3625 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3626 device_probe_and_attach(child) : 3627 BUS_RESUME_CHILD(dev, child); 3628 if (error == 0 && error1 != 0) 3629 error = error1; 3630 } 3631 return (error); 3632 } 3633 3634 static void 3635 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3636 { 3637 child = TAILQ_NEXT(child, link); 3638 if (child == NULL) 3639 return; 3640 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3641 BUS_RESET_POST(dev, child); 3642 if ((flags & DEVF_RESET_DETACH) != 0) 3643 device_probe_and_attach(child); 3644 else 3645 BUS_RESUME_CHILD(dev, child); 3646 } 3647 } 3648 3649 /** 3650 * @brief Helper function for implementing BUS_RESET_PREPARE 3651 * 3652 * Bus can use this function to implement common operations of 3653 * detaching or suspending the children before the bus itself is 3654 * reset, and then save bus-unique state of children that must 3655 * persists around reset. 3656 * 3657 * @param dev The bus 3658 * #param flags DEVF_RESET_* 3659 */ 3660 int 3661 bus_helper_reset_prepare(device_t dev, int flags) 3662 { 3663 device_t child; 3664 int error; 3665 3666 if (dev->state != DS_ATTACHED) 3667 return (EBUSY); 3668 3669 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3670 if ((flags & DEVF_RESET_DETACH) != 0) { 3671 error = device_get_state(child) == DS_ATTACHED ? 3672 device_detach(child) : 0; 3673 } else { 3674 error = BUS_SUSPEND_CHILD(dev, child); 3675 } 3676 if (error == 0) { 3677 error = BUS_RESET_PREPARE(dev, child); 3678 if (error != 0) { 3679 if ((flags & DEVF_RESET_DETACH) != 0) 3680 device_probe_and_attach(child); 3681 else 3682 BUS_RESUME_CHILD(dev, child); 3683 } 3684 } 3685 if (error != 0) { 3686 bus_helper_reset_prepare_rollback(dev, child, flags); 3687 return (error); 3688 } 3689 } 3690 return (0); 3691 } 3692 3693 /** 3694 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3695 * 3696 * This function prints the first part of the ascii representation of 3697 * @p child, including its name, unit and description (if any - see 3698 * device_set_desc()). 3699 * 3700 * @returns the number of characters printed 3701 */ 3702 int 3703 bus_print_child_header(device_t dev, device_t child) 3704 { 3705 int retval = 0; 3706 3707 if (device_get_desc(child)) { 3708 retval += device_printf(child, "<%s>", device_get_desc(child)); 3709 } else { 3710 retval += printf("%s", device_get_nameunit(child)); 3711 } 3712 3713 return (retval); 3714 } 3715 3716 /** 3717 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3718 * 3719 * This function prints the last part of the ascii representation of 3720 * @p child, which consists of the string @c " on " followed by the 3721 * name and unit of the @p dev. 3722 * 3723 * @returns the number of characters printed 3724 */ 3725 int 3726 bus_print_child_footer(device_t dev, device_t child) 3727 { 3728 return (printf(" on %s\n", device_get_nameunit(dev))); 3729 } 3730 3731 /** 3732 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3733 * 3734 * This function prints out the VM domain for the given device. 3735 * 3736 * @returns the number of characters printed 3737 */ 3738 int 3739 bus_print_child_domain(device_t dev, device_t child) 3740 { 3741 int domain; 3742 3743 /* No domain? Don't print anything */ 3744 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3745 return (0); 3746 3747 return (printf(" numa-domain %d", domain)); 3748 } 3749 3750 /** 3751 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3752 * 3753 * This function simply calls bus_print_child_header() followed by 3754 * bus_print_child_footer(). 3755 * 3756 * @returns the number of characters printed 3757 */ 3758 int 3759 bus_generic_print_child(device_t dev, device_t child) 3760 { 3761 int retval = 0; 3762 3763 retval += bus_print_child_header(dev, child); 3764 retval += bus_print_child_domain(dev, child); 3765 retval += bus_print_child_footer(dev, child); 3766 3767 return (retval); 3768 } 3769 3770 /** 3771 * @brief Stub function for implementing BUS_READ_IVAR(). 3772 * 3773 * @returns ENOENT 3774 */ 3775 int 3776 bus_generic_read_ivar(device_t dev, device_t child, int index, 3777 uintptr_t * result) 3778 { 3779 return (ENOENT); 3780 } 3781 3782 /** 3783 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3784 * 3785 * @returns ENOENT 3786 */ 3787 int 3788 bus_generic_write_ivar(device_t dev, device_t child, int index, 3789 uintptr_t value) 3790 { 3791 return (ENOENT); 3792 } 3793 3794 /** 3795 * @brief Helper function for implementing BUS_GET_PROPERTY(). 3796 * 3797 * This simply calls the BUS_GET_PROPERTY of the parent of dev, 3798 * until a non-default implementation is found. 3799 */ 3800 ssize_t 3801 bus_generic_get_property(device_t dev, device_t child, const char *propname, 3802 void *propvalue, size_t size, device_property_type_t type) 3803 { 3804 if (device_get_parent(dev) != NULL) 3805 return (BUS_GET_PROPERTY(device_get_parent(dev), child, 3806 propname, propvalue, size, type)); 3807 3808 return (-1); 3809 } 3810 3811 /** 3812 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3813 * 3814 * @returns NULL 3815 */ 3816 struct resource_list * 3817 bus_generic_get_resource_list(device_t dev, device_t child) 3818 { 3819 return (NULL); 3820 } 3821 3822 /** 3823 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3824 * 3825 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3826 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3827 * and then calls device_probe_and_attach() for each unattached child. 3828 */ 3829 void 3830 bus_generic_driver_added(device_t dev, driver_t *driver) 3831 { 3832 device_t child; 3833 3834 DEVICE_IDENTIFY(driver, dev); 3835 TAILQ_FOREACH(child, &dev->children, link) { 3836 if (child->state == DS_NOTPRESENT) 3837 device_probe_and_attach(child); 3838 } 3839 } 3840 3841 /** 3842 * @brief Helper function for implementing BUS_NEW_PASS(). 3843 * 3844 * This implementing of BUS_NEW_PASS() first calls the identify 3845 * routines for any drivers that probe at the current pass. Then it 3846 * walks the list of devices for this bus. If a device is already 3847 * attached, then it calls BUS_NEW_PASS() on that device. If the 3848 * device is not already attached, it attempts to attach a driver to 3849 * it. 3850 */ 3851 void 3852 bus_generic_new_pass(device_t dev) 3853 { 3854 driverlink_t dl; 3855 devclass_t dc; 3856 device_t child; 3857 3858 dc = dev->devclass; 3859 TAILQ_FOREACH(dl, &dc->drivers, link) { 3860 if (dl->pass == bus_current_pass) 3861 DEVICE_IDENTIFY(dl->driver, dev); 3862 } 3863 TAILQ_FOREACH(child, &dev->children, link) { 3864 if (child->state >= DS_ATTACHED) 3865 BUS_NEW_PASS(child); 3866 else if (child->state == DS_NOTPRESENT) 3867 device_probe_and_attach(child); 3868 } 3869 } 3870 3871 /** 3872 * @brief Helper function for implementing BUS_SETUP_INTR(). 3873 * 3874 * This simple implementation of BUS_SETUP_INTR() simply calls the 3875 * BUS_SETUP_INTR() method of the parent of @p dev. 3876 */ 3877 int 3878 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3879 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3880 void **cookiep) 3881 { 3882 /* Propagate up the bus hierarchy until someone handles it. */ 3883 if (dev->parent) 3884 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3885 filter, intr, arg, cookiep)); 3886 return (EINVAL); 3887 } 3888 3889 /** 3890 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3891 * 3892 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3893 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3894 */ 3895 int 3896 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3897 void *cookie) 3898 { 3899 /* Propagate up the bus hierarchy until someone handles it. */ 3900 if (dev->parent) 3901 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3902 return (EINVAL); 3903 } 3904 3905 /** 3906 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 3907 * 3908 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 3909 * BUS_SUSPEND_INTR() method of the parent of @p dev. 3910 */ 3911 int 3912 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 3913 { 3914 /* Propagate up the bus hierarchy until someone handles it. */ 3915 if (dev->parent) 3916 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 3917 return (EINVAL); 3918 } 3919 3920 /** 3921 * @brief Helper function for implementing BUS_RESUME_INTR(). 3922 * 3923 * This simple implementation of BUS_RESUME_INTR() simply calls the 3924 * BUS_RESUME_INTR() method of the parent of @p dev. 3925 */ 3926 int 3927 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 3928 { 3929 /* Propagate up the bus hierarchy until someone handles it. */ 3930 if (dev->parent) 3931 return (BUS_RESUME_INTR(dev->parent, child, irq)); 3932 return (EINVAL); 3933 } 3934 3935 /** 3936 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3937 * 3938 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3939 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3940 */ 3941 int 3942 bus_generic_adjust_resource(device_t dev, device_t child, struct resource *r, 3943 rman_res_t start, rman_res_t end) 3944 { 3945 /* Propagate up the bus hierarchy until someone handles it. */ 3946 if (dev->parent) 3947 return (BUS_ADJUST_RESOURCE(dev->parent, child, r, start, end)); 3948 return (EINVAL); 3949 } 3950 3951 /* 3952 * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE(). 3953 * 3954 * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the 3955 * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev. If there is no 3956 * parent, no translation happens. 3957 */ 3958 int 3959 bus_generic_translate_resource(device_t dev, int type, rman_res_t start, 3960 rman_res_t *newstart) 3961 { 3962 if (dev->parent) 3963 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, 3964 newstart)); 3965 *newstart = start; 3966 return (0); 3967 } 3968 3969 /** 3970 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3971 * 3972 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3973 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3974 */ 3975 struct resource * 3976 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3977 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3978 { 3979 /* Propagate up the bus hierarchy until someone handles it. */ 3980 if (dev->parent) 3981 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3982 start, end, count, flags)); 3983 return (NULL); 3984 } 3985 3986 /** 3987 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3988 * 3989 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3990 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3991 */ 3992 int 3993 bus_generic_release_resource(device_t dev, device_t child, struct resource *r) 3994 { 3995 /* Propagate up the bus hierarchy until someone handles it. */ 3996 if (dev->parent) 3997 return (BUS_RELEASE_RESOURCE(dev->parent, child, r)); 3998 return (EINVAL); 3999 } 4000 4001 /** 4002 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4003 * 4004 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4005 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4006 */ 4007 int 4008 bus_generic_activate_resource(device_t dev, device_t child, struct resource *r) 4009 { 4010 /* Propagate up the bus hierarchy until someone handles it. */ 4011 if (dev->parent) 4012 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, r)); 4013 return (EINVAL); 4014 } 4015 4016 /** 4017 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4018 * 4019 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4020 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4021 */ 4022 int 4023 bus_generic_deactivate_resource(device_t dev, device_t child, 4024 struct resource *r) 4025 { 4026 /* Propagate up the bus hierarchy until someone handles it. */ 4027 if (dev->parent) 4028 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, r)); 4029 return (EINVAL); 4030 } 4031 4032 /** 4033 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4034 * 4035 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4036 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4037 */ 4038 int 4039 bus_generic_map_resource(device_t dev, device_t child, struct resource *r, 4040 struct resource_map_request *args, struct resource_map *map) 4041 { 4042 /* Propagate up the bus hierarchy until someone handles it. */ 4043 if (dev->parent) 4044 return (BUS_MAP_RESOURCE(dev->parent, child, r, args, map)); 4045 return (EINVAL); 4046 } 4047 4048 /** 4049 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4050 * 4051 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4052 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4053 */ 4054 int 4055 bus_generic_unmap_resource(device_t dev, device_t child, struct resource *r, 4056 struct resource_map *map) 4057 { 4058 /* Propagate up the bus hierarchy until someone handles it. */ 4059 if (dev->parent) 4060 return (BUS_UNMAP_RESOURCE(dev->parent, child, r, map)); 4061 return (EINVAL); 4062 } 4063 4064 /** 4065 * @brief Helper function for implementing BUS_BIND_INTR(). 4066 * 4067 * This simple implementation of BUS_BIND_INTR() simply calls the 4068 * BUS_BIND_INTR() method of the parent of @p dev. 4069 */ 4070 int 4071 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4072 int cpu) 4073 { 4074 /* Propagate up the bus hierarchy until someone handles it. */ 4075 if (dev->parent) 4076 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4077 return (EINVAL); 4078 } 4079 4080 /** 4081 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4082 * 4083 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4084 * BUS_CONFIG_INTR() method of the parent of @p dev. 4085 */ 4086 int 4087 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4088 enum intr_polarity pol) 4089 { 4090 /* Propagate up the bus hierarchy until someone handles it. */ 4091 if (dev->parent) 4092 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4093 return (EINVAL); 4094 } 4095 4096 /** 4097 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4098 * 4099 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4100 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4101 */ 4102 int 4103 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4104 void *cookie, const char *descr) 4105 { 4106 /* Propagate up the bus hierarchy until someone handles it. */ 4107 if (dev->parent) 4108 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4109 descr)); 4110 return (EINVAL); 4111 } 4112 4113 /** 4114 * @brief Helper function for implementing BUS_GET_CPUS(). 4115 * 4116 * This simple implementation of BUS_GET_CPUS() simply calls the 4117 * BUS_GET_CPUS() method of the parent of @p dev. 4118 */ 4119 int 4120 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4121 size_t setsize, cpuset_t *cpuset) 4122 { 4123 /* Propagate up the bus hierarchy until someone handles it. */ 4124 if (dev->parent != NULL) 4125 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4126 return (EINVAL); 4127 } 4128 4129 /** 4130 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4131 * 4132 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4133 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4134 */ 4135 bus_dma_tag_t 4136 bus_generic_get_dma_tag(device_t dev, device_t child) 4137 { 4138 /* Propagate up the bus hierarchy until someone handles it. */ 4139 if (dev->parent != NULL) 4140 return (BUS_GET_DMA_TAG(dev->parent, child)); 4141 return (NULL); 4142 } 4143 4144 /** 4145 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4146 * 4147 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4148 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4149 */ 4150 bus_space_tag_t 4151 bus_generic_get_bus_tag(device_t dev, device_t child) 4152 { 4153 /* Propagate up the bus hierarchy until someone handles it. */ 4154 if (dev->parent != NULL) 4155 return (BUS_GET_BUS_TAG(dev->parent, child)); 4156 return ((bus_space_tag_t)0); 4157 } 4158 4159 /** 4160 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4161 * 4162 * This implementation of BUS_GET_RESOURCE() uses the 4163 * resource_list_find() function to do most of the work. It calls 4164 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4165 * search. 4166 */ 4167 int 4168 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4169 rman_res_t *startp, rman_res_t *countp) 4170 { 4171 struct resource_list * rl = NULL; 4172 struct resource_list_entry * rle = NULL; 4173 4174 rl = BUS_GET_RESOURCE_LIST(dev, child); 4175 if (!rl) 4176 return (EINVAL); 4177 4178 rle = resource_list_find(rl, type, rid); 4179 if (!rle) 4180 return (ENOENT); 4181 4182 if (startp) 4183 *startp = rle->start; 4184 if (countp) 4185 *countp = rle->count; 4186 4187 return (0); 4188 } 4189 4190 /** 4191 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4192 * 4193 * This implementation of BUS_SET_RESOURCE() uses the 4194 * resource_list_add() function to do most of the work. It calls 4195 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4196 * edit. 4197 */ 4198 int 4199 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4200 rman_res_t start, rman_res_t count) 4201 { 4202 struct resource_list * rl = NULL; 4203 4204 rl = BUS_GET_RESOURCE_LIST(dev, child); 4205 if (!rl) 4206 return (EINVAL); 4207 4208 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4209 4210 return (0); 4211 } 4212 4213 /** 4214 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4215 * 4216 * This implementation of BUS_DELETE_RESOURCE() uses the 4217 * resource_list_delete() function to do most of the work. It calls 4218 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4219 * edit. 4220 */ 4221 void 4222 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4223 { 4224 struct resource_list * rl = NULL; 4225 4226 rl = BUS_GET_RESOURCE_LIST(dev, child); 4227 if (!rl) 4228 return; 4229 4230 resource_list_delete(rl, type, rid); 4231 4232 return; 4233 } 4234 4235 /** 4236 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4237 * 4238 * This implementation of BUS_RELEASE_RESOURCE() uses the 4239 * resource_list_release() function to do most of the work. It calls 4240 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4241 */ 4242 int 4243 bus_generic_rl_release_resource(device_t dev, device_t child, 4244 struct resource *r) 4245 { 4246 struct resource_list * rl = NULL; 4247 4248 if (device_get_parent(child) != dev) 4249 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, r)); 4250 4251 rl = BUS_GET_RESOURCE_LIST(dev, child); 4252 if (!rl) 4253 return (EINVAL); 4254 4255 return (resource_list_release(rl, dev, child, r)); 4256 } 4257 4258 /** 4259 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4260 * 4261 * This implementation of BUS_ALLOC_RESOURCE() uses the 4262 * resource_list_alloc() function to do most of the work. It calls 4263 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4264 */ 4265 struct resource * 4266 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4267 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4268 { 4269 struct resource_list * rl = NULL; 4270 4271 if (device_get_parent(child) != dev) 4272 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4273 type, rid, start, end, count, flags)); 4274 4275 rl = BUS_GET_RESOURCE_LIST(dev, child); 4276 if (!rl) 4277 return (NULL); 4278 4279 return (resource_list_alloc(rl, dev, child, type, rid, 4280 start, end, count, flags)); 4281 } 4282 4283 /** 4284 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4285 * 4286 * This implementation of BUS_ALLOC_RESOURCE() allocates a 4287 * resource from a resource manager. It uses BUS_GET_RMAN() 4288 * to obtain the resource manager. 4289 */ 4290 struct resource * 4291 bus_generic_rman_alloc_resource(device_t dev, device_t child, int type, 4292 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4293 { 4294 struct resource *r; 4295 struct rman *rm; 4296 4297 rm = BUS_GET_RMAN(dev, type, flags); 4298 if (rm == NULL) 4299 return (NULL); 4300 4301 r = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 4302 child); 4303 if (r == NULL) 4304 return (NULL); 4305 rman_set_rid(r, *rid); 4306 rman_set_type(r, type); 4307 4308 if (flags & RF_ACTIVE) { 4309 if (bus_activate_resource(child, type, *rid, r) != 0) { 4310 rman_release_resource(r); 4311 return (NULL); 4312 } 4313 } 4314 4315 return (r); 4316 } 4317 4318 /** 4319 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4320 * 4321 * This implementation of BUS_ADJUST_RESOURCE() adjusts resources only 4322 * if they were allocated from the resource manager returned by 4323 * BUS_GET_RMAN(). 4324 */ 4325 int 4326 bus_generic_rman_adjust_resource(device_t dev, device_t child, 4327 struct resource *r, rman_res_t start, rman_res_t end) 4328 { 4329 struct rman *rm; 4330 4331 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r)); 4332 if (rm == NULL) 4333 return (ENXIO); 4334 if (!rman_is_region_manager(r, rm)) 4335 return (EINVAL); 4336 return (rman_adjust_resource(r, start, end)); 4337 } 4338 4339 /** 4340 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4341 * 4342 * This implementation of BUS_RELEASE_RESOURCE() releases resources 4343 * allocated by bus_generic_rman_alloc_resource. 4344 */ 4345 int 4346 bus_generic_rman_release_resource(device_t dev, device_t child, 4347 struct resource *r) 4348 { 4349 #ifdef INVARIANTS 4350 struct rman *rm; 4351 #endif 4352 int error; 4353 4354 #ifdef INVARIANTS 4355 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r)); 4356 KASSERT(rman_is_region_manager(r, rm), 4357 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4358 #endif 4359 4360 if (rman_get_flags(r) & RF_ACTIVE) { 4361 error = bus_deactivate_resource(child, r); 4362 if (error != 0) 4363 return (error); 4364 } 4365 return (rman_release_resource(r)); 4366 } 4367 4368 /** 4369 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4370 * 4371 * This implementation of BUS_ACTIVATE_RESOURCE() activates resources 4372 * allocated by bus_generic_rman_alloc_resource. 4373 */ 4374 int 4375 bus_generic_rman_activate_resource(device_t dev, device_t child, 4376 struct resource *r) 4377 { 4378 struct resource_map map; 4379 #ifdef INVARIANTS 4380 struct rman *rm; 4381 #endif 4382 int error, type; 4383 4384 type = rman_get_type(r); 4385 #ifdef INVARIANTS 4386 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r)); 4387 KASSERT(rman_is_region_manager(r, rm), 4388 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4389 #endif 4390 4391 error = rman_activate_resource(r); 4392 if (error != 0) 4393 return (error); 4394 4395 switch (type) { 4396 case SYS_RES_IOPORT: 4397 case SYS_RES_MEMORY: 4398 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) { 4399 error = BUS_MAP_RESOURCE(dev, child, r, NULL, &map); 4400 if (error != 0) 4401 break; 4402 4403 rman_set_mapping(r, &map); 4404 } 4405 break; 4406 #ifdef INTRNG 4407 case SYS_RES_IRQ: 4408 error = intr_activate_irq(child, r); 4409 break; 4410 #endif 4411 } 4412 if (error != 0) 4413 rman_deactivate_resource(r); 4414 return (error); 4415 } 4416 4417 /** 4418 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4419 * 4420 * This implementation of BUS_DEACTIVATE_RESOURCE() deactivates 4421 * resources allocated by bus_generic_rman_alloc_resource. 4422 */ 4423 int 4424 bus_generic_rman_deactivate_resource(device_t dev, device_t child, 4425 struct resource *r) 4426 { 4427 struct resource_map map; 4428 #ifdef INVARIANTS 4429 struct rman *rm; 4430 #endif 4431 int error, type; 4432 4433 type = rman_get_type(r); 4434 #ifdef INVARIANTS 4435 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r)); 4436 KASSERT(rman_is_region_manager(r, rm), 4437 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4438 #endif 4439 4440 error = rman_deactivate_resource(r); 4441 if (error != 0) 4442 return (error); 4443 4444 switch (type) { 4445 case SYS_RES_IOPORT: 4446 case SYS_RES_MEMORY: 4447 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) { 4448 rman_get_mapping(r, &map); 4449 BUS_UNMAP_RESOURCE(dev, child, r, &map); 4450 } 4451 break; 4452 #ifdef INTRNG 4453 case SYS_RES_IRQ: 4454 intr_deactivate_irq(child, r); 4455 break; 4456 #endif 4457 } 4458 return (0); 4459 } 4460 4461 /** 4462 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4463 * 4464 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4465 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4466 */ 4467 int 4468 bus_generic_child_present(device_t dev, device_t child) 4469 { 4470 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4471 } 4472 4473 /** 4474 * @brief Helper function for implementing BUS_GET_DOMAIN(). 4475 * 4476 * This simple implementation of BUS_GET_DOMAIN() calls the 4477 * BUS_GET_DOMAIN() method of the parent of @p dev. If @p dev 4478 * does not have a parent, the function fails with ENOENT. 4479 */ 4480 int 4481 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4482 { 4483 if (dev->parent) 4484 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4485 4486 return (ENOENT); 4487 } 4488 4489 /** 4490 * @brief Helper function to implement normal BUS_GET_DEVICE_PATH() 4491 * 4492 * This function knows how to (a) pass the request up the tree if there's 4493 * a parent and (b) Knows how to supply a FreeBSD locator. 4494 * 4495 * @param bus bus in the walk up the tree 4496 * @param child leaf node to print information about 4497 * @param locator BUS_LOCATOR_xxx string for locator 4498 * @param sb Buffer to print information into 4499 */ 4500 int 4501 bus_generic_get_device_path(device_t bus, device_t child, const char *locator, 4502 struct sbuf *sb) 4503 { 4504 int rv = 0; 4505 device_t parent; 4506 4507 /* 4508 * We don't recurse on ACPI since either we know the handle for the 4509 * device or we don't. And if we're in the generic routine, we don't 4510 * have a ACPI override. All other locators build up a path by having 4511 * their parents create a path and then adding the path element for this 4512 * node. That's why we recurse with parent, bus rather than the typical 4513 * parent, child: each spot in the tree is independent of what our child 4514 * will do with this path. 4515 */ 4516 parent = device_get_parent(bus); 4517 if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) { 4518 rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb); 4519 } 4520 if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) { 4521 if (rv == 0) { 4522 sbuf_printf(sb, "/%s", device_get_nameunit(child)); 4523 } 4524 return (rv); 4525 } 4526 /* 4527 * Don't know what to do. So assume we do nothing. Not sure that's 4528 * the right thing, but keeps us from having a big list here. 4529 */ 4530 return (0); 4531 } 4532 4533 4534 /** 4535 * @brief Helper function for implementing BUS_RESCAN(). 4536 * 4537 * This null implementation of BUS_RESCAN() always fails to indicate 4538 * the bus does not support rescanning. 4539 */ 4540 int 4541 bus_null_rescan(device_t dev) 4542 { 4543 return (ENODEV); 4544 } 4545 4546 /* 4547 * Some convenience functions to make it easier for drivers to use the 4548 * resource-management functions. All these really do is hide the 4549 * indirection through the parent's method table, making for slightly 4550 * less-wordy code. In the future, it might make sense for this code 4551 * to maintain some sort of a list of resources allocated by each device. 4552 */ 4553 4554 int 4555 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4556 struct resource **res) 4557 { 4558 int i; 4559 4560 for (i = 0; rs[i].type != -1; i++) 4561 res[i] = NULL; 4562 for (i = 0; rs[i].type != -1; i++) { 4563 res[i] = bus_alloc_resource_any(dev, 4564 rs[i].type, &rs[i].rid, rs[i].flags); 4565 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4566 bus_release_resources(dev, rs, res); 4567 return (ENXIO); 4568 } 4569 } 4570 return (0); 4571 } 4572 4573 void 4574 bus_release_resources(device_t dev, const struct resource_spec *rs, 4575 struct resource **res) 4576 { 4577 int i; 4578 4579 for (i = 0; rs[i].type != -1; i++) 4580 if (res[i] != NULL) { 4581 bus_release_resource( 4582 dev, rs[i].type, rs[i].rid, res[i]); 4583 res[i] = NULL; 4584 } 4585 } 4586 4587 /** 4588 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4589 * 4590 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4591 * parent of @p dev. 4592 */ 4593 struct resource * 4594 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4595 rman_res_t end, rman_res_t count, u_int flags) 4596 { 4597 struct resource *res; 4598 4599 if (dev->parent == NULL) 4600 return (NULL); 4601 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4602 count, flags); 4603 return (res); 4604 } 4605 4606 /** 4607 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4608 * 4609 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4610 * parent of @p dev. 4611 */ 4612 int 4613 bus_adjust_resource(device_t dev, struct resource *r, rman_res_t start, 4614 rman_res_t end) 4615 { 4616 if (dev->parent == NULL) 4617 return (EINVAL); 4618 return (BUS_ADJUST_RESOURCE(dev->parent, dev, r, start, end)); 4619 } 4620 4621 int 4622 bus_adjust_resource_old(device_t dev, int type __unused, struct resource *r, 4623 rman_res_t start, rman_res_t end) 4624 { 4625 return (bus_adjust_resource(dev, r, start, end)); 4626 } 4627 4628 /** 4629 * @brief Wrapper function for BUS_TRANSLATE_RESOURCE(). 4630 * 4631 * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the 4632 * parent of @p dev. 4633 */ 4634 int 4635 bus_translate_resource(device_t dev, int type, rman_res_t start, 4636 rman_res_t *newstart) 4637 { 4638 if (dev->parent == NULL) 4639 return (EINVAL); 4640 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart)); 4641 } 4642 4643 /** 4644 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4645 * 4646 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4647 * parent of @p dev. 4648 */ 4649 int 4650 bus_activate_resource(device_t dev, struct resource *r) 4651 { 4652 if (dev->parent == NULL) 4653 return (EINVAL); 4654 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, r)); 4655 } 4656 4657 int 4658 bus_activate_resource_old(device_t dev, int type, int rid, struct resource *r) 4659 { 4660 return (bus_activate_resource(dev, r)); 4661 } 4662 4663 /** 4664 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4665 * 4666 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4667 * parent of @p dev. 4668 */ 4669 int 4670 bus_deactivate_resource(device_t dev, struct resource *r) 4671 { 4672 if (dev->parent == NULL) 4673 return (EINVAL); 4674 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, r)); 4675 } 4676 4677 int 4678 bus_deactivate_resource_old(device_t dev, int type, int rid, struct resource *r) 4679 { 4680 return (bus_deactivate_resource(dev, r)); 4681 } 4682 4683 /** 4684 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4685 * 4686 * This function simply calls the BUS_MAP_RESOURCE() method of the 4687 * parent of @p dev. 4688 */ 4689 int 4690 bus_map_resource(device_t dev, struct resource *r, 4691 struct resource_map_request *args, struct resource_map *map) 4692 { 4693 if (dev->parent == NULL) 4694 return (EINVAL); 4695 return (BUS_MAP_RESOURCE(dev->parent, dev, r, args, map)); 4696 } 4697 4698 int 4699 bus_map_resource_old(device_t dev, int type, struct resource *r, 4700 struct resource_map_request *args, struct resource_map *map) 4701 { 4702 return (bus_map_resource(dev, r, args, map)); 4703 } 4704 4705 /** 4706 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4707 * 4708 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4709 * parent of @p dev. 4710 */ 4711 int 4712 bus_unmap_resource(device_t dev, struct resource *r, struct resource_map *map) 4713 { 4714 if (dev->parent == NULL) 4715 return (EINVAL); 4716 return (BUS_UNMAP_RESOURCE(dev->parent, dev, r, map)); 4717 } 4718 4719 int 4720 bus_unmap_resource_old(device_t dev, int type, struct resource *r, 4721 struct resource_map *map) 4722 { 4723 return (bus_unmap_resource(dev, r, map)); 4724 } 4725 4726 /** 4727 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4728 * 4729 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4730 * parent of @p dev. 4731 */ 4732 int 4733 bus_release_resource(device_t dev, struct resource *r) 4734 { 4735 int rv; 4736 4737 if (dev->parent == NULL) 4738 return (EINVAL); 4739 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, r); 4740 return (rv); 4741 } 4742 4743 int 4744 bus_release_resource_old(device_t dev, int type, int rid, struct resource *r) 4745 { 4746 return (bus_release_resource(dev, r)); 4747 } 4748 4749 /** 4750 * @brief Wrapper function for BUS_SETUP_INTR(). 4751 * 4752 * This function simply calls the BUS_SETUP_INTR() method of the 4753 * parent of @p dev. 4754 */ 4755 int 4756 bus_setup_intr(device_t dev, struct resource *r, int flags, 4757 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4758 { 4759 int error; 4760 4761 if (dev->parent == NULL) 4762 return (EINVAL); 4763 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4764 arg, cookiep); 4765 if (error != 0) 4766 return (error); 4767 if (handler != NULL && !(flags & INTR_MPSAFE)) 4768 device_printf(dev, "[GIANT-LOCKED]\n"); 4769 return (0); 4770 } 4771 4772 /** 4773 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4774 * 4775 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4776 * parent of @p dev. 4777 */ 4778 int 4779 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4780 { 4781 if (dev->parent == NULL) 4782 return (EINVAL); 4783 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4784 } 4785 4786 /** 4787 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4788 * 4789 * This function simply calls the BUS_SUSPEND_INTR() method of the 4790 * parent of @p dev. 4791 */ 4792 int 4793 bus_suspend_intr(device_t dev, struct resource *r) 4794 { 4795 if (dev->parent == NULL) 4796 return (EINVAL); 4797 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4798 } 4799 4800 /** 4801 * @brief Wrapper function for BUS_RESUME_INTR(). 4802 * 4803 * This function simply calls the BUS_RESUME_INTR() method of the 4804 * parent of @p dev. 4805 */ 4806 int 4807 bus_resume_intr(device_t dev, struct resource *r) 4808 { 4809 if (dev->parent == NULL) 4810 return (EINVAL); 4811 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4812 } 4813 4814 /** 4815 * @brief Wrapper function for BUS_BIND_INTR(). 4816 * 4817 * This function simply calls the BUS_BIND_INTR() method of the 4818 * parent of @p dev. 4819 */ 4820 int 4821 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4822 { 4823 if (dev->parent == NULL) 4824 return (EINVAL); 4825 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4826 } 4827 4828 /** 4829 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4830 * 4831 * This function first formats the requested description into a 4832 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4833 * the parent of @p dev. 4834 */ 4835 int 4836 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4837 const char *fmt, ...) 4838 { 4839 va_list ap; 4840 char descr[MAXCOMLEN + 1]; 4841 4842 if (dev->parent == NULL) 4843 return (EINVAL); 4844 va_start(ap, fmt); 4845 vsnprintf(descr, sizeof(descr), fmt, ap); 4846 va_end(ap); 4847 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4848 } 4849 4850 /** 4851 * @brief Wrapper function for BUS_SET_RESOURCE(). 4852 * 4853 * This function simply calls the BUS_SET_RESOURCE() method of the 4854 * parent of @p dev. 4855 */ 4856 int 4857 bus_set_resource(device_t dev, int type, int rid, 4858 rman_res_t start, rman_res_t count) 4859 { 4860 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4861 start, count)); 4862 } 4863 4864 /** 4865 * @brief Wrapper function for BUS_GET_RESOURCE(). 4866 * 4867 * This function simply calls the BUS_GET_RESOURCE() method of the 4868 * parent of @p dev. 4869 */ 4870 int 4871 bus_get_resource(device_t dev, int type, int rid, 4872 rman_res_t *startp, rman_res_t *countp) 4873 { 4874 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4875 startp, countp)); 4876 } 4877 4878 /** 4879 * @brief Wrapper function for BUS_GET_RESOURCE(). 4880 * 4881 * This function simply calls the BUS_GET_RESOURCE() method of the 4882 * parent of @p dev and returns the start value. 4883 */ 4884 rman_res_t 4885 bus_get_resource_start(device_t dev, int type, int rid) 4886 { 4887 rman_res_t start; 4888 rman_res_t count; 4889 int error; 4890 4891 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4892 &start, &count); 4893 if (error) 4894 return (0); 4895 return (start); 4896 } 4897 4898 /** 4899 * @brief Wrapper function for BUS_GET_RESOURCE(). 4900 * 4901 * This function simply calls the BUS_GET_RESOURCE() method of the 4902 * parent of @p dev and returns the count value. 4903 */ 4904 rman_res_t 4905 bus_get_resource_count(device_t dev, int type, int rid) 4906 { 4907 rman_res_t start; 4908 rman_res_t count; 4909 int error; 4910 4911 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4912 &start, &count); 4913 if (error) 4914 return (0); 4915 return (count); 4916 } 4917 4918 /** 4919 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4920 * 4921 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4922 * parent of @p dev. 4923 */ 4924 void 4925 bus_delete_resource(device_t dev, int type, int rid) 4926 { 4927 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4928 } 4929 4930 /** 4931 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4932 * 4933 * This function simply calls the BUS_CHILD_PRESENT() method of the 4934 * parent of @p dev. 4935 */ 4936 int 4937 bus_child_present(device_t child) 4938 { 4939 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4940 } 4941 4942 /** 4943 * @brief Wrapper function for BUS_CHILD_PNPINFO(). 4944 * 4945 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p 4946 * dev. 4947 */ 4948 int 4949 bus_child_pnpinfo(device_t child, struct sbuf *sb) 4950 { 4951 device_t parent; 4952 4953 parent = device_get_parent(child); 4954 if (parent == NULL) 4955 return (0); 4956 return (BUS_CHILD_PNPINFO(parent, child, sb)); 4957 } 4958 4959 /** 4960 * @brief Generic implementation that does nothing for bus_child_pnpinfo 4961 * 4962 * This function has the right signature and returns 0 since the sbuf is passed 4963 * to us to append to. 4964 */ 4965 int 4966 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb) 4967 { 4968 return (0); 4969 } 4970 4971 /** 4972 * @brief Wrapper function for BUS_CHILD_LOCATION(). 4973 * 4974 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of 4975 * @p dev. 4976 */ 4977 int 4978 bus_child_location(device_t child, struct sbuf *sb) 4979 { 4980 device_t parent; 4981 4982 parent = device_get_parent(child); 4983 if (parent == NULL) 4984 return (0); 4985 return (BUS_CHILD_LOCATION(parent, child, sb)); 4986 } 4987 4988 /** 4989 * @brief Generic implementation that does nothing for bus_child_location 4990 * 4991 * This function has the right signature and returns 0 since the sbuf is passed 4992 * to us to append to. 4993 */ 4994 int 4995 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb) 4996 { 4997 return (0); 4998 } 4999 5000 /** 5001 * @brief Wrapper function for BUS_GET_CPUS(). 5002 * 5003 * This function simply calls the BUS_GET_CPUS() method of the 5004 * parent of @p dev. 5005 */ 5006 int 5007 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 5008 { 5009 device_t parent; 5010 5011 parent = device_get_parent(dev); 5012 if (parent == NULL) 5013 return (EINVAL); 5014 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 5015 } 5016 5017 /** 5018 * @brief Wrapper function for BUS_GET_DMA_TAG(). 5019 * 5020 * This function simply calls the BUS_GET_DMA_TAG() method of the 5021 * parent of @p dev. 5022 */ 5023 bus_dma_tag_t 5024 bus_get_dma_tag(device_t dev) 5025 { 5026 device_t parent; 5027 5028 parent = device_get_parent(dev); 5029 if (parent == NULL) 5030 return (NULL); 5031 return (BUS_GET_DMA_TAG(parent, dev)); 5032 } 5033 5034 /** 5035 * @brief Wrapper function for BUS_GET_BUS_TAG(). 5036 * 5037 * This function simply calls the BUS_GET_BUS_TAG() method of the 5038 * parent of @p dev. 5039 */ 5040 bus_space_tag_t 5041 bus_get_bus_tag(device_t dev) 5042 { 5043 device_t parent; 5044 5045 parent = device_get_parent(dev); 5046 if (parent == NULL) 5047 return ((bus_space_tag_t)0); 5048 return (BUS_GET_BUS_TAG(parent, dev)); 5049 } 5050 5051 /** 5052 * @brief Wrapper function for BUS_GET_DOMAIN(). 5053 * 5054 * This function simply calls the BUS_GET_DOMAIN() method of the 5055 * parent of @p dev. 5056 */ 5057 int 5058 bus_get_domain(device_t dev, int *domain) 5059 { 5060 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 5061 } 5062 5063 /* Resume all devices and then notify userland that we're up again. */ 5064 static int 5065 root_resume(device_t dev) 5066 { 5067 int error; 5068 5069 error = bus_generic_resume(dev); 5070 if (error == 0) { 5071 devctl_notify("kernel", "power", "resume", NULL); 5072 } 5073 return (error); 5074 } 5075 5076 static int 5077 root_print_child(device_t dev, device_t child) 5078 { 5079 int retval = 0; 5080 5081 retval += bus_print_child_header(dev, child); 5082 retval += printf("\n"); 5083 5084 return (retval); 5085 } 5086 5087 static int 5088 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 5089 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 5090 { 5091 /* 5092 * If an interrupt mapping gets to here something bad has happened. 5093 */ 5094 panic("root_setup_intr"); 5095 } 5096 5097 /* 5098 * If we get here, assume that the device is permanent and really is 5099 * present in the system. Removable bus drivers are expected to intercept 5100 * this call long before it gets here. We return -1 so that drivers that 5101 * really care can check vs -1 or some ERRNO returned higher in the food 5102 * chain. 5103 */ 5104 static int 5105 root_child_present(device_t dev, device_t child) 5106 { 5107 return (-1); 5108 } 5109 5110 static int 5111 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 5112 cpuset_t *cpuset) 5113 { 5114 switch (op) { 5115 case INTR_CPUS: 5116 /* Default to returning the set of all CPUs. */ 5117 if (setsize != sizeof(cpuset_t)) 5118 return (EINVAL); 5119 *cpuset = all_cpus; 5120 return (0); 5121 default: 5122 return (EINVAL); 5123 } 5124 } 5125 5126 static kobj_method_t root_methods[] = { 5127 /* Device interface */ 5128 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 5129 KOBJMETHOD(device_suspend, bus_generic_suspend), 5130 KOBJMETHOD(device_resume, root_resume), 5131 5132 /* Bus interface */ 5133 KOBJMETHOD(bus_print_child, root_print_child), 5134 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 5135 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 5136 KOBJMETHOD(bus_setup_intr, root_setup_intr), 5137 KOBJMETHOD(bus_child_present, root_child_present), 5138 KOBJMETHOD(bus_get_cpus, root_get_cpus), 5139 5140 KOBJMETHOD_END 5141 }; 5142 5143 static driver_t root_driver = { 5144 "root", 5145 root_methods, 5146 1, /* no softc */ 5147 }; 5148 5149 device_t root_bus; 5150 devclass_t root_devclass; 5151 5152 static int 5153 root_bus_module_handler(module_t mod, int what, void* arg) 5154 { 5155 switch (what) { 5156 case MOD_LOAD: 5157 TAILQ_INIT(&bus_data_devices); 5158 kobj_class_compile((kobj_class_t) &root_driver); 5159 root_bus = make_device(NULL, "root", 0); 5160 root_bus->desc = "System root bus"; 5161 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 5162 root_bus->driver = &root_driver; 5163 root_bus->state = DS_ATTACHED; 5164 root_devclass = devclass_find_internal("root", NULL, FALSE); 5165 devctl2_init(); 5166 return (0); 5167 5168 case MOD_SHUTDOWN: 5169 device_shutdown(root_bus); 5170 return (0); 5171 default: 5172 return (EOPNOTSUPP); 5173 } 5174 5175 return (0); 5176 } 5177 5178 static moduledata_t root_bus_mod = { 5179 "rootbus", 5180 root_bus_module_handler, 5181 NULL 5182 }; 5183 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 5184 5185 /** 5186 * @brief Automatically configure devices 5187 * 5188 * This function begins the autoconfiguration process by calling 5189 * device_probe_and_attach() for each child of the @c root0 device. 5190 */ 5191 void 5192 root_bus_configure(void) 5193 { 5194 PDEBUG((".")); 5195 5196 /* Eventually this will be split up, but this is sufficient for now. */ 5197 bus_set_pass(BUS_PASS_DEFAULT); 5198 } 5199 5200 /** 5201 * @brief Module handler for registering device drivers 5202 * 5203 * This module handler is used to automatically register device 5204 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 5205 * devclass_add_driver() for the driver described by the 5206 * driver_module_data structure pointed to by @p arg 5207 */ 5208 int 5209 driver_module_handler(module_t mod, int what, void *arg) 5210 { 5211 struct driver_module_data *dmd; 5212 devclass_t bus_devclass; 5213 kobj_class_t driver; 5214 int error, pass; 5215 5216 dmd = (struct driver_module_data *)arg; 5217 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 5218 error = 0; 5219 5220 switch (what) { 5221 case MOD_LOAD: 5222 if (dmd->dmd_chainevh) 5223 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5224 5225 pass = dmd->dmd_pass; 5226 driver = dmd->dmd_driver; 5227 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 5228 DRIVERNAME(driver), dmd->dmd_busname, pass)); 5229 error = devclass_add_driver(bus_devclass, driver, pass, 5230 dmd->dmd_devclass); 5231 break; 5232 5233 case MOD_UNLOAD: 5234 PDEBUG(("Unloading module: driver %s from bus %s", 5235 DRIVERNAME(dmd->dmd_driver), 5236 dmd->dmd_busname)); 5237 error = devclass_delete_driver(bus_devclass, 5238 dmd->dmd_driver); 5239 5240 if (!error && dmd->dmd_chainevh) 5241 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5242 break; 5243 case MOD_QUIESCE: 5244 PDEBUG(("Quiesce module: driver %s from bus %s", 5245 DRIVERNAME(dmd->dmd_driver), 5246 dmd->dmd_busname)); 5247 error = devclass_quiesce_driver(bus_devclass, 5248 dmd->dmd_driver); 5249 5250 if (!error && dmd->dmd_chainevh) 5251 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5252 break; 5253 default: 5254 error = EOPNOTSUPP; 5255 break; 5256 } 5257 5258 return (error); 5259 } 5260 5261 /** 5262 * @brief Enumerate all hinted devices for this bus. 5263 * 5264 * Walks through the hints for this bus and calls the bus_hinted_child 5265 * routine for each one it fines. It searches first for the specific 5266 * bus that's being probed for hinted children (eg isa0), and then for 5267 * generic children (eg isa). 5268 * 5269 * @param dev bus device to enumerate 5270 */ 5271 void 5272 bus_enumerate_hinted_children(device_t bus) 5273 { 5274 int i; 5275 const char *dname, *busname; 5276 int dunit; 5277 5278 /* 5279 * enumerate all devices on the specific bus 5280 */ 5281 busname = device_get_nameunit(bus); 5282 i = 0; 5283 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5284 BUS_HINTED_CHILD(bus, dname, dunit); 5285 5286 /* 5287 * and all the generic ones. 5288 */ 5289 busname = device_get_name(bus); 5290 i = 0; 5291 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5292 BUS_HINTED_CHILD(bus, dname, dunit); 5293 } 5294 5295 #ifdef BUS_DEBUG 5296 5297 /* the _short versions avoid iteration by not calling anything that prints 5298 * more than oneliners. I love oneliners. 5299 */ 5300 5301 static void 5302 print_device_short(device_t dev, int indent) 5303 { 5304 if (!dev) 5305 return; 5306 5307 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5308 dev->unit, dev->desc, 5309 (dev->parent? "":"no "), 5310 (TAILQ_EMPTY(&dev->children)? "no ":""), 5311 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5312 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5313 (dev->flags&DF_WILDCARD? "wildcard,":""), 5314 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5315 (dev->flags&DF_SUSPENDED? "suspended,":""), 5316 (dev->ivars? "":"no "), 5317 (dev->softc? "":"no "), 5318 dev->busy)); 5319 } 5320 5321 static void 5322 print_device(device_t dev, int indent) 5323 { 5324 if (!dev) 5325 return; 5326 5327 print_device_short(dev, indent); 5328 5329 indentprintf(("Parent:\n")); 5330 print_device_short(dev->parent, indent+1); 5331 indentprintf(("Driver:\n")); 5332 print_driver_short(dev->driver, indent+1); 5333 indentprintf(("Devclass:\n")); 5334 print_devclass_short(dev->devclass, indent+1); 5335 } 5336 5337 void 5338 print_device_tree_short(device_t dev, int indent) 5339 /* print the device and all its children (indented) */ 5340 { 5341 device_t child; 5342 5343 if (!dev) 5344 return; 5345 5346 print_device_short(dev, indent); 5347 5348 TAILQ_FOREACH(child, &dev->children, link) { 5349 print_device_tree_short(child, indent+1); 5350 } 5351 } 5352 5353 void 5354 print_device_tree(device_t dev, int indent) 5355 /* print the device and all its children (indented) */ 5356 { 5357 device_t child; 5358 5359 if (!dev) 5360 return; 5361 5362 print_device(dev, indent); 5363 5364 TAILQ_FOREACH(child, &dev->children, link) { 5365 print_device_tree(child, indent+1); 5366 } 5367 } 5368 5369 static void 5370 print_driver_short(driver_t *driver, int indent) 5371 { 5372 if (!driver) 5373 return; 5374 5375 indentprintf(("driver %s: softc size = %zd\n", 5376 driver->name, driver->size)); 5377 } 5378 5379 static void 5380 print_driver(driver_t *driver, int indent) 5381 { 5382 if (!driver) 5383 return; 5384 5385 print_driver_short(driver, indent); 5386 } 5387 5388 static void 5389 print_driver_list(driver_list_t drivers, int indent) 5390 { 5391 driverlink_t driver; 5392 5393 TAILQ_FOREACH(driver, &drivers, link) { 5394 print_driver(driver->driver, indent); 5395 } 5396 } 5397 5398 static void 5399 print_devclass_short(devclass_t dc, int indent) 5400 { 5401 if ( !dc ) 5402 return; 5403 5404 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5405 } 5406 5407 static void 5408 print_devclass(devclass_t dc, int indent) 5409 { 5410 int i; 5411 5412 if ( !dc ) 5413 return; 5414 5415 print_devclass_short(dc, indent); 5416 indentprintf(("Drivers:\n")); 5417 print_driver_list(dc->drivers, indent+1); 5418 5419 indentprintf(("Devices:\n")); 5420 for (i = 0; i < dc->maxunit; i++) 5421 if (dc->devices[i]) 5422 print_device(dc->devices[i], indent+1); 5423 } 5424 5425 void 5426 print_devclass_list_short(void) 5427 { 5428 devclass_t dc; 5429 5430 printf("Short listing of devclasses, drivers & devices:\n"); 5431 TAILQ_FOREACH(dc, &devclasses, link) { 5432 print_devclass_short(dc, 0); 5433 } 5434 } 5435 5436 void 5437 print_devclass_list(void) 5438 { 5439 devclass_t dc; 5440 5441 printf("Full listing of devclasses, drivers & devices:\n"); 5442 TAILQ_FOREACH(dc, &devclasses, link) { 5443 print_devclass(dc, 0); 5444 } 5445 } 5446 5447 #endif 5448 5449 /* 5450 * User-space access to the device tree. 5451 * 5452 * We implement a small set of nodes: 5453 * 5454 * hw.bus Single integer read method to obtain the 5455 * current generation count. 5456 * hw.bus.devices Reads the entire device tree in flat space. 5457 * hw.bus.rman Resource manager interface 5458 * 5459 * We might like to add the ability to scan devclasses and/or drivers to 5460 * determine what else is currently loaded/available. 5461 */ 5462 5463 static int 5464 sysctl_bus_info(SYSCTL_HANDLER_ARGS) 5465 { 5466 struct u_businfo ubus; 5467 5468 ubus.ub_version = BUS_USER_VERSION; 5469 ubus.ub_generation = bus_data_generation; 5470 5471 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5472 } 5473 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | 5474 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", 5475 "bus-related data"); 5476 5477 static int 5478 sysctl_devices(SYSCTL_HANDLER_ARGS) 5479 { 5480 struct sbuf sb; 5481 int *name = (int *)arg1; 5482 u_int namelen = arg2; 5483 int index; 5484 device_t dev; 5485 struct u_device *udev; 5486 int error; 5487 5488 if (namelen != 2) 5489 return (EINVAL); 5490 5491 if (bus_data_generation_check(name[0])) 5492 return (EINVAL); 5493 5494 index = name[1]; 5495 5496 /* 5497 * Scan the list of devices, looking for the requested index. 5498 */ 5499 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5500 if (index-- == 0) 5501 break; 5502 } 5503 if (dev == NULL) 5504 return (ENOENT); 5505 5506 /* 5507 * Populate the return item, careful not to overflow the buffer. 5508 */ 5509 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5510 udev->dv_handle = (uintptr_t)dev; 5511 udev->dv_parent = (uintptr_t)dev->parent; 5512 udev->dv_devflags = dev->devflags; 5513 udev->dv_flags = dev->flags; 5514 udev->dv_state = dev->state; 5515 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN); 5516 if (dev->nameunit != NULL) 5517 sbuf_cat(&sb, dev->nameunit); 5518 sbuf_putc(&sb, '\0'); 5519 if (dev->desc != NULL) 5520 sbuf_cat(&sb, dev->desc); 5521 sbuf_putc(&sb, '\0'); 5522 if (dev->driver != NULL) 5523 sbuf_cat(&sb, dev->driver->name); 5524 sbuf_putc(&sb, '\0'); 5525 bus_child_pnpinfo(dev, &sb); 5526 sbuf_putc(&sb, '\0'); 5527 bus_child_location(dev, &sb); 5528 sbuf_putc(&sb, '\0'); 5529 error = sbuf_finish(&sb); 5530 if (error == 0) 5531 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5532 sbuf_delete(&sb); 5533 free(udev, M_BUS); 5534 return (error); 5535 } 5536 5537 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, 5538 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, 5539 "system device tree"); 5540 5541 int 5542 bus_data_generation_check(int generation) 5543 { 5544 if (generation != bus_data_generation) 5545 return (1); 5546 5547 /* XXX generate optimised lists here? */ 5548 return (0); 5549 } 5550 5551 void 5552 bus_data_generation_update(void) 5553 { 5554 atomic_add_int(&bus_data_generation, 1); 5555 } 5556 5557 int 5558 bus_free_resource(device_t dev, int type, struct resource *r) 5559 { 5560 if (r == NULL) 5561 return (0); 5562 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5563 } 5564 5565 device_t 5566 device_lookup_by_name(const char *name) 5567 { 5568 device_t dev; 5569 5570 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5571 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5572 return (dev); 5573 } 5574 return (NULL); 5575 } 5576 5577 /* 5578 * /dev/devctl2 implementation. The existing /dev/devctl device has 5579 * implicit semantics on open, so it could not be reused for this. 5580 * Another option would be to call this /dev/bus? 5581 */ 5582 static int 5583 find_device(struct devreq *req, device_t *devp) 5584 { 5585 device_t dev; 5586 5587 /* 5588 * First, ensure that the name is nul terminated. 5589 */ 5590 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5591 return (EINVAL); 5592 5593 /* 5594 * Second, try to find an attached device whose name matches 5595 * 'name'. 5596 */ 5597 dev = device_lookup_by_name(req->dr_name); 5598 if (dev != NULL) { 5599 *devp = dev; 5600 return (0); 5601 } 5602 5603 /* Finally, give device enumerators a chance. */ 5604 dev = NULL; 5605 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5606 if (dev == NULL) 5607 return (ENOENT); 5608 *devp = dev; 5609 return (0); 5610 } 5611 5612 static bool 5613 driver_exists(device_t bus, const char *driver) 5614 { 5615 devclass_t dc; 5616 5617 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5618 if (devclass_find_driver_internal(dc, driver) != NULL) 5619 return (true); 5620 } 5621 return (false); 5622 } 5623 5624 static void 5625 device_gen_nomatch(device_t dev) 5626 { 5627 device_t child; 5628 5629 if (dev->flags & DF_NEEDNOMATCH && 5630 dev->state == DS_NOTPRESENT) { 5631 device_handle_nomatch(dev); 5632 } 5633 dev->flags &= ~DF_NEEDNOMATCH; 5634 TAILQ_FOREACH(child, &dev->children, link) { 5635 device_gen_nomatch(child); 5636 } 5637 } 5638 5639 static void 5640 device_do_deferred_actions(void) 5641 { 5642 devclass_t dc; 5643 driverlink_t dl; 5644 5645 /* 5646 * Walk through the devclasses to find all the drivers we've tagged as 5647 * deferred during the freeze and call the driver added routines. They 5648 * have already been added to the lists in the background, so the driver 5649 * added routines that trigger a probe will have all the right bidders 5650 * for the probe auction. 5651 */ 5652 TAILQ_FOREACH(dc, &devclasses, link) { 5653 TAILQ_FOREACH(dl, &dc->drivers, link) { 5654 if (dl->flags & DL_DEFERRED_PROBE) { 5655 devclass_driver_added(dc, dl->driver); 5656 dl->flags &= ~DL_DEFERRED_PROBE; 5657 } 5658 } 5659 } 5660 5661 /* 5662 * We also defer no-match events during a freeze. Walk the tree and 5663 * generate all the pent-up events that are still relevant. 5664 */ 5665 device_gen_nomatch(root_bus); 5666 bus_data_generation_update(); 5667 } 5668 5669 static int 5670 device_get_path(device_t dev, const char *locator, struct sbuf *sb) 5671 { 5672 device_t parent; 5673 int error; 5674 5675 KASSERT(sb != NULL, ("sb is NULL")); 5676 parent = device_get_parent(dev); 5677 if (parent == NULL) { 5678 error = sbuf_putc(sb, '/'); 5679 } else { 5680 error = BUS_GET_DEVICE_PATH(parent, dev, locator, sb); 5681 if (error == 0) { 5682 error = sbuf_error(sb); 5683 if (error == 0 && sbuf_len(sb) <= 1) 5684 error = EIO; 5685 } 5686 } 5687 sbuf_finish(sb); 5688 return (error); 5689 } 5690 5691 static int 5692 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5693 struct thread *td) 5694 { 5695 struct devreq *req; 5696 device_t dev; 5697 int error, old; 5698 5699 /* Locate the device to control. */ 5700 bus_topo_lock(); 5701 req = (struct devreq *)data; 5702 switch (cmd) { 5703 case DEV_ATTACH: 5704 case DEV_DETACH: 5705 case DEV_ENABLE: 5706 case DEV_DISABLE: 5707 case DEV_SUSPEND: 5708 case DEV_RESUME: 5709 case DEV_SET_DRIVER: 5710 case DEV_CLEAR_DRIVER: 5711 case DEV_RESCAN: 5712 case DEV_DELETE: 5713 case DEV_RESET: 5714 error = priv_check(td, PRIV_DRIVER); 5715 if (error == 0) 5716 error = find_device(req, &dev); 5717 break; 5718 case DEV_FREEZE: 5719 case DEV_THAW: 5720 error = priv_check(td, PRIV_DRIVER); 5721 break; 5722 case DEV_GET_PATH: 5723 error = find_device(req, &dev); 5724 break; 5725 default: 5726 error = ENOTTY; 5727 break; 5728 } 5729 if (error) { 5730 bus_topo_unlock(); 5731 return (error); 5732 } 5733 5734 /* Perform the requested operation. */ 5735 switch (cmd) { 5736 case DEV_ATTACH: 5737 if (device_is_attached(dev)) 5738 error = EBUSY; 5739 else if (!device_is_enabled(dev)) 5740 error = ENXIO; 5741 else 5742 error = device_probe_and_attach(dev); 5743 break; 5744 case DEV_DETACH: 5745 if (!device_is_attached(dev)) { 5746 error = ENXIO; 5747 break; 5748 } 5749 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5750 error = device_quiesce(dev); 5751 if (error) 5752 break; 5753 } 5754 error = device_detach(dev); 5755 break; 5756 case DEV_ENABLE: 5757 if (device_is_enabled(dev)) { 5758 error = EBUSY; 5759 break; 5760 } 5761 5762 /* 5763 * If the device has been probed but not attached (e.g. 5764 * when it has been disabled by a loader hint), just 5765 * attach the device rather than doing a full probe. 5766 */ 5767 device_enable(dev); 5768 if (dev->devclass != NULL) { 5769 /* 5770 * If the device was disabled via a hint, clear 5771 * the hint. 5772 */ 5773 if (resource_disabled(dev->devclass->name, dev->unit)) 5774 resource_unset_value(dev->devclass->name, 5775 dev->unit, "disabled"); 5776 5777 /* Allow any drivers to rebid. */ 5778 if (!(dev->flags & DF_FIXEDCLASS)) 5779 devclass_delete_device(dev->devclass, dev); 5780 } 5781 error = device_probe_and_attach(dev); 5782 break; 5783 case DEV_DISABLE: 5784 if (!device_is_enabled(dev)) { 5785 error = ENXIO; 5786 break; 5787 } 5788 5789 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5790 error = device_quiesce(dev); 5791 if (error) 5792 break; 5793 } 5794 5795 /* 5796 * Force DF_FIXEDCLASS on around detach to preserve 5797 * the existing name. 5798 */ 5799 old = dev->flags; 5800 dev->flags |= DF_FIXEDCLASS; 5801 error = device_detach(dev); 5802 if (!(old & DF_FIXEDCLASS)) 5803 dev->flags &= ~DF_FIXEDCLASS; 5804 if (error == 0) 5805 device_disable(dev); 5806 break; 5807 case DEV_SUSPEND: 5808 if (device_is_suspended(dev)) { 5809 error = EBUSY; 5810 break; 5811 } 5812 if (device_get_parent(dev) == NULL) { 5813 error = EINVAL; 5814 break; 5815 } 5816 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5817 break; 5818 case DEV_RESUME: 5819 if (!device_is_suspended(dev)) { 5820 error = EINVAL; 5821 break; 5822 } 5823 if (device_get_parent(dev) == NULL) { 5824 error = EINVAL; 5825 break; 5826 } 5827 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5828 break; 5829 case DEV_SET_DRIVER: { 5830 devclass_t dc; 5831 char driver[128]; 5832 5833 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5834 if (error) 5835 break; 5836 if (driver[0] == '\0') { 5837 error = EINVAL; 5838 break; 5839 } 5840 if (dev->devclass != NULL && 5841 strcmp(driver, dev->devclass->name) == 0) 5842 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5843 break; 5844 5845 /* 5846 * Scan drivers for this device's bus looking for at 5847 * least one matching driver. 5848 */ 5849 if (dev->parent == NULL) { 5850 error = EINVAL; 5851 break; 5852 } 5853 if (!driver_exists(dev->parent, driver)) { 5854 error = ENOENT; 5855 break; 5856 } 5857 dc = devclass_create(driver); 5858 if (dc == NULL) { 5859 error = ENOMEM; 5860 break; 5861 } 5862 5863 /* Detach device if necessary. */ 5864 if (device_is_attached(dev)) { 5865 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5866 error = device_detach(dev); 5867 else 5868 error = EBUSY; 5869 if (error) 5870 break; 5871 } 5872 5873 /* Clear any previously-fixed device class and unit. */ 5874 if (dev->flags & DF_FIXEDCLASS) 5875 devclass_delete_device(dev->devclass, dev); 5876 dev->flags |= DF_WILDCARD; 5877 dev->unit = DEVICE_UNIT_ANY; 5878 5879 /* Force the new device class. */ 5880 error = devclass_add_device(dc, dev); 5881 if (error) 5882 break; 5883 dev->flags |= DF_FIXEDCLASS; 5884 error = device_probe_and_attach(dev); 5885 break; 5886 } 5887 case DEV_CLEAR_DRIVER: 5888 if (!(dev->flags & DF_FIXEDCLASS)) { 5889 error = 0; 5890 break; 5891 } 5892 if (device_is_attached(dev)) { 5893 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5894 error = device_detach(dev); 5895 else 5896 error = EBUSY; 5897 if (error) 5898 break; 5899 } 5900 5901 dev->flags &= ~DF_FIXEDCLASS; 5902 dev->flags |= DF_WILDCARD; 5903 devclass_delete_device(dev->devclass, dev); 5904 error = device_probe_and_attach(dev); 5905 break; 5906 case DEV_RESCAN: 5907 if (!device_is_attached(dev)) { 5908 error = ENXIO; 5909 break; 5910 } 5911 error = BUS_RESCAN(dev); 5912 break; 5913 case DEV_DELETE: { 5914 device_t parent; 5915 5916 parent = device_get_parent(dev); 5917 if (parent == NULL) { 5918 error = EINVAL; 5919 break; 5920 } 5921 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5922 if (bus_child_present(dev) != 0) { 5923 error = EBUSY; 5924 break; 5925 } 5926 } 5927 5928 error = device_delete_child(parent, dev); 5929 break; 5930 } 5931 case DEV_FREEZE: 5932 if (device_frozen) 5933 error = EBUSY; 5934 else 5935 device_frozen = true; 5936 break; 5937 case DEV_THAW: 5938 if (!device_frozen) 5939 error = EBUSY; 5940 else { 5941 device_do_deferred_actions(); 5942 device_frozen = false; 5943 } 5944 break; 5945 case DEV_RESET: 5946 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 5947 error = EINVAL; 5948 break; 5949 } 5950 if (device_get_parent(dev) == NULL) { 5951 error = EINVAL; 5952 break; 5953 } 5954 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 5955 req->dr_flags); 5956 break; 5957 case DEV_GET_PATH: { 5958 struct sbuf *sb; 5959 char locator[64]; 5960 ssize_t len; 5961 5962 error = copyinstr(req->dr_buffer.buffer, locator, 5963 sizeof(locator), NULL); 5964 if (error != 0) 5965 break; 5966 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | 5967 SBUF_INCLUDENUL /* | SBUF_WAITOK */); 5968 error = device_get_path(dev, locator, sb); 5969 if (error == 0) { 5970 len = sbuf_len(sb); 5971 if (req->dr_buffer.length < len) { 5972 error = ENAMETOOLONG; 5973 } else { 5974 error = copyout(sbuf_data(sb), 5975 req->dr_buffer.buffer, len); 5976 } 5977 req->dr_buffer.length = len; 5978 } 5979 sbuf_delete(sb); 5980 break; 5981 } 5982 } 5983 bus_topo_unlock(); 5984 return (error); 5985 } 5986 5987 static struct cdevsw devctl2_cdevsw = { 5988 .d_version = D_VERSION, 5989 .d_ioctl = devctl2_ioctl, 5990 .d_name = "devctl2", 5991 }; 5992 5993 static void 5994 devctl2_init(void) 5995 { 5996 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5997 UID_ROOT, GID_WHEEL, 0644, "devctl2"); 5998 } 5999 6000 /* 6001 * For maintaining device 'at' location info to avoid recomputing it 6002 */ 6003 struct device_location_node { 6004 const char *dln_locator; 6005 const char *dln_path; 6006 TAILQ_ENTRY(device_location_node) dln_link; 6007 }; 6008 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t; 6009 6010 struct device_location_cache { 6011 device_location_list_t dlc_list; 6012 }; 6013 6014 6015 /* 6016 * Location cache for wired devices. 6017 */ 6018 device_location_cache_t * 6019 dev_wired_cache_init(void) 6020 { 6021 device_location_cache_t *dcp; 6022 6023 dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO); 6024 TAILQ_INIT(&dcp->dlc_list); 6025 6026 return (dcp); 6027 } 6028 6029 void 6030 dev_wired_cache_fini(device_location_cache_t *dcp) 6031 { 6032 struct device_location_node *dln, *tdln; 6033 6034 TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) { 6035 free(dln, M_BUS); 6036 } 6037 free(dcp, M_BUS); 6038 } 6039 6040 static struct device_location_node * 6041 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator) 6042 { 6043 struct device_location_node *dln; 6044 6045 TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) { 6046 if (strcmp(locator, dln->dln_locator) == 0) 6047 return (dln); 6048 } 6049 6050 return (NULL); 6051 } 6052 6053 static struct device_location_node * 6054 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path) 6055 { 6056 struct device_location_node *dln; 6057 size_t loclen, pathlen; 6058 6059 loclen = strlen(locator) + 1; 6060 pathlen = strlen(path) + 1; 6061 dln = malloc(sizeof(*dln) + loclen + pathlen, M_BUS, M_WAITOK | M_ZERO); 6062 dln->dln_locator = (char *)(dln + 1); 6063 memcpy(__DECONST(char *, dln->dln_locator), locator, loclen); 6064 dln->dln_path = dln->dln_locator + loclen; 6065 memcpy(__DECONST(char *, dln->dln_path), path, pathlen); 6066 TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link); 6067 6068 return (dln); 6069 } 6070 6071 bool 6072 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev, 6073 const char *at) 6074 { 6075 struct sbuf *sb; 6076 const char *cp; 6077 char locator[32]; 6078 int error, len; 6079 struct device_location_node *res; 6080 6081 cp = strchr(at, ':'); 6082 if (cp == NULL) 6083 return (false); 6084 len = cp - at; 6085 if (len > sizeof(locator) - 1) /* Skip too long locator */ 6086 return (false); 6087 memcpy(locator, at, len); 6088 locator[len] = '\0'; 6089 cp++; 6090 6091 error = 0; 6092 /* maybe cache this inside device_t and look that up, but not yet */ 6093 res = dev_wired_cache_lookup(dcp, locator); 6094 if (res == NULL) { 6095 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | 6096 SBUF_INCLUDENUL | SBUF_NOWAIT); 6097 if (sb != NULL) { 6098 error = device_get_path(dev, locator, sb); 6099 if (error == 0) { 6100 res = dev_wired_cache_add(dcp, locator, 6101 sbuf_data(sb)); 6102 } 6103 sbuf_delete(sb); 6104 } 6105 } 6106 if (error != 0 || res == NULL || res->dln_path == NULL) 6107 return (false); 6108 6109 return (strcmp(res->dln_path, cp) == 0); 6110 } 6111 6112 static struct device_prop_elm * 6113 device_prop_find(device_t dev, const char *name) 6114 { 6115 struct device_prop_elm *e; 6116 6117 bus_topo_assert(); 6118 6119 LIST_FOREACH(e, &dev->props, link) { 6120 if (strcmp(name, e->name) == 0) 6121 return (e); 6122 } 6123 return (NULL); 6124 } 6125 6126 int 6127 device_set_prop(device_t dev, const char *name, void *val, 6128 device_prop_dtr_t dtr, void *dtr_ctx) 6129 { 6130 struct device_prop_elm *e, *e1; 6131 6132 bus_topo_assert(); 6133 6134 e = device_prop_find(dev, name); 6135 if (e != NULL) 6136 goto found; 6137 6138 e1 = malloc(sizeof(*e), M_BUS, M_WAITOK); 6139 e = device_prop_find(dev, name); 6140 if (e != NULL) { 6141 free(e1, M_BUS); 6142 goto found; 6143 } 6144 6145 e1->name = name; 6146 e1->val = val; 6147 e1->dtr = dtr; 6148 e1->dtr_ctx = dtr_ctx; 6149 LIST_INSERT_HEAD(&dev->props, e1, link); 6150 return (0); 6151 6152 found: 6153 LIST_REMOVE(e, link); 6154 if (e->dtr != NULL) 6155 e->dtr(dev, name, e->val, e->dtr_ctx); 6156 e->val = val; 6157 e->dtr = dtr; 6158 e->dtr_ctx = dtr_ctx; 6159 LIST_INSERT_HEAD(&dev->props, e, link); 6160 return (EEXIST); 6161 } 6162 6163 int 6164 device_get_prop(device_t dev, const char *name, void **valp) 6165 { 6166 struct device_prop_elm *e; 6167 6168 bus_topo_assert(); 6169 6170 e = device_prop_find(dev, name); 6171 if (e == NULL) 6172 return (ENOENT); 6173 *valp = e->val; 6174 return (0); 6175 } 6176 6177 int 6178 device_clear_prop(device_t dev, const char *name) 6179 { 6180 struct device_prop_elm *e; 6181 6182 bus_topo_assert(); 6183 6184 e = device_prop_find(dev, name); 6185 if (e == NULL) 6186 return (ENOENT); 6187 LIST_REMOVE(e, link); 6188 if (e->dtr != NULL) 6189 e->dtr(dev, e->name, e->val, e->dtr_ctx); 6190 free(e, M_BUS); 6191 return (0); 6192 } 6193 6194 static void 6195 device_destroy_props(device_t dev) 6196 { 6197 struct device_prop_elm *e; 6198 6199 bus_topo_assert(); 6200 6201 while ((e = LIST_FIRST(&dev->props)) != NULL) { 6202 LIST_REMOVE_HEAD(&dev->props, link); 6203 if (e->dtr != NULL) 6204 e->dtr(dev, e->name, e->val, e->dtr_ctx); 6205 free(e, M_BUS); 6206 } 6207 } 6208 6209 void 6210 device_clear_prop_alldev(const char *name) 6211 { 6212 device_t dev; 6213 6214 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 6215 device_clear_prop(dev, name); 6216 } 6217 } 6218 6219 /* 6220 * APIs to manage deprecation and obsolescence. 6221 */ 6222 static int obsolete_panic = 0; 6223 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 6224 "Panic when obsolete features are used (0 = never, 1 = if obsolete, " 6225 "2 = if deprecated)"); 6226 6227 static void 6228 gone_panic(int major, int running, const char *msg) 6229 { 6230 switch (obsolete_panic) 6231 { 6232 case 0: 6233 return; 6234 case 1: 6235 if (running < major) 6236 return; 6237 /* FALLTHROUGH */ 6238 default: 6239 panic("%s", msg); 6240 } 6241 } 6242 6243 void 6244 _gone_in(int major, const char *msg) 6245 { 6246 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 6247 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 6248 printf("Obsolete code will be removed soon: %s\n", msg); 6249 else 6250 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 6251 major, msg); 6252 } 6253 6254 void 6255 _gone_in_dev(device_t dev, int major, const char *msg) 6256 { 6257 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 6258 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 6259 device_printf(dev, 6260 "Obsolete code will be removed soon: %s\n", msg); 6261 else 6262 device_printf(dev, 6263 "Deprecated code (to be removed in FreeBSD %d): %s\n", 6264 major, msg); 6265 } 6266 6267 #ifdef DDB 6268 DB_SHOW_COMMAND(device, db_show_device) 6269 { 6270 device_t dev; 6271 6272 if (!have_addr) 6273 return; 6274 6275 dev = (device_t)addr; 6276 6277 db_printf("name: %s\n", device_get_nameunit(dev)); 6278 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 6279 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 6280 db_printf(" addr: %p\n", dev); 6281 db_printf(" parent: %p\n", dev->parent); 6282 db_printf(" softc: %p\n", dev->softc); 6283 db_printf(" ivars: %p\n", dev->ivars); 6284 } 6285 6286 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 6287 { 6288 device_t dev; 6289 6290 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 6291 db_show_device((db_expr_t)dev, true, count, modif); 6292 } 6293 } 6294 #endif 6295