1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/conf.h> 34 #include <sys/filio.h> 35 #include <sys/lock.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/mutex.h> 41 #include <sys/poll.h> 42 #include <sys/proc.h> 43 #include <sys/condvar.h> 44 #include <sys/queue.h> 45 #include <machine/bus.h> 46 #include <sys/rman.h> 47 #include <sys/selinfo.h> 48 #include <sys/signalvar.h> 49 #include <sys/sysctl.h> 50 #include <sys/systm.h> 51 #include <sys/uio.h> 52 #include <sys/bus.h> 53 #include <sys/interrupt.h> 54 55 #include <machine/stdarg.h> 56 57 #include <vm/uma.h> 58 59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 61 62 /* 63 * Used to attach drivers to devclasses. 64 */ 65 typedef struct driverlink *driverlink_t; 66 struct driverlink { 67 kobj_class_t driver; 68 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 69 }; 70 71 /* 72 * Forward declarations 73 */ 74 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 75 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 76 typedef TAILQ_HEAD(device_list, device) device_list_t; 77 78 struct devclass { 79 TAILQ_ENTRY(devclass) link; 80 devclass_t parent; /* parent in devclass hierarchy */ 81 driver_list_t drivers; /* bus devclasses store drivers for bus */ 82 char *name; 83 device_t *devices; /* array of devices indexed by unit */ 84 int maxunit; /* size of devices array */ 85 86 struct sysctl_ctx_list sysctl_ctx; 87 struct sysctl_oid *sysctl_tree; 88 }; 89 90 /** 91 * @brief Implementation of device. 92 */ 93 struct device { 94 /* 95 * A device is a kernel object. The first field must be the 96 * current ops table for the object. 97 */ 98 KOBJ_FIELDS; 99 100 /* 101 * Device hierarchy. 102 */ 103 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 104 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 105 device_t parent; /**< parent of this device */ 106 device_list_t children; /**< list of child devices */ 107 108 /* 109 * Details of this device. 110 */ 111 driver_t *driver; /**< current driver */ 112 devclass_t devclass; /**< current device class */ 113 int unit; /**< current unit number */ 114 char* nameunit; /**< name+unit e.g. foodev0 */ 115 char* desc; /**< driver specific description */ 116 int busy; /**< count of calls to device_busy() */ 117 device_state_t state; /**< current device state */ 118 u_int32_t devflags; /**< api level flags for device_get_flags() */ 119 u_short flags; /**< internal device flags */ 120 #define DF_ENABLED 1 /* device should be probed/attached */ 121 #define DF_FIXEDCLASS 2 /* devclass specified at create time */ 122 #define DF_WILDCARD 4 /* unit was originally wildcard */ 123 #define DF_DESCMALLOCED 8 /* description was malloced */ 124 #define DF_QUIET 16 /* don't print verbose attach message */ 125 #define DF_DONENOMATCH 32 /* don't execute DEVICE_NOMATCH again */ 126 #define DF_EXTERNALSOFTC 64 /* softc not allocated by us */ 127 #define DF_REBID 128 /* Can rebid after attach */ 128 u_char order; /**< order from device_add_child_ordered() */ 129 u_char pad; 130 void *ivars; /**< instance variables */ 131 void *softc; /**< current driver's variables */ 132 133 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 134 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 135 }; 136 137 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 138 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 139 140 #ifdef BUS_DEBUG 141 142 static int bus_debug = 1; 143 TUNABLE_INT("bus.debug", &bus_debug); 144 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0, 145 "Debug bus code"); 146 147 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 148 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 149 #define DRIVERNAME(d) ((d)? d->name : "no driver") 150 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 151 152 /** 153 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 154 * prevent syslog from deleting initial spaces 155 */ 156 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 157 158 static void print_device_short(device_t dev, int indent); 159 static void print_device(device_t dev, int indent); 160 void print_device_tree_short(device_t dev, int indent); 161 void print_device_tree(device_t dev, int indent); 162 static void print_driver_short(driver_t *driver, int indent); 163 static void print_driver(driver_t *driver, int indent); 164 static void print_driver_list(driver_list_t drivers, int indent); 165 static void print_devclass_short(devclass_t dc, int indent); 166 static void print_devclass(devclass_t dc, int indent); 167 void print_devclass_list_short(void); 168 void print_devclass_list(void); 169 170 #else 171 /* Make the compiler ignore the function calls */ 172 #define PDEBUG(a) /* nop */ 173 #define DEVICENAME(d) /* nop */ 174 #define DRIVERNAME(d) /* nop */ 175 #define DEVCLANAME(d) /* nop */ 176 177 #define print_device_short(d,i) /* nop */ 178 #define print_device(d,i) /* nop */ 179 #define print_device_tree_short(d,i) /* nop */ 180 #define print_device_tree(d,i) /* nop */ 181 #define print_driver_short(d,i) /* nop */ 182 #define print_driver(d,i) /* nop */ 183 #define print_driver_list(d,i) /* nop */ 184 #define print_devclass_short(d,i) /* nop */ 185 #define print_devclass(d,i) /* nop */ 186 #define print_devclass_list_short() /* nop */ 187 #define print_devclass_list() /* nop */ 188 #endif 189 190 /* 191 * dev sysctl tree 192 */ 193 194 enum { 195 DEVCLASS_SYSCTL_PARENT, 196 }; 197 198 static int 199 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 200 { 201 devclass_t dc = (devclass_t)arg1; 202 const char *value; 203 204 switch (arg2) { 205 case DEVCLASS_SYSCTL_PARENT: 206 value = dc->parent ? dc->parent->name : ""; 207 break; 208 default: 209 return (EINVAL); 210 } 211 return (SYSCTL_OUT(req, value, strlen(value))); 212 } 213 214 static void 215 devclass_sysctl_init(devclass_t dc) 216 { 217 218 if (dc->sysctl_tree != NULL) 219 return; 220 sysctl_ctx_init(&dc->sysctl_ctx); 221 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 222 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 223 CTLFLAG_RD, 0, ""); 224 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 225 OID_AUTO, "%parent", CTLFLAG_RD, 226 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 227 "parent class"); 228 } 229 230 enum { 231 DEVICE_SYSCTL_DESC, 232 DEVICE_SYSCTL_DRIVER, 233 DEVICE_SYSCTL_LOCATION, 234 DEVICE_SYSCTL_PNPINFO, 235 DEVICE_SYSCTL_PARENT, 236 }; 237 238 static int 239 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 240 { 241 device_t dev = (device_t)arg1; 242 const char *value; 243 char *buf; 244 int error; 245 246 buf = NULL; 247 switch (arg2) { 248 case DEVICE_SYSCTL_DESC: 249 value = dev->desc ? dev->desc : ""; 250 break; 251 case DEVICE_SYSCTL_DRIVER: 252 value = dev->driver ? dev->driver->name : ""; 253 break; 254 case DEVICE_SYSCTL_LOCATION: 255 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 256 bus_child_location_str(dev, buf, 1024); 257 break; 258 case DEVICE_SYSCTL_PNPINFO: 259 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 260 bus_child_pnpinfo_str(dev, buf, 1024); 261 break; 262 case DEVICE_SYSCTL_PARENT: 263 value = dev->parent ? dev->parent->nameunit : ""; 264 break; 265 default: 266 return (EINVAL); 267 } 268 error = SYSCTL_OUT(req, value, strlen(value)); 269 if (buf != NULL) 270 free(buf, M_BUS); 271 return (error); 272 } 273 274 static void 275 device_sysctl_init(device_t dev) 276 { 277 devclass_t dc = dev->devclass; 278 279 if (dev->sysctl_tree != NULL) 280 return; 281 devclass_sysctl_init(dc); 282 sysctl_ctx_init(&dev->sysctl_ctx); 283 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 284 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 285 dev->nameunit + strlen(dc->name), 286 CTLFLAG_RD, 0, ""); 287 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 288 OID_AUTO, "%desc", CTLFLAG_RD, 289 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 290 "device description"); 291 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 292 OID_AUTO, "%driver", CTLFLAG_RD, 293 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 294 "device driver name"); 295 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 296 OID_AUTO, "%location", CTLFLAG_RD, 297 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 298 "device location relative to parent"); 299 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 300 OID_AUTO, "%pnpinfo", CTLFLAG_RD, 301 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 302 "device identification"); 303 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 304 OID_AUTO, "%parent", CTLFLAG_RD, 305 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 306 "parent device"); 307 } 308 309 static void 310 device_sysctl_update(device_t dev) 311 { 312 devclass_t dc = dev->devclass; 313 314 if (dev->sysctl_tree == NULL) 315 return; 316 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 317 } 318 319 static void 320 device_sysctl_fini(device_t dev) 321 { 322 if (dev->sysctl_tree == NULL) 323 return; 324 sysctl_ctx_free(&dev->sysctl_ctx); 325 dev->sysctl_tree = NULL; 326 } 327 328 /* 329 * /dev/devctl implementation 330 */ 331 332 /* 333 * This design allows only one reader for /dev/devctl. This is not desirable 334 * in the long run, but will get a lot of hair out of this implementation. 335 * Maybe we should make this device a clonable device. 336 * 337 * Also note: we specifically do not attach a device to the device_t tree 338 * to avoid potential chicken and egg problems. One could argue that all 339 * of this belongs to the root node. One could also further argue that the 340 * sysctl interface that we have not might more properly be an ioctl 341 * interface, but at this stage of the game, I'm not inclined to rock that 342 * boat. 343 * 344 * I'm also not sure that the SIGIO support is done correctly or not, as 345 * I copied it from a driver that had SIGIO support that likely hasn't been 346 * tested since 3.4 or 2.2.8! 347 */ 348 349 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 350 static int devctl_disable = 0; 351 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable); 352 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 353 sysctl_devctl_disable, "I", "devctl disable"); 354 355 static d_open_t devopen; 356 static d_close_t devclose; 357 static d_read_t devread; 358 static d_ioctl_t devioctl; 359 static d_poll_t devpoll; 360 361 static struct cdevsw dev_cdevsw = { 362 .d_version = D_VERSION, 363 .d_flags = D_NEEDGIANT, 364 .d_open = devopen, 365 .d_close = devclose, 366 .d_read = devread, 367 .d_ioctl = devioctl, 368 .d_poll = devpoll, 369 .d_name = "devctl", 370 }; 371 372 struct dev_event_info 373 { 374 char *dei_data; 375 TAILQ_ENTRY(dev_event_info) dei_link; 376 }; 377 378 TAILQ_HEAD(devq, dev_event_info); 379 380 static struct dev_softc 381 { 382 int inuse; 383 int nonblock; 384 struct mtx mtx; 385 struct cv cv; 386 struct selinfo sel; 387 struct devq devq; 388 struct proc *async_proc; 389 } devsoftc; 390 391 static struct cdev *devctl_dev; 392 393 static void 394 devinit(void) 395 { 396 devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, 397 "devctl"); 398 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 399 cv_init(&devsoftc.cv, "dev cv"); 400 TAILQ_INIT(&devsoftc.devq); 401 } 402 403 static int 404 devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td) 405 { 406 if (devsoftc.inuse) 407 return (EBUSY); 408 /* move to init */ 409 devsoftc.inuse = 1; 410 devsoftc.nonblock = 0; 411 devsoftc.async_proc = NULL; 412 return (0); 413 } 414 415 static int 416 devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td) 417 { 418 devsoftc.inuse = 0; 419 mtx_lock(&devsoftc.mtx); 420 cv_broadcast(&devsoftc.cv); 421 mtx_unlock(&devsoftc.mtx); 422 423 return (0); 424 } 425 426 /* 427 * The read channel for this device is used to report changes to 428 * userland in realtime. We are required to free the data as well as 429 * the n1 object because we allocate them separately. Also note that 430 * we return one record at a time. If you try to read this device a 431 * character at a time, you will lose the rest of the data. Listening 432 * programs are expected to cope. 433 */ 434 static int 435 devread(struct cdev *dev, struct uio *uio, int ioflag) 436 { 437 struct dev_event_info *n1; 438 int rv; 439 440 mtx_lock(&devsoftc.mtx); 441 while (TAILQ_EMPTY(&devsoftc.devq)) { 442 if (devsoftc.nonblock) { 443 mtx_unlock(&devsoftc.mtx); 444 return (EAGAIN); 445 } 446 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 447 if (rv) { 448 /* 449 * Need to translate ERESTART to EINTR here? -- jake 450 */ 451 mtx_unlock(&devsoftc.mtx); 452 return (rv); 453 } 454 } 455 n1 = TAILQ_FIRST(&devsoftc.devq); 456 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 457 mtx_unlock(&devsoftc.mtx); 458 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 459 free(n1->dei_data, M_BUS); 460 free(n1, M_BUS); 461 return (rv); 462 } 463 464 static int 465 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td) 466 { 467 switch (cmd) { 468 469 case FIONBIO: 470 if (*(int*)data) 471 devsoftc.nonblock = 1; 472 else 473 devsoftc.nonblock = 0; 474 return (0); 475 case FIOASYNC: 476 if (*(int*)data) 477 devsoftc.async_proc = td->td_proc; 478 else 479 devsoftc.async_proc = NULL; 480 return (0); 481 482 /* (un)Support for other fcntl() calls. */ 483 case FIOCLEX: 484 case FIONCLEX: 485 case FIONREAD: 486 case FIOSETOWN: 487 case FIOGETOWN: 488 default: 489 break; 490 } 491 return (ENOTTY); 492 } 493 494 static int 495 devpoll(struct cdev *dev, int events, d_thread_t *td) 496 { 497 int revents = 0; 498 499 mtx_lock(&devsoftc.mtx); 500 if (events & (POLLIN | POLLRDNORM)) { 501 if (!TAILQ_EMPTY(&devsoftc.devq)) 502 revents = events & (POLLIN | POLLRDNORM); 503 else 504 selrecord(td, &devsoftc.sel); 505 } 506 mtx_unlock(&devsoftc.mtx); 507 508 return (revents); 509 } 510 511 /** 512 * @brief Return whether the userland process is running 513 */ 514 boolean_t 515 devctl_process_running(void) 516 { 517 return (devsoftc.inuse == 1); 518 } 519 520 /** 521 * @brief Queue data to be read from the devctl device 522 * 523 * Generic interface to queue data to the devctl device. It is 524 * assumed that @p data is properly formatted. It is further assumed 525 * that @p data is allocated using the M_BUS malloc type. 526 */ 527 void 528 devctl_queue_data(char *data) 529 { 530 struct dev_event_info *n1 = NULL; 531 struct proc *p; 532 533 n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT); 534 if (n1 == NULL) 535 return; 536 n1->dei_data = data; 537 mtx_lock(&devsoftc.mtx); 538 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 539 cv_broadcast(&devsoftc.cv); 540 mtx_unlock(&devsoftc.mtx); 541 selwakeup(&devsoftc.sel); 542 p = devsoftc.async_proc; 543 if (p != NULL) { 544 PROC_LOCK(p); 545 psignal(p, SIGIO); 546 PROC_UNLOCK(p); 547 } 548 } 549 550 /** 551 * @brief Send a 'notification' to userland, using standard ways 552 */ 553 void 554 devctl_notify(const char *system, const char *subsystem, const char *type, 555 const char *data) 556 { 557 int len = 0; 558 char *msg; 559 560 if (system == NULL) 561 return; /* BOGUS! Must specify system. */ 562 if (subsystem == NULL) 563 return; /* BOGUS! Must specify subsystem. */ 564 if (type == NULL) 565 return; /* BOGUS! Must specify type. */ 566 len += strlen(" system=") + strlen(system); 567 len += strlen(" subsystem=") + strlen(subsystem); 568 len += strlen(" type=") + strlen(type); 569 /* add in the data message plus newline. */ 570 if (data != NULL) 571 len += strlen(data); 572 len += 3; /* '!', '\n', and NUL */ 573 msg = malloc(len, M_BUS, M_NOWAIT); 574 if (msg == NULL) 575 return; /* Drop it on the floor */ 576 if (data != NULL) 577 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 578 system, subsystem, type, data); 579 else 580 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 581 system, subsystem, type); 582 devctl_queue_data(msg); 583 } 584 585 /* 586 * Common routine that tries to make sending messages as easy as possible. 587 * We allocate memory for the data, copy strings into that, but do not 588 * free it unless there's an error. The dequeue part of the driver should 589 * free the data. We don't send data when the device is disabled. We do 590 * send data, even when we have no listeners, because we wish to avoid 591 * races relating to startup and restart of listening applications. 592 * 593 * devaddq is designed to string together the type of event, with the 594 * object of that event, plus the plug and play info and location info 595 * for that event. This is likely most useful for devices, but less 596 * useful for other consumers of this interface. Those should use 597 * the devctl_queue_data() interface instead. 598 */ 599 static void 600 devaddq(const char *type, const char *what, device_t dev) 601 { 602 char *data = NULL; 603 char *loc = NULL; 604 char *pnp = NULL; 605 const char *parstr; 606 607 if (devctl_disable) 608 return; 609 data = malloc(1024, M_BUS, M_NOWAIT); 610 if (data == NULL) 611 goto bad; 612 613 /* get the bus specific location of this device */ 614 loc = malloc(1024, M_BUS, M_NOWAIT); 615 if (loc == NULL) 616 goto bad; 617 *loc = '\0'; 618 bus_child_location_str(dev, loc, 1024); 619 620 /* Get the bus specific pnp info of this device */ 621 pnp = malloc(1024, M_BUS, M_NOWAIT); 622 if (pnp == NULL) 623 goto bad; 624 *pnp = '\0'; 625 bus_child_pnpinfo_str(dev, pnp, 1024); 626 627 /* Get the parent of this device, or / if high enough in the tree. */ 628 if (device_get_parent(dev) == NULL) 629 parstr = "."; /* Or '/' ? */ 630 else 631 parstr = device_get_nameunit(device_get_parent(dev)); 632 /* String it all together. */ 633 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 634 parstr); 635 free(loc, M_BUS); 636 free(pnp, M_BUS); 637 devctl_queue_data(data); 638 return; 639 bad: 640 free(pnp, M_BUS); 641 free(loc, M_BUS); 642 free(data, M_BUS); 643 return; 644 } 645 646 /* 647 * A device was added to the tree. We are called just after it successfully 648 * attaches (that is, probe and attach success for this device). No call 649 * is made if a device is merely parented into the tree. See devnomatch 650 * if probe fails. If attach fails, no notification is sent (but maybe 651 * we should have a different message for this). 652 */ 653 static void 654 devadded(device_t dev) 655 { 656 char *pnp = NULL; 657 char *tmp = NULL; 658 659 pnp = malloc(1024, M_BUS, M_NOWAIT); 660 if (pnp == NULL) 661 goto fail; 662 tmp = malloc(1024, M_BUS, M_NOWAIT); 663 if (tmp == NULL) 664 goto fail; 665 *pnp = '\0'; 666 bus_child_pnpinfo_str(dev, pnp, 1024); 667 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 668 devaddq("+", tmp, dev); 669 fail: 670 if (pnp != NULL) 671 free(pnp, M_BUS); 672 if (tmp != NULL) 673 free(tmp, M_BUS); 674 return; 675 } 676 677 /* 678 * A device was removed from the tree. We are called just before this 679 * happens. 680 */ 681 static void 682 devremoved(device_t dev) 683 { 684 char *pnp = NULL; 685 char *tmp = NULL; 686 687 pnp = malloc(1024, M_BUS, M_NOWAIT); 688 if (pnp == NULL) 689 goto fail; 690 tmp = malloc(1024, M_BUS, M_NOWAIT); 691 if (tmp == NULL) 692 goto fail; 693 *pnp = '\0'; 694 bus_child_pnpinfo_str(dev, pnp, 1024); 695 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 696 devaddq("-", tmp, dev); 697 fail: 698 if (pnp != NULL) 699 free(pnp, M_BUS); 700 if (tmp != NULL) 701 free(tmp, M_BUS); 702 return; 703 } 704 705 /* 706 * Called when there's no match for this device. This is only called 707 * the first time that no match happens, so we don't keep getitng this 708 * message. Should that prove to be undesirable, we can change it. 709 * This is called when all drivers that can attach to a given bus 710 * decline to accept this device. Other errrors may not be detected. 711 */ 712 static void 713 devnomatch(device_t dev) 714 { 715 devaddq("?", "", dev); 716 } 717 718 static int 719 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 720 { 721 struct dev_event_info *n1; 722 int dis, error; 723 724 dis = devctl_disable; 725 error = sysctl_handle_int(oidp, &dis, 0, req); 726 if (error || !req->newptr) 727 return (error); 728 mtx_lock(&devsoftc.mtx); 729 devctl_disable = dis; 730 if (dis) { 731 while (!TAILQ_EMPTY(&devsoftc.devq)) { 732 n1 = TAILQ_FIRST(&devsoftc.devq); 733 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 734 free(n1->dei_data, M_BUS); 735 free(n1, M_BUS); 736 } 737 } 738 mtx_unlock(&devsoftc.mtx); 739 return (0); 740 } 741 742 /* End of /dev/devctl code */ 743 744 TAILQ_HEAD(,device) bus_data_devices; 745 static int bus_data_generation = 1; 746 747 kobj_method_t null_methods[] = { 748 { 0, 0 } 749 }; 750 751 DEFINE_CLASS(null, null_methods, 0); 752 753 /* 754 * Devclass implementation 755 */ 756 757 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 758 759 760 /** 761 * @internal 762 * @brief Find or create a device class 763 * 764 * If a device class with the name @p classname exists, return it, 765 * otherwise if @p create is non-zero create and return a new device 766 * class. 767 * 768 * If @p parentname is non-NULL, the parent of the devclass is set to 769 * the devclass of that name. 770 * 771 * @param classname the devclass name to find or create 772 * @param parentname the parent devclass name or @c NULL 773 * @param create non-zero to create a devclass 774 */ 775 static devclass_t 776 devclass_find_internal(const char *classname, const char *parentname, 777 int create) 778 { 779 devclass_t dc; 780 781 PDEBUG(("looking for %s", classname)); 782 if (!classname) 783 return (NULL); 784 785 TAILQ_FOREACH(dc, &devclasses, link) { 786 if (!strcmp(dc->name, classname)) 787 break; 788 } 789 790 if (create && !dc) { 791 PDEBUG(("creating %s", classname)); 792 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 793 M_BUS, M_NOWAIT|M_ZERO); 794 if (!dc) 795 return (NULL); 796 dc->parent = NULL; 797 dc->name = (char*) (dc + 1); 798 strcpy(dc->name, classname); 799 TAILQ_INIT(&dc->drivers); 800 TAILQ_INSERT_TAIL(&devclasses, dc, link); 801 802 bus_data_generation_update(); 803 } 804 805 /* 806 * If a parent class is specified, then set that as our parent so 807 * that this devclass will support drivers for the parent class as 808 * well. If the parent class has the same name don't do this though 809 * as it creates a cycle that can trigger an infinite loop in 810 * device_probe_child() if a device exists for which there is no 811 * suitable driver. 812 */ 813 if (parentname && dc && !dc->parent && 814 strcmp(classname, parentname) != 0) { 815 dc->parent = devclass_find_internal(parentname, NULL, FALSE); 816 } 817 818 return (dc); 819 } 820 821 /** 822 * @brief Create a device class 823 * 824 * If a device class with the name @p classname exists, return it, 825 * otherwise create and return a new device class. 826 * 827 * @param classname the devclass name to find or create 828 */ 829 devclass_t 830 devclass_create(const char *classname) 831 { 832 return (devclass_find_internal(classname, NULL, TRUE)); 833 } 834 835 /** 836 * @brief Find a device class 837 * 838 * If a device class with the name @p classname exists, return it, 839 * otherwise return @c NULL. 840 * 841 * @param classname the devclass name to find 842 */ 843 devclass_t 844 devclass_find(const char *classname) 845 { 846 return (devclass_find_internal(classname, NULL, FALSE)); 847 } 848 849 /** 850 * @brief Add a device driver to a device class 851 * 852 * Add a device driver to a devclass. This is normally called 853 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 854 * all devices in the devclass will be called to allow them to attempt 855 * to re-probe any unmatched children. 856 * 857 * @param dc the devclass to edit 858 * @param driver the driver to register 859 */ 860 int 861 devclass_add_driver(devclass_t dc, driver_t *driver) 862 { 863 driverlink_t dl; 864 int i; 865 866 PDEBUG(("%s", DRIVERNAME(driver))); 867 868 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 869 if (!dl) 870 return (ENOMEM); 871 872 /* 873 * Compile the driver's methods. Also increase the reference count 874 * so that the class doesn't get freed when the last instance 875 * goes. This means we can safely use static methods and avoids a 876 * double-free in devclass_delete_driver. 877 */ 878 kobj_class_compile((kobj_class_t) driver); 879 880 /* 881 * Make sure the devclass which the driver is implementing exists. 882 */ 883 devclass_find_internal(driver->name, NULL, TRUE); 884 885 dl->driver = driver; 886 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 887 driver->refs++; /* XXX: kobj_mtx */ 888 889 /* 890 * Call BUS_DRIVER_ADDED for any existing busses in this class. 891 */ 892 for (i = 0; i < dc->maxunit; i++) 893 if (dc->devices[i]) 894 BUS_DRIVER_ADDED(dc->devices[i], driver); 895 896 bus_data_generation_update(); 897 return (0); 898 } 899 900 /** 901 * @brief Delete a device driver from a device class 902 * 903 * Delete a device driver from a devclass. This is normally called 904 * automatically by DRIVER_MODULE(). 905 * 906 * If the driver is currently attached to any devices, 907 * devclass_delete_driver() will first attempt to detach from each 908 * device. If one of the detach calls fails, the driver will not be 909 * deleted. 910 * 911 * @param dc the devclass to edit 912 * @param driver the driver to unregister 913 */ 914 int 915 devclass_delete_driver(devclass_t busclass, driver_t *driver) 916 { 917 devclass_t dc = devclass_find(driver->name); 918 driverlink_t dl; 919 device_t dev; 920 int i; 921 int error; 922 923 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 924 925 if (!dc) 926 return (0); 927 928 /* 929 * Find the link structure in the bus' list of drivers. 930 */ 931 TAILQ_FOREACH(dl, &busclass->drivers, link) { 932 if (dl->driver == driver) 933 break; 934 } 935 936 if (!dl) { 937 PDEBUG(("%s not found in %s list", driver->name, 938 busclass->name)); 939 return (ENOENT); 940 } 941 942 /* 943 * Disassociate from any devices. We iterate through all the 944 * devices in the devclass of the driver and detach any which are 945 * using the driver and which have a parent in the devclass which 946 * we are deleting from. 947 * 948 * Note that since a driver can be in multiple devclasses, we 949 * should not detach devices which are not children of devices in 950 * the affected devclass. 951 */ 952 for (i = 0; i < dc->maxunit; i++) { 953 if (dc->devices[i]) { 954 dev = dc->devices[i]; 955 if (dev->driver == driver && dev->parent && 956 dev->parent->devclass == busclass) { 957 if ((error = device_detach(dev)) != 0) 958 return (error); 959 device_set_driver(dev, NULL); 960 } 961 } 962 } 963 964 TAILQ_REMOVE(&busclass->drivers, dl, link); 965 free(dl, M_BUS); 966 967 /* XXX: kobj_mtx */ 968 driver->refs--; 969 if (driver->refs == 0) 970 kobj_class_free((kobj_class_t) driver); 971 972 bus_data_generation_update(); 973 return (0); 974 } 975 976 /** 977 * @brief Quiesces a set of device drivers from a device class 978 * 979 * Quiesce a device driver from a devclass. This is normally called 980 * automatically by DRIVER_MODULE(). 981 * 982 * If the driver is currently attached to any devices, 983 * devclass_quiesece_driver() will first attempt to quiesce each 984 * device. 985 * 986 * @param dc the devclass to edit 987 * @param driver the driver to unregister 988 */ 989 int 990 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 991 { 992 devclass_t dc = devclass_find(driver->name); 993 driverlink_t dl; 994 device_t dev; 995 int i; 996 int error; 997 998 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 999 1000 if (!dc) 1001 return (0); 1002 1003 /* 1004 * Find the link structure in the bus' list of drivers. 1005 */ 1006 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1007 if (dl->driver == driver) 1008 break; 1009 } 1010 1011 if (!dl) { 1012 PDEBUG(("%s not found in %s list", driver->name, 1013 busclass->name)); 1014 return (ENOENT); 1015 } 1016 1017 /* 1018 * Quiesce all devices. We iterate through all the devices in 1019 * the devclass of the driver and quiesce any which are using 1020 * the driver and which have a parent in the devclass which we 1021 * are quiescing. 1022 * 1023 * Note that since a driver can be in multiple devclasses, we 1024 * should not quiesce devices which are not children of 1025 * devices in the affected devclass. 1026 */ 1027 for (i = 0; i < dc->maxunit; i++) { 1028 if (dc->devices[i]) { 1029 dev = dc->devices[i]; 1030 if (dev->driver == driver && dev->parent && 1031 dev->parent->devclass == busclass) { 1032 if ((error = device_quiesce(dev)) != 0) 1033 return (error); 1034 } 1035 } 1036 } 1037 1038 return (0); 1039 } 1040 1041 /** 1042 * @internal 1043 */ 1044 static driverlink_t 1045 devclass_find_driver_internal(devclass_t dc, const char *classname) 1046 { 1047 driverlink_t dl; 1048 1049 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1050 1051 TAILQ_FOREACH(dl, &dc->drivers, link) { 1052 if (!strcmp(dl->driver->name, classname)) 1053 return (dl); 1054 } 1055 1056 PDEBUG(("not found")); 1057 return (NULL); 1058 } 1059 1060 /** 1061 * @brief Search a devclass for a driver 1062 * 1063 * This function searches the devclass's list of drivers and returns 1064 * the first driver whose name is @p classname or @c NULL if there is 1065 * no driver of that name. 1066 * 1067 * @param dc the devclass to search 1068 * @param classname the driver name to search for 1069 */ 1070 kobj_class_t 1071 devclass_find_driver(devclass_t dc, const char *classname) 1072 { 1073 driverlink_t dl; 1074 1075 dl = devclass_find_driver_internal(dc, classname); 1076 if (dl) 1077 return (dl->driver); 1078 return (NULL); 1079 } 1080 1081 /** 1082 * @brief Return the name of the devclass 1083 */ 1084 const char * 1085 devclass_get_name(devclass_t dc) 1086 { 1087 return (dc->name); 1088 } 1089 1090 /** 1091 * @brief Find a device given a unit number 1092 * 1093 * @param dc the devclass to search 1094 * @param unit the unit number to search for 1095 * 1096 * @returns the device with the given unit number or @c 1097 * NULL if there is no such device 1098 */ 1099 device_t 1100 devclass_get_device(devclass_t dc, int unit) 1101 { 1102 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1103 return (NULL); 1104 return (dc->devices[unit]); 1105 } 1106 1107 /** 1108 * @brief Find the softc field of a device given a unit number 1109 * 1110 * @param dc the devclass to search 1111 * @param unit the unit number to search for 1112 * 1113 * @returns the softc field of the device with the given 1114 * unit number or @c NULL if there is no such 1115 * device 1116 */ 1117 void * 1118 devclass_get_softc(devclass_t dc, int unit) 1119 { 1120 device_t dev; 1121 1122 dev = devclass_get_device(dc, unit); 1123 if (!dev) 1124 return (NULL); 1125 1126 return (device_get_softc(dev)); 1127 } 1128 1129 /** 1130 * @brief Get a list of devices in the devclass 1131 * 1132 * An array containing a list of all the devices in the given devclass 1133 * is allocated and returned in @p *devlistp. The number of devices 1134 * in the array is returned in @p *devcountp. The caller should free 1135 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1136 * 1137 * @param dc the devclass to examine 1138 * @param devlistp points at location for array pointer return 1139 * value 1140 * @param devcountp points at location for array size return value 1141 * 1142 * @retval 0 success 1143 * @retval ENOMEM the array allocation failed 1144 */ 1145 int 1146 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1147 { 1148 int count, i; 1149 device_t *list; 1150 1151 count = devclass_get_count(dc); 1152 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1153 if (!list) 1154 return (ENOMEM); 1155 1156 count = 0; 1157 for (i = 0; i < dc->maxunit; i++) { 1158 if (dc->devices[i]) { 1159 list[count] = dc->devices[i]; 1160 count++; 1161 } 1162 } 1163 1164 *devlistp = list; 1165 *devcountp = count; 1166 1167 return (0); 1168 } 1169 1170 /** 1171 * @brief Get a list of drivers in the devclass 1172 * 1173 * An array containing a list of pointers to all the drivers in the 1174 * given devclass is allocated and returned in @p *listp. The number 1175 * of drivers in the array is returned in @p *countp. The caller should 1176 * free the array using @c free(p, M_TEMP). 1177 * 1178 * @param dc the devclass to examine 1179 * @param listp gives location for array pointer return value 1180 * @param countp gives location for number of array elements 1181 * return value 1182 * 1183 * @retval 0 success 1184 * @retval ENOMEM the array allocation failed 1185 */ 1186 int 1187 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1188 { 1189 driverlink_t dl; 1190 driver_t **list; 1191 int count; 1192 1193 count = 0; 1194 TAILQ_FOREACH(dl, &dc->drivers, link) 1195 count++; 1196 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1197 if (list == NULL) 1198 return (ENOMEM); 1199 1200 count = 0; 1201 TAILQ_FOREACH(dl, &dc->drivers, link) { 1202 list[count] = dl->driver; 1203 count++; 1204 } 1205 *listp = list; 1206 *countp = count; 1207 1208 return (0); 1209 } 1210 1211 /** 1212 * @brief Get the number of devices in a devclass 1213 * 1214 * @param dc the devclass to examine 1215 */ 1216 int 1217 devclass_get_count(devclass_t dc) 1218 { 1219 int count, i; 1220 1221 count = 0; 1222 for (i = 0; i < dc->maxunit; i++) 1223 if (dc->devices[i]) 1224 count++; 1225 return (count); 1226 } 1227 1228 /** 1229 * @brief Get the maximum unit number used in a devclass 1230 * 1231 * Note that this is one greater than the highest currently-allocated 1232 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1233 * that not even the devclass has been allocated yet. 1234 * 1235 * @param dc the devclass to examine 1236 */ 1237 int 1238 devclass_get_maxunit(devclass_t dc) 1239 { 1240 if (dc == NULL) 1241 return (-1); 1242 return (dc->maxunit); 1243 } 1244 1245 /** 1246 * @brief Find a free unit number in a devclass 1247 * 1248 * This function searches for the first unused unit number greater 1249 * that or equal to @p unit. 1250 * 1251 * @param dc the devclass to examine 1252 * @param unit the first unit number to check 1253 */ 1254 int 1255 devclass_find_free_unit(devclass_t dc, int unit) 1256 { 1257 if (dc == NULL) 1258 return (unit); 1259 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1260 unit++; 1261 return (unit); 1262 } 1263 1264 /** 1265 * @brief Set the parent of a devclass 1266 * 1267 * The parent class is normally initialised automatically by 1268 * DRIVER_MODULE(). 1269 * 1270 * @param dc the devclass to edit 1271 * @param pdc the new parent devclass 1272 */ 1273 void 1274 devclass_set_parent(devclass_t dc, devclass_t pdc) 1275 { 1276 dc->parent = pdc; 1277 } 1278 1279 /** 1280 * @brief Get the parent of a devclass 1281 * 1282 * @param dc the devclass to examine 1283 */ 1284 devclass_t 1285 devclass_get_parent(devclass_t dc) 1286 { 1287 return (dc->parent); 1288 } 1289 1290 struct sysctl_ctx_list * 1291 devclass_get_sysctl_ctx(devclass_t dc) 1292 { 1293 return (&dc->sysctl_ctx); 1294 } 1295 1296 struct sysctl_oid * 1297 devclass_get_sysctl_tree(devclass_t dc) 1298 { 1299 return (dc->sysctl_tree); 1300 } 1301 1302 /** 1303 * @internal 1304 * @brief Allocate a unit number 1305 * 1306 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1307 * will do). The allocated unit number is returned in @p *unitp. 1308 1309 * @param dc the devclass to allocate from 1310 * @param unitp points at the location for the allocated unit 1311 * number 1312 * 1313 * @retval 0 success 1314 * @retval EEXIST the requested unit number is already allocated 1315 * @retval ENOMEM memory allocation failure 1316 */ 1317 static int 1318 devclass_alloc_unit(devclass_t dc, int *unitp) 1319 { 1320 int unit = *unitp; 1321 1322 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1323 1324 /* If we were given a wired unit number, check for existing device */ 1325 /* XXX imp XXX */ 1326 if (unit != -1) { 1327 if (unit >= 0 && unit < dc->maxunit && 1328 dc->devices[unit] != NULL) { 1329 if (bootverbose) 1330 printf("%s: %s%d already exists; skipping it\n", 1331 dc->name, dc->name, *unitp); 1332 return (EEXIST); 1333 } 1334 } else { 1335 /* Unwired device, find the next available slot for it */ 1336 unit = 0; 1337 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1338 unit++; 1339 } 1340 1341 /* 1342 * We've selected a unit beyond the length of the table, so let's 1343 * extend the table to make room for all units up to and including 1344 * this one. 1345 */ 1346 if (unit >= dc->maxunit) { 1347 device_t *newlist; 1348 int newsize; 1349 1350 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1351 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1352 if (!newlist) 1353 return (ENOMEM); 1354 bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit); 1355 bzero(newlist + dc->maxunit, 1356 sizeof(device_t) * (newsize - dc->maxunit)); 1357 if (dc->devices) 1358 free(dc->devices, M_BUS); 1359 dc->devices = newlist; 1360 dc->maxunit = newsize; 1361 } 1362 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1363 1364 *unitp = unit; 1365 return (0); 1366 } 1367 1368 /** 1369 * @internal 1370 * @brief Add a device to a devclass 1371 * 1372 * A unit number is allocated for the device (using the device's 1373 * preferred unit number if any) and the device is registered in the 1374 * devclass. This allows the device to be looked up by its unit 1375 * number, e.g. by decoding a dev_t minor number. 1376 * 1377 * @param dc the devclass to add to 1378 * @param dev the device to add 1379 * 1380 * @retval 0 success 1381 * @retval EEXIST the requested unit number is already allocated 1382 * @retval ENOMEM memory allocation failure 1383 */ 1384 static int 1385 devclass_add_device(devclass_t dc, device_t dev) 1386 { 1387 int buflen, error; 1388 1389 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1390 1391 buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit); 1392 if (buflen < 0) 1393 return (ENOMEM); 1394 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1395 if (!dev->nameunit) 1396 return (ENOMEM); 1397 1398 if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) { 1399 free(dev->nameunit, M_BUS); 1400 dev->nameunit = NULL; 1401 return (error); 1402 } 1403 dc->devices[dev->unit] = dev; 1404 dev->devclass = dc; 1405 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1406 1407 return (0); 1408 } 1409 1410 /** 1411 * @internal 1412 * @brief Delete a device from a devclass 1413 * 1414 * The device is removed from the devclass's device list and its unit 1415 * number is freed. 1416 1417 * @param dc the devclass to delete from 1418 * @param dev the device to delete 1419 * 1420 * @retval 0 success 1421 */ 1422 static int 1423 devclass_delete_device(devclass_t dc, device_t dev) 1424 { 1425 if (!dc || !dev) 1426 return (0); 1427 1428 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1429 1430 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1431 panic("devclass_delete_device: inconsistent device class"); 1432 dc->devices[dev->unit] = NULL; 1433 if (dev->flags & DF_WILDCARD) 1434 dev->unit = -1; 1435 dev->devclass = NULL; 1436 free(dev->nameunit, M_BUS); 1437 dev->nameunit = NULL; 1438 1439 return (0); 1440 } 1441 1442 /** 1443 * @internal 1444 * @brief Make a new device and add it as a child of @p parent 1445 * 1446 * @param parent the parent of the new device 1447 * @param name the devclass name of the new device or @c NULL 1448 * to leave the devclass unspecified 1449 * @parem unit the unit number of the new device of @c -1 to 1450 * leave the unit number unspecified 1451 * 1452 * @returns the new device 1453 */ 1454 static device_t 1455 make_device(device_t parent, const char *name, int unit) 1456 { 1457 device_t dev; 1458 devclass_t dc; 1459 1460 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1461 1462 if (name) { 1463 dc = devclass_find_internal(name, NULL, TRUE); 1464 if (!dc) { 1465 printf("make_device: can't find device class %s\n", 1466 name); 1467 return (NULL); 1468 } 1469 } else { 1470 dc = NULL; 1471 } 1472 1473 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1474 if (!dev) 1475 return (NULL); 1476 1477 dev->parent = parent; 1478 TAILQ_INIT(&dev->children); 1479 kobj_init((kobj_t) dev, &null_class); 1480 dev->driver = NULL; 1481 dev->devclass = NULL; 1482 dev->unit = unit; 1483 dev->nameunit = NULL; 1484 dev->desc = NULL; 1485 dev->busy = 0; 1486 dev->devflags = 0; 1487 dev->flags = DF_ENABLED; 1488 dev->order = 0; 1489 if (unit == -1) 1490 dev->flags |= DF_WILDCARD; 1491 if (name) { 1492 dev->flags |= DF_FIXEDCLASS; 1493 if (devclass_add_device(dc, dev)) { 1494 kobj_delete((kobj_t) dev, M_BUS); 1495 return (NULL); 1496 } 1497 } 1498 dev->ivars = NULL; 1499 dev->softc = NULL; 1500 1501 dev->state = DS_NOTPRESENT; 1502 1503 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1504 bus_data_generation_update(); 1505 1506 return (dev); 1507 } 1508 1509 /** 1510 * @internal 1511 * @brief Print a description of a device. 1512 */ 1513 static int 1514 device_print_child(device_t dev, device_t child) 1515 { 1516 int retval = 0; 1517 1518 if (device_is_alive(child)) 1519 retval += BUS_PRINT_CHILD(dev, child); 1520 else 1521 retval += device_printf(child, " not found\n"); 1522 1523 return (retval); 1524 } 1525 1526 /** 1527 * @brief Create a new device 1528 * 1529 * This creates a new device and adds it as a child of an existing 1530 * parent device. The new device will be added after the last existing 1531 * child with order zero. 1532 * 1533 * @param dev the device which will be the parent of the 1534 * new child device 1535 * @param name devclass name for new device or @c NULL if not 1536 * specified 1537 * @param unit unit number for new device or @c -1 if not 1538 * specified 1539 * 1540 * @returns the new device 1541 */ 1542 device_t 1543 device_add_child(device_t dev, const char *name, int unit) 1544 { 1545 return (device_add_child_ordered(dev, 0, name, unit)); 1546 } 1547 1548 /** 1549 * @brief Create a new device 1550 * 1551 * This creates a new device and adds it as a child of an existing 1552 * parent device. The new device will be added after the last existing 1553 * child with the same order. 1554 * 1555 * @param dev the device which will be the parent of the 1556 * new child device 1557 * @param order a value which is used to partially sort the 1558 * children of @p dev - devices created using 1559 * lower values of @p order appear first in @p 1560 * dev's list of children 1561 * @param name devclass name for new device or @c NULL if not 1562 * specified 1563 * @param unit unit number for new device or @c -1 if not 1564 * specified 1565 * 1566 * @returns the new device 1567 */ 1568 device_t 1569 device_add_child_ordered(device_t dev, int order, const char *name, int unit) 1570 { 1571 device_t child; 1572 device_t place; 1573 1574 PDEBUG(("%s at %s with order %d as unit %d", 1575 name, DEVICENAME(dev), order, unit)); 1576 1577 child = make_device(dev, name, unit); 1578 if (child == NULL) 1579 return (child); 1580 child->order = order; 1581 1582 TAILQ_FOREACH(place, &dev->children, link) { 1583 if (place->order > order) 1584 break; 1585 } 1586 1587 if (place) { 1588 /* 1589 * The device 'place' is the first device whose order is 1590 * greater than the new child. 1591 */ 1592 TAILQ_INSERT_BEFORE(place, child, link); 1593 } else { 1594 /* 1595 * The new child's order is greater or equal to the order of 1596 * any existing device. Add the child to the tail of the list. 1597 */ 1598 TAILQ_INSERT_TAIL(&dev->children, child, link); 1599 } 1600 1601 bus_data_generation_update(); 1602 return (child); 1603 } 1604 1605 /** 1606 * @brief Delete a device 1607 * 1608 * This function deletes a device along with all of its children. If 1609 * the device currently has a driver attached to it, the device is 1610 * detached first using device_detach(). 1611 * 1612 * @param dev the parent device 1613 * @param child the device to delete 1614 * 1615 * @retval 0 success 1616 * @retval non-zero a unit error code describing the error 1617 */ 1618 int 1619 device_delete_child(device_t dev, device_t child) 1620 { 1621 int error; 1622 device_t grandchild; 1623 1624 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1625 1626 /* remove children first */ 1627 while ( (grandchild = TAILQ_FIRST(&child->children)) ) { 1628 error = device_delete_child(child, grandchild); 1629 if (error) 1630 return (error); 1631 } 1632 1633 if ((error = device_detach(child)) != 0) 1634 return (error); 1635 if (child->devclass) 1636 devclass_delete_device(child->devclass, child); 1637 TAILQ_REMOVE(&dev->children, child, link); 1638 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1639 kobj_delete((kobj_t) child, M_BUS); 1640 1641 bus_data_generation_update(); 1642 return (0); 1643 } 1644 1645 /** 1646 * @brief Find a device given a unit number 1647 * 1648 * This is similar to devclass_get_devices() but only searches for 1649 * devices which have @p dev as a parent. 1650 * 1651 * @param dev the parent device to search 1652 * @param unit the unit number to search for. If the unit is -1, 1653 * return the first child of @p dev which has name 1654 * @p classname (that is, the one with the lowest unit.) 1655 * 1656 * @returns the device with the given unit number or @c 1657 * NULL if there is no such device 1658 */ 1659 device_t 1660 device_find_child(device_t dev, const char *classname, int unit) 1661 { 1662 devclass_t dc; 1663 device_t child; 1664 1665 dc = devclass_find(classname); 1666 if (!dc) 1667 return (NULL); 1668 1669 if (unit != -1) { 1670 child = devclass_get_device(dc, unit); 1671 if (child && child->parent == dev) 1672 return (child); 1673 } else { 1674 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1675 child = devclass_get_device(dc, unit); 1676 if (child && child->parent == dev) 1677 return (child); 1678 } 1679 } 1680 return (NULL); 1681 } 1682 1683 /** 1684 * @internal 1685 */ 1686 static driverlink_t 1687 first_matching_driver(devclass_t dc, device_t dev) 1688 { 1689 if (dev->devclass) 1690 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1691 return (TAILQ_FIRST(&dc->drivers)); 1692 } 1693 1694 /** 1695 * @internal 1696 */ 1697 static driverlink_t 1698 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1699 { 1700 if (dev->devclass) { 1701 driverlink_t dl; 1702 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1703 if (!strcmp(dev->devclass->name, dl->driver->name)) 1704 return (dl); 1705 return (NULL); 1706 } 1707 return (TAILQ_NEXT(last, link)); 1708 } 1709 1710 /** 1711 * @internal 1712 */ 1713 int 1714 device_probe_child(device_t dev, device_t child) 1715 { 1716 devclass_t dc; 1717 driverlink_t best = NULL; 1718 driverlink_t dl; 1719 int result, pri = 0; 1720 int hasclass = (child->devclass != 0); 1721 1722 GIANT_REQUIRED; 1723 1724 dc = dev->devclass; 1725 if (!dc) 1726 panic("device_probe_child: parent device has no devclass"); 1727 1728 /* 1729 * If the state is already probed, then return. However, don't 1730 * return if we can rebid this object. 1731 */ 1732 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 1733 return (0); 1734 1735 for (; dc; dc = dc->parent) { 1736 for (dl = first_matching_driver(dc, child); 1737 dl; 1738 dl = next_matching_driver(dc, child, dl)) { 1739 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1740 device_set_driver(child, dl->driver); 1741 if (!hasclass) 1742 device_set_devclass(child, dl->driver->name); 1743 1744 /* Fetch any flags for the device before probing. */ 1745 resource_int_value(dl->driver->name, child->unit, 1746 "flags", &child->devflags); 1747 1748 result = DEVICE_PROBE(child); 1749 1750 /* Reset flags and devclass before the next probe. */ 1751 child->devflags = 0; 1752 if (!hasclass) 1753 device_set_devclass(child, NULL); 1754 1755 /* 1756 * If the driver returns SUCCESS, there can be 1757 * no higher match for this device. 1758 */ 1759 if (result == 0) { 1760 best = dl; 1761 pri = 0; 1762 break; 1763 } 1764 1765 /* 1766 * The driver returned an error so it 1767 * certainly doesn't match. 1768 */ 1769 if (result > 0) { 1770 device_set_driver(child, NULL); 1771 continue; 1772 } 1773 1774 /* 1775 * A priority lower than SUCCESS, remember the 1776 * best matching driver. Initialise the value 1777 * of pri for the first match. 1778 */ 1779 if (best == NULL || result > pri) { 1780 /* 1781 * Probes that return BUS_PROBE_NOWILDCARD 1782 * or lower only match when they are set 1783 * in stone by the parent bus. 1784 */ 1785 if (result <= BUS_PROBE_NOWILDCARD && 1786 child->flags & DF_WILDCARD) 1787 continue; 1788 best = dl; 1789 pri = result; 1790 continue; 1791 } 1792 } 1793 /* 1794 * If we have an unambiguous match in this devclass, 1795 * don't look in the parent. 1796 */ 1797 if (best && pri == 0) 1798 break; 1799 } 1800 1801 /* 1802 * If we found a driver, change state and initialise the devclass. 1803 */ 1804 /* XXX What happens if we rebid and got no best? */ 1805 if (best) { 1806 /* 1807 * If this device was atached, and we were asked to 1808 * rescan, and it is a different driver, then we have 1809 * to detach the old driver and reattach this new one. 1810 * Note, we don't have to check for DF_REBID here 1811 * because if the state is > DS_ALIVE, we know it must 1812 * be. 1813 * 1814 * This assumes that all DF_REBID drivers can have 1815 * their probe routine called at any time and that 1816 * they are idempotent as well as completely benign in 1817 * normal operations. 1818 * 1819 * We also have to make sure that the detach 1820 * succeeded, otherwise we fail the operation (or 1821 * maybe it should just fail silently? I'm torn). 1822 */ 1823 if (child->state > DS_ALIVE && best->driver != child->driver) 1824 if ((result = device_detach(dev)) != 0) 1825 return (result); 1826 1827 /* Set the winning driver, devclass, and flags. */ 1828 if (!child->devclass) 1829 device_set_devclass(child, best->driver->name); 1830 device_set_driver(child, best->driver); 1831 resource_int_value(best->driver->name, child->unit, 1832 "flags", &child->devflags); 1833 1834 if (pri < 0) { 1835 /* 1836 * A bit bogus. Call the probe method again to make 1837 * sure that we have the right description. 1838 */ 1839 DEVICE_PROBE(child); 1840 #if 0 1841 child->flags |= DF_REBID; 1842 #endif 1843 } else 1844 child->flags &= ~DF_REBID; 1845 child->state = DS_ALIVE; 1846 1847 bus_data_generation_update(); 1848 return (0); 1849 } 1850 1851 return (ENXIO); 1852 } 1853 1854 /** 1855 * @brief Return the parent of a device 1856 */ 1857 device_t 1858 device_get_parent(device_t dev) 1859 { 1860 return (dev->parent); 1861 } 1862 1863 /** 1864 * @brief Get a list of children of a device 1865 * 1866 * An array containing a list of all the children of the given device 1867 * is allocated and returned in @p *devlistp. The number of devices 1868 * in the array is returned in @p *devcountp. The caller should free 1869 * the array using @c free(p, M_TEMP). 1870 * 1871 * @param dev the device to examine 1872 * @param devlistp points at location for array pointer return 1873 * value 1874 * @param devcountp points at location for array size return value 1875 * 1876 * @retval 0 success 1877 * @retval ENOMEM the array allocation failed 1878 */ 1879 int 1880 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1881 { 1882 int count; 1883 device_t child; 1884 device_t *list; 1885 1886 count = 0; 1887 TAILQ_FOREACH(child, &dev->children, link) { 1888 count++; 1889 } 1890 1891 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1892 if (!list) 1893 return (ENOMEM); 1894 1895 count = 0; 1896 TAILQ_FOREACH(child, &dev->children, link) { 1897 list[count] = child; 1898 count++; 1899 } 1900 1901 *devlistp = list; 1902 *devcountp = count; 1903 1904 return (0); 1905 } 1906 1907 /** 1908 * @brief Return the current driver for the device or @c NULL if there 1909 * is no driver currently attached 1910 */ 1911 driver_t * 1912 device_get_driver(device_t dev) 1913 { 1914 return (dev->driver); 1915 } 1916 1917 /** 1918 * @brief Return the current devclass for the device or @c NULL if 1919 * there is none. 1920 */ 1921 devclass_t 1922 device_get_devclass(device_t dev) 1923 { 1924 return (dev->devclass); 1925 } 1926 1927 /** 1928 * @brief Return the name of the device's devclass or @c NULL if there 1929 * is none. 1930 */ 1931 const char * 1932 device_get_name(device_t dev) 1933 { 1934 if (dev != NULL && dev->devclass) 1935 return (devclass_get_name(dev->devclass)); 1936 return (NULL); 1937 } 1938 1939 /** 1940 * @brief Return a string containing the device's devclass name 1941 * followed by an ascii representation of the device's unit number 1942 * (e.g. @c "foo2"). 1943 */ 1944 const char * 1945 device_get_nameunit(device_t dev) 1946 { 1947 return (dev->nameunit); 1948 } 1949 1950 /** 1951 * @brief Return the device's unit number. 1952 */ 1953 int 1954 device_get_unit(device_t dev) 1955 { 1956 return (dev->unit); 1957 } 1958 1959 /** 1960 * @brief Return the device's description string 1961 */ 1962 const char * 1963 device_get_desc(device_t dev) 1964 { 1965 return (dev->desc); 1966 } 1967 1968 /** 1969 * @brief Return the device's flags 1970 */ 1971 u_int32_t 1972 device_get_flags(device_t dev) 1973 { 1974 return (dev->devflags); 1975 } 1976 1977 struct sysctl_ctx_list * 1978 device_get_sysctl_ctx(device_t dev) 1979 { 1980 return (&dev->sysctl_ctx); 1981 } 1982 1983 struct sysctl_oid * 1984 device_get_sysctl_tree(device_t dev) 1985 { 1986 return (dev->sysctl_tree); 1987 } 1988 1989 /** 1990 * @brief Print the name of the device followed by a colon and a space 1991 * 1992 * @returns the number of characters printed 1993 */ 1994 int 1995 device_print_prettyname(device_t dev) 1996 { 1997 const char *name = device_get_name(dev); 1998 1999 if (name == 0) 2000 return (printf("unknown: ")); 2001 return (printf("%s%d: ", name, device_get_unit(dev))); 2002 } 2003 2004 /** 2005 * @brief Print the name of the device followed by a colon, a space 2006 * and the result of calling vprintf() with the value of @p fmt and 2007 * the following arguments. 2008 * 2009 * @returns the number of characters printed 2010 */ 2011 int 2012 device_printf(device_t dev, const char * fmt, ...) 2013 { 2014 va_list ap; 2015 int retval; 2016 2017 retval = device_print_prettyname(dev); 2018 va_start(ap, fmt); 2019 retval += vprintf(fmt, ap); 2020 va_end(ap); 2021 return (retval); 2022 } 2023 2024 /** 2025 * @internal 2026 */ 2027 static void 2028 device_set_desc_internal(device_t dev, const char* desc, int copy) 2029 { 2030 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2031 free(dev->desc, M_BUS); 2032 dev->flags &= ~DF_DESCMALLOCED; 2033 dev->desc = NULL; 2034 } 2035 2036 if (copy && desc) { 2037 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2038 if (dev->desc) { 2039 strcpy(dev->desc, desc); 2040 dev->flags |= DF_DESCMALLOCED; 2041 } 2042 } else { 2043 /* Avoid a -Wcast-qual warning */ 2044 dev->desc = (char *)(uintptr_t) desc; 2045 } 2046 2047 bus_data_generation_update(); 2048 } 2049 2050 /** 2051 * @brief Set the device's description 2052 * 2053 * The value of @c desc should be a string constant that will not 2054 * change (at least until the description is changed in a subsequent 2055 * call to device_set_desc() or device_set_desc_copy()). 2056 */ 2057 void 2058 device_set_desc(device_t dev, const char* desc) 2059 { 2060 device_set_desc_internal(dev, desc, FALSE); 2061 } 2062 2063 /** 2064 * @brief Set the device's description 2065 * 2066 * The string pointed to by @c desc is copied. Use this function if 2067 * the device description is generated, (e.g. with sprintf()). 2068 */ 2069 void 2070 device_set_desc_copy(device_t dev, const char* desc) 2071 { 2072 device_set_desc_internal(dev, desc, TRUE); 2073 } 2074 2075 /** 2076 * @brief Set the device's flags 2077 */ 2078 void 2079 device_set_flags(device_t dev, u_int32_t flags) 2080 { 2081 dev->devflags = flags; 2082 } 2083 2084 /** 2085 * @brief Return the device's softc field 2086 * 2087 * The softc is allocated and zeroed when a driver is attached, based 2088 * on the size field of the driver. 2089 */ 2090 void * 2091 device_get_softc(device_t dev) 2092 { 2093 return (dev->softc); 2094 } 2095 2096 /** 2097 * @brief Set the device's softc field 2098 * 2099 * Most drivers do not need to use this since the softc is allocated 2100 * automatically when the driver is attached. 2101 */ 2102 void 2103 device_set_softc(device_t dev, void *softc) 2104 { 2105 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2106 free(dev->softc, M_BUS_SC); 2107 dev->softc = softc; 2108 if (dev->softc) 2109 dev->flags |= DF_EXTERNALSOFTC; 2110 else 2111 dev->flags &= ~DF_EXTERNALSOFTC; 2112 } 2113 2114 /** 2115 * @brief Get the device's ivars field 2116 * 2117 * The ivars field is used by the parent device to store per-device 2118 * state (e.g. the physical location of the device or a list of 2119 * resources). 2120 */ 2121 void * 2122 device_get_ivars(device_t dev) 2123 { 2124 2125 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2126 return (dev->ivars); 2127 } 2128 2129 /** 2130 * @brief Set the device's ivars field 2131 */ 2132 void 2133 device_set_ivars(device_t dev, void * ivars) 2134 { 2135 2136 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2137 dev->ivars = ivars; 2138 } 2139 2140 /** 2141 * @brief Return the device's state 2142 */ 2143 device_state_t 2144 device_get_state(device_t dev) 2145 { 2146 return (dev->state); 2147 } 2148 2149 /** 2150 * @brief Set the DF_ENABLED flag for the device 2151 */ 2152 void 2153 device_enable(device_t dev) 2154 { 2155 dev->flags |= DF_ENABLED; 2156 } 2157 2158 /** 2159 * @brief Clear the DF_ENABLED flag for the device 2160 */ 2161 void 2162 device_disable(device_t dev) 2163 { 2164 dev->flags &= ~DF_ENABLED; 2165 } 2166 2167 /** 2168 * @brief Increment the busy counter for the device 2169 */ 2170 void 2171 device_busy(device_t dev) 2172 { 2173 if (dev->state < DS_ATTACHED) 2174 panic("device_busy: called for unattached device"); 2175 if (dev->busy == 0 && dev->parent) 2176 device_busy(dev->parent); 2177 dev->busy++; 2178 dev->state = DS_BUSY; 2179 } 2180 2181 /** 2182 * @brief Decrement the busy counter for the device 2183 */ 2184 void 2185 device_unbusy(device_t dev) 2186 { 2187 if (dev->state != DS_BUSY) 2188 panic("device_unbusy: called for non-busy device %s", 2189 device_get_nameunit(dev)); 2190 dev->busy--; 2191 if (dev->busy == 0) { 2192 if (dev->parent) 2193 device_unbusy(dev->parent); 2194 dev->state = DS_ATTACHED; 2195 } 2196 } 2197 2198 /** 2199 * @brief Set the DF_QUIET flag for the device 2200 */ 2201 void 2202 device_quiet(device_t dev) 2203 { 2204 dev->flags |= DF_QUIET; 2205 } 2206 2207 /** 2208 * @brief Clear the DF_QUIET flag for the device 2209 */ 2210 void 2211 device_verbose(device_t dev) 2212 { 2213 dev->flags &= ~DF_QUIET; 2214 } 2215 2216 /** 2217 * @brief Return non-zero if the DF_QUIET flag is set on the device 2218 */ 2219 int 2220 device_is_quiet(device_t dev) 2221 { 2222 return ((dev->flags & DF_QUIET) != 0); 2223 } 2224 2225 /** 2226 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2227 */ 2228 int 2229 device_is_enabled(device_t dev) 2230 { 2231 return ((dev->flags & DF_ENABLED) != 0); 2232 } 2233 2234 /** 2235 * @brief Return non-zero if the device was successfully probed 2236 */ 2237 int 2238 device_is_alive(device_t dev) 2239 { 2240 return (dev->state >= DS_ALIVE); 2241 } 2242 2243 /** 2244 * @brief Return non-zero if the device currently has a driver 2245 * attached to it 2246 */ 2247 int 2248 device_is_attached(device_t dev) 2249 { 2250 return (dev->state >= DS_ATTACHED); 2251 } 2252 2253 /** 2254 * @brief Set the devclass of a device 2255 * @see devclass_add_device(). 2256 */ 2257 int 2258 device_set_devclass(device_t dev, const char *classname) 2259 { 2260 devclass_t dc; 2261 int error; 2262 2263 if (!classname) { 2264 if (dev->devclass) 2265 devclass_delete_device(dev->devclass, dev); 2266 return (0); 2267 } 2268 2269 if (dev->devclass) { 2270 printf("device_set_devclass: device class already set\n"); 2271 return (EINVAL); 2272 } 2273 2274 dc = devclass_find_internal(classname, NULL, TRUE); 2275 if (!dc) 2276 return (ENOMEM); 2277 2278 error = devclass_add_device(dc, dev); 2279 2280 bus_data_generation_update(); 2281 return (error); 2282 } 2283 2284 /** 2285 * @brief Set the driver of a device 2286 * 2287 * @retval 0 success 2288 * @retval EBUSY the device already has a driver attached 2289 * @retval ENOMEM a memory allocation failure occurred 2290 */ 2291 int 2292 device_set_driver(device_t dev, driver_t *driver) 2293 { 2294 if (dev->state >= DS_ATTACHED) 2295 return (EBUSY); 2296 2297 if (dev->driver == driver) 2298 return (0); 2299 2300 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2301 free(dev->softc, M_BUS_SC); 2302 dev->softc = NULL; 2303 } 2304 kobj_delete((kobj_t) dev, NULL); 2305 dev->driver = driver; 2306 if (driver) { 2307 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2308 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2309 dev->softc = malloc(driver->size, M_BUS_SC, 2310 M_NOWAIT | M_ZERO); 2311 if (!dev->softc) { 2312 kobj_delete((kobj_t) dev, NULL); 2313 kobj_init((kobj_t) dev, &null_class); 2314 dev->driver = NULL; 2315 return (ENOMEM); 2316 } 2317 } 2318 } else { 2319 kobj_init((kobj_t) dev, &null_class); 2320 } 2321 2322 bus_data_generation_update(); 2323 return (0); 2324 } 2325 2326 /** 2327 * @brief Probe a device, and return this status. 2328 * 2329 * This function is the core of the device autoconfiguration 2330 * system. Its purpose is to select a suitable driver for a device and 2331 * then call that driver to initialise the hardware appropriately. The 2332 * driver is selected by calling the DEVICE_PROBE() method of a set of 2333 * candidate drivers and then choosing the driver which returned the 2334 * best value. This driver is then attached to the device using 2335 * device_attach(). 2336 * 2337 * The set of suitable drivers is taken from the list of drivers in 2338 * the parent device's devclass. If the device was originally created 2339 * with a specific class name (see device_add_child()), only drivers 2340 * with that name are probed, otherwise all drivers in the devclass 2341 * are probed. If no drivers return successful probe values in the 2342 * parent devclass, the search continues in the parent of that 2343 * devclass (see devclass_get_parent()) if any. 2344 * 2345 * @param dev the device to initialise 2346 * 2347 * @retval 0 success 2348 * @retval ENXIO no driver was found 2349 * @retval ENOMEM memory allocation failure 2350 * @retval non-zero some other unix error code 2351 * @retval -1 Device already attached 2352 */ 2353 int 2354 device_probe(device_t dev) 2355 { 2356 int error; 2357 2358 GIANT_REQUIRED; 2359 2360 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2361 return (-1); 2362 2363 if (!(dev->flags & DF_ENABLED)) { 2364 if (bootverbose && device_get_name(dev) != NULL) { 2365 device_print_prettyname(dev); 2366 printf("not probed (disabled)\n"); 2367 } 2368 return (-1); 2369 } 2370 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2371 if (!(dev->flags & DF_DONENOMATCH)) { 2372 BUS_PROBE_NOMATCH(dev->parent, dev); 2373 devnomatch(dev); 2374 dev->flags |= DF_DONENOMATCH; 2375 } 2376 return (error); 2377 } 2378 return (0); 2379 } 2380 2381 /** 2382 * @brief Probe a device and attach a driver if possible 2383 * 2384 * calls device_probe() and attaches if that was successful. 2385 */ 2386 int 2387 device_probe_and_attach(device_t dev) 2388 { 2389 int error; 2390 2391 GIANT_REQUIRED; 2392 2393 error = device_probe(dev); 2394 if (error == -1) 2395 return (0); 2396 else if (error != 0) 2397 return (error); 2398 return (device_attach(dev)); 2399 } 2400 2401 /** 2402 * @brief Attach a device driver to a device 2403 * 2404 * This function is a wrapper around the DEVICE_ATTACH() driver 2405 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2406 * device's sysctl tree, optionally prints a description of the device 2407 * and queues a notification event for user-based device management 2408 * services. 2409 * 2410 * Normally this function is only called internally from 2411 * device_probe_and_attach(). 2412 * 2413 * @param dev the device to initialise 2414 * 2415 * @retval 0 success 2416 * @retval ENXIO no driver was found 2417 * @retval ENOMEM memory allocation failure 2418 * @retval non-zero some other unix error code 2419 */ 2420 int 2421 device_attach(device_t dev) 2422 { 2423 int error; 2424 2425 device_sysctl_init(dev); 2426 if (!device_is_quiet(dev)) 2427 device_print_child(dev->parent, dev); 2428 if ((error = DEVICE_ATTACH(dev)) != 0) { 2429 printf("device_attach: %s%d attach returned %d\n", 2430 dev->driver->name, dev->unit, error); 2431 /* Unset the class; set in device_probe_child */ 2432 if (dev->devclass == NULL) 2433 device_set_devclass(dev, NULL); 2434 device_set_driver(dev, NULL); 2435 device_sysctl_fini(dev); 2436 dev->state = DS_NOTPRESENT; 2437 return (error); 2438 } 2439 device_sysctl_update(dev); 2440 dev->state = DS_ATTACHED; 2441 devadded(dev); 2442 return (0); 2443 } 2444 2445 /** 2446 * @brief Detach a driver from a device 2447 * 2448 * This function is a wrapper around the DEVICE_DETACH() driver 2449 * method. If the call to DEVICE_DETACH() succeeds, it calls 2450 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2451 * notification event for user-based device management services and 2452 * cleans up the device's sysctl tree. 2453 * 2454 * @param dev the device to un-initialise 2455 * 2456 * @retval 0 success 2457 * @retval ENXIO no driver was found 2458 * @retval ENOMEM memory allocation failure 2459 * @retval non-zero some other unix error code 2460 */ 2461 int 2462 device_detach(device_t dev) 2463 { 2464 int error; 2465 2466 GIANT_REQUIRED; 2467 2468 PDEBUG(("%s", DEVICENAME(dev))); 2469 if (dev->state == DS_BUSY) 2470 return (EBUSY); 2471 if (dev->state != DS_ATTACHED) 2472 return (0); 2473 2474 if ((error = DEVICE_DETACH(dev)) != 0) 2475 return (error); 2476 devremoved(dev); 2477 device_printf(dev, "detached\n"); 2478 if (dev->parent) 2479 BUS_CHILD_DETACHED(dev->parent, dev); 2480 2481 if (!(dev->flags & DF_FIXEDCLASS)) 2482 devclass_delete_device(dev->devclass, dev); 2483 2484 dev->state = DS_NOTPRESENT; 2485 device_set_driver(dev, NULL); 2486 device_set_desc(dev, NULL); 2487 device_sysctl_fini(dev); 2488 2489 return (0); 2490 } 2491 2492 /** 2493 * @brief Tells a driver to quiesce itself. 2494 * 2495 * This function is a wrapper around the DEVICE_QUIESCE() driver 2496 * method. If the call to DEVICE_QUIESCE() succeeds. 2497 * 2498 * @param dev the device to quiesce 2499 * 2500 * @retval 0 success 2501 * @retval ENXIO no driver was found 2502 * @retval ENOMEM memory allocation failure 2503 * @retval non-zero some other unix error code 2504 */ 2505 int 2506 device_quiesce(device_t dev) 2507 { 2508 2509 PDEBUG(("%s", DEVICENAME(dev))); 2510 if (dev->state == DS_BUSY) 2511 return (EBUSY); 2512 if (dev->state != DS_ATTACHED) 2513 return (0); 2514 2515 return (DEVICE_QUIESCE(dev)); 2516 } 2517 2518 /** 2519 * @brief Notify a device of system shutdown 2520 * 2521 * This function calls the DEVICE_SHUTDOWN() driver method if the 2522 * device currently has an attached driver. 2523 * 2524 * @returns the value returned by DEVICE_SHUTDOWN() 2525 */ 2526 int 2527 device_shutdown(device_t dev) 2528 { 2529 if (dev->state < DS_ATTACHED) 2530 return (0); 2531 return (DEVICE_SHUTDOWN(dev)); 2532 } 2533 2534 /** 2535 * @brief Set the unit number of a device 2536 * 2537 * This function can be used to override the unit number used for a 2538 * device (e.g. to wire a device to a pre-configured unit number). 2539 */ 2540 int 2541 device_set_unit(device_t dev, int unit) 2542 { 2543 devclass_t dc; 2544 int err; 2545 2546 dc = device_get_devclass(dev); 2547 if (unit < dc->maxunit && dc->devices[unit]) 2548 return (EBUSY); 2549 err = devclass_delete_device(dc, dev); 2550 if (err) 2551 return (err); 2552 dev->unit = unit; 2553 err = devclass_add_device(dc, dev); 2554 if (err) 2555 return (err); 2556 2557 bus_data_generation_update(); 2558 return (0); 2559 } 2560 2561 /*======================================*/ 2562 /* 2563 * Some useful method implementations to make life easier for bus drivers. 2564 */ 2565 2566 /** 2567 * @brief Initialise a resource list. 2568 * 2569 * @param rl the resource list to initialise 2570 */ 2571 void 2572 resource_list_init(struct resource_list *rl) 2573 { 2574 STAILQ_INIT(rl); 2575 } 2576 2577 /** 2578 * @brief Reclaim memory used by a resource list. 2579 * 2580 * This function frees the memory for all resource entries on the list 2581 * (if any). 2582 * 2583 * @param rl the resource list to free 2584 */ 2585 void 2586 resource_list_free(struct resource_list *rl) 2587 { 2588 struct resource_list_entry *rle; 2589 2590 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2591 if (rle->res) 2592 panic("resource_list_free: resource entry is busy"); 2593 STAILQ_REMOVE_HEAD(rl, link); 2594 free(rle, M_BUS); 2595 } 2596 } 2597 2598 /** 2599 * @brief Add a resource entry. 2600 * 2601 * This function adds a resource entry using the given @p type, @p 2602 * start, @p end and @p count values. A rid value is chosen by 2603 * searching sequentially for the first unused rid starting at zero. 2604 * 2605 * @param rl the resource list to edit 2606 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2607 * @param start the start address of the resource 2608 * @param end the end address of the resource 2609 * @param count XXX end-start+1 2610 */ 2611 int 2612 resource_list_add_next(struct resource_list *rl, int type, u_long start, 2613 u_long end, u_long count) 2614 { 2615 int rid; 2616 2617 rid = 0; 2618 while (resource_list_find(rl, type, rid) != NULL) 2619 rid++; 2620 resource_list_add(rl, type, rid, start, end, count); 2621 return (rid); 2622 } 2623 2624 /** 2625 * @brief Add or modify a resource entry. 2626 * 2627 * If an existing entry exists with the same type and rid, it will be 2628 * modified using the given values of @p start, @p end and @p 2629 * count. If no entry exists, a new one will be created using the 2630 * given values. The resource list entry that matches is then returned. 2631 * 2632 * @param rl the resource list to edit 2633 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2634 * @param rid the resource identifier 2635 * @param start the start address of the resource 2636 * @param end the end address of the resource 2637 * @param count XXX end-start+1 2638 */ 2639 struct resource_list_entry * 2640 resource_list_add(struct resource_list *rl, int type, int rid, 2641 u_long start, u_long end, u_long count) 2642 { 2643 struct resource_list_entry *rle; 2644 2645 rle = resource_list_find(rl, type, rid); 2646 if (!rle) { 2647 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2648 M_NOWAIT); 2649 if (!rle) 2650 panic("resource_list_add: can't record entry"); 2651 STAILQ_INSERT_TAIL(rl, rle, link); 2652 rle->type = type; 2653 rle->rid = rid; 2654 rle->res = NULL; 2655 } 2656 2657 if (rle->res) 2658 panic("resource_list_add: resource entry is busy"); 2659 2660 rle->start = start; 2661 rle->end = end; 2662 rle->count = count; 2663 return (rle); 2664 } 2665 2666 /** 2667 * @brief Find a resource entry by type and rid. 2668 * 2669 * @param rl the resource list to search 2670 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2671 * @param rid the resource identifier 2672 * 2673 * @returns the resource entry pointer or NULL if there is no such 2674 * entry. 2675 */ 2676 struct resource_list_entry * 2677 resource_list_find(struct resource_list *rl, int type, int rid) 2678 { 2679 struct resource_list_entry *rle; 2680 2681 STAILQ_FOREACH(rle, rl, link) { 2682 if (rle->type == type && rle->rid == rid) 2683 return (rle); 2684 } 2685 return (NULL); 2686 } 2687 2688 /** 2689 * @brief Delete a resource entry. 2690 * 2691 * @param rl the resource list to edit 2692 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2693 * @param rid the resource identifier 2694 */ 2695 void 2696 resource_list_delete(struct resource_list *rl, int type, int rid) 2697 { 2698 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2699 2700 if (rle) { 2701 if (rle->res != NULL) 2702 panic("resource_list_delete: resource has not been released"); 2703 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 2704 free(rle, M_BUS); 2705 } 2706 } 2707 2708 /** 2709 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 2710 * 2711 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 2712 * and passing the allocation up to the parent of @p bus. This assumes 2713 * that the first entry of @c device_get_ivars(child) is a struct 2714 * resource_list. This also handles 'passthrough' allocations where a 2715 * child is a remote descendant of bus by passing the allocation up to 2716 * the parent of bus. 2717 * 2718 * Typically, a bus driver would store a list of child resources 2719 * somewhere in the child device's ivars (see device_get_ivars()) and 2720 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 2721 * then call resource_list_alloc() to perform the allocation. 2722 * 2723 * @param rl the resource list to allocate from 2724 * @param bus the parent device of @p child 2725 * @param child the device which is requesting an allocation 2726 * @param type the type of resource to allocate 2727 * @param rid a pointer to the resource identifier 2728 * @param start hint at the start of the resource range - pass 2729 * @c 0UL for any start address 2730 * @param end hint at the end of the resource range - pass 2731 * @c ~0UL for any end address 2732 * @param count hint at the size of range required - pass @c 1 2733 * for any size 2734 * @param flags any extra flags to control the resource 2735 * allocation - see @c RF_XXX flags in 2736 * <sys/rman.h> for details 2737 * 2738 * @returns the resource which was allocated or @c NULL if no 2739 * resource could be allocated 2740 */ 2741 struct resource * 2742 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 2743 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 2744 { 2745 struct resource_list_entry *rle = NULL; 2746 int passthrough = (device_get_parent(child) != bus); 2747 int isdefault = (start == 0UL && end == ~0UL); 2748 2749 if (passthrough) { 2750 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2751 type, rid, start, end, count, flags)); 2752 } 2753 2754 rle = resource_list_find(rl, type, *rid); 2755 2756 if (!rle) 2757 return (NULL); /* no resource of that type/rid */ 2758 2759 if (rle->res) 2760 panic("resource_list_alloc: resource entry is busy"); 2761 2762 if (isdefault) { 2763 start = rle->start; 2764 count = ulmax(count, rle->count); 2765 end = ulmax(rle->end, start + count - 1); 2766 } 2767 2768 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2769 type, rid, start, end, count, flags); 2770 2771 /* 2772 * Record the new range. 2773 */ 2774 if (rle->res) { 2775 rle->start = rman_get_start(rle->res); 2776 rle->end = rman_get_end(rle->res); 2777 rle->count = count; 2778 } 2779 2780 return (rle->res); 2781 } 2782 2783 /** 2784 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 2785 * 2786 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 2787 * used with resource_list_alloc(). 2788 * 2789 * @param rl the resource list which was allocated from 2790 * @param bus the parent device of @p child 2791 * @param child the device which is requesting a release 2792 * @param type the type of resource to allocate 2793 * @param rid the resource identifier 2794 * @param res the resource to release 2795 * 2796 * @retval 0 success 2797 * @retval non-zero a standard unix error code indicating what 2798 * error condition prevented the operation 2799 */ 2800 int 2801 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 2802 int type, int rid, struct resource *res) 2803 { 2804 struct resource_list_entry *rle = NULL; 2805 int passthrough = (device_get_parent(child) != bus); 2806 int error; 2807 2808 if (passthrough) { 2809 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2810 type, rid, res)); 2811 } 2812 2813 rle = resource_list_find(rl, type, rid); 2814 2815 if (!rle) 2816 panic("resource_list_release: can't find resource"); 2817 if (!rle->res) 2818 panic("resource_list_release: resource entry is not busy"); 2819 2820 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2821 type, rid, res); 2822 if (error) 2823 return (error); 2824 2825 rle->res = NULL; 2826 return (0); 2827 } 2828 2829 /** 2830 * @brief Print a description of resources in a resource list 2831 * 2832 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 2833 * The name is printed if at least one resource of the given type is available. 2834 * The format is used to print resource start and end. 2835 * 2836 * @param rl the resource list to print 2837 * @param name the name of @p type, e.g. @c "memory" 2838 * @param type type type of resource entry to print 2839 * @param format printf(9) format string to print resource 2840 * start and end values 2841 * 2842 * @returns the number of characters printed 2843 */ 2844 int 2845 resource_list_print_type(struct resource_list *rl, const char *name, int type, 2846 const char *format) 2847 { 2848 struct resource_list_entry *rle; 2849 int printed, retval; 2850 2851 printed = 0; 2852 retval = 0; 2853 /* Yes, this is kinda cheating */ 2854 STAILQ_FOREACH(rle, rl, link) { 2855 if (rle->type == type) { 2856 if (printed == 0) 2857 retval += printf(" %s ", name); 2858 else 2859 retval += printf(","); 2860 printed++; 2861 retval += printf(format, rle->start); 2862 if (rle->count > 1) { 2863 retval += printf("-"); 2864 retval += printf(format, rle->start + 2865 rle->count - 1); 2866 } 2867 } 2868 } 2869 return (retval); 2870 } 2871 2872 /** 2873 * @brief Releases all the resources in a list. 2874 * 2875 * @param rl The resource list to purge. 2876 * 2877 * @returns nothing 2878 */ 2879 void 2880 resource_list_purge(struct resource_list *rl) 2881 { 2882 struct resource_list_entry *rle; 2883 2884 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2885 if (rle->res) 2886 bus_release_resource(rman_get_device(rle->res), 2887 rle->type, rle->rid, rle->res); 2888 STAILQ_REMOVE_HEAD(rl, link); 2889 free(rle, M_BUS); 2890 } 2891 } 2892 2893 device_t 2894 bus_generic_add_child(device_t dev, int order, const char *name, int unit) 2895 { 2896 2897 return (device_add_child_ordered(dev, order, name, unit)); 2898 } 2899 2900 /** 2901 * @brief Helper function for implementing DEVICE_PROBE() 2902 * 2903 * This function can be used to help implement the DEVICE_PROBE() for 2904 * a bus (i.e. a device which has other devices attached to it). It 2905 * calls the DEVICE_IDENTIFY() method of each driver in the device's 2906 * devclass. 2907 */ 2908 int 2909 bus_generic_probe(device_t dev) 2910 { 2911 devclass_t dc = dev->devclass; 2912 driverlink_t dl; 2913 2914 TAILQ_FOREACH(dl, &dc->drivers, link) { 2915 DEVICE_IDENTIFY(dl->driver, dev); 2916 } 2917 2918 return (0); 2919 } 2920 2921 /** 2922 * @brief Helper function for implementing DEVICE_ATTACH() 2923 * 2924 * This function can be used to help implement the DEVICE_ATTACH() for 2925 * a bus. It calls device_probe_and_attach() for each of the device's 2926 * children. 2927 */ 2928 int 2929 bus_generic_attach(device_t dev) 2930 { 2931 device_t child; 2932 2933 TAILQ_FOREACH(child, &dev->children, link) { 2934 device_probe_and_attach(child); 2935 } 2936 2937 return (0); 2938 } 2939 2940 /** 2941 * @brief Helper function for implementing DEVICE_DETACH() 2942 * 2943 * This function can be used to help implement the DEVICE_DETACH() for 2944 * a bus. It calls device_detach() for each of the device's 2945 * children. 2946 */ 2947 int 2948 bus_generic_detach(device_t dev) 2949 { 2950 device_t child; 2951 int error; 2952 2953 if (dev->state != DS_ATTACHED) 2954 return (EBUSY); 2955 2956 TAILQ_FOREACH(child, &dev->children, link) { 2957 if ((error = device_detach(child)) != 0) 2958 return (error); 2959 } 2960 2961 return (0); 2962 } 2963 2964 /** 2965 * @brief Helper function for implementing DEVICE_SHUTDOWN() 2966 * 2967 * This function can be used to help implement the DEVICE_SHUTDOWN() 2968 * for a bus. It calls device_shutdown() for each of the device's 2969 * children. 2970 */ 2971 int 2972 bus_generic_shutdown(device_t dev) 2973 { 2974 device_t child; 2975 2976 TAILQ_FOREACH(child, &dev->children, link) { 2977 device_shutdown(child); 2978 } 2979 2980 return (0); 2981 } 2982 2983 /** 2984 * @brief Helper function for implementing DEVICE_SUSPEND() 2985 * 2986 * This function can be used to help implement the DEVICE_SUSPEND() 2987 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 2988 * children. If any call to DEVICE_SUSPEND() fails, the suspend 2989 * operation is aborted and any devices which were suspended are 2990 * resumed immediately by calling their DEVICE_RESUME() methods. 2991 */ 2992 int 2993 bus_generic_suspend(device_t dev) 2994 { 2995 int error; 2996 device_t child, child2; 2997 2998 TAILQ_FOREACH(child, &dev->children, link) { 2999 error = DEVICE_SUSPEND(child); 3000 if (error) { 3001 for (child2 = TAILQ_FIRST(&dev->children); 3002 child2 && child2 != child; 3003 child2 = TAILQ_NEXT(child2, link)) 3004 DEVICE_RESUME(child2); 3005 return (error); 3006 } 3007 } 3008 return (0); 3009 } 3010 3011 /** 3012 * @brief Helper function for implementing DEVICE_RESUME() 3013 * 3014 * This function can be used to help implement the DEVICE_RESUME() for 3015 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3016 */ 3017 int 3018 bus_generic_resume(device_t dev) 3019 { 3020 device_t child; 3021 3022 TAILQ_FOREACH(child, &dev->children, link) { 3023 DEVICE_RESUME(child); 3024 /* if resume fails, there's nothing we can usefully do... */ 3025 } 3026 return (0); 3027 } 3028 3029 /** 3030 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3031 * 3032 * This function prints the first part of the ascii representation of 3033 * @p child, including its name, unit and description (if any - see 3034 * device_set_desc()). 3035 * 3036 * @returns the number of characters printed 3037 */ 3038 int 3039 bus_print_child_header(device_t dev, device_t child) 3040 { 3041 int retval = 0; 3042 3043 if (device_get_desc(child)) { 3044 retval += device_printf(child, "<%s>", device_get_desc(child)); 3045 } else { 3046 retval += printf("%s", device_get_nameunit(child)); 3047 } 3048 3049 return (retval); 3050 } 3051 3052 /** 3053 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3054 * 3055 * This function prints the last part of the ascii representation of 3056 * @p child, which consists of the string @c " on " followed by the 3057 * name and unit of the @p dev. 3058 * 3059 * @returns the number of characters printed 3060 */ 3061 int 3062 bus_print_child_footer(device_t dev, device_t child) 3063 { 3064 return (printf(" on %s\n", device_get_nameunit(dev))); 3065 } 3066 3067 /** 3068 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3069 * 3070 * This function simply calls bus_print_child_header() followed by 3071 * bus_print_child_footer(). 3072 * 3073 * @returns the number of characters printed 3074 */ 3075 int 3076 bus_generic_print_child(device_t dev, device_t child) 3077 { 3078 int retval = 0; 3079 3080 retval += bus_print_child_header(dev, child); 3081 retval += bus_print_child_footer(dev, child); 3082 3083 return (retval); 3084 } 3085 3086 /** 3087 * @brief Stub function for implementing BUS_READ_IVAR(). 3088 * 3089 * @returns ENOENT 3090 */ 3091 int 3092 bus_generic_read_ivar(device_t dev, device_t child, int index, 3093 uintptr_t * result) 3094 { 3095 return (ENOENT); 3096 } 3097 3098 /** 3099 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3100 * 3101 * @returns ENOENT 3102 */ 3103 int 3104 bus_generic_write_ivar(device_t dev, device_t child, int index, 3105 uintptr_t value) 3106 { 3107 return (ENOENT); 3108 } 3109 3110 /** 3111 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3112 * 3113 * @returns NULL 3114 */ 3115 struct resource_list * 3116 bus_generic_get_resource_list(device_t dev, device_t child) 3117 { 3118 return (NULL); 3119 } 3120 3121 /** 3122 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3123 * 3124 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3125 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3126 * and then calls device_probe_and_attach() for each unattached child. 3127 */ 3128 void 3129 bus_generic_driver_added(device_t dev, driver_t *driver) 3130 { 3131 device_t child; 3132 3133 DEVICE_IDENTIFY(driver, dev); 3134 TAILQ_FOREACH(child, &dev->children, link) { 3135 if (child->state == DS_NOTPRESENT || 3136 (child->flags & DF_REBID)) 3137 device_probe_and_attach(child); 3138 } 3139 } 3140 3141 /** 3142 * @brief Helper function for implementing BUS_SETUP_INTR(). 3143 * 3144 * This simple implementation of BUS_SETUP_INTR() simply calls the 3145 * BUS_SETUP_INTR() method of the parent of @p dev. 3146 */ 3147 int 3148 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3149 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3150 void **cookiep) 3151 { 3152 /* Propagate up the bus hierarchy until someone handles it. */ 3153 if (dev->parent) 3154 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3155 filter, intr, arg, cookiep)); 3156 return (EINVAL); 3157 } 3158 3159 /** 3160 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3161 * 3162 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3163 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3164 */ 3165 int 3166 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3167 void *cookie) 3168 { 3169 /* Propagate up the bus hierarchy until someone handles it. */ 3170 if (dev->parent) 3171 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3172 return (EINVAL); 3173 } 3174 3175 /** 3176 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3177 * 3178 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3179 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3180 */ 3181 struct resource * 3182 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3183 u_long start, u_long end, u_long count, u_int flags) 3184 { 3185 /* Propagate up the bus hierarchy until someone handles it. */ 3186 if (dev->parent) 3187 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3188 start, end, count, flags)); 3189 return (NULL); 3190 } 3191 3192 /** 3193 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3194 * 3195 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3196 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3197 */ 3198 int 3199 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3200 struct resource *r) 3201 { 3202 /* Propagate up the bus hierarchy until someone handles it. */ 3203 if (dev->parent) 3204 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3205 r)); 3206 return (EINVAL); 3207 } 3208 3209 /** 3210 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3211 * 3212 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3213 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3214 */ 3215 int 3216 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3217 struct resource *r) 3218 { 3219 /* Propagate up the bus hierarchy until someone handles it. */ 3220 if (dev->parent) 3221 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3222 r)); 3223 return (EINVAL); 3224 } 3225 3226 /** 3227 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3228 * 3229 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3230 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3231 */ 3232 int 3233 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3234 int rid, struct resource *r) 3235 { 3236 /* Propagate up the bus hierarchy until someone handles it. */ 3237 if (dev->parent) 3238 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3239 r)); 3240 return (EINVAL); 3241 } 3242 3243 /** 3244 * @brief Helper function for implementing BUS_BIND_INTR(). 3245 * 3246 * This simple implementation of BUS_BIND_INTR() simply calls the 3247 * BUS_BIND_INTR() method of the parent of @p dev. 3248 */ 3249 int 3250 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 3251 int cpu) 3252 { 3253 3254 /* Propagate up the bus hierarchy until someone handles it. */ 3255 if (dev->parent) 3256 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 3257 return (EINVAL); 3258 } 3259 3260 /** 3261 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3262 * 3263 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3264 * BUS_CONFIG_INTR() method of the parent of @p dev. 3265 */ 3266 int 3267 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3268 enum intr_polarity pol) 3269 { 3270 3271 /* Propagate up the bus hierarchy until someone handles it. */ 3272 if (dev->parent) 3273 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3274 return (EINVAL); 3275 } 3276 3277 /** 3278 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 3279 * 3280 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 3281 * BUS_GET_DMA_TAG() method of the parent of @p dev. 3282 */ 3283 bus_dma_tag_t 3284 bus_generic_get_dma_tag(device_t dev, device_t child) 3285 { 3286 3287 /* Propagate up the bus hierarchy until someone handles it. */ 3288 if (dev->parent != NULL) 3289 return (BUS_GET_DMA_TAG(dev->parent, child)); 3290 return (NULL); 3291 } 3292 3293 /** 3294 * @brief Helper function for implementing BUS_GET_RESOURCE(). 3295 * 3296 * This implementation of BUS_GET_RESOURCE() uses the 3297 * resource_list_find() function to do most of the work. It calls 3298 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3299 * search. 3300 */ 3301 int 3302 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 3303 u_long *startp, u_long *countp) 3304 { 3305 struct resource_list * rl = NULL; 3306 struct resource_list_entry * rle = NULL; 3307 3308 rl = BUS_GET_RESOURCE_LIST(dev, child); 3309 if (!rl) 3310 return (EINVAL); 3311 3312 rle = resource_list_find(rl, type, rid); 3313 if (!rle) 3314 return (ENOENT); 3315 3316 if (startp) 3317 *startp = rle->start; 3318 if (countp) 3319 *countp = rle->count; 3320 3321 return (0); 3322 } 3323 3324 /** 3325 * @brief Helper function for implementing BUS_SET_RESOURCE(). 3326 * 3327 * This implementation of BUS_SET_RESOURCE() uses the 3328 * resource_list_add() function to do most of the work. It calls 3329 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3330 * edit. 3331 */ 3332 int 3333 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 3334 u_long start, u_long count) 3335 { 3336 struct resource_list * rl = NULL; 3337 3338 rl = BUS_GET_RESOURCE_LIST(dev, child); 3339 if (!rl) 3340 return (EINVAL); 3341 3342 resource_list_add(rl, type, rid, start, (start + count - 1), count); 3343 3344 return (0); 3345 } 3346 3347 /** 3348 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 3349 * 3350 * This implementation of BUS_DELETE_RESOURCE() uses the 3351 * resource_list_delete() function to do most of the work. It calls 3352 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3353 * edit. 3354 */ 3355 void 3356 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 3357 { 3358 struct resource_list * rl = NULL; 3359 3360 rl = BUS_GET_RESOURCE_LIST(dev, child); 3361 if (!rl) 3362 return; 3363 3364 resource_list_delete(rl, type, rid); 3365 3366 return; 3367 } 3368 3369 /** 3370 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3371 * 3372 * This implementation of BUS_RELEASE_RESOURCE() uses the 3373 * resource_list_release() function to do most of the work. It calls 3374 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3375 */ 3376 int 3377 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 3378 int rid, struct resource *r) 3379 { 3380 struct resource_list * rl = NULL; 3381 3382 rl = BUS_GET_RESOURCE_LIST(dev, child); 3383 if (!rl) 3384 return (EINVAL); 3385 3386 return (resource_list_release(rl, dev, child, type, rid, r)); 3387 } 3388 3389 /** 3390 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3391 * 3392 * This implementation of BUS_ALLOC_RESOURCE() uses the 3393 * resource_list_alloc() function to do most of the work. It calls 3394 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3395 */ 3396 struct resource * 3397 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 3398 int *rid, u_long start, u_long end, u_long count, u_int flags) 3399 { 3400 struct resource_list * rl = NULL; 3401 3402 rl = BUS_GET_RESOURCE_LIST(dev, child); 3403 if (!rl) 3404 return (NULL); 3405 3406 return (resource_list_alloc(rl, dev, child, type, rid, 3407 start, end, count, flags)); 3408 } 3409 3410 /** 3411 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 3412 * 3413 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 3414 * BUS_CHILD_PRESENT() method of the parent of @p dev. 3415 */ 3416 int 3417 bus_generic_child_present(device_t dev, device_t child) 3418 { 3419 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 3420 } 3421 3422 /* 3423 * Some convenience functions to make it easier for drivers to use the 3424 * resource-management functions. All these really do is hide the 3425 * indirection through the parent's method table, making for slightly 3426 * less-wordy code. In the future, it might make sense for this code 3427 * to maintain some sort of a list of resources allocated by each device. 3428 */ 3429 3430 int 3431 bus_alloc_resources(device_t dev, struct resource_spec *rs, 3432 struct resource **res) 3433 { 3434 int i; 3435 3436 for (i = 0; rs[i].type != -1; i++) 3437 res[i] = NULL; 3438 for (i = 0; rs[i].type != -1; i++) { 3439 res[i] = bus_alloc_resource_any(dev, 3440 rs[i].type, &rs[i].rid, rs[i].flags); 3441 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 3442 bus_release_resources(dev, rs, res); 3443 return (ENXIO); 3444 } 3445 } 3446 return (0); 3447 } 3448 3449 void 3450 bus_release_resources(device_t dev, const struct resource_spec *rs, 3451 struct resource **res) 3452 { 3453 int i; 3454 3455 for (i = 0; rs[i].type != -1; i++) 3456 if (res[i] != NULL) { 3457 bus_release_resource( 3458 dev, rs[i].type, rs[i].rid, res[i]); 3459 res[i] = NULL; 3460 } 3461 } 3462 3463 /** 3464 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 3465 * 3466 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 3467 * parent of @p dev. 3468 */ 3469 struct resource * 3470 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 3471 u_long count, u_int flags) 3472 { 3473 if (dev->parent == NULL) 3474 return (NULL); 3475 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 3476 count, flags)); 3477 } 3478 3479 /** 3480 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 3481 * 3482 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 3483 * parent of @p dev. 3484 */ 3485 int 3486 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 3487 { 3488 if (dev->parent == NULL) 3489 return (EINVAL); 3490 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3491 } 3492 3493 /** 3494 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 3495 * 3496 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 3497 * parent of @p dev. 3498 */ 3499 int 3500 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 3501 { 3502 if (dev->parent == NULL) 3503 return (EINVAL); 3504 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3505 } 3506 3507 /** 3508 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 3509 * 3510 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 3511 * parent of @p dev. 3512 */ 3513 int 3514 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 3515 { 3516 if (dev->parent == NULL) 3517 return (EINVAL); 3518 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 3519 } 3520 3521 /** 3522 * @brief Wrapper function for BUS_SETUP_INTR(). 3523 * 3524 * This function simply calls the BUS_SETUP_INTR() method of the 3525 * parent of @p dev. 3526 */ 3527 int 3528 bus_setup_intr(device_t dev, struct resource *r, int flags, 3529 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 3530 { 3531 int error; 3532 3533 if (dev->parent == NULL) 3534 return (EINVAL); 3535 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 3536 arg, cookiep); 3537 if (error != 0) 3538 return (error); 3539 if (handler != NULL && !(flags & INTR_MPSAFE)) 3540 device_printf(dev, "[GIANT-LOCKED]\n"); 3541 if (bootverbose && (flags & INTR_MPSAFE)) 3542 device_printf(dev, "[MPSAFE]\n"); 3543 if (filter != NULL) { 3544 if (handler == NULL) 3545 device_printf(dev, "[FILTER]\n"); 3546 else 3547 device_printf(dev, "[FILTER+ITHREAD]\n"); 3548 } else 3549 device_printf(dev, "[ITHREAD]\n"); 3550 return (0); 3551 } 3552 3553 /** 3554 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 3555 * 3556 * This function simply calls the BUS_TEARDOWN_INTR() method of the 3557 * parent of @p dev. 3558 */ 3559 int 3560 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 3561 { 3562 if (dev->parent == NULL) 3563 return (EINVAL); 3564 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 3565 } 3566 3567 /** 3568 * @brief Wrapper function for BUS_BIND_INTR(). 3569 * 3570 * This function simply calls the BUS_BIND_INTR() method of the 3571 * parent of @p dev. 3572 */ 3573 int 3574 bus_bind_intr(device_t dev, struct resource *r, int cpu) 3575 { 3576 if (dev->parent == NULL) 3577 return (EINVAL); 3578 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 3579 } 3580 3581 /** 3582 * @brief Wrapper function for BUS_SET_RESOURCE(). 3583 * 3584 * This function simply calls the BUS_SET_RESOURCE() method of the 3585 * parent of @p dev. 3586 */ 3587 int 3588 bus_set_resource(device_t dev, int type, int rid, 3589 u_long start, u_long count) 3590 { 3591 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 3592 start, count)); 3593 } 3594 3595 /** 3596 * @brief Wrapper function for BUS_GET_RESOURCE(). 3597 * 3598 * This function simply calls the BUS_GET_RESOURCE() method of the 3599 * parent of @p dev. 3600 */ 3601 int 3602 bus_get_resource(device_t dev, int type, int rid, 3603 u_long *startp, u_long *countp) 3604 { 3605 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3606 startp, countp)); 3607 } 3608 3609 /** 3610 * @brief Wrapper function for BUS_GET_RESOURCE(). 3611 * 3612 * This function simply calls the BUS_GET_RESOURCE() method of the 3613 * parent of @p dev and returns the start value. 3614 */ 3615 u_long 3616 bus_get_resource_start(device_t dev, int type, int rid) 3617 { 3618 u_long start, count; 3619 int error; 3620 3621 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3622 &start, &count); 3623 if (error) 3624 return (0); 3625 return (start); 3626 } 3627 3628 /** 3629 * @brief Wrapper function for BUS_GET_RESOURCE(). 3630 * 3631 * This function simply calls the BUS_GET_RESOURCE() method of the 3632 * parent of @p dev and returns the count value. 3633 */ 3634 u_long 3635 bus_get_resource_count(device_t dev, int type, int rid) 3636 { 3637 u_long start, count; 3638 int error; 3639 3640 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3641 &start, &count); 3642 if (error) 3643 return (0); 3644 return (count); 3645 } 3646 3647 /** 3648 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 3649 * 3650 * This function simply calls the BUS_DELETE_RESOURCE() method of the 3651 * parent of @p dev. 3652 */ 3653 void 3654 bus_delete_resource(device_t dev, int type, int rid) 3655 { 3656 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 3657 } 3658 3659 /** 3660 * @brief Wrapper function for BUS_CHILD_PRESENT(). 3661 * 3662 * This function simply calls the BUS_CHILD_PRESENT() method of the 3663 * parent of @p dev. 3664 */ 3665 int 3666 bus_child_present(device_t child) 3667 { 3668 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 3669 } 3670 3671 /** 3672 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 3673 * 3674 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 3675 * parent of @p dev. 3676 */ 3677 int 3678 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 3679 { 3680 device_t parent; 3681 3682 parent = device_get_parent(child); 3683 if (parent == NULL) { 3684 *buf = '\0'; 3685 return (0); 3686 } 3687 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 3688 } 3689 3690 /** 3691 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 3692 * 3693 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 3694 * parent of @p dev. 3695 */ 3696 int 3697 bus_child_location_str(device_t child, char *buf, size_t buflen) 3698 { 3699 device_t parent; 3700 3701 parent = device_get_parent(child); 3702 if (parent == NULL) { 3703 *buf = '\0'; 3704 return (0); 3705 } 3706 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 3707 } 3708 3709 /** 3710 * @brief Wrapper function for BUS_GET_DMA_TAG(). 3711 * 3712 * This function simply calls the BUS_GET_DMA_TAG() method of the 3713 * parent of @p dev. 3714 */ 3715 bus_dma_tag_t 3716 bus_get_dma_tag(device_t dev) 3717 { 3718 device_t parent; 3719 3720 parent = device_get_parent(dev); 3721 if (parent == NULL) 3722 return (NULL); 3723 return (BUS_GET_DMA_TAG(parent, dev)); 3724 } 3725 3726 /* Resume all devices and then notify userland that we're up again. */ 3727 static int 3728 root_resume(device_t dev) 3729 { 3730 int error; 3731 3732 error = bus_generic_resume(dev); 3733 if (error == 0) 3734 devctl_notify("kern", "power", "resume", NULL); 3735 return (error); 3736 } 3737 3738 static int 3739 root_print_child(device_t dev, device_t child) 3740 { 3741 int retval = 0; 3742 3743 retval += bus_print_child_header(dev, child); 3744 retval += printf("\n"); 3745 3746 return (retval); 3747 } 3748 3749 static int 3750 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg, 3751 void **cookiep) 3752 { 3753 /* 3754 * If an interrupt mapping gets to here something bad has happened. 3755 */ 3756 panic("root_setup_intr"); 3757 } 3758 3759 /* 3760 * If we get here, assume that the device is permanant and really is 3761 * present in the system. Removable bus drivers are expected to intercept 3762 * this call long before it gets here. We return -1 so that drivers that 3763 * really care can check vs -1 or some ERRNO returned higher in the food 3764 * chain. 3765 */ 3766 static int 3767 root_child_present(device_t dev, device_t child) 3768 { 3769 return (-1); 3770 } 3771 3772 static kobj_method_t root_methods[] = { 3773 /* Device interface */ 3774 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 3775 KOBJMETHOD(device_suspend, bus_generic_suspend), 3776 KOBJMETHOD(device_resume, root_resume), 3777 3778 /* Bus interface */ 3779 KOBJMETHOD(bus_print_child, root_print_child), 3780 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 3781 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 3782 KOBJMETHOD(bus_setup_intr, root_setup_intr), 3783 KOBJMETHOD(bus_child_present, root_child_present), 3784 3785 { 0, 0 } 3786 }; 3787 3788 static driver_t root_driver = { 3789 "root", 3790 root_methods, 3791 1, /* no softc */ 3792 }; 3793 3794 device_t root_bus; 3795 devclass_t root_devclass; 3796 3797 static int 3798 root_bus_module_handler(module_t mod, int what, void* arg) 3799 { 3800 switch (what) { 3801 case MOD_LOAD: 3802 TAILQ_INIT(&bus_data_devices); 3803 kobj_class_compile((kobj_class_t) &root_driver); 3804 root_bus = make_device(NULL, "root", 0); 3805 root_bus->desc = "System root bus"; 3806 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 3807 root_bus->driver = &root_driver; 3808 root_bus->state = DS_ATTACHED; 3809 root_devclass = devclass_find_internal("root", NULL, FALSE); 3810 devinit(); 3811 return (0); 3812 3813 case MOD_SHUTDOWN: 3814 device_shutdown(root_bus); 3815 return (0); 3816 default: 3817 return (EOPNOTSUPP); 3818 } 3819 3820 return (0); 3821 } 3822 3823 static moduledata_t root_bus_mod = { 3824 "rootbus", 3825 root_bus_module_handler, 3826 0 3827 }; 3828 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 3829 3830 /** 3831 * @brief Automatically configure devices 3832 * 3833 * This function begins the autoconfiguration process by calling 3834 * device_probe_and_attach() for each child of the @c root0 device. 3835 */ 3836 void 3837 root_bus_configure(void) 3838 { 3839 device_t dev; 3840 3841 PDEBUG((".")); 3842 3843 TAILQ_FOREACH(dev, &root_bus->children, link) { 3844 device_probe_and_attach(dev); 3845 } 3846 } 3847 3848 /** 3849 * @brief Module handler for registering device drivers 3850 * 3851 * This module handler is used to automatically register device 3852 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 3853 * devclass_add_driver() for the driver described by the 3854 * driver_module_data structure pointed to by @p arg 3855 */ 3856 int 3857 driver_module_handler(module_t mod, int what, void *arg) 3858 { 3859 int error; 3860 struct driver_module_data *dmd; 3861 devclass_t bus_devclass; 3862 kobj_class_t driver; 3863 3864 dmd = (struct driver_module_data *)arg; 3865 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 3866 error = 0; 3867 3868 switch (what) { 3869 case MOD_LOAD: 3870 if (dmd->dmd_chainevh) 3871 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3872 3873 driver = dmd->dmd_driver; 3874 PDEBUG(("Loading module: driver %s on bus %s", 3875 DRIVERNAME(driver), dmd->dmd_busname)); 3876 error = devclass_add_driver(bus_devclass, driver); 3877 if (error) 3878 break; 3879 3880 /* 3881 * If the driver has any base classes, make the 3882 * devclass inherit from the devclass of the driver's 3883 * first base class. This will allow the system to 3884 * search for drivers in both devclasses for children 3885 * of a device using this driver. 3886 */ 3887 if (driver->baseclasses) { 3888 const char *parentname; 3889 parentname = driver->baseclasses[0]->name; 3890 *dmd->dmd_devclass = 3891 devclass_find_internal(driver->name, 3892 parentname, TRUE); 3893 } else { 3894 *dmd->dmd_devclass = 3895 devclass_find_internal(driver->name, NULL, TRUE); 3896 } 3897 break; 3898 3899 case MOD_UNLOAD: 3900 PDEBUG(("Unloading module: driver %s from bus %s", 3901 DRIVERNAME(dmd->dmd_driver), 3902 dmd->dmd_busname)); 3903 error = devclass_delete_driver(bus_devclass, 3904 dmd->dmd_driver); 3905 3906 if (!error && dmd->dmd_chainevh) 3907 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3908 break; 3909 case MOD_QUIESCE: 3910 PDEBUG(("Quiesce module: driver %s from bus %s", 3911 DRIVERNAME(dmd->dmd_driver), 3912 dmd->dmd_busname)); 3913 error = devclass_quiesce_driver(bus_devclass, 3914 dmd->dmd_driver); 3915 3916 if (!error && dmd->dmd_chainevh) 3917 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3918 break; 3919 default: 3920 error = EOPNOTSUPP; 3921 break; 3922 } 3923 3924 return (error); 3925 } 3926 3927 /** 3928 * @brief Enumerate all hinted devices for this bus. 3929 * 3930 * Walks through the hints for this bus and calls the bus_hinted_child 3931 * routine for each one it fines. It searches first for the specific 3932 * bus that's being probed for hinted children (eg isa0), and then for 3933 * generic children (eg isa). 3934 * 3935 * @param dev bus device to enumerate 3936 */ 3937 void 3938 bus_enumerate_hinted_children(device_t bus) 3939 { 3940 int i; 3941 const char *dname, *busname; 3942 int dunit; 3943 3944 /* 3945 * enumerate all devices on the specific bus 3946 */ 3947 busname = device_get_nameunit(bus); 3948 i = 0; 3949 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 3950 BUS_HINTED_CHILD(bus, dname, dunit); 3951 3952 /* 3953 * and all the generic ones. 3954 */ 3955 busname = device_get_name(bus); 3956 i = 0; 3957 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 3958 BUS_HINTED_CHILD(bus, dname, dunit); 3959 } 3960 3961 #ifdef BUS_DEBUG 3962 3963 /* the _short versions avoid iteration by not calling anything that prints 3964 * more than oneliners. I love oneliners. 3965 */ 3966 3967 static void 3968 print_device_short(device_t dev, int indent) 3969 { 3970 if (!dev) 3971 return; 3972 3973 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 3974 dev->unit, dev->desc, 3975 (dev->parent? "":"no "), 3976 (TAILQ_EMPTY(&dev->children)? "no ":""), 3977 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 3978 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 3979 (dev->flags&DF_WILDCARD? "wildcard,":""), 3980 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 3981 (dev->flags&DF_REBID? "rebiddable,":""), 3982 (dev->ivars? "":"no "), 3983 (dev->softc? "":"no "), 3984 dev->busy)); 3985 } 3986 3987 static void 3988 print_device(device_t dev, int indent) 3989 { 3990 if (!dev) 3991 return; 3992 3993 print_device_short(dev, indent); 3994 3995 indentprintf(("Parent:\n")); 3996 print_device_short(dev->parent, indent+1); 3997 indentprintf(("Driver:\n")); 3998 print_driver_short(dev->driver, indent+1); 3999 indentprintf(("Devclass:\n")); 4000 print_devclass_short(dev->devclass, indent+1); 4001 } 4002 4003 void 4004 print_device_tree_short(device_t dev, int indent) 4005 /* print the device and all its children (indented) */ 4006 { 4007 device_t child; 4008 4009 if (!dev) 4010 return; 4011 4012 print_device_short(dev, indent); 4013 4014 TAILQ_FOREACH(child, &dev->children, link) { 4015 print_device_tree_short(child, indent+1); 4016 } 4017 } 4018 4019 void 4020 print_device_tree(device_t dev, int indent) 4021 /* print the device and all its children (indented) */ 4022 { 4023 device_t child; 4024 4025 if (!dev) 4026 return; 4027 4028 print_device(dev, indent); 4029 4030 TAILQ_FOREACH(child, &dev->children, link) { 4031 print_device_tree(child, indent+1); 4032 } 4033 } 4034 4035 static void 4036 print_driver_short(driver_t *driver, int indent) 4037 { 4038 if (!driver) 4039 return; 4040 4041 indentprintf(("driver %s: softc size = %zd\n", 4042 driver->name, driver->size)); 4043 } 4044 4045 static void 4046 print_driver(driver_t *driver, int indent) 4047 { 4048 if (!driver) 4049 return; 4050 4051 print_driver_short(driver, indent); 4052 } 4053 4054 4055 static void 4056 print_driver_list(driver_list_t drivers, int indent) 4057 { 4058 driverlink_t driver; 4059 4060 TAILQ_FOREACH(driver, &drivers, link) { 4061 print_driver(driver->driver, indent); 4062 } 4063 } 4064 4065 static void 4066 print_devclass_short(devclass_t dc, int indent) 4067 { 4068 if ( !dc ) 4069 return; 4070 4071 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4072 } 4073 4074 static void 4075 print_devclass(devclass_t dc, int indent) 4076 { 4077 int i; 4078 4079 if ( !dc ) 4080 return; 4081 4082 print_devclass_short(dc, indent); 4083 indentprintf(("Drivers:\n")); 4084 print_driver_list(dc->drivers, indent+1); 4085 4086 indentprintf(("Devices:\n")); 4087 for (i = 0; i < dc->maxunit; i++) 4088 if (dc->devices[i]) 4089 print_device(dc->devices[i], indent+1); 4090 } 4091 4092 void 4093 print_devclass_list_short(void) 4094 { 4095 devclass_t dc; 4096 4097 printf("Short listing of devclasses, drivers & devices:\n"); 4098 TAILQ_FOREACH(dc, &devclasses, link) { 4099 print_devclass_short(dc, 0); 4100 } 4101 } 4102 4103 void 4104 print_devclass_list(void) 4105 { 4106 devclass_t dc; 4107 4108 printf("Full listing of devclasses, drivers & devices:\n"); 4109 TAILQ_FOREACH(dc, &devclasses, link) { 4110 print_devclass(dc, 0); 4111 } 4112 } 4113 4114 #endif 4115 4116 /* 4117 * User-space access to the device tree. 4118 * 4119 * We implement a small set of nodes: 4120 * 4121 * hw.bus Single integer read method to obtain the 4122 * current generation count. 4123 * hw.bus.devices Reads the entire device tree in flat space. 4124 * hw.bus.rman Resource manager interface 4125 * 4126 * We might like to add the ability to scan devclasses and/or drivers to 4127 * determine what else is currently loaded/available. 4128 */ 4129 4130 static int 4131 sysctl_bus(SYSCTL_HANDLER_ARGS) 4132 { 4133 struct u_businfo ubus; 4134 4135 ubus.ub_version = BUS_USER_VERSION; 4136 ubus.ub_generation = bus_data_generation; 4137 4138 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4139 } 4140 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4141 "bus-related data"); 4142 4143 static int 4144 sysctl_devices(SYSCTL_HANDLER_ARGS) 4145 { 4146 int *name = (int *)arg1; 4147 u_int namelen = arg2; 4148 int index; 4149 struct device *dev; 4150 struct u_device udev; /* XXX this is a bit big */ 4151 int error; 4152 4153 if (namelen != 2) 4154 return (EINVAL); 4155 4156 if (bus_data_generation_check(name[0])) 4157 return (EINVAL); 4158 4159 index = name[1]; 4160 4161 /* 4162 * Scan the list of devices, looking for the requested index. 4163 */ 4164 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 4165 if (index-- == 0) 4166 break; 4167 } 4168 if (dev == NULL) 4169 return (ENOENT); 4170 4171 /* 4172 * Populate the return array. 4173 */ 4174 bzero(&udev, sizeof(udev)); 4175 udev.dv_handle = (uintptr_t)dev; 4176 udev.dv_parent = (uintptr_t)dev->parent; 4177 if (dev->nameunit != NULL) 4178 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 4179 if (dev->desc != NULL) 4180 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 4181 if (dev->driver != NULL && dev->driver->name != NULL) 4182 strlcpy(udev.dv_drivername, dev->driver->name, 4183 sizeof(udev.dv_drivername)); 4184 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 4185 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 4186 udev.dv_devflags = dev->devflags; 4187 udev.dv_flags = dev->flags; 4188 udev.dv_state = dev->state; 4189 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 4190 return (error); 4191 } 4192 4193 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 4194 "system device tree"); 4195 4196 int 4197 bus_data_generation_check(int generation) 4198 { 4199 if (generation != bus_data_generation) 4200 return (1); 4201 4202 /* XXX generate optimised lists here? */ 4203 return (0); 4204 } 4205 4206 void 4207 bus_data_generation_update(void) 4208 { 4209 bus_data_generation++; 4210 } 4211 4212 int 4213 bus_free_resource(device_t dev, int type, struct resource *r) 4214 { 4215 if (r == NULL) 4216 return (0); 4217 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 4218 } 4219