1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #define __RMAN_RESOURCE_VISIBLE 33 #include <sys/param.h> 34 #include <sys/conf.h> 35 #include <sys/filio.h> 36 #include <sys/lock.h> 37 #include <sys/kernel.h> 38 #include <sys/kobj.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/mutex.h> 42 #include <sys/poll.h> 43 #include <sys/proc.h> 44 #include <sys/condvar.h> 45 #include <sys/queue.h> 46 #include <machine/bus.h> 47 #include <sys/rman.h> 48 #include <sys/selinfo.h> 49 #include <sys/signalvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/systm.h> 52 #include <sys/uio.h> 53 #include <sys/bus.h> 54 55 #include <machine/stdarg.h> 56 57 #include <vm/uma.h> 58 59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 61 62 /* 63 * Used to attach drivers to devclasses. 64 */ 65 typedef struct driverlink *driverlink_t; 66 struct driverlink { 67 kobj_class_t driver; 68 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 69 }; 70 71 /* 72 * Forward declarations 73 */ 74 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 75 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 76 typedef TAILQ_HEAD(device_list, device) device_list_t; 77 78 struct devclass { 79 TAILQ_ENTRY(devclass) link; 80 devclass_t parent; /* parent in devclass hierarchy */ 81 driver_list_t drivers; /* bus devclasses store drivers for bus */ 82 char *name; 83 device_t *devices; /* array of devices indexed by unit */ 84 int maxunit; /* size of devices array */ 85 86 struct sysctl_ctx_list sysctl_ctx; 87 struct sysctl_oid *sysctl_tree; 88 }; 89 90 /** 91 * @brief Implementation of device. 92 */ 93 struct device { 94 /* 95 * A device is a kernel object. The first field must be the 96 * current ops table for the object. 97 */ 98 KOBJ_FIELDS; 99 100 /* 101 * Device hierarchy. 102 */ 103 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 104 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 105 device_t parent; /**< parent of this device */ 106 device_list_t children; /**< list of child devices */ 107 108 /* 109 * Details of this device. 110 */ 111 driver_t *driver; /**< current driver */ 112 devclass_t devclass; /**< current device class */ 113 int unit; /**< current unit number */ 114 char* nameunit; /**< name+unit e.g. foodev0 */ 115 char* desc; /**< driver specific description */ 116 int busy; /**< count of calls to device_busy() */ 117 device_state_t state; /**< current device state */ 118 u_int32_t devflags; /**< api level flags for device_get_flags() */ 119 u_short flags; /**< internal device flags */ 120 #define DF_ENABLED 1 /* device should be probed/attached */ 121 #define DF_FIXEDCLASS 2 /* devclass specified at create time */ 122 #define DF_WILDCARD 4 /* unit was originally wildcard */ 123 #define DF_DESCMALLOCED 8 /* description was malloced */ 124 #define DF_QUIET 16 /* don't print verbose attach message */ 125 #define DF_DONENOMATCH 32 /* don't execute DEVICE_NOMATCH again */ 126 #define DF_EXTERNALSOFTC 64 /* softc not allocated by us */ 127 #define DF_REBID 128 /* Can rebid after attach */ 128 u_char order; /**< order from device_add_child_ordered() */ 129 u_char pad; 130 void *ivars; /**< instance variables */ 131 void *softc; /**< current driver's variables */ 132 133 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 134 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 135 }; 136 137 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 138 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 139 140 #ifdef BUS_DEBUG 141 142 static int bus_debug = 1; 143 TUNABLE_INT("bus.debug", &bus_debug); 144 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0, 145 "Debug bus code"); 146 147 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 148 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 149 #define DRIVERNAME(d) ((d)? d->name : "no driver") 150 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 151 152 /** 153 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 154 * prevent syslog from deleting initial spaces 155 */ 156 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 157 158 static void print_device_short(device_t dev, int indent); 159 static void print_device(device_t dev, int indent); 160 void print_device_tree_short(device_t dev, int indent); 161 void print_device_tree(device_t dev, int indent); 162 static void print_driver_short(driver_t *driver, int indent); 163 static void print_driver(driver_t *driver, int indent); 164 static void print_driver_list(driver_list_t drivers, int indent); 165 static void print_devclass_short(devclass_t dc, int indent); 166 static void print_devclass(devclass_t dc, int indent); 167 void print_devclass_list_short(void); 168 void print_devclass_list(void); 169 170 #else 171 /* Make the compiler ignore the function calls */ 172 #define PDEBUG(a) /* nop */ 173 #define DEVICENAME(d) /* nop */ 174 #define DRIVERNAME(d) /* nop */ 175 #define DEVCLANAME(d) /* nop */ 176 177 #define print_device_short(d,i) /* nop */ 178 #define print_device(d,i) /* nop */ 179 #define print_device_tree_short(d,i) /* nop */ 180 #define print_device_tree(d,i) /* nop */ 181 #define print_driver_short(d,i) /* nop */ 182 #define print_driver(d,i) /* nop */ 183 #define print_driver_list(d,i) /* nop */ 184 #define print_devclass_short(d,i) /* nop */ 185 #define print_devclass(d,i) /* nop */ 186 #define print_devclass_list_short() /* nop */ 187 #define print_devclass_list() /* nop */ 188 #endif 189 190 /* 191 * dev sysctl tree 192 */ 193 194 enum { 195 DEVCLASS_SYSCTL_PARENT, 196 }; 197 198 static int 199 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 200 { 201 devclass_t dc = (devclass_t)arg1; 202 const char *value; 203 char *buf; 204 int error; 205 206 buf = NULL; 207 switch (arg2) { 208 case DEVCLASS_SYSCTL_PARENT: 209 value = dc->parent ? dc->parent->name : ""; 210 break; 211 default: 212 return (EINVAL); 213 } 214 error = SYSCTL_OUT(req, value, strlen(value)); 215 if (buf != NULL) 216 free(buf, M_BUS); 217 return (error); 218 } 219 220 static void 221 devclass_sysctl_init(devclass_t dc) 222 { 223 224 if (dc->sysctl_tree != NULL) 225 return; 226 sysctl_ctx_init(&dc->sysctl_ctx); 227 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 228 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 229 CTLFLAG_RD, 0, ""); 230 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 231 OID_AUTO, "%parent", CTLFLAG_RD, 232 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 233 "parent class"); 234 } 235 236 enum { 237 DEVICE_SYSCTL_DESC, 238 DEVICE_SYSCTL_DRIVER, 239 DEVICE_SYSCTL_LOCATION, 240 DEVICE_SYSCTL_PNPINFO, 241 DEVICE_SYSCTL_PARENT, 242 }; 243 244 static int 245 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 246 { 247 device_t dev = (device_t)arg1; 248 const char *value; 249 char *buf; 250 int error; 251 252 buf = NULL; 253 switch (arg2) { 254 case DEVICE_SYSCTL_DESC: 255 value = dev->desc ? dev->desc : ""; 256 break; 257 case DEVICE_SYSCTL_DRIVER: 258 value = dev->driver ? dev->driver->name : ""; 259 break; 260 case DEVICE_SYSCTL_LOCATION: 261 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 262 bus_child_location_str(dev, buf, 1024); 263 break; 264 case DEVICE_SYSCTL_PNPINFO: 265 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 266 bus_child_pnpinfo_str(dev, buf, 1024); 267 break; 268 case DEVICE_SYSCTL_PARENT: 269 value = dev->parent ? dev->parent->nameunit : ""; 270 break; 271 default: 272 return (EINVAL); 273 } 274 error = SYSCTL_OUT(req, value, strlen(value)); 275 if (buf != NULL) 276 free(buf, M_BUS); 277 return (error); 278 } 279 280 static void 281 device_sysctl_init(device_t dev) 282 { 283 devclass_t dc = dev->devclass; 284 285 if (dev->sysctl_tree != NULL) 286 return; 287 devclass_sysctl_init(dc); 288 sysctl_ctx_init(&dev->sysctl_ctx); 289 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 290 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 291 dev->nameunit + strlen(dc->name), 292 CTLFLAG_RD, 0, ""); 293 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 294 OID_AUTO, "%desc", CTLFLAG_RD, 295 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 296 "device description"); 297 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 298 OID_AUTO, "%driver", CTLFLAG_RD, 299 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 300 "device driver name"); 301 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 302 OID_AUTO, "%location", CTLFLAG_RD, 303 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 304 "device location relative to parent"); 305 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 306 OID_AUTO, "%pnpinfo", CTLFLAG_RD, 307 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 308 "device identification"); 309 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 310 OID_AUTO, "%parent", CTLFLAG_RD, 311 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 312 "parent device"); 313 } 314 315 static void 316 device_sysctl_fini(device_t dev) 317 { 318 if (dev->sysctl_tree == NULL) 319 return; 320 sysctl_ctx_free(&dev->sysctl_ctx); 321 dev->sysctl_tree = NULL; 322 } 323 324 /* 325 * /dev/devctl implementation 326 */ 327 328 /* 329 * This design allows only one reader for /dev/devctl. This is not desirable 330 * in the long run, but will get a lot of hair out of this implementation. 331 * Maybe we should make this device a clonable device. 332 * 333 * Also note: we specifically do not attach a device to the device_t tree 334 * to avoid potential chicken and egg problems. One could argue that all 335 * of this belongs to the root node. One could also further argue that the 336 * sysctl interface that we have not might more properly be an ioctl 337 * interface, but at this stage of the game, I'm not inclined to rock that 338 * boat. 339 * 340 * I'm also not sure that the SIGIO support is done correctly or not, as 341 * I copied it from a driver that had SIGIO support that likely hasn't been 342 * tested since 3.4 or 2.2.8! 343 */ 344 345 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 346 static int devctl_disable = 0; 347 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable); 348 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 349 sysctl_devctl_disable, "I", "devctl disable"); 350 351 static d_open_t devopen; 352 static d_close_t devclose; 353 static d_read_t devread; 354 static d_ioctl_t devioctl; 355 static d_poll_t devpoll; 356 357 #define CDEV_MAJOR 173 358 static struct cdevsw dev_cdevsw = { 359 .d_version = D_VERSION, 360 .d_flags = D_NEEDGIANT, 361 .d_open = devopen, 362 .d_close = devclose, 363 .d_read = devread, 364 .d_ioctl = devioctl, 365 .d_poll = devpoll, 366 .d_name = "devctl", 367 .d_maj = CDEV_MAJOR, 368 }; 369 370 struct dev_event_info 371 { 372 char *dei_data; 373 TAILQ_ENTRY(dev_event_info) dei_link; 374 }; 375 376 TAILQ_HEAD(devq, dev_event_info); 377 378 static struct dev_softc 379 { 380 int inuse; 381 int nonblock; 382 struct mtx mtx; 383 struct cv cv; 384 struct selinfo sel; 385 struct devq devq; 386 struct proc *async_proc; 387 } devsoftc; 388 389 static struct cdev *devctl_dev; 390 391 static void 392 devinit(void) 393 { 394 devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, 395 "devctl"); 396 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 397 cv_init(&devsoftc.cv, "dev cv"); 398 TAILQ_INIT(&devsoftc.devq); 399 } 400 401 static int 402 devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td) 403 { 404 if (devsoftc.inuse) 405 return (EBUSY); 406 /* move to init */ 407 devsoftc.inuse = 1; 408 devsoftc.nonblock = 0; 409 devsoftc.async_proc = NULL; 410 return (0); 411 } 412 413 static int 414 devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td) 415 { 416 devsoftc.inuse = 0; 417 mtx_lock(&devsoftc.mtx); 418 cv_broadcast(&devsoftc.cv); 419 mtx_unlock(&devsoftc.mtx); 420 421 return (0); 422 } 423 424 /* 425 * The read channel for this device is used to report changes to 426 * userland in realtime. We are required to free the data as well as 427 * the n1 object because we allocate them separately. Also note that 428 * we return one record at a time. If you try to read this device a 429 * character at a time, you will loose the rest of the data. Listening 430 * programs are expected to cope. 431 */ 432 static int 433 devread(struct cdev *dev, struct uio *uio, int ioflag) 434 { 435 struct dev_event_info *n1; 436 int rv; 437 438 mtx_lock(&devsoftc.mtx); 439 while (TAILQ_EMPTY(&devsoftc.devq)) { 440 if (devsoftc.nonblock) { 441 mtx_unlock(&devsoftc.mtx); 442 return (EAGAIN); 443 } 444 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 445 if (rv) { 446 /* 447 * Need to translate ERESTART to EINTR here? -- jake 448 */ 449 mtx_unlock(&devsoftc.mtx); 450 return (rv); 451 } 452 } 453 n1 = TAILQ_FIRST(&devsoftc.devq); 454 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 455 mtx_unlock(&devsoftc.mtx); 456 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 457 free(n1->dei_data, M_BUS); 458 free(n1, M_BUS); 459 return (rv); 460 } 461 462 static int 463 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td) 464 { 465 switch (cmd) { 466 467 case FIONBIO: 468 if (*(int*)data) 469 devsoftc.nonblock = 1; 470 else 471 devsoftc.nonblock = 0; 472 return (0); 473 case FIOASYNC: 474 if (*(int*)data) 475 devsoftc.async_proc = td->td_proc; 476 else 477 devsoftc.async_proc = NULL; 478 return (0); 479 480 /* (un)Support for other fcntl() calls. */ 481 case FIOCLEX: 482 case FIONCLEX: 483 case FIONREAD: 484 case FIOSETOWN: 485 case FIOGETOWN: 486 default: 487 break; 488 } 489 return (ENOTTY); 490 } 491 492 static int 493 devpoll(struct cdev *dev, int events, d_thread_t *td) 494 { 495 int revents = 0; 496 497 mtx_lock(&devsoftc.mtx); 498 if (events & (POLLIN | POLLRDNORM)) { 499 if (!TAILQ_EMPTY(&devsoftc.devq)) 500 revents = events & (POLLIN | POLLRDNORM); 501 else 502 selrecord(td, &devsoftc.sel); 503 } 504 mtx_unlock(&devsoftc.mtx); 505 506 return (revents); 507 } 508 509 /** 510 * @brief Queue data to be read from the devctl device 511 * 512 * Generic interface to queue data to the devctl device. It is 513 * assumed that @p data is properly formatted. It is further assumed 514 * that @p data is allocated using the M_BUS malloc type. 515 */ 516 void 517 devctl_queue_data(char *data) 518 { 519 struct dev_event_info *n1 = NULL; 520 struct proc *p; 521 522 n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT); 523 if (n1 == NULL) 524 return; 525 n1->dei_data = data; 526 mtx_lock(&devsoftc.mtx); 527 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 528 cv_broadcast(&devsoftc.cv); 529 mtx_unlock(&devsoftc.mtx); 530 selwakeup(&devsoftc.sel); 531 p = devsoftc.async_proc; 532 if (p != NULL) { 533 PROC_LOCK(p); 534 psignal(p, SIGIO); 535 PROC_UNLOCK(p); 536 } 537 } 538 539 /** 540 * @brief Send a 'notification' to userland, using standard ways 541 */ 542 void 543 devctl_notify(const char *system, const char *subsystem, const char *type, 544 const char *data) 545 { 546 int len = 0; 547 char *msg; 548 549 if (system == NULL) 550 return; /* BOGUS! Must specify system. */ 551 if (subsystem == NULL) 552 return; /* BOGUS! Must specify subsystem. */ 553 if (type == NULL) 554 return; /* BOGUS! Must specify type. */ 555 len += strlen(" system=") + strlen(system); 556 len += strlen(" subsystem=") + strlen(subsystem); 557 len += strlen(" type=") + strlen(type); 558 /* add in the data message plus newline. */ 559 if (data != NULL) 560 len += strlen(data); 561 len += 3; /* '!', '\n', and NUL */ 562 msg = malloc(len, M_BUS, M_NOWAIT); 563 if (msg == NULL) 564 return; /* Drop it on the floor */ 565 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", system, 566 subsystem, type, data); 567 devctl_queue_data(msg); 568 } 569 570 /* 571 * Common routine that tries to make sending messages as easy as possible. 572 * We allocate memory for the data, copy strings into that, but do not 573 * free it unless there's an error. The dequeue part of the driver should 574 * free the data. We don't send data when the device is disabled. We do 575 * send data, even when we have no listeners, because we wish to avoid 576 * races relating to startup and restart of listening applications. 577 * 578 * devaddq is designed to string together the type of event, with the 579 * object of that event, plus the plug and play info and location info 580 * for that event. This is likely most useful for devices, but less 581 * useful for other consumers of this interface. Those should use 582 * the devctl_queue_data() interface instead. 583 */ 584 static void 585 devaddq(const char *type, const char *what, device_t dev) 586 { 587 char *data = NULL; 588 char *loc = NULL; 589 char *pnp = NULL; 590 const char *parstr; 591 592 if (devctl_disable) 593 return; 594 data = malloc(1024, M_BUS, M_NOWAIT); 595 if (data == NULL) 596 goto bad; 597 598 /* get the bus specific location of this device */ 599 loc = malloc(1024, M_BUS, M_NOWAIT); 600 if (loc == NULL) 601 goto bad; 602 *loc = '\0'; 603 bus_child_location_str(dev, loc, 1024); 604 605 /* Get the bus specific pnp info of this device */ 606 pnp = malloc(1024, M_BUS, M_NOWAIT); 607 if (pnp == NULL) 608 goto bad; 609 *pnp = '\0'; 610 bus_child_pnpinfo_str(dev, pnp, 1024); 611 612 /* Get the parent of this device, or / if high enough in the tree. */ 613 if (device_get_parent(dev) == NULL) 614 parstr = "."; /* Or '/' ? */ 615 else 616 parstr = device_get_nameunit(device_get_parent(dev)); 617 /* String it all together. */ 618 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 619 parstr); 620 free(loc, M_BUS); 621 free(pnp, M_BUS); 622 devctl_queue_data(data); 623 return; 624 bad: 625 free(pnp, M_BUS); 626 free(loc, M_BUS); 627 free(data, M_BUS); 628 return; 629 } 630 631 /* 632 * A device was added to the tree. We are called just after it successfully 633 * attaches (that is, probe and attach success for this device). No call 634 * is made if a device is merely parented into the tree. See devnomatch 635 * if probe fails. If attach fails, no notification is sent (but maybe 636 * we should have a different message for this). 637 */ 638 static void 639 devadded(device_t dev) 640 { 641 char *pnp = NULL; 642 char *tmp = NULL; 643 644 pnp = malloc(1024, M_BUS, M_NOWAIT); 645 if (pnp == NULL) 646 goto fail; 647 tmp = malloc(1024, M_BUS, M_NOWAIT); 648 if (tmp == NULL) 649 goto fail; 650 *pnp = '\0'; 651 bus_child_pnpinfo_str(dev, pnp, 1024); 652 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 653 devaddq("+", tmp, dev); 654 fail: 655 if (pnp != NULL) 656 free(pnp, M_BUS); 657 if (tmp != NULL) 658 free(tmp, M_BUS); 659 return; 660 } 661 662 /* 663 * A device was removed from the tree. We are called just before this 664 * happens. 665 */ 666 static void 667 devremoved(device_t dev) 668 { 669 char *pnp = NULL; 670 char *tmp = NULL; 671 672 pnp = malloc(1024, M_BUS, M_NOWAIT); 673 if (pnp == NULL) 674 goto fail; 675 tmp = malloc(1024, M_BUS, M_NOWAIT); 676 if (tmp == NULL) 677 goto fail; 678 *pnp = '\0'; 679 bus_child_pnpinfo_str(dev, pnp, 1024); 680 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 681 devaddq("-", tmp, dev); 682 fail: 683 if (pnp != NULL) 684 free(pnp, M_BUS); 685 if (tmp != NULL) 686 free(tmp, M_BUS); 687 return; 688 } 689 690 /* 691 * Called when there's no match for this device. This is only called 692 * the first time that no match happens, so we don't keep getitng this 693 * message. Should that prove to be undesirable, we can change it. 694 * This is called when all drivers that can attach to a given bus 695 * decline to accept this device. Other errrors may not be detected. 696 */ 697 static void 698 devnomatch(device_t dev) 699 { 700 devaddq("?", "", dev); 701 } 702 703 static int 704 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 705 { 706 struct dev_event_info *n1; 707 int dis, error; 708 709 dis = devctl_disable; 710 error = sysctl_handle_int(oidp, &dis, 0, req); 711 if (error || !req->newptr) 712 return (error); 713 mtx_lock(&devsoftc.mtx); 714 devctl_disable = dis; 715 if (dis) { 716 while (!TAILQ_EMPTY(&devsoftc.devq)) { 717 n1 = TAILQ_FIRST(&devsoftc.devq); 718 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 719 free(n1->dei_data, M_BUS); 720 free(n1, M_BUS); 721 } 722 } 723 mtx_unlock(&devsoftc.mtx); 724 return (0); 725 } 726 727 /* End of /dev/devctl code */ 728 729 TAILQ_HEAD(,device) bus_data_devices; 730 static int bus_data_generation = 1; 731 732 kobj_method_t null_methods[] = { 733 { 0, 0 } 734 }; 735 736 DEFINE_CLASS(null, null_methods, 0); 737 738 /* 739 * Devclass implementation 740 */ 741 742 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 743 744 745 /** 746 * @internal 747 * @brief Find or create a device class 748 * 749 * If a device class with the name @p classname exists, return it, 750 * otherwise if @p create is non-zero create and return a new device 751 * class. 752 * 753 * If @p parentname is non-NULL, the parent of the devclass is set to 754 * the devclass of that name. 755 * 756 * @param classname the devclass name to find or create 757 * @param parentname the parent devclass name or @c NULL 758 * @param create non-zero to create a devclass 759 */ 760 static devclass_t 761 devclass_find_internal(const char *classname, const char *parentname, 762 int create) 763 { 764 devclass_t dc; 765 766 PDEBUG(("looking for %s", classname)); 767 if (!classname) 768 return (NULL); 769 770 TAILQ_FOREACH(dc, &devclasses, link) { 771 if (!strcmp(dc->name, classname)) 772 break; 773 } 774 775 if (create && !dc) { 776 PDEBUG(("creating %s", classname)); 777 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 778 M_BUS, M_NOWAIT|M_ZERO); 779 if (!dc) 780 return (NULL); 781 dc->parent = NULL; 782 dc->name = (char*) (dc + 1); 783 strcpy(dc->name, classname); 784 TAILQ_INIT(&dc->drivers); 785 TAILQ_INSERT_TAIL(&devclasses, dc, link); 786 787 bus_data_generation_update(); 788 } 789 if (parentname && dc && !dc->parent) { 790 dc->parent = devclass_find_internal(parentname, 0, FALSE); 791 } 792 793 return (dc); 794 } 795 796 /** 797 * @brief Create a device class 798 * 799 * If a device class with the name @p classname exists, return it, 800 * otherwise create and return a new device class. 801 * 802 * @param classname the devclass name to find or create 803 */ 804 devclass_t 805 devclass_create(const char *classname) 806 { 807 return (devclass_find_internal(classname, 0, TRUE)); 808 } 809 810 /** 811 * @brief Find a device class 812 * 813 * If a device class with the name @p classname exists, return it, 814 * otherwise return @c NULL. 815 * 816 * @param classname the devclass name to find 817 */ 818 devclass_t 819 devclass_find(const char *classname) 820 { 821 return (devclass_find_internal(classname, 0, FALSE)); 822 } 823 824 /** 825 * @brief Add a device driver to a device class 826 * 827 * Add a device driver to a devclass. This is normally called 828 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 829 * all devices in the devclass will be called to allow them to attempt 830 * to re-probe any unmatched children. 831 * 832 * @param dc the devclass to edit 833 * @param driver the driver to register 834 */ 835 int 836 devclass_add_driver(devclass_t dc, driver_t *driver) 837 { 838 driverlink_t dl; 839 int i; 840 841 PDEBUG(("%s", DRIVERNAME(driver))); 842 843 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 844 if (!dl) 845 return (ENOMEM); 846 847 /* 848 * Compile the driver's methods. Also increase the reference count 849 * so that the class doesn't get freed when the last instance 850 * goes. This means we can safely use static methods and avoids a 851 * double-free in devclass_delete_driver. 852 */ 853 kobj_class_compile((kobj_class_t) driver); 854 855 /* 856 * Make sure the devclass which the driver is implementing exists. 857 */ 858 devclass_find_internal(driver->name, 0, TRUE); 859 860 dl->driver = driver; 861 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 862 driver->refs++; 863 864 /* 865 * Call BUS_DRIVER_ADDED for any existing busses in this class. 866 */ 867 for (i = 0; i < dc->maxunit; i++) 868 if (dc->devices[i]) 869 BUS_DRIVER_ADDED(dc->devices[i], driver); 870 871 bus_data_generation_update(); 872 return (0); 873 } 874 875 /** 876 * @brief Delete a device driver from a device class 877 * 878 * Delete a device driver from a devclass. This is normally called 879 * automatically by DRIVER_MODULE(). 880 * 881 * If the driver is currently attached to any devices, 882 * devclass_delete_driver() will first attempt to detach from each 883 * device. If one of the detach calls fails, the driver will not be 884 * deleted. 885 * 886 * @param dc the devclass to edit 887 * @param driver the driver to unregister 888 */ 889 int 890 devclass_delete_driver(devclass_t busclass, driver_t *driver) 891 { 892 devclass_t dc = devclass_find(driver->name); 893 driverlink_t dl; 894 device_t dev; 895 int i; 896 int error; 897 898 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 899 900 if (!dc) 901 return (0); 902 903 /* 904 * Find the link structure in the bus' list of drivers. 905 */ 906 TAILQ_FOREACH(dl, &busclass->drivers, link) { 907 if (dl->driver == driver) 908 break; 909 } 910 911 if (!dl) { 912 PDEBUG(("%s not found in %s list", driver->name, 913 busclass->name)); 914 return (ENOENT); 915 } 916 917 /* 918 * Disassociate from any devices. We iterate through all the 919 * devices in the devclass of the driver and detach any which are 920 * using the driver and which have a parent in the devclass which 921 * we are deleting from. 922 * 923 * Note that since a driver can be in multiple devclasses, we 924 * should not detach devices which are not children of devices in 925 * the affected devclass. 926 */ 927 for (i = 0; i < dc->maxunit; i++) { 928 if (dc->devices[i]) { 929 dev = dc->devices[i]; 930 if (dev->driver == driver && dev->parent && 931 dev->parent->devclass == busclass) { 932 if ((error = device_detach(dev)) != 0) 933 return (error); 934 device_set_driver(dev, NULL); 935 } 936 } 937 } 938 939 TAILQ_REMOVE(&busclass->drivers, dl, link); 940 free(dl, M_BUS); 941 942 driver->refs--; 943 if (driver->refs == 0) 944 kobj_class_free((kobj_class_t) driver); 945 946 bus_data_generation_update(); 947 return (0); 948 } 949 950 /** 951 * @brief Quiesces a set of device drivers from a device class 952 * 953 * Quiesce a device driver from a devclass. This is normally called 954 * automatically by DRIVER_MODULE(). 955 * 956 * If the driver is currently attached to any devices, 957 * devclass_quiesece_driver() will first attempt to quiesce each 958 * device. 959 * 960 * @param dc the devclass to edit 961 * @param driver the driver to unregister 962 */ 963 int 964 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 965 { 966 devclass_t dc = devclass_find(driver->name); 967 driverlink_t dl; 968 device_t dev; 969 int i; 970 int error; 971 972 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 973 974 if (!dc) 975 return (0); 976 977 /* 978 * Find the link structure in the bus' list of drivers. 979 */ 980 TAILQ_FOREACH(dl, &busclass->drivers, link) { 981 if (dl->driver == driver) 982 break; 983 } 984 985 if (!dl) { 986 PDEBUG(("%s not found in %s list", driver->name, 987 busclass->name)); 988 return (ENOENT); 989 } 990 991 /* 992 * Quiesce all devices. We iterate through all the devices in 993 * the devclass of the driver and quiesce any which are using 994 * the driver and which have a parent in the devclass which we 995 * are quiescing. 996 * 997 * Note that since a driver can be in multiple devclasses, we 998 * should not quiesce devices which are not children of 999 * devices in the affected devclass. 1000 */ 1001 for (i = 0; i < dc->maxunit; i++) { 1002 if (dc->devices[i]) { 1003 dev = dc->devices[i]; 1004 if (dev->driver == driver && dev->parent && 1005 dev->parent->devclass == busclass) { 1006 if ((error = device_quiesce(dev)) != 0) 1007 return (error); 1008 } 1009 } 1010 } 1011 1012 return (0); 1013 } 1014 1015 /** 1016 * @internal 1017 */ 1018 static driverlink_t 1019 devclass_find_driver_internal(devclass_t dc, const char *classname) 1020 { 1021 driverlink_t dl; 1022 1023 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1024 1025 TAILQ_FOREACH(dl, &dc->drivers, link) { 1026 if (!strcmp(dl->driver->name, classname)) 1027 return (dl); 1028 } 1029 1030 PDEBUG(("not found")); 1031 return (NULL); 1032 } 1033 1034 /** 1035 * @brief Search a devclass for a driver 1036 * 1037 * This function searches the devclass's list of drivers and returns 1038 * the first driver whose name is @p classname or @c NULL if there is 1039 * no driver of that name. 1040 * 1041 * @param dc the devclass to search 1042 * @param classname the driver name to search for 1043 */ 1044 kobj_class_t 1045 devclass_find_driver(devclass_t dc, const char *classname) 1046 { 1047 driverlink_t dl; 1048 1049 dl = devclass_find_driver_internal(dc, classname); 1050 if (dl) 1051 return (dl->driver); 1052 return (NULL); 1053 } 1054 1055 /** 1056 * @brief Return the name of the devclass 1057 */ 1058 const char * 1059 devclass_get_name(devclass_t dc) 1060 { 1061 return (dc->name); 1062 } 1063 1064 /** 1065 * @brief Find a device given a unit number 1066 * 1067 * @param dc the devclass to search 1068 * @param unit the unit number to search for 1069 * 1070 * @returns the device with the given unit number or @c 1071 * NULL if there is no such device 1072 */ 1073 device_t 1074 devclass_get_device(devclass_t dc, int unit) 1075 { 1076 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1077 return (NULL); 1078 return (dc->devices[unit]); 1079 } 1080 1081 /** 1082 * @brief Find the softc field of a device given a unit number 1083 * 1084 * @param dc the devclass to search 1085 * @param unit the unit number to search for 1086 * 1087 * @returns the softc field of the device with the given 1088 * unit number or @c NULL if there is no such 1089 * device 1090 */ 1091 void * 1092 devclass_get_softc(devclass_t dc, int unit) 1093 { 1094 device_t dev; 1095 1096 dev = devclass_get_device(dc, unit); 1097 if (!dev) 1098 return (NULL); 1099 1100 return (device_get_softc(dev)); 1101 } 1102 1103 /** 1104 * @brief Get a list of devices in the devclass 1105 * 1106 * An array containing a list of all the devices in the given devclass 1107 * is allocated and returned in @p *devlistp. The number of devices 1108 * in the array is returned in @p *devcountp. The caller should free 1109 * the array using @c free(p, M_TEMP). 1110 * 1111 * @param dc the devclass to examine 1112 * @param devlistp points at location for array pointer return 1113 * value 1114 * @param devcountp points at location for array size return value 1115 * 1116 * @retval 0 success 1117 * @retval ENOMEM the array allocation failed 1118 */ 1119 int 1120 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1121 { 1122 int count, i; 1123 device_t *list; 1124 1125 count = devclass_get_count(dc); 1126 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1127 if (!list) 1128 return (ENOMEM); 1129 1130 count = 0; 1131 for (i = 0; i < dc->maxunit; i++) { 1132 if (dc->devices[i]) { 1133 list[count] = dc->devices[i]; 1134 count++; 1135 } 1136 } 1137 1138 *devlistp = list; 1139 *devcountp = count; 1140 1141 return (0); 1142 } 1143 1144 /** 1145 * @brief Get the number of devices in a devclass 1146 * 1147 * @param dc the devclass to examine 1148 */ 1149 int 1150 devclass_get_count(devclass_t dc) 1151 { 1152 int count, i; 1153 1154 count = 0; 1155 for (i = 0; i < dc->maxunit; i++) 1156 if (dc->devices[i]) 1157 count++; 1158 return (count); 1159 } 1160 1161 /** 1162 * @brief Get the maximum unit number used in a devclass 1163 * 1164 * @param dc the devclass to examine 1165 */ 1166 int 1167 devclass_get_maxunit(devclass_t dc) 1168 { 1169 return (dc->maxunit); 1170 } 1171 1172 /** 1173 * @brief Find a free unit number in a devclass 1174 * 1175 * This function searches for the first unused unit number greater 1176 * that or equal to @p unit. 1177 * 1178 * @param dc the devclass to examine 1179 * @param unit the first unit number to check 1180 */ 1181 int 1182 devclass_find_free_unit(devclass_t dc, int unit) 1183 { 1184 if (dc == NULL) 1185 return (unit); 1186 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1187 unit++; 1188 return (unit); 1189 } 1190 1191 /** 1192 * @brief Set the parent of a devclass 1193 * 1194 * The parent class is normally initialised automatically by 1195 * DRIVER_MODULE(). 1196 * 1197 * @param dc the devclass to edit 1198 * @param pdc the new parent devclass 1199 */ 1200 void 1201 devclass_set_parent(devclass_t dc, devclass_t pdc) 1202 { 1203 dc->parent = pdc; 1204 } 1205 1206 /** 1207 * @brief Get the parent of a devclass 1208 * 1209 * @param dc the devclass to examine 1210 */ 1211 devclass_t 1212 devclass_get_parent(devclass_t dc) 1213 { 1214 return (dc->parent); 1215 } 1216 1217 struct sysctl_ctx_list * 1218 devclass_get_sysctl_ctx(devclass_t dc) 1219 { 1220 return (&dc->sysctl_ctx); 1221 } 1222 1223 struct sysctl_oid * 1224 devclass_get_sysctl_tree(devclass_t dc) 1225 { 1226 return (dc->sysctl_tree); 1227 } 1228 1229 /** 1230 * @internal 1231 * @brief Allocate a unit number 1232 * 1233 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1234 * will do). The allocated unit number is returned in @p *unitp. 1235 1236 * @param dc the devclass to allocate from 1237 * @param unitp points at the location for the allocated unit 1238 * number 1239 * 1240 * @retval 0 success 1241 * @retval EEXIST the requested unit number is already allocated 1242 * @retval ENOMEM memory allocation failure 1243 */ 1244 static int 1245 devclass_alloc_unit(devclass_t dc, int *unitp) 1246 { 1247 int unit = *unitp; 1248 1249 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1250 1251 /* If we were given a wired unit number, check for existing device */ 1252 /* XXX imp XXX */ 1253 if (unit != -1) { 1254 if (unit >= 0 && unit < dc->maxunit && 1255 dc->devices[unit] != NULL) { 1256 if (bootverbose) 1257 printf("%s: %s%d already exists; skipping it\n", 1258 dc->name, dc->name, *unitp); 1259 return (EEXIST); 1260 } 1261 } else { 1262 /* Unwired device, find the next available slot for it */ 1263 unit = 0; 1264 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1265 unit++; 1266 } 1267 1268 /* 1269 * We've selected a unit beyond the length of the table, so let's 1270 * extend the table to make room for all units up to and including 1271 * this one. 1272 */ 1273 if (unit >= dc->maxunit) { 1274 device_t *newlist; 1275 int newsize; 1276 1277 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1278 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1279 if (!newlist) 1280 return (ENOMEM); 1281 bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit); 1282 bzero(newlist + dc->maxunit, 1283 sizeof(device_t) * (newsize - dc->maxunit)); 1284 if (dc->devices) 1285 free(dc->devices, M_BUS); 1286 dc->devices = newlist; 1287 dc->maxunit = newsize; 1288 } 1289 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1290 1291 *unitp = unit; 1292 return (0); 1293 } 1294 1295 /** 1296 * @internal 1297 * @brief Add a device to a devclass 1298 * 1299 * A unit number is allocated for the device (using the device's 1300 * preferred unit number if any) and the device is registered in the 1301 * devclass. This allows the device to be looked up by its unit 1302 * number, e.g. by decoding a dev_t minor number. 1303 * 1304 * @param dc the devclass to add to 1305 * @param dev the device to add 1306 * 1307 * @retval 0 success 1308 * @retval EEXIST the requested unit number is already allocated 1309 * @retval ENOMEM memory allocation failure 1310 */ 1311 static int 1312 devclass_add_device(devclass_t dc, device_t dev) 1313 { 1314 int buflen, error; 1315 1316 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1317 1318 buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit); 1319 if (buflen < 0) 1320 return (ENOMEM); 1321 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1322 if (!dev->nameunit) 1323 return (ENOMEM); 1324 1325 if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) { 1326 free(dev->nameunit, M_BUS); 1327 dev->nameunit = NULL; 1328 return (error); 1329 } 1330 dc->devices[dev->unit] = dev; 1331 dev->devclass = dc; 1332 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1333 1334 return (0); 1335 } 1336 1337 /** 1338 * @internal 1339 * @brief Delete a device from a devclass 1340 * 1341 * The device is removed from the devclass's device list and its unit 1342 * number is freed. 1343 1344 * @param dc the devclass to delete from 1345 * @param dev the device to delete 1346 * 1347 * @retval 0 success 1348 */ 1349 static int 1350 devclass_delete_device(devclass_t dc, device_t dev) 1351 { 1352 if (!dc || !dev) 1353 return (0); 1354 1355 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1356 1357 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1358 panic("devclass_delete_device: inconsistent device class"); 1359 dc->devices[dev->unit] = NULL; 1360 if (dev->flags & DF_WILDCARD) 1361 dev->unit = -1; 1362 dev->devclass = NULL; 1363 free(dev->nameunit, M_BUS); 1364 dev->nameunit = NULL; 1365 1366 return (0); 1367 } 1368 1369 /** 1370 * @internal 1371 * @brief Make a new device and add it as a child of @p parent 1372 * 1373 * @param parent the parent of the new device 1374 * @param name the devclass name of the new device or @c NULL 1375 * to leave the devclass unspecified 1376 * @parem unit the unit number of the new device of @c -1 to 1377 * leave the unit number unspecified 1378 * 1379 * @returns the new device 1380 */ 1381 static device_t 1382 make_device(device_t parent, const char *name, int unit) 1383 { 1384 device_t dev; 1385 devclass_t dc; 1386 1387 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1388 1389 if (name) { 1390 dc = devclass_find_internal(name, 0, TRUE); 1391 if (!dc) { 1392 printf("make_device: can't find device class %s\n", 1393 name); 1394 return (NULL); 1395 } 1396 } else { 1397 dc = NULL; 1398 } 1399 1400 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1401 if (!dev) 1402 return (NULL); 1403 1404 dev->parent = parent; 1405 TAILQ_INIT(&dev->children); 1406 kobj_init((kobj_t) dev, &null_class); 1407 dev->driver = NULL; 1408 dev->devclass = NULL; 1409 dev->unit = unit; 1410 dev->nameunit = NULL; 1411 dev->desc = NULL; 1412 dev->busy = 0; 1413 dev->devflags = 0; 1414 dev->flags = DF_ENABLED; 1415 dev->order = 0; 1416 if (unit == -1) 1417 dev->flags |= DF_WILDCARD; 1418 if (name) { 1419 dev->flags |= DF_FIXEDCLASS; 1420 if (devclass_add_device(dc, dev)) { 1421 kobj_delete((kobj_t) dev, M_BUS); 1422 return (NULL); 1423 } 1424 } 1425 dev->ivars = NULL; 1426 dev->softc = NULL; 1427 1428 dev->state = DS_NOTPRESENT; 1429 1430 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1431 bus_data_generation_update(); 1432 1433 return (dev); 1434 } 1435 1436 /** 1437 * @internal 1438 * @brief Print a description of a device. 1439 */ 1440 static int 1441 device_print_child(device_t dev, device_t child) 1442 { 1443 int retval = 0; 1444 1445 if (device_is_alive(child)) 1446 retval += BUS_PRINT_CHILD(dev, child); 1447 else 1448 retval += device_printf(child, " not found\n"); 1449 1450 return (retval); 1451 } 1452 1453 /** 1454 * @brief Create a new device 1455 * 1456 * This creates a new device and adds it as a child of an existing 1457 * parent device. The new device will be added after the last existing 1458 * child with order zero. 1459 * 1460 * @param dev the device which will be the parent of the 1461 * new child device 1462 * @param name devclass name for new device or @c NULL if not 1463 * specified 1464 * @param unit unit number for new device or @c -1 if not 1465 * specified 1466 * 1467 * @returns the new device 1468 */ 1469 device_t 1470 device_add_child(device_t dev, const char *name, int unit) 1471 { 1472 return (device_add_child_ordered(dev, 0, name, unit)); 1473 } 1474 1475 /** 1476 * @brief Create a new device 1477 * 1478 * This creates a new device and adds it as a child of an existing 1479 * parent device. The new device will be added after the last existing 1480 * child with the same order. 1481 * 1482 * @param dev the device which will be the parent of the 1483 * new child device 1484 * @param order a value which is used to partially sort the 1485 * children of @p dev - devices created using 1486 * lower values of @p order appear first in @p 1487 * dev's list of children 1488 * @param name devclass name for new device or @c NULL if not 1489 * specified 1490 * @param unit unit number for new device or @c -1 if not 1491 * specified 1492 * 1493 * @returns the new device 1494 */ 1495 device_t 1496 device_add_child_ordered(device_t dev, int order, const char *name, int unit) 1497 { 1498 device_t child; 1499 device_t place; 1500 1501 PDEBUG(("%s at %s with order %d as unit %d", 1502 name, DEVICENAME(dev), order, unit)); 1503 1504 child = make_device(dev, name, unit); 1505 if (child == NULL) 1506 return (child); 1507 child->order = order; 1508 1509 TAILQ_FOREACH(place, &dev->children, link) { 1510 if (place->order > order) 1511 break; 1512 } 1513 1514 if (place) { 1515 /* 1516 * The device 'place' is the first device whose order is 1517 * greater than the new child. 1518 */ 1519 TAILQ_INSERT_BEFORE(place, child, link); 1520 } else { 1521 /* 1522 * The new child's order is greater or equal to the order of 1523 * any existing device. Add the child to the tail of the list. 1524 */ 1525 TAILQ_INSERT_TAIL(&dev->children, child, link); 1526 } 1527 1528 bus_data_generation_update(); 1529 return (child); 1530 } 1531 1532 /** 1533 * @brief Delete a device 1534 * 1535 * This function deletes a device along with all of its children. If 1536 * the device currently has a driver attached to it, the device is 1537 * detached first using device_detach(). 1538 * 1539 * @param dev the parent device 1540 * @param child the device to delete 1541 * 1542 * @retval 0 success 1543 * @retval non-zero a unit error code describing the error 1544 */ 1545 int 1546 device_delete_child(device_t dev, device_t child) 1547 { 1548 int error; 1549 device_t grandchild; 1550 1551 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1552 1553 /* remove children first */ 1554 while ( (grandchild = TAILQ_FIRST(&child->children)) ) { 1555 error = device_delete_child(child, grandchild); 1556 if (error) 1557 return (error); 1558 } 1559 1560 if ((error = device_detach(child)) != 0) 1561 return (error); 1562 if (child->devclass) 1563 devclass_delete_device(child->devclass, child); 1564 TAILQ_REMOVE(&dev->children, child, link); 1565 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1566 kobj_delete((kobj_t) child, M_BUS); 1567 1568 bus_data_generation_update(); 1569 return (0); 1570 } 1571 1572 /** 1573 * @brief Find a device given a unit number 1574 * 1575 * This is similar to devclass_get_devices() but only searches for 1576 * devices which have @p dev as a parent. 1577 * 1578 * @param dev the parent device to search 1579 * @param unit the unit number to search for. If the unit is -1, 1580 * return the first child of @p dev which has name 1581 * @p classname (that is, the one with the lowest unit.) 1582 * 1583 * @returns the device with the given unit number or @c 1584 * NULL if there is no such device 1585 */ 1586 device_t 1587 device_find_child(device_t dev, const char *classname, int unit) 1588 { 1589 devclass_t dc; 1590 device_t child; 1591 1592 dc = devclass_find(classname); 1593 if (!dc) 1594 return (NULL); 1595 1596 if (unit != -1) { 1597 child = devclass_get_device(dc, unit); 1598 if (child && child->parent == dev) 1599 return (child); 1600 } else { 1601 for (unit = 0; unit <= devclass_get_maxunit(dc); unit++) { 1602 child = devclass_get_device(dc, unit); 1603 if (child && child->parent == dev) 1604 return (child); 1605 } 1606 } 1607 return (NULL); 1608 } 1609 1610 /** 1611 * @internal 1612 */ 1613 static driverlink_t 1614 first_matching_driver(devclass_t dc, device_t dev) 1615 { 1616 if (dev->devclass) 1617 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1618 return (TAILQ_FIRST(&dc->drivers)); 1619 } 1620 1621 /** 1622 * @internal 1623 */ 1624 static driverlink_t 1625 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1626 { 1627 if (dev->devclass) { 1628 driverlink_t dl; 1629 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1630 if (!strcmp(dev->devclass->name, dl->driver->name)) 1631 return (dl); 1632 return (NULL); 1633 } 1634 return (TAILQ_NEXT(last, link)); 1635 } 1636 1637 /** 1638 * @internal 1639 */ 1640 static int 1641 device_probe_child(device_t dev, device_t child) 1642 { 1643 devclass_t dc; 1644 driverlink_t best = 0; 1645 driverlink_t dl; 1646 int result, pri = 0; 1647 int hasclass = (child->devclass != 0); 1648 1649 GIANT_REQUIRED; 1650 1651 dc = dev->devclass; 1652 if (!dc) 1653 panic("device_probe_child: parent device has no devclass"); 1654 1655 /* 1656 * If the state is already probed, then return. However, don't 1657 * return if we can rebid this object. 1658 */ 1659 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 1660 return (0); 1661 1662 for (; dc; dc = dc->parent) { 1663 for (dl = first_matching_driver(dc, child); 1664 dl; 1665 dl = next_matching_driver(dc, child, dl)) { 1666 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1667 device_set_driver(child, dl->driver); 1668 if (!hasclass) 1669 device_set_devclass(child, dl->driver->name); 1670 1671 /* Fetch any flags for the device before probing. */ 1672 resource_int_value(dl->driver->name, child->unit, 1673 "flags", &child->devflags); 1674 1675 result = DEVICE_PROBE(child); 1676 1677 /* Reset flags and devclass before the next probe. */ 1678 child->devflags = 0; 1679 if (!hasclass) 1680 device_set_devclass(child, 0); 1681 1682 /* 1683 * If the driver returns SUCCESS, there can be 1684 * no higher match for this device. 1685 */ 1686 if (result == 0) { 1687 best = dl; 1688 pri = 0; 1689 break; 1690 } 1691 1692 /* 1693 * The driver returned an error so it 1694 * certainly doesn't match. 1695 */ 1696 if (result > 0) { 1697 device_set_driver(child, 0); 1698 continue; 1699 } 1700 1701 /* 1702 * A priority lower than SUCCESS, remember the 1703 * best matching driver. Initialise the value 1704 * of pri for the first match. 1705 */ 1706 if (best == 0 || result > pri) { 1707 best = dl; 1708 pri = result; 1709 continue; 1710 } 1711 } 1712 /* 1713 * If we have an unambiguous match in this devclass, 1714 * don't look in the parent. 1715 */ 1716 if (best && pri == 0) 1717 break; 1718 } 1719 1720 /* 1721 * If we found a driver, change state and initialise the devclass. 1722 */ 1723 /* XXX What happens if we rebid and got no best? */ 1724 if (best) { 1725 /* 1726 * If this device was atached, and we were asked to 1727 * rescan, and it is a different driver, then we have 1728 * to detach the old driver and reattach this new one. 1729 * Note, we don't have to check for DF_REBID here 1730 * because if the state is > DS_ALIVE, we know it must 1731 * be. 1732 * 1733 * This assumes that all DF_REBID drivers can have 1734 * their probe routine called at any time and that 1735 * they are idempotent as well as completely benign in 1736 * normal operations. 1737 * 1738 * We also have to make sure that the detach 1739 * succeeded, otherwise we fail the operation (or 1740 * maybe it should just fail silently? I'm torn). 1741 */ 1742 if (child->state > DS_ALIVE && best->driver != child->driver) 1743 if ((result = device_detach(dev)) != 0) 1744 return (result); 1745 1746 /* Set the winning driver, devclass, and flags. */ 1747 if (!child->devclass) 1748 device_set_devclass(child, best->driver->name); 1749 device_set_driver(child, best->driver); 1750 resource_int_value(best->driver->name, child->unit, 1751 "flags", &child->devflags); 1752 1753 if (pri < 0) { 1754 /* 1755 * A bit bogus. Call the probe method again to make 1756 * sure that we have the right description. 1757 */ 1758 DEVICE_PROBE(child); 1759 #if 0 1760 child->flags |= DF_REBID; 1761 #endif 1762 } else 1763 child->flags &= ~DF_REBID; 1764 child->state = DS_ALIVE; 1765 1766 bus_data_generation_update(); 1767 return (0); 1768 } 1769 1770 return (ENXIO); 1771 } 1772 1773 /** 1774 * @brief Return the parent of a device 1775 */ 1776 device_t 1777 device_get_parent(device_t dev) 1778 { 1779 return (dev->parent); 1780 } 1781 1782 /** 1783 * @brief Get a list of children of a device 1784 * 1785 * An array containing a list of all the children of the given device 1786 * is allocated and returned in @p *devlistp. The number of devices 1787 * in the array is returned in @p *devcountp. The caller should free 1788 * the array using @c free(p, M_TEMP). 1789 * 1790 * @param dev the device to examine 1791 * @param devlistp points at location for array pointer return 1792 * value 1793 * @param devcountp points at location for array size return value 1794 * 1795 * @retval 0 success 1796 * @retval ENOMEM the array allocation failed 1797 */ 1798 int 1799 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1800 { 1801 int count; 1802 device_t child; 1803 device_t *list; 1804 1805 count = 0; 1806 TAILQ_FOREACH(child, &dev->children, link) { 1807 count++; 1808 } 1809 1810 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1811 if (!list) 1812 return (ENOMEM); 1813 1814 count = 0; 1815 TAILQ_FOREACH(child, &dev->children, link) { 1816 list[count] = child; 1817 count++; 1818 } 1819 1820 *devlistp = list; 1821 *devcountp = count; 1822 1823 return (0); 1824 } 1825 1826 /** 1827 * @brief Return the current driver for the device or @c NULL if there 1828 * is no driver currently attached 1829 */ 1830 driver_t * 1831 device_get_driver(device_t dev) 1832 { 1833 return (dev->driver); 1834 } 1835 1836 /** 1837 * @brief Return the current devclass for the device or @c NULL if 1838 * there is none. 1839 */ 1840 devclass_t 1841 device_get_devclass(device_t dev) 1842 { 1843 return (dev->devclass); 1844 } 1845 1846 /** 1847 * @brief Return the name of the device's devclass or @c NULL if there 1848 * is none. 1849 */ 1850 const char * 1851 device_get_name(device_t dev) 1852 { 1853 if (dev != NULL && dev->devclass) 1854 return (devclass_get_name(dev->devclass)); 1855 return (NULL); 1856 } 1857 1858 /** 1859 * @brief Return a string containing the device's devclass name 1860 * followed by an ascii representation of the device's unit number 1861 * (e.g. @c "foo2"). 1862 */ 1863 const char * 1864 device_get_nameunit(device_t dev) 1865 { 1866 return (dev->nameunit); 1867 } 1868 1869 /** 1870 * @brief Return the device's unit number. 1871 */ 1872 int 1873 device_get_unit(device_t dev) 1874 { 1875 return (dev->unit); 1876 } 1877 1878 /** 1879 * @brief Return the device's description string 1880 */ 1881 const char * 1882 device_get_desc(device_t dev) 1883 { 1884 return (dev->desc); 1885 } 1886 1887 /** 1888 * @brief Return the device's flags 1889 */ 1890 u_int32_t 1891 device_get_flags(device_t dev) 1892 { 1893 return (dev->devflags); 1894 } 1895 1896 struct sysctl_ctx_list * 1897 device_get_sysctl_ctx(device_t dev) 1898 { 1899 return (&dev->sysctl_ctx); 1900 } 1901 1902 struct sysctl_oid * 1903 device_get_sysctl_tree(device_t dev) 1904 { 1905 return (dev->sysctl_tree); 1906 } 1907 1908 /** 1909 * @brief Print the name of the device followed by a colon and a space 1910 * 1911 * @returns the number of characters printed 1912 */ 1913 int 1914 device_print_prettyname(device_t dev) 1915 { 1916 const char *name = device_get_name(dev); 1917 1918 if (name == 0) 1919 return (printf("unknown: ")); 1920 return (printf("%s%d: ", name, device_get_unit(dev))); 1921 } 1922 1923 /** 1924 * @brief Print the name of the device followed by a colon, a space 1925 * and the result of calling vprintf() with the value of @p fmt and 1926 * the following arguments. 1927 * 1928 * @returns the number of characters printed 1929 */ 1930 int 1931 device_printf(device_t dev, const char * fmt, ...) 1932 { 1933 va_list ap; 1934 int retval; 1935 1936 retval = device_print_prettyname(dev); 1937 va_start(ap, fmt); 1938 retval += vprintf(fmt, ap); 1939 va_end(ap); 1940 return (retval); 1941 } 1942 1943 /** 1944 * @internal 1945 */ 1946 static void 1947 device_set_desc_internal(device_t dev, const char* desc, int copy) 1948 { 1949 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 1950 free(dev->desc, M_BUS); 1951 dev->flags &= ~DF_DESCMALLOCED; 1952 dev->desc = NULL; 1953 } 1954 1955 if (copy && desc) { 1956 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 1957 if (dev->desc) { 1958 strcpy(dev->desc, desc); 1959 dev->flags |= DF_DESCMALLOCED; 1960 } 1961 } else { 1962 /* Avoid a -Wcast-qual warning */ 1963 dev->desc = (char *)(uintptr_t) desc; 1964 } 1965 1966 bus_data_generation_update(); 1967 } 1968 1969 /** 1970 * @brief Set the device's description 1971 * 1972 * The value of @c desc should be a string constant that will not 1973 * change (at least until the description is changed in a subsequent 1974 * call to device_set_desc() or device_set_desc_copy()). 1975 */ 1976 void 1977 device_set_desc(device_t dev, const char* desc) 1978 { 1979 device_set_desc_internal(dev, desc, FALSE); 1980 } 1981 1982 /** 1983 * @brief Set the device's description 1984 * 1985 * The string pointed to by @c desc is copied. Use this function if 1986 * the device description is generated, (e.g. with sprintf()). 1987 */ 1988 void 1989 device_set_desc_copy(device_t dev, const char* desc) 1990 { 1991 device_set_desc_internal(dev, desc, TRUE); 1992 } 1993 1994 /** 1995 * @brief Set the device's flags 1996 */ 1997 void 1998 device_set_flags(device_t dev, u_int32_t flags) 1999 { 2000 dev->devflags = flags; 2001 } 2002 2003 /** 2004 * @brief Return the device's softc field 2005 * 2006 * The softc is allocated and zeroed when a driver is attached, based 2007 * on the size field of the driver. 2008 */ 2009 void * 2010 device_get_softc(device_t dev) 2011 { 2012 return (dev->softc); 2013 } 2014 2015 /** 2016 * @brief Set the device's softc field 2017 * 2018 * Most drivers do not need to use this since the softc is allocated 2019 * automatically when the driver is attached. 2020 */ 2021 void 2022 device_set_softc(device_t dev, void *softc) 2023 { 2024 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2025 free(dev->softc, M_BUS_SC); 2026 dev->softc = softc; 2027 if (dev->softc) 2028 dev->flags |= DF_EXTERNALSOFTC; 2029 else 2030 dev->flags &= ~DF_EXTERNALSOFTC; 2031 } 2032 2033 /** 2034 * @brief Get the device's ivars field 2035 * 2036 * The ivars field is used by the parent device to store per-device 2037 * state (e.g. the physical location of the device or a list of 2038 * resources). 2039 */ 2040 void * 2041 device_get_ivars(device_t dev) 2042 { 2043 2044 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2045 return (dev->ivars); 2046 } 2047 2048 /** 2049 * @brief Set the device's ivars field 2050 */ 2051 void 2052 device_set_ivars(device_t dev, void * ivars) 2053 { 2054 2055 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2056 dev->ivars = ivars; 2057 } 2058 2059 /** 2060 * @brief Return the device's state 2061 */ 2062 device_state_t 2063 device_get_state(device_t dev) 2064 { 2065 return (dev->state); 2066 } 2067 2068 /** 2069 * @brief Set the DF_ENABLED flag for the device 2070 */ 2071 void 2072 device_enable(device_t dev) 2073 { 2074 dev->flags |= DF_ENABLED; 2075 } 2076 2077 /** 2078 * @brief Clear the DF_ENABLED flag for the device 2079 */ 2080 void 2081 device_disable(device_t dev) 2082 { 2083 dev->flags &= ~DF_ENABLED; 2084 } 2085 2086 /** 2087 * @brief Increment the busy counter for the device 2088 */ 2089 void 2090 device_busy(device_t dev) 2091 { 2092 if (dev->state < DS_ATTACHED) 2093 panic("device_busy: called for unattached device"); 2094 if (dev->busy == 0 && dev->parent) 2095 device_busy(dev->parent); 2096 dev->busy++; 2097 dev->state = DS_BUSY; 2098 } 2099 2100 /** 2101 * @brief Decrement the busy counter for the device 2102 */ 2103 void 2104 device_unbusy(device_t dev) 2105 { 2106 if (dev->state != DS_BUSY) 2107 panic("device_unbusy: called for non-busy device %s", 2108 device_get_nameunit(dev)); 2109 dev->busy--; 2110 if (dev->busy == 0) { 2111 if (dev->parent) 2112 device_unbusy(dev->parent); 2113 dev->state = DS_ATTACHED; 2114 } 2115 } 2116 2117 /** 2118 * @brief Set the DF_QUIET flag for the device 2119 */ 2120 void 2121 device_quiet(device_t dev) 2122 { 2123 dev->flags |= DF_QUIET; 2124 } 2125 2126 /** 2127 * @brief Clear the DF_QUIET flag for the device 2128 */ 2129 void 2130 device_verbose(device_t dev) 2131 { 2132 dev->flags &= ~DF_QUIET; 2133 } 2134 2135 /** 2136 * @brief Return non-zero if the DF_QUIET flag is set on the device 2137 */ 2138 int 2139 device_is_quiet(device_t dev) 2140 { 2141 return ((dev->flags & DF_QUIET) != 0); 2142 } 2143 2144 /** 2145 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2146 */ 2147 int 2148 device_is_enabled(device_t dev) 2149 { 2150 return ((dev->flags & DF_ENABLED) != 0); 2151 } 2152 2153 /** 2154 * @brief Return non-zero if the device was successfully probed 2155 */ 2156 int 2157 device_is_alive(device_t dev) 2158 { 2159 return (dev->state >= DS_ALIVE); 2160 } 2161 2162 /** 2163 * @brief Return non-zero if the device currently has a driver 2164 * attached to it 2165 */ 2166 int 2167 device_is_attached(device_t dev) 2168 { 2169 return (dev->state >= DS_ATTACHED); 2170 } 2171 2172 /** 2173 * @brief Set the devclass of a device 2174 * @see devclass_add_device(). 2175 */ 2176 int 2177 device_set_devclass(device_t dev, const char *classname) 2178 { 2179 devclass_t dc; 2180 int error; 2181 2182 if (!classname) { 2183 if (dev->devclass) 2184 devclass_delete_device(dev->devclass, dev); 2185 return (0); 2186 } 2187 2188 if (dev->devclass) { 2189 printf("device_set_devclass: device class already set\n"); 2190 return (EINVAL); 2191 } 2192 2193 dc = devclass_find_internal(classname, 0, TRUE); 2194 if (!dc) 2195 return (ENOMEM); 2196 2197 error = devclass_add_device(dc, dev); 2198 2199 bus_data_generation_update(); 2200 return (error); 2201 } 2202 2203 /** 2204 * @brief Set the driver of a device 2205 * 2206 * @retval 0 success 2207 * @retval EBUSY the device already has a driver attached 2208 * @retval ENOMEM a memory allocation failure occurred 2209 */ 2210 int 2211 device_set_driver(device_t dev, driver_t *driver) 2212 { 2213 if (dev->state >= DS_ATTACHED) 2214 return (EBUSY); 2215 2216 if (dev->driver == driver) 2217 return (0); 2218 2219 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2220 free(dev->softc, M_BUS_SC); 2221 dev->softc = NULL; 2222 } 2223 kobj_delete((kobj_t) dev, 0); 2224 dev->driver = driver; 2225 if (driver) { 2226 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2227 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2228 dev->softc = malloc(driver->size, M_BUS_SC, 2229 M_NOWAIT | M_ZERO); 2230 if (!dev->softc) { 2231 kobj_delete((kobj_t) dev, 0); 2232 kobj_init((kobj_t) dev, &null_class); 2233 dev->driver = NULL; 2234 return (ENOMEM); 2235 } 2236 } 2237 } else { 2238 kobj_init((kobj_t) dev, &null_class); 2239 } 2240 2241 bus_data_generation_update(); 2242 return (0); 2243 } 2244 2245 /** 2246 * @brief Probe a device and attach a driver if possible 2247 * 2248 * This function is the core of the device autoconfiguration 2249 * system. Its purpose is to select a suitable driver for a device and 2250 * then call that driver to initialise the hardware appropriately. The 2251 * driver is selected by calling the DEVICE_PROBE() method of a set of 2252 * candidate drivers and then choosing the driver which returned the 2253 * best value. This driver is then attached to the device using 2254 * device_attach(). 2255 * 2256 * The set of suitable drivers is taken from the list of drivers in 2257 * the parent device's devclass. If the device was originally created 2258 * with a specific class name (see device_add_child()), only drivers 2259 * with that name are probed, otherwise all drivers in the devclass 2260 * are probed. If no drivers return successful probe values in the 2261 * parent devclass, the search continues in the parent of that 2262 * devclass (see devclass_get_parent()) if any. 2263 * 2264 * @param dev the device to initialise 2265 * 2266 * @retval 0 success 2267 * @retval ENXIO no driver was found 2268 * @retval ENOMEM memory allocation failure 2269 * @retval non-zero some other unix error code 2270 */ 2271 int 2272 device_probe_and_attach(device_t dev) 2273 { 2274 int error; 2275 2276 GIANT_REQUIRED; 2277 2278 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2279 return (0); 2280 2281 if (!(dev->flags & DF_ENABLED)) { 2282 if (bootverbose && device_get_name(dev) != NULL) { 2283 device_print_prettyname(dev); 2284 printf("not probed (disabled)\n"); 2285 } 2286 return (0); 2287 } 2288 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2289 if (!(dev->flags & DF_DONENOMATCH)) { 2290 BUS_PROBE_NOMATCH(dev->parent, dev); 2291 devnomatch(dev); 2292 dev->flags |= DF_DONENOMATCH; 2293 } 2294 return (error); 2295 } 2296 error = device_attach(dev); 2297 2298 return (error); 2299 } 2300 2301 /** 2302 * @brief Attach a device driver to a device 2303 * 2304 * This function is a wrapper around the DEVICE_ATTACH() driver 2305 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2306 * device's sysctl tree, optionally prints a description of the device 2307 * and queues a notification event for user-based device management 2308 * services. 2309 * 2310 * Normally this function is only called internally from 2311 * device_probe_and_attach(). 2312 * 2313 * @param dev the device to initialise 2314 * 2315 * @retval 0 success 2316 * @retval ENXIO no driver was found 2317 * @retval ENOMEM memory allocation failure 2318 * @retval non-zero some other unix error code 2319 */ 2320 int 2321 device_attach(device_t dev) 2322 { 2323 int error; 2324 2325 device_sysctl_init(dev); 2326 if (!device_is_quiet(dev)) 2327 device_print_child(dev->parent, dev); 2328 if ((error = DEVICE_ATTACH(dev)) != 0) { 2329 printf("device_attach: %s%d attach returned %d\n", 2330 dev->driver->name, dev->unit, error); 2331 /* Unset the class; set in device_probe_child */ 2332 if (dev->devclass == 0) 2333 device_set_devclass(dev, 0); 2334 device_set_driver(dev, NULL); 2335 device_sysctl_fini(dev); 2336 dev->state = DS_NOTPRESENT; 2337 return (error); 2338 } 2339 dev->state = DS_ATTACHED; 2340 devadded(dev); 2341 return (0); 2342 } 2343 2344 /** 2345 * @brief Detach a driver from a device 2346 * 2347 * This function is a wrapper around the DEVICE_DETACH() driver 2348 * method. If the call to DEVICE_DETACH() succeeds, it calls 2349 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2350 * notification event for user-based device management services and 2351 * cleans up the device's sysctl tree. 2352 * 2353 * @param dev the device to un-initialise 2354 * 2355 * @retval 0 success 2356 * @retval ENXIO no driver was found 2357 * @retval ENOMEM memory allocation failure 2358 * @retval non-zero some other unix error code 2359 */ 2360 int 2361 device_detach(device_t dev) 2362 { 2363 int error; 2364 2365 GIANT_REQUIRED; 2366 2367 PDEBUG(("%s", DEVICENAME(dev))); 2368 if (dev->state == DS_BUSY) 2369 return (EBUSY); 2370 if (dev->state != DS_ATTACHED) 2371 return (0); 2372 2373 if ((error = DEVICE_DETACH(dev)) != 0) 2374 return (error); 2375 devremoved(dev); 2376 device_printf(dev, "detached\n"); 2377 if (dev->parent) 2378 BUS_CHILD_DETACHED(dev->parent, dev); 2379 2380 if (!(dev->flags & DF_FIXEDCLASS)) 2381 devclass_delete_device(dev->devclass, dev); 2382 2383 dev->state = DS_NOTPRESENT; 2384 device_set_driver(dev, NULL); 2385 device_set_desc(dev, NULL); 2386 device_sysctl_fini(dev); 2387 2388 return (0); 2389 } 2390 2391 /** 2392 * @brief Tells a driver to quiesce itself. 2393 * 2394 * This function is a wrapper around the DEVICE_QUIESCE() driver 2395 * method. If the call to DEVICE_QUIESCE() succeeds. 2396 * 2397 * @param dev the device to quiesce 2398 * 2399 * @retval 0 success 2400 * @retval ENXIO no driver was found 2401 * @retval ENOMEM memory allocation failure 2402 * @retval non-zero some other unix error code 2403 */ 2404 int 2405 device_quiesce(device_t dev) 2406 { 2407 2408 PDEBUG(("%s", DEVICENAME(dev))); 2409 if (dev->state == DS_BUSY) 2410 return (EBUSY); 2411 if (dev->state != DS_ATTACHED) 2412 return (0); 2413 2414 return (DEVICE_QUIESCE(dev)); 2415 } 2416 2417 /** 2418 * @brief Notify a device of system shutdown 2419 * 2420 * This function calls the DEVICE_SHUTDOWN() driver method if the 2421 * device currently has an attached driver. 2422 * 2423 * @returns the value returned by DEVICE_SHUTDOWN() 2424 */ 2425 int 2426 device_shutdown(device_t dev) 2427 { 2428 if (dev->state < DS_ATTACHED) 2429 return (0); 2430 return (DEVICE_SHUTDOWN(dev)); 2431 } 2432 2433 /** 2434 * @brief Set the unit number of a device 2435 * 2436 * This function can be used to override the unit number used for a 2437 * device (e.g. to wire a device to a pre-configured unit number). 2438 */ 2439 int 2440 device_set_unit(device_t dev, int unit) 2441 { 2442 devclass_t dc; 2443 int err; 2444 2445 dc = device_get_devclass(dev); 2446 if (unit < dc->maxunit && dc->devices[unit]) 2447 return (EBUSY); 2448 err = devclass_delete_device(dc, dev); 2449 if (err) 2450 return (err); 2451 dev->unit = unit; 2452 err = devclass_add_device(dc, dev); 2453 if (err) 2454 return (err); 2455 2456 bus_data_generation_update(); 2457 return (0); 2458 } 2459 2460 /*======================================*/ 2461 /* 2462 * Some useful method implementations to make life easier for bus drivers. 2463 */ 2464 2465 /** 2466 * @brief Initialise a resource list. 2467 * 2468 * @param rl the resource list to initialise 2469 */ 2470 void 2471 resource_list_init(struct resource_list *rl) 2472 { 2473 SLIST_INIT(rl); 2474 } 2475 2476 /** 2477 * @brief Reclaim memory used by a resource list. 2478 * 2479 * This function frees the memory for all resource entries on the list 2480 * (if any). 2481 * 2482 * @param rl the resource list to free 2483 */ 2484 void 2485 resource_list_free(struct resource_list *rl) 2486 { 2487 struct resource_list_entry *rle; 2488 2489 while ((rle = SLIST_FIRST(rl)) != NULL) { 2490 if (rle->res) 2491 panic("resource_list_free: resource entry is busy"); 2492 SLIST_REMOVE_HEAD(rl, link); 2493 free(rle, M_BUS); 2494 } 2495 } 2496 2497 /** 2498 * @brief Add a resource entry. 2499 * 2500 * This function adds a resource entry using the given @p type, @p 2501 * start, @p end and @p count values. A rid value is chosen by 2502 * searching sequentially for the first unused rid starting at zero. 2503 * 2504 * @param rl the resource list to edit 2505 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2506 * @param start the start address of the resource 2507 * @param end the end address of the resource 2508 * @param count XXX end-start+1 2509 */ 2510 int 2511 resource_list_add_next(struct resource_list *rl, int type, u_long start, 2512 u_long end, u_long count) 2513 { 2514 int rid; 2515 2516 rid = 0; 2517 while (resource_list_find(rl, type, rid) != NULL) 2518 rid++; 2519 resource_list_add(rl, type, rid, start, end, count); 2520 return (rid); 2521 } 2522 2523 /** 2524 * @brief Add or modify a resource entry. 2525 * 2526 * If an existing entry exists with the same type and rid, it will be 2527 * modified using the given values of @p start, @p end and @p 2528 * count. If no entry exists, a new one will be created using the 2529 * given values. 2530 * 2531 * @param rl the resource list to edit 2532 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2533 * @param rid the resource identifier 2534 * @param start the start address of the resource 2535 * @param end the end address of the resource 2536 * @param count XXX end-start+1 2537 */ 2538 void 2539 resource_list_add(struct resource_list *rl, int type, int rid, 2540 u_long start, u_long end, u_long count) 2541 { 2542 struct resource_list_entry *rle; 2543 2544 rle = resource_list_find(rl, type, rid); 2545 if (!rle) { 2546 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2547 M_NOWAIT); 2548 if (!rle) 2549 panic("resource_list_add: can't record entry"); 2550 SLIST_INSERT_HEAD(rl, rle, link); 2551 rle->type = type; 2552 rle->rid = rid; 2553 rle->res = NULL; 2554 } 2555 2556 if (rle->res) 2557 panic("resource_list_add: resource entry is busy"); 2558 2559 rle->start = start; 2560 rle->end = end; 2561 rle->count = count; 2562 } 2563 2564 /** 2565 * @brief Find a resource entry by type and rid. 2566 * 2567 * @param rl the resource list to search 2568 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2569 * @param rid the resource identifier 2570 * 2571 * @returns the resource entry pointer or NULL if there is no such 2572 * entry. 2573 */ 2574 struct resource_list_entry * 2575 resource_list_find(struct resource_list *rl, int type, int rid) 2576 { 2577 struct resource_list_entry *rle; 2578 2579 SLIST_FOREACH(rle, rl, link) { 2580 if (rle->type == type && rle->rid == rid) 2581 return (rle); 2582 } 2583 return (NULL); 2584 } 2585 2586 /** 2587 * @brief Delete a resource entry. 2588 * 2589 * @param rl the resource list to edit 2590 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2591 * @param rid the resource identifier 2592 */ 2593 void 2594 resource_list_delete(struct resource_list *rl, int type, int rid) 2595 { 2596 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2597 2598 if (rle) { 2599 if (rle->res != NULL) 2600 panic("resource_list_delete: resource has not been released"); 2601 SLIST_REMOVE(rl, rle, resource_list_entry, link); 2602 free(rle, M_BUS); 2603 } 2604 } 2605 2606 /** 2607 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 2608 * 2609 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 2610 * and passing the allocation up to the parent of @p bus. This assumes 2611 * that the first entry of @c device_get_ivars(child) is a struct 2612 * resource_list. This also handles 'passthrough' allocations where a 2613 * child is a remote descendant of bus by passing the allocation up to 2614 * the parent of bus. 2615 * 2616 * Typically, a bus driver would store a list of child resources 2617 * somewhere in the child device's ivars (see device_get_ivars()) and 2618 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 2619 * then call resource_list_alloc() to perform the allocation. 2620 * 2621 * @param rl the resource list to allocate from 2622 * @param bus the parent device of @p child 2623 * @param child the device which is requesting an allocation 2624 * @param type the type of resource to allocate 2625 * @param rid a pointer to the resource identifier 2626 * @param start hint at the start of the resource range - pass 2627 * @c 0UL for any start address 2628 * @param end hint at the end of the resource range - pass 2629 * @c ~0UL for any end address 2630 * @param count hint at the size of range required - pass @c 1 2631 * for any size 2632 * @param flags any extra flags to control the resource 2633 * allocation - see @c RF_XXX flags in 2634 * <sys/rman.h> for details 2635 * 2636 * @returns the resource which was allocated or @c NULL if no 2637 * resource could be allocated 2638 */ 2639 struct resource * 2640 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 2641 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 2642 { 2643 struct resource_list_entry *rle = 0; 2644 int passthrough = (device_get_parent(child) != bus); 2645 int isdefault = (start == 0UL && end == ~0UL); 2646 2647 if (passthrough) { 2648 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2649 type, rid, start, end, count, flags)); 2650 } 2651 2652 rle = resource_list_find(rl, type, *rid); 2653 2654 if (!rle) 2655 return (NULL); /* no resource of that type/rid */ 2656 2657 if (rle->res) 2658 panic("resource_list_alloc: resource entry is busy"); 2659 2660 if (isdefault) { 2661 start = rle->start; 2662 count = ulmax(count, rle->count); 2663 end = ulmax(rle->end, start + count - 1); 2664 } 2665 2666 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2667 type, rid, start, end, count, flags); 2668 2669 /* 2670 * Record the new range. 2671 */ 2672 if (rle->res) { 2673 rle->start = rman_get_start(rle->res); 2674 rle->end = rman_get_end(rle->res); 2675 rle->count = count; 2676 } 2677 2678 return (rle->res); 2679 } 2680 2681 /** 2682 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 2683 * 2684 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 2685 * used with resource_list_alloc(). 2686 * 2687 * @param rl the resource list which was allocated from 2688 * @param bus the parent device of @p child 2689 * @param child the device which is requesting a release 2690 * @param type the type of resource to allocate 2691 * @param rid the resource identifier 2692 * @param res the resource to release 2693 * 2694 * @retval 0 success 2695 * @retval non-zero a standard unix error code indicating what 2696 * error condition prevented the operation 2697 */ 2698 int 2699 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 2700 int type, int rid, struct resource *res) 2701 { 2702 struct resource_list_entry *rle = 0; 2703 int passthrough = (device_get_parent(child) != bus); 2704 int error; 2705 2706 if (passthrough) { 2707 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2708 type, rid, res)); 2709 } 2710 2711 rle = resource_list_find(rl, type, rid); 2712 2713 if (!rle) 2714 panic("resource_list_release: can't find resource"); 2715 if (!rle->res) 2716 panic("resource_list_release: resource entry is not busy"); 2717 2718 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2719 type, rid, res); 2720 if (error) 2721 return (error); 2722 2723 rle->res = NULL; 2724 return (0); 2725 } 2726 2727 /** 2728 * @brief Print a description of resources in a resource list 2729 * 2730 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 2731 * The name is printed if at least one resource of the given type is available. 2732 * The format is used to print resource start and end. 2733 * 2734 * @param rl the resource list to print 2735 * @param name the name of @p type, e.g. @c "memory" 2736 * @param type type type of resource entry to print 2737 * @param format printf(9) format string to print resource 2738 * start and end values 2739 * 2740 * @returns the number of characters printed 2741 */ 2742 int 2743 resource_list_print_type(struct resource_list *rl, const char *name, int type, 2744 const char *format) 2745 { 2746 struct resource_list_entry *rle; 2747 int printed, retval; 2748 2749 printed = 0; 2750 retval = 0; 2751 /* Yes, this is kinda cheating */ 2752 SLIST_FOREACH(rle, rl, link) { 2753 if (rle->type == type) { 2754 if (printed == 0) 2755 retval += printf(" %s ", name); 2756 else 2757 retval += printf(","); 2758 printed++; 2759 retval += printf(format, rle->start); 2760 if (rle->count > 1) { 2761 retval += printf("-"); 2762 retval += printf(format, rle->start + 2763 rle->count - 1); 2764 } 2765 } 2766 } 2767 return (retval); 2768 } 2769 2770 /** 2771 * @brief Helper function for implementing DEVICE_PROBE() 2772 * 2773 * This function can be used to help implement the DEVICE_PROBE() for 2774 * a bus (i.e. a device which has other devices attached to it). It 2775 * calls the DEVICE_IDENTIFY() method of each driver in the device's 2776 * devclass. 2777 */ 2778 int 2779 bus_generic_probe(device_t dev) 2780 { 2781 devclass_t dc = dev->devclass; 2782 driverlink_t dl; 2783 2784 TAILQ_FOREACH(dl, &dc->drivers, link) { 2785 DEVICE_IDENTIFY(dl->driver, dev); 2786 } 2787 2788 return (0); 2789 } 2790 2791 /** 2792 * @brief Helper function for implementing DEVICE_ATTACH() 2793 * 2794 * This function can be used to help implement the DEVICE_ATTACH() for 2795 * a bus. It calls device_probe_and_attach() for each of the device's 2796 * children. 2797 */ 2798 int 2799 bus_generic_attach(device_t dev) 2800 { 2801 device_t child; 2802 2803 TAILQ_FOREACH(child, &dev->children, link) { 2804 device_probe_and_attach(child); 2805 } 2806 2807 return (0); 2808 } 2809 2810 /** 2811 * @brief Helper function for implementing DEVICE_DETACH() 2812 * 2813 * This function can be used to help implement the DEVICE_DETACH() for 2814 * a bus. It calls device_detach() for each of the device's 2815 * children. 2816 */ 2817 int 2818 bus_generic_detach(device_t dev) 2819 { 2820 device_t child; 2821 int error; 2822 2823 if (dev->state != DS_ATTACHED) 2824 return (EBUSY); 2825 2826 TAILQ_FOREACH(child, &dev->children, link) { 2827 if ((error = device_detach(child)) != 0) 2828 return (error); 2829 } 2830 2831 return (0); 2832 } 2833 2834 /** 2835 * @brief Helper function for implementing DEVICE_SHUTDOWN() 2836 * 2837 * This function can be used to help implement the DEVICE_SHUTDOWN() 2838 * for a bus. It calls device_shutdown() for each of the device's 2839 * children. 2840 */ 2841 int 2842 bus_generic_shutdown(device_t dev) 2843 { 2844 device_t child; 2845 2846 TAILQ_FOREACH(child, &dev->children, link) { 2847 device_shutdown(child); 2848 } 2849 2850 return (0); 2851 } 2852 2853 /** 2854 * @brief Helper function for implementing DEVICE_SUSPEND() 2855 * 2856 * This function can be used to help implement the DEVICE_SUSPEND() 2857 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 2858 * children. If any call to DEVICE_SUSPEND() fails, the suspend 2859 * operation is aborted and any devices which were suspended are 2860 * resumed immediately by calling their DEVICE_RESUME() methods. 2861 */ 2862 int 2863 bus_generic_suspend(device_t dev) 2864 { 2865 int error; 2866 device_t child, child2; 2867 2868 TAILQ_FOREACH(child, &dev->children, link) { 2869 error = DEVICE_SUSPEND(child); 2870 if (error) { 2871 for (child2 = TAILQ_FIRST(&dev->children); 2872 child2 && child2 != child; 2873 child2 = TAILQ_NEXT(child2, link)) 2874 DEVICE_RESUME(child2); 2875 return (error); 2876 } 2877 } 2878 return (0); 2879 } 2880 2881 /** 2882 * @brief Helper function for implementing DEVICE_RESUME() 2883 * 2884 * This function can be used to help implement the DEVICE_RESUME() for 2885 * a bus. It calls DEVICE_RESUME() on each of the device's children. 2886 */ 2887 int 2888 bus_generic_resume(device_t dev) 2889 { 2890 device_t child; 2891 2892 TAILQ_FOREACH(child, &dev->children, link) { 2893 DEVICE_RESUME(child); 2894 /* if resume fails, there's nothing we can usefully do... */ 2895 } 2896 return (0); 2897 } 2898 2899 /** 2900 * @brief Helper function for implementing BUS_PRINT_CHILD(). 2901 * 2902 * This function prints the first part of the ascii representation of 2903 * @p child, including its name, unit and description (if any - see 2904 * device_set_desc()). 2905 * 2906 * @returns the number of characters printed 2907 */ 2908 int 2909 bus_print_child_header(device_t dev, device_t child) 2910 { 2911 int retval = 0; 2912 2913 if (device_get_desc(child)) { 2914 retval += device_printf(child, "<%s>", device_get_desc(child)); 2915 } else { 2916 retval += printf("%s", device_get_nameunit(child)); 2917 } 2918 2919 return (retval); 2920 } 2921 2922 /** 2923 * @brief Helper function for implementing BUS_PRINT_CHILD(). 2924 * 2925 * This function prints the last part of the ascii representation of 2926 * @p child, which consists of the string @c " on " followed by the 2927 * name and unit of the @p dev. 2928 * 2929 * @returns the number of characters printed 2930 */ 2931 int 2932 bus_print_child_footer(device_t dev, device_t child) 2933 { 2934 return (printf(" on %s\n", device_get_nameunit(dev))); 2935 } 2936 2937 /** 2938 * @brief Helper function for implementing BUS_PRINT_CHILD(). 2939 * 2940 * This function simply calls bus_print_child_header() followed by 2941 * bus_print_child_footer(). 2942 * 2943 * @returns the number of characters printed 2944 */ 2945 int 2946 bus_generic_print_child(device_t dev, device_t child) 2947 { 2948 int retval = 0; 2949 2950 retval += bus_print_child_header(dev, child); 2951 retval += bus_print_child_footer(dev, child); 2952 2953 return (retval); 2954 } 2955 2956 /** 2957 * @brief Stub function for implementing BUS_READ_IVAR(). 2958 * 2959 * @returns ENOENT 2960 */ 2961 int 2962 bus_generic_read_ivar(device_t dev, device_t child, int index, 2963 uintptr_t * result) 2964 { 2965 return (ENOENT); 2966 } 2967 2968 /** 2969 * @brief Stub function for implementing BUS_WRITE_IVAR(). 2970 * 2971 * @returns ENOENT 2972 */ 2973 int 2974 bus_generic_write_ivar(device_t dev, device_t child, int index, 2975 uintptr_t value) 2976 { 2977 return (ENOENT); 2978 } 2979 2980 /** 2981 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 2982 * 2983 * @returns NULL 2984 */ 2985 struct resource_list * 2986 bus_generic_get_resource_list(device_t dev, device_t child) 2987 { 2988 return (NULL); 2989 } 2990 2991 /** 2992 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 2993 * 2994 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 2995 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 2996 * and then calls device_probe_and_attach() for each unattached child. 2997 */ 2998 void 2999 bus_generic_driver_added(device_t dev, driver_t *driver) 3000 { 3001 device_t child; 3002 3003 DEVICE_IDENTIFY(driver, dev); 3004 TAILQ_FOREACH(child, &dev->children, link) { 3005 if (child->state == DS_NOTPRESENT || 3006 (child->flags & DF_REBID)) 3007 device_probe_and_attach(child); 3008 } 3009 } 3010 3011 /** 3012 * @brief Helper function for implementing BUS_SETUP_INTR(). 3013 * 3014 * This simple implementation of BUS_SETUP_INTR() simply calls the 3015 * BUS_SETUP_INTR() method of the parent of @p dev. 3016 */ 3017 int 3018 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3019 int flags, driver_intr_t *intr, void *arg, void **cookiep) 3020 { 3021 /* Propagate up the bus hierarchy until someone handles it. */ 3022 if (dev->parent) 3023 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3024 intr, arg, cookiep)); 3025 return (EINVAL); 3026 } 3027 3028 /** 3029 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3030 * 3031 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3032 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3033 */ 3034 int 3035 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3036 void *cookie) 3037 { 3038 /* Propagate up the bus hierarchy until someone handles it. */ 3039 if (dev->parent) 3040 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3041 return (EINVAL); 3042 } 3043 3044 /** 3045 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3046 * 3047 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3048 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3049 */ 3050 struct resource * 3051 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3052 u_long start, u_long end, u_long count, u_int flags) 3053 { 3054 /* Propagate up the bus hierarchy until someone handles it. */ 3055 if (dev->parent) 3056 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3057 start, end, count, flags)); 3058 return (NULL); 3059 } 3060 3061 /** 3062 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3063 * 3064 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3065 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3066 */ 3067 int 3068 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3069 struct resource *r) 3070 { 3071 /* Propagate up the bus hierarchy until someone handles it. */ 3072 if (dev->parent) 3073 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3074 r)); 3075 return (EINVAL); 3076 } 3077 3078 /** 3079 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3080 * 3081 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3082 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3083 */ 3084 int 3085 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3086 struct resource *r) 3087 { 3088 /* Propagate up the bus hierarchy until someone handles it. */ 3089 if (dev->parent) 3090 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3091 r)); 3092 return (EINVAL); 3093 } 3094 3095 /** 3096 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3097 * 3098 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3099 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3100 */ 3101 int 3102 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3103 int rid, struct resource *r) 3104 { 3105 /* Propagate up the bus hierarchy until someone handles it. */ 3106 if (dev->parent) 3107 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3108 r)); 3109 return (EINVAL); 3110 } 3111 3112 /** 3113 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3114 * 3115 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3116 * BUS_CONFIG_INTR() method of the parent of @p dev. 3117 */ 3118 int 3119 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3120 enum intr_polarity pol) 3121 { 3122 3123 /* Propagate up the bus hierarchy until someone handles it. */ 3124 if (dev->parent) 3125 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3126 return (EINVAL); 3127 } 3128 3129 /** 3130 * @brief Helper function for implementing BUS_GET_RESOURCE(). 3131 * 3132 * This implementation of BUS_GET_RESOURCE() uses the 3133 * resource_list_find() function to do most of the work. It calls 3134 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3135 * search. 3136 */ 3137 int 3138 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 3139 u_long *startp, u_long *countp) 3140 { 3141 struct resource_list * rl = NULL; 3142 struct resource_list_entry * rle = NULL; 3143 3144 rl = BUS_GET_RESOURCE_LIST(dev, child); 3145 if (!rl) 3146 return (EINVAL); 3147 3148 rle = resource_list_find(rl, type, rid); 3149 if (!rle) 3150 return (ENOENT); 3151 3152 if (startp) 3153 *startp = rle->start; 3154 if (countp) 3155 *countp = rle->count; 3156 3157 return (0); 3158 } 3159 3160 /** 3161 * @brief Helper function for implementing BUS_SET_RESOURCE(). 3162 * 3163 * This implementation of BUS_SET_RESOURCE() uses the 3164 * resource_list_add() function to do most of the work. It calls 3165 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3166 * edit. 3167 */ 3168 int 3169 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 3170 u_long start, u_long count) 3171 { 3172 struct resource_list * rl = NULL; 3173 3174 rl = BUS_GET_RESOURCE_LIST(dev, child); 3175 if (!rl) 3176 return (EINVAL); 3177 3178 resource_list_add(rl, type, rid, start, (start + count - 1), count); 3179 3180 return (0); 3181 } 3182 3183 /** 3184 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 3185 * 3186 * This implementation of BUS_DELETE_RESOURCE() uses the 3187 * resource_list_delete() function to do most of the work. It calls 3188 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3189 * edit. 3190 */ 3191 void 3192 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 3193 { 3194 struct resource_list * rl = NULL; 3195 3196 rl = BUS_GET_RESOURCE_LIST(dev, child); 3197 if (!rl) 3198 return; 3199 3200 resource_list_delete(rl, type, rid); 3201 3202 return; 3203 } 3204 3205 /** 3206 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3207 * 3208 * This implementation of BUS_RELEASE_RESOURCE() uses the 3209 * resource_list_release() function to do most of the work. It calls 3210 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3211 */ 3212 int 3213 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 3214 int rid, struct resource *r) 3215 { 3216 struct resource_list * rl = NULL; 3217 3218 rl = BUS_GET_RESOURCE_LIST(dev, child); 3219 if (!rl) 3220 return (EINVAL); 3221 3222 return (resource_list_release(rl, dev, child, type, rid, r)); 3223 } 3224 3225 /** 3226 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3227 * 3228 * This implementation of BUS_ALLOC_RESOURCE() uses the 3229 * resource_list_alloc() function to do most of the work. It calls 3230 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3231 */ 3232 struct resource * 3233 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 3234 int *rid, u_long start, u_long end, u_long count, u_int flags) 3235 { 3236 struct resource_list * rl = NULL; 3237 3238 rl = BUS_GET_RESOURCE_LIST(dev, child); 3239 if (!rl) 3240 return (NULL); 3241 3242 return (resource_list_alloc(rl, dev, child, type, rid, 3243 start, end, count, flags)); 3244 } 3245 3246 /** 3247 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 3248 * 3249 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 3250 * BUS_CHILD_PRESENT() method of the parent of @p dev. 3251 */ 3252 int 3253 bus_generic_child_present(device_t dev, device_t child) 3254 { 3255 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 3256 } 3257 3258 /* 3259 * Some convenience functions to make it easier for drivers to use the 3260 * resource-management functions. All these really do is hide the 3261 * indirection through the parent's method table, making for slightly 3262 * less-wordy code. In the future, it might make sense for this code 3263 * to maintain some sort of a list of resources allocated by each device. 3264 */ 3265 3266 /** 3267 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 3268 * 3269 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 3270 * parent of @p dev. 3271 */ 3272 struct resource * 3273 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 3274 u_long count, u_int flags) 3275 { 3276 if (dev->parent == 0) 3277 return (0); 3278 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 3279 count, flags)); 3280 } 3281 3282 /** 3283 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 3284 * 3285 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 3286 * parent of @p dev. 3287 */ 3288 int 3289 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 3290 { 3291 if (dev->parent == 0) 3292 return (EINVAL); 3293 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3294 } 3295 3296 /** 3297 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 3298 * 3299 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 3300 * parent of @p dev. 3301 */ 3302 int 3303 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 3304 { 3305 if (dev->parent == 0) 3306 return (EINVAL); 3307 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3308 } 3309 3310 /** 3311 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 3312 * 3313 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 3314 * parent of @p dev. 3315 */ 3316 int 3317 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 3318 { 3319 if (dev->parent == 0) 3320 return (EINVAL); 3321 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 3322 } 3323 3324 /** 3325 * @brief Wrapper function for BUS_SETUP_INTR(). 3326 * 3327 * This function simply calls the BUS_SETUP_INTR() method of the 3328 * parent of @p dev. 3329 */ 3330 int 3331 bus_setup_intr(device_t dev, struct resource *r, int flags, 3332 driver_intr_t handler, void *arg, void **cookiep) 3333 { 3334 int error; 3335 3336 if (dev->parent != 0) { 3337 if ((flags &~ INTR_ENTROPY) == (INTR_TYPE_NET | INTR_MPSAFE) && 3338 !debug_mpsafenet) 3339 flags &= ~INTR_MPSAFE; 3340 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, 3341 handler, arg, cookiep); 3342 if (error == 0) { 3343 if (!(flags & (INTR_MPSAFE | INTR_FAST))) 3344 device_printf(dev, "[GIANT-LOCKED]\n"); 3345 if (bootverbose && (flags & INTR_MPSAFE)) 3346 device_printf(dev, "[MPSAFE]\n"); 3347 if (flags & INTR_FAST) 3348 device_printf(dev, "[FAST]\n"); 3349 } 3350 } else 3351 error = EINVAL; 3352 return (error); 3353 } 3354 3355 /** 3356 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 3357 * 3358 * This function simply calls the BUS_TEARDOWN_INTR() method of the 3359 * parent of @p dev. 3360 */ 3361 int 3362 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 3363 { 3364 if (dev->parent == 0) 3365 return (EINVAL); 3366 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 3367 } 3368 3369 /** 3370 * @brief Wrapper function for BUS_SET_RESOURCE(). 3371 * 3372 * This function simply calls the BUS_SET_RESOURCE() method of the 3373 * parent of @p dev. 3374 */ 3375 int 3376 bus_set_resource(device_t dev, int type, int rid, 3377 u_long start, u_long count) 3378 { 3379 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 3380 start, count)); 3381 } 3382 3383 /** 3384 * @brief Wrapper function for BUS_GET_RESOURCE(). 3385 * 3386 * This function simply calls the BUS_GET_RESOURCE() method of the 3387 * parent of @p dev. 3388 */ 3389 int 3390 bus_get_resource(device_t dev, int type, int rid, 3391 u_long *startp, u_long *countp) 3392 { 3393 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3394 startp, countp)); 3395 } 3396 3397 /** 3398 * @brief Wrapper function for BUS_GET_RESOURCE(). 3399 * 3400 * This function simply calls the BUS_GET_RESOURCE() method of the 3401 * parent of @p dev and returns the start value. 3402 */ 3403 u_long 3404 bus_get_resource_start(device_t dev, int type, int rid) 3405 { 3406 u_long start, count; 3407 int error; 3408 3409 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3410 &start, &count); 3411 if (error) 3412 return (0); 3413 return (start); 3414 } 3415 3416 /** 3417 * @brief Wrapper function for BUS_GET_RESOURCE(). 3418 * 3419 * This function simply calls the BUS_GET_RESOURCE() method of the 3420 * parent of @p dev and returns the count value. 3421 */ 3422 u_long 3423 bus_get_resource_count(device_t dev, int type, int rid) 3424 { 3425 u_long start, count; 3426 int error; 3427 3428 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3429 &start, &count); 3430 if (error) 3431 return (0); 3432 return (count); 3433 } 3434 3435 /** 3436 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 3437 * 3438 * This function simply calls the BUS_DELETE_RESOURCE() method of the 3439 * parent of @p dev. 3440 */ 3441 void 3442 bus_delete_resource(device_t dev, int type, int rid) 3443 { 3444 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 3445 } 3446 3447 /** 3448 * @brief Wrapper function for BUS_CHILD_PRESENT(). 3449 * 3450 * This function simply calls the BUS_CHILD_PRESENT() method of the 3451 * parent of @p dev. 3452 */ 3453 int 3454 bus_child_present(device_t child) 3455 { 3456 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 3457 } 3458 3459 /** 3460 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 3461 * 3462 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 3463 * parent of @p dev. 3464 */ 3465 int 3466 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 3467 { 3468 device_t parent; 3469 3470 parent = device_get_parent(child); 3471 if (parent == NULL) { 3472 *buf = '\0'; 3473 return (0); 3474 } 3475 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 3476 } 3477 3478 /** 3479 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 3480 * 3481 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 3482 * parent of @p dev. 3483 */ 3484 int 3485 bus_child_location_str(device_t child, char *buf, size_t buflen) 3486 { 3487 device_t parent; 3488 3489 parent = device_get_parent(child); 3490 if (parent == NULL) { 3491 *buf = '\0'; 3492 return (0); 3493 } 3494 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 3495 } 3496 3497 static int 3498 root_print_child(device_t dev, device_t child) 3499 { 3500 int retval = 0; 3501 3502 retval += bus_print_child_header(dev, child); 3503 retval += printf("\n"); 3504 3505 return (retval); 3506 } 3507 3508 static int 3509 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg, 3510 void **cookiep) 3511 { 3512 /* 3513 * If an interrupt mapping gets to here something bad has happened. 3514 */ 3515 panic("root_setup_intr"); 3516 } 3517 3518 /* 3519 * If we get here, assume that the device is permanant and really is 3520 * present in the system. Removable bus drivers are expected to intercept 3521 * this call long before it gets here. We return -1 so that drivers that 3522 * really care can check vs -1 or some ERRNO returned higher in the food 3523 * chain. 3524 */ 3525 static int 3526 root_child_present(device_t dev, device_t child) 3527 { 3528 return (-1); 3529 } 3530 3531 static kobj_method_t root_methods[] = { 3532 /* Device interface */ 3533 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 3534 KOBJMETHOD(device_suspend, bus_generic_suspend), 3535 KOBJMETHOD(device_resume, bus_generic_resume), 3536 3537 /* Bus interface */ 3538 KOBJMETHOD(bus_print_child, root_print_child), 3539 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 3540 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 3541 KOBJMETHOD(bus_setup_intr, root_setup_intr), 3542 KOBJMETHOD(bus_child_present, root_child_present), 3543 3544 { 0, 0 } 3545 }; 3546 3547 static driver_t root_driver = { 3548 "root", 3549 root_methods, 3550 1, /* no softc */ 3551 }; 3552 3553 device_t root_bus; 3554 devclass_t root_devclass; 3555 3556 static int 3557 root_bus_module_handler(module_t mod, int what, void* arg) 3558 { 3559 switch (what) { 3560 case MOD_LOAD: 3561 TAILQ_INIT(&bus_data_devices); 3562 kobj_class_compile((kobj_class_t) &root_driver); 3563 root_bus = make_device(NULL, "root", 0); 3564 root_bus->desc = "System root bus"; 3565 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 3566 root_bus->driver = &root_driver; 3567 root_bus->state = DS_ATTACHED; 3568 root_devclass = devclass_find_internal("root", 0, FALSE); 3569 devinit(); 3570 return (0); 3571 3572 case MOD_SHUTDOWN: 3573 device_shutdown(root_bus); 3574 return (0); 3575 default: 3576 return (EOPNOTSUPP); 3577 } 3578 3579 return (0); 3580 } 3581 3582 static moduledata_t root_bus_mod = { 3583 "rootbus", 3584 root_bus_module_handler, 3585 0 3586 }; 3587 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 3588 3589 /** 3590 * @brief Automatically configure devices 3591 * 3592 * This function begins the autoconfiguration process by calling 3593 * device_probe_and_attach() for each child of the @c root0 device. 3594 */ 3595 void 3596 root_bus_configure(void) 3597 { 3598 device_t dev; 3599 3600 PDEBUG((".")); 3601 3602 TAILQ_FOREACH(dev, &root_bus->children, link) { 3603 device_probe_and_attach(dev); 3604 } 3605 } 3606 3607 /** 3608 * @brief Module handler for registering device drivers 3609 * 3610 * This module handler is used to automatically register device 3611 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 3612 * devclass_add_driver() for the driver described by the 3613 * driver_module_data structure pointed to by @p arg 3614 */ 3615 int 3616 driver_module_handler(module_t mod, int what, void *arg) 3617 { 3618 int error; 3619 struct driver_module_data *dmd; 3620 devclass_t bus_devclass; 3621 kobj_class_t driver; 3622 3623 dmd = (struct driver_module_data *)arg; 3624 bus_devclass = devclass_find_internal(dmd->dmd_busname, 0, TRUE); 3625 error = 0; 3626 3627 switch (what) { 3628 case MOD_LOAD: 3629 if (dmd->dmd_chainevh) 3630 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3631 3632 driver = dmd->dmd_driver; 3633 PDEBUG(("Loading module: driver %s on bus %s", 3634 DRIVERNAME(driver), dmd->dmd_busname)); 3635 error = devclass_add_driver(bus_devclass, driver); 3636 if (error) 3637 break; 3638 3639 /* 3640 * If the driver has any base classes, make the 3641 * devclass inherit from the devclass of the driver's 3642 * first base class. This will allow the system to 3643 * search for drivers in both devclasses for children 3644 * of a device using this driver. 3645 */ 3646 if (driver->baseclasses) { 3647 const char *parentname; 3648 parentname = driver->baseclasses[0]->name; 3649 *dmd->dmd_devclass = 3650 devclass_find_internal(driver->name, 3651 parentname, TRUE); 3652 } else { 3653 *dmd->dmd_devclass = 3654 devclass_find_internal(driver->name, 0, TRUE); 3655 } 3656 break; 3657 3658 case MOD_UNLOAD: 3659 PDEBUG(("Unloading module: driver %s from bus %s", 3660 DRIVERNAME(dmd->dmd_driver), 3661 dmd->dmd_busname)); 3662 error = devclass_delete_driver(bus_devclass, 3663 dmd->dmd_driver); 3664 3665 if (!error && dmd->dmd_chainevh) 3666 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3667 break; 3668 case MOD_QUIESCE: 3669 PDEBUG(("Quiesce module: driver %s from bus %s", 3670 DRIVERNAME(dmd->dmd_driver), 3671 dmd->dmd_busname)); 3672 error = devclass_quiesce_driver(bus_devclass, 3673 dmd->dmd_driver); 3674 3675 if (!error && dmd->dmd_chainevh) 3676 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3677 break; 3678 default: 3679 error = EOPNOTSUPP; 3680 break; 3681 } 3682 3683 return (error); 3684 } 3685 3686 #ifdef BUS_DEBUG 3687 3688 /* the _short versions avoid iteration by not calling anything that prints 3689 * more than oneliners. I love oneliners. 3690 */ 3691 3692 static void 3693 print_device_short(device_t dev, int indent) 3694 { 3695 if (!dev) 3696 return; 3697 3698 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 3699 dev->unit, dev->desc, 3700 (dev->parent? "":"no "), 3701 (TAILQ_EMPTY(&dev->children)? "no ":""), 3702 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 3703 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 3704 (dev->flags&DF_WILDCARD? "wildcard,":""), 3705 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 3706 (dev->flags&DF_REBID? "rebiddable,":""), 3707 (dev->ivars? "":"no "), 3708 (dev->softc? "":"no "), 3709 dev->busy)); 3710 } 3711 3712 static void 3713 print_device(device_t dev, int indent) 3714 { 3715 if (!dev) 3716 return; 3717 3718 print_device_short(dev, indent); 3719 3720 indentprintf(("Parent:\n")); 3721 print_device_short(dev->parent, indent+1); 3722 indentprintf(("Driver:\n")); 3723 print_driver_short(dev->driver, indent+1); 3724 indentprintf(("Devclass:\n")); 3725 print_devclass_short(dev->devclass, indent+1); 3726 } 3727 3728 void 3729 print_device_tree_short(device_t dev, int indent) 3730 /* print the device and all its children (indented) */ 3731 { 3732 device_t child; 3733 3734 if (!dev) 3735 return; 3736 3737 print_device_short(dev, indent); 3738 3739 TAILQ_FOREACH(child, &dev->children, link) { 3740 print_device_tree_short(child, indent+1); 3741 } 3742 } 3743 3744 void 3745 print_device_tree(device_t dev, int indent) 3746 /* print the device and all its children (indented) */ 3747 { 3748 device_t child; 3749 3750 if (!dev) 3751 return; 3752 3753 print_device(dev, indent); 3754 3755 TAILQ_FOREACH(child, &dev->children, link) { 3756 print_device_tree(child, indent+1); 3757 } 3758 } 3759 3760 static void 3761 print_driver_short(driver_t *driver, int indent) 3762 { 3763 if (!driver) 3764 return; 3765 3766 indentprintf(("driver %s: softc size = %zd\n", 3767 driver->name, driver->size)); 3768 } 3769 3770 static void 3771 print_driver(driver_t *driver, int indent) 3772 { 3773 if (!driver) 3774 return; 3775 3776 print_driver_short(driver, indent); 3777 } 3778 3779 3780 static void 3781 print_driver_list(driver_list_t drivers, int indent) 3782 { 3783 driverlink_t driver; 3784 3785 TAILQ_FOREACH(driver, &drivers, link) { 3786 print_driver(driver->driver, indent); 3787 } 3788 } 3789 3790 static void 3791 print_devclass_short(devclass_t dc, int indent) 3792 { 3793 if ( !dc ) 3794 return; 3795 3796 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 3797 } 3798 3799 static void 3800 print_devclass(devclass_t dc, int indent) 3801 { 3802 int i; 3803 3804 if ( !dc ) 3805 return; 3806 3807 print_devclass_short(dc, indent); 3808 indentprintf(("Drivers:\n")); 3809 print_driver_list(dc->drivers, indent+1); 3810 3811 indentprintf(("Devices:\n")); 3812 for (i = 0; i < dc->maxunit; i++) 3813 if (dc->devices[i]) 3814 print_device(dc->devices[i], indent+1); 3815 } 3816 3817 void 3818 print_devclass_list_short(void) 3819 { 3820 devclass_t dc; 3821 3822 printf("Short listing of devclasses, drivers & devices:\n"); 3823 TAILQ_FOREACH(dc, &devclasses, link) { 3824 print_devclass_short(dc, 0); 3825 } 3826 } 3827 3828 void 3829 print_devclass_list(void) 3830 { 3831 devclass_t dc; 3832 3833 printf("Full listing of devclasses, drivers & devices:\n"); 3834 TAILQ_FOREACH(dc, &devclasses, link) { 3835 print_devclass(dc, 0); 3836 } 3837 } 3838 3839 #endif 3840 3841 /* 3842 * User-space access to the device tree. 3843 * 3844 * We implement a small set of nodes: 3845 * 3846 * hw.bus Single integer read method to obtain the 3847 * current generation count. 3848 * hw.bus.devices Reads the entire device tree in flat space. 3849 * hw.bus.rman Resource manager interface 3850 * 3851 * We might like to add the ability to scan devclasses and/or drivers to 3852 * determine what else is currently loaded/available. 3853 */ 3854 3855 static int 3856 sysctl_bus(SYSCTL_HANDLER_ARGS) 3857 { 3858 struct u_businfo ubus; 3859 3860 ubus.ub_version = BUS_USER_VERSION; 3861 ubus.ub_generation = bus_data_generation; 3862 3863 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 3864 } 3865 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 3866 "bus-related data"); 3867 3868 static int 3869 sysctl_devices(SYSCTL_HANDLER_ARGS) 3870 { 3871 int *name = (int *)arg1; 3872 u_int namelen = arg2; 3873 int index; 3874 struct device *dev; 3875 struct u_device udev; /* XXX this is a bit big */ 3876 int error; 3877 3878 if (namelen != 2) 3879 return (EINVAL); 3880 3881 if (bus_data_generation_check(name[0])) 3882 return (EINVAL); 3883 3884 index = name[1]; 3885 3886 /* 3887 * Scan the list of devices, looking for the requested index. 3888 */ 3889 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 3890 if (index-- == 0) 3891 break; 3892 } 3893 if (dev == NULL) 3894 return (ENOENT); 3895 3896 /* 3897 * Populate the return array. 3898 */ 3899 udev.dv_handle = (uintptr_t)dev; 3900 udev.dv_parent = (uintptr_t)dev->parent; 3901 if (dev->nameunit == NULL) 3902 udev.dv_name[0] = '\0'; 3903 else 3904 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 3905 3906 if (dev->desc == NULL) 3907 udev.dv_desc[0] = '\0'; 3908 else 3909 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 3910 if (dev->driver == NULL || dev->driver->name == NULL) 3911 udev.dv_drivername[0] = '\0'; 3912 else 3913 strlcpy(udev.dv_drivername, dev->driver->name, 3914 sizeof(udev.dv_drivername)); 3915 udev.dv_pnpinfo[0] = '\0'; 3916 udev.dv_location[0] = '\0'; 3917 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 3918 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 3919 udev.dv_devflags = dev->devflags; 3920 udev.dv_flags = dev->flags; 3921 udev.dv_state = dev->state; 3922 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 3923 return (error); 3924 } 3925 3926 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 3927 "system device tree"); 3928 3929 /* 3930 * Sysctl interface for scanning the resource lists. 3931 * 3932 * We take two input parameters; the index into the list of resource 3933 * managers, and the resource offset into the list. 3934 */ 3935 static int 3936 sysctl_rman(SYSCTL_HANDLER_ARGS) 3937 { 3938 int *name = (int *)arg1; 3939 u_int namelen = arg2; 3940 int rman_idx, res_idx; 3941 struct rman *rm; 3942 struct resource *res; 3943 struct u_rman urm; 3944 struct u_resource ures; 3945 int error; 3946 3947 if (namelen != 3) 3948 return (EINVAL); 3949 3950 if (bus_data_generation_check(name[0])) 3951 return (EINVAL); 3952 rman_idx = name[1]; 3953 res_idx = name[2]; 3954 3955 /* 3956 * Find the indexed resource manager 3957 */ 3958 TAILQ_FOREACH(rm, &rman_head, rm_link) { 3959 if (rman_idx-- == 0) 3960 break; 3961 } 3962 if (rm == NULL) 3963 return (ENOENT); 3964 3965 /* 3966 * If the resource index is -1, we want details on the 3967 * resource manager. 3968 */ 3969 if (res_idx == -1) { 3970 urm.rm_handle = (uintptr_t)rm; 3971 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); 3972 urm.rm_start = rm->rm_start; 3973 urm.rm_size = rm->rm_end - rm->rm_start + 1; 3974 urm.rm_type = rm->rm_type; 3975 3976 error = SYSCTL_OUT(req, &urm, sizeof(urm)); 3977 return (error); 3978 } 3979 3980 /* 3981 * Find the indexed resource and return it. 3982 */ 3983 TAILQ_FOREACH(res, &rm->rm_list, r_link) { 3984 if (res_idx-- == 0) { 3985 ures.r_handle = (uintptr_t)res; 3986 ures.r_parent = (uintptr_t)res->r_rm; 3987 ures.r_device = (uintptr_t)res->r_dev; 3988 if (res->r_dev != NULL) { 3989 if (device_get_name(res->r_dev) != NULL) { 3990 snprintf(ures.r_devname, RM_TEXTLEN, 3991 "%s%d", 3992 device_get_name(res->r_dev), 3993 device_get_unit(res->r_dev)); 3994 } else { 3995 strlcpy(ures.r_devname, "nomatch", 3996 RM_TEXTLEN); 3997 } 3998 } else { 3999 ures.r_devname[0] = '\0'; 4000 } 4001 ures.r_start = res->r_start; 4002 ures.r_size = res->r_end - res->r_start + 1; 4003 ures.r_flags = res->r_flags; 4004 4005 error = SYSCTL_OUT(req, &ures, sizeof(ures)); 4006 return (error); 4007 } 4008 } 4009 return (ENOENT); 4010 } 4011 4012 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman, 4013 "kernel resource manager"); 4014 4015 int 4016 bus_data_generation_check(int generation) 4017 { 4018 if (generation != bus_data_generation) 4019 return (1); 4020 4021 /* XXX generate optimised lists here? */ 4022 return (0); 4023 } 4024 4025 void 4026 bus_data_generation_update(void) 4027 { 4028 bus_data_generation++; 4029 } 4030 4031 int 4032 bus_free_resource(device_t dev, int type, struct resource *r) 4033 { 4034 if (r == NULL) 4035 return (0); 4036 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 4037 } 4038