1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bus.h" 33 #include "opt_ddb.h" 34 35 #include <sys/param.h> 36 #include <sys/conf.h> 37 #include <sys/domainset.h> 38 #include <sys/eventhandler.h> 39 #include <sys/lock.h> 40 #include <sys/kernel.h> 41 #include <sys/limits.h> 42 #include <sys/malloc.h> 43 #include <sys/module.h> 44 #include <sys/mutex.h> 45 #include <sys/priv.h> 46 #include <machine/bus.h> 47 #include <sys/random.h> 48 #include <sys/refcount.h> 49 #include <sys/rman.h> 50 #include <sys/sbuf.h> 51 #include <sys/smp.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 #include <sys/bus.h> 55 #include <sys/cpuset.h> 56 57 #include <net/vnet.h> 58 59 #include <machine/cpu.h> 60 #include <machine/stdarg.h> 61 62 #include <vm/uma.h> 63 #include <vm/vm.h> 64 65 #include <ddb/ddb.h> 66 67 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 68 NULL); 69 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 70 NULL); 71 72 /* 73 * Used to attach drivers to devclasses. 74 */ 75 typedef struct driverlink *driverlink_t; 76 struct driverlink { 77 kobj_class_t driver; 78 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 79 int pass; 80 int flags; 81 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 82 TAILQ_ENTRY(driverlink) passlink; 83 }; 84 85 /* 86 * Forward declarations 87 */ 88 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 89 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 90 typedef TAILQ_HEAD(device_list, _device) device_list_t; 91 92 struct devclass { 93 TAILQ_ENTRY(devclass) link; 94 devclass_t parent; /* parent in devclass hierarchy */ 95 driver_list_t drivers; /* bus devclasses store drivers for bus */ 96 char *name; 97 device_t *devices; /* array of devices indexed by unit */ 98 int maxunit; /* size of devices array */ 99 int flags; 100 #define DC_HAS_CHILDREN 1 101 102 struct sysctl_ctx_list sysctl_ctx; 103 struct sysctl_oid *sysctl_tree; 104 }; 105 106 /** 107 * @brief Implementation of _device. 108 * 109 * The structure is named "_device" instead of "device" to avoid type confusion 110 * caused by other subsystems defining a (struct device). 111 */ 112 struct _device { 113 /* 114 * A device is a kernel object. The first field must be the 115 * current ops table for the object. 116 */ 117 KOBJ_FIELDS; 118 119 /* 120 * Device hierarchy. 121 */ 122 TAILQ_ENTRY(_device) link; /**< list of devices in parent */ 123 TAILQ_ENTRY(_device) devlink; /**< global device list membership */ 124 device_t parent; /**< parent of this device */ 125 device_list_t children; /**< list of child devices */ 126 127 /* 128 * Details of this device. 129 */ 130 driver_t *driver; /**< current driver */ 131 devclass_t devclass; /**< current device class */ 132 int unit; /**< current unit number */ 133 char* nameunit; /**< name+unit e.g. foodev0 */ 134 char* desc; /**< driver specific description */ 135 u_int busy; /**< count of calls to device_busy() */ 136 device_state_t state; /**< current device state */ 137 uint32_t devflags; /**< api level flags for device_get_flags() */ 138 u_int flags; /**< internal device flags */ 139 u_int order; /**< order from device_add_child_ordered() */ 140 void *ivars; /**< instance variables */ 141 void *softc; /**< current driver's variables */ 142 143 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 144 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 145 }; 146 147 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 148 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 149 150 EVENTHANDLER_LIST_DEFINE(device_attach); 151 EVENTHANDLER_LIST_DEFINE(device_detach); 152 EVENTHANDLER_LIST_DEFINE(device_nomatch); 153 EVENTHANDLER_LIST_DEFINE(dev_lookup); 154 155 static void devctl2_init(void); 156 static bool device_frozen; 157 158 #define DRIVERNAME(d) ((d)? d->name : "no driver") 159 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 160 161 #ifdef BUS_DEBUG 162 163 static int bus_debug = 1; 164 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 165 "Bus debug level"); 166 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 167 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 168 169 /** 170 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 171 * prevent syslog from deleting initial spaces 172 */ 173 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 174 175 static void print_device_short(device_t dev, int indent); 176 static void print_device(device_t dev, int indent); 177 void print_device_tree_short(device_t dev, int indent); 178 void print_device_tree(device_t dev, int indent); 179 static void print_driver_short(driver_t *driver, int indent); 180 static void print_driver(driver_t *driver, int indent); 181 static void print_driver_list(driver_list_t drivers, int indent); 182 static void print_devclass_short(devclass_t dc, int indent); 183 static void print_devclass(devclass_t dc, int indent); 184 void print_devclass_list_short(void); 185 void print_devclass_list(void); 186 187 #else 188 /* Make the compiler ignore the function calls */ 189 #define PDEBUG(a) /* nop */ 190 #define DEVICENAME(d) /* nop */ 191 192 #define print_device_short(d,i) /* nop */ 193 #define print_device(d,i) /* nop */ 194 #define print_device_tree_short(d,i) /* nop */ 195 #define print_device_tree(d,i) /* nop */ 196 #define print_driver_short(d,i) /* nop */ 197 #define print_driver(d,i) /* nop */ 198 #define print_driver_list(d,i) /* nop */ 199 #define print_devclass_short(d,i) /* nop */ 200 #define print_devclass(d,i) /* nop */ 201 #define print_devclass_list_short() /* nop */ 202 #define print_devclass_list() /* nop */ 203 #endif 204 205 /* 206 * dev sysctl tree 207 */ 208 209 enum { 210 DEVCLASS_SYSCTL_PARENT, 211 }; 212 213 static int 214 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 215 { 216 devclass_t dc = (devclass_t)arg1; 217 const char *value; 218 219 switch (arg2) { 220 case DEVCLASS_SYSCTL_PARENT: 221 value = dc->parent ? dc->parent->name : ""; 222 break; 223 default: 224 return (EINVAL); 225 } 226 return (SYSCTL_OUT_STR(req, value)); 227 } 228 229 static void 230 devclass_sysctl_init(devclass_t dc) 231 { 232 if (dc->sysctl_tree != NULL) 233 return; 234 sysctl_ctx_init(&dc->sysctl_ctx); 235 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 236 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 237 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 238 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 239 OID_AUTO, "%parent", 240 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 241 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 242 "parent class"); 243 } 244 245 enum { 246 DEVICE_SYSCTL_DESC, 247 DEVICE_SYSCTL_DRIVER, 248 DEVICE_SYSCTL_LOCATION, 249 DEVICE_SYSCTL_PNPINFO, 250 DEVICE_SYSCTL_PARENT, 251 }; 252 253 static int 254 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 255 { 256 struct sbuf sb; 257 device_t dev = (device_t)arg1; 258 int error; 259 260 sbuf_new_for_sysctl(&sb, NULL, 1024, req); 261 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 262 bus_topo_lock(); 263 switch (arg2) { 264 case DEVICE_SYSCTL_DESC: 265 sbuf_cat(&sb, dev->desc ? dev->desc : ""); 266 break; 267 case DEVICE_SYSCTL_DRIVER: 268 sbuf_cat(&sb, dev->driver ? dev->driver->name : ""); 269 break; 270 case DEVICE_SYSCTL_LOCATION: 271 bus_child_location(dev, &sb); 272 break; 273 case DEVICE_SYSCTL_PNPINFO: 274 bus_child_pnpinfo(dev, &sb); 275 break; 276 case DEVICE_SYSCTL_PARENT: 277 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : ""); 278 break; 279 default: 280 error = EINVAL; 281 goto out; 282 } 283 error = sbuf_finish(&sb); 284 out: 285 bus_topo_unlock(); 286 sbuf_delete(&sb); 287 return (error); 288 } 289 290 static void 291 device_sysctl_init(device_t dev) 292 { 293 devclass_t dc = dev->devclass; 294 int domain; 295 296 if (dev->sysctl_tree != NULL) 297 return; 298 devclass_sysctl_init(dc); 299 sysctl_ctx_init(&dev->sysctl_ctx); 300 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 301 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 302 dev->nameunit + strlen(dc->name), 303 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); 304 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 305 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 306 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 307 "device description"); 308 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 309 OID_AUTO, "%driver", 310 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 311 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 312 "device driver name"); 313 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 314 OID_AUTO, "%location", 315 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 316 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 317 "device location relative to parent"); 318 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 319 OID_AUTO, "%pnpinfo", 320 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 321 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 322 "device identification"); 323 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 324 OID_AUTO, "%parent", 325 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 326 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 327 "parent device"); 328 if (bus_get_domain(dev, &domain) == 0) 329 SYSCTL_ADD_INT(&dev->sysctl_ctx, 330 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 331 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain"); 332 } 333 334 static void 335 device_sysctl_update(device_t dev) 336 { 337 devclass_t dc = dev->devclass; 338 339 if (dev->sysctl_tree == NULL) 340 return; 341 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 342 } 343 344 static void 345 device_sysctl_fini(device_t dev) 346 { 347 if (dev->sysctl_tree == NULL) 348 return; 349 sysctl_ctx_free(&dev->sysctl_ctx); 350 dev->sysctl_tree = NULL; 351 } 352 353 static struct device_list bus_data_devices; 354 static int bus_data_generation = 1; 355 356 static kobj_method_t null_methods[] = { 357 KOBJMETHOD_END 358 }; 359 360 DEFINE_CLASS(null, null_methods, 0); 361 362 void 363 bus_topo_assert(void) 364 { 365 366 GIANT_REQUIRED; 367 } 368 369 struct mtx * 370 bus_topo_mtx(void) 371 { 372 373 return (&Giant); 374 } 375 376 void 377 bus_topo_lock(void) 378 { 379 380 mtx_lock(bus_topo_mtx()); 381 } 382 383 void 384 bus_topo_unlock(void) 385 { 386 387 mtx_unlock(bus_topo_mtx()); 388 } 389 390 /* 391 * Bus pass implementation 392 */ 393 394 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 395 int bus_current_pass = BUS_PASS_ROOT; 396 397 /** 398 * @internal 399 * @brief Register the pass level of a new driver attachment 400 * 401 * Register a new driver attachment's pass level. If no driver 402 * attachment with the same pass level has been added, then @p new 403 * will be added to the global passes list. 404 * 405 * @param new the new driver attachment 406 */ 407 static void 408 driver_register_pass(struct driverlink *new) 409 { 410 struct driverlink *dl; 411 412 /* We only consider pass numbers during boot. */ 413 if (bus_current_pass == BUS_PASS_DEFAULT) 414 return; 415 416 /* 417 * Walk the passes list. If we already know about this pass 418 * then there is nothing to do. If we don't, then insert this 419 * driver link into the list. 420 */ 421 TAILQ_FOREACH(dl, &passes, passlink) { 422 if (dl->pass < new->pass) 423 continue; 424 if (dl->pass == new->pass) 425 return; 426 TAILQ_INSERT_BEFORE(dl, new, passlink); 427 return; 428 } 429 TAILQ_INSERT_TAIL(&passes, new, passlink); 430 } 431 432 /** 433 * @brief Raise the current bus pass 434 * 435 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 436 * method on the root bus to kick off a new device tree scan for each 437 * new pass level that has at least one driver. 438 */ 439 void 440 bus_set_pass(int pass) 441 { 442 struct driverlink *dl; 443 444 if (bus_current_pass > pass) 445 panic("Attempt to lower bus pass level"); 446 447 TAILQ_FOREACH(dl, &passes, passlink) { 448 /* Skip pass values below the current pass level. */ 449 if (dl->pass <= bus_current_pass) 450 continue; 451 452 /* 453 * Bail once we hit a driver with a pass level that is 454 * too high. 455 */ 456 if (dl->pass > pass) 457 break; 458 459 /* 460 * Raise the pass level to the next level and rescan 461 * the tree. 462 */ 463 bus_current_pass = dl->pass; 464 BUS_NEW_PASS(root_bus); 465 } 466 467 /* 468 * If there isn't a driver registered for the requested pass, 469 * then bus_current_pass might still be less than 'pass'. Set 470 * it to 'pass' in that case. 471 */ 472 if (bus_current_pass < pass) 473 bus_current_pass = pass; 474 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 475 } 476 477 /* 478 * Devclass implementation 479 */ 480 481 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 482 483 /** 484 * @internal 485 * @brief Find or create a device class 486 * 487 * If a device class with the name @p classname exists, return it, 488 * otherwise if @p create is non-zero create and return a new device 489 * class. 490 * 491 * If @p parentname is non-NULL, the parent of the devclass is set to 492 * the devclass of that name. 493 * 494 * @param classname the devclass name to find or create 495 * @param parentname the parent devclass name or @c NULL 496 * @param create non-zero to create a devclass 497 */ 498 static devclass_t 499 devclass_find_internal(const char *classname, const char *parentname, 500 int create) 501 { 502 devclass_t dc; 503 504 PDEBUG(("looking for %s", classname)); 505 if (!classname) 506 return (NULL); 507 508 TAILQ_FOREACH(dc, &devclasses, link) { 509 if (!strcmp(dc->name, classname)) 510 break; 511 } 512 513 if (create && !dc) { 514 PDEBUG(("creating %s", classname)); 515 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 516 M_BUS, M_NOWAIT | M_ZERO); 517 if (!dc) 518 return (NULL); 519 dc->parent = NULL; 520 dc->name = (char*) (dc + 1); 521 strcpy(dc->name, classname); 522 TAILQ_INIT(&dc->drivers); 523 TAILQ_INSERT_TAIL(&devclasses, dc, link); 524 525 bus_data_generation_update(); 526 } 527 528 /* 529 * If a parent class is specified, then set that as our parent so 530 * that this devclass will support drivers for the parent class as 531 * well. If the parent class has the same name don't do this though 532 * as it creates a cycle that can trigger an infinite loop in 533 * device_probe_child() if a device exists for which there is no 534 * suitable driver. 535 */ 536 if (parentname && dc && !dc->parent && 537 strcmp(classname, parentname) != 0) { 538 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 539 dc->parent->flags |= DC_HAS_CHILDREN; 540 } 541 542 return (dc); 543 } 544 545 /** 546 * @brief Create a device class 547 * 548 * If a device class with the name @p classname exists, return it, 549 * otherwise create and return a new device class. 550 * 551 * @param classname the devclass name to find or create 552 */ 553 devclass_t 554 devclass_create(const char *classname) 555 { 556 return (devclass_find_internal(classname, NULL, TRUE)); 557 } 558 559 /** 560 * @brief Find a device class 561 * 562 * If a device class with the name @p classname exists, return it, 563 * otherwise return @c NULL. 564 * 565 * @param classname the devclass name to find 566 */ 567 devclass_t 568 devclass_find(const char *classname) 569 { 570 return (devclass_find_internal(classname, NULL, FALSE)); 571 } 572 573 /** 574 * @brief Register that a device driver has been added to a devclass 575 * 576 * Register that a device driver has been added to a devclass. This 577 * is called by devclass_add_driver to accomplish the recursive 578 * notification of all the children classes of dc, as well as dc. 579 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 580 * the devclass. 581 * 582 * We do a full search here of the devclass list at each iteration 583 * level to save storing children-lists in the devclass structure. If 584 * we ever move beyond a few dozen devices doing this, we may need to 585 * reevaluate... 586 * 587 * @param dc the devclass to edit 588 * @param driver the driver that was just added 589 */ 590 static void 591 devclass_driver_added(devclass_t dc, driver_t *driver) 592 { 593 devclass_t parent; 594 int i; 595 596 /* 597 * Call BUS_DRIVER_ADDED for any existing buses in this class. 598 */ 599 for (i = 0; i < dc->maxunit; i++) 600 if (dc->devices[i] && device_is_attached(dc->devices[i])) 601 BUS_DRIVER_ADDED(dc->devices[i], driver); 602 603 /* 604 * Walk through the children classes. Since we only keep a 605 * single parent pointer around, we walk the entire list of 606 * devclasses looking for children. We set the 607 * DC_HAS_CHILDREN flag when a child devclass is created on 608 * the parent, so we only walk the list for those devclasses 609 * that have children. 610 */ 611 if (!(dc->flags & DC_HAS_CHILDREN)) 612 return; 613 parent = dc; 614 TAILQ_FOREACH(dc, &devclasses, link) { 615 if (dc->parent == parent) 616 devclass_driver_added(dc, driver); 617 } 618 } 619 620 static void 621 device_handle_nomatch(device_t dev) 622 { 623 BUS_PROBE_NOMATCH(dev->parent, dev); 624 EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev); 625 dev->flags |= DF_DONENOMATCH; 626 } 627 628 /** 629 * @brief Add a device driver to a device class 630 * 631 * Add a device driver to a devclass. This is normally called 632 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 633 * all devices in the devclass will be called to allow them to attempt 634 * to re-probe any unmatched children. 635 * 636 * @param dc the devclass to edit 637 * @param driver the driver to register 638 */ 639 int 640 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 641 { 642 driverlink_t dl; 643 devclass_t child_dc; 644 const char *parentname; 645 646 PDEBUG(("%s", DRIVERNAME(driver))); 647 648 /* Don't allow invalid pass values. */ 649 if (pass <= BUS_PASS_ROOT) 650 return (EINVAL); 651 652 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 653 if (!dl) 654 return (ENOMEM); 655 656 /* 657 * Compile the driver's methods. Also increase the reference count 658 * so that the class doesn't get freed when the last instance 659 * goes. This means we can safely use static methods and avoids a 660 * double-free in devclass_delete_driver. 661 */ 662 kobj_class_compile((kobj_class_t) driver); 663 664 /* 665 * If the driver has any base classes, make the 666 * devclass inherit from the devclass of the driver's 667 * first base class. This will allow the system to 668 * search for drivers in both devclasses for children 669 * of a device using this driver. 670 */ 671 if (driver->baseclasses) 672 parentname = driver->baseclasses[0]->name; 673 else 674 parentname = NULL; 675 child_dc = devclass_find_internal(driver->name, parentname, TRUE); 676 if (dcp != NULL) 677 *dcp = child_dc; 678 679 dl->driver = driver; 680 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 681 driver->refs++; /* XXX: kobj_mtx */ 682 dl->pass = pass; 683 driver_register_pass(dl); 684 685 if (device_frozen) { 686 dl->flags |= DL_DEFERRED_PROBE; 687 } else { 688 devclass_driver_added(dc, driver); 689 } 690 bus_data_generation_update(); 691 return (0); 692 } 693 694 /** 695 * @brief Register that a device driver has been deleted from a devclass 696 * 697 * Register that a device driver has been removed from a devclass. 698 * This is called by devclass_delete_driver to accomplish the 699 * recursive notification of all the children classes of busclass, as 700 * well as busclass. Each layer will attempt to detach the driver 701 * from any devices that are children of the bus's devclass. The function 702 * will return an error if a device fails to detach. 703 * 704 * We do a full search here of the devclass list at each iteration 705 * level to save storing children-lists in the devclass structure. If 706 * we ever move beyond a few dozen devices doing this, we may need to 707 * reevaluate... 708 * 709 * @param busclass the devclass of the parent bus 710 * @param dc the devclass of the driver being deleted 711 * @param driver the driver being deleted 712 */ 713 static int 714 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 715 { 716 devclass_t parent; 717 device_t dev; 718 int error, i; 719 720 /* 721 * Disassociate from any devices. We iterate through all the 722 * devices in the devclass of the driver and detach any which are 723 * using the driver and which have a parent in the devclass which 724 * we are deleting from. 725 * 726 * Note that since a driver can be in multiple devclasses, we 727 * should not detach devices which are not children of devices in 728 * the affected devclass. 729 * 730 * If we're frozen, we don't generate NOMATCH events. Mark to 731 * generate later. 732 */ 733 for (i = 0; i < dc->maxunit; i++) { 734 if (dc->devices[i]) { 735 dev = dc->devices[i]; 736 if (dev->driver == driver && dev->parent && 737 dev->parent->devclass == busclass) { 738 if ((error = device_detach(dev)) != 0) 739 return (error); 740 if (device_frozen) { 741 dev->flags &= ~DF_DONENOMATCH; 742 dev->flags |= DF_NEEDNOMATCH; 743 } else { 744 device_handle_nomatch(dev); 745 } 746 } 747 } 748 } 749 750 /* 751 * Walk through the children classes. Since we only keep a 752 * single parent pointer around, we walk the entire list of 753 * devclasses looking for children. We set the 754 * DC_HAS_CHILDREN flag when a child devclass is created on 755 * the parent, so we only walk the list for those devclasses 756 * that have children. 757 */ 758 if (!(busclass->flags & DC_HAS_CHILDREN)) 759 return (0); 760 parent = busclass; 761 TAILQ_FOREACH(busclass, &devclasses, link) { 762 if (busclass->parent == parent) { 763 error = devclass_driver_deleted(busclass, dc, driver); 764 if (error) 765 return (error); 766 } 767 } 768 return (0); 769 } 770 771 /** 772 * @brief Delete a device driver from a device class 773 * 774 * Delete a device driver from a devclass. This is normally called 775 * automatically by DRIVER_MODULE(). 776 * 777 * If the driver is currently attached to any devices, 778 * devclass_delete_driver() will first attempt to detach from each 779 * device. If one of the detach calls fails, the driver will not be 780 * deleted. 781 * 782 * @param dc the devclass to edit 783 * @param driver the driver to unregister 784 */ 785 int 786 devclass_delete_driver(devclass_t busclass, driver_t *driver) 787 { 788 devclass_t dc = devclass_find(driver->name); 789 driverlink_t dl; 790 int error; 791 792 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 793 794 if (!dc) 795 return (0); 796 797 /* 798 * Find the link structure in the bus' list of drivers. 799 */ 800 TAILQ_FOREACH(dl, &busclass->drivers, link) { 801 if (dl->driver == driver) 802 break; 803 } 804 805 if (!dl) { 806 PDEBUG(("%s not found in %s list", driver->name, 807 busclass->name)); 808 return (ENOENT); 809 } 810 811 error = devclass_driver_deleted(busclass, dc, driver); 812 if (error != 0) 813 return (error); 814 815 TAILQ_REMOVE(&busclass->drivers, dl, link); 816 free(dl, M_BUS); 817 818 /* XXX: kobj_mtx */ 819 driver->refs--; 820 if (driver->refs == 0) 821 kobj_class_free((kobj_class_t) driver); 822 823 bus_data_generation_update(); 824 return (0); 825 } 826 827 /** 828 * @brief Quiesces a set of device drivers from a device class 829 * 830 * Quiesce a device driver from a devclass. This is normally called 831 * automatically by DRIVER_MODULE(). 832 * 833 * If the driver is currently attached to any devices, 834 * devclass_quiesece_driver() will first attempt to quiesce each 835 * device. 836 * 837 * @param dc the devclass to edit 838 * @param driver the driver to unregister 839 */ 840 static int 841 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 842 { 843 devclass_t dc = devclass_find(driver->name); 844 driverlink_t dl; 845 device_t dev; 846 int i; 847 int error; 848 849 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 850 851 if (!dc) 852 return (0); 853 854 /* 855 * Find the link structure in the bus' list of drivers. 856 */ 857 TAILQ_FOREACH(dl, &busclass->drivers, link) { 858 if (dl->driver == driver) 859 break; 860 } 861 862 if (!dl) { 863 PDEBUG(("%s not found in %s list", driver->name, 864 busclass->name)); 865 return (ENOENT); 866 } 867 868 /* 869 * Quiesce all devices. We iterate through all the devices in 870 * the devclass of the driver and quiesce any which are using 871 * the driver and which have a parent in the devclass which we 872 * are quiescing. 873 * 874 * Note that since a driver can be in multiple devclasses, we 875 * should not quiesce devices which are not children of 876 * devices in the affected devclass. 877 */ 878 for (i = 0; i < dc->maxunit; i++) { 879 if (dc->devices[i]) { 880 dev = dc->devices[i]; 881 if (dev->driver == driver && dev->parent && 882 dev->parent->devclass == busclass) { 883 if ((error = device_quiesce(dev)) != 0) 884 return (error); 885 } 886 } 887 } 888 889 return (0); 890 } 891 892 /** 893 * @internal 894 */ 895 static driverlink_t 896 devclass_find_driver_internal(devclass_t dc, const char *classname) 897 { 898 driverlink_t dl; 899 900 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 901 902 TAILQ_FOREACH(dl, &dc->drivers, link) { 903 if (!strcmp(dl->driver->name, classname)) 904 return (dl); 905 } 906 907 PDEBUG(("not found")); 908 return (NULL); 909 } 910 911 /** 912 * @brief Return the name of the devclass 913 */ 914 const char * 915 devclass_get_name(devclass_t dc) 916 { 917 return (dc->name); 918 } 919 920 /** 921 * @brief Find a device given a unit number 922 * 923 * @param dc the devclass to search 924 * @param unit the unit number to search for 925 * 926 * @returns the device with the given unit number or @c 927 * NULL if there is no such device 928 */ 929 device_t 930 devclass_get_device(devclass_t dc, int unit) 931 { 932 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 933 return (NULL); 934 return (dc->devices[unit]); 935 } 936 937 /** 938 * @brief Find the softc field of a device given a unit number 939 * 940 * @param dc the devclass to search 941 * @param unit the unit number to search for 942 * 943 * @returns the softc field of the device with the given 944 * unit number or @c NULL if there is no such 945 * device 946 */ 947 void * 948 devclass_get_softc(devclass_t dc, int unit) 949 { 950 device_t dev; 951 952 dev = devclass_get_device(dc, unit); 953 if (!dev) 954 return (NULL); 955 956 return (device_get_softc(dev)); 957 } 958 959 /** 960 * @brief Get a list of devices in the devclass 961 * 962 * An array containing a list of all the devices in the given devclass 963 * is allocated and returned in @p *devlistp. The number of devices 964 * in the array is returned in @p *devcountp. The caller should free 965 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 966 * 967 * @param dc the devclass to examine 968 * @param devlistp points at location for array pointer return 969 * value 970 * @param devcountp points at location for array size return value 971 * 972 * @retval 0 success 973 * @retval ENOMEM the array allocation failed 974 */ 975 int 976 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 977 { 978 int count, i; 979 device_t *list; 980 981 count = devclass_get_count(dc); 982 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 983 if (!list) 984 return (ENOMEM); 985 986 count = 0; 987 for (i = 0; i < dc->maxunit; i++) { 988 if (dc->devices[i]) { 989 list[count] = dc->devices[i]; 990 count++; 991 } 992 } 993 994 *devlistp = list; 995 *devcountp = count; 996 997 return (0); 998 } 999 1000 /** 1001 * @brief Get a list of drivers in the devclass 1002 * 1003 * An array containing a list of pointers to all the drivers in the 1004 * given devclass is allocated and returned in @p *listp. The number 1005 * of drivers in the array is returned in @p *countp. The caller should 1006 * free the array using @c free(p, M_TEMP). 1007 * 1008 * @param dc the devclass to examine 1009 * @param listp gives location for array pointer return value 1010 * @param countp gives location for number of array elements 1011 * return value 1012 * 1013 * @retval 0 success 1014 * @retval ENOMEM the array allocation failed 1015 */ 1016 int 1017 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1018 { 1019 driverlink_t dl; 1020 driver_t **list; 1021 int count; 1022 1023 count = 0; 1024 TAILQ_FOREACH(dl, &dc->drivers, link) 1025 count++; 1026 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1027 if (list == NULL) 1028 return (ENOMEM); 1029 1030 count = 0; 1031 TAILQ_FOREACH(dl, &dc->drivers, link) { 1032 list[count] = dl->driver; 1033 count++; 1034 } 1035 *listp = list; 1036 *countp = count; 1037 1038 return (0); 1039 } 1040 1041 /** 1042 * @brief Get the number of devices in a devclass 1043 * 1044 * @param dc the devclass to examine 1045 */ 1046 int 1047 devclass_get_count(devclass_t dc) 1048 { 1049 int count, i; 1050 1051 count = 0; 1052 for (i = 0; i < dc->maxunit; i++) 1053 if (dc->devices[i]) 1054 count++; 1055 return (count); 1056 } 1057 1058 /** 1059 * @brief Get the maximum unit number used in a devclass 1060 * 1061 * Note that this is one greater than the highest currently-allocated 1062 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1063 * that not even the devclass has been allocated yet. 1064 * 1065 * @param dc the devclass to examine 1066 */ 1067 int 1068 devclass_get_maxunit(devclass_t dc) 1069 { 1070 if (dc == NULL) 1071 return (-1); 1072 return (dc->maxunit); 1073 } 1074 1075 /** 1076 * @brief Find a free unit number in a devclass 1077 * 1078 * This function searches for the first unused unit number greater 1079 * that or equal to @p unit. 1080 * 1081 * @param dc the devclass to examine 1082 * @param unit the first unit number to check 1083 */ 1084 int 1085 devclass_find_free_unit(devclass_t dc, int unit) 1086 { 1087 if (dc == NULL) 1088 return (unit); 1089 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1090 unit++; 1091 return (unit); 1092 } 1093 1094 /** 1095 * @brief Set the parent of a devclass 1096 * 1097 * The parent class is normally initialised automatically by 1098 * DRIVER_MODULE(). 1099 * 1100 * @param dc the devclass to edit 1101 * @param pdc the new parent devclass 1102 */ 1103 void 1104 devclass_set_parent(devclass_t dc, devclass_t pdc) 1105 { 1106 dc->parent = pdc; 1107 } 1108 1109 /** 1110 * @brief Get the parent of a devclass 1111 * 1112 * @param dc the devclass to examine 1113 */ 1114 devclass_t 1115 devclass_get_parent(devclass_t dc) 1116 { 1117 return (dc->parent); 1118 } 1119 1120 struct sysctl_ctx_list * 1121 devclass_get_sysctl_ctx(devclass_t dc) 1122 { 1123 return (&dc->sysctl_ctx); 1124 } 1125 1126 struct sysctl_oid * 1127 devclass_get_sysctl_tree(devclass_t dc) 1128 { 1129 return (dc->sysctl_tree); 1130 } 1131 1132 /** 1133 * @internal 1134 * @brief Allocate a unit number 1135 * 1136 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1137 * will do). The allocated unit number is returned in @p *unitp. 1138 1139 * @param dc the devclass to allocate from 1140 * @param unitp points at the location for the allocated unit 1141 * number 1142 * 1143 * @retval 0 success 1144 * @retval EEXIST the requested unit number is already allocated 1145 * @retval ENOMEM memory allocation failure 1146 */ 1147 static int 1148 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1149 { 1150 const char *s; 1151 int unit = *unitp; 1152 1153 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1154 1155 /* Ask the parent bus if it wants to wire this device. */ 1156 if (unit == -1) 1157 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1158 &unit); 1159 1160 /* If we were given a wired unit number, check for existing device */ 1161 /* XXX imp XXX */ 1162 if (unit != -1) { 1163 if (unit >= 0 && unit < dc->maxunit && 1164 dc->devices[unit] != NULL) { 1165 if (bootverbose) 1166 printf("%s: %s%d already exists; skipping it\n", 1167 dc->name, dc->name, *unitp); 1168 return (EEXIST); 1169 } 1170 } else { 1171 /* Unwired device, find the next available slot for it */ 1172 unit = 0; 1173 for (unit = 0;; unit++) { 1174 /* If this device slot is already in use, skip it. */ 1175 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1176 continue; 1177 1178 /* If there is an "at" hint for a unit then skip it. */ 1179 if (resource_string_value(dc->name, unit, "at", &s) == 1180 0) 1181 continue; 1182 1183 break; 1184 } 1185 } 1186 1187 /* 1188 * We've selected a unit beyond the length of the table, so let's 1189 * extend the table to make room for all units up to and including 1190 * this one. 1191 */ 1192 if (unit >= dc->maxunit) { 1193 device_t *newlist, *oldlist; 1194 int newsize; 1195 1196 oldlist = dc->devices; 1197 newsize = roundup((unit + 1), 1198 MAX(1, MINALLOCSIZE / sizeof(device_t))); 1199 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1200 if (!newlist) 1201 return (ENOMEM); 1202 if (oldlist != NULL) 1203 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1204 bzero(newlist + dc->maxunit, 1205 sizeof(device_t) * (newsize - dc->maxunit)); 1206 dc->devices = newlist; 1207 dc->maxunit = newsize; 1208 if (oldlist != NULL) 1209 free(oldlist, M_BUS); 1210 } 1211 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1212 1213 *unitp = unit; 1214 return (0); 1215 } 1216 1217 /** 1218 * @internal 1219 * @brief Add a device to a devclass 1220 * 1221 * A unit number is allocated for the device (using the device's 1222 * preferred unit number if any) and the device is registered in the 1223 * devclass. This allows the device to be looked up by its unit 1224 * number, e.g. by decoding a dev_t minor number. 1225 * 1226 * @param dc the devclass to add to 1227 * @param dev the device to add 1228 * 1229 * @retval 0 success 1230 * @retval EEXIST the requested unit number is already allocated 1231 * @retval ENOMEM memory allocation failure 1232 */ 1233 static int 1234 devclass_add_device(devclass_t dc, device_t dev) 1235 { 1236 int buflen, error; 1237 1238 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1239 1240 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1241 if (buflen < 0) 1242 return (ENOMEM); 1243 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1244 if (!dev->nameunit) 1245 return (ENOMEM); 1246 1247 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1248 free(dev->nameunit, M_BUS); 1249 dev->nameunit = NULL; 1250 return (error); 1251 } 1252 dc->devices[dev->unit] = dev; 1253 dev->devclass = dc; 1254 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1255 1256 return (0); 1257 } 1258 1259 /** 1260 * @internal 1261 * @brief Delete a device from a devclass 1262 * 1263 * The device is removed from the devclass's device list and its unit 1264 * number is freed. 1265 1266 * @param dc the devclass to delete from 1267 * @param dev the device to delete 1268 * 1269 * @retval 0 success 1270 */ 1271 static int 1272 devclass_delete_device(devclass_t dc, device_t dev) 1273 { 1274 if (!dc || !dev) 1275 return (0); 1276 1277 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1278 1279 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1280 panic("devclass_delete_device: inconsistent device class"); 1281 dc->devices[dev->unit] = NULL; 1282 if (dev->flags & DF_WILDCARD) 1283 dev->unit = -1; 1284 dev->devclass = NULL; 1285 free(dev->nameunit, M_BUS); 1286 dev->nameunit = NULL; 1287 1288 return (0); 1289 } 1290 1291 /** 1292 * @internal 1293 * @brief Make a new device and add it as a child of @p parent 1294 * 1295 * @param parent the parent of the new device 1296 * @param name the devclass name of the new device or @c NULL 1297 * to leave the devclass unspecified 1298 * @parem unit the unit number of the new device of @c -1 to 1299 * leave the unit number unspecified 1300 * 1301 * @returns the new device 1302 */ 1303 static device_t 1304 make_device(device_t parent, const char *name, int unit) 1305 { 1306 device_t dev; 1307 devclass_t dc; 1308 1309 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1310 1311 if (name) { 1312 dc = devclass_find_internal(name, NULL, TRUE); 1313 if (!dc) { 1314 printf("make_device: can't find device class %s\n", 1315 name); 1316 return (NULL); 1317 } 1318 } else { 1319 dc = NULL; 1320 } 1321 1322 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1323 if (!dev) 1324 return (NULL); 1325 1326 dev->parent = parent; 1327 TAILQ_INIT(&dev->children); 1328 kobj_init((kobj_t) dev, &null_class); 1329 dev->driver = NULL; 1330 dev->devclass = NULL; 1331 dev->unit = unit; 1332 dev->nameunit = NULL; 1333 dev->desc = NULL; 1334 dev->busy = 0; 1335 dev->devflags = 0; 1336 dev->flags = DF_ENABLED; 1337 dev->order = 0; 1338 if (unit == -1) 1339 dev->flags |= DF_WILDCARD; 1340 if (name) { 1341 dev->flags |= DF_FIXEDCLASS; 1342 if (devclass_add_device(dc, dev)) { 1343 kobj_delete((kobj_t) dev, M_BUS); 1344 return (NULL); 1345 } 1346 } 1347 if (parent != NULL && device_has_quiet_children(parent)) 1348 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1349 dev->ivars = NULL; 1350 dev->softc = NULL; 1351 1352 dev->state = DS_NOTPRESENT; 1353 1354 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1355 bus_data_generation_update(); 1356 1357 return (dev); 1358 } 1359 1360 /** 1361 * @internal 1362 * @brief Print a description of a device. 1363 */ 1364 static int 1365 device_print_child(device_t dev, device_t child) 1366 { 1367 int retval = 0; 1368 1369 if (device_is_alive(child)) 1370 retval += BUS_PRINT_CHILD(dev, child); 1371 else 1372 retval += device_printf(child, " not found\n"); 1373 1374 return (retval); 1375 } 1376 1377 /** 1378 * @brief Create a new device 1379 * 1380 * This creates a new device and adds it as a child of an existing 1381 * parent device. The new device will be added after the last existing 1382 * child with order zero. 1383 * 1384 * @param dev the device which will be the parent of the 1385 * new child device 1386 * @param name devclass name for new device or @c NULL if not 1387 * specified 1388 * @param unit unit number for new device or @c -1 if not 1389 * specified 1390 * 1391 * @returns the new device 1392 */ 1393 device_t 1394 device_add_child(device_t dev, const char *name, int unit) 1395 { 1396 return (device_add_child_ordered(dev, 0, name, unit)); 1397 } 1398 1399 /** 1400 * @brief Create a new device 1401 * 1402 * This creates a new device and adds it as a child of an existing 1403 * parent device. The new device will be added after the last existing 1404 * child with the same order. 1405 * 1406 * @param dev the device which will be the parent of the 1407 * new child device 1408 * @param order a value which is used to partially sort the 1409 * children of @p dev - devices created using 1410 * lower values of @p order appear first in @p 1411 * dev's list of children 1412 * @param name devclass name for new device or @c NULL if not 1413 * specified 1414 * @param unit unit number for new device or @c -1 if not 1415 * specified 1416 * 1417 * @returns the new device 1418 */ 1419 device_t 1420 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1421 { 1422 device_t child; 1423 device_t place; 1424 1425 PDEBUG(("%s at %s with order %u as unit %d", 1426 name, DEVICENAME(dev), order, unit)); 1427 KASSERT(name != NULL || unit == -1, 1428 ("child device with wildcard name and specific unit number")); 1429 1430 child = make_device(dev, name, unit); 1431 if (child == NULL) 1432 return (child); 1433 child->order = order; 1434 1435 TAILQ_FOREACH(place, &dev->children, link) { 1436 if (place->order > order) 1437 break; 1438 } 1439 1440 if (place) { 1441 /* 1442 * The device 'place' is the first device whose order is 1443 * greater than the new child. 1444 */ 1445 TAILQ_INSERT_BEFORE(place, child, link); 1446 } else { 1447 /* 1448 * The new child's order is greater or equal to the order of 1449 * any existing device. Add the child to the tail of the list. 1450 */ 1451 TAILQ_INSERT_TAIL(&dev->children, child, link); 1452 } 1453 1454 bus_data_generation_update(); 1455 return (child); 1456 } 1457 1458 /** 1459 * @brief Delete a device 1460 * 1461 * This function deletes a device along with all of its children. If 1462 * the device currently has a driver attached to it, the device is 1463 * detached first using device_detach(). 1464 * 1465 * @param dev the parent device 1466 * @param child the device to delete 1467 * 1468 * @retval 0 success 1469 * @retval non-zero a unit error code describing the error 1470 */ 1471 int 1472 device_delete_child(device_t dev, device_t child) 1473 { 1474 int error; 1475 device_t grandchild; 1476 1477 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1478 1479 /* detach parent before deleting children, if any */ 1480 if ((error = device_detach(child)) != 0) 1481 return (error); 1482 1483 /* remove children second */ 1484 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1485 error = device_delete_child(child, grandchild); 1486 if (error) 1487 return (error); 1488 } 1489 1490 if (child->devclass) 1491 devclass_delete_device(child->devclass, child); 1492 if (child->parent) 1493 BUS_CHILD_DELETED(dev, child); 1494 TAILQ_REMOVE(&dev->children, child, link); 1495 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1496 kobj_delete((kobj_t) child, M_BUS); 1497 1498 bus_data_generation_update(); 1499 return (0); 1500 } 1501 1502 /** 1503 * @brief Delete all children devices of the given device, if any. 1504 * 1505 * This function deletes all children devices of the given device, if 1506 * any, using the device_delete_child() function for each device it 1507 * finds. If a child device cannot be deleted, this function will 1508 * return an error code. 1509 * 1510 * @param dev the parent device 1511 * 1512 * @retval 0 success 1513 * @retval non-zero a device would not detach 1514 */ 1515 int 1516 device_delete_children(device_t dev) 1517 { 1518 device_t child; 1519 int error; 1520 1521 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1522 1523 error = 0; 1524 1525 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1526 error = device_delete_child(dev, child); 1527 if (error) { 1528 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1529 break; 1530 } 1531 } 1532 return (error); 1533 } 1534 1535 /** 1536 * @brief Find a device given a unit number 1537 * 1538 * This is similar to devclass_get_devices() but only searches for 1539 * devices which have @p dev as a parent. 1540 * 1541 * @param dev the parent device to search 1542 * @param unit the unit number to search for. If the unit is -1, 1543 * return the first child of @p dev which has name 1544 * @p classname (that is, the one with the lowest unit.) 1545 * 1546 * @returns the device with the given unit number or @c 1547 * NULL if there is no such device 1548 */ 1549 device_t 1550 device_find_child(device_t dev, const char *classname, int unit) 1551 { 1552 devclass_t dc; 1553 device_t child; 1554 1555 dc = devclass_find(classname); 1556 if (!dc) 1557 return (NULL); 1558 1559 if (unit != -1) { 1560 child = devclass_get_device(dc, unit); 1561 if (child && child->parent == dev) 1562 return (child); 1563 } else { 1564 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1565 child = devclass_get_device(dc, unit); 1566 if (child && child->parent == dev) 1567 return (child); 1568 } 1569 } 1570 return (NULL); 1571 } 1572 1573 /** 1574 * @internal 1575 */ 1576 static driverlink_t 1577 first_matching_driver(devclass_t dc, device_t dev) 1578 { 1579 if (dev->devclass) 1580 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1581 return (TAILQ_FIRST(&dc->drivers)); 1582 } 1583 1584 /** 1585 * @internal 1586 */ 1587 static driverlink_t 1588 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1589 { 1590 if (dev->devclass) { 1591 driverlink_t dl; 1592 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1593 if (!strcmp(dev->devclass->name, dl->driver->name)) 1594 return (dl); 1595 return (NULL); 1596 } 1597 return (TAILQ_NEXT(last, link)); 1598 } 1599 1600 /** 1601 * @internal 1602 */ 1603 int 1604 device_probe_child(device_t dev, device_t child) 1605 { 1606 devclass_t dc; 1607 driverlink_t best = NULL; 1608 driverlink_t dl; 1609 int result, pri = 0; 1610 /* We should preserve the devclass (or lack of) set by the bus. */ 1611 int hasclass = (child->devclass != NULL); 1612 1613 bus_topo_assert(); 1614 1615 dc = dev->devclass; 1616 if (!dc) 1617 panic("device_probe_child: parent device has no devclass"); 1618 1619 /* 1620 * If the state is already probed, then return. 1621 */ 1622 if (child->state == DS_ALIVE) 1623 return (0); 1624 1625 for (; dc; dc = dc->parent) { 1626 for (dl = first_matching_driver(dc, child); 1627 dl; 1628 dl = next_matching_driver(dc, child, dl)) { 1629 /* If this driver's pass is too high, then ignore it. */ 1630 if (dl->pass > bus_current_pass) 1631 continue; 1632 1633 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1634 result = device_set_driver(child, dl->driver); 1635 if (result == ENOMEM) 1636 return (result); 1637 else if (result != 0) 1638 continue; 1639 if (!hasclass) { 1640 if (device_set_devclass(child, 1641 dl->driver->name) != 0) { 1642 char const * devname = 1643 device_get_name(child); 1644 if (devname == NULL) 1645 devname = "(unknown)"; 1646 printf("driver bug: Unable to set " 1647 "devclass (class: %s " 1648 "devname: %s)\n", 1649 dl->driver->name, 1650 devname); 1651 (void)device_set_driver(child, NULL); 1652 continue; 1653 } 1654 } 1655 1656 /* Fetch any flags for the device before probing. */ 1657 resource_int_value(dl->driver->name, child->unit, 1658 "flags", &child->devflags); 1659 1660 result = DEVICE_PROBE(child); 1661 1662 /* 1663 * If the driver returns SUCCESS, there can be 1664 * no higher match for this device. 1665 */ 1666 if (result == 0) { 1667 best = dl; 1668 pri = 0; 1669 break; 1670 } 1671 1672 /* Reset flags and devclass before the next probe. */ 1673 child->devflags = 0; 1674 if (!hasclass) 1675 (void)device_set_devclass(child, NULL); 1676 1677 /* 1678 * Reset DF_QUIET in case this driver doesn't 1679 * end up as the best driver. 1680 */ 1681 device_verbose(child); 1682 1683 /* 1684 * Probes that return BUS_PROBE_NOWILDCARD or lower 1685 * only match on devices whose driver was explicitly 1686 * specified. 1687 */ 1688 if (result <= BUS_PROBE_NOWILDCARD && 1689 !(child->flags & DF_FIXEDCLASS)) { 1690 result = ENXIO; 1691 } 1692 1693 /* 1694 * The driver returned an error so it 1695 * certainly doesn't match. 1696 */ 1697 if (result > 0) { 1698 (void)device_set_driver(child, NULL); 1699 continue; 1700 } 1701 1702 /* 1703 * A priority lower than SUCCESS, remember the 1704 * best matching driver. Initialise the value 1705 * of pri for the first match. 1706 */ 1707 if (best == NULL || result > pri) { 1708 best = dl; 1709 pri = result; 1710 continue; 1711 } 1712 } 1713 /* 1714 * If we have an unambiguous match in this devclass, 1715 * don't look in the parent. 1716 */ 1717 if (best && pri == 0) 1718 break; 1719 } 1720 1721 if (best == NULL) 1722 return (ENXIO); 1723 1724 /* 1725 * If we found a driver, change state and initialise the devclass. 1726 */ 1727 if (pri < 0) { 1728 /* Set the winning driver, devclass, and flags. */ 1729 result = device_set_driver(child, best->driver); 1730 if (result != 0) 1731 return (result); 1732 if (!child->devclass) { 1733 result = device_set_devclass(child, best->driver->name); 1734 if (result != 0) { 1735 (void)device_set_driver(child, NULL); 1736 return (result); 1737 } 1738 } 1739 resource_int_value(best->driver->name, child->unit, 1740 "flags", &child->devflags); 1741 1742 /* 1743 * A bit bogus. Call the probe method again to make sure 1744 * that we have the right description. 1745 */ 1746 result = DEVICE_PROBE(child); 1747 if (result > 0) { 1748 if (!hasclass) 1749 (void)device_set_devclass(child, NULL); 1750 (void)device_set_driver(child, NULL); 1751 return (result); 1752 } 1753 } 1754 1755 child->state = DS_ALIVE; 1756 bus_data_generation_update(); 1757 return (0); 1758 } 1759 1760 /** 1761 * @brief Return the parent of a device 1762 */ 1763 device_t 1764 device_get_parent(device_t dev) 1765 { 1766 return (dev->parent); 1767 } 1768 1769 /** 1770 * @brief Get a list of children of a device 1771 * 1772 * An array containing a list of all the children of the given device 1773 * is allocated and returned in @p *devlistp. The number of devices 1774 * in the array is returned in @p *devcountp. The caller should free 1775 * the array using @c free(p, M_TEMP). 1776 * 1777 * @param dev the device to examine 1778 * @param devlistp points at location for array pointer return 1779 * value 1780 * @param devcountp points at location for array size return value 1781 * 1782 * @retval 0 success 1783 * @retval ENOMEM the array allocation failed 1784 */ 1785 int 1786 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1787 { 1788 int count; 1789 device_t child; 1790 device_t *list; 1791 1792 count = 0; 1793 TAILQ_FOREACH(child, &dev->children, link) { 1794 count++; 1795 } 1796 if (count == 0) { 1797 *devlistp = NULL; 1798 *devcountp = 0; 1799 return (0); 1800 } 1801 1802 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1803 if (!list) 1804 return (ENOMEM); 1805 1806 count = 0; 1807 TAILQ_FOREACH(child, &dev->children, link) { 1808 list[count] = child; 1809 count++; 1810 } 1811 1812 *devlistp = list; 1813 *devcountp = count; 1814 1815 return (0); 1816 } 1817 1818 /** 1819 * @brief Return the current driver for the device or @c NULL if there 1820 * is no driver currently attached 1821 */ 1822 driver_t * 1823 device_get_driver(device_t dev) 1824 { 1825 return (dev->driver); 1826 } 1827 1828 /** 1829 * @brief Return the current devclass for the device or @c NULL if 1830 * there is none. 1831 */ 1832 devclass_t 1833 device_get_devclass(device_t dev) 1834 { 1835 return (dev->devclass); 1836 } 1837 1838 /** 1839 * @brief Return the name of the device's devclass or @c NULL if there 1840 * is none. 1841 */ 1842 const char * 1843 device_get_name(device_t dev) 1844 { 1845 if (dev != NULL && dev->devclass) 1846 return (devclass_get_name(dev->devclass)); 1847 return (NULL); 1848 } 1849 1850 /** 1851 * @brief Return a string containing the device's devclass name 1852 * followed by an ascii representation of the device's unit number 1853 * (e.g. @c "foo2"). 1854 */ 1855 const char * 1856 device_get_nameunit(device_t dev) 1857 { 1858 return (dev->nameunit); 1859 } 1860 1861 /** 1862 * @brief Return the device's unit number. 1863 */ 1864 int 1865 device_get_unit(device_t dev) 1866 { 1867 return (dev->unit); 1868 } 1869 1870 /** 1871 * @brief Return the device's description string 1872 */ 1873 const char * 1874 device_get_desc(device_t dev) 1875 { 1876 return (dev->desc); 1877 } 1878 1879 /** 1880 * @brief Return the device's flags 1881 */ 1882 uint32_t 1883 device_get_flags(device_t dev) 1884 { 1885 return (dev->devflags); 1886 } 1887 1888 struct sysctl_ctx_list * 1889 device_get_sysctl_ctx(device_t dev) 1890 { 1891 return (&dev->sysctl_ctx); 1892 } 1893 1894 struct sysctl_oid * 1895 device_get_sysctl_tree(device_t dev) 1896 { 1897 return (dev->sysctl_tree); 1898 } 1899 1900 /** 1901 * @brief Print the name of the device followed by a colon and a space 1902 * 1903 * @returns the number of characters printed 1904 */ 1905 int 1906 device_print_prettyname(device_t dev) 1907 { 1908 const char *name = device_get_name(dev); 1909 1910 if (name == NULL) 1911 return (printf("unknown: ")); 1912 return (printf("%s%d: ", name, device_get_unit(dev))); 1913 } 1914 1915 /** 1916 * @brief Print the name of the device followed by a colon, a space 1917 * and the result of calling vprintf() with the value of @p fmt and 1918 * the following arguments. 1919 * 1920 * @returns the number of characters printed 1921 */ 1922 int 1923 device_printf(device_t dev, const char * fmt, ...) 1924 { 1925 char buf[128]; 1926 struct sbuf sb; 1927 const char *name; 1928 va_list ap; 1929 size_t retval; 1930 1931 retval = 0; 1932 1933 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1934 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 1935 1936 name = device_get_name(dev); 1937 1938 if (name == NULL) 1939 sbuf_cat(&sb, "unknown: "); 1940 else 1941 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 1942 1943 va_start(ap, fmt); 1944 sbuf_vprintf(&sb, fmt, ap); 1945 va_end(ap); 1946 1947 sbuf_finish(&sb); 1948 sbuf_delete(&sb); 1949 1950 return (retval); 1951 } 1952 1953 /** 1954 * @brief Print the name of the device followed by a colon, a space 1955 * and the result of calling log() with the value of @p fmt and 1956 * the following arguments. 1957 * 1958 * @returns the number of characters printed 1959 */ 1960 int 1961 device_log(device_t dev, int pri, const char * fmt, ...) 1962 { 1963 char buf[128]; 1964 struct sbuf sb; 1965 const char *name; 1966 va_list ap; 1967 size_t retval; 1968 1969 retval = 0; 1970 1971 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1972 1973 name = device_get_name(dev); 1974 1975 if (name == NULL) 1976 sbuf_cat(&sb, "unknown: "); 1977 else 1978 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 1979 1980 va_start(ap, fmt); 1981 sbuf_vprintf(&sb, fmt, ap); 1982 va_end(ap); 1983 1984 sbuf_finish(&sb); 1985 1986 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb)); 1987 retval = sbuf_len(&sb); 1988 1989 sbuf_delete(&sb); 1990 1991 return (retval); 1992 } 1993 1994 /** 1995 * @internal 1996 */ 1997 static void 1998 device_set_desc_internal(device_t dev, const char* desc, int copy) 1999 { 2000 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2001 free(dev->desc, M_BUS); 2002 dev->flags &= ~DF_DESCMALLOCED; 2003 dev->desc = NULL; 2004 } 2005 2006 if (copy && desc) { 2007 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2008 if (dev->desc) { 2009 strcpy(dev->desc, desc); 2010 dev->flags |= DF_DESCMALLOCED; 2011 } 2012 } else { 2013 /* Avoid a -Wcast-qual warning */ 2014 dev->desc = (char *)(uintptr_t) desc; 2015 } 2016 2017 bus_data_generation_update(); 2018 } 2019 2020 /** 2021 * @brief Set the device's description 2022 * 2023 * The value of @c desc should be a string constant that will not 2024 * change (at least until the description is changed in a subsequent 2025 * call to device_set_desc() or device_set_desc_copy()). 2026 */ 2027 void 2028 device_set_desc(device_t dev, const char* desc) 2029 { 2030 device_set_desc_internal(dev, desc, FALSE); 2031 } 2032 2033 /** 2034 * @brief Set the device's description 2035 * 2036 * The string pointed to by @c desc is copied. Use this function if 2037 * the device description is generated, (e.g. with sprintf()). 2038 */ 2039 void 2040 device_set_desc_copy(device_t dev, const char* desc) 2041 { 2042 device_set_desc_internal(dev, desc, TRUE); 2043 } 2044 2045 /** 2046 * @brief Set the device's flags 2047 */ 2048 void 2049 device_set_flags(device_t dev, uint32_t flags) 2050 { 2051 dev->devflags = flags; 2052 } 2053 2054 /** 2055 * @brief Return the device's softc field 2056 * 2057 * The softc is allocated and zeroed when a driver is attached, based 2058 * on the size field of the driver. 2059 */ 2060 void * 2061 device_get_softc(device_t dev) 2062 { 2063 return (dev->softc); 2064 } 2065 2066 /** 2067 * @brief Set the device's softc field 2068 * 2069 * Most drivers do not need to use this since the softc is allocated 2070 * automatically when the driver is attached. 2071 */ 2072 void 2073 device_set_softc(device_t dev, void *softc) 2074 { 2075 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2076 free(dev->softc, M_BUS_SC); 2077 dev->softc = softc; 2078 if (dev->softc) 2079 dev->flags |= DF_EXTERNALSOFTC; 2080 else 2081 dev->flags &= ~DF_EXTERNALSOFTC; 2082 } 2083 2084 /** 2085 * @brief Free claimed softc 2086 * 2087 * Most drivers do not need to use this since the softc is freed 2088 * automatically when the driver is detached. 2089 */ 2090 void 2091 device_free_softc(void *softc) 2092 { 2093 free(softc, M_BUS_SC); 2094 } 2095 2096 /** 2097 * @brief Claim softc 2098 * 2099 * This function can be used to let the driver free the automatically 2100 * allocated softc using "device_free_softc()". This function is 2101 * useful when the driver is refcounting the softc and the softc 2102 * cannot be freed when the "device_detach" method is called. 2103 */ 2104 void 2105 device_claim_softc(device_t dev) 2106 { 2107 if (dev->softc) 2108 dev->flags |= DF_EXTERNALSOFTC; 2109 else 2110 dev->flags &= ~DF_EXTERNALSOFTC; 2111 } 2112 2113 /** 2114 * @brief Get the device's ivars field 2115 * 2116 * The ivars field is used by the parent device to store per-device 2117 * state (e.g. the physical location of the device or a list of 2118 * resources). 2119 */ 2120 void * 2121 device_get_ivars(device_t dev) 2122 { 2123 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2124 return (dev->ivars); 2125 } 2126 2127 /** 2128 * @brief Set the device's ivars field 2129 */ 2130 void 2131 device_set_ivars(device_t dev, void * ivars) 2132 { 2133 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2134 dev->ivars = ivars; 2135 } 2136 2137 /** 2138 * @brief Return the device's state 2139 */ 2140 device_state_t 2141 device_get_state(device_t dev) 2142 { 2143 return (dev->state); 2144 } 2145 2146 /** 2147 * @brief Set the DF_ENABLED flag for the device 2148 */ 2149 void 2150 device_enable(device_t dev) 2151 { 2152 dev->flags |= DF_ENABLED; 2153 } 2154 2155 /** 2156 * @brief Clear the DF_ENABLED flag for the device 2157 */ 2158 void 2159 device_disable(device_t dev) 2160 { 2161 dev->flags &= ~DF_ENABLED; 2162 } 2163 2164 /** 2165 * @brief Increment the busy counter for the device 2166 */ 2167 void 2168 device_busy(device_t dev) 2169 { 2170 2171 /* 2172 * Mark the device as busy, recursively up the tree if this busy count 2173 * goes 0->1. 2174 */ 2175 if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL) 2176 device_busy(dev->parent); 2177 } 2178 2179 /** 2180 * @brief Decrement the busy counter for the device 2181 */ 2182 void 2183 device_unbusy(device_t dev) 2184 { 2185 2186 /* 2187 * Mark the device as unbsy, recursively if this is the last busy count. 2188 */ 2189 if (refcount_release(&dev->busy) && dev->parent != NULL) 2190 device_unbusy(dev->parent); 2191 } 2192 2193 /** 2194 * @brief Set the DF_QUIET flag for the device 2195 */ 2196 void 2197 device_quiet(device_t dev) 2198 { 2199 dev->flags |= DF_QUIET; 2200 } 2201 2202 /** 2203 * @brief Set the DF_QUIET_CHILDREN flag for the device 2204 */ 2205 void 2206 device_quiet_children(device_t dev) 2207 { 2208 dev->flags |= DF_QUIET_CHILDREN; 2209 } 2210 2211 /** 2212 * @brief Clear the DF_QUIET flag for the device 2213 */ 2214 void 2215 device_verbose(device_t dev) 2216 { 2217 dev->flags &= ~DF_QUIET; 2218 } 2219 2220 ssize_t 2221 device_get_property(device_t dev, const char *prop, void *val, size_t sz, 2222 device_property_type_t type) 2223 { 2224 device_t bus = device_get_parent(dev); 2225 2226 switch (type) { 2227 case DEVICE_PROP_ANY: 2228 case DEVICE_PROP_BUFFER: 2229 case DEVICE_PROP_HANDLE: /* Size checks done in implementation. */ 2230 break; 2231 case DEVICE_PROP_UINT32: 2232 if (sz % 4 != 0) 2233 return (-1); 2234 break; 2235 case DEVICE_PROP_UINT64: 2236 if (sz % 8 != 0) 2237 return (-1); 2238 break; 2239 default: 2240 return (-1); 2241 } 2242 2243 return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type)); 2244 } 2245 2246 bool 2247 device_has_property(device_t dev, const char *prop) 2248 { 2249 return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0); 2250 } 2251 2252 /** 2253 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2254 */ 2255 int 2256 device_has_quiet_children(device_t dev) 2257 { 2258 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2259 } 2260 2261 /** 2262 * @brief Return non-zero if the DF_QUIET flag is set on the device 2263 */ 2264 int 2265 device_is_quiet(device_t dev) 2266 { 2267 return ((dev->flags & DF_QUIET) != 0); 2268 } 2269 2270 /** 2271 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2272 */ 2273 int 2274 device_is_enabled(device_t dev) 2275 { 2276 return ((dev->flags & DF_ENABLED) != 0); 2277 } 2278 2279 /** 2280 * @brief Return non-zero if the device was successfully probed 2281 */ 2282 int 2283 device_is_alive(device_t dev) 2284 { 2285 return (dev->state >= DS_ALIVE); 2286 } 2287 2288 /** 2289 * @brief Return non-zero if the device currently has a driver 2290 * attached to it 2291 */ 2292 int 2293 device_is_attached(device_t dev) 2294 { 2295 return (dev->state >= DS_ATTACHED); 2296 } 2297 2298 /** 2299 * @brief Return non-zero if the device is currently suspended. 2300 */ 2301 int 2302 device_is_suspended(device_t dev) 2303 { 2304 return ((dev->flags & DF_SUSPENDED) != 0); 2305 } 2306 2307 /** 2308 * @brief Set the devclass of a device 2309 * @see devclass_add_device(). 2310 */ 2311 int 2312 device_set_devclass(device_t dev, const char *classname) 2313 { 2314 devclass_t dc; 2315 int error; 2316 2317 if (!classname) { 2318 if (dev->devclass) 2319 devclass_delete_device(dev->devclass, dev); 2320 return (0); 2321 } 2322 2323 if (dev->devclass) { 2324 printf("device_set_devclass: device class already set\n"); 2325 return (EINVAL); 2326 } 2327 2328 dc = devclass_find_internal(classname, NULL, TRUE); 2329 if (!dc) 2330 return (ENOMEM); 2331 2332 error = devclass_add_device(dc, dev); 2333 2334 bus_data_generation_update(); 2335 return (error); 2336 } 2337 2338 /** 2339 * @brief Set the devclass of a device and mark the devclass fixed. 2340 * @see device_set_devclass() 2341 */ 2342 int 2343 device_set_devclass_fixed(device_t dev, const char *classname) 2344 { 2345 int error; 2346 2347 if (classname == NULL) 2348 return (EINVAL); 2349 2350 error = device_set_devclass(dev, classname); 2351 if (error) 2352 return (error); 2353 dev->flags |= DF_FIXEDCLASS; 2354 return (0); 2355 } 2356 2357 /** 2358 * @brief Query the device to determine if it's of a fixed devclass 2359 * @see device_set_devclass_fixed() 2360 */ 2361 bool 2362 device_is_devclass_fixed(device_t dev) 2363 { 2364 return ((dev->flags & DF_FIXEDCLASS) != 0); 2365 } 2366 2367 /** 2368 * @brief Set the driver of a device 2369 * 2370 * @retval 0 success 2371 * @retval EBUSY the device already has a driver attached 2372 * @retval ENOMEM a memory allocation failure occurred 2373 */ 2374 int 2375 device_set_driver(device_t dev, driver_t *driver) 2376 { 2377 int domain; 2378 struct domainset *policy; 2379 2380 if (dev->state >= DS_ATTACHED) 2381 return (EBUSY); 2382 2383 if (dev->driver == driver) 2384 return (0); 2385 2386 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2387 free(dev->softc, M_BUS_SC); 2388 dev->softc = NULL; 2389 } 2390 device_set_desc(dev, NULL); 2391 kobj_delete((kobj_t) dev, NULL); 2392 dev->driver = driver; 2393 if (driver) { 2394 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2395 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2396 if (bus_get_domain(dev, &domain) == 0) 2397 policy = DOMAINSET_PREF(domain); 2398 else 2399 policy = DOMAINSET_RR(); 2400 dev->softc = malloc_domainset(driver->size, M_BUS_SC, 2401 policy, M_NOWAIT | M_ZERO); 2402 if (!dev->softc) { 2403 kobj_delete((kobj_t) dev, NULL); 2404 kobj_init((kobj_t) dev, &null_class); 2405 dev->driver = NULL; 2406 return (ENOMEM); 2407 } 2408 } 2409 } else { 2410 kobj_init((kobj_t) dev, &null_class); 2411 } 2412 2413 bus_data_generation_update(); 2414 return (0); 2415 } 2416 2417 /** 2418 * @brief Probe a device, and return this status. 2419 * 2420 * This function is the core of the device autoconfiguration 2421 * system. Its purpose is to select a suitable driver for a device and 2422 * then call that driver to initialise the hardware appropriately. The 2423 * driver is selected by calling the DEVICE_PROBE() method of a set of 2424 * candidate drivers and then choosing the driver which returned the 2425 * best value. This driver is then attached to the device using 2426 * device_attach(). 2427 * 2428 * The set of suitable drivers is taken from the list of drivers in 2429 * the parent device's devclass. If the device was originally created 2430 * with a specific class name (see device_add_child()), only drivers 2431 * with that name are probed, otherwise all drivers in the devclass 2432 * are probed. If no drivers return successful probe values in the 2433 * parent devclass, the search continues in the parent of that 2434 * devclass (see devclass_get_parent()) if any. 2435 * 2436 * @param dev the device to initialise 2437 * 2438 * @retval 0 success 2439 * @retval ENXIO no driver was found 2440 * @retval ENOMEM memory allocation failure 2441 * @retval non-zero some other unix error code 2442 * @retval -1 Device already attached 2443 */ 2444 int 2445 device_probe(device_t dev) 2446 { 2447 int error; 2448 2449 bus_topo_assert(); 2450 2451 if (dev->state >= DS_ALIVE) 2452 return (-1); 2453 2454 if (!(dev->flags & DF_ENABLED)) { 2455 if (bootverbose && device_get_name(dev) != NULL) { 2456 device_print_prettyname(dev); 2457 printf("not probed (disabled)\n"); 2458 } 2459 return (-1); 2460 } 2461 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2462 if (bus_current_pass == BUS_PASS_DEFAULT && 2463 !(dev->flags & DF_DONENOMATCH)) { 2464 device_handle_nomatch(dev); 2465 } 2466 return (error); 2467 } 2468 return (0); 2469 } 2470 2471 /** 2472 * @brief Probe a device and attach a driver if possible 2473 * 2474 * calls device_probe() and attaches if that was successful. 2475 */ 2476 int 2477 device_probe_and_attach(device_t dev) 2478 { 2479 int error; 2480 2481 bus_topo_assert(); 2482 2483 error = device_probe(dev); 2484 if (error == -1) 2485 return (0); 2486 else if (error != 0) 2487 return (error); 2488 2489 CURVNET_SET_QUIET(vnet0); 2490 error = device_attach(dev); 2491 CURVNET_RESTORE(); 2492 return error; 2493 } 2494 2495 /** 2496 * @brief Attach a device driver to a device 2497 * 2498 * This function is a wrapper around the DEVICE_ATTACH() driver 2499 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2500 * device's sysctl tree, optionally prints a description of the device 2501 * and queues a notification event for user-based device management 2502 * services. 2503 * 2504 * Normally this function is only called internally from 2505 * device_probe_and_attach(). 2506 * 2507 * @param dev the device to initialise 2508 * 2509 * @retval 0 success 2510 * @retval ENXIO no driver was found 2511 * @retval ENOMEM memory allocation failure 2512 * @retval non-zero some other unix error code 2513 */ 2514 int 2515 device_attach(device_t dev) 2516 { 2517 uint64_t attachtime; 2518 uint16_t attachentropy; 2519 int error; 2520 2521 if (resource_disabled(dev->driver->name, dev->unit)) { 2522 device_disable(dev); 2523 if (bootverbose) 2524 device_printf(dev, "disabled via hints entry\n"); 2525 return (ENXIO); 2526 } 2527 2528 device_sysctl_init(dev); 2529 if (!device_is_quiet(dev)) 2530 device_print_child(dev->parent, dev); 2531 attachtime = get_cyclecount(); 2532 dev->state = DS_ATTACHING; 2533 if ((error = DEVICE_ATTACH(dev)) != 0) { 2534 printf("device_attach: %s%d attach returned %d\n", 2535 dev->driver->name, dev->unit, error); 2536 if (!(dev->flags & DF_FIXEDCLASS)) 2537 devclass_delete_device(dev->devclass, dev); 2538 (void)device_set_driver(dev, NULL); 2539 device_sysctl_fini(dev); 2540 KASSERT(dev->busy == 0, ("attach failed but busy")); 2541 dev->state = DS_NOTPRESENT; 2542 return (error); 2543 } 2544 dev->flags |= DF_ATTACHED_ONCE; 2545 /* 2546 * We only need the low bits of this time, but ranges from tens to thousands 2547 * have been seen, so keep 2 bytes' worth. 2548 */ 2549 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 2550 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 2551 device_sysctl_update(dev); 2552 dev->state = DS_ATTACHED; 2553 dev->flags &= ~DF_DONENOMATCH; 2554 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 2555 return (0); 2556 } 2557 2558 /** 2559 * @brief Detach a driver from a device 2560 * 2561 * This function is a wrapper around the DEVICE_DETACH() driver 2562 * method. If the call to DEVICE_DETACH() succeeds, it calls 2563 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2564 * notification event for user-based device management services and 2565 * cleans up the device's sysctl tree. 2566 * 2567 * @param dev the device to un-initialise 2568 * 2569 * @retval 0 success 2570 * @retval ENXIO no driver was found 2571 * @retval ENOMEM memory allocation failure 2572 * @retval non-zero some other unix error code 2573 */ 2574 int 2575 device_detach(device_t dev) 2576 { 2577 int error; 2578 2579 bus_topo_assert(); 2580 2581 PDEBUG(("%s", DEVICENAME(dev))); 2582 if (dev->busy > 0) 2583 return (EBUSY); 2584 if (dev->state == DS_ATTACHING) { 2585 device_printf(dev, "device in attaching state! Deferring detach.\n"); 2586 return (EBUSY); 2587 } 2588 if (dev->state != DS_ATTACHED) 2589 return (0); 2590 2591 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 2592 if ((error = DEVICE_DETACH(dev)) != 0) { 2593 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2594 EVHDEV_DETACH_FAILED); 2595 return (error); 2596 } else { 2597 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2598 EVHDEV_DETACH_COMPLETE); 2599 } 2600 if (!device_is_quiet(dev)) 2601 device_printf(dev, "detached\n"); 2602 if (dev->parent) 2603 BUS_CHILD_DETACHED(dev->parent, dev); 2604 2605 if (!(dev->flags & DF_FIXEDCLASS)) 2606 devclass_delete_device(dev->devclass, dev); 2607 2608 device_verbose(dev); 2609 dev->state = DS_NOTPRESENT; 2610 (void)device_set_driver(dev, NULL); 2611 device_sysctl_fini(dev); 2612 2613 return (0); 2614 } 2615 2616 /** 2617 * @brief Tells a driver to quiesce itself. 2618 * 2619 * This function is a wrapper around the DEVICE_QUIESCE() driver 2620 * method. If the call to DEVICE_QUIESCE() succeeds. 2621 * 2622 * @param dev the device to quiesce 2623 * 2624 * @retval 0 success 2625 * @retval ENXIO no driver was found 2626 * @retval ENOMEM memory allocation failure 2627 * @retval non-zero some other unix error code 2628 */ 2629 int 2630 device_quiesce(device_t dev) 2631 { 2632 PDEBUG(("%s", DEVICENAME(dev))); 2633 if (dev->busy > 0) 2634 return (EBUSY); 2635 if (dev->state != DS_ATTACHED) 2636 return (0); 2637 2638 return (DEVICE_QUIESCE(dev)); 2639 } 2640 2641 /** 2642 * @brief Notify a device of system shutdown 2643 * 2644 * This function calls the DEVICE_SHUTDOWN() driver method if the 2645 * device currently has an attached driver. 2646 * 2647 * @returns the value returned by DEVICE_SHUTDOWN() 2648 */ 2649 int 2650 device_shutdown(device_t dev) 2651 { 2652 if (dev->state < DS_ATTACHED) 2653 return (0); 2654 return (DEVICE_SHUTDOWN(dev)); 2655 } 2656 2657 /** 2658 * @brief Set the unit number of a device 2659 * 2660 * This function can be used to override the unit number used for a 2661 * device (e.g. to wire a device to a pre-configured unit number). 2662 */ 2663 int 2664 device_set_unit(device_t dev, int unit) 2665 { 2666 devclass_t dc; 2667 int err; 2668 2669 if (unit == dev->unit) 2670 return (0); 2671 dc = device_get_devclass(dev); 2672 if (unit < dc->maxunit && dc->devices[unit]) 2673 return (EBUSY); 2674 err = devclass_delete_device(dc, dev); 2675 if (err) 2676 return (err); 2677 dev->unit = unit; 2678 err = devclass_add_device(dc, dev); 2679 if (err) 2680 return (err); 2681 2682 bus_data_generation_update(); 2683 return (0); 2684 } 2685 2686 /*======================================*/ 2687 /* 2688 * Some useful method implementations to make life easier for bus drivers. 2689 */ 2690 2691 void 2692 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 2693 { 2694 bzero(args, sz); 2695 args->size = sz; 2696 args->memattr = VM_MEMATTR_DEVICE; 2697 } 2698 2699 /** 2700 * @brief Initialise a resource list. 2701 * 2702 * @param rl the resource list to initialise 2703 */ 2704 void 2705 resource_list_init(struct resource_list *rl) 2706 { 2707 STAILQ_INIT(rl); 2708 } 2709 2710 /** 2711 * @brief Reclaim memory used by a resource list. 2712 * 2713 * This function frees the memory for all resource entries on the list 2714 * (if any). 2715 * 2716 * @param rl the resource list to free 2717 */ 2718 void 2719 resource_list_free(struct resource_list *rl) 2720 { 2721 struct resource_list_entry *rle; 2722 2723 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2724 if (rle->res) 2725 panic("resource_list_free: resource entry is busy"); 2726 STAILQ_REMOVE_HEAD(rl, link); 2727 free(rle, M_BUS); 2728 } 2729 } 2730 2731 /** 2732 * @brief Add a resource entry. 2733 * 2734 * This function adds a resource entry using the given @p type, @p 2735 * start, @p end and @p count values. A rid value is chosen by 2736 * searching sequentially for the first unused rid starting at zero. 2737 * 2738 * @param rl the resource list to edit 2739 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2740 * @param start the start address of the resource 2741 * @param end the end address of the resource 2742 * @param count XXX end-start+1 2743 */ 2744 int 2745 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 2746 rman_res_t end, rman_res_t count) 2747 { 2748 int rid; 2749 2750 rid = 0; 2751 while (resource_list_find(rl, type, rid) != NULL) 2752 rid++; 2753 resource_list_add(rl, type, rid, start, end, count); 2754 return (rid); 2755 } 2756 2757 /** 2758 * @brief Add or modify a resource entry. 2759 * 2760 * If an existing entry exists with the same type and rid, it will be 2761 * modified using the given values of @p start, @p end and @p 2762 * count. If no entry exists, a new one will be created using the 2763 * given values. The resource list entry that matches is then returned. 2764 * 2765 * @param rl the resource list to edit 2766 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2767 * @param rid the resource identifier 2768 * @param start the start address of the resource 2769 * @param end the end address of the resource 2770 * @param count XXX end-start+1 2771 */ 2772 struct resource_list_entry * 2773 resource_list_add(struct resource_list *rl, int type, int rid, 2774 rman_res_t start, rman_res_t end, rman_res_t count) 2775 { 2776 struct resource_list_entry *rle; 2777 2778 rle = resource_list_find(rl, type, rid); 2779 if (!rle) { 2780 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2781 M_NOWAIT); 2782 if (!rle) 2783 panic("resource_list_add: can't record entry"); 2784 STAILQ_INSERT_TAIL(rl, rle, link); 2785 rle->type = type; 2786 rle->rid = rid; 2787 rle->res = NULL; 2788 rle->flags = 0; 2789 } 2790 2791 if (rle->res) 2792 panic("resource_list_add: resource entry is busy"); 2793 2794 rle->start = start; 2795 rle->end = end; 2796 rle->count = count; 2797 return (rle); 2798 } 2799 2800 /** 2801 * @brief Determine if a resource entry is busy. 2802 * 2803 * Returns true if a resource entry is busy meaning that it has an 2804 * associated resource that is not an unallocated "reserved" resource. 2805 * 2806 * @param rl the resource list to search 2807 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2808 * @param rid the resource identifier 2809 * 2810 * @returns Non-zero if the entry is busy, zero otherwise. 2811 */ 2812 int 2813 resource_list_busy(struct resource_list *rl, int type, int rid) 2814 { 2815 struct resource_list_entry *rle; 2816 2817 rle = resource_list_find(rl, type, rid); 2818 if (rle == NULL || rle->res == NULL) 2819 return (0); 2820 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 2821 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 2822 ("reserved resource is active")); 2823 return (0); 2824 } 2825 return (1); 2826 } 2827 2828 /** 2829 * @brief Determine if a resource entry is reserved. 2830 * 2831 * Returns true if a resource entry is reserved meaning that it has an 2832 * associated "reserved" resource. The resource can either be 2833 * allocated or unallocated. 2834 * 2835 * @param rl the resource list to search 2836 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2837 * @param rid the resource identifier 2838 * 2839 * @returns Non-zero if the entry is reserved, zero otherwise. 2840 */ 2841 int 2842 resource_list_reserved(struct resource_list *rl, int type, int rid) 2843 { 2844 struct resource_list_entry *rle; 2845 2846 rle = resource_list_find(rl, type, rid); 2847 if (rle != NULL && rle->flags & RLE_RESERVED) 2848 return (1); 2849 return (0); 2850 } 2851 2852 /** 2853 * @brief Find a resource entry by type and rid. 2854 * 2855 * @param rl the resource list to search 2856 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2857 * @param rid the resource identifier 2858 * 2859 * @returns the resource entry pointer or NULL if there is no such 2860 * entry. 2861 */ 2862 struct resource_list_entry * 2863 resource_list_find(struct resource_list *rl, int type, int rid) 2864 { 2865 struct resource_list_entry *rle; 2866 2867 STAILQ_FOREACH(rle, rl, link) { 2868 if (rle->type == type && rle->rid == rid) 2869 return (rle); 2870 } 2871 return (NULL); 2872 } 2873 2874 /** 2875 * @brief Delete a resource entry. 2876 * 2877 * @param rl the resource list to edit 2878 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2879 * @param rid the resource identifier 2880 */ 2881 void 2882 resource_list_delete(struct resource_list *rl, int type, int rid) 2883 { 2884 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2885 2886 if (rle) { 2887 if (rle->res != NULL) 2888 panic("resource_list_delete: resource has not been released"); 2889 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 2890 free(rle, M_BUS); 2891 } 2892 } 2893 2894 /** 2895 * @brief Allocate a reserved resource 2896 * 2897 * This can be used by buses to force the allocation of resources 2898 * that are always active in the system even if they are not allocated 2899 * by a driver (e.g. PCI BARs). This function is usually called when 2900 * adding a new child to the bus. The resource is allocated from the 2901 * parent bus when it is reserved. The resource list entry is marked 2902 * with RLE_RESERVED to note that it is a reserved resource. 2903 * 2904 * Subsequent attempts to allocate the resource with 2905 * resource_list_alloc() will succeed the first time and will set 2906 * RLE_ALLOCATED to note that it has been allocated. When a reserved 2907 * resource that has been allocated is released with 2908 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 2909 * the actual resource remains allocated. The resource can be released to 2910 * the parent bus by calling resource_list_unreserve(). 2911 * 2912 * @param rl the resource list to allocate from 2913 * @param bus the parent device of @p child 2914 * @param child the device for which the resource is being reserved 2915 * @param type the type of resource to allocate 2916 * @param rid a pointer to the resource identifier 2917 * @param start hint at the start of the resource range - pass 2918 * @c 0 for any start address 2919 * @param end hint at the end of the resource range - pass 2920 * @c ~0 for any end address 2921 * @param count hint at the size of range required - pass @c 1 2922 * for any size 2923 * @param flags any extra flags to control the resource 2924 * allocation - see @c RF_XXX flags in 2925 * <sys/rman.h> for details 2926 * 2927 * @returns the resource which was allocated or @c NULL if no 2928 * resource could be allocated 2929 */ 2930 struct resource * 2931 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 2932 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 2933 { 2934 struct resource_list_entry *rle = NULL; 2935 int passthrough = (device_get_parent(child) != bus); 2936 struct resource *r; 2937 2938 if (passthrough) 2939 panic( 2940 "resource_list_reserve() should only be called for direct children"); 2941 if (flags & RF_ACTIVE) 2942 panic( 2943 "resource_list_reserve() should only reserve inactive resources"); 2944 2945 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 2946 flags); 2947 if (r != NULL) { 2948 rle = resource_list_find(rl, type, *rid); 2949 rle->flags |= RLE_RESERVED; 2950 } 2951 return (r); 2952 } 2953 2954 /** 2955 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 2956 * 2957 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 2958 * and passing the allocation up to the parent of @p bus. This assumes 2959 * that the first entry of @c device_get_ivars(child) is a struct 2960 * resource_list. This also handles 'passthrough' allocations where a 2961 * child is a remote descendant of bus by passing the allocation up to 2962 * the parent of bus. 2963 * 2964 * Typically, a bus driver would store a list of child resources 2965 * somewhere in the child device's ivars (see device_get_ivars()) and 2966 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 2967 * then call resource_list_alloc() to perform the allocation. 2968 * 2969 * @param rl the resource list to allocate from 2970 * @param bus the parent device of @p child 2971 * @param child the device which is requesting an allocation 2972 * @param type the type of resource to allocate 2973 * @param rid a pointer to the resource identifier 2974 * @param start hint at the start of the resource range - pass 2975 * @c 0 for any start address 2976 * @param end hint at the end of the resource range - pass 2977 * @c ~0 for any end address 2978 * @param count hint at the size of range required - pass @c 1 2979 * for any size 2980 * @param flags any extra flags to control the resource 2981 * allocation - see @c RF_XXX flags in 2982 * <sys/rman.h> for details 2983 * 2984 * @returns the resource which was allocated or @c NULL if no 2985 * resource could be allocated 2986 */ 2987 struct resource * 2988 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 2989 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 2990 { 2991 struct resource_list_entry *rle = NULL; 2992 int passthrough = (device_get_parent(child) != bus); 2993 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 2994 2995 if (passthrough) { 2996 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2997 type, rid, start, end, count, flags)); 2998 } 2999 3000 rle = resource_list_find(rl, type, *rid); 3001 3002 if (!rle) 3003 return (NULL); /* no resource of that type/rid */ 3004 3005 if (rle->res) { 3006 if (rle->flags & RLE_RESERVED) { 3007 if (rle->flags & RLE_ALLOCATED) 3008 return (NULL); 3009 if ((flags & RF_ACTIVE) && 3010 bus_activate_resource(child, type, *rid, 3011 rle->res) != 0) 3012 return (NULL); 3013 rle->flags |= RLE_ALLOCATED; 3014 return (rle->res); 3015 } 3016 device_printf(bus, 3017 "resource entry %#x type %d for child %s is busy\n", *rid, 3018 type, device_get_nameunit(child)); 3019 return (NULL); 3020 } 3021 3022 if (isdefault) { 3023 start = rle->start; 3024 count = ulmax(count, rle->count); 3025 end = ulmax(rle->end, start + count - 1); 3026 } 3027 3028 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3029 type, rid, start, end, count, flags); 3030 3031 /* 3032 * Record the new range. 3033 */ 3034 if (rle->res) { 3035 rle->start = rman_get_start(rle->res); 3036 rle->end = rman_get_end(rle->res); 3037 rle->count = count; 3038 } 3039 3040 return (rle->res); 3041 } 3042 3043 /** 3044 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3045 * 3046 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3047 * used with resource_list_alloc(). 3048 * 3049 * @param rl the resource list which was allocated from 3050 * @param bus the parent device of @p child 3051 * @param child the device which is requesting a release 3052 * @param type the type of resource to release 3053 * @param rid the resource identifier 3054 * @param res the resource to release 3055 * 3056 * @retval 0 success 3057 * @retval non-zero a standard unix error code indicating what 3058 * error condition prevented the operation 3059 */ 3060 int 3061 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3062 int type, int rid, struct resource *res) 3063 { 3064 struct resource_list_entry *rle = NULL; 3065 int passthrough = (device_get_parent(child) != bus); 3066 int error; 3067 3068 if (passthrough) { 3069 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3070 type, rid, res)); 3071 } 3072 3073 rle = resource_list_find(rl, type, rid); 3074 3075 if (!rle) 3076 panic("resource_list_release: can't find resource"); 3077 if (!rle->res) 3078 panic("resource_list_release: resource entry is not busy"); 3079 if (rle->flags & RLE_RESERVED) { 3080 if (rle->flags & RLE_ALLOCATED) { 3081 if (rman_get_flags(res) & RF_ACTIVE) { 3082 error = bus_deactivate_resource(child, type, 3083 rid, res); 3084 if (error) 3085 return (error); 3086 } 3087 rle->flags &= ~RLE_ALLOCATED; 3088 return (0); 3089 } 3090 return (EINVAL); 3091 } 3092 3093 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3094 type, rid, res); 3095 if (error) 3096 return (error); 3097 3098 rle->res = NULL; 3099 return (0); 3100 } 3101 3102 /** 3103 * @brief Release all active resources of a given type 3104 * 3105 * Release all active resources of a specified type. This is intended 3106 * to be used to cleanup resources leaked by a driver after detach or 3107 * a failed attach. 3108 * 3109 * @param rl the resource list which was allocated from 3110 * @param bus the parent device of @p child 3111 * @param child the device whose active resources are being released 3112 * @param type the type of resources to release 3113 * 3114 * @retval 0 success 3115 * @retval EBUSY at least one resource was active 3116 */ 3117 int 3118 resource_list_release_active(struct resource_list *rl, device_t bus, 3119 device_t child, int type) 3120 { 3121 struct resource_list_entry *rle; 3122 int error, retval; 3123 3124 retval = 0; 3125 STAILQ_FOREACH(rle, rl, link) { 3126 if (rle->type != type) 3127 continue; 3128 if (rle->res == NULL) 3129 continue; 3130 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3131 RLE_RESERVED) 3132 continue; 3133 retval = EBUSY; 3134 error = resource_list_release(rl, bus, child, type, 3135 rman_get_rid(rle->res), rle->res); 3136 if (error != 0) 3137 device_printf(bus, 3138 "Failed to release active resource: %d\n", error); 3139 } 3140 return (retval); 3141 } 3142 3143 /** 3144 * @brief Fully release a reserved resource 3145 * 3146 * Fully releases a resource reserved via resource_list_reserve(). 3147 * 3148 * @param rl the resource list which was allocated from 3149 * @param bus the parent device of @p child 3150 * @param child the device whose reserved resource is being released 3151 * @param type the type of resource to release 3152 * @param rid the resource identifier 3153 * @param res the resource to release 3154 * 3155 * @retval 0 success 3156 * @retval non-zero a standard unix error code indicating what 3157 * error condition prevented the operation 3158 */ 3159 int 3160 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3161 int type, int rid) 3162 { 3163 struct resource_list_entry *rle = NULL; 3164 int passthrough = (device_get_parent(child) != bus); 3165 3166 if (passthrough) 3167 panic( 3168 "resource_list_unreserve() should only be called for direct children"); 3169 3170 rle = resource_list_find(rl, type, rid); 3171 3172 if (!rle) 3173 panic("resource_list_unreserve: can't find resource"); 3174 if (!(rle->flags & RLE_RESERVED)) 3175 return (EINVAL); 3176 if (rle->flags & RLE_ALLOCATED) 3177 return (EBUSY); 3178 rle->flags &= ~RLE_RESERVED; 3179 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3180 } 3181 3182 /** 3183 * @brief Print a description of resources in a resource list 3184 * 3185 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3186 * The name is printed if at least one resource of the given type is available. 3187 * The format is used to print resource start and end. 3188 * 3189 * @param rl the resource list to print 3190 * @param name the name of @p type, e.g. @c "memory" 3191 * @param type type type of resource entry to print 3192 * @param format printf(9) format string to print resource 3193 * start and end values 3194 * 3195 * @returns the number of characters printed 3196 */ 3197 int 3198 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3199 const char *format) 3200 { 3201 struct resource_list_entry *rle; 3202 int printed, retval; 3203 3204 printed = 0; 3205 retval = 0; 3206 /* Yes, this is kinda cheating */ 3207 STAILQ_FOREACH(rle, rl, link) { 3208 if (rle->type == type) { 3209 if (printed == 0) 3210 retval += printf(" %s ", name); 3211 else 3212 retval += printf(","); 3213 printed++; 3214 retval += printf(format, rle->start); 3215 if (rle->count > 1) { 3216 retval += printf("-"); 3217 retval += printf(format, rle->start + 3218 rle->count - 1); 3219 } 3220 } 3221 } 3222 return (retval); 3223 } 3224 3225 /** 3226 * @brief Releases all the resources in a list. 3227 * 3228 * @param rl The resource list to purge. 3229 * 3230 * @returns nothing 3231 */ 3232 void 3233 resource_list_purge(struct resource_list *rl) 3234 { 3235 struct resource_list_entry *rle; 3236 3237 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3238 if (rle->res) 3239 bus_release_resource(rman_get_device(rle->res), 3240 rle->type, rle->rid, rle->res); 3241 STAILQ_REMOVE_HEAD(rl, link); 3242 free(rle, M_BUS); 3243 } 3244 } 3245 3246 device_t 3247 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3248 { 3249 return (device_add_child_ordered(dev, order, name, unit)); 3250 } 3251 3252 /** 3253 * @brief Helper function for implementing DEVICE_PROBE() 3254 * 3255 * This function can be used to help implement the DEVICE_PROBE() for 3256 * a bus (i.e. a device which has other devices attached to it). It 3257 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3258 * devclass. 3259 */ 3260 int 3261 bus_generic_probe(device_t dev) 3262 { 3263 devclass_t dc = dev->devclass; 3264 driverlink_t dl; 3265 3266 TAILQ_FOREACH(dl, &dc->drivers, link) { 3267 /* 3268 * If this driver's pass is too high, then ignore it. 3269 * For most drivers in the default pass, this will 3270 * never be true. For early-pass drivers they will 3271 * only call the identify routines of eligible drivers 3272 * when this routine is called. Drivers for later 3273 * passes should have their identify routines called 3274 * on early-pass buses during BUS_NEW_PASS(). 3275 */ 3276 if (dl->pass > bus_current_pass) 3277 continue; 3278 DEVICE_IDENTIFY(dl->driver, dev); 3279 } 3280 3281 return (0); 3282 } 3283 3284 /** 3285 * @brief Helper function for implementing DEVICE_ATTACH() 3286 * 3287 * This function can be used to help implement the DEVICE_ATTACH() for 3288 * a bus. It calls device_probe_and_attach() for each of the device's 3289 * children. 3290 */ 3291 int 3292 bus_generic_attach(device_t dev) 3293 { 3294 device_t child; 3295 3296 TAILQ_FOREACH(child, &dev->children, link) { 3297 device_probe_and_attach(child); 3298 } 3299 3300 return (0); 3301 } 3302 3303 /** 3304 * @brief Helper function for delaying attaching children 3305 * 3306 * Many buses can't run transactions on the bus which children need to probe and 3307 * attach until after interrupts and/or timers are running. This function 3308 * delays their attach until interrupts and timers are enabled. 3309 */ 3310 int 3311 bus_delayed_attach_children(device_t dev) 3312 { 3313 /* Probe and attach the bus children when interrupts are available */ 3314 config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev); 3315 3316 return (0); 3317 } 3318 3319 /** 3320 * @brief Helper function for implementing DEVICE_DETACH() 3321 * 3322 * This function can be used to help implement the DEVICE_DETACH() for 3323 * a bus. It calls device_detach() for each of the device's 3324 * children. 3325 */ 3326 int 3327 bus_generic_detach(device_t dev) 3328 { 3329 device_t child; 3330 int error; 3331 3332 if (dev->state != DS_ATTACHED) 3333 return (EBUSY); 3334 3335 /* 3336 * Detach children in the reverse order. 3337 * See bus_generic_suspend for details. 3338 */ 3339 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3340 if ((error = device_detach(child)) != 0) 3341 return (error); 3342 } 3343 3344 return (0); 3345 } 3346 3347 /** 3348 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3349 * 3350 * This function can be used to help implement the DEVICE_SHUTDOWN() 3351 * for a bus. It calls device_shutdown() for each of the device's 3352 * children. 3353 */ 3354 int 3355 bus_generic_shutdown(device_t dev) 3356 { 3357 device_t child; 3358 3359 /* 3360 * Shut down children in the reverse order. 3361 * See bus_generic_suspend for details. 3362 */ 3363 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3364 device_shutdown(child); 3365 } 3366 3367 return (0); 3368 } 3369 3370 /** 3371 * @brief Default function for suspending a child device. 3372 * 3373 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3374 */ 3375 int 3376 bus_generic_suspend_child(device_t dev, device_t child) 3377 { 3378 int error; 3379 3380 error = DEVICE_SUSPEND(child); 3381 3382 if (error == 0) 3383 child->flags |= DF_SUSPENDED; 3384 3385 return (error); 3386 } 3387 3388 /** 3389 * @brief Default function for resuming a child device. 3390 * 3391 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3392 */ 3393 int 3394 bus_generic_resume_child(device_t dev, device_t child) 3395 { 3396 DEVICE_RESUME(child); 3397 child->flags &= ~DF_SUSPENDED; 3398 3399 return (0); 3400 } 3401 3402 /** 3403 * @brief Helper function for implementing DEVICE_SUSPEND() 3404 * 3405 * This function can be used to help implement the DEVICE_SUSPEND() 3406 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3407 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3408 * operation is aborted and any devices which were suspended are 3409 * resumed immediately by calling their DEVICE_RESUME() methods. 3410 */ 3411 int 3412 bus_generic_suspend(device_t dev) 3413 { 3414 int error; 3415 device_t child; 3416 3417 /* 3418 * Suspend children in the reverse order. 3419 * For most buses all children are equal, so the order does not matter. 3420 * Other buses, such as acpi, carefully order their child devices to 3421 * express implicit dependencies between them. For such buses it is 3422 * safer to bring down devices in the reverse order. 3423 */ 3424 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3425 error = BUS_SUSPEND_CHILD(dev, child); 3426 if (error != 0) { 3427 child = TAILQ_NEXT(child, link); 3428 if (child != NULL) { 3429 TAILQ_FOREACH_FROM(child, &dev->children, link) 3430 BUS_RESUME_CHILD(dev, child); 3431 } 3432 return (error); 3433 } 3434 } 3435 return (0); 3436 } 3437 3438 /** 3439 * @brief Helper function for implementing DEVICE_RESUME() 3440 * 3441 * This function can be used to help implement the DEVICE_RESUME() for 3442 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3443 */ 3444 int 3445 bus_generic_resume(device_t dev) 3446 { 3447 device_t child; 3448 3449 TAILQ_FOREACH(child, &dev->children, link) { 3450 BUS_RESUME_CHILD(dev, child); 3451 /* if resume fails, there's nothing we can usefully do... */ 3452 } 3453 return (0); 3454 } 3455 3456 /** 3457 * @brief Helper function for implementing BUS_RESET_POST 3458 * 3459 * Bus can use this function to implement common operations of 3460 * re-attaching or resuming the children after the bus itself was 3461 * reset, and after restoring bus-unique state of children. 3462 * 3463 * @param dev The bus 3464 * #param flags DEVF_RESET_* 3465 */ 3466 int 3467 bus_helper_reset_post(device_t dev, int flags) 3468 { 3469 device_t child; 3470 int error, error1; 3471 3472 error = 0; 3473 TAILQ_FOREACH(child, &dev->children,link) { 3474 BUS_RESET_POST(dev, child); 3475 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3476 device_probe_and_attach(child) : 3477 BUS_RESUME_CHILD(dev, child); 3478 if (error == 0 && error1 != 0) 3479 error = error1; 3480 } 3481 return (error); 3482 } 3483 3484 static void 3485 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3486 { 3487 child = TAILQ_NEXT(child, link); 3488 if (child == NULL) 3489 return; 3490 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3491 BUS_RESET_POST(dev, child); 3492 if ((flags & DEVF_RESET_DETACH) != 0) 3493 device_probe_and_attach(child); 3494 else 3495 BUS_RESUME_CHILD(dev, child); 3496 } 3497 } 3498 3499 /** 3500 * @brief Helper function for implementing BUS_RESET_PREPARE 3501 * 3502 * Bus can use this function to implement common operations of 3503 * detaching or suspending the children before the bus itself is 3504 * reset, and then save bus-unique state of children that must 3505 * persists around reset. 3506 * 3507 * @param dev The bus 3508 * #param flags DEVF_RESET_* 3509 */ 3510 int 3511 bus_helper_reset_prepare(device_t dev, int flags) 3512 { 3513 device_t child; 3514 int error; 3515 3516 if (dev->state != DS_ATTACHED) 3517 return (EBUSY); 3518 3519 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3520 if ((flags & DEVF_RESET_DETACH) != 0) { 3521 error = device_get_state(child) == DS_ATTACHED ? 3522 device_detach(child) : 0; 3523 } else { 3524 error = BUS_SUSPEND_CHILD(dev, child); 3525 } 3526 if (error == 0) { 3527 error = BUS_RESET_PREPARE(dev, child); 3528 if (error != 0) { 3529 if ((flags & DEVF_RESET_DETACH) != 0) 3530 device_probe_and_attach(child); 3531 else 3532 BUS_RESUME_CHILD(dev, child); 3533 } 3534 } 3535 if (error != 0) { 3536 bus_helper_reset_prepare_rollback(dev, child, flags); 3537 return (error); 3538 } 3539 } 3540 return (0); 3541 } 3542 3543 /** 3544 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3545 * 3546 * This function prints the first part of the ascii representation of 3547 * @p child, including its name, unit and description (if any - see 3548 * device_set_desc()). 3549 * 3550 * @returns the number of characters printed 3551 */ 3552 int 3553 bus_print_child_header(device_t dev, device_t child) 3554 { 3555 int retval = 0; 3556 3557 if (device_get_desc(child)) { 3558 retval += device_printf(child, "<%s>", device_get_desc(child)); 3559 } else { 3560 retval += printf("%s", device_get_nameunit(child)); 3561 } 3562 3563 return (retval); 3564 } 3565 3566 /** 3567 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3568 * 3569 * This function prints the last part of the ascii representation of 3570 * @p child, which consists of the string @c " on " followed by the 3571 * name and unit of the @p dev. 3572 * 3573 * @returns the number of characters printed 3574 */ 3575 int 3576 bus_print_child_footer(device_t dev, device_t child) 3577 { 3578 return (printf(" on %s\n", device_get_nameunit(dev))); 3579 } 3580 3581 /** 3582 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3583 * 3584 * This function prints out the VM domain for the given device. 3585 * 3586 * @returns the number of characters printed 3587 */ 3588 int 3589 bus_print_child_domain(device_t dev, device_t child) 3590 { 3591 int domain; 3592 3593 /* No domain? Don't print anything */ 3594 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3595 return (0); 3596 3597 return (printf(" numa-domain %d", domain)); 3598 } 3599 3600 /** 3601 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3602 * 3603 * This function simply calls bus_print_child_header() followed by 3604 * bus_print_child_footer(). 3605 * 3606 * @returns the number of characters printed 3607 */ 3608 int 3609 bus_generic_print_child(device_t dev, device_t child) 3610 { 3611 int retval = 0; 3612 3613 retval += bus_print_child_header(dev, child); 3614 retval += bus_print_child_domain(dev, child); 3615 retval += bus_print_child_footer(dev, child); 3616 3617 return (retval); 3618 } 3619 3620 /** 3621 * @brief Stub function for implementing BUS_READ_IVAR(). 3622 * 3623 * @returns ENOENT 3624 */ 3625 int 3626 bus_generic_read_ivar(device_t dev, device_t child, int index, 3627 uintptr_t * result) 3628 { 3629 return (ENOENT); 3630 } 3631 3632 /** 3633 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3634 * 3635 * @returns ENOENT 3636 */ 3637 int 3638 bus_generic_write_ivar(device_t dev, device_t child, int index, 3639 uintptr_t value) 3640 { 3641 return (ENOENT); 3642 } 3643 3644 /** 3645 * @brief Helper function for implementing BUS_GET_PROPERTY(). 3646 * 3647 * This simply calls the BUS_GET_PROPERTY of the parent of dev, 3648 * until a non-default implementation is found. 3649 */ 3650 ssize_t 3651 bus_generic_get_property(device_t dev, device_t child, const char *propname, 3652 void *propvalue, size_t size, device_property_type_t type) 3653 { 3654 if (device_get_parent(dev) != NULL) 3655 return (BUS_GET_PROPERTY(device_get_parent(dev), child, 3656 propname, propvalue, size, type)); 3657 3658 return (-1); 3659 } 3660 3661 /** 3662 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3663 * 3664 * @returns NULL 3665 */ 3666 struct resource_list * 3667 bus_generic_get_resource_list(device_t dev, device_t child) 3668 { 3669 return (NULL); 3670 } 3671 3672 /** 3673 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3674 * 3675 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3676 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3677 * and then calls device_probe_and_attach() for each unattached child. 3678 */ 3679 void 3680 bus_generic_driver_added(device_t dev, driver_t *driver) 3681 { 3682 device_t child; 3683 3684 DEVICE_IDENTIFY(driver, dev); 3685 TAILQ_FOREACH(child, &dev->children, link) { 3686 if (child->state == DS_NOTPRESENT) 3687 device_probe_and_attach(child); 3688 } 3689 } 3690 3691 /** 3692 * @brief Helper function for implementing BUS_NEW_PASS(). 3693 * 3694 * This implementing of BUS_NEW_PASS() first calls the identify 3695 * routines for any drivers that probe at the current pass. Then it 3696 * walks the list of devices for this bus. If a device is already 3697 * attached, then it calls BUS_NEW_PASS() on that device. If the 3698 * device is not already attached, it attempts to attach a driver to 3699 * it. 3700 */ 3701 void 3702 bus_generic_new_pass(device_t dev) 3703 { 3704 driverlink_t dl; 3705 devclass_t dc; 3706 device_t child; 3707 3708 dc = dev->devclass; 3709 TAILQ_FOREACH(dl, &dc->drivers, link) { 3710 if (dl->pass == bus_current_pass) 3711 DEVICE_IDENTIFY(dl->driver, dev); 3712 } 3713 TAILQ_FOREACH(child, &dev->children, link) { 3714 if (child->state >= DS_ATTACHED) 3715 BUS_NEW_PASS(child); 3716 else if (child->state == DS_NOTPRESENT) 3717 device_probe_and_attach(child); 3718 } 3719 } 3720 3721 /** 3722 * @brief Helper function for implementing BUS_SETUP_INTR(). 3723 * 3724 * This simple implementation of BUS_SETUP_INTR() simply calls the 3725 * BUS_SETUP_INTR() method of the parent of @p dev. 3726 */ 3727 int 3728 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3729 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3730 void **cookiep) 3731 { 3732 /* Propagate up the bus hierarchy until someone handles it. */ 3733 if (dev->parent) 3734 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3735 filter, intr, arg, cookiep)); 3736 return (EINVAL); 3737 } 3738 3739 /** 3740 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3741 * 3742 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3743 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3744 */ 3745 int 3746 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3747 void *cookie) 3748 { 3749 /* Propagate up the bus hierarchy until someone handles it. */ 3750 if (dev->parent) 3751 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3752 return (EINVAL); 3753 } 3754 3755 /** 3756 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 3757 * 3758 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 3759 * BUS_SUSPEND_INTR() method of the parent of @p dev. 3760 */ 3761 int 3762 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 3763 { 3764 /* Propagate up the bus hierarchy until someone handles it. */ 3765 if (dev->parent) 3766 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 3767 return (EINVAL); 3768 } 3769 3770 /** 3771 * @brief Helper function for implementing BUS_RESUME_INTR(). 3772 * 3773 * This simple implementation of BUS_RESUME_INTR() simply calls the 3774 * BUS_RESUME_INTR() method of the parent of @p dev. 3775 */ 3776 int 3777 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 3778 { 3779 /* Propagate up the bus hierarchy until someone handles it. */ 3780 if (dev->parent) 3781 return (BUS_RESUME_INTR(dev->parent, child, irq)); 3782 return (EINVAL); 3783 } 3784 3785 /** 3786 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3787 * 3788 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3789 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3790 */ 3791 int 3792 bus_generic_adjust_resource(device_t dev, device_t child, int type, 3793 struct resource *r, rman_res_t start, rman_res_t end) 3794 { 3795 /* Propagate up the bus hierarchy until someone handles it. */ 3796 if (dev->parent) 3797 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 3798 end)); 3799 return (EINVAL); 3800 } 3801 3802 /* 3803 * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE(). 3804 * 3805 * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the 3806 * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev. If there is no 3807 * parent, no translation happens. 3808 */ 3809 int 3810 bus_generic_translate_resource(device_t dev, int type, rman_res_t start, 3811 rman_res_t *newstart) 3812 { 3813 if (dev->parent) 3814 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, 3815 newstart)); 3816 *newstart = start; 3817 return (0); 3818 } 3819 3820 /** 3821 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3822 * 3823 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3824 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3825 */ 3826 struct resource * 3827 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3828 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3829 { 3830 /* Propagate up the bus hierarchy until someone handles it. */ 3831 if (dev->parent) 3832 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3833 start, end, count, flags)); 3834 return (NULL); 3835 } 3836 3837 /** 3838 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3839 * 3840 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3841 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3842 */ 3843 int 3844 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3845 struct resource *r) 3846 { 3847 /* Propagate up the bus hierarchy until someone handles it. */ 3848 if (dev->parent) 3849 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3850 r)); 3851 return (EINVAL); 3852 } 3853 3854 /** 3855 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3856 * 3857 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3858 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3859 */ 3860 int 3861 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3862 struct resource *r) 3863 { 3864 /* Propagate up the bus hierarchy until someone handles it. */ 3865 if (dev->parent) 3866 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3867 r)); 3868 return (EINVAL); 3869 } 3870 3871 /** 3872 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3873 * 3874 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3875 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3876 */ 3877 int 3878 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3879 int rid, struct resource *r) 3880 { 3881 /* Propagate up the bus hierarchy until someone handles it. */ 3882 if (dev->parent) 3883 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3884 r)); 3885 return (EINVAL); 3886 } 3887 3888 /** 3889 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 3890 * 3891 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 3892 * BUS_MAP_RESOURCE() method of the parent of @p dev. 3893 */ 3894 int 3895 bus_generic_map_resource(device_t dev, device_t child, int type, 3896 struct resource *r, struct resource_map_request *args, 3897 struct resource_map *map) 3898 { 3899 /* Propagate up the bus hierarchy until someone handles it. */ 3900 if (dev->parent) 3901 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 3902 map)); 3903 return (EINVAL); 3904 } 3905 3906 /** 3907 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 3908 * 3909 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 3910 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 3911 */ 3912 int 3913 bus_generic_unmap_resource(device_t dev, device_t child, int type, 3914 struct resource *r, struct resource_map *map) 3915 { 3916 /* Propagate up the bus hierarchy until someone handles it. */ 3917 if (dev->parent) 3918 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 3919 return (EINVAL); 3920 } 3921 3922 /** 3923 * @brief Helper function for implementing BUS_BIND_INTR(). 3924 * 3925 * This simple implementation of BUS_BIND_INTR() simply calls the 3926 * BUS_BIND_INTR() method of the parent of @p dev. 3927 */ 3928 int 3929 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 3930 int cpu) 3931 { 3932 /* Propagate up the bus hierarchy until someone handles it. */ 3933 if (dev->parent) 3934 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 3935 return (EINVAL); 3936 } 3937 3938 /** 3939 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3940 * 3941 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3942 * BUS_CONFIG_INTR() method of the parent of @p dev. 3943 */ 3944 int 3945 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3946 enum intr_polarity pol) 3947 { 3948 /* Propagate up the bus hierarchy until someone handles it. */ 3949 if (dev->parent) 3950 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3951 return (EINVAL); 3952 } 3953 3954 /** 3955 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 3956 * 3957 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 3958 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 3959 */ 3960 int 3961 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 3962 void *cookie, const char *descr) 3963 { 3964 /* Propagate up the bus hierarchy until someone handles it. */ 3965 if (dev->parent) 3966 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 3967 descr)); 3968 return (EINVAL); 3969 } 3970 3971 /** 3972 * @brief Helper function for implementing BUS_GET_CPUS(). 3973 * 3974 * This simple implementation of BUS_GET_CPUS() simply calls the 3975 * BUS_GET_CPUS() method of the parent of @p dev. 3976 */ 3977 int 3978 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 3979 size_t setsize, cpuset_t *cpuset) 3980 { 3981 /* Propagate up the bus hierarchy until someone handles it. */ 3982 if (dev->parent != NULL) 3983 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 3984 return (EINVAL); 3985 } 3986 3987 /** 3988 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 3989 * 3990 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 3991 * BUS_GET_DMA_TAG() method of the parent of @p dev. 3992 */ 3993 bus_dma_tag_t 3994 bus_generic_get_dma_tag(device_t dev, device_t child) 3995 { 3996 /* Propagate up the bus hierarchy until someone handles it. */ 3997 if (dev->parent != NULL) 3998 return (BUS_GET_DMA_TAG(dev->parent, child)); 3999 return (NULL); 4000 } 4001 4002 /** 4003 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4004 * 4005 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4006 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4007 */ 4008 bus_space_tag_t 4009 bus_generic_get_bus_tag(device_t dev, device_t child) 4010 { 4011 /* Propagate up the bus hierarchy until someone handles it. */ 4012 if (dev->parent != NULL) 4013 return (BUS_GET_BUS_TAG(dev->parent, child)); 4014 return ((bus_space_tag_t)0); 4015 } 4016 4017 /** 4018 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4019 * 4020 * This implementation of BUS_GET_RESOURCE() uses the 4021 * resource_list_find() function to do most of the work. It calls 4022 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4023 * search. 4024 */ 4025 int 4026 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4027 rman_res_t *startp, rman_res_t *countp) 4028 { 4029 struct resource_list * rl = NULL; 4030 struct resource_list_entry * rle = NULL; 4031 4032 rl = BUS_GET_RESOURCE_LIST(dev, child); 4033 if (!rl) 4034 return (EINVAL); 4035 4036 rle = resource_list_find(rl, type, rid); 4037 if (!rle) 4038 return (ENOENT); 4039 4040 if (startp) 4041 *startp = rle->start; 4042 if (countp) 4043 *countp = rle->count; 4044 4045 return (0); 4046 } 4047 4048 /** 4049 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4050 * 4051 * This implementation of BUS_SET_RESOURCE() uses the 4052 * resource_list_add() function to do most of the work. It calls 4053 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4054 * edit. 4055 */ 4056 int 4057 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4058 rman_res_t start, rman_res_t count) 4059 { 4060 struct resource_list * rl = NULL; 4061 4062 rl = BUS_GET_RESOURCE_LIST(dev, child); 4063 if (!rl) 4064 return (EINVAL); 4065 4066 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4067 4068 return (0); 4069 } 4070 4071 /** 4072 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4073 * 4074 * This implementation of BUS_DELETE_RESOURCE() uses the 4075 * resource_list_delete() function to do most of the work. It calls 4076 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4077 * edit. 4078 */ 4079 void 4080 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4081 { 4082 struct resource_list * rl = NULL; 4083 4084 rl = BUS_GET_RESOURCE_LIST(dev, child); 4085 if (!rl) 4086 return; 4087 4088 resource_list_delete(rl, type, rid); 4089 4090 return; 4091 } 4092 4093 /** 4094 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4095 * 4096 * This implementation of BUS_RELEASE_RESOURCE() uses the 4097 * resource_list_release() function to do most of the work. It calls 4098 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4099 */ 4100 int 4101 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4102 int rid, struct resource *r) 4103 { 4104 struct resource_list * rl = NULL; 4105 4106 if (device_get_parent(child) != dev) 4107 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4108 type, rid, r)); 4109 4110 rl = BUS_GET_RESOURCE_LIST(dev, child); 4111 if (!rl) 4112 return (EINVAL); 4113 4114 return (resource_list_release(rl, dev, child, type, rid, r)); 4115 } 4116 4117 /** 4118 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4119 * 4120 * This implementation of BUS_ALLOC_RESOURCE() uses the 4121 * resource_list_alloc() function to do most of the work. It calls 4122 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4123 */ 4124 struct resource * 4125 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4126 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4127 { 4128 struct resource_list * rl = NULL; 4129 4130 if (device_get_parent(child) != dev) 4131 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4132 type, rid, start, end, count, flags)); 4133 4134 rl = BUS_GET_RESOURCE_LIST(dev, child); 4135 if (!rl) 4136 return (NULL); 4137 4138 return (resource_list_alloc(rl, dev, child, type, rid, 4139 start, end, count, flags)); 4140 } 4141 4142 /** 4143 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4144 * 4145 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4146 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4147 */ 4148 int 4149 bus_generic_child_present(device_t dev, device_t child) 4150 { 4151 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4152 } 4153 4154 int 4155 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4156 { 4157 if (dev->parent) 4158 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4159 4160 return (ENOENT); 4161 } 4162 4163 /** 4164 * @brief Helper function to implement normal BUS_GET_DEVICE_PATH() 4165 * 4166 * This function knows how to (a) pass the request up the tree if there's 4167 * a parent and (b) Knows how to supply a FreeBSD locator. 4168 * 4169 * @param bus bus in the walk up the tree 4170 * @param child leaf node to print information about 4171 * @param locator BUS_LOCATOR_xxx string for locator 4172 * @param sb Buffer to print information into 4173 */ 4174 int 4175 bus_generic_get_device_path(device_t bus, device_t child, const char *locator, 4176 struct sbuf *sb) 4177 { 4178 int rv = 0; 4179 device_t parent; 4180 4181 /* 4182 * We don't recurse on ACPI since either we know the handle for the 4183 * device or we don't. And if we're in the generic routine, we don't 4184 * have a ACPI override. All other locators build up a path by having 4185 * their parents create a path and then adding the path element for this 4186 * node. That's why we recurse with parent, bus rather than the typical 4187 * parent, child: each spot in the tree is independent of what our child 4188 * will do with this path. 4189 */ 4190 parent = device_get_parent(bus); 4191 if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) { 4192 rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb); 4193 } 4194 if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) { 4195 if (rv == 0) { 4196 sbuf_printf(sb, "/%s", device_get_nameunit(child)); 4197 } 4198 return (rv); 4199 } 4200 /* 4201 * Don't know what to do. So assume we do nothing. Not sure that's 4202 * the right thing, but keeps us from having a big list here. 4203 */ 4204 return (0); 4205 } 4206 4207 4208 /** 4209 * @brief Helper function for implementing BUS_RESCAN(). 4210 * 4211 * This null implementation of BUS_RESCAN() always fails to indicate 4212 * the bus does not support rescanning. 4213 */ 4214 int 4215 bus_null_rescan(device_t dev) 4216 { 4217 return (ENODEV); 4218 } 4219 4220 /* 4221 * Some convenience functions to make it easier for drivers to use the 4222 * resource-management functions. All these really do is hide the 4223 * indirection through the parent's method table, making for slightly 4224 * less-wordy code. In the future, it might make sense for this code 4225 * to maintain some sort of a list of resources allocated by each device. 4226 */ 4227 4228 int 4229 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4230 struct resource **res) 4231 { 4232 int i; 4233 4234 for (i = 0; rs[i].type != -1; i++) 4235 res[i] = NULL; 4236 for (i = 0; rs[i].type != -1; i++) { 4237 res[i] = bus_alloc_resource_any(dev, 4238 rs[i].type, &rs[i].rid, rs[i].flags); 4239 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4240 bus_release_resources(dev, rs, res); 4241 return (ENXIO); 4242 } 4243 } 4244 return (0); 4245 } 4246 4247 void 4248 bus_release_resources(device_t dev, const struct resource_spec *rs, 4249 struct resource **res) 4250 { 4251 int i; 4252 4253 for (i = 0; rs[i].type != -1; i++) 4254 if (res[i] != NULL) { 4255 bus_release_resource( 4256 dev, rs[i].type, rs[i].rid, res[i]); 4257 res[i] = NULL; 4258 } 4259 } 4260 4261 /** 4262 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4263 * 4264 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4265 * parent of @p dev. 4266 */ 4267 struct resource * 4268 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4269 rman_res_t end, rman_res_t count, u_int flags) 4270 { 4271 struct resource *res; 4272 4273 if (dev->parent == NULL) 4274 return (NULL); 4275 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4276 count, flags); 4277 return (res); 4278 } 4279 4280 /** 4281 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4282 * 4283 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4284 * parent of @p dev. 4285 */ 4286 int 4287 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4288 rman_res_t end) 4289 { 4290 if (dev->parent == NULL) 4291 return (EINVAL); 4292 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4293 } 4294 4295 /** 4296 * @brief Wrapper function for BUS_TRANSLATE_RESOURCE(). 4297 * 4298 * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the 4299 * parent of @p dev. 4300 */ 4301 int 4302 bus_translate_resource(device_t dev, int type, rman_res_t start, 4303 rman_res_t *newstart) 4304 { 4305 if (dev->parent == NULL) 4306 return (EINVAL); 4307 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart)); 4308 } 4309 4310 /** 4311 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4312 * 4313 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4314 * parent of @p dev. 4315 */ 4316 int 4317 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4318 { 4319 if (dev->parent == NULL) 4320 return (EINVAL); 4321 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4322 } 4323 4324 /** 4325 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4326 * 4327 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4328 * parent of @p dev. 4329 */ 4330 int 4331 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4332 { 4333 if (dev->parent == NULL) 4334 return (EINVAL); 4335 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4336 } 4337 4338 /** 4339 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4340 * 4341 * This function simply calls the BUS_MAP_RESOURCE() method of the 4342 * parent of @p dev. 4343 */ 4344 int 4345 bus_map_resource(device_t dev, int type, struct resource *r, 4346 struct resource_map_request *args, struct resource_map *map) 4347 { 4348 if (dev->parent == NULL) 4349 return (EINVAL); 4350 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4351 } 4352 4353 /** 4354 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4355 * 4356 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4357 * parent of @p dev. 4358 */ 4359 int 4360 bus_unmap_resource(device_t dev, int type, struct resource *r, 4361 struct resource_map *map) 4362 { 4363 if (dev->parent == NULL) 4364 return (EINVAL); 4365 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4366 } 4367 4368 /** 4369 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4370 * 4371 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4372 * parent of @p dev. 4373 */ 4374 int 4375 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4376 { 4377 int rv; 4378 4379 if (dev->parent == NULL) 4380 return (EINVAL); 4381 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4382 return (rv); 4383 } 4384 4385 /** 4386 * @brief Wrapper function for BUS_SETUP_INTR(). 4387 * 4388 * This function simply calls the BUS_SETUP_INTR() method of the 4389 * parent of @p dev. 4390 */ 4391 int 4392 bus_setup_intr(device_t dev, struct resource *r, int flags, 4393 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4394 { 4395 int error; 4396 4397 if (dev->parent == NULL) 4398 return (EINVAL); 4399 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4400 arg, cookiep); 4401 if (error != 0) 4402 return (error); 4403 if (handler != NULL && !(flags & INTR_MPSAFE)) 4404 device_printf(dev, "[GIANT-LOCKED]\n"); 4405 return (0); 4406 } 4407 4408 /** 4409 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4410 * 4411 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4412 * parent of @p dev. 4413 */ 4414 int 4415 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4416 { 4417 if (dev->parent == NULL) 4418 return (EINVAL); 4419 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4420 } 4421 4422 /** 4423 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4424 * 4425 * This function simply calls the BUS_SUSPEND_INTR() method of the 4426 * parent of @p dev. 4427 */ 4428 int 4429 bus_suspend_intr(device_t dev, struct resource *r) 4430 { 4431 if (dev->parent == NULL) 4432 return (EINVAL); 4433 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4434 } 4435 4436 /** 4437 * @brief Wrapper function for BUS_RESUME_INTR(). 4438 * 4439 * This function simply calls the BUS_RESUME_INTR() method of the 4440 * parent of @p dev. 4441 */ 4442 int 4443 bus_resume_intr(device_t dev, struct resource *r) 4444 { 4445 if (dev->parent == NULL) 4446 return (EINVAL); 4447 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4448 } 4449 4450 /** 4451 * @brief Wrapper function for BUS_BIND_INTR(). 4452 * 4453 * This function simply calls the BUS_BIND_INTR() method of the 4454 * parent of @p dev. 4455 */ 4456 int 4457 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4458 { 4459 if (dev->parent == NULL) 4460 return (EINVAL); 4461 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4462 } 4463 4464 /** 4465 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4466 * 4467 * This function first formats the requested description into a 4468 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4469 * the parent of @p dev. 4470 */ 4471 int 4472 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4473 const char *fmt, ...) 4474 { 4475 va_list ap; 4476 char descr[MAXCOMLEN + 1]; 4477 4478 if (dev->parent == NULL) 4479 return (EINVAL); 4480 va_start(ap, fmt); 4481 vsnprintf(descr, sizeof(descr), fmt, ap); 4482 va_end(ap); 4483 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4484 } 4485 4486 /** 4487 * @brief Wrapper function for BUS_SET_RESOURCE(). 4488 * 4489 * This function simply calls the BUS_SET_RESOURCE() method of the 4490 * parent of @p dev. 4491 */ 4492 int 4493 bus_set_resource(device_t dev, int type, int rid, 4494 rman_res_t start, rman_res_t count) 4495 { 4496 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4497 start, count)); 4498 } 4499 4500 /** 4501 * @brief Wrapper function for BUS_GET_RESOURCE(). 4502 * 4503 * This function simply calls the BUS_GET_RESOURCE() method of the 4504 * parent of @p dev. 4505 */ 4506 int 4507 bus_get_resource(device_t dev, int type, int rid, 4508 rman_res_t *startp, rman_res_t *countp) 4509 { 4510 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4511 startp, countp)); 4512 } 4513 4514 /** 4515 * @brief Wrapper function for BUS_GET_RESOURCE(). 4516 * 4517 * This function simply calls the BUS_GET_RESOURCE() method of the 4518 * parent of @p dev and returns the start value. 4519 */ 4520 rman_res_t 4521 bus_get_resource_start(device_t dev, int type, int rid) 4522 { 4523 rman_res_t start; 4524 rman_res_t count; 4525 int error; 4526 4527 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4528 &start, &count); 4529 if (error) 4530 return (0); 4531 return (start); 4532 } 4533 4534 /** 4535 * @brief Wrapper function for BUS_GET_RESOURCE(). 4536 * 4537 * This function simply calls the BUS_GET_RESOURCE() method of the 4538 * parent of @p dev and returns the count value. 4539 */ 4540 rman_res_t 4541 bus_get_resource_count(device_t dev, int type, int rid) 4542 { 4543 rman_res_t start; 4544 rman_res_t count; 4545 int error; 4546 4547 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4548 &start, &count); 4549 if (error) 4550 return (0); 4551 return (count); 4552 } 4553 4554 /** 4555 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4556 * 4557 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4558 * parent of @p dev. 4559 */ 4560 void 4561 bus_delete_resource(device_t dev, int type, int rid) 4562 { 4563 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4564 } 4565 4566 /** 4567 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4568 * 4569 * This function simply calls the BUS_CHILD_PRESENT() method of the 4570 * parent of @p dev. 4571 */ 4572 int 4573 bus_child_present(device_t child) 4574 { 4575 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4576 } 4577 4578 /** 4579 * @brief Wrapper function for BUS_CHILD_PNPINFO(). 4580 * 4581 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p 4582 * dev. 4583 */ 4584 int 4585 bus_child_pnpinfo(device_t child, struct sbuf *sb) 4586 { 4587 device_t parent; 4588 4589 parent = device_get_parent(child); 4590 if (parent == NULL) 4591 return (0); 4592 return (BUS_CHILD_PNPINFO(parent, child, sb)); 4593 } 4594 4595 /** 4596 * @brief Generic implementation that does nothing for bus_child_pnpinfo 4597 * 4598 * This function has the right signature and returns 0 since the sbuf is passed 4599 * to us to append to. 4600 */ 4601 int 4602 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb) 4603 { 4604 return (0); 4605 } 4606 4607 /** 4608 * @brief Wrapper function for BUS_CHILD_LOCATION(). 4609 * 4610 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of 4611 * @p dev. 4612 */ 4613 int 4614 bus_child_location(device_t child, struct sbuf *sb) 4615 { 4616 device_t parent; 4617 4618 parent = device_get_parent(child); 4619 if (parent == NULL) 4620 return (0); 4621 return (BUS_CHILD_LOCATION(parent, child, sb)); 4622 } 4623 4624 /** 4625 * @brief Generic implementation that does nothing for bus_child_location 4626 * 4627 * This function has the right signature and returns 0 since the sbuf is passed 4628 * to us to append to. 4629 */ 4630 int 4631 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb) 4632 { 4633 return (0); 4634 } 4635 4636 /** 4637 * @brief Wrapper function for BUS_GET_CPUS(). 4638 * 4639 * This function simply calls the BUS_GET_CPUS() method of the 4640 * parent of @p dev. 4641 */ 4642 int 4643 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 4644 { 4645 device_t parent; 4646 4647 parent = device_get_parent(dev); 4648 if (parent == NULL) 4649 return (EINVAL); 4650 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 4651 } 4652 4653 /** 4654 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4655 * 4656 * This function simply calls the BUS_GET_DMA_TAG() method of the 4657 * parent of @p dev. 4658 */ 4659 bus_dma_tag_t 4660 bus_get_dma_tag(device_t dev) 4661 { 4662 device_t parent; 4663 4664 parent = device_get_parent(dev); 4665 if (parent == NULL) 4666 return (NULL); 4667 return (BUS_GET_DMA_TAG(parent, dev)); 4668 } 4669 4670 /** 4671 * @brief Wrapper function for BUS_GET_BUS_TAG(). 4672 * 4673 * This function simply calls the BUS_GET_BUS_TAG() method of the 4674 * parent of @p dev. 4675 */ 4676 bus_space_tag_t 4677 bus_get_bus_tag(device_t dev) 4678 { 4679 device_t parent; 4680 4681 parent = device_get_parent(dev); 4682 if (parent == NULL) 4683 return ((bus_space_tag_t)0); 4684 return (BUS_GET_BUS_TAG(parent, dev)); 4685 } 4686 4687 /** 4688 * @brief Wrapper function for BUS_GET_DOMAIN(). 4689 * 4690 * This function simply calls the BUS_GET_DOMAIN() method of the 4691 * parent of @p dev. 4692 */ 4693 int 4694 bus_get_domain(device_t dev, int *domain) 4695 { 4696 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 4697 } 4698 4699 /* Resume all devices and then notify userland that we're up again. */ 4700 static int 4701 root_resume(device_t dev) 4702 { 4703 int error; 4704 4705 error = bus_generic_resume(dev); 4706 if (error == 0) { 4707 devctl_notify("kernel", "power", "resume", NULL); 4708 } 4709 return (error); 4710 } 4711 4712 static int 4713 root_print_child(device_t dev, device_t child) 4714 { 4715 int retval = 0; 4716 4717 retval += bus_print_child_header(dev, child); 4718 retval += printf("\n"); 4719 4720 return (retval); 4721 } 4722 4723 static int 4724 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4725 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4726 { 4727 /* 4728 * If an interrupt mapping gets to here something bad has happened. 4729 */ 4730 panic("root_setup_intr"); 4731 } 4732 4733 /* 4734 * If we get here, assume that the device is permanent and really is 4735 * present in the system. Removable bus drivers are expected to intercept 4736 * this call long before it gets here. We return -1 so that drivers that 4737 * really care can check vs -1 or some ERRNO returned higher in the food 4738 * chain. 4739 */ 4740 static int 4741 root_child_present(device_t dev, device_t child) 4742 { 4743 return (-1); 4744 } 4745 4746 static int 4747 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 4748 cpuset_t *cpuset) 4749 { 4750 switch (op) { 4751 case INTR_CPUS: 4752 /* Default to returning the set of all CPUs. */ 4753 if (setsize != sizeof(cpuset_t)) 4754 return (EINVAL); 4755 *cpuset = all_cpus; 4756 return (0); 4757 default: 4758 return (EINVAL); 4759 } 4760 } 4761 4762 static kobj_method_t root_methods[] = { 4763 /* Device interface */ 4764 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4765 KOBJMETHOD(device_suspend, bus_generic_suspend), 4766 KOBJMETHOD(device_resume, root_resume), 4767 4768 /* Bus interface */ 4769 KOBJMETHOD(bus_print_child, root_print_child), 4770 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4771 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4772 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4773 KOBJMETHOD(bus_child_present, root_child_present), 4774 KOBJMETHOD(bus_get_cpus, root_get_cpus), 4775 4776 KOBJMETHOD_END 4777 }; 4778 4779 static driver_t root_driver = { 4780 "root", 4781 root_methods, 4782 1, /* no softc */ 4783 }; 4784 4785 device_t root_bus; 4786 devclass_t root_devclass; 4787 4788 static int 4789 root_bus_module_handler(module_t mod, int what, void* arg) 4790 { 4791 switch (what) { 4792 case MOD_LOAD: 4793 TAILQ_INIT(&bus_data_devices); 4794 kobj_class_compile((kobj_class_t) &root_driver); 4795 root_bus = make_device(NULL, "root", 0); 4796 root_bus->desc = "System root bus"; 4797 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4798 root_bus->driver = &root_driver; 4799 root_bus->state = DS_ATTACHED; 4800 root_devclass = devclass_find_internal("root", NULL, FALSE); 4801 devctl2_init(); 4802 return (0); 4803 4804 case MOD_SHUTDOWN: 4805 device_shutdown(root_bus); 4806 return (0); 4807 default: 4808 return (EOPNOTSUPP); 4809 } 4810 4811 return (0); 4812 } 4813 4814 static moduledata_t root_bus_mod = { 4815 "rootbus", 4816 root_bus_module_handler, 4817 NULL 4818 }; 4819 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4820 4821 /** 4822 * @brief Automatically configure devices 4823 * 4824 * This function begins the autoconfiguration process by calling 4825 * device_probe_and_attach() for each child of the @c root0 device. 4826 */ 4827 void 4828 root_bus_configure(void) 4829 { 4830 PDEBUG((".")); 4831 4832 /* Eventually this will be split up, but this is sufficient for now. */ 4833 bus_set_pass(BUS_PASS_DEFAULT); 4834 } 4835 4836 /** 4837 * @brief Module handler for registering device drivers 4838 * 4839 * This module handler is used to automatically register device 4840 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4841 * devclass_add_driver() for the driver described by the 4842 * driver_module_data structure pointed to by @p arg 4843 */ 4844 int 4845 driver_module_handler(module_t mod, int what, void *arg) 4846 { 4847 struct driver_module_data *dmd; 4848 devclass_t bus_devclass; 4849 kobj_class_t driver; 4850 int error, pass; 4851 4852 dmd = (struct driver_module_data *)arg; 4853 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4854 error = 0; 4855 4856 switch (what) { 4857 case MOD_LOAD: 4858 if (dmd->dmd_chainevh) 4859 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4860 4861 pass = dmd->dmd_pass; 4862 driver = dmd->dmd_driver; 4863 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4864 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4865 error = devclass_add_driver(bus_devclass, driver, pass, 4866 dmd->dmd_devclass); 4867 break; 4868 4869 case MOD_UNLOAD: 4870 PDEBUG(("Unloading module: driver %s from bus %s", 4871 DRIVERNAME(dmd->dmd_driver), 4872 dmd->dmd_busname)); 4873 error = devclass_delete_driver(bus_devclass, 4874 dmd->dmd_driver); 4875 4876 if (!error && dmd->dmd_chainevh) 4877 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4878 break; 4879 case MOD_QUIESCE: 4880 PDEBUG(("Quiesce module: driver %s from bus %s", 4881 DRIVERNAME(dmd->dmd_driver), 4882 dmd->dmd_busname)); 4883 error = devclass_quiesce_driver(bus_devclass, 4884 dmd->dmd_driver); 4885 4886 if (!error && dmd->dmd_chainevh) 4887 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4888 break; 4889 default: 4890 error = EOPNOTSUPP; 4891 break; 4892 } 4893 4894 return (error); 4895 } 4896 4897 /** 4898 * @brief Enumerate all hinted devices for this bus. 4899 * 4900 * Walks through the hints for this bus and calls the bus_hinted_child 4901 * routine for each one it fines. It searches first for the specific 4902 * bus that's being probed for hinted children (eg isa0), and then for 4903 * generic children (eg isa). 4904 * 4905 * @param dev bus device to enumerate 4906 */ 4907 void 4908 bus_enumerate_hinted_children(device_t bus) 4909 { 4910 int i; 4911 const char *dname, *busname; 4912 int dunit; 4913 4914 /* 4915 * enumerate all devices on the specific bus 4916 */ 4917 busname = device_get_nameunit(bus); 4918 i = 0; 4919 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4920 BUS_HINTED_CHILD(bus, dname, dunit); 4921 4922 /* 4923 * and all the generic ones. 4924 */ 4925 busname = device_get_name(bus); 4926 i = 0; 4927 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4928 BUS_HINTED_CHILD(bus, dname, dunit); 4929 } 4930 4931 #ifdef BUS_DEBUG 4932 4933 /* the _short versions avoid iteration by not calling anything that prints 4934 * more than oneliners. I love oneliners. 4935 */ 4936 4937 static void 4938 print_device_short(device_t dev, int indent) 4939 { 4940 if (!dev) 4941 return; 4942 4943 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4944 dev->unit, dev->desc, 4945 (dev->parent? "":"no "), 4946 (TAILQ_EMPTY(&dev->children)? "no ":""), 4947 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4948 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4949 (dev->flags&DF_WILDCARD? "wildcard,":""), 4950 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4951 (dev->flags&DF_SUSPENDED? "suspended,":""), 4952 (dev->ivars? "":"no "), 4953 (dev->softc? "":"no "), 4954 dev->busy)); 4955 } 4956 4957 static void 4958 print_device(device_t dev, int indent) 4959 { 4960 if (!dev) 4961 return; 4962 4963 print_device_short(dev, indent); 4964 4965 indentprintf(("Parent:\n")); 4966 print_device_short(dev->parent, indent+1); 4967 indentprintf(("Driver:\n")); 4968 print_driver_short(dev->driver, indent+1); 4969 indentprintf(("Devclass:\n")); 4970 print_devclass_short(dev->devclass, indent+1); 4971 } 4972 4973 void 4974 print_device_tree_short(device_t dev, int indent) 4975 /* print the device and all its children (indented) */ 4976 { 4977 device_t child; 4978 4979 if (!dev) 4980 return; 4981 4982 print_device_short(dev, indent); 4983 4984 TAILQ_FOREACH(child, &dev->children, link) { 4985 print_device_tree_short(child, indent+1); 4986 } 4987 } 4988 4989 void 4990 print_device_tree(device_t dev, int indent) 4991 /* print the device and all its children (indented) */ 4992 { 4993 device_t child; 4994 4995 if (!dev) 4996 return; 4997 4998 print_device(dev, indent); 4999 5000 TAILQ_FOREACH(child, &dev->children, link) { 5001 print_device_tree(child, indent+1); 5002 } 5003 } 5004 5005 static void 5006 print_driver_short(driver_t *driver, int indent) 5007 { 5008 if (!driver) 5009 return; 5010 5011 indentprintf(("driver %s: softc size = %zd\n", 5012 driver->name, driver->size)); 5013 } 5014 5015 static void 5016 print_driver(driver_t *driver, int indent) 5017 { 5018 if (!driver) 5019 return; 5020 5021 print_driver_short(driver, indent); 5022 } 5023 5024 static void 5025 print_driver_list(driver_list_t drivers, int indent) 5026 { 5027 driverlink_t driver; 5028 5029 TAILQ_FOREACH(driver, &drivers, link) { 5030 print_driver(driver->driver, indent); 5031 } 5032 } 5033 5034 static void 5035 print_devclass_short(devclass_t dc, int indent) 5036 { 5037 if ( !dc ) 5038 return; 5039 5040 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5041 } 5042 5043 static void 5044 print_devclass(devclass_t dc, int indent) 5045 { 5046 int i; 5047 5048 if ( !dc ) 5049 return; 5050 5051 print_devclass_short(dc, indent); 5052 indentprintf(("Drivers:\n")); 5053 print_driver_list(dc->drivers, indent+1); 5054 5055 indentprintf(("Devices:\n")); 5056 for (i = 0; i < dc->maxunit; i++) 5057 if (dc->devices[i]) 5058 print_device(dc->devices[i], indent+1); 5059 } 5060 5061 void 5062 print_devclass_list_short(void) 5063 { 5064 devclass_t dc; 5065 5066 printf("Short listing of devclasses, drivers & devices:\n"); 5067 TAILQ_FOREACH(dc, &devclasses, link) { 5068 print_devclass_short(dc, 0); 5069 } 5070 } 5071 5072 void 5073 print_devclass_list(void) 5074 { 5075 devclass_t dc; 5076 5077 printf("Full listing of devclasses, drivers & devices:\n"); 5078 TAILQ_FOREACH(dc, &devclasses, link) { 5079 print_devclass(dc, 0); 5080 } 5081 } 5082 5083 #endif 5084 5085 /* 5086 * User-space access to the device tree. 5087 * 5088 * We implement a small set of nodes: 5089 * 5090 * hw.bus Single integer read method to obtain the 5091 * current generation count. 5092 * hw.bus.devices Reads the entire device tree in flat space. 5093 * hw.bus.rman Resource manager interface 5094 * 5095 * We might like to add the ability to scan devclasses and/or drivers to 5096 * determine what else is currently loaded/available. 5097 */ 5098 5099 static int 5100 sysctl_bus_info(SYSCTL_HANDLER_ARGS) 5101 { 5102 struct u_businfo ubus; 5103 5104 ubus.ub_version = BUS_USER_VERSION; 5105 ubus.ub_generation = bus_data_generation; 5106 5107 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5108 } 5109 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | 5110 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", 5111 "bus-related data"); 5112 5113 static int 5114 sysctl_devices(SYSCTL_HANDLER_ARGS) 5115 { 5116 struct sbuf sb; 5117 int *name = (int *)arg1; 5118 u_int namelen = arg2; 5119 int index; 5120 device_t dev; 5121 struct u_device *udev; 5122 int error; 5123 5124 if (namelen != 2) 5125 return (EINVAL); 5126 5127 if (bus_data_generation_check(name[0])) 5128 return (EINVAL); 5129 5130 index = name[1]; 5131 5132 /* 5133 * Scan the list of devices, looking for the requested index. 5134 */ 5135 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5136 if (index-- == 0) 5137 break; 5138 } 5139 if (dev == NULL) 5140 return (ENOENT); 5141 5142 /* 5143 * Populate the return item, careful not to overflow the buffer. 5144 */ 5145 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5146 if (udev == NULL) 5147 return (ENOMEM); 5148 udev->dv_handle = (uintptr_t)dev; 5149 udev->dv_parent = (uintptr_t)dev->parent; 5150 udev->dv_devflags = dev->devflags; 5151 udev->dv_flags = dev->flags; 5152 udev->dv_state = dev->state; 5153 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN); 5154 if (dev->nameunit != NULL) 5155 sbuf_cat(&sb, dev->nameunit); 5156 sbuf_putc(&sb, '\0'); 5157 if (dev->desc != NULL) 5158 sbuf_cat(&sb, dev->desc); 5159 sbuf_putc(&sb, '\0'); 5160 if (dev->driver != NULL) 5161 sbuf_cat(&sb, dev->driver->name); 5162 sbuf_putc(&sb, '\0'); 5163 bus_child_pnpinfo(dev, &sb); 5164 sbuf_putc(&sb, '\0'); 5165 bus_child_location(dev, &sb); 5166 sbuf_putc(&sb, '\0'); 5167 error = sbuf_finish(&sb); 5168 if (error == 0) 5169 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5170 sbuf_delete(&sb); 5171 free(udev, M_BUS); 5172 return (error); 5173 } 5174 5175 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, 5176 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, 5177 "system device tree"); 5178 5179 int 5180 bus_data_generation_check(int generation) 5181 { 5182 if (generation != bus_data_generation) 5183 return (1); 5184 5185 /* XXX generate optimised lists here? */ 5186 return (0); 5187 } 5188 5189 void 5190 bus_data_generation_update(void) 5191 { 5192 atomic_add_int(&bus_data_generation, 1); 5193 } 5194 5195 int 5196 bus_free_resource(device_t dev, int type, struct resource *r) 5197 { 5198 if (r == NULL) 5199 return (0); 5200 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5201 } 5202 5203 device_t 5204 device_lookup_by_name(const char *name) 5205 { 5206 device_t dev; 5207 5208 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5209 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5210 return (dev); 5211 } 5212 return (NULL); 5213 } 5214 5215 /* 5216 * /dev/devctl2 implementation. The existing /dev/devctl device has 5217 * implicit semantics on open, so it could not be reused for this. 5218 * Another option would be to call this /dev/bus? 5219 */ 5220 static int 5221 find_device(struct devreq *req, device_t *devp) 5222 { 5223 device_t dev; 5224 5225 /* 5226 * First, ensure that the name is nul terminated. 5227 */ 5228 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5229 return (EINVAL); 5230 5231 /* 5232 * Second, try to find an attached device whose name matches 5233 * 'name'. 5234 */ 5235 dev = device_lookup_by_name(req->dr_name); 5236 if (dev != NULL) { 5237 *devp = dev; 5238 return (0); 5239 } 5240 5241 /* Finally, give device enumerators a chance. */ 5242 dev = NULL; 5243 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5244 if (dev == NULL) 5245 return (ENOENT); 5246 *devp = dev; 5247 return (0); 5248 } 5249 5250 static bool 5251 driver_exists(device_t bus, const char *driver) 5252 { 5253 devclass_t dc; 5254 5255 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5256 if (devclass_find_driver_internal(dc, driver) != NULL) 5257 return (true); 5258 } 5259 return (false); 5260 } 5261 5262 static void 5263 device_gen_nomatch(device_t dev) 5264 { 5265 device_t child; 5266 5267 if (dev->flags & DF_NEEDNOMATCH && 5268 dev->state == DS_NOTPRESENT) { 5269 device_handle_nomatch(dev); 5270 } 5271 dev->flags &= ~DF_NEEDNOMATCH; 5272 TAILQ_FOREACH(child, &dev->children, link) { 5273 device_gen_nomatch(child); 5274 } 5275 } 5276 5277 static void 5278 device_do_deferred_actions(void) 5279 { 5280 devclass_t dc; 5281 driverlink_t dl; 5282 5283 /* 5284 * Walk through the devclasses to find all the drivers we've tagged as 5285 * deferred during the freeze and call the driver added routines. They 5286 * have already been added to the lists in the background, so the driver 5287 * added routines that trigger a probe will have all the right bidders 5288 * for the probe auction. 5289 */ 5290 TAILQ_FOREACH(dc, &devclasses, link) { 5291 TAILQ_FOREACH(dl, &dc->drivers, link) { 5292 if (dl->flags & DL_DEFERRED_PROBE) { 5293 devclass_driver_added(dc, dl->driver); 5294 dl->flags &= ~DL_DEFERRED_PROBE; 5295 } 5296 } 5297 } 5298 5299 /* 5300 * We also defer no-match events during a freeze. Walk the tree and 5301 * generate all the pent-up events that are still relevant. 5302 */ 5303 device_gen_nomatch(root_bus); 5304 bus_data_generation_update(); 5305 } 5306 5307 static int 5308 device_get_path(device_t dev, const char *locator, struct sbuf *sb) 5309 { 5310 device_t parent; 5311 int error; 5312 5313 KASSERT(sb != NULL, ("sb is NULL")); 5314 parent = device_get_parent(dev); 5315 if (parent == NULL) { 5316 error = sbuf_printf(sb, "/"); 5317 } else { 5318 error = BUS_GET_DEVICE_PATH(parent, dev, locator, sb); 5319 if (error == 0) { 5320 error = sbuf_error(sb); 5321 if (error == 0 && sbuf_len(sb) <= 1) 5322 error = EIO; 5323 } 5324 } 5325 sbuf_finish(sb); 5326 return (error); 5327 } 5328 5329 static int 5330 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5331 struct thread *td) 5332 { 5333 struct devreq *req; 5334 device_t dev; 5335 int error, old; 5336 5337 /* Locate the device to control. */ 5338 bus_topo_lock(); 5339 req = (struct devreq *)data; 5340 switch (cmd) { 5341 case DEV_ATTACH: 5342 case DEV_DETACH: 5343 case DEV_ENABLE: 5344 case DEV_DISABLE: 5345 case DEV_SUSPEND: 5346 case DEV_RESUME: 5347 case DEV_SET_DRIVER: 5348 case DEV_CLEAR_DRIVER: 5349 case DEV_RESCAN: 5350 case DEV_DELETE: 5351 case DEV_RESET: 5352 error = priv_check(td, PRIV_DRIVER); 5353 if (error == 0) 5354 error = find_device(req, &dev); 5355 break; 5356 case DEV_FREEZE: 5357 case DEV_THAW: 5358 error = priv_check(td, PRIV_DRIVER); 5359 break; 5360 case DEV_GET_PATH: 5361 error = find_device(req, &dev); 5362 break; 5363 default: 5364 error = ENOTTY; 5365 break; 5366 } 5367 if (error) { 5368 bus_topo_unlock(); 5369 return (error); 5370 } 5371 5372 /* Perform the requested operation. */ 5373 switch (cmd) { 5374 case DEV_ATTACH: 5375 if (device_is_attached(dev)) 5376 error = EBUSY; 5377 else if (!device_is_enabled(dev)) 5378 error = ENXIO; 5379 else 5380 error = device_probe_and_attach(dev); 5381 break; 5382 case DEV_DETACH: 5383 if (!device_is_attached(dev)) { 5384 error = ENXIO; 5385 break; 5386 } 5387 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5388 error = device_quiesce(dev); 5389 if (error) 5390 break; 5391 } 5392 error = device_detach(dev); 5393 break; 5394 case DEV_ENABLE: 5395 if (device_is_enabled(dev)) { 5396 error = EBUSY; 5397 break; 5398 } 5399 5400 /* 5401 * If the device has been probed but not attached (e.g. 5402 * when it has been disabled by a loader hint), just 5403 * attach the device rather than doing a full probe. 5404 */ 5405 device_enable(dev); 5406 if (device_is_alive(dev)) { 5407 /* 5408 * If the device was disabled via a hint, clear 5409 * the hint. 5410 */ 5411 if (resource_disabled(dev->driver->name, dev->unit)) 5412 resource_unset_value(dev->driver->name, 5413 dev->unit, "disabled"); 5414 error = device_attach(dev); 5415 } else 5416 error = device_probe_and_attach(dev); 5417 break; 5418 case DEV_DISABLE: 5419 if (!device_is_enabled(dev)) { 5420 error = ENXIO; 5421 break; 5422 } 5423 5424 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5425 error = device_quiesce(dev); 5426 if (error) 5427 break; 5428 } 5429 5430 /* 5431 * Force DF_FIXEDCLASS on around detach to preserve 5432 * the existing name. 5433 */ 5434 old = dev->flags; 5435 dev->flags |= DF_FIXEDCLASS; 5436 error = device_detach(dev); 5437 if (!(old & DF_FIXEDCLASS)) 5438 dev->flags &= ~DF_FIXEDCLASS; 5439 if (error == 0) 5440 device_disable(dev); 5441 break; 5442 case DEV_SUSPEND: 5443 if (device_is_suspended(dev)) { 5444 error = EBUSY; 5445 break; 5446 } 5447 if (device_get_parent(dev) == NULL) { 5448 error = EINVAL; 5449 break; 5450 } 5451 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5452 break; 5453 case DEV_RESUME: 5454 if (!device_is_suspended(dev)) { 5455 error = EINVAL; 5456 break; 5457 } 5458 if (device_get_parent(dev) == NULL) { 5459 error = EINVAL; 5460 break; 5461 } 5462 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5463 break; 5464 case DEV_SET_DRIVER: { 5465 devclass_t dc; 5466 char driver[128]; 5467 5468 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5469 if (error) 5470 break; 5471 if (driver[0] == '\0') { 5472 error = EINVAL; 5473 break; 5474 } 5475 if (dev->devclass != NULL && 5476 strcmp(driver, dev->devclass->name) == 0) 5477 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5478 break; 5479 5480 /* 5481 * Scan drivers for this device's bus looking for at 5482 * least one matching driver. 5483 */ 5484 if (dev->parent == NULL) { 5485 error = EINVAL; 5486 break; 5487 } 5488 if (!driver_exists(dev->parent, driver)) { 5489 error = ENOENT; 5490 break; 5491 } 5492 dc = devclass_create(driver); 5493 if (dc == NULL) { 5494 error = ENOMEM; 5495 break; 5496 } 5497 5498 /* Detach device if necessary. */ 5499 if (device_is_attached(dev)) { 5500 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5501 error = device_detach(dev); 5502 else 5503 error = EBUSY; 5504 if (error) 5505 break; 5506 } 5507 5508 /* Clear any previously-fixed device class and unit. */ 5509 if (dev->flags & DF_FIXEDCLASS) 5510 devclass_delete_device(dev->devclass, dev); 5511 dev->flags |= DF_WILDCARD; 5512 dev->unit = -1; 5513 5514 /* Force the new device class. */ 5515 error = devclass_add_device(dc, dev); 5516 if (error) 5517 break; 5518 dev->flags |= DF_FIXEDCLASS; 5519 error = device_probe_and_attach(dev); 5520 break; 5521 } 5522 case DEV_CLEAR_DRIVER: 5523 if (!(dev->flags & DF_FIXEDCLASS)) { 5524 error = 0; 5525 break; 5526 } 5527 if (device_is_attached(dev)) { 5528 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5529 error = device_detach(dev); 5530 else 5531 error = EBUSY; 5532 if (error) 5533 break; 5534 } 5535 5536 dev->flags &= ~DF_FIXEDCLASS; 5537 dev->flags |= DF_WILDCARD; 5538 devclass_delete_device(dev->devclass, dev); 5539 error = device_probe_and_attach(dev); 5540 break; 5541 case DEV_RESCAN: 5542 if (!device_is_attached(dev)) { 5543 error = ENXIO; 5544 break; 5545 } 5546 error = BUS_RESCAN(dev); 5547 break; 5548 case DEV_DELETE: { 5549 device_t parent; 5550 5551 parent = device_get_parent(dev); 5552 if (parent == NULL) { 5553 error = EINVAL; 5554 break; 5555 } 5556 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5557 if (bus_child_present(dev) != 0) { 5558 error = EBUSY; 5559 break; 5560 } 5561 } 5562 5563 error = device_delete_child(parent, dev); 5564 break; 5565 } 5566 case DEV_FREEZE: 5567 if (device_frozen) 5568 error = EBUSY; 5569 else 5570 device_frozen = true; 5571 break; 5572 case DEV_THAW: 5573 if (!device_frozen) 5574 error = EBUSY; 5575 else { 5576 device_do_deferred_actions(); 5577 device_frozen = false; 5578 } 5579 break; 5580 case DEV_RESET: 5581 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 5582 error = EINVAL; 5583 break; 5584 } 5585 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 5586 req->dr_flags); 5587 break; 5588 case DEV_GET_PATH: { 5589 struct sbuf *sb; 5590 char locator[64]; 5591 ssize_t len; 5592 5593 error = copyinstr(req->dr_buffer.buffer, locator, 5594 sizeof(locator), NULL); 5595 if (error != 0) 5596 break; 5597 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | 5598 SBUF_INCLUDENUL /* | SBUF_WAITOK */); 5599 error = device_get_path(dev, locator, sb); 5600 if (error == 0) { 5601 len = sbuf_len(sb); 5602 if (req->dr_buffer.length < len) { 5603 error = ENAMETOOLONG; 5604 } else { 5605 error = copyout(sbuf_data(sb), 5606 req->dr_buffer.buffer, len); 5607 } 5608 req->dr_buffer.length = len; 5609 } 5610 sbuf_delete(sb); 5611 break; 5612 } 5613 } 5614 bus_topo_unlock(); 5615 return (error); 5616 } 5617 5618 static struct cdevsw devctl2_cdevsw = { 5619 .d_version = D_VERSION, 5620 .d_ioctl = devctl2_ioctl, 5621 .d_name = "devctl2", 5622 }; 5623 5624 static void 5625 devctl2_init(void) 5626 { 5627 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5628 UID_ROOT, GID_WHEEL, 0644, "devctl2"); 5629 } 5630 5631 /* 5632 * For maintaining device 'at' location info to avoid recomputing it 5633 */ 5634 struct device_location_node { 5635 const char *dln_locator; 5636 const char *dln_path; 5637 TAILQ_ENTRY(device_location_node) dln_link; 5638 }; 5639 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t; 5640 5641 struct device_location_cache { 5642 device_location_list_t dlc_list; 5643 }; 5644 5645 5646 /* 5647 * Location cache for wired devices. 5648 */ 5649 device_location_cache_t * 5650 dev_wired_cache_init(void) 5651 { 5652 device_location_cache_t *dcp; 5653 5654 dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO); 5655 TAILQ_INIT(&dcp->dlc_list); 5656 5657 return (dcp); 5658 } 5659 5660 void 5661 dev_wired_cache_fini(device_location_cache_t *dcp) 5662 { 5663 struct device_location_node *dln, *tdln; 5664 5665 TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) { 5666 free(dln, M_BUS); 5667 } 5668 free(dcp, M_BUS); 5669 } 5670 5671 static struct device_location_node * 5672 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator) 5673 { 5674 struct device_location_node *dln; 5675 5676 TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) { 5677 if (strcmp(locator, dln->dln_locator) == 0) 5678 return (dln); 5679 } 5680 5681 return (NULL); 5682 } 5683 5684 static struct device_location_node * 5685 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path) 5686 { 5687 struct device_location_node *dln; 5688 size_t loclen, pathlen; 5689 5690 loclen = strlen(locator) + 1; 5691 pathlen = strlen(path) + 1; 5692 dln = malloc(sizeof(*dln) + loclen + pathlen, M_BUS, M_WAITOK | M_ZERO); 5693 dln->dln_locator = (char *)(dln + 1); 5694 memcpy(__DECONST(char *, dln->dln_locator), locator, loclen); 5695 dln->dln_path = dln->dln_locator + loclen; 5696 memcpy(__DECONST(char *, dln->dln_path), path, pathlen); 5697 TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link); 5698 5699 return (dln); 5700 } 5701 5702 bool 5703 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev, 5704 const char *at) 5705 { 5706 struct sbuf *sb; 5707 const char *cp; 5708 char locator[32]; 5709 int error, len; 5710 struct device_location_node *res; 5711 5712 cp = strchr(at, ':'); 5713 if (cp == NULL) 5714 return (false); 5715 len = cp - at; 5716 if (len > sizeof(locator) - 1) /* Skip too long locator */ 5717 return (false); 5718 memcpy(locator, at, len); 5719 locator[len] = '\0'; 5720 cp++; 5721 5722 error = 0; 5723 /* maybe cache this inside device_t and look that up, but not yet */ 5724 res = dev_wired_cache_lookup(dcp, locator); 5725 if (res == NULL) { 5726 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | 5727 SBUF_INCLUDENUL | SBUF_NOWAIT); 5728 if (sb != NULL) { 5729 error = device_get_path(dev, locator, sb); 5730 if (error == 0) { 5731 res = dev_wired_cache_add(dcp, locator, 5732 sbuf_data(sb)); 5733 } 5734 sbuf_delete(sb); 5735 } 5736 } 5737 if (error != 0 || res == NULL || res->dln_path == NULL) 5738 return (false); 5739 5740 return (strcmp(res->dln_path, cp) == 0); 5741 } 5742 5743 /* 5744 * APIs to manage deprecation and obsolescence. 5745 */ 5746 static int obsolete_panic = 0; 5747 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 5748 "Panic when obsolete features are used (0 = never, 1 = if obsolete, " 5749 "2 = if deprecated)"); 5750 5751 static void 5752 gone_panic(int major, int running, const char *msg) 5753 { 5754 switch (obsolete_panic) 5755 { 5756 case 0: 5757 return; 5758 case 1: 5759 if (running < major) 5760 return; 5761 /* FALLTHROUGH */ 5762 default: 5763 panic("%s", msg); 5764 } 5765 } 5766 5767 void 5768 _gone_in(int major, const char *msg) 5769 { 5770 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5771 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5772 printf("Obsolete code will be removed soon: %s\n", msg); 5773 else 5774 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 5775 major, msg); 5776 } 5777 5778 void 5779 _gone_in_dev(device_t dev, int major, const char *msg) 5780 { 5781 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5782 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5783 device_printf(dev, 5784 "Obsolete code will be removed soon: %s\n", msg); 5785 else 5786 device_printf(dev, 5787 "Deprecated code (to be removed in FreeBSD %d): %s\n", 5788 major, msg); 5789 } 5790 5791 #ifdef DDB 5792 DB_SHOW_COMMAND(device, db_show_device) 5793 { 5794 device_t dev; 5795 5796 if (!have_addr) 5797 return; 5798 5799 dev = (device_t)addr; 5800 5801 db_printf("name: %s\n", device_get_nameunit(dev)); 5802 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 5803 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 5804 db_printf(" addr: %p\n", dev); 5805 db_printf(" parent: %p\n", dev->parent); 5806 db_printf(" softc: %p\n", dev->softc); 5807 db_printf(" ivars: %p\n", dev->ivars); 5808 } 5809 5810 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 5811 { 5812 device_t dev; 5813 5814 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5815 db_show_device((db_expr_t)dev, true, count, modif); 5816 } 5817 } 5818 #endif 5819