1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_bus.h" 31 #include "opt_ddb.h" 32 #include "opt_iommu.h" 33 34 #include <sys/param.h> 35 #include <sys/conf.h> 36 #include <sys/domainset.h> 37 #include <sys/eventhandler.h> 38 #include <sys/jail.h> 39 #include <sys/lock.h> 40 #include <sys/kernel.h> 41 #include <sys/limits.h> 42 #include <sys/malloc.h> 43 #include <sys/module.h> 44 #include <sys/mutex.h> 45 #include <sys/priv.h> 46 #include <machine/bus.h> 47 #include <sys/random.h> 48 #include <sys/refcount.h> 49 #include <sys/rman.h> 50 #include <sys/sbuf.h> 51 #include <sys/smp.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 #include <sys/bus.h> 55 #include <sys/cpuset.h> 56 #ifdef INTRNG 57 #include <sys/intr.h> 58 #endif 59 60 #include <net/vnet.h> 61 62 #include <machine/cpu.h> 63 #include <machine/stdarg.h> 64 65 #include <vm/uma.h> 66 #include <vm/vm.h> 67 68 #include <dev/iommu/iommu.h> 69 70 #include <ddb/ddb.h> 71 72 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 73 NULL); 74 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 75 NULL); 76 77 static bool disable_failed_devs = false; 78 SYSCTL_BOOL(_hw_bus, OID_AUTO, disable_failed_devices, CTLFLAG_RWTUN, &disable_failed_devs, 79 0, "Do not retry attaching devices that return an error from DEVICE_ATTACH the first time"); 80 81 /* 82 * Used to attach drivers to devclasses. 83 */ 84 typedef struct driverlink *driverlink_t; 85 struct driverlink { 86 kobj_class_t driver; 87 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 88 int pass; 89 int flags; 90 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 91 TAILQ_ENTRY(driverlink) passlink; 92 }; 93 94 /* 95 * Forward declarations 96 */ 97 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 98 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 99 typedef TAILQ_HEAD(device_list, _device) device_list_t; 100 101 struct devclass { 102 TAILQ_ENTRY(devclass) link; 103 devclass_t parent; /* parent in devclass hierarchy */ 104 driver_list_t drivers; /* bus devclasses store drivers for bus */ 105 char *name; 106 device_t *devices; /* array of devices indexed by unit */ 107 int maxunit; /* size of devices array */ 108 int flags; 109 #define DC_HAS_CHILDREN 1 110 111 struct sysctl_ctx_list sysctl_ctx; 112 struct sysctl_oid *sysctl_tree; 113 }; 114 115 struct device_prop_elm { 116 const char *name; 117 void *val; 118 void *dtr_ctx; 119 device_prop_dtr_t dtr; 120 LIST_ENTRY(device_prop_elm) link; 121 }; 122 123 static void device_destroy_props(device_t dev); 124 125 /** 126 * @brief Implementation of _device. 127 * 128 * The structure is named "_device" instead of "device" to avoid type confusion 129 * caused by other subsystems defining a (struct device). 130 */ 131 struct _device { 132 /* 133 * A device is a kernel object. The first field must be the 134 * current ops table for the object. 135 */ 136 KOBJ_FIELDS; 137 138 /* 139 * Device hierarchy. 140 */ 141 TAILQ_ENTRY(_device) link; /**< list of devices in parent */ 142 TAILQ_ENTRY(_device) devlink; /**< global device list membership */ 143 device_t parent; /**< parent of this device */ 144 device_list_t children; /**< list of child devices */ 145 146 /* 147 * Details of this device. 148 */ 149 driver_t *driver; /**< current driver */ 150 devclass_t devclass; /**< current device class */ 151 int unit; /**< current unit number */ 152 char* nameunit; /**< name+unit e.g. foodev0 */ 153 char* desc; /**< driver specific description */ 154 u_int busy; /**< count of calls to device_busy() */ 155 device_state_t state; /**< current device state */ 156 uint32_t devflags; /**< api level flags for device_get_flags() */ 157 u_int flags; /**< internal device flags */ 158 u_int order; /**< order from device_add_child_ordered() */ 159 void *ivars; /**< instance variables */ 160 void *softc; /**< current driver's variables */ 161 LIST_HEAD(, device_prop_elm) props; 162 163 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 164 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 165 }; 166 167 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 168 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 169 170 EVENTHANDLER_LIST_DEFINE(device_attach); 171 EVENTHANDLER_LIST_DEFINE(device_detach); 172 EVENTHANDLER_LIST_DEFINE(device_nomatch); 173 EVENTHANDLER_LIST_DEFINE(dev_lookup); 174 175 static void devctl2_init(void); 176 static bool device_frozen; 177 178 #define DRIVERNAME(d) ((d)? d->name : "no driver") 179 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 180 181 #ifdef BUS_DEBUG 182 183 static int bus_debug = 1; 184 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 185 "Bus debug level"); 186 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 187 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 188 189 /** 190 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 191 * prevent syslog from deleting initial spaces 192 */ 193 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 194 195 static void print_device_short(device_t dev, int indent); 196 static void print_device(device_t dev, int indent); 197 void print_device_tree_short(device_t dev, int indent); 198 void print_device_tree(device_t dev, int indent); 199 static void print_driver_short(driver_t *driver, int indent); 200 static void print_driver(driver_t *driver, int indent); 201 static void print_driver_list(driver_list_t drivers, int indent); 202 static void print_devclass_short(devclass_t dc, int indent); 203 static void print_devclass(devclass_t dc, int indent); 204 void print_devclass_list_short(void); 205 void print_devclass_list(void); 206 207 #else 208 /* Make the compiler ignore the function calls */ 209 #define PDEBUG(a) /* nop */ 210 #define DEVICENAME(d) /* nop */ 211 212 #define print_device_short(d,i) /* nop */ 213 #define print_device(d,i) /* nop */ 214 #define print_device_tree_short(d,i) /* nop */ 215 #define print_device_tree(d,i) /* nop */ 216 #define print_driver_short(d,i) /* nop */ 217 #define print_driver(d,i) /* nop */ 218 #define print_driver_list(d,i) /* nop */ 219 #define print_devclass_short(d,i) /* nop */ 220 #define print_devclass(d,i) /* nop */ 221 #define print_devclass_list_short() /* nop */ 222 #define print_devclass_list() /* nop */ 223 #endif 224 225 /* 226 * dev sysctl tree 227 */ 228 229 enum { 230 DEVCLASS_SYSCTL_PARENT, 231 }; 232 233 static int 234 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 235 { 236 devclass_t dc = (devclass_t)arg1; 237 const char *value; 238 239 switch (arg2) { 240 case DEVCLASS_SYSCTL_PARENT: 241 value = dc->parent ? dc->parent->name : ""; 242 break; 243 default: 244 return (EINVAL); 245 } 246 return (SYSCTL_OUT_STR(req, value)); 247 } 248 249 static void 250 devclass_sysctl_init(devclass_t dc) 251 { 252 if (dc->sysctl_tree != NULL) 253 return; 254 sysctl_ctx_init(&dc->sysctl_ctx); 255 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 256 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 257 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 258 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 259 OID_AUTO, "%parent", 260 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 261 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 262 "parent class"); 263 } 264 265 enum { 266 DEVICE_SYSCTL_DESC, 267 DEVICE_SYSCTL_DRIVER, 268 DEVICE_SYSCTL_LOCATION, 269 DEVICE_SYSCTL_PNPINFO, 270 DEVICE_SYSCTL_PARENT, 271 DEVICE_SYSCTL_IOMMU, 272 }; 273 274 static int 275 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 276 { 277 struct sbuf sb; 278 device_t dev = (device_t)arg1; 279 device_t iommu; 280 int error; 281 uint16_t rid; 282 const char *c; 283 284 sbuf_new_for_sysctl(&sb, NULL, 1024, req); 285 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 286 bus_topo_lock(); 287 switch (arg2) { 288 case DEVICE_SYSCTL_DESC: 289 sbuf_cat(&sb, dev->desc ? dev->desc : ""); 290 break; 291 case DEVICE_SYSCTL_DRIVER: 292 sbuf_cat(&sb, dev->driver ? dev->driver->name : ""); 293 break; 294 case DEVICE_SYSCTL_LOCATION: 295 bus_child_location(dev, &sb); 296 break; 297 case DEVICE_SYSCTL_PNPINFO: 298 bus_child_pnpinfo(dev, &sb); 299 break; 300 case DEVICE_SYSCTL_PARENT: 301 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : ""); 302 break; 303 case DEVICE_SYSCTL_IOMMU: 304 iommu = NULL; 305 error = device_get_prop(dev, DEV_PROP_NAME_IOMMU, 306 (void **)&iommu); 307 c = ""; 308 if (error == 0 && iommu != NULL) { 309 sbuf_printf(&sb, "unit=%s", device_get_nameunit(iommu)); 310 c = " "; 311 } 312 rid = 0; 313 #ifdef IOMMU 314 iommu_get_requester(dev, &rid); 315 #endif 316 if (rid != 0) 317 sbuf_printf(&sb, "%srid=%#x", c, rid); 318 break; 319 default: 320 error = EINVAL; 321 goto out; 322 } 323 error = sbuf_finish(&sb); 324 out: 325 bus_topo_unlock(); 326 sbuf_delete(&sb); 327 return (error); 328 } 329 330 static void 331 device_sysctl_init(device_t dev) 332 { 333 devclass_t dc = dev->devclass; 334 int domain; 335 336 if (dev->sysctl_tree != NULL) 337 return; 338 devclass_sysctl_init(dc); 339 sysctl_ctx_init(&dev->sysctl_ctx); 340 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 341 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 342 dev->nameunit + strlen(dc->name), 343 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); 344 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 345 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 346 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 347 "device description"); 348 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 349 OID_AUTO, "%driver", 350 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 351 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 352 "device driver name"); 353 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 354 OID_AUTO, "%location", 355 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 356 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 357 "device location relative to parent"); 358 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 359 OID_AUTO, "%pnpinfo", 360 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 361 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 362 "device identification"); 363 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 364 OID_AUTO, "%parent", 365 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 366 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 367 "parent device"); 368 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 369 OID_AUTO, "%iommu", 370 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 371 dev, DEVICE_SYSCTL_IOMMU, device_sysctl_handler, "A", 372 "iommu unit handling the device requests"); 373 if (bus_get_domain(dev, &domain) == 0) 374 SYSCTL_ADD_INT(&dev->sysctl_ctx, 375 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 376 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain"); 377 } 378 379 static void 380 device_sysctl_update(device_t dev) 381 { 382 devclass_t dc = dev->devclass; 383 384 if (dev->sysctl_tree == NULL) 385 return; 386 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 387 } 388 389 static void 390 device_sysctl_fini(device_t dev) 391 { 392 if (dev->sysctl_tree == NULL) 393 return; 394 sysctl_ctx_free(&dev->sysctl_ctx); 395 dev->sysctl_tree = NULL; 396 } 397 398 static struct device_list bus_data_devices; 399 static int bus_data_generation = 1; 400 401 static kobj_method_t null_methods[] = { 402 KOBJMETHOD_END 403 }; 404 405 DEFINE_CLASS(null, null_methods, 0); 406 407 void 408 bus_topo_assert(void) 409 { 410 411 GIANT_REQUIRED; 412 } 413 414 struct mtx * 415 bus_topo_mtx(void) 416 { 417 418 return (&Giant); 419 } 420 421 void 422 bus_topo_lock(void) 423 { 424 425 mtx_lock(bus_topo_mtx()); 426 } 427 428 void 429 bus_topo_unlock(void) 430 { 431 432 mtx_unlock(bus_topo_mtx()); 433 } 434 435 /* 436 * Bus pass implementation 437 */ 438 439 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 440 static int bus_current_pass = BUS_PASS_ROOT; 441 442 /** 443 * @internal 444 * @brief Register the pass level of a new driver attachment 445 * 446 * Register a new driver attachment's pass level. If no driver 447 * attachment with the same pass level has been added, then @p new 448 * will be added to the global passes list. 449 * 450 * @param new the new driver attachment 451 */ 452 static void 453 driver_register_pass(struct driverlink *new) 454 { 455 struct driverlink *dl; 456 457 /* We only consider pass numbers during boot. */ 458 if (bus_current_pass == BUS_PASS_DEFAULT) 459 return; 460 461 /* 462 * Walk the passes list. If we already know about this pass 463 * then there is nothing to do. If we don't, then insert this 464 * driver link into the list. 465 */ 466 TAILQ_FOREACH(dl, &passes, passlink) { 467 if (dl->pass < new->pass) 468 continue; 469 if (dl->pass == new->pass) 470 return; 471 TAILQ_INSERT_BEFORE(dl, new, passlink); 472 return; 473 } 474 TAILQ_INSERT_TAIL(&passes, new, passlink); 475 } 476 477 /** 478 * @brief Retrieve the current bus pass 479 * 480 * Retrieves the current bus pass level. Call the BUS_NEW_PASS() 481 * method on the root bus to kick off a new device tree scan for each 482 * new pass level that has at least one driver. 483 */ 484 int 485 bus_get_pass(void) 486 { 487 488 return (bus_current_pass); 489 } 490 491 /** 492 * @brief Raise the current bus pass 493 * 494 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 495 * method on the root bus to kick off a new device tree scan for each 496 * new pass level that has at least one driver. 497 */ 498 static void 499 bus_set_pass(int pass) 500 { 501 struct driverlink *dl; 502 503 if (bus_current_pass > pass) 504 panic("Attempt to lower bus pass level"); 505 506 TAILQ_FOREACH(dl, &passes, passlink) { 507 /* Skip pass values below the current pass level. */ 508 if (dl->pass <= bus_current_pass) 509 continue; 510 511 /* 512 * Bail once we hit a driver with a pass level that is 513 * too high. 514 */ 515 if (dl->pass > pass) 516 break; 517 518 /* 519 * Raise the pass level to the next level and rescan 520 * the tree. 521 */ 522 bus_current_pass = dl->pass; 523 BUS_NEW_PASS(root_bus); 524 } 525 526 /* 527 * If there isn't a driver registered for the requested pass, 528 * then bus_current_pass might still be less than 'pass'. Set 529 * it to 'pass' in that case. 530 */ 531 if (bus_current_pass < pass) 532 bus_current_pass = pass; 533 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 534 } 535 536 /* 537 * Devclass implementation 538 */ 539 540 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 541 542 /** 543 * @internal 544 * @brief Find or create a device class 545 * 546 * If a device class with the name @p classname exists, return it, 547 * otherwise if @p create is non-zero create and return a new device 548 * class. 549 * 550 * If @p parentname is non-NULL, the parent of the devclass is set to 551 * the devclass of that name. 552 * 553 * @param classname the devclass name to find or create 554 * @param parentname the parent devclass name or @c NULL 555 * @param create non-zero to create a devclass 556 */ 557 static devclass_t 558 devclass_find_internal(const char *classname, const char *parentname, 559 int create) 560 { 561 devclass_t dc; 562 563 PDEBUG(("looking for %s", classname)); 564 if (!classname) 565 return (NULL); 566 567 TAILQ_FOREACH(dc, &devclasses, link) { 568 if (!strcmp(dc->name, classname)) 569 break; 570 } 571 572 if (create && !dc) { 573 PDEBUG(("creating %s", classname)); 574 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 575 M_BUS, M_NOWAIT | M_ZERO); 576 if (!dc) 577 return (NULL); 578 dc->parent = NULL; 579 dc->name = (char*) (dc + 1); 580 strcpy(dc->name, classname); 581 TAILQ_INIT(&dc->drivers); 582 TAILQ_INSERT_TAIL(&devclasses, dc, link); 583 584 bus_data_generation_update(); 585 } 586 587 /* 588 * If a parent class is specified, then set that as our parent so 589 * that this devclass will support drivers for the parent class as 590 * well. If the parent class has the same name don't do this though 591 * as it creates a cycle that can trigger an infinite loop in 592 * device_probe_child() if a device exists for which there is no 593 * suitable driver. 594 */ 595 if (parentname && dc && !dc->parent && 596 strcmp(classname, parentname) != 0) { 597 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 598 dc->parent->flags |= DC_HAS_CHILDREN; 599 } 600 601 return (dc); 602 } 603 604 /** 605 * @brief Create a device class 606 * 607 * If a device class with the name @p classname exists, return it, 608 * otherwise create and return a new device class. 609 * 610 * @param classname the devclass name to find or create 611 */ 612 devclass_t 613 devclass_create(const char *classname) 614 { 615 return (devclass_find_internal(classname, NULL, TRUE)); 616 } 617 618 /** 619 * @brief Find a device class 620 * 621 * If a device class with the name @p classname exists, return it, 622 * otherwise return @c NULL. 623 * 624 * @param classname the devclass name to find 625 */ 626 devclass_t 627 devclass_find(const char *classname) 628 { 629 return (devclass_find_internal(classname, NULL, FALSE)); 630 } 631 632 /** 633 * @brief Register that a device driver has been added to a devclass 634 * 635 * Register that a device driver has been added to a devclass. This 636 * is called by devclass_add_driver to accomplish the recursive 637 * notification of all the children classes of dc, as well as dc. 638 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 639 * the devclass. 640 * 641 * We do a full search here of the devclass list at each iteration 642 * level to save storing children-lists in the devclass structure. If 643 * we ever move beyond a few dozen devices doing this, we may need to 644 * reevaluate... 645 * 646 * @param dc the devclass to edit 647 * @param driver the driver that was just added 648 */ 649 static void 650 devclass_driver_added(devclass_t dc, driver_t *driver) 651 { 652 devclass_t parent; 653 int i; 654 655 /* 656 * Call BUS_DRIVER_ADDED for any existing buses in this class. 657 */ 658 for (i = 0; i < dc->maxunit; i++) 659 if (dc->devices[i] && device_is_attached(dc->devices[i])) 660 BUS_DRIVER_ADDED(dc->devices[i], driver); 661 662 /* 663 * Walk through the children classes. Since we only keep a 664 * single parent pointer around, we walk the entire list of 665 * devclasses looking for children. We set the 666 * DC_HAS_CHILDREN flag when a child devclass is created on 667 * the parent, so we only walk the list for those devclasses 668 * that have children. 669 */ 670 if (!(dc->flags & DC_HAS_CHILDREN)) 671 return; 672 parent = dc; 673 TAILQ_FOREACH(dc, &devclasses, link) { 674 if (dc->parent == parent) 675 devclass_driver_added(dc, driver); 676 } 677 } 678 679 static void 680 device_handle_nomatch(device_t dev) 681 { 682 BUS_PROBE_NOMATCH(dev->parent, dev); 683 EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev); 684 dev->flags |= DF_DONENOMATCH; 685 } 686 687 /** 688 * @brief Add a device driver to a device class 689 * 690 * Add a device driver to a devclass. This is normally called 691 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 692 * all devices in the devclass will be called to allow them to attempt 693 * to re-probe any unmatched children. 694 * 695 * @param dc the devclass to edit 696 * @param driver the driver to register 697 */ 698 int 699 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 700 { 701 driverlink_t dl; 702 devclass_t child_dc; 703 const char *parentname; 704 705 PDEBUG(("%s", DRIVERNAME(driver))); 706 707 /* Don't allow invalid pass values. */ 708 if (pass <= BUS_PASS_ROOT) 709 return (EINVAL); 710 711 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 712 if (!dl) 713 return (ENOMEM); 714 715 /* 716 * Compile the driver's methods. Also increase the reference count 717 * so that the class doesn't get freed when the last instance 718 * goes. This means we can safely use static methods and avoids a 719 * double-free in devclass_delete_driver. 720 */ 721 kobj_class_compile((kobj_class_t) driver); 722 723 /* 724 * If the driver has any base classes, make the 725 * devclass inherit from the devclass of the driver's 726 * first base class. This will allow the system to 727 * search for drivers in both devclasses for children 728 * of a device using this driver. 729 */ 730 if (driver->baseclasses) 731 parentname = driver->baseclasses[0]->name; 732 else 733 parentname = NULL; 734 child_dc = devclass_find_internal(driver->name, parentname, TRUE); 735 if (dcp != NULL) 736 *dcp = child_dc; 737 738 dl->driver = driver; 739 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 740 driver->refs++; /* XXX: kobj_mtx */ 741 dl->pass = pass; 742 driver_register_pass(dl); 743 744 if (device_frozen) { 745 dl->flags |= DL_DEFERRED_PROBE; 746 } else { 747 devclass_driver_added(dc, driver); 748 } 749 bus_data_generation_update(); 750 return (0); 751 } 752 753 /** 754 * @brief Register that a device driver has been deleted from a devclass 755 * 756 * Register that a device driver has been removed from a devclass. 757 * This is called by devclass_delete_driver to accomplish the 758 * recursive notification of all the children classes of busclass, as 759 * well as busclass. Each layer will attempt to detach the driver 760 * from any devices that are children of the bus's devclass. The function 761 * will return an error if a device fails to detach. 762 * 763 * We do a full search here of the devclass list at each iteration 764 * level to save storing children-lists in the devclass structure. If 765 * we ever move beyond a few dozen devices doing this, we may need to 766 * reevaluate... 767 * 768 * @param busclass the devclass of the parent bus 769 * @param dc the devclass of the driver being deleted 770 * @param driver the driver being deleted 771 */ 772 static int 773 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 774 { 775 devclass_t parent; 776 device_t dev; 777 int error, i; 778 779 /* 780 * Disassociate from any devices. We iterate through all the 781 * devices in the devclass of the driver and detach any which are 782 * using the driver and which have a parent in the devclass which 783 * we are deleting from. 784 * 785 * Note that since a driver can be in multiple devclasses, we 786 * should not detach devices which are not children of devices in 787 * the affected devclass. 788 * 789 * If we're frozen, we don't generate NOMATCH events. Mark to 790 * generate later. 791 */ 792 for (i = 0; i < dc->maxunit; i++) { 793 if (dc->devices[i]) { 794 dev = dc->devices[i]; 795 if (dev->driver == driver && dev->parent && 796 dev->parent->devclass == busclass) { 797 if ((error = device_detach(dev)) != 0) 798 return (error); 799 if (device_frozen) { 800 dev->flags &= ~DF_DONENOMATCH; 801 dev->flags |= DF_NEEDNOMATCH; 802 } else { 803 device_handle_nomatch(dev); 804 } 805 } 806 } 807 } 808 809 /* 810 * Walk through the children classes. Since we only keep a 811 * single parent pointer around, we walk the entire list of 812 * devclasses looking for children. We set the 813 * DC_HAS_CHILDREN flag when a child devclass is created on 814 * the parent, so we only walk the list for those devclasses 815 * that have children. 816 */ 817 if (!(busclass->flags & DC_HAS_CHILDREN)) 818 return (0); 819 parent = busclass; 820 TAILQ_FOREACH(busclass, &devclasses, link) { 821 if (busclass->parent == parent) { 822 error = devclass_driver_deleted(busclass, dc, driver); 823 if (error) 824 return (error); 825 } 826 } 827 return (0); 828 } 829 830 /** 831 * @brief Delete a device driver from a device class 832 * 833 * Delete a device driver from a devclass. This is normally called 834 * automatically by DRIVER_MODULE(). 835 * 836 * If the driver is currently attached to any devices, 837 * devclass_delete_driver() will first attempt to detach from each 838 * device. If one of the detach calls fails, the driver will not be 839 * deleted. 840 * 841 * @param dc the devclass to edit 842 * @param driver the driver to unregister 843 */ 844 int 845 devclass_delete_driver(devclass_t busclass, driver_t *driver) 846 { 847 devclass_t dc = devclass_find(driver->name); 848 driverlink_t dl; 849 int error; 850 851 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 852 853 if (!dc) 854 return (0); 855 856 /* 857 * Find the link structure in the bus' list of drivers. 858 */ 859 TAILQ_FOREACH(dl, &busclass->drivers, link) { 860 if (dl->driver == driver) 861 break; 862 } 863 864 if (!dl) { 865 PDEBUG(("%s not found in %s list", driver->name, 866 busclass->name)); 867 return (ENOENT); 868 } 869 870 error = devclass_driver_deleted(busclass, dc, driver); 871 if (error != 0) 872 return (error); 873 874 TAILQ_REMOVE(&busclass->drivers, dl, link); 875 free(dl, M_BUS); 876 877 /* XXX: kobj_mtx */ 878 driver->refs--; 879 if (driver->refs == 0) 880 kobj_class_free((kobj_class_t) driver); 881 882 bus_data_generation_update(); 883 return (0); 884 } 885 886 /** 887 * @brief Quiesces a set of device drivers from a device class 888 * 889 * Quiesce a device driver from a devclass. This is normally called 890 * automatically by DRIVER_MODULE(). 891 * 892 * If the driver is currently attached to any devices, 893 * devclass_quiesece_driver() will first attempt to quiesce each 894 * device. 895 * 896 * @param dc the devclass to edit 897 * @param driver the driver to unregister 898 */ 899 static int 900 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 901 { 902 devclass_t dc = devclass_find(driver->name); 903 driverlink_t dl; 904 device_t dev; 905 int i; 906 int error; 907 908 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 909 910 if (!dc) 911 return (0); 912 913 /* 914 * Find the link structure in the bus' list of drivers. 915 */ 916 TAILQ_FOREACH(dl, &busclass->drivers, link) { 917 if (dl->driver == driver) 918 break; 919 } 920 921 if (!dl) { 922 PDEBUG(("%s not found in %s list", driver->name, 923 busclass->name)); 924 return (ENOENT); 925 } 926 927 /* 928 * Quiesce all devices. We iterate through all the devices in 929 * the devclass of the driver and quiesce any which are using 930 * the driver and which have a parent in the devclass which we 931 * are quiescing. 932 * 933 * Note that since a driver can be in multiple devclasses, we 934 * should not quiesce devices which are not children of 935 * devices in the affected devclass. 936 */ 937 for (i = 0; i < dc->maxunit; i++) { 938 if (dc->devices[i]) { 939 dev = dc->devices[i]; 940 if (dev->driver == driver && dev->parent && 941 dev->parent->devclass == busclass) { 942 if ((error = device_quiesce(dev)) != 0) 943 return (error); 944 } 945 } 946 } 947 948 return (0); 949 } 950 951 /** 952 * @internal 953 */ 954 static driverlink_t 955 devclass_find_driver_internal(devclass_t dc, const char *classname) 956 { 957 driverlink_t dl; 958 959 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 960 961 TAILQ_FOREACH(dl, &dc->drivers, link) { 962 if (!strcmp(dl->driver->name, classname)) 963 return (dl); 964 } 965 966 PDEBUG(("not found")); 967 return (NULL); 968 } 969 970 /** 971 * @brief Return the name of the devclass 972 */ 973 const char * 974 devclass_get_name(devclass_t dc) 975 { 976 return (dc->name); 977 } 978 979 /** 980 * @brief Find a device given a unit number 981 * 982 * @param dc the devclass to search 983 * @param unit the unit number to search for 984 * 985 * @returns the device with the given unit number or @c 986 * NULL if there is no such device 987 */ 988 device_t 989 devclass_get_device(devclass_t dc, int unit) 990 { 991 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 992 return (NULL); 993 return (dc->devices[unit]); 994 } 995 996 /** 997 * @brief Find the softc field of a device given a unit number 998 * 999 * @param dc the devclass to search 1000 * @param unit the unit number to search for 1001 * 1002 * @returns the softc field of the device with the given 1003 * unit number or @c NULL if there is no such 1004 * device 1005 */ 1006 void * 1007 devclass_get_softc(devclass_t dc, int unit) 1008 { 1009 device_t dev; 1010 1011 dev = devclass_get_device(dc, unit); 1012 if (!dev) 1013 return (NULL); 1014 1015 return (device_get_softc(dev)); 1016 } 1017 1018 /** 1019 * @brief Get a list of devices in the devclass 1020 * 1021 * An array containing a list of all the devices in the given devclass 1022 * is allocated and returned in @p *devlistp. The number of devices 1023 * in the array is returned in @p *devcountp. The caller should free 1024 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1025 * 1026 * @param dc the devclass to examine 1027 * @param devlistp points at location for array pointer return 1028 * value 1029 * @param devcountp points at location for array size return value 1030 * 1031 * @retval 0 success 1032 * @retval ENOMEM the array allocation failed 1033 */ 1034 int 1035 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1036 { 1037 int count, i; 1038 device_t *list; 1039 1040 count = devclass_get_count(dc); 1041 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1042 if (!list) 1043 return (ENOMEM); 1044 1045 count = 0; 1046 for (i = 0; i < dc->maxunit; i++) { 1047 if (dc->devices[i]) { 1048 list[count] = dc->devices[i]; 1049 count++; 1050 } 1051 } 1052 1053 *devlistp = list; 1054 *devcountp = count; 1055 1056 return (0); 1057 } 1058 1059 /** 1060 * @brief Get a list of drivers in the devclass 1061 * 1062 * An array containing a list of pointers to all the drivers in the 1063 * given devclass is allocated and returned in @p *listp. The number 1064 * of drivers in the array is returned in @p *countp. The caller should 1065 * free the array using @c free(p, M_TEMP). 1066 * 1067 * @param dc the devclass to examine 1068 * @param listp gives location for array pointer return value 1069 * @param countp gives location for number of array elements 1070 * return value 1071 * 1072 * @retval 0 success 1073 * @retval ENOMEM the array allocation failed 1074 */ 1075 int 1076 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1077 { 1078 driverlink_t dl; 1079 driver_t **list; 1080 int count; 1081 1082 count = 0; 1083 TAILQ_FOREACH(dl, &dc->drivers, link) 1084 count++; 1085 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1086 if (list == NULL) 1087 return (ENOMEM); 1088 1089 count = 0; 1090 TAILQ_FOREACH(dl, &dc->drivers, link) { 1091 list[count] = dl->driver; 1092 count++; 1093 } 1094 *listp = list; 1095 *countp = count; 1096 1097 return (0); 1098 } 1099 1100 /** 1101 * @brief Get the number of devices in a devclass 1102 * 1103 * @param dc the devclass to examine 1104 */ 1105 int 1106 devclass_get_count(devclass_t dc) 1107 { 1108 int count, i; 1109 1110 count = 0; 1111 for (i = 0; i < dc->maxunit; i++) 1112 if (dc->devices[i]) 1113 count++; 1114 return (count); 1115 } 1116 1117 /** 1118 * @brief Get the maximum unit number used in a devclass 1119 * 1120 * Note that this is one greater than the highest currently-allocated unit. If 1121 * @p dc is NULL, @c -1 is returned to indicate that not even the devclass has 1122 * been allocated yet. 1123 * 1124 * @param dc the devclass to examine 1125 */ 1126 int 1127 devclass_get_maxunit(devclass_t dc) 1128 { 1129 if (dc == NULL) 1130 return (-1); 1131 return (dc->maxunit); 1132 } 1133 1134 /** 1135 * @brief Find a free unit number in a devclass 1136 * 1137 * This function searches for the first unused unit number greater 1138 * that or equal to @p unit. Note: This can return INT_MAX which 1139 * may be rejected elsewhere. 1140 * 1141 * @param dc the devclass to examine 1142 * @param unit the first unit number to check 1143 */ 1144 int 1145 devclass_find_free_unit(devclass_t dc, int unit) 1146 { 1147 if (dc == NULL) 1148 return (unit); 1149 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1150 unit++; 1151 return (unit); 1152 } 1153 1154 /** 1155 * @brief Set the parent of a devclass 1156 * 1157 * The parent class is normally initialised automatically by 1158 * DRIVER_MODULE(). 1159 * 1160 * @param dc the devclass to edit 1161 * @param pdc the new parent devclass 1162 */ 1163 void 1164 devclass_set_parent(devclass_t dc, devclass_t pdc) 1165 { 1166 dc->parent = pdc; 1167 } 1168 1169 /** 1170 * @brief Get the parent of a devclass 1171 * 1172 * @param dc the devclass to examine 1173 */ 1174 devclass_t 1175 devclass_get_parent(devclass_t dc) 1176 { 1177 return (dc->parent); 1178 } 1179 1180 struct sysctl_ctx_list * 1181 devclass_get_sysctl_ctx(devclass_t dc) 1182 { 1183 return (&dc->sysctl_ctx); 1184 } 1185 1186 struct sysctl_oid * 1187 devclass_get_sysctl_tree(devclass_t dc) 1188 { 1189 return (dc->sysctl_tree); 1190 } 1191 1192 /** 1193 * @internal 1194 * @brief Allocate a unit number 1195 * 1196 * On entry, @p *unitp is the desired unit number (or @c DEVICE_UNIT_ANY if any 1197 * will do). The allocated unit number is returned in @p *unitp. 1198 * 1199 * @param dc the devclass to allocate from 1200 * @param unitp points at the location for the allocated unit 1201 * number 1202 * 1203 * @retval 0 success 1204 * @retval EEXIST the requested unit number is already allocated 1205 * @retval ENOMEM memory allocation failure 1206 * @retval EINVAL unit is negative or we've run out of units 1207 */ 1208 static int 1209 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1210 { 1211 const char *s; 1212 int unit = *unitp; 1213 1214 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1215 1216 /* Ask the parent bus if it wants to wire this device. */ 1217 if (unit == DEVICE_UNIT_ANY) 1218 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1219 &unit); 1220 1221 /* Unit numbers are either DEVICE_UNIT_ANY or in [0,INT_MAX) */ 1222 if ((unit < 0 && unit != DEVICE_UNIT_ANY) || unit == INT_MAX) 1223 return (EINVAL); 1224 1225 /* If we were given a wired unit number, check for existing device */ 1226 if (unit != DEVICE_UNIT_ANY) { 1227 if (unit < dc->maxunit && dc->devices[unit] != NULL) { 1228 if (bootverbose) 1229 printf("%s: %s%d already exists; skipping it\n", 1230 dc->name, dc->name, *unitp); 1231 return (EEXIST); 1232 } 1233 } else { 1234 /* Unwired device, find the next available slot for it */ 1235 unit = 0; 1236 for (unit = 0; unit < INT_MAX; unit++) { 1237 /* If this device slot is already in use, skip it. */ 1238 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1239 continue; 1240 1241 /* If there is an "at" hint for a unit then skip it. */ 1242 if (resource_string_value(dc->name, unit, "at", &s) == 1243 0) 1244 continue; 1245 1246 break; 1247 } 1248 } 1249 1250 /* 1251 * Unit numbers must be in the range [0, INT_MAX), so exclude INT_MAX as 1252 * too large. We constrain maxunit below to be <= INT_MAX. This means we 1253 * can treat unit and maxunit as normal integers with normal math 1254 * everywhere and we only have to flag INT_MAX as invalid. 1255 */ 1256 if (unit == INT_MAX) 1257 return (EINVAL); 1258 1259 /* 1260 * We've selected a unit beyond the length of the table, so let's extend 1261 * the table to make room for all units up to and including this one. 1262 */ 1263 if (unit >= dc->maxunit) { 1264 int newsize; 1265 1266 newsize = unit + 1; 1267 dc->devices = reallocf(dc->devices, 1268 newsize * sizeof(*dc->devices), M_BUS, M_WAITOK); 1269 memset(dc->devices + dc->maxunit, 0, 1270 sizeof(device_t) * (newsize - dc->maxunit)); 1271 dc->maxunit = newsize; 1272 } 1273 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1274 1275 *unitp = unit; 1276 return (0); 1277 } 1278 1279 /** 1280 * @internal 1281 * @brief Add a device to a devclass 1282 * 1283 * A unit number is allocated for the device (using the device's 1284 * preferred unit number if any) and the device is registered in the 1285 * devclass. This allows the device to be looked up by its unit 1286 * number, e.g. by decoding a dev_t minor number. 1287 * 1288 * @param dc the devclass to add to 1289 * @param dev the device to add 1290 * 1291 * @retval 0 success 1292 * @retval EEXIST the requested unit number is already allocated 1293 * @retval ENOMEM memory allocation failure 1294 * @retval EINVAL Unit number invalid or too many units 1295 */ 1296 static int 1297 devclass_add_device(devclass_t dc, device_t dev) 1298 { 1299 int buflen, error; 1300 1301 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1302 1303 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1304 if (buflen < 0) 1305 return (ENOMEM); 1306 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1307 if (!dev->nameunit) 1308 return (ENOMEM); 1309 1310 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1311 free(dev->nameunit, M_BUS); 1312 dev->nameunit = NULL; 1313 return (error); 1314 } 1315 dc->devices[dev->unit] = dev; 1316 dev->devclass = dc; 1317 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1318 1319 return (0); 1320 } 1321 1322 /** 1323 * @internal 1324 * @brief Delete a device from a devclass 1325 * 1326 * The device is removed from the devclass's device list and its unit 1327 * number is freed. 1328 1329 * @param dc the devclass to delete from 1330 * @param dev the device to delete 1331 * 1332 * @retval 0 success 1333 */ 1334 static int 1335 devclass_delete_device(devclass_t dc, device_t dev) 1336 { 1337 if (!dc || !dev) 1338 return (0); 1339 1340 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1341 1342 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1343 panic("devclass_delete_device: inconsistent device class"); 1344 dc->devices[dev->unit] = NULL; 1345 if (dev->flags & DF_WILDCARD) 1346 dev->unit = DEVICE_UNIT_ANY; 1347 dev->devclass = NULL; 1348 free(dev->nameunit, M_BUS); 1349 dev->nameunit = NULL; 1350 1351 return (0); 1352 } 1353 1354 /** 1355 * @internal 1356 * @brief Make a new device and add it as a child of @p parent 1357 * 1358 * @param parent the parent of the new device 1359 * @param name the devclass name of the new device or @c NULL 1360 * to leave the devclass unspecified 1361 * @parem unit the unit number of the new device of @c DEVICE_UNIT_ANY 1362 * to leave the unit number unspecified 1363 * 1364 * @returns the new device 1365 */ 1366 static device_t 1367 make_device(device_t parent, const char *name, int unit) 1368 { 1369 device_t dev; 1370 devclass_t dc; 1371 1372 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1373 1374 if (name) { 1375 dc = devclass_find_internal(name, NULL, TRUE); 1376 if (!dc) { 1377 printf("make_device: can't find device class %s\n", 1378 name); 1379 return (NULL); 1380 } 1381 } else { 1382 dc = NULL; 1383 } 1384 1385 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1386 if (!dev) 1387 return (NULL); 1388 1389 dev->parent = parent; 1390 TAILQ_INIT(&dev->children); 1391 kobj_init((kobj_t) dev, &null_class); 1392 dev->driver = NULL; 1393 dev->devclass = NULL; 1394 dev->unit = unit; 1395 dev->nameunit = NULL; 1396 dev->desc = NULL; 1397 dev->busy = 0; 1398 dev->devflags = 0; 1399 dev->flags = DF_ENABLED; 1400 dev->order = 0; 1401 if (unit == DEVICE_UNIT_ANY) 1402 dev->flags |= DF_WILDCARD; 1403 if (name) { 1404 dev->flags |= DF_FIXEDCLASS; 1405 if (devclass_add_device(dc, dev)) { 1406 kobj_delete((kobj_t) dev, M_BUS); 1407 return (NULL); 1408 } 1409 } 1410 if (parent != NULL && device_has_quiet_children(parent)) 1411 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1412 dev->ivars = NULL; 1413 dev->softc = NULL; 1414 LIST_INIT(&dev->props); 1415 1416 dev->state = DS_NOTPRESENT; 1417 1418 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1419 bus_data_generation_update(); 1420 1421 return (dev); 1422 } 1423 1424 /** 1425 * @internal 1426 * @brief Print a description of a device. 1427 */ 1428 static int 1429 device_print_child(device_t dev, device_t child) 1430 { 1431 int retval = 0; 1432 1433 if (device_is_alive(child)) 1434 retval += BUS_PRINT_CHILD(dev, child); 1435 else 1436 retval += device_printf(child, " not found\n"); 1437 1438 return (retval); 1439 } 1440 1441 /** 1442 * @brief Create a new device 1443 * 1444 * This creates a new device and adds it as a child of an existing 1445 * parent device. The new device will be added after the last existing 1446 * child with order zero. 1447 * 1448 * @param dev the device which will be the parent of the 1449 * new child device 1450 * @param name devclass name for new device or @c NULL if not 1451 * specified 1452 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not 1453 * specified 1454 * 1455 * @returns the new device 1456 */ 1457 device_t 1458 device_add_child(device_t dev, const char *name, int unit) 1459 { 1460 return (device_add_child_ordered(dev, 0, name, unit)); 1461 } 1462 1463 /** 1464 * @brief Create a new device 1465 * 1466 * This creates a new device and adds it as a child of an existing 1467 * parent device. The new device will be added after the last existing 1468 * child with the same order. 1469 * 1470 * @param dev the device which will be the parent of the 1471 * new child device 1472 * @param order a value which is used to partially sort the 1473 * children of @p dev - devices created using 1474 * lower values of @p order appear first in @p 1475 * dev's list of children 1476 * @param name devclass name for new device or @c NULL if not 1477 * specified 1478 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not 1479 * specified 1480 * 1481 * @returns the new device 1482 */ 1483 device_t 1484 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1485 { 1486 device_t child; 1487 device_t place; 1488 1489 PDEBUG(("%s at %s with order %u as unit %d", 1490 name, DEVICENAME(dev), order, unit)); 1491 KASSERT(name != NULL || unit == DEVICE_UNIT_ANY, 1492 ("child device with wildcard name and specific unit number")); 1493 1494 child = make_device(dev, name, unit); 1495 if (child == NULL) 1496 return (child); 1497 child->order = order; 1498 1499 TAILQ_FOREACH(place, &dev->children, link) { 1500 if (place->order > order) 1501 break; 1502 } 1503 1504 if (place) { 1505 /* 1506 * The device 'place' is the first device whose order is 1507 * greater than the new child. 1508 */ 1509 TAILQ_INSERT_BEFORE(place, child, link); 1510 } else { 1511 /* 1512 * The new child's order is greater or equal to the order of 1513 * any existing device. Add the child to the tail of the list. 1514 */ 1515 TAILQ_INSERT_TAIL(&dev->children, child, link); 1516 } 1517 1518 bus_data_generation_update(); 1519 return (child); 1520 } 1521 1522 /** 1523 * @brief Delete a device 1524 * 1525 * This function deletes a device along with all of its children. If 1526 * the device currently has a driver attached to it, the device is 1527 * detached first using device_detach(). 1528 * 1529 * @param dev the parent device 1530 * @param child the device to delete 1531 * 1532 * @retval 0 success 1533 * @retval non-zero a unit error code describing the error 1534 */ 1535 int 1536 device_delete_child(device_t dev, device_t child) 1537 { 1538 int error; 1539 device_t grandchild; 1540 1541 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1542 1543 /* 1544 * Detach child. Ideally this cleans up any grandchild 1545 * devices. 1546 */ 1547 if ((error = device_detach(child)) != 0) 1548 return (error); 1549 1550 /* Delete any grandchildren left after detach. */ 1551 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1552 error = device_delete_child(child, grandchild); 1553 if (error) 1554 return (error); 1555 } 1556 1557 device_destroy_props(dev); 1558 if (child->devclass) 1559 devclass_delete_device(child->devclass, child); 1560 if (child->parent) 1561 BUS_CHILD_DELETED(dev, child); 1562 TAILQ_REMOVE(&dev->children, child, link); 1563 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1564 kobj_delete((kobj_t) child, M_BUS); 1565 1566 bus_data_generation_update(); 1567 return (0); 1568 } 1569 1570 /** 1571 * @brief Delete all children devices of the given device, if any. 1572 * 1573 * This function deletes all children devices of the given device, if 1574 * any, using the device_delete_child() function for each device it 1575 * finds. If a child device cannot be deleted, this function will 1576 * return an error code. 1577 * 1578 * @param dev the parent device 1579 * 1580 * @retval 0 success 1581 * @retval non-zero a device would not detach 1582 */ 1583 int 1584 device_delete_children(device_t dev) 1585 { 1586 device_t child; 1587 int error; 1588 1589 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1590 1591 error = 0; 1592 1593 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1594 error = device_delete_child(dev, child); 1595 if (error) { 1596 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1597 break; 1598 } 1599 } 1600 return (error); 1601 } 1602 1603 /** 1604 * @brief Find a device given a unit number 1605 * 1606 * This is similar to devclass_get_devices() but only searches for 1607 * devices which have @p dev as a parent. 1608 * 1609 * @param dev the parent device to search 1610 * @param unit the unit number to search for. If the unit is 1611 * @c DEVICE_UNIT_ANY, return the first child of @p dev 1612 * which has name @p classname (that is, the one with the 1613 * lowest unit.) 1614 * 1615 * @returns the device with the given unit number or @c 1616 * NULL if there is no such device 1617 */ 1618 device_t 1619 device_find_child(device_t dev, const char *classname, int unit) 1620 { 1621 devclass_t dc; 1622 device_t child; 1623 1624 dc = devclass_find(classname); 1625 if (!dc) 1626 return (NULL); 1627 1628 if (unit != DEVICE_UNIT_ANY) { 1629 child = devclass_get_device(dc, unit); 1630 if (child && child->parent == dev) 1631 return (child); 1632 } else { 1633 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1634 child = devclass_get_device(dc, unit); 1635 if (child && child->parent == dev) 1636 return (child); 1637 } 1638 } 1639 return (NULL); 1640 } 1641 1642 /** 1643 * @internal 1644 */ 1645 static driverlink_t 1646 first_matching_driver(devclass_t dc, device_t dev) 1647 { 1648 if (dev->devclass) 1649 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1650 return (TAILQ_FIRST(&dc->drivers)); 1651 } 1652 1653 /** 1654 * @internal 1655 */ 1656 static driverlink_t 1657 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1658 { 1659 if (dev->devclass) { 1660 driverlink_t dl; 1661 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1662 if (!strcmp(dev->devclass->name, dl->driver->name)) 1663 return (dl); 1664 return (NULL); 1665 } 1666 return (TAILQ_NEXT(last, link)); 1667 } 1668 1669 /** 1670 * @internal 1671 */ 1672 int 1673 device_probe_child(device_t dev, device_t child) 1674 { 1675 devclass_t dc; 1676 driverlink_t best = NULL; 1677 driverlink_t dl; 1678 int result, pri = 0; 1679 /* We should preserve the devclass (or lack of) set by the bus. */ 1680 int hasclass = (child->devclass != NULL); 1681 1682 bus_topo_assert(); 1683 1684 dc = dev->devclass; 1685 if (!dc) 1686 panic("device_probe_child: parent device has no devclass"); 1687 1688 /* 1689 * If the state is already probed, then return. 1690 */ 1691 if (child->state == DS_ALIVE) 1692 return (0); 1693 1694 for (; dc; dc = dc->parent) { 1695 for (dl = first_matching_driver(dc, child); 1696 dl; 1697 dl = next_matching_driver(dc, child, dl)) { 1698 /* If this driver's pass is too high, then ignore it. */ 1699 if (dl->pass > bus_current_pass) 1700 continue; 1701 1702 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1703 result = device_set_driver(child, dl->driver); 1704 if (result == ENOMEM) 1705 return (result); 1706 else if (result != 0) 1707 continue; 1708 if (!hasclass) { 1709 if (device_set_devclass(child, 1710 dl->driver->name) != 0) { 1711 char const * devname = 1712 device_get_name(child); 1713 if (devname == NULL) 1714 devname = "(unknown)"; 1715 printf("driver bug: Unable to set " 1716 "devclass (class: %s " 1717 "devname: %s)\n", 1718 dl->driver->name, 1719 devname); 1720 (void)device_set_driver(child, NULL); 1721 continue; 1722 } 1723 } 1724 1725 /* Fetch any flags for the device before probing. */ 1726 resource_int_value(dl->driver->name, child->unit, 1727 "flags", &child->devflags); 1728 1729 result = DEVICE_PROBE(child); 1730 1731 /* 1732 * If probe returns 0, this is the driver that wins this 1733 * device. 1734 */ 1735 if (result == 0) { 1736 best = dl; 1737 pri = 0; 1738 goto exact_match; /* C doesn't have break 2 */ 1739 } 1740 1741 /* Reset flags and devclass before the next probe. */ 1742 child->devflags = 0; 1743 if (!hasclass) 1744 (void)device_set_devclass(child, NULL); 1745 1746 /* 1747 * Reset DF_QUIET in case this driver doesn't 1748 * end up as the best driver. 1749 */ 1750 device_verbose(child); 1751 1752 /* 1753 * Probes that return BUS_PROBE_NOWILDCARD or lower 1754 * only match on devices whose driver was explicitly 1755 * specified. 1756 */ 1757 if (result <= BUS_PROBE_NOWILDCARD && 1758 !(child->flags & DF_FIXEDCLASS)) { 1759 result = ENXIO; 1760 } 1761 1762 /* 1763 * The driver returned an error so it 1764 * certainly doesn't match. 1765 */ 1766 if (result > 0) { 1767 (void)device_set_driver(child, NULL); 1768 continue; 1769 } 1770 1771 /* 1772 * A priority lower than SUCCESS, remember the 1773 * best matching driver. Initialise the value 1774 * of pri for the first match. 1775 */ 1776 if (best == NULL || result > pri) { 1777 best = dl; 1778 pri = result; 1779 continue; 1780 } 1781 } 1782 } 1783 1784 if (best == NULL) 1785 return (ENXIO); 1786 1787 /* 1788 * If we found a driver, change state and initialise the devclass. 1789 * Set the winning driver, devclass, and flags. 1790 */ 1791 result = device_set_driver(child, best->driver); 1792 if (result != 0) 1793 return (result); 1794 if (!child->devclass) { 1795 result = device_set_devclass(child, best->driver->name); 1796 if (result != 0) { 1797 (void)device_set_driver(child, NULL); 1798 return (result); 1799 } 1800 } 1801 resource_int_value(best->driver->name, child->unit, 1802 "flags", &child->devflags); 1803 1804 /* 1805 * A bit bogus. Call the probe method again to make sure that we have 1806 * the right description for the device. 1807 */ 1808 result = DEVICE_PROBE(child); 1809 if (result > 0) { 1810 if (!hasclass) 1811 (void)device_set_devclass(child, NULL); 1812 (void)device_set_driver(child, NULL); 1813 return (result); 1814 } 1815 1816 exact_match: 1817 child->state = DS_ALIVE; 1818 bus_data_generation_update(); 1819 return (0); 1820 } 1821 1822 /** 1823 * @brief Return the parent of a device 1824 */ 1825 device_t 1826 device_get_parent(device_t dev) 1827 { 1828 return (dev->parent); 1829 } 1830 1831 /** 1832 * @brief Get a list of children of a device 1833 * 1834 * An array containing a list of all the children of the given device 1835 * is allocated and returned in @p *devlistp. The number of devices 1836 * in the array is returned in @p *devcountp. The caller should free 1837 * the array using @c free(p, M_TEMP). 1838 * 1839 * @param dev the device to examine 1840 * @param devlistp points at location for array pointer return 1841 * value 1842 * @param devcountp points at location for array size return value 1843 * 1844 * @retval 0 success 1845 * @retval ENOMEM the array allocation failed 1846 */ 1847 int 1848 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1849 { 1850 int count; 1851 device_t child; 1852 device_t *list; 1853 1854 count = 0; 1855 TAILQ_FOREACH(child, &dev->children, link) { 1856 count++; 1857 } 1858 if (count == 0) { 1859 *devlistp = NULL; 1860 *devcountp = 0; 1861 return (0); 1862 } 1863 1864 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1865 if (!list) 1866 return (ENOMEM); 1867 1868 count = 0; 1869 TAILQ_FOREACH(child, &dev->children, link) { 1870 list[count] = child; 1871 count++; 1872 } 1873 1874 *devlistp = list; 1875 *devcountp = count; 1876 1877 return (0); 1878 } 1879 1880 /** 1881 * @brief Return the current driver for the device or @c NULL if there 1882 * is no driver currently attached 1883 */ 1884 driver_t * 1885 device_get_driver(device_t dev) 1886 { 1887 return (dev->driver); 1888 } 1889 1890 /** 1891 * @brief Return the current devclass for the device or @c NULL if 1892 * there is none. 1893 */ 1894 devclass_t 1895 device_get_devclass(device_t dev) 1896 { 1897 return (dev->devclass); 1898 } 1899 1900 /** 1901 * @brief Return the name of the device's devclass or @c NULL if there 1902 * is none. 1903 */ 1904 const char * 1905 device_get_name(device_t dev) 1906 { 1907 if (dev != NULL && dev->devclass) 1908 return (devclass_get_name(dev->devclass)); 1909 return (NULL); 1910 } 1911 1912 /** 1913 * @brief Return a string containing the device's devclass name 1914 * followed by an ascii representation of the device's unit number 1915 * (e.g. @c "foo2"). 1916 */ 1917 const char * 1918 device_get_nameunit(device_t dev) 1919 { 1920 return (dev->nameunit); 1921 } 1922 1923 /** 1924 * @brief Return the device's unit number. 1925 */ 1926 int 1927 device_get_unit(device_t dev) 1928 { 1929 return (dev->unit); 1930 } 1931 1932 /** 1933 * @brief Return the device's description string 1934 */ 1935 const char * 1936 device_get_desc(device_t dev) 1937 { 1938 return (dev->desc); 1939 } 1940 1941 /** 1942 * @brief Return the device's flags 1943 */ 1944 uint32_t 1945 device_get_flags(device_t dev) 1946 { 1947 return (dev->devflags); 1948 } 1949 1950 struct sysctl_ctx_list * 1951 device_get_sysctl_ctx(device_t dev) 1952 { 1953 return (&dev->sysctl_ctx); 1954 } 1955 1956 struct sysctl_oid * 1957 device_get_sysctl_tree(device_t dev) 1958 { 1959 return (dev->sysctl_tree); 1960 } 1961 1962 /** 1963 * @brief Print the name of the device followed by a colon and a space 1964 * 1965 * @returns the number of characters printed 1966 */ 1967 int 1968 device_print_prettyname(device_t dev) 1969 { 1970 const char *name = device_get_name(dev); 1971 1972 if (name == NULL) 1973 return (printf("unknown: ")); 1974 return (printf("%s%d: ", name, device_get_unit(dev))); 1975 } 1976 1977 /** 1978 * @brief Print the name of the device followed by a colon, a space 1979 * and the result of calling vprintf() with the value of @p fmt and 1980 * the following arguments. 1981 * 1982 * @returns the number of characters printed 1983 */ 1984 int 1985 device_printf(device_t dev, const char * fmt, ...) 1986 { 1987 char buf[128]; 1988 struct sbuf sb; 1989 const char *name; 1990 va_list ap; 1991 size_t retval; 1992 1993 retval = 0; 1994 1995 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1996 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 1997 1998 name = device_get_name(dev); 1999 2000 if (name == NULL) 2001 sbuf_cat(&sb, "unknown: "); 2002 else 2003 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2004 2005 va_start(ap, fmt); 2006 sbuf_vprintf(&sb, fmt, ap); 2007 va_end(ap); 2008 2009 sbuf_finish(&sb); 2010 sbuf_delete(&sb); 2011 2012 return (retval); 2013 } 2014 2015 /** 2016 * @brief Print the name of the device followed by a colon, a space 2017 * and the result of calling log() with the value of @p fmt and 2018 * the following arguments. 2019 * 2020 * @returns the number of characters printed 2021 */ 2022 int 2023 device_log(device_t dev, int pri, const char * fmt, ...) 2024 { 2025 char buf[128]; 2026 struct sbuf sb; 2027 const char *name; 2028 va_list ap; 2029 size_t retval; 2030 2031 retval = 0; 2032 2033 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2034 2035 name = device_get_name(dev); 2036 2037 if (name == NULL) 2038 sbuf_cat(&sb, "unknown: "); 2039 else 2040 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2041 2042 va_start(ap, fmt); 2043 sbuf_vprintf(&sb, fmt, ap); 2044 va_end(ap); 2045 2046 sbuf_finish(&sb); 2047 2048 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb)); 2049 retval = sbuf_len(&sb); 2050 2051 sbuf_delete(&sb); 2052 2053 return (retval); 2054 } 2055 2056 /** 2057 * @internal 2058 */ 2059 static void 2060 device_set_desc_internal(device_t dev, const char *desc, bool allocated) 2061 { 2062 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2063 free(dev->desc, M_BUS); 2064 dev->flags &= ~DF_DESCMALLOCED; 2065 dev->desc = NULL; 2066 } 2067 2068 if (allocated && desc) 2069 dev->flags |= DF_DESCMALLOCED; 2070 dev->desc = __DECONST(char *, desc); 2071 2072 bus_data_generation_update(); 2073 } 2074 2075 /** 2076 * @brief Set the device's description 2077 * 2078 * The value of @c desc should be a string constant that will not 2079 * change (at least until the description is changed in a subsequent 2080 * call to device_set_desc() or device_set_desc_copy()). 2081 */ 2082 void 2083 device_set_desc(device_t dev, const char *desc) 2084 { 2085 device_set_desc_internal(dev, desc, false); 2086 } 2087 2088 /** 2089 * @brief Set the device's description 2090 * 2091 * A printf-like version of device_set_desc(). 2092 */ 2093 void 2094 device_set_descf(device_t dev, const char *fmt, ...) 2095 { 2096 va_list ap; 2097 char *buf = NULL; 2098 2099 va_start(ap, fmt); 2100 vasprintf(&buf, M_BUS, fmt, ap); 2101 va_end(ap); 2102 device_set_desc_internal(dev, buf, true); 2103 } 2104 2105 /** 2106 * @brief Set the device's description 2107 * 2108 * The string pointed to by @c desc is copied. Use this function if 2109 * the device description is generated, (e.g. with sprintf()). 2110 */ 2111 void 2112 device_set_desc_copy(device_t dev, const char *desc) 2113 { 2114 char *buf; 2115 2116 buf = strdup_flags(desc, M_BUS, M_NOWAIT); 2117 device_set_desc_internal(dev, buf, true); 2118 } 2119 2120 /** 2121 * @brief Set the device's flags 2122 */ 2123 void 2124 device_set_flags(device_t dev, uint32_t flags) 2125 { 2126 dev->devflags = flags; 2127 } 2128 2129 /** 2130 * @brief Return the device's softc field 2131 * 2132 * The softc is allocated and zeroed when a driver is attached, based 2133 * on the size field of the driver. 2134 */ 2135 void * 2136 device_get_softc(device_t dev) 2137 { 2138 return (dev->softc); 2139 } 2140 2141 /** 2142 * @brief Set the device's softc field 2143 * 2144 * Most drivers do not need to use this since the softc is allocated 2145 * automatically when the driver is attached. 2146 */ 2147 void 2148 device_set_softc(device_t dev, void *softc) 2149 { 2150 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2151 free(dev->softc, M_BUS_SC); 2152 dev->softc = softc; 2153 if (dev->softc) 2154 dev->flags |= DF_EXTERNALSOFTC; 2155 else 2156 dev->flags &= ~DF_EXTERNALSOFTC; 2157 } 2158 2159 /** 2160 * @brief Free claimed softc 2161 * 2162 * Most drivers do not need to use this since the softc is freed 2163 * automatically when the driver is detached. 2164 */ 2165 void 2166 device_free_softc(void *softc) 2167 { 2168 free(softc, M_BUS_SC); 2169 } 2170 2171 /** 2172 * @brief Claim softc 2173 * 2174 * This function can be used to let the driver free the automatically 2175 * allocated softc using "device_free_softc()". This function is 2176 * useful when the driver is refcounting the softc and the softc 2177 * cannot be freed when the "device_detach" method is called. 2178 */ 2179 void 2180 device_claim_softc(device_t dev) 2181 { 2182 if (dev->softc) 2183 dev->flags |= DF_EXTERNALSOFTC; 2184 else 2185 dev->flags &= ~DF_EXTERNALSOFTC; 2186 } 2187 2188 /** 2189 * @brief Get the device's ivars field 2190 * 2191 * The ivars field is used by the parent device to store per-device 2192 * state (e.g. the physical location of the device or a list of 2193 * resources). 2194 */ 2195 void * 2196 device_get_ivars(device_t dev) 2197 { 2198 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2199 return (dev->ivars); 2200 } 2201 2202 /** 2203 * @brief Set the device's ivars field 2204 */ 2205 void 2206 device_set_ivars(device_t dev, void * ivars) 2207 { 2208 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2209 dev->ivars = ivars; 2210 } 2211 2212 /** 2213 * @brief Return the device's state 2214 */ 2215 device_state_t 2216 device_get_state(device_t dev) 2217 { 2218 return (dev->state); 2219 } 2220 2221 /** 2222 * @brief Set the DF_ENABLED flag for the device 2223 */ 2224 void 2225 device_enable(device_t dev) 2226 { 2227 dev->flags |= DF_ENABLED; 2228 } 2229 2230 /** 2231 * @brief Clear the DF_ENABLED flag for the device 2232 */ 2233 void 2234 device_disable(device_t dev) 2235 { 2236 dev->flags &= ~DF_ENABLED; 2237 } 2238 2239 /** 2240 * @brief Increment the busy counter for the device 2241 */ 2242 void 2243 device_busy(device_t dev) 2244 { 2245 2246 /* 2247 * Mark the device as busy, recursively up the tree if this busy count 2248 * goes 0->1. 2249 */ 2250 if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL) 2251 device_busy(dev->parent); 2252 } 2253 2254 /** 2255 * @brief Decrement the busy counter for the device 2256 */ 2257 void 2258 device_unbusy(device_t dev) 2259 { 2260 2261 /* 2262 * Mark the device as unbsy, recursively if this is the last busy count. 2263 */ 2264 if (refcount_release(&dev->busy) && dev->parent != NULL) 2265 device_unbusy(dev->parent); 2266 } 2267 2268 /** 2269 * @brief Set the DF_QUIET flag for the device 2270 */ 2271 void 2272 device_quiet(device_t dev) 2273 { 2274 dev->flags |= DF_QUIET; 2275 } 2276 2277 /** 2278 * @brief Set the DF_QUIET_CHILDREN flag for the device 2279 */ 2280 void 2281 device_quiet_children(device_t dev) 2282 { 2283 dev->flags |= DF_QUIET_CHILDREN; 2284 } 2285 2286 /** 2287 * @brief Clear the DF_QUIET flag for the device 2288 */ 2289 void 2290 device_verbose(device_t dev) 2291 { 2292 dev->flags &= ~DF_QUIET; 2293 } 2294 2295 ssize_t 2296 device_get_property(device_t dev, const char *prop, void *val, size_t sz, 2297 device_property_type_t type) 2298 { 2299 device_t bus = device_get_parent(dev); 2300 2301 switch (type) { 2302 case DEVICE_PROP_ANY: 2303 case DEVICE_PROP_BUFFER: 2304 case DEVICE_PROP_HANDLE: /* Size checks done in implementation. */ 2305 break; 2306 case DEVICE_PROP_UINT32: 2307 if (sz % 4 != 0) 2308 return (-1); 2309 break; 2310 case DEVICE_PROP_UINT64: 2311 if (sz % 8 != 0) 2312 return (-1); 2313 break; 2314 default: 2315 return (-1); 2316 } 2317 2318 return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type)); 2319 } 2320 2321 bool 2322 device_has_property(device_t dev, const char *prop) 2323 { 2324 return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0); 2325 } 2326 2327 /** 2328 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2329 */ 2330 int 2331 device_has_quiet_children(device_t dev) 2332 { 2333 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2334 } 2335 2336 /** 2337 * @brief Return non-zero if the DF_QUIET flag is set on the device 2338 */ 2339 int 2340 device_is_quiet(device_t dev) 2341 { 2342 return ((dev->flags & DF_QUIET) != 0); 2343 } 2344 2345 /** 2346 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2347 */ 2348 int 2349 device_is_enabled(device_t dev) 2350 { 2351 return ((dev->flags & DF_ENABLED) != 0); 2352 } 2353 2354 /** 2355 * @brief Return non-zero if the device was successfully probed 2356 */ 2357 int 2358 device_is_alive(device_t dev) 2359 { 2360 return (dev->state >= DS_ALIVE); 2361 } 2362 2363 /** 2364 * @brief Return non-zero if the device currently has a driver 2365 * attached to it 2366 */ 2367 int 2368 device_is_attached(device_t dev) 2369 { 2370 return (dev->state >= DS_ATTACHED); 2371 } 2372 2373 /** 2374 * @brief Return non-zero if the device is currently suspended. 2375 */ 2376 int 2377 device_is_suspended(device_t dev) 2378 { 2379 return ((dev->flags & DF_SUSPENDED) != 0); 2380 } 2381 2382 /** 2383 * @brief Set the devclass of a device 2384 * @see devclass_add_device(). 2385 */ 2386 int 2387 device_set_devclass(device_t dev, const char *classname) 2388 { 2389 devclass_t dc; 2390 int error; 2391 2392 if (!classname) { 2393 if (dev->devclass) 2394 devclass_delete_device(dev->devclass, dev); 2395 return (0); 2396 } 2397 2398 if (dev->devclass) { 2399 printf("device_set_devclass: device class already set\n"); 2400 return (EINVAL); 2401 } 2402 2403 dc = devclass_find_internal(classname, NULL, TRUE); 2404 if (!dc) 2405 return (ENOMEM); 2406 2407 error = devclass_add_device(dc, dev); 2408 2409 bus_data_generation_update(); 2410 return (error); 2411 } 2412 2413 /** 2414 * @brief Set the devclass of a device and mark the devclass fixed. 2415 * @see device_set_devclass() 2416 */ 2417 int 2418 device_set_devclass_fixed(device_t dev, const char *classname) 2419 { 2420 int error; 2421 2422 if (classname == NULL) 2423 return (EINVAL); 2424 2425 error = device_set_devclass(dev, classname); 2426 if (error) 2427 return (error); 2428 dev->flags |= DF_FIXEDCLASS; 2429 return (0); 2430 } 2431 2432 /** 2433 * @brief Query the device to determine if it's of a fixed devclass 2434 * @see device_set_devclass_fixed() 2435 */ 2436 bool 2437 device_is_devclass_fixed(device_t dev) 2438 { 2439 return ((dev->flags & DF_FIXEDCLASS) != 0); 2440 } 2441 2442 /** 2443 * @brief Set the driver of a device 2444 * 2445 * @retval 0 success 2446 * @retval EBUSY the device already has a driver attached 2447 * @retval ENOMEM a memory allocation failure occurred 2448 */ 2449 int 2450 device_set_driver(device_t dev, driver_t *driver) 2451 { 2452 int domain; 2453 struct domainset *policy; 2454 2455 if (dev->state >= DS_ATTACHED) 2456 return (EBUSY); 2457 2458 if (dev->driver == driver) 2459 return (0); 2460 2461 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2462 free(dev->softc, M_BUS_SC); 2463 dev->softc = NULL; 2464 } 2465 device_set_desc(dev, NULL); 2466 kobj_delete((kobj_t) dev, NULL); 2467 dev->driver = driver; 2468 if (driver) { 2469 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2470 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2471 if (bus_get_domain(dev, &domain) == 0) 2472 policy = DOMAINSET_PREF(domain); 2473 else 2474 policy = DOMAINSET_RR(); 2475 dev->softc = malloc_domainset(driver->size, M_BUS_SC, 2476 policy, M_NOWAIT | M_ZERO); 2477 if (!dev->softc) { 2478 kobj_delete((kobj_t) dev, NULL); 2479 kobj_init((kobj_t) dev, &null_class); 2480 dev->driver = NULL; 2481 return (ENOMEM); 2482 } 2483 } 2484 } else { 2485 kobj_init((kobj_t) dev, &null_class); 2486 } 2487 2488 bus_data_generation_update(); 2489 return (0); 2490 } 2491 2492 /** 2493 * @brief Probe a device, and return this status. 2494 * 2495 * This function is the core of the device autoconfiguration 2496 * system. Its purpose is to select a suitable driver for a device and 2497 * then call that driver to initialise the hardware appropriately. The 2498 * driver is selected by calling the DEVICE_PROBE() method of a set of 2499 * candidate drivers and then choosing the driver which returned the 2500 * best value. This driver is then attached to the device using 2501 * device_attach(). 2502 * 2503 * The set of suitable drivers is taken from the list of drivers in 2504 * the parent device's devclass. If the device was originally created 2505 * with a specific class name (see device_add_child()), only drivers 2506 * with that name are probed, otherwise all drivers in the devclass 2507 * are probed. If no drivers return successful probe values in the 2508 * parent devclass, the search continues in the parent of that 2509 * devclass (see devclass_get_parent()) if any. 2510 * 2511 * @param dev the device to initialise 2512 * 2513 * @retval 0 success 2514 * @retval ENXIO no driver was found 2515 * @retval ENOMEM memory allocation failure 2516 * @retval non-zero some other unix error code 2517 * @retval -1 Device already attached 2518 */ 2519 int 2520 device_probe(device_t dev) 2521 { 2522 int error; 2523 2524 bus_topo_assert(); 2525 2526 if (dev->state >= DS_ALIVE) 2527 return (-1); 2528 2529 if (!(dev->flags & DF_ENABLED)) { 2530 if (bootverbose && device_get_name(dev) != NULL) { 2531 device_print_prettyname(dev); 2532 printf("not probed (disabled)\n"); 2533 } 2534 return (-1); 2535 } 2536 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2537 if (bus_current_pass == BUS_PASS_DEFAULT && 2538 !(dev->flags & DF_DONENOMATCH)) { 2539 device_handle_nomatch(dev); 2540 } 2541 return (error); 2542 } 2543 return (0); 2544 } 2545 2546 /** 2547 * @brief Probe a device and attach a driver if possible 2548 * 2549 * calls device_probe() and attaches if that was successful. 2550 */ 2551 int 2552 device_probe_and_attach(device_t dev) 2553 { 2554 int error; 2555 2556 bus_topo_assert(); 2557 2558 error = device_probe(dev); 2559 if (error == -1) 2560 return (0); 2561 else if (error != 0) 2562 return (error); 2563 2564 return (device_attach(dev)); 2565 } 2566 2567 /** 2568 * @brief Attach a device driver to a device 2569 * 2570 * This function is a wrapper around the DEVICE_ATTACH() driver 2571 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2572 * device's sysctl tree, optionally prints a description of the device 2573 * and queues a notification event for user-based device management 2574 * services. 2575 * 2576 * Normally this function is only called internally from 2577 * device_probe_and_attach(). 2578 * 2579 * @param dev the device to initialise 2580 * 2581 * @retval 0 success 2582 * @retval ENXIO no driver was found 2583 * @retval ENOMEM memory allocation failure 2584 * @retval non-zero some other unix error code 2585 */ 2586 int 2587 device_attach(device_t dev) 2588 { 2589 uint64_t attachtime; 2590 uint16_t attachentropy; 2591 int error; 2592 2593 if (resource_disabled(dev->driver->name, dev->unit)) { 2594 device_disable(dev); 2595 if (bootverbose) 2596 device_printf(dev, "disabled via hints entry\n"); 2597 return (ENXIO); 2598 } 2599 2600 KASSERT(IS_DEFAULT_VNET(TD_TO_VNET(curthread)), 2601 ("device_attach: curthread is not in default vnet")); 2602 CURVNET_SET_QUIET(TD_TO_VNET(curthread)); 2603 2604 device_sysctl_init(dev); 2605 if (!device_is_quiet(dev)) 2606 device_print_child(dev->parent, dev); 2607 attachtime = get_cyclecount(); 2608 dev->state = DS_ATTACHING; 2609 if ((error = DEVICE_ATTACH(dev)) != 0) { 2610 printf("device_attach: %s%d attach returned %d\n", 2611 dev->driver->name, dev->unit, error); 2612 BUS_CHILD_DETACHED(dev->parent, dev); 2613 if (disable_failed_devs) { 2614 /* 2615 * When the user has asked to disable failed devices, we 2616 * directly disable the device, but leave it in the 2617 * attaching state. It will not try to probe/attach the 2618 * device further. This leaves the device numbering 2619 * intact for other similar devices in the system. It 2620 * can be removed from this state with devctl. 2621 */ 2622 device_disable(dev); 2623 } else { 2624 /* 2625 * Otherwise, when attach fails, tear down the state 2626 * around that so we can retry when, for example, new 2627 * drivers are loaded. 2628 */ 2629 if (!(dev->flags & DF_FIXEDCLASS)) 2630 devclass_delete_device(dev->devclass, dev); 2631 (void)device_set_driver(dev, NULL); 2632 device_sysctl_fini(dev); 2633 KASSERT(dev->busy == 0, ("attach failed but busy")); 2634 dev->state = DS_NOTPRESENT; 2635 } 2636 CURVNET_RESTORE(); 2637 return (error); 2638 } 2639 CURVNET_RESTORE(); 2640 dev->flags |= DF_ATTACHED_ONCE; 2641 /* 2642 * We only need the low bits of this time, but ranges from tens to thousands 2643 * have been seen, so keep 2 bytes' worth. 2644 */ 2645 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 2646 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 2647 device_sysctl_update(dev); 2648 dev->state = DS_ATTACHED; 2649 dev->flags &= ~DF_DONENOMATCH; 2650 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 2651 return (0); 2652 } 2653 2654 /** 2655 * @brief Detach a driver from a device 2656 * 2657 * This function is a wrapper around the DEVICE_DETACH() driver 2658 * method. If the call to DEVICE_DETACH() succeeds, it calls 2659 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2660 * notification event for user-based device management services and 2661 * cleans up the device's sysctl tree. 2662 * 2663 * @param dev the device to un-initialise 2664 * 2665 * @retval 0 success 2666 * @retval ENXIO no driver was found 2667 * @retval ENOMEM memory allocation failure 2668 * @retval non-zero some other unix error code 2669 */ 2670 int 2671 device_detach(device_t dev) 2672 { 2673 int error; 2674 2675 bus_topo_assert(); 2676 2677 PDEBUG(("%s", DEVICENAME(dev))); 2678 if (dev->busy > 0) 2679 return (EBUSY); 2680 if (dev->state == DS_ATTACHING) { 2681 device_printf(dev, "device in attaching state! Deferring detach.\n"); 2682 return (EBUSY); 2683 } 2684 if (dev->state != DS_ATTACHED) 2685 return (0); 2686 2687 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 2688 if ((error = DEVICE_DETACH(dev)) != 0) { 2689 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2690 EVHDEV_DETACH_FAILED); 2691 return (error); 2692 } else { 2693 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2694 EVHDEV_DETACH_COMPLETE); 2695 } 2696 if (!device_is_quiet(dev)) 2697 device_printf(dev, "detached\n"); 2698 if (dev->parent) 2699 BUS_CHILD_DETACHED(dev->parent, dev); 2700 2701 if (!(dev->flags & DF_FIXEDCLASS)) 2702 devclass_delete_device(dev->devclass, dev); 2703 2704 device_verbose(dev); 2705 dev->state = DS_NOTPRESENT; 2706 (void)device_set_driver(dev, NULL); 2707 device_sysctl_fini(dev); 2708 2709 return (0); 2710 } 2711 2712 /** 2713 * @brief Tells a driver to quiesce itself. 2714 * 2715 * This function is a wrapper around the DEVICE_QUIESCE() driver 2716 * method. If the call to DEVICE_QUIESCE() succeeds. 2717 * 2718 * @param dev the device to quiesce 2719 * 2720 * @retval 0 success 2721 * @retval ENXIO no driver was found 2722 * @retval ENOMEM memory allocation failure 2723 * @retval non-zero some other unix error code 2724 */ 2725 int 2726 device_quiesce(device_t dev) 2727 { 2728 PDEBUG(("%s", DEVICENAME(dev))); 2729 if (dev->busy > 0) 2730 return (EBUSY); 2731 if (dev->state != DS_ATTACHED) 2732 return (0); 2733 2734 return (DEVICE_QUIESCE(dev)); 2735 } 2736 2737 /** 2738 * @brief Notify a device of system shutdown 2739 * 2740 * This function calls the DEVICE_SHUTDOWN() driver method if the 2741 * device currently has an attached driver. 2742 * 2743 * @returns the value returned by DEVICE_SHUTDOWN() 2744 */ 2745 int 2746 device_shutdown(device_t dev) 2747 { 2748 if (dev->state < DS_ATTACHED) 2749 return (0); 2750 return (DEVICE_SHUTDOWN(dev)); 2751 } 2752 2753 /** 2754 * @brief Set the unit number of a device 2755 * 2756 * This function can be used to override the unit number used for a 2757 * device (e.g. to wire a device to a pre-configured unit number). 2758 */ 2759 int 2760 device_set_unit(device_t dev, int unit) 2761 { 2762 devclass_t dc; 2763 int err; 2764 2765 if (unit == dev->unit) 2766 return (0); 2767 dc = device_get_devclass(dev); 2768 if (unit < dc->maxunit && dc->devices[unit]) 2769 return (EBUSY); 2770 err = devclass_delete_device(dc, dev); 2771 if (err) 2772 return (err); 2773 dev->unit = unit; 2774 err = devclass_add_device(dc, dev); 2775 if (err) 2776 return (err); 2777 2778 bus_data_generation_update(); 2779 return (0); 2780 } 2781 2782 /*======================================*/ 2783 /* 2784 * Some useful method implementations to make life easier for bus drivers. 2785 */ 2786 2787 /** 2788 * @brief Initialize a resource mapping request 2789 * 2790 * This is the internal implementation of the public API 2791 * resource_init_map_request. Callers may be using a different layout 2792 * of struct resource_map_request than the kernel, so callers pass in 2793 * the size of the structure they are using to identify the structure 2794 * layout. 2795 */ 2796 void 2797 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 2798 { 2799 bzero(args, sz); 2800 args->size = sz; 2801 args->memattr = VM_MEMATTR_DEVICE; 2802 } 2803 2804 /** 2805 * @brief Validate a resource mapping request 2806 * 2807 * Translate a device driver's mapping request (@p in) to a struct 2808 * resource_map_request using the current structure layout (@p out). 2809 * In addition, validate the offset and length from the mapping 2810 * request against the bounds of the resource @p r. If the offset or 2811 * length are invalid, fail with EINVAL. If the offset and length are 2812 * valid, the absolute starting address of the requested mapping is 2813 * returned in @p startp and the length of the requested mapping is 2814 * returned in @p lengthp. 2815 */ 2816 int 2817 resource_validate_map_request(struct resource *r, 2818 struct resource_map_request *in, struct resource_map_request *out, 2819 rman_res_t *startp, rman_res_t *lengthp) 2820 { 2821 rman_res_t end, length, start; 2822 2823 /* 2824 * This assumes that any callers of this function are compiled 2825 * into the kernel and use the same version of the structure 2826 * as this file. 2827 */ 2828 MPASS(out->size == sizeof(struct resource_map_request)); 2829 2830 if (in != NULL) 2831 bcopy(in, out, imin(in->size, out->size)); 2832 start = rman_get_start(r) + out->offset; 2833 if (out->length == 0) 2834 length = rman_get_size(r); 2835 else 2836 length = out->length; 2837 end = start + length - 1; 2838 if (start > rman_get_end(r) || start < rman_get_start(r)) 2839 return (EINVAL); 2840 if (end > rman_get_end(r) || end < start) 2841 return (EINVAL); 2842 *lengthp = length; 2843 *startp = start; 2844 return (0); 2845 } 2846 2847 /** 2848 * @brief Initialise a resource list. 2849 * 2850 * @param rl the resource list to initialise 2851 */ 2852 void 2853 resource_list_init(struct resource_list *rl) 2854 { 2855 STAILQ_INIT(rl); 2856 } 2857 2858 /** 2859 * @brief Reclaim memory used by a resource list. 2860 * 2861 * This function frees the memory for all resource entries on the list 2862 * (if any). 2863 * 2864 * @param rl the resource list to free 2865 */ 2866 void 2867 resource_list_free(struct resource_list *rl) 2868 { 2869 struct resource_list_entry *rle; 2870 2871 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2872 if (rle->res) 2873 panic("resource_list_free: resource entry is busy"); 2874 STAILQ_REMOVE_HEAD(rl, link); 2875 free(rle, M_BUS); 2876 } 2877 } 2878 2879 /** 2880 * @brief Add a resource entry. 2881 * 2882 * This function adds a resource entry using the given @p type, @p 2883 * start, @p end and @p count values. A rid value is chosen by 2884 * searching sequentially for the first unused rid starting at zero. 2885 * 2886 * @param rl the resource list to edit 2887 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2888 * @param start the start address of the resource 2889 * @param end the end address of the resource 2890 * @param count XXX end-start+1 2891 */ 2892 int 2893 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 2894 rman_res_t end, rman_res_t count) 2895 { 2896 int rid; 2897 2898 rid = 0; 2899 while (resource_list_find(rl, type, rid) != NULL) 2900 rid++; 2901 resource_list_add(rl, type, rid, start, end, count); 2902 return (rid); 2903 } 2904 2905 /** 2906 * @brief Add or modify a resource entry. 2907 * 2908 * If an existing entry exists with the same type and rid, it will be 2909 * modified using the given values of @p start, @p end and @p 2910 * count. If no entry exists, a new one will be created using the 2911 * given values. The resource list entry that matches is then returned. 2912 * 2913 * @param rl the resource list to edit 2914 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2915 * @param rid the resource identifier 2916 * @param start the start address of the resource 2917 * @param end the end address of the resource 2918 * @param count XXX end-start+1 2919 */ 2920 struct resource_list_entry * 2921 resource_list_add(struct resource_list *rl, int type, int rid, 2922 rman_res_t start, rman_res_t end, rman_res_t count) 2923 { 2924 struct resource_list_entry *rle; 2925 2926 rle = resource_list_find(rl, type, rid); 2927 if (!rle) { 2928 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2929 M_NOWAIT); 2930 if (!rle) 2931 panic("resource_list_add: can't record entry"); 2932 STAILQ_INSERT_TAIL(rl, rle, link); 2933 rle->type = type; 2934 rle->rid = rid; 2935 rle->res = NULL; 2936 rle->flags = 0; 2937 } 2938 2939 if (rle->res) 2940 panic("resource_list_add: resource entry is busy"); 2941 2942 rle->start = start; 2943 rle->end = end; 2944 rle->count = count; 2945 return (rle); 2946 } 2947 2948 /** 2949 * @brief Determine if a resource entry is busy. 2950 * 2951 * Returns true if a resource entry is busy meaning that it has an 2952 * associated resource that is not an unallocated "reserved" resource. 2953 * 2954 * @param rl the resource list to search 2955 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2956 * @param rid the resource identifier 2957 * 2958 * @returns Non-zero if the entry is busy, zero otherwise. 2959 */ 2960 int 2961 resource_list_busy(struct resource_list *rl, int type, int rid) 2962 { 2963 struct resource_list_entry *rle; 2964 2965 rle = resource_list_find(rl, type, rid); 2966 if (rle == NULL || rle->res == NULL) 2967 return (0); 2968 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 2969 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 2970 ("reserved resource is active")); 2971 return (0); 2972 } 2973 return (1); 2974 } 2975 2976 /** 2977 * @brief Determine if a resource entry is reserved. 2978 * 2979 * Returns true if a resource entry is reserved meaning that it has an 2980 * associated "reserved" resource. The resource can either be 2981 * allocated or unallocated. 2982 * 2983 * @param rl the resource list to search 2984 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2985 * @param rid the resource identifier 2986 * 2987 * @returns Non-zero if the entry is reserved, zero otherwise. 2988 */ 2989 int 2990 resource_list_reserved(struct resource_list *rl, int type, int rid) 2991 { 2992 struct resource_list_entry *rle; 2993 2994 rle = resource_list_find(rl, type, rid); 2995 if (rle != NULL && rle->flags & RLE_RESERVED) 2996 return (1); 2997 return (0); 2998 } 2999 3000 /** 3001 * @brief Find a resource entry by type and rid. 3002 * 3003 * @param rl the resource list to search 3004 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3005 * @param rid the resource identifier 3006 * 3007 * @returns the resource entry pointer or NULL if there is no such 3008 * entry. 3009 */ 3010 struct resource_list_entry * 3011 resource_list_find(struct resource_list *rl, int type, int rid) 3012 { 3013 struct resource_list_entry *rle; 3014 3015 STAILQ_FOREACH(rle, rl, link) { 3016 if (rle->type == type && rle->rid == rid) 3017 return (rle); 3018 } 3019 return (NULL); 3020 } 3021 3022 /** 3023 * @brief Delete a resource entry. 3024 * 3025 * @param rl the resource list to edit 3026 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3027 * @param rid the resource identifier 3028 */ 3029 void 3030 resource_list_delete(struct resource_list *rl, int type, int rid) 3031 { 3032 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3033 3034 if (rle) { 3035 if (rle->res != NULL) 3036 panic("resource_list_delete: resource has not been released"); 3037 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3038 free(rle, M_BUS); 3039 } 3040 } 3041 3042 /** 3043 * @brief Allocate a reserved resource 3044 * 3045 * This can be used by buses to force the allocation of resources 3046 * that are always active in the system even if they are not allocated 3047 * by a driver (e.g. PCI BARs). This function is usually called when 3048 * adding a new child to the bus. The resource is allocated from the 3049 * parent bus when it is reserved. The resource list entry is marked 3050 * with RLE_RESERVED to note that it is a reserved resource. 3051 * 3052 * Subsequent attempts to allocate the resource with 3053 * resource_list_alloc() will succeed the first time and will set 3054 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3055 * resource that has been allocated is released with 3056 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3057 * the actual resource remains allocated. The resource can be released to 3058 * the parent bus by calling resource_list_unreserve(). 3059 * 3060 * @param rl the resource list to allocate from 3061 * @param bus the parent device of @p child 3062 * @param child the device for which the resource is being reserved 3063 * @param type the type of resource to allocate 3064 * @param rid a pointer to the resource identifier 3065 * @param start hint at the start of the resource range - pass 3066 * @c 0 for any start address 3067 * @param end hint at the end of the resource range - pass 3068 * @c ~0 for any end address 3069 * @param count hint at the size of range required - pass @c 1 3070 * for any size 3071 * @param flags any extra flags to control the resource 3072 * allocation - see @c RF_XXX flags in 3073 * <sys/rman.h> for details 3074 * 3075 * @returns the resource which was allocated or @c NULL if no 3076 * resource could be allocated 3077 */ 3078 struct resource * 3079 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3080 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3081 { 3082 struct resource_list_entry *rle = NULL; 3083 int passthrough = (device_get_parent(child) != bus); 3084 struct resource *r; 3085 3086 if (passthrough) 3087 panic( 3088 "resource_list_reserve() should only be called for direct children"); 3089 if (flags & RF_ACTIVE) 3090 panic( 3091 "resource_list_reserve() should only reserve inactive resources"); 3092 3093 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3094 flags); 3095 if (r != NULL) { 3096 rle = resource_list_find(rl, type, *rid); 3097 rle->flags |= RLE_RESERVED; 3098 } 3099 return (r); 3100 } 3101 3102 /** 3103 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3104 * 3105 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3106 * and passing the allocation up to the parent of @p bus. This assumes 3107 * that the first entry of @c device_get_ivars(child) is a struct 3108 * resource_list. This also handles 'passthrough' allocations where a 3109 * child is a remote descendant of bus by passing the allocation up to 3110 * the parent of bus. 3111 * 3112 * Typically, a bus driver would store a list of child resources 3113 * somewhere in the child device's ivars (see device_get_ivars()) and 3114 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3115 * then call resource_list_alloc() to perform the allocation. 3116 * 3117 * @param rl the resource list to allocate from 3118 * @param bus the parent device of @p child 3119 * @param child the device which is requesting an allocation 3120 * @param type the type of resource to allocate 3121 * @param rid a pointer to the resource identifier 3122 * @param start hint at the start of the resource range - pass 3123 * @c 0 for any start address 3124 * @param end hint at the end of the resource range - pass 3125 * @c ~0 for any end address 3126 * @param count hint at the size of range required - pass @c 1 3127 * for any size 3128 * @param flags any extra flags to control the resource 3129 * allocation - see @c RF_XXX flags in 3130 * <sys/rman.h> for details 3131 * 3132 * @returns the resource which was allocated or @c NULL if no 3133 * resource could be allocated 3134 */ 3135 struct resource * 3136 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3137 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3138 { 3139 struct resource_list_entry *rle = NULL; 3140 int passthrough = (device_get_parent(child) != bus); 3141 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3142 3143 if (passthrough) { 3144 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3145 type, rid, start, end, count, flags)); 3146 } 3147 3148 rle = resource_list_find(rl, type, *rid); 3149 3150 if (!rle) 3151 return (NULL); /* no resource of that type/rid */ 3152 3153 if (rle->res) { 3154 if (rle->flags & RLE_RESERVED) { 3155 if (rle->flags & RLE_ALLOCATED) 3156 return (NULL); 3157 if ((flags & RF_ACTIVE) && 3158 bus_activate_resource(child, type, *rid, 3159 rle->res) != 0) 3160 return (NULL); 3161 rle->flags |= RLE_ALLOCATED; 3162 return (rle->res); 3163 } 3164 device_printf(bus, 3165 "resource entry %#x type %d for child %s is busy\n", *rid, 3166 type, device_get_nameunit(child)); 3167 return (NULL); 3168 } 3169 3170 if (isdefault) { 3171 start = rle->start; 3172 count = ulmax(count, rle->count); 3173 end = ulmax(rle->end, start + count - 1); 3174 } 3175 3176 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3177 type, rid, start, end, count, flags); 3178 3179 /* 3180 * Record the new range. 3181 */ 3182 if (rle->res) { 3183 rle->start = rman_get_start(rle->res); 3184 rle->end = rman_get_end(rle->res); 3185 rle->count = count; 3186 } 3187 3188 return (rle->res); 3189 } 3190 3191 /** 3192 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3193 * 3194 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3195 * used with resource_list_alloc(). 3196 * 3197 * @param rl the resource list which was allocated from 3198 * @param bus the parent device of @p child 3199 * @param child the device which is requesting a release 3200 * @param res the resource to release 3201 * 3202 * @retval 0 success 3203 * @retval non-zero a standard unix error code indicating what 3204 * error condition prevented the operation 3205 */ 3206 int 3207 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3208 struct resource *res) 3209 { 3210 struct resource_list_entry *rle = NULL; 3211 int passthrough = (device_get_parent(child) != bus); 3212 int error; 3213 3214 if (passthrough) { 3215 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3216 res)); 3217 } 3218 3219 rle = resource_list_find(rl, rman_get_type(res), rman_get_rid(res)); 3220 3221 if (!rle) 3222 panic("resource_list_release: can't find resource"); 3223 if (!rle->res) 3224 panic("resource_list_release: resource entry is not busy"); 3225 if (rle->flags & RLE_RESERVED) { 3226 if (rle->flags & RLE_ALLOCATED) { 3227 if (rman_get_flags(res) & RF_ACTIVE) { 3228 error = bus_deactivate_resource(child, res); 3229 if (error) 3230 return (error); 3231 } 3232 rle->flags &= ~RLE_ALLOCATED; 3233 return (0); 3234 } 3235 return (EINVAL); 3236 } 3237 3238 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, res); 3239 if (error) 3240 return (error); 3241 3242 rle->res = NULL; 3243 return (0); 3244 } 3245 3246 /** 3247 * @brief Release all active resources of a given type 3248 * 3249 * Release all active resources of a specified type. This is intended 3250 * to be used to cleanup resources leaked by a driver after detach or 3251 * a failed attach. 3252 * 3253 * @param rl the resource list which was allocated from 3254 * @param bus the parent device of @p child 3255 * @param child the device whose active resources are being released 3256 * @param type the type of resources to release 3257 * 3258 * @retval 0 success 3259 * @retval EBUSY at least one resource was active 3260 */ 3261 int 3262 resource_list_release_active(struct resource_list *rl, device_t bus, 3263 device_t child, int type) 3264 { 3265 struct resource_list_entry *rle; 3266 int error, retval; 3267 3268 retval = 0; 3269 STAILQ_FOREACH(rle, rl, link) { 3270 if (rle->type != type) 3271 continue; 3272 if (rle->res == NULL) 3273 continue; 3274 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3275 RLE_RESERVED) 3276 continue; 3277 retval = EBUSY; 3278 error = resource_list_release(rl, bus, child, rle->res); 3279 if (error != 0) 3280 device_printf(bus, 3281 "Failed to release active resource: %d\n", error); 3282 } 3283 return (retval); 3284 } 3285 3286 /** 3287 * @brief Fully release a reserved resource 3288 * 3289 * Fully releases a resource reserved via resource_list_reserve(). 3290 * 3291 * @param rl the resource list which was allocated from 3292 * @param bus the parent device of @p child 3293 * @param child the device whose reserved resource is being released 3294 * @param type the type of resource to release 3295 * @param rid the resource identifier 3296 * @param res the resource to release 3297 * 3298 * @retval 0 success 3299 * @retval non-zero a standard unix error code indicating what 3300 * error condition prevented the operation 3301 */ 3302 int 3303 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3304 int type, int rid) 3305 { 3306 struct resource_list_entry *rle = NULL; 3307 int passthrough = (device_get_parent(child) != bus); 3308 3309 if (passthrough) 3310 panic( 3311 "resource_list_unreserve() should only be called for direct children"); 3312 3313 rle = resource_list_find(rl, type, rid); 3314 3315 if (!rle) 3316 panic("resource_list_unreserve: can't find resource"); 3317 if (!(rle->flags & RLE_RESERVED)) 3318 return (EINVAL); 3319 if (rle->flags & RLE_ALLOCATED) 3320 return (EBUSY); 3321 rle->flags &= ~RLE_RESERVED; 3322 return (resource_list_release(rl, bus, child, rle->res)); 3323 } 3324 3325 /** 3326 * @brief Print a description of resources in a resource list 3327 * 3328 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3329 * The name is printed if at least one resource of the given type is available. 3330 * The format is used to print resource start and end. 3331 * 3332 * @param rl the resource list to print 3333 * @param name the name of @p type, e.g. @c "memory" 3334 * @param type type type of resource entry to print 3335 * @param format printf(9) format string to print resource 3336 * start and end values 3337 * 3338 * @returns the number of characters printed 3339 */ 3340 int 3341 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3342 const char *format) 3343 { 3344 struct resource_list_entry *rle; 3345 int printed, retval; 3346 3347 printed = 0; 3348 retval = 0; 3349 /* Yes, this is kinda cheating */ 3350 STAILQ_FOREACH(rle, rl, link) { 3351 if (rle->type == type) { 3352 if (printed == 0) 3353 retval += printf(" %s ", name); 3354 else 3355 retval += printf(","); 3356 printed++; 3357 retval += printf(format, rle->start); 3358 if (rle->count > 1) { 3359 retval += printf("-"); 3360 retval += printf(format, rle->start + 3361 rle->count - 1); 3362 } 3363 } 3364 } 3365 return (retval); 3366 } 3367 3368 /** 3369 * @brief Releases all the resources in a list. 3370 * 3371 * @param rl The resource list to purge. 3372 * 3373 * @returns nothing 3374 */ 3375 void 3376 resource_list_purge(struct resource_list *rl) 3377 { 3378 struct resource_list_entry *rle; 3379 3380 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3381 if (rle->res) 3382 bus_release_resource(rman_get_device(rle->res), 3383 rle->type, rle->rid, rle->res); 3384 STAILQ_REMOVE_HEAD(rl, link); 3385 free(rle, M_BUS); 3386 } 3387 } 3388 3389 device_t 3390 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3391 { 3392 return (device_add_child_ordered(dev, order, name, unit)); 3393 } 3394 3395 /** 3396 * @brief Helper function for implementing DEVICE_PROBE() 3397 * 3398 * This function can be used to help implement the DEVICE_PROBE() for 3399 * a bus (i.e. a device which has other devices attached to it). It 3400 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3401 * devclass. 3402 */ 3403 int 3404 bus_generic_probe(device_t dev) 3405 { 3406 devclass_t dc = dev->devclass; 3407 driverlink_t dl; 3408 3409 TAILQ_FOREACH(dl, &dc->drivers, link) { 3410 /* 3411 * If this driver's pass is too high, then ignore it. 3412 * For most drivers in the default pass, this will 3413 * never be true. For early-pass drivers they will 3414 * only call the identify routines of eligible drivers 3415 * when this routine is called. Drivers for later 3416 * passes should have their identify routines called 3417 * on early-pass buses during BUS_NEW_PASS(). 3418 */ 3419 if (dl->pass > bus_current_pass) 3420 continue; 3421 DEVICE_IDENTIFY(dl->driver, dev); 3422 } 3423 3424 return (0); 3425 } 3426 3427 /** 3428 * @brief Helper function for implementing DEVICE_ATTACH() 3429 * 3430 * This function can be used to help implement the DEVICE_ATTACH() for 3431 * a bus. It calls device_probe_and_attach() for each of the device's 3432 * children. 3433 */ 3434 int 3435 bus_generic_attach(device_t dev) 3436 { 3437 device_t child; 3438 3439 TAILQ_FOREACH(child, &dev->children, link) { 3440 device_probe_and_attach(child); 3441 } 3442 3443 return (0); 3444 } 3445 3446 /** 3447 * @brief Helper function for delaying attaching children 3448 * 3449 * Many buses can't run transactions on the bus which children need to probe and 3450 * attach until after interrupts and/or timers are running. This function 3451 * delays their attach until interrupts and timers are enabled. 3452 */ 3453 int 3454 bus_delayed_attach_children(device_t dev) 3455 { 3456 /* Probe and attach the bus children when interrupts are available */ 3457 config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev); 3458 3459 return (0); 3460 } 3461 3462 /** 3463 * @brief Helper function for implementing DEVICE_DETACH() 3464 * 3465 * This function can be used to help implement the DEVICE_DETACH() for 3466 * a bus. It calls device_detach() for each of the device's 3467 * children. 3468 */ 3469 int 3470 bus_generic_detach(device_t dev) 3471 { 3472 device_t child; 3473 int error; 3474 3475 /* 3476 * Detach children in the reverse order. 3477 * See bus_generic_suspend for details. 3478 */ 3479 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3480 if ((error = device_detach(child)) != 0) 3481 return (error); 3482 } 3483 3484 return (0); 3485 } 3486 3487 /** 3488 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3489 * 3490 * This function can be used to help implement the DEVICE_SHUTDOWN() 3491 * for a bus. It calls device_shutdown() for each of the device's 3492 * children. 3493 */ 3494 int 3495 bus_generic_shutdown(device_t dev) 3496 { 3497 device_t child; 3498 3499 /* 3500 * Shut down children in the reverse order. 3501 * See bus_generic_suspend for details. 3502 */ 3503 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3504 device_shutdown(child); 3505 } 3506 3507 return (0); 3508 } 3509 3510 /** 3511 * @brief Default function for suspending a child device. 3512 * 3513 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3514 */ 3515 int 3516 bus_generic_suspend_child(device_t dev, device_t child) 3517 { 3518 int error; 3519 3520 error = DEVICE_SUSPEND(child); 3521 3522 if (error == 0) { 3523 child->flags |= DF_SUSPENDED; 3524 } else { 3525 printf("DEVICE_SUSPEND(%s) failed: %d\n", 3526 device_get_nameunit(child), error); 3527 } 3528 3529 return (error); 3530 } 3531 3532 /** 3533 * @brief Default function for resuming a child device. 3534 * 3535 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3536 */ 3537 int 3538 bus_generic_resume_child(device_t dev, device_t child) 3539 { 3540 DEVICE_RESUME(child); 3541 child->flags &= ~DF_SUSPENDED; 3542 3543 return (0); 3544 } 3545 3546 /** 3547 * @brief Helper function for implementing DEVICE_SUSPEND() 3548 * 3549 * This function can be used to help implement the DEVICE_SUSPEND() 3550 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3551 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3552 * operation is aborted and any devices which were suspended are 3553 * resumed immediately by calling their DEVICE_RESUME() methods. 3554 */ 3555 int 3556 bus_generic_suspend(device_t dev) 3557 { 3558 int error; 3559 device_t child; 3560 3561 /* 3562 * Suspend children in the reverse order. 3563 * For most buses all children are equal, so the order does not matter. 3564 * Other buses, such as acpi, carefully order their child devices to 3565 * express implicit dependencies between them. For such buses it is 3566 * safer to bring down devices in the reverse order. 3567 */ 3568 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3569 error = BUS_SUSPEND_CHILD(dev, child); 3570 if (error != 0) { 3571 child = TAILQ_NEXT(child, link); 3572 if (child != NULL) { 3573 TAILQ_FOREACH_FROM(child, &dev->children, link) 3574 BUS_RESUME_CHILD(dev, child); 3575 } 3576 return (error); 3577 } 3578 } 3579 return (0); 3580 } 3581 3582 /** 3583 * @brief Helper function for implementing DEVICE_RESUME() 3584 * 3585 * This function can be used to help implement the DEVICE_RESUME() for 3586 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3587 */ 3588 int 3589 bus_generic_resume(device_t dev) 3590 { 3591 device_t child; 3592 3593 TAILQ_FOREACH(child, &dev->children, link) { 3594 BUS_RESUME_CHILD(dev, child); 3595 /* if resume fails, there's nothing we can usefully do... */ 3596 } 3597 return (0); 3598 } 3599 3600 /** 3601 * @brief Helper function for implementing BUS_RESET_POST 3602 * 3603 * Bus can use this function to implement common operations of 3604 * re-attaching or resuming the children after the bus itself was 3605 * reset, and after restoring bus-unique state of children. 3606 * 3607 * @param dev The bus 3608 * #param flags DEVF_RESET_* 3609 */ 3610 int 3611 bus_helper_reset_post(device_t dev, int flags) 3612 { 3613 device_t child; 3614 int error, error1; 3615 3616 error = 0; 3617 TAILQ_FOREACH(child, &dev->children,link) { 3618 BUS_RESET_POST(dev, child); 3619 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3620 device_probe_and_attach(child) : 3621 BUS_RESUME_CHILD(dev, child); 3622 if (error == 0 && error1 != 0) 3623 error = error1; 3624 } 3625 return (error); 3626 } 3627 3628 static void 3629 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3630 { 3631 child = TAILQ_NEXT(child, link); 3632 if (child == NULL) 3633 return; 3634 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3635 BUS_RESET_POST(dev, child); 3636 if ((flags & DEVF_RESET_DETACH) != 0) 3637 device_probe_and_attach(child); 3638 else 3639 BUS_RESUME_CHILD(dev, child); 3640 } 3641 } 3642 3643 /** 3644 * @brief Helper function for implementing BUS_RESET_PREPARE 3645 * 3646 * Bus can use this function to implement common operations of 3647 * detaching or suspending the children before the bus itself is 3648 * reset, and then save bus-unique state of children that must 3649 * persists around reset. 3650 * 3651 * @param dev The bus 3652 * #param flags DEVF_RESET_* 3653 */ 3654 int 3655 bus_helper_reset_prepare(device_t dev, int flags) 3656 { 3657 device_t child; 3658 int error; 3659 3660 if (dev->state != DS_ATTACHED) 3661 return (EBUSY); 3662 3663 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3664 if ((flags & DEVF_RESET_DETACH) != 0) { 3665 error = device_get_state(child) == DS_ATTACHED ? 3666 device_detach(child) : 0; 3667 } else { 3668 error = BUS_SUSPEND_CHILD(dev, child); 3669 } 3670 if (error == 0) { 3671 error = BUS_RESET_PREPARE(dev, child); 3672 if (error != 0) { 3673 if ((flags & DEVF_RESET_DETACH) != 0) 3674 device_probe_and_attach(child); 3675 else 3676 BUS_RESUME_CHILD(dev, child); 3677 } 3678 } 3679 if (error != 0) { 3680 bus_helper_reset_prepare_rollback(dev, child, flags); 3681 return (error); 3682 } 3683 } 3684 return (0); 3685 } 3686 3687 /** 3688 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3689 * 3690 * This function prints the first part of the ascii representation of 3691 * @p child, including its name, unit and description (if any - see 3692 * device_set_desc()). 3693 * 3694 * @returns the number of characters printed 3695 */ 3696 int 3697 bus_print_child_header(device_t dev, device_t child) 3698 { 3699 int retval = 0; 3700 3701 if (device_get_desc(child)) { 3702 retval += device_printf(child, "<%s>", device_get_desc(child)); 3703 } else { 3704 retval += printf("%s", device_get_nameunit(child)); 3705 } 3706 3707 return (retval); 3708 } 3709 3710 /** 3711 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3712 * 3713 * This function prints the last part of the ascii representation of 3714 * @p child, which consists of the string @c " on " followed by the 3715 * name and unit of the @p dev. 3716 * 3717 * @returns the number of characters printed 3718 */ 3719 int 3720 bus_print_child_footer(device_t dev, device_t child) 3721 { 3722 return (printf(" on %s\n", device_get_nameunit(dev))); 3723 } 3724 3725 /** 3726 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3727 * 3728 * This function prints out the VM domain for the given device. 3729 * 3730 * @returns the number of characters printed 3731 */ 3732 int 3733 bus_print_child_domain(device_t dev, device_t child) 3734 { 3735 int domain; 3736 3737 /* No domain? Don't print anything */ 3738 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3739 return (0); 3740 3741 return (printf(" numa-domain %d", domain)); 3742 } 3743 3744 /** 3745 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3746 * 3747 * This function simply calls bus_print_child_header() followed by 3748 * bus_print_child_footer(). 3749 * 3750 * @returns the number of characters printed 3751 */ 3752 int 3753 bus_generic_print_child(device_t dev, device_t child) 3754 { 3755 int retval = 0; 3756 3757 retval += bus_print_child_header(dev, child); 3758 retval += bus_print_child_domain(dev, child); 3759 retval += bus_print_child_footer(dev, child); 3760 3761 return (retval); 3762 } 3763 3764 /** 3765 * @brief Stub function for implementing BUS_READ_IVAR(). 3766 * 3767 * @returns ENOENT 3768 */ 3769 int 3770 bus_generic_read_ivar(device_t dev, device_t child, int index, 3771 uintptr_t * result) 3772 { 3773 return (ENOENT); 3774 } 3775 3776 /** 3777 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3778 * 3779 * @returns ENOENT 3780 */ 3781 int 3782 bus_generic_write_ivar(device_t dev, device_t child, int index, 3783 uintptr_t value) 3784 { 3785 return (ENOENT); 3786 } 3787 3788 /** 3789 * @brief Helper function for implementing BUS_GET_PROPERTY(). 3790 * 3791 * This simply calls the BUS_GET_PROPERTY of the parent of dev, 3792 * until a non-default implementation is found. 3793 */ 3794 ssize_t 3795 bus_generic_get_property(device_t dev, device_t child, const char *propname, 3796 void *propvalue, size_t size, device_property_type_t type) 3797 { 3798 if (device_get_parent(dev) != NULL) 3799 return (BUS_GET_PROPERTY(device_get_parent(dev), child, 3800 propname, propvalue, size, type)); 3801 3802 return (-1); 3803 } 3804 3805 /** 3806 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3807 * 3808 * @returns NULL 3809 */ 3810 struct resource_list * 3811 bus_generic_get_resource_list(device_t dev, device_t child) 3812 { 3813 return (NULL); 3814 } 3815 3816 /** 3817 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3818 * 3819 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3820 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3821 * and then calls device_probe_and_attach() for each unattached child. 3822 */ 3823 void 3824 bus_generic_driver_added(device_t dev, driver_t *driver) 3825 { 3826 device_t child; 3827 3828 DEVICE_IDENTIFY(driver, dev); 3829 TAILQ_FOREACH(child, &dev->children, link) { 3830 if (child->state == DS_NOTPRESENT) 3831 device_probe_and_attach(child); 3832 } 3833 } 3834 3835 /** 3836 * @brief Helper function for implementing BUS_NEW_PASS(). 3837 * 3838 * This implementing of BUS_NEW_PASS() first calls the identify 3839 * routines for any drivers that probe at the current pass. Then it 3840 * walks the list of devices for this bus. If a device is already 3841 * attached, then it calls BUS_NEW_PASS() on that device. If the 3842 * device is not already attached, it attempts to attach a driver to 3843 * it. 3844 */ 3845 void 3846 bus_generic_new_pass(device_t dev) 3847 { 3848 driverlink_t dl; 3849 devclass_t dc; 3850 device_t child; 3851 3852 dc = dev->devclass; 3853 TAILQ_FOREACH(dl, &dc->drivers, link) { 3854 if (dl->pass == bus_current_pass) 3855 DEVICE_IDENTIFY(dl->driver, dev); 3856 } 3857 TAILQ_FOREACH(child, &dev->children, link) { 3858 if (child->state >= DS_ATTACHED) 3859 BUS_NEW_PASS(child); 3860 else if (child->state == DS_NOTPRESENT) 3861 device_probe_and_attach(child); 3862 } 3863 } 3864 3865 /** 3866 * @brief Helper function for implementing BUS_SETUP_INTR(). 3867 * 3868 * This simple implementation of BUS_SETUP_INTR() simply calls the 3869 * BUS_SETUP_INTR() method of the parent of @p dev. 3870 */ 3871 int 3872 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3873 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3874 void **cookiep) 3875 { 3876 /* Propagate up the bus hierarchy until someone handles it. */ 3877 if (dev->parent) 3878 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3879 filter, intr, arg, cookiep)); 3880 return (EINVAL); 3881 } 3882 3883 /** 3884 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3885 * 3886 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3887 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3888 */ 3889 int 3890 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3891 void *cookie) 3892 { 3893 /* Propagate up the bus hierarchy until someone handles it. */ 3894 if (dev->parent) 3895 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3896 return (EINVAL); 3897 } 3898 3899 /** 3900 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 3901 * 3902 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 3903 * BUS_SUSPEND_INTR() method of the parent of @p dev. 3904 */ 3905 int 3906 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 3907 { 3908 /* Propagate up the bus hierarchy until someone handles it. */ 3909 if (dev->parent) 3910 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 3911 return (EINVAL); 3912 } 3913 3914 /** 3915 * @brief Helper function for implementing BUS_RESUME_INTR(). 3916 * 3917 * This simple implementation of BUS_RESUME_INTR() simply calls the 3918 * BUS_RESUME_INTR() method of the parent of @p dev. 3919 */ 3920 int 3921 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 3922 { 3923 /* Propagate up the bus hierarchy until someone handles it. */ 3924 if (dev->parent) 3925 return (BUS_RESUME_INTR(dev->parent, child, irq)); 3926 return (EINVAL); 3927 } 3928 3929 /** 3930 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3931 * 3932 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3933 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3934 */ 3935 int 3936 bus_generic_adjust_resource(device_t dev, device_t child, struct resource *r, 3937 rman_res_t start, rman_res_t end) 3938 { 3939 /* Propagate up the bus hierarchy until someone handles it. */ 3940 if (dev->parent) 3941 return (BUS_ADJUST_RESOURCE(dev->parent, child, r, start, end)); 3942 return (EINVAL); 3943 } 3944 3945 /* 3946 * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE(). 3947 * 3948 * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the 3949 * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev. If there is no 3950 * parent, no translation happens. 3951 */ 3952 int 3953 bus_generic_translate_resource(device_t dev, int type, rman_res_t start, 3954 rman_res_t *newstart) 3955 { 3956 if (dev->parent) 3957 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, 3958 newstart)); 3959 *newstart = start; 3960 return (0); 3961 } 3962 3963 /** 3964 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3965 * 3966 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3967 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3968 */ 3969 struct resource * 3970 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3971 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3972 { 3973 /* Propagate up the bus hierarchy until someone handles it. */ 3974 if (dev->parent) 3975 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3976 start, end, count, flags)); 3977 return (NULL); 3978 } 3979 3980 /** 3981 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3982 * 3983 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3984 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3985 */ 3986 int 3987 bus_generic_release_resource(device_t dev, device_t child, struct resource *r) 3988 { 3989 /* Propagate up the bus hierarchy until someone handles it. */ 3990 if (dev->parent) 3991 return (BUS_RELEASE_RESOURCE(dev->parent, child, r)); 3992 return (EINVAL); 3993 } 3994 3995 /** 3996 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3997 * 3998 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3999 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4000 */ 4001 int 4002 bus_generic_activate_resource(device_t dev, device_t child, struct resource *r) 4003 { 4004 /* Propagate up the bus hierarchy until someone handles it. */ 4005 if (dev->parent) 4006 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, r)); 4007 return (EINVAL); 4008 } 4009 4010 /** 4011 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4012 * 4013 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4014 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4015 */ 4016 int 4017 bus_generic_deactivate_resource(device_t dev, device_t child, 4018 struct resource *r) 4019 { 4020 /* Propagate up the bus hierarchy until someone handles it. */ 4021 if (dev->parent) 4022 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, r)); 4023 return (EINVAL); 4024 } 4025 4026 /** 4027 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4028 * 4029 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4030 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4031 */ 4032 int 4033 bus_generic_map_resource(device_t dev, device_t child, struct resource *r, 4034 struct resource_map_request *args, struct resource_map *map) 4035 { 4036 /* Propagate up the bus hierarchy until someone handles it. */ 4037 if (dev->parent) 4038 return (BUS_MAP_RESOURCE(dev->parent, child, r, args, map)); 4039 return (EINVAL); 4040 } 4041 4042 /** 4043 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4044 * 4045 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4046 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4047 */ 4048 int 4049 bus_generic_unmap_resource(device_t dev, device_t child, struct resource *r, 4050 struct resource_map *map) 4051 { 4052 /* Propagate up the bus hierarchy until someone handles it. */ 4053 if (dev->parent) 4054 return (BUS_UNMAP_RESOURCE(dev->parent, child, r, map)); 4055 return (EINVAL); 4056 } 4057 4058 /** 4059 * @brief Helper function for implementing BUS_BIND_INTR(). 4060 * 4061 * This simple implementation of BUS_BIND_INTR() simply calls the 4062 * BUS_BIND_INTR() method of the parent of @p dev. 4063 */ 4064 int 4065 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4066 int cpu) 4067 { 4068 /* Propagate up the bus hierarchy until someone handles it. */ 4069 if (dev->parent) 4070 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4071 return (EINVAL); 4072 } 4073 4074 /** 4075 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4076 * 4077 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4078 * BUS_CONFIG_INTR() method of the parent of @p dev. 4079 */ 4080 int 4081 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4082 enum intr_polarity pol) 4083 { 4084 /* Propagate up the bus hierarchy until someone handles it. */ 4085 if (dev->parent) 4086 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4087 return (EINVAL); 4088 } 4089 4090 /** 4091 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4092 * 4093 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4094 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4095 */ 4096 int 4097 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4098 void *cookie, const char *descr) 4099 { 4100 /* Propagate up the bus hierarchy until someone handles it. */ 4101 if (dev->parent) 4102 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4103 descr)); 4104 return (EINVAL); 4105 } 4106 4107 /** 4108 * @brief Helper function for implementing BUS_GET_CPUS(). 4109 * 4110 * This simple implementation of BUS_GET_CPUS() simply calls the 4111 * BUS_GET_CPUS() method of the parent of @p dev. 4112 */ 4113 int 4114 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4115 size_t setsize, cpuset_t *cpuset) 4116 { 4117 /* Propagate up the bus hierarchy until someone handles it. */ 4118 if (dev->parent != NULL) 4119 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4120 return (EINVAL); 4121 } 4122 4123 /** 4124 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4125 * 4126 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4127 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4128 */ 4129 bus_dma_tag_t 4130 bus_generic_get_dma_tag(device_t dev, device_t child) 4131 { 4132 /* Propagate up the bus hierarchy until someone handles it. */ 4133 if (dev->parent != NULL) 4134 return (BUS_GET_DMA_TAG(dev->parent, child)); 4135 return (NULL); 4136 } 4137 4138 /** 4139 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4140 * 4141 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4142 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4143 */ 4144 bus_space_tag_t 4145 bus_generic_get_bus_tag(device_t dev, device_t child) 4146 { 4147 /* Propagate up the bus hierarchy until someone handles it. */ 4148 if (dev->parent != NULL) 4149 return (BUS_GET_BUS_TAG(dev->parent, child)); 4150 return ((bus_space_tag_t)0); 4151 } 4152 4153 /** 4154 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4155 * 4156 * This implementation of BUS_GET_RESOURCE() uses the 4157 * resource_list_find() function to do most of the work. It calls 4158 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4159 * search. 4160 */ 4161 int 4162 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4163 rman_res_t *startp, rman_res_t *countp) 4164 { 4165 struct resource_list * rl = NULL; 4166 struct resource_list_entry * rle = NULL; 4167 4168 rl = BUS_GET_RESOURCE_LIST(dev, child); 4169 if (!rl) 4170 return (EINVAL); 4171 4172 rle = resource_list_find(rl, type, rid); 4173 if (!rle) 4174 return (ENOENT); 4175 4176 if (startp) 4177 *startp = rle->start; 4178 if (countp) 4179 *countp = rle->count; 4180 4181 return (0); 4182 } 4183 4184 /** 4185 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4186 * 4187 * This implementation of BUS_SET_RESOURCE() uses the 4188 * resource_list_add() function to do most of the work. It calls 4189 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4190 * edit. 4191 */ 4192 int 4193 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4194 rman_res_t start, rman_res_t count) 4195 { 4196 struct resource_list * rl = NULL; 4197 4198 rl = BUS_GET_RESOURCE_LIST(dev, child); 4199 if (!rl) 4200 return (EINVAL); 4201 4202 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4203 4204 return (0); 4205 } 4206 4207 /** 4208 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4209 * 4210 * This implementation of BUS_DELETE_RESOURCE() uses the 4211 * resource_list_delete() function to do most of the work. It calls 4212 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4213 * edit. 4214 */ 4215 void 4216 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4217 { 4218 struct resource_list * rl = NULL; 4219 4220 rl = BUS_GET_RESOURCE_LIST(dev, child); 4221 if (!rl) 4222 return; 4223 4224 resource_list_delete(rl, type, rid); 4225 4226 return; 4227 } 4228 4229 /** 4230 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4231 * 4232 * This implementation of BUS_RELEASE_RESOURCE() uses the 4233 * resource_list_release() function to do most of the work. It calls 4234 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4235 */ 4236 int 4237 bus_generic_rl_release_resource(device_t dev, device_t child, 4238 struct resource *r) 4239 { 4240 struct resource_list * rl = NULL; 4241 4242 if (device_get_parent(child) != dev) 4243 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, r)); 4244 4245 rl = BUS_GET_RESOURCE_LIST(dev, child); 4246 if (!rl) 4247 return (EINVAL); 4248 4249 return (resource_list_release(rl, dev, child, r)); 4250 } 4251 4252 /** 4253 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4254 * 4255 * This implementation of BUS_ALLOC_RESOURCE() uses the 4256 * resource_list_alloc() function to do most of the work. It calls 4257 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4258 */ 4259 struct resource * 4260 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4261 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4262 { 4263 struct resource_list * rl = NULL; 4264 4265 if (device_get_parent(child) != dev) 4266 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4267 type, rid, start, end, count, flags)); 4268 4269 rl = BUS_GET_RESOURCE_LIST(dev, child); 4270 if (!rl) 4271 return (NULL); 4272 4273 return (resource_list_alloc(rl, dev, child, type, rid, 4274 start, end, count, flags)); 4275 } 4276 4277 /** 4278 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4279 * 4280 * This implementation of BUS_ALLOC_RESOURCE() allocates a 4281 * resource from a resource manager. It uses BUS_GET_RMAN() 4282 * to obtain the resource manager. 4283 */ 4284 struct resource * 4285 bus_generic_rman_alloc_resource(device_t dev, device_t child, int type, 4286 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4287 { 4288 struct resource *r; 4289 struct rman *rm; 4290 4291 rm = BUS_GET_RMAN(dev, type, flags); 4292 if (rm == NULL) 4293 return (NULL); 4294 4295 r = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 4296 child); 4297 if (r == NULL) 4298 return (NULL); 4299 rman_set_rid(r, *rid); 4300 rman_set_type(r, type); 4301 4302 if (flags & RF_ACTIVE) { 4303 if (bus_activate_resource(child, type, *rid, r) != 0) { 4304 rman_release_resource(r); 4305 return (NULL); 4306 } 4307 } 4308 4309 return (r); 4310 } 4311 4312 /** 4313 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4314 * 4315 * This implementation of BUS_ADJUST_RESOURCE() adjusts resources only 4316 * if they were allocated from the resource manager returned by 4317 * BUS_GET_RMAN(). 4318 */ 4319 int 4320 bus_generic_rman_adjust_resource(device_t dev, device_t child, 4321 struct resource *r, rman_res_t start, rman_res_t end) 4322 { 4323 struct rman *rm; 4324 4325 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r)); 4326 if (rm == NULL) 4327 return (ENXIO); 4328 if (!rman_is_region_manager(r, rm)) 4329 return (EINVAL); 4330 return (rman_adjust_resource(r, start, end)); 4331 } 4332 4333 /** 4334 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4335 * 4336 * This implementation of BUS_RELEASE_RESOURCE() releases resources 4337 * allocated by bus_generic_rman_alloc_resource. 4338 */ 4339 int 4340 bus_generic_rman_release_resource(device_t dev, device_t child, 4341 struct resource *r) 4342 { 4343 #ifdef INVARIANTS 4344 struct rman *rm; 4345 #endif 4346 int error; 4347 4348 #ifdef INVARIANTS 4349 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r)); 4350 KASSERT(rman_is_region_manager(r, rm), 4351 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4352 #endif 4353 4354 if (rman_get_flags(r) & RF_ACTIVE) { 4355 error = bus_deactivate_resource(child, r); 4356 if (error != 0) 4357 return (error); 4358 } 4359 return (rman_release_resource(r)); 4360 } 4361 4362 /** 4363 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4364 * 4365 * This implementation of BUS_ACTIVATE_RESOURCE() activates resources 4366 * allocated by bus_generic_rman_alloc_resource. 4367 */ 4368 int 4369 bus_generic_rman_activate_resource(device_t dev, device_t child, 4370 struct resource *r) 4371 { 4372 struct resource_map map; 4373 #ifdef INVARIANTS 4374 struct rman *rm; 4375 #endif 4376 int error, type; 4377 4378 type = rman_get_type(r); 4379 #ifdef INVARIANTS 4380 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r)); 4381 KASSERT(rman_is_region_manager(r, rm), 4382 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4383 #endif 4384 4385 error = rman_activate_resource(r); 4386 if (error != 0) 4387 return (error); 4388 4389 switch (type) { 4390 case SYS_RES_IOPORT: 4391 case SYS_RES_MEMORY: 4392 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) { 4393 error = BUS_MAP_RESOURCE(dev, child, r, NULL, &map); 4394 if (error != 0) 4395 break; 4396 4397 rman_set_mapping(r, &map); 4398 } 4399 break; 4400 #ifdef INTRNG 4401 case SYS_RES_IRQ: 4402 error = intr_activate_irq(child, r); 4403 break; 4404 #endif 4405 } 4406 if (error != 0) 4407 rman_deactivate_resource(r); 4408 return (error); 4409 } 4410 4411 /** 4412 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4413 * 4414 * This implementation of BUS_DEACTIVATE_RESOURCE() deactivates 4415 * resources allocated by bus_generic_rman_alloc_resource. 4416 */ 4417 int 4418 bus_generic_rman_deactivate_resource(device_t dev, device_t child, 4419 struct resource *r) 4420 { 4421 struct resource_map map; 4422 #ifdef INVARIANTS 4423 struct rman *rm; 4424 #endif 4425 int error, type; 4426 4427 type = rman_get_type(r); 4428 #ifdef INVARIANTS 4429 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r)); 4430 KASSERT(rman_is_region_manager(r, rm), 4431 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4432 #endif 4433 4434 error = rman_deactivate_resource(r); 4435 if (error != 0) 4436 return (error); 4437 4438 switch (type) { 4439 case SYS_RES_IOPORT: 4440 case SYS_RES_MEMORY: 4441 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) { 4442 rman_get_mapping(r, &map); 4443 BUS_UNMAP_RESOURCE(dev, child, r, &map); 4444 } 4445 break; 4446 #ifdef INTRNG 4447 case SYS_RES_IRQ: 4448 intr_deactivate_irq(child, r); 4449 break; 4450 #endif 4451 } 4452 return (0); 4453 } 4454 4455 /** 4456 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4457 * 4458 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4459 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4460 */ 4461 int 4462 bus_generic_child_present(device_t dev, device_t child) 4463 { 4464 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4465 } 4466 4467 /** 4468 * @brief Helper function for implementing BUS_GET_DOMAIN(). 4469 * 4470 * This simple implementation of BUS_GET_DOMAIN() calls the 4471 * BUS_GET_DOMAIN() method of the parent of @p dev. If @p dev 4472 * does not have a parent, the function fails with ENOENT. 4473 */ 4474 int 4475 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4476 { 4477 if (dev->parent) 4478 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4479 4480 return (ENOENT); 4481 } 4482 4483 /** 4484 * @brief Helper function to implement normal BUS_GET_DEVICE_PATH() 4485 * 4486 * This function knows how to (a) pass the request up the tree if there's 4487 * a parent and (b) Knows how to supply a FreeBSD locator. 4488 * 4489 * @param bus bus in the walk up the tree 4490 * @param child leaf node to print information about 4491 * @param locator BUS_LOCATOR_xxx string for locator 4492 * @param sb Buffer to print information into 4493 */ 4494 int 4495 bus_generic_get_device_path(device_t bus, device_t child, const char *locator, 4496 struct sbuf *sb) 4497 { 4498 int rv = 0; 4499 device_t parent; 4500 4501 /* 4502 * We don't recurse on ACPI since either we know the handle for the 4503 * device or we don't. And if we're in the generic routine, we don't 4504 * have a ACPI override. All other locators build up a path by having 4505 * their parents create a path and then adding the path element for this 4506 * node. That's why we recurse with parent, bus rather than the typical 4507 * parent, child: each spot in the tree is independent of what our child 4508 * will do with this path. 4509 */ 4510 parent = device_get_parent(bus); 4511 if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) { 4512 rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb); 4513 } 4514 if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) { 4515 if (rv == 0) { 4516 sbuf_printf(sb, "/%s", device_get_nameunit(child)); 4517 } 4518 return (rv); 4519 } 4520 /* 4521 * Don't know what to do. So assume we do nothing. Not sure that's 4522 * the right thing, but keeps us from having a big list here. 4523 */ 4524 return (0); 4525 } 4526 4527 4528 /** 4529 * @brief Helper function for implementing BUS_RESCAN(). 4530 * 4531 * This null implementation of BUS_RESCAN() always fails to indicate 4532 * the bus does not support rescanning. 4533 */ 4534 int 4535 bus_null_rescan(device_t dev) 4536 { 4537 return (ENODEV); 4538 } 4539 4540 /* 4541 * Some convenience functions to make it easier for drivers to use the 4542 * resource-management functions. All these really do is hide the 4543 * indirection through the parent's method table, making for slightly 4544 * less-wordy code. In the future, it might make sense for this code 4545 * to maintain some sort of a list of resources allocated by each device. 4546 */ 4547 4548 int 4549 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4550 struct resource **res) 4551 { 4552 int i; 4553 4554 for (i = 0; rs[i].type != -1; i++) 4555 res[i] = NULL; 4556 for (i = 0; rs[i].type != -1; i++) { 4557 res[i] = bus_alloc_resource_any(dev, 4558 rs[i].type, &rs[i].rid, rs[i].flags); 4559 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4560 bus_release_resources(dev, rs, res); 4561 return (ENXIO); 4562 } 4563 } 4564 return (0); 4565 } 4566 4567 void 4568 bus_release_resources(device_t dev, const struct resource_spec *rs, 4569 struct resource **res) 4570 { 4571 int i; 4572 4573 for (i = 0; rs[i].type != -1; i++) 4574 if (res[i] != NULL) { 4575 bus_release_resource( 4576 dev, rs[i].type, rs[i].rid, res[i]); 4577 res[i] = NULL; 4578 } 4579 } 4580 4581 /** 4582 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4583 * 4584 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4585 * parent of @p dev. 4586 */ 4587 struct resource * 4588 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4589 rman_res_t end, rman_res_t count, u_int flags) 4590 { 4591 struct resource *res; 4592 4593 if (dev->parent == NULL) 4594 return (NULL); 4595 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4596 count, flags); 4597 return (res); 4598 } 4599 4600 /** 4601 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4602 * 4603 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4604 * parent of @p dev. 4605 */ 4606 int 4607 bus_adjust_resource(device_t dev, struct resource *r, rman_res_t start, 4608 rman_res_t end) 4609 { 4610 if (dev->parent == NULL) 4611 return (EINVAL); 4612 return (BUS_ADJUST_RESOURCE(dev->parent, dev, r, start, end)); 4613 } 4614 4615 int 4616 bus_adjust_resource_old(device_t dev, int type __unused, struct resource *r, 4617 rman_res_t start, rman_res_t end) 4618 { 4619 return (bus_adjust_resource(dev, r, start, end)); 4620 } 4621 4622 /** 4623 * @brief Wrapper function for BUS_TRANSLATE_RESOURCE(). 4624 * 4625 * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the 4626 * parent of @p dev. 4627 */ 4628 int 4629 bus_translate_resource(device_t dev, int type, rman_res_t start, 4630 rman_res_t *newstart) 4631 { 4632 if (dev->parent == NULL) 4633 return (EINVAL); 4634 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart)); 4635 } 4636 4637 /** 4638 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4639 * 4640 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4641 * parent of @p dev. 4642 */ 4643 int 4644 bus_activate_resource(device_t dev, struct resource *r) 4645 { 4646 if (dev->parent == NULL) 4647 return (EINVAL); 4648 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, r)); 4649 } 4650 4651 int 4652 bus_activate_resource_old(device_t dev, int type, int rid, struct resource *r) 4653 { 4654 return (bus_activate_resource(dev, r)); 4655 } 4656 4657 /** 4658 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4659 * 4660 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4661 * parent of @p dev. 4662 */ 4663 int 4664 bus_deactivate_resource(device_t dev, struct resource *r) 4665 { 4666 if (dev->parent == NULL) 4667 return (EINVAL); 4668 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, r)); 4669 } 4670 4671 int 4672 bus_deactivate_resource_old(device_t dev, int type, int rid, struct resource *r) 4673 { 4674 return (bus_deactivate_resource(dev, r)); 4675 } 4676 4677 /** 4678 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4679 * 4680 * This function simply calls the BUS_MAP_RESOURCE() method of the 4681 * parent of @p dev. 4682 */ 4683 int 4684 bus_map_resource(device_t dev, struct resource *r, 4685 struct resource_map_request *args, struct resource_map *map) 4686 { 4687 if (dev->parent == NULL) 4688 return (EINVAL); 4689 return (BUS_MAP_RESOURCE(dev->parent, dev, r, args, map)); 4690 } 4691 4692 int 4693 bus_map_resource_old(device_t dev, int type, struct resource *r, 4694 struct resource_map_request *args, struct resource_map *map) 4695 { 4696 return (bus_map_resource(dev, r, args, map)); 4697 } 4698 4699 /** 4700 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4701 * 4702 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4703 * parent of @p dev. 4704 */ 4705 int 4706 bus_unmap_resource(device_t dev, struct resource *r, struct resource_map *map) 4707 { 4708 if (dev->parent == NULL) 4709 return (EINVAL); 4710 return (BUS_UNMAP_RESOURCE(dev->parent, dev, r, map)); 4711 } 4712 4713 int 4714 bus_unmap_resource_old(device_t dev, int type, struct resource *r, 4715 struct resource_map *map) 4716 { 4717 return (bus_unmap_resource(dev, r, map)); 4718 } 4719 4720 /** 4721 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4722 * 4723 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4724 * parent of @p dev. 4725 */ 4726 int 4727 bus_release_resource(device_t dev, struct resource *r) 4728 { 4729 int rv; 4730 4731 if (dev->parent == NULL) 4732 return (EINVAL); 4733 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, r); 4734 return (rv); 4735 } 4736 4737 int 4738 bus_release_resource_old(device_t dev, int type, int rid, struct resource *r) 4739 { 4740 return (bus_release_resource(dev, r)); 4741 } 4742 4743 /** 4744 * @brief Wrapper function for BUS_SETUP_INTR(). 4745 * 4746 * This function simply calls the BUS_SETUP_INTR() method of the 4747 * parent of @p dev. 4748 */ 4749 int 4750 bus_setup_intr(device_t dev, struct resource *r, int flags, 4751 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4752 { 4753 int error; 4754 4755 if (dev->parent == NULL) 4756 return (EINVAL); 4757 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4758 arg, cookiep); 4759 if (error != 0) 4760 return (error); 4761 if (handler != NULL && !(flags & INTR_MPSAFE)) 4762 device_printf(dev, "[GIANT-LOCKED]\n"); 4763 return (0); 4764 } 4765 4766 /** 4767 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4768 * 4769 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4770 * parent of @p dev. 4771 */ 4772 int 4773 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4774 { 4775 if (dev->parent == NULL) 4776 return (EINVAL); 4777 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4778 } 4779 4780 /** 4781 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4782 * 4783 * This function simply calls the BUS_SUSPEND_INTR() method of the 4784 * parent of @p dev. 4785 */ 4786 int 4787 bus_suspend_intr(device_t dev, struct resource *r) 4788 { 4789 if (dev->parent == NULL) 4790 return (EINVAL); 4791 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4792 } 4793 4794 /** 4795 * @brief Wrapper function for BUS_RESUME_INTR(). 4796 * 4797 * This function simply calls the BUS_RESUME_INTR() method of the 4798 * parent of @p dev. 4799 */ 4800 int 4801 bus_resume_intr(device_t dev, struct resource *r) 4802 { 4803 if (dev->parent == NULL) 4804 return (EINVAL); 4805 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4806 } 4807 4808 /** 4809 * @brief Wrapper function for BUS_BIND_INTR(). 4810 * 4811 * This function simply calls the BUS_BIND_INTR() method of the 4812 * parent of @p dev. 4813 */ 4814 int 4815 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4816 { 4817 if (dev->parent == NULL) 4818 return (EINVAL); 4819 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4820 } 4821 4822 /** 4823 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4824 * 4825 * This function first formats the requested description into a 4826 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4827 * the parent of @p dev. 4828 */ 4829 int 4830 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4831 const char *fmt, ...) 4832 { 4833 va_list ap; 4834 char descr[MAXCOMLEN + 1]; 4835 4836 if (dev->parent == NULL) 4837 return (EINVAL); 4838 va_start(ap, fmt); 4839 vsnprintf(descr, sizeof(descr), fmt, ap); 4840 va_end(ap); 4841 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4842 } 4843 4844 /** 4845 * @brief Wrapper function for BUS_SET_RESOURCE(). 4846 * 4847 * This function simply calls the BUS_SET_RESOURCE() method of the 4848 * parent of @p dev. 4849 */ 4850 int 4851 bus_set_resource(device_t dev, int type, int rid, 4852 rman_res_t start, rman_res_t count) 4853 { 4854 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4855 start, count)); 4856 } 4857 4858 /** 4859 * @brief Wrapper function for BUS_GET_RESOURCE(). 4860 * 4861 * This function simply calls the BUS_GET_RESOURCE() method of the 4862 * parent of @p dev. 4863 */ 4864 int 4865 bus_get_resource(device_t dev, int type, int rid, 4866 rman_res_t *startp, rman_res_t *countp) 4867 { 4868 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4869 startp, countp)); 4870 } 4871 4872 /** 4873 * @brief Wrapper function for BUS_GET_RESOURCE(). 4874 * 4875 * This function simply calls the BUS_GET_RESOURCE() method of the 4876 * parent of @p dev and returns the start value. 4877 */ 4878 rman_res_t 4879 bus_get_resource_start(device_t dev, int type, int rid) 4880 { 4881 rman_res_t start; 4882 rman_res_t count; 4883 int error; 4884 4885 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4886 &start, &count); 4887 if (error) 4888 return (0); 4889 return (start); 4890 } 4891 4892 /** 4893 * @brief Wrapper function for BUS_GET_RESOURCE(). 4894 * 4895 * This function simply calls the BUS_GET_RESOURCE() method of the 4896 * parent of @p dev and returns the count value. 4897 */ 4898 rman_res_t 4899 bus_get_resource_count(device_t dev, int type, int rid) 4900 { 4901 rman_res_t start; 4902 rman_res_t count; 4903 int error; 4904 4905 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4906 &start, &count); 4907 if (error) 4908 return (0); 4909 return (count); 4910 } 4911 4912 /** 4913 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4914 * 4915 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4916 * parent of @p dev. 4917 */ 4918 void 4919 bus_delete_resource(device_t dev, int type, int rid) 4920 { 4921 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4922 } 4923 4924 /** 4925 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4926 * 4927 * This function simply calls the BUS_CHILD_PRESENT() method of the 4928 * parent of @p dev. 4929 */ 4930 int 4931 bus_child_present(device_t child) 4932 { 4933 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4934 } 4935 4936 /** 4937 * @brief Wrapper function for BUS_CHILD_PNPINFO(). 4938 * 4939 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p 4940 * dev. 4941 */ 4942 int 4943 bus_child_pnpinfo(device_t child, struct sbuf *sb) 4944 { 4945 device_t parent; 4946 4947 parent = device_get_parent(child); 4948 if (parent == NULL) 4949 return (0); 4950 return (BUS_CHILD_PNPINFO(parent, child, sb)); 4951 } 4952 4953 /** 4954 * @brief Generic implementation that does nothing for bus_child_pnpinfo 4955 * 4956 * This function has the right signature and returns 0 since the sbuf is passed 4957 * to us to append to. 4958 */ 4959 int 4960 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb) 4961 { 4962 return (0); 4963 } 4964 4965 /** 4966 * @brief Wrapper function for BUS_CHILD_LOCATION(). 4967 * 4968 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of 4969 * @p dev. 4970 */ 4971 int 4972 bus_child_location(device_t child, struct sbuf *sb) 4973 { 4974 device_t parent; 4975 4976 parent = device_get_parent(child); 4977 if (parent == NULL) 4978 return (0); 4979 return (BUS_CHILD_LOCATION(parent, child, sb)); 4980 } 4981 4982 /** 4983 * @brief Generic implementation that does nothing for bus_child_location 4984 * 4985 * This function has the right signature and returns 0 since the sbuf is passed 4986 * to us to append to. 4987 */ 4988 int 4989 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb) 4990 { 4991 return (0); 4992 } 4993 4994 /** 4995 * @brief Wrapper function for BUS_GET_CPUS(). 4996 * 4997 * This function simply calls the BUS_GET_CPUS() method of the 4998 * parent of @p dev. 4999 */ 5000 int 5001 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 5002 { 5003 device_t parent; 5004 5005 parent = device_get_parent(dev); 5006 if (parent == NULL) 5007 return (EINVAL); 5008 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 5009 } 5010 5011 /** 5012 * @brief Wrapper function for BUS_GET_DMA_TAG(). 5013 * 5014 * This function simply calls the BUS_GET_DMA_TAG() method of the 5015 * parent of @p dev. 5016 */ 5017 bus_dma_tag_t 5018 bus_get_dma_tag(device_t dev) 5019 { 5020 device_t parent; 5021 5022 parent = device_get_parent(dev); 5023 if (parent == NULL) 5024 return (NULL); 5025 return (BUS_GET_DMA_TAG(parent, dev)); 5026 } 5027 5028 /** 5029 * @brief Wrapper function for BUS_GET_BUS_TAG(). 5030 * 5031 * This function simply calls the BUS_GET_BUS_TAG() method of the 5032 * parent of @p dev. 5033 */ 5034 bus_space_tag_t 5035 bus_get_bus_tag(device_t dev) 5036 { 5037 device_t parent; 5038 5039 parent = device_get_parent(dev); 5040 if (parent == NULL) 5041 return ((bus_space_tag_t)0); 5042 return (BUS_GET_BUS_TAG(parent, dev)); 5043 } 5044 5045 /** 5046 * @brief Wrapper function for BUS_GET_DOMAIN(). 5047 * 5048 * This function simply calls the BUS_GET_DOMAIN() method of the 5049 * parent of @p dev. 5050 */ 5051 int 5052 bus_get_domain(device_t dev, int *domain) 5053 { 5054 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 5055 } 5056 5057 /* Resume all devices and then notify userland that we're up again. */ 5058 static int 5059 root_resume(device_t dev) 5060 { 5061 int error; 5062 5063 error = bus_generic_resume(dev); 5064 if (error == 0) { 5065 devctl_notify("kernel", "power", "resume", NULL); 5066 } 5067 return (error); 5068 } 5069 5070 static int 5071 root_print_child(device_t dev, device_t child) 5072 { 5073 int retval = 0; 5074 5075 retval += bus_print_child_header(dev, child); 5076 retval += printf("\n"); 5077 5078 return (retval); 5079 } 5080 5081 static int 5082 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 5083 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 5084 { 5085 /* 5086 * If an interrupt mapping gets to here something bad has happened. 5087 */ 5088 panic("root_setup_intr"); 5089 } 5090 5091 /* 5092 * If we get here, assume that the device is permanent and really is 5093 * present in the system. Removable bus drivers are expected to intercept 5094 * this call long before it gets here. We return -1 so that drivers that 5095 * really care can check vs -1 or some ERRNO returned higher in the food 5096 * chain. 5097 */ 5098 static int 5099 root_child_present(device_t dev, device_t child) 5100 { 5101 return (-1); 5102 } 5103 5104 static int 5105 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 5106 cpuset_t *cpuset) 5107 { 5108 switch (op) { 5109 case INTR_CPUS: 5110 /* Default to returning the set of all CPUs. */ 5111 if (setsize != sizeof(cpuset_t)) 5112 return (EINVAL); 5113 *cpuset = all_cpus; 5114 return (0); 5115 default: 5116 return (EINVAL); 5117 } 5118 } 5119 5120 static kobj_method_t root_methods[] = { 5121 /* Device interface */ 5122 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 5123 KOBJMETHOD(device_suspend, bus_generic_suspend), 5124 KOBJMETHOD(device_resume, root_resume), 5125 5126 /* Bus interface */ 5127 KOBJMETHOD(bus_print_child, root_print_child), 5128 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 5129 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 5130 KOBJMETHOD(bus_setup_intr, root_setup_intr), 5131 KOBJMETHOD(bus_child_present, root_child_present), 5132 KOBJMETHOD(bus_get_cpus, root_get_cpus), 5133 5134 KOBJMETHOD_END 5135 }; 5136 5137 static driver_t root_driver = { 5138 "root", 5139 root_methods, 5140 1, /* no softc */ 5141 }; 5142 5143 device_t root_bus; 5144 devclass_t root_devclass; 5145 5146 static int 5147 root_bus_module_handler(module_t mod, int what, void* arg) 5148 { 5149 switch (what) { 5150 case MOD_LOAD: 5151 TAILQ_INIT(&bus_data_devices); 5152 kobj_class_compile((kobj_class_t) &root_driver); 5153 root_bus = make_device(NULL, "root", 0); 5154 root_bus->desc = "System root bus"; 5155 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 5156 root_bus->driver = &root_driver; 5157 root_bus->state = DS_ATTACHED; 5158 root_devclass = devclass_find_internal("root", NULL, FALSE); 5159 devctl2_init(); 5160 return (0); 5161 5162 case MOD_SHUTDOWN: 5163 device_shutdown(root_bus); 5164 return (0); 5165 default: 5166 return (EOPNOTSUPP); 5167 } 5168 5169 return (0); 5170 } 5171 5172 static moduledata_t root_bus_mod = { 5173 "rootbus", 5174 root_bus_module_handler, 5175 NULL 5176 }; 5177 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 5178 5179 /** 5180 * @brief Automatically configure devices 5181 * 5182 * This function begins the autoconfiguration process by calling 5183 * device_probe_and_attach() for each child of the @c root0 device. 5184 */ 5185 void 5186 root_bus_configure(void) 5187 { 5188 PDEBUG((".")); 5189 5190 /* Eventually this will be split up, but this is sufficient for now. */ 5191 bus_set_pass(BUS_PASS_DEFAULT); 5192 } 5193 5194 /** 5195 * @brief Module handler for registering device drivers 5196 * 5197 * This module handler is used to automatically register device 5198 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 5199 * devclass_add_driver() for the driver described by the 5200 * driver_module_data structure pointed to by @p arg 5201 */ 5202 int 5203 driver_module_handler(module_t mod, int what, void *arg) 5204 { 5205 struct driver_module_data *dmd; 5206 devclass_t bus_devclass; 5207 kobj_class_t driver; 5208 int error, pass; 5209 5210 dmd = (struct driver_module_data *)arg; 5211 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 5212 error = 0; 5213 5214 switch (what) { 5215 case MOD_LOAD: 5216 if (dmd->dmd_chainevh) 5217 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5218 5219 pass = dmd->dmd_pass; 5220 driver = dmd->dmd_driver; 5221 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 5222 DRIVERNAME(driver), dmd->dmd_busname, pass)); 5223 error = devclass_add_driver(bus_devclass, driver, pass, 5224 dmd->dmd_devclass); 5225 break; 5226 5227 case MOD_UNLOAD: 5228 PDEBUG(("Unloading module: driver %s from bus %s", 5229 DRIVERNAME(dmd->dmd_driver), 5230 dmd->dmd_busname)); 5231 error = devclass_delete_driver(bus_devclass, 5232 dmd->dmd_driver); 5233 5234 if (!error && dmd->dmd_chainevh) 5235 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5236 break; 5237 case MOD_QUIESCE: 5238 PDEBUG(("Quiesce module: driver %s from bus %s", 5239 DRIVERNAME(dmd->dmd_driver), 5240 dmd->dmd_busname)); 5241 error = devclass_quiesce_driver(bus_devclass, 5242 dmd->dmd_driver); 5243 5244 if (!error && dmd->dmd_chainevh) 5245 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5246 break; 5247 default: 5248 error = EOPNOTSUPP; 5249 break; 5250 } 5251 5252 return (error); 5253 } 5254 5255 /** 5256 * @brief Enumerate all hinted devices for this bus. 5257 * 5258 * Walks through the hints for this bus and calls the bus_hinted_child 5259 * routine for each one it fines. It searches first for the specific 5260 * bus that's being probed for hinted children (eg isa0), and then for 5261 * generic children (eg isa). 5262 * 5263 * @param dev bus device to enumerate 5264 */ 5265 void 5266 bus_enumerate_hinted_children(device_t bus) 5267 { 5268 int i; 5269 const char *dname, *busname; 5270 int dunit; 5271 5272 /* 5273 * enumerate all devices on the specific bus 5274 */ 5275 busname = device_get_nameunit(bus); 5276 i = 0; 5277 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5278 BUS_HINTED_CHILD(bus, dname, dunit); 5279 5280 /* 5281 * and all the generic ones. 5282 */ 5283 busname = device_get_name(bus); 5284 i = 0; 5285 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5286 BUS_HINTED_CHILD(bus, dname, dunit); 5287 } 5288 5289 #ifdef BUS_DEBUG 5290 5291 /* the _short versions avoid iteration by not calling anything that prints 5292 * more than oneliners. I love oneliners. 5293 */ 5294 5295 static void 5296 print_device_short(device_t dev, int indent) 5297 { 5298 if (!dev) 5299 return; 5300 5301 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5302 dev->unit, dev->desc, 5303 (dev->parent? "":"no "), 5304 (TAILQ_EMPTY(&dev->children)? "no ":""), 5305 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5306 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5307 (dev->flags&DF_WILDCARD? "wildcard,":""), 5308 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5309 (dev->flags&DF_SUSPENDED? "suspended,":""), 5310 (dev->ivars? "":"no "), 5311 (dev->softc? "":"no "), 5312 dev->busy)); 5313 } 5314 5315 static void 5316 print_device(device_t dev, int indent) 5317 { 5318 if (!dev) 5319 return; 5320 5321 print_device_short(dev, indent); 5322 5323 indentprintf(("Parent:\n")); 5324 print_device_short(dev->parent, indent+1); 5325 indentprintf(("Driver:\n")); 5326 print_driver_short(dev->driver, indent+1); 5327 indentprintf(("Devclass:\n")); 5328 print_devclass_short(dev->devclass, indent+1); 5329 } 5330 5331 void 5332 print_device_tree_short(device_t dev, int indent) 5333 /* print the device and all its children (indented) */ 5334 { 5335 device_t child; 5336 5337 if (!dev) 5338 return; 5339 5340 print_device_short(dev, indent); 5341 5342 TAILQ_FOREACH(child, &dev->children, link) { 5343 print_device_tree_short(child, indent+1); 5344 } 5345 } 5346 5347 void 5348 print_device_tree(device_t dev, int indent) 5349 /* print the device and all its children (indented) */ 5350 { 5351 device_t child; 5352 5353 if (!dev) 5354 return; 5355 5356 print_device(dev, indent); 5357 5358 TAILQ_FOREACH(child, &dev->children, link) { 5359 print_device_tree(child, indent+1); 5360 } 5361 } 5362 5363 static void 5364 print_driver_short(driver_t *driver, int indent) 5365 { 5366 if (!driver) 5367 return; 5368 5369 indentprintf(("driver %s: softc size = %zd\n", 5370 driver->name, driver->size)); 5371 } 5372 5373 static void 5374 print_driver(driver_t *driver, int indent) 5375 { 5376 if (!driver) 5377 return; 5378 5379 print_driver_short(driver, indent); 5380 } 5381 5382 static void 5383 print_driver_list(driver_list_t drivers, int indent) 5384 { 5385 driverlink_t driver; 5386 5387 TAILQ_FOREACH(driver, &drivers, link) { 5388 print_driver(driver->driver, indent); 5389 } 5390 } 5391 5392 static void 5393 print_devclass_short(devclass_t dc, int indent) 5394 { 5395 if ( !dc ) 5396 return; 5397 5398 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5399 } 5400 5401 static void 5402 print_devclass(devclass_t dc, int indent) 5403 { 5404 int i; 5405 5406 if ( !dc ) 5407 return; 5408 5409 print_devclass_short(dc, indent); 5410 indentprintf(("Drivers:\n")); 5411 print_driver_list(dc->drivers, indent+1); 5412 5413 indentprintf(("Devices:\n")); 5414 for (i = 0; i < dc->maxunit; i++) 5415 if (dc->devices[i]) 5416 print_device(dc->devices[i], indent+1); 5417 } 5418 5419 void 5420 print_devclass_list_short(void) 5421 { 5422 devclass_t dc; 5423 5424 printf("Short listing of devclasses, drivers & devices:\n"); 5425 TAILQ_FOREACH(dc, &devclasses, link) { 5426 print_devclass_short(dc, 0); 5427 } 5428 } 5429 5430 void 5431 print_devclass_list(void) 5432 { 5433 devclass_t dc; 5434 5435 printf("Full listing of devclasses, drivers & devices:\n"); 5436 TAILQ_FOREACH(dc, &devclasses, link) { 5437 print_devclass(dc, 0); 5438 } 5439 } 5440 5441 #endif 5442 5443 /* 5444 * User-space access to the device tree. 5445 * 5446 * We implement a small set of nodes: 5447 * 5448 * hw.bus Single integer read method to obtain the 5449 * current generation count. 5450 * hw.bus.devices Reads the entire device tree in flat space. 5451 * hw.bus.rman Resource manager interface 5452 * 5453 * We might like to add the ability to scan devclasses and/or drivers to 5454 * determine what else is currently loaded/available. 5455 */ 5456 5457 static int 5458 sysctl_bus_info(SYSCTL_HANDLER_ARGS) 5459 { 5460 struct u_businfo ubus; 5461 5462 ubus.ub_version = BUS_USER_VERSION; 5463 ubus.ub_generation = bus_data_generation; 5464 5465 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5466 } 5467 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | 5468 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", 5469 "bus-related data"); 5470 5471 static int 5472 sysctl_devices(SYSCTL_HANDLER_ARGS) 5473 { 5474 struct sbuf sb; 5475 int *name = (int *)arg1; 5476 u_int namelen = arg2; 5477 int index; 5478 device_t dev; 5479 struct u_device *udev; 5480 int error; 5481 5482 if (namelen != 2) 5483 return (EINVAL); 5484 5485 if (bus_data_generation_check(name[0])) 5486 return (EINVAL); 5487 5488 index = name[1]; 5489 5490 /* 5491 * Scan the list of devices, looking for the requested index. 5492 */ 5493 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5494 if (index-- == 0) 5495 break; 5496 } 5497 if (dev == NULL) 5498 return (ENOENT); 5499 5500 /* 5501 * Populate the return item, careful not to overflow the buffer. 5502 */ 5503 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5504 udev->dv_handle = (uintptr_t)dev; 5505 udev->dv_parent = (uintptr_t)dev->parent; 5506 udev->dv_devflags = dev->devflags; 5507 udev->dv_flags = dev->flags; 5508 udev->dv_state = dev->state; 5509 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN); 5510 if (dev->nameunit != NULL) 5511 sbuf_cat(&sb, dev->nameunit); 5512 sbuf_putc(&sb, '\0'); 5513 if (dev->desc != NULL) 5514 sbuf_cat(&sb, dev->desc); 5515 sbuf_putc(&sb, '\0'); 5516 if (dev->driver != NULL) 5517 sbuf_cat(&sb, dev->driver->name); 5518 sbuf_putc(&sb, '\0'); 5519 bus_child_pnpinfo(dev, &sb); 5520 sbuf_putc(&sb, '\0'); 5521 bus_child_location(dev, &sb); 5522 sbuf_putc(&sb, '\0'); 5523 error = sbuf_finish(&sb); 5524 if (error == 0) 5525 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5526 sbuf_delete(&sb); 5527 free(udev, M_BUS); 5528 return (error); 5529 } 5530 5531 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, 5532 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, 5533 "system device tree"); 5534 5535 int 5536 bus_data_generation_check(int generation) 5537 { 5538 if (generation != bus_data_generation) 5539 return (1); 5540 5541 /* XXX generate optimised lists here? */ 5542 return (0); 5543 } 5544 5545 void 5546 bus_data_generation_update(void) 5547 { 5548 atomic_add_int(&bus_data_generation, 1); 5549 } 5550 5551 int 5552 bus_free_resource(device_t dev, int type, struct resource *r) 5553 { 5554 if (r == NULL) 5555 return (0); 5556 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5557 } 5558 5559 device_t 5560 device_lookup_by_name(const char *name) 5561 { 5562 device_t dev; 5563 5564 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5565 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5566 return (dev); 5567 } 5568 return (NULL); 5569 } 5570 5571 /* 5572 * /dev/devctl2 implementation. The existing /dev/devctl device has 5573 * implicit semantics on open, so it could not be reused for this. 5574 * Another option would be to call this /dev/bus? 5575 */ 5576 static int 5577 find_device(struct devreq *req, device_t *devp) 5578 { 5579 device_t dev; 5580 5581 /* 5582 * First, ensure that the name is nul terminated. 5583 */ 5584 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5585 return (EINVAL); 5586 5587 /* 5588 * Second, try to find an attached device whose name matches 5589 * 'name'. 5590 */ 5591 dev = device_lookup_by_name(req->dr_name); 5592 if (dev != NULL) { 5593 *devp = dev; 5594 return (0); 5595 } 5596 5597 /* Finally, give device enumerators a chance. */ 5598 dev = NULL; 5599 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5600 if (dev == NULL) 5601 return (ENOENT); 5602 *devp = dev; 5603 return (0); 5604 } 5605 5606 static bool 5607 driver_exists(device_t bus, const char *driver) 5608 { 5609 devclass_t dc; 5610 5611 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5612 if (devclass_find_driver_internal(dc, driver) != NULL) 5613 return (true); 5614 } 5615 return (false); 5616 } 5617 5618 static void 5619 device_gen_nomatch(device_t dev) 5620 { 5621 device_t child; 5622 5623 if (dev->flags & DF_NEEDNOMATCH && 5624 dev->state == DS_NOTPRESENT) { 5625 device_handle_nomatch(dev); 5626 } 5627 dev->flags &= ~DF_NEEDNOMATCH; 5628 TAILQ_FOREACH(child, &dev->children, link) { 5629 device_gen_nomatch(child); 5630 } 5631 } 5632 5633 static void 5634 device_do_deferred_actions(void) 5635 { 5636 devclass_t dc; 5637 driverlink_t dl; 5638 5639 /* 5640 * Walk through the devclasses to find all the drivers we've tagged as 5641 * deferred during the freeze and call the driver added routines. They 5642 * have already been added to the lists in the background, so the driver 5643 * added routines that trigger a probe will have all the right bidders 5644 * for the probe auction. 5645 */ 5646 TAILQ_FOREACH(dc, &devclasses, link) { 5647 TAILQ_FOREACH(dl, &dc->drivers, link) { 5648 if (dl->flags & DL_DEFERRED_PROBE) { 5649 devclass_driver_added(dc, dl->driver); 5650 dl->flags &= ~DL_DEFERRED_PROBE; 5651 } 5652 } 5653 } 5654 5655 /* 5656 * We also defer no-match events during a freeze. Walk the tree and 5657 * generate all the pent-up events that are still relevant. 5658 */ 5659 device_gen_nomatch(root_bus); 5660 bus_data_generation_update(); 5661 } 5662 5663 static int 5664 device_get_path(device_t dev, const char *locator, struct sbuf *sb) 5665 { 5666 device_t parent; 5667 int error; 5668 5669 KASSERT(sb != NULL, ("sb is NULL")); 5670 parent = device_get_parent(dev); 5671 if (parent == NULL) { 5672 error = sbuf_putc(sb, '/'); 5673 } else { 5674 error = BUS_GET_DEVICE_PATH(parent, dev, locator, sb); 5675 if (error == 0) { 5676 error = sbuf_error(sb); 5677 if (error == 0 && sbuf_len(sb) <= 1) 5678 error = EIO; 5679 } 5680 } 5681 sbuf_finish(sb); 5682 return (error); 5683 } 5684 5685 static int 5686 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5687 struct thread *td) 5688 { 5689 struct devreq *req; 5690 device_t dev; 5691 int error, old; 5692 5693 /* Locate the device to control. */ 5694 bus_topo_lock(); 5695 req = (struct devreq *)data; 5696 switch (cmd) { 5697 case DEV_ATTACH: 5698 case DEV_DETACH: 5699 case DEV_ENABLE: 5700 case DEV_DISABLE: 5701 case DEV_SUSPEND: 5702 case DEV_RESUME: 5703 case DEV_SET_DRIVER: 5704 case DEV_CLEAR_DRIVER: 5705 case DEV_RESCAN: 5706 case DEV_DELETE: 5707 case DEV_RESET: 5708 error = priv_check(td, PRIV_DRIVER); 5709 if (error == 0) 5710 error = find_device(req, &dev); 5711 break; 5712 case DEV_FREEZE: 5713 case DEV_THAW: 5714 error = priv_check(td, PRIV_DRIVER); 5715 break; 5716 case DEV_GET_PATH: 5717 error = find_device(req, &dev); 5718 break; 5719 default: 5720 error = ENOTTY; 5721 break; 5722 } 5723 if (error) { 5724 bus_topo_unlock(); 5725 return (error); 5726 } 5727 5728 /* Perform the requested operation. */ 5729 switch (cmd) { 5730 case DEV_ATTACH: 5731 if (device_is_attached(dev)) 5732 error = EBUSY; 5733 else if (!device_is_enabled(dev)) 5734 error = ENXIO; 5735 else 5736 error = device_probe_and_attach(dev); 5737 break; 5738 case DEV_DETACH: 5739 if (!device_is_attached(dev)) { 5740 error = ENXIO; 5741 break; 5742 } 5743 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5744 error = device_quiesce(dev); 5745 if (error) 5746 break; 5747 } 5748 error = device_detach(dev); 5749 break; 5750 case DEV_ENABLE: 5751 if (device_is_enabled(dev)) { 5752 error = EBUSY; 5753 break; 5754 } 5755 5756 /* 5757 * If the device has been probed but not attached (e.g. 5758 * when it has been disabled by a loader hint), just 5759 * attach the device rather than doing a full probe. 5760 */ 5761 device_enable(dev); 5762 if (device_is_alive(dev)) { 5763 /* 5764 * If the device was disabled via a hint, clear 5765 * the hint. 5766 */ 5767 if (resource_disabled(dev->driver->name, dev->unit)) 5768 resource_unset_value(dev->driver->name, 5769 dev->unit, "disabled"); 5770 error = device_attach(dev); 5771 } else 5772 error = device_probe_and_attach(dev); 5773 break; 5774 case DEV_DISABLE: 5775 if (!device_is_enabled(dev)) { 5776 error = ENXIO; 5777 break; 5778 } 5779 5780 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5781 error = device_quiesce(dev); 5782 if (error) 5783 break; 5784 } 5785 5786 /* 5787 * Force DF_FIXEDCLASS on around detach to preserve 5788 * the existing name. 5789 */ 5790 old = dev->flags; 5791 dev->flags |= DF_FIXEDCLASS; 5792 error = device_detach(dev); 5793 if (!(old & DF_FIXEDCLASS)) 5794 dev->flags &= ~DF_FIXEDCLASS; 5795 if (error == 0) 5796 device_disable(dev); 5797 break; 5798 case DEV_SUSPEND: 5799 if (device_is_suspended(dev)) { 5800 error = EBUSY; 5801 break; 5802 } 5803 if (device_get_parent(dev) == NULL) { 5804 error = EINVAL; 5805 break; 5806 } 5807 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5808 break; 5809 case DEV_RESUME: 5810 if (!device_is_suspended(dev)) { 5811 error = EINVAL; 5812 break; 5813 } 5814 if (device_get_parent(dev) == NULL) { 5815 error = EINVAL; 5816 break; 5817 } 5818 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5819 break; 5820 case DEV_SET_DRIVER: { 5821 devclass_t dc; 5822 char driver[128]; 5823 5824 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5825 if (error) 5826 break; 5827 if (driver[0] == '\0') { 5828 error = EINVAL; 5829 break; 5830 } 5831 if (dev->devclass != NULL && 5832 strcmp(driver, dev->devclass->name) == 0) 5833 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5834 break; 5835 5836 /* 5837 * Scan drivers for this device's bus looking for at 5838 * least one matching driver. 5839 */ 5840 if (dev->parent == NULL) { 5841 error = EINVAL; 5842 break; 5843 } 5844 if (!driver_exists(dev->parent, driver)) { 5845 error = ENOENT; 5846 break; 5847 } 5848 dc = devclass_create(driver); 5849 if (dc == NULL) { 5850 error = ENOMEM; 5851 break; 5852 } 5853 5854 /* Detach device if necessary. */ 5855 if (device_is_attached(dev)) { 5856 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5857 error = device_detach(dev); 5858 else 5859 error = EBUSY; 5860 if (error) 5861 break; 5862 } 5863 5864 /* Clear any previously-fixed device class and unit. */ 5865 if (dev->flags & DF_FIXEDCLASS) 5866 devclass_delete_device(dev->devclass, dev); 5867 dev->flags |= DF_WILDCARD; 5868 dev->unit = DEVICE_UNIT_ANY; 5869 5870 /* Force the new device class. */ 5871 error = devclass_add_device(dc, dev); 5872 if (error) 5873 break; 5874 dev->flags |= DF_FIXEDCLASS; 5875 error = device_probe_and_attach(dev); 5876 break; 5877 } 5878 case DEV_CLEAR_DRIVER: 5879 if (!(dev->flags & DF_FIXEDCLASS)) { 5880 error = 0; 5881 break; 5882 } 5883 if (device_is_attached(dev)) { 5884 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5885 error = device_detach(dev); 5886 else 5887 error = EBUSY; 5888 if (error) 5889 break; 5890 } 5891 5892 dev->flags &= ~DF_FIXEDCLASS; 5893 dev->flags |= DF_WILDCARD; 5894 devclass_delete_device(dev->devclass, dev); 5895 error = device_probe_and_attach(dev); 5896 break; 5897 case DEV_RESCAN: 5898 if (!device_is_attached(dev)) { 5899 error = ENXIO; 5900 break; 5901 } 5902 error = BUS_RESCAN(dev); 5903 break; 5904 case DEV_DELETE: { 5905 device_t parent; 5906 5907 parent = device_get_parent(dev); 5908 if (parent == NULL) { 5909 error = EINVAL; 5910 break; 5911 } 5912 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5913 if (bus_child_present(dev) != 0) { 5914 error = EBUSY; 5915 break; 5916 } 5917 } 5918 5919 error = device_delete_child(parent, dev); 5920 break; 5921 } 5922 case DEV_FREEZE: 5923 if (device_frozen) 5924 error = EBUSY; 5925 else 5926 device_frozen = true; 5927 break; 5928 case DEV_THAW: 5929 if (!device_frozen) 5930 error = EBUSY; 5931 else { 5932 device_do_deferred_actions(); 5933 device_frozen = false; 5934 } 5935 break; 5936 case DEV_RESET: 5937 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 5938 error = EINVAL; 5939 break; 5940 } 5941 if (device_get_parent(dev) == NULL) { 5942 error = EINVAL; 5943 break; 5944 } 5945 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 5946 req->dr_flags); 5947 break; 5948 case DEV_GET_PATH: { 5949 struct sbuf *sb; 5950 char locator[64]; 5951 ssize_t len; 5952 5953 error = copyinstr(req->dr_buffer.buffer, locator, 5954 sizeof(locator), NULL); 5955 if (error != 0) 5956 break; 5957 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | 5958 SBUF_INCLUDENUL /* | SBUF_WAITOK */); 5959 error = device_get_path(dev, locator, sb); 5960 if (error == 0) { 5961 len = sbuf_len(sb); 5962 if (req->dr_buffer.length < len) { 5963 error = ENAMETOOLONG; 5964 } else { 5965 error = copyout(sbuf_data(sb), 5966 req->dr_buffer.buffer, len); 5967 } 5968 req->dr_buffer.length = len; 5969 } 5970 sbuf_delete(sb); 5971 break; 5972 } 5973 } 5974 bus_topo_unlock(); 5975 return (error); 5976 } 5977 5978 static struct cdevsw devctl2_cdevsw = { 5979 .d_version = D_VERSION, 5980 .d_ioctl = devctl2_ioctl, 5981 .d_name = "devctl2", 5982 }; 5983 5984 static void 5985 devctl2_init(void) 5986 { 5987 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5988 UID_ROOT, GID_WHEEL, 0644, "devctl2"); 5989 } 5990 5991 /* 5992 * For maintaining device 'at' location info to avoid recomputing it 5993 */ 5994 struct device_location_node { 5995 const char *dln_locator; 5996 const char *dln_path; 5997 TAILQ_ENTRY(device_location_node) dln_link; 5998 }; 5999 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t; 6000 6001 struct device_location_cache { 6002 device_location_list_t dlc_list; 6003 }; 6004 6005 6006 /* 6007 * Location cache for wired devices. 6008 */ 6009 device_location_cache_t * 6010 dev_wired_cache_init(void) 6011 { 6012 device_location_cache_t *dcp; 6013 6014 dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO); 6015 TAILQ_INIT(&dcp->dlc_list); 6016 6017 return (dcp); 6018 } 6019 6020 void 6021 dev_wired_cache_fini(device_location_cache_t *dcp) 6022 { 6023 struct device_location_node *dln, *tdln; 6024 6025 TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) { 6026 free(dln, M_BUS); 6027 } 6028 free(dcp, M_BUS); 6029 } 6030 6031 static struct device_location_node * 6032 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator) 6033 { 6034 struct device_location_node *dln; 6035 6036 TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) { 6037 if (strcmp(locator, dln->dln_locator) == 0) 6038 return (dln); 6039 } 6040 6041 return (NULL); 6042 } 6043 6044 static struct device_location_node * 6045 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path) 6046 { 6047 struct device_location_node *dln; 6048 size_t loclen, pathlen; 6049 6050 loclen = strlen(locator) + 1; 6051 pathlen = strlen(path) + 1; 6052 dln = malloc(sizeof(*dln) + loclen + pathlen, M_BUS, M_WAITOK | M_ZERO); 6053 dln->dln_locator = (char *)(dln + 1); 6054 memcpy(__DECONST(char *, dln->dln_locator), locator, loclen); 6055 dln->dln_path = dln->dln_locator + loclen; 6056 memcpy(__DECONST(char *, dln->dln_path), path, pathlen); 6057 TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link); 6058 6059 return (dln); 6060 } 6061 6062 bool 6063 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev, 6064 const char *at) 6065 { 6066 struct sbuf *sb; 6067 const char *cp; 6068 char locator[32]; 6069 int error, len; 6070 struct device_location_node *res; 6071 6072 cp = strchr(at, ':'); 6073 if (cp == NULL) 6074 return (false); 6075 len = cp - at; 6076 if (len > sizeof(locator) - 1) /* Skip too long locator */ 6077 return (false); 6078 memcpy(locator, at, len); 6079 locator[len] = '\0'; 6080 cp++; 6081 6082 error = 0; 6083 /* maybe cache this inside device_t and look that up, but not yet */ 6084 res = dev_wired_cache_lookup(dcp, locator); 6085 if (res == NULL) { 6086 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | 6087 SBUF_INCLUDENUL | SBUF_NOWAIT); 6088 if (sb != NULL) { 6089 error = device_get_path(dev, locator, sb); 6090 if (error == 0) { 6091 res = dev_wired_cache_add(dcp, locator, 6092 sbuf_data(sb)); 6093 } 6094 sbuf_delete(sb); 6095 } 6096 } 6097 if (error != 0 || res == NULL || res->dln_path == NULL) 6098 return (false); 6099 6100 return (strcmp(res->dln_path, cp) == 0); 6101 } 6102 6103 static struct device_prop_elm * 6104 device_prop_find(device_t dev, const char *name) 6105 { 6106 struct device_prop_elm *e; 6107 6108 bus_topo_assert(); 6109 6110 LIST_FOREACH(e, &dev->props, link) { 6111 if (strcmp(name, e->name) == 0) 6112 return (e); 6113 } 6114 return (NULL); 6115 } 6116 6117 int 6118 device_set_prop(device_t dev, const char *name, void *val, 6119 device_prop_dtr_t dtr, void *dtr_ctx) 6120 { 6121 struct device_prop_elm *e, *e1; 6122 6123 bus_topo_assert(); 6124 6125 e = device_prop_find(dev, name); 6126 if (e != NULL) 6127 goto found; 6128 6129 e1 = malloc(sizeof(*e), M_BUS, M_WAITOK); 6130 e = device_prop_find(dev, name); 6131 if (e != NULL) { 6132 free(e1, M_BUS); 6133 goto found; 6134 } 6135 6136 e1->name = name; 6137 e1->val = val; 6138 e1->dtr = dtr; 6139 e1->dtr_ctx = dtr_ctx; 6140 LIST_INSERT_HEAD(&dev->props, e1, link); 6141 return (0); 6142 6143 found: 6144 LIST_REMOVE(e, link); 6145 if (e->dtr != NULL) 6146 e->dtr(dev, name, e->val, e->dtr_ctx); 6147 e->val = val; 6148 e->dtr = dtr; 6149 e->dtr_ctx = dtr_ctx; 6150 LIST_INSERT_HEAD(&dev->props, e, link); 6151 return (EEXIST); 6152 } 6153 6154 int 6155 device_get_prop(device_t dev, const char *name, void **valp) 6156 { 6157 struct device_prop_elm *e; 6158 6159 bus_topo_assert(); 6160 6161 e = device_prop_find(dev, name); 6162 if (e == NULL) 6163 return (ENOENT); 6164 *valp = e->val; 6165 return (0); 6166 } 6167 6168 int 6169 device_clear_prop(device_t dev, const char *name) 6170 { 6171 struct device_prop_elm *e; 6172 6173 bus_topo_assert(); 6174 6175 e = device_prop_find(dev, name); 6176 if (e == NULL) 6177 return (ENOENT); 6178 LIST_REMOVE(e, link); 6179 if (e->dtr != NULL) 6180 e->dtr(dev, e->name, e->val, e->dtr_ctx); 6181 free(e, M_BUS); 6182 return (0); 6183 } 6184 6185 static void 6186 device_destroy_props(device_t dev) 6187 { 6188 struct device_prop_elm *e; 6189 6190 bus_topo_assert(); 6191 6192 while ((e = LIST_FIRST(&dev->props)) != NULL) { 6193 LIST_REMOVE_HEAD(&dev->props, link); 6194 if (e->dtr != NULL) 6195 e->dtr(dev, e->name, e->val, e->dtr_ctx); 6196 free(e, M_BUS); 6197 } 6198 } 6199 6200 void 6201 device_clear_prop_alldev(const char *name) 6202 { 6203 device_t dev; 6204 6205 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 6206 device_clear_prop(dev, name); 6207 } 6208 } 6209 6210 /* 6211 * APIs to manage deprecation and obsolescence. 6212 */ 6213 static int obsolete_panic = 0; 6214 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 6215 "Panic when obsolete features are used (0 = never, 1 = if obsolete, " 6216 "2 = if deprecated)"); 6217 6218 static void 6219 gone_panic(int major, int running, const char *msg) 6220 { 6221 switch (obsolete_panic) 6222 { 6223 case 0: 6224 return; 6225 case 1: 6226 if (running < major) 6227 return; 6228 /* FALLTHROUGH */ 6229 default: 6230 panic("%s", msg); 6231 } 6232 } 6233 6234 void 6235 _gone_in(int major, const char *msg) 6236 { 6237 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 6238 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 6239 printf("Obsolete code will be removed soon: %s\n", msg); 6240 else 6241 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 6242 major, msg); 6243 } 6244 6245 void 6246 _gone_in_dev(device_t dev, int major, const char *msg) 6247 { 6248 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 6249 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 6250 device_printf(dev, 6251 "Obsolete code will be removed soon: %s\n", msg); 6252 else 6253 device_printf(dev, 6254 "Deprecated code (to be removed in FreeBSD %d): %s\n", 6255 major, msg); 6256 } 6257 6258 #ifdef DDB 6259 DB_SHOW_COMMAND(device, db_show_device) 6260 { 6261 device_t dev; 6262 6263 if (!have_addr) 6264 return; 6265 6266 dev = (device_t)addr; 6267 6268 db_printf("name: %s\n", device_get_nameunit(dev)); 6269 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 6270 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 6271 db_printf(" addr: %p\n", dev); 6272 db_printf(" parent: %p\n", dev->parent); 6273 db_printf(" softc: %p\n", dev->softc); 6274 db_printf(" ivars: %p\n", dev->ivars); 6275 } 6276 6277 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 6278 { 6279 device_t dev; 6280 6281 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 6282 db_show_device((db_expr_t)dev, true, count, modif); 6283 } 6284 } 6285 #endif 6286