1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_bus.h" 31 #include "opt_ddb.h" 32 33 #include <sys/param.h> 34 #include <sys/conf.h> 35 #include <sys/domainset.h> 36 #include <sys/eventhandler.h> 37 #include <sys/lock.h> 38 #include <sys/kernel.h> 39 #include <sys/limits.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/mutex.h> 43 #include <sys/priv.h> 44 #include <machine/bus.h> 45 #include <sys/random.h> 46 #include <sys/refcount.h> 47 #include <sys/rman.h> 48 #include <sys/sbuf.h> 49 #include <sys/smp.h> 50 #include <sys/sysctl.h> 51 #include <sys/systm.h> 52 #include <sys/bus.h> 53 #include <sys/cpuset.h> 54 55 #include <net/vnet.h> 56 57 #include <machine/cpu.h> 58 #include <machine/stdarg.h> 59 60 #include <vm/uma.h> 61 #include <vm/vm.h> 62 63 #include <ddb/ddb.h> 64 65 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 66 NULL); 67 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 68 NULL); 69 70 static bool disable_failed_devs = false; 71 SYSCTL_BOOL(_hw_bus, OID_AUTO, disable_failed_devices, CTLFLAG_RWTUN, &disable_failed_devs, 72 0, "Do not retry attaching devices that return an error from DEVICE_ATTACH the first time"); 73 74 /* 75 * Used to attach drivers to devclasses. 76 */ 77 typedef struct driverlink *driverlink_t; 78 struct driverlink { 79 kobj_class_t driver; 80 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 81 int pass; 82 int flags; 83 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 84 TAILQ_ENTRY(driverlink) passlink; 85 }; 86 87 /* 88 * Forward declarations 89 */ 90 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 91 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 92 typedef TAILQ_HEAD(device_list, _device) device_list_t; 93 94 struct devclass { 95 TAILQ_ENTRY(devclass) link; 96 devclass_t parent; /* parent in devclass hierarchy */ 97 driver_list_t drivers; /* bus devclasses store drivers for bus */ 98 char *name; 99 device_t *devices; /* array of devices indexed by unit */ 100 int maxunit; /* size of devices array */ 101 int flags; 102 #define DC_HAS_CHILDREN 1 103 104 struct sysctl_ctx_list sysctl_ctx; 105 struct sysctl_oid *sysctl_tree; 106 }; 107 108 /** 109 * @brief Implementation of _device. 110 * 111 * The structure is named "_device" instead of "device" to avoid type confusion 112 * caused by other subsystems defining a (struct device). 113 */ 114 struct _device { 115 /* 116 * A device is a kernel object. The first field must be the 117 * current ops table for the object. 118 */ 119 KOBJ_FIELDS; 120 121 /* 122 * Device hierarchy. 123 */ 124 TAILQ_ENTRY(_device) link; /**< list of devices in parent */ 125 TAILQ_ENTRY(_device) devlink; /**< global device list membership */ 126 device_t parent; /**< parent of this device */ 127 device_list_t children; /**< list of child devices */ 128 129 /* 130 * Details of this device. 131 */ 132 driver_t *driver; /**< current driver */ 133 devclass_t devclass; /**< current device class */ 134 int unit; /**< current unit number */ 135 char* nameunit; /**< name+unit e.g. foodev0 */ 136 char* desc; /**< driver specific description */ 137 u_int busy; /**< count of calls to device_busy() */ 138 device_state_t state; /**< current device state */ 139 uint32_t devflags; /**< api level flags for device_get_flags() */ 140 u_int flags; /**< internal device flags */ 141 u_int order; /**< order from device_add_child_ordered() */ 142 void *ivars; /**< instance variables */ 143 void *softc; /**< current driver's variables */ 144 145 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 146 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 147 }; 148 149 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 150 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 151 152 EVENTHANDLER_LIST_DEFINE(device_attach); 153 EVENTHANDLER_LIST_DEFINE(device_detach); 154 EVENTHANDLER_LIST_DEFINE(device_nomatch); 155 EVENTHANDLER_LIST_DEFINE(dev_lookup); 156 157 static void devctl2_init(void); 158 static bool device_frozen; 159 160 #define DRIVERNAME(d) ((d)? d->name : "no driver") 161 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 162 163 #ifdef BUS_DEBUG 164 165 static int bus_debug = 1; 166 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 167 "Bus debug level"); 168 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 169 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 170 171 /** 172 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 173 * prevent syslog from deleting initial spaces 174 */ 175 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 176 177 static void print_device_short(device_t dev, int indent); 178 static void print_device(device_t dev, int indent); 179 void print_device_tree_short(device_t dev, int indent); 180 void print_device_tree(device_t dev, int indent); 181 static void print_driver_short(driver_t *driver, int indent); 182 static void print_driver(driver_t *driver, int indent); 183 static void print_driver_list(driver_list_t drivers, int indent); 184 static void print_devclass_short(devclass_t dc, int indent); 185 static void print_devclass(devclass_t dc, int indent); 186 void print_devclass_list_short(void); 187 void print_devclass_list(void); 188 189 #else 190 /* Make the compiler ignore the function calls */ 191 #define PDEBUG(a) /* nop */ 192 #define DEVICENAME(d) /* nop */ 193 194 #define print_device_short(d,i) /* nop */ 195 #define print_device(d,i) /* nop */ 196 #define print_device_tree_short(d,i) /* nop */ 197 #define print_device_tree(d,i) /* nop */ 198 #define print_driver_short(d,i) /* nop */ 199 #define print_driver(d,i) /* nop */ 200 #define print_driver_list(d,i) /* nop */ 201 #define print_devclass_short(d,i) /* nop */ 202 #define print_devclass(d,i) /* nop */ 203 #define print_devclass_list_short() /* nop */ 204 #define print_devclass_list() /* nop */ 205 #endif 206 207 /* 208 * dev sysctl tree 209 */ 210 211 enum { 212 DEVCLASS_SYSCTL_PARENT, 213 }; 214 215 static int 216 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 217 { 218 devclass_t dc = (devclass_t)arg1; 219 const char *value; 220 221 switch (arg2) { 222 case DEVCLASS_SYSCTL_PARENT: 223 value = dc->parent ? dc->parent->name : ""; 224 break; 225 default: 226 return (EINVAL); 227 } 228 return (SYSCTL_OUT_STR(req, value)); 229 } 230 231 static void 232 devclass_sysctl_init(devclass_t dc) 233 { 234 if (dc->sysctl_tree != NULL) 235 return; 236 sysctl_ctx_init(&dc->sysctl_ctx); 237 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 238 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 239 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 240 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 241 OID_AUTO, "%parent", 242 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 243 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 244 "parent class"); 245 } 246 247 enum { 248 DEVICE_SYSCTL_DESC, 249 DEVICE_SYSCTL_DRIVER, 250 DEVICE_SYSCTL_LOCATION, 251 DEVICE_SYSCTL_PNPINFO, 252 DEVICE_SYSCTL_PARENT, 253 }; 254 255 static int 256 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 257 { 258 struct sbuf sb; 259 device_t dev = (device_t)arg1; 260 int error; 261 262 sbuf_new_for_sysctl(&sb, NULL, 1024, req); 263 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 264 bus_topo_lock(); 265 switch (arg2) { 266 case DEVICE_SYSCTL_DESC: 267 sbuf_cat(&sb, dev->desc ? dev->desc : ""); 268 break; 269 case DEVICE_SYSCTL_DRIVER: 270 sbuf_cat(&sb, dev->driver ? dev->driver->name : ""); 271 break; 272 case DEVICE_SYSCTL_LOCATION: 273 bus_child_location(dev, &sb); 274 break; 275 case DEVICE_SYSCTL_PNPINFO: 276 bus_child_pnpinfo(dev, &sb); 277 break; 278 case DEVICE_SYSCTL_PARENT: 279 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : ""); 280 break; 281 default: 282 error = EINVAL; 283 goto out; 284 } 285 error = sbuf_finish(&sb); 286 out: 287 bus_topo_unlock(); 288 sbuf_delete(&sb); 289 return (error); 290 } 291 292 static void 293 device_sysctl_init(device_t dev) 294 { 295 devclass_t dc = dev->devclass; 296 int domain; 297 298 if (dev->sysctl_tree != NULL) 299 return; 300 devclass_sysctl_init(dc); 301 sysctl_ctx_init(&dev->sysctl_ctx); 302 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 303 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 304 dev->nameunit + strlen(dc->name), 305 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); 306 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 307 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 308 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 309 "device description"); 310 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 311 OID_AUTO, "%driver", 312 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 313 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 314 "device driver name"); 315 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 316 OID_AUTO, "%location", 317 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 318 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 319 "device location relative to parent"); 320 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 321 OID_AUTO, "%pnpinfo", 322 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 323 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 324 "device identification"); 325 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 326 OID_AUTO, "%parent", 327 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 328 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 329 "parent device"); 330 if (bus_get_domain(dev, &domain) == 0) 331 SYSCTL_ADD_INT(&dev->sysctl_ctx, 332 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 333 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain"); 334 } 335 336 static void 337 device_sysctl_update(device_t dev) 338 { 339 devclass_t dc = dev->devclass; 340 341 if (dev->sysctl_tree == NULL) 342 return; 343 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 344 } 345 346 static void 347 device_sysctl_fini(device_t dev) 348 { 349 if (dev->sysctl_tree == NULL) 350 return; 351 sysctl_ctx_free(&dev->sysctl_ctx); 352 dev->sysctl_tree = NULL; 353 } 354 355 static struct device_list bus_data_devices; 356 static int bus_data_generation = 1; 357 358 static kobj_method_t null_methods[] = { 359 KOBJMETHOD_END 360 }; 361 362 DEFINE_CLASS(null, null_methods, 0); 363 364 void 365 bus_topo_assert(void) 366 { 367 368 GIANT_REQUIRED; 369 } 370 371 struct mtx * 372 bus_topo_mtx(void) 373 { 374 375 return (&Giant); 376 } 377 378 void 379 bus_topo_lock(void) 380 { 381 382 mtx_lock(bus_topo_mtx()); 383 } 384 385 void 386 bus_topo_unlock(void) 387 { 388 389 mtx_unlock(bus_topo_mtx()); 390 } 391 392 /* 393 * Bus pass implementation 394 */ 395 396 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 397 int bus_current_pass = BUS_PASS_ROOT; 398 399 /** 400 * @internal 401 * @brief Register the pass level of a new driver attachment 402 * 403 * Register a new driver attachment's pass level. If no driver 404 * attachment with the same pass level has been added, then @p new 405 * will be added to the global passes list. 406 * 407 * @param new the new driver attachment 408 */ 409 static void 410 driver_register_pass(struct driverlink *new) 411 { 412 struct driverlink *dl; 413 414 /* We only consider pass numbers during boot. */ 415 if (bus_current_pass == BUS_PASS_DEFAULT) 416 return; 417 418 /* 419 * Walk the passes list. If we already know about this pass 420 * then there is nothing to do. If we don't, then insert this 421 * driver link into the list. 422 */ 423 TAILQ_FOREACH(dl, &passes, passlink) { 424 if (dl->pass < new->pass) 425 continue; 426 if (dl->pass == new->pass) 427 return; 428 TAILQ_INSERT_BEFORE(dl, new, passlink); 429 return; 430 } 431 TAILQ_INSERT_TAIL(&passes, new, passlink); 432 } 433 434 /** 435 * @brief Raise the current bus pass 436 * 437 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 438 * method on the root bus to kick off a new device tree scan for each 439 * new pass level that has at least one driver. 440 */ 441 void 442 bus_set_pass(int pass) 443 { 444 struct driverlink *dl; 445 446 if (bus_current_pass > pass) 447 panic("Attempt to lower bus pass level"); 448 449 TAILQ_FOREACH(dl, &passes, passlink) { 450 /* Skip pass values below the current pass level. */ 451 if (dl->pass <= bus_current_pass) 452 continue; 453 454 /* 455 * Bail once we hit a driver with a pass level that is 456 * too high. 457 */ 458 if (dl->pass > pass) 459 break; 460 461 /* 462 * Raise the pass level to the next level and rescan 463 * the tree. 464 */ 465 bus_current_pass = dl->pass; 466 BUS_NEW_PASS(root_bus); 467 } 468 469 /* 470 * If there isn't a driver registered for the requested pass, 471 * then bus_current_pass might still be less than 'pass'. Set 472 * it to 'pass' in that case. 473 */ 474 if (bus_current_pass < pass) 475 bus_current_pass = pass; 476 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 477 } 478 479 /* 480 * Devclass implementation 481 */ 482 483 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 484 485 /** 486 * @internal 487 * @brief Find or create a device class 488 * 489 * If a device class with the name @p classname exists, return it, 490 * otherwise if @p create is non-zero create and return a new device 491 * class. 492 * 493 * If @p parentname is non-NULL, the parent of the devclass is set to 494 * the devclass of that name. 495 * 496 * @param classname the devclass name to find or create 497 * @param parentname the parent devclass name or @c NULL 498 * @param create non-zero to create a devclass 499 */ 500 static devclass_t 501 devclass_find_internal(const char *classname, const char *parentname, 502 int create) 503 { 504 devclass_t dc; 505 506 PDEBUG(("looking for %s", classname)); 507 if (!classname) 508 return (NULL); 509 510 TAILQ_FOREACH(dc, &devclasses, link) { 511 if (!strcmp(dc->name, classname)) 512 break; 513 } 514 515 if (create && !dc) { 516 PDEBUG(("creating %s", classname)); 517 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 518 M_BUS, M_NOWAIT | M_ZERO); 519 if (!dc) 520 return (NULL); 521 dc->parent = NULL; 522 dc->name = (char*) (dc + 1); 523 strcpy(dc->name, classname); 524 TAILQ_INIT(&dc->drivers); 525 TAILQ_INSERT_TAIL(&devclasses, dc, link); 526 527 bus_data_generation_update(); 528 } 529 530 /* 531 * If a parent class is specified, then set that as our parent so 532 * that this devclass will support drivers for the parent class as 533 * well. If the parent class has the same name don't do this though 534 * as it creates a cycle that can trigger an infinite loop in 535 * device_probe_child() if a device exists for which there is no 536 * suitable driver. 537 */ 538 if (parentname && dc && !dc->parent && 539 strcmp(classname, parentname) != 0) { 540 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 541 dc->parent->flags |= DC_HAS_CHILDREN; 542 } 543 544 return (dc); 545 } 546 547 /** 548 * @brief Create a device class 549 * 550 * If a device class with the name @p classname exists, return it, 551 * otherwise create and return a new device class. 552 * 553 * @param classname the devclass name to find or create 554 */ 555 devclass_t 556 devclass_create(const char *classname) 557 { 558 return (devclass_find_internal(classname, NULL, TRUE)); 559 } 560 561 /** 562 * @brief Find a device class 563 * 564 * If a device class with the name @p classname exists, return it, 565 * otherwise return @c NULL. 566 * 567 * @param classname the devclass name to find 568 */ 569 devclass_t 570 devclass_find(const char *classname) 571 { 572 return (devclass_find_internal(classname, NULL, FALSE)); 573 } 574 575 /** 576 * @brief Register that a device driver has been added to a devclass 577 * 578 * Register that a device driver has been added to a devclass. This 579 * is called by devclass_add_driver to accomplish the recursive 580 * notification of all the children classes of dc, as well as dc. 581 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 582 * the devclass. 583 * 584 * We do a full search here of the devclass list at each iteration 585 * level to save storing children-lists in the devclass structure. If 586 * we ever move beyond a few dozen devices doing this, we may need to 587 * reevaluate... 588 * 589 * @param dc the devclass to edit 590 * @param driver the driver that was just added 591 */ 592 static void 593 devclass_driver_added(devclass_t dc, driver_t *driver) 594 { 595 devclass_t parent; 596 int i; 597 598 /* 599 * Call BUS_DRIVER_ADDED for any existing buses in this class. 600 */ 601 for (i = 0; i < dc->maxunit; i++) 602 if (dc->devices[i] && device_is_attached(dc->devices[i])) 603 BUS_DRIVER_ADDED(dc->devices[i], driver); 604 605 /* 606 * Walk through the children classes. Since we only keep a 607 * single parent pointer around, we walk the entire list of 608 * devclasses looking for children. We set the 609 * DC_HAS_CHILDREN flag when a child devclass is created on 610 * the parent, so we only walk the list for those devclasses 611 * that have children. 612 */ 613 if (!(dc->flags & DC_HAS_CHILDREN)) 614 return; 615 parent = dc; 616 TAILQ_FOREACH(dc, &devclasses, link) { 617 if (dc->parent == parent) 618 devclass_driver_added(dc, driver); 619 } 620 } 621 622 static void 623 device_handle_nomatch(device_t dev) 624 { 625 BUS_PROBE_NOMATCH(dev->parent, dev); 626 EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev); 627 dev->flags |= DF_DONENOMATCH; 628 } 629 630 /** 631 * @brief Add a device driver to a device class 632 * 633 * Add a device driver to a devclass. This is normally called 634 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 635 * all devices in the devclass will be called to allow them to attempt 636 * to re-probe any unmatched children. 637 * 638 * @param dc the devclass to edit 639 * @param driver the driver to register 640 */ 641 int 642 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 643 { 644 driverlink_t dl; 645 devclass_t child_dc; 646 const char *parentname; 647 648 PDEBUG(("%s", DRIVERNAME(driver))); 649 650 /* Don't allow invalid pass values. */ 651 if (pass <= BUS_PASS_ROOT) 652 return (EINVAL); 653 654 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 655 if (!dl) 656 return (ENOMEM); 657 658 /* 659 * Compile the driver's methods. Also increase the reference count 660 * so that the class doesn't get freed when the last instance 661 * goes. This means we can safely use static methods and avoids a 662 * double-free in devclass_delete_driver. 663 */ 664 kobj_class_compile((kobj_class_t) driver); 665 666 /* 667 * If the driver has any base classes, make the 668 * devclass inherit from the devclass of the driver's 669 * first base class. This will allow the system to 670 * search for drivers in both devclasses for children 671 * of a device using this driver. 672 */ 673 if (driver->baseclasses) 674 parentname = driver->baseclasses[0]->name; 675 else 676 parentname = NULL; 677 child_dc = devclass_find_internal(driver->name, parentname, TRUE); 678 if (dcp != NULL) 679 *dcp = child_dc; 680 681 dl->driver = driver; 682 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 683 driver->refs++; /* XXX: kobj_mtx */ 684 dl->pass = pass; 685 driver_register_pass(dl); 686 687 if (device_frozen) { 688 dl->flags |= DL_DEFERRED_PROBE; 689 } else { 690 devclass_driver_added(dc, driver); 691 } 692 bus_data_generation_update(); 693 return (0); 694 } 695 696 /** 697 * @brief Register that a device driver has been deleted from a devclass 698 * 699 * Register that a device driver has been removed from a devclass. 700 * This is called by devclass_delete_driver to accomplish the 701 * recursive notification of all the children classes of busclass, as 702 * well as busclass. Each layer will attempt to detach the driver 703 * from any devices that are children of the bus's devclass. The function 704 * will return an error if a device fails to detach. 705 * 706 * We do a full search here of the devclass list at each iteration 707 * level to save storing children-lists in the devclass structure. If 708 * we ever move beyond a few dozen devices doing this, we may need to 709 * reevaluate... 710 * 711 * @param busclass the devclass of the parent bus 712 * @param dc the devclass of the driver being deleted 713 * @param driver the driver being deleted 714 */ 715 static int 716 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 717 { 718 devclass_t parent; 719 device_t dev; 720 int error, i; 721 722 /* 723 * Disassociate from any devices. We iterate through all the 724 * devices in the devclass of the driver and detach any which are 725 * using the driver and which have a parent in the devclass which 726 * we are deleting from. 727 * 728 * Note that since a driver can be in multiple devclasses, we 729 * should not detach devices which are not children of devices in 730 * the affected devclass. 731 * 732 * If we're frozen, we don't generate NOMATCH events. Mark to 733 * generate later. 734 */ 735 for (i = 0; i < dc->maxunit; i++) { 736 if (dc->devices[i]) { 737 dev = dc->devices[i]; 738 if (dev->driver == driver && dev->parent && 739 dev->parent->devclass == busclass) { 740 if ((error = device_detach(dev)) != 0) 741 return (error); 742 if (device_frozen) { 743 dev->flags &= ~DF_DONENOMATCH; 744 dev->flags |= DF_NEEDNOMATCH; 745 } else { 746 device_handle_nomatch(dev); 747 } 748 } 749 } 750 } 751 752 /* 753 * Walk through the children classes. Since we only keep a 754 * single parent pointer around, we walk the entire list of 755 * devclasses looking for children. We set the 756 * DC_HAS_CHILDREN flag when a child devclass is created on 757 * the parent, so we only walk the list for those devclasses 758 * that have children. 759 */ 760 if (!(busclass->flags & DC_HAS_CHILDREN)) 761 return (0); 762 parent = busclass; 763 TAILQ_FOREACH(busclass, &devclasses, link) { 764 if (busclass->parent == parent) { 765 error = devclass_driver_deleted(busclass, dc, driver); 766 if (error) 767 return (error); 768 } 769 } 770 return (0); 771 } 772 773 /** 774 * @brief Delete a device driver from a device class 775 * 776 * Delete a device driver from a devclass. This is normally called 777 * automatically by DRIVER_MODULE(). 778 * 779 * If the driver is currently attached to any devices, 780 * devclass_delete_driver() will first attempt to detach from each 781 * device. If one of the detach calls fails, the driver will not be 782 * deleted. 783 * 784 * @param dc the devclass to edit 785 * @param driver the driver to unregister 786 */ 787 int 788 devclass_delete_driver(devclass_t busclass, driver_t *driver) 789 { 790 devclass_t dc = devclass_find(driver->name); 791 driverlink_t dl; 792 int error; 793 794 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 795 796 if (!dc) 797 return (0); 798 799 /* 800 * Find the link structure in the bus' list of drivers. 801 */ 802 TAILQ_FOREACH(dl, &busclass->drivers, link) { 803 if (dl->driver == driver) 804 break; 805 } 806 807 if (!dl) { 808 PDEBUG(("%s not found in %s list", driver->name, 809 busclass->name)); 810 return (ENOENT); 811 } 812 813 error = devclass_driver_deleted(busclass, dc, driver); 814 if (error != 0) 815 return (error); 816 817 TAILQ_REMOVE(&busclass->drivers, dl, link); 818 free(dl, M_BUS); 819 820 /* XXX: kobj_mtx */ 821 driver->refs--; 822 if (driver->refs == 0) 823 kobj_class_free((kobj_class_t) driver); 824 825 bus_data_generation_update(); 826 return (0); 827 } 828 829 /** 830 * @brief Quiesces a set of device drivers from a device class 831 * 832 * Quiesce a device driver from a devclass. This is normally called 833 * automatically by DRIVER_MODULE(). 834 * 835 * If the driver is currently attached to any devices, 836 * devclass_quiesece_driver() will first attempt to quiesce each 837 * device. 838 * 839 * @param dc the devclass to edit 840 * @param driver the driver to unregister 841 */ 842 static int 843 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 844 { 845 devclass_t dc = devclass_find(driver->name); 846 driverlink_t dl; 847 device_t dev; 848 int i; 849 int error; 850 851 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 852 853 if (!dc) 854 return (0); 855 856 /* 857 * Find the link structure in the bus' list of drivers. 858 */ 859 TAILQ_FOREACH(dl, &busclass->drivers, link) { 860 if (dl->driver == driver) 861 break; 862 } 863 864 if (!dl) { 865 PDEBUG(("%s not found in %s list", driver->name, 866 busclass->name)); 867 return (ENOENT); 868 } 869 870 /* 871 * Quiesce all devices. We iterate through all the devices in 872 * the devclass of the driver and quiesce any which are using 873 * the driver and which have a parent in the devclass which we 874 * are quiescing. 875 * 876 * Note that since a driver can be in multiple devclasses, we 877 * should not quiesce devices which are not children of 878 * devices in the affected devclass. 879 */ 880 for (i = 0; i < dc->maxunit; i++) { 881 if (dc->devices[i]) { 882 dev = dc->devices[i]; 883 if (dev->driver == driver && dev->parent && 884 dev->parent->devclass == busclass) { 885 if ((error = device_quiesce(dev)) != 0) 886 return (error); 887 } 888 } 889 } 890 891 return (0); 892 } 893 894 /** 895 * @internal 896 */ 897 static driverlink_t 898 devclass_find_driver_internal(devclass_t dc, const char *classname) 899 { 900 driverlink_t dl; 901 902 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 903 904 TAILQ_FOREACH(dl, &dc->drivers, link) { 905 if (!strcmp(dl->driver->name, classname)) 906 return (dl); 907 } 908 909 PDEBUG(("not found")); 910 return (NULL); 911 } 912 913 /** 914 * @brief Return the name of the devclass 915 */ 916 const char * 917 devclass_get_name(devclass_t dc) 918 { 919 return (dc->name); 920 } 921 922 /** 923 * @brief Find a device given a unit number 924 * 925 * @param dc the devclass to search 926 * @param unit the unit number to search for 927 * 928 * @returns the device with the given unit number or @c 929 * NULL if there is no such device 930 */ 931 device_t 932 devclass_get_device(devclass_t dc, int unit) 933 { 934 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 935 return (NULL); 936 return (dc->devices[unit]); 937 } 938 939 /** 940 * @brief Find the softc field of a device given a unit number 941 * 942 * @param dc the devclass to search 943 * @param unit the unit number to search for 944 * 945 * @returns the softc field of the device with the given 946 * unit number or @c NULL if there is no such 947 * device 948 */ 949 void * 950 devclass_get_softc(devclass_t dc, int unit) 951 { 952 device_t dev; 953 954 dev = devclass_get_device(dc, unit); 955 if (!dev) 956 return (NULL); 957 958 return (device_get_softc(dev)); 959 } 960 961 /** 962 * @brief Get a list of devices in the devclass 963 * 964 * An array containing a list of all the devices in the given devclass 965 * is allocated and returned in @p *devlistp. The number of devices 966 * in the array is returned in @p *devcountp. The caller should free 967 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 968 * 969 * @param dc the devclass to examine 970 * @param devlistp points at location for array pointer return 971 * value 972 * @param devcountp points at location for array size return value 973 * 974 * @retval 0 success 975 * @retval ENOMEM the array allocation failed 976 */ 977 int 978 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 979 { 980 int count, i; 981 device_t *list; 982 983 count = devclass_get_count(dc); 984 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 985 if (!list) 986 return (ENOMEM); 987 988 count = 0; 989 for (i = 0; i < dc->maxunit; i++) { 990 if (dc->devices[i]) { 991 list[count] = dc->devices[i]; 992 count++; 993 } 994 } 995 996 *devlistp = list; 997 *devcountp = count; 998 999 return (0); 1000 } 1001 1002 /** 1003 * @brief Get a list of drivers in the devclass 1004 * 1005 * An array containing a list of pointers to all the drivers in the 1006 * given devclass is allocated and returned in @p *listp. The number 1007 * of drivers in the array is returned in @p *countp. The caller should 1008 * free the array using @c free(p, M_TEMP). 1009 * 1010 * @param dc the devclass to examine 1011 * @param listp gives location for array pointer return value 1012 * @param countp gives location for number of array elements 1013 * return value 1014 * 1015 * @retval 0 success 1016 * @retval ENOMEM the array allocation failed 1017 */ 1018 int 1019 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1020 { 1021 driverlink_t dl; 1022 driver_t **list; 1023 int count; 1024 1025 count = 0; 1026 TAILQ_FOREACH(dl, &dc->drivers, link) 1027 count++; 1028 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1029 if (list == NULL) 1030 return (ENOMEM); 1031 1032 count = 0; 1033 TAILQ_FOREACH(dl, &dc->drivers, link) { 1034 list[count] = dl->driver; 1035 count++; 1036 } 1037 *listp = list; 1038 *countp = count; 1039 1040 return (0); 1041 } 1042 1043 /** 1044 * @brief Get the number of devices in a devclass 1045 * 1046 * @param dc the devclass to examine 1047 */ 1048 int 1049 devclass_get_count(devclass_t dc) 1050 { 1051 int count, i; 1052 1053 count = 0; 1054 for (i = 0; i < dc->maxunit; i++) 1055 if (dc->devices[i]) 1056 count++; 1057 return (count); 1058 } 1059 1060 /** 1061 * @brief Get the maximum unit number used in a devclass 1062 * 1063 * Note that this is one greater than the highest currently-allocated 1064 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1065 * that not even the devclass has been allocated yet. 1066 * 1067 * @param dc the devclass to examine 1068 */ 1069 int 1070 devclass_get_maxunit(devclass_t dc) 1071 { 1072 if (dc == NULL) 1073 return (-1); 1074 return (dc->maxunit); 1075 } 1076 1077 /** 1078 * @brief Find a free unit number in a devclass 1079 * 1080 * This function searches for the first unused unit number greater 1081 * that or equal to @p unit. 1082 * 1083 * @param dc the devclass to examine 1084 * @param unit the first unit number to check 1085 */ 1086 int 1087 devclass_find_free_unit(devclass_t dc, int unit) 1088 { 1089 if (dc == NULL) 1090 return (unit); 1091 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1092 unit++; 1093 return (unit); 1094 } 1095 1096 /** 1097 * @brief Set the parent of a devclass 1098 * 1099 * The parent class is normally initialised automatically by 1100 * DRIVER_MODULE(). 1101 * 1102 * @param dc the devclass to edit 1103 * @param pdc the new parent devclass 1104 */ 1105 void 1106 devclass_set_parent(devclass_t dc, devclass_t pdc) 1107 { 1108 dc->parent = pdc; 1109 } 1110 1111 /** 1112 * @brief Get the parent of a devclass 1113 * 1114 * @param dc the devclass to examine 1115 */ 1116 devclass_t 1117 devclass_get_parent(devclass_t dc) 1118 { 1119 return (dc->parent); 1120 } 1121 1122 struct sysctl_ctx_list * 1123 devclass_get_sysctl_ctx(devclass_t dc) 1124 { 1125 return (&dc->sysctl_ctx); 1126 } 1127 1128 struct sysctl_oid * 1129 devclass_get_sysctl_tree(devclass_t dc) 1130 { 1131 return (dc->sysctl_tree); 1132 } 1133 1134 /** 1135 * @internal 1136 * @brief Allocate a unit number 1137 * 1138 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1139 * will do). The allocated unit number is returned in @p *unitp. 1140 1141 * @param dc the devclass to allocate from 1142 * @param unitp points at the location for the allocated unit 1143 * number 1144 * 1145 * @retval 0 success 1146 * @retval EEXIST the requested unit number is already allocated 1147 * @retval ENOMEM memory allocation failure 1148 */ 1149 static int 1150 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1151 { 1152 const char *s; 1153 int unit = *unitp; 1154 1155 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1156 1157 /* Ask the parent bus if it wants to wire this device. */ 1158 if (unit == -1) 1159 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1160 &unit); 1161 1162 /* If we were given a wired unit number, check for existing device */ 1163 /* XXX imp XXX */ 1164 if (unit != -1) { 1165 if (unit >= 0 && unit < dc->maxunit && 1166 dc->devices[unit] != NULL) { 1167 if (bootverbose) 1168 printf("%s: %s%d already exists; skipping it\n", 1169 dc->name, dc->name, *unitp); 1170 return (EEXIST); 1171 } 1172 } else { 1173 /* Unwired device, find the next available slot for it */ 1174 unit = 0; 1175 for (unit = 0;; unit++) { 1176 /* If this device slot is already in use, skip it. */ 1177 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1178 continue; 1179 1180 /* If there is an "at" hint for a unit then skip it. */ 1181 if (resource_string_value(dc->name, unit, "at", &s) == 1182 0) 1183 continue; 1184 1185 break; 1186 } 1187 } 1188 1189 /* 1190 * We've selected a unit beyond the length of the table, so let's 1191 * extend the table to make room for all units up to and including 1192 * this one. 1193 */ 1194 if (unit >= dc->maxunit) { 1195 device_t *newlist, *oldlist; 1196 int newsize; 1197 1198 oldlist = dc->devices; 1199 newsize = roundup((unit + 1), 1200 MAX(1, MINALLOCSIZE / sizeof(device_t))); 1201 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1202 if (!newlist) 1203 return (ENOMEM); 1204 if (oldlist != NULL) 1205 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1206 bzero(newlist + dc->maxunit, 1207 sizeof(device_t) * (newsize - dc->maxunit)); 1208 dc->devices = newlist; 1209 dc->maxunit = newsize; 1210 if (oldlist != NULL) 1211 free(oldlist, M_BUS); 1212 } 1213 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1214 1215 *unitp = unit; 1216 return (0); 1217 } 1218 1219 /** 1220 * @internal 1221 * @brief Add a device to a devclass 1222 * 1223 * A unit number is allocated for the device (using the device's 1224 * preferred unit number if any) and the device is registered in the 1225 * devclass. This allows the device to be looked up by its unit 1226 * number, e.g. by decoding a dev_t minor number. 1227 * 1228 * @param dc the devclass to add to 1229 * @param dev the device to add 1230 * 1231 * @retval 0 success 1232 * @retval EEXIST the requested unit number is already allocated 1233 * @retval ENOMEM memory allocation failure 1234 */ 1235 static int 1236 devclass_add_device(devclass_t dc, device_t dev) 1237 { 1238 int buflen, error; 1239 1240 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1241 1242 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1243 if (buflen < 0) 1244 return (ENOMEM); 1245 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1246 if (!dev->nameunit) 1247 return (ENOMEM); 1248 1249 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1250 free(dev->nameunit, M_BUS); 1251 dev->nameunit = NULL; 1252 return (error); 1253 } 1254 dc->devices[dev->unit] = dev; 1255 dev->devclass = dc; 1256 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1257 1258 return (0); 1259 } 1260 1261 /** 1262 * @internal 1263 * @brief Delete a device from a devclass 1264 * 1265 * The device is removed from the devclass's device list and its unit 1266 * number is freed. 1267 1268 * @param dc the devclass to delete from 1269 * @param dev the device to delete 1270 * 1271 * @retval 0 success 1272 */ 1273 static int 1274 devclass_delete_device(devclass_t dc, device_t dev) 1275 { 1276 if (!dc || !dev) 1277 return (0); 1278 1279 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1280 1281 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1282 panic("devclass_delete_device: inconsistent device class"); 1283 dc->devices[dev->unit] = NULL; 1284 if (dev->flags & DF_WILDCARD) 1285 dev->unit = -1; 1286 dev->devclass = NULL; 1287 free(dev->nameunit, M_BUS); 1288 dev->nameunit = NULL; 1289 1290 return (0); 1291 } 1292 1293 /** 1294 * @internal 1295 * @brief Make a new device and add it as a child of @p parent 1296 * 1297 * @param parent the parent of the new device 1298 * @param name the devclass name of the new device or @c NULL 1299 * to leave the devclass unspecified 1300 * @parem unit the unit number of the new device of @c -1 to 1301 * leave the unit number unspecified 1302 * 1303 * @returns the new device 1304 */ 1305 static device_t 1306 make_device(device_t parent, const char *name, int unit) 1307 { 1308 device_t dev; 1309 devclass_t dc; 1310 1311 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1312 1313 if (name) { 1314 dc = devclass_find_internal(name, NULL, TRUE); 1315 if (!dc) { 1316 printf("make_device: can't find device class %s\n", 1317 name); 1318 return (NULL); 1319 } 1320 } else { 1321 dc = NULL; 1322 } 1323 1324 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1325 if (!dev) 1326 return (NULL); 1327 1328 dev->parent = parent; 1329 TAILQ_INIT(&dev->children); 1330 kobj_init((kobj_t) dev, &null_class); 1331 dev->driver = NULL; 1332 dev->devclass = NULL; 1333 dev->unit = unit; 1334 dev->nameunit = NULL; 1335 dev->desc = NULL; 1336 dev->busy = 0; 1337 dev->devflags = 0; 1338 dev->flags = DF_ENABLED; 1339 dev->order = 0; 1340 if (unit == -1) 1341 dev->flags |= DF_WILDCARD; 1342 if (name) { 1343 dev->flags |= DF_FIXEDCLASS; 1344 if (devclass_add_device(dc, dev)) { 1345 kobj_delete((kobj_t) dev, M_BUS); 1346 return (NULL); 1347 } 1348 } 1349 if (parent != NULL && device_has_quiet_children(parent)) 1350 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1351 dev->ivars = NULL; 1352 dev->softc = NULL; 1353 1354 dev->state = DS_NOTPRESENT; 1355 1356 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1357 bus_data_generation_update(); 1358 1359 return (dev); 1360 } 1361 1362 /** 1363 * @internal 1364 * @brief Print a description of a device. 1365 */ 1366 static int 1367 device_print_child(device_t dev, device_t child) 1368 { 1369 int retval = 0; 1370 1371 if (device_is_alive(child)) 1372 retval += BUS_PRINT_CHILD(dev, child); 1373 else 1374 retval += device_printf(child, " not found\n"); 1375 1376 return (retval); 1377 } 1378 1379 /** 1380 * @brief Create a new device 1381 * 1382 * This creates a new device and adds it as a child of an existing 1383 * parent device. The new device will be added after the last existing 1384 * child with order zero. 1385 * 1386 * @param dev the device which will be the parent of the 1387 * new child device 1388 * @param name devclass name for new device or @c NULL if not 1389 * specified 1390 * @param unit unit number for new device or @c -1 if not 1391 * specified 1392 * 1393 * @returns the new device 1394 */ 1395 device_t 1396 device_add_child(device_t dev, const char *name, int unit) 1397 { 1398 return (device_add_child_ordered(dev, 0, name, unit)); 1399 } 1400 1401 /** 1402 * @brief Create a new device 1403 * 1404 * This creates a new device and adds it as a child of an existing 1405 * parent device. The new device will be added after the last existing 1406 * child with the same order. 1407 * 1408 * @param dev the device which will be the parent of the 1409 * new child device 1410 * @param order a value which is used to partially sort the 1411 * children of @p dev - devices created using 1412 * lower values of @p order appear first in @p 1413 * dev's list of children 1414 * @param name devclass name for new device or @c NULL if not 1415 * specified 1416 * @param unit unit number for new device or @c -1 if not 1417 * specified 1418 * 1419 * @returns the new device 1420 */ 1421 device_t 1422 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1423 { 1424 device_t child; 1425 device_t place; 1426 1427 PDEBUG(("%s at %s with order %u as unit %d", 1428 name, DEVICENAME(dev), order, unit)); 1429 KASSERT(name != NULL || unit == -1, 1430 ("child device with wildcard name and specific unit number")); 1431 1432 child = make_device(dev, name, unit); 1433 if (child == NULL) 1434 return (child); 1435 child->order = order; 1436 1437 TAILQ_FOREACH(place, &dev->children, link) { 1438 if (place->order > order) 1439 break; 1440 } 1441 1442 if (place) { 1443 /* 1444 * The device 'place' is the first device whose order is 1445 * greater than the new child. 1446 */ 1447 TAILQ_INSERT_BEFORE(place, child, link); 1448 } else { 1449 /* 1450 * The new child's order is greater or equal to the order of 1451 * any existing device. Add the child to the tail of the list. 1452 */ 1453 TAILQ_INSERT_TAIL(&dev->children, child, link); 1454 } 1455 1456 bus_data_generation_update(); 1457 return (child); 1458 } 1459 1460 /** 1461 * @brief Delete a device 1462 * 1463 * This function deletes a device along with all of its children. If 1464 * the device currently has a driver attached to it, the device is 1465 * detached first using device_detach(). 1466 * 1467 * @param dev the parent device 1468 * @param child the device to delete 1469 * 1470 * @retval 0 success 1471 * @retval non-zero a unit error code describing the error 1472 */ 1473 int 1474 device_delete_child(device_t dev, device_t child) 1475 { 1476 int error; 1477 device_t grandchild; 1478 1479 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1480 1481 /* detach parent before deleting children, if any */ 1482 if ((error = device_detach(child)) != 0) 1483 return (error); 1484 1485 /* remove children second */ 1486 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1487 error = device_delete_child(child, grandchild); 1488 if (error) 1489 return (error); 1490 } 1491 1492 if (child->devclass) 1493 devclass_delete_device(child->devclass, child); 1494 if (child->parent) 1495 BUS_CHILD_DELETED(dev, child); 1496 TAILQ_REMOVE(&dev->children, child, link); 1497 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1498 kobj_delete((kobj_t) child, M_BUS); 1499 1500 bus_data_generation_update(); 1501 return (0); 1502 } 1503 1504 /** 1505 * @brief Delete all children devices of the given device, if any. 1506 * 1507 * This function deletes all children devices of the given device, if 1508 * any, using the device_delete_child() function for each device it 1509 * finds. If a child device cannot be deleted, this function will 1510 * return an error code. 1511 * 1512 * @param dev the parent device 1513 * 1514 * @retval 0 success 1515 * @retval non-zero a device would not detach 1516 */ 1517 int 1518 device_delete_children(device_t dev) 1519 { 1520 device_t child; 1521 int error; 1522 1523 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1524 1525 error = 0; 1526 1527 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1528 error = device_delete_child(dev, child); 1529 if (error) { 1530 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1531 break; 1532 } 1533 } 1534 return (error); 1535 } 1536 1537 /** 1538 * @brief Find a device given a unit number 1539 * 1540 * This is similar to devclass_get_devices() but only searches for 1541 * devices which have @p dev as a parent. 1542 * 1543 * @param dev the parent device to search 1544 * @param unit the unit number to search for. If the unit is -1, 1545 * return the first child of @p dev which has name 1546 * @p classname (that is, the one with the lowest unit.) 1547 * 1548 * @returns the device with the given unit number or @c 1549 * NULL if there is no such device 1550 */ 1551 device_t 1552 device_find_child(device_t dev, const char *classname, int unit) 1553 { 1554 devclass_t dc; 1555 device_t child; 1556 1557 dc = devclass_find(classname); 1558 if (!dc) 1559 return (NULL); 1560 1561 if (unit != -1) { 1562 child = devclass_get_device(dc, unit); 1563 if (child && child->parent == dev) 1564 return (child); 1565 } else { 1566 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1567 child = devclass_get_device(dc, unit); 1568 if (child && child->parent == dev) 1569 return (child); 1570 } 1571 } 1572 return (NULL); 1573 } 1574 1575 /** 1576 * @internal 1577 */ 1578 static driverlink_t 1579 first_matching_driver(devclass_t dc, device_t dev) 1580 { 1581 if (dev->devclass) 1582 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1583 return (TAILQ_FIRST(&dc->drivers)); 1584 } 1585 1586 /** 1587 * @internal 1588 */ 1589 static driverlink_t 1590 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1591 { 1592 if (dev->devclass) { 1593 driverlink_t dl; 1594 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1595 if (!strcmp(dev->devclass->name, dl->driver->name)) 1596 return (dl); 1597 return (NULL); 1598 } 1599 return (TAILQ_NEXT(last, link)); 1600 } 1601 1602 /** 1603 * @internal 1604 */ 1605 int 1606 device_probe_child(device_t dev, device_t child) 1607 { 1608 devclass_t dc; 1609 driverlink_t best = NULL; 1610 driverlink_t dl; 1611 int result, pri = 0; 1612 /* We should preserve the devclass (or lack of) set by the bus. */ 1613 int hasclass = (child->devclass != NULL); 1614 1615 bus_topo_assert(); 1616 1617 dc = dev->devclass; 1618 if (!dc) 1619 panic("device_probe_child: parent device has no devclass"); 1620 1621 /* 1622 * If the state is already probed, then return. 1623 */ 1624 if (child->state == DS_ALIVE) 1625 return (0); 1626 1627 for (; dc; dc = dc->parent) { 1628 for (dl = first_matching_driver(dc, child); 1629 dl; 1630 dl = next_matching_driver(dc, child, dl)) { 1631 /* If this driver's pass is too high, then ignore it. */ 1632 if (dl->pass > bus_current_pass) 1633 continue; 1634 1635 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1636 result = device_set_driver(child, dl->driver); 1637 if (result == ENOMEM) 1638 return (result); 1639 else if (result != 0) 1640 continue; 1641 if (!hasclass) { 1642 if (device_set_devclass(child, 1643 dl->driver->name) != 0) { 1644 char const * devname = 1645 device_get_name(child); 1646 if (devname == NULL) 1647 devname = "(unknown)"; 1648 printf("driver bug: Unable to set " 1649 "devclass (class: %s " 1650 "devname: %s)\n", 1651 dl->driver->name, 1652 devname); 1653 (void)device_set_driver(child, NULL); 1654 continue; 1655 } 1656 } 1657 1658 /* Fetch any flags for the device before probing. */ 1659 resource_int_value(dl->driver->name, child->unit, 1660 "flags", &child->devflags); 1661 1662 result = DEVICE_PROBE(child); 1663 1664 /* 1665 * If the driver returns SUCCESS, there can be 1666 * no higher match for this device. 1667 */ 1668 if (result == 0) { 1669 best = dl; 1670 pri = 0; 1671 break; 1672 } 1673 1674 /* Reset flags and devclass before the next probe. */ 1675 child->devflags = 0; 1676 if (!hasclass) 1677 (void)device_set_devclass(child, NULL); 1678 1679 /* 1680 * Reset DF_QUIET in case this driver doesn't 1681 * end up as the best driver. 1682 */ 1683 device_verbose(child); 1684 1685 /* 1686 * Probes that return BUS_PROBE_NOWILDCARD or lower 1687 * only match on devices whose driver was explicitly 1688 * specified. 1689 */ 1690 if (result <= BUS_PROBE_NOWILDCARD && 1691 !(child->flags & DF_FIXEDCLASS)) { 1692 result = ENXIO; 1693 } 1694 1695 /* 1696 * The driver returned an error so it 1697 * certainly doesn't match. 1698 */ 1699 if (result > 0) { 1700 (void)device_set_driver(child, NULL); 1701 continue; 1702 } 1703 1704 /* 1705 * A priority lower than SUCCESS, remember the 1706 * best matching driver. Initialise the value 1707 * of pri for the first match. 1708 */ 1709 if (best == NULL || result > pri) { 1710 best = dl; 1711 pri = result; 1712 continue; 1713 } 1714 } 1715 /* 1716 * If we have an unambiguous match in this devclass, 1717 * don't look in the parent. 1718 */ 1719 if (best && pri == 0) 1720 break; 1721 } 1722 1723 if (best == NULL) 1724 return (ENXIO); 1725 1726 /* 1727 * If we found a driver, change state and initialise the devclass. 1728 */ 1729 if (pri < 0) { 1730 /* Set the winning driver, devclass, and flags. */ 1731 result = device_set_driver(child, best->driver); 1732 if (result != 0) 1733 return (result); 1734 if (!child->devclass) { 1735 result = device_set_devclass(child, best->driver->name); 1736 if (result != 0) { 1737 (void)device_set_driver(child, NULL); 1738 return (result); 1739 } 1740 } 1741 resource_int_value(best->driver->name, child->unit, 1742 "flags", &child->devflags); 1743 1744 /* 1745 * A bit bogus. Call the probe method again to make sure 1746 * that we have the right description. 1747 */ 1748 result = DEVICE_PROBE(child); 1749 if (result > 0) { 1750 if (!hasclass) 1751 (void)device_set_devclass(child, NULL); 1752 (void)device_set_driver(child, NULL); 1753 return (result); 1754 } 1755 } 1756 1757 child->state = DS_ALIVE; 1758 bus_data_generation_update(); 1759 return (0); 1760 } 1761 1762 /** 1763 * @brief Return the parent of a device 1764 */ 1765 device_t 1766 device_get_parent(device_t dev) 1767 { 1768 return (dev->parent); 1769 } 1770 1771 /** 1772 * @brief Get a list of children of a device 1773 * 1774 * An array containing a list of all the children of the given device 1775 * is allocated and returned in @p *devlistp. The number of devices 1776 * in the array is returned in @p *devcountp. The caller should free 1777 * the array using @c free(p, M_TEMP). 1778 * 1779 * @param dev the device to examine 1780 * @param devlistp points at location for array pointer return 1781 * value 1782 * @param devcountp points at location for array size return value 1783 * 1784 * @retval 0 success 1785 * @retval ENOMEM the array allocation failed 1786 */ 1787 int 1788 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1789 { 1790 int count; 1791 device_t child; 1792 device_t *list; 1793 1794 count = 0; 1795 TAILQ_FOREACH(child, &dev->children, link) { 1796 count++; 1797 } 1798 if (count == 0) { 1799 *devlistp = NULL; 1800 *devcountp = 0; 1801 return (0); 1802 } 1803 1804 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1805 if (!list) 1806 return (ENOMEM); 1807 1808 count = 0; 1809 TAILQ_FOREACH(child, &dev->children, link) { 1810 list[count] = child; 1811 count++; 1812 } 1813 1814 *devlistp = list; 1815 *devcountp = count; 1816 1817 return (0); 1818 } 1819 1820 /** 1821 * @brief Return the current driver for the device or @c NULL if there 1822 * is no driver currently attached 1823 */ 1824 driver_t * 1825 device_get_driver(device_t dev) 1826 { 1827 return (dev->driver); 1828 } 1829 1830 /** 1831 * @brief Return the current devclass for the device or @c NULL if 1832 * there is none. 1833 */ 1834 devclass_t 1835 device_get_devclass(device_t dev) 1836 { 1837 return (dev->devclass); 1838 } 1839 1840 /** 1841 * @brief Return the name of the device's devclass or @c NULL if there 1842 * is none. 1843 */ 1844 const char * 1845 device_get_name(device_t dev) 1846 { 1847 if (dev != NULL && dev->devclass) 1848 return (devclass_get_name(dev->devclass)); 1849 return (NULL); 1850 } 1851 1852 /** 1853 * @brief Return a string containing the device's devclass name 1854 * followed by an ascii representation of the device's unit number 1855 * (e.g. @c "foo2"). 1856 */ 1857 const char * 1858 device_get_nameunit(device_t dev) 1859 { 1860 return (dev->nameunit); 1861 } 1862 1863 /** 1864 * @brief Return the device's unit number. 1865 */ 1866 int 1867 device_get_unit(device_t dev) 1868 { 1869 return (dev->unit); 1870 } 1871 1872 /** 1873 * @brief Return the device's description string 1874 */ 1875 const char * 1876 device_get_desc(device_t dev) 1877 { 1878 return (dev->desc); 1879 } 1880 1881 /** 1882 * @brief Return the device's flags 1883 */ 1884 uint32_t 1885 device_get_flags(device_t dev) 1886 { 1887 return (dev->devflags); 1888 } 1889 1890 struct sysctl_ctx_list * 1891 device_get_sysctl_ctx(device_t dev) 1892 { 1893 return (&dev->sysctl_ctx); 1894 } 1895 1896 struct sysctl_oid * 1897 device_get_sysctl_tree(device_t dev) 1898 { 1899 return (dev->sysctl_tree); 1900 } 1901 1902 /** 1903 * @brief Print the name of the device followed by a colon and a space 1904 * 1905 * @returns the number of characters printed 1906 */ 1907 int 1908 device_print_prettyname(device_t dev) 1909 { 1910 const char *name = device_get_name(dev); 1911 1912 if (name == NULL) 1913 return (printf("unknown: ")); 1914 return (printf("%s%d: ", name, device_get_unit(dev))); 1915 } 1916 1917 /** 1918 * @brief Print the name of the device followed by a colon, a space 1919 * and the result of calling vprintf() with the value of @p fmt and 1920 * the following arguments. 1921 * 1922 * @returns the number of characters printed 1923 */ 1924 int 1925 device_printf(device_t dev, const char * fmt, ...) 1926 { 1927 char buf[128]; 1928 struct sbuf sb; 1929 const char *name; 1930 va_list ap; 1931 size_t retval; 1932 1933 retval = 0; 1934 1935 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1936 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 1937 1938 name = device_get_name(dev); 1939 1940 if (name == NULL) 1941 sbuf_cat(&sb, "unknown: "); 1942 else 1943 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 1944 1945 va_start(ap, fmt); 1946 sbuf_vprintf(&sb, fmt, ap); 1947 va_end(ap); 1948 1949 sbuf_finish(&sb); 1950 sbuf_delete(&sb); 1951 1952 return (retval); 1953 } 1954 1955 /** 1956 * @brief Print the name of the device followed by a colon, a space 1957 * and the result of calling log() with the value of @p fmt and 1958 * the following arguments. 1959 * 1960 * @returns the number of characters printed 1961 */ 1962 int 1963 device_log(device_t dev, int pri, const char * fmt, ...) 1964 { 1965 char buf[128]; 1966 struct sbuf sb; 1967 const char *name; 1968 va_list ap; 1969 size_t retval; 1970 1971 retval = 0; 1972 1973 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1974 1975 name = device_get_name(dev); 1976 1977 if (name == NULL) 1978 sbuf_cat(&sb, "unknown: "); 1979 else 1980 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 1981 1982 va_start(ap, fmt); 1983 sbuf_vprintf(&sb, fmt, ap); 1984 va_end(ap); 1985 1986 sbuf_finish(&sb); 1987 1988 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb)); 1989 retval = sbuf_len(&sb); 1990 1991 sbuf_delete(&sb); 1992 1993 return (retval); 1994 } 1995 1996 /** 1997 * @internal 1998 */ 1999 static void 2000 device_set_desc_internal(device_t dev, const char *desc, bool allocated) 2001 { 2002 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2003 free(dev->desc, M_BUS); 2004 dev->flags &= ~DF_DESCMALLOCED; 2005 dev->desc = NULL; 2006 } 2007 2008 if (allocated && desc) 2009 dev->flags |= DF_DESCMALLOCED; 2010 dev->desc = __DECONST(char *, desc); 2011 2012 bus_data_generation_update(); 2013 } 2014 2015 /** 2016 * @brief Set the device's description 2017 * 2018 * The value of @c desc should be a string constant that will not 2019 * change (at least until the description is changed in a subsequent 2020 * call to device_set_desc() or device_set_desc_copy()). 2021 */ 2022 void 2023 device_set_desc(device_t dev, const char *desc) 2024 { 2025 device_set_desc_internal(dev, desc, false); 2026 } 2027 2028 /** 2029 * @brief Set the device's description 2030 * 2031 * A printf-like version of device_set_desc(). 2032 */ 2033 void 2034 device_set_descf(device_t dev, const char *fmt, ...) 2035 { 2036 va_list ap; 2037 char *buf = NULL; 2038 2039 va_start(ap, fmt); 2040 vasprintf(&buf, M_BUS, fmt, ap); 2041 va_end(ap); 2042 device_set_desc_internal(dev, buf, true); 2043 } 2044 2045 /** 2046 * @brief Set the device's description 2047 * 2048 * The string pointed to by @c desc is copied. Use this function if 2049 * the device description is generated, (e.g. with sprintf()). 2050 */ 2051 void 2052 device_set_desc_copy(device_t dev, const char *desc) 2053 { 2054 char *buf; 2055 2056 buf = strdup_flags(desc, M_BUS, M_NOWAIT); 2057 device_set_desc_internal(dev, buf, true); 2058 } 2059 2060 /** 2061 * @brief Set the device's flags 2062 */ 2063 void 2064 device_set_flags(device_t dev, uint32_t flags) 2065 { 2066 dev->devflags = flags; 2067 } 2068 2069 /** 2070 * @brief Return the device's softc field 2071 * 2072 * The softc is allocated and zeroed when a driver is attached, based 2073 * on the size field of the driver. 2074 */ 2075 void * 2076 device_get_softc(device_t dev) 2077 { 2078 return (dev->softc); 2079 } 2080 2081 /** 2082 * @brief Set the device's softc field 2083 * 2084 * Most drivers do not need to use this since the softc is allocated 2085 * automatically when the driver is attached. 2086 */ 2087 void 2088 device_set_softc(device_t dev, void *softc) 2089 { 2090 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2091 free(dev->softc, M_BUS_SC); 2092 dev->softc = softc; 2093 if (dev->softc) 2094 dev->flags |= DF_EXTERNALSOFTC; 2095 else 2096 dev->flags &= ~DF_EXTERNALSOFTC; 2097 } 2098 2099 /** 2100 * @brief Free claimed softc 2101 * 2102 * Most drivers do not need to use this since the softc is freed 2103 * automatically when the driver is detached. 2104 */ 2105 void 2106 device_free_softc(void *softc) 2107 { 2108 free(softc, M_BUS_SC); 2109 } 2110 2111 /** 2112 * @brief Claim softc 2113 * 2114 * This function can be used to let the driver free the automatically 2115 * allocated softc using "device_free_softc()". This function is 2116 * useful when the driver is refcounting the softc and the softc 2117 * cannot be freed when the "device_detach" method is called. 2118 */ 2119 void 2120 device_claim_softc(device_t dev) 2121 { 2122 if (dev->softc) 2123 dev->flags |= DF_EXTERNALSOFTC; 2124 else 2125 dev->flags &= ~DF_EXTERNALSOFTC; 2126 } 2127 2128 /** 2129 * @brief Get the device's ivars field 2130 * 2131 * The ivars field is used by the parent device to store per-device 2132 * state (e.g. the physical location of the device or a list of 2133 * resources). 2134 */ 2135 void * 2136 device_get_ivars(device_t dev) 2137 { 2138 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2139 return (dev->ivars); 2140 } 2141 2142 /** 2143 * @brief Set the device's ivars field 2144 */ 2145 void 2146 device_set_ivars(device_t dev, void * ivars) 2147 { 2148 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2149 dev->ivars = ivars; 2150 } 2151 2152 /** 2153 * @brief Return the device's state 2154 */ 2155 device_state_t 2156 device_get_state(device_t dev) 2157 { 2158 return (dev->state); 2159 } 2160 2161 /** 2162 * @brief Set the DF_ENABLED flag for the device 2163 */ 2164 void 2165 device_enable(device_t dev) 2166 { 2167 dev->flags |= DF_ENABLED; 2168 } 2169 2170 /** 2171 * @brief Clear the DF_ENABLED flag for the device 2172 */ 2173 void 2174 device_disable(device_t dev) 2175 { 2176 dev->flags &= ~DF_ENABLED; 2177 } 2178 2179 /** 2180 * @brief Increment the busy counter for the device 2181 */ 2182 void 2183 device_busy(device_t dev) 2184 { 2185 2186 /* 2187 * Mark the device as busy, recursively up the tree if this busy count 2188 * goes 0->1. 2189 */ 2190 if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL) 2191 device_busy(dev->parent); 2192 } 2193 2194 /** 2195 * @brief Decrement the busy counter for the device 2196 */ 2197 void 2198 device_unbusy(device_t dev) 2199 { 2200 2201 /* 2202 * Mark the device as unbsy, recursively if this is the last busy count. 2203 */ 2204 if (refcount_release(&dev->busy) && dev->parent != NULL) 2205 device_unbusy(dev->parent); 2206 } 2207 2208 /** 2209 * @brief Set the DF_QUIET flag for the device 2210 */ 2211 void 2212 device_quiet(device_t dev) 2213 { 2214 dev->flags |= DF_QUIET; 2215 } 2216 2217 /** 2218 * @brief Set the DF_QUIET_CHILDREN flag for the device 2219 */ 2220 void 2221 device_quiet_children(device_t dev) 2222 { 2223 dev->flags |= DF_QUIET_CHILDREN; 2224 } 2225 2226 /** 2227 * @brief Clear the DF_QUIET flag for the device 2228 */ 2229 void 2230 device_verbose(device_t dev) 2231 { 2232 dev->flags &= ~DF_QUIET; 2233 } 2234 2235 ssize_t 2236 device_get_property(device_t dev, const char *prop, void *val, size_t sz, 2237 device_property_type_t type) 2238 { 2239 device_t bus = device_get_parent(dev); 2240 2241 switch (type) { 2242 case DEVICE_PROP_ANY: 2243 case DEVICE_PROP_BUFFER: 2244 case DEVICE_PROP_HANDLE: /* Size checks done in implementation. */ 2245 break; 2246 case DEVICE_PROP_UINT32: 2247 if (sz % 4 != 0) 2248 return (-1); 2249 break; 2250 case DEVICE_PROP_UINT64: 2251 if (sz % 8 != 0) 2252 return (-1); 2253 break; 2254 default: 2255 return (-1); 2256 } 2257 2258 return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type)); 2259 } 2260 2261 bool 2262 device_has_property(device_t dev, const char *prop) 2263 { 2264 return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0); 2265 } 2266 2267 /** 2268 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2269 */ 2270 int 2271 device_has_quiet_children(device_t dev) 2272 { 2273 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2274 } 2275 2276 /** 2277 * @brief Return non-zero if the DF_QUIET flag is set on the device 2278 */ 2279 int 2280 device_is_quiet(device_t dev) 2281 { 2282 return ((dev->flags & DF_QUIET) != 0); 2283 } 2284 2285 /** 2286 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2287 */ 2288 int 2289 device_is_enabled(device_t dev) 2290 { 2291 return ((dev->flags & DF_ENABLED) != 0); 2292 } 2293 2294 /** 2295 * @brief Return non-zero if the device was successfully probed 2296 */ 2297 int 2298 device_is_alive(device_t dev) 2299 { 2300 return (dev->state >= DS_ALIVE); 2301 } 2302 2303 /** 2304 * @brief Return non-zero if the device currently has a driver 2305 * attached to it 2306 */ 2307 int 2308 device_is_attached(device_t dev) 2309 { 2310 return (dev->state >= DS_ATTACHED); 2311 } 2312 2313 /** 2314 * @brief Return non-zero if the device is currently suspended. 2315 */ 2316 int 2317 device_is_suspended(device_t dev) 2318 { 2319 return ((dev->flags & DF_SUSPENDED) != 0); 2320 } 2321 2322 /** 2323 * @brief Set the devclass of a device 2324 * @see devclass_add_device(). 2325 */ 2326 int 2327 device_set_devclass(device_t dev, const char *classname) 2328 { 2329 devclass_t dc; 2330 int error; 2331 2332 if (!classname) { 2333 if (dev->devclass) 2334 devclass_delete_device(dev->devclass, dev); 2335 return (0); 2336 } 2337 2338 if (dev->devclass) { 2339 printf("device_set_devclass: device class already set\n"); 2340 return (EINVAL); 2341 } 2342 2343 dc = devclass_find_internal(classname, NULL, TRUE); 2344 if (!dc) 2345 return (ENOMEM); 2346 2347 error = devclass_add_device(dc, dev); 2348 2349 bus_data_generation_update(); 2350 return (error); 2351 } 2352 2353 /** 2354 * @brief Set the devclass of a device and mark the devclass fixed. 2355 * @see device_set_devclass() 2356 */ 2357 int 2358 device_set_devclass_fixed(device_t dev, const char *classname) 2359 { 2360 int error; 2361 2362 if (classname == NULL) 2363 return (EINVAL); 2364 2365 error = device_set_devclass(dev, classname); 2366 if (error) 2367 return (error); 2368 dev->flags |= DF_FIXEDCLASS; 2369 return (0); 2370 } 2371 2372 /** 2373 * @brief Query the device to determine if it's of a fixed devclass 2374 * @see device_set_devclass_fixed() 2375 */ 2376 bool 2377 device_is_devclass_fixed(device_t dev) 2378 { 2379 return ((dev->flags & DF_FIXEDCLASS) != 0); 2380 } 2381 2382 /** 2383 * @brief Set the driver of a device 2384 * 2385 * @retval 0 success 2386 * @retval EBUSY the device already has a driver attached 2387 * @retval ENOMEM a memory allocation failure occurred 2388 */ 2389 int 2390 device_set_driver(device_t dev, driver_t *driver) 2391 { 2392 int domain; 2393 struct domainset *policy; 2394 2395 if (dev->state >= DS_ATTACHED) 2396 return (EBUSY); 2397 2398 if (dev->driver == driver) 2399 return (0); 2400 2401 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2402 free(dev->softc, M_BUS_SC); 2403 dev->softc = NULL; 2404 } 2405 device_set_desc(dev, NULL); 2406 kobj_delete((kobj_t) dev, NULL); 2407 dev->driver = driver; 2408 if (driver) { 2409 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2410 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2411 if (bus_get_domain(dev, &domain) == 0) 2412 policy = DOMAINSET_PREF(domain); 2413 else 2414 policy = DOMAINSET_RR(); 2415 dev->softc = malloc_domainset(driver->size, M_BUS_SC, 2416 policy, M_NOWAIT | M_ZERO); 2417 if (!dev->softc) { 2418 kobj_delete((kobj_t) dev, NULL); 2419 kobj_init((kobj_t) dev, &null_class); 2420 dev->driver = NULL; 2421 return (ENOMEM); 2422 } 2423 } 2424 } else { 2425 kobj_init((kobj_t) dev, &null_class); 2426 } 2427 2428 bus_data_generation_update(); 2429 return (0); 2430 } 2431 2432 /** 2433 * @brief Probe a device, and return this status. 2434 * 2435 * This function is the core of the device autoconfiguration 2436 * system. Its purpose is to select a suitable driver for a device and 2437 * then call that driver to initialise the hardware appropriately. The 2438 * driver is selected by calling the DEVICE_PROBE() method of a set of 2439 * candidate drivers and then choosing the driver which returned the 2440 * best value. This driver is then attached to the device using 2441 * device_attach(). 2442 * 2443 * The set of suitable drivers is taken from the list of drivers in 2444 * the parent device's devclass. If the device was originally created 2445 * with a specific class name (see device_add_child()), only drivers 2446 * with that name are probed, otherwise all drivers in the devclass 2447 * are probed. If no drivers return successful probe values in the 2448 * parent devclass, the search continues in the parent of that 2449 * devclass (see devclass_get_parent()) if any. 2450 * 2451 * @param dev the device to initialise 2452 * 2453 * @retval 0 success 2454 * @retval ENXIO no driver was found 2455 * @retval ENOMEM memory allocation failure 2456 * @retval non-zero some other unix error code 2457 * @retval -1 Device already attached 2458 */ 2459 int 2460 device_probe(device_t dev) 2461 { 2462 int error; 2463 2464 bus_topo_assert(); 2465 2466 if (dev->state >= DS_ALIVE) 2467 return (-1); 2468 2469 if (!(dev->flags & DF_ENABLED)) { 2470 if (bootverbose && device_get_name(dev) != NULL) { 2471 device_print_prettyname(dev); 2472 printf("not probed (disabled)\n"); 2473 } 2474 return (-1); 2475 } 2476 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2477 if (bus_current_pass == BUS_PASS_DEFAULT && 2478 !(dev->flags & DF_DONENOMATCH)) { 2479 device_handle_nomatch(dev); 2480 } 2481 return (error); 2482 } 2483 return (0); 2484 } 2485 2486 /** 2487 * @brief Probe a device and attach a driver if possible 2488 * 2489 * calls device_probe() and attaches if that was successful. 2490 */ 2491 int 2492 device_probe_and_attach(device_t dev) 2493 { 2494 int error; 2495 2496 bus_topo_assert(); 2497 2498 error = device_probe(dev); 2499 if (error == -1) 2500 return (0); 2501 else if (error != 0) 2502 return (error); 2503 2504 CURVNET_SET_QUIET(vnet0); 2505 error = device_attach(dev); 2506 CURVNET_RESTORE(); 2507 return error; 2508 } 2509 2510 /** 2511 * @brief Attach a device driver to a device 2512 * 2513 * This function is a wrapper around the DEVICE_ATTACH() driver 2514 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2515 * device's sysctl tree, optionally prints a description of the device 2516 * and queues a notification event for user-based device management 2517 * services. 2518 * 2519 * Normally this function is only called internally from 2520 * device_probe_and_attach(). 2521 * 2522 * @param dev the device to initialise 2523 * 2524 * @retval 0 success 2525 * @retval ENXIO no driver was found 2526 * @retval ENOMEM memory allocation failure 2527 * @retval non-zero some other unix error code 2528 */ 2529 int 2530 device_attach(device_t dev) 2531 { 2532 uint64_t attachtime; 2533 uint16_t attachentropy; 2534 int error; 2535 2536 if (resource_disabled(dev->driver->name, dev->unit)) { 2537 device_disable(dev); 2538 if (bootverbose) 2539 device_printf(dev, "disabled via hints entry\n"); 2540 return (ENXIO); 2541 } 2542 2543 device_sysctl_init(dev); 2544 if (!device_is_quiet(dev)) 2545 device_print_child(dev->parent, dev); 2546 attachtime = get_cyclecount(); 2547 dev->state = DS_ATTACHING; 2548 if ((error = DEVICE_ATTACH(dev)) != 0) { 2549 printf("device_attach: %s%d attach returned %d\n", 2550 dev->driver->name, dev->unit, error); 2551 if (disable_failed_devs) { 2552 /* 2553 * When the user has asked to disable failed devices, we 2554 * directly disable the device, but leave it in the 2555 * attaching state. It will not try to probe/attach the 2556 * device further. This leaves the device numbering 2557 * intact for other similar devices in the system. It 2558 * can be removed from this state with devctl. 2559 */ 2560 device_disable(dev); 2561 } else { 2562 /* 2563 * Otherwise, when attach fails, tear down the state 2564 * around that so we can retry when, for example, new 2565 * drivers are loaded. 2566 */ 2567 if (!(dev->flags & DF_FIXEDCLASS)) 2568 devclass_delete_device(dev->devclass, dev); 2569 (void)device_set_driver(dev, NULL); 2570 device_sysctl_fini(dev); 2571 KASSERT(dev->busy == 0, ("attach failed but busy")); 2572 dev->state = DS_NOTPRESENT; 2573 } 2574 return (error); 2575 } 2576 dev->flags |= DF_ATTACHED_ONCE; 2577 /* 2578 * We only need the low bits of this time, but ranges from tens to thousands 2579 * have been seen, so keep 2 bytes' worth. 2580 */ 2581 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 2582 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 2583 device_sysctl_update(dev); 2584 dev->state = DS_ATTACHED; 2585 dev->flags &= ~DF_DONENOMATCH; 2586 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 2587 return (0); 2588 } 2589 2590 /** 2591 * @brief Detach a driver from a device 2592 * 2593 * This function is a wrapper around the DEVICE_DETACH() driver 2594 * method. If the call to DEVICE_DETACH() succeeds, it calls 2595 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2596 * notification event for user-based device management services and 2597 * cleans up the device's sysctl tree. 2598 * 2599 * @param dev the device to un-initialise 2600 * 2601 * @retval 0 success 2602 * @retval ENXIO no driver was found 2603 * @retval ENOMEM memory allocation failure 2604 * @retval non-zero some other unix error code 2605 */ 2606 int 2607 device_detach(device_t dev) 2608 { 2609 int error; 2610 2611 bus_topo_assert(); 2612 2613 PDEBUG(("%s", DEVICENAME(dev))); 2614 if (dev->busy > 0) 2615 return (EBUSY); 2616 if (dev->state == DS_ATTACHING) { 2617 device_printf(dev, "device in attaching state! Deferring detach.\n"); 2618 return (EBUSY); 2619 } 2620 if (dev->state != DS_ATTACHED) 2621 return (0); 2622 2623 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 2624 if ((error = DEVICE_DETACH(dev)) != 0) { 2625 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2626 EVHDEV_DETACH_FAILED); 2627 return (error); 2628 } else { 2629 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2630 EVHDEV_DETACH_COMPLETE); 2631 } 2632 if (!device_is_quiet(dev)) 2633 device_printf(dev, "detached\n"); 2634 if (dev->parent) 2635 BUS_CHILD_DETACHED(dev->parent, dev); 2636 2637 if (!(dev->flags & DF_FIXEDCLASS)) 2638 devclass_delete_device(dev->devclass, dev); 2639 2640 device_verbose(dev); 2641 dev->state = DS_NOTPRESENT; 2642 (void)device_set_driver(dev, NULL); 2643 device_sysctl_fini(dev); 2644 2645 return (0); 2646 } 2647 2648 /** 2649 * @brief Tells a driver to quiesce itself. 2650 * 2651 * This function is a wrapper around the DEVICE_QUIESCE() driver 2652 * method. If the call to DEVICE_QUIESCE() succeeds. 2653 * 2654 * @param dev the device to quiesce 2655 * 2656 * @retval 0 success 2657 * @retval ENXIO no driver was found 2658 * @retval ENOMEM memory allocation failure 2659 * @retval non-zero some other unix error code 2660 */ 2661 int 2662 device_quiesce(device_t dev) 2663 { 2664 PDEBUG(("%s", DEVICENAME(dev))); 2665 if (dev->busy > 0) 2666 return (EBUSY); 2667 if (dev->state != DS_ATTACHED) 2668 return (0); 2669 2670 return (DEVICE_QUIESCE(dev)); 2671 } 2672 2673 /** 2674 * @brief Notify a device of system shutdown 2675 * 2676 * This function calls the DEVICE_SHUTDOWN() driver method if the 2677 * device currently has an attached driver. 2678 * 2679 * @returns the value returned by DEVICE_SHUTDOWN() 2680 */ 2681 int 2682 device_shutdown(device_t dev) 2683 { 2684 if (dev->state < DS_ATTACHED) 2685 return (0); 2686 return (DEVICE_SHUTDOWN(dev)); 2687 } 2688 2689 /** 2690 * @brief Set the unit number of a device 2691 * 2692 * This function can be used to override the unit number used for a 2693 * device (e.g. to wire a device to a pre-configured unit number). 2694 */ 2695 int 2696 device_set_unit(device_t dev, int unit) 2697 { 2698 devclass_t dc; 2699 int err; 2700 2701 if (unit == dev->unit) 2702 return (0); 2703 dc = device_get_devclass(dev); 2704 if (unit < dc->maxunit && dc->devices[unit]) 2705 return (EBUSY); 2706 err = devclass_delete_device(dc, dev); 2707 if (err) 2708 return (err); 2709 dev->unit = unit; 2710 err = devclass_add_device(dc, dev); 2711 if (err) 2712 return (err); 2713 2714 bus_data_generation_update(); 2715 return (0); 2716 } 2717 2718 /*======================================*/ 2719 /* 2720 * Some useful method implementations to make life easier for bus drivers. 2721 */ 2722 2723 /** 2724 * @brief Initialize a resource mapping request 2725 * 2726 * This is the internal implementation of the public API 2727 * resource_init_map_request. Callers may be using a different layout 2728 * of struct resource_map_request than the kernel, so callers pass in 2729 * the size of the structure they are using to identify the structure 2730 * layout. 2731 */ 2732 void 2733 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 2734 { 2735 bzero(args, sz); 2736 args->size = sz; 2737 args->memattr = VM_MEMATTR_DEVICE; 2738 } 2739 2740 /** 2741 * @brief Validate a resource mapping request 2742 * 2743 * Translate a device driver's mapping request (@p in) to a struct 2744 * resource_map_request using the current structure layout (@p out). 2745 * In addition, validate the offset and length from the mapping 2746 * request against the bounds of the resource @p r. If the offset or 2747 * length are invalid, fail with EINVAL. If the offset and length are 2748 * valid, the absolute starting address of the requested mapping is 2749 * returned in @p startp and the length of the requested mapping is 2750 * returned in @p lengthp. 2751 */ 2752 int 2753 resource_validate_map_request(struct resource *r, 2754 struct resource_map_request *in, struct resource_map_request *out, 2755 rman_res_t *startp, rman_res_t *lengthp) 2756 { 2757 rman_res_t end, length, start; 2758 2759 /* 2760 * This assumes that any callers of this function are compiled 2761 * into the kernel and use the same version of the structure 2762 * as this file. 2763 */ 2764 MPASS(out->size == sizeof(struct resource_map_request)); 2765 2766 if (in != NULL) 2767 bcopy(in, out, imin(in->size, out->size)); 2768 start = rman_get_start(r) + out->offset; 2769 if (out->length == 0) 2770 length = rman_get_size(r); 2771 else 2772 length = out->length; 2773 end = start + length - 1; 2774 if (start > rman_get_end(r) || start < rman_get_start(r)) 2775 return (EINVAL); 2776 if (end > rman_get_end(r) || end < start) 2777 return (EINVAL); 2778 *lengthp = length; 2779 *startp = start; 2780 return (0); 2781 } 2782 2783 /** 2784 * @brief Initialise a resource list. 2785 * 2786 * @param rl the resource list to initialise 2787 */ 2788 void 2789 resource_list_init(struct resource_list *rl) 2790 { 2791 STAILQ_INIT(rl); 2792 } 2793 2794 /** 2795 * @brief Reclaim memory used by a resource list. 2796 * 2797 * This function frees the memory for all resource entries on the list 2798 * (if any). 2799 * 2800 * @param rl the resource list to free 2801 */ 2802 void 2803 resource_list_free(struct resource_list *rl) 2804 { 2805 struct resource_list_entry *rle; 2806 2807 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2808 if (rle->res) 2809 panic("resource_list_free: resource entry is busy"); 2810 STAILQ_REMOVE_HEAD(rl, link); 2811 free(rle, M_BUS); 2812 } 2813 } 2814 2815 /** 2816 * @brief Add a resource entry. 2817 * 2818 * This function adds a resource entry using the given @p type, @p 2819 * start, @p end and @p count values. A rid value is chosen by 2820 * searching sequentially for the first unused rid starting at zero. 2821 * 2822 * @param rl the resource list to edit 2823 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2824 * @param start the start address of the resource 2825 * @param end the end address of the resource 2826 * @param count XXX end-start+1 2827 */ 2828 int 2829 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 2830 rman_res_t end, rman_res_t count) 2831 { 2832 int rid; 2833 2834 rid = 0; 2835 while (resource_list_find(rl, type, rid) != NULL) 2836 rid++; 2837 resource_list_add(rl, type, rid, start, end, count); 2838 return (rid); 2839 } 2840 2841 /** 2842 * @brief Add or modify a resource entry. 2843 * 2844 * If an existing entry exists with the same type and rid, it will be 2845 * modified using the given values of @p start, @p end and @p 2846 * count. If no entry exists, a new one will be created using the 2847 * given values. The resource list entry that matches is then returned. 2848 * 2849 * @param rl the resource list to edit 2850 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2851 * @param rid the resource identifier 2852 * @param start the start address of the resource 2853 * @param end the end address of the resource 2854 * @param count XXX end-start+1 2855 */ 2856 struct resource_list_entry * 2857 resource_list_add(struct resource_list *rl, int type, int rid, 2858 rman_res_t start, rman_res_t end, rman_res_t count) 2859 { 2860 struct resource_list_entry *rle; 2861 2862 rle = resource_list_find(rl, type, rid); 2863 if (!rle) { 2864 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2865 M_NOWAIT); 2866 if (!rle) 2867 panic("resource_list_add: can't record entry"); 2868 STAILQ_INSERT_TAIL(rl, rle, link); 2869 rle->type = type; 2870 rle->rid = rid; 2871 rle->res = NULL; 2872 rle->flags = 0; 2873 } 2874 2875 if (rle->res) 2876 panic("resource_list_add: resource entry is busy"); 2877 2878 rle->start = start; 2879 rle->end = end; 2880 rle->count = count; 2881 return (rle); 2882 } 2883 2884 /** 2885 * @brief Determine if a resource entry is busy. 2886 * 2887 * Returns true if a resource entry is busy meaning that it has an 2888 * associated resource that is not an unallocated "reserved" resource. 2889 * 2890 * @param rl the resource list to search 2891 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2892 * @param rid the resource identifier 2893 * 2894 * @returns Non-zero if the entry is busy, zero otherwise. 2895 */ 2896 int 2897 resource_list_busy(struct resource_list *rl, int type, int rid) 2898 { 2899 struct resource_list_entry *rle; 2900 2901 rle = resource_list_find(rl, type, rid); 2902 if (rle == NULL || rle->res == NULL) 2903 return (0); 2904 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 2905 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 2906 ("reserved resource is active")); 2907 return (0); 2908 } 2909 return (1); 2910 } 2911 2912 /** 2913 * @brief Determine if a resource entry is reserved. 2914 * 2915 * Returns true if a resource entry is reserved meaning that it has an 2916 * associated "reserved" resource. The resource can either be 2917 * allocated or unallocated. 2918 * 2919 * @param rl the resource list to search 2920 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2921 * @param rid the resource identifier 2922 * 2923 * @returns Non-zero if the entry is reserved, zero otherwise. 2924 */ 2925 int 2926 resource_list_reserved(struct resource_list *rl, int type, int rid) 2927 { 2928 struct resource_list_entry *rle; 2929 2930 rle = resource_list_find(rl, type, rid); 2931 if (rle != NULL && rle->flags & RLE_RESERVED) 2932 return (1); 2933 return (0); 2934 } 2935 2936 /** 2937 * @brief Find a resource entry by type and rid. 2938 * 2939 * @param rl the resource list to search 2940 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2941 * @param rid the resource identifier 2942 * 2943 * @returns the resource entry pointer or NULL if there is no such 2944 * entry. 2945 */ 2946 struct resource_list_entry * 2947 resource_list_find(struct resource_list *rl, int type, int rid) 2948 { 2949 struct resource_list_entry *rle; 2950 2951 STAILQ_FOREACH(rle, rl, link) { 2952 if (rle->type == type && rle->rid == rid) 2953 return (rle); 2954 } 2955 return (NULL); 2956 } 2957 2958 /** 2959 * @brief Delete a resource entry. 2960 * 2961 * @param rl the resource list to edit 2962 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2963 * @param rid the resource identifier 2964 */ 2965 void 2966 resource_list_delete(struct resource_list *rl, int type, int rid) 2967 { 2968 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2969 2970 if (rle) { 2971 if (rle->res != NULL) 2972 panic("resource_list_delete: resource has not been released"); 2973 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 2974 free(rle, M_BUS); 2975 } 2976 } 2977 2978 /** 2979 * @brief Allocate a reserved resource 2980 * 2981 * This can be used by buses to force the allocation of resources 2982 * that are always active in the system even if they are not allocated 2983 * by a driver (e.g. PCI BARs). This function is usually called when 2984 * adding a new child to the bus. The resource is allocated from the 2985 * parent bus when it is reserved. The resource list entry is marked 2986 * with RLE_RESERVED to note that it is a reserved resource. 2987 * 2988 * Subsequent attempts to allocate the resource with 2989 * resource_list_alloc() will succeed the first time and will set 2990 * RLE_ALLOCATED to note that it has been allocated. When a reserved 2991 * resource that has been allocated is released with 2992 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 2993 * the actual resource remains allocated. The resource can be released to 2994 * the parent bus by calling resource_list_unreserve(). 2995 * 2996 * @param rl the resource list to allocate from 2997 * @param bus the parent device of @p child 2998 * @param child the device for which the resource is being reserved 2999 * @param type the type of resource to allocate 3000 * @param rid a pointer to the resource identifier 3001 * @param start hint at the start of the resource range - pass 3002 * @c 0 for any start address 3003 * @param end hint at the end of the resource range - pass 3004 * @c ~0 for any end address 3005 * @param count hint at the size of range required - pass @c 1 3006 * for any size 3007 * @param flags any extra flags to control the resource 3008 * allocation - see @c RF_XXX flags in 3009 * <sys/rman.h> for details 3010 * 3011 * @returns the resource which was allocated or @c NULL if no 3012 * resource could be allocated 3013 */ 3014 struct resource * 3015 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3016 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3017 { 3018 struct resource_list_entry *rle = NULL; 3019 int passthrough = (device_get_parent(child) != bus); 3020 struct resource *r; 3021 3022 if (passthrough) 3023 panic( 3024 "resource_list_reserve() should only be called for direct children"); 3025 if (flags & RF_ACTIVE) 3026 panic( 3027 "resource_list_reserve() should only reserve inactive resources"); 3028 3029 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3030 flags); 3031 if (r != NULL) { 3032 rle = resource_list_find(rl, type, *rid); 3033 rle->flags |= RLE_RESERVED; 3034 } 3035 return (r); 3036 } 3037 3038 /** 3039 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3040 * 3041 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3042 * and passing the allocation up to the parent of @p bus. This assumes 3043 * that the first entry of @c device_get_ivars(child) is a struct 3044 * resource_list. This also handles 'passthrough' allocations where a 3045 * child is a remote descendant of bus by passing the allocation up to 3046 * the parent of bus. 3047 * 3048 * Typically, a bus driver would store a list of child resources 3049 * somewhere in the child device's ivars (see device_get_ivars()) and 3050 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3051 * then call resource_list_alloc() to perform the allocation. 3052 * 3053 * @param rl the resource list to allocate from 3054 * @param bus the parent device of @p child 3055 * @param child the device which is requesting an allocation 3056 * @param type the type of resource to allocate 3057 * @param rid a pointer to the resource identifier 3058 * @param start hint at the start of the resource range - pass 3059 * @c 0 for any start address 3060 * @param end hint at the end of the resource range - pass 3061 * @c ~0 for any end address 3062 * @param count hint at the size of range required - pass @c 1 3063 * for any size 3064 * @param flags any extra flags to control the resource 3065 * allocation - see @c RF_XXX flags in 3066 * <sys/rman.h> for details 3067 * 3068 * @returns the resource which was allocated or @c NULL if no 3069 * resource could be allocated 3070 */ 3071 struct resource * 3072 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3073 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3074 { 3075 struct resource_list_entry *rle = NULL; 3076 int passthrough = (device_get_parent(child) != bus); 3077 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3078 3079 if (passthrough) { 3080 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3081 type, rid, start, end, count, flags)); 3082 } 3083 3084 rle = resource_list_find(rl, type, *rid); 3085 3086 if (!rle) 3087 return (NULL); /* no resource of that type/rid */ 3088 3089 if (rle->res) { 3090 if (rle->flags & RLE_RESERVED) { 3091 if (rle->flags & RLE_ALLOCATED) 3092 return (NULL); 3093 if ((flags & RF_ACTIVE) && 3094 bus_activate_resource(child, type, *rid, 3095 rle->res) != 0) 3096 return (NULL); 3097 rle->flags |= RLE_ALLOCATED; 3098 return (rle->res); 3099 } 3100 device_printf(bus, 3101 "resource entry %#x type %d for child %s is busy\n", *rid, 3102 type, device_get_nameunit(child)); 3103 return (NULL); 3104 } 3105 3106 if (isdefault) { 3107 start = rle->start; 3108 count = ulmax(count, rle->count); 3109 end = ulmax(rle->end, start + count - 1); 3110 } 3111 3112 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3113 type, rid, start, end, count, flags); 3114 3115 /* 3116 * Record the new range. 3117 */ 3118 if (rle->res) { 3119 rle->start = rman_get_start(rle->res); 3120 rle->end = rman_get_end(rle->res); 3121 rle->count = count; 3122 } 3123 3124 return (rle->res); 3125 } 3126 3127 /** 3128 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3129 * 3130 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3131 * used with resource_list_alloc(). 3132 * 3133 * @param rl the resource list which was allocated from 3134 * @param bus the parent device of @p child 3135 * @param child the device which is requesting a release 3136 * @param type the type of resource to release 3137 * @param rid the resource identifier 3138 * @param res the resource to release 3139 * 3140 * @retval 0 success 3141 * @retval non-zero a standard unix error code indicating what 3142 * error condition prevented the operation 3143 */ 3144 int 3145 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3146 int type, int rid, struct resource *res) 3147 { 3148 struct resource_list_entry *rle = NULL; 3149 int passthrough = (device_get_parent(child) != bus); 3150 int error; 3151 3152 if (passthrough) { 3153 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3154 type, rid, res)); 3155 } 3156 3157 rle = resource_list_find(rl, type, rid); 3158 3159 if (!rle) 3160 panic("resource_list_release: can't find resource"); 3161 if (!rle->res) 3162 panic("resource_list_release: resource entry is not busy"); 3163 if (rle->flags & RLE_RESERVED) { 3164 if (rle->flags & RLE_ALLOCATED) { 3165 if (rman_get_flags(res) & RF_ACTIVE) { 3166 error = bus_deactivate_resource(child, type, 3167 rid, res); 3168 if (error) 3169 return (error); 3170 } 3171 rle->flags &= ~RLE_ALLOCATED; 3172 return (0); 3173 } 3174 return (EINVAL); 3175 } 3176 3177 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3178 type, rid, res); 3179 if (error) 3180 return (error); 3181 3182 rle->res = NULL; 3183 return (0); 3184 } 3185 3186 /** 3187 * @brief Release all active resources of a given type 3188 * 3189 * Release all active resources of a specified type. This is intended 3190 * to be used to cleanup resources leaked by a driver after detach or 3191 * a failed attach. 3192 * 3193 * @param rl the resource list which was allocated from 3194 * @param bus the parent device of @p child 3195 * @param child the device whose active resources are being released 3196 * @param type the type of resources to release 3197 * 3198 * @retval 0 success 3199 * @retval EBUSY at least one resource was active 3200 */ 3201 int 3202 resource_list_release_active(struct resource_list *rl, device_t bus, 3203 device_t child, int type) 3204 { 3205 struct resource_list_entry *rle; 3206 int error, retval; 3207 3208 retval = 0; 3209 STAILQ_FOREACH(rle, rl, link) { 3210 if (rle->type != type) 3211 continue; 3212 if (rle->res == NULL) 3213 continue; 3214 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3215 RLE_RESERVED) 3216 continue; 3217 retval = EBUSY; 3218 error = resource_list_release(rl, bus, child, type, 3219 rman_get_rid(rle->res), rle->res); 3220 if (error != 0) 3221 device_printf(bus, 3222 "Failed to release active resource: %d\n", error); 3223 } 3224 return (retval); 3225 } 3226 3227 /** 3228 * @brief Fully release a reserved resource 3229 * 3230 * Fully releases a resource reserved via resource_list_reserve(). 3231 * 3232 * @param rl the resource list which was allocated from 3233 * @param bus the parent device of @p child 3234 * @param child the device whose reserved resource is being released 3235 * @param type the type of resource to release 3236 * @param rid the resource identifier 3237 * @param res the resource to release 3238 * 3239 * @retval 0 success 3240 * @retval non-zero a standard unix error code indicating what 3241 * error condition prevented the operation 3242 */ 3243 int 3244 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3245 int type, int rid) 3246 { 3247 struct resource_list_entry *rle = NULL; 3248 int passthrough = (device_get_parent(child) != bus); 3249 3250 if (passthrough) 3251 panic( 3252 "resource_list_unreserve() should only be called for direct children"); 3253 3254 rle = resource_list_find(rl, type, rid); 3255 3256 if (!rle) 3257 panic("resource_list_unreserve: can't find resource"); 3258 if (!(rle->flags & RLE_RESERVED)) 3259 return (EINVAL); 3260 if (rle->flags & RLE_ALLOCATED) 3261 return (EBUSY); 3262 rle->flags &= ~RLE_RESERVED; 3263 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3264 } 3265 3266 /** 3267 * @brief Print a description of resources in a resource list 3268 * 3269 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3270 * The name is printed if at least one resource of the given type is available. 3271 * The format is used to print resource start and end. 3272 * 3273 * @param rl the resource list to print 3274 * @param name the name of @p type, e.g. @c "memory" 3275 * @param type type type of resource entry to print 3276 * @param format printf(9) format string to print resource 3277 * start and end values 3278 * 3279 * @returns the number of characters printed 3280 */ 3281 int 3282 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3283 const char *format) 3284 { 3285 struct resource_list_entry *rle; 3286 int printed, retval; 3287 3288 printed = 0; 3289 retval = 0; 3290 /* Yes, this is kinda cheating */ 3291 STAILQ_FOREACH(rle, rl, link) { 3292 if (rle->type == type) { 3293 if (printed == 0) 3294 retval += printf(" %s ", name); 3295 else 3296 retval += printf(","); 3297 printed++; 3298 retval += printf(format, rle->start); 3299 if (rle->count > 1) { 3300 retval += printf("-"); 3301 retval += printf(format, rle->start + 3302 rle->count - 1); 3303 } 3304 } 3305 } 3306 return (retval); 3307 } 3308 3309 /** 3310 * @brief Releases all the resources in a list. 3311 * 3312 * @param rl The resource list to purge. 3313 * 3314 * @returns nothing 3315 */ 3316 void 3317 resource_list_purge(struct resource_list *rl) 3318 { 3319 struct resource_list_entry *rle; 3320 3321 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3322 if (rle->res) 3323 bus_release_resource(rman_get_device(rle->res), 3324 rle->type, rle->rid, rle->res); 3325 STAILQ_REMOVE_HEAD(rl, link); 3326 free(rle, M_BUS); 3327 } 3328 } 3329 3330 device_t 3331 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3332 { 3333 return (device_add_child_ordered(dev, order, name, unit)); 3334 } 3335 3336 /** 3337 * @brief Helper function for implementing DEVICE_PROBE() 3338 * 3339 * This function can be used to help implement the DEVICE_PROBE() for 3340 * a bus (i.e. a device which has other devices attached to it). It 3341 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3342 * devclass. 3343 */ 3344 int 3345 bus_generic_probe(device_t dev) 3346 { 3347 devclass_t dc = dev->devclass; 3348 driverlink_t dl; 3349 3350 TAILQ_FOREACH(dl, &dc->drivers, link) { 3351 /* 3352 * If this driver's pass is too high, then ignore it. 3353 * For most drivers in the default pass, this will 3354 * never be true. For early-pass drivers they will 3355 * only call the identify routines of eligible drivers 3356 * when this routine is called. Drivers for later 3357 * passes should have their identify routines called 3358 * on early-pass buses during BUS_NEW_PASS(). 3359 */ 3360 if (dl->pass > bus_current_pass) 3361 continue; 3362 DEVICE_IDENTIFY(dl->driver, dev); 3363 } 3364 3365 return (0); 3366 } 3367 3368 /** 3369 * @brief Helper function for implementing DEVICE_ATTACH() 3370 * 3371 * This function can be used to help implement the DEVICE_ATTACH() for 3372 * a bus. It calls device_probe_and_attach() for each of the device's 3373 * children. 3374 */ 3375 int 3376 bus_generic_attach(device_t dev) 3377 { 3378 device_t child; 3379 3380 TAILQ_FOREACH(child, &dev->children, link) { 3381 device_probe_and_attach(child); 3382 } 3383 3384 return (0); 3385 } 3386 3387 /** 3388 * @brief Helper function for delaying attaching children 3389 * 3390 * Many buses can't run transactions on the bus which children need to probe and 3391 * attach until after interrupts and/or timers are running. This function 3392 * delays their attach until interrupts and timers are enabled. 3393 */ 3394 int 3395 bus_delayed_attach_children(device_t dev) 3396 { 3397 /* Probe and attach the bus children when interrupts are available */ 3398 config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev); 3399 3400 return (0); 3401 } 3402 3403 /** 3404 * @brief Helper function for implementing DEVICE_DETACH() 3405 * 3406 * This function can be used to help implement the DEVICE_DETACH() for 3407 * a bus. It calls device_detach() for each of the device's 3408 * children. 3409 */ 3410 int 3411 bus_generic_detach(device_t dev) 3412 { 3413 device_t child; 3414 int error; 3415 3416 if (dev->state != DS_ATTACHED) 3417 return (EBUSY); 3418 3419 /* 3420 * Detach children in the reverse order. 3421 * See bus_generic_suspend for details. 3422 */ 3423 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3424 if ((error = device_detach(child)) != 0) 3425 return (error); 3426 } 3427 3428 return (0); 3429 } 3430 3431 /** 3432 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3433 * 3434 * This function can be used to help implement the DEVICE_SHUTDOWN() 3435 * for a bus. It calls device_shutdown() for each of the device's 3436 * children. 3437 */ 3438 int 3439 bus_generic_shutdown(device_t dev) 3440 { 3441 device_t child; 3442 3443 /* 3444 * Shut down children in the reverse order. 3445 * See bus_generic_suspend for details. 3446 */ 3447 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3448 device_shutdown(child); 3449 } 3450 3451 return (0); 3452 } 3453 3454 /** 3455 * @brief Default function for suspending a child device. 3456 * 3457 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3458 */ 3459 int 3460 bus_generic_suspend_child(device_t dev, device_t child) 3461 { 3462 int error; 3463 3464 error = DEVICE_SUSPEND(child); 3465 3466 if (error == 0) { 3467 child->flags |= DF_SUSPENDED; 3468 } else { 3469 printf("DEVICE_SUSPEND(%s) failed: %d\n", 3470 device_get_nameunit(child), error); 3471 } 3472 3473 return (error); 3474 } 3475 3476 /** 3477 * @brief Default function for resuming a child device. 3478 * 3479 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3480 */ 3481 int 3482 bus_generic_resume_child(device_t dev, device_t child) 3483 { 3484 DEVICE_RESUME(child); 3485 child->flags &= ~DF_SUSPENDED; 3486 3487 return (0); 3488 } 3489 3490 /** 3491 * @brief Helper function for implementing DEVICE_SUSPEND() 3492 * 3493 * This function can be used to help implement the DEVICE_SUSPEND() 3494 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3495 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3496 * operation is aborted and any devices which were suspended are 3497 * resumed immediately by calling their DEVICE_RESUME() methods. 3498 */ 3499 int 3500 bus_generic_suspend(device_t dev) 3501 { 3502 int error; 3503 device_t child; 3504 3505 /* 3506 * Suspend children in the reverse order. 3507 * For most buses all children are equal, so the order does not matter. 3508 * Other buses, such as acpi, carefully order their child devices to 3509 * express implicit dependencies between them. For such buses it is 3510 * safer to bring down devices in the reverse order. 3511 */ 3512 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3513 error = BUS_SUSPEND_CHILD(dev, child); 3514 if (error != 0) { 3515 child = TAILQ_NEXT(child, link); 3516 if (child != NULL) { 3517 TAILQ_FOREACH_FROM(child, &dev->children, link) 3518 BUS_RESUME_CHILD(dev, child); 3519 } 3520 return (error); 3521 } 3522 } 3523 return (0); 3524 } 3525 3526 /** 3527 * @brief Helper function for implementing DEVICE_RESUME() 3528 * 3529 * This function can be used to help implement the DEVICE_RESUME() for 3530 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3531 */ 3532 int 3533 bus_generic_resume(device_t dev) 3534 { 3535 device_t child; 3536 3537 TAILQ_FOREACH(child, &dev->children, link) { 3538 BUS_RESUME_CHILD(dev, child); 3539 /* if resume fails, there's nothing we can usefully do... */ 3540 } 3541 return (0); 3542 } 3543 3544 /** 3545 * @brief Helper function for implementing BUS_RESET_POST 3546 * 3547 * Bus can use this function to implement common operations of 3548 * re-attaching or resuming the children after the bus itself was 3549 * reset, and after restoring bus-unique state of children. 3550 * 3551 * @param dev The bus 3552 * #param flags DEVF_RESET_* 3553 */ 3554 int 3555 bus_helper_reset_post(device_t dev, int flags) 3556 { 3557 device_t child; 3558 int error, error1; 3559 3560 error = 0; 3561 TAILQ_FOREACH(child, &dev->children,link) { 3562 BUS_RESET_POST(dev, child); 3563 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3564 device_probe_and_attach(child) : 3565 BUS_RESUME_CHILD(dev, child); 3566 if (error == 0 && error1 != 0) 3567 error = error1; 3568 } 3569 return (error); 3570 } 3571 3572 static void 3573 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3574 { 3575 child = TAILQ_NEXT(child, link); 3576 if (child == NULL) 3577 return; 3578 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3579 BUS_RESET_POST(dev, child); 3580 if ((flags & DEVF_RESET_DETACH) != 0) 3581 device_probe_and_attach(child); 3582 else 3583 BUS_RESUME_CHILD(dev, child); 3584 } 3585 } 3586 3587 /** 3588 * @brief Helper function for implementing BUS_RESET_PREPARE 3589 * 3590 * Bus can use this function to implement common operations of 3591 * detaching or suspending the children before the bus itself is 3592 * reset, and then save bus-unique state of children that must 3593 * persists around reset. 3594 * 3595 * @param dev The bus 3596 * #param flags DEVF_RESET_* 3597 */ 3598 int 3599 bus_helper_reset_prepare(device_t dev, int flags) 3600 { 3601 device_t child; 3602 int error; 3603 3604 if (dev->state != DS_ATTACHED) 3605 return (EBUSY); 3606 3607 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3608 if ((flags & DEVF_RESET_DETACH) != 0) { 3609 error = device_get_state(child) == DS_ATTACHED ? 3610 device_detach(child) : 0; 3611 } else { 3612 error = BUS_SUSPEND_CHILD(dev, child); 3613 } 3614 if (error == 0) { 3615 error = BUS_RESET_PREPARE(dev, child); 3616 if (error != 0) { 3617 if ((flags & DEVF_RESET_DETACH) != 0) 3618 device_probe_and_attach(child); 3619 else 3620 BUS_RESUME_CHILD(dev, child); 3621 } 3622 } 3623 if (error != 0) { 3624 bus_helper_reset_prepare_rollback(dev, child, flags); 3625 return (error); 3626 } 3627 } 3628 return (0); 3629 } 3630 3631 /** 3632 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3633 * 3634 * This function prints the first part of the ascii representation of 3635 * @p child, including its name, unit and description (if any - see 3636 * device_set_desc()). 3637 * 3638 * @returns the number of characters printed 3639 */ 3640 int 3641 bus_print_child_header(device_t dev, device_t child) 3642 { 3643 int retval = 0; 3644 3645 if (device_get_desc(child)) { 3646 retval += device_printf(child, "<%s>", device_get_desc(child)); 3647 } else { 3648 retval += printf("%s", device_get_nameunit(child)); 3649 } 3650 3651 return (retval); 3652 } 3653 3654 /** 3655 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3656 * 3657 * This function prints the last part of the ascii representation of 3658 * @p child, which consists of the string @c " on " followed by the 3659 * name and unit of the @p dev. 3660 * 3661 * @returns the number of characters printed 3662 */ 3663 int 3664 bus_print_child_footer(device_t dev, device_t child) 3665 { 3666 return (printf(" on %s\n", device_get_nameunit(dev))); 3667 } 3668 3669 /** 3670 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3671 * 3672 * This function prints out the VM domain for the given device. 3673 * 3674 * @returns the number of characters printed 3675 */ 3676 int 3677 bus_print_child_domain(device_t dev, device_t child) 3678 { 3679 int domain; 3680 3681 /* No domain? Don't print anything */ 3682 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3683 return (0); 3684 3685 return (printf(" numa-domain %d", domain)); 3686 } 3687 3688 /** 3689 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3690 * 3691 * This function simply calls bus_print_child_header() followed by 3692 * bus_print_child_footer(). 3693 * 3694 * @returns the number of characters printed 3695 */ 3696 int 3697 bus_generic_print_child(device_t dev, device_t child) 3698 { 3699 int retval = 0; 3700 3701 retval += bus_print_child_header(dev, child); 3702 retval += bus_print_child_domain(dev, child); 3703 retval += bus_print_child_footer(dev, child); 3704 3705 return (retval); 3706 } 3707 3708 /** 3709 * @brief Stub function for implementing BUS_READ_IVAR(). 3710 * 3711 * @returns ENOENT 3712 */ 3713 int 3714 bus_generic_read_ivar(device_t dev, device_t child, int index, 3715 uintptr_t * result) 3716 { 3717 return (ENOENT); 3718 } 3719 3720 /** 3721 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3722 * 3723 * @returns ENOENT 3724 */ 3725 int 3726 bus_generic_write_ivar(device_t dev, device_t child, int index, 3727 uintptr_t value) 3728 { 3729 return (ENOENT); 3730 } 3731 3732 /** 3733 * @brief Helper function for implementing BUS_GET_PROPERTY(). 3734 * 3735 * This simply calls the BUS_GET_PROPERTY of the parent of dev, 3736 * until a non-default implementation is found. 3737 */ 3738 ssize_t 3739 bus_generic_get_property(device_t dev, device_t child, const char *propname, 3740 void *propvalue, size_t size, device_property_type_t type) 3741 { 3742 if (device_get_parent(dev) != NULL) 3743 return (BUS_GET_PROPERTY(device_get_parent(dev), child, 3744 propname, propvalue, size, type)); 3745 3746 return (-1); 3747 } 3748 3749 /** 3750 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3751 * 3752 * @returns NULL 3753 */ 3754 struct resource_list * 3755 bus_generic_get_resource_list(device_t dev, device_t child) 3756 { 3757 return (NULL); 3758 } 3759 3760 /** 3761 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3762 * 3763 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3764 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3765 * and then calls device_probe_and_attach() for each unattached child. 3766 */ 3767 void 3768 bus_generic_driver_added(device_t dev, driver_t *driver) 3769 { 3770 device_t child; 3771 3772 DEVICE_IDENTIFY(driver, dev); 3773 TAILQ_FOREACH(child, &dev->children, link) { 3774 if (child->state == DS_NOTPRESENT) 3775 device_probe_and_attach(child); 3776 } 3777 } 3778 3779 /** 3780 * @brief Helper function for implementing BUS_NEW_PASS(). 3781 * 3782 * This implementing of BUS_NEW_PASS() first calls the identify 3783 * routines for any drivers that probe at the current pass. Then it 3784 * walks the list of devices for this bus. If a device is already 3785 * attached, then it calls BUS_NEW_PASS() on that device. If the 3786 * device is not already attached, it attempts to attach a driver to 3787 * it. 3788 */ 3789 void 3790 bus_generic_new_pass(device_t dev) 3791 { 3792 driverlink_t dl; 3793 devclass_t dc; 3794 device_t child; 3795 3796 dc = dev->devclass; 3797 TAILQ_FOREACH(dl, &dc->drivers, link) { 3798 if (dl->pass == bus_current_pass) 3799 DEVICE_IDENTIFY(dl->driver, dev); 3800 } 3801 TAILQ_FOREACH(child, &dev->children, link) { 3802 if (child->state >= DS_ATTACHED) 3803 BUS_NEW_PASS(child); 3804 else if (child->state == DS_NOTPRESENT) 3805 device_probe_and_attach(child); 3806 } 3807 } 3808 3809 /** 3810 * @brief Helper function for implementing BUS_SETUP_INTR(). 3811 * 3812 * This simple implementation of BUS_SETUP_INTR() simply calls the 3813 * BUS_SETUP_INTR() method of the parent of @p dev. 3814 */ 3815 int 3816 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3817 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3818 void **cookiep) 3819 { 3820 /* Propagate up the bus hierarchy until someone handles it. */ 3821 if (dev->parent) 3822 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3823 filter, intr, arg, cookiep)); 3824 return (EINVAL); 3825 } 3826 3827 /** 3828 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3829 * 3830 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3831 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3832 */ 3833 int 3834 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3835 void *cookie) 3836 { 3837 /* Propagate up the bus hierarchy until someone handles it. */ 3838 if (dev->parent) 3839 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3840 return (EINVAL); 3841 } 3842 3843 /** 3844 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 3845 * 3846 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 3847 * BUS_SUSPEND_INTR() method of the parent of @p dev. 3848 */ 3849 int 3850 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 3851 { 3852 /* Propagate up the bus hierarchy until someone handles it. */ 3853 if (dev->parent) 3854 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 3855 return (EINVAL); 3856 } 3857 3858 /** 3859 * @brief Helper function for implementing BUS_RESUME_INTR(). 3860 * 3861 * This simple implementation of BUS_RESUME_INTR() simply calls the 3862 * BUS_RESUME_INTR() method of the parent of @p dev. 3863 */ 3864 int 3865 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 3866 { 3867 /* Propagate up the bus hierarchy until someone handles it. */ 3868 if (dev->parent) 3869 return (BUS_RESUME_INTR(dev->parent, child, irq)); 3870 return (EINVAL); 3871 } 3872 3873 /** 3874 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3875 * 3876 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3877 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3878 */ 3879 int 3880 bus_generic_adjust_resource(device_t dev, device_t child, int type, 3881 struct resource *r, rman_res_t start, rman_res_t end) 3882 { 3883 /* Propagate up the bus hierarchy until someone handles it. */ 3884 if (dev->parent) 3885 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 3886 end)); 3887 return (EINVAL); 3888 } 3889 3890 /* 3891 * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE(). 3892 * 3893 * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the 3894 * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev. If there is no 3895 * parent, no translation happens. 3896 */ 3897 int 3898 bus_generic_translate_resource(device_t dev, int type, rman_res_t start, 3899 rman_res_t *newstart) 3900 { 3901 if (dev->parent) 3902 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, 3903 newstart)); 3904 *newstart = start; 3905 return (0); 3906 } 3907 3908 /** 3909 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3910 * 3911 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3912 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3913 */ 3914 struct resource * 3915 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3916 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3917 { 3918 /* Propagate up the bus hierarchy until someone handles it. */ 3919 if (dev->parent) 3920 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3921 start, end, count, flags)); 3922 return (NULL); 3923 } 3924 3925 /** 3926 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3927 * 3928 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3929 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3930 */ 3931 int 3932 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3933 struct resource *r) 3934 { 3935 /* Propagate up the bus hierarchy until someone handles it. */ 3936 if (dev->parent) 3937 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3938 r)); 3939 return (EINVAL); 3940 } 3941 3942 /** 3943 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3944 * 3945 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3946 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3947 */ 3948 int 3949 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3950 struct resource *r) 3951 { 3952 /* Propagate up the bus hierarchy until someone handles it. */ 3953 if (dev->parent) 3954 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3955 r)); 3956 return (EINVAL); 3957 } 3958 3959 /** 3960 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3961 * 3962 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3963 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3964 */ 3965 int 3966 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3967 int rid, struct resource *r) 3968 { 3969 /* Propagate up the bus hierarchy until someone handles it. */ 3970 if (dev->parent) 3971 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3972 r)); 3973 return (EINVAL); 3974 } 3975 3976 /** 3977 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 3978 * 3979 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 3980 * BUS_MAP_RESOURCE() method of the parent of @p dev. 3981 */ 3982 int 3983 bus_generic_map_resource(device_t dev, device_t child, int type, 3984 struct resource *r, struct resource_map_request *args, 3985 struct resource_map *map) 3986 { 3987 /* Propagate up the bus hierarchy until someone handles it. */ 3988 if (dev->parent) 3989 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 3990 map)); 3991 return (EINVAL); 3992 } 3993 3994 /** 3995 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 3996 * 3997 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 3998 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 3999 */ 4000 int 4001 bus_generic_unmap_resource(device_t dev, device_t child, int type, 4002 struct resource *r, struct resource_map *map) 4003 { 4004 /* Propagate up the bus hierarchy until someone handles it. */ 4005 if (dev->parent) 4006 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 4007 return (EINVAL); 4008 } 4009 4010 /** 4011 * @brief Helper function for implementing BUS_BIND_INTR(). 4012 * 4013 * This simple implementation of BUS_BIND_INTR() simply calls the 4014 * BUS_BIND_INTR() method of the parent of @p dev. 4015 */ 4016 int 4017 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4018 int cpu) 4019 { 4020 /* Propagate up the bus hierarchy until someone handles it. */ 4021 if (dev->parent) 4022 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4023 return (EINVAL); 4024 } 4025 4026 /** 4027 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4028 * 4029 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4030 * BUS_CONFIG_INTR() method of the parent of @p dev. 4031 */ 4032 int 4033 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4034 enum intr_polarity pol) 4035 { 4036 /* Propagate up the bus hierarchy until someone handles it. */ 4037 if (dev->parent) 4038 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4039 return (EINVAL); 4040 } 4041 4042 /** 4043 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4044 * 4045 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4046 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4047 */ 4048 int 4049 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4050 void *cookie, const char *descr) 4051 { 4052 /* Propagate up the bus hierarchy until someone handles it. */ 4053 if (dev->parent) 4054 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4055 descr)); 4056 return (EINVAL); 4057 } 4058 4059 /** 4060 * @brief Helper function for implementing BUS_GET_CPUS(). 4061 * 4062 * This simple implementation of BUS_GET_CPUS() simply calls the 4063 * BUS_GET_CPUS() method of the parent of @p dev. 4064 */ 4065 int 4066 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4067 size_t setsize, cpuset_t *cpuset) 4068 { 4069 /* Propagate up the bus hierarchy until someone handles it. */ 4070 if (dev->parent != NULL) 4071 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4072 return (EINVAL); 4073 } 4074 4075 /** 4076 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4077 * 4078 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4079 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4080 */ 4081 bus_dma_tag_t 4082 bus_generic_get_dma_tag(device_t dev, device_t child) 4083 { 4084 /* Propagate up the bus hierarchy until someone handles it. */ 4085 if (dev->parent != NULL) 4086 return (BUS_GET_DMA_TAG(dev->parent, child)); 4087 return (NULL); 4088 } 4089 4090 /** 4091 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4092 * 4093 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4094 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4095 */ 4096 bus_space_tag_t 4097 bus_generic_get_bus_tag(device_t dev, device_t child) 4098 { 4099 /* Propagate up the bus hierarchy until someone handles it. */ 4100 if (dev->parent != NULL) 4101 return (BUS_GET_BUS_TAG(dev->parent, child)); 4102 return ((bus_space_tag_t)0); 4103 } 4104 4105 /** 4106 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4107 * 4108 * This implementation of BUS_GET_RESOURCE() uses the 4109 * resource_list_find() function to do most of the work. It calls 4110 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4111 * search. 4112 */ 4113 int 4114 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4115 rman_res_t *startp, rman_res_t *countp) 4116 { 4117 struct resource_list * rl = NULL; 4118 struct resource_list_entry * rle = NULL; 4119 4120 rl = BUS_GET_RESOURCE_LIST(dev, child); 4121 if (!rl) 4122 return (EINVAL); 4123 4124 rle = resource_list_find(rl, type, rid); 4125 if (!rle) 4126 return (ENOENT); 4127 4128 if (startp) 4129 *startp = rle->start; 4130 if (countp) 4131 *countp = rle->count; 4132 4133 return (0); 4134 } 4135 4136 /** 4137 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4138 * 4139 * This implementation of BUS_SET_RESOURCE() uses the 4140 * resource_list_add() function to do most of the work. It calls 4141 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4142 * edit. 4143 */ 4144 int 4145 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4146 rman_res_t start, rman_res_t count) 4147 { 4148 struct resource_list * rl = NULL; 4149 4150 rl = BUS_GET_RESOURCE_LIST(dev, child); 4151 if (!rl) 4152 return (EINVAL); 4153 4154 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4155 4156 return (0); 4157 } 4158 4159 /** 4160 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4161 * 4162 * This implementation of BUS_DELETE_RESOURCE() uses the 4163 * resource_list_delete() function to do most of the work. It calls 4164 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4165 * edit. 4166 */ 4167 void 4168 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4169 { 4170 struct resource_list * rl = NULL; 4171 4172 rl = BUS_GET_RESOURCE_LIST(dev, child); 4173 if (!rl) 4174 return; 4175 4176 resource_list_delete(rl, type, rid); 4177 4178 return; 4179 } 4180 4181 /** 4182 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4183 * 4184 * This implementation of BUS_RELEASE_RESOURCE() uses the 4185 * resource_list_release() function to do most of the work. It calls 4186 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4187 */ 4188 int 4189 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4190 int rid, struct resource *r) 4191 { 4192 struct resource_list * rl = NULL; 4193 4194 if (device_get_parent(child) != dev) 4195 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4196 type, rid, r)); 4197 4198 rl = BUS_GET_RESOURCE_LIST(dev, child); 4199 if (!rl) 4200 return (EINVAL); 4201 4202 return (resource_list_release(rl, dev, child, type, rid, r)); 4203 } 4204 4205 /** 4206 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4207 * 4208 * This implementation of BUS_ALLOC_RESOURCE() uses the 4209 * resource_list_alloc() function to do most of the work. It calls 4210 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4211 */ 4212 struct resource * 4213 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4214 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4215 { 4216 struct resource_list * rl = NULL; 4217 4218 if (device_get_parent(child) != dev) 4219 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4220 type, rid, start, end, count, flags)); 4221 4222 rl = BUS_GET_RESOURCE_LIST(dev, child); 4223 if (!rl) 4224 return (NULL); 4225 4226 return (resource_list_alloc(rl, dev, child, type, rid, 4227 start, end, count, flags)); 4228 } 4229 4230 /** 4231 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4232 * 4233 * This implementation of BUS_ALLOC_RESOURCE() allocates a 4234 * resource from a resource manager. It uses BUS_GET_RMAN() 4235 * to obtain the resource manager. 4236 */ 4237 struct resource * 4238 bus_generic_rman_alloc_resource(device_t dev, device_t child, int type, 4239 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4240 { 4241 struct resource *r; 4242 struct rman *rm; 4243 4244 rm = BUS_GET_RMAN(dev, type, flags); 4245 if (rm == NULL) 4246 return (NULL); 4247 4248 r = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 4249 child); 4250 if (r == NULL) 4251 return (NULL); 4252 rman_set_rid(r, *rid); 4253 4254 if (flags & RF_ACTIVE) { 4255 if (bus_activate_resource(child, type, *rid, r) != 0) { 4256 rman_release_resource(r); 4257 return (NULL); 4258 } 4259 } 4260 4261 return (r); 4262 } 4263 4264 /** 4265 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4266 * 4267 * This implementation of BUS_ADJUST_RESOURCE() adjusts resources only 4268 * if they were allocated from the resource manager returned by 4269 * BUS_GET_RMAN(). 4270 */ 4271 int 4272 bus_generic_rman_adjust_resource(device_t dev, device_t child, int type, 4273 struct resource *r, rman_res_t start, rman_res_t end) 4274 { 4275 struct rman *rm; 4276 4277 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r)); 4278 if (rm == NULL) 4279 return (ENXIO); 4280 if (!rman_is_region_manager(r, rm)) 4281 return (EINVAL); 4282 return (rman_adjust_resource(r, start, end)); 4283 } 4284 4285 /** 4286 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4287 * 4288 * This implementation of BUS_RELEASE_RESOURCE() releases resources 4289 * allocated by bus_generic_rman_alloc_resource. 4290 */ 4291 int 4292 bus_generic_rman_release_resource(device_t dev, device_t child, int type, 4293 int rid, struct resource *r) 4294 { 4295 #ifdef INVARIANTS 4296 struct rman *rm; 4297 #endif 4298 int error; 4299 4300 #ifdef INVARIANTS 4301 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r)); 4302 KASSERT(rman_is_region_manager(r, rm), 4303 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4304 #endif 4305 4306 if (rman_get_flags(r) & RF_ACTIVE) { 4307 error = bus_deactivate_resource(child, type, rid, r); 4308 if (error != 0) 4309 return (error); 4310 } 4311 return (rman_release_resource(r)); 4312 } 4313 4314 /** 4315 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4316 * 4317 * This implementation of BUS_ACTIVATE_RESOURCE() activates resources 4318 * allocated by bus_generic_rman_alloc_resource. 4319 */ 4320 int 4321 bus_generic_rman_activate_resource(device_t dev, device_t child, int type, 4322 int rid, struct resource *r) 4323 { 4324 struct resource_map map; 4325 #ifdef INVARIANTS_XXX 4326 struct rman *rm; 4327 #endif 4328 int error; 4329 4330 #ifdef INVARIANTS_XXX 4331 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r)); 4332 KASSERT(rman_is_region_manager(r, rm), 4333 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4334 #endif 4335 4336 error = rman_activate_resource(r); 4337 if (error != 0) 4338 return (error); 4339 4340 if ((rman_get_flags(r) & RF_UNMAPPED) == 0 && 4341 (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT)) { 4342 error = BUS_MAP_RESOURCE(dev, child, type, r, NULL, &map); 4343 if (error != 0) { 4344 rman_deactivate_resource(r); 4345 return (error); 4346 } 4347 4348 rman_set_mapping(r, &map); 4349 } 4350 return (0); 4351 } 4352 4353 /** 4354 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4355 * 4356 * This implementation of BUS_DEACTIVATE_RESOURCE() deactivates 4357 * resources allocated by bus_generic_rman_alloc_resource. 4358 */ 4359 int 4360 bus_generic_rman_deactivate_resource(device_t dev, device_t child, int type, 4361 int rid, struct resource *r) 4362 { 4363 struct resource_map map; 4364 #ifdef INVARIANTS_XXX 4365 struct rman *rm; 4366 #endif 4367 int error; 4368 4369 #ifdef INVARIANTS_XXX 4370 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r)); 4371 KASSERT(rman_is_region_manager(r, rm), 4372 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4373 #endif 4374 4375 error = rman_deactivate_resource(r); 4376 if (error != 0) 4377 return (error); 4378 4379 if ((rman_get_flags(r) & RF_UNMAPPED) == 0 && 4380 (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT)) { 4381 rman_get_mapping(r, &map); 4382 BUS_UNMAP_RESOURCE(dev, child, type, r, &map); 4383 } 4384 return (0); 4385 } 4386 4387 /** 4388 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4389 * 4390 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4391 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4392 */ 4393 int 4394 bus_generic_child_present(device_t dev, device_t child) 4395 { 4396 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4397 } 4398 4399 /** 4400 * @brief Helper function for implementing BUS_GET_DOMAIN(). 4401 * 4402 * This simple implementation of BUS_GET_DOMAIN() calls the 4403 * BUS_GET_DOMAIN() method of the parent of @p dev. If @p dev 4404 * does not have a parent, the function fails with ENOENT. 4405 */ 4406 int 4407 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4408 { 4409 if (dev->parent) 4410 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4411 4412 return (ENOENT); 4413 } 4414 4415 /** 4416 * @brief Helper function to implement normal BUS_GET_DEVICE_PATH() 4417 * 4418 * This function knows how to (a) pass the request up the tree if there's 4419 * a parent and (b) Knows how to supply a FreeBSD locator. 4420 * 4421 * @param bus bus in the walk up the tree 4422 * @param child leaf node to print information about 4423 * @param locator BUS_LOCATOR_xxx string for locator 4424 * @param sb Buffer to print information into 4425 */ 4426 int 4427 bus_generic_get_device_path(device_t bus, device_t child, const char *locator, 4428 struct sbuf *sb) 4429 { 4430 int rv = 0; 4431 device_t parent; 4432 4433 /* 4434 * We don't recurse on ACPI since either we know the handle for the 4435 * device or we don't. And if we're in the generic routine, we don't 4436 * have a ACPI override. All other locators build up a path by having 4437 * their parents create a path and then adding the path element for this 4438 * node. That's why we recurse with parent, bus rather than the typical 4439 * parent, child: each spot in the tree is independent of what our child 4440 * will do with this path. 4441 */ 4442 parent = device_get_parent(bus); 4443 if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) { 4444 rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb); 4445 } 4446 if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) { 4447 if (rv == 0) { 4448 sbuf_printf(sb, "/%s", device_get_nameunit(child)); 4449 } 4450 return (rv); 4451 } 4452 /* 4453 * Don't know what to do. So assume we do nothing. Not sure that's 4454 * the right thing, but keeps us from having a big list here. 4455 */ 4456 return (0); 4457 } 4458 4459 4460 /** 4461 * @brief Helper function for implementing BUS_RESCAN(). 4462 * 4463 * This null implementation of BUS_RESCAN() always fails to indicate 4464 * the bus does not support rescanning. 4465 */ 4466 int 4467 bus_null_rescan(device_t dev) 4468 { 4469 return (ENODEV); 4470 } 4471 4472 /* 4473 * Some convenience functions to make it easier for drivers to use the 4474 * resource-management functions. All these really do is hide the 4475 * indirection through the parent's method table, making for slightly 4476 * less-wordy code. In the future, it might make sense for this code 4477 * to maintain some sort of a list of resources allocated by each device. 4478 */ 4479 4480 int 4481 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4482 struct resource **res) 4483 { 4484 int i; 4485 4486 for (i = 0; rs[i].type != -1; i++) 4487 res[i] = NULL; 4488 for (i = 0; rs[i].type != -1; i++) { 4489 res[i] = bus_alloc_resource_any(dev, 4490 rs[i].type, &rs[i].rid, rs[i].flags); 4491 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4492 bus_release_resources(dev, rs, res); 4493 return (ENXIO); 4494 } 4495 } 4496 return (0); 4497 } 4498 4499 void 4500 bus_release_resources(device_t dev, const struct resource_spec *rs, 4501 struct resource **res) 4502 { 4503 int i; 4504 4505 for (i = 0; rs[i].type != -1; i++) 4506 if (res[i] != NULL) { 4507 bus_release_resource( 4508 dev, rs[i].type, rs[i].rid, res[i]); 4509 res[i] = NULL; 4510 } 4511 } 4512 4513 /** 4514 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4515 * 4516 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4517 * parent of @p dev. 4518 */ 4519 struct resource * 4520 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4521 rman_res_t end, rman_res_t count, u_int flags) 4522 { 4523 struct resource *res; 4524 4525 if (dev->parent == NULL) 4526 return (NULL); 4527 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4528 count, flags); 4529 return (res); 4530 } 4531 4532 /** 4533 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4534 * 4535 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4536 * parent of @p dev. 4537 */ 4538 int 4539 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4540 rman_res_t end) 4541 { 4542 if (dev->parent == NULL) 4543 return (EINVAL); 4544 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4545 } 4546 4547 /** 4548 * @brief Wrapper function for BUS_TRANSLATE_RESOURCE(). 4549 * 4550 * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the 4551 * parent of @p dev. 4552 */ 4553 int 4554 bus_translate_resource(device_t dev, int type, rman_res_t start, 4555 rman_res_t *newstart) 4556 { 4557 if (dev->parent == NULL) 4558 return (EINVAL); 4559 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart)); 4560 } 4561 4562 /** 4563 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4564 * 4565 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4566 * parent of @p dev. 4567 */ 4568 int 4569 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4570 { 4571 if (dev->parent == NULL) 4572 return (EINVAL); 4573 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4574 } 4575 4576 /** 4577 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4578 * 4579 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4580 * parent of @p dev. 4581 */ 4582 int 4583 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4584 { 4585 if (dev->parent == NULL) 4586 return (EINVAL); 4587 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4588 } 4589 4590 /** 4591 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4592 * 4593 * This function simply calls the BUS_MAP_RESOURCE() method of the 4594 * parent of @p dev. 4595 */ 4596 int 4597 bus_map_resource(device_t dev, int type, struct resource *r, 4598 struct resource_map_request *args, struct resource_map *map) 4599 { 4600 if (dev->parent == NULL) 4601 return (EINVAL); 4602 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4603 } 4604 4605 /** 4606 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4607 * 4608 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4609 * parent of @p dev. 4610 */ 4611 int 4612 bus_unmap_resource(device_t dev, int type, struct resource *r, 4613 struct resource_map *map) 4614 { 4615 if (dev->parent == NULL) 4616 return (EINVAL); 4617 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4618 } 4619 4620 /** 4621 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4622 * 4623 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4624 * parent of @p dev. 4625 */ 4626 int 4627 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4628 { 4629 int rv; 4630 4631 if (dev->parent == NULL) 4632 return (EINVAL); 4633 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4634 return (rv); 4635 } 4636 4637 /** 4638 * @brief Wrapper function for BUS_SETUP_INTR(). 4639 * 4640 * This function simply calls the BUS_SETUP_INTR() method of the 4641 * parent of @p dev. 4642 */ 4643 int 4644 bus_setup_intr(device_t dev, struct resource *r, int flags, 4645 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4646 { 4647 int error; 4648 4649 if (dev->parent == NULL) 4650 return (EINVAL); 4651 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4652 arg, cookiep); 4653 if (error != 0) 4654 return (error); 4655 if (handler != NULL && !(flags & INTR_MPSAFE)) 4656 device_printf(dev, "[GIANT-LOCKED]\n"); 4657 return (0); 4658 } 4659 4660 /** 4661 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4662 * 4663 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4664 * parent of @p dev. 4665 */ 4666 int 4667 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4668 { 4669 if (dev->parent == NULL) 4670 return (EINVAL); 4671 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4672 } 4673 4674 /** 4675 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4676 * 4677 * This function simply calls the BUS_SUSPEND_INTR() method of the 4678 * parent of @p dev. 4679 */ 4680 int 4681 bus_suspend_intr(device_t dev, struct resource *r) 4682 { 4683 if (dev->parent == NULL) 4684 return (EINVAL); 4685 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4686 } 4687 4688 /** 4689 * @brief Wrapper function for BUS_RESUME_INTR(). 4690 * 4691 * This function simply calls the BUS_RESUME_INTR() method of the 4692 * parent of @p dev. 4693 */ 4694 int 4695 bus_resume_intr(device_t dev, struct resource *r) 4696 { 4697 if (dev->parent == NULL) 4698 return (EINVAL); 4699 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4700 } 4701 4702 /** 4703 * @brief Wrapper function for BUS_BIND_INTR(). 4704 * 4705 * This function simply calls the BUS_BIND_INTR() method of the 4706 * parent of @p dev. 4707 */ 4708 int 4709 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4710 { 4711 if (dev->parent == NULL) 4712 return (EINVAL); 4713 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4714 } 4715 4716 /** 4717 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4718 * 4719 * This function first formats the requested description into a 4720 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4721 * the parent of @p dev. 4722 */ 4723 int 4724 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4725 const char *fmt, ...) 4726 { 4727 va_list ap; 4728 char descr[MAXCOMLEN + 1]; 4729 4730 if (dev->parent == NULL) 4731 return (EINVAL); 4732 va_start(ap, fmt); 4733 vsnprintf(descr, sizeof(descr), fmt, ap); 4734 va_end(ap); 4735 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4736 } 4737 4738 /** 4739 * @brief Wrapper function for BUS_SET_RESOURCE(). 4740 * 4741 * This function simply calls the BUS_SET_RESOURCE() method of the 4742 * parent of @p dev. 4743 */ 4744 int 4745 bus_set_resource(device_t dev, int type, int rid, 4746 rman_res_t start, rman_res_t count) 4747 { 4748 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4749 start, count)); 4750 } 4751 4752 /** 4753 * @brief Wrapper function for BUS_GET_RESOURCE(). 4754 * 4755 * This function simply calls the BUS_GET_RESOURCE() method of the 4756 * parent of @p dev. 4757 */ 4758 int 4759 bus_get_resource(device_t dev, int type, int rid, 4760 rman_res_t *startp, rman_res_t *countp) 4761 { 4762 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4763 startp, countp)); 4764 } 4765 4766 /** 4767 * @brief Wrapper function for BUS_GET_RESOURCE(). 4768 * 4769 * This function simply calls the BUS_GET_RESOURCE() method of the 4770 * parent of @p dev and returns the start value. 4771 */ 4772 rman_res_t 4773 bus_get_resource_start(device_t dev, int type, int rid) 4774 { 4775 rman_res_t start; 4776 rman_res_t count; 4777 int error; 4778 4779 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4780 &start, &count); 4781 if (error) 4782 return (0); 4783 return (start); 4784 } 4785 4786 /** 4787 * @brief Wrapper function for BUS_GET_RESOURCE(). 4788 * 4789 * This function simply calls the BUS_GET_RESOURCE() method of the 4790 * parent of @p dev and returns the count value. 4791 */ 4792 rman_res_t 4793 bus_get_resource_count(device_t dev, int type, int rid) 4794 { 4795 rman_res_t start; 4796 rman_res_t count; 4797 int error; 4798 4799 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4800 &start, &count); 4801 if (error) 4802 return (0); 4803 return (count); 4804 } 4805 4806 /** 4807 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4808 * 4809 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4810 * parent of @p dev. 4811 */ 4812 void 4813 bus_delete_resource(device_t dev, int type, int rid) 4814 { 4815 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4816 } 4817 4818 /** 4819 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4820 * 4821 * This function simply calls the BUS_CHILD_PRESENT() method of the 4822 * parent of @p dev. 4823 */ 4824 int 4825 bus_child_present(device_t child) 4826 { 4827 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4828 } 4829 4830 /** 4831 * @brief Wrapper function for BUS_CHILD_PNPINFO(). 4832 * 4833 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p 4834 * dev. 4835 */ 4836 int 4837 bus_child_pnpinfo(device_t child, struct sbuf *sb) 4838 { 4839 device_t parent; 4840 4841 parent = device_get_parent(child); 4842 if (parent == NULL) 4843 return (0); 4844 return (BUS_CHILD_PNPINFO(parent, child, sb)); 4845 } 4846 4847 /** 4848 * @brief Generic implementation that does nothing for bus_child_pnpinfo 4849 * 4850 * This function has the right signature and returns 0 since the sbuf is passed 4851 * to us to append to. 4852 */ 4853 int 4854 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb) 4855 { 4856 return (0); 4857 } 4858 4859 /** 4860 * @brief Wrapper function for BUS_CHILD_LOCATION(). 4861 * 4862 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of 4863 * @p dev. 4864 */ 4865 int 4866 bus_child_location(device_t child, struct sbuf *sb) 4867 { 4868 device_t parent; 4869 4870 parent = device_get_parent(child); 4871 if (parent == NULL) 4872 return (0); 4873 return (BUS_CHILD_LOCATION(parent, child, sb)); 4874 } 4875 4876 /** 4877 * @brief Generic implementation that does nothing for bus_child_location 4878 * 4879 * This function has the right signature and returns 0 since the sbuf is passed 4880 * to us to append to. 4881 */ 4882 int 4883 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb) 4884 { 4885 return (0); 4886 } 4887 4888 /** 4889 * @brief Wrapper function for BUS_GET_CPUS(). 4890 * 4891 * This function simply calls the BUS_GET_CPUS() method of the 4892 * parent of @p dev. 4893 */ 4894 int 4895 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 4896 { 4897 device_t parent; 4898 4899 parent = device_get_parent(dev); 4900 if (parent == NULL) 4901 return (EINVAL); 4902 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 4903 } 4904 4905 /** 4906 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4907 * 4908 * This function simply calls the BUS_GET_DMA_TAG() method of the 4909 * parent of @p dev. 4910 */ 4911 bus_dma_tag_t 4912 bus_get_dma_tag(device_t dev) 4913 { 4914 device_t parent; 4915 4916 parent = device_get_parent(dev); 4917 if (parent == NULL) 4918 return (NULL); 4919 return (BUS_GET_DMA_TAG(parent, dev)); 4920 } 4921 4922 /** 4923 * @brief Wrapper function for BUS_GET_BUS_TAG(). 4924 * 4925 * This function simply calls the BUS_GET_BUS_TAG() method of the 4926 * parent of @p dev. 4927 */ 4928 bus_space_tag_t 4929 bus_get_bus_tag(device_t dev) 4930 { 4931 device_t parent; 4932 4933 parent = device_get_parent(dev); 4934 if (parent == NULL) 4935 return ((bus_space_tag_t)0); 4936 return (BUS_GET_BUS_TAG(parent, dev)); 4937 } 4938 4939 /** 4940 * @brief Wrapper function for BUS_GET_DOMAIN(). 4941 * 4942 * This function simply calls the BUS_GET_DOMAIN() method of the 4943 * parent of @p dev. 4944 */ 4945 int 4946 bus_get_domain(device_t dev, int *domain) 4947 { 4948 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 4949 } 4950 4951 /* Resume all devices and then notify userland that we're up again. */ 4952 static int 4953 root_resume(device_t dev) 4954 { 4955 int error; 4956 4957 error = bus_generic_resume(dev); 4958 if (error == 0) { 4959 devctl_notify("kernel", "power", "resume", NULL); 4960 } 4961 return (error); 4962 } 4963 4964 static int 4965 root_print_child(device_t dev, device_t child) 4966 { 4967 int retval = 0; 4968 4969 retval += bus_print_child_header(dev, child); 4970 retval += printf("\n"); 4971 4972 return (retval); 4973 } 4974 4975 static int 4976 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4977 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4978 { 4979 /* 4980 * If an interrupt mapping gets to here something bad has happened. 4981 */ 4982 panic("root_setup_intr"); 4983 } 4984 4985 /* 4986 * If we get here, assume that the device is permanent and really is 4987 * present in the system. Removable bus drivers are expected to intercept 4988 * this call long before it gets here. We return -1 so that drivers that 4989 * really care can check vs -1 or some ERRNO returned higher in the food 4990 * chain. 4991 */ 4992 static int 4993 root_child_present(device_t dev, device_t child) 4994 { 4995 return (-1); 4996 } 4997 4998 static int 4999 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 5000 cpuset_t *cpuset) 5001 { 5002 switch (op) { 5003 case INTR_CPUS: 5004 /* Default to returning the set of all CPUs. */ 5005 if (setsize != sizeof(cpuset_t)) 5006 return (EINVAL); 5007 *cpuset = all_cpus; 5008 return (0); 5009 default: 5010 return (EINVAL); 5011 } 5012 } 5013 5014 static kobj_method_t root_methods[] = { 5015 /* Device interface */ 5016 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 5017 KOBJMETHOD(device_suspend, bus_generic_suspend), 5018 KOBJMETHOD(device_resume, root_resume), 5019 5020 /* Bus interface */ 5021 KOBJMETHOD(bus_print_child, root_print_child), 5022 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 5023 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 5024 KOBJMETHOD(bus_setup_intr, root_setup_intr), 5025 KOBJMETHOD(bus_child_present, root_child_present), 5026 KOBJMETHOD(bus_get_cpus, root_get_cpus), 5027 5028 KOBJMETHOD_END 5029 }; 5030 5031 static driver_t root_driver = { 5032 "root", 5033 root_methods, 5034 1, /* no softc */ 5035 }; 5036 5037 device_t root_bus; 5038 devclass_t root_devclass; 5039 5040 static int 5041 root_bus_module_handler(module_t mod, int what, void* arg) 5042 { 5043 switch (what) { 5044 case MOD_LOAD: 5045 TAILQ_INIT(&bus_data_devices); 5046 kobj_class_compile((kobj_class_t) &root_driver); 5047 root_bus = make_device(NULL, "root", 0); 5048 root_bus->desc = "System root bus"; 5049 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 5050 root_bus->driver = &root_driver; 5051 root_bus->state = DS_ATTACHED; 5052 root_devclass = devclass_find_internal("root", NULL, FALSE); 5053 devctl2_init(); 5054 return (0); 5055 5056 case MOD_SHUTDOWN: 5057 device_shutdown(root_bus); 5058 return (0); 5059 default: 5060 return (EOPNOTSUPP); 5061 } 5062 5063 return (0); 5064 } 5065 5066 static moduledata_t root_bus_mod = { 5067 "rootbus", 5068 root_bus_module_handler, 5069 NULL 5070 }; 5071 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 5072 5073 /** 5074 * @brief Automatically configure devices 5075 * 5076 * This function begins the autoconfiguration process by calling 5077 * device_probe_and_attach() for each child of the @c root0 device. 5078 */ 5079 void 5080 root_bus_configure(void) 5081 { 5082 PDEBUG((".")); 5083 5084 /* Eventually this will be split up, but this is sufficient for now. */ 5085 bus_set_pass(BUS_PASS_DEFAULT); 5086 } 5087 5088 /** 5089 * @brief Module handler for registering device drivers 5090 * 5091 * This module handler is used to automatically register device 5092 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 5093 * devclass_add_driver() for the driver described by the 5094 * driver_module_data structure pointed to by @p arg 5095 */ 5096 int 5097 driver_module_handler(module_t mod, int what, void *arg) 5098 { 5099 struct driver_module_data *dmd; 5100 devclass_t bus_devclass; 5101 kobj_class_t driver; 5102 int error, pass; 5103 5104 dmd = (struct driver_module_data *)arg; 5105 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 5106 error = 0; 5107 5108 switch (what) { 5109 case MOD_LOAD: 5110 if (dmd->dmd_chainevh) 5111 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5112 5113 pass = dmd->dmd_pass; 5114 driver = dmd->dmd_driver; 5115 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 5116 DRIVERNAME(driver), dmd->dmd_busname, pass)); 5117 error = devclass_add_driver(bus_devclass, driver, pass, 5118 dmd->dmd_devclass); 5119 break; 5120 5121 case MOD_UNLOAD: 5122 PDEBUG(("Unloading module: driver %s from bus %s", 5123 DRIVERNAME(dmd->dmd_driver), 5124 dmd->dmd_busname)); 5125 error = devclass_delete_driver(bus_devclass, 5126 dmd->dmd_driver); 5127 5128 if (!error && dmd->dmd_chainevh) 5129 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5130 break; 5131 case MOD_QUIESCE: 5132 PDEBUG(("Quiesce module: driver %s from bus %s", 5133 DRIVERNAME(dmd->dmd_driver), 5134 dmd->dmd_busname)); 5135 error = devclass_quiesce_driver(bus_devclass, 5136 dmd->dmd_driver); 5137 5138 if (!error && dmd->dmd_chainevh) 5139 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5140 break; 5141 default: 5142 error = EOPNOTSUPP; 5143 break; 5144 } 5145 5146 return (error); 5147 } 5148 5149 /** 5150 * @brief Enumerate all hinted devices for this bus. 5151 * 5152 * Walks through the hints for this bus and calls the bus_hinted_child 5153 * routine for each one it fines. It searches first for the specific 5154 * bus that's being probed for hinted children (eg isa0), and then for 5155 * generic children (eg isa). 5156 * 5157 * @param dev bus device to enumerate 5158 */ 5159 void 5160 bus_enumerate_hinted_children(device_t bus) 5161 { 5162 int i; 5163 const char *dname, *busname; 5164 int dunit; 5165 5166 /* 5167 * enumerate all devices on the specific bus 5168 */ 5169 busname = device_get_nameunit(bus); 5170 i = 0; 5171 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5172 BUS_HINTED_CHILD(bus, dname, dunit); 5173 5174 /* 5175 * and all the generic ones. 5176 */ 5177 busname = device_get_name(bus); 5178 i = 0; 5179 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5180 BUS_HINTED_CHILD(bus, dname, dunit); 5181 } 5182 5183 #ifdef BUS_DEBUG 5184 5185 /* the _short versions avoid iteration by not calling anything that prints 5186 * more than oneliners. I love oneliners. 5187 */ 5188 5189 static void 5190 print_device_short(device_t dev, int indent) 5191 { 5192 if (!dev) 5193 return; 5194 5195 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5196 dev->unit, dev->desc, 5197 (dev->parent? "":"no "), 5198 (TAILQ_EMPTY(&dev->children)? "no ":""), 5199 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5200 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5201 (dev->flags&DF_WILDCARD? "wildcard,":""), 5202 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5203 (dev->flags&DF_SUSPENDED? "suspended,":""), 5204 (dev->ivars? "":"no "), 5205 (dev->softc? "":"no "), 5206 dev->busy)); 5207 } 5208 5209 static void 5210 print_device(device_t dev, int indent) 5211 { 5212 if (!dev) 5213 return; 5214 5215 print_device_short(dev, indent); 5216 5217 indentprintf(("Parent:\n")); 5218 print_device_short(dev->parent, indent+1); 5219 indentprintf(("Driver:\n")); 5220 print_driver_short(dev->driver, indent+1); 5221 indentprintf(("Devclass:\n")); 5222 print_devclass_short(dev->devclass, indent+1); 5223 } 5224 5225 void 5226 print_device_tree_short(device_t dev, int indent) 5227 /* print the device and all its children (indented) */ 5228 { 5229 device_t child; 5230 5231 if (!dev) 5232 return; 5233 5234 print_device_short(dev, indent); 5235 5236 TAILQ_FOREACH(child, &dev->children, link) { 5237 print_device_tree_short(child, indent+1); 5238 } 5239 } 5240 5241 void 5242 print_device_tree(device_t dev, int indent) 5243 /* print the device and all its children (indented) */ 5244 { 5245 device_t child; 5246 5247 if (!dev) 5248 return; 5249 5250 print_device(dev, indent); 5251 5252 TAILQ_FOREACH(child, &dev->children, link) { 5253 print_device_tree(child, indent+1); 5254 } 5255 } 5256 5257 static void 5258 print_driver_short(driver_t *driver, int indent) 5259 { 5260 if (!driver) 5261 return; 5262 5263 indentprintf(("driver %s: softc size = %zd\n", 5264 driver->name, driver->size)); 5265 } 5266 5267 static void 5268 print_driver(driver_t *driver, int indent) 5269 { 5270 if (!driver) 5271 return; 5272 5273 print_driver_short(driver, indent); 5274 } 5275 5276 static void 5277 print_driver_list(driver_list_t drivers, int indent) 5278 { 5279 driverlink_t driver; 5280 5281 TAILQ_FOREACH(driver, &drivers, link) { 5282 print_driver(driver->driver, indent); 5283 } 5284 } 5285 5286 static void 5287 print_devclass_short(devclass_t dc, int indent) 5288 { 5289 if ( !dc ) 5290 return; 5291 5292 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5293 } 5294 5295 static void 5296 print_devclass(devclass_t dc, int indent) 5297 { 5298 int i; 5299 5300 if ( !dc ) 5301 return; 5302 5303 print_devclass_short(dc, indent); 5304 indentprintf(("Drivers:\n")); 5305 print_driver_list(dc->drivers, indent+1); 5306 5307 indentprintf(("Devices:\n")); 5308 for (i = 0; i < dc->maxunit; i++) 5309 if (dc->devices[i]) 5310 print_device(dc->devices[i], indent+1); 5311 } 5312 5313 void 5314 print_devclass_list_short(void) 5315 { 5316 devclass_t dc; 5317 5318 printf("Short listing of devclasses, drivers & devices:\n"); 5319 TAILQ_FOREACH(dc, &devclasses, link) { 5320 print_devclass_short(dc, 0); 5321 } 5322 } 5323 5324 void 5325 print_devclass_list(void) 5326 { 5327 devclass_t dc; 5328 5329 printf("Full listing of devclasses, drivers & devices:\n"); 5330 TAILQ_FOREACH(dc, &devclasses, link) { 5331 print_devclass(dc, 0); 5332 } 5333 } 5334 5335 #endif 5336 5337 /* 5338 * User-space access to the device tree. 5339 * 5340 * We implement a small set of nodes: 5341 * 5342 * hw.bus Single integer read method to obtain the 5343 * current generation count. 5344 * hw.bus.devices Reads the entire device tree in flat space. 5345 * hw.bus.rman Resource manager interface 5346 * 5347 * We might like to add the ability to scan devclasses and/or drivers to 5348 * determine what else is currently loaded/available. 5349 */ 5350 5351 static int 5352 sysctl_bus_info(SYSCTL_HANDLER_ARGS) 5353 { 5354 struct u_businfo ubus; 5355 5356 ubus.ub_version = BUS_USER_VERSION; 5357 ubus.ub_generation = bus_data_generation; 5358 5359 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5360 } 5361 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | 5362 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", 5363 "bus-related data"); 5364 5365 static int 5366 sysctl_devices(SYSCTL_HANDLER_ARGS) 5367 { 5368 struct sbuf sb; 5369 int *name = (int *)arg1; 5370 u_int namelen = arg2; 5371 int index; 5372 device_t dev; 5373 struct u_device *udev; 5374 int error; 5375 5376 if (namelen != 2) 5377 return (EINVAL); 5378 5379 if (bus_data_generation_check(name[0])) 5380 return (EINVAL); 5381 5382 index = name[1]; 5383 5384 /* 5385 * Scan the list of devices, looking for the requested index. 5386 */ 5387 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5388 if (index-- == 0) 5389 break; 5390 } 5391 if (dev == NULL) 5392 return (ENOENT); 5393 5394 /* 5395 * Populate the return item, careful not to overflow the buffer. 5396 */ 5397 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5398 if (udev == NULL) 5399 return (ENOMEM); 5400 udev->dv_handle = (uintptr_t)dev; 5401 udev->dv_parent = (uintptr_t)dev->parent; 5402 udev->dv_devflags = dev->devflags; 5403 udev->dv_flags = dev->flags; 5404 udev->dv_state = dev->state; 5405 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN); 5406 if (dev->nameunit != NULL) 5407 sbuf_cat(&sb, dev->nameunit); 5408 sbuf_putc(&sb, '\0'); 5409 if (dev->desc != NULL) 5410 sbuf_cat(&sb, dev->desc); 5411 sbuf_putc(&sb, '\0'); 5412 if (dev->driver != NULL) 5413 sbuf_cat(&sb, dev->driver->name); 5414 sbuf_putc(&sb, '\0'); 5415 bus_child_pnpinfo(dev, &sb); 5416 sbuf_putc(&sb, '\0'); 5417 bus_child_location(dev, &sb); 5418 sbuf_putc(&sb, '\0'); 5419 error = sbuf_finish(&sb); 5420 if (error == 0) 5421 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5422 sbuf_delete(&sb); 5423 free(udev, M_BUS); 5424 return (error); 5425 } 5426 5427 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, 5428 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, 5429 "system device tree"); 5430 5431 int 5432 bus_data_generation_check(int generation) 5433 { 5434 if (generation != bus_data_generation) 5435 return (1); 5436 5437 /* XXX generate optimised lists here? */ 5438 return (0); 5439 } 5440 5441 void 5442 bus_data_generation_update(void) 5443 { 5444 atomic_add_int(&bus_data_generation, 1); 5445 } 5446 5447 int 5448 bus_free_resource(device_t dev, int type, struct resource *r) 5449 { 5450 if (r == NULL) 5451 return (0); 5452 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5453 } 5454 5455 device_t 5456 device_lookup_by_name(const char *name) 5457 { 5458 device_t dev; 5459 5460 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5461 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5462 return (dev); 5463 } 5464 return (NULL); 5465 } 5466 5467 /* 5468 * /dev/devctl2 implementation. The existing /dev/devctl device has 5469 * implicit semantics on open, so it could not be reused for this. 5470 * Another option would be to call this /dev/bus? 5471 */ 5472 static int 5473 find_device(struct devreq *req, device_t *devp) 5474 { 5475 device_t dev; 5476 5477 /* 5478 * First, ensure that the name is nul terminated. 5479 */ 5480 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5481 return (EINVAL); 5482 5483 /* 5484 * Second, try to find an attached device whose name matches 5485 * 'name'. 5486 */ 5487 dev = device_lookup_by_name(req->dr_name); 5488 if (dev != NULL) { 5489 *devp = dev; 5490 return (0); 5491 } 5492 5493 /* Finally, give device enumerators a chance. */ 5494 dev = NULL; 5495 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5496 if (dev == NULL) 5497 return (ENOENT); 5498 *devp = dev; 5499 return (0); 5500 } 5501 5502 static bool 5503 driver_exists(device_t bus, const char *driver) 5504 { 5505 devclass_t dc; 5506 5507 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5508 if (devclass_find_driver_internal(dc, driver) != NULL) 5509 return (true); 5510 } 5511 return (false); 5512 } 5513 5514 static void 5515 device_gen_nomatch(device_t dev) 5516 { 5517 device_t child; 5518 5519 if (dev->flags & DF_NEEDNOMATCH && 5520 dev->state == DS_NOTPRESENT) { 5521 device_handle_nomatch(dev); 5522 } 5523 dev->flags &= ~DF_NEEDNOMATCH; 5524 TAILQ_FOREACH(child, &dev->children, link) { 5525 device_gen_nomatch(child); 5526 } 5527 } 5528 5529 static void 5530 device_do_deferred_actions(void) 5531 { 5532 devclass_t dc; 5533 driverlink_t dl; 5534 5535 /* 5536 * Walk through the devclasses to find all the drivers we've tagged as 5537 * deferred during the freeze and call the driver added routines. They 5538 * have already been added to the lists in the background, so the driver 5539 * added routines that trigger a probe will have all the right bidders 5540 * for the probe auction. 5541 */ 5542 TAILQ_FOREACH(dc, &devclasses, link) { 5543 TAILQ_FOREACH(dl, &dc->drivers, link) { 5544 if (dl->flags & DL_DEFERRED_PROBE) { 5545 devclass_driver_added(dc, dl->driver); 5546 dl->flags &= ~DL_DEFERRED_PROBE; 5547 } 5548 } 5549 } 5550 5551 /* 5552 * We also defer no-match events during a freeze. Walk the tree and 5553 * generate all the pent-up events that are still relevant. 5554 */ 5555 device_gen_nomatch(root_bus); 5556 bus_data_generation_update(); 5557 } 5558 5559 static int 5560 device_get_path(device_t dev, const char *locator, struct sbuf *sb) 5561 { 5562 device_t parent; 5563 int error; 5564 5565 KASSERT(sb != NULL, ("sb is NULL")); 5566 parent = device_get_parent(dev); 5567 if (parent == NULL) { 5568 error = sbuf_putc(sb, '/'); 5569 } else { 5570 error = BUS_GET_DEVICE_PATH(parent, dev, locator, sb); 5571 if (error == 0) { 5572 error = sbuf_error(sb); 5573 if (error == 0 && sbuf_len(sb) <= 1) 5574 error = EIO; 5575 } 5576 } 5577 sbuf_finish(sb); 5578 return (error); 5579 } 5580 5581 static int 5582 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5583 struct thread *td) 5584 { 5585 struct devreq *req; 5586 device_t dev; 5587 int error, old; 5588 5589 /* Locate the device to control. */ 5590 bus_topo_lock(); 5591 req = (struct devreq *)data; 5592 switch (cmd) { 5593 case DEV_ATTACH: 5594 case DEV_DETACH: 5595 case DEV_ENABLE: 5596 case DEV_DISABLE: 5597 case DEV_SUSPEND: 5598 case DEV_RESUME: 5599 case DEV_SET_DRIVER: 5600 case DEV_CLEAR_DRIVER: 5601 case DEV_RESCAN: 5602 case DEV_DELETE: 5603 case DEV_RESET: 5604 error = priv_check(td, PRIV_DRIVER); 5605 if (error == 0) 5606 error = find_device(req, &dev); 5607 break; 5608 case DEV_FREEZE: 5609 case DEV_THAW: 5610 error = priv_check(td, PRIV_DRIVER); 5611 break; 5612 case DEV_GET_PATH: 5613 error = find_device(req, &dev); 5614 break; 5615 default: 5616 error = ENOTTY; 5617 break; 5618 } 5619 if (error) { 5620 bus_topo_unlock(); 5621 return (error); 5622 } 5623 5624 /* Perform the requested operation. */ 5625 switch (cmd) { 5626 case DEV_ATTACH: 5627 if (device_is_attached(dev)) 5628 error = EBUSY; 5629 else if (!device_is_enabled(dev)) 5630 error = ENXIO; 5631 else 5632 error = device_probe_and_attach(dev); 5633 break; 5634 case DEV_DETACH: 5635 if (!device_is_attached(dev)) { 5636 error = ENXIO; 5637 break; 5638 } 5639 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5640 error = device_quiesce(dev); 5641 if (error) 5642 break; 5643 } 5644 error = device_detach(dev); 5645 break; 5646 case DEV_ENABLE: 5647 if (device_is_enabled(dev)) { 5648 error = EBUSY; 5649 break; 5650 } 5651 5652 /* 5653 * If the device has been probed but not attached (e.g. 5654 * when it has been disabled by a loader hint), just 5655 * attach the device rather than doing a full probe. 5656 */ 5657 device_enable(dev); 5658 if (device_is_alive(dev)) { 5659 /* 5660 * If the device was disabled via a hint, clear 5661 * the hint. 5662 */ 5663 if (resource_disabled(dev->driver->name, dev->unit)) 5664 resource_unset_value(dev->driver->name, 5665 dev->unit, "disabled"); 5666 error = device_attach(dev); 5667 } else 5668 error = device_probe_and_attach(dev); 5669 break; 5670 case DEV_DISABLE: 5671 if (!device_is_enabled(dev)) { 5672 error = ENXIO; 5673 break; 5674 } 5675 5676 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5677 error = device_quiesce(dev); 5678 if (error) 5679 break; 5680 } 5681 5682 /* 5683 * Force DF_FIXEDCLASS on around detach to preserve 5684 * the existing name. 5685 */ 5686 old = dev->flags; 5687 dev->flags |= DF_FIXEDCLASS; 5688 error = device_detach(dev); 5689 if (!(old & DF_FIXEDCLASS)) 5690 dev->flags &= ~DF_FIXEDCLASS; 5691 if (error == 0) 5692 device_disable(dev); 5693 break; 5694 case DEV_SUSPEND: 5695 if (device_is_suspended(dev)) { 5696 error = EBUSY; 5697 break; 5698 } 5699 if (device_get_parent(dev) == NULL) { 5700 error = EINVAL; 5701 break; 5702 } 5703 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5704 break; 5705 case DEV_RESUME: 5706 if (!device_is_suspended(dev)) { 5707 error = EINVAL; 5708 break; 5709 } 5710 if (device_get_parent(dev) == NULL) { 5711 error = EINVAL; 5712 break; 5713 } 5714 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5715 break; 5716 case DEV_SET_DRIVER: { 5717 devclass_t dc; 5718 char driver[128]; 5719 5720 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5721 if (error) 5722 break; 5723 if (driver[0] == '\0') { 5724 error = EINVAL; 5725 break; 5726 } 5727 if (dev->devclass != NULL && 5728 strcmp(driver, dev->devclass->name) == 0) 5729 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5730 break; 5731 5732 /* 5733 * Scan drivers for this device's bus looking for at 5734 * least one matching driver. 5735 */ 5736 if (dev->parent == NULL) { 5737 error = EINVAL; 5738 break; 5739 } 5740 if (!driver_exists(dev->parent, driver)) { 5741 error = ENOENT; 5742 break; 5743 } 5744 dc = devclass_create(driver); 5745 if (dc == NULL) { 5746 error = ENOMEM; 5747 break; 5748 } 5749 5750 /* Detach device if necessary. */ 5751 if (device_is_attached(dev)) { 5752 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5753 error = device_detach(dev); 5754 else 5755 error = EBUSY; 5756 if (error) 5757 break; 5758 } 5759 5760 /* Clear any previously-fixed device class and unit. */ 5761 if (dev->flags & DF_FIXEDCLASS) 5762 devclass_delete_device(dev->devclass, dev); 5763 dev->flags |= DF_WILDCARD; 5764 dev->unit = -1; 5765 5766 /* Force the new device class. */ 5767 error = devclass_add_device(dc, dev); 5768 if (error) 5769 break; 5770 dev->flags |= DF_FIXEDCLASS; 5771 error = device_probe_and_attach(dev); 5772 break; 5773 } 5774 case DEV_CLEAR_DRIVER: 5775 if (!(dev->flags & DF_FIXEDCLASS)) { 5776 error = 0; 5777 break; 5778 } 5779 if (device_is_attached(dev)) { 5780 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5781 error = device_detach(dev); 5782 else 5783 error = EBUSY; 5784 if (error) 5785 break; 5786 } 5787 5788 dev->flags &= ~DF_FIXEDCLASS; 5789 dev->flags |= DF_WILDCARD; 5790 devclass_delete_device(dev->devclass, dev); 5791 error = device_probe_and_attach(dev); 5792 break; 5793 case DEV_RESCAN: 5794 if (!device_is_attached(dev)) { 5795 error = ENXIO; 5796 break; 5797 } 5798 error = BUS_RESCAN(dev); 5799 break; 5800 case DEV_DELETE: { 5801 device_t parent; 5802 5803 parent = device_get_parent(dev); 5804 if (parent == NULL) { 5805 error = EINVAL; 5806 break; 5807 } 5808 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5809 if (bus_child_present(dev) != 0) { 5810 error = EBUSY; 5811 break; 5812 } 5813 } 5814 5815 error = device_delete_child(parent, dev); 5816 break; 5817 } 5818 case DEV_FREEZE: 5819 if (device_frozen) 5820 error = EBUSY; 5821 else 5822 device_frozen = true; 5823 break; 5824 case DEV_THAW: 5825 if (!device_frozen) 5826 error = EBUSY; 5827 else { 5828 device_do_deferred_actions(); 5829 device_frozen = false; 5830 } 5831 break; 5832 case DEV_RESET: 5833 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 5834 error = EINVAL; 5835 break; 5836 } 5837 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 5838 req->dr_flags); 5839 break; 5840 case DEV_GET_PATH: { 5841 struct sbuf *sb; 5842 char locator[64]; 5843 ssize_t len; 5844 5845 error = copyinstr(req->dr_buffer.buffer, locator, 5846 sizeof(locator), NULL); 5847 if (error != 0) 5848 break; 5849 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | 5850 SBUF_INCLUDENUL /* | SBUF_WAITOK */); 5851 error = device_get_path(dev, locator, sb); 5852 if (error == 0) { 5853 len = sbuf_len(sb); 5854 if (req->dr_buffer.length < len) { 5855 error = ENAMETOOLONG; 5856 } else { 5857 error = copyout(sbuf_data(sb), 5858 req->dr_buffer.buffer, len); 5859 } 5860 req->dr_buffer.length = len; 5861 } 5862 sbuf_delete(sb); 5863 break; 5864 } 5865 } 5866 bus_topo_unlock(); 5867 return (error); 5868 } 5869 5870 static struct cdevsw devctl2_cdevsw = { 5871 .d_version = D_VERSION, 5872 .d_ioctl = devctl2_ioctl, 5873 .d_name = "devctl2", 5874 }; 5875 5876 static void 5877 devctl2_init(void) 5878 { 5879 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5880 UID_ROOT, GID_WHEEL, 0644, "devctl2"); 5881 } 5882 5883 /* 5884 * For maintaining device 'at' location info to avoid recomputing it 5885 */ 5886 struct device_location_node { 5887 const char *dln_locator; 5888 const char *dln_path; 5889 TAILQ_ENTRY(device_location_node) dln_link; 5890 }; 5891 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t; 5892 5893 struct device_location_cache { 5894 device_location_list_t dlc_list; 5895 }; 5896 5897 5898 /* 5899 * Location cache for wired devices. 5900 */ 5901 device_location_cache_t * 5902 dev_wired_cache_init(void) 5903 { 5904 device_location_cache_t *dcp; 5905 5906 dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO); 5907 TAILQ_INIT(&dcp->dlc_list); 5908 5909 return (dcp); 5910 } 5911 5912 void 5913 dev_wired_cache_fini(device_location_cache_t *dcp) 5914 { 5915 struct device_location_node *dln, *tdln; 5916 5917 TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) { 5918 free(dln, M_BUS); 5919 } 5920 free(dcp, M_BUS); 5921 } 5922 5923 static struct device_location_node * 5924 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator) 5925 { 5926 struct device_location_node *dln; 5927 5928 TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) { 5929 if (strcmp(locator, dln->dln_locator) == 0) 5930 return (dln); 5931 } 5932 5933 return (NULL); 5934 } 5935 5936 static struct device_location_node * 5937 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path) 5938 { 5939 struct device_location_node *dln; 5940 size_t loclen, pathlen; 5941 5942 loclen = strlen(locator) + 1; 5943 pathlen = strlen(path) + 1; 5944 dln = malloc(sizeof(*dln) + loclen + pathlen, M_BUS, M_WAITOK | M_ZERO); 5945 dln->dln_locator = (char *)(dln + 1); 5946 memcpy(__DECONST(char *, dln->dln_locator), locator, loclen); 5947 dln->dln_path = dln->dln_locator + loclen; 5948 memcpy(__DECONST(char *, dln->dln_path), path, pathlen); 5949 TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link); 5950 5951 return (dln); 5952 } 5953 5954 bool 5955 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev, 5956 const char *at) 5957 { 5958 struct sbuf *sb; 5959 const char *cp; 5960 char locator[32]; 5961 int error, len; 5962 struct device_location_node *res; 5963 5964 cp = strchr(at, ':'); 5965 if (cp == NULL) 5966 return (false); 5967 len = cp - at; 5968 if (len > sizeof(locator) - 1) /* Skip too long locator */ 5969 return (false); 5970 memcpy(locator, at, len); 5971 locator[len] = '\0'; 5972 cp++; 5973 5974 error = 0; 5975 /* maybe cache this inside device_t and look that up, but not yet */ 5976 res = dev_wired_cache_lookup(dcp, locator); 5977 if (res == NULL) { 5978 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | 5979 SBUF_INCLUDENUL | SBUF_NOWAIT); 5980 if (sb != NULL) { 5981 error = device_get_path(dev, locator, sb); 5982 if (error == 0) { 5983 res = dev_wired_cache_add(dcp, locator, 5984 sbuf_data(sb)); 5985 } 5986 sbuf_delete(sb); 5987 } 5988 } 5989 if (error != 0 || res == NULL || res->dln_path == NULL) 5990 return (false); 5991 5992 return (strcmp(res->dln_path, cp) == 0); 5993 } 5994 5995 /* 5996 * APIs to manage deprecation and obsolescence. 5997 */ 5998 static int obsolete_panic = 0; 5999 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 6000 "Panic when obsolete features are used (0 = never, 1 = if obsolete, " 6001 "2 = if deprecated)"); 6002 6003 static void 6004 gone_panic(int major, int running, const char *msg) 6005 { 6006 switch (obsolete_panic) 6007 { 6008 case 0: 6009 return; 6010 case 1: 6011 if (running < major) 6012 return; 6013 /* FALLTHROUGH */ 6014 default: 6015 panic("%s", msg); 6016 } 6017 } 6018 6019 void 6020 _gone_in(int major, const char *msg) 6021 { 6022 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 6023 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 6024 printf("Obsolete code will be removed soon: %s\n", msg); 6025 else 6026 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 6027 major, msg); 6028 } 6029 6030 void 6031 _gone_in_dev(device_t dev, int major, const char *msg) 6032 { 6033 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 6034 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 6035 device_printf(dev, 6036 "Obsolete code will be removed soon: %s\n", msg); 6037 else 6038 device_printf(dev, 6039 "Deprecated code (to be removed in FreeBSD %d): %s\n", 6040 major, msg); 6041 } 6042 6043 #ifdef DDB 6044 DB_SHOW_COMMAND(device, db_show_device) 6045 { 6046 device_t dev; 6047 6048 if (!have_addr) 6049 return; 6050 6051 dev = (device_t)addr; 6052 6053 db_printf("name: %s\n", device_get_nameunit(dev)); 6054 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 6055 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 6056 db_printf(" addr: %p\n", dev); 6057 db_printf(" parent: %p\n", dev->parent); 6058 db_printf(" softc: %p\n", dev->softc); 6059 db_printf(" ivars: %p\n", dev->ivars); 6060 } 6061 6062 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 6063 { 6064 device_t dev; 6065 6066 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 6067 db_show_device((db_expr_t)dev, true, count, modif); 6068 } 6069 } 6070 #endif 6071