xref: /freebsd/sys/kern/subr_bus.c (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997,1998,2003 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_bus.h"
33 #include "opt_ddb.h"
34 
35 #include <sys/param.h>
36 #include <sys/conf.h>
37 #include <sys/domainset.h>
38 #include <sys/eventhandler.h>
39 #include <sys/filio.h>
40 #include <sys/lock.h>
41 #include <sys/kernel.h>
42 #include <sys/kobj.h>
43 #include <sys/limits.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/mutex.h>
47 #include <sys/poll.h>
48 #include <sys/priv.h>
49 #include <sys/proc.h>
50 #include <sys/condvar.h>
51 #include <sys/queue.h>
52 #include <machine/bus.h>
53 #include <sys/random.h>
54 #include <sys/rman.h>
55 #include <sys/sbuf.h>
56 #include <sys/selinfo.h>
57 #include <sys/signalvar.h>
58 #include <sys/smp.h>
59 #include <sys/sysctl.h>
60 #include <sys/systm.h>
61 #include <sys/uio.h>
62 #include <sys/bus.h>
63 #include <sys/cpuset.h>
64 
65 #include <net/vnet.h>
66 
67 #include <machine/cpu.h>
68 #include <machine/stdarg.h>
69 
70 #include <vm/uma.h>
71 #include <vm/vm.h>
72 
73 #include <ddb/ddb.h>
74 
75 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
76     NULL);
77 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
78     NULL);
79 
80 /*
81  * Used to attach drivers to devclasses.
82  */
83 typedef struct driverlink *driverlink_t;
84 struct driverlink {
85 	kobj_class_t	driver;
86 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
87 	int		pass;
88 	int		flags;
89 #define DL_DEFERRED_PROBE	1	/* Probe deferred on this */
90 	TAILQ_ENTRY(driverlink) passlink;
91 };
92 
93 /*
94  * Forward declarations
95  */
96 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
97 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
98 typedef TAILQ_HEAD(device_list, device) device_list_t;
99 
100 struct devclass {
101 	TAILQ_ENTRY(devclass) link;
102 	devclass_t	parent;		/* parent in devclass hierarchy */
103 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
104 	char		*name;
105 	device_t	*devices;	/* array of devices indexed by unit */
106 	int		maxunit;	/* size of devices array */
107 	int		flags;
108 #define DC_HAS_CHILDREN		1
109 
110 	struct sysctl_ctx_list sysctl_ctx;
111 	struct sysctl_oid *sysctl_tree;
112 };
113 
114 /**
115  * @brief Implementation of device.
116  */
117 struct device {
118 	/*
119 	 * A device is a kernel object. The first field must be the
120 	 * current ops table for the object.
121 	 */
122 	KOBJ_FIELDS;
123 
124 	/*
125 	 * Device hierarchy.
126 	 */
127 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
128 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
129 	device_t	parent;		/**< parent of this device  */
130 	device_list_t	children;	/**< list of child devices */
131 
132 	/*
133 	 * Details of this device.
134 	 */
135 	driver_t	*driver;	/**< current driver */
136 	devclass_t	devclass;	/**< current device class */
137 	int		unit;		/**< current unit number */
138 	char*		nameunit;	/**< name+unit e.g. foodev0 */
139 	char*		desc;		/**< driver specific description */
140 	int		busy;		/**< count of calls to device_busy() */
141 	device_state_t	state;		/**< current device state  */
142 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
143 	u_int		flags;		/**< internal device flags  */
144 	u_int	order;			/**< order from device_add_child_ordered() */
145 	void	*ivars;			/**< instance variables  */
146 	void	*softc;			/**< current driver's variables  */
147 
148 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
149 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
150 };
151 
152 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
153 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
154 
155 EVENTHANDLER_LIST_DEFINE(device_attach);
156 EVENTHANDLER_LIST_DEFINE(device_detach);
157 EVENTHANDLER_LIST_DEFINE(dev_lookup);
158 
159 static int bus_child_location_sb(device_t child, struct sbuf *sb);
160 static int bus_child_pnpinfo_sb(device_t child, struct sbuf *sb);
161 static void devctl2_init(void);
162 static bool device_frozen;
163 
164 #define DRIVERNAME(d)	((d)? d->name : "no driver")
165 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
166 
167 #ifdef BUS_DEBUG
168 
169 static int bus_debug = 1;
170 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
171     "Bus debug level");
172 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
173 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
174 
175 /**
176  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
177  * prevent syslog from deleting initial spaces
178  */
179 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
180 
181 static void print_device_short(device_t dev, int indent);
182 static void print_device(device_t dev, int indent);
183 void print_device_tree_short(device_t dev, int indent);
184 void print_device_tree(device_t dev, int indent);
185 static void print_driver_short(driver_t *driver, int indent);
186 static void print_driver(driver_t *driver, int indent);
187 static void print_driver_list(driver_list_t drivers, int indent);
188 static void print_devclass_short(devclass_t dc, int indent);
189 static void print_devclass(devclass_t dc, int indent);
190 void print_devclass_list_short(void);
191 void print_devclass_list(void);
192 
193 #else
194 /* Make the compiler ignore the function calls */
195 #define PDEBUG(a)			/* nop */
196 #define DEVICENAME(d)			/* nop */
197 
198 #define print_device_short(d,i)		/* nop */
199 #define print_device(d,i)		/* nop */
200 #define print_device_tree_short(d,i)	/* nop */
201 #define print_device_tree(d,i)		/* nop */
202 #define print_driver_short(d,i)		/* nop */
203 #define print_driver(d,i)		/* nop */
204 #define print_driver_list(d,i)		/* nop */
205 #define print_devclass_short(d,i)	/* nop */
206 #define print_devclass(d,i)		/* nop */
207 #define print_devclass_list_short()	/* nop */
208 #define print_devclass_list()		/* nop */
209 #endif
210 
211 /*
212  * dev sysctl tree
213  */
214 
215 enum {
216 	DEVCLASS_SYSCTL_PARENT,
217 };
218 
219 static int
220 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
221 {
222 	devclass_t dc = (devclass_t)arg1;
223 	const char *value;
224 
225 	switch (arg2) {
226 	case DEVCLASS_SYSCTL_PARENT:
227 		value = dc->parent ? dc->parent->name : "";
228 		break;
229 	default:
230 		return (EINVAL);
231 	}
232 	return (SYSCTL_OUT_STR(req, value));
233 }
234 
235 static void
236 devclass_sysctl_init(devclass_t dc)
237 {
238 	if (dc->sysctl_tree != NULL)
239 		return;
240 	sysctl_ctx_init(&dc->sysctl_ctx);
241 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
242 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
243 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
244 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
245 	    OID_AUTO, "%parent",
246 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
247 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
248 	    "parent class");
249 }
250 
251 enum {
252 	DEVICE_SYSCTL_DESC,
253 	DEVICE_SYSCTL_DRIVER,
254 	DEVICE_SYSCTL_LOCATION,
255 	DEVICE_SYSCTL_PNPINFO,
256 	DEVICE_SYSCTL_PARENT,
257 };
258 
259 static int
260 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
261 {
262 	struct sbuf sb;
263 	device_t dev = (device_t)arg1;
264 	int error;
265 
266 	sbuf_new_for_sysctl(&sb, NULL, 1024, req);
267 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
268 	switch (arg2) {
269 	case DEVICE_SYSCTL_DESC:
270 		sbuf_cat(&sb, dev->desc ? dev->desc : "");
271 		break;
272 	case DEVICE_SYSCTL_DRIVER:
273 		sbuf_cat(&sb, dev->driver ? dev->driver->name : "");
274 		break;
275 	case DEVICE_SYSCTL_LOCATION:
276 		bus_child_location_sb(dev, &sb);
277 		break;
278 	case DEVICE_SYSCTL_PNPINFO:
279 		bus_child_pnpinfo_sb(dev, &sb);
280 		break;
281 	case DEVICE_SYSCTL_PARENT:
282 		sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : "");
283 		break;
284 	default:
285 		sbuf_delete(&sb);
286 		return (EINVAL);
287 	}
288 	error = sbuf_finish(&sb);
289 	sbuf_delete(&sb);
290 	return (error);
291 }
292 
293 static void
294 device_sysctl_init(device_t dev)
295 {
296 	devclass_t dc = dev->devclass;
297 	int domain;
298 
299 	if (dev->sysctl_tree != NULL)
300 		return;
301 	devclass_sysctl_init(dc);
302 	sysctl_ctx_init(&dev->sysctl_ctx);
303 	dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
304 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
305 	    dev->nameunit + strlen(dc->name),
306 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index");
307 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
308 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
309 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
310 	    "device description");
311 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
312 	    OID_AUTO, "%driver",
313 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
314 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
315 	    "device driver name");
316 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
317 	    OID_AUTO, "%location",
318 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
319 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
320 	    "device location relative to parent");
321 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
322 	    OID_AUTO, "%pnpinfo",
323 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
324 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
325 	    "device identification");
326 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
327 	    OID_AUTO, "%parent",
328 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
329 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
330 	    "parent device");
331 	if (bus_get_domain(dev, &domain) == 0)
332 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
333 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
334 		    CTLFLAG_RD, NULL, domain, "NUMA domain");
335 }
336 
337 static void
338 device_sysctl_update(device_t dev)
339 {
340 	devclass_t dc = dev->devclass;
341 
342 	if (dev->sysctl_tree == NULL)
343 		return;
344 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
345 }
346 
347 static void
348 device_sysctl_fini(device_t dev)
349 {
350 	if (dev->sysctl_tree == NULL)
351 		return;
352 	sysctl_ctx_free(&dev->sysctl_ctx);
353 	dev->sysctl_tree = NULL;
354 }
355 
356 /*
357  * /dev/devctl implementation
358  */
359 
360 /*
361  * This design allows only one reader for /dev/devctl.  This is not desirable
362  * in the long run, but will get a lot of hair out of this implementation.
363  * Maybe we should make this device a clonable device.
364  *
365  * Also note: we specifically do not attach a device to the device_t tree
366  * to avoid potential chicken and egg problems.  One could argue that all
367  * of this belongs to the root node.
368  */
369 
370 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
371 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
372 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
373 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
374     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
375 
376 static d_open_t		devopen;
377 static d_close_t	devclose;
378 static d_read_t		devread;
379 static d_ioctl_t	devioctl;
380 static d_poll_t		devpoll;
381 static d_kqfilter_t	devkqfilter;
382 
383 static struct cdevsw dev_cdevsw = {
384 	.d_version =	D_VERSION,
385 	.d_open =	devopen,
386 	.d_close =	devclose,
387 	.d_read =	devread,
388 	.d_ioctl =	devioctl,
389 	.d_poll =	devpoll,
390 	.d_kqfilter =	devkqfilter,
391 	.d_name =	"devctl",
392 };
393 
394 #define DEVCTL_BUFFER (1024 - sizeof(void *))
395 struct dev_event_info {
396 	STAILQ_ENTRY(dev_event_info) dei_link;
397 	char dei_data[DEVCTL_BUFFER];
398 };
399 
400 STAILQ_HEAD(devq, dev_event_info);
401 
402 static struct dev_softc {
403 	int		inuse;
404 	int		nonblock;
405 	int		queued;
406 	int		async;
407 	struct mtx	mtx;
408 	struct cv	cv;
409 	struct selinfo	sel;
410 	struct devq	devq;
411 	struct sigio	*sigio;
412 	uma_zone_t	zone;
413 } devsoftc;
414 
415 static void	filt_devctl_detach(struct knote *kn);
416 static int	filt_devctl_read(struct knote *kn, long hint);
417 
418 struct filterops devctl_rfiltops = {
419 	.f_isfd = 1,
420 	.f_detach = filt_devctl_detach,
421 	.f_event = filt_devctl_read,
422 };
423 
424 static struct cdev *devctl_dev;
425 
426 static void
427 devinit(void)
428 {
429 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
430 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
431 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
432 	cv_init(&devsoftc.cv, "dev cv");
433 	STAILQ_INIT(&devsoftc.devq);
434 	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
435 	if (devctl_queue_length > 0) {
436 		devsoftc.zone = uma_zcreate("DEVCTL", sizeof(struct dev_event_info),
437 		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
438 		uma_prealloc(devsoftc.zone, devctl_queue_length);
439 	}
440 	devctl2_init();
441 }
442 
443 static int
444 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
445 {
446 	mtx_lock(&devsoftc.mtx);
447 	if (devsoftc.inuse) {
448 		mtx_unlock(&devsoftc.mtx);
449 		return (EBUSY);
450 	}
451 	/* move to init */
452 	devsoftc.inuse = 1;
453 	mtx_unlock(&devsoftc.mtx);
454 	return (0);
455 }
456 
457 static int
458 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
459 {
460 	mtx_lock(&devsoftc.mtx);
461 	devsoftc.inuse = 0;
462 	devsoftc.nonblock = 0;
463 	devsoftc.async = 0;
464 	cv_broadcast(&devsoftc.cv);
465 	funsetown(&devsoftc.sigio);
466 	mtx_unlock(&devsoftc.mtx);
467 	return (0);
468 }
469 
470 /*
471  * The read channel for this device is used to report changes to
472  * userland in realtime.  We are required to free the data as well as
473  * the n1 object because we allocate them separately.  Also note that
474  * we return one record at a time.  If you try to read this device a
475  * character at a time, you will lose the rest of the data.  Listening
476  * programs are expected to cope.
477  */
478 static int
479 devread(struct cdev *dev, struct uio *uio, int ioflag)
480 {
481 	struct dev_event_info *n1;
482 	int rv;
483 
484 	mtx_lock(&devsoftc.mtx);
485 	while (STAILQ_EMPTY(&devsoftc.devq)) {
486 		if (devsoftc.nonblock) {
487 			mtx_unlock(&devsoftc.mtx);
488 			return (EAGAIN);
489 		}
490 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
491 		if (rv) {
492 			/*
493 			 * Need to translate ERESTART to EINTR here? -- jake
494 			 */
495 			mtx_unlock(&devsoftc.mtx);
496 			return (rv);
497 		}
498 	}
499 	n1 = STAILQ_FIRST(&devsoftc.devq);
500 	STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link);
501 	devsoftc.queued--;
502 	mtx_unlock(&devsoftc.mtx);
503 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
504 	uma_zfree(devsoftc.zone, n1);
505 	return (rv);
506 }
507 
508 static	int
509 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
510 {
511 	switch (cmd) {
512 	case FIONBIO:
513 		if (*(int*)data)
514 			devsoftc.nonblock = 1;
515 		else
516 			devsoftc.nonblock = 0;
517 		return (0);
518 	case FIOASYNC:
519 		if (*(int*)data)
520 			devsoftc.async = 1;
521 		else
522 			devsoftc.async = 0;
523 		return (0);
524 	case FIOSETOWN:
525 		return fsetown(*(int *)data, &devsoftc.sigio);
526 	case FIOGETOWN:
527 		*(int *)data = fgetown(&devsoftc.sigio);
528 		return (0);
529 
530 		/* (un)Support for other fcntl() calls. */
531 	case FIOCLEX:
532 	case FIONCLEX:
533 	case FIONREAD:
534 	default:
535 		break;
536 	}
537 	return (ENOTTY);
538 }
539 
540 static	int
541 devpoll(struct cdev *dev, int events, struct thread *td)
542 {
543 	int	revents = 0;
544 
545 	mtx_lock(&devsoftc.mtx);
546 	if (events & (POLLIN | POLLRDNORM)) {
547 		if (!STAILQ_EMPTY(&devsoftc.devq))
548 			revents = events & (POLLIN | POLLRDNORM);
549 		else
550 			selrecord(td, &devsoftc.sel);
551 	}
552 	mtx_unlock(&devsoftc.mtx);
553 
554 	return (revents);
555 }
556 
557 static int
558 devkqfilter(struct cdev *dev, struct knote *kn)
559 {
560 	int error;
561 
562 	if (kn->kn_filter == EVFILT_READ) {
563 		kn->kn_fop = &devctl_rfiltops;
564 		knlist_add(&devsoftc.sel.si_note, kn, 0);
565 		error = 0;
566 	} else
567 		error = EINVAL;
568 	return (error);
569 }
570 
571 static void
572 filt_devctl_detach(struct knote *kn)
573 {
574 	knlist_remove(&devsoftc.sel.si_note, kn, 0);
575 }
576 
577 static int
578 filt_devctl_read(struct knote *kn, long hint)
579 {
580 	kn->kn_data = devsoftc.queued;
581 	return (kn->kn_data != 0);
582 }
583 
584 /**
585  * @brief Return whether the userland process is running
586  */
587 bool
588 devctl_process_running(void)
589 {
590 	return (devsoftc.inuse == 1);
591 }
592 
593 static struct dev_event_info *
594 devctl_alloc_dei(void)
595 {
596 	struct dev_event_info *dei = NULL;
597 
598 	mtx_lock(&devsoftc.mtx);
599 	if (devctl_queue_length == 0)
600 		goto out;
601 	if (devctl_queue_length == devsoftc.queued) {
602 		dei = STAILQ_FIRST(&devsoftc.devq);
603 		STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link);
604 		devsoftc.queued--;
605 	} else {
606 		/* dei can't be NULL -- we know we have at least one in the zone */
607 		dei = uma_zalloc(devsoftc.zone, M_NOWAIT);
608 		MPASS(dei != NULL);
609 	}
610 	*dei->dei_data = '\0';
611 out:
612 	mtx_unlock(&devsoftc.mtx);
613 	return (dei);
614 }
615 
616 static struct dev_event_info *
617 devctl_alloc_dei_sb(struct sbuf *sb)
618 {
619 	struct dev_event_info *dei;
620 
621 	dei = devctl_alloc_dei();
622 	if (dei != NULL)
623 		sbuf_new(sb, dei->dei_data, sizeof(dei->dei_data), SBUF_FIXEDLEN);
624 	return (dei);
625 }
626 
627 static void
628 devctl_free_dei(struct dev_event_info *dei)
629 {
630 	uma_zfree(devsoftc.zone, dei);
631 }
632 
633 static void
634 devctl_queue(struct dev_event_info *dei)
635 {
636 	mtx_lock(&devsoftc.mtx);
637 	STAILQ_INSERT_TAIL(&devsoftc.devq, dei, dei_link);
638 	devsoftc.queued++;
639 	cv_broadcast(&devsoftc.cv);
640 	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
641 	mtx_unlock(&devsoftc.mtx);
642 	selwakeup(&devsoftc.sel);
643 	if (devsoftc.async && devsoftc.sigio != NULL)
644 		pgsigio(&devsoftc.sigio, SIGIO, 0);
645 }
646 
647 /**
648  * @brief Send a 'notification' to userland, using standard ways
649  */
650 void
651 devctl_notify(const char *system, const char *subsystem, const char *type,
652     const char *data)
653 {
654 	struct dev_event_info *dei;
655 	struct sbuf sb;
656 
657 	if (system == NULL || subsystem == NULL || type == NULL)
658 		return;
659 	dei = devctl_alloc_dei_sb(&sb);
660 	if (dei == NULL)
661 		return;
662 	sbuf_cpy(&sb, "!system=");
663 	sbuf_cat(&sb, system);
664 	sbuf_cat(&sb, " subsystem=");
665 	sbuf_cat(&sb, subsystem);
666 	sbuf_cat(&sb, " type=");
667 	sbuf_cat(&sb, type);
668 	if (data != NULL) {
669 		sbuf_putc(&sb, ' ');
670 		sbuf_cat(&sb, data);
671 	}
672 	sbuf_putc(&sb, '\n');
673 	if (sbuf_finish(&sb) != 0)
674 		devctl_free_dei(dei);	/* overflow -> drop it */
675 	else
676 		devctl_queue(dei);
677 }
678 
679 /*
680  * Common routine that tries to make sending messages as easy as possible.
681  * We allocate memory for the data, copy strings into that, but do not
682  * free it unless there's an error.  The dequeue part of the driver should
683  * free the data.  We don't send data when the device is disabled.  We do
684  * send data, even when we have no listeners, because we wish to avoid
685  * races relating to startup and restart of listening applications.
686  *
687  * devaddq is designed to string together the type of event, with the
688  * object of that event, plus the plug and play info and location info
689  * for that event.  This is likely most useful for devices, but less
690  * useful for other consumers of this interface.  Those should use
691  * the devctl_notify() interface instead.
692  *
693  * Output:
694  *	${type}${what} at $(location dev) $(pnp-info dev) on $(parent dev)
695  */
696 static void
697 devaddq(const char *type, const char *what, device_t dev)
698 {
699 	struct dev_event_info *dei;
700 	const char *parstr;
701 	struct sbuf sb;
702 
703 	dei = devctl_alloc_dei_sb(&sb);
704 	if (dei == NULL)
705 		return;
706 	sbuf_cpy(&sb, type);
707 	sbuf_cat(&sb, what);
708 	sbuf_cat(&sb, " at ");
709 
710 	/* Add in the location */
711 	bus_child_location_sb(dev, &sb);
712 	sbuf_putc(&sb, ' ');
713 
714 	/* Add in pnpinfo */
715 	bus_child_pnpinfo_sb(dev, &sb);
716 
717 	/* Get the parent of this device, or / if high enough in the tree. */
718 	if (device_get_parent(dev) == NULL)
719 		parstr = ".";	/* Or '/' ? */
720 	else
721 		parstr = device_get_nameunit(device_get_parent(dev));
722 	sbuf_cat(&sb, " on ");
723 	sbuf_cat(&sb, parstr);
724 	sbuf_putc(&sb, '\n');
725 	if (sbuf_finish(&sb) != 0)
726 		goto bad;
727 	devctl_queue(dei);
728 	return;
729 bad:
730 	devctl_free_dei(dei);
731 }
732 
733 /*
734  * A device was added to the tree.  We are called just after it successfully
735  * attaches (that is, probe and attach success for this device).  No call
736  * is made if a device is merely parented into the tree.  See devnomatch
737  * if probe fails.  If attach fails, no notification is sent (but maybe
738  * we should have a different message for this).
739  */
740 static void
741 devadded(device_t dev)
742 {
743 	devaddq("+", device_get_nameunit(dev), dev);
744 }
745 
746 /*
747  * A device was removed from the tree.  We are called just before this
748  * happens.
749  */
750 static void
751 devremoved(device_t dev)
752 {
753 	devaddq("-", device_get_nameunit(dev), dev);
754 }
755 
756 /*
757  * Called when there's no match for this device.  This is only called
758  * the first time that no match happens, so we don't keep getting this
759  * message.  Should that prove to be undesirable, we can change it.
760  * This is called when all drivers that can attach to a given bus
761  * decline to accept this device.  Other errors may not be detected.
762  */
763 static void
764 devnomatch(device_t dev)
765 {
766 	devaddq("?", "", dev);
767 }
768 
769 static int
770 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
771 {
772 	int q, error;
773 
774 	q = devctl_queue_length;
775 	error = sysctl_handle_int(oidp, &q, 0, req);
776 	if (error || !req->newptr)
777 		return (error);
778 	if (q < 0)
779 		return (EINVAL);
780 
781 	/*
782 	 * When set as a tunable, we've not yet initialized the mutex.
783 	 * It is safe to just assign to devctl_queue_length and return
784 	 * as we're racing no one. We'll use whatever value set in
785 	 * devinit.
786 	 */
787 	if (!mtx_initialized(&devsoftc.mtx)) {
788 		devctl_queue_length = q;
789 		return (0);
790 	}
791 
792 	/*
793 	 * XXX It's hard to grow or shrink the UMA zone. Only allow
794 	 * disabling the queue size for the moment until underlying
795 	 * UMA issues can be sorted out.
796 	 */
797 	if (q != 0)
798 		return (EINVAL);
799 	if (q == devctl_queue_length)
800 		return (0);
801 	mtx_lock(&devsoftc.mtx);
802 	devctl_queue_length = 0;
803 	uma_zdestroy(devsoftc.zone);
804 	devsoftc.zone = 0;
805 	mtx_unlock(&devsoftc.mtx);
806 	return (0);
807 }
808 
809 /**
810  * @brief safely quotes strings that might have double quotes in them.
811  *
812  * The devctl protocol relies on quoted strings having matching quotes.
813  * This routine quotes any internal quotes so the resulting string
814  * is safe to pass to snprintf to construct, for example pnp info strings.
815  *
816  * @param sb	sbuf to place the characters into
817  * @param src	Original buffer.
818  */
819 void
820 devctl_safe_quote_sb(struct sbuf *sb, const char *src)
821 {
822 	while (*src != '\0') {
823 		if (*src == '"' || *src == '\\')
824 			sbuf_putc(sb, '\\');
825 		sbuf_putc(sb, *src++);
826 	}
827 }
828 
829 /* End of /dev/devctl code */
830 
831 static TAILQ_HEAD(,device)	bus_data_devices;
832 static int bus_data_generation = 1;
833 
834 static kobj_method_t null_methods[] = {
835 	KOBJMETHOD_END
836 };
837 
838 DEFINE_CLASS(null, null_methods, 0);
839 
840 /*
841  * Bus pass implementation
842  */
843 
844 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
845 int bus_current_pass = BUS_PASS_ROOT;
846 
847 /**
848  * @internal
849  * @brief Register the pass level of a new driver attachment
850  *
851  * Register a new driver attachment's pass level.  If no driver
852  * attachment with the same pass level has been added, then @p new
853  * will be added to the global passes list.
854  *
855  * @param new		the new driver attachment
856  */
857 static void
858 driver_register_pass(struct driverlink *new)
859 {
860 	struct driverlink *dl;
861 
862 	/* We only consider pass numbers during boot. */
863 	if (bus_current_pass == BUS_PASS_DEFAULT)
864 		return;
865 
866 	/*
867 	 * Walk the passes list.  If we already know about this pass
868 	 * then there is nothing to do.  If we don't, then insert this
869 	 * driver link into the list.
870 	 */
871 	TAILQ_FOREACH(dl, &passes, passlink) {
872 		if (dl->pass < new->pass)
873 			continue;
874 		if (dl->pass == new->pass)
875 			return;
876 		TAILQ_INSERT_BEFORE(dl, new, passlink);
877 		return;
878 	}
879 	TAILQ_INSERT_TAIL(&passes, new, passlink);
880 }
881 
882 /**
883  * @brief Raise the current bus pass
884  *
885  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
886  * method on the root bus to kick off a new device tree scan for each
887  * new pass level that has at least one driver.
888  */
889 void
890 bus_set_pass(int pass)
891 {
892 	struct driverlink *dl;
893 
894 	if (bus_current_pass > pass)
895 		panic("Attempt to lower bus pass level");
896 
897 	TAILQ_FOREACH(dl, &passes, passlink) {
898 		/* Skip pass values below the current pass level. */
899 		if (dl->pass <= bus_current_pass)
900 			continue;
901 
902 		/*
903 		 * Bail once we hit a driver with a pass level that is
904 		 * too high.
905 		 */
906 		if (dl->pass > pass)
907 			break;
908 
909 		/*
910 		 * Raise the pass level to the next level and rescan
911 		 * the tree.
912 		 */
913 		bus_current_pass = dl->pass;
914 		BUS_NEW_PASS(root_bus);
915 	}
916 
917 	/*
918 	 * If there isn't a driver registered for the requested pass,
919 	 * then bus_current_pass might still be less than 'pass'.  Set
920 	 * it to 'pass' in that case.
921 	 */
922 	if (bus_current_pass < pass)
923 		bus_current_pass = pass;
924 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
925 }
926 
927 /*
928  * Devclass implementation
929  */
930 
931 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
932 
933 /**
934  * @internal
935  * @brief Find or create a device class
936  *
937  * If a device class with the name @p classname exists, return it,
938  * otherwise if @p create is non-zero create and return a new device
939  * class.
940  *
941  * If @p parentname is non-NULL, the parent of the devclass is set to
942  * the devclass of that name.
943  *
944  * @param classname	the devclass name to find or create
945  * @param parentname	the parent devclass name or @c NULL
946  * @param create	non-zero to create a devclass
947  */
948 static devclass_t
949 devclass_find_internal(const char *classname, const char *parentname,
950 		       int create)
951 {
952 	devclass_t dc;
953 
954 	PDEBUG(("looking for %s", classname));
955 	if (!classname)
956 		return (NULL);
957 
958 	TAILQ_FOREACH(dc, &devclasses, link) {
959 		if (!strcmp(dc->name, classname))
960 			break;
961 	}
962 
963 	if (create && !dc) {
964 		PDEBUG(("creating %s", classname));
965 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
966 		    M_BUS, M_NOWAIT | M_ZERO);
967 		if (!dc)
968 			return (NULL);
969 		dc->parent = NULL;
970 		dc->name = (char*) (dc + 1);
971 		strcpy(dc->name, classname);
972 		TAILQ_INIT(&dc->drivers);
973 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
974 
975 		bus_data_generation_update();
976 	}
977 
978 	/*
979 	 * If a parent class is specified, then set that as our parent so
980 	 * that this devclass will support drivers for the parent class as
981 	 * well.  If the parent class has the same name don't do this though
982 	 * as it creates a cycle that can trigger an infinite loop in
983 	 * device_probe_child() if a device exists for which there is no
984 	 * suitable driver.
985 	 */
986 	if (parentname && dc && !dc->parent &&
987 	    strcmp(classname, parentname) != 0) {
988 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
989 		dc->parent->flags |= DC_HAS_CHILDREN;
990 	}
991 
992 	return (dc);
993 }
994 
995 /**
996  * @brief Create a device class
997  *
998  * If a device class with the name @p classname exists, return it,
999  * otherwise create and return a new device class.
1000  *
1001  * @param classname	the devclass name to find or create
1002  */
1003 devclass_t
1004 devclass_create(const char *classname)
1005 {
1006 	return (devclass_find_internal(classname, NULL, TRUE));
1007 }
1008 
1009 /**
1010  * @brief Find a device class
1011  *
1012  * If a device class with the name @p classname exists, return it,
1013  * otherwise return @c NULL.
1014  *
1015  * @param classname	the devclass name to find
1016  */
1017 devclass_t
1018 devclass_find(const char *classname)
1019 {
1020 	return (devclass_find_internal(classname, NULL, FALSE));
1021 }
1022 
1023 /**
1024  * @brief Register that a device driver has been added to a devclass
1025  *
1026  * Register that a device driver has been added to a devclass.  This
1027  * is called by devclass_add_driver to accomplish the recursive
1028  * notification of all the children classes of dc, as well as dc.
1029  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1030  * the devclass.
1031  *
1032  * We do a full search here of the devclass list at each iteration
1033  * level to save storing children-lists in the devclass structure.  If
1034  * we ever move beyond a few dozen devices doing this, we may need to
1035  * reevaluate...
1036  *
1037  * @param dc		the devclass to edit
1038  * @param driver	the driver that was just added
1039  */
1040 static void
1041 devclass_driver_added(devclass_t dc, driver_t *driver)
1042 {
1043 	devclass_t parent;
1044 	int i;
1045 
1046 	/*
1047 	 * Call BUS_DRIVER_ADDED for any existing buses in this class.
1048 	 */
1049 	for (i = 0; i < dc->maxunit; i++)
1050 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1051 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1052 
1053 	/*
1054 	 * Walk through the children classes.  Since we only keep a
1055 	 * single parent pointer around, we walk the entire list of
1056 	 * devclasses looking for children.  We set the
1057 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1058 	 * the parent, so we only walk the list for those devclasses
1059 	 * that have children.
1060 	 */
1061 	if (!(dc->flags & DC_HAS_CHILDREN))
1062 		return;
1063 	parent = dc;
1064 	TAILQ_FOREACH(dc, &devclasses, link) {
1065 		if (dc->parent == parent)
1066 			devclass_driver_added(dc, driver);
1067 	}
1068 }
1069 
1070 /**
1071  * @brief Add a device driver to a device class
1072  *
1073  * Add a device driver to a devclass. This is normally called
1074  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1075  * all devices in the devclass will be called to allow them to attempt
1076  * to re-probe any unmatched children.
1077  *
1078  * @param dc		the devclass to edit
1079  * @param driver	the driver to register
1080  */
1081 int
1082 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1083 {
1084 	driverlink_t dl;
1085 	const char *parentname;
1086 
1087 	PDEBUG(("%s", DRIVERNAME(driver)));
1088 
1089 	/* Don't allow invalid pass values. */
1090 	if (pass <= BUS_PASS_ROOT)
1091 		return (EINVAL);
1092 
1093 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1094 	if (!dl)
1095 		return (ENOMEM);
1096 
1097 	/*
1098 	 * Compile the driver's methods. Also increase the reference count
1099 	 * so that the class doesn't get freed when the last instance
1100 	 * goes. This means we can safely use static methods and avoids a
1101 	 * double-free in devclass_delete_driver.
1102 	 */
1103 	kobj_class_compile((kobj_class_t) driver);
1104 
1105 	/*
1106 	 * If the driver has any base classes, make the
1107 	 * devclass inherit from the devclass of the driver's
1108 	 * first base class. This will allow the system to
1109 	 * search for drivers in both devclasses for children
1110 	 * of a device using this driver.
1111 	 */
1112 	if (driver->baseclasses)
1113 		parentname = driver->baseclasses[0]->name;
1114 	else
1115 		parentname = NULL;
1116 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1117 
1118 	dl->driver = driver;
1119 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1120 	driver->refs++;		/* XXX: kobj_mtx */
1121 	dl->pass = pass;
1122 	driver_register_pass(dl);
1123 
1124 	if (device_frozen) {
1125 		dl->flags |= DL_DEFERRED_PROBE;
1126 	} else {
1127 		devclass_driver_added(dc, driver);
1128 	}
1129 	bus_data_generation_update();
1130 	return (0);
1131 }
1132 
1133 /**
1134  * @brief Register that a device driver has been deleted from a devclass
1135  *
1136  * Register that a device driver has been removed from a devclass.
1137  * This is called by devclass_delete_driver to accomplish the
1138  * recursive notification of all the children classes of busclass, as
1139  * well as busclass.  Each layer will attempt to detach the driver
1140  * from any devices that are children of the bus's devclass.  The function
1141  * will return an error if a device fails to detach.
1142  *
1143  * We do a full search here of the devclass list at each iteration
1144  * level to save storing children-lists in the devclass structure.  If
1145  * we ever move beyond a few dozen devices doing this, we may need to
1146  * reevaluate...
1147  *
1148  * @param busclass	the devclass of the parent bus
1149  * @param dc		the devclass of the driver being deleted
1150  * @param driver	the driver being deleted
1151  */
1152 static int
1153 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1154 {
1155 	devclass_t parent;
1156 	device_t dev;
1157 	int error, i;
1158 
1159 	/*
1160 	 * Disassociate from any devices.  We iterate through all the
1161 	 * devices in the devclass of the driver and detach any which are
1162 	 * using the driver and which have a parent in the devclass which
1163 	 * we are deleting from.
1164 	 *
1165 	 * Note that since a driver can be in multiple devclasses, we
1166 	 * should not detach devices which are not children of devices in
1167 	 * the affected devclass.
1168 	 *
1169 	 * If we're frozen, we don't generate NOMATCH events. Mark to
1170 	 * generate later.
1171 	 */
1172 	for (i = 0; i < dc->maxunit; i++) {
1173 		if (dc->devices[i]) {
1174 			dev = dc->devices[i];
1175 			if (dev->driver == driver && dev->parent &&
1176 			    dev->parent->devclass == busclass) {
1177 				if ((error = device_detach(dev)) != 0)
1178 					return (error);
1179 				if (device_frozen) {
1180 					dev->flags &= ~DF_DONENOMATCH;
1181 					dev->flags |= DF_NEEDNOMATCH;
1182 				} else {
1183 					BUS_PROBE_NOMATCH(dev->parent, dev);
1184 					devnomatch(dev);
1185 					dev->flags |= DF_DONENOMATCH;
1186 				}
1187 			}
1188 		}
1189 	}
1190 
1191 	/*
1192 	 * Walk through the children classes.  Since we only keep a
1193 	 * single parent pointer around, we walk the entire list of
1194 	 * devclasses looking for children.  We set the
1195 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1196 	 * the parent, so we only walk the list for those devclasses
1197 	 * that have children.
1198 	 */
1199 	if (!(busclass->flags & DC_HAS_CHILDREN))
1200 		return (0);
1201 	parent = busclass;
1202 	TAILQ_FOREACH(busclass, &devclasses, link) {
1203 		if (busclass->parent == parent) {
1204 			error = devclass_driver_deleted(busclass, dc, driver);
1205 			if (error)
1206 				return (error);
1207 		}
1208 	}
1209 	return (0);
1210 }
1211 
1212 /**
1213  * @brief Delete a device driver from a device class
1214  *
1215  * Delete a device driver from a devclass. This is normally called
1216  * automatically by DRIVER_MODULE().
1217  *
1218  * If the driver is currently attached to any devices,
1219  * devclass_delete_driver() will first attempt to detach from each
1220  * device. If one of the detach calls fails, the driver will not be
1221  * deleted.
1222  *
1223  * @param dc		the devclass to edit
1224  * @param driver	the driver to unregister
1225  */
1226 int
1227 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1228 {
1229 	devclass_t dc = devclass_find(driver->name);
1230 	driverlink_t dl;
1231 	int error;
1232 
1233 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1234 
1235 	if (!dc)
1236 		return (0);
1237 
1238 	/*
1239 	 * Find the link structure in the bus' list of drivers.
1240 	 */
1241 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1242 		if (dl->driver == driver)
1243 			break;
1244 	}
1245 
1246 	if (!dl) {
1247 		PDEBUG(("%s not found in %s list", driver->name,
1248 		    busclass->name));
1249 		return (ENOENT);
1250 	}
1251 
1252 	error = devclass_driver_deleted(busclass, dc, driver);
1253 	if (error != 0)
1254 		return (error);
1255 
1256 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1257 	free(dl, M_BUS);
1258 
1259 	/* XXX: kobj_mtx */
1260 	driver->refs--;
1261 	if (driver->refs == 0)
1262 		kobj_class_free((kobj_class_t) driver);
1263 
1264 	bus_data_generation_update();
1265 	return (0);
1266 }
1267 
1268 /**
1269  * @brief Quiesces a set of device drivers from a device class
1270  *
1271  * Quiesce a device driver from a devclass. This is normally called
1272  * automatically by DRIVER_MODULE().
1273  *
1274  * If the driver is currently attached to any devices,
1275  * devclass_quiesece_driver() will first attempt to quiesce each
1276  * device.
1277  *
1278  * @param dc		the devclass to edit
1279  * @param driver	the driver to unregister
1280  */
1281 static int
1282 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1283 {
1284 	devclass_t dc = devclass_find(driver->name);
1285 	driverlink_t dl;
1286 	device_t dev;
1287 	int i;
1288 	int error;
1289 
1290 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1291 
1292 	if (!dc)
1293 		return (0);
1294 
1295 	/*
1296 	 * Find the link structure in the bus' list of drivers.
1297 	 */
1298 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1299 		if (dl->driver == driver)
1300 			break;
1301 	}
1302 
1303 	if (!dl) {
1304 		PDEBUG(("%s not found in %s list", driver->name,
1305 		    busclass->name));
1306 		return (ENOENT);
1307 	}
1308 
1309 	/*
1310 	 * Quiesce all devices.  We iterate through all the devices in
1311 	 * the devclass of the driver and quiesce any which are using
1312 	 * the driver and which have a parent in the devclass which we
1313 	 * are quiescing.
1314 	 *
1315 	 * Note that since a driver can be in multiple devclasses, we
1316 	 * should not quiesce devices which are not children of
1317 	 * devices in the affected devclass.
1318 	 */
1319 	for (i = 0; i < dc->maxunit; i++) {
1320 		if (dc->devices[i]) {
1321 			dev = dc->devices[i];
1322 			if (dev->driver == driver && dev->parent &&
1323 			    dev->parent->devclass == busclass) {
1324 				if ((error = device_quiesce(dev)) != 0)
1325 					return (error);
1326 			}
1327 		}
1328 	}
1329 
1330 	return (0);
1331 }
1332 
1333 /**
1334  * @internal
1335  */
1336 static driverlink_t
1337 devclass_find_driver_internal(devclass_t dc, const char *classname)
1338 {
1339 	driverlink_t dl;
1340 
1341 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1342 
1343 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1344 		if (!strcmp(dl->driver->name, classname))
1345 			return (dl);
1346 	}
1347 
1348 	PDEBUG(("not found"));
1349 	return (NULL);
1350 }
1351 
1352 /**
1353  * @brief Return the name of the devclass
1354  */
1355 const char *
1356 devclass_get_name(devclass_t dc)
1357 {
1358 	return (dc->name);
1359 }
1360 
1361 /**
1362  * @brief Find a device given a unit number
1363  *
1364  * @param dc		the devclass to search
1365  * @param unit		the unit number to search for
1366  *
1367  * @returns		the device with the given unit number or @c
1368  *			NULL if there is no such device
1369  */
1370 device_t
1371 devclass_get_device(devclass_t dc, int unit)
1372 {
1373 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1374 		return (NULL);
1375 	return (dc->devices[unit]);
1376 }
1377 
1378 /**
1379  * @brief Find the softc field of a device given a unit number
1380  *
1381  * @param dc		the devclass to search
1382  * @param unit		the unit number to search for
1383  *
1384  * @returns		the softc field of the device with the given
1385  *			unit number or @c NULL if there is no such
1386  *			device
1387  */
1388 void *
1389 devclass_get_softc(devclass_t dc, int unit)
1390 {
1391 	device_t dev;
1392 
1393 	dev = devclass_get_device(dc, unit);
1394 	if (!dev)
1395 		return (NULL);
1396 
1397 	return (device_get_softc(dev));
1398 }
1399 
1400 /**
1401  * @brief Get a list of devices in the devclass
1402  *
1403  * An array containing a list of all the devices in the given devclass
1404  * is allocated and returned in @p *devlistp. The number of devices
1405  * in the array is returned in @p *devcountp. The caller should free
1406  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1407  *
1408  * @param dc		the devclass to examine
1409  * @param devlistp	points at location for array pointer return
1410  *			value
1411  * @param devcountp	points at location for array size return value
1412  *
1413  * @retval 0		success
1414  * @retval ENOMEM	the array allocation failed
1415  */
1416 int
1417 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1418 {
1419 	int count, i;
1420 	device_t *list;
1421 
1422 	count = devclass_get_count(dc);
1423 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1424 	if (!list)
1425 		return (ENOMEM);
1426 
1427 	count = 0;
1428 	for (i = 0; i < dc->maxunit; i++) {
1429 		if (dc->devices[i]) {
1430 			list[count] = dc->devices[i];
1431 			count++;
1432 		}
1433 	}
1434 
1435 	*devlistp = list;
1436 	*devcountp = count;
1437 
1438 	return (0);
1439 }
1440 
1441 /**
1442  * @brief Get a list of drivers in the devclass
1443  *
1444  * An array containing a list of pointers to all the drivers in the
1445  * given devclass is allocated and returned in @p *listp.  The number
1446  * of drivers in the array is returned in @p *countp. The caller should
1447  * free the array using @c free(p, M_TEMP).
1448  *
1449  * @param dc		the devclass to examine
1450  * @param listp		gives location for array pointer return value
1451  * @param countp	gives location for number of array elements
1452  *			return value
1453  *
1454  * @retval 0		success
1455  * @retval ENOMEM	the array allocation failed
1456  */
1457 int
1458 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1459 {
1460 	driverlink_t dl;
1461 	driver_t **list;
1462 	int count;
1463 
1464 	count = 0;
1465 	TAILQ_FOREACH(dl, &dc->drivers, link)
1466 		count++;
1467 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1468 	if (list == NULL)
1469 		return (ENOMEM);
1470 
1471 	count = 0;
1472 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1473 		list[count] = dl->driver;
1474 		count++;
1475 	}
1476 	*listp = list;
1477 	*countp = count;
1478 
1479 	return (0);
1480 }
1481 
1482 /**
1483  * @brief Get the number of devices in a devclass
1484  *
1485  * @param dc		the devclass to examine
1486  */
1487 int
1488 devclass_get_count(devclass_t dc)
1489 {
1490 	int count, i;
1491 
1492 	count = 0;
1493 	for (i = 0; i < dc->maxunit; i++)
1494 		if (dc->devices[i])
1495 			count++;
1496 	return (count);
1497 }
1498 
1499 /**
1500  * @brief Get the maximum unit number used in a devclass
1501  *
1502  * Note that this is one greater than the highest currently-allocated
1503  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1504  * that not even the devclass has been allocated yet.
1505  *
1506  * @param dc		the devclass to examine
1507  */
1508 int
1509 devclass_get_maxunit(devclass_t dc)
1510 {
1511 	if (dc == NULL)
1512 		return (-1);
1513 	return (dc->maxunit);
1514 }
1515 
1516 /**
1517  * @brief Find a free unit number in a devclass
1518  *
1519  * This function searches for the first unused unit number greater
1520  * that or equal to @p unit.
1521  *
1522  * @param dc		the devclass to examine
1523  * @param unit		the first unit number to check
1524  */
1525 int
1526 devclass_find_free_unit(devclass_t dc, int unit)
1527 {
1528 	if (dc == NULL)
1529 		return (unit);
1530 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1531 		unit++;
1532 	return (unit);
1533 }
1534 
1535 /**
1536  * @brief Set the parent of a devclass
1537  *
1538  * The parent class is normally initialised automatically by
1539  * DRIVER_MODULE().
1540  *
1541  * @param dc		the devclass to edit
1542  * @param pdc		the new parent devclass
1543  */
1544 void
1545 devclass_set_parent(devclass_t dc, devclass_t pdc)
1546 {
1547 	dc->parent = pdc;
1548 }
1549 
1550 /**
1551  * @brief Get the parent of a devclass
1552  *
1553  * @param dc		the devclass to examine
1554  */
1555 devclass_t
1556 devclass_get_parent(devclass_t dc)
1557 {
1558 	return (dc->parent);
1559 }
1560 
1561 struct sysctl_ctx_list *
1562 devclass_get_sysctl_ctx(devclass_t dc)
1563 {
1564 	return (&dc->sysctl_ctx);
1565 }
1566 
1567 struct sysctl_oid *
1568 devclass_get_sysctl_tree(devclass_t dc)
1569 {
1570 	return (dc->sysctl_tree);
1571 }
1572 
1573 /**
1574  * @internal
1575  * @brief Allocate a unit number
1576  *
1577  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1578  * will do). The allocated unit number is returned in @p *unitp.
1579 
1580  * @param dc		the devclass to allocate from
1581  * @param unitp		points at the location for the allocated unit
1582  *			number
1583  *
1584  * @retval 0		success
1585  * @retval EEXIST	the requested unit number is already allocated
1586  * @retval ENOMEM	memory allocation failure
1587  */
1588 static int
1589 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1590 {
1591 	const char *s;
1592 	int unit = *unitp;
1593 
1594 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1595 
1596 	/* Ask the parent bus if it wants to wire this device. */
1597 	if (unit == -1)
1598 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1599 		    &unit);
1600 
1601 	/* If we were given a wired unit number, check for existing device */
1602 	/* XXX imp XXX */
1603 	if (unit != -1) {
1604 		if (unit >= 0 && unit < dc->maxunit &&
1605 		    dc->devices[unit] != NULL) {
1606 			if (bootverbose)
1607 				printf("%s: %s%d already exists; skipping it\n",
1608 				    dc->name, dc->name, *unitp);
1609 			return (EEXIST);
1610 		}
1611 	} else {
1612 		/* Unwired device, find the next available slot for it */
1613 		unit = 0;
1614 		for (unit = 0;; unit++) {
1615 			/* If there is an "at" hint for a unit then skip it. */
1616 			if (resource_string_value(dc->name, unit, "at", &s) ==
1617 			    0)
1618 				continue;
1619 
1620 			/* If this device slot is already in use, skip it. */
1621 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1622 				continue;
1623 
1624 			break;
1625 		}
1626 	}
1627 
1628 	/*
1629 	 * We've selected a unit beyond the length of the table, so let's
1630 	 * extend the table to make room for all units up to and including
1631 	 * this one.
1632 	 */
1633 	if (unit >= dc->maxunit) {
1634 		device_t *newlist, *oldlist;
1635 		int newsize;
1636 
1637 		oldlist = dc->devices;
1638 		newsize = roundup((unit + 1),
1639 		    MAX(1, MINALLOCSIZE / sizeof(device_t)));
1640 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1641 		if (!newlist)
1642 			return (ENOMEM);
1643 		if (oldlist != NULL)
1644 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1645 		bzero(newlist + dc->maxunit,
1646 		    sizeof(device_t) * (newsize - dc->maxunit));
1647 		dc->devices = newlist;
1648 		dc->maxunit = newsize;
1649 		if (oldlist != NULL)
1650 			free(oldlist, M_BUS);
1651 	}
1652 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1653 
1654 	*unitp = unit;
1655 	return (0);
1656 }
1657 
1658 /**
1659  * @internal
1660  * @brief Add a device to a devclass
1661  *
1662  * A unit number is allocated for the device (using the device's
1663  * preferred unit number if any) and the device is registered in the
1664  * devclass. This allows the device to be looked up by its unit
1665  * number, e.g. by decoding a dev_t minor number.
1666  *
1667  * @param dc		the devclass to add to
1668  * @param dev		the device to add
1669  *
1670  * @retval 0		success
1671  * @retval EEXIST	the requested unit number is already allocated
1672  * @retval ENOMEM	memory allocation failure
1673  */
1674 static int
1675 devclass_add_device(devclass_t dc, device_t dev)
1676 {
1677 	int buflen, error;
1678 
1679 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1680 
1681 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1682 	if (buflen < 0)
1683 		return (ENOMEM);
1684 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1685 	if (!dev->nameunit)
1686 		return (ENOMEM);
1687 
1688 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1689 		free(dev->nameunit, M_BUS);
1690 		dev->nameunit = NULL;
1691 		return (error);
1692 	}
1693 	dc->devices[dev->unit] = dev;
1694 	dev->devclass = dc;
1695 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1696 
1697 	return (0);
1698 }
1699 
1700 /**
1701  * @internal
1702  * @brief Delete a device from a devclass
1703  *
1704  * The device is removed from the devclass's device list and its unit
1705  * number is freed.
1706 
1707  * @param dc		the devclass to delete from
1708  * @param dev		the device to delete
1709  *
1710  * @retval 0		success
1711  */
1712 static int
1713 devclass_delete_device(devclass_t dc, device_t dev)
1714 {
1715 	if (!dc || !dev)
1716 		return (0);
1717 
1718 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1719 
1720 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1721 		panic("devclass_delete_device: inconsistent device class");
1722 	dc->devices[dev->unit] = NULL;
1723 	if (dev->flags & DF_WILDCARD)
1724 		dev->unit = -1;
1725 	dev->devclass = NULL;
1726 	free(dev->nameunit, M_BUS);
1727 	dev->nameunit = NULL;
1728 
1729 	return (0);
1730 }
1731 
1732 /**
1733  * @internal
1734  * @brief Make a new device and add it as a child of @p parent
1735  *
1736  * @param parent	the parent of the new device
1737  * @param name		the devclass name of the new device or @c NULL
1738  *			to leave the devclass unspecified
1739  * @parem unit		the unit number of the new device of @c -1 to
1740  *			leave the unit number unspecified
1741  *
1742  * @returns the new device
1743  */
1744 static device_t
1745 make_device(device_t parent, const char *name, int unit)
1746 {
1747 	device_t dev;
1748 	devclass_t dc;
1749 
1750 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1751 
1752 	if (name) {
1753 		dc = devclass_find_internal(name, NULL, TRUE);
1754 		if (!dc) {
1755 			printf("make_device: can't find device class %s\n",
1756 			    name);
1757 			return (NULL);
1758 		}
1759 	} else {
1760 		dc = NULL;
1761 	}
1762 
1763 	dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1764 	if (!dev)
1765 		return (NULL);
1766 
1767 	dev->parent = parent;
1768 	TAILQ_INIT(&dev->children);
1769 	kobj_init((kobj_t) dev, &null_class);
1770 	dev->driver = NULL;
1771 	dev->devclass = NULL;
1772 	dev->unit = unit;
1773 	dev->nameunit = NULL;
1774 	dev->desc = NULL;
1775 	dev->busy = 0;
1776 	dev->devflags = 0;
1777 	dev->flags = DF_ENABLED;
1778 	dev->order = 0;
1779 	if (unit == -1)
1780 		dev->flags |= DF_WILDCARD;
1781 	if (name) {
1782 		dev->flags |= DF_FIXEDCLASS;
1783 		if (devclass_add_device(dc, dev)) {
1784 			kobj_delete((kobj_t) dev, M_BUS);
1785 			return (NULL);
1786 		}
1787 	}
1788 	if (parent != NULL && device_has_quiet_children(parent))
1789 		dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1790 	dev->ivars = NULL;
1791 	dev->softc = NULL;
1792 
1793 	dev->state = DS_NOTPRESENT;
1794 
1795 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1796 	bus_data_generation_update();
1797 
1798 	return (dev);
1799 }
1800 
1801 /**
1802  * @internal
1803  * @brief Print a description of a device.
1804  */
1805 static int
1806 device_print_child(device_t dev, device_t child)
1807 {
1808 	int retval = 0;
1809 
1810 	if (device_is_alive(child))
1811 		retval += BUS_PRINT_CHILD(dev, child);
1812 	else
1813 		retval += device_printf(child, " not found\n");
1814 
1815 	return (retval);
1816 }
1817 
1818 /**
1819  * @brief Create a new device
1820  *
1821  * This creates a new device and adds it as a child of an existing
1822  * parent device. The new device will be added after the last existing
1823  * child with order zero.
1824  *
1825  * @param dev		the device which will be the parent of the
1826  *			new child device
1827  * @param name		devclass name for new device or @c NULL if not
1828  *			specified
1829  * @param unit		unit number for new device or @c -1 if not
1830  *			specified
1831  *
1832  * @returns		the new device
1833  */
1834 device_t
1835 device_add_child(device_t dev, const char *name, int unit)
1836 {
1837 	return (device_add_child_ordered(dev, 0, name, unit));
1838 }
1839 
1840 /**
1841  * @brief Create a new device
1842  *
1843  * This creates a new device and adds it as a child of an existing
1844  * parent device. The new device will be added after the last existing
1845  * child with the same order.
1846  *
1847  * @param dev		the device which will be the parent of the
1848  *			new child device
1849  * @param order		a value which is used to partially sort the
1850  *			children of @p dev - devices created using
1851  *			lower values of @p order appear first in @p
1852  *			dev's list of children
1853  * @param name		devclass name for new device or @c NULL if not
1854  *			specified
1855  * @param unit		unit number for new device or @c -1 if not
1856  *			specified
1857  *
1858  * @returns		the new device
1859  */
1860 device_t
1861 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1862 {
1863 	device_t child;
1864 	device_t place;
1865 
1866 	PDEBUG(("%s at %s with order %u as unit %d",
1867 	    name, DEVICENAME(dev), order, unit));
1868 	KASSERT(name != NULL || unit == -1,
1869 	    ("child device with wildcard name and specific unit number"));
1870 
1871 	child = make_device(dev, name, unit);
1872 	if (child == NULL)
1873 		return (child);
1874 	child->order = order;
1875 
1876 	TAILQ_FOREACH(place, &dev->children, link) {
1877 		if (place->order > order)
1878 			break;
1879 	}
1880 
1881 	if (place) {
1882 		/*
1883 		 * The device 'place' is the first device whose order is
1884 		 * greater than the new child.
1885 		 */
1886 		TAILQ_INSERT_BEFORE(place, child, link);
1887 	} else {
1888 		/*
1889 		 * The new child's order is greater or equal to the order of
1890 		 * any existing device. Add the child to the tail of the list.
1891 		 */
1892 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1893 	}
1894 
1895 	bus_data_generation_update();
1896 	return (child);
1897 }
1898 
1899 /**
1900  * @brief Delete a device
1901  *
1902  * This function deletes a device along with all of its children. If
1903  * the device currently has a driver attached to it, the device is
1904  * detached first using device_detach().
1905  *
1906  * @param dev		the parent device
1907  * @param child		the device to delete
1908  *
1909  * @retval 0		success
1910  * @retval non-zero	a unit error code describing the error
1911  */
1912 int
1913 device_delete_child(device_t dev, device_t child)
1914 {
1915 	int error;
1916 	device_t grandchild;
1917 
1918 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1919 
1920 	/* detach parent before deleting children, if any */
1921 	if ((error = device_detach(child)) != 0)
1922 		return (error);
1923 
1924 	/* remove children second */
1925 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1926 		error = device_delete_child(child, grandchild);
1927 		if (error)
1928 			return (error);
1929 	}
1930 
1931 	if (child->devclass)
1932 		devclass_delete_device(child->devclass, child);
1933 	if (child->parent)
1934 		BUS_CHILD_DELETED(dev, child);
1935 	TAILQ_REMOVE(&dev->children, child, link);
1936 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1937 	kobj_delete((kobj_t) child, M_BUS);
1938 
1939 	bus_data_generation_update();
1940 	return (0);
1941 }
1942 
1943 /**
1944  * @brief Delete all children devices of the given device, if any.
1945  *
1946  * This function deletes all children devices of the given device, if
1947  * any, using the device_delete_child() function for each device it
1948  * finds. If a child device cannot be deleted, this function will
1949  * return an error code.
1950  *
1951  * @param dev		the parent device
1952  *
1953  * @retval 0		success
1954  * @retval non-zero	a device would not detach
1955  */
1956 int
1957 device_delete_children(device_t dev)
1958 {
1959 	device_t child;
1960 	int error;
1961 
1962 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1963 
1964 	error = 0;
1965 
1966 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1967 		error = device_delete_child(dev, child);
1968 		if (error) {
1969 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1970 			break;
1971 		}
1972 	}
1973 	return (error);
1974 }
1975 
1976 /**
1977  * @brief Find a device given a unit number
1978  *
1979  * This is similar to devclass_get_devices() but only searches for
1980  * devices which have @p dev as a parent.
1981  *
1982  * @param dev		the parent device to search
1983  * @param unit		the unit number to search for.  If the unit is -1,
1984  *			return the first child of @p dev which has name
1985  *			@p classname (that is, the one with the lowest unit.)
1986  *
1987  * @returns		the device with the given unit number or @c
1988  *			NULL if there is no such device
1989  */
1990 device_t
1991 device_find_child(device_t dev, const char *classname, int unit)
1992 {
1993 	devclass_t dc;
1994 	device_t child;
1995 
1996 	dc = devclass_find(classname);
1997 	if (!dc)
1998 		return (NULL);
1999 
2000 	if (unit != -1) {
2001 		child = devclass_get_device(dc, unit);
2002 		if (child && child->parent == dev)
2003 			return (child);
2004 	} else {
2005 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2006 			child = devclass_get_device(dc, unit);
2007 			if (child && child->parent == dev)
2008 				return (child);
2009 		}
2010 	}
2011 	return (NULL);
2012 }
2013 
2014 /**
2015  * @internal
2016  */
2017 static driverlink_t
2018 first_matching_driver(devclass_t dc, device_t dev)
2019 {
2020 	if (dev->devclass)
2021 		return (devclass_find_driver_internal(dc, dev->devclass->name));
2022 	return (TAILQ_FIRST(&dc->drivers));
2023 }
2024 
2025 /**
2026  * @internal
2027  */
2028 static driverlink_t
2029 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2030 {
2031 	if (dev->devclass) {
2032 		driverlink_t dl;
2033 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2034 			if (!strcmp(dev->devclass->name, dl->driver->name))
2035 				return (dl);
2036 		return (NULL);
2037 	}
2038 	return (TAILQ_NEXT(last, link));
2039 }
2040 
2041 /**
2042  * @internal
2043  */
2044 int
2045 device_probe_child(device_t dev, device_t child)
2046 {
2047 	devclass_t dc;
2048 	driverlink_t best = NULL;
2049 	driverlink_t dl;
2050 	int result, pri = 0;
2051 	int hasclass = (child->devclass != NULL);
2052 
2053 	GIANT_REQUIRED;
2054 
2055 	dc = dev->devclass;
2056 	if (!dc)
2057 		panic("device_probe_child: parent device has no devclass");
2058 
2059 	/*
2060 	 * If the state is already probed, then return.  However, don't
2061 	 * return if we can rebid this object.
2062 	 */
2063 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2064 		return (0);
2065 
2066 	for (; dc; dc = dc->parent) {
2067 		for (dl = first_matching_driver(dc, child);
2068 		     dl;
2069 		     dl = next_matching_driver(dc, child, dl)) {
2070 			/* If this driver's pass is too high, then ignore it. */
2071 			if (dl->pass > bus_current_pass)
2072 				continue;
2073 
2074 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2075 			result = device_set_driver(child, dl->driver);
2076 			if (result == ENOMEM)
2077 				return (result);
2078 			else if (result != 0)
2079 				continue;
2080 			if (!hasclass) {
2081 				if (device_set_devclass(child,
2082 				    dl->driver->name) != 0) {
2083 					char const * devname =
2084 					    device_get_name(child);
2085 					if (devname == NULL)
2086 						devname = "(unknown)";
2087 					printf("driver bug: Unable to set "
2088 					    "devclass (class: %s "
2089 					    "devname: %s)\n",
2090 					    dl->driver->name,
2091 					    devname);
2092 					(void)device_set_driver(child, NULL);
2093 					continue;
2094 				}
2095 			}
2096 
2097 			/* Fetch any flags for the device before probing. */
2098 			resource_int_value(dl->driver->name, child->unit,
2099 			    "flags", &child->devflags);
2100 
2101 			result = DEVICE_PROBE(child);
2102 
2103 			/* Reset flags and devclass before the next probe. */
2104 			child->devflags = 0;
2105 			if (!hasclass)
2106 				(void)device_set_devclass(child, NULL);
2107 
2108 			/*
2109 			 * If the driver returns SUCCESS, there can be
2110 			 * no higher match for this device.
2111 			 */
2112 			if (result == 0) {
2113 				best = dl;
2114 				pri = 0;
2115 				break;
2116 			}
2117 
2118 			/*
2119 			 * Reset DF_QUIET in case this driver doesn't
2120 			 * end up as the best driver.
2121 			 */
2122 			device_verbose(child);
2123 
2124 			/*
2125 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2126 			 * only match on devices whose driver was explicitly
2127 			 * specified.
2128 			 */
2129 			if (result <= BUS_PROBE_NOWILDCARD &&
2130 			    !(child->flags & DF_FIXEDCLASS)) {
2131 				result = ENXIO;
2132 			}
2133 
2134 			/*
2135 			 * The driver returned an error so it
2136 			 * certainly doesn't match.
2137 			 */
2138 			if (result > 0) {
2139 				(void)device_set_driver(child, NULL);
2140 				continue;
2141 			}
2142 
2143 			/*
2144 			 * A priority lower than SUCCESS, remember the
2145 			 * best matching driver. Initialise the value
2146 			 * of pri for the first match.
2147 			 */
2148 			if (best == NULL || result > pri) {
2149 				best = dl;
2150 				pri = result;
2151 				continue;
2152 			}
2153 		}
2154 		/*
2155 		 * If we have an unambiguous match in this devclass,
2156 		 * don't look in the parent.
2157 		 */
2158 		if (best && pri == 0)
2159 			break;
2160 	}
2161 
2162 	/*
2163 	 * If we found a driver, change state and initialise the devclass.
2164 	 */
2165 	/* XXX What happens if we rebid and got no best? */
2166 	if (best) {
2167 		/*
2168 		 * If this device was attached, and we were asked to
2169 		 * rescan, and it is a different driver, then we have
2170 		 * to detach the old driver and reattach this new one.
2171 		 * Note, we don't have to check for DF_REBID here
2172 		 * because if the state is > DS_ALIVE, we know it must
2173 		 * be.
2174 		 *
2175 		 * This assumes that all DF_REBID drivers can have
2176 		 * their probe routine called at any time and that
2177 		 * they are idempotent as well as completely benign in
2178 		 * normal operations.
2179 		 *
2180 		 * We also have to make sure that the detach
2181 		 * succeeded, otherwise we fail the operation (or
2182 		 * maybe it should just fail silently?  I'm torn).
2183 		 */
2184 		if (child->state > DS_ALIVE && best->driver != child->driver)
2185 			if ((result = device_detach(dev)) != 0)
2186 				return (result);
2187 
2188 		/* Set the winning driver, devclass, and flags. */
2189 		if (!child->devclass) {
2190 			result = device_set_devclass(child, best->driver->name);
2191 			if (result != 0)
2192 				return (result);
2193 		}
2194 		result = device_set_driver(child, best->driver);
2195 		if (result != 0)
2196 			return (result);
2197 		resource_int_value(best->driver->name, child->unit,
2198 		    "flags", &child->devflags);
2199 
2200 		if (pri < 0) {
2201 			/*
2202 			 * A bit bogus. Call the probe method again to make
2203 			 * sure that we have the right description.
2204 			 */
2205 			DEVICE_PROBE(child);
2206 #if 0
2207 			child->flags |= DF_REBID;
2208 #endif
2209 		} else
2210 			child->flags &= ~DF_REBID;
2211 		child->state = DS_ALIVE;
2212 
2213 		bus_data_generation_update();
2214 		return (0);
2215 	}
2216 
2217 	return (ENXIO);
2218 }
2219 
2220 /**
2221  * @brief Return the parent of a device
2222  */
2223 device_t
2224 device_get_parent(device_t dev)
2225 {
2226 	return (dev->parent);
2227 }
2228 
2229 /**
2230  * @brief Get a list of children of a device
2231  *
2232  * An array containing a list of all the children of the given device
2233  * is allocated and returned in @p *devlistp. The number of devices
2234  * in the array is returned in @p *devcountp. The caller should free
2235  * the array using @c free(p, M_TEMP).
2236  *
2237  * @param dev		the device to examine
2238  * @param devlistp	points at location for array pointer return
2239  *			value
2240  * @param devcountp	points at location for array size return value
2241  *
2242  * @retval 0		success
2243  * @retval ENOMEM	the array allocation failed
2244  */
2245 int
2246 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2247 {
2248 	int count;
2249 	device_t child;
2250 	device_t *list;
2251 
2252 	count = 0;
2253 	TAILQ_FOREACH(child, &dev->children, link) {
2254 		count++;
2255 	}
2256 	if (count == 0) {
2257 		*devlistp = NULL;
2258 		*devcountp = 0;
2259 		return (0);
2260 	}
2261 
2262 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2263 	if (!list)
2264 		return (ENOMEM);
2265 
2266 	count = 0;
2267 	TAILQ_FOREACH(child, &dev->children, link) {
2268 		list[count] = child;
2269 		count++;
2270 	}
2271 
2272 	*devlistp = list;
2273 	*devcountp = count;
2274 
2275 	return (0);
2276 }
2277 
2278 /**
2279  * @brief Return the current driver for the device or @c NULL if there
2280  * is no driver currently attached
2281  */
2282 driver_t *
2283 device_get_driver(device_t dev)
2284 {
2285 	return (dev->driver);
2286 }
2287 
2288 /**
2289  * @brief Return the current devclass for the device or @c NULL if
2290  * there is none.
2291  */
2292 devclass_t
2293 device_get_devclass(device_t dev)
2294 {
2295 	return (dev->devclass);
2296 }
2297 
2298 /**
2299  * @brief Return the name of the device's devclass or @c NULL if there
2300  * is none.
2301  */
2302 const char *
2303 device_get_name(device_t dev)
2304 {
2305 	if (dev != NULL && dev->devclass)
2306 		return (devclass_get_name(dev->devclass));
2307 	return (NULL);
2308 }
2309 
2310 /**
2311  * @brief Return a string containing the device's devclass name
2312  * followed by an ascii representation of the device's unit number
2313  * (e.g. @c "foo2").
2314  */
2315 const char *
2316 device_get_nameunit(device_t dev)
2317 {
2318 	return (dev->nameunit);
2319 }
2320 
2321 /**
2322  * @brief Return the device's unit number.
2323  */
2324 int
2325 device_get_unit(device_t dev)
2326 {
2327 	return (dev->unit);
2328 }
2329 
2330 /**
2331  * @brief Return the device's description string
2332  */
2333 const char *
2334 device_get_desc(device_t dev)
2335 {
2336 	return (dev->desc);
2337 }
2338 
2339 /**
2340  * @brief Return the device's flags
2341  */
2342 uint32_t
2343 device_get_flags(device_t dev)
2344 {
2345 	return (dev->devflags);
2346 }
2347 
2348 struct sysctl_ctx_list *
2349 device_get_sysctl_ctx(device_t dev)
2350 {
2351 	return (&dev->sysctl_ctx);
2352 }
2353 
2354 struct sysctl_oid *
2355 device_get_sysctl_tree(device_t dev)
2356 {
2357 	return (dev->sysctl_tree);
2358 }
2359 
2360 /**
2361  * @brief Print the name of the device followed by a colon and a space
2362  *
2363  * @returns the number of characters printed
2364  */
2365 int
2366 device_print_prettyname(device_t dev)
2367 {
2368 	const char *name = device_get_name(dev);
2369 
2370 	if (name == NULL)
2371 		return (printf("unknown: "));
2372 	return (printf("%s%d: ", name, device_get_unit(dev)));
2373 }
2374 
2375 /**
2376  * @brief Print the name of the device followed by a colon, a space
2377  * and the result of calling vprintf() with the value of @p fmt and
2378  * the following arguments.
2379  *
2380  * @returns the number of characters printed
2381  */
2382 int
2383 device_printf(device_t dev, const char * fmt, ...)
2384 {
2385 	char buf[128];
2386 	struct sbuf sb;
2387 	const char *name;
2388 	va_list ap;
2389 	size_t retval;
2390 
2391 	retval = 0;
2392 
2393 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
2394 	sbuf_set_drain(&sb, sbuf_printf_drain, &retval);
2395 
2396 	name = device_get_name(dev);
2397 
2398 	if (name == NULL)
2399 		sbuf_cat(&sb, "unknown: ");
2400 	else
2401 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2402 
2403 	va_start(ap, fmt);
2404 	sbuf_vprintf(&sb, fmt, ap);
2405 	va_end(ap);
2406 
2407 	sbuf_finish(&sb);
2408 	sbuf_delete(&sb);
2409 
2410 	return (retval);
2411 }
2412 
2413 /**
2414  * @internal
2415  */
2416 static void
2417 device_set_desc_internal(device_t dev, const char* desc, int copy)
2418 {
2419 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2420 		free(dev->desc, M_BUS);
2421 		dev->flags &= ~DF_DESCMALLOCED;
2422 		dev->desc = NULL;
2423 	}
2424 
2425 	if (copy && desc) {
2426 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2427 		if (dev->desc) {
2428 			strcpy(dev->desc, desc);
2429 			dev->flags |= DF_DESCMALLOCED;
2430 		}
2431 	} else {
2432 		/* Avoid a -Wcast-qual warning */
2433 		dev->desc = (char *)(uintptr_t) desc;
2434 	}
2435 
2436 	bus_data_generation_update();
2437 }
2438 
2439 /**
2440  * @brief Set the device's description
2441  *
2442  * The value of @c desc should be a string constant that will not
2443  * change (at least until the description is changed in a subsequent
2444  * call to device_set_desc() or device_set_desc_copy()).
2445  */
2446 void
2447 device_set_desc(device_t dev, const char* desc)
2448 {
2449 	device_set_desc_internal(dev, desc, FALSE);
2450 }
2451 
2452 /**
2453  * @brief Set the device's description
2454  *
2455  * The string pointed to by @c desc is copied. Use this function if
2456  * the device description is generated, (e.g. with sprintf()).
2457  */
2458 void
2459 device_set_desc_copy(device_t dev, const char* desc)
2460 {
2461 	device_set_desc_internal(dev, desc, TRUE);
2462 }
2463 
2464 /**
2465  * @brief Set the device's flags
2466  */
2467 void
2468 device_set_flags(device_t dev, uint32_t flags)
2469 {
2470 	dev->devflags = flags;
2471 }
2472 
2473 /**
2474  * @brief Return the device's softc field
2475  *
2476  * The softc is allocated and zeroed when a driver is attached, based
2477  * on the size field of the driver.
2478  */
2479 void *
2480 device_get_softc(device_t dev)
2481 {
2482 	return (dev->softc);
2483 }
2484 
2485 /**
2486  * @brief Set the device's softc field
2487  *
2488  * Most drivers do not need to use this since the softc is allocated
2489  * automatically when the driver is attached.
2490  */
2491 void
2492 device_set_softc(device_t dev, void *softc)
2493 {
2494 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2495 		free(dev->softc, M_BUS_SC);
2496 	dev->softc = softc;
2497 	if (dev->softc)
2498 		dev->flags |= DF_EXTERNALSOFTC;
2499 	else
2500 		dev->flags &= ~DF_EXTERNALSOFTC;
2501 }
2502 
2503 /**
2504  * @brief Free claimed softc
2505  *
2506  * Most drivers do not need to use this since the softc is freed
2507  * automatically when the driver is detached.
2508  */
2509 void
2510 device_free_softc(void *softc)
2511 {
2512 	free(softc, M_BUS_SC);
2513 }
2514 
2515 /**
2516  * @brief Claim softc
2517  *
2518  * This function can be used to let the driver free the automatically
2519  * allocated softc using "device_free_softc()". This function is
2520  * useful when the driver is refcounting the softc and the softc
2521  * cannot be freed when the "device_detach" method is called.
2522  */
2523 void
2524 device_claim_softc(device_t dev)
2525 {
2526 	if (dev->softc)
2527 		dev->flags |= DF_EXTERNALSOFTC;
2528 	else
2529 		dev->flags &= ~DF_EXTERNALSOFTC;
2530 }
2531 
2532 /**
2533  * @brief Get the device's ivars field
2534  *
2535  * The ivars field is used by the parent device to store per-device
2536  * state (e.g. the physical location of the device or a list of
2537  * resources).
2538  */
2539 void *
2540 device_get_ivars(device_t dev)
2541 {
2542 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2543 	return (dev->ivars);
2544 }
2545 
2546 /**
2547  * @brief Set the device's ivars field
2548  */
2549 void
2550 device_set_ivars(device_t dev, void * ivars)
2551 {
2552 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2553 	dev->ivars = ivars;
2554 }
2555 
2556 /**
2557  * @brief Return the device's state
2558  */
2559 device_state_t
2560 device_get_state(device_t dev)
2561 {
2562 	return (dev->state);
2563 }
2564 
2565 /**
2566  * @brief Set the DF_ENABLED flag for the device
2567  */
2568 void
2569 device_enable(device_t dev)
2570 {
2571 	dev->flags |= DF_ENABLED;
2572 }
2573 
2574 /**
2575  * @brief Clear the DF_ENABLED flag for the device
2576  */
2577 void
2578 device_disable(device_t dev)
2579 {
2580 	dev->flags &= ~DF_ENABLED;
2581 }
2582 
2583 /**
2584  * @brief Increment the busy counter for the device
2585  */
2586 void
2587 device_busy(device_t dev)
2588 {
2589 	if (dev->state < DS_ATTACHING)
2590 		panic("device_busy: called for unattached device");
2591 	if (dev->busy == 0 && dev->parent)
2592 		device_busy(dev->parent);
2593 	dev->busy++;
2594 	if (dev->state == DS_ATTACHED)
2595 		dev->state = DS_BUSY;
2596 }
2597 
2598 /**
2599  * @brief Decrement the busy counter for the device
2600  */
2601 void
2602 device_unbusy(device_t dev)
2603 {
2604 	if (dev->busy != 0 && dev->state != DS_BUSY &&
2605 	    dev->state != DS_ATTACHING)
2606 		panic("device_unbusy: called for non-busy device %s",
2607 		    device_get_nameunit(dev));
2608 	dev->busy--;
2609 	if (dev->busy == 0) {
2610 		if (dev->parent)
2611 			device_unbusy(dev->parent);
2612 		if (dev->state == DS_BUSY)
2613 			dev->state = DS_ATTACHED;
2614 	}
2615 }
2616 
2617 /**
2618  * @brief Set the DF_QUIET flag for the device
2619  */
2620 void
2621 device_quiet(device_t dev)
2622 {
2623 	dev->flags |= DF_QUIET;
2624 }
2625 
2626 /**
2627  * @brief Set the DF_QUIET_CHILDREN flag for the device
2628  */
2629 void
2630 device_quiet_children(device_t dev)
2631 {
2632 	dev->flags |= DF_QUIET_CHILDREN;
2633 }
2634 
2635 /**
2636  * @brief Clear the DF_QUIET flag for the device
2637  */
2638 void
2639 device_verbose(device_t dev)
2640 {
2641 	dev->flags &= ~DF_QUIET;
2642 }
2643 
2644 /**
2645  * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2646  */
2647 int
2648 device_has_quiet_children(device_t dev)
2649 {
2650 	return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2651 }
2652 
2653 /**
2654  * @brief Return non-zero if the DF_QUIET flag is set on the device
2655  */
2656 int
2657 device_is_quiet(device_t dev)
2658 {
2659 	return ((dev->flags & DF_QUIET) != 0);
2660 }
2661 
2662 /**
2663  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2664  */
2665 int
2666 device_is_enabled(device_t dev)
2667 {
2668 	return ((dev->flags & DF_ENABLED) != 0);
2669 }
2670 
2671 /**
2672  * @brief Return non-zero if the device was successfully probed
2673  */
2674 int
2675 device_is_alive(device_t dev)
2676 {
2677 	return (dev->state >= DS_ALIVE);
2678 }
2679 
2680 /**
2681  * @brief Return non-zero if the device currently has a driver
2682  * attached to it
2683  */
2684 int
2685 device_is_attached(device_t dev)
2686 {
2687 	return (dev->state >= DS_ATTACHED);
2688 }
2689 
2690 /**
2691  * @brief Return non-zero if the device is currently suspended.
2692  */
2693 int
2694 device_is_suspended(device_t dev)
2695 {
2696 	return ((dev->flags & DF_SUSPENDED) != 0);
2697 }
2698 
2699 /**
2700  * @brief Set the devclass of a device
2701  * @see devclass_add_device().
2702  */
2703 int
2704 device_set_devclass(device_t dev, const char *classname)
2705 {
2706 	devclass_t dc;
2707 	int error;
2708 
2709 	if (!classname) {
2710 		if (dev->devclass)
2711 			devclass_delete_device(dev->devclass, dev);
2712 		return (0);
2713 	}
2714 
2715 	if (dev->devclass) {
2716 		printf("device_set_devclass: device class already set\n");
2717 		return (EINVAL);
2718 	}
2719 
2720 	dc = devclass_find_internal(classname, NULL, TRUE);
2721 	if (!dc)
2722 		return (ENOMEM);
2723 
2724 	error = devclass_add_device(dc, dev);
2725 
2726 	bus_data_generation_update();
2727 	return (error);
2728 }
2729 
2730 /**
2731  * @brief Set the devclass of a device and mark the devclass fixed.
2732  * @see device_set_devclass()
2733  */
2734 int
2735 device_set_devclass_fixed(device_t dev, const char *classname)
2736 {
2737 	int error;
2738 
2739 	if (classname == NULL)
2740 		return (EINVAL);
2741 
2742 	error = device_set_devclass(dev, classname);
2743 	if (error)
2744 		return (error);
2745 	dev->flags |= DF_FIXEDCLASS;
2746 	return (0);
2747 }
2748 
2749 /**
2750  * @brief Query the device to determine if it's of a fixed devclass
2751  * @see device_set_devclass_fixed()
2752  */
2753 bool
2754 device_is_devclass_fixed(device_t dev)
2755 {
2756 	return ((dev->flags & DF_FIXEDCLASS) != 0);
2757 }
2758 
2759 /**
2760  * @brief Set the driver of a device
2761  *
2762  * @retval 0		success
2763  * @retval EBUSY	the device already has a driver attached
2764  * @retval ENOMEM	a memory allocation failure occurred
2765  */
2766 int
2767 device_set_driver(device_t dev, driver_t *driver)
2768 {
2769 	int domain;
2770 	struct domainset *policy;
2771 
2772 	if (dev->state >= DS_ATTACHED)
2773 		return (EBUSY);
2774 
2775 	if (dev->driver == driver)
2776 		return (0);
2777 
2778 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2779 		free(dev->softc, M_BUS_SC);
2780 		dev->softc = NULL;
2781 	}
2782 	device_set_desc(dev, NULL);
2783 	kobj_delete((kobj_t) dev, NULL);
2784 	dev->driver = driver;
2785 	if (driver) {
2786 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2787 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2788 			if (bus_get_domain(dev, &domain) == 0)
2789 				policy = DOMAINSET_PREF(domain);
2790 			else
2791 				policy = DOMAINSET_RR();
2792 			dev->softc = malloc_domainset(driver->size, M_BUS_SC,
2793 			    policy, M_NOWAIT | M_ZERO);
2794 			if (!dev->softc) {
2795 				kobj_delete((kobj_t) dev, NULL);
2796 				kobj_init((kobj_t) dev, &null_class);
2797 				dev->driver = NULL;
2798 				return (ENOMEM);
2799 			}
2800 		}
2801 	} else {
2802 		kobj_init((kobj_t) dev, &null_class);
2803 	}
2804 
2805 	bus_data_generation_update();
2806 	return (0);
2807 }
2808 
2809 /**
2810  * @brief Probe a device, and return this status.
2811  *
2812  * This function is the core of the device autoconfiguration
2813  * system. Its purpose is to select a suitable driver for a device and
2814  * then call that driver to initialise the hardware appropriately. The
2815  * driver is selected by calling the DEVICE_PROBE() method of a set of
2816  * candidate drivers and then choosing the driver which returned the
2817  * best value. This driver is then attached to the device using
2818  * device_attach().
2819  *
2820  * The set of suitable drivers is taken from the list of drivers in
2821  * the parent device's devclass. If the device was originally created
2822  * with a specific class name (see device_add_child()), only drivers
2823  * with that name are probed, otherwise all drivers in the devclass
2824  * are probed. If no drivers return successful probe values in the
2825  * parent devclass, the search continues in the parent of that
2826  * devclass (see devclass_get_parent()) if any.
2827  *
2828  * @param dev		the device to initialise
2829  *
2830  * @retval 0		success
2831  * @retval ENXIO	no driver was found
2832  * @retval ENOMEM	memory allocation failure
2833  * @retval non-zero	some other unix error code
2834  * @retval -1		Device already attached
2835  */
2836 int
2837 device_probe(device_t dev)
2838 {
2839 	int error;
2840 
2841 	GIANT_REQUIRED;
2842 
2843 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2844 		return (-1);
2845 
2846 	if (!(dev->flags & DF_ENABLED)) {
2847 		if (bootverbose && device_get_name(dev) != NULL) {
2848 			device_print_prettyname(dev);
2849 			printf("not probed (disabled)\n");
2850 		}
2851 		return (-1);
2852 	}
2853 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2854 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2855 		    !(dev->flags & DF_DONENOMATCH)) {
2856 			BUS_PROBE_NOMATCH(dev->parent, dev);
2857 			devnomatch(dev);
2858 			dev->flags |= DF_DONENOMATCH;
2859 		}
2860 		return (error);
2861 	}
2862 	return (0);
2863 }
2864 
2865 /**
2866  * @brief Probe a device and attach a driver if possible
2867  *
2868  * calls device_probe() and attaches if that was successful.
2869  */
2870 int
2871 device_probe_and_attach(device_t dev)
2872 {
2873 	int error;
2874 
2875 	GIANT_REQUIRED;
2876 
2877 	error = device_probe(dev);
2878 	if (error == -1)
2879 		return (0);
2880 	else if (error != 0)
2881 		return (error);
2882 
2883 	CURVNET_SET_QUIET(vnet0);
2884 	error = device_attach(dev);
2885 	CURVNET_RESTORE();
2886 	return error;
2887 }
2888 
2889 /**
2890  * @brief Attach a device driver to a device
2891  *
2892  * This function is a wrapper around the DEVICE_ATTACH() driver
2893  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2894  * device's sysctl tree, optionally prints a description of the device
2895  * and queues a notification event for user-based device management
2896  * services.
2897  *
2898  * Normally this function is only called internally from
2899  * device_probe_and_attach().
2900  *
2901  * @param dev		the device to initialise
2902  *
2903  * @retval 0		success
2904  * @retval ENXIO	no driver was found
2905  * @retval ENOMEM	memory allocation failure
2906  * @retval non-zero	some other unix error code
2907  */
2908 int
2909 device_attach(device_t dev)
2910 {
2911 	uint64_t attachtime;
2912 	uint16_t attachentropy;
2913 	int error;
2914 
2915 	if (resource_disabled(dev->driver->name, dev->unit)) {
2916 		device_disable(dev);
2917 		if (bootverbose)
2918 			 device_printf(dev, "disabled via hints entry\n");
2919 		return (ENXIO);
2920 	}
2921 
2922 	device_sysctl_init(dev);
2923 	if (!device_is_quiet(dev))
2924 		device_print_child(dev->parent, dev);
2925 	attachtime = get_cyclecount();
2926 	dev->state = DS_ATTACHING;
2927 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2928 		printf("device_attach: %s%d attach returned %d\n",
2929 		    dev->driver->name, dev->unit, error);
2930 		if (!(dev->flags & DF_FIXEDCLASS))
2931 			devclass_delete_device(dev->devclass, dev);
2932 		(void)device_set_driver(dev, NULL);
2933 		device_sysctl_fini(dev);
2934 		KASSERT(dev->busy == 0, ("attach failed but busy"));
2935 		dev->state = DS_NOTPRESENT;
2936 		return (error);
2937 	}
2938 	dev->flags |= DF_ATTACHED_ONCE;
2939 	/* We only need the low bits of this time, but ranges from tens to thousands
2940 	 * have been seen, so keep 2 bytes' worth.
2941 	 */
2942 	attachentropy = (uint16_t)(get_cyclecount() - attachtime);
2943 	random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
2944 	device_sysctl_update(dev);
2945 	if (dev->busy)
2946 		dev->state = DS_BUSY;
2947 	else
2948 		dev->state = DS_ATTACHED;
2949 	dev->flags &= ~DF_DONENOMATCH;
2950 	EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
2951 	devadded(dev);
2952 	return (0);
2953 }
2954 
2955 /**
2956  * @brief Detach a driver from a device
2957  *
2958  * This function is a wrapper around the DEVICE_DETACH() driver
2959  * method. If the call to DEVICE_DETACH() succeeds, it calls
2960  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2961  * notification event for user-based device management services and
2962  * cleans up the device's sysctl tree.
2963  *
2964  * @param dev		the device to un-initialise
2965  *
2966  * @retval 0		success
2967  * @retval ENXIO	no driver was found
2968  * @retval ENOMEM	memory allocation failure
2969  * @retval non-zero	some other unix error code
2970  */
2971 int
2972 device_detach(device_t dev)
2973 {
2974 	int error;
2975 
2976 	GIANT_REQUIRED;
2977 
2978 	PDEBUG(("%s", DEVICENAME(dev)));
2979 	if (dev->state == DS_BUSY)
2980 		return (EBUSY);
2981 	if (dev->state == DS_ATTACHING) {
2982 		device_printf(dev, "device in attaching state! Deferring detach.\n");
2983 		return (EBUSY);
2984 	}
2985 	if (dev->state != DS_ATTACHED)
2986 		return (0);
2987 
2988 	EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
2989 	if ((error = DEVICE_DETACH(dev)) != 0) {
2990 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2991 		    EVHDEV_DETACH_FAILED);
2992 		return (error);
2993 	} else {
2994 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2995 		    EVHDEV_DETACH_COMPLETE);
2996 	}
2997 	devremoved(dev);
2998 	if (!device_is_quiet(dev))
2999 		device_printf(dev, "detached\n");
3000 	if (dev->parent)
3001 		BUS_CHILD_DETACHED(dev->parent, dev);
3002 
3003 	if (!(dev->flags & DF_FIXEDCLASS))
3004 		devclass_delete_device(dev->devclass, dev);
3005 
3006 	device_verbose(dev);
3007 	dev->state = DS_NOTPRESENT;
3008 	(void)device_set_driver(dev, NULL);
3009 	device_sysctl_fini(dev);
3010 
3011 	return (0);
3012 }
3013 
3014 /**
3015  * @brief Tells a driver to quiesce itself.
3016  *
3017  * This function is a wrapper around the DEVICE_QUIESCE() driver
3018  * method. If the call to DEVICE_QUIESCE() succeeds.
3019  *
3020  * @param dev		the device to quiesce
3021  *
3022  * @retval 0		success
3023  * @retval ENXIO	no driver was found
3024  * @retval ENOMEM	memory allocation failure
3025  * @retval non-zero	some other unix error code
3026  */
3027 int
3028 device_quiesce(device_t dev)
3029 {
3030 	PDEBUG(("%s", DEVICENAME(dev)));
3031 	if (dev->state == DS_BUSY)
3032 		return (EBUSY);
3033 	if (dev->state != DS_ATTACHED)
3034 		return (0);
3035 
3036 	return (DEVICE_QUIESCE(dev));
3037 }
3038 
3039 /**
3040  * @brief Notify a device of system shutdown
3041  *
3042  * This function calls the DEVICE_SHUTDOWN() driver method if the
3043  * device currently has an attached driver.
3044  *
3045  * @returns the value returned by DEVICE_SHUTDOWN()
3046  */
3047 int
3048 device_shutdown(device_t dev)
3049 {
3050 	if (dev->state < DS_ATTACHED)
3051 		return (0);
3052 	return (DEVICE_SHUTDOWN(dev));
3053 }
3054 
3055 /**
3056  * @brief Set the unit number of a device
3057  *
3058  * This function can be used to override the unit number used for a
3059  * device (e.g. to wire a device to a pre-configured unit number).
3060  */
3061 int
3062 device_set_unit(device_t dev, int unit)
3063 {
3064 	devclass_t dc;
3065 	int err;
3066 
3067 	dc = device_get_devclass(dev);
3068 	if (unit < dc->maxunit && dc->devices[unit])
3069 		return (EBUSY);
3070 	err = devclass_delete_device(dc, dev);
3071 	if (err)
3072 		return (err);
3073 	dev->unit = unit;
3074 	err = devclass_add_device(dc, dev);
3075 	if (err)
3076 		return (err);
3077 
3078 	bus_data_generation_update();
3079 	return (0);
3080 }
3081 
3082 /*======================================*/
3083 /*
3084  * Some useful method implementations to make life easier for bus drivers.
3085  */
3086 
3087 void
3088 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
3089 {
3090 	bzero(args, sz);
3091 	args->size = sz;
3092 	args->memattr = VM_MEMATTR_UNCACHEABLE;
3093 }
3094 
3095 /**
3096  * @brief Initialise a resource list.
3097  *
3098  * @param rl		the resource list to initialise
3099  */
3100 void
3101 resource_list_init(struct resource_list *rl)
3102 {
3103 	STAILQ_INIT(rl);
3104 }
3105 
3106 /**
3107  * @brief Reclaim memory used by a resource list.
3108  *
3109  * This function frees the memory for all resource entries on the list
3110  * (if any).
3111  *
3112  * @param rl		the resource list to free
3113  */
3114 void
3115 resource_list_free(struct resource_list *rl)
3116 {
3117 	struct resource_list_entry *rle;
3118 
3119 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3120 		if (rle->res)
3121 			panic("resource_list_free: resource entry is busy");
3122 		STAILQ_REMOVE_HEAD(rl, link);
3123 		free(rle, M_BUS);
3124 	}
3125 }
3126 
3127 /**
3128  * @brief Add a resource entry.
3129  *
3130  * This function adds a resource entry using the given @p type, @p
3131  * start, @p end and @p count values. A rid value is chosen by
3132  * searching sequentially for the first unused rid starting at zero.
3133  *
3134  * @param rl		the resource list to edit
3135  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3136  * @param start		the start address of the resource
3137  * @param end		the end address of the resource
3138  * @param count		XXX end-start+1
3139  */
3140 int
3141 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3142     rman_res_t end, rman_res_t count)
3143 {
3144 	int rid;
3145 
3146 	rid = 0;
3147 	while (resource_list_find(rl, type, rid) != NULL)
3148 		rid++;
3149 	resource_list_add(rl, type, rid, start, end, count);
3150 	return (rid);
3151 }
3152 
3153 /**
3154  * @brief Add or modify a resource entry.
3155  *
3156  * If an existing entry exists with the same type and rid, it will be
3157  * modified using the given values of @p start, @p end and @p
3158  * count. If no entry exists, a new one will be created using the
3159  * given values.  The resource list entry that matches is then returned.
3160  *
3161  * @param rl		the resource list to edit
3162  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3163  * @param rid		the resource identifier
3164  * @param start		the start address of the resource
3165  * @param end		the end address of the resource
3166  * @param count		XXX end-start+1
3167  */
3168 struct resource_list_entry *
3169 resource_list_add(struct resource_list *rl, int type, int rid,
3170     rman_res_t start, rman_res_t end, rman_res_t count)
3171 {
3172 	struct resource_list_entry *rle;
3173 
3174 	rle = resource_list_find(rl, type, rid);
3175 	if (!rle) {
3176 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3177 		    M_NOWAIT);
3178 		if (!rle)
3179 			panic("resource_list_add: can't record entry");
3180 		STAILQ_INSERT_TAIL(rl, rle, link);
3181 		rle->type = type;
3182 		rle->rid = rid;
3183 		rle->res = NULL;
3184 		rle->flags = 0;
3185 	}
3186 
3187 	if (rle->res)
3188 		panic("resource_list_add: resource entry is busy");
3189 
3190 	rle->start = start;
3191 	rle->end = end;
3192 	rle->count = count;
3193 	return (rle);
3194 }
3195 
3196 /**
3197  * @brief Determine if a resource entry is busy.
3198  *
3199  * Returns true if a resource entry is busy meaning that it has an
3200  * associated resource that is not an unallocated "reserved" resource.
3201  *
3202  * @param rl		the resource list to search
3203  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3204  * @param rid		the resource identifier
3205  *
3206  * @returns Non-zero if the entry is busy, zero otherwise.
3207  */
3208 int
3209 resource_list_busy(struct resource_list *rl, int type, int rid)
3210 {
3211 	struct resource_list_entry *rle;
3212 
3213 	rle = resource_list_find(rl, type, rid);
3214 	if (rle == NULL || rle->res == NULL)
3215 		return (0);
3216 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3217 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3218 		    ("reserved resource is active"));
3219 		return (0);
3220 	}
3221 	return (1);
3222 }
3223 
3224 /**
3225  * @brief Determine if a resource entry is reserved.
3226  *
3227  * Returns true if a resource entry is reserved meaning that it has an
3228  * associated "reserved" resource.  The resource can either be
3229  * allocated or unallocated.
3230  *
3231  * @param rl		the resource list to search
3232  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3233  * @param rid		the resource identifier
3234  *
3235  * @returns Non-zero if the entry is reserved, zero otherwise.
3236  */
3237 int
3238 resource_list_reserved(struct resource_list *rl, int type, int rid)
3239 {
3240 	struct resource_list_entry *rle;
3241 
3242 	rle = resource_list_find(rl, type, rid);
3243 	if (rle != NULL && rle->flags & RLE_RESERVED)
3244 		return (1);
3245 	return (0);
3246 }
3247 
3248 /**
3249  * @brief Find a resource entry by type and rid.
3250  *
3251  * @param rl		the resource list to search
3252  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3253  * @param rid		the resource identifier
3254  *
3255  * @returns the resource entry pointer or NULL if there is no such
3256  * entry.
3257  */
3258 struct resource_list_entry *
3259 resource_list_find(struct resource_list *rl, int type, int rid)
3260 {
3261 	struct resource_list_entry *rle;
3262 
3263 	STAILQ_FOREACH(rle, rl, link) {
3264 		if (rle->type == type && rle->rid == rid)
3265 			return (rle);
3266 	}
3267 	return (NULL);
3268 }
3269 
3270 /**
3271  * @brief Delete a resource entry.
3272  *
3273  * @param rl		the resource list to edit
3274  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3275  * @param rid		the resource identifier
3276  */
3277 void
3278 resource_list_delete(struct resource_list *rl, int type, int rid)
3279 {
3280 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3281 
3282 	if (rle) {
3283 		if (rle->res != NULL)
3284 			panic("resource_list_delete: resource has not been released");
3285 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3286 		free(rle, M_BUS);
3287 	}
3288 }
3289 
3290 /**
3291  * @brief Allocate a reserved resource
3292  *
3293  * This can be used by buses to force the allocation of resources
3294  * that are always active in the system even if they are not allocated
3295  * by a driver (e.g. PCI BARs).  This function is usually called when
3296  * adding a new child to the bus.  The resource is allocated from the
3297  * parent bus when it is reserved.  The resource list entry is marked
3298  * with RLE_RESERVED to note that it is a reserved resource.
3299  *
3300  * Subsequent attempts to allocate the resource with
3301  * resource_list_alloc() will succeed the first time and will set
3302  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3303  * resource that has been allocated is released with
3304  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3305  * the actual resource remains allocated.  The resource can be released to
3306  * the parent bus by calling resource_list_unreserve().
3307  *
3308  * @param rl		the resource list to allocate from
3309  * @param bus		the parent device of @p child
3310  * @param child		the device for which the resource is being reserved
3311  * @param type		the type of resource to allocate
3312  * @param rid		a pointer to the resource identifier
3313  * @param start		hint at the start of the resource range - pass
3314  *			@c 0 for any start address
3315  * @param end		hint at the end of the resource range - pass
3316  *			@c ~0 for any end address
3317  * @param count		hint at the size of range required - pass @c 1
3318  *			for any size
3319  * @param flags		any extra flags to control the resource
3320  *			allocation - see @c RF_XXX flags in
3321  *			<sys/rman.h> for details
3322  *
3323  * @returns		the resource which was allocated or @c NULL if no
3324  *			resource could be allocated
3325  */
3326 struct resource *
3327 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3328     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3329 {
3330 	struct resource_list_entry *rle = NULL;
3331 	int passthrough = (device_get_parent(child) != bus);
3332 	struct resource *r;
3333 
3334 	if (passthrough)
3335 		panic(
3336     "resource_list_reserve() should only be called for direct children");
3337 	if (flags & RF_ACTIVE)
3338 		panic(
3339     "resource_list_reserve() should only reserve inactive resources");
3340 
3341 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3342 	    flags);
3343 	if (r != NULL) {
3344 		rle = resource_list_find(rl, type, *rid);
3345 		rle->flags |= RLE_RESERVED;
3346 	}
3347 	return (r);
3348 }
3349 
3350 /**
3351  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3352  *
3353  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3354  * and passing the allocation up to the parent of @p bus. This assumes
3355  * that the first entry of @c device_get_ivars(child) is a struct
3356  * resource_list. This also handles 'passthrough' allocations where a
3357  * child is a remote descendant of bus by passing the allocation up to
3358  * the parent of bus.
3359  *
3360  * Typically, a bus driver would store a list of child resources
3361  * somewhere in the child device's ivars (see device_get_ivars()) and
3362  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3363  * then call resource_list_alloc() to perform the allocation.
3364  *
3365  * @param rl		the resource list to allocate from
3366  * @param bus		the parent device of @p child
3367  * @param child		the device which is requesting an allocation
3368  * @param type		the type of resource to allocate
3369  * @param rid		a pointer to the resource identifier
3370  * @param start		hint at the start of the resource range - pass
3371  *			@c 0 for any start address
3372  * @param end		hint at the end of the resource range - pass
3373  *			@c ~0 for any end address
3374  * @param count		hint at the size of range required - pass @c 1
3375  *			for any size
3376  * @param flags		any extra flags to control the resource
3377  *			allocation - see @c RF_XXX flags in
3378  *			<sys/rman.h> for details
3379  *
3380  * @returns		the resource which was allocated or @c NULL if no
3381  *			resource could be allocated
3382  */
3383 struct resource *
3384 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3385     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3386 {
3387 	struct resource_list_entry *rle = NULL;
3388 	int passthrough = (device_get_parent(child) != bus);
3389 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3390 
3391 	if (passthrough) {
3392 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3393 		    type, rid, start, end, count, flags));
3394 	}
3395 
3396 	rle = resource_list_find(rl, type, *rid);
3397 
3398 	if (!rle)
3399 		return (NULL);		/* no resource of that type/rid */
3400 
3401 	if (rle->res) {
3402 		if (rle->flags & RLE_RESERVED) {
3403 			if (rle->flags & RLE_ALLOCATED)
3404 				return (NULL);
3405 			if ((flags & RF_ACTIVE) &&
3406 			    bus_activate_resource(child, type, *rid,
3407 			    rle->res) != 0)
3408 				return (NULL);
3409 			rle->flags |= RLE_ALLOCATED;
3410 			return (rle->res);
3411 		}
3412 		device_printf(bus,
3413 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3414 		    type, device_get_nameunit(child));
3415 		return (NULL);
3416 	}
3417 
3418 	if (isdefault) {
3419 		start = rle->start;
3420 		count = ulmax(count, rle->count);
3421 		end = ulmax(rle->end, start + count - 1);
3422 	}
3423 
3424 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3425 	    type, rid, start, end, count, flags);
3426 
3427 	/*
3428 	 * Record the new range.
3429 	 */
3430 	if (rle->res) {
3431 		rle->start = rman_get_start(rle->res);
3432 		rle->end = rman_get_end(rle->res);
3433 		rle->count = count;
3434 	}
3435 
3436 	return (rle->res);
3437 }
3438 
3439 /**
3440  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3441  *
3442  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3443  * used with resource_list_alloc().
3444  *
3445  * @param rl		the resource list which was allocated from
3446  * @param bus		the parent device of @p child
3447  * @param child		the device which is requesting a release
3448  * @param type		the type of resource to release
3449  * @param rid		the resource identifier
3450  * @param res		the resource to release
3451  *
3452  * @retval 0		success
3453  * @retval non-zero	a standard unix error code indicating what
3454  *			error condition prevented the operation
3455  */
3456 int
3457 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3458     int type, int rid, struct resource *res)
3459 {
3460 	struct resource_list_entry *rle = NULL;
3461 	int passthrough = (device_get_parent(child) != bus);
3462 	int error;
3463 
3464 	if (passthrough) {
3465 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3466 		    type, rid, res));
3467 	}
3468 
3469 	rle = resource_list_find(rl, type, rid);
3470 
3471 	if (!rle)
3472 		panic("resource_list_release: can't find resource");
3473 	if (!rle->res)
3474 		panic("resource_list_release: resource entry is not busy");
3475 	if (rle->flags & RLE_RESERVED) {
3476 		if (rle->flags & RLE_ALLOCATED) {
3477 			if (rman_get_flags(res) & RF_ACTIVE) {
3478 				error = bus_deactivate_resource(child, type,
3479 				    rid, res);
3480 				if (error)
3481 					return (error);
3482 			}
3483 			rle->flags &= ~RLE_ALLOCATED;
3484 			return (0);
3485 		}
3486 		return (EINVAL);
3487 	}
3488 
3489 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3490 	    type, rid, res);
3491 	if (error)
3492 		return (error);
3493 
3494 	rle->res = NULL;
3495 	return (0);
3496 }
3497 
3498 /**
3499  * @brief Release all active resources of a given type
3500  *
3501  * Release all active resources of a specified type.  This is intended
3502  * to be used to cleanup resources leaked by a driver after detach or
3503  * a failed attach.
3504  *
3505  * @param rl		the resource list which was allocated from
3506  * @param bus		the parent device of @p child
3507  * @param child		the device whose active resources are being released
3508  * @param type		the type of resources to release
3509  *
3510  * @retval 0		success
3511  * @retval EBUSY	at least one resource was active
3512  */
3513 int
3514 resource_list_release_active(struct resource_list *rl, device_t bus,
3515     device_t child, int type)
3516 {
3517 	struct resource_list_entry *rle;
3518 	int error, retval;
3519 
3520 	retval = 0;
3521 	STAILQ_FOREACH(rle, rl, link) {
3522 		if (rle->type != type)
3523 			continue;
3524 		if (rle->res == NULL)
3525 			continue;
3526 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3527 		    RLE_RESERVED)
3528 			continue;
3529 		retval = EBUSY;
3530 		error = resource_list_release(rl, bus, child, type,
3531 		    rman_get_rid(rle->res), rle->res);
3532 		if (error != 0)
3533 			device_printf(bus,
3534 			    "Failed to release active resource: %d\n", error);
3535 	}
3536 	return (retval);
3537 }
3538 
3539 /**
3540  * @brief Fully release a reserved resource
3541  *
3542  * Fully releases a resource reserved via resource_list_reserve().
3543  *
3544  * @param rl		the resource list which was allocated from
3545  * @param bus		the parent device of @p child
3546  * @param child		the device whose reserved resource is being released
3547  * @param type		the type of resource to release
3548  * @param rid		the resource identifier
3549  * @param res		the resource to release
3550  *
3551  * @retval 0		success
3552  * @retval non-zero	a standard unix error code indicating what
3553  *			error condition prevented the operation
3554  */
3555 int
3556 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3557     int type, int rid)
3558 {
3559 	struct resource_list_entry *rle = NULL;
3560 	int passthrough = (device_get_parent(child) != bus);
3561 
3562 	if (passthrough)
3563 		panic(
3564     "resource_list_unreserve() should only be called for direct children");
3565 
3566 	rle = resource_list_find(rl, type, rid);
3567 
3568 	if (!rle)
3569 		panic("resource_list_unreserve: can't find resource");
3570 	if (!(rle->flags & RLE_RESERVED))
3571 		return (EINVAL);
3572 	if (rle->flags & RLE_ALLOCATED)
3573 		return (EBUSY);
3574 	rle->flags &= ~RLE_RESERVED;
3575 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3576 }
3577 
3578 /**
3579  * @brief Print a description of resources in a resource list
3580  *
3581  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3582  * The name is printed if at least one resource of the given type is available.
3583  * The format is used to print resource start and end.
3584  *
3585  * @param rl		the resource list to print
3586  * @param name		the name of @p type, e.g. @c "memory"
3587  * @param type		type type of resource entry to print
3588  * @param format	printf(9) format string to print resource
3589  *			start and end values
3590  *
3591  * @returns		the number of characters printed
3592  */
3593 int
3594 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3595     const char *format)
3596 {
3597 	struct resource_list_entry *rle;
3598 	int printed, retval;
3599 
3600 	printed = 0;
3601 	retval = 0;
3602 	/* Yes, this is kinda cheating */
3603 	STAILQ_FOREACH(rle, rl, link) {
3604 		if (rle->type == type) {
3605 			if (printed == 0)
3606 				retval += printf(" %s ", name);
3607 			else
3608 				retval += printf(",");
3609 			printed++;
3610 			retval += printf(format, rle->start);
3611 			if (rle->count > 1) {
3612 				retval += printf("-");
3613 				retval += printf(format, rle->start +
3614 						 rle->count - 1);
3615 			}
3616 		}
3617 	}
3618 	return (retval);
3619 }
3620 
3621 /**
3622  * @brief Releases all the resources in a list.
3623  *
3624  * @param rl		The resource list to purge.
3625  *
3626  * @returns		nothing
3627  */
3628 void
3629 resource_list_purge(struct resource_list *rl)
3630 {
3631 	struct resource_list_entry *rle;
3632 
3633 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3634 		if (rle->res)
3635 			bus_release_resource(rman_get_device(rle->res),
3636 			    rle->type, rle->rid, rle->res);
3637 		STAILQ_REMOVE_HEAD(rl, link);
3638 		free(rle, M_BUS);
3639 	}
3640 }
3641 
3642 device_t
3643 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3644 {
3645 	return (device_add_child_ordered(dev, order, name, unit));
3646 }
3647 
3648 /**
3649  * @brief Helper function for implementing DEVICE_PROBE()
3650  *
3651  * This function can be used to help implement the DEVICE_PROBE() for
3652  * a bus (i.e. a device which has other devices attached to it). It
3653  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3654  * devclass.
3655  */
3656 int
3657 bus_generic_probe(device_t dev)
3658 {
3659 	devclass_t dc = dev->devclass;
3660 	driverlink_t dl;
3661 
3662 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3663 		/*
3664 		 * If this driver's pass is too high, then ignore it.
3665 		 * For most drivers in the default pass, this will
3666 		 * never be true.  For early-pass drivers they will
3667 		 * only call the identify routines of eligible drivers
3668 		 * when this routine is called.  Drivers for later
3669 		 * passes should have their identify routines called
3670 		 * on early-pass buses during BUS_NEW_PASS().
3671 		 */
3672 		if (dl->pass > bus_current_pass)
3673 			continue;
3674 		DEVICE_IDENTIFY(dl->driver, dev);
3675 	}
3676 
3677 	return (0);
3678 }
3679 
3680 /**
3681  * @brief Helper function for implementing DEVICE_ATTACH()
3682  *
3683  * This function can be used to help implement the DEVICE_ATTACH() for
3684  * a bus. It calls device_probe_and_attach() for each of the device's
3685  * children.
3686  */
3687 int
3688 bus_generic_attach(device_t dev)
3689 {
3690 	device_t child;
3691 
3692 	TAILQ_FOREACH(child, &dev->children, link) {
3693 		device_probe_and_attach(child);
3694 	}
3695 
3696 	return (0);
3697 }
3698 
3699 /**
3700  * @brief Helper function for delaying attaching children
3701  *
3702  * Many buses can't run transactions on the bus which children need to probe and
3703  * attach until after interrupts and/or timers are running.  This function
3704  * delays their attach until interrupts and timers are enabled.
3705  */
3706 int
3707 bus_delayed_attach_children(device_t dev)
3708 {
3709 	/* Probe and attach the bus children when interrupts are available */
3710 	config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev);
3711 
3712 	return (0);
3713 }
3714 
3715 /**
3716  * @brief Helper function for implementing DEVICE_DETACH()
3717  *
3718  * This function can be used to help implement the DEVICE_DETACH() for
3719  * a bus. It calls device_detach() for each of the device's
3720  * children.
3721  */
3722 int
3723 bus_generic_detach(device_t dev)
3724 {
3725 	device_t child;
3726 	int error;
3727 
3728 	if (dev->state != DS_ATTACHED)
3729 		return (EBUSY);
3730 
3731 	/*
3732 	 * Detach children in the reverse order.
3733 	 * See bus_generic_suspend for details.
3734 	 */
3735 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3736 		if ((error = device_detach(child)) != 0)
3737 			return (error);
3738 	}
3739 
3740 	return (0);
3741 }
3742 
3743 /**
3744  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3745  *
3746  * This function can be used to help implement the DEVICE_SHUTDOWN()
3747  * for a bus. It calls device_shutdown() for each of the device's
3748  * children.
3749  */
3750 int
3751 bus_generic_shutdown(device_t dev)
3752 {
3753 	device_t child;
3754 
3755 	/*
3756 	 * Shut down children in the reverse order.
3757 	 * See bus_generic_suspend for details.
3758 	 */
3759 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3760 		device_shutdown(child);
3761 	}
3762 
3763 	return (0);
3764 }
3765 
3766 /**
3767  * @brief Default function for suspending a child device.
3768  *
3769  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3770  */
3771 int
3772 bus_generic_suspend_child(device_t dev, device_t child)
3773 {
3774 	int	error;
3775 
3776 	error = DEVICE_SUSPEND(child);
3777 
3778 	if (error == 0)
3779 		child->flags |= DF_SUSPENDED;
3780 
3781 	return (error);
3782 }
3783 
3784 /**
3785  * @brief Default function for resuming a child device.
3786  *
3787  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3788  */
3789 int
3790 bus_generic_resume_child(device_t dev, device_t child)
3791 {
3792 	DEVICE_RESUME(child);
3793 	child->flags &= ~DF_SUSPENDED;
3794 
3795 	return (0);
3796 }
3797 
3798 /**
3799  * @brief Helper function for implementing DEVICE_SUSPEND()
3800  *
3801  * This function can be used to help implement the DEVICE_SUSPEND()
3802  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3803  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3804  * operation is aborted and any devices which were suspended are
3805  * resumed immediately by calling their DEVICE_RESUME() methods.
3806  */
3807 int
3808 bus_generic_suspend(device_t dev)
3809 {
3810 	int		error;
3811 	device_t	child;
3812 
3813 	/*
3814 	 * Suspend children in the reverse order.
3815 	 * For most buses all children are equal, so the order does not matter.
3816 	 * Other buses, such as acpi, carefully order their child devices to
3817 	 * express implicit dependencies between them.  For such buses it is
3818 	 * safer to bring down devices in the reverse order.
3819 	 */
3820 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3821 		error = BUS_SUSPEND_CHILD(dev, child);
3822 		if (error != 0) {
3823 			child = TAILQ_NEXT(child, link);
3824 			if (child != NULL) {
3825 				TAILQ_FOREACH_FROM(child, &dev->children, link)
3826 					BUS_RESUME_CHILD(dev, child);
3827 			}
3828 			return (error);
3829 		}
3830 	}
3831 	return (0);
3832 }
3833 
3834 /**
3835  * @brief Helper function for implementing DEVICE_RESUME()
3836  *
3837  * This function can be used to help implement the DEVICE_RESUME() for
3838  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3839  */
3840 int
3841 bus_generic_resume(device_t dev)
3842 {
3843 	device_t	child;
3844 
3845 	TAILQ_FOREACH(child, &dev->children, link) {
3846 		BUS_RESUME_CHILD(dev, child);
3847 		/* if resume fails, there's nothing we can usefully do... */
3848 	}
3849 	return (0);
3850 }
3851 
3852 /**
3853  * @brief Helper function for implementing BUS_RESET_POST
3854  *
3855  * Bus can use this function to implement common operations of
3856  * re-attaching or resuming the children after the bus itself was
3857  * reset, and after restoring bus-unique state of children.
3858  *
3859  * @param dev	The bus
3860  * #param flags	DEVF_RESET_*
3861  */
3862 int
3863 bus_helper_reset_post(device_t dev, int flags)
3864 {
3865 	device_t child;
3866 	int error, error1;
3867 
3868 	error = 0;
3869 	TAILQ_FOREACH(child, &dev->children,link) {
3870 		BUS_RESET_POST(dev, child);
3871 		error1 = (flags & DEVF_RESET_DETACH) != 0 ?
3872 		    device_probe_and_attach(child) :
3873 		    BUS_RESUME_CHILD(dev, child);
3874 		if (error == 0 && error1 != 0)
3875 			error = error1;
3876 	}
3877 	return (error);
3878 }
3879 
3880 static void
3881 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
3882 {
3883 	child = TAILQ_NEXT(child, link);
3884 	if (child == NULL)
3885 		return;
3886 	TAILQ_FOREACH_FROM(child, &dev->children,link) {
3887 		BUS_RESET_POST(dev, child);
3888 		if ((flags & DEVF_RESET_DETACH) != 0)
3889 			device_probe_and_attach(child);
3890 		else
3891 			BUS_RESUME_CHILD(dev, child);
3892 	}
3893 }
3894 
3895 /**
3896  * @brief Helper function for implementing BUS_RESET_PREPARE
3897  *
3898  * Bus can use this function to implement common operations of
3899  * detaching or suspending the children before the bus itself is
3900  * reset, and then save bus-unique state of children that must
3901  * persists around reset.
3902  *
3903  * @param dev	The bus
3904  * #param flags	DEVF_RESET_*
3905  */
3906 int
3907 bus_helper_reset_prepare(device_t dev, int flags)
3908 {
3909 	device_t child;
3910 	int error;
3911 
3912 	if (dev->state != DS_ATTACHED)
3913 		return (EBUSY);
3914 
3915 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3916 		if ((flags & DEVF_RESET_DETACH) != 0) {
3917 			error = device_get_state(child) == DS_ATTACHED ?
3918 			    device_detach(child) : 0;
3919 		} else {
3920 			error = BUS_SUSPEND_CHILD(dev, child);
3921 		}
3922 		if (error == 0) {
3923 			error = BUS_RESET_PREPARE(dev, child);
3924 			if (error != 0) {
3925 				if ((flags & DEVF_RESET_DETACH) != 0)
3926 					device_probe_and_attach(child);
3927 				else
3928 					BUS_RESUME_CHILD(dev, child);
3929 			}
3930 		}
3931 		if (error != 0) {
3932 			bus_helper_reset_prepare_rollback(dev, child, flags);
3933 			return (error);
3934 		}
3935 	}
3936 	return (0);
3937 }
3938 
3939 /**
3940  * @brief Helper function for implementing BUS_PRINT_CHILD().
3941  *
3942  * This function prints the first part of the ascii representation of
3943  * @p child, including its name, unit and description (if any - see
3944  * device_set_desc()).
3945  *
3946  * @returns the number of characters printed
3947  */
3948 int
3949 bus_print_child_header(device_t dev, device_t child)
3950 {
3951 	int	retval = 0;
3952 
3953 	if (device_get_desc(child)) {
3954 		retval += device_printf(child, "<%s>", device_get_desc(child));
3955 	} else {
3956 		retval += printf("%s", device_get_nameunit(child));
3957 	}
3958 
3959 	return (retval);
3960 }
3961 
3962 /**
3963  * @brief Helper function for implementing BUS_PRINT_CHILD().
3964  *
3965  * This function prints the last part of the ascii representation of
3966  * @p child, which consists of the string @c " on " followed by the
3967  * name and unit of the @p dev.
3968  *
3969  * @returns the number of characters printed
3970  */
3971 int
3972 bus_print_child_footer(device_t dev, device_t child)
3973 {
3974 	return (printf(" on %s\n", device_get_nameunit(dev)));
3975 }
3976 
3977 /**
3978  * @brief Helper function for implementing BUS_PRINT_CHILD().
3979  *
3980  * This function prints out the VM domain for the given device.
3981  *
3982  * @returns the number of characters printed
3983  */
3984 int
3985 bus_print_child_domain(device_t dev, device_t child)
3986 {
3987 	int domain;
3988 
3989 	/* No domain? Don't print anything */
3990 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3991 		return (0);
3992 
3993 	return (printf(" numa-domain %d", domain));
3994 }
3995 
3996 /**
3997  * @brief Helper function for implementing BUS_PRINT_CHILD().
3998  *
3999  * This function simply calls bus_print_child_header() followed by
4000  * bus_print_child_footer().
4001  *
4002  * @returns the number of characters printed
4003  */
4004 int
4005 bus_generic_print_child(device_t dev, device_t child)
4006 {
4007 	int	retval = 0;
4008 
4009 	retval += bus_print_child_header(dev, child);
4010 	retval += bus_print_child_domain(dev, child);
4011 	retval += bus_print_child_footer(dev, child);
4012 
4013 	return (retval);
4014 }
4015 
4016 /**
4017  * @brief Stub function for implementing BUS_READ_IVAR().
4018  *
4019  * @returns ENOENT
4020  */
4021 int
4022 bus_generic_read_ivar(device_t dev, device_t child, int index,
4023     uintptr_t * result)
4024 {
4025 	return (ENOENT);
4026 }
4027 
4028 /**
4029  * @brief Stub function for implementing BUS_WRITE_IVAR().
4030  *
4031  * @returns ENOENT
4032  */
4033 int
4034 bus_generic_write_ivar(device_t dev, device_t child, int index,
4035     uintptr_t value)
4036 {
4037 	return (ENOENT);
4038 }
4039 
4040 /**
4041  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
4042  *
4043  * @returns NULL
4044  */
4045 struct resource_list *
4046 bus_generic_get_resource_list(device_t dev, device_t child)
4047 {
4048 	return (NULL);
4049 }
4050 
4051 /**
4052  * @brief Helper function for implementing BUS_DRIVER_ADDED().
4053  *
4054  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
4055  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
4056  * and then calls device_probe_and_attach() for each unattached child.
4057  */
4058 void
4059 bus_generic_driver_added(device_t dev, driver_t *driver)
4060 {
4061 	device_t child;
4062 
4063 	DEVICE_IDENTIFY(driver, dev);
4064 	TAILQ_FOREACH(child, &dev->children, link) {
4065 		if (child->state == DS_NOTPRESENT ||
4066 		    (child->flags & DF_REBID))
4067 			device_probe_and_attach(child);
4068 	}
4069 }
4070 
4071 /**
4072  * @brief Helper function for implementing BUS_NEW_PASS().
4073  *
4074  * This implementing of BUS_NEW_PASS() first calls the identify
4075  * routines for any drivers that probe at the current pass.  Then it
4076  * walks the list of devices for this bus.  If a device is already
4077  * attached, then it calls BUS_NEW_PASS() on that device.  If the
4078  * device is not already attached, it attempts to attach a driver to
4079  * it.
4080  */
4081 void
4082 bus_generic_new_pass(device_t dev)
4083 {
4084 	driverlink_t dl;
4085 	devclass_t dc;
4086 	device_t child;
4087 
4088 	dc = dev->devclass;
4089 	TAILQ_FOREACH(dl, &dc->drivers, link) {
4090 		if (dl->pass == bus_current_pass)
4091 			DEVICE_IDENTIFY(dl->driver, dev);
4092 	}
4093 	TAILQ_FOREACH(child, &dev->children, link) {
4094 		if (child->state >= DS_ATTACHED)
4095 			BUS_NEW_PASS(child);
4096 		else if (child->state == DS_NOTPRESENT)
4097 			device_probe_and_attach(child);
4098 	}
4099 }
4100 
4101 /**
4102  * @brief Helper function for implementing BUS_SETUP_INTR().
4103  *
4104  * This simple implementation of BUS_SETUP_INTR() simply calls the
4105  * BUS_SETUP_INTR() method of the parent of @p dev.
4106  */
4107 int
4108 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
4109     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
4110     void **cookiep)
4111 {
4112 	/* Propagate up the bus hierarchy until someone handles it. */
4113 	if (dev->parent)
4114 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
4115 		    filter, intr, arg, cookiep));
4116 	return (EINVAL);
4117 }
4118 
4119 /**
4120  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
4121  *
4122  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
4123  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
4124  */
4125 int
4126 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
4127     void *cookie)
4128 {
4129 	/* Propagate up the bus hierarchy until someone handles it. */
4130 	if (dev->parent)
4131 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
4132 	return (EINVAL);
4133 }
4134 
4135 /**
4136  * @brief Helper function for implementing BUS_SUSPEND_INTR().
4137  *
4138  * This simple implementation of BUS_SUSPEND_INTR() simply calls the
4139  * BUS_SUSPEND_INTR() method of the parent of @p dev.
4140  */
4141 int
4142 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
4143 {
4144 	/* Propagate up the bus hierarchy until someone handles it. */
4145 	if (dev->parent)
4146 		return (BUS_SUSPEND_INTR(dev->parent, child, irq));
4147 	return (EINVAL);
4148 }
4149 
4150 /**
4151  * @brief Helper function for implementing BUS_RESUME_INTR().
4152  *
4153  * This simple implementation of BUS_RESUME_INTR() simply calls the
4154  * BUS_RESUME_INTR() method of the parent of @p dev.
4155  */
4156 int
4157 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
4158 {
4159 	/* Propagate up the bus hierarchy until someone handles it. */
4160 	if (dev->parent)
4161 		return (BUS_RESUME_INTR(dev->parent, child, irq));
4162 	return (EINVAL);
4163 }
4164 
4165 /**
4166  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4167  *
4168  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
4169  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
4170  */
4171 int
4172 bus_generic_adjust_resource(device_t dev, device_t child, int type,
4173     struct resource *r, rman_res_t start, rman_res_t end)
4174 {
4175 	/* Propagate up the bus hierarchy until someone handles it. */
4176 	if (dev->parent)
4177 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
4178 		    end));
4179 	return (EINVAL);
4180 }
4181 
4182 /**
4183  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4184  *
4185  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4186  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4187  */
4188 struct resource *
4189 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4190     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4191 {
4192 	/* Propagate up the bus hierarchy until someone handles it. */
4193 	if (dev->parent)
4194 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4195 		    start, end, count, flags));
4196 	return (NULL);
4197 }
4198 
4199 /**
4200  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4201  *
4202  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4203  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4204  */
4205 int
4206 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
4207     struct resource *r)
4208 {
4209 	/* Propagate up the bus hierarchy until someone handles it. */
4210 	if (dev->parent)
4211 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
4212 		    r));
4213 	return (EINVAL);
4214 }
4215 
4216 /**
4217  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4218  *
4219  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4220  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4221  */
4222 int
4223 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4224     struct resource *r)
4225 {
4226 	/* Propagate up the bus hierarchy until someone handles it. */
4227 	if (dev->parent)
4228 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4229 		    r));
4230 	return (EINVAL);
4231 }
4232 
4233 /**
4234  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4235  *
4236  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4237  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4238  */
4239 int
4240 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4241     int rid, struct resource *r)
4242 {
4243 	/* Propagate up the bus hierarchy until someone handles it. */
4244 	if (dev->parent)
4245 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4246 		    r));
4247 	return (EINVAL);
4248 }
4249 
4250 /**
4251  * @brief Helper function for implementing BUS_MAP_RESOURCE().
4252  *
4253  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4254  * BUS_MAP_RESOURCE() method of the parent of @p dev.
4255  */
4256 int
4257 bus_generic_map_resource(device_t dev, device_t child, int type,
4258     struct resource *r, struct resource_map_request *args,
4259     struct resource_map *map)
4260 {
4261 	/* Propagate up the bus hierarchy until someone handles it. */
4262 	if (dev->parent)
4263 		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
4264 		    map));
4265 	return (EINVAL);
4266 }
4267 
4268 /**
4269  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4270  *
4271  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4272  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4273  */
4274 int
4275 bus_generic_unmap_resource(device_t dev, device_t child, int type,
4276     struct resource *r, struct resource_map *map)
4277 {
4278 	/* Propagate up the bus hierarchy until someone handles it. */
4279 	if (dev->parent)
4280 		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
4281 	return (EINVAL);
4282 }
4283 
4284 /**
4285  * @brief Helper function for implementing BUS_BIND_INTR().
4286  *
4287  * This simple implementation of BUS_BIND_INTR() simply calls the
4288  * BUS_BIND_INTR() method of the parent of @p dev.
4289  */
4290 int
4291 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4292     int cpu)
4293 {
4294 	/* Propagate up the bus hierarchy until someone handles it. */
4295 	if (dev->parent)
4296 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4297 	return (EINVAL);
4298 }
4299 
4300 /**
4301  * @brief Helper function for implementing BUS_CONFIG_INTR().
4302  *
4303  * This simple implementation of BUS_CONFIG_INTR() simply calls the
4304  * BUS_CONFIG_INTR() method of the parent of @p dev.
4305  */
4306 int
4307 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4308     enum intr_polarity pol)
4309 {
4310 	/* Propagate up the bus hierarchy until someone handles it. */
4311 	if (dev->parent)
4312 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4313 	return (EINVAL);
4314 }
4315 
4316 /**
4317  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4318  *
4319  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4320  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4321  */
4322 int
4323 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4324     void *cookie, const char *descr)
4325 {
4326 	/* Propagate up the bus hierarchy until someone handles it. */
4327 	if (dev->parent)
4328 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4329 		    descr));
4330 	return (EINVAL);
4331 }
4332 
4333 /**
4334  * @brief Helper function for implementing BUS_GET_CPUS().
4335  *
4336  * This simple implementation of BUS_GET_CPUS() simply calls the
4337  * BUS_GET_CPUS() method of the parent of @p dev.
4338  */
4339 int
4340 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4341     size_t setsize, cpuset_t *cpuset)
4342 {
4343 	/* Propagate up the bus hierarchy until someone handles it. */
4344 	if (dev->parent != NULL)
4345 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4346 	return (EINVAL);
4347 }
4348 
4349 /**
4350  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4351  *
4352  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4353  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4354  */
4355 bus_dma_tag_t
4356 bus_generic_get_dma_tag(device_t dev, device_t child)
4357 {
4358 	/* Propagate up the bus hierarchy until someone handles it. */
4359 	if (dev->parent != NULL)
4360 		return (BUS_GET_DMA_TAG(dev->parent, child));
4361 	return (NULL);
4362 }
4363 
4364 /**
4365  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4366  *
4367  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4368  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4369  */
4370 bus_space_tag_t
4371 bus_generic_get_bus_tag(device_t dev, device_t child)
4372 {
4373 	/* Propagate up the bus hierarchy until someone handles it. */
4374 	if (dev->parent != NULL)
4375 		return (BUS_GET_BUS_TAG(dev->parent, child));
4376 	return ((bus_space_tag_t)0);
4377 }
4378 
4379 /**
4380  * @brief Helper function for implementing BUS_GET_RESOURCE().
4381  *
4382  * This implementation of BUS_GET_RESOURCE() uses the
4383  * resource_list_find() function to do most of the work. It calls
4384  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4385  * search.
4386  */
4387 int
4388 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4389     rman_res_t *startp, rman_res_t *countp)
4390 {
4391 	struct resource_list *		rl = NULL;
4392 	struct resource_list_entry *	rle = NULL;
4393 
4394 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4395 	if (!rl)
4396 		return (EINVAL);
4397 
4398 	rle = resource_list_find(rl, type, rid);
4399 	if (!rle)
4400 		return (ENOENT);
4401 
4402 	if (startp)
4403 		*startp = rle->start;
4404 	if (countp)
4405 		*countp = rle->count;
4406 
4407 	return (0);
4408 }
4409 
4410 /**
4411  * @brief Helper function for implementing BUS_SET_RESOURCE().
4412  *
4413  * This implementation of BUS_SET_RESOURCE() uses the
4414  * resource_list_add() function to do most of the work. It calls
4415  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4416  * edit.
4417  */
4418 int
4419 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4420     rman_res_t start, rman_res_t count)
4421 {
4422 	struct resource_list *		rl = NULL;
4423 
4424 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4425 	if (!rl)
4426 		return (EINVAL);
4427 
4428 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4429 
4430 	return (0);
4431 }
4432 
4433 /**
4434  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4435  *
4436  * This implementation of BUS_DELETE_RESOURCE() uses the
4437  * resource_list_delete() function to do most of the work. It calls
4438  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4439  * edit.
4440  */
4441 void
4442 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4443 {
4444 	struct resource_list *		rl = NULL;
4445 
4446 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4447 	if (!rl)
4448 		return;
4449 
4450 	resource_list_delete(rl, type, rid);
4451 
4452 	return;
4453 }
4454 
4455 /**
4456  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4457  *
4458  * This implementation of BUS_RELEASE_RESOURCE() uses the
4459  * resource_list_release() function to do most of the work. It calls
4460  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4461  */
4462 int
4463 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4464     int rid, struct resource *r)
4465 {
4466 	struct resource_list *		rl = NULL;
4467 
4468 	if (device_get_parent(child) != dev)
4469 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4470 		    type, rid, r));
4471 
4472 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4473 	if (!rl)
4474 		return (EINVAL);
4475 
4476 	return (resource_list_release(rl, dev, child, type, rid, r));
4477 }
4478 
4479 /**
4480  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4481  *
4482  * This implementation of BUS_ALLOC_RESOURCE() uses the
4483  * resource_list_alloc() function to do most of the work. It calls
4484  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4485  */
4486 struct resource *
4487 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4488     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4489 {
4490 	struct resource_list *		rl = NULL;
4491 
4492 	if (device_get_parent(child) != dev)
4493 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4494 		    type, rid, start, end, count, flags));
4495 
4496 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4497 	if (!rl)
4498 		return (NULL);
4499 
4500 	return (resource_list_alloc(rl, dev, child, type, rid,
4501 	    start, end, count, flags));
4502 }
4503 
4504 /**
4505  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4506  *
4507  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4508  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4509  */
4510 int
4511 bus_generic_child_present(device_t dev, device_t child)
4512 {
4513 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4514 }
4515 
4516 int
4517 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4518 {
4519 	if (dev->parent)
4520 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4521 
4522 	return (ENOENT);
4523 }
4524 
4525 /**
4526  * @brief Helper function for implementing BUS_RESCAN().
4527  *
4528  * This null implementation of BUS_RESCAN() always fails to indicate
4529  * the bus does not support rescanning.
4530  */
4531 int
4532 bus_null_rescan(device_t dev)
4533 {
4534 	return (ENXIO);
4535 }
4536 
4537 /*
4538  * Some convenience functions to make it easier for drivers to use the
4539  * resource-management functions.  All these really do is hide the
4540  * indirection through the parent's method table, making for slightly
4541  * less-wordy code.  In the future, it might make sense for this code
4542  * to maintain some sort of a list of resources allocated by each device.
4543  */
4544 
4545 int
4546 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4547     struct resource **res)
4548 {
4549 	int i;
4550 
4551 	for (i = 0; rs[i].type != -1; i++)
4552 		res[i] = NULL;
4553 	for (i = 0; rs[i].type != -1; i++) {
4554 		res[i] = bus_alloc_resource_any(dev,
4555 		    rs[i].type, &rs[i].rid, rs[i].flags);
4556 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4557 			bus_release_resources(dev, rs, res);
4558 			return (ENXIO);
4559 		}
4560 	}
4561 	return (0);
4562 }
4563 
4564 void
4565 bus_release_resources(device_t dev, const struct resource_spec *rs,
4566     struct resource **res)
4567 {
4568 	int i;
4569 
4570 	for (i = 0; rs[i].type != -1; i++)
4571 		if (res[i] != NULL) {
4572 			bus_release_resource(
4573 			    dev, rs[i].type, rs[i].rid, res[i]);
4574 			res[i] = NULL;
4575 		}
4576 }
4577 
4578 /**
4579  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4580  *
4581  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4582  * parent of @p dev.
4583  */
4584 struct resource *
4585 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4586     rman_res_t end, rman_res_t count, u_int flags)
4587 {
4588 	struct resource *res;
4589 
4590 	if (dev->parent == NULL)
4591 		return (NULL);
4592 	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4593 	    count, flags);
4594 	return (res);
4595 }
4596 
4597 /**
4598  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4599  *
4600  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4601  * parent of @p dev.
4602  */
4603 int
4604 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4605     rman_res_t end)
4606 {
4607 	if (dev->parent == NULL)
4608 		return (EINVAL);
4609 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4610 }
4611 
4612 /**
4613  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4614  *
4615  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4616  * parent of @p dev.
4617  */
4618 int
4619 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4620 {
4621 	if (dev->parent == NULL)
4622 		return (EINVAL);
4623 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4624 }
4625 
4626 /**
4627  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4628  *
4629  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4630  * parent of @p dev.
4631  */
4632 int
4633 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4634 {
4635 	if (dev->parent == NULL)
4636 		return (EINVAL);
4637 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4638 }
4639 
4640 /**
4641  * @brief Wrapper function for BUS_MAP_RESOURCE().
4642  *
4643  * This function simply calls the BUS_MAP_RESOURCE() method of the
4644  * parent of @p dev.
4645  */
4646 int
4647 bus_map_resource(device_t dev, int type, struct resource *r,
4648     struct resource_map_request *args, struct resource_map *map)
4649 {
4650 	if (dev->parent == NULL)
4651 		return (EINVAL);
4652 	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
4653 }
4654 
4655 /**
4656  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4657  *
4658  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4659  * parent of @p dev.
4660  */
4661 int
4662 bus_unmap_resource(device_t dev, int type, struct resource *r,
4663     struct resource_map *map)
4664 {
4665 	if (dev->parent == NULL)
4666 		return (EINVAL);
4667 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
4668 }
4669 
4670 /**
4671  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4672  *
4673  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4674  * parent of @p dev.
4675  */
4676 int
4677 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4678 {
4679 	int rv;
4680 
4681 	if (dev->parent == NULL)
4682 		return (EINVAL);
4683 	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
4684 	return (rv);
4685 }
4686 
4687 /**
4688  * @brief Wrapper function for BUS_SETUP_INTR().
4689  *
4690  * This function simply calls the BUS_SETUP_INTR() method of the
4691  * parent of @p dev.
4692  */
4693 int
4694 bus_setup_intr(device_t dev, struct resource *r, int flags,
4695     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4696 {
4697 	int error;
4698 
4699 	if (dev->parent == NULL)
4700 		return (EINVAL);
4701 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4702 	    arg, cookiep);
4703 	if (error != 0)
4704 		return (error);
4705 	if (handler != NULL && !(flags & INTR_MPSAFE))
4706 		device_printf(dev, "[GIANT-LOCKED]\n");
4707 	return (0);
4708 }
4709 
4710 /**
4711  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4712  *
4713  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4714  * parent of @p dev.
4715  */
4716 int
4717 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4718 {
4719 	if (dev->parent == NULL)
4720 		return (EINVAL);
4721 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4722 }
4723 
4724 /**
4725  * @brief Wrapper function for BUS_SUSPEND_INTR().
4726  *
4727  * This function simply calls the BUS_SUSPEND_INTR() method of the
4728  * parent of @p dev.
4729  */
4730 int
4731 bus_suspend_intr(device_t dev, struct resource *r)
4732 {
4733 	if (dev->parent == NULL)
4734 		return (EINVAL);
4735 	return (BUS_SUSPEND_INTR(dev->parent, dev, r));
4736 }
4737 
4738 /**
4739  * @brief Wrapper function for BUS_RESUME_INTR().
4740  *
4741  * This function simply calls the BUS_RESUME_INTR() method of the
4742  * parent of @p dev.
4743  */
4744 int
4745 bus_resume_intr(device_t dev, struct resource *r)
4746 {
4747 	if (dev->parent == NULL)
4748 		return (EINVAL);
4749 	return (BUS_RESUME_INTR(dev->parent, dev, r));
4750 }
4751 
4752 /**
4753  * @brief Wrapper function for BUS_BIND_INTR().
4754  *
4755  * This function simply calls the BUS_BIND_INTR() method of the
4756  * parent of @p dev.
4757  */
4758 int
4759 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4760 {
4761 	if (dev->parent == NULL)
4762 		return (EINVAL);
4763 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4764 }
4765 
4766 /**
4767  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4768  *
4769  * This function first formats the requested description into a
4770  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4771  * the parent of @p dev.
4772  */
4773 int
4774 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4775     const char *fmt, ...)
4776 {
4777 	va_list ap;
4778 	char descr[MAXCOMLEN + 1];
4779 
4780 	if (dev->parent == NULL)
4781 		return (EINVAL);
4782 	va_start(ap, fmt);
4783 	vsnprintf(descr, sizeof(descr), fmt, ap);
4784 	va_end(ap);
4785 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4786 }
4787 
4788 /**
4789  * @brief Wrapper function for BUS_SET_RESOURCE().
4790  *
4791  * This function simply calls the BUS_SET_RESOURCE() method of the
4792  * parent of @p dev.
4793  */
4794 int
4795 bus_set_resource(device_t dev, int type, int rid,
4796     rman_res_t start, rman_res_t count)
4797 {
4798 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4799 	    start, count));
4800 }
4801 
4802 /**
4803  * @brief Wrapper function for BUS_GET_RESOURCE().
4804  *
4805  * This function simply calls the BUS_GET_RESOURCE() method of the
4806  * parent of @p dev.
4807  */
4808 int
4809 bus_get_resource(device_t dev, int type, int rid,
4810     rman_res_t *startp, rman_res_t *countp)
4811 {
4812 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4813 	    startp, countp));
4814 }
4815 
4816 /**
4817  * @brief Wrapper function for BUS_GET_RESOURCE().
4818  *
4819  * This function simply calls the BUS_GET_RESOURCE() method of the
4820  * parent of @p dev and returns the start value.
4821  */
4822 rman_res_t
4823 bus_get_resource_start(device_t dev, int type, int rid)
4824 {
4825 	rman_res_t start;
4826 	rman_res_t count;
4827 	int error;
4828 
4829 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4830 	    &start, &count);
4831 	if (error)
4832 		return (0);
4833 	return (start);
4834 }
4835 
4836 /**
4837  * @brief Wrapper function for BUS_GET_RESOURCE().
4838  *
4839  * This function simply calls the BUS_GET_RESOURCE() method of the
4840  * parent of @p dev and returns the count value.
4841  */
4842 rman_res_t
4843 bus_get_resource_count(device_t dev, int type, int rid)
4844 {
4845 	rman_res_t start;
4846 	rman_res_t count;
4847 	int error;
4848 
4849 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4850 	    &start, &count);
4851 	if (error)
4852 		return (0);
4853 	return (count);
4854 }
4855 
4856 /**
4857  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4858  *
4859  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4860  * parent of @p dev.
4861  */
4862 void
4863 bus_delete_resource(device_t dev, int type, int rid)
4864 {
4865 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4866 }
4867 
4868 /**
4869  * @brief Wrapper function for BUS_CHILD_PRESENT().
4870  *
4871  * This function simply calls the BUS_CHILD_PRESENT() method of the
4872  * parent of @p dev.
4873  */
4874 int
4875 bus_child_present(device_t child)
4876 {
4877 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4878 }
4879 
4880 /**
4881  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4882  *
4883  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4884  * parent of @p dev.
4885  */
4886 int
4887 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4888 {
4889 	device_t parent;
4890 
4891 	parent = device_get_parent(child);
4892 	if (parent == NULL) {
4893 		*buf = '\0';
4894 		return (0);
4895 	}
4896 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4897 }
4898 
4899 /**
4900  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4901  *
4902  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4903  * parent of @p dev.
4904  */
4905 int
4906 bus_child_location_str(device_t child, char *buf, size_t buflen)
4907 {
4908 	device_t parent;
4909 
4910 	parent = device_get_parent(child);
4911 	if (parent == NULL) {
4912 		*buf = '\0';
4913 		return (0);
4914 	}
4915 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4916 }
4917 
4918 /**
4919  * @brief Wrapper function for bus_child_pnpinfo_str using sbuf
4920  *
4921  * A convenient wrapper frunction for bus_child_pnpinfo_str that allows
4922  * us to splat that into an sbuf. It uses unholy knowledge of sbuf to
4923  * accomplish this, however. It is an interim function until we can convert
4924  * this interface more fully.
4925  */
4926 /* Note: we reach inside of sbuf because it's API isn't rich enough to do this */
4927 #define	SPACE(s)	((s)->s_size - (s)->s_len)
4928 #define EOB(s)		((s)->s_buf + (s)->s_len)
4929 
4930 static int
4931 bus_child_pnpinfo_sb(device_t dev, struct sbuf *sb)
4932 {
4933 	char *p;
4934 	size_t space;
4935 
4936 	MPASS((sb->s_flags & SBUF_INCLUDENUL) == 0);
4937 	if (sb->s_error != 0)
4938 		return (-1);
4939 	p = EOB(sb);
4940 	*p = '\0';	/* sbuf buffer isn't NUL terminated until sbuf_finish() */
4941 	space = SPACE(sb);
4942 	if (space <= 1) {
4943 		sb->s_error = ENOMEM;
4944 		return (-1);
4945 	}
4946 	bus_child_pnpinfo_str(dev, p, space);
4947 	sb->s_len += strlen(p);
4948 	return (0);
4949 }
4950 
4951 /**
4952  * @brief Wrapper function for bus_child_pnpinfo_str using sbuf
4953  *
4954  * A convenient wrapper frunction for bus_child_pnpinfo_str that allows
4955  * us to splat that into an sbuf. It uses unholy knowledge of sbuf to
4956  * accomplish this, however. It is an interim function until we can convert
4957  * this interface more fully.
4958  */
4959 static int
4960 bus_child_location_sb(device_t dev, struct sbuf *sb)
4961 {
4962 	char *p;
4963 	size_t space;
4964 
4965 	MPASS((sb->s_flags & SBUF_INCLUDENUL) == 0);
4966 	if (sb->s_error != 0)
4967 		return (-1);
4968 	p = EOB(sb);
4969 	*p = '\0';	/* sbuf buffer isn't NUL terminated until sbuf_finish() */
4970 	space = SPACE(sb);
4971 	if (space <= 1) {
4972 		sb->s_error = ENOMEM;
4973 		return (-1);
4974 	}
4975 	bus_child_location_str(dev, p, space);
4976 	sb->s_len += strlen(p);
4977 	return (0);
4978 }
4979 #undef SPACE
4980 #undef EOB
4981 
4982 /**
4983  * @brief Wrapper function for BUS_GET_CPUS().
4984  *
4985  * This function simply calls the BUS_GET_CPUS() method of the
4986  * parent of @p dev.
4987  */
4988 int
4989 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4990 {
4991 	device_t parent;
4992 
4993 	parent = device_get_parent(dev);
4994 	if (parent == NULL)
4995 		return (EINVAL);
4996 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4997 }
4998 
4999 /**
5000  * @brief Wrapper function for BUS_GET_DMA_TAG().
5001  *
5002  * This function simply calls the BUS_GET_DMA_TAG() method of the
5003  * parent of @p dev.
5004  */
5005 bus_dma_tag_t
5006 bus_get_dma_tag(device_t dev)
5007 {
5008 	device_t parent;
5009 
5010 	parent = device_get_parent(dev);
5011 	if (parent == NULL)
5012 		return (NULL);
5013 	return (BUS_GET_DMA_TAG(parent, dev));
5014 }
5015 
5016 /**
5017  * @brief Wrapper function for BUS_GET_BUS_TAG().
5018  *
5019  * This function simply calls the BUS_GET_BUS_TAG() method of the
5020  * parent of @p dev.
5021  */
5022 bus_space_tag_t
5023 bus_get_bus_tag(device_t dev)
5024 {
5025 	device_t parent;
5026 
5027 	parent = device_get_parent(dev);
5028 	if (parent == NULL)
5029 		return ((bus_space_tag_t)0);
5030 	return (BUS_GET_BUS_TAG(parent, dev));
5031 }
5032 
5033 /**
5034  * @brief Wrapper function for BUS_GET_DOMAIN().
5035  *
5036  * This function simply calls the BUS_GET_DOMAIN() method of the
5037  * parent of @p dev.
5038  */
5039 int
5040 bus_get_domain(device_t dev, int *domain)
5041 {
5042 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
5043 }
5044 
5045 /* Resume all devices and then notify userland that we're up again. */
5046 static int
5047 root_resume(device_t dev)
5048 {
5049 	int error;
5050 
5051 	error = bus_generic_resume(dev);
5052 	if (error == 0) {
5053 		devctl_notify("kern", "power", "resume", NULL); /* Deprecated gone in 14 */
5054 		devctl_notify("kernel", "power", "resume", NULL);
5055 	}
5056 	return (error);
5057 }
5058 
5059 static int
5060 root_print_child(device_t dev, device_t child)
5061 {
5062 	int	retval = 0;
5063 
5064 	retval += bus_print_child_header(dev, child);
5065 	retval += printf("\n");
5066 
5067 	return (retval);
5068 }
5069 
5070 static int
5071 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
5072     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
5073 {
5074 	/*
5075 	 * If an interrupt mapping gets to here something bad has happened.
5076 	 */
5077 	panic("root_setup_intr");
5078 }
5079 
5080 /*
5081  * If we get here, assume that the device is permanent and really is
5082  * present in the system.  Removable bus drivers are expected to intercept
5083  * this call long before it gets here.  We return -1 so that drivers that
5084  * really care can check vs -1 or some ERRNO returned higher in the food
5085  * chain.
5086  */
5087 static int
5088 root_child_present(device_t dev, device_t child)
5089 {
5090 	return (-1);
5091 }
5092 
5093 static int
5094 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
5095     cpuset_t *cpuset)
5096 {
5097 	switch (op) {
5098 	case INTR_CPUS:
5099 		/* Default to returning the set of all CPUs. */
5100 		if (setsize != sizeof(cpuset_t))
5101 			return (EINVAL);
5102 		*cpuset = all_cpus;
5103 		return (0);
5104 	default:
5105 		return (EINVAL);
5106 	}
5107 }
5108 
5109 static kobj_method_t root_methods[] = {
5110 	/* Device interface */
5111 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
5112 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
5113 	KOBJMETHOD(device_resume,	root_resume),
5114 
5115 	/* Bus interface */
5116 	KOBJMETHOD(bus_print_child,	root_print_child),
5117 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
5118 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
5119 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
5120 	KOBJMETHOD(bus_child_present,	root_child_present),
5121 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
5122 
5123 	KOBJMETHOD_END
5124 };
5125 
5126 static driver_t root_driver = {
5127 	"root",
5128 	root_methods,
5129 	1,			/* no softc */
5130 };
5131 
5132 device_t	root_bus;
5133 devclass_t	root_devclass;
5134 
5135 static int
5136 root_bus_module_handler(module_t mod, int what, void* arg)
5137 {
5138 	switch (what) {
5139 	case MOD_LOAD:
5140 		TAILQ_INIT(&bus_data_devices);
5141 		kobj_class_compile((kobj_class_t) &root_driver);
5142 		root_bus = make_device(NULL, "root", 0);
5143 		root_bus->desc = "System root bus";
5144 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
5145 		root_bus->driver = &root_driver;
5146 		root_bus->state = DS_ATTACHED;
5147 		root_devclass = devclass_find_internal("root", NULL, FALSE);
5148 		devinit();
5149 		return (0);
5150 
5151 	case MOD_SHUTDOWN:
5152 		device_shutdown(root_bus);
5153 		return (0);
5154 	default:
5155 		return (EOPNOTSUPP);
5156 	}
5157 
5158 	return (0);
5159 }
5160 
5161 static moduledata_t root_bus_mod = {
5162 	"rootbus",
5163 	root_bus_module_handler,
5164 	NULL
5165 };
5166 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5167 
5168 /**
5169  * @brief Automatically configure devices
5170  *
5171  * This function begins the autoconfiguration process by calling
5172  * device_probe_and_attach() for each child of the @c root0 device.
5173  */
5174 void
5175 root_bus_configure(void)
5176 {
5177 	PDEBUG(("."));
5178 
5179 	/* Eventually this will be split up, but this is sufficient for now. */
5180 	bus_set_pass(BUS_PASS_DEFAULT);
5181 }
5182 
5183 /**
5184  * @brief Module handler for registering device drivers
5185  *
5186  * This module handler is used to automatically register device
5187  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
5188  * devclass_add_driver() for the driver described by the
5189  * driver_module_data structure pointed to by @p arg
5190  */
5191 int
5192 driver_module_handler(module_t mod, int what, void *arg)
5193 {
5194 	struct driver_module_data *dmd;
5195 	devclass_t bus_devclass;
5196 	kobj_class_t driver;
5197 	int error, pass;
5198 
5199 	dmd = (struct driver_module_data *)arg;
5200 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
5201 	error = 0;
5202 
5203 	switch (what) {
5204 	case MOD_LOAD:
5205 		if (dmd->dmd_chainevh)
5206 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5207 
5208 		pass = dmd->dmd_pass;
5209 		driver = dmd->dmd_driver;
5210 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5211 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
5212 		error = devclass_add_driver(bus_devclass, driver, pass,
5213 		    dmd->dmd_devclass);
5214 		break;
5215 
5216 	case MOD_UNLOAD:
5217 		PDEBUG(("Unloading module: driver %s from bus %s",
5218 		    DRIVERNAME(dmd->dmd_driver),
5219 		    dmd->dmd_busname));
5220 		error = devclass_delete_driver(bus_devclass,
5221 		    dmd->dmd_driver);
5222 
5223 		if (!error && dmd->dmd_chainevh)
5224 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5225 		break;
5226 	case MOD_QUIESCE:
5227 		PDEBUG(("Quiesce module: driver %s from bus %s",
5228 		    DRIVERNAME(dmd->dmd_driver),
5229 		    dmd->dmd_busname));
5230 		error = devclass_quiesce_driver(bus_devclass,
5231 		    dmd->dmd_driver);
5232 
5233 		if (!error && dmd->dmd_chainevh)
5234 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5235 		break;
5236 	default:
5237 		error = EOPNOTSUPP;
5238 		break;
5239 	}
5240 
5241 	return (error);
5242 }
5243 
5244 /**
5245  * @brief Enumerate all hinted devices for this bus.
5246  *
5247  * Walks through the hints for this bus and calls the bus_hinted_child
5248  * routine for each one it fines.  It searches first for the specific
5249  * bus that's being probed for hinted children (eg isa0), and then for
5250  * generic children (eg isa).
5251  *
5252  * @param	dev	bus device to enumerate
5253  */
5254 void
5255 bus_enumerate_hinted_children(device_t bus)
5256 {
5257 	int i;
5258 	const char *dname, *busname;
5259 	int dunit;
5260 
5261 	/*
5262 	 * enumerate all devices on the specific bus
5263 	 */
5264 	busname = device_get_nameunit(bus);
5265 	i = 0;
5266 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5267 		BUS_HINTED_CHILD(bus, dname, dunit);
5268 
5269 	/*
5270 	 * and all the generic ones.
5271 	 */
5272 	busname = device_get_name(bus);
5273 	i = 0;
5274 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5275 		BUS_HINTED_CHILD(bus, dname, dunit);
5276 }
5277 
5278 #ifdef BUS_DEBUG
5279 
5280 /* the _short versions avoid iteration by not calling anything that prints
5281  * more than oneliners. I love oneliners.
5282  */
5283 
5284 static void
5285 print_device_short(device_t dev, int indent)
5286 {
5287 	if (!dev)
5288 		return;
5289 
5290 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5291 	    dev->unit, dev->desc,
5292 	    (dev->parent? "":"no "),
5293 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5294 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5295 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5296 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5297 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5298 	    (dev->flags&DF_REBID? "rebiddable,":""),
5299 	    (dev->flags&DF_SUSPENDED? "suspended,":""),
5300 	    (dev->ivars? "":"no "),
5301 	    (dev->softc? "":"no "),
5302 	    dev->busy));
5303 }
5304 
5305 static void
5306 print_device(device_t dev, int indent)
5307 {
5308 	if (!dev)
5309 		return;
5310 
5311 	print_device_short(dev, indent);
5312 
5313 	indentprintf(("Parent:\n"));
5314 	print_device_short(dev->parent, indent+1);
5315 	indentprintf(("Driver:\n"));
5316 	print_driver_short(dev->driver, indent+1);
5317 	indentprintf(("Devclass:\n"));
5318 	print_devclass_short(dev->devclass, indent+1);
5319 }
5320 
5321 void
5322 print_device_tree_short(device_t dev, int indent)
5323 /* print the device and all its children (indented) */
5324 {
5325 	device_t child;
5326 
5327 	if (!dev)
5328 		return;
5329 
5330 	print_device_short(dev, indent);
5331 
5332 	TAILQ_FOREACH(child, &dev->children, link) {
5333 		print_device_tree_short(child, indent+1);
5334 	}
5335 }
5336 
5337 void
5338 print_device_tree(device_t dev, int indent)
5339 /* print the device and all its children (indented) */
5340 {
5341 	device_t child;
5342 
5343 	if (!dev)
5344 		return;
5345 
5346 	print_device(dev, indent);
5347 
5348 	TAILQ_FOREACH(child, &dev->children, link) {
5349 		print_device_tree(child, indent+1);
5350 	}
5351 }
5352 
5353 static void
5354 print_driver_short(driver_t *driver, int indent)
5355 {
5356 	if (!driver)
5357 		return;
5358 
5359 	indentprintf(("driver %s: softc size = %zd\n",
5360 	    driver->name, driver->size));
5361 }
5362 
5363 static void
5364 print_driver(driver_t *driver, int indent)
5365 {
5366 	if (!driver)
5367 		return;
5368 
5369 	print_driver_short(driver, indent);
5370 }
5371 
5372 static void
5373 print_driver_list(driver_list_t drivers, int indent)
5374 {
5375 	driverlink_t driver;
5376 
5377 	TAILQ_FOREACH(driver, &drivers, link) {
5378 		print_driver(driver->driver, indent);
5379 	}
5380 }
5381 
5382 static void
5383 print_devclass_short(devclass_t dc, int indent)
5384 {
5385 	if ( !dc )
5386 		return;
5387 
5388 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5389 }
5390 
5391 static void
5392 print_devclass(devclass_t dc, int indent)
5393 {
5394 	int i;
5395 
5396 	if ( !dc )
5397 		return;
5398 
5399 	print_devclass_short(dc, indent);
5400 	indentprintf(("Drivers:\n"));
5401 	print_driver_list(dc->drivers, indent+1);
5402 
5403 	indentprintf(("Devices:\n"));
5404 	for (i = 0; i < dc->maxunit; i++)
5405 		if (dc->devices[i])
5406 			print_device(dc->devices[i], indent+1);
5407 }
5408 
5409 void
5410 print_devclass_list_short(void)
5411 {
5412 	devclass_t dc;
5413 
5414 	printf("Short listing of devclasses, drivers & devices:\n");
5415 	TAILQ_FOREACH(dc, &devclasses, link) {
5416 		print_devclass_short(dc, 0);
5417 	}
5418 }
5419 
5420 void
5421 print_devclass_list(void)
5422 {
5423 	devclass_t dc;
5424 
5425 	printf("Full listing of devclasses, drivers & devices:\n");
5426 	TAILQ_FOREACH(dc, &devclasses, link) {
5427 		print_devclass(dc, 0);
5428 	}
5429 }
5430 
5431 #endif
5432 
5433 /*
5434  * User-space access to the device tree.
5435  *
5436  * We implement a small set of nodes:
5437  *
5438  * hw.bus			Single integer read method to obtain the
5439  *				current generation count.
5440  * hw.bus.devices		Reads the entire device tree in flat space.
5441  * hw.bus.rman			Resource manager interface
5442  *
5443  * We might like to add the ability to scan devclasses and/or drivers to
5444  * determine what else is currently loaded/available.
5445  */
5446 
5447 static int
5448 sysctl_bus_info(SYSCTL_HANDLER_ARGS)
5449 {
5450 	struct u_businfo	ubus;
5451 
5452 	ubus.ub_version = BUS_USER_VERSION;
5453 	ubus.ub_generation = bus_data_generation;
5454 
5455 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5456 }
5457 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD |
5458     CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo",
5459     "bus-related data");
5460 
5461 static int
5462 sysctl_devices(SYSCTL_HANDLER_ARGS)
5463 {
5464 	struct sbuf		sb;
5465 	int			*name = (int *)arg1;
5466 	u_int			namelen = arg2;
5467 	int			index;
5468 	device_t		dev;
5469 	struct u_device		*udev;
5470 	int			error;
5471 
5472 	if (namelen != 2)
5473 		return (EINVAL);
5474 
5475 	if (bus_data_generation_check(name[0]))
5476 		return (EINVAL);
5477 
5478 	index = name[1];
5479 
5480 	/*
5481 	 * Scan the list of devices, looking for the requested index.
5482 	 */
5483 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5484 		if (index-- == 0)
5485 			break;
5486 	}
5487 	if (dev == NULL)
5488 		return (ENOENT);
5489 
5490 	/*
5491 	 * Populate the return item, careful not to overflow the buffer.
5492 	 */
5493 	udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5494 	if (udev == NULL)
5495 		return (ENOMEM);
5496 	udev->dv_handle = (uintptr_t)dev;
5497 	udev->dv_parent = (uintptr_t)dev->parent;
5498 	udev->dv_devflags = dev->devflags;
5499 	udev->dv_flags = dev->flags;
5500 	udev->dv_state = dev->state;
5501 	sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN);
5502 	if (dev->nameunit != NULL)
5503 		sbuf_cat(&sb, dev->nameunit);
5504 	else
5505 		sbuf_putc(&sb, '\0');
5506 	sbuf_putc(&sb, '\0');
5507 	if (dev->desc != NULL)
5508 		sbuf_cat(&sb, dev->desc);
5509 	else
5510 		sbuf_putc(&sb, '\0');
5511 	sbuf_putc(&sb, '\0');
5512 	if (dev->driver != NULL)
5513 		sbuf_cat(&sb, dev->driver->name);
5514 	else
5515 		sbuf_putc(&sb, '\0');
5516 	sbuf_putc(&sb, '\0');
5517 	bus_child_pnpinfo_sb(dev, &sb);
5518 	sbuf_putc(&sb, '\0');
5519 	bus_child_location_sb(dev, &sb);
5520 	sbuf_putc(&sb, '\0');
5521 	error = sbuf_finish(&sb);
5522 	if (error == 0)
5523 		error = SYSCTL_OUT(req, udev, sizeof(*udev));
5524 	sbuf_delete(&sb);
5525 	free(udev, M_BUS);
5526 	return (error);
5527 }
5528 
5529 SYSCTL_NODE(_hw_bus, OID_AUTO, devices,
5530     CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices,
5531     "system device tree");
5532 
5533 int
5534 bus_data_generation_check(int generation)
5535 {
5536 	if (generation != bus_data_generation)
5537 		return (1);
5538 
5539 	/* XXX generate optimised lists here? */
5540 	return (0);
5541 }
5542 
5543 void
5544 bus_data_generation_update(void)
5545 {
5546 	atomic_add_int(&bus_data_generation, 1);
5547 }
5548 
5549 int
5550 bus_free_resource(device_t dev, int type, struct resource *r)
5551 {
5552 	if (r == NULL)
5553 		return (0);
5554 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5555 }
5556 
5557 device_t
5558 device_lookup_by_name(const char *name)
5559 {
5560 	device_t dev;
5561 
5562 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5563 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5564 			return (dev);
5565 	}
5566 	return (NULL);
5567 }
5568 
5569 /*
5570  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5571  * implicit semantics on open, so it could not be reused for this.
5572  * Another option would be to call this /dev/bus?
5573  */
5574 static int
5575 find_device(struct devreq *req, device_t *devp)
5576 {
5577 	device_t dev;
5578 
5579 	/*
5580 	 * First, ensure that the name is nul terminated.
5581 	 */
5582 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5583 		return (EINVAL);
5584 
5585 	/*
5586 	 * Second, try to find an attached device whose name matches
5587 	 * 'name'.
5588 	 */
5589 	dev = device_lookup_by_name(req->dr_name);
5590 	if (dev != NULL) {
5591 		*devp = dev;
5592 		return (0);
5593 	}
5594 
5595 	/* Finally, give device enumerators a chance. */
5596 	dev = NULL;
5597 	EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5598 	if (dev == NULL)
5599 		return (ENOENT);
5600 	*devp = dev;
5601 	return (0);
5602 }
5603 
5604 static bool
5605 driver_exists(device_t bus, const char *driver)
5606 {
5607 	devclass_t dc;
5608 
5609 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5610 		if (devclass_find_driver_internal(dc, driver) != NULL)
5611 			return (true);
5612 	}
5613 	return (false);
5614 }
5615 
5616 static void
5617 device_gen_nomatch(device_t dev)
5618 {
5619 	device_t child;
5620 
5621 	if (dev->flags & DF_NEEDNOMATCH &&
5622 	    dev->state == DS_NOTPRESENT) {
5623 		BUS_PROBE_NOMATCH(dev->parent, dev);
5624 		devnomatch(dev);
5625 		dev->flags |= DF_DONENOMATCH;
5626 	}
5627 	dev->flags &= ~DF_NEEDNOMATCH;
5628 	TAILQ_FOREACH(child, &dev->children, link) {
5629 		device_gen_nomatch(child);
5630 	}
5631 }
5632 
5633 static void
5634 device_do_deferred_actions(void)
5635 {
5636 	devclass_t dc;
5637 	driverlink_t dl;
5638 
5639 	/*
5640 	 * Walk through the devclasses to find all the drivers we've tagged as
5641 	 * deferred during the freeze and call the driver added routines. They
5642 	 * have already been added to the lists in the background, so the driver
5643 	 * added routines that trigger a probe will have all the right bidders
5644 	 * for the probe auction.
5645 	 */
5646 	TAILQ_FOREACH(dc, &devclasses, link) {
5647 		TAILQ_FOREACH(dl, &dc->drivers, link) {
5648 			if (dl->flags & DL_DEFERRED_PROBE) {
5649 				devclass_driver_added(dc, dl->driver);
5650 				dl->flags &= ~DL_DEFERRED_PROBE;
5651 			}
5652 		}
5653 	}
5654 
5655 	/*
5656 	 * We also defer no-match events during a freeze. Walk the tree and
5657 	 * generate all the pent-up events that are still relevant.
5658 	 */
5659 	device_gen_nomatch(root_bus);
5660 	bus_data_generation_update();
5661 }
5662 
5663 static int
5664 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5665     struct thread *td)
5666 {
5667 	struct devreq *req;
5668 	device_t dev;
5669 	int error, old;
5670 
5671 	/* Locate the device to control. */
5672 	mtx_lock(&Giant);
5673 	req = (struct devreq *)data;
5674 	switch (cmd) {
5675 	case DEV_ATTACH:
5676 	case DEV_DETACH:
5677 	case DEV_ENABLE:
5678 	case DEV_DISABLE:
5679 	case DEV_SUSPEND:
5680 	case DEV_RESUME:
5681 	case DEV_SET_DRIVER:
5682 	case DEV_CLEAR_DRIVER:
5683 	case DEV_RESCAN:
5684 	case DEV_DELETE:
5685 	case DEV_RESET:
5686 		error = priv_check(td, PRIV_DRIVER);
5687 		if (error == 0)
5688 			error = find_device(req, &dev);
5689 		break;
5690 	case DEV_FREEZE:
5691 	case DEV_THAW:
5692 		error = priv_check(td, PRIV_DRIVER);
5693 		break;
5694 	default:
5695 		error = ENOTTY;
5696 		break;
5697 	}
5698 	if (error) {
5699 		mtx_unlock(&Giant);
5700 		return (error);
5701 	}
5702 
5703 	/* Perform the requested operation. */
5704 	switch (cmd) {
5705 	case DEV_ATTACH:
5706 		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5707 			error = EBUSY;
5708 		else if (!device_is_enabled(dev))
5709 			error = ENXIO;
5710 		else
5711 			error = device_probe_and_attach(dev);
5712 		break;
5713 	case DEV_DETACH:
5714 		if (!device_is_attached(dev)) {
5715 			error = ENXIO;
5716 			break;
5717 		}
5718 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5719 			error = device_quiesce(dev);
5720 			if (error)
5721 				break;
5722 		}
5723 		error = device_detach(dev);
5724 		break;
5725 	case DEV_ENABLE:
5726 		if (device_is_enabled(dev)) {
5727 			error = EBUSY;
5728 			break;
5729 		}
5730 
5731 		/*
5732 		 * If the device has been probed but not attached (e.g.
5733 		 * when it has been disabled by a loader hint), just
5734 		 * attach the device rather than doing a full probe.
5735 		 */
5736 		device_enable(dev);
5737 		if (device_is_alive(dev)) {
5738 			/*
5739 			 * If the device was disabled via a hint, clear
5740 			 * the hint.
5741 			 */
5742 			if (resource_disabled(dev->driver->name, dev->unit))
5743 				resource_unset_value(dev->driver->name,
5744 				    dev->unit, "disabled");
5745 			error = device_attach(dev);
5746 		} else
5747 			error = device_probe_and_attach(dev);
5748 		break;
5749 	case DEV_DISABLE:
5750 		if (!device_is_enabled(dev)) {
5751 			error = ENXIO;
5752 			break;
5753 		}
5754 
5755 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5756 			error = device_quiesce(dev);
5757 			if (error)
5758 				break;
5759 		}
5760 
5761 		/*
5762 		 * Force DF_FIXEDCLASS on around detach to preserve
5763 		 * the existing name.
5764 		 */
5765 		old = dev->flags;
5766 		dev->flags |= DF_FIXEDCLASS;
5767 		error = device_detach(dev);
5768 		if (!(old & DF_FIXEDCLASS))
5769 			dev->flags &= ~DF_FIXEDCLASS;
5770 		if (error == 0)
5771 			device_disable(dev);
5772 		break;
5773 	case DEV_SUSPEND:
5774 		if (device_is_suspended(dev)) {
5775 			error = EBUSY;
5776 			break;
5777 		}
5778 		if (device_get_parent(dev) == NULL) {
5779 			error = EINVAL;
5780 			break;
5781 		}
5782 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5783 		break;
5784 	case DEV_RESUME:
5785 		if (!device_is_suspended(dev)) {
5786 			error = EINVAL;
5787 			break;
5788 		}
5789 		if (device_get_parent(dev) == NULL) {
5790 			error = EINVAL;
5791 			break;
5792 		}
5793 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5794 		break;
5795 	case DEV_SET_DRIVER: {
5796 		devclass_t dc;
5797 		char driver[128];
5798 
5799 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5800 		if (error)
5801 			break;
5802 		if (driver[0] == '\0') {
5803 			error = EINVAL;
5804 			break;
5805 		}
5806 		if (dev->devclass != NULL &&
5807 		    strcmp(driver, dev->devclass->name) == 0)
5808 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5809 			break;
5810 
5811 		/*
5812 		 * Scan drivers for this device's bus looking for at
5813 		 * least one matching driver.
5814 		 */
5815 		if (dev->parent == NULL) {
5816 			error = EINVAL;
5817 			break;
5818 		}
5819 		if (!driver_exists(dev->parent, driver)) {
5820 			error = ENOENT;
5821 			break;
5822 		}
5823 		dc = devclass_create(driver);
5824 		if (dc == NULL) {
5825 			error = ENOMEM;
5826 			break;
5827 		}
5828 
5829 		/* Detach device if necessary. */
5830 		if (device_is_attached(dev)) {
5831 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5832 				error = device_detach(dev);
5833 			else
5834 				error = EBUSY;
5835 			if (error)
5836 				break;
5837 		}
5838 
5839 		/* Clear any previously-fixed device class and unit. */
5840 		if (dev->flags & DF_FIXEDCLASS)
5841 			devclass_delete_device(dev->devclass, dev);
5842 		dev->flags |= DF_WILDCARD;
5843 		dev->unit = -1;
5844 
5845 		/* Force the new device class. */
5846 		error = devclass_add_device(dc, dev);
5847 		if (error)
5848 			break;
5849 		dev->flags |= DF_FIXEDCLASS;
5850 		error = device_probe_and_attach(dev);
5851 		break;
5852 	}
5853 	case DEV_CLEAR_DRIVER:
5854 		if (!(dev->flags & DF_FIXEDCLASS)) {
5855 			error = 0;
5856 			break;
5857 		}
5858 		if (device_is_attached(dev)) {
5859 			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5860 				error = device_detach(dev);
5861 			else
5862 				error = EBUSY;
5863 			if (error)
5864 				break;
5865 		}
5866 
5867 		dev->flags &= ~DF_FIXEDCLASS;
5868 		dev->flags |= DF_WILDCARD;
5869 		devclass_delete_device(dev->devclass, dev);
5870 		error = device_probe_and_attach(dev);
5871 		break;
5872 	case DEV_RESCAN:
5873 		if (!device_is_attached(dev)) {
5874 			error = ENXIO;
5875 			break;
5876 		}
5877 		error = BUS_RESCAN(dev);
5878 		break;
5879 	case DEV_DELETE: {
5880 		device_t parent;
5881 
5882 		parent = device_get_parent(dev);
5883 		if (parent == NULL) {
5884 			error = EINVAL;
5885 			break;
5886 		}
5887 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5888 			if (bus_child_present(dev) != 0) {
5889 				error = EBUSY;
5890 				break;
5891 			}
5892 		}
5893 
5894 		error = device_delete_child(parent, dev);
5895 		break;
5896 	}
5897 	case DEV_FREEZE:
5898 		if (device_frozen)
5899 			error = EBUSY;
5900 		else
5901 			device_frozen = true;
5902 		break;
5903 	case DEV_THAW:
5904 		if (!device_frozen)
5905 			error = EBUSY;
5906 		else {
5907 			device_do_deferred_actions();
5908 			device_frozen = false;
5909 		}
5910 		break;
5911 	case DEV_RESET:
5912 		if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
5913 			error = EINVAL;
5914 			break;
5915 		}
5916 		error = BUS_RESET_CHILD(device_get_parent(dev), dev,
5917 		    req->dr_flags);
5918 		break;
5919 	}
5920 	mtx_unlock(&Giant);
5921 	return (error);
5922 }
5923 
5924 static struct cdevsw devctl2_cdevsw = {
5925 	.d_version =	D_VERSION,
5926 	.d_ioctl =	devctl2_ioctl,
5927 	.d_name =	"devctl2",
5928 };
5929 
5930 static void
5931 devctl2_init(void)
5932 {
5933 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5934 	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5935 }
5936 
5937 /*
5938  * APIs to manage deprecation and obsolescence.
5939  */
5940 static int obsolete_panic = 0;
5941 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
5942     "Panic when obsolete features are used (0 = never, 1 = if osbolete, "
5943     "2 = if deprecated)");
5944 
5945 static void
5946 gone_panic(int major, int running, const char *msg)
5947 {
5948 	switch (obsolete_panic)
5949 	{
5950 	case 0:
5951 		return;
5952 	case 1:
5953 		if (running < major)
5954 			return;
5955 		/* FALLTHROUGH */
5956 	default:
5957 		panic("%s", msg);
5958 	}
5959 }
5960 
5961 void
5962 _gone_in(int major, const char *msg)
5963 {
5964 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
5965 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
5966 		printf("Obsolete code will be removed soon: %s\n", msg);
5967 	else
5968 		printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
5969 		    major, msg);
5970 }
5971 
5972 void
5973 _gone_in_dev(device_t dev, int major, const char *msg)
5974 {
5975 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
5976 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
5977 		device_printf(dev,
5978 		    "Obsolete code will be removed soon: %s\n", msg);
5979 	else
5980 		device_printf(dev,
5981 		    "Deprecated code (to be removed in FreeBSD %d): %s\n",
5982 		    major, msg);
5983 }
5984 
5985 #ifdef DDB
5986 DB_SHOW_COMMAND(device, db_show_device)
5987 {
5988 	device_t dev;
5989 
5990 	if (!have_addr)
5991 		return;
5992 
5993 	dev = (device_t)addr;
5994 
5995 	db_printf("name:    %s\n", device_get_nameunit(dev));
5996 	db_printf("  driver:  %s\n", DRIVERNAME(dev->driver));
5997 	db_printf("  class:   %s\n", DEVCLANAME(dev->devclass));
5998 	db_printf("  addr:    %p\n", dev);
5999 	db_printf("  parent:  %p\n", dev->parent);
6000 	db_printf("  softc:   %p\n", dev->softc);
6001 	db_printf("  ivars:   %p\n", dev->ivars);
6002 }
6003 
6004 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
6005 {
6006 	device_t dev;
6007 
6008 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6009 		db_show_device((db_expr_t)dev, true, count, modif);
6010 	}
6011 }
6012 #endif
6013