1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bus.h" 33 #include "opt_ddb.h" 34 35 #include <sys/param.h> 36 #include <sys/conf.h> 37 #include <sys/domainset.h> 38 #include <sys/eventhandler.h> 39 #include <sys/filio.h> 40 #include <sys/lock.h> 41 #include <sys/kernel.h> 42 #include <sys/kobj.h> 43 #include <sys/limits.h> 44 #include <sys/malloc.h> 45 #include <sys/module.h> 46 #include <sys/mutex.h> 47 #include <sys/poll.h> 48 #include <sys/priv.h> 49 #include <sys/proc.h> 50 #include <sys/condvar.h> 51 #include <sys/queue.h> 52 #include <machine/bus.h> 53 #include <sys/random.h> 54 #include <sys/rman.h> 55 #include <sys/sbuf.h> 56 #include <sys/selinfo.h> 57 #include <sys/signalvar.h> 58 #include <sys/smp.h> 59 #include <sys/sysctl.h> 60 #include <sys/systm.h> 61 #include <sys/uio.h> 62 #include <sys/bus.h> 63 #include <sys/cpuset.h> 64 65 #include <net/vnet.h> 66 67 #include <machine/cpu.h> 68 #include <machine/stdarg.h> 69 70 #include <vm/uma.h> 71 #include <vm/vm.h> 72 73 #include <ddb/ddb.h> 74 75 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 76 NULL); 77 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 78 NULL); 79 80 /* 81 * Used to attach drivers to devclasses. 82 */ 83 typedef struct driverlink *driverlink_t; 84 struct driverlink { 85 kobj_class_t driver; 86 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 87 int pass; 88 int flags; 89 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 90 TAILQ_ENTRY(driverlink) passlink; 91 }; 92 93 /* 94 * Forward declarations 95 */ 96 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 97 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 98 typedef TAILQ_HEAD(device_list, device) device_list_t; 99 100 struct devclass { 101 TAILQ_ENTRY(devclass) link; 102 devclass_t parent; /* parent in devclass hierarchy */ 103 driver_list_t drivers; /* bus devclasses store drivers for bus */ 104 char *name; 105 device_t *devices; /* array of devices indexed by unit */ 106 int maxunit; /* size of devices array */ 107 int flags; 108 #define DC_HAS_CHILDREN 1 109 110 struct sysctl_ctx_list sysctl_ctx; 111 struct sysctl_oid *sysctl_tree; 112 }; 113 114 /** 115 * @brief Implementation of device. 116 */ 117 struct device { 118 /* 119 * A device is a kernel object. The first field must be the 120 * current ops table for the object. 121 */ 122 KOBJ_FIELDS; 123 124 /* 125 * Device hierarchy. 126 */ 127 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 128 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 129 device_t parent; /**< parent of this device */ 130 device_list_t children; /**< list of child devices */ 131 132 /* 133 * Details of this device. 134 */ 135 driver_t *driver; /**< current driver */ 136 devclass_t devclass; /**< current device class */ 137 int unit; /**< current unit number */ 138 char* nameunit; /**< name+unit e.g. foodev0 */ 139 char* desc; /**< driver specific description */ 140 int busy; /**< count of calls to device_busy() */ 141 device_state_t state; /**< current device state */ 142 uint32_t devflags; /**< api level flags for device_get_flags() */ 143 u_int flags; /**< internal device flags */ 144 u_int order; /**< order from device_add_child_ordered() */ 145 void *ivars; /**< instance variables */ 146 void *softc; /**< current driver's variables */ 147 148 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 149 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 150 }; 151 152 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 153 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 154 155 EVENTHANDLER_LIST_DEFINE(device_attach); 156 EVENTHANDLER_LIST_DEFINE(device_detach); 157 EVENTHANDLER_LIST_DEFINE(dev_lookup); 158 159 static int bus_child_location_sb(device_t child, struct sbuf *sb); 160 static int bus_child_pnpinfo_sb(device_t child, struct sbuf *sb); 161 static void devctl2_init(void); 162 static bool device_frozen; 163 164 #define DRIVERNAME(d) ((d)? d->name : "no driver") 165 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 166 167 #ifdef BUS_DEBUG 168 169 static int bus_debug = 1; 170 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 171 "Bus debug level"); 172 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 173 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 174 175 /** 176 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 177 * prevent syslog from deleting initial spaces 178 */ 179 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 180 181 static void print_device_short(device_t dev, int indent); 182 static void print_device(device_t dev, int indent); 183 void print_device_tree_short(device_t dev, int indent); 184 void print_device_tree(device_t dev, int indent); 185 static void print_driver_short(driver_t *driver, int indent); 186 static void print_driver(driver_t *driver, int indent); 187 static void print_driver_list(driver_list_t drivers, int indent); 188 static void print_devclass_short(devclass_t dc, int indent); 189 static void print_devclass(devclass_t dc, int indent); 190 void print_devclass_list_short(void); 191 void print_devclass_list(void); 192 193 #else 194 /* Make the compiler ignore the function calls */ 195 #define PDEBUG(a) /* nop */ 196 #define DEVICENAME(d) /* nop */ 197 198 #define print_device_short(d,i) /* nop */ 199 #define print_device(d,i) /* nop */ 200 #define print_device_tree_short(d,i) /* nop */ 201 #define print_device_tree(d,i) /* nop */ 202 #define print_driver_short(d,i) /* nop */ 203 #define print_driver(d,i) /* nop */ 204 #define print_driver_list(d,i) /* nop */ 205 #define print_devclass_short(d,i) /* nop */ 206 #define print_devclass(d,i) /* nop */ 207 #define print_devclass_list_short() /* nop */ 208 #define print_devclass_list() /* nop */ 209 #endif 210 211 /* 212 * dev sysctl tree 213 */ 214 215 enum { 216 DEVCLASS_SYSCTL_PARENT, 217 }; 218 219 static int 220 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 221 { 222 devclass_t dc = (devclass_t)arg1; 223 const char *value; 224 225 switch (arg2) { 226 case DEVCLASS_SYSCTL_PARENT: 227 value = dc->parent ? dc->parent->name : ""; 228 break; 229 default: 230 return (EINVAL); 231 } 232 return (SYSCTL_OUT_STR(req, value)); 233 } 234 235 static void 236 devclass_sysctl_init(devclass_t dc) 237 { 238 if (dc->sysctl_tree != NULL) 239 return; 240 sysctl_ctx_init(&dc->sysctl_ctx); 241 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 242 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 243 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 244 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 245 OID_AUTO, "%parent", 246 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 247 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 248 "parent class"); 249 } 250 251 enum { 252 DEVICE_SYSCTL_DESC, 253 DEVICE_SYSCTL_DRIVER, 254 DEVICE_SYSCTL_LOCATION, 255 DEVICE_SYSCTL_PNPINFO, 256 DEVICE_SYSCTL_PARENT, 257 }; 258 259 static int 260 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 261 { 262 struct sbuf sb; 263 device_t dev = (device_t)arg1; 264 int error; 265 266 sbuf_new_for_sysctl(&sb, NULL, 1024, req); 267 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 268 switch (arg2) { 269 case DEVICE_SYSCTL_DESC: 270 sbuf_cat(&sb, dev->desc ? dev->desc : ""); 271 break; 272 case DEVICE_SYSCTL_DRIVER: 273 sbuf_cat(&sb, dev->driver ? dev->driver->name : ""); 274 break; 275 case DEVICE_SYSCTL_LOCATION: 276 bus_child_location_sb(dev, &sb); 277 break; 278 case DEVICE_SYSCTL_PNPINFO: 279 bus_child_pnpinfo_sb(dev, &sb); 280 break; 281 case DEVICE_SYSCTL_PARENT: 282 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : ""); 283 break; 284 default: 285 sbuf_delete(&sb); 286 return (EINVAL); 287 } 288 error = sbuf_finish(&sb); 289 sbuf_delete(&sb); 290 return (error); 291 } 292 293 static void 294 device_sysctl_init(device_t dev) 295 { 296 devclass_t dc = dev->devclass; 297 int domain; 298 299 if (dev->sysctl_tree != NULL) 300 return; 301 devclass_sysctl_init(dc); 302 sysctl_ctx_init(&dev->sysctl_ctx); 303 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 304 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 305 dev->nameunit + strlen(dc->name), 306 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); 307 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 308 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 309 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 310 "device description"); 311 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 312 OID_AUTO, "%driver", 313 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 314 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 315 "device driver name"); 316 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 317 OID_AUTO, "%location", 318 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 319 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 320 "device location relative to parent"); 321 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 322 OID_AUTO, "%pnpinfo", 323 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 324 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 325 "device identification"); 326 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 327 OID_AUTO, "%parent", 328 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 329 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 330 "parent device"); 331 if (bus_get_domain(dev, &domain) == 0) 332 SYSCTL_ADD_INT(&dev->sysctl_ctx, 333 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 334 CTLFLAG_RD, NULL, domain, "NUMA domain"); 335 } 336 337 static void 338 device_sysctl_update(device_t dev) 339 { 340 devclass_t dc = dev->devclass; 341 342 if (dev->sysctl_tree == NULL) 343 return; 344 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 345 } 346 347 static void 348 device_sysctl_fini(device_t dev) 349 { 350 if (dev->sysctl_tree == NULL) 351 return; 352 sysctl_ctx_free(&dev->sysctl_ctx); 353 dev->sysctl_tree = NULL; 354 } 355 356 /* 357 * /dev/devctl implementation 358 */ 359 360 /* 361 * This design allows only one reader for /dev/devctl. This is not desirable 362 * in the long run, but will get a lot of hair out of this implementation. 363 * Maybe we should make this device a clonable device. 364 * 365 * Also note: we specifically do not attach a device to the device_t tree 366 * to avoid potential chicken and egg problems. One could argue that all 367 * of this belongs to the root node. 368 */ 369 370 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 371 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 372 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 373 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 374 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 375 376 static d_open_t devopen; 377 static d_close_t devclose; 378 static d_read_t devread; 379 static d_ioctl_t devioctl; 380 static d_poll_t devpoll; 381 static d_kqfilter_t devkqfilter; 382 383 static struct cdevsw dev_cdevsw = { 384 .d_version = D_VERSION, 385 .d_open = devopen, 386 .d_close = devclose, 387 .d_read = devread, 388 .d_ioctl = devioctl, 389 .d_poll = devpoll, 390 .d_kqfilter = devkqfilter, 391 .d_name = "devctl", 392 }; 393 394 #define DEVCTL_BUFFER (1024 - sizeof(void *)) 395 struct dev_event_info { 396 STAILQ_ENTRY(dev_event_info) dei_link; 397 char dei_data[DEVCTL_BUFFER]; 398 }; 399 400 STAILQ_HEAD(devq, dev_event_info); 401 402 static struct dev_softc { 403 int inuse; 404 int nonblock; 405 int queued; 406 int async; 407 struct mtx mtx; 408 struct cv cv; 409 struct selinfo sel; 410 struct devq devq; 411 struct sigio *sigio; 412 uma_zone_t zone; 413 } devsoftc; 414 415 static void filt_devctl_detach(struct knote *kn); 416 static int filt_devctl_read(struct knote *kn, long hint); 417 418 struct filterops devctl_rfiltops = { 419 .f_isfd = 1, 420 .f_detach = filt_devctl_detach, 421 .f_event = filt_devctl_read, 422 }; 423 424 static struct cdev *devctl_dev; 425 426 static void 427 devinit(void) 428 { 429 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 430 UID_ROOT, GID_WHEEL, 0600, "devctl"); 431 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 432 cv_init(&devsoftc.cv, "dev cv"); 433 STAILQ_INIT(&devsoftc.devq); 434 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 435 if (devctl_queue_length > 0) { 436 devsoftc.zone = uma_zcreate("DEVCTL", sizeof(struct dev_event_info), 437 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 438 uma_prealloc(devsoftc.zone, devctl_queue_length); 439 } 440 devctl2_init(); 441 } 442 443 static int 444 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 445 { 446 mtx_lock(&devsoftc.mtx); 447 if (devsoftc.inuse) { 448 mtx_unlock(&devsoftc.mtx); 449 return (EBUSY); 450 } 451 /* move to init */ 452 devsoftc.inuse = 1; 453 mtx_unlock(&devsoftc.mtx); 454 return (0); 455 } 456 457 static int 458 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 459 { 460 mtx_lock(&devsoftc.mtx); 461 devsoftc.inuse = 0; 462 devsoftc.nonblock = 0; 463 devsoftc.async = 0; 464 cv_broadcast(&devsoftc.cv); 465 funsetown(&devsoftc.sigio); 466 mtx_unlock(&devsoftc.mtx); 467 return (0); 468 } 469 470 /* 471 * The read channel for this device is used to report changes to 472 * userland in realtime. We are required to free the data as well as 473 * the n1 object because we allocate them separately. Also note that 474 * we return one record at a time. If you try to read this device a 475 * character at a time, you will lose the rest of the data. Listening 476 * programs are expected to cope. 477 */ 478 static int 479 devread(struct cdev *dev, struct uio *uio, int ioflag) 480 { 481 struct dev_event_info *n1; 482 int rv; 483 484 mtx_lock(&devsoftc.mtx); 485 while (STAILQ_EMPTY(&devsoftc.devq)) { 486 if (devsoftc.nonblock) { 487 mtx_unlock(&devsoftc.mtx); 488 return (EAGAIN); 489 } 490 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 491 if (rv) { 492 /* 493 * Need to translate ERESTART to EINTR here? -- jake 494 */ 495 mtx_unlock(&devsoftc.mtx); 496 return (rv); 497 } 498 } 499 n1 = STAILQ_FIRST(&devsoftc.devq); 500 STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); 501 devsoftc.queued--; 502 mtx_unlock(&devsoftc.mtx); 503 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 504 uma_zfree(devsoftc.zone, n1); 505 return (rv); 506 } 507 508 static int 509 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 510 { 511 switch (cmd) { 512 case FIONBIO: 513 if (*(int*)data) 514 devsoftc.nonblock = 1; 515 else 516 devsoftc.nonblock = 0; 517 return (0); 518 case FIOASYNC: 519 if (*(int*)data) 520 devsoftc.async = 1; 521 else 522 devsoftc.async = 0; 523 return (0); 524 case FIOSETOWN: 525 return fsetown(*(int *)data, &devsoftc.sigio); 526 case FIOGETOWN: 527 *(int *)data = fgetown(&devsoftc.sigio); 528 return (0); 529 530 /* (un)Support for other fcntl() calls. */ 531 case FIOCLEX: 532 case FIONCLEX: 533 case FIONREAD: 534 default: 535 break; 536 } 537 return (ENOTTY); 538 } 539 540 static int 541 devpoll(struct cdev *dev, int events, struct thread *td) 542 { 543 int revents = 0; 544 545 mtx_lock(&devsoftc.mtx); 546 if (events & (POLLIN | POLLRDNORM)) { 547 if (!STAILQ_EMPTY(&devsoftc.devq)) 548 revents = events & (POLLIN | POLLRDNORM); 549 else 550 selrecord(td, &devsoftc.sel); 551 } 552 mtx_unlock(&devsoftc.mtx); 553 554 return (revents); 555 } 556 557 static int 558 devkqfilter(struct cdev *dev, struct knote *kn) 559 { 560 int error; 561 562 if (kn->kn_filter == EVFILT_READ) { 563 kn->kn_fop = &devctl_rfiltops; 564 knlist_add(&devsoftc.sel.si_note, kn, 0); 565 error = 0; 566 } else 567 error = EINVAL; 568 return (error); 569 } 570 571 static void 572 filt_devctl_detach(struct knote *kn) 573 { 574 knlist_remove(&devsoftc.sel.si_note, kn, 0); 575 } 576 577 static int 578 filt_devctl_read(struct knote *kn, long hint) 579 { 580 kn->kn_data = devsoftc.queued; 581 return (kn->kn_data != 0); 582 } 583 584 /** 585 * @brief Return whether the userland process is running 586 */ 587 bool 588 devctl_process_running(void) 589 { 590 return (devsoftc.inuse == 1); 591 } 592 593 static struct dev_event_info * 594 devctl_alloc_dei(void) 595 { 596 struct dev_event_info *dei = NULL; 597 598 mtx_lock(&devsoftc.mtx); 599 if (devctl_queue_length == 0) 600 goto out; 601 if (devctl_queue_length == devsoftc.queued) { 602 dei = STAILQ_FIRST(&devsoftc.devq); 603 STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); 604 devsoftc.queued--; 605 } else { 606 /* dei can't be NULL -- we know we have at least one in the zone */ 607 dei = uma_zalloc(devsoftc.zone, M_NOWAIT); 608 MPASS(dei != NULL); 609 } 610 *dei->dei_data = '\0'; 611 out: 612 mtx_unlock(&devsoftc.mtx); 613 return (dei); 614 } 615 616 static struct dev_event_info * 617 devctl_alloc_dei_sb(struct sbuf *sb) 618 { 619 struct dev_event_info *dei; 620 621 dei = devctl_alloc_dei(); 622 if (dei != NULL) 623 sbuf_new(sb, dei->dei_data, sizeof(dei->dei_data), SBUF_FIXEDLEN); 624 return (dei); 625 } 626 627 static void 628 devctl_free_dei(struct dev_event_info *dei) 629 { 630 uma_zfree(devsoftc.zone, dei); 631 } 632 633 static void 634 devctl_queue(struct dev_event_info *dei) 635 { 636 mtx_lock(&devsoftc.mtx); 637 STAILQ_INSERT_TAIL(&devsoftc.devq, dei, dei_link); 638 devsoftc.queued++; 639 cv_broadcast(&devsoftc.cv); 640 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 641 mtx_unlock(&devsoftc.mtx); 642 selwakeup(&devsoftc.sel); 643 if (devsoftc.async && devsoftc.sigio != NULL) 644 pgsigio(&devsoftc.sigio, SIGIO, 0); 645 } 646 647 /** 648 * @brief Send a 'notification' to userland, using standard ways 649 */ 650 void 651 devctl_notify(const char *system, const char *subsystem, const char *type, 652 const char *data) 653 { 654 struct dev_event_info *dei; 655 struct sbuf sb; 656 657 if (system == NULL || subsystem == NULL || type == NULL) 658 return; 659 dei = devctl_alloc_dei_sb(&sb); 660 if (dei == NULL) 661 return; 662 sbuf_cpy(&sb, "!system="); 663 sbuf_cat(&sb, system); 664 sbuf_cat(&sb, " subsystem="); 665 sbuf_cat(&sb, subsystem); 666 sbuf_cat(&sb, " type="); 667 sbuf_cat(&sb, type); 668 if (data != NULL) { 669 sbuf_putc(&sb, ' '); 670 sbuf_cat(&sb, data); 671 } 672 sbuf_putc(&sb, '\n'); 673 if (sbuf_finish(&sb) != 0) 674 devctl_free_dei(dei); /* overflow -> drop it */ 675 else 676 devctl_queue(dei); 677 } 678 679 /* 680 * Common routine that tries to make sending messages as easy as possible. 681 * We allocate memory for the data, copy strings into that, but do not 682 * free it unless there's an error. The dequeue part of the driver should 683 * free the data. We don't send data when the device is disabled. We do 684 * send data, even when we have no listeners, because we wish to avoid 685 * races relating to startup and restart of listening applications. 686 * 687 * devaddq is designed to string together the type of event, with the 688 * object of that event, plus the plug and play info and location info 689 * for that event. This is likely most useful for devices, but less 690 * useful for other consumers of this interface. Those should use 691 * the devctl_notify() interface instead. 692 * 693 * Output: 694 * ${type}${what} at $(location dev) $(pnp-info dev) on $(parent dev) 695 */ 696 static void 697 devaddq(const char *type, const char *what, device_t dev) 698 { 699 struct dev_event_info *dei; 700 const char *parstr; 701 struct sbuf sb; 702 703 dei = devctl_alloc_dei_sb(&sb); 704 if (dei == NULL) 705 return; 706 sbuf_cpy(&sb, type); 707 sbuf_cat(&sb, what); 708 sbuf_cat(&sb, " at "); 709 710 /* Add in the location */ 711 bus_child_location_sb(dev, &sb); 712 sbuf_putc(&sb, ' '); 713 714 /* Add in pnpinfo */ 715 bus_child_pnpinfo_sb(dev, &sb); 716 717 /* Get the parent of this device, or / if high enough in the tree. */ 718 if (device_get_parent(dev) == NULL) 719 parstr = "."; /* Or '/' ? */ 720 else 721 parstr = device_get_nameunit(device_get_parent(dev)); 722 sbuf_cat(&sb, " on "); 723 sbuf_cat(&sb, parstr); 724 sbuf_putc(&sb, '\n'); 725 if (sbuf_finish(&sb) != 0) 726 goto bad; 727 devctl_queue(dei); 728 return; 729 bad: 730 devctl_free_dei(dei); 731 } 732 733 /* 734 * A device was added to the tree. We are called just after it successfully 735 * attaches (that is, probe and attach success for this device). No call 736 * is made if a device is merely parented into the tree. See devnomatch 737 * if probe fails. If attach fails, no notification is sent (but maybe 738 * we should have a different message for this). 739 */ 740 static void 741 devadded(device_t dev) 742 { 743 devaddq("+", device_get_nameunit(dev), dev); 744 } 745 746 /* 747 * A device was removed from the tree. We are called just before this 748 * happens. 749 */ 750 static void 751 devremoved(device_t dev) 752 { 753 devaddq("-", device_get_nameunit(dev), dev); 754 } 755 756 /* 757 * Called when there's no match for this device. This is only called 758 * the first time that no match happens, so we don't keep getting this 759 * message. Should that prove to be undesirable, we can change it. 760 * This is called when all drivers that can attach to a given bus 761 * decline to accept this device. Other errors may not be detected. 762 */ 763 static void 764 devnomatch(device_t dev) 765 { 766 devaddq("?", "", dev); 767 } 768 769 static int 770 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 771 { 772 int q, error; 773 774 q = devctl_queue_length; 775 error = sysctl_handle_int(oidp, &q, 0, req); 776 if (error || !req->newptr) 777 return (error); 778 if (q < 0) 779 return (EINVAL); 780 781 /* 782 * When set as a tunable, we've not yet initialized the mutex. 783 * It is safe to just assign to devctl_queue_length and return 784 * as we're racing no one. We'll use whatever value set in 785 * devinit. 786 */ 787 if (!mtx_initialized(&devsoftc.mtx)) { 788 devctl_queue_length = q; 789 return (0); 790 } 791 792 /* 793 * XXX It's hard to grow or shrink the UMA zone. Only allow 794 * disabling the queue size for the moment until underlying 795 * UMA issues can be sorted out. 796 */ 797 if (q != 0) 798 return (EINVAL); 799 if (q == devctl_queue_length) 800 return (0); 801 mtx_lock(&devsoftc.mtx); 802 devctl_queue_length = 0; 803 uma_zdestroy(devsoftc.zone); 804 devsoftc.zone = 0; 805 mtx_unlock(&devsoftc.mtx); 806 return (0); 807 } 808 809 /** 810 * @brief safely quotes strings that might have double quotes in them. 811 * 812 * The devctl protocol relies on quoted strings having matching quotes. 813 * This routine quotes any internal quotes so the resulting string 814 * is safe to pass to snprintf to construct, for example pnp info strings. 815 * 816 * @param sb sbuf to place the characters into 817 * @param src Original buffer. 818 */ 819 void 820 devctl_safe_quote_sb(struct sbuf *sb, const char *src) 821 { 822 while (*src != '\0') { 823 if (*src == '"' || *src == '\\') 824 sbuf_putc(sb, '\\'); 825 sbuf_putc(sb, *src++); 826 } 827 } 828 829 /* End of /dev/devctl code */ 830 831 static TAILQ_HEAD(,device) bus_data_devices; 832 static int bus_data_generation = 1; 833 834 static kobj_method_t null_methods[] = { 835 KOBJMETHOD_END 836 }; 837 838 DEFINE_CLASS(null, null_methods, 0); 839 840 /* 841 * Bus pass implementation 842 */ 843 844 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 845 int bus_current_pass = BUS_PASS_ROOT; 846 847 /** 848 * @internal 849 * @brief Register the pass level of a new driver attachment 850 * 851 * Register a new driver attachment's pass level. If no driver 852 * attachment with the same pass level has been added, then @p new 853 * will be added to the global passes list. 854 * 855 * @param new the new driver attachment 856 */ 857 static void 858 driver_register_pass(struct driverlink *new) 859 { 860 struct driverlink *dl; 861 862 /* We only consider pass numbers during boot. */ 863 if (bus_current_pass == BUS_PASS_DEFAULT) 864 return; 865 866 /* 867 * Walk the passes list. If we already know about this pass 868 * then there is nothing to do. If we don't, then insert this 869 * driver link into the list. 870 */ 871 TAILQ_FOREACH(dl, &passes, passlink) { 872 if (dl->pass < new->pass) 873 continue; 874 if (dl->pass == new->pass) 875 return; 876 TAILQ_INSERT_BEFORE(dl, new, passlink); 877 return; 878 } 879 TAILQ_INSERT_TAIL(&passes, new, passlink); 880 } 881 882 /** 883 * @brief Raise the current bus pass 884 * 885 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 886 * method on the root bus to kick off a new device tree scan for each 887 * new pass level that has at least one driver. 888 */ 889 void 890 bus_set_pass(int pass) 891 { 892 struct driverlink *dl; 893 894 if (bus_current_pass > pass) 895 panic("Attempt to lower bus pass level"); 896 897 TAILQ_FOREACH(dl, &passes, passlink) { 898 /* Skip pass values below the current pass level. */ 899 if (dl->pass <= bus_current_pass) 900 continue; 901 902 /* 903 * Bail once we hit a driver with a pass level that is 904 * too high. 905 */ 906 if (dl->pass > pass) 907 break; 908 909 /* 910 * Raise the pass level to the next level and rescan 911 * the tree. 912 */ 913 bus_current_pass = dl->pass; 914 BUS_NEW_PASS(root_bus); 915 } 916 917 /* 918 * If there isn't a driver registered for the requested pass, 919 * then bus_current_pass might still be less than 'pass'. Set 920 * it to 'pass' in that case. 921 */ 922 if (bus_current_pass < pass) 923 bus_current_pass = pass; 924 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 925 } 926 927 /* 928 * Devclass implementation 929 */ 930 931 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 932 933 /** 934 * @internal 935 * @brief Find or create a device class 936 * 937 * If a device class with the name @p classname exists, return it, 938 * otherwise if @p create is non-zero create and return a new device 939 * class. 940 * 941 * If @p parentname is non-NULL, the parent of the devclass is set to 942 * the devclass of that name. 943 * 944 * @param classname the devclass name to find or create 945 * @param parentname the parent devclass name or @c NULL 946 * @param create non-zero to create a devclass 947 */ 948 static devclass_t 949 devclass_find_internal(const char *classname, const char *parentname, 950 int create) 951 { 952 devclass_t dc; 953 954 PDEBUG(("looking for %s", classname)); 955 if (!classname) 956 return (NULL); 957 958 TAILQ_FOREACH(dc, &devclasses, link) { 959 if (!strcmp(dc->name, classname)) 960 break; 961 } 962 963 if (create && !dc) { 964 PDEBUG(("creating %s", classname)); 965 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 966 M_BUS, M_NOWAIT | M_ZERO); 967 if (!dc) 968 return (NULL); 969 dc->parent = NULL; 970 dc->name = (char*) (dc + 1); 971 strcpy(dc->name, classname); 972 TAILQ_INIT(&dc->drivers); 973 TAILQ_INSERT_TAIL(&devclasses, dc, link); 974 975 bus_data_generation_update(); 976 } 977 978 /* 979 * If a parent class is specified, then set that as our parent so 980 * that this devclass will support drivers for the parent class as 981 * well. If the parent class has the same name don't do this though 982 * as it creates a cycle that can trigger an infinite loop in 983 * device_probe_child() if a device exists for which there is no 984 * suitable driver. 985 */ 986 if (parentname && dc && !dc->parent && 987 strcmp(classname, parentname) != 0) { 988 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 989 dc->parent->flags |= DC_HAS_CHILDREN; 990 } 991 992 return (dc); 993 } 994 995 /** 996 * @brief Create a device class 997 * 998 * If a device class with the name @p classname exists, return it, 999 * otherwise create and return a new device class. 1000 * 1001 * @param classname the devclass name to find or create 1002 */ 1003 devclass_t 1004 devclass_create(const char *classname) 1005 { 1006 return (devclass_find_internal(classname, NULL, TRUE)); 1007 } 1008 1009 /** 1010 * @brief Find a device class 1011 * 1012 * If a device class with the name @p classname exists, return it, 1013 * otherwise return @c NULL. 1014 * 1015 * @param classname the devclass name to find 1016 */ 1017 devclass_t 1018 devclass_find(const char *classname) 1019 { 1020 return (devclass_find_internal(classname, NULL, FALSE)); 1021 } 1022 1023 /** 1024 * @brief Register that a device driver has been added to a devclass 1025 * 1026 * Register that a device driver has been added to a devclass. This 1027 * is called by devclass_add_driver to accomplish the recursive 1028 * notification of all the children classes of dc, as well as dc. 1029 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1030 * the devclass. 1031 * 1032 * We do a full search here of the devclass list at each iteration 1033 * level to save storing children-lists in the devclass structure. If 1034 * we ever move beyond a few dozen devices doing this, we may need to 1035 * reevaluate... 1036 * 1037 * @param dc the devclass to edit 1038 * @param driver the driver that was just added 1039 */ 1040 static void 1041 devclass_driver_added(devclass_t dc, driver_t *driver) 1042 { 1043 devclass_t parent; 1044 int i; 1045 1046 /* 1047 * Call BUS_DRIVER_ADDED for any existing buses in this class. 1048 */ 1049 for (i = 0; i < dc->maxunit; i++) 1050 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1051 BUS_DRIVER_ADDED(dc->devices[i], driver); 1052 1053 /* 1054 * Walk through the children classes. Since we only keep a 1055 * single parent pointer around, we walk the entire list of 1056 * devclasses looking for children. We set the 1057 * DC_HAS_CHILDREN flag when a child devclass is created on 1058 * the parent, so we only walk the list for those devclasses 1059 * that have children. 1060 */ 1061 if (!(dc->flags & DC_HAS_CHILDREN)) 1062 return; 1063 parent = dc; 1064 TAILQ_FOREACH(dc, &devclasses, link) { 1065 if (dc->parent == parent) 1066 devclass_driver_added(dc, driver); 1067 } 1068 } 1069 1070 /** 1071 * @brief Add a device driver to a device class 1072 * 1073 * Add a device driver to a devclass. This is normally called 1074 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1075 * all devices in the devclass will be called to allow them to attempt 1076 * to re-probe any unmatched children. 1077 * 1078 * @param dc the devclass to edit 1079 * @param driver the driver to register 1080 */ 1081 int 1082 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1083 { 1084 driverlink_t dl; 1085 const char *parentname; 1086 1087 PDEBUG(("%s", DRIVERNAME(driver))); 1088 1089 /* Don't allow invalid pass values. */ 1090 if (pass <= BUS_PASS_ROOT) 1091 return (EINVAL); 1092 1093 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1094 if (!dl) 1095 return (ENOMEM); 1096 1097 /* 1098 * Compile the driver's methods. Also increase the reference count 1099 * so that the class doesn't get freed when the last instance 1100 * goes. This means we can safely use static methods and avoids a 1101 * double-free in devclass_delete_driver. 1102 */ 1103 kobj_class_compile((kobj_class_t) driver); 1104 1105 /* 1106 * If the driver has any base classes, make the 1107 * devclass inherit from the devclass of the driver's 1108 * first base class. This will allow the system to 1109 * search for drivers in both devclasses for children 1110 * of a device using this driver. 1111 */ 1112 if (driver->baseclasses) 1113 parentname = driver->baseclasses[0]->name; 1114 else 1115 parentname = NULL; 1116 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1117 1118 dl->driver = driver; 1119 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1120 driver->refs++; /* XXX: kobj_mtx */ 1121 dl->pass = pass; 1122 driver_register_pass(dl); 1123 1124 if (device_frozen) { 1125 dl->flags |= DL_DEFERRED_PROBE; 1126 } else { 1127 devclass_driver_added(dc, driver); 1128 } 1129 bus_data_generation_update(); 1130 return (0); 1131 } 1132 1133 /** 1134 * @brief Register that a device driver has been deleted from a devclass 1135 * 1136 * Register that a device driver has been removed from a devclass. 1137 * This is called by devclass_delete_driver to accomplish the 1138 * recursive notification of all the children classes of busclass, as 1139 * well as busclass. Each layer will attempt to detach the driver 1140 * from any devices that are children of the bus's devclass. The function 1141 * will return an error if a device fails to detach. 1142 * 1143 * We do a full search here of the devclass list at each iteration 1144 * level to save storing children-lists in the devclass structure. If 1145 * we ever move beyond a few dozen devices doing this, we may need to 1146 * reevaluate... 1147 * 1148 * @param busclass the devclass of the parent bus 1149 * @param dc the devclass of the driver being deleted 1150 * @param driver the driver being deleted 1151 */ 1152 static int 1153 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1154 { 1155 devclass_t parent; 1156 device_t dev; 1157 int error, i; 1158 1159 /* 1160 * Disassociate from any devices. We iterate through all the 1161 * devices in the devclass of the driver and detach any which are 1162 * using the driver and which have a parent in the devclass which 1163 * we are deleting from. 1164 * 1165 * Note that since a driver can be in multiple devclasses, we 1166 * should not detach devices which are not children of devices in 1167 * the affected devclass. 1168 * 1169 * If we're frozen, we don't generate NOMATCH events. Mark to 1170 * generate later. 1171 */ 1172 for (i = 0; i < dc->maxunit; i++) { 1173 if (dc->devices[i]) { 1174 dev = dc->devices[i]; 1175 if (dev->driver == driver && dev->parent && 1176 dev->parent->devclass == busclass) { 1177 if ((error = device_detach(dev)) != 0) 1178 return (error); 1179 if (device_frozen) { 1180 dev->flags &= ~DF_DONENOMATCH; 1181 dev->flags |= DF_NEEDNOMATCH; 1182 } else { 1183 BUS_PROBE_NOMATCH(dev->parent, dev); 1184 devnomatch(dev); 1185 dev->flags |= DF_DONENOMATCH; 1186 } 1187 } 1188 } 1189 } 1190 1191 /* 1192 * Walk through the children classes. Since we only keep a 1193 * single parent pointer around, we walk the entire list of 1194 * devclasses looking for children. We set the 1195 * DC_HAS_CHILDREN flag when a child devclass is created on 1196 * the parent, so we only walk the list for those devclasses 1197 * that have children. 1198 */ 1199 if (!(busclass->flags & DC_HAS_CHILDREN)) 1200 return (0); 1201 parent = busclass; 1202 TAILQ_FOREACH(busclass, &devclasses, link) { 1203 if (busclass->parent == parent) { 1204 error = devclass_driver_deleted(busclass, dc, driver); 1205 if (error) 1206 return (error); 1207 } 1208 } 1209 return (0); 1210 } 1211 1212 /** 1213 * @brief Delete a device driver from a device class 1214 * 1215 * Delete a device driver from a devclass. This is normally called 1216 * automatically by DRIVER_MODULE(). 1217 * 1218 * If the driver is currently attached to any devices, 1219 * devclass_delete_driver() will first attempt to detach from each 1220 * device. If one of the detach calls fails, the driver will not be 1221 * deleted. 1222 * 1223 * @param dc the devclass to edit 1224 * @param driver the driver to unregister 1225 */ 1226 int 1227 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1228 { 1229 devclass_t dc = devclass_find(driver->name); 1230 driverlink_t dl; 1231 int error; 1232 1233 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1234 1235 if (!dc) 1236 return (0); 1237 1238 /* 1239 * Find the link structure in the bus' list of drivers. 1240 */ 1241 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1242 if (dl->driver == driver) 1243 break; 1244 } 1245 1246 if (!dl) { 1247 PDEBUG(("%s not found in %s list", driver->name, 1248 busclass->name)); 1249 return (ENOENT); 1250 } 1251 1252 error = devclass_driver_deleted(busclass, dc, driver); 1253 if (error != 0) 1254 return (error); 1255 1256 TAILQ_REMOVE(&busclass->drivers, dl, link); 1257 free(dl, M_BUS); 1258 1259 /* XXX: kobj_mtx */ 1260 driver->refs--; 1261 if (driver->refs == 0) 1262 kobj_class_free((kobj_class_t) driver); 1263 1264 bus_data_generation_update(); 1265 return (0); 1266 } 1267 1268 /** 1269 * @brief Quiesces a set of device drivers from a device class 1270 * 1271 * Quiesce a device driver from a devclass. This is normally called 1272 * automatically by DRIVER_MODULE(). 1273 * 1274 * If the driver is currently attached to any devices, 1275 * devclass_quiesece_driver() will first attempt to quiesce each 1276 * device. 1277 * 1278 * @param dc the devclass to edit 1279 * @param driver the driver to unregister 1280 */ 1281 static int 1282 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1283 { 1284 devclass_t dc = devclass_find(driver->name); 1285 driverlink_t dl; 1286 device_t dev; 1287 int i; 1288 int error; 1289 1290 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1291 1292 if (!dc) 1293 return (0); 1294 1295 /* 1296 * Find the link structure in the bus' list of drivers. 1297 */ 1298 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1299 if (dl->driver == driver) 1300 break; 1301 } 1302 1303 if (!dl) { 1304 PDEBUG(("%s not found in %s list", driver->name, 1305 busclass->name)); 1306 return (ENOENT); 1307 } 1308 1309 /* 1310 * Quiesce all devices. We iterate through all the devices in 1311 * the devclass of the driver and quiesce any which are using 1312 * the driver and which have a parent in the devclass which we 1313 * are quiescing. 1314 * 1315 * Note that since a driver can be in multiple devclasses, we 1316 * should not quiesce devices which are not children of 1317 * devices in the affected devclass. 1318 */ 1319 for (i = 0; i < dc->maxunit; i++) { 1320 if (dc->devices[i]) { 1321 dev = dc->devices[i]; 1322 if (dev->driver == driver && dev->parent && 1323 dev->parent->devclass == busclass) { 1324 if ((error = device_quiesce(dev)) != 0) 1325 return (error); 1326 } 1327 } 1328 } 1329 1330 return (0); 1331 } 1332 1333 /** 1334 * @internal 1335 */ 1336 static driverlink_t 1337 devclass_find_driver_internal(devclass_t dc, const char *classname) 1338 { 1339 driverlink_t dl; 1340 1341 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1342 1343 TAILQ_FOREACH(dl, &dc->drivers, link) { 1344 if (!strcmp(dl->driver->name, classname)) 1345 return (dl); 1346 } 1347 1348 PDEBUG(("not found")); 1349 return (NULL); 1350 } 1351 1352 /** 1353 * @brief Return the name of the devclass 1354 */ 1355 const char * 1356 devclass_get_name(devclass_t dc) 1357 { 1358 return (dc->name); 1359 } 1360 1361 /** 1362 * @brief Find a device given a unit number 1363 * 1364 * @param dc the devclass to search 1365 * @param unit the unit number to search for 1366 * 1367 * @returns the device with the given unit number or @c 1368 * NULL if there is no such device 1369 */ 1370 device_t 1371 devclass_get_device(devclass_t dc, int unit) 1372 { 1373 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1374 return (NULL); 1375 return (dc->devices[unit]); 1376 } 1377 1378 /** 1379 * @brief Find the softc field of a device given a unit number 1380 * 1381 * @param dc the devclass to search 1382 * @param unit the unit number to search for 1383 * 1384 * @returns the softc field of the device with the given 1385 * unit number or @c NULL if there is no such 1386 * device 1387 */ 1388 void * 1389 devclass_get_softc(devclass_t dc, int unit) 1390 { 1391 device_t dev; 1392 1393 dev = devclass_get_device(dc, unit); 1394 if (!dev) 1395 return (NULL); 1396 1397 return (device_get_softc(dev)); 1398 } 1399 1400 /** 1401 * @brief Get a list of devices in the devclass 1402 * 1403 * An array containing a list of all the devices in the given devclass 1404 * is allocated and returned in @p *devlistp. The number of devices 1405 * in the array is returned in @p *devcountp. The caller should free 1406 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1407 * 1408 * @param dc the devclass to examine 1409 * @param devlistp points at location for array pointer return 1410 * value 1411 * @param devcountp points at location for array size return value 1412 * 1413 * @retval 0 success 1414 * @retval ENOMEM the array allocation failed 1415 */ 1416 int 1417 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1418 { 1419 int count, i; 1420 device_t *list; 1421 1422 count = devclass_get_count(dc); 1423 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1424 if (!list) 1425 return (ENOMEM); 1426 1427 count = 0; 1428 for (i = 0; i < dc->maxunit; i++) { 1429 if (dc->devices[i]) { 1430 list[count] = dc->devices[i]; 1431 count++; 1432 } 1433 } 1434 1435 *devlistp = list; 1436 *devcountp = count; 1437 1438 return (0); 1439 } 1440 1441 /** 1442 * @brief Get a list of drivers in the devclass 1443 * 1444 * An array containing a list of pointers to all the drivers in the 1445 * given devclass is allocated and returned in @p *listp. The number 1446 * of drivers in the array is returned in @p *countp. The caller should 1447 * free the array using @c free(p, M_TEMP). 1448 * 1449 * @param dc the devclass to examine 1450 * @param listp gives location for array pointer return value 1451 * @param countp gives location for number of array elements 1452 * return value 1453 * 1454 * @retval 0 success 1455 * @retval ENOMEM the array allocation failed 1456 */ 1457 int 1458 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1459 { 1460 driverlink_t dl; 1461 driver_t **list; 1462 int count; 1463 1464 count = 0; 1465 TAILQ_FOREACH(dl, &dc->drivers, link) 1466 count++; 1467 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1468 if (list == NULL) 1469 return (ENOMEM); 1470 1471 count = 0; 1472 TAILQ_FOREACH(dl, &dc->drivers, link) { 1473 list[count] = dl->driver; 1474 count++; 1475 } 1476 *listp = list; 1477 *countp = count; 1478 1479 return (0); 1480 } 1481 1482 /** 1483 * @brief Get the number of devices in a devclass 1484 * 1485 * @param dc the devclass to examine 1486 */ 1487 int 1488 devclass_get_count(devclass_t dc) 1489 { 1490 int count, i; 1491 1492 count = 0; 1493 for (i = 0; i < dc->maxunit; i++) 1494 if (dc->devices[i]) 1495 count++; 1496 return (count); 1497 } 1498 1499 /** 1500 * @brief Get the maximum unit number used in a devclass 1501 * 1502 * Note that this is one greater than the highest currently-allocated 1503 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1504 * that not even the devclass has been allocated yet. 1505 * 1506 * @param dc the devclass to examine 1507 */ 1508 int 1509 devclass_get_maxunit(devclass_t dc) 1510 { 1511 if (dc == NULL) 1512 return (-1); 1513 return (dc->maxunit); 1514 } 1515 1516 /** 1517 * @brief Find a free unit number in a devclass 1518 * 1519 * This function searches for the first unused unit number greater 1520 * that or equal to @p unit. 1521 * 1522 * @param dc the devclass to examine 1523 * @param unit the first unit number to check 1524 */ 1525 int 1526 devclass_find_free_unit(devclass_t dc, int unit) 1527 { 1528 if (dc == NULL) 1529 return (unit); 1530 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1531 unit++; 1532 return (unit); 1533 } 1534 1535 /** 1536 * @brief Set the parent of a devclass 1537 * 1538 * The parent class is normally initialised automatically by 1539 * DRIVER_MODULE(). 1540 * 1541 * @param dc the devclass to edit 1542 * @param pdc the new parent devclass 1543 */ 1544 void 1545 devclass_set_parent(devclass_t dc, devclass_t pdc) 1546 { 1547 dc->parent = pdc; 1548 } 1549 1550 /** 1551 * @brief Get the parent of a devclass 1552 * 1553 * @param dc the devclass to examine 1554 */ 1555 devclass_t 1556 devclass_get_parent(devclass_t dc) 1557 { 1558 return (dc->parent); 1559 } 1560 1561 struct sysctl_ctx_list * 1562 devclass_get_sysctl_ctx(devclass_t dc) 1563 { 1564 return (&dc->sysctl_ctx); 1565 } 1566 1567 struct sysctl_oid * 1568 devclass_get_sysctl_tree(devclass_t dc) 1569 { 1570 return (dc->sysctl_tree); 1571 } 1572 1573 /** 1574 * @internal 1575 * @brief Allocate a unit number 1576 * 1577 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1578 * will do). The allocated unit number is returned in @p *unitp. 1579 1580 * @param dc the devclass to allocate from 1581 * @param unitp points at the location for the allocated unit 1582 * number 1583 * 1584 * @retval 0 success 1585 * @retval EEXIST the requested unit number is already allocated 1586 * @retval ENOMEM memory allocation failure 1587 */ 1588 static int 1589 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1590 { 1591 const char *s; 1592 int unit = *unitp; 1593 1594 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1595 1596 /* Ask the parent bus if it wants to wire this device. */ 1597 if (unit == -1) 1598 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1599 &unit); 1600 1601 /* If we were given a wired unit number, check for existing device */ 1602 /* XXX imp XXX */ 1603 if (unit != -1) { 1604 if (unit >= 0 && unit < dc->maxunit && 1605 dc->devices[unit] != NULL) { 1606 if (bootverbose) 1607 printf("%s: %s%d already exists; skipping it\n", 1608 dc->name, dc->name, *unitp); 1609 return (EEXIST); 1610 } 1611 } else { 1612 /* Unwired device, find the next available slot for it */ 1613 unit = 0; 1614 for (unit = 0;; unit++) { 1615 /* If there is an "at" hint for a unit then skip it. */ 1616 if (resource_string_value(dc->name, unit, "at", &s) == 1617 0) 1618 continue; 1619 1620 /* If this device slot is already in use, skip it. */ 1621 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1622 continue; 1623 1624 break; 1625 } 1626 } 1627 1628 /* 1629 * We've selected a unit beyond the length of the table, so let's 1630 * extend the table to make room for all units up to and including 1631 * this one. 1632 */ 1633 if (unit >= dc->maxunit) { 1634 device_t *newlist, *oldlist; 1635 int newsize; 1636 1637 oldlist = dc->devices; 1638 newsize = roundup((unit + 1), 1639 MAX(1, MINALLOCSIZE / sizeof(device_t))); 1640 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1641 if (!newlist) 1642 return (ENOMEM); 1643 if (oldlist != NULL) 1644 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1645 bzero(newlist + dc->maxunit, 1646 sizeof(device_t) * (newsize - dc->maxunit)); 1647 dc->devices = newlist; 1648 dc->maxunit = newsize; 1649 if (oldlist != NULL) 1650 free(oldlist, M_BUS); 1651 } 1652 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1653 1654 *unitp = unit; 1655 return (0); 1656 } 1657 1658 /** 1659 * @internal 1660 * @brief Add a device to a devclass 1661 * 1662 * A unit number is allocated for the device (using the device's 1663 * preferred unit number if any) and the device is registered in the 1664 * devclass. This allows the device to be looked up by its unit 1665 * number, e.g. by decoding a dev_t minor number. 1666 * 1667 * @param dc the devclass to add to 1668 * @param dev the device to add 1669 * 1670 * @retval 0 success 1671 * @retval EEXIST the requested unit number is already allocated 1672 * @retval ENOMEM memory allocation failure 1673 */ 1674 static int 1675 devclass_add_device(devclass_t dc, device_t dev) 1676 { 1677 int buflen, error; 1678 1679 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1680 1681 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1682 if (buflen < 0) 1683 return (ENOMEM); 1684 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1685 if (!dev->nameunit) 1686 return (ENOMEM); 1687 1688 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1689 free(dev->nameunit, M_BUS); 1690 dev->nameunit = NULL; 1691 return (error); 1692 } 1693 dc->devices[dev->unit] = dev; 1694 dev->devclass = dc; 1695 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1696 1697 return (0); 1698 } 1699 1700 /** 1701 * @internal 1702 * @brief Delete a device from a devclass 1703 * 1704 * The device is removed from the devclass's device list and its unit 1705 * number is freed. 1706 1707 * @param dc the devclass to delete from 1708 * @param dev the device to delete 1709 * 1710 * @retval 0 success 1711 */ 1712 static int 1713 devclass_delete_device(devclass_t dc, device_t dev) 1714 { 1715 if (!dc || !dev) 1716 return (0); 1717 1718 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1719 1720 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1721 panic("devclass_delete_device: inconsistent device class"); 1722 dc->devices[dev->unit] = NULL; 1723 if (dev->flags & DF_WILDCARD) 1724 dev->unit = -1; 1725 dev->devclass = NULL; 1726 free(dev->nameunit, M_BUS); 1727 dev->nameunit = NULL; 1728 1729 return (0); 1730 } 1731 1732 /** 1733 * @internal 1734 * @brief Make a new device and add it as a child of @p parent 1735 * 1736 * @param parent the parent of the new device 1737 * @param name the devclass name of the new device or @c NULL 1738 * to leave the devclass unspecified 1739 * @parem unit the unit number of the new device of @c -1 to 1740 * leave the unit number unspecified 1741 * 1742 * @returns the new device 1743 */ 1744 static device_t 1745 make_device(device_t parent, const char *name, int unit) 1746 { 1747 device_t dev; 1748 devclass_t dc; 1749 1750 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1751 1752 if (name) { 1753 dc = devclass_find_internal(name, NULL, TRUE); 1754 if (!dc) { 1755 printf("make_device: can't find device class %s\n", 1756 name); 1757 return (NULL); 1758 } 1759 } else { 1760 dc = NULL; 1761 } 1762 1763 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1764 if (!dev) 1765 return (NULL); 1766 1767 dev->parent = parent; 1768 TAILQ_INIT(&dev->children); 1769 kobj_init((kobj_t) dev, &null_class); 1770 dev->driver = NULL; 1771 dev->devclass = NULL; 1772 dev->unit = unit; 1773 dev->nameunit = NULL; 1774 dev->desc = NULL; 1775 dev->busy = 0; 1776 dev->devflags = 0; 1777 dev->flags = DF_ENABLED; 1778 dev->order = 0; 1779 if (unit == -1) 1780 dev->flags |= DF_WILDCARD; 1781 if (name) { 1782 dev->flags |= DF_FIXEDCLASS; 1783 if (devclass_add_device(dc, dev)) { 1784 kobj_delete((kobj_t) dev, M_BUS); 1785 return (NULL); 1786 } 1787 } 1788 if (parent != NULL && device_has_quiet_children(parent)) 1789 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1790 dev->ivars = NULL; 1791 dev->softc = NULL; 1792 1793 dev->state = DS_NOTPRESENT; 1794 1795 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1796 bus_data_generation_update(); 1797 1798 return (dev); 1799 } 1800 1801 /** 1802 * @internal 1803 * @brief Print a description of a device. 1804 */ 1805 static int 1806 device_print_child(device_t dev, device_t child) 1807 { 1808 int retval = 0; 1809 1810 if (device_is_alive(child)) 1811 retval += BUS_PRINT_CHILD(dev, child); 1812 else 1813 retval += device_printf(child, " not found\n"); 1814 1815 return (retval); 1816 } 1817 1818 /** 1819 * @brief Create a new device 1820 * 1821 * This creates a new device and adds it as a child of an existing 1822 * parent device. The new device will be added after the last existing 1823 * child with order zero. 1824 * 1825 * @param dev the device which will be the parent of the 1826 * new child device 1827 * @param name devclass name for new device or @c NULL if not 1828 * specified 1829 * @param unit unit number for new device or @c -1 if not 1830 * specified 1831 * 1832 * @returns the new device 1833 */ 1834 device_t 1835 device_add_child(device_t dev, const char *name, int unit) 1836 { 1837 return (device_add_child_ordered(dev, 0, name, unit)); 1838 } 1839 1840 /** 1841 * @brief Create a new device 1842 * 1843 * This creates a new device and adds it as a child of an existing 1844 * parent device. The new device will be added after the last existing 1845 * child with the same order. 1846 * 1847 * @param dev the device which will be the parent of the 1848 * new child device 1849 * @param order a value which is used to partially sort the 1850 * children of @p dev - devices created using 1851 * lower values of @p order appear first in @p 1852 * dev's list of children 1853 * @param name devclass name for new device or @c NULL if not 1854 * specified 1855 * @param unit unit number for new device or @c -1 if not 1856 * specified 1857 * 1858 * @returns the new device 1859 */ 1860 device_t 1861 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1862 { 1863 device_t child; 1864 device_t place; 1865 1866 PDEBUG(("%s at %s with order %u as unit %d", 1867 name, DEVICENAME(dev), order, unit)); 1868 KASSERT(name != NULL || unit == -1, 1869 ("child device with wildcard name and specific unit number")); 1870 1871 child = make_device(dev, name, unit); 1872 if (child == NULL) 1873 return (child); 1874 child->order = order; 1875 1876 TAILQ_FOREACH(place, &dev->children, link) { 1877 if (place->order > order) 1878 break; 1879 } 1880 1881 if (place) { 1882 /* 1883 * The device 'place' is the first device whose order is 1884 * greater than the new child. 1885 */ 1886 TAILQ_INSERT_BEFORE(place, child, link); 1887 } else { 1888 /* 1889 * The new child's order is greater or equal to the order of 1890 * any existing device. Add the child to the tail of the list. 1891 */ 1892 TAILQ_INSERT_TAIL(&dev->children, child, link); 1893 } 1894 1895 bus_data_generation_update(); 1896 return (child); 1897 } 1898 1899 /** 1900 * @brief Delete a device 1901 * 1902 * This function deletes a device along with all of its children. If 1903 * the device currently has a driver attached to it, the device is 1904 * detached first using device_detach(). 1905 * 1906 * @param dev the parent device 1907 * @param child the device to delete 1908 * 1909 * @retval 0 success 1910 * @retval non-zero a unit error code describing the error 1911 */ 1912 int 1913 device_delete_child(device_t dev, device_t child) 1914 { 1915 int error; 1916 device_t grandchild; 1917 1918 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1919 1920 /* detach parent before deleting children, if any */ 1921 if ((error = device_detach(child)) != 0) 1922 return (error); 1923 1924 /* remove children second */ 1925 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1926 error = device_delete_child(child, grandchild); 1927 if (error) 1928 return (error); 1929 } 1930 1931 if (child->devclass) 1932 devclass_delete_device(child->devclass, child); 1933 if (child->parent) 1934 BUS_CHILD_DELETED(dev, child); 1935 TAILQ_REMOVE(&dev->children, child, link); 1936 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1937 kobj_delete((kobj_t) child, M_BUS); 1938 1939 bus_data_generation_update(); 1940 return (0); 1941 } 1942 1943 /** 1944 * @brief Delete all children devices of the given device, if any. 1945 * 1946 * This function deletes all children devices of the given device, if 1947 * any, using the device_delete_child() function for each device it 1948 * finds. If a child device cannot be deleted, this function will 1949 * return an error code. 1950 * 1951 * @param dev the parent device 1952 * 1953 * @retval 0 success 1954 * @retval non-zero a device would not detach 1955 */ 1956 int 1957 device_delete_children(device_t dev) 1958 { 1959 device_t child; 1960 int error; 1961 1962 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1963 1964 error = 0; 1965 1966 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1967 error = device_delete_child(dev, child); 1968 if (error) { 1969 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1970 break; 1971 } 1972 } 1973 return (error); 1974 } 1975 1976 /** 1977 * @brief Find a device given a unit number 1978 * 1979 * This is similar to devclass_get_devices() but only searches for 1980 * devices which have @p dev as a parent. 1981 * 1982 * @param dev the parent device to search 1983 * @param unit the unit number to search for. If the unit is -1, 1984 * return the first child of @p dev which has name 1985 * @p classname (that is, the one with the lowest unit.) 1986 * 1987 * @returns the device with the given unit number or @c 1988 * NULL if there is no such device 1989 */ 1990 device_t 1991 device_find_child(device_t dev, const char *classname, int unit) 1992 { 1993 devclass_t dc; 1994 device_t child; 1995 1996 dc = devclass_find(classname); 1997 if (!dc) 1998 return (NULL); 1999 2000 if (unit != -1) { 2001 child = devclass_get_device(dc, unit); 2002 if (child && child->parent == dev) 2003 return (child); 2004 } else { 2005 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2006 child = devclass_get_device(dc, unit); 2007 if (child && child->parent == dev) 2008 return (child); 2009 } 2010 } 2011 return (NULL); 2012 } 2013 2014 /** 2015 * @internal 2016 */ 2017 static driverlink_t 2018 first_matching_driver(devclass_t dc, device_t dev) 2019 { 2020 if (dev->devclass) 2021 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2022 return (TAILQ_FIRST(&dc->drivers)); 2023 } 2024 2025 /** 2026 * @internal 2027 */ 2028 static driverlink_t 2029 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2030 { 2031 if (dev->devclass) { 2032 driverlink_t dl; 2033 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2034 if (!strcmp(dev->devclass->name, dl->driver->name)) 2035 return (dl); 2036 return (NULL); 2037 } 2038 return (TAILQ_NEXT(last, link)); 2039 } 2040 2041 /** 2042 * @internal 2043 */ 2044 int 2045 device_probe_child(device_t dev, device_t child) 2046 { 2047 devclass_t dc; 2048 driverlink_t best = NULL; 2049 driverlink_t dl; 2050 int result, pri = 0; 2051 int hasclass = (child->devclass != NULL); 2052 2053 GIANT_REQUIRED; 2054 2055 dc = dev->devclass; 2056 if (!dc) 2057 panic("device_probe_child: parent device has no devclass"); 2058 2059 /* 2060 * If the state is already probed, then return. However, don't 2061 * return if we can rebid this object. 2062 */ 2063 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2064 return (0); 2065 2066 for (; dc; dc = dc->parent) { 2067 for (dl = first_matching_driver(dc, child); 2068 dl; 2069 dl = next_matching_driver(dc, child, dl)) { 2070 /* If this driver's pass is too high, then ignore it. */ 2071 if (dl->pass > bus_current_pass) 2072 continue; 2073 2074 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2075 result = device_set_driver(child, dl->driver); 2076 if (result == ENOMEM) 2077 return (result); 2078 else if (result != 0) 2079 continue; 2080 if (!hasclass) { 2081 if (device_set_devclass(child, 2082 dl->driver->name) != 0) { 2083 char const * devname = 2084 device_get_name(child); 2085 if (devname == NULL) 2086 devname = "(unknown)"; 2087 printf("driver bug: Unable to set " 2088 "devclass (class: %s " 2089 "devname: %s)\n", 2090 dl->driver->name, 2091 devname); 2092 (void)device_set_driver(child, NULL); 2093 continue; 2094 } 2095 } 2096 2097 /* Fetch any flags for the device before probing. */ 2098 resource_int_value(dl->driver->name, child->unit, 2099 "flags", &child->devflags); 2100 2101 result = DEVICE_PROBE(child); 2102 2103 /* Reset flags and devclass before the next probe. */ 2104 child->devflags = 0; 2105 if (!hasclass) 2106 (void)device_set_devclass(child, NULL); 2107 2108 /* 2109 * If the driver returns SUCCESS, there can be 2110 * no higher match for this device. 2111 */ 2112 if (result == 0) { 2113 best = dl; 2114 pri = 0; 2115 break; 2116 } 2117 2118 /* 2119 * Reset DF_QUIET in case this driver doesn't 2120 * end up as the best driver. 2121 */ 2122 device_verbose(child); 2123 2124 /* 2125 * Probes that return BUS_PROBE_NOWILDCARD or lower 2126 * only match on devices whose driver was explicitly 2127 * specified. 2128 */ 2129 if (result <= BUS_PROBE_NOWILDCARD && 2130 !(child->flags & DF_FIXEDCLASS)) { 2131 result = ENXIO; 2132 } 2133 2134 /* 2135 * The driver returned an error so it 2136 * certainly doesn't match. 2137 */ 2138 if (result > 0) { 2139 (void)device_set_driver(child, NULL); 2140 continue; 2141 } 2142 2143 /* 2144 * A priority lower than SUCCESS, remember the 2145 * best matching driver. Initialise the value 2146 * of pri for the first match. 2147 */ 2148 if (best == NULL || result > pri) { 2149 best = dl; 2150 pri = result; 2151 continue; 2152 } 2153 } 2154 /* 2155 * If we have an unambiguous match in this devclass, 2156 * don't look in the parent. 2157 */ 2158 if (best && pri == 0) 2159 break; 2160 } 2161 2162 /* 2163 * If we found a driver, change state and initialise the devclass. 2164 */ 2165 /* XXX What happens if we rebid and got no best? */ 2166 if (best) { 2167 /* 2168 * If this device was attached, and we were asked to 2169 * rescan, and it is a different driver, then we have 2170 * to detach the old driver and reattach this new one. 2171 * Note, we don't have to check for DF_REBID here 2172 * because if the state is > DS_ALIVE, we know it must 2173 * be. 2174 * 2175 * This assumes that all DF_REBID drivers can have 2176 * their probe routine called at any time and that 2177 * they are idempotent as well as completely benign in 2178 * normal operations. 2179 * 2180 * We also have to make sure that the detach 2181 * succeeded, otherwise we fail the operation (or 2182 * maybe it should just fail silently? I'm torn). 2183 */ 2184 if (child->state > DS_ALIVE && best->driver != child->driver) 2185 if ((result = device_detach(dev)) != 0) 2186 return (result); 2187 2188 /* Set the winning driver, devclass, and flags. */ 2189 if (!child->devclass) { 2190 result = device_set_devclass(child, best->driver->name); 2191 if (result != 0) 2192 return (result); 2193 } 2194 result = device_set_driver(child, best->driver); 2195 if (result != 0) 2196 return (result); 2197 resource_int_value(best->driver->name, child->unit, 2198 "flags", &child->devflags); 2199 2200 if (pri < 0) { 2201 /* 2202 * A bit bogus. Call the probe method again to make 2203 * sure that we have the right description. 2204 */ 2205 DEVICE_PROBE(child); 2206 #if 0 2207 child->flags |= DF_REBID; 2208 #endif 2209 } else 2210 child->flags &= ~DF_REBID; 2211 child->state = DS_ALIVE; 2212 2213 bus_data_generation_update(); 2214 return (0); 2215 } 2216 2217 return (ENXIO); 2218 } 2219 2220 /** 2221 * @brief Return the parent of a device 2222 */ 2223 device_t 2224 device_get_parent(device_t dev) 2225 { 2226 return (dev->parent); 2227 } 2228 2229 /** 2230 * @brief Get a list of children of a device 2231 * 2232 * An array containing a list of all the children of the given device 2233 * is allocated and returned in @p *devlistp. The number of devices 2234 * in the array is returned in @p *devcountp. The caller should free 2235 * the array using @c free(p, M_TEMP). 2236 * 2237 * @param dev the device to examine 2238 * @param devlistp points at location for array pointer return 2239 * value 2240 * @param devcountp points at location for array size return value 2241 * 2242 * @retval 0 success 2243 * @retval ENOMEM the array allocation failed 2244 */ 2245 int 2246 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2247 { 2248 int count; 2249 device_t child; 2250 device_t *list; 2251 2252 count = 0; 2253 TAILQ_FOREACH(child, &dev->children, link) { 2254 count++; 2255 } 2256 if (count == 0) { 2257 *devlistp = NULL; 2258 *devcountp = 0; 2259 return (0); 2260 } 2261 2262 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2263 if (!list) 2264 return (ENOMEM); 2265 2266 count = 0; 2267 TAILQ_FOREACH(child, &dev->children, link) { 2268 list[count] = child; 2269 count++; 2270 } 2271 2272 *devlistp = list; 2273 *devcountp = count; 2274 2275 return (0); 2276 } 2277 2278 /** 2279 * @brief Return the current driver for the device or @c NULL if there 2280 * is no driver currently attached 2281 */ 2282 driver_t * 2283 device_get_driver(device_t dev) 2284 { 2285 return (dev->driver); 2286 } 2287 2288 /** 2289 * @brief Return the current devclass for the device or @c NULL if 2290 * there is none. 2291 */ 2292 devclass_t 2293 device_get_devclass(device_t dev) 2294 { 2295 return (dev->devclass); 2296 } 2297 2298 /** 2299 * @brief Return the name of the device's devclass or @c NULL if there 2300 * is none. 2301 */ 2302 const char * 2303 device_get_name(device_t dev) 2304 { 2305 if (dev != NULL && dev->devclass) 2306 return (devclass_get_name(dev->devclass)); 2307 return (NULL); 2308 } 2309 2310 /** 2311 * @brief Return a string containing the device's devclass name 2312 * followed by an ascii representation of the device's unit number 2313 * (e.g. @c "foo2"). 2314 */ 2315 const char * 2316 device_get_nameunit(device_t dev) 2317 { 2318 return (dev->nameunit); 2319 } 2320 2321 /** 2322 * @brief Return the device's unit number. 2323 */ 2324 int 2325 device_get_unit(device_t dev) 2326 { 2327 return (dev->unit); 2328 } 2329 2330 /** 2331 * @brief Return the device's description string 2332 */ 2333 const char * 2334 device_get_desc(device_t dev) 2335 { 2336 return (dev->desc); 2337 } 2338 2339 /** 2340 * @brief Return the device's flags 2341 */ 2342 uint32_t 2343 device_get_flags(device_t dev) 2344 { 2345 return (dev->devflags); 2346 } 2347 2348 struct sysctl_ctx_list * 2349 device_get_sysctl_ctx(device_t dev) 2350 { 2351 return (&dev->sysctl_ctx); 2352 } 2353 2354 struct sysctl_oid * 2355 device_get_sysctl_tree(device_t dev) 2356 { 2357 return (dev->sysctl_tree); 2358 } 2359 2360 /** 2361 * @brief Print the name of the device followed by a colon and a space 2362 * 2363 * @returns the number of characters printed 2364 */ 2365 int 2366 device_print_prettyname(device_t dev) 2367 { 2368 const char *name = device_get_name(dev); 2369 2370 if (name == NULL) 2371 return (printf("unknown: ")); 2372 return (printf("%s%d: ", name, device_get_unit(dev))); 2373 } 2374 2375 /** 2376 * @brief Print the name of the device followed by a colon, a space 2377 * and the result of calling vprintf() with the value of @p fmt and 2378 * the following arguments. 2379 * 2380 * @returns the number of characters printed 2381 */ 2382 int 2383 device_printf(device_t dev, const char * fmt, ...) 2384 { 2385 char buf[128]; 2386 struct sbuf sb; 2387 const char *name; 2388 va_list ap; 2389 size_t retval; 2390 2391 retval = 0; 2392 2393 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2394 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 2395 2396 name = device_get_name(dev); 2397 2398 if (name == NULL) 2399 sbuf_cat(&sb, "unknown: "); 2400 else 2401 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2402 2403 va_start(ap, fmt); 2404 sbuf_vprintf(&sb, fmt, ap); 2405 va_end(ap); 2406 2407 sbuf_finish(&sb); 2408 sbuf_delete(&sb); 2409 2410 return (retval); 2411 } 2412 2413 /** 2414 * @internal 2415 */ 2416 static void 2417 device_set_desc_internal(device_t dev, const char* desc, int copy) 2418 { 2419 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2420 free(dev->desc, M_BUS); 2421 dev->flags &= ~DF_DESCMALLOCED; 2422 dev->desc = NULL; 2423 } 2424 2425 if (copy && desc) { 2426 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2427 if (dev->desc) { 2428 strcpy(dev->desc, desc); 2429 dev->flags |= DF_DESCMALLOCED; 2430 } 2431 } else { 2432 /* Avoid a -Wcast-qual warning */ 2433 dev->desc = (char *)(uintptr_t) desc; 2434 } 2435 2436 bus_data_generation_update(); 2437 } 2438 2439 /** 2440 * @brief Set the device's description 2441 * 2442 * The value of @c desc should be a string constant that will not 2443 * change (at least until the description is changed in a subsequent 2444 * call to device_set_desc() or device_set_desc_copy()). 2445 */ 2446 void 2447 device_set_desc(device_t dev, const char* desc) 2448 { 2449 device_set_desc_internal(dev, desc, FALSE); 2450 } 2451 2452 /** 2453 * @brief Set the device's description 2454 * 2455 * The string pointed to by @c desc is copied. Use this function if 2456 * the device description is generated, (e.g. with sprintf()). 2457 */ 2458 void 2459 device_set_desc_copy(device_t dev, const char* desc) 2460 { 2461 device_set_desc_internal(dev, desc, TRUE); 2462 } 2463 2464 /** 2465 * @brief Set the device's flags 2466 */ 2467 void 2468 device_set_flags(device_t dev, uint32_t flags) 2469 { 2470 dev->devflags = flags; 2471 } 2472 2473 /** 2474 * @brief Return the device's softc field 2475 * 2476 * The softc is allocated and zeroed when a driver is attached, based 2477 * on the size field of the driver. 2478 */ 2479 void * 2480 device_get_softc(device_t dev) 2481 { 2482 return (dev->softc); 2483 } 2484 2485 /** 2486 * @brief Set the device's softc field 2487 * 2488 * Most drivers do not need to use this since the softc is allocated 2489 * automatically when the driver is attached. 2490 */ 2491 void 2492 device_set_softc(device_t dev, void *softc) 2493 { 2494 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2495 free(dev->softc, M_BUS_SC); 2496 dev->softc = softc; 2497 if (dev->softc) 2498 dev->flags |= DF_EXTERNALSOFTC; 2499 else 2500 dev->flags &= ~DF_EXTERNALSOFTC; 2501 } 2502 2503 /** 2504 * @brief Free claimed softc 2505 * 2506 * Most drivers do not need to use this since the softc is freed 2507 * automatically when the driver is detached. 2508 */ 2509 void 2510 device_free_softc(void *softc) 2511 { 2512 free(softc, M_BUS_SC); 2513 } 2514 2515 /** 2516 * @brief Claim softc 2517 * 2518 * This function can be used to let the driver free the automatically 2519 * allocated softc using "device_free_softc()". This function is 2520 * useful when the driver is refcounting the softc and the softc 2521 * cannot be freed when the "device_detach" method is called. 2522 */ 2523 void 2524 device_claim_softc(device_t dev) 2525 { 2526 if (dev->softc) 2527 dev->flags |= DF_EXTERNALSOFTC; 2528 else 2529 dev->flags &= ~DF_EXTERNALSOFTC; 2530 } 2531 2532 /** 2533 * @brief Get the device's ivars field 2534 * 2535 * The ivars field is used by the parent device to store per-device 2536 * state (e.g. the physical location of the device or a list of 2537 * resources). 2538 */ 2539 void * 2540 device_get_ivars(device_t dev) 2541 { 2542 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2543 return (dev->ivars); 2544 } 2545 2546 /** 2547 * @brief Set the device's ivars field 2548 */ 2549 void 2550 device_set_ivars(device_t dev, void * ivars) 2551 { 2552 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2553 dev->ivars = ivars; 2554 } 2555 2556 /** 2557 * @brief Return the device's state 2558 */ 2559 device_state_t 2560 device_get_state(device_t dev) 2561 { 2562 return (dev->state); 2563 } 2564 2565 /** 2566 * @brief Set the DF_ENABLED flag for the device 2567 */ 2568 void 2569 device_enable(device_t dev) 2570 { 2571 dev->flags |= DF_ENABLED; 2572 } 2573 2574 /** 2575 * @brief Clear the DF_ENABLED flag for the device 2576 */ 2577 void 2578 device_disable(device_t dev) 2579 { 2580 dev->flags &= ~DF_ENABLED; 2581 } 2582 2583 /** 2584 * @brief Increment the busy counter for the device 2585 */ 2586 void 2587 device_busy(device_t dev) 2588 { 2589 if (dev->state < DS_ATTACHING) 2590 panic("device_busy: called for unattached device"); 2591 if (dev->busy == 0 && dev->parent) 2592 device_busy(dev->parent); 2593 dev->busy++; 2594 if (dev->state == DS_ATTACHED) 2595 dev->state = DS_BUSY; 2596 } 2597 2598 /** 2599 * @brief Decrement the busy counter for the device 2600 */ 2601 void 2602 device_unbusy(device_t dev) 2603 { 2604 if (dev->busy != 0 && dev->state != DS_BUSY && 2605 dev->state != DS_ATTACHING) 2606 panic("device_unbusy: called for non-busy device %s", 2607 device_get_nameunit(dev)); 2608 dev->busy--; 2609 if (dev->busy == 0) { 2610 if (dev->parent) 2611 device_unbusy(dev->parent); 2612 if (dev->state == DS_BUSY) 2613 dev->state = DS_ATTACHED; 2614 } 2615 } 2616 2617 /** 2618 * @brief Set the DF_QUIET flag for the device 2619 */ 2620 void 2621 device_quiet(device_t dev) 2622 { 2623 dev->flags |= DF_QUIET; 2624 } 2625 2626 /** 2627 * @brief Set the DF_QUIET_CHILDREN flag for the device 2628 */ 2629 void 2630 device_quiet_children(device_t dev) 2631 { 2632 dev->flags |= DF_QUIET_CHILDREN; 2633 } 2634 2635 /** 2636 * @brief Clear the DF_QUIET flag for the device 2637 */ 2638 void 2639 device_verbose(device_t dev) 2640 { 2641 dev->flags &= ~DF_QUIET; 2642 } 2643 2644 /** 2645 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2646 */ 2647 int 2648 device_has_quiet_children(device_t dev) 2649 { 2650 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2651 } 2652 2653 /** 2654 * @brief Return non-zero if the DF_QUIET flag is set on the device 2655 */ 2656 int 2657 device_is_quiet(device_t dev) 2658 { 2659 return ((dev->flags & DF_QUIET) != 0); 2660 } 2661 2662 /** 2663 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2664 */ 2665 int 2666 device_is_enabled(device_t dev) 2667 { 2668 return ((dev->flags & DF_ENABLED) != 0); 2669 } 2670 2671 /** 2672 * @brief Return non-zero if the device was successfully probed 2673 */ 2674 int 2675 device_is_alive(device_t dev) 2676 { 2677 return (dev->state >= DS_ALIVE); 2678 } 2679 2680 /** 2681 * @brief Return non-zero if the device currently has a driver 2682 * attached to it 2683 */ 2684 int 2685 device_is_attached(device_t dev) 2686 { 2687 return (dev->state >= DS_ATTACHED); 2688 } 2689 2690 /** 2691 * @brief Return non-zero if the device is currently suspended. 2692 */ 2693 int 2694 device_is_suspended(device_t dev) 2695 { 2696 return ((dev->flags & DF_SUSPENDED) != 0); 2697 } 2698 2699 /** 2700 * @brief Set the devclass of a device 2701 * @see devclass_add_device(). 2702 */ 2703 int 2704 device_set_devclass(device_t dev, const char *classname) 2705 { 2706 devclass_t dc; 2707 int error; 2708 2709 if (!classname) { 2710 if (dev->devclass) 2711 devclass_delete_device(dev->devclass, dev); 2712 return (0); 2713 } 2714 2715 if (dev->devclass) { 2716 printf("device_set_devclass: device class already set\n"); 2717 return (EINVAL); 2718 } 2719 2720 dc = devclass_find_internal(classname, NULL, TRUE); 2721 if (!dc) 2722 return (ENOMEM); 2723 2724 error = devclass_add_device(dc, dev); 2725 2726 bus_data_generation_update(); 2727 return (error); 2728 } 2729 2730 /** 2731 * @brief Set the devclass of a device and mark the devclass fixed. 2732 * @see device_set_devclass() 2733 */ 2734 int 2735 device_set_devclass_fixed(device_t dev, const char *classname) 2736 { 2737 int error; 2738 2739 if (classname == NULL) 2740 return (EINVAL); 2741 2742 error = device_set_devclass(dev, classname); 2743 if (error) 2744 return (error); 2745 dev->flags |= DF_FIXEDCLASS; 2746 return (0); 2747 } 2748 2749 /** 2750 * @brief Query the device to determine if it's of a fixed devclass 2751 * @see device_set_devclass_fixed() 2752 */ 2753 bool 2754 device_is_devclass_fixed(device_t dev) 2755 { 2756 return ((dev->flags & DF_FIXEDCLASS) != 0); 2757 } 2758 2759 /** 2760 * @brief Set the driver of a device 2761 * 2762 * @retval 0 success 2763 * @retval EBUSY the device already has a driver attached 2764 * @retval ENOMEM a memory allocation failure occurred 2765 */ 2766 int 2767 device_set_driver(device_t dev, driver_t *driver) 2768 { 2769 int domain; 2770 struct domainset *policy; 2771 2772 if (dev->state >= DS_ATTACHED) 2773 return (EBUSY); 2774 2775 if (dev->driver == driver) 2776 return (0); 2777 2778 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2779 free(dev->softc, M_BUS_SC); 2780 dev->softc = NULL; 2781 } 2782 device_set_desc(dev, NULL); 2783 kobj_delete((kobj_t) dev, NULL); 2784 dev->driver = driver; 2785 if (driver) { 2786 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2787 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2788 if (bus_get_domain(dev, &domain) == 0) 2789 policy = DOMAINSET_PREF(domain); 2790 else 2791 policy = DOMAINSET_RR(); 2792 dev->softc = malloc_domainset(driver->size, M_BUS_SC, 2793 policy, M_NOWAIT | M_ZERO); 2794 if (!dev->softc) { 2795 kobj_delete((kobj_t) dev, NULL); 2796 kobj_init((kobj_t) dev, &null_class); 2797 dev->driver = NULL; 2798 return (ENOMEM); 2799 } 2800 } 2801 } else { 2802 kobj_init((kobj_t) dev, &null_class); 2803 } 2804 2805 bus_data_generation_update(); 2806 return (0); 2807 } 2808 2809 /** 2810 * @brief Probe a device, and return this status. 2811 * 2812 * This function is the core of the device autoconfiguration 2813 * system. Its purpose is to select a suitable driver for a device and 2814 * then call that driver to initialise the hardware appropriately. The 2815 * driver is selected by calling the DEVICE_PROBE() method of a set of 2816 * candidate drivers and then choosing the driver which returned the 2817 * best value. This driver is then attached to the device using 2818 * device_attach(). 2819 * 2820 * The set of suitable drivers is taken from the list of drivers in 2821 * the parent device's devclass. If the device was originally created 2822 * with a specific class name (see device_add_child()), only drivers 2823 * with that name are probed, otherwise all drivers in the devclass 2824 * are probed. If no drivers return successful probe values in the 2825 * parent devclass, the search continues in the parent of that 2826 * devclass (see devclass_get_parent()) if any. 2827 * 2828 * @param dev the device to initialise 2829 * 2830 * @retval 0 success 2831 * @retval ENXIO no driver was found 2832 * @retval ENOMEM memory allocation failure 2833 * @retval non-zero some other unix error code 2834 * @retval -1 Device already attached 2835 */ 2836 int 2837 device_probe(device_t dev) 2838 { 2839 int error; 2840 2841 GIANT_REQUIRED; 2842 2843 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2844 return (-1); 2845 2846 if (!(dev->flags & DF_ENABLED)) { 2847 if (bootverbose && device_get_name(dev) != NULL) { 2848 device_print_prettyname(dev); 2849 printf("not probed (disabled)\n"); 2850 } 2851 return (-1); 2852 } 2853 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2854 if (bus_current_pass == BUS_PASS_DEFAULT && 2855 !(dev->flags & DF_DONENOMATCH)) { 2856 BUS_PROBE_NOMATCH(dev->parent, dev); 2857 devnomatch(dev); 2858 dev->flags |= DF_DONENOMATCH; 2859 } 2860 return (error); 2861 } 2862 return (0); 2863 } 2864 2865 /** 2866 * @brief Probe a device and attach a driver if possible 2867 * 2868 * calls device_probe() and attaches if that was successful. 2869 */ 2870 int 2871 device_probe_and_attach(device_t dev) 2872 { 2873 int error; 2874 2875 GIANT_REQUIRED; 2876 2877 error = device_probe(dev); 2878 if (error == -1) 2879 return (0); 2880 else if (error != 0) 2881 return (error); 2882 2883 CURVNET_SET_QUIET(vnet0); 2884 error = device_attach(dev); 2885 CURVNET_RESTORE(); 2886 return error; 2887 } 2888 2889 /** 2890 * @brief Attach a device driver to a device 2891 * 2892 * This function is a wrapper around the DEVICE_ATTACH() driver 2893 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2894 * device's sysctl tree, optionally prints a description of the device 2895 * and queues a notification event for user-based device management 2896 * services. 2897 * 2898 * Normally this function is only called internally from 2899 * device_probe_and_attach(). 2900 * 2901 * @param dev the device to initialise 2902 * 2903 * @retval 0 success 2904 * @retval ENXIO no driver was found 2905 * @retval ENOMEM memory allocation failure 2906 * @retval non-zero some other unix error code 2907 */ 2908 int 2909 device_attach(device_t dev) 2910 { 2911 uint64_t attachtime; 2912 uint16_t attachentropy; 2913 int error; 2914 2915 if (resource_disabled(dev->driver->name, dev->unit)) { 2916 device_disable(dev); 2917 if (bootverbose) 2918 device_printf(dev, "disabled via hints entry\n"); 2919 return (ENXIO); 2920 } 2921 2922 device_sysctl_init(dev); 2923 if (!device_is_quiet(dev)) 2924 device_print_child(dev->parent, dev); 2925 attachtime = get_cyclecount(); 2926 dev->state = DS_ATTACHING; 2927 if ((error = DEVICE_ATTACH(dev)) != 0) { 2928 printf("device_attach: %s%d attach returned %d\n", 2929 dev->driver->name, dev->unit, error); 2930 if (!(dev->flags & DF_FIXEDCLASS)) 2931 devclass_delete_device(dev->devclass, dev); 2932 (void)device_set_driver(dev, NULL); 2933 device_sysctl_fini(dev); 2934 KASSERT(dev->busy == 0, ("attach failed but busy")); 2935 dev->state = DS_NOTPRESENT; 2936 return (error); 2937 } 2938 dev->flags |= DF_ATTACHED_ONCE; 2939 /* We only need the low bits of this time, but ranges from tens to thousands 2940 * have been seen, so keep 2 bytes' worth. 2941 */ 2942 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 2943 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 2944 device_sysctl_update(dev); 2945 if (dev->busy) 2946 dev->state = DS_BUSY; 2947 else 2948 dev->state = DS_ATTACHED; 2949 dev->flags &= ~DF_DONENOMATCH; 2950 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 2951 devadded(dev); 2952 return (0); 2953 } 2954 2955 /** 2956 * @brief Detach a driver from a device 2957 * 2958 * This function is a wrapper around the DEVICE_DETACH() driver 2959 * method. If the call to DEVICE_DETACH() succeeds, it calls 2960 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2961 * notification event for user-based device management services and 2962 * cleans up the device's sysctl tree. 2963 * 2964 * @param dev the device to un-initialise 2965 * 2966 * @retval 0 success 2967 * @retval ENXIO no driver was found 2968 * @retval ENOMEM memory allocation failure 2969 * @retval non-zero some other unix error code 2970 */ 2971 int 2972 device_detach(device_t dev) 2973 { 2974 int error; 2975 2976 GIANT_REQUIRED; 2977 2978 PDEBUG(("%s", DEVICENAME(dev))); 2979 if (dev->state == DS_BUSY) 2980 return (EBUSY); 2981 if (dev->state == DS_ATTACHING) { 2982 device_printf(dev, "device in attaching state! Deferring detach.\n"); 2983 return (EBUSY); 2984 } 2985 if (dev->state != DS_ATTACHED) 2986 return (0); 2987 2988 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 2989 if ((error = DEVICE_DETACH(dev)) != 0) { 2990 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2991 EVHDEV_DETACH_FAILED); 2992 return (error); 2993 } else { 2994 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2995 EVHDEV_DETACH_COMPLETE); 2996 } 2997 devremoved(dev); 2998 if (!device_is_quiet(dev)) 2999 device_printf(dev, "detached\n"); 3000 if (dev->parent) 3001 BUS_CHILD_DETACHED(dev->parent, dev); 3002 3003 if (!(dev->flags & DF_FIXEDCLASS)) 3004 devclass_delete_device(dev->devclass, dev); 3005 3006 device_verbose(dev); 3007 dev->state = DS_NOTPRESENT; 3008 (void)device_set_driver(dev, NULL); 3009 device_sysctl_fini(dev); 3010 3011 return (0); 3012 } 3013 3014 /** 3015 * @brief Tells a driver to quiesce itself. 3016 * 3017 * This function is a wrapper around the DEVICE_QUIESCE() driver 3018 * method. If the call to DEVICE_QUIESCE() succeeds. 3019 * 3020 * @param dev the device to quiesce 3021 * 3022 * @retval 0 success 3023 * @retval ENXIO no driver was found 3024 * @retval ENOMEM memory allocation failure 3025 * @retval non-zero some other unix error code 3026 */ 3027 int 3028 device_quiesce(device_t dev) 3029 { 3030 PDEBUG(("%s", DEVICENAME(dev))); 3031 if (dev->state == DS_BUSY) 3032 return (EBUSY); 3033 if (dev->state != DS_ATTACHED) 3034 return (0); 3035 3036 return (DEVICE_QUIESCE(dev)); 3037 } 3038 3039 /** 3040 * @brief Notify a device of system shutdown 3041 * 3042 * This function calls the DEVICE_SHUTDOWN() driver method if the 3043 * device currently has an attached driver. 3044 * 3045 * @returns the value returned by DEVICE_SHUTDOWN() 3046 */ 3047 int 3048 device_shutdown(device_t dev) 3049 { 3050 if (dev->state < DS_ATTACHED) 3051 return (0); 3052 return (DEVICE_SHUTDOWN(dev)); 3053 } 3054 3055 /** 3056 * @brief Set the unit number of a device 3057 * 3058 * This function can be used to override the unit number used for a 3059 * device (e.g. to wire a device to a pre-configured unit number). 3060 */ 3061 int 3062 device_set_unit(device_t dev, int unit) 3063 { 3064 devclass_t dc; 3065 int err; 3066 3067 dc = device_get_devclass(dev); 3068 if (unit < dc->maxunit && dc->devices[unit]) 3069 return (EBUSY); 3070 err = devclass_delete_device(dc, dev); 3071 if (err) 3072 return (err); 3073 dev->unit = unit; 3074 err = devclass_add_device(dc, dev); 3075 if (err) 3076 return (err); 3077 3078 bus_data_generation_update(); 3079 return (0); 3080 } 3081 3082 /*======================================*/ 3083 /* 3084 * Some useful method implementations to make life easier for bus drivers. 3085 */ 3086 3087 void 3088 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 3089 { 3090 bzero(args, sz); 3091 args->size = sz; 3092 args->memattr = VM_MEMATTR_UNCACHEABLE; 3093 } 3094 3095 /** 3096 * @brief Initialise a resource list. 3097 * 3098 * @param rl the resource list to initialise 3099 */ 3100 void 3101 resource_list_init(struct resource_list *rl) 3102 { 3103 STAILQ_INIT(rl); 3104 } 3105 3106 /** 3107 * @brief Reclaim memory used by a resource list. 3108 * 3109 * This function frees the memory for all resource entries on the list 3110 * (if any). 3111 * 3112 * @param rl the resource list to free 3113 */ 3114 void 3115 resource_list_free(struct resource_list *rl) 3116 { 3117 struct resource_list_entry *rle; 3118 3119 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3120 if (rle->res) 3121 panic("resource_list_free: resource entry is busy"); 3122 STAILQ_REMOVE_HEAD(rl, link); 3123 free(rle, M_BUS); 3124 } 3125 } 3126 3127 /** 3128 * @brief Add a resource entry. 3129 * 3130 * This function adds a resource entry using the given @p type, @p 3131 * start, @p end and @p count values. A rid value is chosen by 3132 * searching sequentially for the first unused rid starting at zero. 3133 * 3134 * @param rl the resource list to edit 3135 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3136 * @param start the start address of the resource 3137 * @param end the end address of the resource 3138 * @param count XXX end-start+1 3139 */ 3140 int 3141 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 3142 rman_res_t end, rman_res_t count) 3143 { 3144 int rid; 3145 3146 rid = 0; 3147 while (resource_list_find(rl, type, rid) != NULL) 3148 rid++; 3149 resource_list_add(rl, type, rid, start, end, count); 3150 return (rid); 3151 } 3152 3153 /** 3154 * @brief Add or modify a resource entry. 3155 * 3156 * If an existing entry exists with the same type and rid, it will be 3157 * modified using the given values of @p start, @p end and @p 3158 * count. If no entry exists, a new one will be created using the 3159 * given values. The resource list entry that matches is then returned. 3160 * 3161 * @param rl the resource list to edit 3162 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3163 * @param rid the resource identifier 3164 * @param start the start address of the resource 3165 * @param end the end address of the resource 3166 * @param count XXX end-start+1 3167 */ 3168 struct resource_list_entry * 3169 resource_list_add(struct resource_list *rl, int type, int rid, 3170 rman_res_t start, rman_res_t end, rman_res_t count) 3171 { 3172 struct resource_list_entry *rle; 3173 3174 rle = resource_list_find(rl, type, rid); 3175 if (!rle) { 3176 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3177 M_NOWAIT); 3178 if (!rle) 3179 panic("resource_list_add: can't record entry"); 3180 STAILQ_INSERT_TAIL(rl, rle, link); 3181 rle->type = type; 3182 rle->rid = rid; 3183 rle->res = NULL; 3184 rle->flags = 0; 3185 } 3186 3187 if (rle->res) 3188 panic("resource_list_add: resource entry is busy"); 3189 3190 rle->start = start; 3191 rle->end = end; 3192 rle->count = count; 3193 return (rle); 3194 } 3195 3196 /** 3197 * @brief Determine if a resource entry is busy. 3198 * 3199 * Returns true if a resource entry is busy meaning that it has an 3200 * associated resource that is not an unallocated "reserved" resource. 3201 * 3202 * @param rl the resource list to search 3203 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3204 * @param rid the resource identifier 3205 * 3206 * @returns Non-zero if the entry is busy, zero otherwise. 3207 */ 3208 int 3209 resource_list_busy(struct resource_list *rl, int type, int rid) 3210 { 3211 struct resource_list_entry *rle; 3212 3213 rle = resource_list_find(rl, type, rid); 3214 if (rle == NULL || rle->res == NULL) 3215 return (0); 3216 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3217 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3218 ("reserved resource is active")); 3219 return (0); 3220 } 3221 return (1); 3222 } 3223 3224 /** 3225 * @brief Determine if a resource entry is reserved. 3226 * 3227 * Returns true if a resource entry is reserved meaning that it has an 3228 * associated "reserved" resource. The resource can either be 3229 * allocated or unallocated. 3230 * 3231 * @param rl the resource list to search 3232 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3233 * @param rid the resource identifier 3234 * 3235 * @returns Non-zero if the entry is reserved, zero otherwise. 3236 */ 3237 int 3238 resource_list_reserved(struct resource_list *rl, int type, int rid) 3239 { 3240 struct resource_list_entry *rle; 3241 3242 rle = resource_list_find(rl, type, rid); 3243 if (rle != NULL && rle->flags & RLE_RESERVED) 3244 return (1); 3245 return (0); 3246 } 3247 3248 /** 3249 * @brief Find a resource entry by type and rid. 3250 * 3251 * @param rl the resource list to search 3252 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3253 * @param rid the resource identifier 3254 * 3255 * @returns the resource entry pointer or NULL if there is no such 3256 * entry. 3257 */ 3258 struct resource_list_entry * 3259 resource_list_find(struct resource_list *rl, int type, int rid) 3260 { 3261 struct resource_list_entry *rle; 3262 3263 STAILQ_FOREACH(rle, rl, link) { 3264 if (rle->type == type && rle->rid == rid) 3265 return (rle); 3266 } 3267 return (NULL); 3268 } 3269 3270 /** 3271 * @brief Delete a resource entry. 3272 * 3273 * @param rl the resource list to edit 3274 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3275 * @param rid the resource identifier 3276 */ 3277 void 3278 resource_list_delete(struct resource_list *rl, int type, int rid) 3279 { 3280 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3281 3282 if (rle) { 3283 if (rle->res != NULL) 3284 panic("resource_list_delete: resource has not been released"); 3285 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3286 free(rle, M_BUS); 3287 } 3288 } 3289 3290 /** 3291 * @brief Allocate a reserved resource 3292 * 3293 * This can be used by buses to force the allocation of resources 3294 * that are always active in the system even if they are not allocated 3295 * by a driver (e.g. PCI BARs). This function is usually called when 3296 * adding a new child to the bus. The resource is allocated from the 3297 * parent bus when it is reserved. The resource list entry is marked 3298 * with RLE_RESERVED to note that it is a reserved resource. 3299 * 3300 * Subsequent attempts to allocate the resource with 3301 * resource_list_alloc() will succeed the first time and will set 3302 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3303 * resource that has been allocated is released with 3304 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3305 * the actual resource remains allocated. The resource can be released to 3306 * the parent bus by calling resource_list_unreserve(). 3307 * 3308 * @param rl the resource list to allocate from 3309 * @param bus the parent device of @p child 3310 * @param child the device for which the resource is being reserved 3311 * @param type the type of resource to allocate 3312 * @param rid a pointer to the resource identifier 3313 * @param start hint at the start of the resource range - pass 3314 * @c 0 for any start address 3315 * @param end hint at the end of the resource range - pass 3316 * @c ~0 for any end address 3317 * @param count hint at the size of range required - pass @c 1 3318 * for any size 3319 * @param flags any extra flags to control the resource 3320 * allocation - see @c RF_XXX flags in 3321 * <sys/rman.h> for details 3322 * 3323 * @returns the resource which was allocated or @c NULL if no 3324 * resource could be allocated 3325 */ 3326 struct resource * 3327 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3328 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3329 { 3330 struct resource_list_entry *rle = NULL; 3331 int passthrough = (device_get_parent(child) != bus); 3332 struct resource *r; 3333 3334 if (passthrough) 3335 panic( 3336 "resource_list_reserve() should only be called for direct children"); 3337 if (flags & RF_ACTIVE) 3338 panic( 3339 "resource_list_reserve() should only reserve inactive resources"); 3340 3341 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3342 flags); 3343 if (r != NULL) { 3344 rle = resource_list_find(rl, type, *rid); 3345 rle->flags |= RLE_RESERVED; 3346 } 3347 return (r); 3348 } 3349 3350 /** 3351 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3352 * 3353 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3354 * and passing the allocation up to the parent of @p bus. This assumes 3355 * that the first entry of @c device_get_ivars(child) is a struct 3356 * resource_list. This also handles 'passthrough' allocations where a 3357 * child is a remote descendant of bus by passing the allocation up to 3358 * the parent of bus. 3359 * 3360 * Typically, a bus driver would store a list of child resources 3361 * somewhere in the child device's ivars (see device_get_ivars()) and 3362 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3363 * then call resource_list_alloc() to perform the allocation. 3364 * 3365 * @param rl the resource list to allocate from 3366 * @param bus the parent device of @p child 3367 * @param child the device which is requesting an allocation 3368 * @param type the type of resource to allocate 3369 * @param rid a pointer to the resource identifier 3370 * @param start hint at the start of the resource range - pass 3371 * @c 0 for any start address 3372 * @param end hint at the end of the resource range - pass 3373 * @c ~0 for any end address 3374 * @param count hint at the size of range required - pass @c 1 3375 * for any size 3376 * @param flags any extra flags to control the resource 3377 * allocation - see @c RF_XXX flags in 3378 * <sys/rman.h> for details 3379 * 3380 * @returns the resource which was allocated or @c NULL if no 3381 * resource could be allocated 3382 */ 3383 struct resource * 3384 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3385 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3386 { 3387 struct resource_list_entry *rle = NULL; 3388 int passthrough = (device_get_parent(child) != bus); 3389 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3390 3391 if (passthrough) { 3392 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3393 type, rid, start, end, count, flags)); 3394 } 3395 3396 rle = resource_list_find(rl, type, *rid); 3397 3398 if (!rle) 3399 return (NULL); /* no resource of that type/rid */ 3400 3401 if (rle->res) { 3402 if (rle->flags & RLE_RESERVED) { 3403 if (rle->flags & RLE_ALLOCATED) 3404 return (NULL); 3405 if ((flags & RF_ACTIVE) && 3406 bus_activate_resource(child, type, *rid, 3407 rle->res) != 0) 3408 return (NULL); 3409 rle->flags |= RLE_ALLOCATED; 3410 return (rle->res); 3411 } 3412 device_printf(bus, 3413 "resource entry %#x type %d for child %s is busy\n", *rid, 3414 type, device_get_nameunit(child)); 3415 return (NULL); 3416 } 3417 3418 if (isdefault) { 3419 start = rle->start; 3420 count = ulmax(count, rle->count); 3421 end = ulmax(rle->end, start + count - 1); 3422 } 3423 3424 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3425 type, rid, start, end, count, flags); 3426 3427 /* 3428 * Record the new range. 3429 */ 3430 if (rle->res) { 3431 rle->start = rman_get_start(rle->res); 3432 rle->end = rman_get_end(rle->res); 3433 rle->count = count; 3434 } 3435 3436 return (rle->res); 3437 } 3438 3439 /** 3440 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3441 * 3442 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3443 * used with resource_list_alloc(). 3444 * 3445 * @param rl the resource list which was allocated from 3446 * @param bus the parent device of @p child 3447 * @param child the device which is requesting a release 3448 * @param type the type of resource to release 3449 * @param rid the resource identifier 3450 * @param res the resource to release 3451 * 3452 * @retval 0 success 3453 * @retval non-zero a standard unix error code indicating what 3454 * error condition prevented the operation 3455 */ 3456 int 3457 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3458 int type, int rid, struct resource *res) 3459 { 3460 struct resource_list_entry *rle = NULL; 3461 int passthrough = (device_get_parent(child) != bus); 3462 int error; 3463 3464 if (passthrough) { 3465 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3466 type, rid, res)); 3467 } 3468 3469 rle = resource_list_find(rl, type, rid); 3470 3471 if (!rle) 3472 panic("resource_list_release: can't find resource"); 3473 if (!rle->res) 3474 panic("resource_list_release: resource entry is not busy"); 3475 if (rle->flags & RLE_RESERVED) { 3476 if (rle->flags & RLE_ALLOCATED) { 3477 if (rman_get_flags(res) & RF_ACTIVE) { 3478 error = bus_deactivate_resource(child, type, 3479 rid, res); 3480 if (error) 3481 return (error); 3482 } 3483 rle->flags &= ~RLE_ALLOCATED; 3484 return (0); 3485 } 3486 return (EINVAL); 3487 } 3488 3489 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3490 type, rid, res); 3491 if (error) 3492 return (error); 3493 3494 rle->res = NULL; 3495 return (0); 3496 } 3497 3498 /** 3499 * @brief Release all active resources of a given type 3500 * 3501 * Release all active resources of a specified type. This is intended 3502 * to be used to cleanup resources leaked by a driver after detach or 3503 * a failed attach. 3504 * 3505 * @param rl the resource list which was allocated from 3506 * @param bus the parent device of @p child 3507 * @param child the device whose active resources are being released 3508 * @param type the type of resources to release 3509 * 3510 * @retval 0 success 3511 * @retval EBUSY at least one resource was active 3512 */ 3513 int 3514 resource_list_release_active(struct resource_list *rl, device_t bus, 3515 device_t child, int type) 3516 { 3517 struct resource_list_entry *rle; 3518 int error, retval; 3519 3520 retval = 0; 3521 STAILQ_FOREACH(rle, rl, link) { 3522 if (rle->type != type) 3523 continue; 3524 if (rle->res == NULL) 3525 continue; 3526 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3527 RLE_RESERVED) 3528 continue; 3529 retval = EBUSY; 3530 error = resource_list_release(rl, bus, child, type, 3531 rman_get_rid(rle->res), rle->res); 3532 if (error != 0) 3533 device_printf(bus, 3534 "Failed to release active resource: %d\n", error); 3535 } 3536 return (retval); 3537 } 3538 3539 /** 3540 * @brief Fully release a reserved resource 3541 * 3542 * Fully releases a resource reserved via resource_list_reserve(). 3543 * 3544 * @param rl the resource list which was allocated from 3545 * @param bus the parent device of @p child 3546 * @param child the device whose reserved resource is being released 3547 * @param type the type of resource to release 3548 * @param rid the resource identifier 3549 * @param res the resource to release 3550 * 3551 * @retval 0 success 3552 * @retval non-zero a standard unix error code indicating what 3553 * error condition prevented the operation 3554 */ 3555 int 3556 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3557 int type, int rid) 3558 { 3559 struct resource_list_entry *rle = NULL; 3560 int passthrough = (device_get_parent(child) != bus); 3561 3562 if (passthrough) 3563 panic( 3564 "resource_list_unreserve() should only be called for direct children"); 3565 3566 rle = resource_list_find(rl, type, rid); 3567 3568 if (!rle) 3569 panic("resource_list_unreserve: can't find resource"); 3570 if (!(rle->flags & RLE_RESERVED)) 3571 return (EINVAL); 3572 if (rle->flags & RLE_ALLOCATED) 3573 return (EBUSY); 3574 rle->flags &= ~RLE_RESERVED; 3575 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3576 } 3577 3578 /** 3579 * @brief Print a description of resources in a resource list 3580 * 3581 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3582 * The name is printed if at least one resource of the given type is available. 3583 * The format is used to print resource start and end. 3584 * 3585 * @param rl the resource list to print 3586 * @param name the name of @p type, e.g. @c "memory" 3587 * @param type type type of resource entry to print 3588 * @param format printf(9) format string to print resource 3589 * start and end values 3590 * 3591 * @returns the number of characters printed 3592 */ 3593 int 3594 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3595 const char *format) 3596 { 3597 struct resource_list_entry *rle; 3598 int printed, retval; 3599 3600 printed = 0; 3601 retval = 0; 3602 /* Yes, this is kinda cheating */ 3603 STAILQ_FOREACH(rle, rl, link) { 3604 if (rle->type == type) { 3605 if (printed == 0) 3606 retval += printf(" %s ", name); 3607 else 3608 retval += printf(","); 3609 printed++; 3610 retval += printf(format, rle->start); 3611 if (rle->count > 1) { 3612 retval += printf("-"); 3613 retval += printf(format, rle->start + 3614 rle->count - 1); 3615 } 3616 } 3617 } 3618 return (retval); 3619 } 3620 3621 /** 3622 * @brief Releases all the resources in a list. 3623 * 3624 * @param rl The resource list to purge. 3625 * 3626 * @returns nothing 3627 */ 3628 void 3629 resource_list_purge(struct resource_list *rl) 3630 { 3631 struct resource_list_entry *rle; 3632 3633 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3634 if (rle->res) 3635 bus_release_resource(rman_get_device(rle->res), 3636 rle->type, rle->rid, rle->res); 3637 STAILQ_REMOVE_HEAD(rl, link); 3638 free(rle, M_BUS); 3639 } 3640 } 3641 3642 device_t 3643 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3644 { 3645 return (device_add_child_ordered(dev, order, name, unit)); 3646 } 3647 3648 /** 3649 * @brief Helper function for implementing DEVICE_PROBE() 3650 * 3651 * This function can be used to help implement the DEVICE_PROBE() for 3652 * a bus (i.e. a device which has other devices attached to it). It 3653 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3654 * devclass. 3655 */ 3656 int 3657 bus_generic_probe(device_t dev) 3658 { 3659 devclass_t dc = dev->devclass; 3660 driverlink_t dl; 3661 3662 TAILQ_FOREACH(dl, &dc->drivers, link) { 3663 /* 3664 * If this driver's pass is too high, then ignore it. 3665 * For most drivers in the default pass, this will 3666 * never be true. For early-pass drivers they will 3667 * only call the identify routines of eligible drivers 3668 * when this routine is called. Drivers for later 3669 * passes should have their identify routines called 3670 * on early-pass buses during BUS_NEW_PASS(). 3671 */ 3672 if (dl->pass > bus_current_pass) 3673 continue; 3674 DEVICE_IDENTIFY(dl->driver, dev); 3675 } 3676 3677 return (0); 3678 } 3679 3680 /** 3681 * @brief Helper function for implementing DEVICE_ATTACH() 3682 * 3683 * This function can be used to help implement the DEVICE_ATTACH() for 3684 * a bus. It calls device_probe_and_attach() for each of the device's 3685 * children. 3686 */ 3687 int 3688 bus_generic_attach(device_t dev) 3689 { 3690 device_t child; 3691 3692 TAILQ_FOREACH(child, &dev->children, link) { 3693 device_probe_and_attach(child); 3694 } 3695 3696 return (0); 3697 } 3698 3699 /** 3700 * @brief Helper function for delaying attaching children 3701 * 3702 * Many buses can't run transactions on the bus which children need to probe and 3703 * attach until after interrupts and/or timers are running. This function 3704 * delays their attach until interrupts and timers are enabled. 3705 */ 3706 int 3707 bus_delayed_attach_children(device_t dev) 3708 { 3709 /* Probe and attach the bus children when interrupts are available */ 3710 config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev); 3711 3712 return (0); 3713 } 3714 3715 /** 3716 * @brief Helper function for implementing DEVICE_DETACH() 3717 * 3718 * This function can be used to help implement the DEVICE_DETACH() for 3719 * a bus. It calls device_detach() for each of the device's 3720 * children. 3721 */ 3722 int 3723 bus_generic_detach(device_t dev) 3724 { 3725 device_t child; 3726 int error; 3727 3728 if (dev->state != DS_ATTACHED) 3729 return (EBUSY); 3730 3731 /* 3732 * Detach children in the reverse order. 3733 * See bus_generic_suspend for details. 3734 */ 3735 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3736 if ((error = device_detach(child)) != 0) 3737 return (error); 3738 } 3739 3740 return (0); 3741 } 3742 3743 /** 3744 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3745 * 3746 * This function can be used to help implement the DEVICE_SHUTDOWN() 3747 * for a bus. It calls device_shutdown() for each of the device's 3748 * children. 3749 */ 3750 int 3751 bus_generic_shutdown(device_t dev) 3752 { 3753 device_t child; 3754 3755 /* 3756 * Shut down children in the reverse order. 3757 * See bus_generic_suspend for details. 3758 */ 3759 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3760 device_shutdown(child); 3761 } 3762 3763 return (0); 3764 } 3765 3766 /** 3767 * @brief Default function for suspending a child device. 3768 * 3769 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3770 */ 3771 int 3772 bus_generic_suspend_child(device_t dev, device_t child) 3773 { 3774 int error; 3775 3776 error = DEVICE_SUSPEND(child); 3777 3778 if (error == 0) 3779 child->flags |= DF_SUSPENDED; 3780 3781 return (error); 3782 } 3783 3784 /** 3785 * @brief Default function for resuming a child device. 3786 * 3787 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3788 */ 3789 int 3790 bus_generic_resume_child(device_t dev, device_t child) 3791 { 3792 DEVICE_RESUME(child); 3793 child->flags &= ~DF_SUSPENDED; 3794 3795 return (0); 3796 } 3797 3798 /** 3799 * @brief Helper function for implementing DEVICE_SUSPEND() 3800 * 3801 * This function can be used to help implement the DEVICE_SUSPEND() 3802 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3803 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3804 * operation is aborted and any devices which were suspended are 3805 * resumed immediately by calling their DEVICE_RESUME() methods. 3806 */ 3807 int 3808 bus_generic_suspend(device_t dev) 3809 { 3810 int error; 3811 device_t child; 3812 3813 /* 3814 * Suspend children in the reverse order. 3815 * For most buses all children are equal, so the order does not matter. 3816 * Other buses, such as acpi, carefully order their child devices to 3817 * express implicit dependencies between them. For such buses it is 3818 * safer to bring down devices in the reverse order. 3819 */ 3820 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3821 error = BUS_SUSPEND_CHILD(dev, child); 3822 if (error != 0) { 3823 child = TAILQ_NEXT(child, link); 3824 if (child != NULL) { 3825 TAILQ_FOREACH_FROM(child, &dev->children, link) 3826 BUS_RESUME_CHILD(dev, child); 3827 } 3828 return (error); 3829 } 3830 } 3831 return (0); 3832 } 3833 3834 /** 3835 * @brief Helper function for implementing DEVICE_RESUME() 3836 * 3837 * This function can be used to help implement the DEVICE_RESUME() for 3838 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3839 */ 3840 int 3841 bus_generic_resume(device_t dev) 3842 { 3843 device_t child; 3844 3845 TAILQ_FOREACH(child, &dev->children, link) { 3846 BUS_RESUME_CHILD(dev, child); 3847 /* if resume fails, there's nothing we can usefully do... */ 3848 } 3849 return (0); 3850 } 3851 3852 /** 3853 * @brief Helper function for implementing BUS_RESET_POST 3854 * 3855 * Bus can use this function to implement common operations of 3856 * re-attaching or resuming the children after the bus itself was 3857 * reset, and after restoring bus-unique state of children. 3858 * 3859 * @param dev The bus 3860 * #param flags DEVF_RESET_* 3861 */ 3862 int 3863 bus_helper_reset_post(device_t dev, int flags) 3864 { 3865 device_t child; 3866 int error, error1; 3867 3868 error = 0; 3869 TAILQ_FOREACH(child, &dev->children,link) { 3870 BUS_RESET_POST(dev, child); 3871 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3872 device_probe_and_attach(child) : 3873 BUS_RESUME_CHILD(dev, child); 3874 if (error == 0 && error1 != 0) 3875 error = error1; 3876 } 3877 return (error); 3878 } 3879 3880 static void 3881 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3882 { 3883 child = TAILQ_NEXT(child, link); 3884 if (child == NULL) 3885 return; 3886 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3887 BUS_RESET_POST(dev, child); 3888 if ((flags & DEVF_RESET_DETACH) != 0) 3889 device_probe_and_attach(child); 3890 else 3891 BUS_RESUME_CHILD(dev, child); 3892 } 3893 } 3894 3895 /** 3896 * @brief Helper function for implementing BUS_RESET_PREPARE 3897 * 3898 * Bus can use this function to implement common operations of 3899 * detaching or suspending the children before the bus itself is 3900 * reset, and then save bus-unique state of children that must 3901 * persists around reset. 3902 * 3903 * @param dev The bus 3904 * #param flags DEVF_RESET_* 3905 */ 3906 int 3907 bus_helper_reset_prepare(device_t dev, int flags) 3908 { 3909 device_t child; 3910 int error; 3911 3912 if (dev->state != DS_ATTACHED) 3913 return (EBUSY); 3914 3915 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3916 if ((flags & DEVF_RESET_DETACH) != 0) { 3917 error = device_get_state(child) == DS_ATTACHED ? 3918 device_detach(child) : 0; 3919 } else { 3920 error = BUS_SUSPEND_CHILD(dev, child); 3921 } 3922 if (error == 0) { 3923 error = BUS_RESET_PREPARE(dev, child); 3924 if (error != 0) { 3925 if ((flags & DEVF_RESET_DETACH) != 0) 3926 device_probe_and_attach(child); 3927 else 3928 BUS_RESUME_CHILD(dev, child); 3929 } 3930 } 3931 if (error != 0) { 3932 bus_helper_reset_prepare_rollback(dev, child, flags); 3933 return (error); 3934 } 3935 } 3936 return (0); 3937 } 3938 3939 /** 3940 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3941 * 3942 * This function prints the first part of the ascii representation of 3943 * @p child, including its name, unit and description (if any - see 3944 * device_set_desc()). 3945 * 3946 * @returns the number of characters printed 3947 */ 3948 int 3949 bus_print_child_header(device_t dev, device_t child) 3950 { 3951 int retval = 0; 3952 3953 if (device_get_desc(child)) { 3954 retval += device_printf(child, "<%s>", device_get_desc(child)); 3955 } else { 3956 retval += printf("%s", device_get_nameunit(child)); 3957 } 3958 3959 return (retval); 3960 } 3961 3962 /** 3963 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3964 * 3965 * This function prints the last part of the ascii representation of 3966 * @p child, which consists of the string @c " on " followed by the 3967 * name and unit of the @p dev. 3968 * 3969 * @returns the number of characters printed 3970 */ 3971 int 3972 bus_print_child_footer(device_t dev, device_t child) 3973 { 3974 return (printf(" on %s\n", device_get_nameunit(dev))); 3975 } 3976 3977 /** 3978 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3979 * 3980 * This function prints out the VM domain for the given device. 3981 * 3982 * @returns the number of characters printed 3983 */ 3984 int 3985 bus_print_child_domain(device_t dev, device_t child) 3986 { 3987 int domain; 3988 3989 /* No domain? Don't print anything */ 3990 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3991 return (0); 3992 3993 return (printf(" numa-domain %d", domain)); 3994 } 3995 3996 /** 3997 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3998 * 3999 * This function simply calls bus_print_child_header() followed by 4000 * bus_print_child_footer(). 4001 * 4002 * @returns the number of characters printed 4003 */ 4004 int 4005 bus_generic_print_child(device_t dev, device_t child) 4006 { 4007 int retval = 0; 4008 4009 retval += bus_print_child_header(dev, child); 4010 retval += bus_print_child_domain(dev, child); 4011 retval += bus_print_child_footer(dev, child); 4012 4013 return (retval); 4014 } 4015 4016 /** 4017 * @brief Stub function for implementing BUS_READ_IVAR(). 4018 * 4019 * @returns ENOENT 4020 */ 4021 int 4022 bus_generic_read_ivar(device_t dev, device_t child, int index, 4023 uintptr_t * result) 4024 { 4025 return (ENOENT); 4026 } 4027 4028 /** 4029 * @brief Stub function for implementing BUS_WRITE_IVAR(). 4030 * 4031 * @returns ENOENT 4032 */ 4033 int 4034 bus_generic_write_ivar(device_t dev, device_t child, int index, 4035 uintptr_t value) 4036 { 4037 return (ENOENT); 4038 } 4039 4040 /** 4041 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 4042 * 4043 * @returns NULL 4044 */ 4045 struct resource_list * 4046 bus_generic_get_resource_list(device_t dev, device_t child) 4047 { 4048 return (NULL); 4049 } 4050 4051 /** 4052 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 4053 * 4054 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 4055 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 4056 * and then calls device_probe_and_attach() for each unattached child. 4057 */ 4058 void 4059 bus_generic_driver_added(device_t dev, driver_t *driver) 4060 { 4061 device_t child; 4062 4063 DEVICE_IDENTIFY(driver, dev); 4064 TAILQ_FOREACH(child, &dev->children, link) { 4065 if (child->state == DS_NOTPRESENT || 4066 (child->flags & DF_REBID)) 4067 device_probe_and_attach(child); 4068 } 4069 } 4070 4071 /** 4072 * @brief Helper function for implementing BUS_NEW_PASS(). 4073 * 4074 * This implementing of BUS_NEW_PASS() first calls the identify 4075 * routines for any drivers that probe at the current pass. Then it 4076 * walks the list of devices for this bus. If a device is already 4077 * attached, then it calls BUS_NEW_PASS() on that device. If the 4078 * device is not already attached, it attempts to attach a driver to 4079 * it. 4080 */ 4081 void 4082 bus_generic_new_pass(device_t dev) 4083 { 4084 driverlink_t dl; 4085 devclass_t dc; 4086 device_t child; 4087 4088 dc = dev->devclass; 4089 TAILQ_FOREACH(dl, &dc->drivers, link) { 4090 if (dl->pass == bus_current_pass) 4091 DEVICE_IDENTIFY(dl->driver, dev); 4092 } 4093 TAILQ_FOREACH(child, &dev->children, link) { 4094 if (child->state >= DS_ATTACHED) 4095 BUS_NEW_PASS(child); 4096 else if (child->state == DS_NOTPRESENT) 4097 device_probe_and_attach(child); 4098 } 4099 } 4100 4101 /** 4102 * @brief Helper function for implementing BUS_SETUP_INTR(). 4103 * 4104 * This simple implementation of BUS_SETUP_INTR() simply calls the 4105 * BUS_SETUP_INTR() method of the parent of @p dev. 4106 */ 4107 int 4108 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 4109 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 4110 void **cookiep) 4111 { 4112 /* Propagate up the bus hierarchy until someone handles it. */ 4113 if (dev->parent) 4114 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 4115 filter, intr, arg, cookiep)); 4116 return (EINVAL); 4117 } 4118 4119 /** 4120 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 4121 * 4122 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 4123 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 4124 */ 4125 int 4126 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 4127 void *cookie) 4128 { 4129 /* Propagate up the bus hierarchy until someone handles it. */ 4130 if (dev->parent) 4131 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 4132 return (EINVAL); 4133 } 4134 4135 /** 4136 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 4137 * 4138 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 4139 * BUS_SUSPEND_INTR() method of the parent of @p dev. 4140 */ 4141 int 4142 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 4143 { 4144 /* Propagate up the bus hierarchy until someone handles it. */ 4145 if (dev->parent) 4146 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 4147 return (EINVAL); 4148 } 4149 4150 /** 4151 * @brief Helper function for implementing BUS_RESUME_INTR(). 4152 * 4153 * This simple implementation of BUS_RESUME_INTR() simply calls the 4154 * BUS_RESUME_INTR() method of the parent of @p dev. 4155 */ 4156 int 4157 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 4158 { 4159 /* Propagate up the bus hierarchy until someone handles it. */ 4160 if (dev->parent) 4161 return (BUS_RESUME_INTR(dev->parent, child, irq)); 4162 return (EINVAL); 4163 } 4164 4165 /** 4166 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4167 * 4168 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 4169 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 4170 */ 4171 int 4172 bus_generic_adjust_resource(device_t dev, device_t child, int type, 4173 struct resource *r, rman_res_t start, rman_res_t end) 4174 { 4175 /* Propagate up the bus hierarchy until someone handles it. */ 4176 if (dev->parent) 4177 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 4178 end)); 4179 return (EINVAL); 4180 } 4181 4182 /** 4183 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4184 * 4185 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 4186 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 4187 */ 4188 struct resource * 4189 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4190 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4191 { 4192 /* Propagate up the bus hierarchy until someone handles it. */ 4193 if (dev->parent) 4194 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4195 start, end, count, flags)); 4196 return (NULL); 4197 } 4198 4199 /** 4200 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4201 * 4202 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4203 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4204 */ 4205 int 4206 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 4207 struct resource *r) 4208 { 4209 /* Propagate up the bus hierarchy until someone handles it. */ 4210 if (dev->parent) 4211 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 4212 r)); 4213 return (EINVAL); 4214 } 4215 4216 /** 4217 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4218 * 4219 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4220 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4221 */ 4222 int 4223 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 4224 struct resource *r) 4225 { 4226 /* Propagate up the bus hierarchy until someone handles it. */ 4227 if (dev->parent) 4228 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 4229 r)); 4230 return (EINVAL); 4231 } 4232 4233 /** 4234 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4235 * 4236 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4237 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4238 */ 4239 int 4240 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 4241 int rid, struct resource *r) 4242 { 4243 /* Propagate up the bus hierarchy until someone handles it. */ 4244 if (dev->parent) 4245 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4246 r)); 4247 return (EINVAL); 4248 } 4249 4250 /** 4251 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4252 * 4253 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4254 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4255 */ 4256 int 4257 bus_generic_map_resource(device_t dev, device_t child, int type, 4258 struct resource *r, struct resource_map_request *args, 4259 struct resource_map *map) 4260 { 4261 /* Propagate up the bus hierarchy until someone handles it. */ 4262 if (dev->parent) 4263 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 4264 map)); 4265 return (EINVAL); 4266 } 4267 4268 /** 4269 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4270 * 4271 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4272 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4273 */ 4274 int 4275 bus_generic_unmap_resource(device_t dev, device_t child, int type, 4276 struct resource *r, struct resource_map *map) 4277 { 4278 /* Propagate up the bus hierarchy until someone handles it. */ 4279 if (dev->parent) 4280 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 4281 return (EINVAL); 4282 } 4283 4284 /** 4285 * @brief Helper function for implementing BUS_BIND_INTR(). 4286 * 4287 * This simple implementation of BUS_BIND_INTR() simply calls the 4288 * BUS_BIND_INTR() method of the parent of @p dev. 4289 */ 4290 int 4291 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4292 int cpu) 4293 { 4294 /* Propagate up the bus hierarchy until someone handles it. */ 4295 if (dev->parent) 4296 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4297 return (EINVAL); 4298 } 4299 4300 /** 4301 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4302 * 4303 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4304 * BUS_CONFIG_INTR() method of the parent of @p dev. 4305 */ 4306 int 4307 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4308 enum intr_polarity pol) 4309 { 4310 /* Propagate up the bus hierarchy until someone handles it. */ 4311 if (dev->parent) 4312 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4313 return (EINVAL); 4314 } 4315 4316 /** 4317 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4318 * 4319 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4320 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4321 */ 4322 int 4323 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4324 void *cookie, const char *descr) 4325 { 4326 /* Propagate up the bus hierarchy until someone handles it. */ 4327 if (dev->parent) 4328 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4329 descr)); 4330 return (EINVAL); 4331 } 4332 4333 /** 4334 * @brief Helper function for implementing BUS_GET_CPUS(). 4335 * 4336 * This simple implementation of BUS_GET_CPUS() simply calls the 4337 * BUS_GET_CPUS() method of the parent of @p dev. 4338 */ 4339 int 4340 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4341 size_t setsize, cpuset_t *cpuset) 4342 { 4343 /* Propagate up the bus hierarchy until someone handles it. */ 4344 if (dev->parent != NULL) 4345 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4346 return (EINVAL); 4347 } 4348 4349 /** 4350 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4351 * 4352 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4353 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4354 */ 4355 bus_dma_tag_t 4356 bus_generic_get_dma_tag(device_t dev, device_t child) 4357 { 4358 /* Propagate up the bus hierarchy until someone handles it. */ 4359 if (dev->parent != NULL) 4360 return (BUS_GET_DMA_TAG(dev->parent, child)); 4361 return (NULL); 4362 } 4363 4364 /** 4365 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4366 * 4367 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4368 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4369 */ 4370 bus_space_tag_t 4371 bus_generic_get_bus_tag(device_t dev, device_t child) 4372 { 4373 /* Propagate up the bus hierarchy until someone handles it. */ 4374 if (dev->parent != NULL) 4375 return (BUS_GET_BUS_TAG(dev->parent, child)); 4376 return ((bus_space_tag_t)0); 4377 } 4378 4379 /** 4380 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4381 * 4382 * This implementation of BUS_GET_RESOURCE() uses the 4383 * resource_list_find() function to do most of the work. It calls 4384 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4385 * search. 4386 */ 4387 int 4388 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4389 rman_res_t *startp, rman_res_t *countp) 4390 { 4391 struct resource_list * rl = NULL; 4392 struct resource_list_entry * rle = NULL; 4393 4394 rl = BUS_GET_RESOURCE_LIST(dev, child); 4395 if (!rl) 4396 return (EINVAL); 4397 4398 rle = resource_list_find(rl, type, rid); 4399 if (!rle) 4400 return (ENOENT); 4401 4402 if (startp) 4403 *startp = rle->start; 4404 if (countp) 4405 *countp = rle->count; 4406 4407 return (0); 4408 } 4409 4410 /** 4411 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4412 * 4413 * This implementation of BUS_SET_RESOURCE() uses the 4414 * resource_list_add() function to do most of the work. It calls 4415 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4416 * edit. 4417 */ 4418 int 4419 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4420 rman_res_t start, rman_res_t count) 4421 { 4422 struct resource_list * rl = NULL; 4423 4424 rl = BUS_GET_RESOURCE_LIST(dev, child); 4425 if (!rl) 4426 return (EINVAL); 4427 4428 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4429 4430 return (0); 4431 } 4432 4433 /** 4434 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4435 * 4436 * This implementation of BUS_DELETE_RESOURCE() uses the 4437 * resource_list_delete() function to do most of the work. It calls 4438 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4439 * edit. 4440 */ 4441 void 4442 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4443 { 4444 struct resource_list * rl = NULL; 4445 4446 rl = BUS_GET_RESOURCE_LIST(dev, child); 4447 if (!rl) 4448 return; 4449 4450 resource_list_delete(rl, type, rid); 4451 4452 return; 4453 } 4454 4455 /** 4456 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4457 * 4458 * This implementation of BUS_RELEASE_RESOURCE() uses the 4459 * resource_list_release() function to do most of the work. It calls 4460 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4461 */ 4462 int 4463 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4464 int rid, struct resource *r) 4465 { 4466 struct resource_list * rl = NULL; 4467 4468 if (device_get_parent(child) != dev) 4469 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4470 type, rid, r)); 4471 4472 rl = BUS_GET_RESOURCE_LIST(dev, child); 4473 if (!rl) 4474 return (EINVAL); 4475 4476 return (resource_list_release(rl, dev, child, type, rid, r)); 4477 } 4478 4479 /** 4480 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4481 * 4482 * This implementation of BUS_ALLOC_RESOURCE() uses the 4483 * resource_list_alloc() function to do most of the work. It calls 4484 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4485 */ 4486 struct resource * 4487 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4488 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4489 { 4490 struct resource_list * rl = NULL; 4491 4492 if (device_get_parent(child) != dev) 4493 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4494 type, rid, start, end, count, flags)); 4495 4496 rl = BUS_GET_RESOURCE_LIST(dev, child); 4497 if (!rl) 4498 return (NULL); 4499 4500 return (resource_list_alloc(rl, dev, child, type, rid, 4501 start, end, count, flags)); 4502 } 4503 4504 /** 4505 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4506 * 4507 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4508 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4509 */ 4510 int 4511 bus_generic_child_present(device_t dev, device_t child) 4512 { 4513 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4514 } 4515 4516 int 4517 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4518 { 4519 if (dev->parent) 4520 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4521 4522 return (ENOENT); 4523 } 4524 4525 /** 4526 * @brief Helper function for implementing BUS_RESCAN(). 4527 * 4528 * This null implementation of BUS_RESCAN() always fails to indicate 4529 * the bus does not support rescanning. 4530 */ 4531 int 4532 bus_null_rescan(device_t dev) 4533 { 4534 return (ENXIO); 4535 } 4536 4537 /* 4538 * Some convenience functions to make it easier for drivers to use the 4539 * resource-management functions. All these really do is hide the 4540 * indirection through the parent's method table, making for slightly 4541 * less-wordy code. In the future, it might make sense for this code 4542 * to maintain some sort of a list of resources allocated by each device. 4543 */ 4544 4545 int 4546 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4547 struct resource **res) 4548 { 4549 int i; 4550 4551 for (i = 0; rs[i].type != -1; i++) 4552 res[i] = NULL; 4553 for (i = 0; rs[i].type != -1; i++) { 4554 res[i] = bus_alloc_resource_any(dev, 4555 rs[i].type, &rs[i].rid, rs[i].flags); 4556 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4557 bus_release_resources(dev, rs, res); 4558 return (ENXIO); 4559 } 4560 } 4561 return (0); 4562 } 4563 4564 void 4565 bus_release_resources(device_t dev, const struct resource_spec *rs, 4566 struct resource **res) 4567 { 4568 int i; 4569 4570 for (i = 0; rs[i].type != -1; i++) 4571 if (res[i] != NULL) { 4572 bus_release_resource( 4573 dev, rs[i].type, rs[i].rid, res[i]); 4574 res[i] = NULL; 4575 } 4576 } 4577 4578 /** 4579 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4580 * 4581 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4582 * parent of @p dev. 4583 */ 4584 struct resource * 4585 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4586 rman_res_t end, rman_res_t count, u_int flags) 4587 { 4588 struct resource *res; 4589 4590 if (dev->parent == NULL) 4591 return (NULL); 4592 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4593 count, flags); 4594 return (res); 4595 } 4596 4597 /** 4598 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4599 * 4600 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4601 * parent of @p dev. 4602 */ 4603 int 4604 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4605 rman_res_t end) 4606 { 4607 if (dev->parent == NULL) 4608 return (EINVAL); 4609 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4610 } 4611 4612 /** 4613 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4614 * 4615 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4616 * parent of @p dev. 4617 */ 4618 int 4619 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4620 { 4621 if (dev->parent == NULL) 4622 return (EINVAL); 4623 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4624 } 4625 4626 /** 4627 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4628 * 4629 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4630 * parent of @p dev. 4631 */ 4632 int 4633 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4634 { 4635 if (dev->parent == NULL) 4636 return (EINVAL); 4637 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4638 } 4639 4640 /** 4641 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4642 * 4643 * This function simply calls the BUS_MAP_RESOURCE() method of the 4644 * parent of @p dev. 4645 */ 4646 int 4647 bus_map_resource(device_t dev, int type, struct resource *r, 4648 struct resource_map_request *args, struct resource_map *map) 4649 { 4650 if (dev->parent == NULL) 4651 return (EINVAL); 4652 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4653 } 4654 4655 /** 4656 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4657 * 4658 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4659 * parent of @p dev. 4660 */ 4661 int 4662 bus_unmap_resource(device_t dev, int type, struct resource *r, 4663 struct resource_map *map) 4664 { 4665 if (dev->parent == NULL) 4666 return (EINVAL); 4667 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4668 } 4669 4670 /** 4671 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4672 * 4673 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4674 * parent of @p dev. 4675 */ 4676 int 4677 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4678 { 4679 int rv; 4680 4681 if (dev->parent == NULL) 4682 return (EINVAL); 4683 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4684 return (rv); 4685 } 4686 4687 /** 4688 * @brief Wrapper function for BUS_SETUP_INTR(). 4689 * 4690 * This function simply calls the BUS_SETUP_INTR() method of the 4691 * parent of @p dev. 4692 */ 4693 int 4694 bus_setup_intr(device_t dev, struct resource *r, int flags, 4695 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4696 { 4697 int error; 4698 4699 if (dev->parent == NULL) 4700 return (EINVAL); 4701 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4702 arg, cookiep); 4703 if (error != 0) 4704 return (error); 4705 if (handler != NULL && !(flags & INTR_MPSAFE)) 4706 device_printf(dev, "[GIANT-LOCKED]\n"); 4707 return (0); 4708 } 4709 4710 /** 4711 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4712 * 4713 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4714 * parent of @p dev. 4715 */ 4716 int 4717 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4718 { 4719 if (dev->parent == NULL) 4720 return (EINVAL); 4721 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4722 } 4723 4724 /** 4725 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4726 * 4727 * This function simply calls the BUS_SUSPEND_INTR() method of the 4728 * parent of @p dev. 4729 */ 4730 int 4731 bus_suspend_intr(device_t dev, struct resource *r) 4732 { 4733 if (dev->parent == NULL) 4734 return (EINVAL); 4735 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4736 } 4737 4738 /** 4739 * @brief Wrapper function for BUS_RESUME_INTR(). 4740 * 4741 * This function simply calls the BUS_RESUME_INTR() method of the 4742 * parent of @p dev. 4743 */ 4744 int 4745 bus_resume_intr(device_t dev, struct resource *r) 4746 { 4747 if (dev->parent == NULL) 4748 return (EINVAL); 4749 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4750 } 4751 4752 /** 4753 * @brief Wrapper function for BUS_BIND_INTR(). 4754 * 4755 * This function simply calls the BUS_BIND_INTR() method of the 4756 * parent of @p dev. 4757 */ 4758 int 4759 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4760 { 4761 if (dev->parent == NULL) 4762 return (EINVAL); 4763 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4764 } 4765 4766 /** 4767 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4768 * 4769 * This function first formats the requested description into a 4770 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4771 * the parent of @p dev. 4772 */ 4773 int 4774 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4775 const char *fmt, ...) 4776 { 4777 va_list ap; 4778 char descr[MAXCOMLEN + 1]; 4779 4780 if (dev->parent == NULL) 4781 return (EINVAL); 4782 va_start(ap, fmt); 4783 vsnprintf(descr, sizeof(descr), fmt, ap); 4784 va_end(ap); 4785 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4786 } 4787 4788 /** 4789 * @brief Wrapper function for BUS_SET_RESOURCE(). 4790 * 4791 * This function simply calls the BUS_SET_RESOURCE() method of the 4792 * parent of @p dev. 4793 */ 4794 int 4795 bus_set_resource(device_t dev, int type, int rid, 4796 rman_res_t start, rman_res_t count) 4797 { 4798 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4799 start, count)); 4800 } 4801 4802 /** 4803 * @brief Wrapper function for BUS_GET_RESOURCE(). 4804 * 4805 * This function simply calls the BUS_GET_RESOURCE() method of the 4806 * parent of @p dev. 4807 */ 4808 int 4809 bus_get_resource(device_t dev, int type, int rid, 4810 rman_res_t *startp, rman_res_t *countp) 4811 { 4812 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4813 startp, countp)); 4814 } 4815 4816 /** 4817 * @brief Wrapper function for BUS_GET_RESOURCE(). 4818 * 4819 * This function simply calls the BUS_GET_RESOURCE() method of the 4820 * parent of @p dev and returns the start value. 4821 */ 4822 rman_res_t 4823 bus_get_resource_start(device_t dev, int type, int rid) 4824 { 4825 rman_res_t start; 4826 rman_res_t count; 4827 int error; 4828 4829 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4830 &start, &count); 4831 if (error) 4832 return (0); 4833 return (start); 4834 } 4835 4836 /** 4837 * @brief Wrapper function for BUS_GET_RESOURCE(). 4838 * 4839 * This function simply calls the BUS_GET_RESOURCE() method of the 4840 * parent of @p dev and returns the count value. 4841 */ 4842 rman_res_t 4843 bus_get_resource_count(device_t dev, int type, int rid) 4844 { 4845 rman_res_t start; 4846 rman_res_t count; 4847 int error; 4848 4849 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4850 &start, &count); 4851 if (error) 4852 return (0); 4853 return (count); 4854 } 4855 4856 /** 4857 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4858 * 4859 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4860 * parent of @p dev. 4861 */ 4862 void 4863 bus_delete_resource(device_t dev, int type, int rid) 4864 { 4865 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4866 } 4867 4868 /** 4869 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4870 * 4871 * This function simply calls the BUS_CHILD_PRESENT() method of the 4872 * parent of @p dev. 4873 */ 4874 int 4875 bus_child_present(device_t child) 4876 { 4877 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4878 } 4879 4880 /** 4881 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4882 * 4883 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4884 * parent of @p dev. 4885 */ 4886 int 4887 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4888 { 4889 device_t parent; 4890 4891 parent = device_get_parent(child); 4892 if (parent == NULL) { 4893 *buf = '\0'; 4894 return (0); 4895 } 4896 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4897 } 4898 4899 /** 4900 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4901 * 4902 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4903 * parent of @p dev. 4904 */ 4905 int 4906 bus_child_location_str(device_t child, char *buf, size_t buflen) 4907 { 4908 device_t parent; 4909 4910 parent = device_get_parent(child); 4911 if (parent == NULL) { 4912 *buf = '\0'; 4913 return (0); 4914 } 4915 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4916 } 4917 4918 /** 4919 * @brief Wrapper function for bus_child_pnpinfo_str using sbuf 4920 * 4921 * A convenient wrapper frunction for bus_child_pnpinfo_str that allows 4922 * us to splat that into an sbuf. It uses unholy knowledge of sbuf to 4923 * accomplish this, however. It is an interim function until we can convert 4924 * this interface more fully. 4925 */ 4926 /* Note: we reach inside of sbuf because it's API isn't rich enough to do this */ 4927 #define SPACE(s) ((s)->s_size - (s)->s_len) 4928 #define EOB(s) ((s)->s_buf + (s)->s_len) 4929 4930 static int 4931 bus_child_pnpinfo_sb(device_t dev, struct sbuf *sb) 4932 { 4933 char *p; 4934 size_t space; 4935 4936 MPASS((sb->s_flags & SBUF_INCLUDENUL) == 0); 4937 if (sb->s_error != 0) 4938 return (-1); 4939 p = EOB(sb); 4940 *p = '\0'; /* sbuf buffer isn't NUL terminated until sbuf_finish() */ 4941 space = SPACE(sb); 4942 if (space <= 1) { 4943 sb->s_error = ENOMEM; 4944 return (-1); 4945 } 4946 bus_child_pnpinfo_str(dev, p, space); 4947 sb->s_len += strlen(p); 4948 return (0); 4949 } 4950 4951 /** 4952 * @brief Wrapper function for bus_child_pnpinfo_str using sbuf 4953 * 4954 * A convenient wrapper frunction for bus_child_pnpinfo_str that allows 4955 * us to splat that into an sbuf. It uses unholy knowledge of sbuf to 4956 * accomplish this, however. It is an interim function until we can convert 4957 * this interface more fully. 4958 */ 4959 static int 4960 bus_child_location_sb(device_t dev, struct sbuf *sb) 4961 { 4962 char *p; 4963 size_t space; 4964 4965 MPASS((sb->s_flags & SBUF_INCLUDENUL) == 0); 4966 if (sb->s_error != 0) 4967 return (-1); 4968 p = EOB(sb); 4969 *p = '\0'; /* sbuf buffer isn't NUL terminated until sbuf_finish() */ 4970 space = SPACE(sb); 4971 if (space <= 1) { 4972 sb->s_error = ENOMEM; 4973 return (-1); 4974 } 4975 bus_child_location_str(dev, p, space); 4976 sb->s_len += strlen(p); 4977 return (0); 4978 } 4979 #undef SPACE 4980 #undef EOB 4981 4982 /** 4983 * @brief Wrapper function for BUS_GET_CPUS(). 4984 * 4985 * This function simply calls the BUS_GET_CPUS() method of the 4986 * parent of @p dev. 4987 */ 4988 int 4989 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 4990 { 4991 device_t parent; 4992 4993 parent = device_get_parent(dev); 4994 if (parent == NULL) 4995 return (EINVAL); 4996 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 4997 } 4998 4999 /** 5000 * @brief Wrapper function for BUS_GET_DMA_TAG(). 5001 * 5002 * This function simply calls the BUS_GET_DMA_TAG() method of the 5003 * parent of @p dev. 5004 */ 5005 bus_dma_tag_t 5006 bus_get_dma_tag(device_t dev) 5007 { 5008 device_t parent; 5009 5010 parent = device_get_parent(dev); 5011 if (parent == NULL) 5012 return (NULL); 5013 return (BUS_GET_DMA_TAG(parent, dev)); 5014 } 5015 5016 /** 5017 * @brief Wrapper function for BUS_GET_BUS_TAG(). 5018 * 5019 * This function simply calls the BUS_GET_BUS_TAG() method of the 5020 * parent of @p dev. 5021 */ 5022 bus_space_tag_t 5023 bus_get_bus_tag(device_t dev) 5024 { 5025 device_t parent; 5026 5027 parent = device_get_parent(dev); 5028 if (parent == NULL) 5029 return ((bus_space_tag_t)0); 5030 return (BUS_GET_BUS_TAG(parent, dev)); 5031 } 5032 5033 /** 5034 * @brief Wrapper function for BUS_GET_DOMAIN(). 5035 * 5036 * This function simply calls the BUS_GET_DOMAIN() method of the 5037 * parent of @p dev. 5038 */ 5039 int 5040 bus_get_domain(device_t dev, int *domain) 5041 { 5042 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 5043 } 5044 5045 /* Resume all devices and then notify userland that we're up again. */ 5046 static int 5047 root_resume(device_t dev) 5048 { 5049 int error; 5050 5051 error = bus_generic_resume(dev); 5052 if (error == 0) { 5053 devctl_notify("kern", "power", "resume", NULL); /* Deprecated gone in 14 */ 5054 devctl_notify("kernel", "power", "resume", NULL); 5055 } 5056 return (error); 5057 } 5058 5059 static int 5060 root_print_child(device_t dev, device_t child) 5061 { 5062 int retval = 0; 5063 5064 retval += bus_print_child_header(dev, child); 5065 retval += printf("\n"); 5066 5067 return (retval); 5068 } 5069 5070 static int 5071 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 5072 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 5073 { 5074 /* 5075 * If an interrupt mapping gets to here something bad has happened. 5076 */ 5077 panic("root_setup_intr"); 5078 } 5079 5080 /* 5081 * If we get here, assume that the device is permanent and really is 5082 * present in the system. Removable bus drivers are expected to intercept 5083 * this call long before it gets here. We return -1 so that drivers that 5084 * really care can check vs -1 or some ERRNO returned higher in the food 5085 * chain. 5086 */ 5087 static int 5088 root_child_present(device_t dev, device_t child) 5089 { 5090 return (-1); 5091 } 5092 5093 static int 5094 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 5095 cpuset_t *cpuset) 5096 { 5097 switch (op) { 5098 case INTR_CPUS: 5099 /* Default to returning the set of all CPUs. */ 5100 if (setsize != sizeof(cpuset_t)) 5101 return (EINVAL); 5102 *cpuset = all_cpus; 5103 return (0); 5104 default: 5105 return (EINVAL); 5106 } 5107 } 5108 5109 static kobj_method_t root_methods[] = { 5110 /* Device interface */ 5111 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 5112 KOBJMETHOD(device_suspend, bus_generic_suspend), 5113 KOBJMETHOD(device_resume, root_resume), 5114 5115 /* Bus interface */ 5116 KOBJMETHOD(bus_print_child, root_print_child), 5117 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 5118 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 5119 KOBJMETHOD(bus_setup_intr, root_setup_intr), 5120 KOBJMETHOD(bus_child_present, root_child_present), 5121 KOBJMETHOD(bus_get_cpus, root_get_cpus), 5122 5123 KOBJMETHOD_END 5124 }; 5125 5126 static driver_t root_driver = { 5127 "root", 5128 root_methods, 5129 1, /* no softc */ 5130 }; 5131 5132 device_t root_bus; 5133 devclass_t root_devclass; 5134 5135 static int 5136 root_bus_module_handler(module_t mod, int what, void* arg) 5137 { 5138 switch (what) { 5139 case MOD_LOAD: 5140 TAILQ_INIT(&bus_data_devices); 5141 kobj_class_compile((kobj_class_t) &root_driver); 5142 root_bus = make_device(NULL, "root", 0); 5143 root_bus->desc = "System root bus"; 5144 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 5145 root_bus->driver = &root_driver; 5146 root_bus->state = DS_ATTACHED; 5147 root_devclass = devclass_find_internal("root", NULL, FALSE); 5148 devinit(); 5149 return (0); 5150 5151 case MOD_SHUTDOWN: 5152 device_shutdown(root_bus); 5153 return (0); 5154 default: 5155 return (EOPNOTSUPP); 5156 } 5157 5158 return (0); 5159 } 5160 5161 static moduledata_t root_bus_mod = { 5162 "rootbus", 5163 root_bus_module_handler, 5164 NULL 5165 }; 5166 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 5167 5168 /** 5169 * @brief Automatically configure devices 5170 * 5171 * This function begins the autoconfiguration process by calling 5172 * device_probe_and_attach() for each child of the @c root0 device. 5173 */ 5174 void 5175 root_bus_configure(void) 5176 { 5177 PDEBUG((".")); 5178 5179 /* Eventually this will be split up, but this is sufficient for now. */ 5180 bus_set_pass(BUS_PASS_DEFAULT); 5181 } 5182 5183 /** 5184 * @brief Module handler for registering device drivers 5185 * 5186 * This module handler is used to automatically register device 5187 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 5188 * devclass_add_driver() for the driver described by the 5189 * driver_module_data structure pointed to by @p arg 5190 */ 5191 int 5192 driver_module_handler(module_t mod, int what, void *arg) 5193 { 5194 struct driver_module_data *dmd; 5195 devclass_t bus_devclass; 5196 kobj_class_t driver; 5197 int error, pass; 5198 5199 dmd = (struct driver_module_data *)arg; 5200 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 5201 error = 0; 5202 5203 switch (what) { 5204 case MOD_LOAD: 5205 if (dmd->dmd_chainevh) 5206 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5207 5208 pass = dmd->dmd_pass; 5209 driver = dmd->dmd_driver; 5210 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 5211 DRIVERNAME(driver), dmd->dmd_busname, pass)); 5212 error = devclass_add_driver(bus_devclass, driver, pass, 5213 dmd->dmd_devclass); 5214 break; 5215 5216 case MOD_UNLOAD: 5217 PDEBUG(("Unloading module: driver %s from bus %s", 5218 DRIVERNAME(dmd->dmd_driver), 5219 dmd->dmd_busname)); 5220 error = devclass_delete_driver(bus_devclass, 5221 dmd->dmd_driver); 5222 5223 if (!error && dmd->dmd_chainevh) 5224 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5225 break; 5226 case MOD_QUIESCE: 5227 PDEBUG(("Quiesce module: driver %s from bus %s", 5228 DRIVERNAME(dmd->dmd_driver), 5229 dmd->dmd_busname)); 5230 error = devclass_quiesce_driver(bus_devclass, 5231 dmd->dmd_driver); 5232 5233 if (!error && dmd->dmd_chainevh) 5234 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5235 break; 5236 default: 5237 error = EOPNOTSUPP; 5238 break; 5239 } 5240 5241 return (error); 5242 } 5243 5244 /** 5245 * @brief Enumerate all hinted devices for this bus. 5246 * 5247 * Walks through the hints for this bus and calls the bus_hinted_child 5248 * routine for each one it fines. It searches first for the specific 5249 * bus that's being probed for hinted children (eg isa0), and then for 5250 * generic children (eg isa). 5251 * 5252 * @param dev bus device to enumerate 5253 */ 5254 void 5255 bus_enumerate_hinted_children(device_t bus) 5256 { 5257 int i; 5258 const char *dname, *busname; 5259 int dunit; 5260 5261 /* 5262 * enumerate all devices on the specific bus 5263 */ 5264 busname = device_get_nameunit(bus); 5265 i = 0; 5266 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5267 BUS_HINTED_CHILD(bus, dname, dunit); 5268 5269 /* 5270 * and all the generic ones. 5271 */ 5272 busname = device_get_name(bus); 5273 i = 0; 5274 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5275 BUS_HINTED_CHILD(bus, dname, dunit); 5276 } 5277 5278 #ifdef BUS_DEBUG 5279 5280 /* the _short versions avoid iteration by not calling anything that prints 5281 * more than oneliners. I love oneliners. 5282 */ 5283 5284 static void 5285 print_device_short(device_t dev, int indent) 5286 { 5287 if (!dev) 5288 return; 5289 5290 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5291 dev->unit, dev->desc, 5292 (dev->parent? "":"no "), 5293 (TAILQ_EMPTY(&dev->children)? "no ":""), 5294 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5295 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5296 (dev->flags&DF_WILDCARD? "wildcard,":""), 5297 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5298 (dev->flags&DF_REBID? "rebiddable,":""), 5299 (dev->flags&DF_SUSPENDED? "suspended,":""), 5300 (dev->ivars? "":"no "), 5301 (dev->softc? "":"no "), 5302 dev->busy)); 5303 } 5304 5305 static void 5306 print_device(device_t dev, int indent) 5307 { 5308 if (!dev) 5309 return; 5310 5311 print_device_short(dev, indent); 5312 5313 indentprintf(("Parent:\n")); 5314 print_device_short(dev->parent, indent+1); 5315 indentprintf(("Driver:\n")); 5316 print_driver_short(dev->driver, indent+1); 5317 indentprintf(("Devclass:\n")); 5318 print_devclass_short(dev->devclass, indent+1); 5319 } 5320 5321 void 5322 print_device_tree_short(device_t dev, int indent) 5323 /* print the device and all its children (indented) */ 5324 { 5325 device_t child; 5326 5327 if (!dev) 5328 return; 5329 5330 print_device_short(dev, indent); 5331 5332 TAILQ_FOREACH(child, &dev->children, link) { 5333 print_device_tree_short(child, indent+1); 5334 } 5335 } 5336 5337 void 5338 print_device_tree(device_t dev, int indent) 5339 /* print the device and all its children (indented) */ 5340 { 5341 device_t child; 5342 5343 if (!dev) 5344 return; 5345 5346 print_device(dev, indent); 5347 5348 TAILQ_FOREACH(child, &dev->children, link) { 5349 print_device_tree(child, indent+1); 5350 } 5351 } 5352 5353 static void 5354 print_driver_short(driver_t *driver, int indent) 5355 { 5356 if (!driver) 5357 return; 5358 5359 indentprintf(("driver %s: softc size = %zd\n", 5360 driver->name, driver->size)); 5361 } 5362 5363 static void 5364 print_driver(driver_t *driver, int indent) 5365 { 5366 if (!driver) 5367 return; 5368 5369 print_driver_short(driver, indent); 5370 } 5371 5372 static void 5373 print_driver_list(driver_list_t drivers, int indent) 5374 { 5375 driverlink_t driver; 5376 5377 TAILQ_FOREACH(driver, &drivers, link) { 5378 print_driver(driver->driver, indent); 5379 } 5380 } 5381 5382 static void 5383 print_devclass_short(devclass_t dc, int indent) 5384 { 5385 if ( !dc ) 5386 return; 5387 5388 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5389 } 5390 5391 static void 5392 print_devclass(devclass_t dc, int indent) 5393 { 5394 int i; 5395 5396 if ( !dc ) 5397 return; 5398 5399 print_devclass_short(dc, indent); 5400 indentprintf(("Drivers:\n")); 5401 print_driver_list(dc->drivers, indent+1); 5402 5403 indentprintf(("Devices:\n")); 5404 for (i = 0; i < dc->maxunit; i++) 5405 if (dc->devices[i]) 5406 print_device(dc->devices[i], indent+1); 5407 } 5408 5409 void 5410 print_devclass_list_short(void) 5411 { 5412 devclass_t dc; 5413 5414 printf("Short listing of devclasses, drivers & devices:\n"); 5415 TAILQ_FOREACH(dc, &devclasses, link) { 5416 print_devclass_short(dc, 0); 5417 } 5418 } 5419 5420 void 5421 print_devclass_list(void) 5422 { 5423 devclass_t dc; 5424 5425 printf("Full listing of devclasses, drivers & devices:\n"); 5426 TAILQ_FOREACH(dc, &devclasses, link) { 5427 print_devclass(dc, 0); 5428 } 5429 } 5430 5431 #endif 5432 5433 /* 5434 * User-space access to the device tree. 5435 * 5436 * We implement a small set of nodes: 5437 * 5438 * hw.bus Single integer read method to obtain the 5439 * current generation count. 5440 * hw.bus.devices Reads the entire device tree in flat space. 5441 * hw.bus.rman Resource manager interface 5442 * 5443 * We might like to add the ability to scan devclasses and/or drivers to 5444 * determine what else is currently loaded/available. 5445 */ 5446 5447 static int 5448 sysctl_bus_info(SYSCTL_HANDLER_ARGS) 5449 { 5450 struct u_businfo ubus; 5451 5452 ubus.ub_version = BUS_USER_VERSION; 5453 ubus.ub_generation = bus_data_generation; 5454 5455 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5456 } 5457 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | 5458 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", 5459 "bus-related data"); 5460 5461 static int 5462 sysctl_devices(SYSCTL_HANDLER_ARGS) 5463 { 5464 struct sbuf sb; 5465 int *name = (int *)arg1; 5466 u_int namelen = arg2; 5467 int index; 5468 device_t dev; 5469 struct u_device *udev; 5470 int error; 5471 5472 if (namelen != 2) 5473 return (EINVAL); 5474 5475 if (bus_data_generation_check(name[0])) 5476 return (EINVAL); 5477 5478 index = name[1]; 5479 5480 /* 5481 * Scan the list of devices, looking for the requested index. 5482 */ 5483 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5484 if (index-- == 0) 5485 break; 5486 } 5487 if (dev == NULL) 5488 return (ENOENT); 5489 5490 /* 5491 * Populate the return item, careful not to overflow the buffer. 5492 */ 5493 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5494 if (udev == NULL) 5495 return (ENOMEM); 5496 udev->dv_handle = (uintptr_t)dev; 5497 udev->dv_parent = (uintptr_t)dev->parent; 5498 udev->dv_devflags = dev->devflags; 5499 udev->dv_flags = dev->flags; 5500 udev->dv_state = dev->state; 5501 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN); 5502 if (dev->nameunit != NULL) 5503 sbuf_cat(&sb, dev->nameunit); 5504 else 5505 sbuf_putc(&sb, '\0'); 5506 sbuf_putc(&sb, '\0'); 5507 if (dev->desc != NULL) 5508 sbuf_cat(&sb, dev->desc); 5509 else 5510 sbuf_putc(&sb, '\0'); 5511 sbuf_putc(&sb, '\0'); 5512 if (dev->driver != NULL) 5513 sbuf_cat(&sb, dev->driver->name); 5514 else 5515 sbuf_putc(&sb, '\0'); 5516 sbuf_putc(&sb, '\0'); 5517 bus_child_pnpinfo_sb(dev, &sb); 5518 sbuf_putc(&sb, '\0'); 5519 bus_child_location_sb(dev, &sb); 5520 sbuf_putc(&sb, '\0'); 5521 error = sbuf_finish(&sb); 5522 if (error == 0) 5523 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5524 sbuf_delete(&sb); 5525 free(udev, M_BUS); 5526 return (error); 5527 } 5528 5529 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, 5530 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, 5531 "system device tree"); 5532 5533 int 5534 bus_data_generation_check(int generation) 5535 { 5536 if (generation != bus_data_generation) 5537 return (1); 5538 5539 /* XXX generate optimised lists here? */ 5540 return (0); 5541 } 5542 5543 void 5544 bus_data_generation_update(void) 5545 { 5546 atomic_add_int(&bus_data_generation, 1); 5547 } 5548 5549 int 5550 bus_free_resource(device_t dev, int type, struct resource *r) 5551 { 5552 if (r == NULL) 5553 return (0); 5554 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5555 } 5556 5557 device_t 5558 device_lookup_by_name(const char *name) 5559 { 5560 device_t dev; 5561 5562 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5563 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5564 return (dev); 5565 } 5566 return (NULL); 5567 } 5568 5569 /* 5570 * /dev/devctl2 implementation. The existing /dev/devctl device has 5571 * implicit semantics on open, so it could not be reused for this. 5572 * Another option would be to call this /dev/bus? 5573 */ 5574 static int 5575 find_device(struct devreq *req, device_t *devp) 5576 { 5577 device_t dev; 5578 5579 /* 5580 * First, ensure that the name is nul terminated. 5581 */ 5582 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5583 return (EINVAL); 5584 5585 /* 5586 * Second, try to find an attached device whose name matches 5587 * 'name'. 5588 */ 5589 dev = device_lookup_by_name(req->dr_name); 5590 if (dev != NULL) { 5591 *devp = dev; 5592 return (0); 5593 } 5594 5595 /* Finally, give device enumerators a chance. */ 5596 dev = NULL; 5597 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5598 if (dev == NULL) 5599 return (ENOENT); 5600 *devp = dev; 5601 return (0); 5602 } 5603 5604 static bool 5605 driver_exists(device_t bus, const char *driver) 5606 { 5607 devclass_t dc; 5608 5609 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5610 if (devclass_find_driver_internal(dc, driver) != NULL) 5611 return (true); 5612 } 5613 return (false); 5614 } 5615 5616 static void 5617 device_gen_nomatch(device_t dev) 5618 { 5619 device_t child; 5620 5621 if (dev->flags & DF_NEEDNOMATCH && 5622 dev->state == DS_NOTPRESENT) { 5623 BUS_PROBE_NOMATCH(dev->parent, dev); 5624 devnomatch(dev); 5625 dev->flags |= DF_DONENOMATCH; 5626 } 5627 dev->flags &= ~DF_NEEDNOMATCH; 5628 TAILQ_FOREACH(child, &dev->children, link) { 5629 device_gen_nomatch(child); 5630 } 5631 } 5632 5633 static void 5634 device_do_deferred_actions(void) 5635 { 5636 devclass_t dc; 5637 driverlink_t dl; 5638 5639 /* 5640 * Walk through the devclasses to find all the drivers we've tagged as 5641 * deferred during the freeze and call the driver added routines. They 5642 * have already been added to the lists in the background, so the driver 5643 * added routines that trigger a probe will have all the right bidders 5644 * for the probe auction. 5645 */ 5646 TAILQ_FOREACH(dc, &devclasses, link) { 5647 TAILQ_FOREACH(dl, &dc->drivers, link) { 5648 if (dl->flags & DL_DEFERRED_PROBE) { 5649 devclass_driver_added(dc, dl->driver); 5650 dl->flags &= ~DL_DEFERRED_PROBE; 5651 } 5652 } 5653 } 5654 5655 /* 5656 * We also defer no-match events during a freeze. Walk the tree and 5657 * generate all the pent-up events that are still relevant. 5658 */ 5659 device_gen_nomatch(root_bus); 5660 bus_data_generation_update(); 5661 } 5662 5663 static int 5664 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5665 struct thread *td) 5666 { 5667 struct devreq *req; 5668 device_t dev; 5669 int error, old; 5670 5671 /* Locate the device to control. */ 5672 mtx_lock(&Giant); 5673 req = (struct devreq *)data; 5674 switch (cmd) { 5675 case DEV_ATTACH: 5676 case DEV_DETACH: 5677 case DEV_ENABLE: 5678 case DEV_DISABLE: 5679 case DEV_SUSPEND: 5680 case DEV_RESUME: 5681 case DEV_SET_DRIVER: 5682 case DEV_CLEAR_DRIVER: 5683 case DEV_RESCAN: 5684 case DEV_DELETE: 5685 case DEV_RESET: 5686 error = priv_check(td, PRIV_DRIVER); 5687 if (error == 0) 5688 error = find_device(req, &dev); 5689 break; 5690 case DEV_FREEZE: 5691 case DEV_THAW: 5692 error = priv_check(td, PRIV_DRIVER); 5693 break; 5694 default: 5695 error = ENOTTY; 5696 break; 5697 } 5698 if (error) { 5699 mtx_unlock(&Giant); 5700 return (error); 5701 } 5702 5703 /* Perform the requested operation. */ 5704 switch (cmd) { 5705 case DEV_ATTACH: 5706 if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0) 5707 error = EBUSY; 5708 else if (!device_is_enabled(dev)) 5709 error = ENXIO; 5710 else 5711 error = device_probe_and_attach(dev); 5712 break; 5713 case DEV_DETACH: 5714 if (!device_is_attached(dev)) { 5715 error = ENXIO; 5716 break; 5717 } 5718 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5719 error = device_quiesce(dev); 5720 if (error) 5721 break; 5722 } 5723 error = device_detach(dev); 5724 break; 5725 case DEV_ENABLE: 5726 if (device_is_enabled(dev)) { 5727 error = EBUSY; 5728 break; 5729 } 5730 5731 /* 5732 * If the device has been probed but not attached (e.g. 5733 * when it has been disabled by a loader hint), just 5734 * attach the device rather than doing a full probe. 5735 */ 5736 device_enable(dev); 5737 if (device_is_alive(dev)) { 5738 /* 5739 * If the device was disabled via a hint, clear 5740 * the hint. 5741 */ 5742 if (resource_disabled(dev->driver->name, dev->unit)) 5743 resource_unset_value(dev->driver->name, 5744 dev->unit, "disabled"); 5745 error = device_attach(dev); 5746 } else 5747 error = device_probe_and_attach(dev); 5748 break; 5749 case DEV_DISABLE: 5750 if (!device_is_enabled(dev)) { 5751 error = ENXIO; 5752 break; 5753 } 5754 5755 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5756 error = device_quiesce(dev); 5757 if (error) 5758 break; 5759 } 5760 5761 /* 5762 * Force DF_FIXEDCLASS on around detach to preserve 5763 * the existing name. 5764 */ 5765 old = dev->flags; 5766 dev->flags |= DF_FIXEDCLASS; 5767 error = device_detach(dev); 5768 if (!(old & DF_FIXEDCLASS)) 5769 dev->flags &= ~DF_FIXEDCLASS; 5770 if (error == 0) 5771 device_disable(dev); 5772 break; 5773 case DEV_SUSPEND: 5774 if (device_is_suspended(dev)) { 5775 error = EBUSY; 5776 break; 5777 } 5778 if (device_get_parent(dev) == NULL) { 5779 error = EINVAL; 5780 break; 5781 } 5782 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5783 break; 5784 case DEV_RESUME: 5785 if (!device_is_suspended(dev)) { 5786 error = EINVAL; 5787 break; 5788 } 5789 if (device_get_parent(dev) == NULL) { 5790 error = EINVAL; 5791 break; 5792 } 5793 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5794 break; 5795 case DEV_SET_DRIVER: { 5796 devclass_t dc; 5797 char driver[128]; 5798 5799 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5800 if (error) 5801 break; 5802 if (driver[0] == '\0') { 5803 error = EINVAL; 5804 break; 5805 } 5806 if (dev->devclass != NULL && 5807 strcmp(driver, dev->devclass->name) == 0) 5808 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5809 break; 5810 5811 /* 5812 * Scan drivers for this device's bus looking for at 5813 * least one matching driver. 5814 */ 5815 if (dev->parent == NULL) { 5816 error = EINVAL; 5817 break; 5818 } 5819 if (!driver_exists(dev->parent, driver)) { 5820 error = ENOENT; 5821 break; 5822 } 5823 dc = devclass_create(driver); 5824 if (dc == NULL) { 5825 error = ENOMEM; 5826 break; 5827 } 5828 5829 /* Detach device if necessary. */ 5830 if (device_is_attached(dev)) { 5831 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5832 error = device_detach(dev); 5833 else 5834 error = EBUSY; 5835 if (error) 5836 break; 5837 } 5838 5839 /* Clear any previously-fixed device class and unit. */ 5840 if (dev->flags & DF_FIXEDCLASS) 5841 devclass_delete_device(dev->devclass, dev); 5842 dev->flags |= DF_WILDCARD; 5843 dev->unit = -1; 5844 5845 /* Force the new device class. */ 5846 error = devclass_add_device(dc, dev); 5847 if (error) 5848 break; 5849 dev->flags |= DF_FIXEDCLASS; 5850 error = device_probe_and_attach(dev); 5851 break; 5852 } 5853 case DEV_CLEAR_DRIVER: 5854 if (!(dev->flags & DF_FIXEDCLASS)) { 5855 error = 0; 5856 break; 5857 } 5858 if (device_is_attached(dev)) { 5859 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5860 error = device_detach(dev); 5861 else 5862 error = EBUSY; 5863 if (error) 5864 break; 5865 } 5866 5867 dev->flags &= ~DF_FIXEDCLASS; 5868 dev->flags |= DF_WILDCARD; 5869 devclass_delete_device(dev->devclass, dev); 5870 error = device_probe_and_attach(dev); 5871 break; 5872 case DEV_RESCAN: 5873 if (!device_is_attached(dev)) { 5874 error = ENXIO; 5875 break; 5876 } 5877 error = BUS_RESCAN(dev); 5878 break; 5879 case DEV_DELETE: { 5880 device_t parent; 5881 5882 parent = device_get_parent(dev); 5883 if (parent == NULL) { 5884 error = EINVAL; 5885 break; 5886 } 5887 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5888 if (bus_child_present(dev) != 0) { 5889 error = EBUSY; 5890 break; 5891 } 5892 } 5893 5894 error = device_delete_child(parent, dev); 5895 break; 5896 } 5897 case DEV_FREEZE: 5898 if (device_frozen) 5899 error = EBUSY; 5900 else 5901 device_frozen = true; 5902 break; 5903 case DEV_THAW: 5904 if (!device_frozen) 5905 error = EBUSY; 5906 else { 5907 device_do_deferred_actions(); 5908 device_frozen = false; 5909 } 5910 break; 5911 case DEV_RESET: 5912 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 5913 error = EINVAL; 5914 break; 5915 } 5916 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 5917 req->dr_flags); 5918 break; 5919 } 5920 mtx_unlock(&Giant); 5921 return (error); 5922 } 5923 5924 static struct cdevsw devctl2_cdevsw = { 5925 .d_version = D_VERSION, 5926 .d_ioctl = devctl2_ioctl, 5927 .d_name = "devctl2", 5928 }; 5929 5930 static void 5931 devctl2_init(void) 5932 { 5933 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5934 UID_ROOT, GID_WHEEL, 0600, "devctl2"); 5935 } 5936 5937 /* 5938 * APIs to manage deprecation and obsolescence. 5939 */ 5940 static int obsolete_panic = 0; 5941 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 5942 "Panic when obsolete features are used (0 = never, 1 = if osbolete, " 5943 "2 = if deprecated)"); 5944 5945 static void 5946 gone_panic(int major, int running, const char *msg) 5947 { 5948 switch (obsolete_panic) 5949 { 5950 case 0: 5951 return; 5952 case 1: 5953 if (running < major) 5954 return; 5955 /* FALLTHROUGH */ 5956 default: 5957 panic("%s", msg); 5958 } 5959 } 5960 5961 void 5962 _gone_in(int major, const char *msg) 5963 { 5964 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5965 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5966 printf("Obsolete code will be removed soon: %s\n", msg); 5967 else 5968 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 5969 major, msg); 5970 } 5971 5972 void 5973 _gone_in_dev(device_t dev, int major, const char *msg) 5974 { 5975 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5976 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5977 device_printf(dev, 5978 "Obsolete code will be removed soon: %s\n", msg); 5979 else 5980 device_printf(dev, 5981 "Deprecated code (to be removed in FreeBSD %d): %s\n", 5982 major, msg); 5983 } 5984 5985 #ifdef DDB 5986 DB_SHOW_COMMAND(device, db_show_device) 5987 { 5988 device_t dev; 5989 5990 if (!have_addr) 5991 return; 5992 5993 dev = (device_t)addr; 5994 5995 db_printf("name: %s\n", device_get_nameunit(dev)); 5996 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 5997 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 5998 db_printf(" addr: %p\n", dev); 5999 db_printf(" parent: %p\n", dev->parent); 6000 db_printf(" softc: %p\n", dev->softc); 6001 db_printf(" ivars: %p\n", dev->ivars); 6002 } 6003 6004 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 6005 { 6006 device_t dev; 6007 6008 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 6009 db_show_device((db_expr_t)dev, true, count, modif); 6010 } 6011 } 6012 #endif 6013