xref: /freebsd/sys/kern/subr_bus.c (revision 5e3190f700637fcfc1a52daeaa4a031fdd2557c7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1997,1998,2003 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_bus.h"
31 #include "opt_ddb.h"
32 
33 #include <sys/param.h>
34 #include <sys/conf.h>
35 #include <sys/domainset.h>
36 #include <sys/eventhandler.h>
37 #include <sys/lock.h>
38 #include <sys/kernel.h>
39 #include <sys/limits.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/priv.h>
44 #include <machine/bus.h>
45 #include <sys/random.h>
46 #include <sys/refcount.h>
47 #include <sys/rman.h>
48 #include <sys/sbuf.h>
49 #include <sys/smp.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/bus.h>
53 #include <sys/cpuset.h>
54 
55 #include <net/vnet.h>
56 
57 #include <machine/cpu.h>
58 #include <machine/stdarg.h>
59 
60 #include <vm/uma.h>
61 #include <vm/vm.h>
62 
63 #include <ddb/ddb.h>
64 
65 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
66     NULL);
67 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
68     NULL);
69 
70 static bool disable_failed_devs = false;
71 SYSCTL_BOOL(_hw_bus, OID_AUTO, disable_failed_devices, CTLFLAG_RWTUN, &disable_failed_devs,
72     0, "Do not retry attaching devices that return an error from DEVICE_ATTACH the first time");
73 
74 /*
75  * Used to attach drivers to devclasses.
76  */
77 typedef struct driverlink *driverlink_t;
78 struct driverlink {
79 	kobj_class_t	driver;
80 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
81 	int		pass;
82 	int		flags;
83 #define DL_DEFERRED_PROBE	1	/* Probe deferred on this */
84 	TAILQ_ENTRY(driverlink) passlink;
85 };
86 
87 /*
88  * Forward declarations
89  */
90 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
91 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
92 typedef TAILQ_HEAD(device_list, _device) device_list_t;
93 
94 struct devclass {
95 	TAILQ_ENTRY(devclass) link;
96 	devclass_t	parent;		/* parent in devclass hierarchy */
97 	driver_list_t	drivers;	/* bus devclasses store drivers for bus */
98 	char		*name;
99 	device_t	*devices;	/* array of devices indexed by unit */
100 	int		maxunit;	/* size of devices array */
101 	int		flags;
102 #define DC_HAS_CHILDREN		1
103 
104 	struct sysctl_ctx_list sysctl_ctx;
105 	struct sysctl_oid *sysctl_tree;
106 };
107 
108 /**
109  * @brief Implementation of _device.
110  *
111  * The structure is named "_device" instead of "device" to avoid type confusion
112  * caused by other subsystems defining a (struct device).
113  */
114 struct _device {
115 	/*
116 	 * A device is a kernel object. The first field must be the
117 	 * current ops table for the object.
118 	 */
119 	KOBJ_FIELDS;
120 
121 	/*
122 	 * Device hierarchy.
123 	 */
124 	TAILQ_ENTRY(_device)	link;	/**< list of devices in parent */
125 	TAILQ_ENTRY(_device)	devlink; /**< global device list membership */
126 	device_t	parent;		/**< parent of this device  */
127 	device_list_t	children;	/**< list of child devices */
128 
129 	/*
130 	 * Details of this device.
131 	 */
132 	driver_t	*driver;	/**< current driver */
133 	devclass_t	devclass;	/**< current device class */
134 	int		unit;		/**< current unit number */
135 	char*		nameunit;	/**< name+unit e.g. foodev0 */
136 	char*		desc;		/**< driver specific description */
137 	u_int		busy;		/**< count of calls to device_busy() */
138 	device_state_t	state;		/**< current device state  */
139 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
140 	u_int		flags;		/**< internal device flags  */
141 	u_int	order;			/**< order from device_add_child_ordered() */
142 	void	*ivars;			/**< instance variables  */
143 	void	*softc;			/**< current driver's variables  */
144 
145 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
146 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
147 };
148 
149 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
150 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
151 
152 EVENTHANDLER_LIST_DEFINE(device_attach);
153 EVENTHANDLER_LIST_DEFINE(device_detach);
154 EVENTHANDLER_LIST_DEFINE(device_nomatch);
155 EVENTHANDLER_LIST_DEFINE(dev_lookup);
156 
157 static void devctl2_init(void);
158 static bool device_frozen;
159 
160 #define DRIVERNAME(d)	((d)? d->name : "no driver")
161 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
162 
163 #ifdef BUS_DEBUG
164 
165 static int bus_debug = 1;
166 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
167     "Bus debug level");
168 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
169 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
170 
171 /**
172  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
173  * prevent syslog from deleting initial spaces
174  */
175 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
176 
177 static void print_device_short(device_t dev, int indent);
178 static void print_device(device_t dev, int indent);
179 void print_device_tree_short(device_t dev, int indent);
180 void print_device_tree(device_t dev, int indent);
181 static void print_driver_short(driver_t *driver, int indent);
182 static void print_driver(driver_t *driver, int indent);
183 static void print_driver_list(driver_list_t drivers, int indent);
184 static void print_devclass_short(devclass_t dc, int indent);
185 static void print_devclass(devclass_t dc, int indent);
186 void print_devclass_list_short(void);
187 void print_devclass_list(void);
188 
189 #else
190 /* Make the compiler ignore the function calls */
191 #define PDEBUG(a)			/* nop */
192 #define DEVICENAME(d)			/* nop */
193 
194 #define print_device_short(d,i)		/* nop */
195 #define print_device(d,i)		/* nop */
196 #define print_device_tree_short(d,i)	/* nop */
197 #define print_device_tree(d,i)		/* nop */
198 #define print_driver_short(d,i)		/* nop */
199 #define print_driver(d,i)		/* nop */
200 #define print_driver_list(d,i)		/* nop */
201 #define print_devclass_short(d,i)	/* nop */
202 #define print_devclass(d,i)		/* nop */
203 #define print_devclass_list_short()	/* nop */
204 #define print_devclass_list()		/* nop */
205 #endif
206 
207 /*
208  * dev sysctl tree
209  */
210 
211 enum {
212 	DEVCLASS_SYSCTL_PARENT,
213 };
214 
215 static int
216 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
217 {
218 	devclass_t dc = (devclass_t)arg1;
219 	const char *value;
220 
221 	switch (arg2) {
222 	case DEVCLASS_SYSCTL_PARENT:
223 		value = dc->parent ? dc->parent->name : "";
224 		break;
225 	default:
226 		return (EINVAL);
227 	}
228 	return (SYSCTL_OUT_STR(req, value));
229 }
230 
231 static void
232 devclass_sysctl_init(devclass_t dc)
233 {
234 	if (dc->sysctl_tree != NULL)
235 		return;
236 	sysctl_ctx_init(&dc->sysctl_ctx);
237 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
238 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
239 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
240 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
241 	    OID_AUTO, "%parent",
242 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
243 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
244 	    "parent class");
245 }
246 
247 enum {
248 	DEVICE_SYSCTL_DESC,
249 	DEVICE_SYSCTL_DRIVER,
250 	DEVICE_SYSCTL_LOCATION,
251 	DEVICE_SYSCTL_PNPINFO,
252 	DEVICE_SYSCTL_PARENT,
253 };
254 
255 static int
256 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
257 {
258 	struct sbuf sb;
259 	device_t dev = (device_t)arg1;
260 	int error;
261 
262 	sbuf_new_for_sysctl(&sb, NULL, 1024, req);
263 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
264 	bus_topo_lock();
265 	switch (arg2) {
266 	case DEVICE_SYSCTL_DESC:
267 		sbuf_cat(&sb, dev->desc ? dev->desc : "");
268 		break;
269 	case DEVICE_SYSCTL_DRIVER:
270 		sbuf_cat(&sb, dev->driver ? dev->driver->name : "");
271 		break;
272 	case DEVICE_SYSCTL_LOCATION:
273 		bus_child_location(dev, &sb);
274 		break;
275 	case DEVICE_SYSCTL_PNPINFO:
276 		bus_child_pnpinfo(dev, &sb);
277 		break;
278 	case DEVICE_SYSCTL_PARENT:
279 		sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : "");
280 		break;
281 	default:
282 		error = EINVAL;
283 		goto out;
284 	}
285 	error = sbuf_finish(&sb);
286 out:
287 	bus_topo_unlock();
288 	sbuf_delete(&sb);
289 	return (error);
290 }
291 
292 static void
293 device_sysctl_init(device_t dev)
294 {
295 	devclass_t dc = dev->devclass;
296 	int domain;
297 
298 	if (dev->sysctl_tree != NULL)
299 		return;
300 	devclass_sysctl_init(dc);
301 	sysctl_ctx_init(&dev->sysctl_ctx);
302 	dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
303 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
304 	    dev->nameunit + strlen(dc->name),
305 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index");
306 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
307 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
308 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
309 	    "device description");
310 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
311 	    OID_AUTO, "%driver",
312 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
313 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
314 	    "device driver name");
315 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
316 	    OID_AUTO, "%location",
317 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
318 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
319 	    "device location relative to parent");
320 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
321 	    OID_AUTO, "%pnpinfo",
322 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
323 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
324 	    "device identification");
325 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
326 	    OID_AUTO, "%parent",
327 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
328 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
329 	    "parent device");
330 	if (bus_get_domain(dev, &domain) == 0)
331 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
332 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
333 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain");
334 }
335 
336 static void
337 device_sysctl_update(device_t dev)
338 {
339 	devclass_t dc = dev->devclass;
340 
341 	if (dev->sysctl_tree == NULL)
342 		return;
343 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
344 }
345 
346 static void
347 device_sysctl_fini(device_t dev)
348 {
349 	if (dev->sysctl_tree == NULL)
350 		return;
351 	sysctl_ctx_free(&dev->sysctl_ctx);
352 	dev->sysctl_tree = NULL;
353 }
354 
355 static struct device_list bus_data_devices;
356 static int bus_data_generation = 1;
357 
358 static kobj_method_t null_methods[] = {
359 	KOBJMETHOD_END
360 };
361 
362 DEFINE_CLASS(null, null_methods, 0);
363 
364 void
365 bus_topo_assert(void)
366 {
367 
368 	GIANT_REQUIRED;
369 }
370 
371 struct mtx *
372 bus_topo_mtx(void)
373 {
374 
375 	return (&Giant);
376 }
377 
378 void
379 bus_topo_lock(void)
380 {
381 
382 	mtx_lock(bus_topo_mtx());
383 }
384 
385 void
386 bus_topo_unlock(void)
387 {
388 
389 	mtx_unlock(bus_topo_mtx());
390 }
391 
392 /*
393  * Bus pass implementation
394  */
395 
396 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
397 int bus_current_pass = BUS_PASS_ROOT;
398 
399 /**
400  * @internal
401  * @brief Register the pass level of a new driver attachment
402  *
403  * Register a new driver attachment's pass level.  If no driver
404  * attachment with the same pass level has been added, then @p new
405  * will be added to the global passes list.
406  *
407  * @param new		the new driver attachment
408  */
409 static void
410 driver_register_pass(struct driverlink *new)
411 {
412 	struct driverlink *dl;
413 
414 	/* We only consider pass numbers during boot. */
415 	if (bus_current_pass == BUS_PASS_DEFAULT)
416 		return;
417 
418 	/*
419 	 * Walk the passes list.  If we already know about this pass
420 	 * then there is nothing to do.  If we don't, then insert this
421 	 * driver link into the list.
422 	 */
423 	TAILQ_FOREACH(dl, &passes, passlink) {
424 		if (dl->pass < new->pass)
425 			continue;
426 		if (dl->pass == new->pass)
427 			return;
428 		TAILQ_INSERT_BEFORE(dl, new, passlink);
429 		return;
430 	}
431 	TAILQ_INSERT_TAIL(&passes, new, passlink);
432 }
433 
434 /**
435  * @brief Raise the current bus pass
436  *
437  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
438  * method on the root bus to kick off a new device tree scan for each
439  * new pass level that has at least one driver.
440  */
441 void
442 bus_set_pass(int pass)
443 {
444 	struct driverlink *dl;
445 
446 	if (bus_current_pass > pass)
447 		panic("Attempt to lower bus pass level");
448 
449 	TAILQ_FOREACH(dl, &passes, passlink) {
450 		/* Skip pass values below the current pass level. */
451 		if (dl->pass <= bus_current_pass)
452 			continue;
453 
454 		/*
455 		 * Bail once we hit a driver with a pass level that is
456 		 * too high.
457 		 */
458 		if (dl->pass > pass)
459 			break;
460 
461 		/*
462 		 * Raise the pass level to the next level and rescan
463 		 * the tree.
464 		 */
465 		bus_current_pass = dl->pass;
466 		BUS_NEW_PASS(root_bus);
467 	}
468 
469 	/*
470 	 * If there isn't a driver registered for the requested pass,
471 	 * then bus_current_pass might still be less than 'pass'.  Set
472 	 * it to 'pass' in that case.
473 	 */
474 	if (bus_current_pass < pass)
475 		bus_current_pass = pass;
476 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
477 }
478 
479 /*
480  * Devclass implementation
481  */
482 
483 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
484 
485 /**
486  * @internal
487  * @brief Find or create a device class
488  *
489  * If a device class with the name @p classname exists, return it,
490  * otherwise if @p create is non-zero create and return a new device
491  * class.
492  *
493  * If @p parentname is non-NULL, the parent of the devclass is set to
494  * the devclass of that name.
495  *
496  * @param classname	the devclass name to find or create
497  * @param parentname	the parent devclass name or @c NULL
498  * @param create	non-zero to create a devclass
499  */
500 static devclass_t
501 devclass_find_internal(const char *classname, const char *parentname,
502 		       int create)
503 {
504 	devclass_t dc;
505 
506 	PDEBUG(("looking for %s", classname));
507 	if (!classname)
508 		return (NULL);
509 
510 	TAILQ_FOREACH(dc, &devclasses, link) {
511 		if (!strcmp(dc->name, classname))
512 			break;
513 	}
514 
515 	if (create && !dc) {
516 		PDEBUG(("creating %s", classname));
517 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
518 		    M_BUS, M_NOWAIT | M_ZERO);
519 		if (!dc)
520 			return (NULL);
521 		dc->parent = NULL;
522 		dc->name = (char*) (dc + 1);
523 		strcpy(dc->name, classname);
524 		TAILQ_INIT(&dc->drivers);
525 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
526 
527 		bus_data_generation_update();
528 	}
529 
530 	/*
531 	 * If a parent class is specified, then set that as our parent so
532 	 * that this devclass will support drivers for the parent class as
533 	 * well.  If the parent class has the same name don't do this though
534 	 * as it creates a cycle that can trigger an infinite loop in
535 	 * device_probe_child() if a device exists for which there is no
536 	 * suitable driver.
537 	 */
538 	if (parentname && dc && !dc->parent &&
539 	    strcmp(classname, parentname) != 0) {
540 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
541 		dc->parent->flags |= DC_HAS_CHILDREN;
542 	}
543 
544 	return (dc);
545 }
546 
547 /**
548  * @brief Create a device class
549  *
550  * If a device class with the name @p classname exists, return it,
551  * otherwise create and return a new device class.
552  *
553  * @param classname	the devclass name to find or create
554  */
555 devclass_t
556 devclass_create(const char *classname)
557 {
558 	return (devclass_find_internal(classname, NULL, TRUE));
559 }
560 
561 /**
562  * @brief Find a device class
563  *
564  * If a device class with the name @p classname exists, return it,
565  * otherwise return @c NULL.
566  *
567  * @param classname	the devclass name to find
568  */
569 devclass_t
570 devclass_find(const char *classname)
571 {
572 	return (devclass_find_internal(classname, NULL, FALSE));
573 }
574 
575 /**
576  * @brief Register that a device driver has been added to a devclass
577  *
578  * Register that a device driver has been added to a devclass.  This
579  * is called by devclass_add_driver to accomplish the recursive
580  * notification of all the children classes of dc, as well as dc.
581  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
582  * the devclass.
583  *
584  * We do a full search here of the devclass list at each iteration
585  * level to save storing children-lists in the devclass structure.  If
586  * we ever move beyond a few dozen devices doing this, we may need to
587  * reevaluate...
588  *
589  * @param dc		the devclass to edit
590  * @param driver	the driver that was just added
591  */
592 static void
593 devclass_driver_added(devclass_t dc, driver_t *driver)
594 {
595 	devclass_t parent;
596 	int i;
597 
598 	/*
599 	 * Call BUS_DRIVER_ADDED for any existing buses in this class.
600 	 */
601 	for (i = 0; i < dc->maxunit; i++)
602 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
603 			BUS_DRIVER_ADDED(dc->devices[i], driver);
604 
605 	/*
606 	 * Walk through the children classes.  Since we only keep a
607 	 * single parent pointer around, we walk the entire list of
608 	 * devclasses looking for children.  We set the
609 	 * DC_HAS_CHILDREN flag when a child devclass is created on
610 	 * the parent, so we only walk the list for those devclasses
611 	 * that have children.
612 	 */
613 	if (!(dc->flags & DC_HAS_CHILDREN))
614 		return;
615 	parent = dc;
616 	TAILQ_FOREACH(dc, &devclasses, link) {
617 		if (dc->parent == parent)
618 			devclass_driver_added(dc, driver);
619 	}
620 }
621 
622 static void
623 device_handle_nomatch(device_t dev)
624 {
625 	BUS_PROBE_NOMATCH(dev->parent, dev);
626 	EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev);
627 	dev->flags |= DF_DONENOMATCH;
628 }
629 
630 /**
631  * @brief Add a device driver to a device class
632  *
633  * Add a device driver to a devclass. This is normally called
634  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
635  * all devices in the devclass will be called to allow them to attempt
636  * to re-probe any unmatched children.
637  *
638  * @param dc		the devclass to edit
639  * @param driver	the driver to register
640  */
641 int
642 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
643 {
644 	driverlink_t dl;
645 	devclass_t child_dc;
646 	const char *parentname;
647 
648 	PDEBUG(("%s", DRIVERNAME(driver)));
649 
650 	/* Don't allow invalid pass values. */
651 	if (pass <= BUS_PASS_ROOT)
652 		return (EINVAL);
653 
654 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
655 	if (!dl)
656 		return (ENOMEM);
657 
658 	/*
659 	 * Compile the driver's methods. Also increase the reference count
660 	 * so that the class doesn't get freed when the last instance
661 	 * goes. This means we can safely use static methods and avoids a
662 	 * double-free in devclass_delete_driver.
663 	 */
664 	kobj_class_compile((kobj_class_t) driver);
665 
666 	/*
667 	 * If the driver has any base classes, make the
668 	 * devclass inherit from the devclass of the driver's
669 	 * first base class. This will allow the system to
670 	 * search for drivers in both devclasses for children
671 	 * of a device using this driver.
672 	 */
673 	if (driver->baseclasses)
674 		parentname = driver->baseclasses[0]->name;
675 	else
676 		parentname = NULL;
677 	child_dc = devclass_find_internal(driver->name, parentname, TRUE);
678 	if (dcp != NULL)
679 		*dcp = child_dc;
680 
681 	dl->driver = driver;
682 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
683 	driver->refs++;		/* XXX: kobj_mtx */
684 	dl->pass = pass;
685 	driver_register_pass(dl);
686 
687 	if (device_frozen) {
688 		dl->flags |= DL_DEFERRED_PROBE;
689 	} else {
690 		devclass_driver_added(dc, driver);
691 	}
692 	bus_data_generation_update();
693 	return (0);
694 }
695 
696 /**
697  * @brief Register that a device driver has been deleted from a devclass
698  *
699  * Register that a device driver has been removed from a devclass.
700  * This is called by devclass_delete_driver to accomplish the
701  * recursive notification of all the children classes of busclass, as
702  * well as busclass.  Each layer will attempt to detach the driver
703  * from any devices that are children of the bus's devclass.  The function
704  * will return an error if a device fails to detach.
705  *
706  * We do a full search here of the devclass list at each iteration
707  * level to save storing children-lists in the devclass structure.  If
708  * we ever move beyond a few dozen devices doing this, we may need to
709  * reevaluate...
710  *
711  * @param busclass	the devclass of the parent bus
712  * @param dc		the devclass of the driver being deleted
713  * @param driver	the driver being deleted
714  */
715 static int
716 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
717 {
718 	devclass_t parent;
719 	device_t dev;
720 	int error, i;
721 
722 	/*
723 	 * Disassociate from any devices.  We iterate through all the
724 	 * devices in the devclass of the driver and detach any which are
725 	 * using the driver and which have a parent in the devclass which
726 	 * we are deleting from.
727 	 *
728 	 * Note that since a driver can be in multiple devclasses, we
729 	 * should not detach devices which are not children of devices in
730 	 * the affected devclass.
731 	 *
732 	 * If we're frozen, we don't generate NOMATCH events. Mark to
733 	 * generate later.
734 	 */
735 	for (i = 0; i < dc->maxunit; i++) {
736 		if (dc->devices[i]) {
737 			dev = dc->devices[i];
738 			if (dev->driver == driver && dev->parent &&
739 			    dev->parent->devclass == busclass) {
740 				if ((error = device_detach(dev)) != 0)
741 					return (error);
742 				if (device_frozen) {
743 					dev->flags &= ~DF_DONENOMATCH;
744 					dev->flags |= DF_NEEDNOMATCH;
745 				} else {
746 					device_handle_nomatch(dev);
747 				}
748 			}
749 		}
750 	}
751 
752 	/*
753 	 * Walk through the children classes.  Since we only keep a
754 	 * single parent pointer around, we walk the entire list of
755 	 * devclasses looking for children.  We set the
756 	 * DC_HAS_CHILDREN flag when a child devclass is created on
757 	 * the parent, so we only walk the list for those devclasses
758 	 * that have children.
759 	 */
760 	if (!(busclass->flags & DC_HAS_CHILDREN))
761 		return (0);
762 	parent = busclass;
763 	TAILQ_FOREACH(busclass, &devclasses, link) {
764 		if (busclass->parent == parent) {
765 			error = devclass_driver_deleted(busclass, dc, driver);
766 			if (error)
767 				return (error);
768 		}
769 	}
770 	return (0);
771 }
772 
773 /**
774  * @brief Delete a device driver from a device class
775  *
776  * Delete a device driver from a devclass. This is normally called
777  * automatically by DRIVER_MODULE().
778  *
779  * If the driver is currently attached to any devices,
780  * devclass_delete_driver() will first attempt to detach from each
781  * device. If one of the detach calls fails, the driver will not be
782  * deleted.
783  *
784  * @param dc		the devclass to edit
785  * @param driver	the driver to unregister
786  */
787 int
788 devclass_delete_driver(devclass_t busclass, driver_t *driver)
789 {
790 	devclass_t dc = devclass_find(driver->name);
791 	driverlink_t dl;
792 	int error;
793 
794 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
795 
796 	if (!dc)
797 		return (0);
798 
799 	/*
800 	 * Find the link structure in the bus' list of drivers.
801 	 */
802 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
803 		if (dl->driver == driver)
804 			break;
805 	}
806 
807 	if (!dl) {
808 		PDEBUG(("%s not found in %s list", driver->name,
809 		    busclass->name));
810 		return (ENOENT);
811 	}
812 
813 	error = devclass_driver_deleted(busclass, dc, driver);
814 	if (error != 0)
815 		return (error);
816 
817 	TAILQ_REMOVE(&busclass->drivers, dl, link);
818 	free(dl, M_BUS);
819 
820 	/* XXX: kobj_mtx */
821 	driver->refs--;
822 	if (driver->refs == 0)
823 		kobj_class_free((kobj_class_t) driver);
824 
825 	bus_data_generation_update();
826 	return (0);
827 }
828 
829 /**
830  * @brief Quiesces a set of device drivers from a device class
831  *
832  * Quiesce a device driver from a devclass. This is normally called
833  * automatically by DRIVER_MODULE().
834  *
835  * If the driver is currently attached to any devices,
836  * devclass_quiesece_driver() will first attempt to quiesce each
837  * device.
838  *
839  * @param dc		the devclass to edit
840  * @param driver	the driver to unregister
841  */
842 static int
843 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
844 {
845 	devclass_t dc = devclass_find(driver->name);
846 	driverlink_t dl;
847 	device_t dev;
848 	int i;
849 	int error;
850 
851 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
852 
853 	if (!dc)
854 		return (0);
855 
856 	/*
857 	 * Find the link structure in the bus' list of drivers.
858 	 */
859 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
860 		if (dl->driver == driver)
861 			break;
862 	}
863 
864 	if (!dl) {
865 		PDEBUG(("%s not found in %s list", driver->name,
866 		    busclass->name));
867 		return (ENOENT);
868 	}
869 
870 	/*
871 	 * Quiesce all devices.  We iterate through all the devices in
872 	 * the devclass of the driver and quiesce any which are using
873 	 * the driver and which have a parent in the devclass which we
874 	 * are quiescing.
875 	 *
876 	 * Note that since a driver can be in multiple devclasses, we
877 	 * should not quiesce devices which are not children of
878 	 * devices in the affected devclass.
879 	 */
880 	for (i = 0; i < dc->maxunit; i++) {
881 		if (dc->devices[i]) {
882 			dev = dc->devices[i];
883 			if (dev->driver == driver && dev->parent &&
884 			    dev->parent->devclass == busclass) {
885 				if ((error = device_quiesce(dev)) != 0)
886 					return (error);
887 			}
888 		}
889 	}
890 
891 	return (0);
892 }
893 
894 /**
895  * @internal
896  */
897 static driverlink_t
898 devclass_find_driver_internal(devclass_t dc, const char *classname)
899 {
900 	driverlink_t dl;
901 
902 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
903 
904 	TAILQ_FOREACH(dl, &dc->drivers, link) {
905 		if (!strcmp(dl->driver->name, classname))
906 			return (dl);
907 	}
908 
909 	PDEBUG(("not found"));
910 	return (NULL);
911 }
912 
913 /**
914  * @brief Return the name of the devclass
915  */
916 const char *
917 devclass_get_name(devclass_t dc)
918 {
919 	return (dc->name);
920 }
921 
922 /**
923  * @brief Find a device given a unit number
924  *
925  * @param dc		the devclass to search
926  * @param unit		the unit number to search for
927  *
928  * @returns		the device with the given unit number or @c
929  *			NULL if there is no such device
930  */
931 device_t
932 devclass_get_device(devclass_t dc, int unit)
933 {
934 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
935 		return (NULL);
936 	return (dc->devices[unit]);
937 }
938 
939 /**
940  * @brief Find the softc field of a device given a unit number
941  *
942  * @param dc		the devclass to search
943  * @param unit		the unit number to search for
944  *
945  * @returns		the softc field of the device with the given
946  *			unit number or @c NULL if there is no such
947  *			device
948  */
949 void *
950 devclass_get_softc(devclass_t dc, int unit)
951 {
952 	device_t dev;
953 
954 	dev = devclass_get_device(dc, unit);
955 	if (!dev)
956 		return (NULL);
957 
958 	return (device_get_softc(dev));
959 }
960 
961 /**
962  * @brief Get a list of devices in the devclass
963  *
964  * An array containing a list of all the devices in the given devclass
965  * is allocated and returned in @p *devlistp. The number of devices
966  * in the array is returned in @p *devcountp. The caller should free
967  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
968  *
969  * @param dc		the devclass to examine
970  * @param devlistp	points at location for array pointer return
971  *			value
972  * @param devcountp	points at location for array size return value
973  *
974  * @retval 0		success
975  * @retval ENOMEM	the array allocation failed
976  */
977 int
978 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
979 {
980 	int count, i;
981 	device_t *list;
982 
983 	count = devclass_get_count(dc);
984 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
985 	if (!list)
986 		return (ENOMEM);
987 
988 	count = 0;
989 	for (i = 0; i < dc->maxunit; i++) {
990 		if (dc->devices[i]) {
991 			list[count] = dc->devices[i];
992 			count++;
993 		}
994 	}
995 
996 	*devlistp = list;
997 	*devcountp = count;
998 
999 	return (0);
1000 }
1001 
1002 /**
1003  * @brief Get a list of drivers in the devclass
1004  *
1005  * An array containing a list of pointers to all the drivers in the
1006  * given devclass is allocated and returned in @p *listp.  The number
1007  * of drivers in the array is returned in @p *countp. The caller should
1008  * free the array using @c free(p, M_TEMP).
1009  *
1010  * @param dc		the devclass to examine
1011  * @param listp		gives location for array pointer return value
1012  * @param countp	gives location for number of array elements
1013  *			return value
1014  *
1015  * @retval 0		success
1016  * @retval ENOMEM	the array allocation failed
1017  */
1018 int
1019 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1020 {
1021 	driverlink_t dl;
1022 	driver_t **list;
1023 	int count;
1024 
1025 	count = 0;
1026 	TAILQ_FOREACH(dl, &dc->drivers, link)
1027 		count++;
1028 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1029 	if (list == NULL)
1030 		return (ENOMEM);
1031 
1032 	count = 0;
1033 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1034 		list[count] = dl->driver;
1035 		count++;
1036 	}
1037 	*listp = list;
1038 	*countp = count;
1039 
1040 	return (0);
1041 }
1042 
1043 /**
1044  * @brief Get the number of devices in a devclass
1045  *
1046  * @param dc		the devclass to examine
1047  */
1048 int
1049 devclass_get_count(devclass_t dc)
1050 {
1051 	int count, i;
1052 
1053 	count = 0;
1054 	for (i = 0; i < dc->maxunit; i++)
1055 		if (dc->devices[i])
1056 			count++;
1057 	return (count);
1058 }
1059 
1060 /**
1061  * @brief Get the maximum unit number used in a devclass
1062  *
1063  * Note that this is one greater than the highest currently-allocated
1064  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1065  * that not even the devclass has been allocated yet.
1066  *
1067  * @param dc		the devclass to examine
1068  */
1069 int
1070 devclass_get_maxunit(devclass_t dc)
1071 {
1072 	if (dc == NULL)
1073 		return (-1);
1074 	return (dc->maxunit);
1075 }
1076 
1077 /**
1078  * @brief Find a free unit number in a devclass
1079  *
1080  * This function searches for the first unused unit number greater
1081  * that or equal to @p unit.
1082  *
1083  * @param dc		the devclass to examine
1084  * @param unit		the first unit number to check
1085  */
1086 int
1087 devclass_find_free_unit(devclass_t dc, int unit)
1088 {
1089 	if (dc == NULL)
1090 		return (unit);
1091 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1092 		unit++;
1093 	return (unit);
1094 }
1095 
1096 /**
1097  * @brief Set the parent of a devclass
1098  *
1099  * The parent class is normally initialised automatically by
1100  * DRIVER_MODULE().
1101  *
1102  * @param dc		the devclass to edit
1103  * @param pdc		the new parent devclass
1104  */
1105 void
1106 devclass_set_parent(devclass_t dc, devclass_t pdc)
1107 {
1108 	dc->parent = pdc;
1109 }
1110 
1111 /**
1112  * @brief Get the parent of a devclass
1113  *
1114  * @param dc		the devclass to examine
1115  */
1116 devclass_t
1117 devclass_get_parent(devclass_t dc)
1118 {
1119 	return (dc->parent);
1120 }
1121 
1122 struct sysctl_ctx_list *
1123 devclass_get_sysctl_ctx(devclass_t dc)
1124 {
1125 	return (&dc->sysctl_ctx);
1126 }
1127 
1128 struct sysctl_oid *
1129 devclass_get_sysctl_tree(devclass_t dc)
1130 {
1131 	return (dc->sysctl_tree);
1132 }
1133 
1134 /**
1135  * @internal
1136  * @brief Allocate a unit number
1137  *
1138  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1139  * will do). The allocated unit number is returned in @p *unitp.
1140 
1141  * @param dc		the devclass to allocate from
1142  * @param unitp		points at the location for the allocated unit
1143  *			number
1144  *
1145  * @retval 0		success
1146  * @retval EEXIST	the requested unit number is already allocated
1147  * @retval ENOMEM	memory allocation failure
1148  */
1149 static int
1150 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1151 {
1152 	const char *s;
1153 	int unit = *unitp;
1154 
1155 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1156 
1157 	/* Ask the parent bus if it wants to wire this device. */
1158 	if (unit == -1)
1159 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1160 		    &unit);
1161 
1162 	/* If we were given a wired unit number, check for existing device */
1163 	/* XXX imp XXX */
1164 	if (unit != -1) {
1165 		if (unit >= 0 && unit < dc->maxunit &&
1166 		    dc->devices[unit] != NULL) {
1167 			if (bootverbose)
1168 				printf("%s: %s%d already exists; skipping it\n",
1169 				    dc->name, dc->name, *unitp);
1170 			return (EEXIST);
1171 		}
1172 	} else {
1173 		/* Unwired device, find the next available slot for it */
1174 		unit = 0;
1175 		for (unit = 0;; unit++) {
1176 			/* If this device slot is already in use, skip it. */
1177 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1178 				continue;
1179 
1180 			/* If there is an "at" hint for a unit then skip it. */
1181 			if (resource_string_value(dc->name, unit, "at", &s) ==
1182 			    0)
1183 				continue;
1184 
1185 			break;
1186 		}
1187 	}
1188 
1189 	/*
1190 	 * We've selected a unit beyond the length of the table, so let's
1191 	 * extend the table to make room for all units up to and including
1192 	 * this one.
1193 	 */
1194 	if (unit >= dc->maxunit) {
1195 		device_t *newlist, *oldlist;
1196 		int newsize;
1197 
1198 		oldlist = dc->devices;
1199 		newsize = roundup((unit + 1),
1200 		    MAX(1, MINALLOCSIZE / sizeof(device_t)));
1201 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1202 		if (!newlist)
1203 			return (ENOMEM);
1204 		if (oldlist != NULL)
1205 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1206 		bzero(newlist + dc->maxunit,
1207 		    sizeof(device_t) * (newsize - dc->maxunit));
1208 		dc->devices = newlist;
1209 		dc->maxunit = newsize;
1210 		if (oldlist != NULL)
1211 			free(oldlist, M_BUS);
1212 	}
1213 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1214 
1215 	*unitp = unit;
1216 	return (0);
1217 }
1218 
1219 /**
1220  * @internal
1221  * @brief Add a device to a devclass
1222  *
1223  * A unit number is allocated for the device (using the device's
1224  * preferred unit number if any) and the device is registered in the
1225  * devclass. This allows the device to be looked up by its unit
1226  * number, e.g. by decoding a dev_t minor number.
1227  *
1228  * @param dc		the devclass to add to
1229  * @param dev		the device to add
1230  *
1231  * @retval 0		success
1232  * @retval EEXIST	the requested unit number is already allocated
1233  * @retval ENOMEM	memory allocation failure
1234  */
1235 static int
1236 devclass_add_device(devclass_t dc, device_t dev)
1237 {
1238 	int buflen, error;
1239 
1240 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1241 
1242 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1243 	if (buflen < 0)
1244 		return (ENOMEM);
1245 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1246 	if (!dev->nameunit)
1247 		return (ENOMEM);
1248 
1249 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1250 		free(dev->nameunit, M_BUS);
1251 		dev->nameunit = NULL;
1252 		return (error);
1253 	}
1254 	dc->devices[dev->unit] = dev;
1255 	dev->devclass = dc;
1256 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1257 
1258 	return (0);
1259 }
1260 
1261 /**
1262  * @internal
1263  * @brief Delete a device from a devclass
1264  *
1265  * The device is removed from the devclass's device list and its unit
1266  * number is freed.
1267 
1268  * @param dc		the devclass to delete from
1269  * @param dev		the device to delete
1270  *
1271  * @retval 0		success
1272  */
1273 static int
1274 devclass_delete_device(devclass_t dc, device_t dev)
1275 {
1276 	if (!dc || !dev)
1277 		return (0);
1278 
1279 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1280 
1281 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1282 		panic("devclass_delete_device: inconsistent device class");
1283 	dc->devices[dev->unit] = NULL;
1284 	if (dev->flags & DF_WILDCARD)
1285 		dev->unit = -1;
1286 	dev->devclass = NULL;
1287 	free(dev->nameunit, M_BUS);
1288 	dev->nameunit = NULL;
1289 
1290 	return (0);
1291 }
1292 
1293 /**
1294  * @internal
1295  * @brief Make a new device and add it as a child of @p parent
1296  *
1297  * @param parent	the parent of the new device
1298  * @param name		the devclass name of the new device or @c NULL
1299  *			to leave the devclass unspecified
1300  * @parem unit		the unit number of the new device of @c -1 to
1301  *			leave the unit number unspecified
1302  *
1303  * @returns the new device
1304  */
1305 static device_t
1306 make_device(device_t parent, const char *name, int unit)
1307 {
1308 	device_t dev;
1309 	devclass_t dc;
1310 
1311 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1312 
1313 	if (name) {
1314 		dc = devclass_find_internal(name, NULL, TRUE);
1315 		if (!dc) {
1316 			printf("make_device: can't find device class %s\n",
1317 			    name);
1318 			return (NULL);
1319 		}
1320 	} else {
1321 		dc = NULL;
1322 	}
1323 
1324 	dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1325 	if (!dev)
1326 		return (NULL);
1327 
1328 	dev->parent = parent;
1329 	TAILQ_INIT(&dev->children);
1330 	kobj_init((kobj_t) dev, &null_class);
1331 	dev->driver = NULL;
1332 	dev->devclass = NULL;
1333 	dev->unit = unit;
1334 	dev->nameunit = NULL;
1335 	dev->desc = NULL;
1336 	dev->busy = 0;
1337 	dev->devflags = 0;
1338 	dev->flags = DF_ENABLED;
1339 	dev->order = 0;
1340 	if (unit == -1)
1341 		dev->flags |= DF_WILDCARD;
1342 	if (name) {
1343 		dev->flags |= DF_FIXEDCLASS;
1344 		if (devclass_add_device(dc, dev)) {
1345 			kobj_delete((kobj_t) dev, M_BUS);
1346 			return (NULL);
1347 		}
1348 	}
1349 	if (parent != NULL && device_has_quiet_children(parent))
1350 		dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1351 	dev->ivars = NULL;
1352 	dev->softc = NULL;
1353 
1354 	dev->state = DS_NOTPRESENT;
1355 
1356 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1357 	bus_data_generation_update();
1358 
1359 	return (dev);
1360 }
1361 
1362 /**
1363  * @internal
1364  * @brief Print a description of a device.
1365  */
1366 static int
1367 device_print_child(device_t dev, device_t child)
1368 {
1369 	int retval = 0;
1370 
1371 	if (device_is_alive(child))
1372 		retval += BUS_PRINT_CHILD(dev, child);
1373 	else
1374 		retval += device_printf(child, " not found\n");
1375 
1376 	return (retval);
1377 }
1378 
1379 /**
1380  * @brief Create a new device
1381  *
1382  * This creates a new device and adds it as a child of an existing
1383  * parent device. The new device will be added after the last existing
1384  * child with order zero.
1385  *
1386  * @param dev		the device which will be the parent of the
1387  *			new child device
1388  * @param name		devclass name for new device or @c NULL if not
1389  *			specified
1390  * @param unit		unit number for new device or @c -1 if not
1391  *			specified
1392  *
1393  * @returns		the new device
1394  */
1395 device_t
1396 device_add_child(device_t dev, const char *name, int unit)
1397 {
1398 	return (device_add_child_ordered(dev, 0, name, unit));
1399 }
1400 
1401 /**
1402  * @brief Create a new device
1403  *
1404  * This creates a new device and adds it as a child of an existing
1405  * parent device. The new device will be added after the last existing
1406  * child with the same order.
1407  *
1408  * @param dev		the device which will be the parent of the
1409  *			new child device
1410  * @param order		a value which is used to partially sort the
1411  *			children of @p dev - devices created using
1412  *			lower values of @p order appear first in @p
1413  *			dev's list of children
1414  * @param name		devclass name for new device or @c NULL if not
1415  *			specified
1416  * @param unit		unit number for new device or @c -1 if not
1417  *			specified
1418  *
1419  * @returns		the new device
1420  */
1421 device_t
1422 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1423 {
1424 	device_t child;
1425 	device_t place;
1426 
1427 	PDEBUG(("%s at %s with order %u as unit %d",
1428 	    name, DEVICENAME(dev), order, unit));
1429 	KASSERT(name != NULL || unit == -1,
1430 	    ("child device with wildcard name and specific unit number"));
1431 
1432 	child = make_device(dev, name, unit);
1433 	if (child == NULL)
1434 		return (child);
1435 	child->order = order;
1436 
1437 	TAILQ_FOREACH(place, &dev->children, link) {
1438 		if (place->order > order)
1439 			break;
1440 	}
1441 
1442 	if (place) {
1443 		/*
1444 		 * The device 'place' is the first device whose order is
1445 		 * greater than the new child.
1446 		 */
1447 		TAILQ_INSERT_BEFORE(place, child, link);
1448 	} else {
1449 		/*
1450 		 * The new child's order is greater or equal to the order of
1451 		 * any existing device. Add the child to the tail of the list.
1452 		 */
1453 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1454 	}
1455 
1456 	bus_data_generation_update();
1457 	return (child);
1458 }
1459 
1460 /**
1461  * @brief Delete a device
1462  *
1463  * This function deletes a device along with all of its children. If
1464  * the device currently has a driver attached to it, the device is
1465  * detached first using device_detach().
1466  *
1467  * @param dev		the parent device
1468  * @param child		the device to delete
1469  *
1470  * @retval 0		success
1471  * @retval non-zero	a unit error code describing the error
1472  */
1473 int
1474 device_delete_child(device_t dev, device_t child)
1475 {
1476 	int error;
1477 	device_t grandchild;
1478 
1479 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1480 
1481 	/* detach parent before deleting children, if any */
1482 	if ((error = device_detach(child)) != 0)
1483 		return (error);
1484 
1485 	/* remove children second */
1486 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1487 		error = device_delete_child(child, grandchild);
1488 		if (error)
1489 			return (error);
1490 	}
1491 
1492 	if (child->devclass)
1493 		devclass_delete_device(child->devclass, child);
1494 	if (child->parent)
1495 		BUS_CHILD_DELETED(dev, child);
1496 	TAILQ_REMOVE(&dev->children, child, link);
1497 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1498 	kobj_delete((kobj_t) child, M_BUS);
1499 
1500 	bus_data_generation_update();
1501 	return (0);
1502 }
1503 
1504 /**
1505  * @brief Delete all children devices of the given device, if any.
1506  *
1507  * This function deletes all children devices of the given device, if
1508  * any, using the device_delete_child() function for each device it
1509  * finds. If a child device cannot be deleted, this function will
1510  * return an error code.
1511  *
1512  * @param dev		the parent device
1513  *
1514  * @retval 0		success
1515  * @retval non-zero	a device would not detach
1516  */
1517 int
1518 device_delete_children(device_t dev)
1519 {
1520 	device_t child;
1521 	int error;
1522 
1523 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1524 
1525 	error = 0;
1526 
1527 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1528 		error = device_delete_child(dev, child);
1529 		if (error) {
1530 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1531 			break;
1532 		}
1533 	}
1534 	return (error);
1535 }
1536 
1537 /**
1538  * @brief Find a device given a unit number
1539  *
1540  * This is similar to devclass_get_devices() but only searches for
1541  * devices which have @p dev as a parent.
1542  *
1543  * @param dev		the parent device to search
1544  * @param unit		the unit number to search for.  If the unit is -1,
1545  *			return the first child of @p dev which has name
1546  *			@p classname (that is, the one with the lowest unit.)
1547  *
1548  * @returns		the device with the given unit number or @c
1549  *			NULL if there is no such device
1550  */
1551 device_t
1552 device_find_child(device_t dev, const char *classname, int unit)
1553 {
1554 	devclass_t dc;
1555 	device_t child;
1556 
1557 	dc = devclass_find(classname);
1558 	if (!dc)
1559 		return (NULL);
1560 
1561 	if (unit != -1) {
1562 		child = devclass_get_device(dc, unit);
1563 		if (child && child->parent == dev)
1564 			return (child);
1565 	} else {
1566 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1567 			child = devclass_get_device(dc, unit);
1568 			if (child && child->parent == dev)
1569 				return (child);
1570 		}
1571 	}
1572 	return (NULL);
1573 }
1574 
1575 /**
1576  * @internal
1577  */
1578 static driverlink_t
1579 first_matching_driver(devclass_t dc, device_t dev)
1580 {
1581 	if (dev->devclass)
1582 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1583 	return (TAILQ_FIRST(&dc->drivers));
1584 }
1585 
1586 /**
1587  * @internal
1588  */
1589 static driverlink_t
1590 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1591 {
1592 	if (dev->devclass) {
1593 		driverlink_t dl;
1594 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1595 			if (!strcmp(dev->devclass->name, dl->driver->name))
1596 				return (dl);
1597 		return (NULL);
1598 	}
1599 	return (TAILQ_NEXT(last, link));
1600 }
1601 
1602 /**
1603  * @internal
1604  */
1605 int
1606 device_probe_child(device_t dev, device_t child)
1607 {
1608 	devclass_t dc;
1609 	driverlink_t best = NULL;
1610 	driverlink_t dl;
1611 	int result, pri = 0;
1612 	/* We should preserve the devclass (or lack of) set by the bus. */
1613 	int hasclass = (child->devclass != NULL);
1614 
1615 	bus_topo_assert();
1616 
1617 	dc = dev->devclass;
1618 	if (!dc)
1619 		panic("device_probe_child: parent device has no devclass");
1620 
1621 	/*
1622 	 * If the state is already probed, then return.
1623 	 */
1624 	if (child->state == DS_ALIVE)
1625 		return (0);
1626 
1627 	for (; dc; dc = dc->parent) {
1628 		for (dl = first_matching_driver(dc, child);
1629 		     dl;
1630 		     dl = next_matching_driver(dc, child, dl)) {
1631 			/* If this driver's pass is too high, then ignore it. */
1632 			if (dl->pass > bus_current_pass)
1633 				continue;
1634 
1635 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1636 			result = device_set_driver(child, dl->driver);
1637 			if (result == ENOMEM)
1638 				return (result);
1639 			else if (result != 0)
1640 				continue;
1641 			if (!hasclass) {
1642 				if (device_set_devclass(child,
1643 				    dl->driver->name) != 0) {
1644 					char const * devname =
1645 					    device_get_name(child);
1646 					if (devname == NULL)
1647 						devname = "(unknown)";
1648 					printf("driver bug: Unable to set "
1649 					    "devclass (class: %s "
1650 					    "devname: %s)\n",
1651 					    dl->driver->name,
1652 					    devname);
1653 					(void)device_set_driver(child, NULL);
1654 					continue;
1655 				}
1656 			}
1657 
1658 			/* Fetch any flags for the device before probing. */
1659 			resource_int_value(dl->driver->name, child->unit,
1660 			    "flags", &child->devflags);
1661 
1662 			result = DEVICE_PROBE(child);
1663 
1664 			/*
1665 			 * If the driver returns SUCCESS, there can be
1666 			 * no higher match for this device.
1667 			 */
1668 			if (result == 0) {
1669 				best = dl;
1670 				pri = 0;
1671 				break;
1672 			}
1673 
1674 			/* Reset flags and devclass before the next probe. */
1675 			child->devflags = 0;
1676 			if (!hasclass)
1677 				(void)device_set_devclass(child, NULL);
1678 
1679 			/*
1680 			 * Reset DF_QUIET in case this driver doesn't
1681 			 * end up as the best driver.
1682 			 */
1683 			device_verbose(child);
1684 
1685 			/*
1686 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
1687 			 * only match on devices whose driver was explicitly
1688 			 * specified.
1689 			 */
1690 			if (result <= BUS_PROBE_NOWILDCARD &&
1691 			    !(child->flags & DF_FIXEDCLASS)) {
1692 				result = ENXIO;
1693 			}
1694 
1695 			/*
1696 			 * The driver returned an error so it
1697 			 * certainly doesn't match.
1698 			 */
1699 			if (result > 0) {
1700 				(void)device_set_driver(child, NULL);
1701 				continue;
1702 			}
1703 
1704 			/*
1705 			 * A priority lower than SUCCESS, remember the
1706 			 * best matching driver. Initialise the value
1707 			 * of pri for the first match.
1708 			 */
1709 			if (best == NULL || result > pri) {
1710 				best = dl;
1711 				pri = result;
1712 				continue;
1713 			}
1714 		}
1715 		/*
1716 		 * If we have an unambiguous match in this devclass,
1717 		 * don't look in the parent.
1718 		 */
1719 		if (best && pri == 0)
1720 			break;
1721 	}
1722 
1723 	if (best == NULL)
1724 		return (ENXIO);
1725 
1726 	/*
1727 	 * If we found a driver, change state and initialise the devclass.
1728 	 */
1729 	if (pri < 0) {
1730 		/* Set the winning driver, devclass, and flags. */
1731 		result = device_set_driver(child, best->driver);
1732 		if (result != 0)
1733 			return (result);
1734 		if (!child->devclass) {
1735 			result = device_set_devclass(child, best->driver->name);
1736 			if (result != 0) {
1737 				(void)device_set_driver(child, NULL);
1738 				return (result);
1739 			}
1740 		}
1741 		resource_int_value(best->driver->name, child->unit,
1742 		    "flags", &child->devflags);
1743 
1744 		/*
1745 		 * A bit bogus. Call the probe method again to make sure
1746 		 * that we have the right description.
1747 		 */
1748 		result = DEVICE_PROBE(child);
1749 		if (result > 0) {
1750 			if (!hasclass)
1751 				(void)device_set_devclass(child, NULL);
1752 			(void)device_set_driver(child, NULL);
1753 			return (result);
1754 		}
1755 	}
1756 
1757 	child->state = DS_ALIVE;
1758 	bus_data_generation_update();
1759 	return (0);
1760 }
1761 
1762 /**
1763  * @brief Return the parent of a device
1764  */
1765 device_t
1766 device_get_parent(device_t dev)
1767 {
1768 	return (dev->parent);
1769 }
1770 
1771 /**
1772  * @brief Get a list of children of a device
1773  *
1774  * An array containing a list of all the children of the given device
1775  * is allocated and returned in @p *devlistp. The number of devices
1776  * in the array is returned in @p *devcountp. The caller should free
1777  * the array using @c free(p, M_TEMP).
1778  *
1779  * @param dev		the device to examine
1780  * @param devlistp	points at location for array pointer return
1781  *			value
1782  * @param devcountp	points at location for array size return value
1783  *
1784  * @retval 0		success
1785  * @retval ENOMEM	the array allocation failed
1786  */
1787 int
1788 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1789 {
1790 	int count;
1791 	device_t child;
1792 	device_t *list;
1793 
1794 	count = 0;
1795 	TAILQ_FOREACH(child, &dev->children, link) {
1796 		count++;
1797 	}
1798 	if (count == 0) {
1799 		*devlistp = NULL;
1800 		*devcountp = 0;
1801 		return (0);
1802 	}
1803 
1804 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1805 	if (!list)
1806 		return (ENOMEM);
1807 
1808 	count = 0;
1809 	TAILQ_FOREACH(child, &dev->children, link) {
1810 		list[count] = child;
1811 		count++;
1812 	}
1813 
1814 	*devlistp = list;
1815 	*devcountp = count;
1816 
1817 	return (0);
1818 }
1819 
1820 /**
1821  * @brief Return the current driver for the device or @c NULL if there
1822  * is no driver currently attached
1823  */
1824 driver_t *
1825 device_get_driver(device_t dev)
1826 {
1827 	return (dev->driver);
1828 }
1829 
1830 /**
1831  * @brief Return the current devclass for the device or @c NULL if
1832  * there is none.
1833  */
1834 devclass_t
1835 device_get_devclass(device_t dev)
1836 {
1837 	return (dev->devclass);
1838 }
1839 
1840 /**
1841  * @brief Return the name of the device's devclass or @c NULL if there
1842  * is none.
1843  */
1844 const char *
1845 device_get_name(device_t dev)
1846 {
1847 	if (dev != NULL && dev->devclass)
1848 		return (devclass_get_name(dev->devclass));
1849 	return (NULL);
1850 }
1851 
1852 /**
1853  * @brief Return a string containing the device's devclass name
1854  * followed by an ascii representation of the device's unit number
1855  * (e.g. @c "foo2").
1856  */
1857 const char *
1858 device_get_nameunit(device_t dev)
1859 {
1860 	return (dev->nameunit);
1861 }
1862 
1863 /**
1864  * @brief Return the device's unit number.
1865  */
1866 int
1867 device_get_unit(device_t dev)
1868 {
1869 	return (dev->unit);
1870 }
1871 
1872 /**
1873  * @brief Return the device's description string
1874  */
1875 const char *
1876 device_get_desc(device_t dev)
1877 {
1878 	return (dev->desc);
1879 }
1880 
1881 /**
1882  * @brief Return the device's flags
1883  */
1884 uint32_t
1885 device_get_flags(device_t dev)
1886 {
1887 	return (dev->devflags);
1888 }
1889 
1890 struct sysctl_ctx_list *
1891 device_get_sysctl_ctx(device_t dev)
1892 {
1893 	return (&dev->sysctl_ctx);
1894 }
1895 
1896 struct sysctl_oid *
1897 device_get_sysctl_tree(device_t dev)
1898 {
1899 	return (dev->sysctl_tree);
1900 }
1901 
1902 /**
1903  * @brief Print the name of the device followed by a colon and a space
1904  *
1905  * @returns the number of characters printed
1906  */
1907 int
1908 device_print_prettyname(device_t dev)
1909 {
1910 	const char *name = device_get_name(dev);
1911 
1912 	if (name == NULL)
1913 		return (printf("unknown: "));
1914 	return (printf("%s%d: ", name, device_get_unit(dev)));
1915 }
1916 
1917 /**
1918  * @brief Print the name of the device followed by a colon, a space
1919  * and the result of calling vprintf() with the value of @p fmt and
1920  * the following arguments.
1921  *
1922  * @returns the number of characters printed
1923  */
1924 int
1925 device_printf(device_t dev, const char * fmt, ...)
1926 {
1927 	char buf[128];
1928 	struct sbuf sb;
1929 	const char *name;
1930 	va_list ap;
1931 	size_t retval;
1932 
1933 	retval = 0;
1934 
1935 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1936 	sbuf_set_drain(&sb, sbuf_printf_drain, &retval);
1937 
1938 	name = device_get_name(dev);
1939 
1940 	if (name == NULL)
1941 		sbuf_cat(&sb, "unknown: ");
1942 	else
1943 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
1944 
1945 	va_start(ap, fmt);
1946 	sbuf_vprintf(&sb, fmt, ap);
1947 	va_end(ap);
1948 
1949 	sbuf_finish(&sb);
1950 	sbuf_delete(&sb);
1951 
1952 	return (retval);
1953 }
1954 
1955 /**
1956  * @brief Print the name of the device followed by a colon, a space
1957  * and the result of calling log() with the value of @p fmt and
1958  * the following arguments.
1959  *
1960  * @returns the number of characters printed
1961  */
1962 int
1963 device_log(device_t dev, int pri, const char * fmt, ...)
1964 {
1965 	char buf[128];
1966 	struct sbuf sb;
1967 	const char *name;
1968 	va_list ap;
1969 	size_t retval;
1970 
1971 	retval = 0;
1972 
1973 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1974 
1975 	name = device_get_name(dev);
1976 
1977 	if (name == NULL)
1978 		sbuf_cat(&sb, "unknown: ");
1979 	else
1980 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
1981 
1982 	va_start(ap, fmt);
1983 	sbuf_vprintf(&sb, fmt, ap);
1984 	va_end(ap);
1985 
1986 	sbuf_finish(&sb);
1987 
1988 	log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb));
1989 	retval = sbuf_len(&sb);
1990 
1991 	sbuf_delete(&sb);
1992 
1993 	return (retval);
1994 }
1995 
1996 /**
1997  * @internal
1998  */
1999 static void
2000 device_set_desc_internal(device_t dev, const char* desc, int copy)
2001 {
2002 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2003 		free(dev->desc, M_BUS);
2004 		dev->flags &= ~DF_DESCMALLOCED;
2005 		dev->desc = NULL;
2006 	}
2007 
2008 	if (copy && desc) {
2009 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2010 		if (dev->desc) {
2011 			strcpy(dev->desc, desc);
2012 			dev->flags |= DF_DESCMALLOCED;
2013 		}
2014 	} else {
2015 		/* Avoid a -Wcast-qual warning */
2016 		dev->desc = (char *)(uintptr_t) desc;
2017 	}
2018 
2019 	bus_data_generation_update();
2020 }
2021 
2022 /**
2023  * @brief Set the device's description
2024  *
2025  * The value of @c desc should be a string constant that will not
2026  * change (at least until the description is changed in a subsequent
2027  * call to device_set_desc() or device_set_desc_copy()).
2028  */
2029 void
2030 device_set_desc(device_t dev, const char* desc)
2031 {
2032 	device_set_desc_internal(dev, desc, FALSE);
2033 }
2034 
2035 /**
2036  * @brief Set the device's description
2037  *
2038  * The string pointed to by @c desc is copied. Use this function if
2039  * the device description is generated, (e.g. with sprintf()).
2040  */
2041 void
2042 device_set_desc_copy(device_t dev, const char* desc)
2043 {
2044 	device_set_desc_internal(dev, desc, TRUE);
2045 }
2046 
2047 /**
2048  * @brief Set the device's flags
2049  */
2050 void
2051 device_set_flags(device_t dev, uint32_t flags)
2052 {
2053 	dev->devflags = flags;
2054 }
2055 
2056 /**
2057  * @brief Return the device's softc field
2058  *
2059  * The softc is allocated and zeroed when a driver is attached, based
2060  * on the size field of the driver.
2061  */
2062 void *
2063 device_get_softc(device_t dev)
2064 {
2065 	return (dev->softc);
2066 }
2067 
2068 /**
2069  * @brief Set the device's softc field
2070  *
2071  * Most drivers do not need to use this since the softc is allocated
2072  * automatically when the driver is attached.
2073  */
2074 void
2075 device_set_softc(device_t dev, void *softc)
2076 {
2077 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2078 		free(dev->softc, M_BUS_SC);
2079 	dev->softc = softc;
2080 	if (dev->softc)
2081 		dev->flags |= DF_EXTERNALSOFTC;
2082 	else
2083 		dev->flags &= ~DF_EXTERNALSOFTC;
2084 }
2085 
2086 /**
2087  * @brief Free claimed softc
2088  *
2089  * Most drivers do not need to use this since the softc is freed
2090  * automatically when the driver is detached.
2091  */
2092 void
2093 device_free_softc(void *softc)
2094 {
2095 	free(softc, M_BUS_SC);
2096 }
2097 
2098 /**
2099  * @brief Claim softc
2100  *
2101  * This function can be used to let the driver free the automatically
2102  * allocated softc using "device_free_softc()". This function is
2103  * useful when the driver is refcounting the softc and the softc
2104  * cannot be freed when the "device_detach" method is called.
2105  */
2106 void
2107 device_claim_softc(device_t dev)
2108 {
2109 	if (dev->softc)
2110 		dev->flags |= DF_EXTERNALSOFTC;
2111 	else
2112 		dev->flags &= ~DF_EXTERNALSOFTC;
2113 }
2114 
2115 /**
2116  * @brief Get the device's ivars field
2117  *
2118  * The ivars field is used by the parent device to store per-device
2119  * state (e.g. the physical location of the device or a list of
2120  * resources).
2121  */
2122 void *
2123 device_get_ivars(device_t dev)
2124 {
2125 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2126 	return (dev->ivars);
2127 }
2128 
2129 /**
2130  * @brief Set the device's ivars field
2131  */
2132 void
2133 device_set_ivars(device_t dev, void * ivars)
2134 {
2135 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2136 	dev->ivars = ivars;
2137 }
2138 
2139 /**
2140  * @brief Return the device's state
2141  */
2142 device_state_t
2143 device_get_state(device_t dev)
2144 {
2145 	return (dev->state);
2146 }
2147 
2148 /**
2149  * @brief Set the DF_ENABLED flag for the device
2150  */
2151 void
2152 device_enable(device_t dev)
2153 {
2154 	dev->flags |= DF_ENABLED;
2155 }
2156 
2157 /**
2158  * @brief Clear the DF_ENABLED flag for the device
2159  */
2160 void
2161 device_disable(device_t dev)
2162 {
2163 	dev->flags &= ~DF_ENABLED;
2164 }
2165 
2166 /**
2167  * @brief Increment the busy counter for the device
2168  */
2169 void
2170 device_busy(device_t dev)
2171 {
2172 
2173 	/*
2174 	 * Mark the device as busy, recursively up the tree if this busy count
2175 	 * goes 0->1.
2176 	 */
2177 	if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL)
2178 		device_busy(dev->parent);
2179 }
2180 
2181 /**
2182  * @brief Decrement the busy counter for the device
2183  */
2184 void
2185 device_unbusy(device_t dev)
2186 {
2187 
2188 	/*
2189 	 * Mark the device as unbsy, recursively if this is the last busy count.
2190 	 */
2191 	if (refcount_release(&dev->busy) && dev->parent != NULL)
2192 		device_unbusy(dev->parent);
2193 }
2194 
2195 /**
2196  * @brief Set the DF_QUIET flag for the device
2197  */
2198 void
2199 device_quiet(device_t dev)
2200 {
2201 	dev->flags |= DF_QUIET;
2202 }
2203 
2204 /**
2205  * @brief Set the DF_QUIET_CHILDREN flag for the device
2206  */
2207 void
2208 device_quiet_children(device_t dev)
2209 {
2210 	dev->flags |= DF_QUIET_CHILDREN;
2211 }
2212 
2213 /**
2214  * @brief Clear the DF_QUIET flag for the device
2215  */
2216 void
2217 device_verbose(device_t dev)
2218 {
2219 	dev->flags &= ~DF_QUIET;
2220 }
2221 
2222 ssize_t
2223 device_get_property(device_t dev, const char *prop, void *val, size_t sz,
2224     device_property_type_t type)
2225 {
2226 	device_t bus = device_get_parent(dev);
2227 
2228 	switch (type) {
2229 	case DEVICE_PROP_ANY:
2230 	case DEVICE_PROP_BUFFER:
2231 	case DEVICE_PROP_HANDLE:	/* Size checks done in implementation. */
2232 		break;
2233 	case DEVICE_PROP_UINT32:
2234 		if (sz % 4 != 0)
2235 			return (-1);
2236 		break;
2237 	case DEVICE_PROP_UINT64:
2238 		if (sz % 8 != 0)
2239 			return (-1);
2240 		break;
2241 	default:
2242 		return (-1);
2243 	}
2244 
2245 	return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type));
2246 }
2247 
2248 bool
2249 device_has_property(device_t dev, const char *prop)
2250 {
2251 	return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0);
2252 }
2253 
2254 /**
2255  * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2256  */
2257 int
2258 device_has_quiet_children(device_t dev)
2259 {
2260 	return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2261 }
2262 
2263 /**
2264  * @brief Return non-zero if the DF_QUIET flag is set on the device
2265  */
2266 int
2267 device_is_quiet(device_t dev)
2268 {
2269 	return ((dev->flags & DF_QUIET) != 0);
2270 }
2271 
2272 /**
2273  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2274  */
2275 int
2276 device_is_enabled(device_t dev)
2277 {
2278 	return ((dev->flags & DF_ENABLED) != 0);
2279 }
2280 
2281 /**
2282  * @brief Return non-zero if the device was successfully probed
2283  */
2284 int
2285 device_is_alive(device_t dev)
2286 {
2287 	return (dev->state >= DS_ALIVE);
2288 }
2289 
2290 /**
2291  * @brief Return non-zero if the device currently has a driver
2292  * attached to it
2293  */
2294 int
2295 device_is_attached(device_t dev)
2296 {
2297 	return (dev->state >= DS_ATTACHED);
2298 }
2299 
2300 /**
2301  * @brief Return non-zero if the device is currently suspended.
2302  */
2303 int
2304 device_is_suspended(device_t dev)
2305 {
2306 	return ((dev->flags & DF_SUSPENDED) != 0);
2307 }
2308 
2309 /**
2310  * @brief Set the devclass of a device
2311  * @see devclass_add_device().
2312  */
2313 int
2314 device_set_devclass(device_t dev, const char *classname)
2315 {
2316 	devclass_t dc;
2317 	int error;
2318 
2319 	if (!classname) {
2320 		if (dev->devclass)
2321 			devclass_delete_device(dev->devclass, dev);
2322 		return (0);
2323 	}
2324 
2325 	if (dev->devclass) {
2326 		printf("device_set_devclass: device class already set\n");
2327 		return (EINVAL);
2328 	}
2329 
2330 	dc = devclass_find_internal(classname, NULL, TRUE);
2331 	if (!dc)
2332 		return (ENOMEM);
2333 
2334 	error = devclass_add_device(dc, dev);
2335 
2336 	bus_data_generation_update();
2337 	return (error);
2338 }
2339 
2340 /**
2341  * @brief Set the devclass of a device and mark the devclass fixed.
2342  * @see device_set_devclass()
2343  */
2344 int
2345 device_set_devclass_fixed(device_t dev, const char *classname)
2346 {
2347 	int error;
2348 
2349 	if (classname == NULL)
2350 		return (EINVAL);
2351 
2352 	error = device_set_devclass(dev, classname);
2353 	if (error)
2354 		return (error);
2355 	dev->flags |= DF_FIXEDCLASS;
2356 	return (0);
2357 }
2358 
2359 /**
2360  * @brief Query the device to determine if it's of a fixed devclass
2361  * @see device_set_devclass_fixed()
2362  */
2363 bool
2364 device_is_devclass_fixed(device_t dev)
2365 {
2366 	return ((dev->flags & DF_FIXEDCLASS) != 0);
2367 }
2368 
2369 /**
2370  * @brief Set the driver of a device
2371  *
2372  * @retval 0		success
2373  * @retval EBUSY	the device already has a driver attached
2374  * @retval ENOMEM	a memory allocation failure occurred
2375  */
2376 int
2377 device_set_driver(device_t dev, driver_t *driver)
2378 {
2379 	int domain;
2380 	struct domainset *policy;
2381 
2382 	if (dev->state >= DS_ATTACHED)
2383 		return (EBUSY);
2384 
2385 	if (dev->driver == driver)
2386 		return (0);
2387 
2388 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2389 		free(dev->softc, M_BUS_SC);
2390 		dev->softc = NULL;
2391 	}
2392 	device_set_desc(dev, NULL);
2393 	kobj_delete((kobj_t) dev, NULL);
2394 	dev->driver = driver;
2395 	if (driver) {
2396 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2397 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2398 			if (bus_get_domain(dev, &domain) == 0)
2399 				policy = DOMAINSET_PREF(domain);
2400 			else
2401 				policy = DOMAINSET_RR();
2402 			dev->softc = malloc_domainset(driver->size, M_BUS_SC,
2403 			    policy, M_NOWAIT | M_ZERO);
2404 			if (!dev->softc) {
2405 				kobj_delete((kobj_t) dev, NULL);
2406 				kobj_init((kobj_t) dev, &null_class);
2407 				dev->driver = NULL;
2408 				return (ENOMEM);
2409 			}
2410 		}
2411 	} else {
2412 		kobj_init((kobj_t) dev, &null_class);
2413 	}
2414 
2415 	bus_data_generation_update();
2416 	return (0);
2417 }
2418 
2419 /**
2420  * @brief Probe a device, and return this status.
2421  *
2422  * This function is the core of the device autoconfiguration
2423  * system. Its purpose is to select a suitable driver for a device and
2424  * then call that driver to initialise the hardware appropriately. The
2425  * driver is selected by calling the DEVICE_PROBE() method of a set of
2426  * candidate drivers and then choosing the driver which returned the
2427  * best value. This driver is then attached to the device using
2428  * device_attach().
2429  *
2430  * The set of suitable drivers is taken from the list of drivers in
2431  * the parent device's devclass. If the device was originally created
2432  * with a specific class name (see device_add_child()), only drivers
2433  * with that name are probed, otherwise all drivers in the devclass
2434  * are probed. If no drivers return successful probe values in the
2435  * parent devclass, the search continues in the parent of that
2436  * devclass (see devclass_get_parent()) if any.
2437  *
2438  * @param dev		the device to initialise
2439  *
2440  * @retval 0		success
2441  * @retval ENXIO	no driver was found
2442  * @retval ENOMEM	memory allocation failure
2443  * @retval non-zero	some other unix error code
2444  * @retval -1		Device already attached
2445  */
2446 int
2447 device_probe(device_t dev)
2448 {
2449 	int error;
2450 
2451 	bus_topo_assert();
2452 
2453 	if (dev->state >= DS_ALIVE)
2454 		return (-1);
2455 
2456 	if (!(dev->flags & DF_ENABLED)) {
2457 		if (bootverbose && device_get_name(dev) != NULL) {
2458 			device_print_prettyname(dev);
2459 			printf("not probed (disabled)\n");
2460 		}
2461 		return (-1);
2462 	}
2463 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2464 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2465 		    !(dev->flags & DF_DONENOMATCH)) {
2466 			device_handle_nomatch(dev);
2467 		}
2468 		return (error);
2469 	}
2470 	return (0);
2471 }
2472 
2473 /**
2474  * @brief Probe a device and attach a driver if possible
2475  *
2476  * calls device_probe() and attaches if that was successful.
2477  */
2478 int
2479 device_probe_and_attach(device_t dev)
2480 {
2481 	int error;
2482 
2483 	bus_topo_assert();
2484 
2485 	error = device_probe(dev);
2486 	if (error == -1)
2487 		return (0);
2488 	else if (error != 0)
2489 		return (error);
2490 
2491 	CURVNET_SET_QUIET(vnet0);
2492 	error = device_attach(dev);
2493 	CURVNET_RESTORE();
2494 	return error;
2495 }
2496 
2497 /**
2498  * @brief Attach a device driver to a device
2499  *
2500  * This function is a wrapper around the DEVICE_ATTACH() driver
2501  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2502  * device's sysctl tree, optionally prints a description of the device
2503  * and queues a notification event for user-based device management
2504  * services.
2505  *
2506  * Normally this function is only called internally from
2507  * device_probe_and_attach().
2508  *
2509  * @param dev		the device to initialise
2510  *
2511  * @retval 0		success
2512  * @retval ENXIO	no driver was found
2513  * @retval ENOMEM	memory allocation failure
2514  * @retval non-zero	some other unix error code
2515  */
2516 int
2517 device_attach(device_t dev)
2518 {
2519 	uint64_t attachtime;
2520 	uint16_t attachentropy;
2521 	int error;
2522 
2523 	if (resource_disabled(dev->driver->name, dev->unit)) {
2524 		device_disable(dev);
2525 		if (bootverbose)
2526 			 device_printf(dev, "disabled via hints entry\n");
2527 		return (ENXIO);
2528 	}
2529 
2530 	device_sysctl_init(dev);
2531 	if (!device_is_quiet(dev))
2532 		device_print_child(dev->parent, dev);
2533 	attachtime = get_cyclecount();
2534 	dev->state = DS_ATTACHING;
2535 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2536 		printf("device_attach: %s%d attach returned %d\n",
2537 		    dev->driver->name, dev->unit, error);
2538 		if (disable_failed_devs) {
2539 			/*
2540 			 * When the user has asked to disable failed devices, we
2541 			 * directly disable the device, but leave it in the
2542 			 * attaching state. It will not try to probe/attach the
2543 			 * device further. This leaves the device numbering
2544 			 * intact for other similar devices in the system. It
2545 			 * can be removed from this state with devctl.
2546 			 */
2547 			device_disable(dev);
2548 		} else {
2549 			/*
2550 			 * Otherwise, when attach fails, tear down the state
2551 			 * around that so we can retry when, for example, new
2552 			 * drivers are loaded.
2553 			 */
2554 			if (!(dev->flags & DF_FIXEDCLASS))
2555 				devclass_delete_device(dev->devclass, dev);
2556 			(void)device_set_driver(dev, NULL);
2557 			device_sysctl_fini(dev);
2558 			KASSERT(dev->busy == 0, ("attach failed but busy"));
2559 			dev->state = DS_NOTPRESENT;
2560 		}
2561 		return (error);
2562 	}
2563 	dev->flags |= DF_ATTACHED_ONCE;
2564 	/*
2565 	 * We only need the low bits of this time, but ranges from tens to thousands
2566 	 * have been seen, so keep 2 bytes' worth.
2567 	 */
2568 	attachentropy = (uint16_t)(get_cyclecount() - attachtime);
2569 	random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
2570 	device_sysctl_update(dev);
2571 	dev->state = DS_ATTACHED;
2572 	dev->flags &= ~DF_DONENOMATCH;
2573 	EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
2574 	return (0);
2575 }
2576 
2577 /**
2578  * @brief Detach a driver from a device
2579  *
2580  * This function is a wrapper around the DEVICE_DETACH() driver
2581  * method. If the call to DEVICE_DETACH() succeeds, it calls
2582  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2583  * notification event for user-based device management services and
2584  * cleans up the device's sysctl tree.
2585  *
2586  * @param dev		the device to un-initialise
2587  *
2588  * @retval 0		success
2589  * @retval ENXIO	no driver was found
2590  * @retval ENOMEM	memory allocation failure
2591  * @retval non-zero	some other unix error code
2592  */
2593 int
2594 device_detach(device_t dev)
2595 {
2596 	int error;
2597 
2598 	bus_topo_assert();
2599 
2600 	PDEBUG(("%s", DEVICENAME(dev)));
2601 	if (dev->busy > 0)
2602 		return (EBUSY);
2603 	if (dev->state == DS_ATTACHING) {
2604 		device_printf(dev, "device in attaching state! Deferring detach.\n");
2605 		return (EBUSY);
2606 	}
2607 	if (dev->state != DS_ATTACHED)
2608 		return (0);
2609 
2610 	EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
2611 	if ((error = DEVICE_DETACH(dev)) != 0) {
2612 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2613 		    EVHDEV_DETACH_FAILED);
2614 		return (error);
2615 	} else {
2616 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2617 		    EVHDEV_DETACH_COMPLETE);
2618 	}
2619 	if (!device_is_quiet(dev))
2620 		device_printf(dev, "detached\n");
2621 	if (dev->parent)
2622 		BUS_CHILD_DETACHED(dev->parent, dev);
2623 
2624 	if (!(dev->flags & DF_FIXEDCLASS))
2625 		devclass_delete_device(dev->devclass, dev);
2626 
2627 	device_verbose(dev);
2628 	dev->state = DS_NOTPRESENT;
2629 	(void)device_set_driver(dev, NULL);
2630 	device_sysctl_fini(dev);
2631 
2632 	return (0);
2633 }
2634 
2635 /**
2636  * @brief Tells a driver to quiesce itself.
2637  *
2638  * This function is a wrapper around the DEVICE_QUIESCE() driver
2639  * method. If the call to DEVICE_QUIESCE() succeeds.
2640  *
2641  * @param dev		the device to quiesce
2642  *
2643  * @retval 0		success
2644  * @retval ENXIO	no driver was found
2645  * @retval ENOMEM	memory allocation failure
2646  * @retval non-zero	some other unix error code
2647  */
2648 int
2649 device_quiesce(device_t dev)
2650 {
2651 	PDEBUG(("%s", DEVICENAME(dev)));
2652 	if (dev->busy > 0)
2653 		return (EBUSY);
2654 	if (dev->state != DS_ATTACHED)
2655 		return (0);
2656 
2657 	return (DEVICE_QUIESCE(dev));
2658 }
2659 
2660 /**
2661  * @brief Notify a device of system shutdown
2662  *
2663  * This function calls the DEVICE_SHUTDOWN() driver method if the
2664  * device currently has an attached driver.
2665  *
2666  * @returns the value returned by DEVICE_SHUTDOWN()
2667  */
2668 int
2669 device_shutdown(device_t dev)
2670 {
2671 	if (dev->state < DS_ATTACHED)
2672 		return (0);
2673 	return (DEVICE_SHUTDOWN(dev));
2674 }
2675 
2676 /**
2677  * @brief Set the unit number of a device
2678  *
2679  * This function can be used to override the unit number used for a
2680  * device (e.g. to wire a device to a pre-configured unit number).
2681  */
2682 int
2683 device_set_unit(device_t dev, int unit)
2684 {
2685 	devclass_t dc;
2686 	int err;
2687 
2688 	if (unit == dev->unit)
2689 		return (0);
2690 	dc = device_get_devclass(dev);
2691 	if (unit < dc->maxunit && dc->devices[unit])
2692 		return (EBUSY);
2693 	err = devclass_delete_device(dc, dev);
2694 	if (err)
2695 		return (err);
2696 	dev->unit = unit;
2697 	err = devclass_add_device(dc, dev);
2698 	if (err)
2699 		return (err);
2700 
2701 	bus_data_generation_update();
2702 	return (0);
2703 }
2704 
2705 /*======================================*/
2706 /*
2707  * Some useful method implementations to make life easier for bus drivers.
2708  */
2709 
2710 void
2711 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
2712 {
2713 	bzero(args, sz);
2714 	args->size = sz;
2715 	args->memattr = VM_MEMATTR_DEVICE;
2716 }
2717 
2718 /**
2719  * @brief Initialise a resource list.
2720  *
2721  * @param rl		the resource list to initialise
2722  */
2723 void
2724 resource_list_init(struct resource_list *rl)
2725 {
2726 	STAILQ_INIT(rl);
2727 }
2728 
2729 /**
2730  * @brief Reclaim memory used by a resource list.
2731  *
2732  * This function frees the memory for all resource entries on the list
2733  * (if any).
2734  *
2735  * @param rl		the resource list to free
2736  */
2737 void
2738 resource_list_free(struct resource_list *rl)
2739 {
2740 	struct resource_list_entry *rle;
2741 
2742 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2743 		if (rle->res)
2744 			panic("resource_list_free: resource entry is busy");
2745 		STAILQ_REMOVE_HEAD(rl, link);
2746 		free(rle, M_BUS);
2747 	}
2748 }
2749 
2750 /**
2751  * @brief Add a resource entry.
2752  *
2753  * This function adds a resource entry using the given @p type, @p
2754  * start, @p end and @p count values. A rid value is chosen by
2755  * searching sequentially for the first unused rid starting at zero.
2756  *
2757  * @param rl		the resource list to edit
2758  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2759  * @param start		the start address of the resource
2760  * @param end		the end address of the resource
2761  * @param count		XXX end-start+1
2762  */
2763 int
2764 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
2765     rman_res_t end, rman_res_t count)
2766 {
2767 	int rid;
2768 
2769 	rid = 0;
2770 	while (resource_list_find(rl, type, rid) != NULL)
2771 		rid++;
2772 	resource_list_add(rl, type, rid, start, end, count);
2773 	return (rid);
2774 }
2775 
2776 /**
2777  * @brief Add or modify a resource entry.
2778  *
2779  * If an existing entry exists with the same type and rid, it will be
2780  * modified using the given values of @p start, @p end and @p
2781  * count. If no entry exists, a new one will be created using the
2782  * given values.  The resource list entry that matches is then returned.
2783  *
2784  * @param rl		the resource list to edit
2785  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2786  * @param rid		the resource identifier
2787  * @param start		the start address of the resource
2788  * @param end		the end address of the resource
2789  * @param count		XXX end-start+1
2790  */
2791 struct resource_list_entry *
2792 resource_list_add(struct resource_list *rl, int type, int rid,
2793     rman_res_t start, rman_res_t end, rman_res_t count)
2794 {
2795 	struct resource_list_entry *rle;
2796 
2797 	rle = resource_list_find(rl, type, rid);
2798 	if (!rle) {
2799 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2800 		    M_NOWAIT);
2801 		if (!rle)
2802 			panic("resource_list_add: can't record entry");
2803 		STAILQ_INSERT_TAIL(rl, rle, link);
2804 		rle->type = type;
2805 		rle->rid = rid;
2806 		rle->res = NULL;
2807 		rle->flags = 0;
2808 	}
2809 
2810 	if (rle->res)
2811 		panic("resource_list_add: resource entry is busy");
2812 
2813 	rle->start = start;
2814 	rle->end = end;
2815 	rle->count = count;
2816 	return (rle);
2817 }
2818 
2819 /**
2820  * @brief Determine if a resource entry is busy.
2821  *
2822  * Returns true if a resource entry is busy meaning that it has an
2823  * associated resource that is not an unallocated "reserved" resource.
2824  *
2825  * @param rl		the resource list to search
2826  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2827  * @param rid		the resource identifier
2828  *
2829  * @returns Non-zero if the entry is busy, zero otherwise.
2830  */
2831 int
2832 resource_list_busy(struct resource_list *rl, int type, int rid)
2833 {
2834 	struct resource_list_entry *rle;
2835 
2836 	rle = resource_list_find(rl, type, rid);
2837 	if (rle == NULL || rle->res == NULL)
2838 		return (0);
2839 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2840 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2841 		    ("reserved resource is active"));
2842 		return (0);
2843 	}
2844 	return (1);
2845 }
2846 
2847 /**
2848  * @brief Determine if a resource entry is reserved.
2849  *
2850  * Returns true if a resource entry is reserved meaning that it has an
2851  * associated "reserved" resource.  The resource can either be
2852  * allocated or unallocated.
2853  *
2854  * @param rl		the resource list to search
2855  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2856  * @param rid		the resource identifier
2857  *
2858  * @returns Non-zero if the entry is reserved, zero otherwise.
2859  */
2860 int
2861 resource_list_reserved(struct resource_list *rl, int type, int rid)
2862 {
2863 	struct resource_list_entry *rle;
2864 
2865 	rle = resource_list_find(rl, type, rid);
2866 	if (rle != NULL && rle->flags & RLE_RESERVED)
2867 		return (1);
2868 	return (0);
2869 }
2870 
2871 /**
2872  * @brief Find a resource entry by type and rid.
2873  *
2874  * @param rl		the resource list to search
2875  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2876  * @param rid		the resource identifier
2877  *
2878  * @returns the resource entry pointer or NULL if there is no such
2879  * entry.
2880  */
2881 struct resource_list_entry *
2882 resource_list_find(struct resource_list *rl, int type, int rid)
2883 {
2884 	struct resource_list_entry *rle;
2885 
2886 	STAILQ_FOREACH(rle, rl, link) {
2887 		if (rle->type == type && rle->rid == rid)
2888 			return (rle);
2889 	}
2890 	return (NULL);
2891 }
2892 
2893 /**
2894  * @brief Delete a resource entry.
2895  *
2896  * @param rl		the resource list to edit
2897  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2898  * @param rid		the resource identifier
2899  */
2900 void
2901 resource_list_delete(struct resource_list *rl, int type, int rid)
2902 {
2903 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2904 
2905 	if (rle) {
2906 		if (rle->res != NULL)
2907 			panic("resource_list_delete: resource has not been released");
2908 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2909 		free(rle, M_BUS);
2910 	}
2911 }
2912 
2913 /**
2914  * @brief Allocate a reserved resource
2915  *
2916  * This can be used by buses to force the allocation of resources
2917  * that are always active in the system even if they are not allocated
2918  * by a driver (e.g. PCI BARs).  This function is usually called when
2919  * adding a new child to the bus.  The resource is allocated from the
2920  * parent bus when it is reserved.  The resource list entry is marked
2921  * with RLE_RESERVED to note that it is a reserved resource.
2922  *
2923  * Subsequent attempts to allocate the resource with
2924  * resource_list_alloc() will succeed the first time and will set
2925  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
2926  * resource that has been allocated is released with
2927  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
2928  * the actual resource remains allocated.  The resource can be released to
2929  * the parent bus by calling resource_list_unreserve().
2930  *
2931  * @param rl		the resource list to allocate from
2932  * @param bus		the parent device of @p child
2933  * @param child		the device for which the resource is being reserved
2934  * @param type		the type of resource to allocate
2935  * @param rid		a pointer to the resource identifier
2936  * @param start		hint at the start of the resource range - pass
2937  *			@c 0 for any start address
2938  * @param end		hint at the end of the resource range - pass
2939  *			@c ~0 for any end address
2940  * @param count		hint at the size of range required - pass @c 1
2941  *			for any size
2942  * @param flags		any extra flags to control the resource
2943  *			allocation - see @c RF_XXX flags in
2944  *			<sys/rman.h> for details
2945  *
2946  * @returns		the resource which was allocated or @c NULL if no
2947  *			resource could be allocated
2948  */
2949 struct resource *
2950 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
2951     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
2952 {
2953 	struct resource_list_entry *rle = NULL;
2954 	int passthrough = (device_get_parent(child) != bus);
2955 	struct resource *r;
2956 
2957 	if (passthrough)
2958 		panic(
2959     "resource_list_reserve() should only be called for direct children");
2960 	if (flags & RF_ACTIVE)
2961 		panic(
2962     "resource_list_reserve() should only reserve inactive resources");
2963 
2964 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
2965 	    flags);
2966 	if (r != NULL) {
2967 		rle = resource_list_find(rl, type, *rid);
2968 		rle->flags |= RLE_RESERVED;
2969 	}
2970 	return (r);
2971 }
2972 
2973 /**
2974  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2975  *
2976  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2977  * and passing the allocation up to the parent of @p bus. This assumes
2978  * that the first entry of @c device_get_ivars(child) is a struct
2979  * resource_list. This also handles 'passthrough' allocations where a
2980  * child is a remote descendant of bus by passing the allocation up to
2981  * the parent of bus.
2982  *
2983  * Typically, a bus driver would store a list of child resources
2984  * somewhere in the child device's ivars (see device_get_ivars()) and
2985  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2986  * then call resource_list_alloc() to perform the allocation.
2987  *
2988  * @param rl		the resource list to allocate from
2989  * @param bus		the parent device of @p child
2990  * @param child		the device which is requesting an allocation
2991  * @param type		the type of resource to allocate
2992  * @param rid		a pointer to the resource identifier
2993  * @param start		hint at the start of the resource range - pass
2994  *			@c 0 for any start address
2995  * @param end		hint at the end of the resource range - pass
2996  *			@c ~0 for any end address
2997  * @param count		hint at the size of range required - pass @c 1
2998  *			for any size
2999  * @param flags		any extra flags to control the resource
3000  *			allocation - see @c RF_XXX flags in
3001  *			<sys/rman.h> for details
3002  *
3003  * @returns		the resource which was allocated or @c NULL if no
3004  *			resource could be allocated
3005  */
3006 struct resource *
3007 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3008     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3009 {
3010 	struct resource_list_entry *rle = NULL;
3011 	int passthrough = (device_get_parent(child) != bus);
3012 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3013 
3014 	if (passthrough) {
3015 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3016 		    type, rid, start, end, count, flags));
3017 	}
3018 
3019 	rle = resource_list_find(rl, type, *rid);
3020 
3021 	if (!rle)
3022 		return (NULL);		/* no resource of that type/rid */
3023 
3024 	if (rle->res) {
3025 		if (rle->flags & RLE_RESERVED) {
3026 			if (rle->flags & RLE_ALLOCATED)
3027 				return (NULL);
3028 			if ((flags & RF_ACTIVE) &&
3029 			    bus_activate_resource(child, type, *rid,
3030 			    rle->res) != 0)
3031 				return (NULL);
3032 			rle->flags |= RLE_ALLOCATED;
3033 			return (rle->res);
3034 		}
3035 		device_printf(bus,
3036 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3037 		    type, device_get_nameunit(child));
3038 		return (NULL);
3039 	}
3040 
3041 	if (isdefault) {
3042 		start = rle->start;
3043 		count = ulmax(count, rle->count);
3044 		end = ulmax(rle->end, start + count - 1);
3045 	}
3046 
3047 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3048 	    type, rid, start, end, count, flags);
3049 
3050 	/*
3051 	 * Record the new range.
3052 	 */
3053 	if (rle->res) {
3054 		rle->start = rman_get_start(rle->res);
3055 		rle->end = rman_get_end(rle->res);
3056 		rle->count = count;
3057 	}
3058 
3059 	return (rle->res);
3060 }
3061 
3062 /**
3063  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3064  *
3065  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3066  * used with resource_list_alloc().
3067  *
3068  * @param rl		the resource list which was allocated from
3069  * @param bus		the parent device of @p child
3070  * @param child		the device which is requesting a release
3071  * @param type		the type of resource to release
3072  * @param rid		the resource identifier
3073  * @param res		the resource to release
3074  *
3075  * @retval 0		success
3076  * @retval non-zero	a standard unix error code indicating what
3077  *			error condition prevented the operation
3078  */
3079 int
3080 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3081     int type, int rid, struct resource *res)
3082 {
3083 	struct resource_list_entry *rle = NULL;
3084 	int passthrough = (device_get_parent(child) != bus);
3085 	int error;
3086 
3087 	if (passthrough) {
3088 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3089 		    type, rid, res));
3090 	}
3091 
3092 	rle = resource_list_find(rl, type, rid);
3093 
3094 	if (!rle)
3095 		panic("resource_list_release: can't find resource");
3096 	if (!rle->res)
3097 		panic("resource_list_release: resource entry is not busy");
3098 	if (rle->flags & RLE_RESERVED) {
3099 		if (rle->flags & RLE_ALLOCATED) {
3100 			if (rman_get_flags(res) & RF_ACTIVE) {
3101 				error = bus_deactivate_resource(child, type,
3102 				    rid, res);
3103 				if (error)
3104 					return (error);
3105 			}
3106 			rle->flags &= ~RLE_ALLOCATED;
3107 			return (0);
3108 		}
3109 		return (EINVAL);
3110 	}
3111 
3112 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3113 	    type, rid, res);
3114 	if (error)
3115 		return (error);
3116 
3117 	rle->res = NULL;
3118 	return (0);
3119 }
3120 
3121 /**
3122  * @brief Release all active resources of a given type
3123  *
3124  * Release all active resources of a specified type.  This is intended
3125  * to be used to cleanup resources leaked by a driver after detach or
3126  * a failed attach.
3127  *
3128  * @param rl		the resource list which was allocated from
3129  * @param bus		the parent device of @p child
3130  * @param child		the device whose active resources are being released
3131  * @param type		the type of resources to release
3132  *
3133  * @retval 0		success
3134  * @retval EBUSY	at least one resource was active
3135  */
3136 int
3137 resource_list_release_active(struct resource_list *rl, device_t bus,
3138     device_t child, int type)
3139 {
3140 	struct resource_list_entry *rle;
3141 	int error, retval;
3142 
3143 	retval = 0;
3144 	STAILQ_FOREACH(rle, rl, link) {
3145 		if (rle->type != type)
3146 			continue;
3147 		if (rle->res == NULL)
3148 			continue;
3149 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3150 		    RLE_RESERVED)
3151 			continue;
3152 		retval = EBUSY;
3153 		error = resource_list_release(rl, bus, child, type,
3154 		    rman_get_rid(rle->res), rle->res);
3155 		if (error != 0)
3156 			device_printf(bus,
3157 			    "Failed to release active resource: %d\n", error);
3158 	}
3159 	return (retval);
3160 }
3161 
3162 /**
3163  * @brief Fully release a reserved resource
3164  *
3165  * Fully releases a resource reserved via resource_list_reserve().
3166  *
3167  * @param rl		the resource list which was allocated from
3168  * @param bus		the parent device of @p child
3169  * @param child		the device whose reserved resource is being released
3170  * @param type		the type of resource to release
3171  * @param rid		the resource identifier
3172  * @param res		the resource to release
3173  *
3174  * @retval 0		success
3175  * @retval non-zero	a standard unix error code indicating what
3176  *			error condition prevented the operation
3177  */
3178 int
3179 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3180     int type, int rid)
3181 {
3182 	struct resource_list_entry *rle = NULL;
3183 	int passthrough = (device_get_parent(child) != bus);
3184 
3185 	if (passthrough)
3186 		panic(
3187     "resource_list_unreserve() should only be called for direct children");
3188 
3189 	rle = resource_list_find(rl, type, rid);
3190 
3191 	if (!rle)
3192 		panic("resource_list_unreserve: can't find resource");
3193 	if (!(rle->flags & RLE_RESERVED))
3194 		return (EINVAL);
3195 	if (rle->flags & RLE_ALLOCATED)
3196 		return (EBUSY);
3197 	rle->flags &= ~RLE_RESERVED;
3198 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3199 }
3200 
3201 /**
3202  * @brief Print a description of resources in a resource list
3203  *
3204  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3205  * The name is printed if at least one resource of the given type is available.
3206  * The format is used to print resource start and end.
3207  *
3208  * @param rl		the resource list to print
3209  * @param name		the name of @p type, e.g. @c "memory"
3210  * @param type		type type of resource entry to print
3211  * @param format	printf(9) format string to print resource
3212  *			start and end values
3213  *
3214  * @returns		the number of characters printed
3215  */
3216 int
3217 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3218     const char *format)
3219 {
3220 	struct resource_list_entry *rle;
3221 	int printed, retval;
3222 
3223 	printed = 0;
3224 	retval = 0;
3225 	/* Yes, this is kinda cheating */
3226 	STAILQ_FOREACH(rle, rl, link) {
3227 		if (rle->type == type) {
3228 			if (printed == 0)
3229 				retval += printf(" %s ", name);
3230 			else
3231 				retval += printf(",");
3232 			printed++;
3233 			retval += printf(format, rle->start);
3234 			if (rle->count > 1) {
3235 				retval += printf("-");
3236 				retval += printf(format, rle->start +
3237 						 rle->count - 1);
3238 			}
3239 		}
3240 	}
3241 	return (retval);
3242 }
3243 
3244 /**
3245  * @brief Releases all the resources in a list.
3246  *
3247  * @param rl		The resource list to purge.
3248  *
3249  * @returns		nothing
3250  */
3251 void
3252 resource_list_purge(struct resource_list *rl)
3253 {
3254 	struct resource_list_entry *rle;
3255 
3256 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3257 		if (rle->res)
3258 			bus_release_resource(rman_get_device(rle->res),
3259 			    rle->type, rle->rid, rle->res);
3260 		STAILQ_REMOVE_HEAD(rl, link);
3261 		free(rle, M_BUS);
3262 	}
3263 }
3264 
3265 device_t
3266 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3267 {
3268 	return (device_add_child_ordered(dev, order, name, unit));
3269 }
3270 
3271 /**
3272  * @brief Helper function for implementing DEVICE_PROBE()
3273  *
3274  * This function can be used to help implement the DEVICE_PROBE() for
3275  * a bus (i.e. a device which has other devices attached to it). It
3276  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3277  * devclass.
3278  */
3279 int
3280 bus_generic_probe(device_t dev)
3281 {
3282 	devclass_t dc = dev->devclass;
3283 	driverlink_t dl;
3284 
3285 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3286 		/*
3287 		 * If this driver's pass is too high, then ignore it.
3288 		 * For most drivers in the default pass, this will
3289 		 * never be true.  For early-pass drivers they will
3290 		 * only call the identify routines of eligible drivers
3291 		 * when this routine is called.  Drivers for later
3292 		 * passes should have their identify routines called
3293 		 * on early-pass buses during BUS_NEW_PASS().
3294 		 */
3295 		if (dl->pass > bus_current_pass)
3296 			continue;
3297 		DEVICE_IDENTIFY(dl->driver, dev);
3298 	}
3299 
3300 	return (0);
3301 }
3302 
3303 /**
3304  * @brief Helper function for implementing DEVICE_ATTACH()
3305  *
3306  * This function can be used to help implement the DEVICE_ATTACH() for
3307  * a bus. It calls device_probe_and_attach() for each of the device's
3308  * children.
3309  */
3310 int
3311 bus_generic_attach(device_t dev)
3312 {
3313 	device_t child;
3314 
3315 	TAILQ_FOREACH(child, &dev->children, link) {
3316 		device_probe_and_attach(child);
3317 	}
3318 
3319 	return (0);
3320 }
3321 
3322 /**
3323  * @brief Helper function for delaying attaching children
3324  *
3325  * Many buses can't run transactions on the bus which children need to probe and
3326  * attach until after interrupts and/or timers are running.  This function
3327  * delays their attach until interrupts and timers are enabled.
3328  */
3329 int
3330 bus_delayed_attach_children(device_t dev)
3331 {
3332 	/* Probe and attach the bus children when interrupts are available */
3333 	config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev);
3334 
3335 	return (0);
3336 }
3337 
3338 /**
3339  * @brief Helper function for implementing DEVICE_DETACH()
3340  *
3341  * This function can be used to help implement the DEVICE_DETACH() for
3342  * a bus. It calls device_detach() for each of the device's
3343  * children.
3344  */
3345 int
3346 bus_generic_detach(device_t dev)
3347 {
3348 	device_t child;
3349 	int error;
3350 
3351 	if (dev->state != DS_ATTACHED)
3352 		return (EBUSY);
3353 
3354 	/*
3355 	 * Detach children in the reverse order.
3356 	 * See bus_generic_suspend for details.
3357 	 */
3358 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3359 		if ((error = device_detach(child)) != 0)
3360 			return (error);
3361 	}
3362 
3363 	return (0);
3364 }
3365 
3366 /**
3367  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3368  *
3369  * This function can be used to help implement the DEVICE_SHUTDOWN()
3370  * for a bus. It calls device_shutdown() for each of the device's
3371  * children.
3372  */
3373 int
3374 bus_generic_shutdown(device_t dev)
3375 {
3376 	device_t child;
3377 
3378 	/*
3379 	 * Shut down children in the reverse order.
3380 	 * See bus_generic_suspend for details.
3381 	 */
3382 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3383 		device_shutdown(child);
3384 	}
3385 
3386 	return (0);
3387 }
3388 
3389 /**
3390  * @brief Default function for suspending a child device.
3391  *
3392  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3393  */
3394 int
3395 bus_generic_suspend_child(device_t dev, device_t child)
3396 {
3397 	int	error;
3398 
3399 	error = DEVICE_SUSPEND(child);
3400 
3401 	if (error == 0)
3402 		child->flags |= DF_SUSPENDED;
3403 
3404 	return (error);
3405 }
3406 
3407 /**
3408  * @brief Default function for resuming a child device.
3409  *
3410  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3411  */
3412 int
3413 bus_generic_resume_child(device_t dev, device_t child)
3414 {
3415 	DEVICE_RESUME(child);
3416 	child->flags &= ~DF_SUSPENDED;
3417 
3418 	return (0);
3419 }
3420 
3421 /**
3422  * @brief Helper function for implementing DEVICE_SUSPEND()
3423  *
3424  * This function can be used to help implement the DEVICE_SUSPEND()
3425  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3426  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3427  * operation is aborted and any devices which were suspended are
3428  * resumed immediately by calling their DEVICE_RESUME() methods.
3429  */
3430 int
3431 bus_generic_suspend(device_t dev)
3432 {
3433 	int		error;
3434 	device_t	child;
3435 
3436 	/*
3437 	 * Suspend children in the reverse order.
3438 	 * For most buses all children are equal, so the order does not matter.
3439 	 * Other buses, such as acpi, carefully order their child devices to
3440 	 * express implicit dependencies between them.  For such buses it is
3441 	 * safer to bring down devices in the reverse order.
3442 	 */
3443 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3444 		error = BUS_SUSPEND_CHILD(dev, child);
3445 		if (error != 0) {
3446 			child = TAILQ_NEXT(child, link);
3447 			if (child != NULL) {
3448 				TAILQ_FOREACH_FROM(child, &dev->children, link)
3449 					BUS_RESUME_CHILD(dev, child);
3450 			}
3451 			return (error);
3452 		}
3453 	}
3454 	return (0);
3455 }
3456 
3457 /**
3458  * @brief Helper function for implementing DEVICE_RESUME()
3459  *
3460  * This function can be used to help implement the DEVICE_RESUME() for
3461  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3462  */
3463 int
3464 bus_generic_resume(device_t dev)
3465 {
3466 	device_t	child;
3467 
3468 	TAILQ_FOREACH(child, &dev->children, link) {
3469 		BUS_RESUME_CHILD(dev, child);
3470 		/* if resume fails, there's nothing we can usefully do... */
3471 	}
3472 	return (0);
3473 }
3474 
3475 /**
3476  * @brief Helper function for implementing BUS_RESET_POST
3477  *
3478  * Bus can use this function to implement common operations of
3479  * re-attaching or resuming the children after the bus itself was
3480  * reset, and after restoring bus-unique state of children.
3481  *
3482  * @param dev	The bus
3483  * #param flags	DEVF_RESET_*
3484  */
3485 int
3486 bus_helper_reset_post(device_t dev, int flags)
3487 {
3488 	device_t child;
3489 	int error, error1;
3490 
3491 	error = 0;
3492 	TAILQ_FOREACH(child, &dev->children,link) {
3493 		BUS_RESET_POST(dev, child);
3494 		error1 = (flags & DEVF_RESET_DETACH) != 0 ?
3495 		    device_probe_and_attach(child) :
3496 		    BUS_RESUME_CHILD(dev, child);
3497 		if (error == 0 && error1 != 0)
3498 			error = error1;
3499 	}
3500 	return (error);
3501 }
3502 
3503 static void
3504 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
3505 {
3506 	child = TAILQ_NEXT(child, link);
3507 	if (child == NULL)
3508 		return;
3509 	TAILQ_FOREACH_FROM(child, &dev->children,link) {
3510 		BUS_RESET_POST(dev, child);
3511 		if ((flags & DEVF_RESET_DETACH) != 0)
3512 			device_probe_and_attach(child);
3513 		else
3514 			BUS_RESUME_CHILD(dev, child);
3515 	}
3516 }
3517 
3518 /**
3519  * @brief Helper function for implementing BUS_RESET_PREPARE
3520  *
3521  * Bus can use this function to implement common operations of
3522  * detaching or suspending the children before the bus itself is
3523  * reset, and then save bus-unique state of children that must
3524  * persists around reset.
3525  *
3526  * @param dev	The bus
3527  * #param flags	DEVF_RESET_*
3528  */
3529 int
3530 bus_helper_reset_prepare(device_t dev, int flags)
3531 {
3532 	device_t child;
3533 	int error;
3534 
3535 	if (dev->state != DS_ATTACHED)
3536 		return (EBUSY);
3537 
3538 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3539 		if ((flags & DEVF_RESET_DETACH) != 0) {
3540 			error = device_get_state(child) == DS_ATTACHED ?
3541 			    device_detach(child) : 0;
3542 		} else {
3543 			error = BUS_SUSPEND_CHILD(dev, child);
3544 		}
3545 		if (error == 0) {
3546 			error = BUS_RESET_PREPARE(dev, child);
3547 			if (error != 0) {
3548 				if ((flags & DEVF_RESET_DETACH) != 0)
3549 					device_probe_and_attach(child);
3550 				else
3551 					BUS_RESUME_CHILD(dev, child);
3552 			}
3553 		}
3554 		if (error != 0) {
3555 			bus_helper_reset_prepare_rollback(dev, child, flags);
3556 			return (error);
3557 		}
3558 	}
3559 	return (0);
3560 }
3561 
3562 /**
3563  * @brief Helper function for implementing BUS_PRINT_CHILD().
3564  *
3565  * This function prints the first part of the ascii representation of
3566  * @p child, including its name, unit and description (if any - see
3567  * device_set_desc()).
3568  *
3569  * @returns the number of characters printed
3570  */
3571 int
3572 bus_print_child_header(device_t dev, device_t child)
3573 {
3574 	int	retval = 0;
3575 
3576 	if (device_get_desc(child)) {
3577 		retval += device_printf(child, "<%s>", device_get_desc(child));
3578 	} else {
3579 		retval += printf("%s", device_get_nameunit(child));
3580 	}
3581 
3582 	return (retval);
3583 }
3584 
3585 /**
3586  * @brief Helper function for implementing BUS_PRINT_CHILD().
3587  *
3588  * This function prints the last part of the ascii representation of
3589  * @p child, which consists of the string @c " on " followed by the
3590  * name and unit of the @p dev.
3591  *
3592  * @returns the number of characters printed
3593  */
3594 int
3595 bus_print_child_footer(device_t dev, device_t child)
3596 {
3597 	return (printf(" on %s\n", device_get_nameunit(dev)));
3598 }
3599 
3600 /**
3601  * @brief Helper function for implementing BUS_PRINT_CHILD().
3602  *
3603  * This function prints out the VM domain for the given device.
3604  *
3605  * @returns the number of characters printed
3606  */
3607 int
3608 bus_print_child_domain(device_t dev, device_t child)
3609 {
3610 	int domain;
3611 
3612 	/* No domain? Don't print anything */
3613 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3614 		return (0);
3615 
3616 	return (printf(" numa-domain %d", domain));
3617 }
3618 
3619 /**
3620  * @brief Helper function for implementing BUS_PRINT_CHILD().
3621  *
3622  * This function simply calls bus_print_child_header() followed by
3623  * bus_print_child_footer().
3624  *
3625  * @returns the number of characters printed
3626  */
3627 int
3628 bus_generic_print_child(device_t dev, device_t child)
3629 {
3630 	int	retval = 0;
3631 
3632 	retval += bus_print_child_header(dev, child);
3633 	retval += bus_print_child_domain(dev, child);
3634 	retval += bus_print_child_footer(dev, child);
3635 
3636 	return (retval);
3637 }
3638 
3639 /**
3640  * @brief Stub function for implementing BUS_READ_IVAR().
3641  *
3642  * @returns ENOENT
3643  */
3644 int
3645 bus_generic_read_ivar(device_t dev, device_t child, int index,
3646     uintptr_t * result)
3647 {
3648 	return (ENOENT);
3649 }
3650 
3651 /**
3652  * @brief Stub function for implementing BUS_WRITE_IVAR().
3653  *
3654  * @returns ENOENT
3655  */
3656 int
3657 bus_generic_write_ivar(device_t dev, device_t child, int index,
3658     uintptr_t value)
3659 {
3660 	return (ENOENT);
3661 }
3662 
3663 /**
3664  * @brief Helper function for implementing BUS_GET_PROPERTY().
3665  *
3666  * This simply calls the BUS_GET_PROPERTY of the parent of dev,
3667  * until a non-default implementation is found.
3668  */
3669 ssize_t
3670 bus_generic_get_property(device_t dev, device_t child, const char *propname,
3671     void *propvalue, size_t size, device_property_type_t type)
3672 {
3673 	if (device_get_parent(dev) != NULL)
3674 		return (BUS_GET_PROPERTY(device_get_parent(dev), child,
3675 		    propname, propvalue, size, type));
3676 
3677 	return (-1);
3678 }
3679 
3680 /**
3681  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3682  *
3683  * @returns NULL
3684  */
3685 struct resource_list *
3686 bus_generic_get_resource_list(device_t dev, device_t child)
3687 {
3688 	return (NULL);
3689 }
3690 
3691 /**
3692  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3693  *
3694  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3695  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3696  * and then calls device_probe_and_attach() for each unattached child.
3697  */
3698 void
3699 bus_generic_driver_added(device_t dev, driver_t *driver)
3700 {
3701 	device_t child;
3702 
3703 	DEVICE_IDENTIFY(driver, dev);
3704 	TAILQ_FOREACH(child, &dev->children, link) {
3705 		if (child->state == DS_NOTPRESENT)
3706 			device_probe_and_attach(child);
3707 	}
3708 }
3709 
3710 /**
3711  * @brief Helper function for implementing BUS_NEW_PASS().
3712  *
3713  * This implementing of BUS_NEW_PASS() first calls the identify
3714  * routines for any drivers that probe at the current pass.  Then it
3715  * walks the list of devices for this bus.  If a device is already
3716  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3717  * device is not already attached, it attempts to attach a driver to
3718  * it.
3719  */
3720 void
3721 bus_generic_new_pass(device_t dev)
3722 {
3723 	driverlink_t dl;
3724 	devclass_t dc;
3725 	device_t child;
3726 
3727 	dc = dev->devclass;
3728 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3729 		if (dl->pass == bus_current_pass)
3730 			DEVICE_IDENTIFY(dl->driver, dev);
3731 	}
3732 	TAILQ_FOREACH(child, &dev->children, link) {
3733 		if (child->state >= DS_ATTACHED)
3734 			BUS_NEW_PASS(child);
3735 		else if (child->state == DS_NOTPRESENT)
3736 			device_probe_and_attach(child);
3737 	}
3738 }
3739 
3740 /**
3741  * @brief Helper function for implementing BUS_SETUP_INTR().
3742  *
3743  * This simple implementation of BUS_SETUP_INTR() simply calls the
3744  * BUS_SETUP_INTR() method of the parent of @p dev.
3745  */
3746 int
3747 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3748     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3749     void **cookiep)
3750 {
3751 	/* Propagate up the bus hierarchy until someone handles it. */
3752 	if (dev->parent)
3753 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3754 		    filter, intr, arg, cookiep));
3755 	return (EINVAL);
3756 }
3757 
3758 /**
3759  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3760  *
3761  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3762  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3763  */
3764 int
3765 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3766     void *cookie)
3767 {
3768 	/* Propagate up the bus hierarchy until someone handles it. */
3769 	if (dev->parent)
3770 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3771 	return (EINVAL);
3772 }
3773 
3774 /**
3775  * @brief Helper function for implementing BUS_SUSPEND_INTR().
3776  *
3777  * This simple implementation of BUS_SUSPEND_INTR() simply calls the
3778  * BUS_SUSPEND_INTR() method of the parent of @p dev.
3779  */
3780 int
3781 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
3782 {
3783 	/* Propagate up the bus hierarchy until someone handles it. */
3784 	if (dev->parent)
3785 		return (BUS_SUSPEND_INTR(dev->parent, child, irq));
3786 	return (EINVAL);
3787 }
3788 
3789 /**
3790  * @brief Helper function for implementing BUS_RESUME_INTR().
3791  *
3792  * This simple implementation of BUS_RESUME_INTR() simply calls the
3793  * BUS_RESUME_INTR() method of the parent of @p dev.
3794  */
3795 int
3796 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
3797 {
3798 	/* Propagate up the bus hierarchy until someone handles it. */
3799 	if (dev->parent)
3800 		return (BUS_RESUME_INTR(dev->parent, child, irq));
3801 	return (EINVAL);
3802 }
3803 
3804 /**
3805  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3806  *
3807  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3808  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3809  */
3810 int
3811 bus_generic_adjust_resource(device_t dev, device_t child, int type,
3812     struct resource *r, rman_res_t start, rman_res_t end)
3813 {
3814 	/* Propagate up the bus hierarchy until someone handles it. */
3815 	if (dev->parent)
3816 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3817 		    end));
3818 	return (EINVAL);
3819 }
3820 
3821 /*
3822  * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE().
3823  *
3824  * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the
3825  * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev.  If there is no
3826  * parent, no translation happens.
3827  */
3828 int
3829 bus_generic_translate_resource(device_t dev, int type, rman_res_t start,
3830     rman_res_t *newstart)
3831 {
3832 	if (dev->parent)
3833 		return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start,
3834 		    newstart));
3835 	*newstart = start;
3836 	return (0);
3837 }
3838 
3839 /**
3840  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3841  *
3842  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3843  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3844  */
3845 struct resource *
3846 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3847     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3848 {
3849 	/* Propagate up the bus hierarchy until someone handles it. */
3850 	if (dev->parent)
3851 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3852 		    start, end, count, flags));
3853 	return (NULL);
3854 }
3855 
3856 /**
3857  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3858  *
3859  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3860  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3861  */
3862 int
3863 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3864     struct resource *r)
3865 {
3866 	/* Propagate up the bus hierarchy until someone handles it. */
3867 	if (dev->parent)
3868 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3869 		    r));
3870 	return (EINVAL);
3871 }
3872 
3873 /**
3874  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3875  *
3876  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3877  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3878  */
3879 int
3880 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3881     struct resource *r)
3882 {
3883 	/* Propagate up the bus hierarchy until someone handles it. */
3884 	if (dev->parent)
3885 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3886 		    r));
3887 	return (EINVAL);
3888 }
3889 
3890 /**
3891  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3892  *
3893  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3894  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3895  */
3896 int
3897 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3898     int rid, struct resource *r)
3899 {
3900 	/* Propagate up the bus hierarchy until someone handles it. */
3901 	if (dev->parent)
3902 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3903 		    r));
3904 	return (EINVAL);
3905 }
3906 
3907 /**
3908  * @brief Helper function for implementing BUS_MAP_RESOURCE().
3909  *
3910  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
3911  * BUS_MAP_RESOURCE() method of the parent of @p dev.
3912  */
3913 int
3914 bus_generic_map_resource(device_t dev, device_t child, int type,
3915     struct resource *r, struct resource_map_request *args,
3916     struct resource_map *map)
3917 {
3918 	/* Propagate up the bus hierarchy until someone handles it. */
3919 	if (dev->parent)
3920 		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
3921 		    map));
3922 	return (EINVAL);
3923 }
3924 
3925 /**
3926  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
3927  *
3928  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
3929  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
3930  */
3931 int
3932 bus_generic_unmap_resource(device_t dev, device_t child, int type,
3933     struct resource *r, struct resource_map *map)
3934 {
3935 	/* Propagate up the bus hierarchy until someone handles it. */
3936 	if (dev->parent)
3937 		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
3938 	return (EINVAL);
3939 }
3940 
3941 /**
3942  * @brief Helper function for implementing BUS_BIND_INTR().
3943  *
3944  * This simple implementation of BUS_BIND_INTR() simply calls the
3945  * BUS_BIND_INTR() method of the parent of @p dev.
3946  */
3947 int
3948 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3949     int cpu)
3950 {
3951 	/* Propagate up the bus hierarchy until someone handles it. */
3952 	if (dev->parent)
3953 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3954 	return (EINVAL);
3955 }
3956 
3957 /**
3958  * @brief Helper function for implementing BUS_CONFIG_INTR().
3959  *
3960  * This simple implementation of BUS_CONFIG_INTR() simply calls the
3961  * BUS_CONFIG_INTR() method of the parent of @p dev.
3962  */
3963 int
3964 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3965     enum intr_polarity pol)
3966 {
3967 	/* Propagate up the bus hierarchy until someone handles it. */
3968 	if (dev->parent)
3969 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3970 	return (EINVAL);
3971 }
3972 
3973 /**
3974  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3975  *
3976  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3977  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3978  */
3979 int
3980 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3981     void *cookie, const char *descr)
3982 {
3983 	/* Propagate up the bus hierarchy until someone handles it. */
3984 	if (dev->parent)
3985 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3986 		    descr));
3987 	return (EINVAL);
3988 }
3989 
3990 /**
3991  * @brief Helper function for implementing BUS_GET_CPUS().
3992  *
3993  * This simple implementation of BUS_GET_CPUS() simply calls the
3994  * BUS_GET_CPUS() method of the parent of @p dev.
3995  */
3996 int
3997 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
3998     size_t setsize, cpuset_t *cpuset)
3999 {
4000 	/* Propagate up the bus hierarchy until someone handles it. */
4001 	if (dev->parent != NULL)
4002 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4003 	return (EINVAL);
4004 }
4005 
4006 /**
4007  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4008  *
4009  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4010  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4011  */
4012 bus_dma_tag_t
4013 bus_generic_get_dma_tag(device_t dev, device_t child)
4014 {
4015 	/* Propagate up the bus hierarchy until someone handles it. */
4016 	if (dev->parent != NULL)
4017 		return (BUS_GET_DMA_TAG(dev->parent, child));
4018 	return (NULL);
4019 }
4020 
4021 /**
4022  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4023  *
4024  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4025  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4026  */
4027 bus_space_tag_t
4028 bus_generic_get_bus_tag(device_t dev, device_t child)
4029 {
4030 	/* Propagate up the bus hierarchy until someone handles it. */
4031 	if (dev->parent != NULL)
4032 		return (BUS_GET_BUS_TAG(dev->parent, child));
4033 	return ((bus_space_tag_t)0);
4034 }
4035 
4036 /**
4037  * @brief Helper function for implementing BUS_GET_RESOURCE().
4038  *
4039  * This implementation of BUS_GET_RESOURCE() uses the
4040  * resource_list_find() function to do most of the work. It calls
4041  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4042  * search.
4043  */
4044 int
4045 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4046     rman_res_t *startp, rman_res_t *countp)
4047 {
4048 	struct resource_list *		rl = NULL;
4049 	struct resource_list_entry *	rle = NULL;
4050 
4051 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4052 	if (!rl)
4053 		return (EINVAL);
4054 
4055 	rle = resource_list_find(rl, type, rid);
4056 	if (!rle)
4057 		return (ENOENT);
4058 
4059 	if (startp)
4060 		*startp = rle->start;
4061 	if (countp)
4062 		*countp = rle->count;
4063 
4064 	return (0);
4065 }
4066 
4067 /**
4068  * @brief Helper function for implementing BUS_SET_RESOURCE().
4069  *
4070  * This implementation of BUS_SET_RESOURCE() uses the
4071  * resource_list_add() function to do most of the work. It calls
4072  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4073  * edit.
4074  */
4075 int
4076 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4077     rman_res_t start, rman_res_t count)
4078 {
4079 	struct resource_list *		rl = NULL;
4080 
4081 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4082 	if (!rl)
4083 		return (EINVAL);
4084 
4085 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4086 
4087 	return (0);
4088 }
4089 
4090 /**
4091  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4092  *
4093  * This implementation of BUS_DELETE_RESOURCE() uses the
4094  * resource_list_delete() function to do most of the work. It calls
4095  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4096  * edit.
4097  */
4098 void
4099 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4100 {
4101 	struct resource_list *		rl = NULL;
4102 
4103 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4104 	if (!rl)
4105 		return;
4106 
4107 	resource_list_delete(rl, type, rid);
4108 
4109 	return;
4110 }
4111 
4112 /**
4113  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4114  *
4115  * This implementation of BUS_RELEASE_RESOURCE() uses the
4116  * resource_list_release() function to do most of the work. It calls
4117  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4118  */
4119 int
4120 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4121     int rid, struct resource *r)
4122 {
4123 	struct resource_list *		rl = NULL;
4124 
4125 	if (device_get_parent(child) != dev)
4126 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4127 		    type, rid, r));
4128 
4129 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4130 	if (!rl)
4131 		return (EINVAL);
4132 
4133 	return (resource_list_release(rl, dev, child, type, rid, r));
4134 }
4135 
4136 /**
4137  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4138  *
4139  * This implementation of BUS_ALLOC_RESOURCE() uses the
4140  * resource_list_alloc() function to do most of the work. It calls
4141  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4142  */
4143 struct resource *
4144 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4145     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4146 {
4147 	struct resource_list *		rl = NULL;
4148 
4149 	if (device_get_parent(child) != dev)
4150 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4151 		    type, rid, start, end, count, flags));
4152 
4153 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4154 	if (!rl)
4155 		return (NULL);
4156 
4157 	return (resource_list_alloc(rl, dev, child, type, rid,
4158 	    start, end, count, flags));
4159 }
4160 
4161 /**
4162  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4163  *
4164  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4165  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4166  */
4167 int
4168 bus_generic_child_present(device_t dev, device_t child)
4169 {
4170 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4171 }
4172 
4173 int
4174 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4175 {
4176 	if (dev->parent)
4177 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4178 
4179 	return (ENOENT);
4180 }
4181 
4182 /**
4183  * @brief Helper function to implement normal BUS_GET_DEVICE_PATH()
4184  *
4185  * This function knows how to (a) pass the request up the tree if there's
4186  * a parent and (b) Knows how to supply a FreeBSD locator.
4187  *
4188  * @param bus		bus in the walk up the tree
4189  * @param child		leaf node to print information about
4190  * @param locator	BUS_LOCATOR_xxx string for locator
4191  * @param sb		Buffer to print information into
4192  */
4193 int
4194 bus_generic_get_device_path(device_t bus, device_t child, const char *locator,
4195     struct sbuf *sb)
4196 {
4197 	int rv = 0;
4198 	device_t parent;
4199 
4200 	/*
4201 	 * We don't recurse on ACPI since either we know the handle for the
4202 	 * device or we don't. And if we're in the generic routine, we don't
4203 	 * have a ACPI override. All other locators build up a path by having
4204 	 * their parents create a path and then adding the path element for this
4205 	 * node. That's why we recurse with parent, bus rather than the typical
4206 	 * parent, child: each spot in the tree is independent of what our child
4207 	 * will do with this path.
4208 	 */
4209 	parent = device_get_parent(bus);
4210 	if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) {
4211 		rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb);
4212 	}
4213 	if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) {
4214 		if (rv == 0) {
4215 			sbuf_printf(sb, "/%s", device_get_nameunit(child));
4216 		}
4217 		return (rv);
4218 	}
4219 	/*
4220 	 * Don't know what to do. So assume we do nothing. Not sure that's
4221 	 * the right thing, but keeps us from having a big list here.
4222 	 */
4223 	return (0);
4224 }
4225 
4226 
4227 /**
4228  * @brief Helper function for implementing BUS_RESCAN().
4229  *
4230  * This null implementation of BUS_RESCAN() always fails to indicate
4231  * the bus does not support rescanning.
4232  */
4233 int
4234 bus_null_rescan(device_t dev)
4235 {
4236 	return (ENODEV);
4237 }
4238 
4239 /*
4240  * Some convenience functions to make it easier for drivers to use the
4241  * resource-management functions.  All these really do is hide the
4242  * indirection through the parent's method table, making for slightly
4243  * less-wordy code.  In the future, it might make sense for this code
4244  * to maintain some sort of a list of resources allocated by each device.
4245  */
4246 
4247 int
4248 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4249     struct resource **res)
4250 {
4251 	int i;
4252 
4253 	for (i = 0; rs[i].type != -1; i++)
4254 		res[i] = NULL;
4255 	for (i = 0; rs[i].type != -1; i++) {
4256 		res[i] = bus_alloc_resource_any(dev,
4257 		    rs[i].type, &rs[i].rid, rs[i].flags);
4258 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4259 			bus_release_resources(dev, rs, res);
4260 			return (ENXIO);
4261 		}
4262 	}
4263 	return (0);
4264 }
4265 
4266 void
4267 bus_release_resources(device_t dev, const struct resource_spec *rs,
4268     struct resource **res)
4269 {
4270 	int i;
4271 
4272 	for (i = 0; rs[i].type != -1; i++)
4273 		if (res[i] != NULL) {
4274 			bus_release_resource(
4275 			    dev, rs[i].type, rs[i].rid, res[i]);
4276 			res[i] = NULL;
4277 		}
4278 }
4279 
4280 /**
4281  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4282  *
4283  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4284  * parent of @p dev.
4285  */
4286 struct resource *
4287 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4288     rman_res_t end, rman_res_t count, u_int flags)
4289 {
4290 	struct resource *res;
4291 
4292 	if (dev->parent == NULL)
4293 		return (NULL);
4294 	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4295 	    count, flags);
4296 	return (res);
4297 }
4298 
4299 /**
4300  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4301  *
4302  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4303  * parent of @p dev.
4304  */
4305 int
4306 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4307     rman_res_t end)
4308 {
4309 	if (dev->parent == NULL)
4310 		return (EINVAL);
4311 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4312 }
4313 
4314 /**
4315  * @brief Wrapper function for BUS_TRANSLATE_RESOURCE().
4316  *
4317  * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the
4318  * parent of @p dev.
4319  */
4320 int
4321 bus_translate_resource(device_t dev, int type, rman_res_t start,
4322     rman_res_t *newstart)
4323 {
4324 	if (dev->parent == NULL)
4325 		return (EINVAL);
4326 	return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart));
4327 }
4328 
4329 /**
4330  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4331  *
4332  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4333  * parent of @p dev.
4334  */
4335 int
4336 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4337 {
4338 	if (dev->parent == NULL)
4339 		return (EINVAL);
4340 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4341 }
4342 
4343 /**
4344  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4345  *
4346  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4347  * parent of @p dev.
4348  */
4349 int
4350 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4351 {
4352 	if (dev->parent == NULL)
4353 		return (EINVAL);
4354 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4355 }
4356 
4357 /**
4358  * @brief Wrapper function for BUS_MAP_RESOURCE().
4359  *
4360  * This function simply calls the BUS_MAP_RESOURCE() method of the
4361  * parent of @p dev.
4362  */
4363 int
4364 bus_map_resource(device_t dev, int type, struct resource *r,
4365     struct resource_map_request *args, struct resource_map *map)
4366 {
4367 	if (dev->parent == NULL)
4368 		return (EINVAL);
4369 	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
4370 }
4371 
4372 /**
4373  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4374  *
4375  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4376  * parent of @p dev.
4377  */
4378 int
4379 bus_unmap_resource(device_t dev, int type, struct resource *r,
4380     struct resource_map *map)
4381 {
4382 	if (dev->parent == NULL)
4383 		return (EINVAL);
4384 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
4385 }
4386 
4387 /**
4388  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4389  *
4390  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4391  * parent of @p dev.
4392  */
4393 int
4394 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4395 {
4396 	int rv;
4397 
4398 	if (dev->parent == NULL)
4399 		return (EINVAL);
4400 	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
4401 	return (rv);
4402 }
4403 
4404 /**
4405  * @brief Wrapper function for BUS_SETUP_INTR().
4406  *
4407  * This function simply calls the BUS_SETUP_INTR() method of the
4408  * parent of @p dev.
4409  */
4410 int
4411 bus_setup_intr(device_t dev, struct resource *r, int flags,
4412     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4413 {
4414 	int error;
4415 
4416 	if (dev->parent == NULL)
4417 		return (EINVAL);
4418 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4419 	    arg, cookiep);
4420 	if (error != 0)
4421 		return (error);
4422 	if (handler != NULL && !(flags & INTR_MPSAFE))
4423 		device_printf(dev, "[GIANT-LOCKED]\n");
4424 	return (0);
4425 }
4426 
4427 /**
4428  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4429  *
4430  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4431  * parent of @p dev.
4432  */
4433 int
4434 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4435 {
4436 	if (dev->parent == NULL)
4437 		return (EINVAL);
4438 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4439 }
4440 
4441 /**
4442  * @brief Wrapper function for BUS_SUSPEND_INTR().
4443  *
4444  * This function simply calls the BUS_SUSPEND_INTR() method of the
4445  * parent of @p dev.
4446  */
4447 int
4448 bus_suspend_intr(device_t dev, struct resource *r)
4449 {
4450 	if (dev->parent == NULL)
4451 		return (EINVAL);
4452 	return (BUS_SUSPEND_INTR(dev->parent, dev, r));
4453 }
4454 
4455 /**
4456  * @brief Wrapper function for BUS_RESUME_INTR().
4457  *
4458  * This function simply calls the BUS_RESUME_INTR() method of the
4459  * parent of @p dev.
4460  */
4461 int
4462 bus_resume_intr(device_t dev, struct resource *r)
4463 {
4464 	if (dev->parent == NULL)
4465 		return (EINVAL);
4466 	return (BUS_RESUME_INTR(dev->parent, dev, r));
4467 }
4468 
4469 /**
4470  * @brief Wrapper function for BUS_BIND_INTR().
4471  *
4472  * This function simply calls the BUS_BIND_INTR() method of the
4473  * parent of @p dev.
4474  */
4475 int
4476 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4477 {
4478 	if (dev->parent == NULL)
4479 		return (EINVAL);
4480 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4481 }
4482 
4483 /**
4484  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4485  *
4486  * This function first formats the requested description into a
4487  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4488  * the parent of @p dev.
4489  */
4490 int
4491 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4492     const char *fmt, ...)
4493 {
4494 	va_list ap;
4495 	char descr[MAXCOMLEN + 1];
4496 
4497 	if (dev->parent == NULL)
4498 		return (EINVAL);
4499 	va_start(ap, fmt);
4500 	vsnprintf(descr, sizeof(descr), fmt, ap);
4501 	va_end(ap);
4502 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4503 }
4504 
4505 /**
4506  * @brief Wrapper function for BUS_SET_RESOURCE().
4507  *
4508  * This function simply calls the BUS_SET_RESOURCE() method of the
4509  * parent of @p dev.
4510  */
4511 int
4512 bus_set_resource(device_t dev, int type, int rid,
4513     rman_res_t start, rman_res_t count)
4514 {
4515 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4516 	    start, count));
4517 }
4518 
4519 /**
4520  * @brief Wrapper function for BUS_GET_RESOURCE().
4521  *
4522  * This function simply calls the BUS_GET_RESOURCE() method of the
4523  * parent of @p dev.
4524  */
4525 int
4526 bus_get_resource(device_t dev, int type, int rid,
4527     rman_res_t *startp, rman_res_t *countp)
4528 {
4529 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4530 	    startp, countp));
4531 }
4532 
4533 /**
4534  * @brief Wrapper function for BUS_GET_RESOURCE().
4535  *
4536  * This function simply calls the BUS_GET_RESOURCE() method of the
4537  * parent of @p dev and returns the start value.
4538  */
4539 rman_res_t
4540 bus_get_resource_start(device_t dev, int type, int rid)
4541 {
4542 	rman_res_t start;
4543 	rman_res_t count;
4544 	int error;
4545 
4546 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4547 	    &start, &count);
4548 	if (error)
4549 		return (0);
4550 	return (start);
4551 }
4552 
4553 /**
4554  * @brief Wrapper function for BUS_GET_RESOURCE().
4555  *
4556  * This function simply calls the BUS_GET_RESOURCE() method of the
4557  * parent of @p dev and returns the count value.
4558  */
4559 rman_res_t
4560 bus_get_resource_count(device_t dev, int type, int rid)
4561 {
4562 	rman_res_t start;
4563 	rman_res_t count;
4564 	int error;
4565 
4566 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4567 	    &start, &count);
4568 	if (error)
4569 		return (0);
4570 	return (count);
4571 }
4572 
4573 /**
4574  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4575  *
4576  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4577  * parent of @p dev.
4578  */
4579 void
4580 bus_delete_resource(device_t dev, int type, int rid)
4581 {
4582 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4583 }
4584 
4585 /**
4586  * @brief Wrapper function for BUS_CHILD_PRESENT().
4587  *
4588  * This function simply calls the BUS_CHILD_PRESENT() method of the
4589  * parent of @p dev.
4590  */
4591 int
4592 bus_child_present(device_t child)
4593 {
4594 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4595 }
4596 
4597 /**
4598  * @brief Wrapper function for BUS_CHILD_PNPINFO().
4599  *
4600  * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p
4601  * dev.
4602  */
4603 int
4604 bus_child_pnpinfo(device_t child, struct sbuf *sb)
4605 {
4606 	device_t parent;
4607 
4608 	parent = device_get_parent(child);
4609 	if (parent == NULL)
4610 		return (0);
4611 	return (BUS_CHILD_PNPINFO(parent, child, sb));
4612 }
4613 
4614 /**
4615  * @brief Generic implementation that does nothing for bus_child_pnpinfo
4616  *
4617  * This function has the right signature and returns 0 since the sbuf is passed
4618  * to us to append to.
4619  */
4620 int
4621 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb)
4622 {
4623 	return (0);
4624 }
4625 
4626 /**
4627  * @brief Wrapper function for BUS_CHILD_LOCATION().
4628  *
4629  * This function simply calls the BUS_CHILD_LOCATION() method of the parent of
4630  * @p dev.
4631  */
4632 int
4633 bus_child_location(device_t child, struct sbuf *sb)
4634 {
4635 	device_t parent;
4636 
4637 	parent = device_get_parent(child);
4638 	if (parent == NULL)
4639 		return (0);
4640 	return (BUS_CHILD_LOCATION(parent, child, sb));
4641 }
4642 
4643 /**
4644  * @brief Generic implementation that does nothing for bus_child_location
4645  *
4646  * This function has the right signature and returns 0 since the sbuf is passed
4647  * to us to append to.
4648  */
4649 int
4650 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb)
4651 {
4652 	return (0);
4653 }
4654 
4655 /**
4656  * @brief Wrapper function for BUS_GET_CPUS().
4657  *
4658  * This function simply calls the BUS_GET_CPUS() method of the
4659  * parent of @p dev.
4660  */
4661 int
4662 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4663 {
4664 	device_t parent;
4665 
4666 	parent = device_get_parent(dev);
4667 	if (parent == NULL)
4668 		return (EINVAL);
4669 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4670 }
4671 
4672 /**
4673  * @brief Wrapper function for BUS_GET_DMA_TAG().
4674  *
4675  * This function simply calls the BUS_GET_DMA_TAG() method of the
4676  * parent of @p dev.
4677  */
4678 bus_dma_tag_t
4679 bus_get_dma_tag(device_t dev)
4680 {
4681 	device_t parent;
4682 
4683 	parent = device_get_parent(dev);
4684 	if (parent == NULL)
4685 		return (NULL);
4686 	return (BUS_GET_DMA_TAG(parent, dev));
4687 }
4688 
4689 /**
4690  * @brief Wrapper function for BUS_GET_BUS_TAG().
4691  *
4692  * This function simply calls the BUS_GET_BUS_TAG() method of the
4693  * parent of @p dev.
4694  */
4695 bus_space_tag_t
4696 bus_get_bus_tag(device_t dev)
4697 {
4698 	device_t parent;
4699 
4700 	parent = device_get_parent(dev);
4701 	if (parent == NULL)
4702 		return ((bus_space_tag_t)0);
4703 	return (BUS_GET_BUS_TAG(parent, dev));
4704 }
4705 
4706 /**
4707  * @brief Wrapper function for BUS_GET_DOMAIN().
4708  *
4709  * This function simply calls the BUS_GET_DOMAIN() method of the
4710  * parent of @p dev.
4711  */
4712 int
4713 bus_get_domain(device_t dev, int *domain)
4714 {
4715 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4716 }
4717 
4718 /* Resume all devices and then notify userland that we're up again. */
4719 static int
4720 root_resume(device_t dev)
4721 {
4722 	int error;
4723 
4724 	error = bus_generic_resume(dev);
4725 	if (error == 0) {
4726 		devctl_notify("kernel", "power", "resume", NULL);
4727 	}
4728 	return (error);
4729 }
4730 
4731 static int
4732 root_print_child(device_t dev, device_t child)
4733 {
4734 	int	retval = 0;
4735 
4736 	retval += bus_print_child_header(dev, child);
4737 	retval += printf("\n");
4738 
4739 	return (retval);
4740 }
4741 
4742 static int
4743 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4744     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4745 {
4746 	/*
4747 	 * If an interrupt mapping gets to here something bad has happened.
4748 	 */
4749 	panic("root_setup_intr");
4750 }
4751 
4752 /*
4753  * If we get here, assume that the device is permanent and really is
4754  * present in the system.  Removable bus drivers are expected to intercept
4755  * this call long before it gets here.  We return -1 so that drivers that
4756  * really care can check vs -1 or some ERRNO returned higher in the food
4757  * chain.
4758  */
4759 static int
4760 root_child_present(device_t dev, device_t child)
4761 {
4762 	return (-1);
4763 }
4764 
4765 static int
4766 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
4767     cpuset_t *cpuset)
4768 {
4769 	switch (op) {
4770 	case INTR_CPUS:
4771 		/* Default to returning the set of all CPUs. */
4772 		if (setsize != sizeof(cpuset_t))
4773 			return (EINVAL);
4774 		*cpuset = all_cpus;
4775 		return (0);
4776 	default:
4777 		return (EINVAL);
4778 	}
4779 }
4780 
4781 static kobj_method_t root_methods[] = {
4782 	/* Device interface */
4783 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4784 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4785 	KOBJMETHOD(device_resume,	root_resume),
4786 
4787 	/* Bus interface */
4788 	KOBJMETHOD(bus_print_child,	root_print_child),
4789 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4790 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4791 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4792 	KOBJMETHOD(bus_child_present,	root_child_present),
4793 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
4794 
4795 	KOBJMETHOD_END
4796 };
4797 
4798 static driver_t root_driver = {
4799 	"root",
4800 	root_methods,
4801 	1,			/* no softc */
4802 };
4803 
4804 device_t	root_bus;
4805 devclass_t	root_devclass;
4806 
4807 static int
4808 root_bus_module_handler(module_t mod, int what, void* arg)
4809 {
4810 	switch (what) {
4811 	case MOD_LOAD:
4812 		TAILQ_INIT(&bus_data_devices);
4813 		kobj_class_compile((kobj_class_t) &root_driver);
4814 		root_bus = make_device(NULL, "root", 0);
4815 		root_bus->desc = "System root bus";
4816 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4817 		root_bus->driver = &root_driver;
4818 		root_bus->state = DS_ATTACHED;
4819 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4820 		devctl2_init();
4821 		return (0);
4822 
4823 	case MOD_SHUTDOWN:
4824 		device_shutdown(root_bus);
4825 		return (0);
4826 	default:
4827 		return (EOPNOTSUPP);
4828 	}
4829 
4830 	return (0);
4831 }
4832 
4833 static moduledata_t root_bus_mod = {
4834 	"rootbus",
4835 	root_bus_module_handler,
4836 	NULL
4837 };
4838 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4839 
4840 /**
4841  * @brief Automatically configure devices
4842  *
4843  * This function begins the autoconfiguration process by calling
4844  * device_probe_and_attach() for each child of the @c root0 device.
4845  */
4846 void
4847 root_bus_configure(void)
4848 {
4849 	PDEBUG(("."));
4850 
4851 	/* Eventually this will be split up, but this is sufficient for now. */
4852 	bus_set_pass(BUS_PASS_DEFAULT);
4853 }
4854 
4855 /**
4856  * @brief Module handler for registering device drivers
4857  *
4858  * This module handler is used to automatically register device
4859  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4860  * devclass_add_driver() for the driver described by the
4861  * driver_module_data structure pointed to by @p arg
4862  */
4863 int
4864 driver_module_handler(module_t mod, int what, void *arg)
4865 {
4866 	struct driver_module_data *dmd;
4867 	devclass_t bus_devclass;
4868 	kobj_class_t driver;
4869 	int error, pass;
4870 
4871 	dmd = (struct driver_module_data *)arg;
4872 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4873 	error = 0;
4874 
4875 	switch (what) {
4876 	case MOD_LOAD:
4877 		if (dmd->dmd_chainevh)
4878 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4879 
4880 		pass = dmd->dmd_pass;
4881 		driver = dmd->dmd_driver;
4882 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4883 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4884 		error = devclass_add_driver(bus_devclass, driver, pass,
4885 		    dmd->dmd_devclass);
4886 		break;
4887 
4888 	case MOD_UNLOAD:
4889 		PDEBUG(("Unloading module: driver %s from bus %s",
4890 		    DRIVERNAME(dmd->dmd_driver),
4891 		    dmd->dmd_busname));
4892 		error = devclass_delete_driver(bus_devclass,
4893 		    dmd->dmd_driver);
4894 
4895 		if (!error && dmd->dmd_chainevh)
4896 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4897 		break;
4898 	case MOD_QUIESCE:
4899 		PDEBUG(("Quiesce module: driver %s from bus %s",
4900 		    DRIVERNAME(dmd->dmd_driver),
4901 		    dmd->dmd_busname));
4902 		error = devclass_quiesce_driver(bus_devclass,
4903 		    dmd->dmd_driver);
4904 
4905 		if (!error && dmd->dmd_chainevh)
4906 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4907 		break;
4908 	default:
4909 		error = EOPNOTSUPP;
4910 		break;
4911 	}
4912 
4913 	return (error);
4914 }
4915 
4916 /**
4917  * @brief Enumerate all hinted devices for this bus.
4918  *
4919  * Walks through the hints for this bus and calls the bus_hinted_child
4920  * routine for each one it fines.  It searches first for the specific
4921  * bus that's being probed for hinted children (eg isa0), and then for
4922  * generic children (eg isa).
4923  *
4924  * @param	dev	bus device to enumerate
4925  */
4926 void
4927 bus_enumerate_hinted_children(device_t bus)
4928 {
4929 	int i;
4930 	const char *dname, *busname;
4931 	int dunit;
4932 
4933 	/*
4934 	 * enumerate all devices on the specific bus
4935 	 */
4936 	busname = device_get_nameunit(bus);
4937 	i = 0;
4938 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4939 		BUS_HINTED_CHILD(bus, dname, dunit);
4940 
4941 	/*
4942 	 * and all the generic ones.
4943 	 */
4944 	busname = device_get_name(bus);
4945 	i = 0;
4946 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4947 		BUS_HINTED_CHILD(bus, dname, dunit);
4948 }
4949 
4950 #ifdef BUS_DEBUG
4951 
4952 /* the _short versions avoid iteration by not calling anything that prints
4953  * more than oneliners. I love oneliners.
4954  */
4955 
4956 static void
4957 print_device_short(device_t dev, int indent)
4958 {
4959 	if (!dev)
4960 		return;
4961 
4962 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4963 	    dev->unit, dev->desc,
4964 	    (dev->parent? "":"no "),
4965 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4966 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4967 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4968 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4969 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4970 	    (dev->flags&DF_SUSPENDED? "suspended,":""),
4971 	    (dev->ivars? "":"no "),
4972 	    (dev->softc? "":"no "),
4973 	    dev->busy));
4974 }
4975 
4976 static void
4977 print_device(device_t dev, int indent)
4978 {
4979 	if (!dev)
4980 		return;
4981 
4982 	print_device_short(dev, indent);
4983 
4984 	indentprintf(("Parent:\n"));
4985 	print_device_short(dev->parent, indent+1);
4986 	indentprintf(("Driver:\n"));
4987 	print_driver_short(dev->driver, indent+1);
4988 	indentprintf(("Devclass:\n"));
4989 	print_devclass_short(dev->devclass, indent+1);
4990 }
4991 
4992 void
4993 print_device_tree_short(device_t dev, int indent)
4994 /* print the device and all its children (indented) */
4995 {
4996 	device_t child;
4997 
4998 	if (!dev)
4999 		return;
5000 
5001 	print_device_short(dev, indent);
5002 
5003 	TAILQ_FOREACH(child, &dev->children, link) {
5004 		print_device_tree_short(child, indent+1);
5005 	}
5006 }
5007 
5008 void
5009 print_device_tree(device_t dev, int indent)
5010 /* print the device and all its children (indented) */
5011 {
5012 	device_t child;
5013 
5014 	if (!dev)
5015 		return;
5016 
5017 	print_device(dev, indent);
5018 
5019 	TAILQ_FOREACH(child, &dev->children, link) {
5020 		print_device_tree(child, indent+1);
5021 	}
5022 }
5023 
5024 static void
5025 print_driver_short(driver_t *driver, int indent)
5026 {
5027 	if (!driver)
5028 		return;
5029 
5030 	indentprintf(("driver %s: softc size = %zd\n",
5031 	    driver->name, driver->size));
5032 }
5033 
5034 static void
5035 print_driver(driver_t *driver, int indent)
5036 {
5037 	if (!driver)
5038 		return;
5039 
5040 	print_driver_short(driver, indent);
5041 }
5042 
5043 static void
5044 print_driver_list(driver_list_t drivers, int indent)
5045 {
5046 	driverlink_t driver;
5047 
5048 	TAILQ_FOREACH(driver, &drivers, link) {
5049 		print_driver(driver->driver, indent);
5050 	}
5051 }
5052 
5053 static void
5054 print_devclass_short(devclass_t dc, int indent)
5055 {
5056 	if ( !dc )
5057 		return;
5058 
5059 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5060 }
5061 
5062 static void
5063 print_devclass(devclass_t dc, int indent)
5064 {
5065 	int i;
5066 
5067 	if ( !dc )
5068 		return;
5069 
5070 	print_devclass_short(dc, indent);
5071 	indentprintf(("Drivers:\n"));
5072 	print_driver_list(dc->drivers, indent+1);
5073 
5074 	indentprintf(("Devices:\n"));
5075 	for (i = 0; i < dc->maxunit; i++)
5076 		if (dc->devices[i])
5077 			print_device(dc->devices[i], indent+1);
5078 }
5079 
5080 void
5081 print_devclass_list_short(void)
5082 {
5083 	devclass_t dc;
5084 
5085 	printf("Short listing of devclasses, drivers & devices:\n");
5086 	TAILQ_FOREACH(dc, &devclasses, link) {
5087 		print_devclass_short(dc, 0);
5088 	}
5089 }
5090 
5091 void
5092 print_devclass_list(void)
5093 {
5094 	devclass_t dc;
5095 
5096 	printf("Full listing of devclasses, drivers & devices:\n");
5097 	TAILQ_FOREACH(dc, &devclasses, link) {
5098 		print_devclass(dc, 0);
5099 	}
5100 }
5101 
5102 #endif
5103 
5104 /*
5105  * User-space access to the device tree.
5106  *
5107  * We implement a small set of nodes:
5108  *
5109  * hw.bus			Single integer read method to obtain the
5110  *				current generation count.
5111  * hw.bus.devices		Reads the entire device tree in flat space.
5112  * hw.bus.rman			Resource manager interface
5113  *
5114  * We might like to add the ability to scan devclasses and/or drivers to
5115  * determine what else is currently loaded/available.
5116  */
5117 
5118 static int
5119 sysctl_bus_info(SYSCTL_HANDLER_ARGS)
5120 {
5121 	struct u_businfo	ubus;
5122 
5123 	ubus.ub_version = BUS_USER_VERSION;
5124 	ubus.ub_generation = bus_data_generation;
5125 
5126 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5127 }
5128 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD |
5129     CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo",
5130     "bus-related data");
5131 
5132 static int
5133 sysctl_devices(SYSCTL_HANDLER_ARGS)
5134 {
5135 	struct sbuf		sb;
5136 	int			*name = (int *)arg1;
5137 	u_int			namelen = arg2;
5138 	int			index;
5139 	device_t		dev;
5140 	struct u_device		*udev;
5141 	int			error;
5142 
5143 	if (namelen != 2)
5144 		return (EINVAL);
5145 
5146 	if (bus_data_generation_check(name[0]))
5147 		return (EINVAL);
5148 
5149 	index = name[1];
5150 
5151 	/*
5152 	 * Scan the list of devices, looking for the requested index.
5153 	 */
5154 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5155 		if (index-- == 0)
5156 			break;
5157 	}
5158 	if (dev == NULL)
5159 		return (ENOENT);
5160 
5161 	/*
5162 	 * Populate the return item, careful not to overflow the buffer.
5163 	 */
5164 	udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5165 	if (udev == NULL)
5166 		return (ENOMEM);
5167 	udev->dv_handle = (uintptr_t)dev;
5168 	udev->dv_parent = (uintptr_t)dev->parent;
5169 	udev->dv_devflags = dev->devflags;
5170 	udev->dv_flags = dev->flags;
5171 	udev->dv_state = dev->state;
5172 	sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN);
5173 	if (dev->nameunit != NULL)
5174 		sbuf_cat(&sb, dev->nameunit);
5175 	sbuf_putc(&sb, '\0');
5176 	if (dev->desc != NULL)
5177 		sbuf_cat(&sb, dev->desc);
5178 	sbuf_putc(&sb, '\0');
5179 	if (dev->driver != NULL)
5180 		sbuf_cat(&sb, dev->driver->name);
5181 	sbuf_putc(&sb, '\0');
5182 	bus_child_pnpinfo(dev, &sb);
5183 	sbuf_putc(&sb, '\0');
5184 	bus_child_location(dev, &sb);
5185 	sbuf_putc(&sb, '\0');
5186 	error = sbuf_finish(&sb);
5187 	if (error == 0)
5188 		error = SYSCTL_OUT(req, udev, sizeof(*udev));
5189 	sbuf_delete(&sb);
5190 	free(udev, M_BUS);
5191 	return (error);
5192 }
5193 
5194 SYSCTL_NODE(_hw_bus, OID_AUTO, devices,
5195     CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices,
5196     "system device tree");
5197 
5198 int
5199 bus_data_generation_check(int generation)
5200 {
5201 	if (generation != bus_data_generation)
5202 		return (1);
5203 
5204 	/* XXX generate optimised lists here? */
5205 	return (0);
5206 }
5207 
5208 void
5209 bus_data_generation_update(void)
5210 {
5211 	atomic_add_int(&bus_data_generation, 1);
5212 }
5213 
5214 int
5215 bus_free_resource(device_t dev, int type, struct resource *r)
5216 {
5217 	if (r == NULL)
5218 		return (0);
5219 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5220 }
5221 
5222 device_t
5223 device_lookup_by_name(const char *name)
5224 {
5225 	device_t dev;
5226 
5227 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5228 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5229 			return (dev);
5230 	}
5231 	return (NULL);
5232 }
5233 
5234 /*
5235  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5236  * implicit semantics on open, so it could not be reused for this.
5237  * Another option would be to call this /dev/bus?
5238  */
5239 static int
5240 find_device(struct devreq *req, device_t *devp)
5241 {
5242 	device_t dev;
5243 
5244 	/*
5245 	 * First, ensure that the name is nul terminated.
5246 	 */
5247 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5248 		return (EINVAL);
5249 
5250 	/*
5251 	 * Second, try to find an attached device whose name matches
5252 	 * 'name'.
5253 	 */
5254 	dev = device_lookup_by_name(req->dr_name);
5255 	if (dev != NULL) {
5256 		*devp = dev;
5257 		return (0);
5258 	}
5259 
5260 	/* Finally, give device enumerators a chance. */
5261 	dev = NULL;
5262 	EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5263 	if (dev == NULL)
5264 		return (ENOENT);
5265 	*devp = dev;
5266 	return (0);
5267 }
5268 
5269 static bool
5270 driver_exists(device_t bus, const char *driver)
5271 {
5272 	devclass_t dc;
5273 
5274 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5275 		if (devclass_find_driver_internal(dc, driver) != NULL)
5276 			return (true);
5277 	}
5278 	return (false);
5279 }
5280 
5281 static void
5282 device_gen_nomatch(device_t dev)
5283 {
5284 	device_t child;
5285 
5286 	if (dev->flags & DF_NEEDNOMATCH &&
5287 	    dev->state == DS_NOTPRESENT) {
5288 		device_handle_nomatch(dev);
5289 	}
5290 	dev->flags &= ~DF_NEEDNOMATCH;
5291 	TAILQ_FOREACH(child, &dev->children, link) {
5292 		device_gen_nomatch(child);
5293 	}
5294 }
5295 
5296 static void
5297 device_do_deferred_actions(void)
5298 {
5299 	devclass_t dc;
5300 	driverlink_t dl;
5301 
5302 	/*
5303 	 * Walk through the devclasses to find all the drivers we've tagged as
5304 	 * deferred during the freeze and call the driver added routines. They
5305 	 * have already been added to the lists in the background, so the driver
5306 	 * added routines that trigger a probe will have all the right bidders
5307 	 * for the probe auction.
5308 	 */
5309 	TAILQ_FOREACH(dc, &devclasses, link) {
5310 		TAILQ_FOREACH(dl, &dc->drivers, link) {
5311 			if (dl->flags & DL_DEFERRED_PROBE) {
5312 				devclass_driver_added(dc, dl->driver);
5313 				dl->flags &= ~DL_DEFERRED_PROBE;
5314 			}
5315 		}
5316 	}
5317 
5318 	/*
5319 	 * We also defer no-match events during a freeze. Walk the tree and
5320 	 * generate all the pent-up events that are still relevant.
5321 	 */
5322 	device_gen_nomatch(root_bus);
5323 	bus_data_generation_update();
5324 }
5325 
5326 static int
5327 device_get_path(device_t dev, const char *locator, struct sbuf *sb)
5328 {
5329 	device_t parent;
5330 	int error;
5331 
5332 	KASSERT(sb != NULL, ("sb is NULL"));
5333 	parent = device_get_parent(dev);
5334 	if (parent == NULL) {
5335 		error = sbuf_printf(sb, "/");
5336 	} else {
5337 		error = BUS_GET_DEVICE_PATH(parent, dev, locator, sb);
5338 		if (error == 0) {
5339 			error = sbuf_error(sb);
5340 			if (error == 0 && sbuf_len(sb) <= 1)
5341 				error = EIO;
5342 		}
5343 	}
5344 	sbuf_finish(sb);
5345 	return (error);
5346 }
5347 
5348 static int
5349 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5350     struct thread *td)
5351 {
5352 	struct devreq *req;
5353 	device_t dev;
5354 	int error, old;
5355 
5356 	/* Locate the device to control. */
5357 	bus_topo_lock();
5358 	req = (struct devreq *)data;
5359 	switch (cmd) {
5360 	case DEV_ATTACH:
5361 	case DEV_DETACH:
5362 	case DEV_ENABLE:
5363 	case DEV_DISABLE:
5364 	case DEV_SUSPEND:
5365 	case DEV_RESUME:
5366 	case DEV_SET_DRIVER:
5367 	case DEV_CLEAR_DRIVER:
5368 	case DEV_RESCAN:
5369 	case DEV_DELETE:
5370 	case DEV_RESET:
5371 		error = priv_check(td, PRIV_DRIVER);
5372 		if (error == 0)
5373 			error = find_device(req, &dev);
5374 		break;
5375 	case DEV_FREEZE:
5376 	case DEV_THAW:
5377 		error = priv_check(td, PRIV_DRIVER);
5378 		break;
5379 	case DEV_GET_PATH:
5380 		error = find_device(req, &dev);
5381 		break;
5382 	default:
5383 		error = ENOTTY;
5384 		break;
5385 	}
5386 	if (error) {
5387 		bus_topo_unlock();
5388 		return (error);
5389 	}
5390 
5391 	/* Perform the requested operation. */
5392 	switch (cmd) {
5393 	case DEV_ATTACH:
5394 		if (device_is_attached(dev))
5395 			error = EBUSY;
5396 		else if (!device_is_enabled(dev))
5397 			error = ENXIO;
5398 		else
5399 			error = device_probe_and_attach(dev);
5400 		break;
5401 	case DEV_DETACH:
5402 		if (!device_is_attached(dev)) {
5403 			error = ENXIO;
5404 			break;
5405 		}
5406 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5407 			error = device_quiesce(dev);
5408 			if (error)
5409 				break;
5410 		}
5411 		error = device_detach(dev);
5412 		break;
5413 	case DEV_ENABLE:
5414 		if (device_is_enabled(dev)) {
5415 			error = EBUSY;
5416 			break;
5417 		}
5418 
5419 		/*
5420 		 * If the device has been probed but not attached (e.g.
5421 		 * when it has been disabled by a loader hint), just
5422 		 * attach the device rather than doing a full probe.
5423 		 */
5424 		device_enable(dev);
5425 		if (device_is_alive(dev)) {
5426 			/*
5427 			 * If the device was disabled via a hint, clear
5428 			 * the hint.
5429 			 */
5430 			if (resource_disabled(dev->driver->name, dev->unit))
5431 				resource_unset_value(dev->driver->name,
5432 				    dev->unit, "disabled");
5433 			error = device_attach(dev);
5434 		} else
5435 			error = device_probe_and_attach(dev);
5436 		break;
5437 	case DEV_DISABLE:
5438 		if (!device_is_enabled(dev)) {
5439 			error = ENXIO;
5440 			break;
5441 		}
5442 
5443 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5444 			error = device_quiesce(dev);
5445 			if (error)
5446 				break;
5447 		}
5448 
5449 		/*
5450 		 * Force DF_FIXEDCLASS on around detach to preserve
5451 		 * the existing name.
5452 		 */
5453 		old = dev->flags;
5454 		dev->flags |= DF_FIXEDCLASS;
5455 		error = device_detach(dev);
5456 		if (!(old & DF_FIXEDCLASS))
5457 			dev->flags &= ~DF_FIXEDCLASS;
5458 		if (error == 0)
5459 			device_disable(dev);
5460 		break;
5461 	case DEV_SUSPEND:
5462 		if (device_is_suspended(dev)) {
5463 			error = EBUSY;
5464 			break;
5465 		}
5466 		if (device_get_parent(dev) == NULL) {
5467 			error = EINVAL;
5468 			break;
5469 		}
5470 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5471 		break;
5472 	case DEV_RESUME:
5473 		if (!device_is_suspended(dev)) {
5474 			error = EINVAL;
5475 			break;
5476 		}
5477 		if (device_get_parent(dev) == NULL) {
5478 			error = EINVAL;
5479 			break;
5480 		}
5481 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5482 		break;
5483 	case DEV_SET_DRIVER: {
5484 		devclass_t dc;
5485 		char driver[128];
5486 
5487 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5488 		if (error)
5489 			break;
5490 		if (driver[0] == '\0') {
5491 			error = EINVAL;
5492 			break;
5493 		}
5494 		if (dev->devclass != NULL &&
5495 		    strcmp(driver, dev->devclass->name) == 0)
5496 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5497 			break;
5498 
5499 		/*
5500 		 * Scan drivers for this device's bus looking for at
5501 		 * least one matching driver.
5502 		 */
5503 		if (dev->parent == NULL) {
5504 			error = EINVAL;
5505 			break;
5506 		}
5507 		if (!driver_exists(dev->parent, driver)) {
5508 			error = ENOENT;
5509 			break;
5510 		}
5511 		dc = devclass_create(driver);
5512 		if (dc == NULL) {
5513 			error = ENOMEM;
5514 			break;
5515 		}
5516 
5517 		/* Detach device if necessary. */
5518 		if (device_is_attached(dev)) {
5519 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5520 				error = device_detach(dev);
5521 			else
5522 				error = EBUSY;
5523 			if (error)
5524 				break;
5525 		}
5526 
5527 		/* Clear any previously-fixed device class and unit. */
5528 		if (dev->flags & DF_FIXEDCLASS)
5529 			devclass_delete_device(dev->devclass, dev);
5530 		dev->flags |= DF_WILDCARD;
5531 		dev->unit = -1;
5532 
5533 		/* Force the new device class. */
5534 		error = devclass_add_device(dc, dev);
5535 		if (error)
5536 			break;
5537 		dev->flags |= DF_FIXEDCLASS;
5538 		error = device_probe_and_attach(dev);
5539 		break;
5540 	}
5541 	case DEV_CLEAR_DRIVER:
5542 		if (!(dev->flags & DF_FIXEDCLASS)) {
5543 			error = 0;
5544 			break;
5545 		}
5546 		if (device_is_attached(dev)) {
5547 			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5548 				error = device_detach(dev);
5549 			else
5550 				error = EBUSY;
5551 			if (error)
5552 				break;
5553 		}
5554 
5555 		dev->flags &= ~DF_FIXEDCLASS;
5556 		dev->flags |= DF_WILDCARD;
5557 		devclass_delete_device(dev->devclass, dev);
5558 		error = device_probe_and_attach(dev);
5559 		break;
5560 	case DEV_RESCAN:
5561 		if (!device_is_attached(dev)) {
5562 			error = ENXIO;
5563 			break;
5564 		}
5565 		error = BUS_RESCAN(dev);
5566 		break;
5567 	case DEV_DELETE: {
5568 		device_t parent;
5569 
5570 		parent = device_get_parent(dev);
5571 		if (parent == NULL) {
5572 			error = EINVAL;
5573 			break;
5574 		}
5575 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5576 			if (bus_child_present(dev) != 0) {
5577 				error = EBUSY;
5578 				break;
5579 			}
5580 		}
5581 
5582 		error = device_delete_child(parent, dev);
5583 		break;
5584 	}
5585 	case DEV_FREEZE:
5586 		if (device_frozen)
5587 			error = EBUSY;
5588 		else
5589 			device_frozen = true;
5590 		break;
5591 	case DEV_THAW:
5592 		if (!device_frozen)
5593 			error = EBUSY;
5594 		else {
5595 			device_do_deferred_actions();
5596 			device_frozen = false;
5597 		}
5598 		break;
5599 	case DEV_RESET:
5600 		if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
5601 			error = EINVAL;
5602 			break;
5603 		}
5604 		error = BUS_RESET_CHILD(device_get_parent(dev), dev,
5605 		    req->dr_flags);
5606 		break;
5607 	case DEV_GET_PATH: {
5608 		struct sbuf *sb;
5609 		char locator[64];
5610 		ssize_t len;
5611 
5612 		error = copyinstr(req->dr_buffer.buffer, locator,
5613 		    sizeof(locator), NULL);
5614 		if (error != 0)
5615 			break;
5616 		sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
5617 		    SBUF_INCLUDENUL /* | SBUF_WAITOK */);
5618 		error = device_get_path(dev, locator, sb);
5619 		if (error == 0) {
5620 			len = sbuf_len(sb);
5621 			if (req->dr_buffer.length < len) {
5622 				error = ENAMETOOLONG;
5623 			} else {
5624 				error = copyout(sbuf_data(sb),
5625 				    req->dr_buffer.buffer, len);
5626 			}
5627 			req->dr_buffer.length = len;
5628 		}
5629 		sbuf_delete(sb);
5630 		break;
5631 	}
5632 	}
5633 	bus_topo_unlock();
5634 	return (error);
5635 }
5636 
5637 static struct cdevsw devctl2_cdevsw = {
5638 	.d_version =	D_VERSION,
5639 	.d_ioctl =	devctl2_ioctl,
5640 	.d_name =	"devctl2",
5641 };
5642 
5643 static void
5644 devctl2_init(void)
5645 {
5646 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5647 	    UID_ROOT, GID_WHEEL, 0644, "devctl2");
5648 }
5649 
5650 /*
5651  * For maintaining device 'at' location info to avoid recomputing it
5652  */
5653 struct device_location_node {
5654 	const char *dln_locator;
5655 	const char *dln_path;
5656 	TAILQ_ENTRY(device_location_node) dln_link;
5657 };
5658 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t;
5659 
5660 struct device_location_cache {
5661 	device_location_list_t dlc_list;
5662 };
5663 
5664 
5665 /*
5666  * Location cache for wired devices.
5667  */
5668 device_location_cache_t *
5669 dev_wired_cache_init(void)
5670 {
5671 	device_location_cache_t *dcp;
5672 
5673 	dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO);
5674 	TAILQ_INIT(&dcp->dlc_list);
5675 
5676 	return (dcp);
5677 }
5678 
5679 void
5680 dev_wired_cache_fini(device_location_cache_t *dcp)
5681 {
5682 	struct device_location_node *dln, *tdln;
5683 
5684 	TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) {
5685 		free(dln, M_BUS);
5686 	}
5687 	free(dcp, M_BUS);
5688 }
5689 
5690 static struct device_location_node *
5691 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator)
5692 {
5693 	struct device_location_node *dln;
5694 
5695 	TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) {
5696 		if (strcmp(locator, dln->dln_locator) == 0)
5697 			return (dln);
5698 	}
5699 
5700 	return (NULL);
5701 }
5702 
5703 static struct device_location_node *
5704 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path)
5705 {
5706 	struct device_location_node *dln;
5707 	size_t loclen, pathlen;
5708 
5709 	loclen = strlen(locator) + 1;
5710 	pathlen = strlen(path) + 1;
5711 	dln = malloc(sizeof(*dln) + loclen + pathlen, M_BUS, M_WAITOK | M_ZERO);
5712 	dln->dln_locator = (char *)(dln + 1);
5713 	memcpy(__DECONST(char *, dln->dln_locator), locator, loclen);
5714 	dln->dln_path = dln->dln_locator + loclen;
5715 	memcpy(__DECONST(char *, dln->dln_path), path, pathlen);
5716 	TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link);
5717 
5718 	return (dln);
5719 }
5720 
5721 bool
5722 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev,
5723     const char *at)
5724 {
5725 	struct sbuf *sb;
5726 	const char *cp;
5727 	char locator[32];
5728 	int error, len;
5729 	struct device_location_node *res;
5730 
5731 	cp = strchr(at, ':');
5732 	if (cp == NULL)
5733 		return (false);
5734 	len = cp - at;
5735 	if (len > sizeof(locator) - 1)	/* Skip too long locator */
5736 		return (false);
5737 	memcpy(locator, at, len);
5738 	locator[len] = '\0';
5739 	cp++;
5740 
5741 	error = 0;
5742 	/* maybe cache this inside device_t and look that up, but not yet */
5743 	res = dev_wired_cache_lookup(dcp, locator);
5744 	if (res == NULL) {
5745 		sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
5746 		    SBUF_INCLUDENUL | SBUF_NOWAIT);
5747 		if (sb != NULL) {
5748 			error = device_get_path(dev, locator, sb);
5749 			if (error == 0) {
5750 				res = dev_wired_cache_add(dcp, locator,
5751 				    sbuf_data(sb));
5752 			}
5753 			sbuf_delete(sb);
5754 		}
5755 	}
5756 	if (error != 0 || res == NULL || res->dln_path == NULL)
5757 		return (false);
5758 
5759 	return (strcmp(res->dln_path, cp) == 0);
5760 }
5761 
5762 /*
5763  * APIs to manage deprecation and obsolescence.
5764  */
5765 static int obsolete_panic = 0;
5766 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
5767     "Panic when obsolete features are used (0 = never, 1 = if obsolete, "
5768     "2 = if deprecated)");
5769 
5770 static void
5771 gone_panic(int major, int running, const char *msg)
5772 {
5773 	switch (obsolete_panic)
5774 	{
5775 	case 0:
5776 		return;
5777 	case 1:
5778 		if (running < major)
5779 			return;
5780 		/* FALLTHROUGH */
5781 	default:
5782 		panic("%s", msg);
5783 	}
5784 }
5785 
5786 void
5787 _gone_in(int major, const char *msg)
5788 {
5789 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
5790 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
5791 		printf("Obsolete code will be removed soon: %s\n", msg);
5792 	else
5793 		printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
5794 		    major, msg);
5795 }
5796 
5797 void
5798 _gone_in_dev(device_t dev, int major, const char *msg)
5799 {
5800 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
5801 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
5802 		device_printf(dev,
5803 		    "Obsolete code will be removed soon: %s\n", msg);
5804 	else
5805 		device_printf(dev,
5806 		    "Deprecated code (to be removed in FreeBSD %d): %s\n",
5807 		    major, msg);
5808 }
5809 
5810 #ifdef DDB
5811 DB_SHOW_COMMAND(device, db_show_device)
5812 {
5813 	device_t dev;
5814 
5815 	if (!have_addr)
5816 		return;
5817 
5818 	dev = (device_t)addr;
5819 
5820 	db_printf("name:    %s\n", device_get_nameunit(dev));
5821 	db_printf("  driver:  %s\n", DRIVERNAME(dev->driver));
5822 	db_printf("  class:   %s\n", DEVCLANAME(dev->devclass));
5823 	db_printf("  addr:    %p\n", dev);
5824 	db_printf("  parent:  %p\n", dev->parent);
5825 	db_printf("  softc:   %p\n", dev->softc);
5826 	db_printf("  ivars:   %p\n", dev->ivars);
5827 }
5828 
5829 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
5830 {
5831 	device_t dev;
5832 
5833 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5834 		db_show_device((db_expr_t)dev, true, count, modif);
5835 	}
5836 }
5837 #endif
5838