1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/conf.h> 34 #include <sys/filio.h> 35 #include <sys/lock.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/mutex.h> 41 #include <sys/poll.h> 42 #include <sys/proc.h> 43 #include <sys/condvar.h> 44 #include <sys/queue.h> 45 #include <machine/bus.h> 46 #include <sys/rman.h> 47 #include <sys/selinfo.h> 48 #include <sys/signalvar.h> 49 #include <sys/sysctl.h> 50 #include <sys/systm.h> 51 #include <sys/uio.h> 52 #include <sys/bus.h> 53 #include <sys/interrupt.h> 54 55 #include <machine/stdarg.h> 56 57 #include <vm/uma.h> 58 59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 61 62 /* 63 * Used to attach drivers to devclasses. 64 */ 65 typedef struct driverlink *driverlink_t; 66 struct driverlink { 67 kobj_class_t driver; 68 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 69 int pass; 70 TAILQ_ENTRY(driverlink) passlink; 71 }; 72 73 /* 74 * Forward declarations 75 */ 76 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 77 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 78 typedef TAILQ_HEAD(device_list, device) device_list_t; 79 80 struct devclass { 81 TAILQ_ENTRY(devclass) link; 82 devclass_t parent; /* parent in devclass hierarchy */ 83 driver_list_t drivers; /* bus devclasses store drivers for bus */ 84 char *name; 85 device_t *devices; /* array of devices indexed by unit */ 86 int maxunit; /* size of devices array */ 87 int flags; 88 #define DC_HAS_CHILDREN 1 89 90 struct sysctl_ctx_list sysctl_ctx; 91 struct sysctl_oid *sysctl_tree; 92 }; 93 94 /** 95 * @brief Implementation of device. 96 */ 97 struct device { 98 /* 99 * A device is a kernel object. The first field must be the 100 * current ops table for the object. 101 */ 102 KOBJ_FIELDS; 103 104 /* 105 * Device hierarchy. 106 */ 107 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 108 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 109 device_t parent; /**< parent of this device */ 110 device_list_t children; /**< list of child devices */ 111 112 /* 113 * Details of this device. 114 */ 115 driver_t *driver; /**< current driver */ 116 devclass_t devclass; /**< current device class */ 117 int unit; /**< current unit number */ 118 char* nameunit; /**< name+unit e.g. foodev0 */ 119 char* desc; /**< driver specific description */ 120 int busy; /**< count of calls to device_busy() */ 121 device_state_t state; /**< current device state */ 122 u_int32_t devflags; /**< api level flags for device_get_flags() */ 123 u_short flags; /**< internal device flags */ 124 #define DF_ENABLED 1 /* device should be probed/attached */ 125 #define DF_FIXEDCLASS 2 /* devclass specified at create time */ 126 #define DF_WILDCARD 4 /* unit was originally wildcard */ 127 #define DF_DESCMALLOCED 8 /* description was malloced */ 128 #define DF_QUIET 16 /* don't print verbose attach message */ 129 #define DF_DONENOMATCH 32 /* don't execute DEVICE_NOMATCH again */ 130 #define DF_EXTERNALSOFTC 64 /* softc not allocated by us */ 131 #define DF_REBID 128 /* Can rebid after attach */ 132 u_char order; /**< order from device_add_child_ordered() */ 133 u_char pad; 134 void *ivars; /**< instance variables */ 135 void *softc; /**< current driver's variables */ 136 137 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 138 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 139 }; 140 141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 143 144 #ifdef BUS_DEBUG 145 146 static int bus_debug = 1; 147 TUNABLE_INT("bus.debug", &bus_debug); 148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0, 149 "Debug bus code"); 150 151 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 152 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 153 #define DRIVERNAME(d) ((d)? d->name : "no driver") 154 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 155 156 /** 157 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 158 * prevent syslog from deleting initial spaces 159 */ 160 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 161 162 static void print_device_short(device_t dev, int indent); 163 static void print_device(device_t dev, int indent); 164 void print_device_tree_short(device_t dev, int indent); 165 void print_device_tree(device_t dev, int indent); 166 static void print_driver_short(driver_t *driver, int indent); 167 static void print_driver(driver_t *driver, int indent); 168 static void print_driver_list(driver_list_t drivers, int indent); 169 static void print_devclass_short(devclass_t dc, int indent); 170 static void print_devclass(devclass_t dc, int indent); 171 void print_devclass_list_short(void); 172 void print_devclass_list(void); 173 174 #else 175 /* Make the compiler ignore the function calls */ 176 #define PDEBUG(a) /* nop */ 177 #define DEVICENAME(d) /* nop */ 178 #define DRIVERNAME(d) /* nop */ 179 #define DEVCLANAME(d) /* nop */ 180 181 #define print_device_short(d,i) /* nop */ 182 #define print_device(d,i) /* nop */ 183 #define print_device_tree_short(d,i) /* nop */ 184 #define print_device_tree(d,i) /* nop */ 185 #define print_driver_short(d,i) /* nop */ 186 #define print_driver(d,i) /* nop */ 187 #define print_driver_list(d,i) /* nop */ 188 #define print_devclass_short(d,i) /* nop */ 189 #define print_devclass(d,i) /* nop */ 190 #define print_devclass_list_short() /* nop */ 191 #define print_devclass_list() /* nop */ 192 #endif 193 194 /* 195 * dev sysctl tree 196 */ 197 198 enum { 199 DEVCLASS_SYSCTL_PARENT, 200 }; 201 202 static int 203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 204 { 205 devclass_t dc = (devclass_t)arg1; 206 const char *value; 207 208 switch (arg2) { 209 case DEVCLASS_SYSCTL_PARENT: 210 value = dc->parent ? dc->parent->name : ""; 211 break; 212 default: 213 return (EINVAL); 214 } 215 return (SYSCTL_OUT(req, value, strlen(value))); 216 } 217 218 static void 219 devclass_sysctl_init(devclass_t dc) 220 { 221 222 if (dc->sysctl_tree != NULL) 223 return; 224 sysctl_ctx_init(&dc->sysctl_ctx); 225 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 226 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 227 CTLFLAG_RD, NULL, ""); 228 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 229 OID_AUTO, "%parent", CTLFLAG_RD, 230 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 231 "parent class"); 232 } 233 234 enum { 235 DEVICE_SYSCTL_DESC, 236 DEVICE_SYSCTL_DRIVER, 237 DEVICE_SYSCTL_LOCATION, 238 DEVICE_SYSCTL_PNPINFO, 239 DEVICE_SYSCTL_PARENT, 240 }; 241 242 static int 243 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 244 { 245 device_t dev = (device_t)arg1; 246 const char *value; 247 char *buf; 248 int error; 249 250 buf = NULL; 251 switch (arg2) { 252 case DEVICE_SYSCTL_DESC: 253 value = dev->desc ? dev->desc : ""; 254 break; 255 case DEVICE_SYSCTL_DRIVER: 256 value = dev->driver ? dev->driver->name : ""; 257 break; 258 case DEVICE_SYSCTL_LOCATION: 259 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 260 bus_child_location_str(dev, buf, 1024); 261 break; 262 case DEVICE_SYSCTL_PNPINFO: 263 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 264 bus_child_pnpinfo_str(dev, buf, 1024); 265 break; 266 case DEVICE_SYSCTL_PARENT: 267 value = dev->parent ? dev->parent->nameunit : ""; 268 break; 269 default: 270 return (EINVAL); 271 } 272 error = SYSCTL_OUT(req, value, strlen(value)); 273 if (buf != NULL) 274 free(buf, M_BUS); 275 return (error); 276 } 277 278 static void 279 device_sysctl_init(device_t dev) 280 { 281 devclass_t dc = dev->devclass; 282 283 if (dev->sysctl_tree != NULL) 284 return; 285 devclass_sysctl_init(dc); 286 sysctl_ctx_init(&dev->sysctl_ctx); 287 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 288 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 289 dev->nameunit + strlen(dc->name), 290 CTLFLAG_RD, NULL, ""); 291 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 292 OID_AUTO, "%desc", CTLFLAG_RD, 293 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 294 "device description"); 295 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 296 OID_AUTO, "%driver", CTLFLAG_RD, 297 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 298 "device driver name"); 299 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 300 OID_AUTO, "%location", CTLFLAG_RD, 301 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 302 "device location relative to parent"); 303 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 304 OID_AUTO, "%pnpinfo", CTLFLAG_RD, 305 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 306 "device identification"); 307 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 308 OID_AUTO, "%parent", CTLFLAG_RD, 309 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 310 "parent device"); 311 } 312 313 static void 314 device_sysctl_update(device_t dev) 315 { 316 devclass_t dc = dev->devclass; 317 318 if (dev->sysctl_tree == NULL) 319 return; 320 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 321 } 322 323 static void 324 device_sysctl_fini(device_t dev) 325 { 326 if (dev->sysctl_tree == NULL) 327 return; 328 sysctl_ctx_free(&dev->sysctl_ctx); 329 dev->sysctl_tree = NULL; 330 } 331 332 /* 333 * /dev/devctl implementation 334 */ 335 336 /* 337 * This design allows only one reader for /dev/devctl. This is not desirable 338 * in the long run, but will get a lot of hair out of this implementation. 339 * Maybe we should make this device a clonable device. 340 * 341 * Also note: we specifically do not attach a device to the device_t tree 342 * to avoid potential chicken and egg problems. One could argue that all 343 * of this belongs to the root node. One could also further argue that the 344 * sysctl interface that we have not might more properly be an ioctl 345 * interface, but at this stage of the game, I'm not inclined to rock that 346 * boat. 347 * 348 * I'm also not sure that the SIGIO support is done correctly or not, as 349 * I copied it from a driver that had SIGIO support that likely hasn't been 350 * tested since 3.4 or 2.2.8! 351 */ 352 353 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 354 static int devctl_disable = 0; 355 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable); 356 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL, 357 0, sysctl_devctl_disable, "I", "devctl disable"); 358 359 static d_open_t devopen; 360 static d_close_t devclose; 361 static d_read_t devread; 362 static d_ioctl_t devioctl; 363 static d_poll_t devpoll; 364 365 static struct cdevsw dev_cdevsw = { 366 .d_version = D_VERSION, 367 .d_flags = D_NEEDGIANT, 368 .d_open = devopen, 369 .d_close = devclose, 370 .d_read = devread, 371 .d_ioctl = devioctl, 372 .d_poll = devpoll, 373 .d_name = "devctl", 374 }; 375 376 struct dev_event_info 377 { 378 char *dei_data; 379 TAILQ_ENTRY(dev_event_info) dei_link; 380 }; 381 382 TAILQ_HEAD(devq, dev_event_info); 383 384 static struct dev_softc 385 { 386 int inuse; 387 int nonblock; 388 struct mtx mtx; 389 struct cv cv; 390 struct selinfo sel; 391 struct devq devq; 392 struct proc *async_proc; 393 } devsoftc; 394 395 static struct cdev *devctl_dev; 396 397 static void 398 devinit(void) 399 { 400 devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, 401 "devctl"); 402 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 403 cv_init(&devsoftc.cv, "dev cv"); 404 TAILQ_INIT(&devsoftc.devq); 405 } 406 407 static int 408 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 409 { 410 if (devsoftc.inuse) 411 return (EBUSY); 412 /* move to init */ 413 devsoftc.inuse = 1; 414 devsoftc.nonblock = 0; 415 devsoftc.async_proc = NULL; 416 return (0); 417 } 418 419 static int 420 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 421 { 422 devsoftc.inuse = 0; 423 mtx_lock(&devsoftc.mtx); 424 cv_broadcast(&devsoftc.cv); 425 mtx_unlock(&devsoftc.mtx); 426 427 return (0); 428 } 429 430 /* 431 * The read channel for this device is used to report changes to 432 * userland in realtime. We are required to free the data as well as 433 * the n1 object because we allocate them separately. Also note that 434 * we return one record at a time. If you try to read this device a 435 * character at a time, you will lose the rest of the data. Listening 436 * programs are expected to cope. 437 */ 438 static int 439 devread(struct cdev *dev, struct uio *uio, int ioflag) 440 { 441 struct dev_event_info *n1; 442 int rv; 443 444 mtx_lock(&devsoftc.mtx); 445 while (TAILQ_EMPTY(&devsoftc.devq)) { 446 if (devsoftc.nonblock) { 447 mtx_unlock(&devsoftc.mtx); 448 return (EAGAIN); 449 } 450 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 451 if (rv) { 452 /* 453 * Need to translate ERESTART to EINTR here? -- jake 454 */ 455 mtx_unlock(&devsoftc.mtx); 456 return (rv); 457 } 458 } 459 n1 = TAILQ_FIRST(&devsoftc.devq); 460 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 461 mtx_unlock(&devsoftc.mtx); 462 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 463 free(n1->dei_data, M_BUS); 464 free(n1, M_BUS); 465 return (rv); 466 } 467 468 static int 469 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 470 { 471 switch (cmd) { 472 473 case FIONBIO: 474 if (*(int*)data) 475 devsoftc.nonblock = 1; 476 else 477 devsoftc.nonblock = 0; 478 return (0); 479 case FIOASYNC: 480 if (*(int*)data) 481 devsoftc.async_proc = td->td_proc; 482 else 483 devsoftc.async_proc = NULL; 484 return (0); 485 486 /* (un)Support for other fcntl() calls. */ 487 case FIOCLEX: 488 case FIONCLEX: 489 case FIONREAD: 490 case FIOSETOWN: 491 case FIOGETOWN: 492 default: 493 break; 494 } 495 return (ENOTTY); 496 } 497 498 static int 499 devpoll(struct cdev *dev, int events, struct thread *td) 500 { 501 int revents = 0; 502 503 mtx_lock(&devsoftc.mtx); 504 if (events & (POLLIN | POLLRDNORM)) { 505 if (!TAILQ_EMPTY(&devsoftc.devq)) 506 revents = events & (POLLIN | POLLRDNORM); 507 else 508 selrecord(td, &devsoftc.sel); 509 } 510 mtx_unlock(&devsoftc.mtx); 511 512 return (revents); 513 } 514 515 /** 516 * @brief Return whether the userland process is running 517 */ 518 boolean_t 519 devctl_process_running(void) 520 { 521 return (devsoftc.inuse == 1); 522 } 523 524 /** 525 * @brief Queue data to be read from the devctl device 526 * 527 * Generic interface to queue data to the devctl device. It is 528 * assumed that @p data is properly formatted. It is further assumed 529 * that @p data is allocated using the M_BUS malloc type. 530 */ 531 void 532 devctl_queue_data(char *data) 533 { 534 struct dev_event_info *n1 = NULL; 535 struct proc *p; 536 537 /* 538 * Do not allow empty strings to be queued, as they 539 * cause devd to exit prematurely. 540 */ 541 if (strlen(data) == 0) 542 return; 543 n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT); 544 if (n1 == NULL) 545 return; 546 n1->dei_data = data; 547 mtx_lock(&devsoftc.mtx); 548 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 549 cv_broadcast(&devsoftc.cv); 550 mtx_unlock(&devsoftc.mtx); 551 selwakeup(&devsoftc.sel); 552 p = devsoftc.async_proc; 553 if (p != NULL) { 554 PROC_LOCK(p); 555 psignal(p, SIGIO); 556 PROC_UNLOCK(p); 557 } 558 } 559 560 /** 561 * @brief Send a 'notification' to userland, using standard ways 562 */ 563 void 564 devctl_notify(const char *system, const char *subsystem, const char *type, 565 const char *data) 566 { 567 int len = 0; 568 char *msg; 569 570 if (system == NULL) 571 return; /* BOGUS! Must specify system. */ 572 if (subsystem == NULL) 573 return; /* BOGUS! Must specify subsystem. */ 574 if (type == NULL) 575 return; /* BOGUS! Must specify type. */ 576 len += strlen(" system=") + strlen(system); 577 len += strlen(" subsystem=") + strlen(subsystem); 578 len += strlen(" type=") + strlen(type); 579 /* add in the data message plus newline. */ 580 if (data != NULL) 581 len += strlen(data); 582 len += 3; /* '!', '\n', and NUL */ 583 msg = malloc(len, M_BUS, M_NOWAIT); 584 if (msg == NULL) 585 return; /* Drop it on the floor */ 586 if (data != NULL) 587 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 588 system, subsystem, type, data); 589 else 590 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 591 system, subsystem, type); 592 devctl_queue_data(msg); 593 } 594 595 /* 596 * Common routine that tries to make sending messages as easy as possible. 597 * We allocate memory for the data, copy strings into that, but do not 598 * free it unless there's an error. The dequeue part of the driver should 599 * free the data. We don't send data when the device is disabled. We do 600 * send data, even when we have no listeners, because we wish to avoid 601 * races relating to startup and restart of listening applications. 602 * 603 * devaddq is designed to string together the type of event, with the 604 * object of that event, plus the plug and play info and location info 605 * for that event. This is likely most useful for devices, but less 606 * useful for other consumers of this interface. Those should use 607 * the devctl_queue_data() interface instead. 608 */ 609 static void 610 devaddq(const char *type, const char *what, device_t dev) 611 { 612 char *data = NULL; 613 char *loc = NULL; 614 char *pnp = NULL; 615 const char *parstr; 616 617 if (devctl_disable) 618 return; 619 data = malloc(1024, M_BUS, M_NOWAIT); 620 if (data == NULL) 621 goto bad; 622 623 /* get the bus specific location of this device */ 624 loc = malloc(1024, M_BUS, M_NOWAIT); 625 if (loc == NULL) 626 goto bad; 627 *loc = '\0'; 628 bus_child_location_str(dev, loc, 1024); 629 630 /* Get the bus specific pnp info of this device */ 631 pnp = malloc(1024, M_BUS, M_NOWAIT); 632 if (pnp == NULL) 633 goto bad; 634 *pnp = '\0'; 635 bus_child_pnpinfo_str(dev, pnp, 1024); 636 637 /* Get the parent of this device, or / if high enough in the tree. */ 638 if (device_get_parent(dev) == NULL) 639 parstr = "."; /* Or '/' ? */ 640 else 641 parstr = device_get_nameunit(device_get_parent(dev)); 642 /* String it all together. */ 643 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 644 parstr); 645 free(loc, M_BUS); 646 free(pnp, M_BUS); 647 devctl_queue_data(data); 648 return; 649 bad: 650 free(pnp, M_BUS); 651 free(loc, M_BUS); 652 free(data, M_BUS); 653 return; 654 } 655 656 /* 657 * A device was added to the tree. We are called just after it successfully 658 * attaches (that is, probe and attach success for this device). No call 659 * is made if a device is merely parented into the tree. See devnomatch 660 * if probe fails. If attach fails, no notification is sent (but maybe 661 * we should have a different message for this). 662 */ 663 static void 664 devadded(device_t dev) 665 { 666 char *pnp = NULL; 667 char *tmp = NULL; 668 669 pnp = malloc(1024, M_BUS, M_NOWAIT); 670 if (pnp == NULL) 671 goto fail; 672 tmp = malloc(1024, M_BUS, M_NOWAIT); 673 if (tmp == NULL) 674 goto fail; 675 *pnp = '\0'; 676 bus_child_pnpinfo_str(dev, pnp, 1024); 677 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 678 devaddq("+", tmp, dev); 679 fail: 680 if (pnp != NULL) 681 free(pnp, M_BUS); 682 if (tmp != NULL) 683 free(tmp, M_BUS); 684 return; 685 } 686 687 /* 688 * A device was removed from the tree. We are called just before this 689 * happens. 690 */ 691 static void 692 devremoved(device_t dev) 693 { 694 char *pnp = NULL; 695 char *tmp = NULL; 696 697 pnp = malloc(1024, M_BUS, M_NOWAIT); 698 if (pnp == NULL) 699 goto fail; 700 tmp = malloc(1024, M_BUS, M_NOWAIT); 701 if (tmp == NULL) 702 goto fail; 703 *pnp = '\0'; 704 bus_child_pnpinfo_str(dev, pnp, 1024); 705 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 706 devaddq("-", tmp, dev); 707 fail: 708 if (pnp != NULL) 709 free(pnp, M_BUS); 710 if (tmp != NULL) 711 free(tmp, M_BUS); 712 return; 713 } 714 715 /* 716 * Called when there's no match for this device. This is only called 717 * the first time that no match happens, so we don't keep getting this 718 * message. Should that prove to be undesirable, we can change it. 719 * This is called when all drivers that can attach to a given bus 720 * decline to accept this device. Other errrors may not be detected. 721 */ 722 static void 723 devnomatch(device_t dev) 724 { 725 devaddq("?", "", dev); 726 } 727 728 static int 729 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 730 { 731 struct dev_event_info *n1; 732 int dis, error; 733 734 dis = devctl_disable; 735 error = sysctl_handle_int(oidp, &dis, 0, req); 736 if (error || !req->newptr) 737 return (error); 738 mtx_lock(&devsoftc.mtx); 739 devctl_disable = dis; 740 if (dis) { 741 while (!TAILQ_EMPTY(&devsoftc.devq)) { 742 n1 = TAILQ_FIRST(&devsoftc.devq); 743 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 744 free(n1->dei_data, M_BUS); 745 free(n1, M_BUS); 746 } 747 } 748 mtx_unlock(&devsoftc.mtx); 749 return (0); 750 } 751 752 /* End of /dev/devctl code */ 753 754 static TAILQ_HEAD(,device) bus_data_devices; 755 static int bus_data_generation = 1; 756 757 static kobj_method_t null_methods[] = { 758 KOBJMETHOD_END 759 }; 760 761 DEFINE_CLASS(null, null_methods, 0); 762 763 /* 764 * Bus pass implementation 765 */ 766 767 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 768 int bus_current_pass = BUS_PASS_ROOT; 769 770 /** 771 * @internal 772 * @brief Register the pass level of a new driver attachment 773 * 774 * Register a new driver attachment's pass level. If no driver 775 * attachment with the same pass level has been added, then @p new 776 * will be added to the global passes list. 777 * 778 * @param new the new driver attachment 779 */ 780 static void 781 driver_register_pass(struct driverlink *new) 782 { 783 struct driverlink *dl; 784 785 /* We only consider pass numbers during boot. */ 786 if (bus_current_pass == BUS_PASS_DEFAULT) 787 return; 788 789 /* 790 * Walk the passes list. If we already know about this pass 791 * then there is nothing to do. If we don't, then insert this 792 * driver link into the list. 793 */ 794 TAILQ_FOREACH(dl, &passes, passlink) { 795 if (dl->pass < new->pass) 796 continue; 797 if (dl->pass == new->pass) 798 return; 799 TAILQ_INSERT_BEFORE(dl, new, passlink); 800 return; 801 } 802 TAILQ_INSERT_TAIL(&passes, new, passlink); 803 } 804 805 /** 806 * @brief Raise the current bus pass 807 * 808 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 809 * method on the root bus to kick off a new device tree scan for each 810 * new pass level that has at least one driver. 811 */ 812 void 813 bus_set_pass(int pass) 814 { 815 struct driverlink *dl; 816 817 if (bus_current_pass > pass) 818 panic("Attempt to lower bus pass level"); 819 820 TAILQ_FOREACH(dl, &passes, passlink) { 821 /* Skip pass values below the current pass level. */ 822 if (dl->pass <= bus_current_pass) 823 continue; 824 825 /* 826 * Bail once we hit a driver with a pass level that is 827 * too high. 828 */ 829 if (dl->pass > pass) 830 break; 831 832 /* 833 * Raise the pass level to the next level and rescan 834 * the tree. 835 */ 836 bus_current_pass = dl->pass; 837 BUS_NEW_PASS(root_bus); 838 } 839 840 /* 841 * If there isn't a driver registered for the requested pass, 842 * then bus_current_pass might still be less than 'pass'. Set 843 * it to 'pass' in that case. 844 */ 845 if (bus_current_pass < pass) 846 bus_current_pass = pass; 847 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 848 } 849 850 /* 851 * Devclass implementation 852 */ 853 854 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 855 856 /** 857 * @internal 858 * @brief Find or create a device class 859 * 860 * If a device class with the name @p classname exists, return it, 861 * otherwise if @p create is non-zero create and return a new device 862 * class. 863 * 864 * If @p parentname is non-NULL, the parent of the devclass is set to 865 * the devclass of that name. 866 * 867 * @param classname the devclass name to find or create 868 * @param parentname the parent devclass name or @c NULL 869 * @param create non-zero to create a devclass 870 */ 871 static devclass_t 872 devclass_find_internal(const char *classname, const char *parentname, 873 int create) 874 { 875 devclass_t dc; 876 877 PDEBUG(("looking for %s", classname)); 878 if (!classname) 879 return (NULL); 880 881 TAILQ_FOREACH(dc, &devclasses, link) { 882 if (!strcmp(dc->name, classname)) 883 break; 884 } 885 886 if (create && !dc) { 887 PDEBUG(("creating %s", classname)); 888 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 889 M_BUS, M_NOWAIT|M_ZERO); 890 if (!dc) 891 return (NULL); 892 dc->parent = NULL; 893 dc->name = (char*) (dc + 1); 894 strcpy(dc->name, classname); 895 TAILQ_INIT(&dc->drivers); 896 TAILQ_INSERT_TAIL(&devclasses, dc, link); 897 898 bus_data_generation_update(); 899 } 900 901 /* 902 * If a parent class is specified, then set that as our parent so 903 * that this devclass will support drivers for the parent class as 904 * well. If the parent class has the same name don't do this though 905 * as it creates a cycle that can trigger an infinite loop in 906 * device_probe_child() if a device exists for which there is no 907 * suitable driver. 908 */ 909 if (parentname && dc && !dc->parent && 910 strcmp(classname, parentname) != 0) { 911 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 912 dc->parent->flags |= DC_HAS_CHILDREN; 913 } 914 915 return (dc); 916 } 917 918 /** 919 * @brief Create a device class 920 * 921 * If a device class with the name @p classname exists, return it, 922 * otherwise create and return a new device class. 923 * 924 * @param classname the devclass name to find or create 925 */ 926 devclass_t 927 devclass_create(const char *classname) 928 { 929 return (devclass_find_internal(classname, NULL, TRUE)); 930 } 931 932 /** 933 * @brief Find a device class 934 * 935 * If a device class with the name @p classname exists, return it, 936 * otherwise return @c NULL. 937 * 938 * @param classname the devclass name to find 939 */ 940 devclass_t 941 devclass_find(const char *classname) 942 { 943 return (devclass_find_internal(classname, NULL, FALSE)); 944 } 945 946 /** 947 * @brief Register that a device driver has been added to a devclass 948 * 949 * Register that a device driver has been added to a devclass. This 950 * is called by devclass_add_driver to accomplish the recursive 951 * notification of all the children classes of dc, as well as dc. 952 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 953 * the devclass. We do a full search here of the devclass list at 954 * each iteration level to save storing children-lists in the devclass 955 * structure. If we ever move beyond a few dozen devices doing this, 956 * we may need to reevaluate... 957 * 958 * @param dc the devclass to edit 959 * @param driver the driver that was just added 960 */ 961 static void 962 devclass_driver_added(devclass_t dc, driver_t *driver) 963 { 964 devclass_t parent; 965 int i; 966 967 /* 968 * Call BUS_DRIVER_ADDED for any existing busses in this class. 969 */ 970 for (i = 0; i < dc->maxunit; i++) 971 if (dc->devices[i]) 972 BUS_DRIVER_ADDED(dc->devices[i], driver); 973 974 /* 975 * Walk through the children classes. Since we only keep a 976 * single parent pointer around, we walk the entire list of 977 * devclasses looking for children. We set the 978 * DC_HAS_CHILDREN flag when a child devclass is created on 979 * the parent, so we only walk the list for those devclasses 980 * that have children. 981 */ 982 if (!(dc->flags & DC_HAS_CHILDREN)) 983 return; 984 parent = dc; 985 TAILQ_FOREACH(dc, &devclasses, link) { 986 if (dc->parent == parent) 987 devclass_driver_added(dc, driver); 988 } 989 } 990 991 /** 992 * @brief Add a device driver to a device class 993 * 994 * Add a device driver to a devclass. This is normally called 995 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 996 * all devices in the devclass will be called to allow them to attempt 997 * to re-probe any unmatched children. 998 * 999 * @param dc the devclass to edit 1000 * @param driver the driver to register 1001 */ 1002 static int 1003 devclass_add_driver(devclass_t dc, driver_t *driver, int pass) 1004 { 1005 driverlink_t dl; 1006 1007 PDEBUG(("%s", DRIVERNAME(driver))); 1008 1009 /* Don't allow invalid pass values. */ 1010 if (pass <= BUS_PASS_ROOT) 1011 return (EINVAL); 1012 1013 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1014 if (!dl) 1015 return (ENOMEM); 1016 1017 /* 1018 * Compile the driver's methods. Also increase the reference count 1019 * so that the class doesn't get freed when the last instance 1020 * goes. This means we can safely use static methods and avoids a 1021 * double-free in devclass_delete_driver. 1022 */ 1023 kobj_class_compile((kobj_class_t) driver); 1024 1025 /* 1026 * Make sure the devclass which the driver is implementing exists. 1027 */ 1028 devclass_find_internal(driver->name, NULL, TRUE); 1029 1030 dl->driver = driver; 1031 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1032 driver->refs++; /* XXX: kobj_mtx */ 1033 dl->pass = pass; 1034 driver_register_pass(dl); 1035 1036 devclass_driver_added(dc, driver); 1037 bus_data_generation_update(); 1038 return (0); 1039 } 1040 1041 /** 1042 * @brief Delete a device driver from a device class 1043 * 1044 * Delete a device driver from a devclass. This is normally called 1045 * automatically by DRIVER_MODULE(). 1046 * 1047 * If the driver is currently attached to any devices, 1048 * devclass_delete_driver() will first attempt to detach from each 1049 * device. If one of the detach calls fails, the driver will not be 1050 * deleted. 1051 * 1052 * @param dc the devclass to edit 1053 * @param driver the driver to unregister 1054 */ 1055 static int 1056 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1057 { 1058 devclass_t dc = devclass_find(driver->name); 1059 driverlink_t dl; 1060 device_t dev; 1061 int i; 1062 int error; 1063 1064 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1065 1066 if (!dc) 1067 return (0); 1068 1069 /* 1070 * Find the link structure in the bus' list of drivers. 1071 */ 1072 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1073 if (dl->driver == driver) 1074 break; 1075 } 1076 1077 if (!dl) { 1078 PDEBUG(("%s not found in %s list", driver->name, 1079 busclass->name)); 1080 return (ENOENT); 1081 } 1082 1083 /* 1084 * Disassociate from any devices. We iterate through all the 1085 * devices in the devclass of the driver and detach any which are 1086 * using the driver and which have a parent in the devclass which 1087 * we are deleting from. 1088 * 1089 * Note that since a driver can be in multiple devclasses, we 1090 * should not detach devices which are not children of devices in 1091 * the affected devclass. 1092 */ 1093 for (i = 0; i < dc->maxunit; i++) { 1094 if (dc->devices[i]) { 1095 dev = dc->devices[i]; 1096 if (dev->driver == driver && dev->parent && 1097 dev->parent->devclass == busclass) { 1098 if ((error = device_detach(dev)) != 0) 1099 return (error); 1100 device_set_driver(dev, NULL); 1101 } 1102 } 1103 } 1104 1105 TAILQ_REMOVE(&busclass->drivers, dl, link); 1106 free(dl, M_BUS); 1107 1108 /* XXX: kobj_mtx */ 1109 driver->refs--; 1110 if (driver->refs == 0) 1111 kobj_class_free((kobj_class_t) driver); 1112 1113 bus_data_generation_update(); 1114 return (0); 1115 } 1116 1117 /** 1118 * @brief Quiesces a set of device drivers from a device class 1119 * 1120 * Quiesce a device driver from a devclass. This is normally called 1121 * automatically by DRIVER_MODULE(). 1122 * 1123 * If the driver is currently attached to any devices, 1124 * devclass_quiesece_driver() will first attempt to quiesce each 1125 * device. 1126 * 1127 * @param dc the devclass to edit 1128 * @param driver the driver to unregister 1129 */ 1130 static int 1131 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1132 { 1133 devclass_t dc = devclass_find(driver->name); 1134 driverlink_t dl; 1135 device_t dev; 1136 int i; 1137 int error; 1138 1139 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1140 1141 if (!dc) 1142 return (0); 1143 1144 /* 1145 * Find the link structure in the bus' list of drivers. 1146 */ 1147 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1148 if (dl->driver == driver) 1149 break; 1150 } 1151 1152 if (!dl) { 1153 PDEBUG(("%s not found in %s list", driver->name, 1154 busclass->name)); 1155 return (ENOENT); 1156 } 1157 1158 /* 1159 * Quiesce all devices. We iterate through all the devices in 1160 * the devclass of the driver and quiesce any which are using 1161 * the driver and which have a parent in the devclass which we 1162 * are quiescing. 1163 * 1164 * Note that since a driver can be in multiple devclasses, we 1165 * should not quiesce devices which are not children of 1166 * devices in the affected devclass. 1167 */ 1168 for (i = 0; i < dc->maxunit; i++) { 1169 if (dc->devices[i]) { 1170 dev = dc->devices[i]; 1171 if (dev->driver == driver && dev->parent && 1172 dev->parent->devclass == busclass) { 1173 if ((error = device_quiesce(dev)) != 0) 1174 return (error); 1175 } 1176 } 1177 } 1178 1179 return (0); 1180 } 1181 1182 /** 1183 * @internal 1184 */ 1185 static driverlink_t 1186 devclass_find_driver_internal(devclass_t dc, const char *classname) 1187 { 1188 driverlink_t dl; 1189 1190 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1191 1192 TAILQ_FOREACH(dl, &dc->drivers, link) { 1193 if (!strcmp(dl->driver->name, classname)) 1194 return (dl); 1195 } 1196 1197 PDEBUG(("not found")); 1198 return (NULL); 1199 } 1200 1201 /** 1202 * @brief Return the name of the devclass 1203 */ 1204 const char * 1205 devclass_get_name(devclass_t dc) 1206 { 1207 return (dc->name); 1208 } 1209 1210 /** 1211 * @brief Find a device given a unit number 1212 * 1213 * @param dc the devclass to search 1214 * @param unit the unit number to search for 1215 * 1216 * @returns the device with the given unit number or @c 1217 * NULL if there is no such device 1218 */ 1219 device_t 1220 devclass_get_device(devclass_t dc, int unit) 1221 { 1222 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1223 return (NULL); 1224 return (dc->devices[unit]); 1225 } 1226 1227 /** 1228 * @brief Find the softc field of a device given a unit number 1229 * 1230 * @param dc the devclass to search 1231 * @param unit the unit number to search for 1232 * 1233 * @returns the softc field of the device with the given 1234 * unit number or @c NULL if there is no such 1235 * device 1236 */ 1237 void * 1238 devclass_get_softc(devclass_t dc, int unit) 1239 { 1240 device_t dev; 1241 1242 dev = devclass_get_device(dc, unit); 1243 if (!dev) 1244 return (NULL); 1245 1246 return (device_get_softc(dev)); 1247 } 1248 1249 /** 1250 * @brief Get a list of devices in the devclass 1251 * 1252 * An array containing a list of all the devices in the given devclass 1253 * is allocated and returned in @p *devlistp. The number of devices 1254 * in the array is returned in @p *devcountp. The caller should free 1255 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1256 * 1257 * @param dc the devclass to examine 1258 * @param devlistp points at location for array pointer return 1259 * value 1260 * @param devcountp points at location for array size return value 1261 * 1262 * @retval 0 success 1263 * @retval ENOMEM the array allocation failed 1264 */ 1265 int 1266 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1267 { 1268 int count, i; 1269 device_t *list; 1270 1271 count = devclass_get_count(dc); 1272 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1273 if (!list) 1274 return (ENOMEM); 1275 1276 count = 0; 1277 for (i = 0; i < dc->maxunit; i++) { 1278 if (dc->devices[i]) { 1279 list[count] = dc->devices[i]; 1280 count++; 1281 } 1282 } 1283 1284 *devlistp = list; 1285 *devcountp = count; 1286 1287 return (0); 1288 } 1289 1290 /** 1291 * @brief Get a list of drivers in the devclass 1292 * 1293 * An array containing a list of pointers to all the drivers in the 1294 * given devclass is allocated and returned in @p *listp. The number 1295 * of drivers in the array is returned in @p *countp. The caller should 1296 * free the array using @c free(p, M_TEMP). 1297 * 1298 * @param dc the devclass to examine 1299 * @param listp gives location for array pointer return value 1300 * @param countp gives location for number of array elements 1301 * return value 1302 * 1303 * @retval 0 success 1304 * @retval ENOMEM the array allocation failed 1305 */ 1306 int 1307 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1308 { 1309 driverlink_t dl; 1310 driver_t **list; 1311 int count; 1312 1313 count = 0; 1314 TAILQ_FOREACH(dl, &dc->drivers, link) 1315 count++; 1316 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1317 if (list == NULL) 1318 return (ENOMEM); 1319 1320 count = 0; 1321 TAILQ_FOREACH(dl, &dc->drivers, link) { 1322 list[count] = dl->driver; 1323 count++; 1324 } 1325 *listp = list; 1326 *countp = count; 1327 1328 return (0); 1329 } 1330 1331 /** 1332 * @brief Get the number of devices in a devclass 1333 * 1334 * @param dc the devclass to examine 1335 */ 1336 int 1337 devclass_get_count(devclass_t dc) 1338 { 1339 int count, i; 1340 1341 count = 0; 1342 for (i = 0; i < dc->maxunit; i++) 1343 if (dc->devices[i]) 1344 count++; 1345 return (count); 1346 } 1347 1348 /** 1349 * @brief Get the maximum unit number used in a devclass 1350 * 1351 * Note that this is one greater than the highest currently-allocated 1352 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1353 * that not even the devclass has been allocated yet. 1354 * 1355 * @param dc the devclass to examine 1356 */ 1357 int 1358 devclass_get_maxunit(devclass_t dc) 1359 { 1360 if (dc == NULL) 1361 return (-1); 1362 return (dc->maxunit); 1363 } 1364 1365 /** 1366 * @brief Find a free unit number in a devclass 1367 * 1368 * This function searches for the first unused unit number greater 1369 * that or equal to @p unit. 1370 * 1371 * @param dc the devclass to examine 1372 * @param unit the first unit number to check 1373 */ 1374 int 1375 devclass_find_free_unit(devclass_t dc, int unit) 1376 { 1377 if (dc == NULL) 1378 return (unit); 1379 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1380 unit++; 1381 return (unit); 1382 } 1383 1384 /** 1385 * @brief Set the parent of a devclass 1386 * 1387 * The parent class is normally initialised automatically by 1388 * DRIVER_MODULE(). 1389 * 1390 * @param dc the devclass to edit 1391 * @param pdc the new parent devclass 1392 */ 1393 void 1394 devclass_set_parent(devclass_t dc, devclass_t pdc) 1395 { 1396 dc->parent = pdc; 1397 } 1398 1399 /** 1400 * @brief Get the parent of a devclass 1401 * 1402 * @param dc the devclass to examine 1403 */ 1404 devclass_t 1405 devclass_get_parent(devclass_t dc) 1406 { 1407 return (dc->parent); 1408 } 1409 1410 struct sysctl_ctx_list * 1411 devclass_get_sysctl_ctx(devclass_t dc) 1412 { 1413 return (&dc->sysctl_ctx); 1414 } 1415 1416 struct sysctl_oid * 1417 devclass_get_sysctl_tree(devclass_t dc) 1418 { 1419 return (dc->sysctl_tree); 1420 } 1421 1422 /** 1423 * @internal 1424 * @brief Allocate a unit number 1425 * 1426 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1427 * will do). The allocated unit number is returned in @p *unitp. 1428 1429 * @param dc the devclass to allocate from 1430 * @param unitp points at the location for the allocated unit 1431 * number 1432 * 1433 * @retval 0 success 1434 * @retval EEXIST the requested unit number is already allocated 1435 * @retval ENOMEM memory allocation failure 1436 */ 1437 static int 1438 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1439 { 1440 const char *s; 1441 int unit = *unitp; 1442 1443 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1444 1445 /* Ask the parent bus if it wants to wire this device. */ 1446 if (unit == -1) 1447 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1448 &unit); 1449 1450 /* If we were given a wired unit number, check for existing device */ 1451 /* XXX imp XXX */ 1452 if (unit != -1) { 1453 if (unit >= 0 && unit < dc->maxunit && 1454 dc->devices[unit] != NULL) { 1455 if (bootverbose) 1456 printf("%s: %s%d already exists; skipping it\n", 1457 dc->name, dc->name, *unitp); 1458 return (EEXIST); 1459 } 1460 } else { 1461 /* Unwired device, find the next available slot for it */ 1462 unit = 0; 1463 for (unit = 0;; unit++) { 1464 /* If there is an "at" hint for a unit then skip it. */ 1465 if (resource_string_value(dc->name, unit, "at", &s) == 1466 0) 1467 continue; 1468 1469 /* If this device slot is already in use, skip it. */ 1470 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1471 continue; 1472 1473 break; 1474 } 1475 } 1476 1477 /* 1478 * We've selected a unit beyond the length of the table, so let's 1479 * extend the table to make room for all units up to and including 1480 * this one. 1481 */ 1482 if (unit >= dc->maxunit) { 1483 device_t *newlist, *oldlist; 1484 int newsize; 1485 1486 oldlist = dc->devices; 1487 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1488 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1489 if (!newlist) 1490 return (ENOMEM); 1491 if (oldlist != NULL) 1492 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1493 bzero(newlist + dc->maxunit, 1494 sizeof(device_t) * (newsize - dc->maxunit)); 1495 dc->devices = newlist; 1496 dc->maxunit = newsize; 1497 if (oldlist != NULL) 1498 free(oldlist, M_BUS); 1499 } 1500 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1501 1502 *unitp = unit; 1503 return (0); 1504 } 1505 1506 /** 1507 * @internal 1508 * @brief Add a device to a devclass 1509 * 1510 * A unit number is allocated for the device (using the device's 1511 * preferred unit number if any) and the device is registered in the 1512 * devclass. This allows the device to be looked up by its unit 1513 * number, e.g. by decoding a dev_t minor number. 1514 * 1515 * @param dc the devclass to add to 1516 * @param dev the device to add 1517 * 1518 * @retval 0 success 1519 * @retval EEXIST the requested unit number is already allocated 1520 * @retval ENOMEM memory allocation failure 1521 */ 1522 static int 1523 devclass_add_device(devclass_t dc, device_t dev) 1524 { 1525 int buflen, error; 1526 1527 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1528 1529 buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit); 1530 if (buflen < 0) 1531 return (ENOMEM); 1532 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1533 if (!dev->nameunit) 1534 return (ENOMEM); 1535 1536 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1537 free(dev->nameunit, M_BUS); 1538 dev->nameunit = NULL; 1539 return (error); 1540 } 1541 dc->devices[dev->unit] = dev; 1542 dev->devclass = dc; 1543 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1544 1545 return (0); 1546 } 1547 1548 /** 1549 * @internal 1550 * @brief Delete a device from a devclass 1551 * 1552 * The device is removed from the devclass's device list and its unit 1553 * number is freed. 1554 1555 * @param dc the devclass to delete from 1556 * @param dev the device to delete 1557 * 1558 * @retval 0 success 1559 */ 1560 static int 1561 devclass_delete_device(devclass_t dc, device_t dev) 1562 { 1563 if (!dc || !dev) 1564 return (0); 1565 1566 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1567 1568 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1569 panic("devclass_delete_device: inconsistent device class"); 1570 dc->devices[dev->unit] = NULL; 1571 if (dev->flags & DF_WILDCARD) 1572 dev->unit = -1; 1573 dev->devclass = NULL; 1574 free(dev->nameunit, M_BUS); 1575 dev->nameunit = NULL; 1576 1577 return (0); 1578 } 1579 1580 /** 1581 * @internal 1582 * @brief Make a new device and add it as a child of @p parent 1583 * 1584 * @param parent the parent of the new device 1585 * @param name the devclass name of the new device or @c NULL 1586 * to leave the devclass unspecified 1587 * @parem unit the unit number of the new device of @c -1 to 1588 * leave the unit number unspecified 1589 * 1590 * @returns the new device 1591 */ 1592 static device_t 1593 make_device(device_t parent, const char *name, int unit) 1594 { 1595 device_t dev; 1596 devclass_t dc; 1597 1598 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1599 1600 if (name) { 1601 dc = devclass_find_internal(name, NULL, TRUE); 1602 if (!dc) { 1603 printf("make_device: can't find device class %s\n", 1604 name); 1605 return (NULL); 1606 } 1607 } else { 1608 dc = NULL; 1609 } 1610 1611 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1612 if (!dev) 1613 return (NULL); 1614 1615 dev->parent = parent; 1616 TAILQ_INIT(&dev->children); 1617 kobj_init((kobj_t) dev, &null_class); 1618 dev->driver = NULL; 1619 dev->devclass = NULL; 1620 dev->unit = unit; 1621 dev->nameunit = NULL; 1622 dev->desc = NULL; 1623 dev->busy = 0; 1624 dev->devflags = 0; 1625 dev->flags = DF_ENABLED; 1626 dev->order = 0; 1627 if (unit == -1) 1628 dev->flags |= DF_WILDCARD; 1629 if (name) { 1630 dev->flags |= DF_FIXEDCLASS; 1631 if (devclass_add_device(dc, dev)) { 1632 kobj_delete((kobj_t) dev, M_BUS); 1633 return (NULL); 1634 } 1635 } 1636 dev->ivars = NULL; 1637 dev->softc = NULL; 1638 1639 dev->state = DS_NOTPRESENT; 1640 1641 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1642 bus_data_generation_update(); 1643 1644 return (dev); 1645 } 1646 1647 /** 1648 * @internal 1649 * @brief Print a description of a device. 1650 */ 1651 static int 1652 device_print_child(device_t dev, device_t child) 1653 { 1654 int retval = 0; 1655 1656 if (device_is_alive(child)) 1657 retval += BUS_PRINT_CHILD(dev, child); 1658 else 1659 retval += device_printf(child, " not found\n"); 1660 1661 return (retval); 1662 } 1663 1664 /** 1665 * @brief Create a new device 1666 * 1667 * This creates a new device and adds it as a child of an existing 1668 * parent device. The new device will be added after the last existing 1669 * child with order zero. 1670 * 1671 * @param dev the device which will be the parent of the 1672 * new child device 1673 * @param name devclass name for new device or @c NULL if not 1674 * specified 1675 * @param unit unit number for new device or @c -1 if not 1676 * specified 1677 * 1678 * @returns the new device 1679 */ 1680 device_t 1681 device_add_child(device_t dev, const char *name, int unit) 1682 { 1683 return (device_add_child_ordered(dev, 0, name, unit)); 1684 } 1685 1686 /** 1687 * @brief Create a new device 1688 * 1689 * This creates a new device and adds it as a child of an existing 1690 * parent device. The new device will be added after the last existing 1691 * child with the same order. 1692 * 1693 * @param dev the device which will be the parent of the 1694 * new child device 1695 * @param order a value which is used to partially sort the 1696 * children of @p dev - devices created using 1697 * lower values of @p order appear first in @p 1698 * dev's list of children 1699 * @param name devclass name for new device or @c NULL if not 1700 * specified 1701 * @param unit unit number for new device or @c -1 if not 1702 * specified 1703 * 1704 * @returns the new device 1705 */ 1706 device_t 1707 device_add_child_ordered(device_t dev, int order, const char *name, int unit) 1708 { 1709 device_t child; 1710 device_t place; 1711 1712 PDEBUG(("%s at %s with order %d as unit %d", 1713 name, DEVICENAME(dev), order, unit)); 1714 1715 child = make_device(dev, name, unit); 1716 if (child == NULL) 1717 return (child); 1718 child->order = order; 1719 1720 TAILQ_FOREACH(place, &dev->children, link) { 1721 if (place->order > order) 1722 break; 1723 } 1724 1725 if (place) { 1726 /* 1727 * The device 'place' is the first device whose order is 1728 * greater than the new child. 1729 */ 1730 TAILQ_INSERT_BEFORE(place, child, link); 1731 } else { 1732 /* 1733 * The new child's order is greater or equal to the order of 1734 * any existing device. Add the child to the tail of the list. 1735 */ 1736 TAILQ_INSERT_TAIL(&dev->children, child, link); 1737 } 1738 1739 bus_data_generation_update(); 1740 return (child); 1741 } 1742 1743 /** 1744 * @brief Delete a device 1745 * 1746 * This function deletes a device along with all of its children. If 1747 * the device currently has a driver attached to it, the device is 1748 * detached first using device_detach(). 1749 * 1750 * @param dev the parent device 1751 * @param child the device to delete 1752 * 1753 * @retval 0 success 1754 * @retval non-zero a unit error code describing the error 1755 */ 1756 int 1757 device_delete_child(device_t dev, device_t child) 1758 { 1759 int error; 1760 device_t grandchild; 1761 1762 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1763 1764 /* remove children first */ 1765 while ( (grandchild = TAILQ_FIRST(&child->children)) ) { 1766 error = device_delete_child(child, grandchild); 1767 if (error) 1768 return (error); 1769 } 1770 1771 if ((error = device_detach(child)) != 0) 1772 return (error); 1773 if (child->devclass) 1774 devclass_delete_device(child->devclass, child); 1775 TAILQ_REMOVE(&dev->children, child, link); 1776 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1777 kobj_delete((kobj_t) child, M_BUS); 1778 1779 bus_data_generation_update(); 1780 return (0); 1781 } 1782 1783 /** 1784 * @brief Find a device given a unit number 1785 * 1786 * This is similar to devclass_get_devices() but only searches for 1787 * devices which have @p dev as a parent. 1788 * 1789 * @param dev the parent device to search 1790 * @param unit the unit number to search for. If the unit is -1, 1791 * return the first child of @p dev which has name 1792 * @p classname (that is, the one with the lowest unit.) 1793 * 1794 * @returns the device with the given unit number or @c 1795 * NULL if there is no such device 1796 */ 1797 device_t 1798 device_find_child(device_t dev, const char *classname, int unit) 1799 { 1800 devclass_t dc; 1801 device_t child; 1802 1803 dc = devclass_find(classname); 1804 if (!dc) 1805 return (NULL); 1806 1807 if (unit != -1) { 1808 child = devclass_get_device(dc, unit); 1809 if (child && child->parent == dev) 1810 return (child); 1811 } else { 1812 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1813 child = devclass_get_device(dc, unit); 1814 if (child && child->parent == dev) 1815 return (child); 1816 } 1817 } 1818 return (NULL); 1819 } 1820 1821 /** 1822 * @internal 1823 */ 1824 static driverlink_t 1825 first_matching_driver(devclass_t dc, device_t dev) 1826 { 1827 if (dev->devclass) 1828 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1829 return (TAILQ_FIRST(&dc->drivers)); 1830 } 1831 1832 /** 1833 * @internal 1834 */ 1835 static driverlink_t 1836 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1837 { 1838 if (dev->devclass) { 1839 driverlink_t dl; 1840 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1841 if (!strcmp(dev->devclass->name, dl->driver->name)) 1842 return (dl); 1843 return (NULL); 1844 } 1845 return (TAILQ_NEXT(last, link)); 1846 } 1847 1848 /** 1849 * @internal 1850 */ 1851 int 1852 device_probe_child(device_t dev, device_t child) 1853 { 1854 devclass_t dc; 1855 driverlink_t best = NULL; 1856 driverlink_t dl; 1857 int result, pri = 0; 1858 int hasclass = (child->devclass != NULL); 1859 1860 GIANT_REQUIRED; 1861 1862 dc = dev->devclass; 1863 if (!dc) 1864 panic("device_probe_child: parent device has no devclass"); 1865 1866 /* 1867 * If the state is already probed, then return. However, don't 1868 * return if we can rebid this object. 1869 */ 1870 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 1871 return (0); 1872 1873 for (; dc; dc = dc->parent) { 1874 for (dl = first_matching_driver(dc, child); 1875 dl; 1876 dl = next_matching_driver(dc, child, dl)) { 1877 1878 /* If this driver's pass is too high, then ignore it. */ 1879 if (dl->pass > bus_current_pass) 1880 continue; 1881 1882 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1883 device_set_driver(child, dl->driver); 1884 if (!hasclass) { 1885 if (device_set_devclass(child, dl->driver->name)) { 1886 printf("driver bug: Unable to set devclass (devname: %s)\n", 1887 (child ? device_get_name(child) : 1888 "no device")); 1889 device_set_driver(child, NULL); 1890 continue; 1891 } 1892 } 1893 1894 /* Fetch any flags for the device before probing. */ 1895 resource_int_value(dl->driver->name, child->unit, 1896 "flags", &child->devflags); 1897 1898 result = DEVICE_PROBE(child); 1899 1900 /* Reset flags and devclass before the next probe. */ 1901 child->devflags = 0; 1902 if (!hasclass) 1903 device_set_devclass(child, NULL); 1904 1905 /* 1906 * If the driver returns SUCCESS, there can be 1907 * no higher match for this device. 1908 */ 1909 if (result == 0) { 1910 best = dl; 1911 pri = 0; 1912 break; 1913 } 1914 1915 /* 1916 * The driver returned an error so it 1917 * certainly doesn't match. 1918 */ 1919 if (result > 0) { 1920 device_set_driver(child, NULL); 1921 continue; 1922 } 1923 1924 /* 1925 * A priority lower than SUCCESS, remember the 1926 * best matching driver. Initialise the value 1927 * of pri for the first match. 1928 */ 1929 if (best == NULL || result > pri) { 1930 /* 1931 * Probes that return BUS_PROBE_NOWILDCARD 1932 * or lower only match when they are set 1933 * in stone by the parent bus. 1934 */ 1935 if (result <= BUS_PROBE_NOWILDCARD && 1936 child->flags & DF_WILDCARD) 1937 continue; 1938 best = dl; 1939 pri = result; 1940 continue; 1941 } 1942 } 1943 /* 1944 * If we have an unambiguous match in this devclass, 1945 * don't look in the parent. 1946 */ 1947 if (best && pri == 0) 1948 break; 1949 } 1950 1951 /* 1952 * If we found a driver, change state and initialise the devclass. 1953 */ 1954 /* XXX What happens if we rebid and got no best? */ 1955 if (best) { 1956 /* 1957 * If this device was atached, and we were asked to 1958 * rescan, and it is a different driver, then we have 1959 * to detach the old driver and reattach this new one. 1960 * Note, we don't have to check for DF_REBID here 1961 * because if the state is > DS_ALIVE, we know it must 1962 * be. 1963 * 1964 * This assumes that all DF_REBID drivers can have 1965 * their probe routine called at any time and that 1966 * they are idempotent as well as completely benign in 1967 * normal operations. 1968 * 1969 * We also have to make sure that the detach 1970 * succeeded, otherwise we fail the operation (or 1971 * maybe it should just fail silently? I'm torn). 1972 */ 1973 if (child->state > DS_ALIVE && best->driver != child->driver) 1974 if ((result = device_detach(dev)) != 0) 1975 return (result); 1976 1977 /* Set the winning driver, devclass, and flags. */ 1978 if (!child->devclass) { 1979 result = device_set_devclass(child, best->driver->name); 1980 if (result != 0) 1981 return (result); 1982 } 1983 device_set_driver(child, best->driver); 1984 resource_int_value(best->driver->name, child->unit, 1985 "flags", &child->devflags); 1986 1987 if (pri < 0) { 1988 /* 1989 * A bit bogus. Call the probe method again to make 1990 * sure that we have the right description. 1991 */ 1992 DEVICE_PROBE(child); 1993 #if 0 1994 child->flags |= DF_REBID; 1995 #endif 1996 } else 1997 child->flags &= ~DF_REBID; 1998 child->state = DS_ALIVE; 1999 2000 bus_data_generation_update(); 2001 return (0); 2002 } 2003 2004 return (ENXIO); 2005 } 2006 2007 /** 2008 * @brief Return the parent of a device 2009 */ 2010 device_t 2011 device_get_parent(device_t dev) 2012 { 2013 return (dev->parent); 2014 } 2015 2016 /** 2017 * @brief Get a list of children of a device 2018 * 2019 * An array containing a list of all the children of the given device 2020 * is allocated and returned in @p *devlistp. The number of devices 2021 * in the array is returned in @p *devcountp. The caller should free 2022 * the array using @c free(p, M_TEMP). 2023 * 2024 * @param dev the device to examine 2025 * @param devlistp points at location for array pointer return 2026 * value 2027 * @param devcountp points at location for array size return value 2028 * 2029 * @retval 0 success 2030 * @retval ENOMEM the array allocation failed 2031 */ 2032 int 2033 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2034 { 2035 int count; 2036 device_t child; 2037 device_t *list; 2038 2039 count = 0; 2040 TAILQ_FOREACH(child, &dev->children, link) { 2041 count++; 2042 } 2043 2044 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2045 if (!list) 2046 return (ENOMEM); 2047 2048 count = 0; 2049 TAILQ_FOREACH(child, &dev->children, link) { 2050 list[count] = child; 2051 count++; 2052 } 2053 2054 *devlistp = list; 2055 *devcountp = count; 2056 2057 return (0); 2058 } 2059 2060 /** 2061 * @brief Return the current driver for the device or @c NULL if there 2062 * is no driver currently attached 2063 */ 2064 driver_t * 2065 device_get_driver(device_t dev) 2066 { 2067 return (dev->driver); 2068 } 2069 2070 /** 2071 * @brief Return the current devclass for the device or @c NULL if 2072 * there is none. 2073 */ 2074 devclass_t 2075 device_get_devclass(device_t dev) 2076 { 2077 return (dev->devclass); 2078 } 2079 2080 /** 2081 * @brief Return the name of the device's devclass or @c NULL if there 2082 * is none. 2083 */ 2084 const char * 2085 device_get_name(device_t dev) 2086 { 2087 if (dev != NULL && dev->devclass) 2088 return (devclass_get_name(dev->devclass)); 2089 return (NULL); 2090 } 2091 2092 /** 2093 * @brief Return a string containing the device's devclass name 2094 * followed by an ascii representation of the device's unit number 2095 * (e.g. @c "foo2"). 2096 */ 2097 const char * 2098 device_get_nameunit(device_t dev) 2099 { 2100 return (dev->nameunit); 2101 } 2102 2103 /** 2104 * @brief Return the device's unit number. 2105 */ 2106 int 2107 device_get_unit(device_t dev) 2108 { 2109 return (dev->unit); 2110 } 2111 2112 /** 2113 * @brief Return the device's description string 2114 */ 2115 const char * 2116 device_get_desc(device_t dev) 2117 { 2118 return (dev->desc); 2119 } 2120 2121 /** 2122 * @brief Return the device's flags 2123 */ 2124 u_int32_t 2125 device_get_flags(device_t dev) 2126 { 2127 return (dev->devflags); 2128 } 2129 2130 struct sysctl_ctx_list * 2131 device_get_sysctl_ctx(device_t dev) 2132 { 2133 return (&dev->sysctl_ctx); 2134 } 2135 2136 struct sysctl_oid * 2137 device_get_sysctl_tree(device_t dev) 2138 { 2139 return (dev->sysctl_tree); 2140 } 2141 2142 /** 2143 * @brief Print the name of the device followed by a colon and a space 2144 * 2145 * @returns the number of characters printed 2146 */ 2147 int 2148 device_print_prettyname(device_t dev) 2149 { 2150 const char *name = device_get_name(dev); 2151 2152 if (name == NULL) 2153 return (printf("unknown: ")); 2154 return (printf("%s%d: ", name, device_get_unit(dev))); 2155 } 2156 2157 /** 2158 * @brief Print the name of the device followed by a colon, a space 2159 * and the result of calling vprintf() with the value of @p fmt and 2160 * the following arguments. 2161 * 2162 * @returns the number of characters printed 2163 */ 2164 int 2165 device_printf(device_t dev, const char * fmt, ...) 2166 { 2167 va_list ap; 2168 int retval; 2169 2170 retval = device_print_prettyname(dev); 2171 va_start(ap, fmt); 2172 retval += vprintf(fmt, ap); 2173 va_end(ap); 2174 return (retval); 2175 } 2176 2177 /** 2178 * @internal 2179 */ 2180 static void 2181 device_set_desc_internal(device_t dev, const char* desc, int copy) 2182 { 2183 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2184 free(dev->desc, M_BUS); 2185 dev->flags &= ~DF_DESCMALLOCED; 2186 dev->desc = NULL; 2187 } 2188 2189 if (copy && desc) { 2190 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2191 if (dev->desc) { 2192 strcpy(dev->desc, desc); 2193 dev->flags |= DF_DESCMALLOCED; 2194 } 2195 } else { 2196 /* Avoid a -Wcast-qual warning */ 2197 dev->desc = (char *)(uintptr_t) desc; 2198 } 2199 2200 bus_data_generation_update(); 2201 } 2202 2203 /** 2204 * @brief Set the device's description 2205 * 2206 * The value of @c desc should be a string constant that will not 2207 * change (at least until the description is changed in a subsequent 2208 * call to device_set_desc() or device_set_desc_copy()). 2209 */ 2210 void 2211 device_set_desc(device_t dev, const char* desc) 2212 { 2213 device_set_desc_internal(dev, desc, FALSE); 2214 } 2215 2216 /** 2217 * @brief Set the device's description 2218 * 2219 * The string pointed to by @c desc is copied. Use this function if 2220 * the device description is generated, (e.g. with sprintf()). 2221 */ 2222 void 2223 device_set_desc_copy(device_t dev, const char* desc) 2224 { 2225 device_set_desc_internal(dev, desc, TRUE); 2226 } 2227 2228 /** 2229 * @brief Set the device's flags 2230 */ 2231 void 2232 device_set_flags(device_t dev, u_int32_t flags) 2233 { 2234 dev->devflags = flags; 2235 } 2236 2237 /** 2238 * @brief Return the device's softc field 2239 * 2240 * The softc is allocated and zeroed when a driver is attached, based 2241 * on the size field of the driver. 2242 */ 2243 void * 2244 device_get_softc(device_t dev) 2245 { 2246 return (dev->softc); 2247 } 2248 2249 /** 2250 * @brief Set the device's softc field 2251 * 2252 * Most drivers do not need to use this since the softc is allocated 2253 * automatically when the driver is attached. 2254 */ 2255 void 2256 device_set_softc(device_t dev, void *softc) 2257 { 2258 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2259 free(dev->softc, M_BUS_SC); 2260 dev->softc = softc; 2261 if (dev->softc) 2262 dev->flags |= DF_EXTERNALSOFTC; 2263 else 2264 dev->flags &= ~DF_EXTERNALSOFTC; 2265 } 2266 2267 /** 2268 * @brief Get the device's ivars field 2269 * 2270 * The ivars field is used by the parent device to store per-device 2271 * state (e.g. the physical location of the device or a list of 2272 * resources). 2273 */ 2274 void * 2275 device_get_ivars(device_t dev) 2276 { 2277 2278 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2279 return (dev->ivars); 2280 } 2281 2282 /** 2283 * @brief Set the device's ivars field 2284 */ 2285 void 2286 device_set_ivars(device_t dev, void * ivars) 2287 { 2288 2289 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2290 dev->ivars = ivars; 2291 } 2292 2293 /** 2294 * @brief Return the device's state 2295 */ 2296 device_state_t 2297 device_get_state(device_t dev) 2298 { 2299 return (dev->state); 2300 } 2301 2302 /** 2303 * @brief Set the DF_ENABLED flag for the device 2304 */ 2305 void 2306 device_enable(device_t dev) 2307 { 2308 dev->flags |= DF_ENABLED; 2309 } 2310 2311 /** 2312 * @brief Clear the DF_ENABLED flag for the device 2313 */ 2314 void 2315 device_disable(device_t dev) 2316 { 2317 dev->flags &= ~DF_ENABLED; 2318 } 2319 2320 /** 2321 * @brief Increment the busy counter for the device 2322 */ 2323 void 2324 device_busy(device_t dev) 2325 { 2326 if (dev->state < DS_ATTACHED) 2327 panic("device_busy: called for unattached device"); 2328 if (dev->busy == 0 && dev->parent) 2329 device_busy(dev->parent); 2330 dev->busy++; 2331 dev->state = DS_BUSY; 2332 } 2333 2334 /** 2335 * @brief Decrement the busy counter for the device 2336 */ 2337 void 2338 device_unbusy(device_t dev) 2339 { 2340 if (dev->state != DS_BUSY) 2341 panic("device_unbusy: called for non-busy device %s", 2342 device_get_nameunit(dev)); 2343 dev->busy--; 2344 if (dev->busy == 0) { 2345 if (dev->parent) 2346 device_unbusy(dev->parent); 2347 dev->state = DS_ATTACHED; 2348 } 2349 } 2350 2351 /** 2352 * @brief Set the DF_QUIET flag for the device 2353 */ 2354 void 2355 device_quiet(device_t dev) 2356 { 2357 dev->flags |= DF_QUIET; 2358 } 2359 2360 /** 2361 * @brief Clear the DF_QUIET flag for the device 2362 */ 2363 void 2364 device_verbose(device_t dev) 2365 { 2366 dev->flags &= ~DF_QUIET; 2367 } 2368 2369 /** 2370 * @brief Return non-zero if the DF_QUIET flag is set on the device 2371 */ 2372 int 2373 device_is_quiet(device_t dev) 2374 { 2375 return ((dev->flags & DF_QUIET) != 0); 2376 } 2377 2378 /** 2379 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2380 */ 2381 int 2382 device_is_enabled(device_t dev) 2383 { 2384 return ((dev->flags & DF_ENABLED) != 0); 2385 } 2386 2387 /** 2388 * @brief Return non-zero if the device was successfully probed 2389 */ 2390 int 2391 device_is_alive(device_t dev) 2392 { 2393 return (dev->state >= DS_ALIVE); 2394 } 2395 2396 /** 2397 * @brief Return non-zero if the device currently has a driver 2398 * attached to it 2399 */ 2400 int 2401 device_is_attached(device_t dev) 2402 { 2403 return (dev->state >= DS_ATTACHED); 2404 } 2405 2406 /** 2407 * @brief Set the devclass of a device 2408 * @see devclass_add_device(). 2409 */ 2410 int 2411 device_set_devclass(device_t dev, const char *classname) 2412 { 2413 devclass_t dc; 2414 int error; 2415 2416 if (!classname) { 2417 if (dev->devclass) 2418 devclass_delete_device(dev->devclass, dev); 2419 return (0); 2420 } 2421 2422 if (dev->devclass) { 2423 printf("device_set_devclass: device class already set\n"); 2424 return (EINVAL); 2425 } 2426 2427 dc = devclass_find_internal(classname, NULL, TRUE); 2428 if (!dc) 2429 return (ENOMEM); 2430 2431 error = devclass_add_device(dc, dev); 2432 2433 bus_data_generation_update(); 2434 return (error); 2435 } 2436 2437 /** 2438 * @brief Set the driver of a device 2439 * 2440 * @retval 0 success 2441 * @retval EBUSY the device already has a driver attached 2442 * @retval ENOMEM a memory allocation failure occurred 2443 */ 2444 int 2445 device_set_driver(device_t dev, driver_t *driver) 2446 { 2447 if (dev->state >= DS_ATTACHED) 2448 return (EBUSY); 2449 2450 if (dev->driver == driver) 2451 return (0); 2452 2453 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2454 free(dev->softc, M_BUS_SC); 2455 dev->softc = NULL; 2456 } 2457 kobj_delete((kobj_t) dev, NULL); 2458 dev->driver = driver; 2459 if (driver) { 2460 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2461 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2462 dev->softc = malloc(driver->size, M_BUS_SC, 2463 M_NOWAIT | M_ZERO); 2464 if (!dev->softc) { 2465 kobj_delete((kobj_t) dev, NULL); 2466 kobj_init((kobj_t) dev, &null_class); 2467 dev->driver = NULL; 2468 return (ENOMEM); 2469 } 2470 } 2471 } else { 2472 kobj_init((kobj_t) dev, &null_class); 2473 } 2474 2475 bus_data_generation_update(); 2476 return (0); 2477 } 2478 2479 /** 2480 * @brief Probe a device, and return this status. 2481 * 2482 * This function is the core of the device autoconfiguration 2483 * system. Its purpose is to select a suitable driver for a device and 2484 * then call that driver to initialise the hardware appropriately. The 2485 * driver is selected by calling the DEVICE_PROBE() method of a set of 2486 * candidate drivers and then choosing the driver which returned the 2487 * best value. This driver is then attached to the device using 2488 * device_attach(). 2489 * 2490 * The set of suitable drivers is taken from the list of drivers in 2491 * the parent device's devclass. If the device was originally created 2492 * with a specific class name (see device_add_child()), only drivers 2493 * with that name are probed, otherwise all drivers in the devclass 2494 * are probed. If no drivers return successful probe values in the 2495 * parent devclass, the search continues in the parent of that 2496 * devclass (see devclass_get_parent()) if any. 2497 * 2498 * @param dev the device to initialise 2499 * 2500 * @retval 0 success 2501 * @retval ENXIO no driver was found 2502 * @retval ENOMEM memory allocation failure 2503 * @retval non-zero some other unix error code 2504 * @retval -1 Device already attached 2505 */ 2506 int 2507 device_probe(device_t dev) 2508 { 2509 int error; 2510 2511 GIANT_REQUIRED; 2512 2513 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2514 return (-1); 2515 2516 if (!(dev->flags & DF_ENABLED)) { 2517 if (bootverbose && device_get_name(dev) != NULL) { 2518 device_print_prettyname(dev); 2519 printf("not probed (disabled)\n"); 2520 } 2521 return (-1); 2522 } 2523 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2524 if (bus_current_pass == BUS_PASS_DEFAULT && 2525 !(dev->flags & DF_DONENOMATCH)) { 2526 BUS_PROBE_NOMATCH(dev->parent, dev); 2527 devnomatch(dev); 2528 dev->flags |= DF_DONENOMATCH; 2529 } 2530 return (error); 2531 } 2532 return (0); 2533 } 2534 2535 /** 2536 * @brief Probe a device and attach a driver if possible 2537 * 2538 * calls device_probe() and attaches if that was successful. 2539 */ 2540 int 2541 device_probe_and_attach(device_t dev) 2542 { 2543 int error; 2544 2545 GIANT_REQUIRED; 2546 2547 error = device_probe(dev); 2548 if (error == -1) 2549 return (0); 2550 else if (error != 0) 2551 return (error); 2552 return (device_attach(dev)); 2553 } 2554 2555 /** 2556 * @brief Attach a device driver to a device 2557 * 2558 * This function is a wrapper around the DEVICE_ATTACH() driver 2559 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2560 * device's sysctl tree, optionally prints a description of the device 2561 * and queues a notification event for user-based device management 2562 * services. 2563 * 2564 * Normally this function is only called internally from 2565 * device_probe_and_attach(). 2566 * 2567 * @param dev the device to initialise 2568 * 2569 * @retval 0 success 2570 * @retval ENXIO no driver was found 2571 * @retval ENOMEM memory allocation failure 2572 * @retval non-zero some other unix error code 2573 */ 2574 int 2575 device_attach(device_t dev) 2576 { 2577 int error; 2578 2579 device_sysctl_init(dev); 2580 if (!device_is_quiet(dev)) 2581 device_print_child(dev->parent, dev); 2582 if ((error = DEVICE_ATTACH(dev)) != 0) { 2583 printf("device_attach: %s%d attach returned %d\n", 2584 dev->driver->name, dev->unit, error); 2585 /* Unset the class; set in device_probe_child */ 2586 if (dev->devclass == NULL) 2587 device_set_devclass(dev, NULL); 2588 device_set_driver(dev, NULL); 2589 device_sysctl_fini(dev); 2590 dev->state = DS_NOTPRESENT; 2591 return (error); 2592 } 2593 device_sysctl_update(dev); 2594 dev->state = DS_ATTACHED; 2595 devadded(dev); 2596 return (0); 2597 } 2598 2599 /** 2600 * @brief Detach a driver from a device 2601 * 2602 * This function is a wrapper around the DEVICE_DETACH() driver 2603 * method. If the call to DEVICE_DETACH() succeeds, it calls 2604 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2605 * notification event for user-based device management services and 2606 * cleans up the device's sysctl tree. 2607 * 2608 * @param dev the device to un-initialise 2609 * 2610 * @retval 0 success 2611 * @retval ENXIO no driver was found 2612 * @retval ENOMEM memory allocation failure 2613 * @retval non-zero some other unix error code 2614 */ 2615 int 2616 device_detach(device_t dev) 2617 { 2618 int error; 2619 2620 GIANT_REQUIRED; 2621 2622 PDEBUG(("%s", DEVICENAME(dev))); 2623 if (dev->state == DS_BUSY) 2624 return (EBUSY); 2625 if (dev->state != DS_ATTACHED) 2626 return (0); 2627 2628 if ((error = DEVICE_DETACH(dev)) != 0) 2629 return (error); 2630 devremoved(dev); 2631 if (!device_is_quiet(dev)) 2632 device_printf(dev, "detached\n"); 2633 if (dev->parent) 2634 BUS_CHILD_DETACHED(dev->parent, dev); 2635 2636 if (!(dev->flags & DF_FIXEDCLASS)) 2637 devclass_delete_device(dev->devclass, dev); 2638 2639 dev->state = DS_NOTPRESENT; 2640 device_set_driver(dev, NULL); 2641 device_set_desc(dev, NULL); 2642 device_sysctl_fini(dev); 2643 2644 return (0); 2645 } 2646 2647 /** 2648 * @brief Tells a driver to quiesce itself. 2649 * 2650 * This function is a wrapper around the DEVICE_QUIESCE() driver 2651 * method. If the call to DEVICE_QUIESCE() succeeds. 2652 * 2653 * @param dev the device to quiesce 2654 * 2655 * @retval 0 success 2656 * @retval ENXIO no driver was found 2657 * @retval ENOMEM memory allocation failure 2658 * @retval non-zero some other unix error code 2659 */ 2660 int 2661 device_quiesce(device_t dev) 2662 { 2663 2664 PDEBUG(("%s", DEVICENAME(dev))); 2665 if (dev->state == DS_BUSY) 2666 return (EBUSY); 2667 if (dev->state != DS_ATTACHED) 2668 return (0); 2669 2670 return (DEVICE_QUIESCE(dev)); 2671 } 2672 2673 /** 2674 * @brief Notify a device of system shutdown 2675 * 2676 * This function calls the DEVICE_SHUTDOWN() driver method if the 2677 * device currently has an attached driver. 2678 * 2679 * @returns the value returned by DEVICE_SHUTDOWN() 2680 */ 2681 int 2682 device_shutdown(device_t dev) 2683 { 2684 if (dev->state < DS_ATTACHED) 2685 return (0); 2686 return (DEVICE_SHUTDOWN(dev)); 2687 } 2688 2689 /** 2690 * @brief Set the unit number of a device 2691 * 2692 * This function can be used to override the unit number used for a 2693 * device (e.g. to wire a device to a pre-configured unit number). 2694 */ 2695 int 2696 device_set_unit(device_t dev, int unit) 2697 { 2698 devclass_t dc; 2699 int err; 2700 2701 dc = device_get_devclass(dev); 2702 if (unit < dc->maxunit && dc->devices[unit]) 2703 return (EBUSY); 2704 err = devclass_delete_device(dc, dev); 2705 if (err) 2706 return (err); 2707 dev->unit = unit; 2708 err = devclass_add_device(dc, dev); 2709 if (err) 2710 return (err); 2711 2712 bus_data_generation_update(); 2713 return (0); 2714 } 2715 2716 /*======================================*/ 2717 /* 2718 * Some useful method implementations to make life easier for bus drivers. 2719 */ 2720 2721 /** 2722 * @brief Initialise a resource list. 2723 * 2724 * @param rl the resource list to initialise 2725 */ 2726 void 2727 resource_list_init(struct resource_list *rl) 2728 { 2729 STAILQ_INIT(rl); 2730 } 2731 2732 /** 2733 * @brief Reclaim memory used by a resource list. 2734 * 2735 * This function frees the memory for all resource entries on the list 2736 * (if any). 2737 * 2738 * @param rl the resource list to free 2739 */ 2740 void 2741 resource_list_free(struct resource_list *rl) 2742 { 2743 struct resource_list_entry *rle; 2744 2745 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2746 if (rle->res) 2747 panic("resource_list_free: resource entry is busy"); 2748 STAILQ_REMOVE_HEAD(rl, link); 2749 free(rle, M_BUS); 2750 } 2751 } 2752 2753 /** 2754 * @brief Add a resource entry. 2755 * 2756 * This function adds a resource entry using the given @p type, @p 2757 * start, @p end and @p count values. A rid value is chosen by 2758 * searching sequentially for the first unused rid starting at zero. 2759 * 2760 * @param rl the resource list to edit 2761 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2762 * @param start the start address of the resource 2763 * @param end the end address of the resource 2764 * @param count XXX end-start+1 2765 */ 2766 int 2767 resource_list_add_next(struct resource_list *rl, int type, u_long start, 2768 u_long end, u_long count) 2769 { 2770 int rid; 2771 2772 rid = 0; 2773 while (resource_list_find(rl, type, rid) != NULL) 2774 rid++; 2775 resource_list_add(rl, type, rid, start, end, count); 2776 return (rid); 2777 } 2778 2779 /** 2780 * @brief Add or modify a resource entry. 2781 * 2782 * If an existing entry exists with the same type and rid, it will be 2783 * modified using the given values of @p start, @p end and @p 2784 * count. If no entry exists, a new one will be created using the 2785 * given values. The resource list entry that matches is then returned. 2786 * 2787 * @param rl the resource list to edit 2788 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2789 * @param rid the resource identifier 2790 * @param start the start address of the resource 2791 * @param end the end address of the resource 2792 * @param count XXX end-start+1 2793 */ 2794 struct resource_list_entry * 2795 resource_list_add(struct resource_list *rl, int type, int rid, 2796 u_long start, u_long end, u_long count) 2797 { 2798 struct resource_list_entry *rle; 2799 2800 rle = resource_list_find(rl, type, rid); 2801 if (!rle) { 2802 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2803 M_NOWAIT); 2804 if (!rle) 2805 panic("resource_list_add: can't record entry"); 2806 STAILQ_INSERT_TAIL(rl, rle, link); 2807 rle->type = type; 2808 rle->rid = rid; 2809 rle->res = NULL; 2810 } 2811 2812 if (rle->res) 2813 panic("resource_list_add: resource entry is busy"); 2814 2815 rle->start = start; 2816 rle->end = end; 2817 rle->count = count; 2818 return (rle); 2819 } 2820 2821 /** 2822 * @brief Find a resource entry by type and rid. 2823 * 2824 * @param rl the resource list to search 2825 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2826 * @param rid the resource identifier 2827 * 2828 * @returns the resource entry pointer or NULL if there is no such 2829 * entry. 2830 */ 2831 struct resource_list_entry * 2832 resource_list_find(struct resource_list *rl, int type, int rid) 2833 { 2834 struct resource_list_entry *rle; 2835 2836 STAILQ_FOREACH(rle, rl, link) { 2837 if (rle->type == type && rle->rid == rid) 2838 return (rle); 2839 } 2840 return (NULL); 2841 } 2842 2843 /** 2844 * @brief Delete a resource entry. 2845 * 2846 * @param rl the resource list to edit 2847 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2848 * @param rid the resource identifier 2849 */ 2850 void 2851 resource_list_delete(struct resource_list *rl, int type, int rid) 2852 { 2853 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2854 2855 if (rle) { 2856 if (rle->res != NULL) 2857 panic("resource_list_delete: resource has not been released"); 2858 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 2859 free(rle, M_BUS); 2860 } 2861 } 2862 2863 /** 2864 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 2865 * 2866 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 2867 * and passing the allocation up to the parent of @p bus. This assumes 2868 * that the first entry of @c device_get_ivars(child) is a struct 2869 * resource_list. This also handles 'passthrough' allocations where a 2870 * child is a remote descendant of bus by passing the allocation up to 2871 * the parent of bus. 2872 * 2873 * Typically, a bus driver would store a list of child resources 2874 * somewhere in the child device's ivars (see device_get_ivars()) and 2875 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 2876 * then call resource_list_alloc() to perform the allocation. 2877 * 2878 * @param rl the resource list to allocate from 2879 * @param bus the parent device of @p child 2880 * @param child the device which is requesting an allocation 2881 * @param type the type of resource to allocate 2882 * @param rid a pointer to the resource identifier 2883 * @param start hint at the start of the resource range - pass 2884 * @c 0UL for any start address 2885 * @param end hint at the end of the resource range - pass 2886 * @c ~0UL for any end address 2887 * @param count hint at the size of range required - pass @c 1 2888 * for any size 2889 * @param flags any extra flags to control the resource 2890 * allocation - see @c RF_XXX flags in 2891 * <sys/rman.h> for details 2892 * 2893 * @returns the resource which was allocated or @c NULL if no 2894 * resource could be allocated 2895 */ 2896 struct resource * 2897 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 2898 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 2899 { 2900 struct resource_list_entry *rle = NULL; 2901 int passthrough = (device_get_parent(child) != bus); 2902 int isdefault = (start == 0UL && end == ~0UL); 2903 2904 if (passthrough) { 2905 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2906 type, rid, start, end, count, flags)); 2907 } 2908 2909 rle = resource_list_find(rl, type, *rid); 2910 2911 if (!rle) 2912 return (NULL); /* no resource of that type/rid */ 2913 2914 if (rle->res) 2915 panic("resource_list_alloc: resource entry is busy"); 2916 2917 if (isdefault) { 2918 start = rle->start; 2919 count = ulmax(count, rle->count); 2920 end = ulmax(rle->end, start + count - 1); 2921 } 2922 2923 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2924 type, rid, start, end, count, flags); 2925 2926 /* 2927 * Record the new range. 2928 */ 2929 if (rle->res) { 2930 rle->start = rman_get_start(rle->res); 2931 rle->end = rman_get_end(rle->res); 2932 rle->count = count; 2933 } 2934 2935 return (rle->res); 2936 } 2937 2938 /** 2939 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 2940 * 2941 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 2942 * used with resource_list_alloc(). 2943 * 2944 * @param rl the resource list which was allocated from 2945 * @param bus the parent device of @p child 2946 * @param child the device which is requesting a release 2947 * @param type the type of resource to allocate 2948 * @param rid the resource identifier 2949 * @param res the resource to release 2950 * 2951 * @retval 0 success 2952 * @retval non-zero a standard unix error code indicating what 2953 * error condition prevented the operation 2954 */ 2955 int 2956 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 2957 int type, int rid, struct resource *res) 2958 { 2959 struct resource_list_entry *rle = NULL; 2960 int passthrough = (device_get_parent(child) != bus); 2961 int error; 2962 2963 if (passthrough) { 2964 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2965 type, rid, res)); 2966 } 2967 2968 rle = resource_list_find(rl, type, rid); 2969 2970 if (!rle) 2971 panic("resource_list_release: can't find resource"); 2972 if (!rle->res) 2973 panic("resource_list_release: resource entry is not busy"); 2974 2975 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2976 type, rid, res); 2977 if (error) 2978 return (error); 2979 2980 rle->res = NULL; 2981 return (0); 2982 } 2983 2984 /** 2985 * @brief Print a description of resources in a resource list 2986 * 2987 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 2988 * The name is printed if at least one resource of the given type is available. 2989 * The format is used to print resource start and end. 2990 * 2991 * @param rl the resource list to print 2992 * @param name the name of @p type, e.g. @c "memory" 2993 * @param type type type of resource entry to print 2994 * @param format printf(9) format string to print resource 2995 * start and end values 2996 * 2997 * @returns the number of characters printed 2998 */ 2999 int 3000 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3001 const char *format) 3002 { 3003 struct resource_list_entry *rle; 3004 int printed, retval; 3005 3006 printed = 0; 3007 retval = 0; 3008 /* Yes, this is kinda cheating */ 3009 STAILQ_FOREACH(rle, rl, link) { 3010 if (rle->type == type) { 3011 if (printed == 0) 3012 retval += printf(" %s ", name); 3013 else 3014 retval += printf(","); 3015 printed++; 3016 retval += printf(format, rle->start); 3017 if (rle->count > 1) { 3018 retval += printf("-"); 3019 retval += printf(format, rle->start + 3020 rle->count - 1); 3021 } 3022 } 3023 } 3024 return (retval); 3025 } 3026 3027 /** 3028 * @brief Releases all the resources in a list. 3029 * 3030 * @param rl The resource list to purge. 3031 * 3032 * @returns nothing 3033 */ 3034 void 3035 resource_list_purge(struct resource_list *rl) 3036 { 3037 struct resource_list_entry *rle; 3038 3039 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3040 if (rle->res) 3041 bus_release_resource(rman_get_device(rle->res), 3042 rle->type, rle->rid, rle->res); 3043 STAILQ_REMOVE_HEAD(rl, link); 3044 free(rle, M_BUS); 3045 } 3046 } 3047 3048 device_t 3049 bus_generic_add_child(device_t dev, int order, const char *name, int unit) 3050 { 3051 3052 return (device_add_child_ordered(dev, order, name, unit)); 3053 } 3054 3055 /** 3056 * @brief Helper function for implementing DEVICE_PROBE() 3057 * 3058 * This function can be used to help implement the DEVICE_PROBE() for 3059 * a bus (i.e. a device which has other devices attached to it). It 3060 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3061 * devclass. 3062 */ 3063 int 3064 bus_generic_probe(device_t dev) 3065 { 3066 devclass_t dc = dev->devclass; 3067 driverlink_t dl; 3068 3069 TAILQ_FOREACH(dl, &dc->drivers, link) { 3070 /* 3071 * If this driver's pass is too high, then ignore it. 3072 * For most drivers in the default pass, this will 3073 * never be true. For early-pass drivers they will 3074 * only call the identify routines of eligible drivers 3075 * when this routine is called. Drivers for later 3076 * passes should have their identify routines called 3077 * on early-pass busses during BUS_NEW_PASS(). 3078 */ 3079 if (dl->pass > bus_current_pass) 3080 continue; 3081 DEVICE_IDENTIFY(dl->driver, dev); 3082 } 3083 3084 return (0); 3085 } 3086 3087 /** 3088 * @brief Helper function for implementing DEVICE_ATTACH() 3089 * 3090 * This function can be used to help implement the DEVICE_ATTACH() for 3091 * a bus. It calls device_probe_and_attach() for each of the device's 3092 * children. 3093 */ 3094 int 3095 bus_generic_attach(device_t dev) 3096 { 3097 device_t child; 3098 3099 TAILQ_FOREACH(child, &dev->children, link) { 3100 device_probe_and_attach(child); 3101 } 3102 3103 return (0); 3104 } 3105 3106 /** 3107 * @brief Helper function for implementing DEVICE_DETACH() 3108 * 3109 * This function can be used to help implement the DEVICE_DETACH() for 3110 * a bus. It calls device_detach() for each of the device's 3111 * children. 3112 */ 3113 int 3114 bus_generic_detach(device_t dev) 3115 { 3116 device_t child; 3117 int error; 3118 3119 if (dev->state != DS_ATTACHED) 3120 return (EBUSY); 3121 3122 TAILQ_FOREACH(child, &dev->children, link) { 3123 if ((error = device_detach(child)) != 0) 3124 return (error); 3125 } 3126 3127 return (0); 3128 } 3129 3130 /** 3131 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3132 * 3133 * This function can be used to help implement the DEVICE_SHUTDOWN() 3134 * for a bus. It calls device_shutdown() for each of the device's 3135 * children. 3136 */ 3137 int 3138 bus_generic_shutdown(device_t dev) 3139 { 3140 device_t child; 3141 3142 TAILQ_FOREACH(child, &dev->children, link) { 3143 device_shutdown(child); 3144 } 3145 3146 return (0); 3147 } 3148 3149 /** 3150 * @brief Helper function for implementing DEVICE_SUSPEND() 3151 * 3152 * This function can be used to help implement the DEVICE_SUSPEND() 3153 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3154 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3155 * operation is aborted and any devices which were suspended are 3156 * resumed immediately by calling their DEVICE_RESUME() methods. 3157 */ 3158 int 3159 bus_generic_suspend(device_t dev) 3160 { 3161 int error; 3162 device_t child, child2; 3163 3164 TAILQ_FOREACH(child, &dev->children, link) { 3165 error = DEVICE_SUSPEND(child); 3166 if (error) { 3167 for (child2 = TAILQ_FIRST(&dev->children); 3168 child2 && child2 != child; 3169 child2 = TAILQ_NEXT(child2, link)) 3170 DEVICE_RESUME(child2); 3171 return (error); 3172 } 3173 } 3174 return (0); 3175 } 3176 3177 /** 3178 * @brief Helper function for implementing DEVICE_RESUME() 3179 * 3180 * This function can be used to help implement the DEVICE_RESUME() for 3181 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3182 */ 3183 int 3184 bus_generic_resume(device_t dev) 3185 { 3186 device_t child; 3187 3188 TAILQ_FOREACH(child, &dev->children, link) { 3189 DEVICE_RESUME(child); 3190 /* if resume fails, there's nothing we can usefully do... */ 3191 } 3192 return (0); 3193 } 3194 3195 /** 3196 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3197 * 3198 * This function prints the first part of the ascii representation of 3199 * @p child, including its name, unit and description (if any - see 3200 * device_set_desc()). 3201 * 3202 * @returns the number of characters printed 3203 */ 3204 int 3205 bus_print_child_header(device_t dev, device_t child) 3206 { 3207 int retval = 0; 3208 3209 if (device_get_desc(child)) { 3210 retval += device_printf(child, "<%s>", device_get_desc(child)); 3211 } else { 3212 retval += printf("%s", device_get_nameunit(child)); 3213 } 3214 3215 return (retval); 3216 } 3217 3218 /** 3219 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3220 * 3221 * This function prints the last part of the ascii representation of 3222 * @p child, which consists of the string @c " on " followed by the 3223 * name and unit of the @p dev. 3224 * 3225 * @returns the number of characters printed 3226 */ 3227 int 3228 bus_print_child_footer(device_t dev, device_t child) 3229 { 3230 return (printf(" on %s\n", device_get_nameunit(dev))); 3231 } 3232 3233 /** 3234 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3235 * 3236 * This function simply calls bus_print_child_header() followed by 3237 * bus_print_child_footer(). 3238 * 3239 * @returns the number of characters printed 3240 */ 3241 int 3242 bus_generic_print_child(device_t dev, device_t child) 3243 { 3244 int retval = 0; 3245 3246 retval += bus_print_child_header(dev, child); 3247 retval += bus_print_child_footer(dev, child); 3248 3249 return (retval); 3250 } 3251 3252 /** 3253 * @brief Stub function for implementing BUS_READ_IVAR(). 3254 * 3255 * @returns ENOENT 3256 */ 3257 int 3258 bus_generic_read_ivar(device_t dev, device_t child, int index, 3259 uintptr_t * result) 3260 { 3261 return (ENOENT); 3262 } 3263 3264 /** 3265 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3266 * 3267 * @returns ENOENT 3268 */ 3269 int 3270 bus_generic_write_ivar(device_t dev, device_t child, int index, 3271 uintptr_t value) 3272 { 3273 return (ENOENT); 3274 } 3275 3276 /** 3277 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3278 * 3279 * @returns NULL 3280 */ 3281 struct resource_list * 3282 bus_generic_get_resource_list(device_t dev, device_t child) 3283 { 3284 return (NULL); 3285 } 3286 3287 /** 3288 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3289 * 3290 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3291 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3292 * and then calls device_probe_and_attach() for each unattached child. 3293 */ 3294 void 3295 bus_generic_driver_added(device_t dev, driver_t *driver) 3296 { 3297 device_t child; 3298 3299 DEVICE_IDENTIFY(driver, dev); 3300 TAILQ_FOREACH(child, &dev->children, link) { 3301 if (child->state == DS_NOTPRESENT || 3302 (child->flags & DF_REBID)) 3303 device_probe_and_attach(child); 3304 } 3305 } 3306 3307 /** 3308 * @brief Helper function for implementing BUS_NEW_PASS(). 3309 * 3310 * This implementing of BUS_NEW_PASS() first calls the identify 3311 * routines for any drivers that probe at the current pass. Then it 3312 * walks the list of devices for this bus. If a device is already 3313 * attached, then it calls BUS_NEW_PASS() on that device. If the 3314 * device is not already attached, it attempts to attach a driver to 3315 * it. 3316 */ 3317 void 3318 bus_generic_new_pass(device_t dev) 3319 { 3320 driverlink_t dl; 3321 devclass_t dc; 3322 device_t child; 3323 3324 dc = dev->devclass; 3325 TAILQ_FOREACH(dl, &dc->drivers, link) { 3326 if (dl->pass == bus_current_pass) 3327 DEVICE_IDENTIFY(dl->driver, dev); 3328 } 3329 TAILQ_FOREACH(child, &dev->children, link) { 3330 if (child->state >= DS_ATTACHED) 3331 BUS_NEW_PASS(child); 3332 else if (child->state == DS_NOTPRESENT) 3333 device_probe_and_attach(child); 3334 } 3335 } 3336 3337 /** 3338 * @brief Helper function for implementing BUS_SETUP_INTR(). 3339 * 3340 * This simple implementation of BUS_SETUP_INTR() simply calls the 3341 * BUS_SETUP_INTR() method of the parent of @p dev. 3342 */ 3343 int 3344 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3345 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3346 void **cookiep) 3347 { 3348 /* Propagate up the bus hierarchy until someone handles it. */ 3349 if (dev->parent) 3350 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3351 filter, intr, arg, cookiep)); 3352 return (EINVAL); 3353 } 3354 3355 /** 3356 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3357 * 3358 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3359 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3360 */ 3361 int 3362 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3363 void *cookie) 3364 { 3365 /* Propagate up the bus hierarchy until someone handles it. */ 3366 if (dev->parent) 3367 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3368 return (EINVAL); 3369 } 3370 3371 /** 3372 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3373 * 3374 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3375 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3376 */ 3377 struct resource * 3378 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3379 u_long start, u_long end, u_long count, u_int flags) 3380 { 3381 /* Propagate up the bus hierarchy until someone handles it. */ 3382 if (dev->parent) 3383 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3384 start, end, count, flags)); 3385 return (NULL); 3386 } 3387 3388 /** 3389 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3390 * 3391 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3392 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3393 */ 3394 int 3395 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3396 struct resource *r) 3397 { 3398 /* Propagate up the bus hierarchy until someone handles it. */ 3399 if (dev->parent) 3400 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3401 r)); 3402 return (EINVAL); 3403 } 3404 3405 /** 3406 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3407 * 3408 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3409 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3410 */ 3411 int 3412 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3413 struct resource *r) 3414 { 3415 /* Propagate up the bus hierarchy until someone handles it. */ 3416 if (dev->parent) 3417 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3418 r)); 3419 return (EINVAL); 3420 } 3421 3422 /** 3423 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3424 * 3425 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3426 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3427 */ 3428 int 3429 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3430 int rid, struct resource *r) 3431 { 3432 /* Propagate up the bus hierarchy until someone handles it. */ 3433 if (dev->parent) 3434 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3435 r)); 3436 return (EINVAL); 3437 } 3438 3439 /** 3440 * @brief Helper function for implementing BUS_BIND_INTR(). 3441 * 3442 * This simple implementation of BUS_BIND_INTR() simply calls the 3443 * BUS_BIND_INTR() method of the parent of @p dev. 3444 */ 3445 int 3446 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 3447 int cpu) 3448 { 3449 3450 /* Propagate up the bus hierarchy until someone handles it. */ 3451 if (dev->parent) 3452 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 3453 return (EINVAL); 3454 } 3455 3456 /** 3457 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3458 * 3459 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3460 * BUS_CONFIG_INTR() method of the parent of @p dev. 3461 */ 3462 int 3463 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3464 enum intr_polarity pol) 3465 { 3466 3467 /* Propagate up the bus hierarchy until someone handles it. */ 3468 if (dev->parent) 3469 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3470 return (EINVAL); 3471 } 3472 3473 /** 3474 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 3475 * 3476 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 3477 * BUS_GET_DMA_TAG() method of the parent of @p dev. 3478 */ 3479 bus_dma_tag_t 3480 bus_generic_get_dma_tag(device_t dev, device_t child) 3481 { 3482 3483 /* Propagate up the bus hierarchy until someone handles it. */ 3484 if (dev->parent != NULL) 3485 return (BUS_GET_DMA_TAG(dev->parent, child)); 3486 return (NULL); 3487 } 3488 3489 /** 3490 * @brief Helper function for implementing BUS_GET_RESOURCE(). 3491 * 3492 * This implementation of BUS_GET_RESOURCE() uses the 3493 * resource_list_find() function to do most of the work. It calls 3494 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3495 * search. 3496 */ 3497 int 3498 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 3499 u_long *startp, u_long *countp) 3500 { 3501 struct resource_list * rl = NULL; 3502 struct resource_list_entry * rle = NULL; 3503 3504 rl = BUS_GET_RESOURCE_LIST(dev, child); 3505 if (!rl) 3506 return (EINVAL); 3507 3508 rle = resource_list_find(rl, type, rid); 3509 if (!rle) 3510 return (ENOENT); 3511 3512 if (startp) 3513 *startp = rle->start; 3514 if (countp) 3515 *countp = rle->count; 3516 3517 return (0); 3518 } 3519 3520 /** 3521 * @brief Helper function for implementing BUS_SET_RESOURCE(). 3522 * 3523 * This implementation of BUS_SET_RESOURCE() uses the 3524 * resource_list_add() function to do most of the work. It calls 3525 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3526 * edit. 3527 */ 3528 int 3529 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 3530 u_long start, u_long count) 3531 { 3532 struct resource_list * rl = NULL; 3533 3534 rl = BUS_GET_RESOURCE_LIST(dev, child); 3535 if (!rl) 3536 return (EINVAL); 3537 3538 resource_list_add(rl, type, rid, start, (start + count - 1), count); 3539 3540 return (0); 3541 } 3542 3543 /** 3544 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 3545 * 3546 * This implementation of BUS_DELETE_RESOURCE() uses the 3547 * resource_list_delete() function to do most of the work. It calls 3548 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3549 * edit. 3550 */ 3551 void 3552 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 3553 { 3554 struct resource_list * rl = NULL; 3555 3556 rl = BUS_GET_RESOURCE_LIST(dev, child); 3557 if (!rl) 3558 return; 3559 3560 resource_list_delete(rl, type, rid); 3561 3562 return; 3563 } 3564 3565 /** 3566 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3567 * 3568 * This implementation of BUS_RELEASE_RESOURCE() uses the 3569 * resource_list_release() function to do most of the work. It calls 3570 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3571 */ 3572 int 3573 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 3574 int rid, struct resource *r) 3575 { 3576 struct resource_list * rl = NULL; 3577 3578 rl = BUS_GET_RESOURCE_LIST(dev, child); 3579 if (!rl) 3580 return (EINVAL); 3581 3582 return (resource_list_release(rl, dev, child, type, rid, r)); 3583 } 3584 3585 /** 3586 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3587 * 3588 * This implementation of BUS_ALLOC_RESOURCE() uses the 3589 * resource_list_alloc() function to do most of the work. It calls 3590 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3591 */ 3592 struct resource * 3593 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 3594 int *rid, u_long start, u_long end, u_long count, u_int flags) 3595 { 3596 struct resource_list * rl = NULL; 3597 3598 rl = BUS_GET_RESOURCE_LIST(dev, child); 3599 if (!rl) 3600 return (NULL); 3601 3602 return (resource_list_alloc(rl, dev, child, type, rid, 3603 start, end, count, flags)); 3604 } 3605 3606 /** 3607 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 3608 * 3609 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 3610 * BUS_CHILD_PRESENT() method of the parent of @p dev. 3611 */ 3612 int 3613 bus_generic_child_present(device_t dev, device_t child) 3614 { 3615 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 3616 } 3617 3618 /* 3619 * Some convenience functions to make it easier for drivers to use the 3620 * resource-management functions. All these really do is hide the 3621 * indirection through the parent's method table, making for slightly 3622 * less-wordy code. In the future, it might make sense for this code 3623 * to maintain some sort of a list of resources allocated by each device. 3624 */ 3625 3626 int 3627 bus_alloc_resources(device_t dev, struct resource_spec *rs, 3628 struct resource **res) 3629 { 3630 int i; 3631 3632 for (i = 0; rs[i].type != -1; i++) 3633 res[i] = NULL; 3634 for (i = 0; rs[i].type != -1; i++) { 3635 res[i] = bus_alloc_resource_any(dev, 3636 rs[i].type, &rs[i].rid, rs[i].flags); 3637 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 3638 bus_release_resources(dev, rs, res); 3639 return (ENXIO); 3640 } 3641 } 3642 return (0); 3643 } 3644 3645 void 3646 bus_release_resources(device_t dev, const struct resource_spec *rs, 3647 struct resource **res) 3648 { 3649 int i; 3650 3651 for (i = 0; rs[i].type != -1; i++) 3652 if (res[i] != NULL) { 3653 bus_release_resource( 3654 dev, rs[i].type, rs[i].rid, res[i]); 3655 res[i] = NULL; 3656 } 3657 } 3658 3659 /** 3660 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 3661 * 3662 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 3663 * parent of @p dev. 3664 */ 3665 struct resource * 3666 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 3667 u_long count, u_int flags) 3668 { 3669 if (dev->parent == NULL) 3670 return (NULL); 3671 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 3672 count, flags)); 3673 } 3674 3675 /** 3676 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 3677 * 3678 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 3679 * parent of @p dev. 3680 */ 3681 int 3682 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 3683 { 3684 if (dev->parent == NULL) 3685 return (EINVAL); 3686 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3687 } 3688 3689 /** 3690 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 3691 * 3692 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 3693 * parent of @p dev. 3694 */ 3695 int 3696 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 3697 { 3698 if (dev->parent == NULL) 3699 return (EINVAL); 3700 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3701 } 3702 3703 /** 3704 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 3705 * 3706 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 3707 * parent of @p dev. 3708 */ 3709 int 3710 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 3711 { 3712 if (dev->parent == NULL) 3713 return (EINVAL); 3714 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 3715 } 3716 3717 /** 3718 * @brief Wrapper function for BUS_SETUP_INTR(). 3719 * 3720 * This function simply calls the BUS_SETUP_INTR() method of the 3721 * parent of @p dev. 3722 */ 3723 int 3724 bus_setup_intr(device_t dev, struct resource *r, int flags, 3725 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 3726 { 3727 int error; 3728 3729 if (dev->parent == NULL) 3730 return (EINVAL); 3731 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 3732 arg, cookiep); 3733 if (error != 0) 3734 return (error); 3735 if (handler != NULL && !(flags & INTR_MPSAFE)) 3736 device_printf(dev, "[GIANT-LOCKED]\n"); 3737 if (bootverbose && (flags & INTR_MPSAFE)) 3738 device_printf(dev, "[MPSAFE]\n"); 3739 if (filter != NULL) { 3740 if (handler == NULL) 3741 device_printf(dev, "[FILTER]\n"); 3742 else 3743 device_printf(dev, "[FILTER+ITHREAD]\n"); 3744 } else 3745 device_printf(dev, "[ITHREAD]\n"); 3746 return (0); 3747 } 3748 3749 /** 3750 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 3751 * 3752 * This function simply calls the BUS_TEARDOWN_INTR() method of the 3753 * parent of @p dev. 3754 */ 3755 int 3756 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 3757 { 3758 if (dev->parent == NULL) 3759 return (EINVAL); 3760 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 3761 } 3762 3763 /** 3764 * @brief Wrapper function for BUS_BIND_INTR(). 3765 * 3766 * This function simply calls the BUS_BIND_INTR() method of the 3767 * parent of @p dev. 3768 */ 3769 int 3770 bus_bind_intr(device_t dev, struct resource *r, int cpu) 3771 { 3772 if (dev->parent == NULL) 3773 return (EINVAL); 3774 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 3775 } 3776 3777 /** 3778 * @brief Wrapper function for BUS_SET_RESOURCE(). 3779 * 3780 * This function simply calls the BUS_SET_RESOURCE() method of the 3781 * parent of @p dev. 3782 */ 3783 int 3784 bus_set_resource(device_t dev, int type, int rid, 3785 u_long start, u_long count) 3786 { 3787 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 3788 start, count)); 3789 } 3790 3791 /** 3792 * @brief Wrapper function for BUS_GET_RESOURCE(). 3793 * 3794 * This function simply calls the BUS_GET_RESOURCE() method of the 3795 * parent of @p dev. 3796 */ 3797 int 3798 bus_get_resource(device_t dev, int type, int rid, 3799 u_long *startp, u_long *countp) 3800 { 3801 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3802 startp, countp)); 3803 } 3804 3805 /** 3806 * @brief Wrapper function for BUS_GET_RESOURCE(). 3807 * 3808 * This function simply calls the BUS_GET_RESOURCE() method of the 3809 * parent of @p dev and returns the start value. 3810 */ 3811 u_long 3812 bus_get_resource_start(device_t dev, int type, int rid) 3813 { 3814 u_long start, count; 3815 int error; 3816 3817 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3818 &start, &count); 3819 if (error) 3820 return (0); 3821 return (start); 3822 } 3823 3824 /** 3825 * @brief Wrapper function for BUS_GET_RESOURCE(). 3826 * 3827 * This function simply calls the BUS_GET_RESOURCE() method of the 3828 * parent of @p dev and returns the count value. 3829 */ 3830 u_long 3831 bus_get_resource_count(device_t dev, int type, int rid) 3832 { 3833 u_long start, count; 3834 int error; 3835 3836 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3837 &start, &count); 3838 if (error) 3839 return (0); 3840 return (count); 3841 } 3842 3843 /** 3844 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 3845 * 3846 * This function simply calls the BUS_DELETE_RESOURCE() method of the 3847 * parent of @p dev. 3848 */ 3849 void 3850 bus_delete_resource(device_t dev, int type, int rid) 3851 { 3852 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 3853 } 3854 3855 /** 3856 * @brief Wrapper function for BUS_CHILD_PRESENT(). 3857 * 3858 * This function simply calls the BUS_CHILD_PRESENT() method of the 3859 * parent of @p dev. 3860 */ 3861 int 3862 bus_child_present(device_t child) 3863 { 3864 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 3865 } 3866 3867 /** 3868 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 3869 * 3870 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 3871 * parent of @p dev. 3872 */ 3873 int 3874 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 3875 { 3876 device_t parent; 3877 3878 parent = device_get_parent(child); 3879 if (parent == NULL) { 3880 *buf = '\0'; 3881 return (0); 3882 } 3883 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 3884 } 3885 3886 /** 3887 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 3888 * 3889 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 3890 * parent of @p dev. 3891 */ 3892 int 3893 bus_child_location_str(device_t child, char *buf, size_t buflen) 3894 { 3895 device_t parent; 3896 3897 parent = device_get_parent(child); 3898 if (parent == NULL) { 3899 *buf = '\0'; 3900 return (0); 3901 } 3902 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 3903 } 3904 3905 /** 3906 * @brief Wrapper function for BUS_GET_DMA_TAG(). 3907 * 3908 * This function simply calls the BUS_GET_DMA_TAG() method of the 3909 * parent of @p dev. 3910 */ 3911 bus_dma_tag_t 3912 bus_get_dma_tag(device_t dev) 3913 { 3914 device_t parent; 3915 3916 parent = device_get_parent(dev); 3917 if (parent == NULL) 3918 return (NULL); 3919 return (BUS_GET_DMA_TAG(parent, dev)); 3920 } 3921 3922 /* Resume all devices and then notify userland that we're up again. */ 3923 static int 3924 root_resume(device_t dev) 3925 { 3926 int error; 3927 3928 error = bus_generic_resume(dev); 3929 if (error == 0) 3930 devctl_notify("kern", "power", "resume", NULL); 3931 return (error); 3932 } 3933 3934 static int 3935 root_print_child(device_t dev, device_t child) 3936 { 3937 int retval = 0; 3938 3939 retval += bus_print_child_header(dev, child); 3940 retval += printf("\n"); 3941 3942 return (retval); 3943 } 3944 3945 static int 3946 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 3947 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 3948 { 3949 /* 3950 * If an interrupt mapping gets to here something bad has happened. 3951 */ 3952 panic("root_setup_intr"); 3953 } 3954 3955 /* 3956 * If we get here, assume that the device is permanant and really is 3957 * present in the system. Removable bus drivers are expected to intercept 3958 * this call long before it gets here. We return -1 so that drivers that 3959 * really care can check vs -1 or some ERRNO returned higher in the food 3960 * chain. 3961 */ 3962 static int 3963 root_child_present(device_t dev, device_t child) 3964 { 3965 return (-1); 3966 } 3967 3968 static kobj_method_t root_methods[] = { 3969 /* Device interface */ 3970 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 3971 KOBJMETHOD(device_suspend, bus_generic_suspend), 3972 KOBJMETHOD(device_resume, root_resume), 3973 3974 /* Bus interface */ 3975 KOBJMETHOD(bus_print_child, root_print_child), 3976 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 3977 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 3978 KOBJMETHOD(bus_setup_intr, root_setup_intr), 3979 KOBJMETHOD(bus_child_present, root_child_present), 3980 3981 KOBJMETHOD_END 3982 }; 3983 3984 static driver_t root_driver = { 3985 "root", 3986 root_methods, 3987 1, /* no softc */ 3988 }; 3989 3990 device_t root_bus; 3991 devclass_t root_devclass; 3992 3993 static int 3994 root_bus_module_handler(module_t mod, int what, void* arg) 3995 { 3996 switch (what) { 3997 case MOD_LOAD: 3998 TAILQ_INIT(&bus_data_devices); 3999 kobj_class_compile((kobj_class_t) &root_driver); 4000 root_bus = make_device(NULL, "root", 0); 4001 root_bus->desc = "System root bus"; 4002 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4003 root_bus->driver = &root_driver; 4004 root_bus->state = DS_ATTACHED; 4005 root_devclass = devclass_find_internal("root", NULL, FALSE); 4006 devinit(); 4007 return (0); 4008 4009 case MOD_SHUTDOWN: 4010 device_shutdown(root_bus); 4011 return (0); 4012 default: 4013 return (EOPNOTSUPP); 4014 } 4015 4016 return (0); 4017 } 4018 4019 static moduledata_t root_bus_mod = { 4020 "rootbus", 4021 root_bus_module_handler, 4022 NULL 4023 }; 4024 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4025 4026 /** 4027 * @brief Automatically configure devices 4028 * 4029 * This function begins the autoconfiguration process by calling 4030 * device_probe_and_attach() for each child of the @c root0 device. 4031 */ 4032 void 4033 root_bus_configure(void) 4034 { 4035 4036 PDEBUG((".")); 4037 4038 /* Eventually this will be split up, but this is sufficient for now. */ 4039 bus_set_pass(BUS_PASS_DEFAULT); 4040 } 4041 4042 /** 4043 * @brief Module handler for registering device drivers 4044 * 4045 * This module handler is used to automatically register device 4046 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4047 * devclass_add_driver() for the driver described by the 4048 * driver_module_data structure pointed to by @p arg 4049 */ 4050 int 4051 driver_module_handler(module_t mod, int what, void *arg) 4052 { 4053 struct driver_module_data *dmd; 4054 devclass_t bus_devclass; 4055 kobj_class_t driver; 4056 int error, pass; 4057 4058 dmd = (struct driver_module_data *)arg; 4059 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4060 error = 0; 4061 4062 switch (what) { 4063 case MOD_LOAD: 4064 if (dmd->dmd_chainevh) 4065 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4066 4067 pass = dmd->dmd_pass; 4068 driver = dmd->dmd_driver; 4069 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4070 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4071 error = devclass_add_driver(bus_devclass, driver, pass); 4072 if (error) 4073 break; 4074 4075 /* 4076 * If the driver has any base classes, make the 4077 * devclass inherit from the devclass of the driver's 4078 * first base class. This will allow the system to 4079 * search for drivers in both devclasses for children 4080 * of a device using this driver. 4081 */ 4082 if (driver->baseclasses) { 4083 const char *parentname; 4084 parentname = driver->baseclasses[0]->name; 4085 *dmd->dmd_devclass = 4086 devclass_find_internal(driver->name, 4087 parentname, TRUE); 4088 } else { 4089 *dmd->dmd_devclass = 4090 devclass_find_internal(driver->name, NULL, TRUE); 4091 } 4092 break; 4093 4094 case MOD_UNLOAD: 4095 PDEBUG(("Unloading module: driver %s from bus %s", 4096 DRIVERNAME(dmd->dmd_driver), 4097 dmd->dmd_busname)); 4098 error = devclass_delete_driver(bus_devclass, 4099 dmd->dmd_driver); 4100 4101 if (!error && dmd->dmd_chainevh) 4102 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4103 break; 4104 case MOD_QUIESCE: 4105 PDEBUG(("Quiesce module: driver %s from bus %s", 4106 DRIVERNAME(dmd->dmd_driver), 4107 dmd->dmd_busname)); 4108 error = devclass_quiesce_driver(bus_devclass, 4109 dmd->dmd_driver); 4110 4111 if (!error && dmd->dmd_chainevh) 4112 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4113 break; 4114 default: 4115 error = EOPNOTSUPP; 4116 break; 4117 } 4118 4119 return (error); 4120 } 4121 4122 /** 4123 * @brief Enumerate all hinted devices for this bus. 4124 * 4125 * Walks through the hints for this bus and calls the bus_hinted_child 4126 * routine for each one it fines. It searches first for the specific 4127 * bus that's being probed for hinted children (eg isa0), and then for 4128 * generic children (eg isa). 4129 * 4130 * @param dev bus device to enumerate 4131 */ 4132 void 4133 bus_enumerate_hinted_children(device_t bus) 4134 { 4135 int i; 4136 const char *dname, *busname; 4137 int dunit; 4138 4139 /* 4140 * enumerate all devices on the specific bus 4141 */ 4142 busname = device_get_nameunit(bus); 4143 i = 0; 4144 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4145 BUS_HINTED_CHILD(bus, dname, dunit); 4146 4147 /* 4148 * and all the generic ones. 4149 */ 4150 busname = device_get_name(bus); 4151 i = 0; 4152 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4153 BUS_HINTED_CHILD(bus, dname, dunit); 4154 } 4155 4156 #ifdef BUS_DEBUG 4157 4158 /* the _short versions avoid iteration by not calling anything that prints 4159 * more than oneliners. I love oneliners. 4160 */ 4161 4162 static void 4163 print_device_short(device_t dev, int indent) 4164 { 4165 if (!dev) 4166 return; 4167 4168 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4169 dev->unit, dev->desc, 4170 (dev->parent? "":"no "), 4171 (TAILQ_EMPTY(&dev->children)? "no ":""), 4172 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4173 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4174 (dev->flags&DF_WILDCARD? "wildcard,":""), 4175 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4176 (dev->flags&DF_REBID? "rebiddable,":""), 4177 (dev->ivars? "":"no "), 4178 (dev->softc? "":"no "), 4179 dev->busy)); 4180 } 4181 4182 static void 4183 print_device(device_t dev, int indent) 4184 { 4185 if (!dev) 4186 return; 4187 4188 print_device_short(dev, indent); 4189 4190 indentprintf(("Parent:\n")); 4191 print_device_short(dev->parent, indent+1); 4192 indentprintf(("Driver:\n")); 4193 print_driver_short(dev->driver, indent+1); 4194 indentprintf(("Devclass:\n")); 4195 print_devclass_short(dev->devclass, indent+1); 4196 } 4197 4198 void 4199 print_device_tree_short(device_t dev, int indent) 4200 /* print the device and all its children (indented) */ 4201 { 4202 device_t child; 4203 4204 if (!dev) 4205 return; 4206 4207 print_device_short(dev, indent); 4208 4209 TAILQ_FOREACH(child, &dev->children, link) { 4210 print_device_tree_short(child, indent+1); 4211 } 4212 } 4213 4214 void 4215 print_device_tree(device_t dev, int indent) 4216 /* print the device and all its children (indented) */ 4217 { 4218 device_t child; 4219 4220 if (!dev) 4221 return; 4222 4223 print_device(dev, indent); 4224 4225 TAILQ_FOREACH(child, &dev->children, link) { 4226 print_device_tree(child, indent+1); 4227 } 4228 } 4229 4230 static void 4231 print_driver_short(driver_t *driver, int indent) 4232 { 4233 if (!driver) 4234 return; 4235 4236 indentprintf(("driver %s: softc size = %zd\n", 4237 driver->name, driver->size)); 4238 } 4239 4240 static void 4241 print_driver(driver_t *driver, int indent) 4242 { 4243 if (!driver) 4244 return; 4245 4246 print_driver_short(driver, indent); 4247 } 4248 4249 4250 static void 4251 print_driver_list(driver_list_t drivers, int indent) 4252 { 4253 driverlink_t driver; 4254 4255 TAILQ_FOREACH(driver, &drivers, link) { 4256 print_driver(driver->driver, indent); 4257 } 4258 } 4259 4260 static void 4261 print_devclass_short(devclass_t dc, int indent) 4262 { 4263 if ( !dc ) 4264 return; 4265 4266 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4267 } 4268 4269 static void 4270 print_devclass(devclass_t dc, int indent) 4271 { 4272 int i; 4273 4274 if ( !dc ) 4275 return; 4276 4277 print_devclass_short(dc, indent); 4278 indentprintf(("Drivers:\n")); 4279 print_driver_list(dc->drivers, indent+1); 4280 4281 indentprintf(("Devices:\n")); 4282 for (i = 0; i < dc->maxunit; i++) 4283 if (dc->devices[i]) 4284 print_device(dc->devices[i], indent+1); 4285 } 4286 4287 void 4288 print_devclass_list_short(void) 4289 { 4290 devclass_t dc; 4291 4292 printf("Short listing of devclasses, drivers & devices:\n"); 4293 TAILQ_FOREACH(dc, &devclasses, link) { 4294 print_devclass_short(dc, 0); 4295 } 4296 } 4297 4298 void 4299 print_devclass_list(void) 4300 { 4301 devclass_t dc; 4302 4303 printf("Full listing of devclasses, drivers & devices:\n"); 4304 TAILQ_FOREACH(dc, &devclasses, link) { 4305 print_devclass(dc, 0); 4306 } 4307 } 4308 4309 #endif 4310 4311 /* 4312 * User-space access to the device tree. 4313 * 4314 * We implement a small set of nodes: 4315 * 4316 * hw.bus Single integer read method to obtain the 4317 * current generation count. 4318 * hw.bus.devices Reads the entire device tree in flat space. 4319 * hw.bus.rman Resource manager interface 4320 * 4321 * We might like to add the ability to scan devclasses and/or drivers to 4322 * determine what else is currently loaded/available. 4323 */ 4324 4325 static int 4326 sysctl_bus(SYSCTL_HANDLER_ARGS) 4327 { 4328 struct u_businfo ubus; 4329 4330 ubus.ub_version = BUS_USER_VERSION; 4331 ubus.ub_generation = bus_data_generation; 4332 4333 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4334 } 4335 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4336 "bus-related data"); 4337 4338 static int 4339 sysctl_devices(SYSCTL_HANDLER_ARGS) 4340 { 4341 int *name = (int *)arg1; 4342 u_int namelen = arg2; 4343 int index; 4344 struct device *dev; 4345 struct u_device udev; /* XXX this is a bit big */ 4346 int error; 4347 4348 if (namelen != 2) 4349 return (EINVAL); 4350 4351 if (bus_data_generation_check(name[0])) 4352 return (EINVAL); 4353 4354 index = name[1]; 4355 4356 /* 4357 * Scan the list of devices, looking for the requested index. 4358 */ 4359 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 4360 if (index-- == 0) 4361 break; 4362 } 4363 if (dev == NULL) 4364 return (ENOENT); 4365 4366 /* 4367 * Populate the return array. 4368 */ 4369 bzero(&udev, sizeof(udev)); 4370 udev.dv_handle = (uintptr_t)dev; 4371 udev.dv_parent = (uintptr_t)dev->parent; 4372 if (dev->nameunit != NULL) 4373 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 4374 if (dev->desc != NULL) 4375 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 4376 if (dev->driver != NULL && dev->driver->name != NULL) 4377 strlcpy(udev.dv_drivername, dev->driver->name, 4378 sizeof(udev.dv_drivername)); 4379 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 4380 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 4381 udev.dv_devflags = dev->devflags; 4382 udev.dv_flags = dev->flags; 4383 udev.dv_state = dev->state; 4384 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 4385 return (error); 4386 } 4387 4388 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 4389 "system device tree"); 4390 4391 int 4392 bus_data_generation_check(int generation) 4393 { 4394 if (generation != bus_data_generation) 4395 return (1); 4396 4397 /* XXX generate optimised lists here? */ 4398 return (0); 4399 } 4400 4401 void 4402 bus_data_generation_update(void) 4403 { 4404 bus_data_generation++; 4405 } 4406 4407 int 4408 bus_free_resource(device_t dev, int type, struct resource *r) 4409 { 4410 if (r == NULL) 4411 return (0); 4412 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 4413 } 4414