1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/conf.h> 34 #include <sys/filio.h> 35 #include <sys/lock.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/mutex.h> 41 #include <sys/poll.h> 42 #include <sys/proc.h> 43 #include <sys/condvar.h> 44 #include <sys/queue.h> 45 #include <machine/bus.h> 46 #include <sys/rman.h> 47 #include <sys/selinfo.h> 48 #include <sys/signalvar.h> 49 #include <sys/sysctl.h> 50 #include <sys/systm.h> 51 #include <sys/uio.h> 52 #include <sys/bus.h> 53 #include <sys/interrupt.h> 54 55 #include <machine/stdarg.h> 56 57 #include <vm/uma.h> 58 59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 61 62 /* 63 * Used to attach drivers to devclasses. 64 */ 65 typedef struct driverlink *driverlink_t; 66 struct driverlink { 67 kobj_class_t driver; 68 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 69 }; 70 71 /* 72 * Forward declarations 73 */ 74 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 75 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 76 typedef TAILQ_HEAD(device_list, device) device_list_t; 77 78 struct devclass { 79 TAILQ_ENTRY(devclass) link; 80 devclass_t parent; /* parent in devclass hierarchy */ 81 driver_list_t drivers; /* bus devclasses store drivers for bus */ 82 char *name; 83 device_t *devices; /* array of devices indexed by unit */ 84 int maxunit; /* size of devices array */ 85 86 struct sysctl_ctx_list sysctl_ctx; 87 struct sysctl_oid *sysctl_tree; 88 }; 89 90 /** 91 * @brief Implementation of device. 92 */ 93 struct device { 94 /* 95 * A device is a kernel object. The first field must be the 96 * current ops table for the object. 97 */ 98 KOBJ_FIELDS; 99 100 /* 101 * Device hierarchy. 102 */ 103 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 104 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 105 device_t parent; /**< parent of this device */ 106 device_list_t children; /**< list of child devices */ 107 108 /* 109 * Details of this device. 110 */ 111 driver_t *driver; /**< current driver */ 112 devclass_t devclass; /**< current device class */ 113 int unit; /**< current unit number */ 114 char* nameunit; /**< name+unit e.g. foodev0 */ 115 char* desc; /**< driver specific description */ 116 int busy; /**< count of calls to device_busy() */ 117 device_state_t state; /**< current device state */ 118 u_int32_t devflags; /**< api level flags for device_get_flags() */ 119 u_short flags; /**< internal device flags */ 120 #define DF_ENABLED 1 /* device should be probed/attached */ 121 #define DF_FIXEDCLASS 2 /* devclass specified at create time */ 122 #define DF_WILDCARD 4 /* unit was originally wildcard */ 123 #define DF_DESCMALLOCED 8 /* description was malloced */ 124 #define DF_QUIET 16 /* don't print verbose attach message */ 125 #define DF_DONENOMATCH 32 /* don't execute DEVICE_NOMATCH again */ 126 #define DF_EXTERNALSOFTC 64 /* softc not allocated by us */ 127 #define DF_REBID 128 /* Can rebid after attach */ 128 u_char order; /**< order from device_add_child_ordered() */ 129 u_char pad; 130 void *ivars; /**< instance variables */ 131 void *softc; /**< current driver's variables */ 132 133 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 134 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 135 }; 136 137 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 138 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 139 140 #ifdef BUS_DEBUG 141 142 static int bus_debug = 1; 143 TUNABLE_INT("bus.debug", &bus_debug); 144 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0, 145 "Debug bus code"); 146 147 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 148 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 149 #define DRIVERNAME(d) ((d)? d->name : "no driver") 150 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 151 152 /** 153 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 154 * prevent syslog from deleting initial spaces 155 */ 156 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 157 158 static void print_device_short(device_t dev, int indent); 159 static void print_device(device_t dev, int indent); 160 void print_device_tree_short(device_t dev, int indent); 161 void print_device_tree(device_t dev, int indent); 162 static void print_driver_short(driver_t *driver, int indent); 163 static void print_driver(driver_t *driver, int indent); 164 static void print_driver_list(driver_list_t drivers, int indent); 165 static void print_devclass_short(devclass_t dc, int indent); 166 static void print_devclass(devclass_t dc, int indent); 167 void print_devclass_list_short(void); 168 void print_devclass_list(void); 169 170 #else 171 /* Make the compiler ignore the function calls */ 172 #define PDEBUG(a) /* nop */ 173 #define DEVICENAME(d) /* nop */ 174 #define DRIVERNAME(d) /* nop */ 175 #define DEVCLANAME(d) /* nop */ 176 177 #define print_device_short(d,i) /* nop */ 178 #define print_device(d,i) /* nop */ 179 #define print_device_tree_short(d,i) /* nop */ 180 #define print_device_tree(d,i) /* nop */ 181 #define print_driver_short(d,i) /* nop */ 182 #define print_driver(d,i) /* nop */ 183 #define print_driver_list(d,i) /* nop */ 184 #define print_devclass_short(d,i) /* nop */ 185 #define print_devclass(d,i) /* nop */ 186 #define print_devclass_list_short() /* nop */ 187 #define print_devclass_list() /* nop */ 188 #endif 189 190 /* 191 * dev sysctl tree 192 */ 193 194 enum { 195 DEVCLASS_SYSCTL_PARENT, 196 }; 197 198 static int 199 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 200 { 201 devclass_t dc = (devclass_t)arg1; 202 const char *value; 203 204 switch (arg2) { 205 case DEVCLASS_SYSCTL_PARENT: 206 value = dc->parent ? dc->parent->name : ""; 207 break; 208 default: 209 return (EINVAL); 210 } 211 return (SYSCTL_OUT(req, value, strlen(value))); 212 } 213 214 static void 215 devclass_sysctl_init(devclass_t dc) 216 { 217 218 if (dc->sysctl_tree != NULL) 219 return; 220 sysctl_ctx_init(&dc->sysctl_ctx); 221 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 222 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 223 CTLFLAG_RD, 0, ""); 224 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 225 OID_AUTO, "%parent", CTLFLAG_RD, 226 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 227 "parent class"); 228 } 229 230 enum { 231 DEVICE_SYSCTL_DESC, 232 DEVICE_SYSCTL_DRIVER, 233 DEVICE_SYSCTL_LOCATION, 234 DEVICE_SYSCTL_PNPINFO, 235 DEVICE_SYSCTL_PARENT, 236 }; 237 238 static int 239 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 240 { 241 device_t dev = (device_t)arg1; 242 const char *value; 243 char *buf; 244 int error; 245 246 buf = NULL; 247 switch (arg2) { 248 case DEVICE_SYSCTL_DESC: 249 value = dev->desc ? dev->desc : ""; 250 break; 251 case DEVICE_SYSCTL_DRIVER: 252 value = dev->driver ? dev->driver->name : ""; 253 break; 254 case DEVICE_SYSCTL_LOCATION: 255 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 256 bus_child_location_str(dev, buf, 1024); 257 break; 258 case DEVICE_SYSCTL_PNPINFO: 259 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 260 bus_child_pnpinfo_str(dev, buf, 1024); 261 break; 262 case DEVICE_SYSCTL_PARENT: 263 value = dev->parent ? dev->parent->nameunit : ""; 264 break; 265 default: 266 return (EINVAL); 267 } 268 error = SYSCTL_OUT(req, value, strlen(value)); 269 if (buf != NULL) 270 free(buf, M_BUS); 271 return (error); 272 } 273 274 static void 275 device_sysctl_init(device_t dev) 276 { 277 devclass_t dc = dev->devclass; 278 279 if (dev->sysctl_tree != NULL) 280 return; 281 devclass_sysctl_init(dc); 282 sysctl_ctx_init(&dev->sysctl_ctx); 283 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 284 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 285 dev->nameunit + strlen(dc->name), 286 CTLFLAG_RD, 0, ""); 287 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 288 OID_AUTO, "%desc", CTLFLAG_RD, 289 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 290 "device description"); 291 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 292 OID_AUTO, "%driver", CTLFLAG_RD, 293 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 294 "device driver name"); 295 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 296 OID_AUTO, "%location", CTLFLAG_RD, 297 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 298 "device location relative to parent"); 299 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 300 OID_AUTO, "%pnpinfo", CTLFLAG_RD, 301 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 302 "device identification"); 303 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 304 OID_AUTO, "%parent", CTLFLAG_RD, 305 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 306 "parent device"); 307 } 308 309 static void 310 device_sysctl_update(device_t dev) 311 { 312 devclass_t dc = dev->devclass; 313 314 if (dev->sysctl_tree == NULL) 315 return; 316 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 317 } 318 319 static void 320 device_sysctl_fini(device_t dev) 321 { 322 if (dev->sysctl_tree == NULL) 323 return; 324 sysctl_ctx_free(&dev->sysctl_ctx); 325 dev->sysctl_tree = NULL; 326 } 327 328 /* 329 * /dev/devctl implementation 330 */ 331 332 /* 333 * This design allows only one reader for /dev/devctl. This is not desirable 334 * in the long run, but will get a lot of hair out of this implementation. 335 * Maybe we should make this device a clonable device. 336 * 337 * Also note: we specifically do not attach a device to the device_t tree 338 * to avoid potential chicken and egg problems. One could argue that all 339 * of this belongs to the root node. One could also further argue that the 340 * sysctl interface that we have not might more properly be an ioctl 341 * interface, but at this stage of the game, I'm not inclined to rock that 342 * boat. 343 * 344 * I'm also not sure that the SIGIO support is done correctly or not, as 345 * I copied it from a driver that had SIGIO support that likely hasn't been 346 * tested since 3.4 or 2.2.8! 347 */ 348 349 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 350 static int devctl_disable = 0; 351 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable); 352 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 353 sysctl_devctl_disable, "I", "devctl disable"); 354 355 static d_open_t devopen; 356 static d_close_t devclose; 357 static d_read_t devread; 358 static d_ioctl_t devioctl; 359 static d_poll_t devpoll; 360 361 static struct cdevsw dev_cdevsw = { 362 .d_version = D_VERSION, 363 .d_flags = D_NEEDGIANT, 364 .d_open = devopen, 365 .d_close = devclose, 366 .d_read = devread, 367 .d_ioctl = devioctl, 368 .d_poll = devpoll, 369 .d_name = "devctl", 370 }; 371 372 struct dev_event_info 373 { 374 char *dei_data; 375 TAILQ_ENTRY(dev_event_info) dei_link; 376 }; 377 378 TAILQ_HEAD(devq, dev_event_info); 379 380 static struct dev_softc 381 { 382 int inuse; 383 int nonblock; 384 struct mtx mtx; 385 struct cv cv; 386 struct selinfo sel; 387 struct devq devq; 388 struct proc *async_proc; 389 } devsoftc; 390 391 static struct cdev *devctl_dev; 392 393 static void 394 devinit(void) 395 { 396 devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, 397 "devctl"); 398 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 399 cv_init(&devsoftc.cv, "dev cv"); 400 TAILQ_INIT(&devsoftc.devq); 401 } 402 403 static int 404 devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td) 405 { 406 if (devsoftc.inuse) 407 return (EBUSY); 408 /* move to init */ 409 devsoftc.inuse = 1; 410 devsoftc.nonblock = 0; 411 devsoftc.async_proc = NULL; 412 return (0); 413 } 414 415 static int 416 devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td) 417 { 418 devsoftc.inuse = 0; 419 mtx_lock(&devsoftc.mtx); 420 cv_broadcast(&devsoftc.cv); 421 mtx_unlock(&devsoftc.mtx); 422 423 return (0); 424 } 425 426 /* 427 * The read channel for this device is used to report changes to 428 * userland in realtime. We are required to free the data as well as 429 * the n1 object because we allocate them separately. Also note that 430 * we return one record at a time. If you try to read this device a 431 * character at a time, you will lose the rest of the data. Listening 432 * programs are expected to cope. 433 */ 434 static int 435 devread(struct cdev *dev, struct uio *uio, int ioflag) 436 { 437 struct dev_event_info *n1; 438 int rv; 439 440 mtx_lock(&devsoftc.mtx); 441 while (TAILQ_EMPTY(&devsoftc.devq)) { 442 if (devsoftc.nonblock) { 443 mtx_unlock(&devsoftc.mtx); 444 return (EAGAIN); 445 } 446 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 447 if (rv) { 448 /* 449 * Need to translate ERESTART to EINTR here? -- jake 450 */ 451 mtx_unlock(&devsoftc.mtx); 452 return (rv); 453 } 454 } 455 n1 = TAILQ_FIRST(&devsoftc.devq); 456 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 457 mtx_unlock(&devsoftc.mtx); 458 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 459 free(n1->dei_data, M_BUS); 460 free(n1, M_BUS); 461 return (rv); 462 } 463 464 static int 465 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td) 466 { 467 switch (cmd) { 468 469 case FIONBIO: 470 if (*(int*)data) 471 devsoftc.nonblock = 1; 472 else 473 devsoftc.nonblock = 0; 474 return (0); 475 case FIOASYNC: 476 if (*(int*)data) 477 devsoftc.async_proc = td->td_proc; 478 else 479 devsoftc.async_proc = NULL; 480 return (0); 481 482 /* (un)Support for other fcntl() calls. */ 483 case FIOCLEX: 484 case FIONCLEX: 485 case FIONREAD: 486 case FIOSETOWN: 487 case FIOGETOWN: 488 default: 489 break; 490 } 491 return (ENOTTY); 492 } 493 494 static int 495 devpoll(struct cdev *dev, int events, d_thread_t *td) 496 { 497 int revents = 0; 498 499 mtx_lock(&devsoftc.mtx); 500 if (events & (POLLIN | POLLRDNORM)) { 501 if (!TAILQ_EMPTY(&devsoftc.devq)) 502 revents = events & (POLLIN | POLLRDNORM); 503 else 504 selrecord(td, &devsoftc.sel); 505 } 506 mtx_unlock(&devsoftc.mtx); 507 508 return (revents); 509 } 510 511 /** 512 * @brief Return whether the userland process is running 513 */ 514 boolean_t 515 devctl_process_running(void) 516 { 517 return (devsoftc.inuse == 1); 518 } 519 520 /** 521 * @brief Queue data to be read from the devctl device 522 * 523 * Generic interface to queue data to the devctl device. It is 524 * assumed that @p data is properly formatted. It is further assumed 525 * that @p data is allocated using the M_BUS malloc type. 526 */ 527 void 528 devctl_queue_data(char *data) 529 { 530 struct dev_event_info *n1 = NULL; 531 struct proc *p; 532 533 n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT); 534 if (n1 == NULL) 535 return; 536 n1->dei_data = data; 537 mtx_lock(&devsoftc.mtx); 538 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 539 cv_broadcast(&devsoftc.cv); 540 mtx_unlock(&devsoftc.mtx); 541 selwakeup(&devsoftc.sel); 542 p = devsoftc.async_proc; 543 if (p != NULL) { 544 PROC_LOCK(p); 545 psignal(p, SIGIO); 546 PROC_UNLOCK(p); 547 } 548 } 549 550 /** 551 * @brief Send a 'notification' to userland, using standard ways 552 */ 553 void 554 devctl_notify(const char *system, const char *subsystem, const char *type, 555 const char *data) 556 { 557 int len = 0; 558 char *msg; 559 560 if (system == NULL) 561 return; /* BOGUS! Must specify system. */ 562 if (subsystem == NULL) 563 return; /* BOGUS! Must specify subsystem. */ 564 if (type == NULL) 565 return; /* BOGUS! Must specify type. */ 566 len += strlen(" system=") + strlen(system); 567 len += strlen(" subsystem=") + strlen(subsystem); 568 len += strlen(" type=") + strlen(type); 569 /* add in the data message plus newline. */ 570 if (data != NULL) 571 len += strlen(data); 572 len += 3; /* '!', '\n', and NUL */ 573 msg = malloc(len, M_BUS, M_NOWAIT); 574 if (msg == NULL) 575 return; /* Drop it on the floor */ 576 if (data != NULL) 577 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 578 system, subsystem, type, data); 579 else 580 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 581 system, subsystem, type); 582 devctl_queue_data(msg); 583 } 584 585 /* 586 * Common routine that tries to make sending messages as easy as possible. 587 * We allocate memory for the data, copy strings into that, but do not 588 * free it unless there's an error. The dequeue part of the driver should 589 * free the data. We don't send data when the device is disabled. We do 590 * send data, even when we have no listeners, because we wish to avoid 591 * races relating to startup and restart of listening applications. 592 * 593 * devaddq is designed to string together the type of event, with the 594 * object of that event, plus the plug and play info and location info 595 * for that event. This is likely most useful for devices, but less 596 * useful for other consumers of this interface. Those should use 597 * the devctl_queue_data() interface instead. 598 */ 599 static void 600 devaddq(const char *type, const char *what, device_t dev) 601 { 602 char *data = NULL; 603 char *loc = NULL; 604 char *pnp = NULL; 605 const char *parstr; 606 607 if (devctl_disable) 608 return; 609 data = malloc(1024, M_BUS, M_NOWAIT); 610 if (data == NULL) 611 goto bad; 612 613 /* get the bus specific location of this device */ 614 loc = malloc(1024, M_BUS, M_NOWAIT); 615 if (loc == NULL) 616 goto bad; 617 *loc = '\0'; 618 bus_child_location_str(dev, loc, 1024); 619 620 /* Get the bus specific pnp info of this device */ 621 pnp = malloc(1024, M_BUS, M_NOWAIT); 622 if (pnp == NULL) 623 goto bad; 624 *pnp = '\0'; 625 bus_child_pnpinfo_str(dev, pnp, 1024); 626 627 /* Get the parent of this device, or / if high enough in the tree. */ 628 if (device_get_parent(dev) == NULL) 629 parstr = "."; /* Or '/' ? */ 630 else 631 parstr = device_get_nameunit(device_get_parent(dev)); 632 /* String it all together. */ 633 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 634 parstr); 635 free(loc, M_BUS); 636 free(pnp, M_BUS); 637 devctl_queue_data(data); 638 return; 639 bad: 640 free(pnp, M_BUS); 641 free(loc, M_BUS); 642 free(data, M_BUS); 643 return; 644 } 645 646 /* 647 * A device was added to the tree. We are called just after it successfully 648 * attaches (that is, probe and attach success for this device). No call 649 * is made if a device is merely parented into the tree. See devnomatch 650 * if probe fails. If attach fails, no notification is sent (but maybe 651 * we should have a different message for this). 652 */ 653 static void 654 devadded(device_t dev) 655 { 656 char *pnp = NULL; 657 char *tmp = NULL; 658 659 pnp = malloc(1024, M_BUS, M_NOWAIT); 660 if (pnp == NULL) 661 goto fail; 662 tmp = malloc(1024, M_BUS, M_NOWAIT); 663 if (tmp == NULL) 664 goto fail; 665 *pnp = '\0'; 666 bus_child_pnpinfo_str(dev, pnp, 1024); 667 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 668 devaddq("+", tmp, dev); 669 fail: 670 if (pnp != NULL) 671 free(pnp, M_BUS); 672 if (tmp != NULL) 673 free(tmp, M_BUS); 674 return; 675 } 676 677 /* 678 * A device was removed from the tree. We are called just before this 679 * happens. 680 */ 681 static void 682 devremoved(device_t dev) 683 { 684 char *pnp = NULL; 685 char *tmp = NULL; 686 687 pnp = malloc(1024, M_BUS, M_NOWAIT); 688 if (pnp == NULL) 689 goto fail; 690 tmp = malloc(1024, M_BUS, M_NOWAIT); 691 if (tmp == NULL) 692 goto fail; 693 *pnp = '\0'; 694 bus_child_pnpinfo_str(dev, pnp, 1024); 695 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 696 devaddq("-", tmp, dev); 697 fail: 698 if (pnp != NULL) 699 free(pnp, M_BUS); 700 if (tmp != NULL) 701 free(tmp, M_BUS); 702 return; 703 } 704 705 /* 706 * Called when there's no match for this device. This is only called 707 * the first time that no match happens, so we don't keep getitng this 708 * message. Should that prove to be undesirable, we can change it. 709 * This is called when all drivers that can attach to a given bus 710 * decline to accept this device. Other errrors may not be detected. 711 */ 712 static void 713 devnomatch(device_t dev) 714 { 715 devaddq("?", "", dev); 716 } 717 718 static int 719 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 720 { 721 struct dev_event_info *n1; 722 int dis, error; 723 724 dis = devctl_disable; 725 error = sysctl_handle_int(oidp, &dis, 0, req); 726 if (error || !req->newptr) 727 return (error); 728 mtx_lock(&devsoftc.mtx); 729 devctl_disable = dis; 730 if (dis) { 731 while (!TAILQ_EMPTY(&devsoftc.devq)) { 732 n1 = TAILQ_FIRST(&devsoftc.devq); 733 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 734 free(n1->dei_data, M_BUS); 735 free(n1, M_BUS); 736 } 737 } 738 mtx_unlock(&devsoftc.mtx); 739 return (0); 740 } 741 742 /* End of /dev/devctl code */ 743 744 TAILQ_HEAD(,device) bus_data_devices; 745 static int bus_data_generation = 1; 746 747 kobj_method_t null_methods[] = { 748 { 0, 0 } 749 }; 750 751 DEFINE_CLASS(null, null_methods, 0); 752 753 /* 754 * Devclass implementation 755 */ 756 757 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 758 759 760 /** 761 * @internal 762 * @brief Find or create a device class 763 * 764 * If a device class with the name @p classname exists, return it, 765 * otherwise if @p create is non-zero create and return a new device 766 * class. 767 * 768 * If @p parentname is non-NULL, the parent of the devclass is set to 769 * the devclass of that name. 770 * 771 * @param classname the devclass name to find or create 772 * @param parentname the parent devclass name or @c NULL 773 * @param create non-zero to create a devclass 774 */ 775 static devclass_t 776 devclass_find_internal(const char *classname, const char *parentname, 777 int create) 778 { 779 devclass_t dc; 780 781 PDEBUG(("looking for %s", classname)); 782 if (!classname) 783 return (NULL); 784 785 TAILQ_FOREACH(dc, &devclasses, link) { 786 if (!strcmp(dc->name, classname)) 787 break; 788 } 789 790 if (create && !dc) { 791 PDEBUG(("creating %s", classname)); 792 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 793 M_BUS, M_NOWAIT|M_ZERO); 794 if (!dc) 795 return (NULL); 796 dc->parent = NULL; 797 dc->name = (char*) (dc + 1); 798 strcpy(dc->name, classname); 799 TAILQ_INIT(&dc->drivers); 800 TAILQ_INSERT_TAIL(&devclasses, dc, link); 801 802 bus_data_generation_update(); 803 } 804 805 /* 806 * If a parent class is specified, then set that as our parent so 807 * that this devclass will support drivers for the parent class as 808 * well. If the parent class has the same name don't do this though 809 * as it creates a cycle that can trigger an infinite loop in 810 * device_probe_child() if a device exists for which there is no 811 * suitable driver. 812 */ 813 if (parentname && dc && !dc->parent && 814 strcmp(classname, parentname) != 0) { 815 dc->parent = devclass_find_internal(parentname, NULL, FALSE); 816 } 817 818 return (dc); 819 } 820 821 /** 822 * @brief Create a device class 823 * 824 * If a device class with the name @p classname exists, return it, 825 * otherwise create and return a new device class. 826 * 827 * @param classname the devclass name to find or create 828 */ 829 devclass_t 830 devclass_create(const char *classname) 831 { 832 return (devclass_find_internal(classname, NULL, TRUE)); 833 } 834 835 /** 836 * @brief Find a device class 837 * 838 * If a device class with the name @p classname exists, return it, 839 * otherwise return @c NULL. 840 * 841 * @param classname the devclass name to find 842 */ 843 devclass_t 844 devclass_find(const char *classname) 845 { 846 return (devclass_find_internal(classname, NULL, FALSE)); 847 } 848 849 /** 850 * @brief Add a device driver to a device class 851 * 852 * Add a device driver to a devclass. This is normally called 853 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 854 * all devices in the devclass will be called to allow them to attempt 855 * to re-probe any unmatched children. 856 * 857 * @param dc the devclass to edit 858 * @param driver the driver to register 859 */ 860 int 861 devclass_add_driver(devclass_t dc, driver_t *driver) 862 { 863 driverlink_t dl; 864 int i; 865 866 PDEBUG(("%s", DRIVERNAME(driver))); 867 868 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 869 if (!dl) 870 return (ENOMEM); 871 872 /* 873 * Compile the driver's methods. Also increase the reference count 874 * so that the class doesn't get freed when the last instance 875 * goes. This means we can safely use static methods and avoids a 876 * double-free in devclass_delete_driver. 877 */ 878 kobj_class_compile((kobj_class_t) driver); 879 880 /* 881 * Make sure the devclass which the driver is implementing exists. 882 */ 883 devclass_find_internal(driver->name, NULL, TRUE); 884 885 dl->driver = driver; 886 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 887 driver->refs++; /* XXX: kobj_mtx */ 888 889 /* 890 * Call BUS_DRIVER_ADDED for any existing busses in this class. 891 */ 892 for (i = 0; i < dc->maxunit; i++) 893 if (dc->devices[i]) 894 BUS_DRIVER_ADDED(dc->devices[i], driver); 895 896 bus_data_generation_update(); 897 return (0); 898 } 899 900 /** 901 * @brief Delete a device driver from a device class 902 * 903 * Delete a device driver from a devclass. This is normally called 904 * automatically by DRIVER_MODULE(). 905 * 906 * If the driver is currently attached to any devices, 907 * devclass_delete_driver() will first attempt to detach from each 908 * device. If one of the detach calls fails, the driver will not be 909 * deleted. 910 * 911 * @param dc the devclass to edit 912 * @param driver the driver to unregister 913 */ 914 int 915 devclass_delete_driver(devclass_t busclass, driver_t *driver) 916 { 917 devclass_t dc = devclass_find(driver->name); 918 driverlink_t dl; 919 device_t dev; 920 int i; 921 int error; 922 923 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 924 925 if (!dc) 926 return (0); 927 928 /* 929 * Find the link structure in the bus' list of drivers. 930 */ 931 TAILQ_FOREACH(dl, &busclass->drivers, link) { 932 if (dl->driver == driver) 933 break; 934 } 935 936 if (!dl) { 937 PDEBUG(("%s not found in %s list", driver->name, 938 busclass->name)); 939 return (ENOENT); 940 } 941 942 /* 943 * Disassociate from any devices. We iterate through all the 944 * devices in the devclass of the driver and detach any which are 945 * using the driver and which have a parent in the devclass which 946 * we are deleting from. 947 * 948 * Note that since a driver can be in multiple devclasses, we 949 * should not detach devices which are not children of devices in 950 * the affected devclass. 951 */ 952 for (i = 0; i < dc->maxunit; i++) { 953 if (dc->devices[i]) { 954 dev = dc->devices[i]; 955 if (dev->driver == driver && dev->parent && 956 dev->parent->devclass == busclass) { 957 if ((error = device_detach(dev)) != 0) 958 return (error); 959 device_set_driver(dev, NULL); 960 } 961 } 962 } 963 964 TAILQ_REMOVE(&busclass->drivers, dl, link); 965 free(dl, M_BUS); 966 967 /* XXX: kobj_mtx */ 968 driver->refs--; 969 if (driver->refs == 0) 970 kobj_class_free((kobj_class_t) driver); 971 972 bus_data_generation_update(); 973 return (0); 974 } 975 976 /** 977 * @brief Quiesces a set of device drivers from a device class 978 * 979 * Quiesce a device driver from a devclass. This is normally called 980 * automatically by DRIVER_MODULE(). 981 * 982 * If the driver is currently attached to any devices, 983 * devclass_quiesece_driver() will first attempt to quiesce each 984 * device. 985 * 986 * @param dc the devclass to edit 987 * @param driver the driver to unregister 988 */ 989 int 990 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 991 { 992 devclass_t dc = devclass_find(driver->name); 993 driverlink_t dl; 994 device_t dev; 995 int i; 996 int error; 997 998 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 999 1000 if (!dc) 1001 return (0); 1002 1003 /* 1004 * Find the link structure in the bus' list of drivers. 1005 */ 1006 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1007 if (dl->driver == driver) 1008 break; 1009 } 1010 1011 if (!dl) { 1012 PDEBUG(("%s not found in %s list", driver->name, 1013 busclass->name)); 1014 return (ENOENT); 1015 } 1016 1017 /* 1018 * Quiesce all devices. We iterate through all the devices in 1019 * the devclass of the driver and quiesce any which are using 1020 * the driver and which have a parent in the devclass which we 1021 * are quiescing. 1022 * 1023 * Note that since a driver can be in multiple devclasses, we 1024 * should not quiesce devices which are not children of 1025 * devices in the affected devclass. 1026 */ 1027 for (i = 0; i < dc->maxunit; i++) { 1028 if (dc->devices[i]) { 1029 dev = dc->devices[i]; 1030 if (dev->driver == driver && dev->parent && 1031 dev->parent->devclass == busclass) { 1032 if ((error = device_quiesce(dev)) != 0) 1033 return (error); 1034 } 1035 } 1036 } 1037 1038 return (0); 1039 } 1040 1041 /** 1042 * @internal 1043 */ 1044 static driverlink_t 1045 devclass_find_driver_internal(devclass_t dc, const char *classname) 1046 { 1047 driverlink_t dl; 1048 1049 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1050 1051 TAILQ_FOREACH(dl, &dc->drivers, link) { 1052 if (!strcmp(dl->driver->name, classname)) 1053 return (dl); 1054 } 1055 1056 PDEBUG(("not found")); 1057 return (NULL); 1058 } 1059 1060 /** 1061 * @brief Search a devclass for a driver 1062 * 1063 * This function searches the devclass's list of drivers and returns 1064 * the first driver whose name is @p classname or @c NULL if there is 1065 * no driver of that name. 1066 * 1067 * @param dc the devclass to search 1068 * @param classname the driver name to search for 1069 */ 1070 kobj_class_t 1071 devclass_find_driver(devclass_t dc, const char *classname) 1072 { 1073 driverlink_t dl; 1074 1075 dl = devclass_find_driver_internal(dc, classname); 1076 if (dl) 1077 return (dl->driver); 1078 return (NULL); 1079 } 1080 1081 /** 1082 * @brief Return the name of the devclass 1083 */ 1084 const char * 1085 devclass_get_name(devclass_t dc) 1086 { 1087 return (dc->name); 1088 } 1089 1090 /** 1091 * @brief Find a device given a unit number 1092 * 1093 * @param dc the devclass to search 1094 * @param unit the unit number to search for 1095 * 1096 * @returns the device with the given unit number or @c 1097 * NULL if there is no such device 1098 */ 1099 device_t 1100 devclass_get_device(devclass_t dc, int unit) 1101 { 1102 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1103 return (NULL); 1104 return (dc->devices[unit]); 1105 } 1106 1107 /** 1108 * @brief Find the softc field of a device given a unit number 1109 * 1110 * @param dc the devclass to search 1111 * @param unit the unit number to search for 1112 * 1113 * @returns the softc field of the device with the given 1114 * unit number or @c NULL if there is no such 1115 * device 1116 */ 1117 void * 1118 devclass_get_softc(devclass_t dc, int unit) 1119 { 1120 device_t dev; 1121 1122 dev = devclass_get_device(dc, unit); 1123 if (!dev) 1124 return (NULL); 1125 1126 return (device_get_softc(dev)); 1127 } 1128 1129 /** 1130 * @brief Get a list of devices in the devclass 1131 * 1132 * An array containing a list of all the devices in the given devclass 1133 * is allocated and returned in @p *devlistp. The number of devices 1134 * in the array is returned in @p *devcountp. The caller should free 1135 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1136 * 1137 * @param dc the devclass to examine 1138 * @param devlistp points at location for array pointer return 1139 * value 1140 * @param devcountp points at location for array size return value 1141 * 1142 * @retval 0 success 1143 * @retval ENOMEM the array allocation failed 1144 */ 1145 int 1146 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1147 { 1148 int count, i; 1149 device_t *list; 1150 1151 count = devclass_get_count(dc); 1152 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1153 if (!list) 1154 return (ENOMEM); 1155 1156 count = 0; 1157 for (i = 0; i < dc->maxunit; i++) { 1158 if (dc->devices[i]) { 1159 list[count] = dc->devices[i]; 1160 count++; 1161 } 1162 } 1163 1164 *devlistp = list; 1165 *devcountp = count; 1166 1167 return (0); 1168 } 1169 1170 /** 1171 * @brief Get a list of drivers in the devclass 1172 * 1173 * An array containing a list of pointers to all the drivers in the 1174 * given devclass is allocated and returned in @p *listp. The number 1175 * of drivers in the array is returned in @p *countp. The caller should 1176 * free the array using @c free(p, M_TEMP). 1177 * 1178 * @param dc the devclass to examine 1179 * @param listp gives location for array pointer return value 1180 * @param countp gives location for number of array elements 1181 * return value 1182 * 1183 * @retval 0 success 1184 * @retval ENOMEM the array allocation failed 1185 */ 1186 int 1187 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1188 { 1189 driverlink_t dl; 1190 driver_t **list; 1191 int count; 1192 1193 count = 0; 1194 TAILQ_FOREACH(dl, &dc->drivers, link) 1195 count++; 1196 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1197 if (list == NULL) 1198 return (ENOMEM); 1199 1200 count = 0; 1201 TAILQ_FOREACH(dl, &dc->drivers, link) { 1202 list[count] = dl->driver; 1203 count++; 1204 } 1205 *listp = list; 1206 *countp = count; 1207 1208 return (0); 1209 } 1210 1211 /** 1212 * @brief Get the number of devices in a devclass 1213 * 1214 * @param dc the devclass to examine 1215 */ 1216 int 1217 devclass_get_count(devclass_t dc) 1218 { 1219 int count, i; 1220 1221 count = 0; 1222 for (i = 0; i < dc->maxunit; i++) 1223 if (dc->devices[i]) 1224 count++; 1225 return (count); 1226 } 1227 1228 /** 1229 * @brief Get the maximum unit number used in a devclass 1230 * 1231 * Note that this is one greater than the highest currently-allocated 1232 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1233 * that not even the devclass has been allocated yet. 1234 * 1235 * @param dc the devclass to examine 1236 */ 1237 int 1238 devclass_get_maxunit(devclass_t dc) 1239 { 1240 if (dc == NULL) 1241 return (-1); 1242 return (dc->maxunit); 1243 } 1244 1245 /** 1246 * @brief Find a free unit number in a devclass 1247 * 1248 * This function searches for the first unused unit number greater 1249 * that or equal to @p unit. 1250 * 1251 * @param dc the devclass to examine 1252 * @param unit the first unit number to check 1253 */ 1254 int 1255 devclass_find_free_unit(devclass_t dc, int unit) 1256 { 1257 if (dc == NULL) 1258 return (unit); 1259 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1260 unit++; 1261 return (unit); 1262 } 1263 1264 /** 1265 * @brief Set the parent of a devclass 1266 * 1267 * The parent class is normally initialised automatically by 1268 * DRIVER_MODULE(). 1269 * 1270 * @param dc the devclass to edit 1271 * @param pdc the new parent devclass 1272 */ 1273 void 1274 devclass_set_parent(devclass_t dc, devclass_t pdc) 1275 { 1276 dc->parent = pdc; 1277 } 1278 1279 /** 1280 * @brief Get the parent of a devclass 1281 * 1282 * @param dc the devclass to examine 1283 */ 1284 devclass_t 1285 devclass_get_parent(devclass_t dc) 1286 { 1287 return (dc->parent); 1288 } 1289 1290 struct sysctl_ctx_list * 1291 devclass_get_sysctl_ctx(devclass_t dc) 1292 { 1293 return (&dc->sysctl_ctx); 1294 } 1295 1296 struct sysctl_oid * 1297 devclass_get_sysctl_tree(devclass_t dc) 1298 { 1299 return (dc->sysctl_tree); 1300 } 1301 1302 /** 1303 * @internal 1304 * @brief Allocate a unit number 1305 * 1306 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1307 * will do). The allocated unit number is returned in @p *unitp. 1308 1309 * @param dc the devclass to allocate from 1310 * @param unitp points at the location for the allocated unit 1311 * number 1312 * 1313 * @retval 0 success 1314 * @retval EEXIST the requested unit number is already allocated 1315 * @retval ENOMEM memory allocation failure 1316 */ 1317 static int 1318 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1319 { 1320 const char *s; 1321 int unit = *unitp; 1322 1323 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1324 1325 /* Ask the parent bus if it wants to wire this device. */ 1326 if (unit == -1) 1327 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1328 &unit); 1329 1330 /* If we were given a wired unit number, check for existing device */ 1331 /* XXX imp XXX */ 1332 if (unit != -1) { 1333 if (unit >= 0 && unit < dc->maxunit && 1334 dc->devices[unit] != NULL) { 1335 if (bootverbose) 1336 printf("%s: %s%d already exists; skipping it\n", 1337 dc->name, dc->name, *unitp); 1338 return (EEXIST); 1339 } 1340 } else { 1341 /* Unwired device, find the next available slot for it */ 1342 unit = 0; 1343 for (unit = 0;; unit++) { 1344 /* If there is an "at" hint for a unit then skip it. */ 1345 if (resource_string_value(dc->name, unit, "at", &s) == 1346 0) 1347 continue; 1348 1349 /* If this device slot is already in use, skip it. */ 1350 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1351 continue; 1352 1353 break; 1354 } 1355 } 1356 1357 /* 1358 * We've selected a unit beyond the length of the table, so let's 1359 * extend the table to make room for all units up to and including 1360 * this one. 1361 */ 1362 if (unit >= dc->maxunit) { 1363 device_t *newlist, *oldlist; 1364 int newsize; 1365 1366 oldlist = dc->devices; 1367 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1368 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1369 if (!newlist) 1370 return (ENOMEM); 1371 if (oldlist != NULL) 1372 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1373 bzero(newlist + dc->maxunit, 1374 sizeof(device_t) * (newsize - dc->maxunit)); 1375 dc->devices = newlist; 1376 dc->maxunit = newsize; 1377 if (oldlist != NULL) 1378 free(oldlist, M_BUS); 1379 } 1380 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1381 1382 *unitp = unit; 1383 return (0); 1384 } 1385 1386 /** 1387 * @internal 1388 * @brief Add a device to a devclass 1389 * 1390 * A unit number is allocated for the device (using the device's 1391 * preferred unit number if any) and the device is registered in the 1392 * devclass. This allows the device to be looked up by its unit 1393 * number, e.g. by decoding a dev_t minor number. 1394 * 1395 * @param dc the devclass to add to 1396 * @param dev the device to add 1397 * 1398 * @retval 0 success 1399 * @retval EEXIST the requested unit number is already allocated 1400 * @retval ENOMEM memory allocation failure 1401 */ 1402 static int 1403 devclass_add_device(devclass_t dc, device_t dev) 1404 { 1405 int buflen, error; 1406 1407 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1408 1409 buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit); 1410 if (buflen < 0) 1411 return (ENOMEM); 1412 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1413 if (!dev->nameunit) 1414 return (ENOMEM); 1415 1416 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1417 free(dev->nameunit, M_BUS); 1418 dev->nameunit = NULL; 1419 return (error); 1420 } 1421 dc->devices[dev->unit] = dev; 1422 dev->devclass = dc; 1423 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1424 1425 return (0); 1426 } 1427 1428 /** 1429 * @internal 1430 * @brief Delete a device from a devclass 1431 * 1432 * The device is removed from the devclass's device list and its unit 1433 * number is freed. 1434 1435 * @param dc the devclass to delete from 1436 * @param dev the device to delete 1437 * 1438 * @retval 0 success 1439 */ 1440 static int 1441 devclass_delete_device(devclass_t dc, device_t dev) 1442 { 1443 if (!dc || !dev) 1444 return (0); 1445 1446 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1447 1448 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1449 panic("devclass_delete_device: inconsistent device class"); 1450 dc->devices[dev->unit] = NULL; 1451 if (dev->flags & DF_WILDCARD) 1452 dev->unit = -1; 1453 dev->devclass = NULL; 1454 free(dev->nameunit, M_BUS); 1455 dev->nameunit = NULL; 1456 1457 return (0); 1458 } 1459 1460 /** 1461 * @internal 1462 * @brief Make a new device and add it as a child of @p parent 1463 * 1464 * @param parent the parent of the new device 1465 * @param name the devclass name of the new device or @c NULL 1466 * to leave the devclass unspecified 1467 * @parem unit the unit number of the new device of @c -1 to 1468 * leave the unit number unspecified 1469 * 1470 * @returns the new device 1471 */ 1472 static device_t 1473 make_device(device_t parent, const char *name, int unit) 1474 { 1475 device_t dev; 1476 devclass_t dc; 1477 1478 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1479 1480 if (name) { 1481 dc = devclass_find_internal(name, NULL, TRUE); 1482 if (!dc) { 1483 printf("make_device: can't find device class %s\n", 1484 name); 1485 return (NULL); 1486 } 1487 } else { 1488 dc = NULL; 1489 } 1490 1491 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1492 if (!dev) 1493 return (NULL); 1494 1495 dev->parent = parent; 1496 TAILQ_INIT(&dev->children); 1497 kobj_init((kobj_t) dev, &null_class); 1498 dev->driver = NULL; 1499 dev->devclass = NULL; 1500 dev->unit = unit; 1501 dev->nameunit = NULL; 1502 dev->desc = NULL; 1503 dev->busy = 0; 1504 dev->devflags = 0; 1505 dev->flags = DF_ENABLED; 1506 dev->order = 0; 1507 if (unit == -1) 1508 dev->flags |= DF_WILDCARD; 1509 if (name) { 1510 dev->flags |= DF_FIXEDCLASS; 1511 if (devclass_add_device(dc, dev)) { 1512 kobj_delete((kobj_t) dev, M_BUS); 1513 return (NULL); 1514 } 1515 } 1516 dev->ivars = NULL; 1517 dev->softc = NULL; 1518 1519 dev->state = DS_NOTPRESENT; 1520 1521 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1522 bus_data_generation_update(); 1523 1524 return (dev); 1525 } 1526 1527 /** 1528 * @internal 1529 * @brief Print a description of a device. 1530 */ 1531 static int 1532 device_print_child(device_t dev, device_t child) 1533 { 1534 int retval = 0; 1535 1536 if (device_is_alive(child)) 1537 retval += BUS_PRINT_CHILD(dev, child); 1538 else 1539 retval += device_printf(child, " not found\n"); 1540 1541 return (retval); 1542 } 1543 1544 /** 1545 * @brief Create a new device 1546 * 1547 * This creates a new device and adds it as a child of an existing 1548 * parent device. The new device will be added after the last existing 1549 * child with order zero. 1550 * 1551 * @param dev the device which will be the parent of the 1552 * new child device 1553 * @param name devclass name for new device or @c NULL if not 1554 * specified 1555 * @param unit unit number for new device or @c -1 if not 1556 * specified 1557 * 1558 * @returns the new device 1559 */ 1560 device_t 1561 device_add_child(device_t dev, const char *name, int unit) 1562 { 1563 return (device_add_child_ordered(dev, 0, name, unit)); 1564 } 1565 1566 /** 1567 * @brief Create a new device 1568 * 1569 * This creates a new device and adds it as a child of an existing 1570 * parent device. The new device will be added after the last existing 1571 * child with the same order. 1572 * 1573 * @param dev the device which will be the parent of the 1574 * new child device 1575 * @param order a value which is used to partially sort the 1576 * children of @p dev - devices created using 1577 * lower values of @p order appear first in @p 1578 * dev's list of children 1579 * @param name devclass name for new device or @c NULL if not 1580 * specified 1581 * @param unit unit number for new device or @c -1 if not 1582 * specified 1583 * 1584 * @returns the new device 1585 */ 1586 device_t 1587 device_add_child_ordered(device_t dev, int order, const char *name, int unit) 1588 { 1589 device_t child; 1590 device_t place; 1591 1592 PDEBUG(("%s at %s with order %d as unit %d", 1593 name, DEVICENAME(dev), order, unit)); 1594 1595 child = make_device(dev, name, unit); 1596 if (child == NULL) 1597 return (child); 1598 child->order = order; 1599 1600 TAILQ_FOREACH(place, &dev->children, link) { 1601 if (place->order > order) 1602 break; 1603 } 1604 1605 if (place) { 1606 /* 1607 * The device 'place' is the first device whose order is 1608 * greater than the new child. 1609 */ 1610 TAILQ_INSERT_BEFORE(place, child, link); 1611 } else { 1612 /* 1613 * The new child's order is greater or equal to the order of 1614 * any existing device. Add the child to the tail of the list. 1615 */ 1616 TAILQ_INSERT_TAIL(&dev->children, child, link); 1617 } 1618 1619 bus_data_generation_update(); 1620 return (child); 1621 } 1622 1623 /** 1624 * @brief Delete a device 1625 * 1626 * This function deletes a device along with all of its children. If 1627 * the device currently has a driver attached to it, the device is 1628 * detached first using device_detach(). 1629 * 1630 * @param dev the parent device 1631 * @param child the device to delete 1632 * 1633 * @retval 0 success 1634 * @retval non-zero a unit error code describing the error 1635 */ 1636 int 1637 device_delete_child(device_t dev, device_t child) 1638 { 1639 int error; 1640 device_t grandchild; 1641 1642 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1643 1644 /* remove children first */ 1645 while ( (grandchild = TAILQ_FIRST(&child->children)) ) { 1646 error = device_delete_child(child, grandchild); 1647 if (error) 1648 return (error); 1649 } 1650 1651 if ((error = device_detach(child)) != 0) 1652 return (error); 1653 if (child->devclass) 1654 devclass_delete_device(child->devclass, child); 1655 TAILQ_REMOVE(&dev->children, child, link); 1656 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1657 kobj_delete((kobj_t) child, M_BUS); 1658 1659 bus_data_generation_update(); 1660 return (0); 1661 } 1662 1663 /** 1664 * @brief Find a device given a unit number 1665 * 1666 * This is similar to devclass_get_devices() but only searches for 1667 * devices which have @p dev as a parent. 1668 * 1669 * @param dev the parent device to search 1670 * @param unit the unit number to search for. If the unit is -1, 1671 * return the first child of @p dev which has name 1672 * @p classname (that is, the one with the lowest unit.) 1673 * 1674 * @returns the device with the given unit number or @c 1675 * NULL if there is no such device 1676 */ 1677 device_t 1678 device_find_child(device_t dev, const char *classname, int unit) 1679 { 1680 devclass_t dc; 1681 device_t child; 1682 1683 dc = devclass_find(classname); 1684 if (!dc) 1685 return (NULL); 1686 1687 if (unit != -1) { 1688 child = devclass_get_device(dc, unit); 1689 if (child && child->parent == dev) 1690 return (child); 1691 } else { 1692 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1693 child = devclass_get_device(dc, unit); 1694 if (child && child->parent == dev) 1695 return (child); 1696 } 1697 } 1698 return (NULL); 1699 } 1700 1701 /** 1702 * @internal 1703 */ 1704 static driverlink_t 1705 first_matching_driver(devclass_t dc, device_t dev) 1706 { 1707 if (dev->devclass) 1708 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1709 return (TAILQ_FIRST(&dc->drivers)); 1710 } 1711 1712 /** 1713 * @internal 1714 */ 1715 static driverlink_t 1716 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1717 { 1718 if (dev->devclass) { 1719 driverlink_t dl; 1720 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1721 if (!strcmp(dev->devclass->name, dl->driver->name)) 1722 return (dl); 1723 return (NULL); 1724 } 1725 return (TAILQ_NEXT(last, link)); 1726 } 1727 1728 /** 1729 * @internal 1730 */ 1731 int 1732 device_probe_child(device_t dev, device_t child) 1733 { 1734 devclass_t dc; 1735 driverlink_t best = NULL; 1736 driverlink_t dl; 1737 int result, pri = 0; 1738 int hasclass = (child->devclass != 0); 1739 1740 GIANT_REQUIRED; 1741 1742 dc = dev->devclass; 1743 if (!dc) 1744 panic("device_probe_child: parent device has no devclass"); 1745 1746 /* 1747 * If the state is already probed, then return. However, don't 1748 * return if we can rebid this object. 1749 */ 1750 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 1751 return (0); 1752 1753 for (; dc; dc = dc->parent) { 1754 for (dl = first_matching_driver(dc, child); 1755 dl; 1756 dl = next_matching_driver(dc, child, dl)) { 1757 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1758 device_set_driver(child, dl->driver); 1759 if (!hasclass) 1760 device_set_devclass(child, dl->driver->name); 1761 1762 /* Fetch any flags for the device before probing. */ 1763 resource_int_value(dl->driver->name, child->unit, 1764 "flags", &child->devflags); 1765 1766 result = DEVICE_PROBE(child); 1767 1768 /* Reset flags and devclass before the next probe. */ 1769 child->devflags = 0; 1770 if (!hasclass) 1771 device_set_devclass(child, NULL); 1772 1773 /* 1774 * If the driver returns SUCCESS, there can be 1775 * no higher match for this device. 1776 */ 1777 if (result == 0) { 1778 best = dl; 1779 pri = 0; 1780 break; 1781 } 1782 1783 /* 1784 * The driver returned an error so it 1785 * certainly doesn't match. 1786 */ 1787 if (result > 0) { 1788 device_set_driver(child, NULL); 1789 continue; 1790 } 1791 1792 /* 1793 * A priority lower than SUCCESS, remember the 1794 * best matching driver. Initialise the value 1795 * of pri for the first match. 1796 */ 1797 if (best == NULL || result > pri) { 1798 /* 1799 * Probes that return BUS_PROBE_NOWILDCARD 1800 * or lower only match when they are set 1801 * in stone by the parent bus. 1802 */ 1803 if (result <= BUS_PROBE_NOWILDCARD && 1804 child->flags & DF_WILDCARD) 1805 continue; 1806 best = dl; 1807 pri = result; 1808 continue; 1809 } 1810 } 1811 /* 1812 * If we have an unambiguous match in this devclass, 1813 * don't look in the parent. 1814 */ 1815 if (best && pri == 0) 1816 break; 1817 } 1818 1819 /* 1820 * If we found a driver, change state and initialise the devclass. 1821 */ 1822 /* XXX What happens if we rebid and got no best? */ 1823 if (best) { 1824 /* 1825 * If this device was atached, and we were asked to 1826 * rescan, and it is a different driver, then we have 1827 * to detach the old driver and reattach this new one. 1828 * Note, we don't have to check for DF_REBID here 1829 * because if the state is > DS_ALIVE, we know it must 1830 * be. 1831 * 1832 * This assumes that all DF_REBID drivers can have 1833 * their probe routine called at any time and that 1834 * they are idempotent as well as completely benign in 1835 * normal operations. 1836 * 1837 * We also have to make sure that the detach 1838 * succeeded, otherwise we fail the operation (or 1839 * maybe it should just fail silently? I'm torn). 1840 */ 1841 if (child->state > DS_ALIVE && best->driver != child->driver) 1842 if ((result = device_detach(dev)) != 0) 1843 return (result); 1844 1845 /* Set the winning driver, devclass, and flags. */ 1846 if (!child->devclass) 1847 device_set_devclass(child, best->driver->name); 1848 device_set_driver(child, best->driver); 1849 resource_int_value(best->driver->name, child->unit, 1850 "flags", &child->devflags); 1851 1852 if (pri < 0) { 1853 /* 1854 * A bit bogus. Call the probe method again to make 1855 * sure that we have the right description. 1856 */ 1857 DEVICE_PROBE(child); 1858 #if 0 1859 child->flags |= DF_REBID; 1860 #endif 1861 } else 1862 child->flags &= ~DF_REBID; 1863 child->state = DS_ALIVE; 1864 1865 bus_data_generation_update(); 1866 return (0); 1867 } 1868 1869 return (ENXIO); 1870 } 1871 1872 /** 1873 * @brief Return the parent of a device 1874 */ 1875 device_t 1876 device_get_parent(device_t dev) 1877 { 1878 return (dev->parent); 1879 } 1880 1881 /** 1882 * @brief Get a list of children of a device 1883 * 1884 * An array containing a list of all the children of the given device 1885 * is allocated and returned in @p *devlistp. The number of devices 1886 * in the array is returned in @p *devcountp. The caller should free 1887 * the array using @c free(p, M_TEMP). 1888 * 1889 * @param dev the device to examine 1890 * @param devlistp points at location for array pointer return 1891 * value 1892 * @param devcountp points at location for array size return value 1893 * 1894 * @retval 0 success 1895 * @retval ENOMEM the array allocation failed 1896 */ 1897 int 1898 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1899 { 1900 int count; 1901 device_t child; 1902 device_t *list; 1903 1904 count = 0; 1905 TAILQ_FOREACH(child, &dev->children, link) { 1906 count++; 1907 } 1908 1909 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1910 if (!list) 1911 return (ENOMEM); 1912 1913 count = 0; 1914 TAILQ_FOREACH(child, &dev->children, link) { 1915 list[count] = child; 1916 count++; 1917 } 1918 1919 *devlistp = list; 1920 *devcountp = count; 1921 1922 return (0); 1923 } 1924 1925 /** 1926 * @brief Return the current driver for the device or @c NULL if there 1927 * is no driver currently attached 1928 */ 1929 driver_t * 1930 device_get_driver(device_t dev) 1931 { 1932 return (dev->driver); 1933 } 1934 1935 /** 1936 * @brief Return the current devclass for the device or @c NULL if 1937 * there is none. 1938 */ 1939 devclass_t 1940 device_get_devclass(device_t dev) 1941 { 1942 return (dev->devclass); 1943 } 1944 1945 /** 1946 * @brief Return the name of the device's devclass or @c NULL if there 1947 * is none. 1948 */ 1949 const char * 1950 device_get_name(device_t dev) 1951 { 1952 if (dev != NULL && dev->devclass) 1953 return (devclass_get_name(dev->devclass)); 1954 return (NULL); 1955 } 1956 1957 /** 1958 * @brief Return a string containing the device's devclass name 1959 * followed by an ascii representation of the device's unit number 1960 * (e.g. @c "foo2"). 1961 */ 1962 const char * 1963 device_get_nameunit(device_t dev) 1964 { 1965 return (dev->nameunit); 1966 } 1967 1968 /** 1969 * @brief Return the device's unit number. 1970 */ 1971 int 1972 device_get_unit(device_t dev) 1973 { 1974 return (dev->unit); 1975 } 1976 1977 /** 1978 * @brief Return the device's description string 1979 */ 1980 const char * 1981 device_get_desc(device_t dev) 1982 { 1983 return (dev->desc); 1984 } 1985 1986 /** 1987 * @brief Return the device's flags 1988 */ 1989 u_int32_t 1990 device_get_flags(device_t dev) 1991 { 1992 return (dev->devflags); 1993 } 1994 1995 struct sysctl_ctx_list * 1996 device_get_sysctl_ctx(device_t dev) 1997 { 1998 return (&dev->sysctl_ctx); 1999 } 2000 2001 struct sysctl_oid * 2002 device_get_sysctl_tree(device_t dev) 2003 { 2004 return (dev->sysctl_tree); 2005 } 2006 2007 /** 2008 * @brief Print the name of the device followed by a colon and a space 2009 * 2010 * @returns the number of characters printed 2011 */ 2012 int 2013 device_print_prettyname(device_t dev) 2014 { 2015 const char *name = device_get_name(dev); 2016 2017 if (name == 0) 2018 return (printf("unknown: ")); 2019 return (printf("%s%d: ", name, device_get_unit(dev))); 2020 } 2021 2022 /** 2023 * @brief Print the name of the device followed by a colon, a space 2024 * and the result of calling vprintf() with the value of @p fmt and 2025 * the following arguments. 2026 * 2027 * @returns the number of characters printed 2028 */ 2029 int 2030 device_printf(device_t dev, const char * fmt, ...) 2031 { 2032 va_list ap; 2033 int retval; 2034 2035 retval = device_print_prettyname(dev); 2036 va_start(ap, fmt); 2037 retval += vprintf(fmt, ap); 2038 va_end(ap); 2039 return (retval); 2040 } 2041 2042 /** 2043 * @internal 2044 */ 2045 static void 2046 device_set_desc_internal(device_t dev, const char* desc, int copy) 2047 { 2048 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2049 free(dev->desc, M_BUS); 2050 dev->flags &= ~DF_DESCMALLOCED; 2051 dev->desc = NULL; 2052 } 2053 2054 if (copy && desc) { 2055 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2056 if (dev->desc) { 2057 strcpy(dev->desc, desc); 2058 dev->flags |= DF_DESCMALLOCED; 2059 } 2060 } else { 2061 /* Avoid a -Wcast-qual warning */ 2062 dev->desc = (char *)(uintptr_t) desc; 2063 } 2064 2065 bus_data_generation_update(); 2066 } 2067 2068 /** 2069 * @brief Set the device's description 2070 * 2071 * The value of @c desc should be a string constant that will not 2072 * change (at least until the description is changed in a subsequent 2073 * call to device_set_desc() or device_set_desc_copy()). 2074 */ 2075 void 2076 device_set_desc(device_t dev, const char* desc) 2077 { 2078 device_set_desc_internal(dev, desc, FALSE); 2079 } 2080 2081 /** 2082 * @brief Set the device's description 2083 * 2084 * The string pointed to by @c desc is copied. Use this function if 2085 * the device description is generated, (e.g. with sprintf()). 2086 */ 2087 void 2088 device_set_desc_copy(device_t dev, const char* desc) 2089 { 2090 device_set_desc_internal(dev, desc, TRUE); 2091 } 2092 2093 /** 2094 * @brief Set the device's flags 2095 */ 2096 void 2097 device_set_flags(device_t dev, u_int32_t flags) 2098 { 2099 dev->devflags = flags; 2100 } 2101 2102 /** 2103 * @brief Return the device's softc field 2104 * 2105 * The softc is allocated and zeroed when a driver is attached, based 2106 * on the size field of the driver. 2107 */ 2108 void * 2109 device_get_softc(device_t dev) 2110 { 2111 return (dev->softc); 2112 } 2113 2114 /** 2115 * @brief Set the device's softc field 2116 * 2117 * Most drivers do not need to use this since the softc is allocated 2118 * automatically when the driver is attached. 2119 */ 2120 void 2121 device_set_softc(device_t dev, void *softc) 2122 { 2123 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2124 free(dev->softc, M_BUS_SC); 2125 dev->softc = softc; 2126 if (dev->softc) 2127 dev->flags |= DF_EXTERNALSOFTC; 2128 else 2129 dev->flags &= ~DF_EXTERNALSOFTC; 2130 } 2131 2132 /** 2133 * @brief Get the device's ivars field 2134 * 2135 * The ivars field is used by the parent device to store per-device 2136 * state (e.g. the physical location of the device or a list of 2137 * resources). 2138 */ 2139 void * 2140 device_get_ivars(device_t dev) 2141 { 2142 2143 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2144 return (dev->ivars); 2145 } 2146 2147 /** 2148 * @brief Set the device's ivars field 2149 */ 2150 void 2151 device_set_ivars(device_t dev, void * ivars) 2152 { 2153 2154 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2155 dev->ivars = ivars; 2156 } 2157 2158 /** 2159 * @brief Return the device's state 2160 */ 2161 device_state_t 2162 device_get_state(device_t dev) 2163 { 2164 return (dev->state); 2165 } 2166 2167 /** 2168 * @brief Set the DF_ENABLED flag for the device 2169 */ 2170 void 2171 device_enable(device_t dev) 2172 { 2173 dev->flags |= DF_ENABLED; 2174 } 2175 2176 /** 2177 * @brief Clear the DF_ENABLED flag for the device 2178 */ 2179 void 2180 device_disable(device_t dev) 2181 { 2182 dev->flags &= ~DF_ENABLED; 2183 } 2184 2185 /** 2186 * @brief Increment the busy counter for the device 2187 */ 2188 void 2189 device_busy(device_t dev) 2190 { 2191 if (dev->state < DS_ATTACHED) 2192 panic("device_busy: called for unattached device"); 2193 if (dev->busy == 0 && dev->parent) 2194 device_busy(dev->parent); 2195 dev->busy++; 2196 dev->state = DS_BUSY; 2197 } 2198 2199 /** 2200 * @brief Decrement the busy counter for the device 2201 */ 2202 void 2203 device_unbusy(device_t dev) 2204 { 2205 if (dev->state != DS_BUSY) 2206 panic("device_unbusy: called for non-busy device %s", 2207 device_get_nameunit(dev)); 2208 dev->busy--; 2209 if (dev->busy == 0) { 2210 if (dev->parent) 2211 device_unbusy(dev->parent); 2212 dev->state = DS_ATTACHED; 2213 } 2214 } 2215 2216 /** 2217 * @brief Set the DF_QUIET flag for the device 2218 */ 2219 void 2220 device_quiet(device_t dev) 2221 { 2222 dev->flags |= DF_QUIET; 2223 } 2224 2225 /** 2226 * @brief Clear the DF_QUIET flag for the device 2227 */ 2228 void 2229 device_verbose(device_t dev) 2230 { 2231 dev->flags &= ~DF_QUIET; 2232 } 2233 2234 /** 2235 * @brief Return non-zero if the DF_QUIET flag is set on the device 2236 */ 2237 int 2238 device_is_quiet(device_t dev) 2239 { 2240 return ((dev->flags & DF_QUIET) != 0); 2241 } 2242 2243 /** 2244 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2245 */ 2246 int 2247 device_is_enabled(device_t dev) 2248 { 2249 return ((dev->flags & DF_ENABLED) != 0); 2250 } 2251 2252 /** 2253 * @brief Return non-zero if the device was successfully probed 2254 */ 2255 int 2256 device_is_alive(device_t dev) 2257 { 2258 return (dev->state >= DS_ALIVE); 2259 } 2260 2261 /** 2262 * @brief Return non-zero if the device currently has a driver 2263 * attached to it 2264 */ 2265 int 2266 device_is_attached(device_t dev) 2267 { 2268 return (dev->state >= DS_ATTACHED); 2269 } 2270 2271 /** 2272 * @brief Set the devclass of a device 2273 * @see devclass_add_device(). 2274 */ 2275 int 2276 device_set_devclass(device_t dev, const char *classname) 2277 { 2278 devclass_t dc; 2279 int error; 2280 2281 if (!classname) { 2282 if (dev->devclass) 2283 devclass_delete_device(dev->devclass, dev); 2284 return (0); 2285 } 2286 2287 if (dev->devclass) { 2288 printf("device_set_devclass: device class already set\n"); 2289 return (EINVAL); 2290 } 2291 2292 dc = devclass_find_internal(classname, NULL, TRUE); 2293 if (!dc) 2294 return (ENOMEM); 2295 2296 error = devclass_add_device(dc, dev); 2297 2298 bus_data_generation_update(); 2299 return (error); 2300 } 2301 2302 /** 2303 * @brief Set the driver of a device 2304 * 2305 * @retval 0 success 2306 * @retval EBUSY the device already has a driver attached 2307 * @retval ENOMEM a memory allocation failure occurred 2308 */ 2309 int 2310 device_set_driver(device_t dev, driver_t *driver) 2311 { 2312 if (dev->state >= DS_ATTACHED) 2313 return (EBUSY); 2314 2315 if (dev->driver == driver) 2316 return (0); 2317 2318 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2319 free(dev->softc, M_BUS_SC); 2320 dev->softc = NULL; 2321 } 2322 kobj_delete((kobj_t) dev, NULL); 2323 dev->driver = driver; 2324 if (driver) { 2325 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2326 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2327 dev->softc = malloc(driver->size, M_BUS_SC, 2328 M_NOWAIT | M_ZERO); 2329 if (!dev->softc) { 2330 kobj_delete((kobj_t) dev, NULL); 2331 kobj_init((kobj_t) dev, &null_class); 2332 dev->driver = NULL; 2333 return (ENOMEM); 2334 } 2335 } 2336 } else { 2337 kobj_init((kobj_t) dev, &null_class); 2338 } 2339 2340 bus_data_generation_update(); 2341 return (0); 2342 } 2343 2344 /** 2345 * @brief Probe a device, and return this status. 2346 * 2347 * This function is the core of the device autoconfiguration 2348 * system. Its purpose is to select a suitable driver for a device and 2349 * then call that driver to initialise the hardware appropriately. The 2350 * driver is selected by calling the DEVICE_PROBE() method of a set of 2351 * candidate drivers and then choosing the driver which returned the 2352 * best value. This driver is then attached to the device using 2353 * device_attach(). 2354 * 2355 * The set of suitable drivers is taken from the list of drivers in 2356 * the parent device's devclass. If the device was originally created 2357 * with a specific class name (see device_add_child()), only drivers 2358 * with that name are probed, otherwise all drivers in the devclass 2359 * are probed. If no drivers return successful probe values in the 2360 * parent devclass, the search continues in the parent of that 2361 * devclass (see devclass_get_parent()) if any. 2362 * 2363 * @param dev the device to initialise 2364 * 2365 * @retval 0 success 2366 * @retval ENXIO no driver was found 2367 * @retval ENOMEM memory allocation failure 2368 * @retval non-zero some other unix error code 2369 * @retval -1 Device already attached 2370 */ 2371 int 2372 device_probe(device_t dev) 2373 { 2374 int error; 2375 2376 GIANT_REQUIRED; 2377 2378 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2379 return (-1); 2380 2381 if (!(dev->flags & DF_ENABLED)) { 2382 if (bootverbose && device_get_name(dev) != NULL) { 2383 device_print_prettyname(dev); 2384 printf("not probed (disabled)\n"); 2385 } 2386 return (-1); 2387 } 2388 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2389 if (!(dev->flags & DF_DONENOMATCH)) { 2390 BUS_PROBE_NOMATCH(dev->parent, dev); 2391 devnomatch(dev); 2392 dev->flags |= DF_DONENOMATCH; 2393 } 2394 return (error); 2395 } 2396 return (0); 2397 } 2398 2399 /** 2400 * @brief Probe a device and attach a driver if possible 2401 * 2402 * calls device_probe() and attaches if that was successful. 2403 */ 2404 int 2405 device_probe_and_attach(device_t dev) 2406 { 2407 int error; 2408 2409 GIANT_REQUIRED; 2410 2411 error = device_probe(dev); 2412 if (error == -1) 2413 return (0); 2414 else if (error != 0) 2415 return (error); 2416 return (device_attach(dev)); 2417 } 2418 2419 /** 2420 * @brief Attach a device driver to a device 2421 * 2422 * This function is a wrapper around the DEVICE_ATTACH() driver 2423 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2424 * device's sysctl tree, optionally prints a description of the device 2425 * and queues a notification event for user-based device management 2426 * services. 2427 * 2428 * Normally this function is only called internally from 2429 * device_probe_and_attach(). 2430 * 2431 * @param dev the device to initialise 2432 * 2433 * @retval 0 success 2434 * @retval ENXIO no driver was found 2435 * @retval ENOMEM memory allocation failure 2436 * @retval non-zero some other unix error code 2437 */ 2438 int 2439 device_attach(device_t dev) 2440 { 2441 int error; 2442 2443 device_sysctl_init(dev); 2444 if (!device_is_quiet(dev)) 2445 device_print_child(dev->parent, dev); 2446 if ((error = DEVICE_ATTACH(dev)) != 0) { 2447 printf("device_attach: %s%d attach returned %d\n", 2448 dev->driver->name, dev->unit, error); 2449 /* Unset the class; set in device_probe_child */ 2450 if (dev->devclass == NULL) 2451 device_set_devclass(dev, NULL); 2452 device_set_driver(dev, NULL); 2453 device_sysctl_fini(dev); 2454 dev->state = DS_NOTPRESENT; 2455 return (error); 2456 } 2457 device_sysctl_update(dev); 2458 dev->state = DS_ATTACHED; 2459 devadded(dev); 2460 return (0); 2461 } 2462 2463 /** 2464 * @brief Detach a driver from a device 2465 * 2466 * This function is a wrapper around the DEVICE_DETACH() driver 2467 * method. If the call to DEVICE_DETACH() succeeds, it calls 2468 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2469 * notification event for user-based device management services and 2470 * cleans up the device's sysctl tree. 2471 * 2472 * @param dev the device to un-initialise 2473 * 2474 * @retval 0 success 2475 * @retval ENXIO no driver was found 2476 * @retval ENOMEM memory allocation failure 2477 * @retval non-zero some other unix error code 2478 */ 2479 int 2480 device_detach(device_t dev) 2481 { 2482 int error; 2483 2484 GIANT_REQUIRED; 2485 2486 PDEBUG(("%s", DEVICENAME(dev))); 2487 if (dev->state == DS_BUSY) 2488 return (EBUSY); 2489 if (dev->state != DS_ATTACHED) 2490 return (0); 2491 2492 if ((error = DEVICE_DETACH(dev)) != 0) 2493 return (error); 2494 devremoved(dev); 2495 if (!device_is_quiet(dev)) 2496 device_printf(dev, "detached\n"); 2497 if (dev->parent) 2498 BUS_CHILD_DETACHED(dev->parent, dev); 2499 2500 if (!(dev->flags & DF_FIXEDCLASS)) 2501 devclass_delete_device(dev->devclass, dev); 2502 2503 dev->state = DS_NOTPRESENT; 2504 device_set_driver(dev, NULL); 2505 device_set_desc(dev, NULL); 2506 device_sysctl_fini(dev); 2507 2508 return (0); 2509 } 2510 2511 /** 2512 * @brief Tells a driver to quiesce itself. 2513 * 2514 * This function is a wrapper around the DEVICE_QUIESCE() driver 2515 * method. If the call to DEVICE_QUIESCE() succeeds. 2516 * 2517 * @param dev the device to quiesce 2518 * 2519 * @retval 0 success 2520 * @retval ENXIO no driver was found 2521 * @retval ENOMEM memory allocation failure 2522 * @retval non-zero some other unix error code 2523 */ 2524 int 2525 device_quiesce(device_t dev) 2526 { 2527 2528 PDEBUG(("%s", DEVICENAME(dev))); 2529 if (dev->state == DS_BUSY) 2530 return (EBUSY); 2531 if (dev->state != DS_ATTACHED) 2532 return (0); 2533 2534 return (DEVICE_QUIESCE(dev)); 2535 } 2536 2537 /** 2538 * @brief Notify a device of system shutdown 2539 * 2540 * This function calls the DEVICE_SHUTDOWN() driver method if the 2541 * device currently has an attached driver. 2542 * 2543 * @returns the value returned by DEVICE_SHUTDOWN() 2544 */ 2545 int 2546 device_shutdown(device_t dev) 2547 { 2548 if (dev->state < DS_ATTACHED) 2549 return (0); 2550 return (DEVICE_SHUTDOWN(dev)); 2551 } 2552 2553 /** 2554 * @brief Set the unit number of a device 2555 * 2556 * This function can be used to override the unit number used for a 2557 * device (e.g. to wire a device to a pre-configured unit number). 2558 */ 2559 int 2560 device_set_unit(device_t dev, int unit) 2561 { 2562 devclass_t dc; 2563 int err; 2564 2565 dc = device_get_devclass(dev); 2566 if (unit < dc->maxunit && dc->devices[unit]) 2567 return (EBUSY); 2568 err = devclass_delete_device(dc, dev); 2569 if (err) 2570 return (err); 2571 dev->unit = unit; 2572 err = devclass_add_device(dc, dev); 2573 if (err) 2574 return (err); 2575 2576 bus_data_generation_update(); 2577 return (0); 2578 } 2579 2580 /*======================================*/ 2581 /* 2582 * Some useful method implementations to make life easier for bus drivers. 2583 */ 2584 2585 /** 2586 * @brief Initialise a resource list. 2587 * 2588 * @param rl the resource list to initialise 2589 */ 2590 void 2591 resource_list_init(struct resource_list *rl) 2592 { 2593 STAILQ_INIT(rl); 2594 } 2595 2596 /** 2597 * @brief Reclaim memory used by a resource list. 2598 * 2599 * This function frees the memory for all resource entries on the list 2600 * (if any). 2601 * 2602 * @param rl the resource list to free 2603 */ 2604 void 2605 resource_list_free(struct resource_list *rl) 2606 { 2607 struct resource_list_entry *rle; 2608 2609 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2610 if (rle->res) 2611 panic("resource_list_free: resource entry is busy"); 2612 STAILQ_REMOVE_HEAD(rl, link); 2613 free(rle, M_BUS); 2614 } 2615 } 2616 2617 /** 2618 * @brief Add a resource entry. 2619 * 2620 * This function adds a resource entry using the given @p type, @p 2621 * start, @p end and @p count values. A rid value is chosen by 2622 * searching sequentially for the first unused rid starting at zero. 2623 * 2624 * @param rl the resource list to edit 2625 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2626 * @param start the start address of the resource 2627 * @param end the end address of the resource 2628 * @param count XXX end-start+1 2629 */ 2630 int 2631 resource_list_add_next(struct resource_list *rl, int type, u_long start, 2632 u_long end, u_long count) 2633 { 2634 int rid; 2635 2636 rid = 0; 2637 while (resource_list_find(rl, type, rid) != NULL) 2638 rid++; 2639 resource_list_add(rl, type, rid, start, end, count); 2640 return (rid); 2641 } 2642 2643 /** 2644 * @brief Add or modify a resource entry. 2645 * 2646 * If an existing entry exists with the same type and rid, it will be 2647 * modified using the given values of @p start, @p end and @p 2648 * count. If no entry exists, a new one will be created using the 2649 * given values. The resource list entry that matches is then returned. 2650 * 2651 * @param rl the resource list to edit 2652 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2653 * @param rid the resource identifier 2654 * @param start the start address of the resource 2655 * @param end the end address of the resource 2656 * @param count XXX end-start+1 2657 */ 2658 struct resource_list_entry * 2659 resource_list_add(struct resource_list *rl, int type, int rid, 2660 u_long start, u_long end, u_long count) 2661 { 2662 struct resource_list_entry *rle; 2663 2664 rle = resource_list_find(rl, type, rid); 2665 if (!rle) { 2666 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2667 M_NOWAIT); 2668 if (!rle) 2669 panic("resource_list_add: can't record entry"); 2670 STAILQ_INSERT_TAIL(rl, rle, link); 2671 rle->type = type; 2672 rle->rid = rid; 2673 rle->res = NULL; 2674 } 2675 2676 if (rle->res) 2677 panic("resource_list_add: resource entry is busy"); 2678 2679 rle->start = start; 2680 rle->end = end; 2681 rle->count = count; 2682 return (rle); 2683 } 2684 2685 /** 2686 * @brief Find a resource entry by type and rid. 2687 * 2688 * @param rl the resource list to search 2689 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2690 * @param rid the resource identifier 2691 * 2692 * @returns the resource entry pointer or NULL if there is no such 2693 * entry. 2694 */ 2695 struct resource_list_entry * 2696 resource_list_find(struct resource_list *rl, int type, int rid) 2697 { 2698 struct resource_list_entry *rle; 2699 2700 STAILQ_FOREACH(rle, rl, link) { 2701 if (rle->type == type && rle->rid == rid) 2702 return (rle); 2703 } 2704 return (NULL); 2705 } 2706 2707 /** 2708 * @brief Delete a resource entry. 2709 * 2710 * @param rl the resource list to edit 2711 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2712 * @param rid the resource identifier 2713 */ 2714 void 2715 resource_list_delete(struct resource_list *rl, int type, int rid) 2716 { 2717 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2718 2719 if (rle) { 2720 if (rle->res != NULL) 2721 panic("resource_list_delete: resource has not been released"); 2722 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 2723 free(rle, M_BUS); 2724 } 2725 } 2726 2727 /** 2728 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 2729 * 2730 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 2731 * and passing the allocation up to the parent of @p bus. This assumes 2732 * that the first entry of @c device_get_ivars(child) is a struct 2733 * resource_list. This also handles 'passthrough' allocations where a 2734 * child is a remote descendant of bus by passing the allocation up to 2735 * the parent of bus. 2736 * 2737 * Typically, a bus driver would store a list of child resources 2738 * somewhere in the child device's ivars (see device_get_ivars()) and 2739 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 2740 * then call resource_list_alloc() to perform the allocation. 2741 * 2742 * @param rl the resource list to allocate from 2743 * @param bus the parent device of @p child 2744 * @param child the device which is requesting an allocation 2745 * @param type the type of resource to allocate 2746 * @param rid a pointer to the resource identifier 2747 * @param start hint at the start of the resource range - pass 2748 * @c 0UL for any start address 2749 * @param end hint at the end of the resource range - pass 2750 * @c ~0UL for any end address 2751 * @param count hint at the size of range required - pass @c 1 2752 * for any size 2753 * @param flags any extra flags to control the resource 2754 * allocation - see @c RF_XXX flags in 2755 * <sys/rman.h> for details 2756 * 2757 * @returns the resource which was allocated or @c NULL if no 2758 * resource could be allocated 2759 */ 2760 struct resource * 2761 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 2762 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 2763 { 2764 struct resource_list_entry *rle = NULL; 2765 int passthrough = (device_get_parent(child) != bus); 2766 int isdefault = (start == 0UL && end == ~0UL); 2767 2768 if (passthrough) { 2769 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2770 type, rid, start, end, count, flags)); 2771 } 2772 2773 rle = resource_list_find(rl, type, *rid); 2774 2775 if (!rle) 2776 return (NULL); /* no resource of that type/rid */ 2777 2778 if (rle->res) 2779 panic("resource_list_alloc: resource entry is busy"); 2780 2781 if (isdefault) { 2782 start = rle->start; 2783 count = ulmax(count, rle->count); 2784 end = ulmax(rle->end, start + count - 1); 2785 } 2786 2787 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2788 type, rid, start, end, count, flags); 2789 2790 /* 2791 * Record the new range. 2792 */ 2793 if (rle->res) { 2794 rle->start = rman_get_start(rle->res); 2795 rle->end = rman_get_end(rle->res); 2796 rle->count = count; 2797 } 2798 2799 return (rle->res); 2800 } 2801 2802 /** 2803 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 2804 * 2805 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 2806 * used with resource_list_alloc(). 2807 * 2808 * @param rl the resource list which was allocated from 2809 * @param bus the parent device of @p child 2810 * @param child the device which is requesting a release 2811 * @param type the type of resource to allocate 2812 * @param rid the resource identifier 2813 * @param res the resource to release 2814 * 2815 * @retval 0 success 2816 * @retval non-zero a standard unix error code indicating what 2817 * error condition prevented the operation 2818 */ 2819 int 2820 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 2821 int type, int rid, struct resource *res) 2822 { 2823 struct resource_list_entry *rle = NULL; 2824 int passthrough = (device_get_parent(child) != bus); 2825 int error; 2826 2827 if (passthrough) { 2828 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2829 type, rid, res)); 2830 } 2831 2832 rle = resource_list_find(rl, type, rid); 2833 2834 if (!rle) 2835 panic("resource_list_release: can't find resource"); 2836 if (!rle->res) 2837 panic("resource_list_release: resource entry is not busy"); 2838 2839 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2840 type, rid, res); 2841 if (error) 2842 return (error); 2843 2844 rle->res = NULL; 2845 return (0); 2846 } 2847 2848 /** 2849 * @brief Print a description of resources in a resource list 2850 * 2851 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 2852 * The name is printed if at least one resource of the given type is available. 2853 * The format is used to print resource start and end. 2854 * 2855 * @param rl the resource list to print 2856 * @param name the name of @p type, e.g. @c "memory" 2857 * @param type type type of resource entry to print 2858 * @param format printf(9) format string to print resource 2859 * start and end values 2860 * 2861 * @returns the number of characters printed 2862 */ 2863 int 2864 resource_list_print_type(struct resource_list *rl, const char *name, int type, 2865 const char *format) 2866 { 2867 struct resource_list_entry *rle; 2868 int printed, retval; 2869 2870 printed = 0; 2871 retval = 0; 2872 /* Yes, this is kinda cheating */ 2873 STAILQ_FOREACH(rle, rl, link) { 2874 if (rle->type == type) { 2875 if (printed == 0) 2876 retval += printf(" %s ", name); 2877 else 2878 retval += printf(","); 2879 printed++; 2880 retval += printf(format, rle->start); 2881 if (rle->count > 1) { 2882 retval += printf("-"); 2883 retval += printf(format, rle->start + 2884 rle->count - 1); 2885 } 2886 } 2887 } 2888 return (retval); 2889 } 2890 2891 /** 2892 * @brief Releases all the resources in a list. 2893 * 2894 * @param rl The resource list to purge. 2895 * 2896 * @returns nothing 2897 */ 2898 void 2899 resource_list_purge(struct resource_list *rl) 2900 { 2901 struct resource_list_entry *rle; 2902 2903 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2904 if (rle->res) 2905 bus_release_resource(rman_get_device(rle->res), 2906 rle->type, rle->rid, rle->res); 2907 STAILQ_REMOVE_HEAD(rl, link); 2908 free(rle, M_BUS); 2909 } 2910 } 2911 2912 device_t 2913 bus_generic_add_child(device_t dev, int order, const char *name, int unit) 2914 { 2915 2916 return (device_add_child_ordered(dev, order, name, unit)); 2917 } 2918 2919 /** 2920 * @brief Helper function for implementing DEVICE_PROBE() 2921 * 2922 * This function can be used to help implement the DEVICE_PROBE() for 2923 * a bus (i.e. a device which has other devices attached to it). It 2924 * calls the DEVICE_IDENTIFY() method of each driver in the device's 2925 * devclass. 2926 */ 2927 int 2928 bus_generic_probe(device_t dev) 2929 { 2930 devclass_t dc = dev->devclass; 2931 driverlink_t dl; 2932 2933 TAILQ_FOREACH(dl, &dc->drivers, link) { 2934 DEVICE_IDENTIFY(dl->driver, dev); 2935 } 2936 2937 return (0); 2938 } 2939 2940 /** 2941 * @brief Helper function for implementing DEVICE_ATTACH() 2942 * 2943 * This function can be used to help implement the DEVICE_ATTACH() for 2944 * a bus. It calls device_probe_and_attach() for each of the device's 2945 * children. 2946 */ 2947 int 2948 bus_generic_attach(device_t dev) 2949 { 2950 device_t child; 2951 2952 TAILQ_FOREACH(child, &dev->children, link) { 2953 device_probe_and_attach(child); 2954 } 2955 2956 return (0); 2957 } 2958 2959 /** 2960 * @brief Helper function for implementing DEVICE_DETACH() 2961 * 2962 * This function can be used to help implement the DEVICE_DETACH() for 2963 * a bus. It calls device_detach() for each of the device's 2964 * children. 2965 */ 2966 int 2967 bus_generic_detach(device_t dev) 2968 { 2969 device_t child; 2970 int error; 2971 2972 if (dev->state != DS_ATTACHED) 2973 return (EBUSY); 2974 2975 TAILQ_FOREACH(child, &dev->children, link) { 2976 if ((error = device_detach(child)) != 0) 2977 return (error); 2978 } 2979 2980 return (0); 2981 } 2982 2983 /** 2984 * @brief Helper function for implementing DEVICE_SHUTDOWN() 2985 * 2986 * This function can be used to help implement the DEVICE_SHUTDOWN() 2987 * for a bus. It calls device_shutdown() for each of the device's 2988 * children. 2989 */ 2990 int 2991 bus_generic_shutdown(device_t dev) 2992 { 2993 device_t child; 2994 2995 TAILQ_FOREACH(child, &dev->children, link) { 2996 device_shutdown(child); 2997 } 2998 2999 return (0); 3000 } 3001 3002 /** 3003 * @brief Helper function for implementing DEVICE_SUSPEND() 3004 * 3005 * This function can be used to help implement the DEVICE_SUSPEND() 3006 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3007 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3008 * operation is aborted and any devices which were suspended are 3009 * resumed immediately by calling their DEVICE_RESUME() methods. 3010 */ 3011 int 3012 bus_generic_suspend(device_t dev) 3013 { 3014 int error; 3015 device_t child, child2; 3016 3017 TAILQ_FOREACH(child, &dev->children, link) { 3018 error = DEVICE_SUSPEND(child); 3019 if (error) { 3020 for (child2 = TAILQ_FIRST(&dev->children); 3021 child2 && child2 != child; 3022 child2 = TAILQ_NEXT(child2, link)) 3023 DEVICE_RESUME(child2); 3024 return (error); 3025 } 3026 } 3027 return (0); 3028 } 3029 3030 /** 3031 * @brief Helper function for implementing DEVICE_RESUME() 3032 * 3033 * This function can be used to help implement the DEVICE_RESUME() for 3034 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3035 */ 3036 int 3037 bus_generic_resume(device_t dev) 3038 { 3039 device_t child; 3040 3041 TAILQ_FOREACH(child, &dev->children, link) { 3042 DEVICE_RESUME(child); 3043 /* if resume fails, there's nothing we can usefully do... */ 3044 } 3045 return (0); 3046 } 3047 3048 /** 3049 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3050 * 3051 * This function prints the first part of the ascii representation of 3052 * @p child, including its name, unit and description (if any - see 3053 * device_set_desc()). 3054 * 3055 * @returns the number of characters printed 3056 */ 3057 int 3058 bus_print_child_header(device_t dev, device_t child) 3059 { 3060 int retval = 0; 3061 3062 if (device_get_desc(child)) { 3063 retval += device_printf(child, "<%s>", device_get_desc(child)); 3064 } else { 3065 retval += printf("%s", device_get_nameunit(child)); 3066 } 3067 3068 return (retval); 3069 } 3070 3071 /** 3072 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3073 * 3074 * This function prints the last part of the ascii representation of 3075 * @p child, which consists of the string @c " on " followed by the 3076 * name and unit of the @p dev. 3077 * 3078 * @returns the number of characters printed 3079 */ 3080 int 3081 bus_print_child_footer(device_t dev, device_t child) 3082 { 3083 return (printf(" on %s\n", device_get_nameunit(dev))); 3084 } 3085 3086 /** 3087 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3088 * 3089 * This function simply calls bus_print_child_header() followed by 3090 * bus_print_child_footer(). 3091 * 3092 * @returns the number of characters printed 3093 */ 3094 int 3095 bus_generic_print_child(device_t dev, device_t child) 3096 { 3097 int retval = 0; 3098 3099 retval += bus_print_child_header(dev, child); 3100 retval += bus_print_child_footer(dev, child); 3101 3102 return (retval); 3103 } 3104 3105 /** 3106 * @brief Stub function for implementing BUS_READ_IVAR(). 3107 * 3108 * @returns ENOENT 3109 */ 3110 int 3111 bus_generic_read_ivar(device_t dev, device_t child, int index, 3112 uintptr_t * result) 3113 { 3114 return (ENOENT); 3115 } 3116 3117 /** 3118 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3119 * 3120 * @returns ENOENT 3121 */ 3122 int 3123 bus_generic_write_ivar(device_t dev, device_t child, int index, 3124 uintptr_t value) 3125 { 3126 return (ENOENT); 3127 } 3128 3129 /** 3130 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3131 * 3132 * @returns NULL 3133 */ 3134 struct resource_list * 3135 bus_generic_get_resource_list(device_t dev, device_t child) 3136 { 3137 return (NULL); 3138 } 3139 3140 /** 3141 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3142 * 3143 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3144 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3145 * and then calls device_probe_and_attach() for each unattached child. 3146 */ 3147 void 3148 bus_generic_driver_added(device_t dev, driver_t *driver) 3149 { 3150 device_t child; 3151 3152 DEVICE_IDENTIFY(driver, dev); 3153 TAILQ_FOREACH(child, &dev->children, link) { 3154 if (child->state == DS_NOTPRESENT || 3155 (child->flags & DF_REBID)) 3156 device_probe_and_attach(child); 3157 } 3158 } 3159 3160 /** 3161 * @brief Helper function for implementing BUS_SETUP_INTR(). 3162 * 3163 * This simple implementation of BUS_SETUP_INTR() simply calls the 3164 * BUS_SETUP_INTR() method of the parent of @p dev. 3165 */ 3166 int 3167 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3168 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3169 void **cookiep) 3170 { 3171 /* Propagate up the bus hierarchy until someone handles it. */ 3172 if (dev->parent) 3173 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3174 filter, intr, arg, cookiep)); 3175 return (EINVAL); 3176 } 3177 3178 /** 3179 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3180 * 3181 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3182 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3183 */ 3184 int 3185 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3186 void *cookie) 3187 { 3188 /* Propagate up the bus hierarchy until someone handles it. */ 3189 if (dev->parent) 3190 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3191 return (EINVAL); 3192 } 3193 3194 /** 3195 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3196 * 3197 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3198 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3199 */ 3200 struct resource * 3201 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3202 u_long start, u_long end, u_long count, u_int flags) 3203 { 3204 /* Propagate up the bus hierarchy until someone handles it. */ 3205 if (dev->parent) 3206 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3207 start, end, count, flags)); 3208 return (NULL); 3209 } 3210 3211 /** 3212 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3213 * 3214 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3215 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3216 */ 3217 int 3218 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3219 struct resource *r) 3220 { 3221 /* Propagate up the bus hierarchy until someone handles it. */ 3222 if (dev->parent) 3223 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3224 r)); 3225 return (EINVAL); 3226 } 3227 3228 /** 3229 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3230 * 3231 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3232 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3233 */ 3234 int 3235 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3236 struct resource *r) 3237 { 3238 /* Propagate up the bus hierarchy until someone handles it. */ 3239 if (dev->parent) 3240 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3241 r)); 3242 return (EINVAL); 3243 } 3244 3245 /** 3246 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3247 * 3248 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3249 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3250 */ 3251 int 3252 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3253 int rid, struct resource *r) 3254 { 3255 /* Propagate up the bus hierarchy until someone handles it. */ 3256 if (dev->parent) 3257 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3258 r)); 3259 return (EINVAL); 3260 } 3261 3262 /** 3263 * @brief Helper function for implementing BUS_BIND_INTR(). 3264 * 3265 * This simple implementation of BUS_BIND_INTR() simply calls the 3266 * BUS_BIND_INTR() method of the parent of @p dev. 3267 */ 3268 int 3269 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 3270 int cpu) 3271 { 3272 3273 /* Propagate up the bus hierarchy until someone handles it. */ 3274 if (dev->parent) 3275 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 3276 return (EINVAL); 3277 } 3278 3279 /** 3280 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3281 * 3282 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3283 * BUS_CONFIG_INTR() method of the parent of @p dev. 3284 */ 3285 int 3286 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3287 enum intr_polarity pol) 3288 { 3289 3290 /* Propagate up the bus hierarchy until someone handles it. */ 3291 if (dev->parent) 3292 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3293 return (EINVAL); 3294 } 3295 3296 /** 3297 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 3298 * 3299 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 3300 * BUS_GET_DMA_TAG() method of the parent of @p dev. 3301 */ 3302 bus_dma_tag_t 3303 bus_generic_get_dma_tag(device_t dev, device_t child) 3304 { 3305 3306 /* Propagate up the bus hierarchy until someone handles it. */ 3307 if (dev->parent != NULL) 3308 return (BUS_GET_DMA_TAG(dev->parent, child)); 3309 return (NULL); 3310 } 3311 3312 /** 3313 * @brief Helper function for implementing BUS_GET_RESOURCE(). 3314 * 3315 * This implementation of BUS_GET_RESOURCE() uses the 3316 * resource_list_find() function to do most of the work. It calls 3317 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3318 * search. 3319 */ 3320 int 3321 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 3322 u_long *startp, u_long *countp) 3323 { 3324 struct resource_list * rl = NULL; 3325 struct resource_list_entry * rle = NULL; 3326 3327 rl = BUS_GET_RESOURCE_LIST(dev, child); 3328 if (!rl) 3329 return (EINVAL); 3330 3331 rle = resource_list_find(rl, type, rid); 3332 if (!rle) 3333 return (ENOENT); 3334 3335 if (startp) 3336 *startp = rle->start; 3337 if (countp) 3338 *countp = rle->count; 3339 3340 return (0); 3341 } 3342 3343 /** 3344 * @brief Helper function for implementing BUS_SET_RESOURCE(). 3345 * 3346 * This implementation of BUS_SET_RESOURCE() uses the 3347 * resource_list_add() function to do most of the work. It calls 3348 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3349 * edit. 3350 */ 3351 int 3352 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 3353 u_long start, u_long count) 3354 { 3355 struct resource_list * rl = NULL; 3356 3357 rl = BUS_GET_RESOURCE_LIST(dev, child); 3358 if (!rl) 3359 return (EINVAL); 3360 3361 resource_list_add(rl, type, rid, start, (start + count - 1), count); 3362 3363 return (0); 3364 } 3365 3366 /** 3367 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 3368 * 3369 * This implementation of BUS_DELETE_RESOURCE() uses the 3370 * resource_list_delete() function to do most of the work. It calls 3371 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3372 * edit. 3373 */ 3374 void 3375 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 3376 { 3377 struct resource_list * rl = NULL; 3378 3379 rl = BUS_GET_RESOURCE_LIST(dev, child); 3380 if (!rl) 3381 return; 3382 3383 resource_list_delete(rl, type, rid); 3384 3385 return; 3386 } 3387 3388 /** 3389 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3390 * 3391 * This implementation of BUS_RELEASE_RESOURCE() uses the 3392 * resource_list_release() function to do most of the work. It calls 3393 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3394 */ 3395 int 3396 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 3397 int rid, struct resource *r) 3398 { 3399 struct resource_list * rl = NULL; 3400 3401 rl = BUS_GET_RESOURCE_LIST(dev, child); 3402 if (!rl) 3403 return (EINVAL); 3404 3405 return (resource_list_release(rl, dev, child, type, rid, r)); 3406 } 3407 3408 /** 3409 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3410 * 3411 * This implementation of BUS_ALLOC_RESOURCE() uses the 3412 * resource_list_alloc() function to do most of the work. It calls 3413 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3414 */ 3415 struct resource * 3416 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 3417 int *rid, u_long start, u_long end, u_long count, u_int flags) 3418 { 3419 struct resource_list * rl = NULL; 3420 3421 rl = BUS_GET_RESOURCE_LIST(dev, child); 3422 if (!rl) 3423 return (NULL); 3424 3425 return (resource_list_alloc(rl, dev, child, type, rid, 3426 start, end, count, flags)); 3427 } 3428 3429 /** 3430 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 3431 * 3432 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 3433 * BUS_CHILD_PRESENT() method of the parent of @p dev. 3434 */ 3435 int 3436 bus_generic_child_present(device_t dev, device_t child) 3437 { 3438 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 3439 } 3440 3441 /* 3442 * Some convenience functions to make it easier for drivers to use the 3443 * resource-management functions. All these really do is hide the 3444 * indirection through the parent's method table, making for slightly 3445 * less-wordy code. In the future, it might make sense for this code 3446 * to maintain some sort of a list of resources allocated by each device. 3447 */ 3448 3449 int 3450 bus_alloc_resources(device_t dev, struct resource_spec *rs, 3451 struct resource **res) 3452 { 3453 int i; 3454 3455 for (i = 0; rs[i].type != -1; i++) 3456 res[i] = NULL; 3457 for (i = 0; rs[i].type != -1; i++) { 3458 res[i] = bus_alloc_resource_any(dev, 3459 rs[i].type, &rs[i].rid, rs[i].flags); 3460 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 3461 bus_release_resources(dev, rs, res); 3462 return (ENXIO); 3463 } 3464 } 3465 return (0); 3466 } 3467 3468 void 3469 bus_release_resources(device_t dev, const struct resource_spec *rs, 3470 struct resource **res) 3471 { 3472 int i; 3473 3474 for (i = 0; rs[i].type != -1; i++) 3475 if (res[i] != NULL) { 3476 bus_release_resource( 3477 dev, rs[i].type, rs[i].rid, res[i]); 3478 res[i] = NULL; 3479 } 3480 } 3481 3482 /** 3483 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 3484 * 3485 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 3486 * parent of @p dev. 3487 */ 3488 struct resource * 3489 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 3490 u_long count, u_int flags) 3491 { 3492 if (dev->parent == NULL) 3493 return (NULL); 3494 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 3495 count, flags)); 3496 } 3497 3498 /** 3499 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 3500 * 3501 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 3502 * parent of @p dev. 3503 */ 3504 int 3505 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 3506 { 3507 if (dev->parent == NULL) 3508 return (EINVAL); 3509 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3510 } 3511 3512 /** 3513 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 3514 * 3515 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 3516 * parent of @p dev. 3517 */ 3518 int 3519 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 3520 { 3521 if (dev->parent == NULL) 3522 return (EINVAL); 3523 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3524 } 3525 3526 /** 3527 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 3528 * 3529 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 3530 * parent of @p dev. 3531 */ 3532 int 3533 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 3534 { 3535 if (dev->parent == NULL) 3536 return (EINVAL); 3537 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 3538 } 3539 3540 /** 3541 * @brief Wrapper function for BUS_SETUP_INTR(). 3542 * 3543 * This function simply calls the BUS_SETUP_INTR() method of the 3544 * parent of @p dev. 3545 */ 3546 int 3547 bus_setup_intr(device_t dev, struct resource *r, int flags, 3548 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 3549 { 3550 int error; 3551 3552 if (dev->parent == NULL) 3553 return (EINVAL); 3554 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 3555 arg, cookiep); 3556 if (error != 0) 3557 return (error); 3558 if (handler != NULL && !(flags & INTR_MPSAFE)) 3559 device_printf(dev, "[GIANT-LOCKED]\n"); 3560 if (bootverbose && (flags & INTR_MPSAFE)) 3561 device_printf(dev, "[MPSAFE]\n"); 3562 if (filter != NULL) { 3563 if (handler == NULL) 3564 device_printf(dev, "[FILTER]\n"); 3565 else 3566 device_printf(dev, "[FILTER+ITHREAD]\n"); 3567 } else 3568 device_printf(dev, "[ITHREAD]\n"); 3569 return (0); 3570 } 3571 3572 /** 3573 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 3574 * 3575 * This function simply calls the BUS_TEARDOWN_INTR() method of the 3576 * parent of @p dev. 3577 */ 3578 int 3579 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 3580 { 3581 if (dev->parent == NULL) 3582 return (EINVAL); 3583 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 3584 } 3585 3586 /** 3587 * @brief Wrapper function for BUS_BIND_INTR(). 3588 * 3589 * This function simply calls the BUS_BIND_INTR() method of the 3590 * parent of @p dev. 3591 */ 3592 int 3593 bus_bind_intr(device_t dev, struct resource *r, int cpu) 3594 { 3595 if (dev->parent == NULL) 3596 return (EINVAL); 3597 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 3598 } 3599 3600 /** 3601 * @brief Wrapper function for BUS_SET_RESOURCE(). 3602 * 3603 * This function simply calls the BUS_SET_RESOURCE() method of the 3604 * parent of @p dev. 3605 */ 3606 int 3607 bus_set_resource(device_t dev, int type, int rid, 3608 u_long start, u_long count) 3609 { 3610 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 3611 start, count)); 3612 } 3613 3614 /** 3615 * @brief Wrapper function for BUS_GET_RESOURCE(). 3616 * 3617 * This function simply calls the BUS_GET_RESOURCE() method of the 3618 * parent of @p dev. 3619 */ 3620 int 3621 bus_get_resource(device_t dev, int type, int rid, 3622 u_long *startp, u_long *countp) 3623 { 3624 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3625 startp, countp)); 3626 } 3627 3628 /** 3629 * @brief Wrapper function for BUS_GET_RESOURCE(). 3630 * 3631 * This function simply calls the BUS_GET_RESOURCE() method of the 3632 * parent of @p dev and returns the start value. 3633 */ 3634 u_long 3635 bus_get_resource_start(device_t dev, int type, int rid) 3636 { 3637 u_long start, count; 3638 int error; 3639 3640 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3641 &start, &count); 3642 if (error) 3643 return (0); 3644 return (start); 3645 } 3646 3647 /** 3648 * @brief Wrapper function for BUS_GET_RESOURCE(). 3649 * 3650 * This function simply calls the BUS_GET_RESOURCE() method of the 3651 * parent of @p dev and returns the count value. 3652 */ 3653 u_long 3654 bus_get_resource_count(device_t dev, int type, int rid) 3655 { 3656 u_long start, count; 3657 int error; 3658 3659 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3660 &start, &count); 3661 if (error) 3662 return (0); 3663 return (count); 3664 } 3665 3666 /** 3667 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 3668 * 3669 * This function simply calls the BUS_DELETE_RESOURCE() method of the 3670 * parent of @p dev. 3671 */ 3672 void 3673 bus_delete_resource(device_t dev, int type, int rid) 3674 { 3675 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 3676 } 3677 3678 /** 3679 * @brief Wrapper function for BUS_CHILD_PRESENT(). 3680 * 3681 * This function simply calls the BUS_CHILD_PRESENT() method of the 3682 * parent of @p dev. 3683 */ 3684 int 3685 bus_child_present(device_t child) 3686 { 3687 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 3688 } 3689 3690 /** 3691 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 3692 * 3693 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 3694 * parent of @p dev. 3695 */ 3696 int 3697 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 3698 { 3699 device_t parent; 3700 3701 parent = device_get_parent(child); 3702 if (parent == NULL) { 3703 *buf = '\0'; 3704 return (0); 3705 } 3706 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 3707 } 3708 3709 /** 3710 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 3711 * 3712 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 3713 * parent of @p dev. 3714 */ 3715 int 3716 bus_child_location_str(device_t child, char *buf, size_t buflen) 3717 { 3718 device_t parent; 3719 3720 parent = device_get_parent(child); 3721 if (parent == NULL) { 3722 *buf = '\0'; 3723 return (0); 3724 } 3725 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 3726 } 3727 3728 /** 3729 * @brief Wrapper function for BUS_GET_DMA_TAG(). 3730 * 3731 * This function simply calls the BUS_GET_DMA_TAG() method of the 3732 * parent of @p dev. 3733 */ 3734 bus_dma_tag_t 3735 bus_get_dma_tag(device_t dev) 3736 { 3737 device_t parent; 3738 3739 parent = device_get_parent(dev); 3740 if (parent == NULL) 3741 return (NULL); 3742 return (BUS_GET_DMA_TAG(parent, dev)); 3743 } 3744 3745 /* Resume all devices and then notify userland that we're up again. */ 3746 static int 3747 root_resume(device_t dev) 3748 { 3749 int error; 3750 3751 error = bus_generic_resume(dev); 3752 if (error == 0) 3753 devctl_notify("kern", "power", "resume", NULL); 3754 return (error); 3755 } 3756 3757 static int 3758 root_print_child(device_t dev, device_t child) 3759 { 3760 int retval = 0; 3761 3762 retval += bus_print_child_header(dev, child); 3763 retval += printf("\n"); 3764 3765 return (retval); 3766 } 3767 3768 static int 3769 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg, 3770 void **cookiep) 3771 { 3772 /* 3773 * If an interrupt mapping gets to here something bad has happened. 3774 */ 3775 panic("root_setup_intr"); 3776 } 3777 3778 /* 3779 * If we get here, assume that the device is permanant and really is 3780 * present in the system. Removable bus drivers are expected to intercept 3781 * this call long before it gets here. We return -1 so that drivers that 3782 * really care can check vs -1 or some ERRNO returned higher in the food 3783 * chain. 3784 */ 3785 static int 3786 root_child_present(device_t dev, device_t child) 3787 { 3788 return (-1); 3789 } 3790 3791 static kobj_method_t root_methods[] = { 3792 /* Device interface */ 3793 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 3794 KOBJMETHOD(device_suspend, bus_generic_suspend), 3795 KOBJMETHOD(device_resume, root_resume), 3796 3797 /* Bus interface */ 3798 KOBJMETHOD(bus_print_child, root_print_child), 3799 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 3800 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 3801 KOBJMETHOD(bus_setup_intr, root_setup_intr), 3802 KOBJMETHOD(bus_child_present, root_child_present), 3803 3804 { 0, 0 } 3805 }; 3806 3807 static driver_t root_driver = { 3808 "root", 3809 root_methods, 3810 1, /* no softc */ 3811 }; 3812 3813 device_t root_bus; 3814 devclass_t root_devclass; 3815 3816 static int 3817 root_bus_module_handler(module_t mod, int what, void* arg) 3818 { 3819 switch (what) { 3820 case MOD_LOAD: 3821 TAILQ_INIT(&bus_data_devices); 3822 kobj_class_compile((kobj_class_t) &root_driver); 3823 root_bus = make_device(NULL, "root", 0); 3824 root_bus->desc = "System root bus"; 3825 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 3826 root_bus->driver = &root_driver; 3827 root_bus->state = DS_ATTACHED; 3828 root_devclass = devclass_find_internal("root", NULL, FALSE); 3829 devinit(); 3830 return (0); 3831 3832 case MOD_SHUTDOWN: 3833 device_shutdown(root_bus); 3834 return (0); 3835 default: 3836 return (EOPNOTSUPP); 3837 } 3838 3839 return (0); 3840 } 3841 3842 static moduledata_t root_bus_mod = { 3843 "rootbus", 3844 root_bus_module_handler, 3845 0 3846 }; 3847 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 3848 3849 /** 3850 * @brief Automatically configure devices 3851 * 3852 * This function begins the autoconfiguration process by calling 3853 * device_probe_and_attach() for each child of the @c root0 device. 3854 */ 3855 void 3856 root_bus_configure(void) 3857 { 3858 device_t dev; 3859 3860 PDEBUG((".")); 3861 3862 TAILQ_FOREACH(dev, &root_bus->children, link) { 3863 device_probe_and_attach(dev); 3864 } 3865 } 3866 3867 /** 3868 * @brief Module handler for registering device drivers 3869 * 3870 * This module handler is used to automatically register device 3871 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 3872 * devclass_add_driver() for the driver described by the 3873 * driver_module_data structure pointed to by @p arg 3874 */ 3875 int 3876 driver_module_handler(module_t mod, int what, void *arg) 3877 { 3878 int error; 3879 struct driver_module_data *dmd; 3880 devclass_t bus_devclass; 3881 kobj_class_t driver; 3882 3883 dmd = (struct driver_module_data *)arg; 3884 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 3885 error = 0; 3886 3887 switch (what) { 3888 case MOD_LOAD: 3889 if (dmd->dmd_chainevh) 3890 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3891 3892 driver = dmd->dmd_driver; 3893 PDEBUG(("Loading module: driver %s on bus %s", 3894 DRIVERNAME(driver), dmd->dmd_busname)); 3895 error = devclass_add_driver(bus_devclass, driver); 3896 if (error) 3897 break; 3898 3899 /* 3900 * If the driver has any base classes, make the 3901 * devclass inherit from the devclass of the driver's 3902 * first base class. This will allow the system to 3903 * search for drivers in both devclasses for children 3904 * of a device using this driver. 3905 */ 3906 if (driver->baseclasses) { 3907 const char *parentname; 3908 parentname = driver->baseclasses[0]->name; 3909 *dmd->dmd_devclass = 3910 devclass_find_internal(driver->name, 3911 parentname, TRUE); 3912 } else { 3913 *dmd->dmd_devclass = 3914 devclass_find_internal(driver->name, NULL, TRUE); 3915 } 3916 break; 3917 3918 case MOD_UNLOAD: 3919 PDEBUG(("Unloading module: driver %s from bus %s", 3920 DRIVERNAME(dmd->dmd_driver), 3921 dmd->dmd_busname)); 3922 error = devclass_delete_driver(bus_devclass, 3923 dmd->dmd_driver); 3924 3925 if (!error && dmd->dmd_chainevh) 3926 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3927 break; 3928 case MOD_QUIESCE: 3929 PDEBUG(("Quiesce module: driver %s from bus %s", 3930 DRIVERNAME(dmd->dmd_driver), 3931 dmd->dmd_busname)); 3932 error = devclass_quiesce_driver(bus_devclass, 3933 dmd->dmd_driver); 3934 3935 if (!error && dmd->dmd_chainevh) 3936 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3937 break; 3938 default: 3939 error = EOPNOTSUPP; 3940 break; 3941 } 3942 3943 return (error); 3944 } 3945 3946 /** 3947 * @brief Enumerate all hinted devices for this bus. 3948 * 3949 * Walks through the hints for this bus and calls the bus_hinted_child 3950 * routine for each one it fines. It searches first for the specific 3951 * bus that's being probed for hinted children (eg isa0), and then for 3952 * generic children (eg isa). 3953 * 3954 * @param dev bus device to enumerate 3955 */ 3956 void 3957 bus_enumerate_hinted_children(device_t bus) 3958 { 3959 int i; 3960 const char *dname, *busname; 3961 int dunit; 3962 3963 /* 3964 * enumerate all devices on the specific bus 3965 */ 3966 busname = device_get_nameunit(bus); 3967 i = 0; 3968 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 3969 BUS_HINTED_CHILD(bus, dname, dunit); 3970 3971 /* 3972 * and all the generic ones. 3973 */ 3974 busname = device_get_name(bus); 3975 i = 0; 3976 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 3977 BUS_HINTED_CHILD(bus, dname, dunit); 3978 } 3979 3980 #ifdef BUS_DEBUG 3981 3982 /* the _short versions avoid iteration by not calling anything that prints 3983 * more than oneliners. I love oneliners. 3984 */ 3985 3986 static void 3987 print_device_short(device_t dev, int indent) 3988 { 3989 if (!dev) 3990 return; 3991 3992 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 3993 dev->unit, dev->desc, 3994 (dev->parent? "":"no "), 3995 (TAILQ_EMPTY(&dev->children)? "no ":""), 3996 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 3997 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 3998 (dev->flags&DF_WILDCARD? "wildcard,":""), 3999 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4000 (dev->flags&DF_REBID? "rebiddable,":""), 4001 (dev->ivars? "":"no "), 4002 (dev->softc? "":"no "), 4003 dev->busy)); 4004 } 4005 4006 static void 4007 print_device(device_t dev, int indent) 4008 { 4009 if (!dev) 4010 return; 4011 4012 print_device_short(dev, indent); 4013 4014 indentprintf(("Parent:\n")); 4015 print_device_short(dev->parent, indent+1); 4016 indentprintf(("Driver:\n")); 4017 print_driver_short(dev->driver, indent+1); 4018 indentprintf(("Devclass:\n")); 4019 print_devclass_short(dev->devclass, indent+1); 4020 } 4021 4022 void 4023 print_device_tree_short(device_t dev, int indent) 4024 /* print the device and all its children (indented) */ 4025 { 4026 device_t child; 4027 4028 if (!dev) 4029 return; 4030 4031 print_device_short(dev, indent); 4032 4033 TAILQ_FOREACH(child, &dev->children, link) { 4034 print_device_tree_short(child, indent+1); 4035 } 4036 } 4037 4038 void 4039 print_device_tree(device_t dev, int indent) 4040 /* print the device and all its children (indented) */ 4041 { 4042 device_t child; 4043 4044 if (!dev) 4045 return; 4046 4047 print_device(dev, indent); 4048 4049 TAILQ_FOREACH(child, &dev->children, link) { 4050 print_device_tree(child, indent+1); 4051 } 4052 } 4053 4054 static void 4055 print_driver_short(driver_t *driver, int indent) 4056 { 4057 if (!driver) 4058 return; 4059 4060 indentprintf(("driver %s: softc size = %zd\n", 4061 driver->name, driver->size)); 4062 } 4063 4064 static void 4065 print_driver(driver_t *driver, int indent) 4066 { 4067 if (!driver) 4068 return; 4069 4070 print_driver_short(driver, indent); 4071 } 4072 4073 4074 static void 4075 print_driver_list(driver_list_t drivers, int indent) 4076 { 4077 driverlink_t driver; 4078 4079 TAILQ_FOREACH(driver, &drivers, link) { 4080 print_driver(driver->driver, indent); 4081 } 4082 } 4083 4084 static void 4085 print_devclass_short(devclass_t dc, int indent) 4086 { 4087 if ( !dc ) 4088 return; 4089 4090 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4091 } 4092 4093 static void 4094 print_devclass(devclass_t dc, int indent) 4095 { 4096 int i; 4097 4098 if ( !dc ) 4099 return; 4100 4101 print_devclass_short(dc, indent); 4102 indentprintf(("Drivers:\n")); 4103 print_driver_list(dc->drivers, indent+1); 4104 4105 indentprintf(("Devices:\n")); 4106 for (i = 0; i < dc->maxunit; i++) 4107 if (dc->devices[i]) 4108 print_device(dc->devices[i], indent+1); 4109 } 4110 4111 void 4112 print_devclass_list_short(void) 4113 { 4114 devclass_t dc; 4115 4116 printf("Short listing of devclasses, drivers & devices:\n"); 4117 TAILQ_FOREACH(dc, &devclasses, link) { 4118 print_devclass_short(dc, 0); 4119 } 4120 } 4121 4122 void 4123 print_devclass_list(void) 4124 { 4125 devclass_t dc; 4126 4127 printf("Full listing of devclasses, drivers & devices:\n"); 4128 TAILQ_FOREACH(dc, &devclasses, link) { 4129 print_devclass(dc, 0); 4130 } 4131 } 4132 4133 #endif 4134 4135 /* 4136 * User-space access to the device tree. 4137 * 4138 * We implement a small set of nodes: 4139 * 4140 * hw.bus Single integer read method to obtain the 4141 * current generation count. 4142 * hw.bus.devices Reads the entire device tree in flat space. 4143 * hw.bus.rman Resource manager interface 4144 * 4145 * We might like to add the ability to scan devclasses and/or drivers to 4146 * determine what else is currently loaded/available. 4147 */ 4148 4149 static int 4150 sysctl_bus(SYSCTL_HANDLER_ARGS) 4151 { 4152 struct u_businfo ubus; 4153 4154 ubus.ub_version = BUS_USER_VERSION; 4155 ubus.ub_generation = bus_data_generation; 4156 4157 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4158 } 4159 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4160 "bus-related data"); 4161 4162 static int 4163 sysctl_devices(SYSCTL_HANDLER_ARGS) 4164 { 4165 int *name = (int *)arg1; 4166 u_int namelen = arg2; 4167 int index; 4168 struct device *dev; 4169 struct u_device udev; /* XXX this is a bit big */ 4170 int error; 4171 4172 if (namelen != 2) 4173 return (EINVAL); 4174 4175 if (bus_data_generation_check(name[0])) 4176 return (EINVAL); 4177 4178 index = name[1]; 4179 4180 /* 4181 * Scan the list of devices, looking for the requested index. 4182 */ 4183 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 4184 if (index-- == 0) 4185 break; 4186 } 4187 if (dev == NULL) 4188 return (ENOENT); 4189 4190 /* 4191 * Populate the return array. 4192 */ 4193 bzero(&udev, sizeof(udev)); 4194 udev.dv_handle = (uintptr_t)dev; 4195 udev.dv_parent = (uintptr_t)dev->parent; 4196 if (dev->nameunit != NULL) 4197 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 4198 if (dev->desc != NULL) 4199 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 4200 if (dev->driver != NULL && dev->driver->name != NULL) 4201 strlcpy(udev.dv_drivername, dev->driver->name, 4202 sizeof(udev.dv_drivername)); 4203 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 4204 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 4205 udev.dv_devflags = dev->devflags; 4206 udev.dv_flags = dev->flags; 4207 udev.dv_state = dev->state; 4208 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 4209 return (error); 4210 } 4211 4212 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 4213 "system device tree"); 4214 4215 int 4216 bus_data_generation_check(int generation) 4217 { 4218 if (generation != bus_data_generation) 4219 return (1); 4220 4221 /* XXX generate optimised lists here? */ 4222 return (0); 4223 } 4224 4225 void 4226 bus_data_generation_update(void) 4227 { 4228 bus_data_generation++; 4229 } 4230 4231 int 4232 bus_free_resource(device_t dev, int type, struct resource *r) 4233 { 4234 if (r == NULL) 4235 return (0); 4236 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 4237 } 4238