xref: /freebsd/sys/kern/subr_bus.c (revision 4ed925457ab06e83238a5db33e89ccc94b99a713)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/conf.h>
34 #include <sys/filio.h>
35 #include <sys/lock.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/poll.h>
43 #include <sys/proc.h>
44 #include <sys/condvar.h>
45 #include <sys/queue.h>
46 #include <machine/bus.h>
47 #include <sys/rman.h>
48 #include <sys/selinfo.h>
49 #include <sys/signalvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/uio.h>
53 #include <sys/bus.h>
54 #include <sys/interrupt.h>
55 
56 #include <machine/stdarg.h>
57 
58 #include <vm/uma.h>
59 
60 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
61 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
62 
63 /*
64  * Used to attach drivers to devclasses.
65  */
66 typedef struct driverlink *driverlink_t;
67 struct driverlink {
68 	kobj_class_t	driver;
69 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
70 	int		pass;
71 	TAILQ_ENTRY(driverlink) passlink;
72 };
73 
74 /*
75  * Forward declarations
76  */
77 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
78 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
79 typedef TAILQ_HEAD(device_list, device) device_list_t;
80 
81 struct devclass {
82 	TAILQ_ENTRY(devclass) link;
83 	devclass_t	parent;		/* parent in devclass hierarchy */
84 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
85 	char		*name;
86 	device_t	*devices;	/* array of devices indexed by unit */
87 	int		maxunit;	/* size of devices array */
88 	int		flags;
89 #define DC_HAS_CHILDREN		1
90 
91 	struct sysctl_ctx_list sysctl_ctx;
92 	struct sysctl_oid *sysctl_tree;
93 };
94 
95 /**
96  * @brief Implementation of device.
97  */
98 struct device {
99 	/*
100 	 * A device is a kernel object. The first field must be the
101 	 * current ops table for the object.
102 	 */
103 	KOBJ_FIELDS;
104 
105 	/*
106 	 * Device hierarchy.
107 	 */
108 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
109 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
110 	device_t	parent;		/**< parent of this device  */
111 	device_list_t	children;	/**< list of child devices */
112 
113 	/*
114 	 * Details of this device.
115 	 */
116 	driver_t	*driver;	/**< current driver */
117 	devclass_t	devclass;	/**< current device class */
118 	int		unit;		/**< current unit number */
119 	char*		nameunit;	/**< name+unit e.g. foodev0 */
120 	char*		desc;		/**< driver specific description */
121 	int		busy;		/**< count of calls to device_busy() */
122 	device_state_t	state;		/**< current device state  */
123 	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
124 	u_short		flags;		/**< internal device flags  */
125 #define	DF_ENABLED	1		/* device should be probed/attached */
126 #define	DF_FIXEDCLASS	2		/* devclass specified at create time */
127 #define	DF_WILDCARD	4		/* unit was originally wildcard */
128 #define	DF_DESCMALLOCED	8		/* description was malloced */
129 #define	DF_QUIET	16		/* don't print verbose attach message */
130 #define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
131 #define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
132 #define	DF_REBID	128		/* Can rebid after attach */
133 	u_char	order;			/**< order from device_add_child_ordered() */
134 	u_char	pad;
135 	void	*ivars;			/**< instance variables  */
136 	void	*softc;			/**< current driver's variables  */
137 
138 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
139 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
140 };
141 
142 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
143 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
144 
145 #ifdef BUS_DEBUG
146 
147 static int bus_debug = 1;
148 TUNABLE_INT("bus.debug", &bus_debug);
149 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
150     "Debug bus code");
151 
152 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
153 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
154 #define DRIVERNAME(d)	((d)? d->name : "no driver")
155 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
156 
157 /**
158  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
159  * prevent syslog from deleting initial spaces
160  */
161 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
162 
163 static void print_device_short(device_t dev, int indent);
164 static void print_device(device_t dev, int indent);
165 void print_device_tree_short(device_t dev, int indent);
166 void print_device_tree(device_t dev, int indent);
167 static void print_driver_short(driver_t *driver, int indent);
168 static void print_driver(driver_t *driver, int indent);
169 static void print_driver_list(driver_list_t drivers, int indent);
170 static void print_devclass_short(devclass_t dc, int indent);
171 static void print_devclass(devclass_t dc, int indent);
172 void print_devclass_list_short(void);
173 void print_devclass_list(void);
174 
175 #else
176 /* Make the compiler ignore the function calls */
177 #define PDEBUG(a)			/* nop */
178 #define DEVICENAME(d)			/* nop */
179 #define DRIVERNAME(d)			/* nop */
180 #define DEVCLANAME(d)			/* nop */
181 
182 #define print_device_short(d,i)		/* nop */
183 #define print_device(d,i)		/* nop */
184 #define print_device_tree_short(d,i)	/* nop */
185 #define print_device_tree(d,i)		/* nop */
186 #define print_driver_short(d,i)		/* nop */
187 #define print_driver(d,i)		/* nop */
188 #define print_driver_list(d,i)		/* nop */
189 #define print_devclass_short(d,i)	/* nop */
190 #define print_devclass(d,i)		/* nop */
191 #define print_devclass_list_short()	/* nop */
192 #define print_devclass_list()		/* nop */
193 #endif
194 
195 /*
196  * dev sysctl tree
197  */
198 
199 enum {
200 	DEVCLASS_SYSCTL_PARENT,
201 };
202 
203 static int
204 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
205 {
206 	devclass_t dc = (devclass_t)arg1;
207 	const char *value;
208 
209 	switch (arg2) {
210 	case DEVCLASS_SYSCTL_PARENT:
211 		value = dc->parent ? dc->parent->name : "";
212 		break;
213 	default:
214 		return (EINVAL);
215 	}
216 	return (SYSCTL_OUT(req, value, strlen(value)));
217 }
218 
219 static void
220 devclass_sysctl_init(devclass_t dc)
221 {
222 
223 	if (dc->sysctl_tree != NULL)
224 		return;
225 	sysctl_ctx_init(&dc->sysctl_ctx);
226 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
227 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
228 	    CTLFLAG_RD, NULL, "");
229 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
230 	    OID_AUTO, "%parent", CTLFLAG_RD,
231 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
232 	    "parent class");
233 }
234 
235 enum {
236 	DEVICE_SYSCTL_DESC,
237 	DEVICE_SYSCTL_DRIVER,
238 	DEVICE_SYSCTL_LOCATION,
239 	DEVICE_SYSCTL_PNPINFO,
240 	DEVICE_SYSCTL_PARENT,
241 };
242 
243 static int
244 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
245 {
246 	device_t dev = (device_t)arg1;
247 	const char *value;
248 	char *buf;
249 	int error;
250 
251 	buf = NULL;
252 	switch (arg2) {
253 	case DEVICE_SYSCTL_DESC:
254 		value = dev->desc ? dev->desc : "";
255 		break;
256 	case DEVICE_SYSCTL_DRIVER:
257 		value = dev->driver ? dev->driver->name : "";
258 		break;
259 	case DEVICE_SYSCTL_LOCATION:
260 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
261 		bus_child_location_str(dev, buf, 1024);
262 		break;
263 	case DEVICE_SYSCTL_PNPINFO:
264 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
265 		bus_child_pnpinfo_str(dev, buf, 1024);
266 		break;
267 	case DEVICE_SYSCTL_PARENT:
268 		value = dev->parent ? dev->parent->nameunit : "";
269 		break;
270 	default:
271 		return (EINVAL);
272 	}
273 	error = SYSCTL_OUT(req, value, strlen(value));
274 	if (buf != NULL)
275 		free(buf, M_BUS);
276 	return (error);
277 }
278 
279 static void
280 device_sysctl_init(device_t dev)
281 {
282 	devclass_t dc = dev->devclass;
283 
284 	if (dev->sysctl_tree != NULL)
285 		return;
286 	devclass_sysctl_init(dc);
287 	sysctl_ctx_init(&dev->sysctl_ctx);
288 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
289 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
290 	    dev->nameunit + strlen(dc->name),
291 	    CTLFLAG_RD, NULL, "");
292 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
293 	    OID_AUTO, "%desc", CTLFLAG_RD,
294 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
295 	    "device description");
296 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
297 	    OID_AUTO, "%driver", CTLFLAG_RD,
298 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
299 	    "device driver name");
300 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
301 	    OID_AUTO, "%location", CTLFLAG_RD,
302 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
303 	    "device location relative to parent");
304 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
305 	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
306 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
307 	    "device identification");
308 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
309 	    OID_AUTO, "%parent", CTLFLAG_RD,
310 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
311 	    "parent device");
312 }
313 
314 static void
315 device_sysctl_update(device_t dev)
316 {
317 	devclass_t dc = dev->devclass;
318 
319 	if (dev->sysctl_tree == NULL)
320 		return;
321 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
322 }
323 
324 static void
325 device_sysctl_fini(device_t dev)
326 {
327 	if (dev->sysctl_tree == NULL)
328 		return;
329 	sysctl_ctx_free(&dev->sysctl_ctx);
330 	dev->sysctl_tree = NULL;
331 }
332 
333 /*
334  * /dev/devctl implementation
335  */
336 
337 /*
338  * This design allows only one reader for /dev/devctl.  This is not desirable
339  * in the long run, but will get a lot of hair out of this implementation.
340  * Maybe we should make this device a clonable device.
341  *
342  * Also note: we specifically do not attach a device to the device_t tree
343  * to avoid potential chicken and egg problems.  One could argue that all
344  * of this belongs to the root node.  One could also further argue that the
345  * sysctl interface that we have not might more properly be an ioctl
346  * interface, but at this stage of the game, I'm not inclined to rock that
347  * boat.
348  *
349  * I'm also not sure that the SIGIO support is done correctly or not, as
350  * I copied it from a driver that had SIGIO support that likely hasn't been
351  * tested since 3.4 or 2.2.8!
352  */
353 
354 /* Deprecated way to adjust queue length */
355 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
356 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */
357 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
358     0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
359 
360 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
361 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
362 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
363 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
364 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
365     0, sysctl_devctl_queue, "I", "devctl queue length");
366 
367 static d_open_t		devopen;
368 static d_close_t	devclose;
369 static d_read_t		devread;
370 static d_ioctl_t	devioctl;
371 static d_poll_t		devpoll;
372 
373 static struct cdevsw dev_cdevsw = {
374 	.d_version =	D_VERSION,
375 	.d_flags =	D_NEEDGIANT,
376 	.d_open =	devopen,
377 	.d_close =	devclose,
378 	.d_read =	devread,
379 	.d_ioctl =	devioctl,
380 	.d_poll =	devpoll,
381 	.d_name =	"devctl",
382 };
383 
384 struct dev_event_info
385 {
386 	char *dei_data;
387 	TAILQ_ENTRY(dev_event_info) dei_link;
388 };
389 
390 TAILQ_HEAD(devq, dev_event_info);
391 
392 static struct dev_softc
393 {
394 	int	inuse;
395 	int	nonblock;
396 	int	queued;
397 	struct mtx mtx;
398 	struct cv cv;
399 	struct selinfo sel;
400 	struct devq devq;
401 	struct proc *async_proc;
402 } devsoftc;
403 
404 static struct cdev *devctl_dev;
405 
406 static void
407 devinit(void)
408 {
409 	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
410 	    "devctl");
411 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
412 	cv_init(&devsoftc.cv, "dev cv");
413 	TAILQ_INIT(&devsoftc.devq);
414 }
415 
416 static int
417 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
418 {
419 	if (devsoftc.inuse)
420 		return (EBUSY);
421 	/* move to init */
422 	devsoftc.inuse = 1;
423 	devsoftc.nonblock = 0;
424 	devsoftc.async_proc = NULL;
425 	return (0);
426 }
427 
428 static int
429 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
430 {
431 	devsoftc.inuse = 0;
432 	mtx_lock(&devsoftc.mtx);
433 	cv_broadcast(&devsoftc.cv);
434 	mtx_unlock(&devsoftc.mtx);
435 	devsoftc.async_proc = NULL;
436 	return (0);
437 }
438 
439 /*
440  * The read channel for this device is used to report changes to
441  * userland in realtime.  We are required to free the data as well as
442  * the n1 object because we allocate them separately.  Also note that
443  * we return one record at a time.  If you try to read this device a
444  * character at a time, you will lose the rest of the data.  Listening
445  * programs are expected to cope.
446  */
447 static int
448 devread(struct cdev *dev, struct uio *uio, int ioflag)
449 {
450 	struct dev_event_info *n1;
451 	int rv;
452 
453 	mtx_lock(&devsoftc.mtx);
454 	while (TAILQ_EMPTY(&devsoftc.devq)) {
455 		if (devsoftc.nonblock) {
456 			mtx_unlock(&devsoftc.mtx);
457 			return (EAGAIN);
458 		}
459 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
460 		if (rv) {
461 			/*
462 			 * Need to translate ERESTART to EINTR here? -- jake
463 			 */
464 			mtx_unlock(&devsoftc.mtx);
465 			return (rv);
466 		}
467 	}
468 	n1 = TAILQ_FIRST(&devsoftc.devq);
469 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
470 	devsoftc.queued--;
471 	mtx_unlock(&devsoftc.mtx);
472 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
473 	free(n1->dei_data, M_BUS);
474 	free(n1, M_BUS);
475 	return (rv);
476 }
477 
478 static	int
479 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
480 {
481 	switch (cmd) {
482 
483 	case FIONBIO:
484 		if (*(int*)data)
485 			devsoftc.nonblock = 1;
486 		else
487 			devsoftc.nonblock = 0;
488 		return (0);
489 	case FIOASYNC:
490 		if (*(int*)data)
491 			devsoftc.async_proc = td->td_proc;
492 		else
493 			devsoftc.async_proc = NULL;
494 		return (0);
495 
496 		/* (un)Support for other fcntl() calls. */
497 	case FIOCLEX:
498 	case FIONCLEX:
499 	case FIONREAD:
500 	case FIOSETOWN:
501 	case FIOGETOWN:
502 	default:
503 		break;
504 	}
505 	return (ENOTTY);
506 }
507 
508 static	int
509 devpoll(struct cdev *dev, int events, struct thread *td)
510 {
511 	int	revents = 0;
512 
513 	mtx_lock(&devsoftc.mtx);
514 	if (events & (POLLIN | POLLRDNORM)) {
515 		if (!TAILQ_EMPTY(&devsoftc.devq))
516 			revents = events & (POLLIN | POLLRDNORM);
517 		else
518 			selrecord(td, &devsoftc.sel);
519 	}
520 	mtx_unlock(&devsoftc.mtx);
521 
522 	return (revents);
523 }
524 
525 /**
526  * @brief Return whether the userland process is running
527  */
528 boolean_t
529 devctl_process_running(void)
530 {
531 	return (devsoftc.inuse == 1);
532 }
533 
534 /**
535  * @brief Queue data to be read from the devctl device
536  *
537  * Generic interface to queue data to the devctl device.  It is
538  * assumed that @p data is properly formatted.  It is further assumed
539  * that @p data is allocated using the M_BUS malloc type.
540  */
541 void
542 devctl_queue_data(char *data)
543 {
544 	struct dev_event_info *n1 = NULL, *n2 = NULL;
545 	struct proc *p;
546 
547 	if (strlen(data) == 0)
548 		return;
549 	if (devctl_queue_length == 0)
550 		return;
551 	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
552 	if (n1 == NULL)
553 		return;
554 	n1->dei_data = data;
555 	mtx_lock(&devsoftc.mtx);
556 	if (devctl_queue_length == 0) {
557 		free(n1->dei_data, M_BUS);
558 		free(n1, M_BUS);
559 		return;
560 	}
561 	/* Leave at least one spot in the queue... */
562 	while (devsoftc.queued > devctl_queue_length - 1) {
563 		n2 = TAILQ_FIRST(&devsoftc.devq);
564 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
565 		free(n2->dei_data, M_BUS);
566 		free(n2, M_BUS);
567 		devsoftc.queued--;
568 	}
569 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
570 	devsoftc.queued++;
571 	cv_broadcast(&devsoftc.cv);
572 	mtx_unlock(&devsoftc.mtx);
573 	selwakeup(&devsoftc.sel);
574 	p = devsoftc.async_proc;
575 	if (p != NULL) {
576 		PROC_LOCK(p);
577 		psignal(p, SIGIO);
578 		PROC_UNLOCK(p);
579 	}
580 }
581 
582 /**
583  * @brief Send a 'notification' to userland, using standard ways
584  */
585 void
586 devctl_notify(const char *system, const char *subsystem, const char *type,
587     const char *data)
588 {
589 	int len = 0;
590 	char *msg;
591 
592 	if (system == NULL)
593 		return;		/* BOGUS!  Must specify system. */
594 	if (subsystem == NULL)
595 		return;		/* BOGUS!  Must specify subsystem. */
596 	if (type == NULL)
597 		return;		/* BOGUS!  Must specify type. */
598 	len += strlen(" system=") + strlen(system);
599 	len += strlen(" subsystem=") + strlen(subsystem);
600 	len += strlen(" type=") + strlen(type);
601 	/* add in the data message plus newline. */
602 	if (data != NULL)
603 		len += strlen(data);
604 	len += 3;	/* '!', '\n', and NUL */
605 	msg = malloc(len, M_BUS, M_NOWAIT);
606 	if (msg == NULL)
607 		return;		/* Drop it on the floor */
608 	if (data != NULL)
609 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
610 		    system, subsystem, type, data);
611 	else
612 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
613 		    system, subsystem, type);
614 	devctl_queue_data(msg);
615 }
616 
617 /*
618  * Common routine that tries to make sending messages as easy as possible.
619  * We allocate memory for the data, copy strings into that, but do not
620  * free it unless there's an error.  The dequeue part of the driver should
621  * free the data.  We don't send data when the device is disabled.  We do
622  * send data, even when we have no listeners, because we wish to avoid
623  * races relating to startup and restart of listening applications.
624  *
625  * devaddq is designed to string together the type of event, with the
626  * object of that event, plus the plug and play info and location info
627  * for that event.  This is likely most useful for devices, but less
628  * useful for other consumers of this interface.  Those should use
629  * the devctl_queue_data() interface instead.
630  */
631 static void
632 devaddq(const char *type, const char *what, device_t dev)
633 {
634 	char *data = NULL;
635 	char *loc = NULL;
636 	char *pnp = NULL;
637 	const char *parstr;
638 
639 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
640 		return;
641 	data = malloc(1024, M_BUS, M_NOWAIT);
642 	if (data == NULL)
643 		goto bad;
644 
645 	/* get the bus specific location of this device */
646 	loc = malloc(1024, M_BUS, M_NOWAIT);
647 	if (loc == NULL)
648 		goto bad;
649 	*loc = '\0';
650 	bus_child_location_str(dev, loc, 1024);
651 
652 	/* Get the bus specific pnp info of this device */
653 	pnp = malloc(1024, M_BUS, M_NOWAIT);
654 	if (pnp == NULL)
655 		goto bad;
656 	*pnp = '\0';
657 	bus_child_pnpinfo_str(dev, pnp, 1024);
658 
659 	/* Get the parent of this device, or / if high enough in the tree. */
660 	if (device_get_parent(dev) == NULL)
661 		parstr = ".";	/* Or '/' ? */
662 	else
663 		parstr = device_get_nameunit(device_get_parent(dev));
664 	/* String it all together. */
665 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
666 	  parstr);
667 	free(loc, M_BUS);
668 	free(pnp, M_BUS);
669 	devctl_queue_data(data);
670 	return;
671 bad:
672 	free(pnp, M_BUS);
673 	free(loc, M_BUS);
674 	free(data, M_BUS);
675 	return;
676 }
677 
678 /*
679  * A device was added to the tree.  We are called just after it successfully
680  * attaches (that is, probe and attach success for this device).  No call
681  * is made if a device is merely parented into the tree.  See devnomatch
682  * if probe fails.  If attach fails, no notification is sent (but maybe
683  * we should have a different message for this).
684  */
685 static void
686 devadded(device_t dev)
687 {
688 	char *pnp = NULL;
689 	char *tmp = NULL;
690 
691 	pnp = malloc(1024, M_BUS, M_NOWAIT);
692 	if (pnp == NULL)
693 		goto fail;
694 	tmp = malloc(1024, M_BUS, M_NOWAIT);
695 	if (tmp == NULL)
696 		goto fail;
697 	*pnp = '\0';
698 	bus_child_pnpinfo_str(dev, pnp, 1024);
699 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
700 	devaddq("+", tmp, dev);
701 fail:
702 	if (pnp != NULL)
703 		free(pnp, M_BUS);
704 	if (tmp != NULL)
705 		free(tmp, M_BUS);
706 	return;
707 }
708 
709 /*
710  * A device was removed from the tree.  We are called just before this
711  * happens.
712  */
713 static void
714 devremoved(device_t dev)
715 {
716 	char *pnp = NULL;
717 	char *tmp = NULL;
718 
719 	pnp = malloc(1024, M_BUS, M_NOWAIT);
720 	if (pnp == NULL)
721 		goto fail;
722 	tmp = malloc(1024, M_BUS, M_NOWAIT);
723 	if (tmp == NULL)
724 		goto fail;
725 	*pnp = '\0';
726 	bus_child_pnpinfo_str(dev, pnp, 1024);
727 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
728 	devaddq("-", tmp, dev);
729 fail:
730 	if (pnp != NULL)
731 		free(pnp, M_BUS);
732 	if (tmp != NULL)
733 		free(tmp, M_BUS);
734 	return;
735 }
736 
737 /*
738  * Called when there's no match for this device.  This is only called
739  * the first time that no match happens, so we don't keep getting this
740  * message.  Should that prove to be undesirable, we can change it.
741  * This is called when all drivers that can attach to a given bus
742  * decline to accept this device.  Other errors may not be detected.
743  */
744 static void
745 devnomatch(device_t dev)
746 {
747 	devaddq("?", "", dev);
748 }
749 
750 static int
751 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
752 {
753 	struct dev_event_info *n1;
754 	int dis, error;
755 
756 	dis = devctl_queue_length == 0;
757 	error = sysctl_handle_int(oidp, &dis, 0, req);
758 	if (error || !req->newptr)
759 		return (error);
760 	mtx_lock(&devsoftc.mtx);
761 	if (dis) {
762 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
763 			n1 = TAILQ_FIRST(&devsoftc.devq);
764 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
765 			free(n1->dei_data, M_BUS);
766 			free(n1, M_BUS);
767 		}
768 		devsoftc.queued = 0;
769 		devctl_queue_length = 0;
770 	} else {
771 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
772 	}
773 	mtx_unlock(&devsoftc.mtx);
774 	return (0);
775 }
776 
777 static int
778 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
779 {
780 	struct dev_event_info *n1;
781 	int q, error;
782 
783 	q = devctl_queue_length;
784 	error = sysctl_handle_int(oidp, &q, 0, req);
785 	if (error || !req->newptr)
786 		return (error);
787 	if (q < 0)
788 		return (EINVAL);
789 	mtx_lock(&devsoftc.mtx);
790 	devctl_queue_length = q;
791 	while (devsoftc.queued > devctl_queue_length) {
792 		n1 = TAILQ_FIRST(&devsoftc.devq);
793 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
794 		free(n1->dei_data, M_BUS);
795 		free(n1, M_BUS);
796 		devsoftc.queued--;
797 	}
798 	mtx_unlock(&devsoftc.mtx);
799 	return (0);
800 }
801 
802 /* End of /dev/devctl code */
803 
804 static TAILQ_HEAD(,device)	bus_data_devices;
805 static int bus_data_generation = 1;
806 
807 static kobj_method_t null_methods[] = {
808 	KOBJMETHOD_END
809 };
810 
811 DEFINE_CLASS(null, null_methods, 0);
812 
813 /*
814  * Bus pass implementation
815  */
816 
817 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
818 int bus_current_pass = BUS_PASS_ROOT;
819 
820 /**
821  * @internal
822  * @brief Register the pass level of a new driver attachment
823  *
824  * Register a new driver attachment's pass level.  If no driver
825  * attachment with the same pass level has been added, then @p new
826  * will be added to the global passes list.
827  *
828  * @param new		the new driver attachment
829  */
830 static void
831 driver_register_pass(struct driverlink *new)
832 {
833 	struct driverlink *dl;
834 
835 	/* We only consider pass numbers during boot. */
836 	if (bus_current_pass == BUS_PASS_DEFAULT)
837 		return;
838 
839 	/*
840 	 * Walk the passes list.  If we already know about this pass
841 	 * then there is nothing to do.  If we don't, then insert this
842 	 * driver link into the list.
843 	 */
844 	TAILQ_FOREACH(dl, &passes, passlink) {
845 		if (dl->pass < new->pass)
846 			continue;
847 		if (dl->pass == new->pass)
848 			return;
849 		TAILQ_INSERT_BEFORE(dl, new, passlink);
850 		return;
851 	}
852 	TAILQ_INSERT_TAIL(&passes, new, passlink);
853 }
854 
855 /**
856  * @brief Raise the current bus pass
857  *
858  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
859  * method on the root bus to kick off a new device tree scan for each
860  * new pass level that has at least one driver.
861  */
862 void
863 bus_set_pass(int pass)
864 {
865 	struct driverlink *dl;
866 
867 	if (bus_current_pass > pass)
868 		panic("Attempt to lower bus pass level");
869 
870 	TAILQ_FOREACH(dl, &passes, passlink) {
871 		/* Skip pass values below the current pass level. */
872 		if (dl->pass <= bus_current_pass)
873 			continue;
874 
875 		/*
876 		 * Bail once we hit a driver with a pass level that is
877 		 * too high.
878 		 */
879 		if (dl->pass > pass)
880 			break;
881 
882 		/*
883 		 * Raise the pass level to the next level and rescan
884 		 * the tree.
885 		 */
886 		bus_current_pass = dl->pass;
887 		BUS_NEW_PASS(root_bus);
888 	}
889 
890 	/*
891 	 * If there isn't a driver registered for the requested pass,
892 	 * then bus_current_pass might still be less than 'pass'.  Set
893 	 * it to 'pass' in that case.
894 	 */
895 	if (bus_current_pass < pass)
896 		bus_current_pass = pass;
897 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
898 }
899 
900 /*
901  * Devclass implementation
902  */
903 
904 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
905 
906 /**
907  * @internal
908  * @brief Find or create a device class
909  *
910  * If a device class with the name @p classname exists, return it,
911  * otherwise if @p create is non-zero create and return a new device
912  * class.
913  *
914  * If @p parentname is non-NULL, the parent of the devclass is set to
915  * the devclass of that name.
916  *
917  * @param classname	the devclass name to find or create
918  * @param parentname	the parent devclass name or @c NULL
919  * @param create	non-zero to create a devclass
920  */
921 static devclass_t
922 devclass_find_internal(const char *classname, const char *parentname,
923 		       int create)
924 {
925 	devclass_t dc;
926 
927 	PDEBUG(("looking for %s", classname));
928 	if (!classname)
929 		return (NULL);
930 
931 	TAILQ_FOREACH(dc, &devclasses, link) {
932 		if (!strcmp(dc->name, classname))
933 			break;
934 	}
935 
936 	if (create && !dc) {
937 		PDEBUG(("creating %s", classname));
938 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
939 		    M_BUS, M_NOWAIT | M_ZERO);
940 		if (!dc)
941 			return (NULL);
942 		dc->parent = NULL;
943 		dc->name = (char*) (dc + 1);
944 		strcpy(dc->name, classname);
945 		TAILQ_INIT(&dc->drivers);
946 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
947 
948 		bus_data_generation_update();
949 	}
950 
951 	/*
952 	 * If a parent class is specified, then set that as our parent so
953 	 * that this devclass will support drivers for the parent class as
954 	 * well.  If the parent class has the same name don't do this though
955 	 * as it creates a cycle that can trigger an infinite loop in
956 	 * device_probe_child() if a device exists for which there is no
957 	 * suitable driver.
958 	 */
959 	if (parentname && dc && !dc->parent &&
960 	    strcmp(classname, parentname) != 0) {
961 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
962 		dc->parent->flags |= DC_HAS_CHILDREN;
963 	}
964 
965 	return (dc);
966 }
967 
968 /**
969  * @brief Create a device class
970  *
971  * If a device class with the name @p classname exists, return it,
972  * otherwise create and return a new device class.
973  *
974  * @param classname	the devclass name to find or create
975  */
976 devclass_t
977 devclass_create(const char *classname)
978 {
979 	return (devclass_find_internal(classname, NULL, TRUE));
980 }
981 
982 /**
983  * @brief Find a device class
984  *
985  * If a device class with the name @p classname exists, return it,
986  * otherwise return @c NULL.
987  *
988  * @param classname	the devclass name to find
989  */
990 devclass_t
991 devclass_find(const char *classname)
992 {
993 	return (devclass_find_internal(classname, NULL, FALSE));
994 }
995 
996 /**
997  * @brief Register that a device driver has been added to a devclass
998  *
999  * Register that a device driver has been added to a devclass.  This
1000  * is called by devclass_add_driver to accomplish the recursive
1001  * notification of all the children classes of dc, as well as dc.
1002  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1003  * the devclass.  We do a full search here of the devclass list at
1004  * each iteration level to save storing children-lists in the devclass
1005  * structure.  If we ever move beyond a few dozen devices doing this,
1006  * we may need to reevaluate...
1007  *
1008  * @param dc		the devclass to edit
1009  * @param driver	the driver that was just added
1010  */
1011 static void
1012 devclass_driver_added(devclass_t dc, driver_t *driver)
1013 {
1014 	devclass_t parent;
1015 	int i;
1016 
1017 	/*
1018 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1019 	 */
1020 	for (i = 0; i < dc->maxunit; i++)
1021 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1022 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1023 
1024 	/*
1025 	 * Walk through the children classes.  Since we only keep a
1026 	 * single parent pointer around, we walk the entire list of
1027 	 * devclasses looking for children.  We set the
1028 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1029 	 * the parent, so we only walk the list for those devclasses
1030 	 * that have children.
1031 	 */
1032 	if (!(dc->flags & DC_HAS_CHILDREN))
1033 		return;
1034 	parent = dc;
1035 	TAILQ_FOREACH(dc, &devclasses, link) {
1036 		if (dc->parent == parent)
1037 			devclass_driver_added(dc, driver);
1038 	}
1039 }
1040 
1041 /**
1042  * @brief Add a device driver to a device class
1043  *
1044  * Add a device driver to a devclass. This is normally called
1045  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1046  * all devices in the devclass will be called to allow them to attempt
1047  * to re-probe any unmatched children.
1048  *
1049  * @param dc		the devclass to edit
1050  * @param driver	the driver to register
1051  */
1052 static int
1053 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1054 {
1055 	driverlink_t dl;
1056 	const char *parentname;
1057 
1058 	PDEBUG(("%s", DRIVERNAME(driver)));
1059 
1060 	/* Don't allow invalid pass values. */
1061 	if (pass <= BUS_PASS_ROOT)
1062 		return (EINVAL);
1063 
1064 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1065 	if (!dl)
1066 		return (ENOMEM);
1067 
1068 	/*
1069 	 * Compile the driver's methods. Also increase the reference count
1070 	 * so that the class doesn't get freed when the last instance
1071 	 * goes. This means we can safely use static methods and avoids a
1072 	 * double-free in devclass_delete_driver.
1073 	 */
1074 	kobj_class_compile((kobj_class_t) driver);
1075 
1076 	/*
1077 	 * If the driver has any base classes, make the
1078 	 * devclass inherit from the devclass of the driver's
1079 	 * first base class. This will allow the system to
1080 	 * search for drivers in both devclasses for children
1081 	 * of a device using this driver.
1082 	 */
1083 	if (driver->baseclasses)
1084 		parentname = driver->baseclasses[0]->name;
1085 	else
1086 		parentname = NULL;
1087 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1088 
1089 	dl->driver = driver;
1090 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1091 	driver->refs++;		/* XXX: kobj_mtx */
1092 	dl->pass = pass;
1093 	driver_register_pass(dl);
1094 
1095 	devclass_driver_added(dc, driver);
1096 	bus_data_generation_update();
1097 	return (0);
1098 }
1099 
1100 /**
1101  * @brief Delete a device driver from a device class
1102  *
1103  * Delete a device driver from a devclass. This is normally called
1104  * automatically by DRIVER_MODULE().
1105  *
1106  * If the driver is currently attached to any devices,
1107  * devclass_delete_driver() will first attempt to detach from each
1108  * device. If one of the detach calls fails, the driver will not be
1109  * deleted.
1110  *
1111  * @param dc		the devclass to edit
1112  * @param driver	the driver to unregister
1113  */
1114 static int
1115 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1116 {
1117 	devclass_t dc = devclass_find(driver->name);
1118 	driverlink_t dl;
1119 	device_t dev;
1120 	int i;
1121 	int error;
1122 
1123 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1124 
1125 	if (!dc)
1126 		return (0);
1127 
1128 	/*
1129 	 * Find the link structure in the bus' list of drivers.
1130 	 */
1131 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1132 		if (dl->driver == driver)
1133 			break;
1134 	}
1135 
1136 	if (!dl) {
1137 		PDEBUG(("%s not found in %s list", driver->name,
1138 		    busclass->name));
1139 		return (ENOENT);
1140 	}
1141 
1142 	/*
1143 	 * Disassociate from any devices.  We iterate through all the
1144 	 * devices in the devclass of the driver and detach any which are
1145 	 * using the driver and which have a parent in the devclass which
1146 	 * we are deleting from.
1147 	 *
1148 	 * Note that since a driver can be in multiple devclasses, we
1149 	 * should not detach devices which are not children of devices in
1150 	 * the affected devclass.
1151 	 */
1152 	for (i = 0; i < dc->maxunit; i++) {
1153 		if (dc->devices[i]) {
1154 			dev = dc->devices[i];
1155 			if (dev->driver == driver && dev->parent &&
1156 			    dev->parent->devclass == busclass) {
1157 				if ((error = device_detach(dev)) != 0)
1158 					return (error);
1159 				device_set_driver(dev, NULL);
1160 			}
1161 		}
1162 	}
1163 
1164 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1165 	free(dl, M_BUS);
1166 
1167 	/* XXX: kobj_mtx */
1168 	driver->refs--;
1169 	if (driver->refs == 0)
1170 		kobj_class_free((kobj_class_t) driver);
1171 
1172 	bus_data_generation_update();
1173 	return (0);
1174 }
1175 
1176 /**
1177  * @brief Quiesces a set of device drivers from a device class
1178  *
1179  * Quiesce a device driver from a devclass. This is normally called
1180  * automatically by DRIVER_MODULE().
1181  *
1182  * If the driver is currently attached to any devices,
1183  * devclass_quiesece_driver() will first attempt to quiesce each
1184  * device.
1185  *
1186  * @param dc		the devclass to edit
1187  * @param driver	the driver to unregister
1188  */
1189 static int
1190 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1191 {
1192 	devclass_t dc = devclass_find(driver->name);
1193 	driverlink_t dl;
1194 	device_t dev;
1195 	int i;
1196 	int error;
1197 
1198 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1199 
1200 	if (!dc)
1201 		return (0);
1202 
1203 	/*
1204 	 * Find the link structure in the bus' list of drivers.
1205 	 */
1206 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1207 		if (dl->driver == driver)
1208 			break;
1209 	}
1210 
1211 	if (!dl) {
1212 		PDEBUG(("%s not found in %s list", driver->name,
1213 		    busclass->name));
1214 		return (ENOENT);
1215 	}
1216 
1217 	/*
1218 	 * Quiesce all devices.  We iterate through all the devices in
1219 	 * the devclass of the driver and quiesce any which are using
1220 	 * the driver and which have a parent in the devclass which we
1221 	 * are quiescing.
1222 	 *
1223 	 * Note that since a driver can be in multiple devclasses, we
1224 	 * should not quiesce devices which are not children of
1225 	 * devices in the affected devclass.
1226 	 */
1227 	for (i = 0; i < dc->maxunit; i++) {
1228 		if (dc->devices[i]) {
1229 			dev = dc->devices[i];
1230 			if (dev->driver == driver && dev->parent &&
1231 			    dev->parent->devclass == busclass) {
1232 				if ((error = device_quiesce(dev)) != 0)
1233 					return (error);
1234 			}
1235 		}
1236 	}
1237 
1238 	return (0);
1239 }
1240 
1241 /**
1242  * @internal
1243  */
1244 static driverlink_t
1245 devclass_find_driver_internal(devclass_t dc, const char *classname)
1246 {
1247 	driverlink_t dl;
1248 
1249 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1250 
1251 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1252 		if (!strcmp(dl->driver->name, classname))
1253 			return (dl);
1254 	}
1255 
1256 	PDEBUG(("not found"));
1257 	return (NULL);
1258 }
1259 
1260 /**
1261  * @brief Return the name of the devclass
1262  */
1263 const char *
1264 devclass_get_name(devclass_t dc)
1265 {
1266 	return (dc->name);
1267 }
1268 
1269 /**
1270  * @brief Find a device given a unit number
1271  *
1272  * @param dc		the devclass to search
1273  * @param unit		the unit number to search for
1274  *
1275  * @returns		the device with the given unit number or @c
1276  *			NULL if there is no such device
1277  */
1278 device_t
1279 devclass_get_device(devclass_t dc, int unit)
1280 {
1281 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1282 		return (NULL);
1283 	return (dc->devices[unit]);
1284 }
1285 
1286 /**
1287  * @brief Find the softc field of a device given a unit number
1288  *
1289  * @param dc		the devclass to search
1290  * @param unit		the unit number to search for
1291  *
1292  * @returns		the softc field of the device with the given
1293  *			unit number or @c NULL if there is no such
1294  *			device
1295  */
1296 void *
1297 devclass_get_softc(devclass_t dc, int unit)
1298 {
1299 	device_t dev;
1300 
1301 	dev = devclass_get_device(dc, unit);
1302 	if (!dev)
1303 		return (NULL);
1304 
1305 	return (device_get_softc(dev));
1306 }
1307 
1308 /**
1309  * @brief Get a list of devices in the devclass
1310  *
1311  * An array containing a list of all the devices in the given devclass
1312  * is allocated and returned in @p *devlistp. The number of devices
1313  * in the array is returned in @p *devcountp. The caller should free
1314  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1315  *
1316  * @param dc		the devclass to examine
1317  * @param devlistp	points at location for array pointer return
1318  *			value
1319  * @param devcountp	points at location for array size return value
1320  *
1321  * @retval 0		success
1322  * @retval ENOMEM	the array allocation failed
1323  */
1324 int
1325 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1326 {
1327 	int count, i;
1328 	device_t *list;
1329 
1330 	count = devclass_get_count(dc);
1331 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1332 	if (!list)
1333 		return (ENOMEM);
1334 
1335 	count = 0;
1336 	for (i = 0; i < dc->maxunit; i++) {
1337 		if (dc->devices[i]) {
1338 			list[count] = dc->devices[i];
1339 			count++;
1340 		}
1341 	}
1342 
1343 	*devlistp = list;
1344 	*devcountp = count;
1345 
1346 	return (0);
1347 }
1348 
1349 /**
1350  * @brief Get a list of drivers in the devclass
1351  *
1352  * An array containing a list of pointers to all the drivers in the
1353  * given devclass is allocated and returned in @p *listp.  The number
1354  * of drivers in the array is returned in @p *countp. The caller should
1355  * free the array using @c free(p, M_TEMP).
1356  *
1357  * @param dc		the devclass to examine
1358  * @param listp		gives location for array pointer return value
1359  * @param countp	gives location for number of array elements
1360  *			return value
1361  *
1362  * @retval 0		success
1363  * @retval ENOMEM	the array allocation failed
1364  */
1365 int
1366 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1367 {
1368 	driverlink_t dl;
1369 	driver_t **list;
1370 	int count;
1371 
1372 	count = 0;
1373 	TAILQ_FOREACH(dl, &dc->drivers, link)
1374 		count++;
1375 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1376 	if (list == NULL)
1377 		return (ENOMEM);
1378 
1379 	count = 0;
1380 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1381 		list[count] = dl->driver;
1382 		count++;
1383 	}
1384 	*listp = list;
1385 	*countp = count;
1386 
1387 	return (0);
1388 }
1389 
1390 /**
1391  * @brief Get the number of devices in a devclass
1392  *
1393  * @param dc		the devclass to examine
1394  */
1395 int
1396 devclass_get_count(devclass_t dc)
1397 {
1398 	int count, i;
1399 
1400 	count = 0;
1401 	for (i = 0; i < dc->maxunit; i++)
1402 		if (dc->devices[i])
1403 			count++;
1404 	return (count);
1405 }
1406 
1407 /**
1408  * @brief Get the maximum unit number used in a devclass
1409  *
1410  * Note that this is one greater than the highest currently-allocated
1411  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1412  * that not even the devclass has been allocated yet.
1413  *
1414  * @param dc		the devclass to examine
1415  */
1416 int
1417 devclass_get_maxunit(devclass_t dc)
1418 {
1419 	if (dc == NULL)
1420 		return (-1);
1421 	return (dc->maxunit);
1422 }
1423 
1424 /**
1425  * @brief Find a free unit number in a devclass
1426  *
1427  * This function searches for the first unused unit number greater
1428  * that or equal to @p unit.
1429  *
1430  * @param dc		the devclass to examine
1431  * @param unit		the first unit number to check
1432  */
1433 int
1434 devclass_find_free_unit(devclass_t dc, int unit)
1435 {
1436 	if (dc == NULL)
1437 		return (unit);
1438 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1439 		unit++;
1440 	return (unit);
1441 }
1442 
1443 /**
1444  * @brief Set the parent of a devclass
1445  *
1446  * The parent class is normally initialised automatically by
1447  * DRIVER_MODULE().
1448  *
1449  * @param dc		the devclass to edit
1450  * @param pdc		the new parent devclass
1451  */
1452 void
1453 devclass_set_parent(devclass_t dc, devclass_t pdc)
1454 {
1455 	dc->parent = pdc;
1456 }
1457 
1458 /**
1459  * @brief Get the parent of a devclass
1460  *
1461  * @param dc		the devclass to examine
1462  */
1463 devclass_t
1464 devclass_get_parent(devclass_t dc)
1465 {
1466 	return (dc->parent);
1467 }
1468 
1469 struct sysctl_ctx_list *
1470 devclass_get_sysctl_ctx(devclass_t dc)
1471 {
1472 	return (&dc->sysctl_ctx);
1473 }
1474 
1475 struct sysctl_oid *
1476 devclass_get_sysctl_tree(devclass_t dc)
1477 {
1478 	return (dc->sysctl_tree);
1479 }
1480 
1481 /**
1482  * @internal
1483  * @brief Allocate a unit number
1484  *
1485  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1486  * will do). The allocated unit number is returned in @p *unitp.
1487 
1488  * @param dc		the devclass to allocate from
1489  * @param unitp		points at the location for the allocated unit
1490  *			number
1491  *
1492  * @retval 0		success
1493  * @retval EEXIST	the requested unit number is already allocated
1494  * @retval ENOMEM	memory allocation failure
1495  */
1496 static int
1497 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1498 {
1499 	const char *s;
1500 	int unit = *unitp;
1501 
1502 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1503 
1504 	/* Ask the parent bus if it wants to wire this device. */
1505 	if (unit == -1)
1506 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1507 		    &unit);
1508 
1509 	/* If we were given a wired unit number, check for existing device */
1510 	/* XXX imp XXX */
1511 	if (unit != -1) {
1512 		if (unit >= 0 && unit < dc->maxunit &&
1513 		    dc->devices[unit] != NULL) {
1514 			if (bootverbose)
1515 				printf("%s: %s%d already exists; skipping it\n",
1516 				    dc->name, dc->name, *unitp);
1517 			return (EEXIST);
1518 		}
1519 	} else {
1520 		/* Unwired device, find the next available slot for it */
1521 		unit = 0;
1522 		for (unit = 0;; unit++) {
1523 			/* If there is an "at" hint for a unit then skip it. */
1524 			if (resource_string_value(dc->name, unit, "at", &s) ==
1525 			    0)
1526 				continue;
1527 
1528 			/* If this device slot is already in use, skip it. */
1529 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1530 				continue;
1531 
1532 			break;
1533 		}
1534 	}
1535 
1536 	/*
1537 	 * We've selected a unit beyond the length of the table, so let's
1538 	 * extend the table to make room for all units up to and including
1539 	 * this one.
1540 	 */
1541 	if (unit >= dc->maxunit) {
1542 		device_t *newlist, *oldlist;
1543 		int newsize;
1544 
1545 		oldlist = dc->devices;
1546 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1547 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1548 		if (!newlist)
1549 			return (ENOMEM);
1550 		if (oldlist != NULL)
1551 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1552 		bzero(newlist + dc->maxunit,
1553 		    sizeof(device_t) * (newsize - dc->maxunit));
1554 		dc->devices = newlist;
1555 		dc->maxunit = newsize;
1556 		if (oldlist != NULL)
1557 			free(oldlist, M_BUS);
1558 	}
1559 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1560 
1561 	*unitp = unit;
1562 	return (0);
1563 }
1564 
1565 /**
1566  * @internal
1567  * @brief Add a device to a devclass
1568  *
1569  * A unit number is allocated for the device (using the device's
1570  * preferred unit number if any) and the device is registered in the
1571  * devclass. This allows the device to be looked up by its unit
1572  * number, e.g. by decoding a dev_t minor number.
1573  *
1574  * @param dc		the devclass to add to
1575  * @param dev		the device to add
1576  *
1577  * @retval 0		success
1578  * @retval EEXIST	the requested unit number is already allocated
1579  * @retval ENOMEM	memory allocation failure
1580  */
1581 static int
1582 devclass_add_device(devclass_t dc, device_t dev)
1583 {
1584 	int buflen, error;
1585 
1586 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1587 
1588 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1589 	if (buflen < 0)
1590 		return (ENOMEM);
1591 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1592 	if (!dev->nameunit)
1593 		return (ENOMEM);
1594 
1595 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1596 		free(dev->nameunit, M_BUS);
1597 		dev->nameunit = NULL;
1598 		return (error);
1599 	}
1600 	dc->devices[dev->unit] = dev;
1601 	dev->devclass = dc;
1602 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1603 
1604 	return (0);
1605 }
1606 
1607 /**
1608  * @internal
1609  * @brief Delete a device from a devclass
1610  *
1611  * The device is removed from the devclass's device list and its unit
1612  * number is freed.
1613 
1614  * @param dc		the devclass to delete from
1615  * @param dev		the device to delete
1616  *
1617  * @retval 0		success
1618  */
1619 static int
1620 devclass_delete_device(devclass_t dc, device_t dev)
1621 {
1622 	if (!dc || !dev)
1623 		return (0);
1624 
1625 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1626 
1627 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1628 		panic("devclass_delete_device: inconsistent device class");
1629 	dc->devices[dev->unit] = NULL;
1630 	if (dev->flags & DF_WILDCARD)
1631 		dev->unit = -1;
1632 	dev->devclass = NULL;
1633 	free(dev->nameunit, M_BUS);
1634 	dev->nameunit = NULL;
1635 
1636 	return (0);
1637 }
1638 
1639 /**
1640  * @internal
1641  * @brief Make a new device and add it as a child of @p parent
1642  *
1643  * @param parent	the parent of the new device
1644  * @param name		the devclass name of the new device or @c NULL
1645  *			to leave the devclass unspecified
1646  * @parem unit		the unit number of the new device of @c -1 to
1647  *			leave the unit number unspecified
1648  *
1649  * @returns the new device
1650  */
1651 static device_t
1652 make_device(device_t parent, const char *name, int unit)
1653 {
1654 	device_t dev;
1655 	devclass_t dc;
1656 
1657 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1658 
1659 	if (name) {
1660 		dc = devclass_find_internal(name, NULL, TRUE);
1661 		if (!dc) {
1662 			printf("make_device: can't find device class %s\n",
1663 			    name);
1664 			return (NULL);
1665 		}
1666 	} else {
1667 		dc = NULL;
1668 	}
1669 
1670 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1671 	if (!dev)
1672 		return (NULL);
1673 
1674 	dev->parent = parent;
1675 	TAILQ_INIT(&dev->children);
1676 	kobj_init((kobj_t) dev, &null_class);
1677 	dev->driver = NULL;
1678 	dev->devclass = NULL;
1679 	dev->unit = unit;
1680 	dev->nameunit = NULL;
1681 	dev->desc = NULL;
1682 	dev->busy = 0;
1683 	dev->devflags = 0;
1684 	dev->flags = DF_ENABLED;
1685 	dev->order = 0;
1686 	if (unit == -1)
1687 		dev->flags |= DF_WILDCARD;
1688 	if (name) {
1689 		dev->flags |= DF_FIXEDCLASS;
1690 		if (devclass_add_device(dc, dev)) {
1691 			kobj_delete((kobj_t) dev, M_BUS);
1692 			return (NULL);
1693 		}
1694 	}
1695 	dev->ivars = NULL;
1696 	dev->softc = NULL;
1697 
1698 	dev->state = DS_NOTPRESENT;
1699 
1700 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1701 	bus_data_generation_update();
1702 
1703 	return (dev);
1704 }
1705 
1706 /**
1707  * @internal
1708  * @brief Print a description of a device.
1709  */
1710 static int
1711 device_print_child(device_t dev, device_t child)
1712 {
1713 	int retval = 0;
1714 
1715 	if (device_is_alive(child))
1716 		retval += BUS_PRINT_CHILD(dev, child);
1717 	else
1718 		retval += device_printf(child, " not found\n");
1719 
1720 	return (retval);
1721 }
1722 
1723 /**
1724  * @brief Create a new device
1725  *
1726  * This creates a new device and adds it as a child of an existing
1727  * parent device. The new device will be added after the last existing
1728  * child with order zero.
1729  *
1730  * @param dev		the device which will be the parent of the
1731  *			new child device
1732  * @param name		devclass name for new device or @c NULL if not
1733  *			specified
1734  * @param unit		unit number for new device or @c -1 if not
1735  *			specified
1736  *
1737  * @returns		the new device
1738  */
1739 device_t
1740 device_add_child(device_t dev, const char *name, int unit)
1741 {
1742 	return (device_add_child_ordered(dev, 0, name, unit));
1743 }
1744 
1745 /**
1746  * @brief Create a new device
1747  *
1748  * This creates a new device and adds it as a child of an existing
1749  * parent device. The new device will be added after the last existing
1750  * child with the same order.
1751  *
1752  * @param dev		the device which will be the parent of the
1753  *			new child device
1754  * @param order		a value which is used to partially sort the
1755  *			children of @p dev - devices created using
1756  *			lower values of @p order appear first in @p
1757  *			dev's list of children
1758  * @param name		devclass name for new device or @c NULL if not
1759  *			specified
1760  * @param unit		unit number for new device or @c -1 if not
1761  *			specified
1762  *
1763  * @returns		the new device
1764  */
1765 device_t
1766 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1767 {
1768 	device_t child;
1769 	device_t place;
1770 
1771 	PDEBUG(("%s at %s with order %d as unit %d",
1772 	    name, DEVICENAME(dev), order, unit));
1773 
1774 	child = make_device(dev, name, unit);
1775 	if (child == NULL)
1776 		return (child);
1777 	child->order = order;
1778 
1779 	TAILQ_FOREACH(place, &dev->children, link) {
1780 		if (place->order > order)
1781 			break;
1782 	}
1783 
1784 	if (place) {
1785 		/*
1786 		 * The device 'place' is the first device whose order is
1787 		 * greater than the new child.
1788 		 */
1789 		TAILQ_INSERT_BEFORE(place, child, link);
1790 	} else {
1791 		/*
1792 		 * The new child's order is greater or equal to the order of
1793 		 * any existing device. Add the child to the tail of the list.
1794 		 */
1795 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1796 	}
1797 
1798 	bus_data_generation_update();
1799 	return (child);
1800 }
1801 
1802 /**
1803  * @brief Delete a device
1804  *
1805  * This function deletes a device along with all of its children. If
1806  * the device currently has a driver attached to it, the device is
1807  * detached first using device_detach().
1808  *
1809  * @param dev		the parent device
1810  * @param child		the device to delete
1811  *
1812  * @retval 0		success
1813  * @retval non-zero	a unit error code describing the error
1814  */
1815 int
1816 device_delete_child(device_t dev, device_t child)
1817 {
1818 	int error;
1819 	device_t grandchild;
1820 
1821 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1822 
1823 	/* remove children first */
1824 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1825 		error = device_delete_child(child, grandchild);
1826 		if (error)
1827 			return (error);
1828 	}
1829 
1830 	if ((error = device_detach(child)) != 0)
1831 		return (error);
1832 	if (child->devclass)
1833 		devclass_delete_device(child->devclass, child);
1834 	TAILQ_REMOVE(&dev->children, child, link);
1835 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1836 	kobj_delete((kobj_t) child, M_BUS);
1837 
1838 	bus_data_generation_update();
1839 	return (0);
1840 }
1841 
1842 /**
1843  * @brief Find a device given a unit number
1844  *
1845  * This is similar to devclass_get_devices() but only searches for
1846  * devices which have @p dev as a parent.
1847  *
1848  * @param dev		the parent device to search
1849  * @param unit		the unit number to search for.  If the unit is -1,
1850  *			return the first child of @p dev which has name
1851  *			@p classname (that is, the one with the lowest unit.)
1852  *
1853  * @returns		the device with the given unit number or @c
1854  *			NULL if there is no such device
1855  */
1856 device_t
1857 device_find_child(device_t dev, const char *classname, int unit)
1858 {
1859 	devclass_t dc;
1860 	device_t child;
1861 
1862 	dc = devclass_find(classname);
1863 	if (!dc)
1864 		return (NULL);
1865 
1866 	if (unit != -1) {
1867 		child = devclass_get_device(dc, unit);
1868 		if (child && child->parent == dev)
1869 			return (child);
1870 	} else {
1871 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1872 			child = devclass_get_device(dc, unit);
1873 			if (child && child->parent == dev)
1874 				return (child);
1875 		}
1876 	}
1877 	return (NULL);
1878 }
1879 
1880 /**
1881  * @internal
1882  */
1883 static driverlink_t
1884 first_matching_driver(devclass_t dc, device_t dev)
1885 {
1886 	if (dev->devclass)
1887 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1888 	return (TAILQ_FIRST(&dc->drivers));
1889 }
1890 
1891 /**
1892  * @internal
1893  */
1894 static driverlink_t
1895 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1896 {
1897 	if (dev->devclass) {
1898 		driverlink_t dl;
1899 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1900 			if (!strcmp(dev->devclass->name, dl->driver->name))
1901 				return (dl);
1902 		return (NULL);
1903 	}
1904 	return (TAILQ_NEXT(last, link));
1905 }
1906 
1907 /**
1908  * @internal
1909  */
1910 int
1911 device_probe_child(device_t dev, device_t child)
1912 {
1913 	devclass_t dc;
1914 	driverlink_t best = NULL;
1915 	driverlink_t dl;
1916 	int result, pri = 0;
1917 	int hasclass = (child->devclass != NULL);
1918 
1919 	GIANT_REQUIRED;
1920 
1921 	dc = dev->devclass;
1922 	if (!dc)
1923 		panic("device_probe_child: parent device has no devclass");
1924 
1925 	/*
1926 	 * If the state is already probed, then return.  However, don't
1927 	 * return if we can rebid this object.
1928 	 */
1929 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1930 		return (0);
1931 
1932 	for (; dc; dc = dc->parent) {
1933 		for (dl = first_matching_driver(dc, child);
1934 		     dl;
1935 		     dl = next_matching_driver(dc, child, dl)) {
1936 
1937 			/* If this driver's pass is too high, then ignore it. */
1938 			if (dl->pass > bus_current_pass)
1939 				continue;
1940 
1941 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1942 			device_set_driver(child, dl->driver);
1943 			if (!hasclass) {
1944 				if (device_set_devclass(child, dl->driver->name)) {
1945 					printf("driver bug: Unable to set devclass (devname: %s)\n",
1946 					    (child ? device_get_name(child) :
1947 						"no device"));
1948 					device_set_driver(child, NULL);
1949 					continue;
1950 				}
1951 			}
1952 
1953 			/* Fetch any flags for the device before probing. */
1954 			resource_int_value(dl->driver->name, child->unit,
1955 			    "flags", &child->devflags);
1956 
1957 			result = DEVICE_PROBE(child);
1958 
1959 			/* Reset flags and devclass before the next probe. */
1960 			child->devflags = 0;
1961 			if (!hasclass)
1962 				device_set_devclass(child, NULL);
1963 
1964 			/*
1965 			 * If the driver returns SUCCESS, there can be
1966 			 * no higher match for this device.
1967 			 */
1968 			if (result == 0) {
1969 				best = dl;
1970 				pri = 0;
1971 				break;
1972 			}
1973 
1974 			/*
1975 			 * The driver returned an error so it
1976 			 * certainly doesn't match.
1977 			 */
1978 			if (result > 0) {
1979 				device_set_driver(child, NULL);
1980 				continue;
1981 			}
1982 
1983 			/*
1984 			 * A priority lower than SUCCESS, remember the
1985 			 * best matching driver. Initialise the value
1986 			 * of pri for the first match.
1987 			 */
1988 			if (best == NULL || result > pri) {
1989 				/*
1990 				 * Probes that return BUS_PROBE_NOWILDCARD
1991 				 * or lower only match when they are set
1992 				 * in stone by the parent bus.
1993 				 */
1994 				if (result <= BUS_PROBE_NOWILDCARD &&
1995 				    child->flags & DF_WILDCARD)
1996 					continue;
1997 				best = dl;
1998 				pri = result;
1999 				continue;
2000 			}
2001 		}
2002 		/*
2003 		 * If we have an unambiguous match in this devclass,
2004 		 * don't look in the parent.
2005 		 */
2006 		if (best && pri == 0)
2007 			break;
2008 	}
2009 
2010 	/*
2011 	 * If we found a driver, change state and initialise the devclass.
2012 	 */
2013 	/* XXX What happens if we rebid and got no best? */
2014 	if (best) {
2015 		/*
2016 		 * If this device was atached, and we were asked to
2017 		 * rescan, and it is a different driver, then we have
2018 		 * to detach the old driver and reattach this new one.
2019 		 * Note, we don't have to check for DF_REBID here
2020 		 * because if the state is > DS_ALIVE, we know it must
2021 		 * be.
2022 		 *
2023 		 * This assumes that all DF_REBID drivers can have
2024 		 * their probe routine called at any time and that
2025 		 * they are idempotent as well as completely benign in
2026 		 * normal operations.
2027 		 *
2028 		 * We also have to make sure that the detach
2029 		 * succeeded, otherwise we fail the operation (or
2030 		 * maybe it should just fail silently?  I'm torn).
2031 		 */
2032 		if (child->state > DS_ALIVE && best->driver != child->driver)
2033 			if ((result = device_detach(dev)) != 0)
2034 				return (result);
2035 
2036 		/* Set the winning driver, devclass, and flags. */
2037 		if (!child->devclass) {
2038 			result = device_set_devclass(child, best->driver->name);
2039 			if (result != 0)
2040 				return (result);
2041 		}
2042 		device_set_driver(child, best->driver);
2043 		resource_int_value(best->driver->name, child->unit,
2044 		    "flags", &child->devflags);
2045 
2046 		if (pri < 0) {
2047 			/*
2048 			 * A bit bogus. Call the probe method again to make
2049 			 * sure that we have the right description.
2050 			 */
2051 			DEVICE_PROBE(child);
2052 #if 0
2053 			child->flags |= DF_REBID;
2054 #endif
2055 		} else
2056 			child->flags &= ~DF_REBID;
2057 		child->state = DS_ALIVE;
2058 
2059 		bus_data_generation_update();
2060 		return (0);
2061 	}
2062 
2063 	return (ENXIO);
2064 }
2065 
2066 /**
2067  * @brief Return the parent of a device
2068  */
2069 device_t
2070 device_get_parent(device_t dev)
2071 {
2072 	return (dev->parent);
2073 }
2074 
2075 /**
2076  * @brief Get a list of children of a device
2077  *
2078  * An array containing a list of all the children of the given device
2079  * is allocated and returned in @p *devlistp. The number of devices
2080  * in the array is returned in @p *devcountp. The caller should free
2081  * the array using @c free(p, M_TEMP).
2082  *
2083  * @param dev		the device to examine
2084  * @param devlistp	points at location for array pointer return
2085  *			value
2086  * @param devcountp	points at location for array size return value
2087  *
2088  * @retval 0		success
2089  * @retval ENOMEM	the array allocation failed
2090  */
2091 int
2092 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2093 {
2094 	int count;
2095 	device_t child;
2096 	device_t *list;
2097 
2098 	count = 0;
2099 	TAILQ_FOREACH(child, &dev->children, link) {
2100 		count++;
2101 	}
2102 
2103 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2104 	if (!list)
2105 		return (ENOMEM);
2106 
2107 	count = 0;
2108 	TAILQ_FOREACH(child, &dev->children, link) {
2109 		list[count] = child;
2110 		count++;
2111 	}
2112 
2113 	*devlistp = list;
2114 	*devcountp = count;
2115 
2116 	return (0);
2117 }
2118 
2119 /**
2120  * @brief Return the current driver for the device or @c NULL if there
2121  * is no driver currently attached
2122  */
2123 driver_t *
2124 device_get_driver(device_t dev)
2125 {
2126 	return (dev->driver);
2127 }
2128 
2129 /**
2130  * @brief Return the current devclass for the device or @c NULL if
2131  * there is none.
2132  */
2133 devclass_t
2134 device_get_devclass(device_t dev)
2135 {
2136 	return (dev->devclass);
2137 }
2138 
2139 /**
2140  * @brief Return the name of the device's devclass or @c NULL if there
2141  * is none.
2142  */
2143 const char *
2144 device_get_name(device_t dev)
2145 {
2146 	if (dev != NULL && dev->devclass)
2147 		return (devclass_get_name(dev->devclass));
2148 	return (NULL);
2149 }
2150 
2151 /**
2152  * @brief Return a string containing the device's devclass name
2153  * followed by an ascii representation of the device's unit number
2154  * (e.g. @c "foo2").
2155  */
2156 const char *
2157 device_get_nameunit(device_t dev)
2158 {
2159 	return (dev->nameunit);
2160 }
2161 
2162 /**
2163  * @brief Return the device's unit number.
2164  */
2165 int
2166 device_get_unit(device_t dev)
2167 {
2168 	return (dev->unit);
2169 }
2170 
2171 /**
2172  * @brief Return the device's description string
2173  */
2174 const char *
2175 device_get_desc(device_t dev)
2176 {
2177 	return (dev->desc);
2178 }
2179 
2180 /**
2181  * @brief Return the device's flags
2182  */
2183 u_int32_t
2184 device_get_flags(device_t dev)
2185 {
2186 	return (dev->devflags);
2187 }
2188 
2189 struct sysctl_ctx_list *
2190 device_get_sysctl_ctx(device_t dev)
2191 {
2192 	return (&dev->sysctl_ctx);
2193 }
2194 
2195 struct sysctl_oid *
2196 device_get_sysctl_tree(device_t dev)
2197 {
2198 	return (dev->sysctl_tree);
2199 }
2200 
2201 /**
2202  * @brief Print the name of the device followed by a colon and a space
2203  *
2204  * @returns the number of characters printed
2205  */
2206 int
2207 device_print_prettyname(device_t dev)
2208 {
2209 	const char *name = device_get_name(dev);
2210 
2211 	if (name == NULL)
2212 		return (printf("unknown: "));
2213 	return (printf("%s%d: ", name, device_get_unit(dev)));
2214 }
2215 
2216 /**
2217  * @brief Print the name of the device followed by a colon, a space
2218  * and the result of calling vprintf() with the value of @p fmt and
2219  * the following arguments.
2220  *
2221  * @returns the number of characters printed
2222  */
2223 int
2224 device_printf(device_t dev, const char * fmt, ...)
2225 {
2226 	va_list ap;
2227 	int retval;
2228 
2229 	retval = device_print_prettyname(dev);
2230 	va_start(ap, fmt);
2231 	retval += vprintf(fmt, ap);
2232 	va_end(ap);
2233 	return (retval);
2234 }
2235 
2236 /**
2237  * @internal
2238  */
2239 static void
2240 device_set_desc_internal(device_t dev, const char* desc, int copy)
2241 {
2242 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2243 		free(dev->desc, M_BUS);
2244 		dev->flags &= ~DF_DESCMALLOCED;
2245 		dev->desc = NULL;
2246 	}
2247 
2248 	if (copy && desc) {
2249 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2250 		if (dev->desc) {
2251 			strcpy(dev->desc, desc);
2252 			dev->flags |= DF_DESCMALLOCED;
2253 		}
2254 	} else {
2255 		/* Avoid a -Wcast-qual warning */
2256 		dev->desc = (char *)(uintptr_t) desc;
2257 	}
2258 
2259 	bus_data_generation_update();
2260 }
2261 
2262 /**
2263  * @brief Set the device's description
2264  *
2265  * The value of @c desc should be a string constant that will not
2266  * change (at least until the description is changed in a subsequent
2267  * call to device_set_desc() or device_set_desc_copy()).
2268  */
2269 void
2270 device_set_desc(device_t dev, const char* desc)
2271 {
2272 	device_set_desc_internal(dev, desc, FALSE);
2273 }
2274 
2275 /**
2276  * @brief Set the device's description
2277  *
2278  * The string pointed to by @c desc is copied. Use this function if
2279  * the device description is generated, (e.g. with sprintf()).
2280  */
2281 void
2282 device_set_desc_copy(device_t dev, const char* desc)
2283 {
2284 	device_set_desc_internal(dev, desc, TRUE);
2285 }
2286 
2287 /**
2288  * @brief Set the device's flags
2289  */
2290 void
2291 device_set_flags(device_t dev, u_int32_t flags)
2292 {
2293 	dev->devflags = flags;
2294 }
2295 
2296 /**
2297  * @brief Return the device's softc field
2298  *
2299  * The softc is allocated and zeroed when a driver is attached, based
2300  * on the size field of the driver.
2301  */
2302 void *
2303 device_get_softc(device_t dev)
2304 {
2305 	return (dev->softc);
2306 }
2307 
2308 /**
2309  * @brief Set the device's softc field
2310  *
2311  * Most drivers do not need to use this since the softc is allocated
2312  * automatically when the driver is attached.
2313  */
2314 void
2315 device_set_softc(device_t dev, void *softc)
2316 {
2317 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2318 		free(dev->softc, M_BUS_SC);
2319 	dev->softc = softc;
2320 	if (dev->softc)
2321 		dev->flags |= DF_EXTERNALSOFTC;
2322 	else
2323 		dev->flags &= ~DF_EXTERNALSOFTC;
2324 }
2325 
2326 /**
2327  * @brief Get the device's ivars field
2328  *
2329  * The ivars field is used by the parent device to store per-device
2330  * state (e.g. the physical location of the device or a list of
2331  * resources).
2332  */
2333 void *
2334 device_get_ivars(device_t dev)
2335 {
2336 
2337 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2338 	return (dev->ivars);
2339 }
2340 
2341 /**
2342  * @brief Set the device's ivars field
2343  */
2344 void
2345 device_set_ivars(device_t dev, void * ivars)
2346 {
2347 
2348 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2349 	dev->ivars = ivars;
2350 }
2351 
2352 /**
2353  * @brief Return the device's state
2354  */
2355 device_state_t
2356 device_get_state(device_t dev)
2357 {
2358 	return (dev->state);
2359 }
2360 
2361 /**
2362  * @brief Set the DF_ENABLED flag for the device
2363  */
2364 void
2365 device_enable(device_t dev)
2366 {
2367 	dev->flags |= DF_ENABLED;
2368 }
2369 
2370 /**
2371  * @brief Clear the DF_ENABLED flag for the device
2372  */
2373 void
2374 device_disable(device_t dev)
2375 {
2376 	dev->flags &= ~DF_ENABLED;
2377 }
2378 
2379 /**
2380  * @brief Increment the busy counter for the device
2381  */
2382 void
2383 device_busy(device_t dev)
2384 {
2385 	if (dev->state < DS_ATTACHED)
2386 		panic("device_busy: called for unattached device");
2387 	if (dev->busy == 0 && dev->parent)
2388 		device_busy(dev->parent);
2389 	dev->busy++;
2390 	dev->state = DS_BUSY;
2391 }
2392 
2393 /**
2394  * @brief Decrement the busy counter for the device
2395  */
2396 void
2397 device_unbusy(device_t dev)
2398 {
2399 	if (dev->state != DS_BUSY)
2400 		panic("device_unbusy: called for non-busy device %s",
2401 		    device_get_nameunit(dev));
2402 	dev->busy--;
2403 	if (dev->busy == 0) {
2404 		if (dev->parent)
2405 			device_unbusy(dev->parent);
2406 		dev->state = DS_ATTACHED;
2407 	}
2408 }
2409 
2410 /**
2411  * @brief Set the DF_QUIET flag for the device
2412  */
2413 void
2414 device_quiet(device_t dev)
2415 {
2416 	dev->flags |= DF_QUIET;
2417 }
2418 
2419 /**
2420  * @brief Clear the DF_QUIET flag for the device
2421  */
2422 void
2423 device_verbose(device_t dev)
2424 {
2425 	dev->flags &= ~DF_QUIET;
2426 }
2427 
2428 /**
2429  * @brief Return non-zero if the DF_QUIET flag is set on the device
2430  */
2431 int
2432 device_is_quiet(device_t dev)
2433 {
2434 	return ((dev->flags & DF_QUIET) != 0);
2435 }
2436 
2437 /**
2438  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2439  */
2440 int
2441 device_is_enabled(device_t dev)
2442 {
2443 	return ((dev->flags & DF_ENABLED) != 0);
2444 }
2445 
2446 /**
2447  * @brief Return non-zero if the device was successfully probed
2448  */
2449 int
2450 device_is_alive(device_t dev)
2451 {
2452 	return (dev->state >= DS_ALIVE);
2453 }
2454 
2455 /**
2456  * @brief Return non-zero if the device currently has a driver
2457  * attached to it
2458  */
2459 int
2460 device_is_attached(device_t dev)
2461 {
2462 	return (dev->state >= DS_ATTACHED);
2463 }
2464 
2465 /**
2466  * @brief Set the devclass of a device
2467  * @see devclass_add_device().
2468  */
2469 int
2470 device_set_devclass(device_t dev, const char *classname)
2471 {
2472 	devclass_t dc;
2473 	int error;
2474 
2475 	if (!classname) {
2476 		if (dev->devclass)
2477 			devclass_delete_device(dev->devclass, dev);
2478 		return (0);
2479 	}
2480 
2481 	if (dev->devclass) {
2482 		printf("device_set_devclass: device class already set\n");
2483 		return (EINVAL);
2484 	}
2485 
2486 	dc = devclass_find_internal(classname, NULL, TRUE);
2487 	if (!dc)
2488 		return (ENOMEM);
2489 
2490 	error = devclass_add_device(dc, dev);
2491 
2492 	bus_data_generation_update();
2493 	return (error);
2494 }
2495 
2496 /**
2497  * @brief Set the driver of a device
2498  *
2499  * @retval 0		success
2500  * @retval EBUSY	the device already has a driver attached
2501  * @retval ENOMEM	a memory allocation failure occurred
2502  */
2503 int
2504 device_set_driver(device_t dev, driver_t *driver)
2505 {
2506 	if (dev->state >= DS_ATTACHED)
2507 		return (EBUSY);
2508 
2509 	if (dev->driver == driver)
2510 		return (0);
2511 
2512 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2513 		free(dev->softc, M_BUS_SC);
2514 		dev->softc = NULL;
2515 	}
2516 	kobj_delete((kobj_t) dev, NULL);
2517 	dev->driver = driver;
2518 	if (driver) {
2519 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2520 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2521 			dev->softc = malloc(driver->size, M_BUS_SC,
2522 			    M_NOWAIT | M_ZERO);
2523 			if (!dev->softc) {
2524 				kobj_delete((kobj_t) dev, NULL);
2525 				kobj_init((kobj_t) dev, &null_class);
2526 				dev->driver = NULL;
2527 				return (ENOMEM);
2528 			}
2529 		}
2530 	} else {
2531 		kobj_init((kobj_t) dev, &null_class);
2532 	}
2533 
2534 	bus_data_generation_update();
2535 	return (0);
2536 }
2537 
2538 /**
2539  * @brief Probe a device, and return this status.
2540  *
2541  * This function is the core of the device autoconfiguration
2542  * system. Its purpose is to select a suitable driver for a device and
2543  * then call that driver to initialise the hardware appropriately. The
2544  * driver is selected by calling the DEVICE_PROBE() method of a set of
2545  * candidate drivers and then choosing the driver which returned the
2546  * best value. This driver is then attached to the device using
2547  * device_attach().
2548  *
2549  * The set of suitable drivers is taken from the list of drivers in
2550  * the parent device's devclass. If the device was originally created
2551  * with a specific class name (see device_add_child()), only drivers
2552  * with that name are probed, otherwise all drivers in the devclass
2553  * are probed. If no drivers return successful probe values in the
2554  * parent devclass, the search continues in the parent of that
2555  * devclass (see devclass_get_parent()) if any.
2556  *
2557  * @param dev		the device to initialise
2558  *
2559  * @retval 0		success
2560  * @retval ENXIO	no driver was found
2561  * @retval ENOMEM	memory allocation failure
2562  * @retval non-zero	some other unix error code
2563  * @retval -1		Device already attached
2564  */
2565 int
2566 device_probe(device_t dev)
2567 {
2568 	int error;
2569 
2570 	GIANT_REQUIRED;
2571 
2572 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2573 		return (-1);
2574 
2575 	if (!(dev->flags & DF_ENABLED)) {
2576 		if (bootverbose && device_get_name(dev) != NULL) {
2577 			device_print_prettyname(dev);
2578 			printf("not probed (disabled)\n");
2579 		}
2580 		return (-1);
2581 	}
2582 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2583 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2584 		    !(dev->flags & DF_DONENOMATCH)) {
2585 			BUS_PROBE_NOMATCH(dev->parent, dev);
2586 			devnomatch(dev);
2587 			dev->flags |= DF_DONENOMATCH;
2588 		}
2589 		return (error);
2590 	}
2591 	return (0);
2592 }
2593 
2594 /**
2595  * @brief Probe a device and attach a driver if possible
2596  *
2597  * calls device_probe() and attaches if that was successful.
2598  */
2599 int
2600 device_probe_and_attach(device_t dev)
2601 {
2602 	int error;
2603 
2604 	GIANT_REQUIRED;
2605 
2606 	error = device_probe(dev);
2607 	if (error == -1)
2608 		return (0);
2609 	else if (error != 0)
2610 		return (error);
2611 	return (device_attach(dev));
2612 }
2613 
2614 /**
2615  * @brief Attach a device driver to a device
2616  *
2617  * This function is a wrapper around the DEVICE_ATTACH() driver
2618  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2619  * device's sysctl tree, optionally prints a description of the device
2620  * and queues a notification event for user-based device management
2621  * services.
2622  *
2623  * Normally this function is only called internally from
2624  * device_probe_and_attach().
2625  *
2626  * @param dev		the device to initialise
2627  *
2628  * @retval 0		success
2629  * @retval ENXIO	no driver was found
2630  * @retval ENOMEM	memory allocation failure
2631  * @retval non-zero	some other unix error code
2632  */
2633 int
2634 device_attach(device_t dev)
2635 {
2636 	int error;
2637 
2638 	device_sysctl_init(dev);
2639 	if (!device_is_quiet(dev))
2640 		device_print_child(dev->parent, dev);
2641 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2642 		printf("device_attach: %s%d attach returned %d\n",
2643 		    dev->driver->name, dev->unit, error);
2644 		/* Unset the class; set in device_probe_child */
2645 		if (dev->devclass == NULL)
2646 			device_set_devclass(dev, NULL);
2647 		device_set_driver(dev, NULL);
2648 		device_sysctl_fini(dev);
2649 		dev->state = DS_NOTPRESENT;
2650 		return (error);
2651 	}
2652 	device_sysctl_update(dev);
2653 	dev->state = DS_ATTACHED;
2654 	devadded(dev);
2655 	return (0);
2656 }
2657 
2658 /**
2659  * @brief Detach a driver from a device
2660  *
2661  * This function is a wrapper around the DEVICE_DETACH() driver
2662  * method. If the call to DEVICE_DETACH() succeeds, it calls
2663  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2664  * notification event for user-based device management services and
2665  * cleans up the device's sysctl tree.
2666  *
2667  * @param dev		the device to un-initialise
2668  *
2669  * @retval 0		success
2670  * @retval ENXIO	no driver was found
2671  * @retval ENOMEM	memory allocation failure
2672  * @retval non-zero	some other unix error code
2673  */
2674 int
2675 device_detach(device_t dev)
2676 {
2677 	int error;
2678 
2679 	GIANT_REQUIRED;
2680 
2681 	PDEBUG(("%s", DEVICENAME(dev)));
2682 	if (dev->state == DS_BUSY)
2683 		return (EBUSY);
2684 	if (dev->state != DS_ATTACHED)
2685 		return (0);
2686 
2687 	if ((error = DEVICE_DETACH(dev)) != 0)
2688 		return (error);
2689 	devremoved(dev);
2690 	if (!device_is_quiet(dev))
2691 		device_printf(dev, "detached\n");
2692 	if (dev->parent)
2693 		BUS_CHILD_DETACHED(dev->parent, dev);
2694 
2695 	if (!(dev->flags & DF_FIXEDCLASS))
2696 		devclass_delete_device(dev->devclass, dev);
2697 
2698 	dev->state = DS_NOTPRESENT;
2699 	device_set_driver(dev, NULL);
2700 	device_set_desc(dev, NULL);
2701 	device_sysctl_fini(dev);
2702 
2703 	return (0);
2704 }
2705 
2706 /**
2707  * @brief Tells a driver to quiesce itself.
2708  *
2709  * This function is a wrapper around the DEVICE_QUIESCE() driver
2710  * method. If the call to DEVICE_QUIESCE() succeeds.
2711  *
2712  * @param dev		the device to quiesce
2713  *
2714  * @retval 0		success
2715  * @retval ENXIO	no driver was found
2716  * @retval ENOMEM	memory allocation failure
2717  * @retval non-zero	some other unix error code
2718  */
2719 int
2720 device_quiesce(device_t dev)
2721 {
2722 
2723 	PDEBUG(("%s", DEVICENAME(dev)));
2724 	if (dev->state == DS_BUSY)
2725 		return (EBUSY);
2726 	if (dev->state != DS_ATTACHED)
2727 		return (0);
2728 
2729 	return (DEVICE_QUIESCE(dev));
2730 }
2731 
2732 /**
2733  * @brief Notify a device of system shutdown
2734  *
2735  * This function calls the DEVICE_SHUTDOWN() driver method if the
2736  * device currently has an attached driver.
2737  *
2738  * @returns the value returned by DEVICE_SHUTDOWN()
2739  */
2740 int
2741 device_shutdown(device_t dev)
2742 {
2743 	if (dev->state < DS_ATTACHED)
2744 		return (0);
2745 	return (DEVICE_SHUTDOWN(dev));
2746 }
2747 
2748 /**
2749  * @brief Set the unit number of a device
2750  *
2751  * This function can be used to override the unit number used for a
2752  * device (e.g. to wire a device to a pre-configured unit number).
2753  */
2754 int
2755 device_set_unit(device_t dev, int unit)
2756 {
2757 	devclass_t dc;
2758 	int err;
2759 
2760 	dc = device_get_devclass(dev);
2761 	if (unit < dc->maxunit && dc->devices[unit])
2762 		return (EBUSY);
2763 	err = devclass_delete_device(dc, dev);
2764 	if (err)
2765 		return (err);
2766 	dev->unit = unit;
2767 	err = devclass_add_device(dc, dev);
2768 	if (err)
2769 		return (err);
2770 
2771 	bus_data_generation_update();
2772 	return (0);
2773 }
2774 
2775 /*======================================*/
2776 /*
2777  * Some useful method implementations to make life easier for bus drivers.
2778  */
2779 
2780 /**
2781  * @brief Initialise a resource list.
2782  *
2783  * @param rl		the resource list to initialise
2784  */
2785 void
2786 resource_list_init(struct resource_list *rl)
2787 {
2788 	STAILQ_INIT(rl);
2789 }
2790 
2791 /**
2792  * @brief Reclaim memory used by a resource list.
2793  *
2794  * This function frees the memory for all resource entries on the list
2795  * (if any).
2796  *
2797  * @param rl		the resource list to free
2798  */
2799 void
2800 resource_list_free(struct resource_list *rl)
2801 {
2802 	struct resource_list_entry *rle;
2803 
2804 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2805 		if (rle->res)
2806 			panic("resource_list_free: resource entry is busy");
2807 		STAILQ_REMOVE_HEAD(rl, link);
2808 		free(rle, M_BUS);
2809 	}
2810 }
2811 
2812 /**
2813  * @brief Add a resource entry.
2814  *
2815  * This function adds a resource entry using the given @p type, @p
2816  * start, @p end and @p count values. A rid value is chosen by
2817  * searching sequentially for the first unused rid starting at zero.
2818  *
2819  * @param rl		the resource list to edit
2820  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2821  * @param start		the start address of the resource
2822  * @param end		the end address of the resource
2823  * @param count		XXX end-start+1
2824  */
2825 int
2826 resource_list_add_next(struct resource_list *rl, int type, u_long start,
2827     u_long end, u_long count)
2828 {
2829 	int rid;
2830 
2831 	rid = 0;
2832 	while (resource_list_find(rl, type, rid) != NULL)
2833 		rid++;
2834 	resource_list_add(rl, type, rid, start, end, count);
2835 	return (rid);
2836 }
2837 
2838 /**
2839  * @brief Add or modify a resource entry.
2840  *
2841  * If an existing entry exists with the same type and rid, it will be
2842  * modified using the given values of @p start, @p end and @p
2843  * count. If no entry exists, a new one will be created using the
2844  * given values.  The resource list entry that matches is then returned.
2845  *
2846  * @param rl		the resource list to edit
2847  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2848  * @param rid		the resource identifier
2849  * @param start		the start address of the resource
2850  * @param end		the end address of the resource
2851  * @param count		XXX end-start+1
2852  */
2853 struct resource_list_entry *
2854 resource_list_add(struct resource_list *rl, int type, int rid,
2855     u_long start, u_long end, u_long count)
2856 {
2857 	struct resource_list_entry *rle;
2858 
2859 	rle = resource_list_find(rl, type, rid);
2860 	if (!rle) {
2861 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2862 		    M_NOWAIT);
2863 		if (!rle)
2864 			panic("resource_list_add: can't record entry");
2865 		STAILQ_INSERT_TAIL(rl, rle, link);
2866 		rle->type = type;
2867 		rle->rid = rid;
2868 		rle->res = NULL;
2869 		rle->flags = 0;
2870 	}
2871 
2872 	if (rle->res)
2873 		panic("resource_list_add: resource entry is busy");
2874 
2875 	rle->start = start;
2876 	rle->end = end;
2877 	rle->count = count;
2878 	return (rle);
2879 }
2880 
2881 /**
2882  * @brief Determine if a resource entry is busy.
2883  *
2884  * Returns true if a resource entry is busy meaning that it has an
2885  * associated resource that is not an unallocated "reserved" resource.
2886  *
2887  * @param rl		the resource list to search
2888  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2889  * @param rid		the resource identifier
2890  *
2891  * @returns Non-zero if the entry is busy, zero otherwise.
2892  */
2893 int
2894 resource_list_busy(struct resource_list *rl, int type, int rid)
2895 {
2896 	struct resource_list_entry *rle;
2897 
2898 	rle = resource_list_find(rl, type, rid);
2899 	if (rle == NULL || rle->res == NULL)
2900 		return (0);
2901 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2902 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2903 		    ("reserved resource is active"));
2904 		return (0);
2905 	}
2906 	return (1);
2907 }
2908 
2909 /**
2910  * @brief Find a resource entry by type and rid.
2911  *
2912  * @param rl		the resource list to search
2913  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2914  * @param rid		the resource identifier
2915  *
2916  * @returns the resource entry pointer or NULL if there is no such
2917  * entry.
2918  */
2919 struct resource_list_entry *
2920 resource_list_find(struct resource_list *rl, int type, int rid)
2921 {
2922 	struct resource_list_entry *rle;
2923 
2924 	STAILQ_FOREACH(rle, rl, link) {
2925 		if (rle->type == type && rle->rid == rid)
2926 			return (rle);
2927 	}
2928 	return (NULL);
2929 }
2930 
2931 /**
2932  * @brief Delete a resource entry.
2933  *
2934  * @param rl		the resource list to edit
2935  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2936  * @param rid		the resource identifier
2937  */
2938 void
2939 resource_list_delete(struct resource_list *rl, int type, int rid)
2940 {
2941 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2942 
2943 	if (rle) {
2944 		if (rle->res != NULL)
2945 			panic("resource_list_delete: resource has not been released");
2946 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2947 		free(rle, M_BUS);
2948 	}
2949 }
2950 
2951 /**
2952  * @brief Allocate a reserved resource
2953  *
2954  * This can be used by busses to force the allocation of resources
2955  * that are always active in the system even if they are not allocated
2956  * by a driver (e.g. PCI BARs).  This function is usually called when
2957  * adding a new child to the bus.  The resource is allocated from the
2958  * parent bus when it is reserved.  The resource list entry is marked
2959  * with RLE_RESERVED to note that it is a reserved resource.
2960  *
2961  * Subsequent attempts to allocate the resource with
2962  * resource_list_alloc() will succeed the first time and will set
2963  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
2964  * resource that has been allocated is released with
2965  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
2966  * the actual resource remains allocated.  The resource can be released to
2967  * the parent bus by calling resource_list_unreserve().
2968  *
2969  * @param rl		the resource list to allocate from
2970  * @param bus		the parent device of @p child
2971  * @param child		the device for which the resource is being reserved
2972  * @param type		the type of resource to allocate
2973  * @param rid		a pointer to the resource identifier
2974  * @param start		hint at the start of the resource range - pass
2975  *			@c 0UL for any start address
2976  * @param end		hint at the end of the resource range - pass
2977  *			@c ~0UL for any end address
2978  * @param count		hint at the size of range required - pass @c 1
2979  *			for any size
2980  * @param flags		any extra flags to control the resource
2981  *			allocation - see @c RF_XXX flags in
2982  *			<sys/rman.h> for details
2983  *
2984  * @returns		the resource which was allocated or @c NULL if no
2985  *			resource could be allocated
2986  */
2987 struct resource *
2988 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
2989     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2990 {
2991 	struct resource_list_entry *rle = NULL;
2992 	int passthrough = (device_get_parent(child) != bus);
2993 	struct resource *r;
2994 
2995 	if (passthrough)
2996 		panic(
2997     "resource_list_reserve() should only be called for direct children");
2998 	if (flags & RF_ACTIVE)
2999 		panic(
3000     "resource_list_reserve() should only reserve inactive resources");
3001 
3002 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3003 	    flags);
3004 	if (r != NULL) {
3005 		rle = resource_list_find(rl, type, *rid);
3006 		rle->flags |= RLE_RESERVED;
3007 	}
3008 	return (r);
3009 }
3010 
3011 /**
3012  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3013  *
3014  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3015  * and passing the allocation up to the parent of @p bus. This assumes
3016  * that the first entry of @c device_get_ivars(child) is a struct
3017  * resource_list. This also handles 'passthrough' allocations where a
3018  * child is a remote descendant of bus by passing the allocation up to
3019  * the parent of bus.
3020  *
3021  * Typically, a bus driver would store a list of child resources
3022  * somewhere in the child device's ivars (see device_get_ivars()) and
3023  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3024  * then call resource_list_alloc() to perform the allocation.
3025  *
3026  * @param rl		the resource list to allocate from
3027  * @param bus		the parent device of @p child
3028  * @param child		the device which is requesting an allocation
3029  * @param type		the type of resource to allocate
3030  * @param rid		a pointer to the resource identifier
3031  * @param start		hint at the start of the resource range - pass
3032  *			@c 0UL for any start address
3033  * @param end		hint at the end of the resource range - pass
3034  *			@c ~0UL for any end address
3035  * @param count		hint at the size of range required - pass @c 1
3036  *			for any size
3037  * @param flags		any extra flags to control the resource
3038  *			allocation - see @c RF_XXX flags in
3039  *			<sys/rman.h> for details
3040  *
3041  * @returns		the resource which was allocated or @c NULL if no
3042  *			resource could be allocated
3043  */
3044 struct resource *
3045 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3046     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3047 {
3048 	struct resource_list_entry *rle = NULL;
3049 	int passthrough = (device_get_parent(child) != bus);
3050 	int isdefault = (start == 0UL && end == ~0UL);
3051 
3052 	if (passthrough) {
3053 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3054 		    type, rid, start, end, count, flags));
3055 	}
3056 
3057 	rle = resource_list_find(rl, type, *rid);
3058 
3059 	if (!rle)
3060 		return (NULL);		/* no resource of that type/rid */
3061 
3062 	if (rle->res) {
3063 		if (rle->flags & RLE_RESERVED) {
3064 			if (rle->flags & RLE_ALLOCATED)
3065 				return (NULL);
3066 			if ((flags & RF_ACTIVE) &&
3067 			    bus_activate_resource(child, type, *rid,
3068 			    rle->res) != 0)
3069 				return (NULL);
3070 			rle->flags |= RLE_ALLOCATED;
3071 			return (rle->res);
3072 		}
3073 		panic("resource_list_alloc: resource entry is busy");
3074 	}
3075 
3076 	if (isdefault) {
3077 		start = rle->start;
3078 		count = ulmax(count, rle->count);
3079 		end = ulmax(rle->end, start + count - 1);
3080 	}
3081 
3082 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3083 	    type, rid, start, end, count, flags);
3084 
3085 	/*
3086 	 * Record the new range.
3087 	 */
3088 	if (rle->res) {
3089 		rle->start = rman_get_start(rle->res);
3090 		rle->end = rman_get_end(rle->res);
3091 		rle->count = count;
3092 	}
3093 
3094 	return (rle->res);
3095 }
3096 
3097 /**
3098  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3099  *
3100  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3101  * used with resource_list_alloc().
3102  *
3103  * @param rl		the resource list which was allocated from
3104  * @param bus		the parent device of @p child
3105  * @param child		the device which is requesting a release
3106  * @param type		the type of resource to release
3107  * @param rid		the resource identifier
3108  * @param res		the resource to release
3109  *
3110  * @retval 0		success
3111  * @retval non-zero	a standard unix error code indicating what
3112  *			error condition prevented the operation
3113  */
3114 int
3115 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3116     int type, int rid, struct resource *res)
3117 {
3118 	struct resource_list_entry *rle = NULL;
3119 	int passthrough = (device_get_parent(child) != bus);
3120 	int error;
3121 
3122 	if (passthrough) {
3123 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3124 		    type, rid, res));
3125 	}
3126 
3127 	rle = resource_list_find(rl, type, rid);
3128 
3129 	if (!rle)
3130 		panic("resource_list_release: can't find resource");
3131 	if (!rle->res)
3132 		panic("resource_list_release: resource entry is not busy");
3133 	if (rle->flags & RLE_RESERVED) {
3134 		if (rle->flags & RLE_ALLOCATED) {
3135 			if (rman_get_flags(res) & RF_ACTIVE) {
3136 				error = bus_deactivate_resource(child, type,
3137 				    rid, res);
3138 				if (error)
3139 					return (error);
3140 			}
3141 			rle->flags &= ~RLE_ALLOCATED;
3142 			return (0);
3143 		}
3144 		return (EINVAL);
3145 	}
3146 
3147 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3148 	    type, rid, res);
3149 	if (error)
3150 		return (error);
3151 
3152 	rle->res = NULL;
3153 	return (0);
3154 }
3155 
3156 /**
3157  * @brief Fully release a reserved resource
3158  *
3159  * Fully releases a resouce reserved via resource_list_reserve().
3160  *
3161  * @param rl		the resource list which was allocated from
3162  * @param bus		the parent device of @p child
3163  * @param child		the device whose reserved resource is being released
3164  * @param type		the type of resource to release
3165  * @param rid		the resource identifier
3166  * @param res		the resource to release
3167  *
3168  * @retval 0		success
3169  * @retval non-zero	a standard unix error code indicating what
3170  *			error condition prevented the operation
3171  */
3172 int
3173 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3174     int type, int rid)
3175 {
3176 	struct resource_list_entry *rle = NULL;
3177 	int passthrough = (device_get_parent(child) != bus);
3178 
3179 	if (passthrough)
3180 		panic(
3181     "resource_list_unreserve() should only be called for direct children");
3182 
3183 	rle = resource_list_find(rl, type, rid);
3184 
3185 	if (!rle)
3186 		panic("resource_list_unreserve: can't find resource");
3187 	if (!(rle->flags & RLE_RESERVED))
3188 		return (EINVAL);
3189 	if (rle->flags & RLE_ALLOCATED)
3190 		return (EBUSY);
3191 	rle->flags &= ~RLE_RESERVED;
3192 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3193 }
3194 
3195 /**
3196  * @brief Print a description of resources in a resource list
3197  *
3198  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3199  * The name is printed if at least one resource of the given type is available.
3200  * The format is used to print resource start and end.
3201  *
3202  * @param rl		the resource list to print
3203  * @param name		the name of @p type, e.g. @c "memory"
3204  * @param type		type type of resource entry to print
3205  * @param format	printf(9) format string to print resource
3206  *			start and end values
3207  *
3208  * @returns		the number of characters printed
3209  */
3210 int
3211 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3212     const char *format)
3213 {
3214 	struct resource_list_entry *rle;
3215 	int printed, retval;
3216 
3217 	printed = 0;
3218 	retval = 0;
3219 	/* Yes, this is kinda cheating */
3220 	STAILQ_FOREACH(rle, rl, link) {
3221 		if (rle->type == type) {
3222 			if (printed == 0)
3223 				retval += printf(" %s ", name);
3224 			else
3225 				retval += printf(",");
3226 			printed++;
3227 			retval += printf(format, rle->start);
3228 			if (rle->count > 1) {
3229 				retval += printf("-");
3230 				retval += printf(format, rle->start +
3231 						 rle->count - 1);
3232 			}
3233 		}
3234 	}
3235 	return (retval);
3236 }
3237 
3238 /**
3239  * @brief Releases all the resources in a list.
3240  *
3241  * @param rl		The resource list to purge.
3242  *
3243  * @returns		nothing
3244  */
3245 void
3246 resource_list_purge(struct resource_list *rl)
3247 {
3248 	struct resource_list_entry *rle;
3249 
3250 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3251 		if (rle->res)
3252 			bus_release_resource(rman_get_device(rle->res),
3253 			    rle->type, rle->rid, rle->res);
3254 		STAILQ_REMOVE_HEAD(rl, link);
3255 		free(rle, M_BUS);
3256 	}
3257 }
3258 
3259 device_t
3260 bus_generic_add_child(device_t dev, int order, const char *name, int unit)
3261 {
3262 
3263 	return (device_add_child_ordered(dev, order, name, unit));
3264 }
3265 
3266 /**
3267  * @brief Helper function for implementing DEVICE_PROBE()
3268  *
3269  * This function can be used to help implement the DEVICE_PROBE() for
3270  * a bus (i.e. a device which has other devices attached to it). It
3271  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3272  * devclass.
3273  */
3274 int
3275 bus_generic_probe(device_t dev)
3276 {
3277 	devclass_t dc = dev->devclass;
3278 	driverlink_t dl;
3279 
3280 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3281 		/*
3282 		 * If this driver's pass is too high, then ignore it.
3283 		 * For most drivers in the default pass, this will
3284 		 * never be true.  For early-pass drivers they will
3285 		 * only call the identify routines of eligible drivers
3286 		 * when this routine is called.  Drivers for later
3287 		 * passes should have their identify routines called
3288 		 * on early-pass busses during BUS_NEW_PASS().
3289 		 */
3290 		if (dl->pass > bus_current_pass)
3291 				continue;
3292 		DEVICE_IDENTIFY(dl->driver, dev);
3293 	}
3294 
3295 	return (0);
3296 }
3297 
3298 /**
3299  * @brief Helper function for implementing DEVICE_ATTACH()
3300  *
3301  * This function can be used to help implement the DEVICE_ATTACH() for
3302  * a bus. It calls device_probe_and_attach() for each of the device's
3303  * children.
3304  */
3305 int
3306 bus_generic_attach(device_t dev)
3307 {
3308 	device_t child;
3309 
3310 	TAILQ_FOREACH(child, &dev->children, link) {
3311 		device_probe_and_attach(child);
3312 	}
3313 
3314 	return (0);
3315 }
3316 
3317 /**
3318  * @brief Helper function for implementing DEVICE_DETACH()
3319  *
3320  * This function can be used to help implement the DEVICE_DETACH() for
3321  * a bus. It calls device_detach() for each of the device's
3322  * children.
3323  */
3324 int
3325 bus_generic_detach(device_t dev)
3326 {
3327 	device_t child;
3328 	int error;
3329 
3330 	if (dev->state != DS_ATTACHED)
3331 		return (EBUSY);
3332 
3333 	TAILQ_FOREACH(child, &dev->children, link) {
3334 		if ((error = device_detach(child)) != 0)
3335 			return (error);
3336 	}
3337 
3338 	return (0);
3339 }
3340 
3341 /**
3342  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3343  *
3344  * This function can be used to help implement the DEVICE_SHUTDOWN()
3345  * for a bus. It calls device_shutdown() for each of the device's
3346  * children.
3347  */
3348 int
3349 bus_generic_shutdown(device_t dev)
3350 {
3351 	device_t child;
3352 
3353 	TAILQ_FOREACH(child, &dev->children, link) {
3354 		device_shutdown(child);
3355 	}
3356 
3357 	return (0);
3358 }
3359 
3360 /**
3361  * @brief Helper function for implementing DEVICE_SUSPEND()
3362  *
3363  * This function can be used to help implement the DEVICE_SUSPEND()
3364  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3365  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3366  * operation is aborted and any devices which were suspended are
3367  * resumed immediately by calling their DEVICE_RESUME() methods.
3368  */
3369 int
3370 bus_generic_suspend(device_t dev)
3371 {
3372 	int		error;
3373 	device_t	child, child2;
3374 
3375 	TAILQ_FOREACH(child, &dev->children, link) {
3376 		error = DEVICE_SUSPEND(child);
3377 		if (error) {
3378 			for (child2 = TAILQ_FIRST(&dev->children);
3379 			     child2 && child2 != child;
3380 			     child2 = TAILQ_NEXT(child2, link))
3381 				DEVICE_RESUME(child2);
3382 			return (error);
3383 		}
3384 	}
3385 	return (0);
3386 }
3387 
3388 /**
3389  * @brief Helper function for implementing DEVICE_RESUME()
3390  *
3391  * This function can be used to help implement the DEVICE_RESUME() for
3392  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3393  */
3394 int
3395 bus_generic_resume(device_t dev)
3396 {
3397 	device_t	child;
3398 
3399 	TAILQ_FOREACH(child, &dev->children, link) {
3400 		DEVICE_RESUME(child);
3401 		/* if resume fails, there's nothing we can usefully do... */
3402 	}
3403 	return (0);
3404 }
3405 
3406 /**
3407  * @brief Helper function for implementing BUS_PRINT_CHILD().
3408  *
3409  * This function prints the first part of the ascii representation of
3410  * @p child, including its name, unit and description (if any - see
3411  * device_set_desc()).
3412  *
3413  * @returns the number of characters printed
3414  */
3415 int
3416 bus_print_child_header(device_t dev, device_t child)
3417 {
3418 	int	retval = 0;
3419 
3420 	if (device_get_desc(child)) {
3421 		retval += device_printf(child, "<%s>", device_get_desc(child));
3422 	} else {
3423 		retval += printf("%s", device_get_nameunit(child));
3424 	}
3425 
3426 	return (retval);
3427 }
3428 
3429 /**
3430  * @brief Helper function for implementing BUS_PRINT_CHILD().
3431  *
3432  * This function prints the last part of the ascii representation of
3433  * @p child, which consists of the string @c " on " followed by the
3434  * name and unit of the @p dev.
3435  *
3436  * @returns the number of characters printed
3437  */
3438 int
3439 bus_print_child_footer(device_t dev, device_t child)
3440 {
3441 	return (printf(" on %s\n", device_get_nameunit(dev)));
3442 }
3443 
3444 /**
3445  * @brief Helper function for implementing BUS_PRINT_CHILD().
3446  *
3447  * This function simply calls bus_print_child_header() followed by
3448  * bus_print_child_footer().
3449  *
3450  * @returns the number of characters printed
3451  */
3452 int
3453 bus_generic_print_child(device_t dev, device_t child)
3454 {
3455 	int	retval = 0;
3456 
3457 	retval += bus_print_child_header(dev, child);
3458 	retval += bus_print_child_footer(dev, child);
3459 
3460 	return (retval);
3461 }
3462 
3463 /**
3464  * @brief Stub function for implementing BUS_READ_IVAR().
3465  *
3466  * @returns ENOENT
3467  */
3468 int
3469 bus_generic_read_ivar(device_t dev, device_t child, int index,
3470     uintptr_t * result)
3471 {
3472 	return (ENOENT);
3473 }
3474 
3475 /**
3476  * @brief Stub function for implementing BUS_WRITE_IVAR().
3477  *
3478  * @returns ENOENT
3479  */
3480 int
3481 bus_generic_write_ivar(device_t dev, device_t child, int index,
3482     uintptr_t value)
3483 {
3484 	return (ENOENT);
3485 }
3486 
3487 /**
3488  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3489  *
3490  * @returns NULL
3491  */
3492 struct resource_list *
3493 bus_generic_get_resource_list(device_t dev, device_t child)
3494 {
3495 	return (NULL);
3496 }
3497 
3498 /**
3499  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3500  *
3501  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3502  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3503  * and then calls device_probe_and_attach() for each unattached child.
3504  */
3505 void
3506 bus_generic_driver_added(device_t dev, driver_t *driver)
3507 {
3508 	device_t child;
3509 
3510 	DEVICE_IDENTIFY(driver, dev);
3511 	TAILQ_FOREACH(child, &dev->children, link) {
3512 		if (child->state == DS_NOTPRESENT ||
3513 		    (child->flags & DF_REBID))
3514 			device_probe_and_attach(child);
3515 	}
3516 }
3517 
3518 /**
3519  * @brief Helper function for implementing BUS_NEW_PASS().
3520  *
3521  * This implementing of BUS_NEW_PASS() first calls the identify
3522  * routines for any drivers that probe at the current pass.  Then it
3523  * walks the list of devices for this bus.  If a device is already
3524  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3525  * device is not already attached, it attempts to attach a driver to
3526  * it.
3527  */
3528 void
3529 bus_generic_new_pass(device_t dev)
3530 {
3531 	driverlink_t dl;
3532 	devclass_t dc;
3533 	device_t child;
3534 
3535 	dc = dev->devclass;
3536 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3537 		if (dl->pass == bus_current_pass)
3538 			DEVICE_IDENTIFY(dl->driver, dev);
3539 	}
3540 	TAILQ_FOREACH(child, &dev->children, link) {
3541 		if (child->state >= DS_ATTACHED)
3542 			BUS_NEW_PASS(child);
3543 		else if (child->state == DS_NOTPRESENT)
3544 			device_probe_and_attach(child);
3545 	}
3546 }
3547 
3548 /**
3549  * @brief Helper function for implementing BUS_SETUP_INTR().
3550  *
3551  * This simple implementation of BUS_SETUP_INTR() simply calls the
3552  * BUS_SETUP_INTR() method of the parent of @p dev.
3553  */
3554 int
3555 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3556     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3557     void **cookiep)
3558 {
3559 	/* Propagate up the bus hierarchy until someone handles it. */
3560 	if (dev->parent)
3561 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3562 		    filter, intr, arg, cookiep));
3563 	return (EINVAL);
3564 }
3565 
3566 /**
3567  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3568  *
3569  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3570  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3571  */
3572 int
3573 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3574     void *cookie)
3575 {
3576 	/* Propagate up the bus hierarchy until someone handles it. */
3577 	if (dev->parent)
3578 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3579 	return (EINVAL);
3580 }
3581 
3582 /**
3583  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3584  *
3585  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3586  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3587  */
3588 struct resource *
3589 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3590     u_long start, u_long end, u_long count, u_int flags)
3591 {
3592 	/* Propagate up the bus hierarchy until someone handles it. */
3593 	if (dev->parent)
3594 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3595 		    start, end, count, flags));
3596 	return (NULL);
3597 }
3598 
3599 /**
3600  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3601  *
3602  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3603  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3604  */
3605 int
3606 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3607     struct resource *r)
3608 {
3609 	/* Propagate up the bus hierarchy until someone handles it. */
3610 	if (dev->parent)
3611 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3612 		    r));
3613 	return (EINVAL);
3614 }
3615 
3616 /**
3617  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3618  *
3619  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3620  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3621  */
3622 int
3623 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3624     struct resource *r)
3625 {
3626 	/* Propagate up the bus hierarchy until someone handles it. */
3627 	if (dev->parent)
3628 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3629 		    r));
3630 	return (EINVAL);
3631 }
3632 
3633 /**
3634  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3635  *
3636  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3637  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3638  */
3639 int
3640 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3641     int rid, struct resource *r)
3642 {
3643 	/* Propagate up the bus hierarchy until someone handles it. */
3644 	if (dev->parent)
3645 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3646 		    r));
3647 	return (EINVAL);
3648 }
3649 
3650 /**
3651  * @brief Helper function for implementing BUS_BIND_INTR().
3652  *
3653  * This simple implementation of BUS_BIND_INTR() simply calls the
3654  * BUS_BIND_INTR() method of the parent of @p dev.
3655  */
3656 int
3657 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3658     int cpu)
3659 {
3660 
3661 	/* Propagate up the bus hierarchy until someone handles it. */
3662 	if (dev->parent)
3663 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3664 	return (EINVAL);
3665 }
3666 
3667 /**
3668  * @brief Helper function for implementing BUS_CONFIG_INTR().
3669  *
3670  * This simple implementation of BUS_CONFIG_INTR() simply calls the
3671  * BUS_CONFIG_INTR() method of the parent of @p dev.
3672  */
3673 int
3674 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3675     enum intr_polarity pol)
3676 {
3677 
3678 	/* Propagate up the bus hierarchy until someone handles it. */
3679 	if (dev->parent)
3680 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3681 	return (EINVAL);
3682 }
3683 
3684 /**
3685  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3686  *
3687  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3688  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3689  */
3690 int
3691 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3692     void *cookie, const char *descr)
3693 {
3694 
3695 	/* Propagate up the bus hierarchy until someone handles it. */
3696 	if (dev->parent)
3697 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3698 		    descr));
3699 	return (EINVAL);
3700 }
3701 
3702 /**
3703  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3704  *
3705  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3706  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3707  */
3708 bus_dma_tag_t
3709 bus_generic_get_dma_tag(device_t dev, device_t child)
3710 {
3711 
3712 	/* Propagate up the bus hierarchy until someone handles it. */
3713 	if (dev->parent != NULL)
3714 		return (BUS_GET_DMA_TAG(dev->parent, child));
3715 	return (NULL);
3716 }
3717 
3718 /**
3719  * @brief Helper function for implementing BUS_GET_RESOURCE().
3720  *
3721  * This implementation of BUS_GET_RESOURCE() uses the
3722  * resource_list_find() function to do most of the work. It calls
3723  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3724  * search.
3725  */
3726 int
3727 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3728     u_long *startp, u_long *countp)
3729 {
3730 	struct resource_list *		rl = NULL;
3731 	struct resource_list_entry *	rle = NULL;
3732 
3733 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3734 	if (!rl)
3735 		return (EINVAL);
3736 
3737 	rle = resource_list_find(rl, type, rid);
3738 	if (!rle)
3739 		return (ENOENT);
3740 
3741 	if (startp)
3742 		*startp = rle->start;
3743 	if (countp)
3744 		*countp = rle->count;
3745 
3746 	return (0);
3747 }
3748 
3749 /**
3750  * @brief Helper function for implementing BUS_SET_RESOURCE().
3751  *
3752  * This implementation of BUS_SET_RESOURCE() uses the
3753  * resource_list_add() function to do most of the work. It calls
3754  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3755  * edit.
3756  */
3757 int
3758 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3759     u_long start, u_long count)
3760 {
3761 	struct resource_list *		rl = NULL;
3762 
3763 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3764 	if (!rl)
3765 		return (EINVAL);
3766 
3767 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3768 
3769 	return (0);
3770 }
3771 
3772 /**
3773  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3774  *
3775  * This implementation of BUS_DELETE_RESOURCE() uses the
3776  * resource_list_delete() function to do most of the work. It calls
3777  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3778  * edit.
3779  */
3780 void
3781 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3782 {
3783 	struct resource_list *		rl = NULL;
3784 
3785 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3786 	if (!rl)
3787 		return;
3788 
3789 	resource_list_delete(rl, type, rid);
3790 
3791 	return;
3792 }
3793 
3794 /**
3795  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3796  *
3797  * This implementation of BUS_RELEASE_RESOURCE() uses the
3798  * resource_list_release() function to do most of the work. It calls
3799  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3800  */
3801 int
3802 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3803     int rid, struct resource *r)
3804 {
3805 	struct resource_list *		rl = NULL;
3806 
3807 	if (device_get_parent(child) != dev)
3808 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
3809 		    type, rid, r));
3810 
3811 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3812 	if (!rl)
3813 		return (EINVAL);
3814 
3815 	return (resource_list_release(rl, dev, child, type, rid, r));
3816 }
3817 
3818 /**
3819  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3820  *
3821  * This implementation of BUS_ALLOC_RESOURCE() uses the
3822  * resource_list_alloc() function to do most of the work. It calls
3823  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3824  */
3825 struct resource *
3826 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3827     int *rid, u_long start, u_long end, u_long count, u_int flags)
3828 {
3829 	struct resource_list *		rl = NULL;
3830 
3831 	if (device_get_parent(child) != dev)
3832 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
3833 		    type, rid, start, end, count, flags));
3834 
3835 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3836 	if (!rl)
3837 		return (NULL);
3838 
3839 	return (resource_list_alloc(rl, dev, child, type, rid,
3840 	    start, end, count, flags));
3841 }
3842 
3843 /**
3844  * @brief Helper function for implementing BUS_CHILD_PRESENT().
3845  *
3846  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3847  * BUS_CHILD_PRESENT() method of the parent of @p dev.
3848  */
3849 int
3850 bus_generic_child_present(device_t dev, device_t child)
3851 {
3852 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3853 }
3854 
3855 /*
3856  * Some convenience functions to make it easier for drivers to use the
3857  * resource-management functions.  All these really do is hide the
3858  * indirection through the parent's method table, making for slightly
3859  * less-wordy code.  In the future, it might make sense for this code
3860  * to maintain some sort of a list of resources allocated by each device.
3861  */
3862 
3863 int
3864 bus_alloc_resources(device_t dev, struct resource_spec *rs,
3865     struct resource **res)
3866 {
3867 	int i;
3868 
3869 	for (i = 0; rs[i].type != -1; i++)
3870 		res[i] = NULL;
3871 	for (i = 0; rs[i].type != -1; i++) {
3872 		res[i] = bus_alloc_resource_any(dev,
3873 		    rs[i].type, &rs[i].rid, rs[i].flags);
3874 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3875 			bus_release_resources(dev, rs, res);
3876 			return (ENXIO);
3877 		}
3878 	}
3879 	return (0);
3880 }
3881 
3882 void
3883 bus_release_resources(device_t dev, const struct resource_spec *rs,
3884     struct resource **res)
3885 {
3886 	int i;
3887 
3888 	for (i = 0; rs[i].type != -1; i++)
3889 		if (res[i] != NULL) {
3890 			bus_release_resource(
3891 			    dev, rs[i].type, rs[i].rid, res[i]);
3892 			res[i] = NULL;
3893 		}
3894 }
3895 
3896 /**
3897  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3898  *
3899  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3900  * parent of @p dev.
3901  */
3902 struct resource *
3903 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3904     u_long count, u_int flags)
3905 {
3906 	if (dev->parent == NULL)
3907 		return (NULL);
3908 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3909 	    count, flags));
3910 }
3911 
3912 /**
3913  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3914  *
3915  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3916  * parent of @p dev.
3917  */
3918 int
3919 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3920 {
3921 	if (dev->parent == NULL)
3922 		return (EINVAL);
3923 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3924 }
3925 
3926 /**
3927  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3928  *
3929  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3930  * parent of @p dev.
3931  */
3932 int
3933 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3934 {
3935 	if (dev->parent == NULL)
3936 		return (EINVAL);
3937 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3938 }
3939 
3940 /**
3941  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3942  *
3943  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3944  * parent of @p dev.
3945  */
3946 int
3947 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3948 {
3949 	if (dev->parent == NULL)
3950 		return (EINVAL);
3951 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3952 }
3953 
3954 /**
3955  * @brief Wrapper function for BUS_SETUP_INTR().
3956  *
3957  * This function simply calls the BUS_SETUP_INTR() method of the
3958  * parent of @p dev.
3959  */
3960 int
3961 bus_setup_intr(device_t dev, struct resource *r, int flags,
3962     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
3963 {
3964 	int error;
3965 
3966 	if (dev->parent == NULL)
3967 		return (EINVAL);
3968 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
3969 	    arg, cookiep);
3970 	if (error != 0)
3971 		return (error);
3972 	if (handler != NULL && !(flags & INTR_MPSAFE))
3973 		device_printf(dev, "[GIANT-LOCKED]\n");
3974 	if (bootverbose && (flags & INTR_MPSAFE))
3975 		device_printf(dev, "[MPSAFE]\n");
3976 	if (filter != NULL) {
3977 		if (handler == NULL)
3978 			device_printf(dev, "[FILTER]\n");
3979 		else
3980 			device_printf(dev, "[FILTER+ITHREAD]\n");
3981 	} else
3982 		device_printf(dev, "[ITHREAD]\n");
3983 	return (0);
3984 }
3985 
3986 /**
3987  * @brief Wrapper function for BUS_TEARDOWN_INTR().
3988  *
3989  * This function simply calls the BUS_TEARDOWN_INTR() method of the
3990  * parent of @p dev.
3991  */
3992 int
3993 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3994 {
3995 	if (dev->parent == NULL)
3996 		return (EINVAL);
3997 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3998 }
3999 
4000 /**
4001  * @brief Wrapper function for BUS_BIND_INTR().
4002  *
4003  * This function simply calls the BUS_BIND_INTR() method of the
4004  * parent of @p dev.
4005  */
4006 int
4007 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4008 {
4009 	if (dev->parent == NULL)
4010 		return (EINVAL);
4011 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4012 }
4013 
4014 /**
4015  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4016  *
4017  * This function first formats the requested description into a
4018  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4019  * the parent of @p dev.
4020  */
4021 int
4022 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4023     const char *fmt, ...)
4024 {
4025 	va_list ap;
4026 	char descr[MAXCOMLEN + 1];
4027 
4028 	if (dev->parent == NULL)
4029 		return (EINVAL);
4030 	va_start(ap, fmt);
4031 	vsnprintf(descr, sizeof(descr), fmt, ap);
4032 	va_end(ap);
4033 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4034 }
4035 
4036 /**
4037  * @brief Wrapper function for BUS_SET_RESOURCE().
4038  *
4039  * This function simply calls the BUS_SET_RESOURCE() method of the
4040  * parent of @p dev.
4041  */
4042 int
4043 bus_set_resource(device_t dev, int type, int rid,
4044     u_long start, u_long count)
4045 {
4046 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4047 	    start, count));
4048 }
4049 
4050 /**
4051  * @brief Wrapper function for BUS_GET_RESOURCE().
4052  *
4053  * This function simply calls the BUS_GET_RESOURCE() method of the
4054  * parent of @p dev.
4055  */
4056 int
4057 bus_get_resource(device_t dev, int type, int rid,
4058     u_long *startp, u_long *countp)
4059 {
4060 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4061 	    startp, countp));
4062 }
4063 
4064 /**
4065  * @brief Wrapper function for BUS_GET_RESOURCE().
4066  *
4067  * This function simply calls the BUS_GET_RESOURCE() method of the
4068  * parent of @p dev and returns the start value.
4069  */
4070 u_long
4071 bus_get_resource_start(device_t dev, int type, int rid)
4072 {
4073 	u_long start, count;
4074 	int error;
4075 
4076 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4077 	    &start, &count);
4078 	if (error)
4079 		return (0);
4080 	return (start);
4081 }
4082 
4083 /**
4084  * @brief Wrapper function for BUS_GET_RESOURCE().
4085  *
4086  * This function simply calls the BUS_GET_RESOURCE() method of the
4087  * parent of @p dev and returns the count value.
4088  */
4089 u_long
4090 bus_get_resource_count(device_t dev, int type, int rid)
4091 {
4092 	u_long start, count;
4093 	int error;
4094 
4095 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4096 	    &start, &count);
4097 	if (error)
4098 		return (0);
4099 	return (count);
4100 }
4101 
4102 /**
4103  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4104  *
4105  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4106  * parent of @p dev.
4107  */
4108 void
4109 bus_delete_resource(device_t dev, int type, int rid)
4110 {
4111 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4112 }
4113 
4114 /**
4115  * @brief Wrapper function for BUS_CHILD_PRESENT().
4116  *
4117  * This function simply calls the BUS_CHILD_PRESENT() method of the
4118  * parent of @p dev.
4119  */
4120 int
4121 bus_child_present(device_t child)
4122 {
4123 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4124 }
4125 
4126 /**
4127  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4128  *
4129  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4130  * parent of @p dev.
4131  */
4132 int
4133 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4134 {
4135 	device_t parent;
4136 
4137 	parent = device_get_parent(child);
4138 	if (parent == NULL) {
4139 		*buf = '\0';
4140 		return (0);
4141 	}
4142 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4143 }
4144 
4145 /**
4146  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4147  *
4148  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4149  * parent of @p dev.
4150  */
4151 int
4152 bus_child_location_str(device_t child, char *buf, size_t buflen)
4153 {
4154 	device_t parent;
4155 
4156 	parent = device_get_parent(child);
4157 	if (parent == NULL) {
4158 		*buf = '\0';
4159 		return (0);
4160 	}
4161 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4162 }
4163 
4164 /**
4165  * @brief Wrapper function for BUS_GET_DMA_TAG().
4166  *
4167  * This function simply calls the BUS_GET_DMA_TAG() method of the
4168  * parent of @p dev.
4169  */
4170 bus_dma_tag_t
4171 bus_get_dma_tag(device_t dev)
4172 {
4173 	device_t parent;
4174 
4175 	parent = device_get_parent(dev);
4176 	if (parent == NULL)
4177 		return (NULL);
4178 	return (BUS_GET_DMA_TAG(parent, dev));
4179 }
4180 
4181 /* Resume all devices and then notify userland that we're up again. */
4182 static int
4183 root_resume(device_t dev)
4184 {
4185 	int error;
4186 
4187 	error = bus_generic_resume(dev);
4188 	if (error == 0)
4189 		devctl_notify("kern", "power", "resume", NULL);
4190 	return (error);
4191 }
4192 
4193 static int
4194 root_print_child(device_t dev, device_t child)
4195 {
4196 	int	retval = 0;
4197 
4198 	retval += bus_print_child_header(dev, child);
4199 	retval += printf("\n");
4200 
4201 	return (retval);
4202 }
4203 
4204 static int
4205 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4206     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4207 {
4208 	/*
4209 	 * If an interrupt mapping gets to here something bad has happened.
4210 	 */
4211 	panic("root_setup_intr");
4212 }
4213 
4214 /*
4215  * If we get here, assume that the device is permanant and really is
4216  * present in the system.  Removable bus drivers are expected to intercept
4217  * this call long before it gets here.  We return -1 so that drivers that
4218  * really care can check vs -1 or some ERRNO returned higher in the food
4219  * chain.
4220  */
4221 static int
4222 root_child_present(device_t dev, device_t child)
4223 {
4224 	return (-1);
4225 }
4226 
4227 static kobj_method_t root_methods[] = {
4228 	/* Device interface */
4229 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4230 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4231 	KOBJMETHOD(device_resume,	root_resume),
4232 
4233 	/* Bus interface */
4234 	KOBJMETHOD(bus_print_child,	root_print_child),
4235 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4236 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4237 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4238 	KOBJMETHOD(bus_child_present,	root_child_present),
4239 
4240 	KOBJMETHOD_END
4241 };
4242 
4243 static driver_t root_driver = {
4244 	"root",
4245 	root_methods,
4246 	1,			/* no softc */
4247 };
4248 
4249 device_t	root_bus;
4250 devclass_t	root_devclass;
4251 
4252 static int
4253 root_bus_module_handler(module_t mod, int what, void* arg)
4254 {
4255 	switch (what) {
4256 	case MOD_LOAD:
4257 		TAILQ_INIT(&bus_data_devices);
4258 		kobj_class_compile((kobj_class_t) &root_driver);
4259 		root_bus = make_device(NULL, "root", 0);
4260 		root_bus->desc = "System root bus";
4261 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4262 		root_bus->driver = &root_driver;
4263 		root_bus->state = DS_ATTACHED;
4264 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4265 		devinit();
4266 		return (0);
4267 
4268 	case MOD_SHUTDOWN:
4269 		device_shutdown(root_bus);
4270 		return (0);
4271 	default:
4272 		return (EOPNOTSUPP);
4273 	}
4274 
4275 	return (0);
4276 }
4277 
4278 static moduledata_t root_bus_mod = {
4279 	"rootbus",
4280 	root_bus_module_handler,
4281 	NULL
4282 };
4283 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4284 
4285 /**
4286  * @brief Automatically configure devices
4287  *
4288  * This function begins the autoconfiguration process by calling
4289  * device_probe_and_attach() for each child of the @c root0 device.
4290  */
4291 void
4292 root_bus_configure(void)
4293 {
4294 
4295 	PDEBUG(("."));
4296 
4297 	/* Eventually this will be split up, but this is sufficient for now. */
4298 	bus_set_pass(BUS_PASS_DEFAULT);
4299 }
4300 
4301 /**
4302  * @brief Module handler for registering device drivers
4303  *
4304  * This module handler is used to automatically register device
4305  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4306  * devclass_add_driver() for the driver described by the
4307  * driver_module_data structure pointed to by @p arg
4308  */
4309 int
4310 driver_module_handler(module_t mod, int what, void *arg)
4311 {
4312 	struct driver_module_data *dmd;
4313 	devclass_t bus_devclass;
4314 	kobj_class_t driver;
4315 	int error, pass;
4316 
4317 	dmd = (struct driver_module_data *)arg;
4318 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4319 	error = 0;
4320 
4321 	switch (what) {
4322 	case MOD_LOAD:
4323 		if (dmd->dmd_chainevh)
4324 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4325 
4326 		pass = dmd->dmd_pass;
4327 		driver = dmd->dmd_driver;
4328 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4329 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4330 		error = devclass_add_driver(bus_devclass, driver, pass,
4331 		    dmd->dmd_devclass);
4332 		break;
4333 
4334 	case MOD_UNLOAD:
4335 		PDEBUG(("Unloading module: driver %s from bus %s",
4336 		    DRIVERNAME(dmd->dmd_driver),
4337 		    dmd->dmd_busname));
4338 		error = devclass_delete_driver(bus_devclass,
4339 		    dmd->dmd_driver);
4340 
4341 		if (!error && dmd->dmd_chainevh)
4342 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4343 		break;
4344 	case MOD_QUIESCE:
4345 		PDEBUG(("Quiesce module: driver %s from bus %s",
4346 		    DRIVERNAME(dmd->dmd_driver),
4347 		    dmd->dmd_busname));
4348 		error = devclass_quiesce_driver(bus_devclass,
4349 		    dmd->dmd_driver);
4350 
4351 		if (!error && dmd->dmd_chainevh)
4352 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4353 		break;
4354 	default:
4355 		error = EOPNOTSUPP;
4356 		break;
4357 	}
4358 
4359 	return (error);
4360 }
4361 
4362 /**
4363  * @brief Enumerate all hinted devices for this bus.
4364  *
4365  * Walks through the hints for this bus and calls the bus_hinted_child
4366  * routine for each one it fines.  It searches first for the specific
4367  * bus that's being probed for hinted children (eg isa0), and then for
4368  * generic children (eg isa).
4369  *
4370  * @param	dev	bus device to enumerate
4371  */
4372 void
4373 bus_enumerate_hinted_children(device_t bus)
4374 {
4375 	int i;
4376 	const char *dname, *busname;
4377 	int dunit;
4378 
4379 	/*
4380 	 * enumerate all devices on the specific bus
4381 	 */
4382 	busname = device_get_nameunit(bus);
4383 	i = 0;
4384 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4385 		BUS_HINTED_CHILD(bus, dname, dunit);
4386 
4387 	/*
4388 	 * and all the generic ones.
4389 	 */
4390 	busname = device_get_name(bus);
4391 	i = 0;
4392 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4393 		BUS_HINTED_CHILD(bus, dname, dunit);
4394 }
4395 
4396 #ifdef BUS_DEBUG
4397 
4398 /* the _short versions avoid iteration by not calling anything that prints
4399  * more than oneliners. I love oneliners.
4400  */
4401 
4402 static void
4403 print_device_short(device_t dev, int indent)
4404 {
4405 	if (!dev)
4406 		return;
4407 
4408 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4409 	    dev->unit, dev->desc,
4410 	    (dev->parent? "":"no "),
4411 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4412 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4413 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4414 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4415 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4416 	    (dev->flags&DF_REBID? "rebiddable,":""),
4417 	    (dev->ivars? "":"no "),
4418 	    (dev->softc? "":"no "),
4419 	    dev->busy));
4420 }
4421 
4422 static void
4423 print_device(device_t dev, int indent)
4424 {
4425 	if (!dev)
4426 		return;
4427 
4428 	print_device_short(dev, indent);
4429 
4430 	indentprintf(("Parent:\n"));
4431 	print_device_short(dev->parent, indent+1);
4432 	indentprintf(("Driver:\n"));
4433 	print_driver_short(dev->driver, indent+1);
4434 	indentprintf(("Devclass:\n"));
4435 	print_devclass_short(dev->devclass, indent+1);
4436 }
4437 
4438 void
4439 print_device_tree_short(device_t dev, int indent)
4440 /* print the device and all its children (indented) */
4441 {
4442 	device_t child;
4443 
4444 	if (!dev)
4445 		return;
4446 
4447 	print_device_short(dev, indent);
4448 
4449 	TAILQ_FOREACH(child, &dev->children, link) {
4450 		print_device_tree_short(child, indent+1);
4451 	}
4452 }
4453 
4454 void
4455 print_device_tree(device_t dev, int indent)
4456 /* print the device and all its children (indented) */
4457 {
4458 	device_t child;
4459 
4460 	if (!dev)
4461 		return;
4462 
4463 	print_device(dev, indent);
4464 
4465 	TAILQ_FOREACH(child, &dev->children, link) {
4466 		print_device_tree(child, indent+1);
4467 	}
4468 }
4469 
4470 static void
4471 print_driver_short(driver_t *driver, int indent)
4472 {
4473 	if (!driver)
4474 		return;
4475 
4476 	indentprintf(("driver %s: softc size = %zd\n",
4477 	    driver->name, driver->size));
4478 }
4479 
4480 static void
4481 print_driver(driver_t *driver, int indent)
4482 {
4483 	if (!driver)
4484 		return;
4485 
4486 	print_driver_short(driver, indent);
4487 }
4488 
4489 
4490 static void
4491 print_driver_list(driver_list_t drivers, int indent)
4492 {
4493 	driverlink_t driver;
4494 
4495 	TAILQ_FOREACH(driver, &drivers, link) {
4496 		print_driver(driver->driver, indent);
4497 	}
4498 }
4499 
4500 static void
4501 print_devclass_short(devclass_t dc, int indent)
4502 {
4503 	if ( !dc )
4504 		return;
4505 
4506 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4507 }
4508 
4509 static void
4510 print_devclass(devclass_t dc, int indent)
4511 {
4512 	int i;
4513 
4514 	if ( !dc )
4515 		return;
4516 
4517 	print_devclass_short(dc, indent);
4518 	indentprintf(("Drivers:\n"));
4519 	print_driver_list(dc->drivers, indent+1);
4520 
4521 	indentprintf(("Devices:\n"));
4522 	for (i = 0; i < dc->maxunit; i++)
4523 		if (dc->devices[i])
4524 			print_device(dc->devices[i], indent+1);
4525 }
4526 
4527 void
4528 print_devclass_list_short(void)
4529 {
4530 	devclass_t dc;
4531 
4532 	printf("Short listing of devclasses, drivers & devices:\n");
4533 	TAILQ_FOREACH(dc, &devclasses, link) {
4534 		print_devclass_short(dc, 0);
4535 	}
4536 }
4537 
4538 void
4539 print_devclass_list(void)
4540 {
4541 	devclass_t dc;
4542 
4543 	printf("Full listing of devclasses, drivers & devices:\n");
4544 	TAILQ_FOREACH(dc, &devclasses, link) {
4545 		print_devclass(dc, 0);
4546 	}
4547 }
4548 
4549 #endif
4550 
4551 /*
4552  * User-space access to the device tree.
4553  *
4554  * We implement a small set of nodes:
4555  *
4556  * hw.bus			Single integer read method to obtain the
4557  *				current generation count.
4558  * hw.bus.devices		Reads the entire device tree in flat space.
4559  * hw.bus.rman			Resource manager interface
4560  *
4561  * We might like to add the ability to scan devclasses and/or drivers to
4562  * determine what else is currently loaded/available.
4563  */
4564 
4565 static int
4566 sysctl_bus(SYSCTL_HANDLER_ARGS)
4567 {
4568 	struct u_businfo	ubus;
4569 
4570 	ubus.ub_version = BUS_USER_VERSION;
4571 	ubus.ub_generation = bus_data_generation;
4572 
4573 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4574 }
4575 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4576     "bus-related data");
4577 
4578 static int
4579 sysctl_devices(SYSCTL_HANDLER_ARGS)
4580 {
4581 	int			*name = (int *)arg1;
4582 	u_int			namelen = arg2;
4583 	int			index;
4584 	struct device		*dev;
4585 	struct u_device		udev;	/* XXX this is a bit big */
4586 	int			error;
4587 
4588 	if (namelen != 2)
4589 		return (EINVAL);
4590 
4591 	if (bus_data_generation_check(name[0]))
4592 		return (EINVAL);
4593 
4594 	index = name[1];
4595 
4596 	/*
4597 	 * Scan the list of devices, looking for the requested index.
4598 	 */
4599 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4600 		if (index-- == 0)
4601 			break;
4602 	}
4603 	if (dev == NULL)
4604 		return (ENOENT);
4605 
4606 	/*
4607 	 * Populate the return array.
4608 	 */
4609 	bzero(&udev, sizeof(udev));
4610 	udev.dv_handle = (uintptr_t)dev;
4611 	udev.dv_parent = (uintptr_t)dev->parent;
4612 	if (dev->nameunit != NULL)
4613 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4614 	if (dev->desc != NULL)
4615 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4616 	if (dev->driver != NULL && dev->driver->name != NULL)
4617 		strlcpy(udev.dv_drivername, dev->driver->name,
4618 		    sizeof(udev.dv_drivername));
4619 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4620 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4621 	udev.dv_devflags = dev->devflags;
4622 	udev.dv_flags = dev->flags;
4623 	udev.dv_state = dev->state;
4624 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4625 	return (error);
4626 }
4627 
4628 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4629     "system device tree");
4630 
4631 int
4632 bus_data_generation_check(int generation)
4633 {
4634 	if (generation != bus_data_generation)
4635 		return (1);
4636 
4637 	/* XXX generate optimised lists here? */
4638 	return (0);
4639 }
4640 
4641 void
4642 bus_data_generation_update(void)
4643 {
4644 	bus_data_generation++;
4645 }
4646 
4647 int
4648 bus_free_resource(device_t dev, int type, struct resource *r)
4649 {
4650 	if (r == NULL)
4651 		return (0);
4652 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4653 }
4654