1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 #include "opt_random.h" 32 33 #include <sys/param.h> 34 #include <sys/conf.h> 35 #include <sys/filio.h> 36 #include <sys/lock.h> 37 #include <sys/kernel.h> 38 #include <sys/kobj.h> 39 #include <sys/limits.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/mutex.h> 43 #include <sys/poll.h> 44 #include <sys/priv.h> 45 #include <sys/proc.h> 46 #include <sys/condvar.h> 47 #include <sys/queue.h> 48 #include <machine/bus.h> 49 #include <sys/random.h> 50 #include <sys/rman.h> 51 #include <sys/selinfo.h> 52 #include <sys/signalvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/systm.h> 55 #include <sys/uio.h> 56 #include <sys/bus.h> 57 #include <sys/interrupt.h> 58 #include <sys/cpuset.h> 59 60 #include <net/vnet.h> 61 62 #include <machine/cpu.h> 63 #include <machine/stdarg.h> 64 65 #include <vm/uma.h> 66 67 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 68 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 69 70 /* 71 * Used to attach drivers to devclasses. 72 */ 73 typedef struct driverlink *driverlink_t; 74 struct driverlink { 75 kobj_class_t driver; 76 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 77 int pass; 78 TAILQ_ENTRY(driverlink) passlink; 79 }; 80 81 /* 82 * Forward declarations 83 */ 84 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 85 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 86 typedef TAILQ_HEAD(device_list, device) device_list_t; 87 88 struct devclass { 89 TAILQ_ENTRY(devclass) link; 90 devclass_t parent; /* parent in devclass hierarchy */ 91 driver_list_t drivers; /* bus devclasses store drivers for bus */ 92 char *name; 93 device_t *devices; /* array of devices indexed by unit */ 94 int maxunit; /* size of devices array */ 95 int flags; 96 #define DC_HAS_CHILDREN 1 97 98 struct sysctl_ctx_list sysctl_ctx; 99 struct sysctl_oid *sysctl_tree; 100 }; 101 102 /** 103 * @brief Implementation of device. 104 */ 105 struct device { 106 /* 107 * A device is a kernel object. The first field must be the 108 * current ops table for the object. 109 */ 110 KOBJ_FIELDS; 111 112 /* 113 * Device hierarchy. 114 */ 115 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 116 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 117 device_t parent; /**< parent of this device */ 118 device_list_t children; /**< list of child devices */ 119 120 /* 121 * Details of this device. 122 */ 123 driver_t *driver; /**< current driver */ 124 devclass_t devclass; /**< current device class */ 125 int unit; /**< current unit number */ 126 char* nameunit; /**< name+unit e.g. foodev0 */ 127 char* desc; /**< driver specific description */ 128 int busy; /**< count of calls to device_busy() */ 129 device_state_t state; /**< current device state */ 130 uint32_t devflags; /**< api level flags for device_get_flags() */ 131 u_int flags; /**< internal device flags */ 132 u_int order; /**< order from device_add_child_ordered() */ 133 void *ivars; /**< instance variables */ 134 void *softc; /**< current driver's variables */ 135 136 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 137 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 138 }; 139 140 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 141 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 142 143 static void devctl2_init(void); 144 145 #ifdef BUS_DEBUG 146 147 static int bus_debug = 1; 148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 149 "Bus debug level"); 150 151 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 152 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 153 #define DRIVERNAME(d) ((d)? d->name : "no driver") 154 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 155 156 /** 157 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 158 * prevent syslog from deleting initial spaces 159 */ 160 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 161 162 static void print_device_short(device_t dev, int indent); 163 static void print_device(device_t dev, int indent); 164 void print_device_tree_short(device_t dev, int indent); 165 void print_device_tree(device_t dev, int indent); 166 static void print_driver_short(driver_t *driver, int indent); 167 static void print_driver(driver_t *driver, int indent); 168 static void print_driver_list(driver_list_t drivers, int indent); 169 static void print_devclass_short(devclass_t dc, int indent); 170 static void print_devclass(devclass_t dc, int indent); 171 void print_devclass_list_short(void); 172 void print_devclass_list(void); 173 174 #else 175 /* Make the compiler ignore the function calls */ 176 #define PDEBUG(a) /* nop */ 177 #define DEVICENAME(d) /* nop */ 178 #define DRIVERNAME(d) /* nop */ 179 #define DEVCLANAME(d) /* nop */ 180 181 #define print_device_short(d,i) /* nop */ 182 #define print_device(d,i) /* nop */ 183 #define print_device_tree_short(d,i) /* nop */ 184 #define print_device_tree(d,i) /* nop */ 185 #define print_driver_short(d,i) /* nop */ 186 #define print_driver(d,i) /* nop */ 187 #define print_driver_list(d,i) /* nop */ 188 #define print_devclass_short(d,i) /* nop */ 189 #define print_devclass(d,i) /* nop */ 190 #define print_devclass_list_short() /* nop */ 191 #define print_devclass_list() /* nop */ 192 #endif 193 194 /* 195 * dev sysctl tree 196 */ 197 198 enum { 199 DEVCLASS_SYSCTL_PARENT, 200 }; 201 202 static int 203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 204 { 205 devclass_t dc = (devclass_t)arg1; 206 const char *value; 207 208 switch (arg2) { 209 case DEVCLASS_SYSCTL_PARENT: 210 value = dc->parent ? dc->parent->name : ""; 211 break; 212 default: 213 return (EINVAL); 214 } 215 return (SYSCTL_OUT(req, value, strlen(value))); 216 } 217 218 static void 219 devclass_sysctl_init(devclass_t dc) 220 { 221 222 if (dc->sysctl_tree != NULL) 223 return; 224 sysctl_ctx_init(&dc->sysctl_ctx); 225 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 226 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 227 CTLFLAG_RD, NULL, ""); 228 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 229 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 230 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 231 "parent class"); 232 } 233 234 enum { 235 DEVICE_SYSCTL_DESC, 236 DEVICE_SYSCTL_DRIVER, 237 DEVICE_SYSCTL_LOCATION, 238 DEVICE_SYSCTL_PNPINFO, 239 DEVICE_SYSCTL_PARENT, 240 }; 241 242 static int 243 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 244 { 245 device_t dev = (device_t)arg1; 246 const char *value; 247 char *buf; 248 int error; 249 250 buf = NULL; 251 switch (arg2) { 252 case DEVICE_SYSCTL_DESC: 253 value = dev->desc ? dev->desc : ""; 254 break; 255 case DEVICE_SYSCTL_DRIVER: 256 value = dev->driver ? dev->driver->name : ""; 257 break; 258 case DEVICE_SYSCTL_LOCATION: 259 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 260 bus_child_location_str(dev, buf, 1024); 261 break; 262 case DEVICE_SYSCTL_PNPINFO: 263 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 264 bus_child_pnpinfo_str(dev, buf, 1024); 265 break; 266 case DEVICE_SYSCTL_PARENT: 267 value = dev->parent ? dev->parent->nameunit : ""; 268 break; 269 default: 270 return (EINVAL); 271 } 272 error = SYSCTL_OUT(req, value, strlen(value)); 273 if (buf != NULL) 274 free(buf, M_BUS); 275 return (error); 276 } 277 278 static void 279 device_sysctl_init(device_t dev) 280 { 281 devclass_t dc = dev->devclass; 282 int domain; 283 284 if (dev->sysctl_tree != NULL) 285 return; 286 devclass_sysctl_init(dc); 287 sysctl_ctx_init(&dev->sysctl_ctx); 288 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 289 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 290 dev->nameunit + strlen(dc->name), 291 CTLFLAG_RD, NULL, ""); 292 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 293 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 294 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 295 "device description"); 296 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 297 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 298 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 299 "device driver name"); 300 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 301 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 302 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 303 "device location relative to parent"); 304 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 305 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 306 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 307 "device identification"); 308 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 309 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 310 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 311 "parent device"); 312 if (bus_get_domain(dev, &domain) == 0) 313 SYSCTL_ADD_INT(&dev->sysctl_ctx, 314 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 315 CTLFLAG_RD, NULL, domain, "NUMA domain"); 316 } 317 318 static void 319 device_sysctl_update(device_t dev) 320 { 321 devclass_t dc = dev->devclass; 322 323 if (dev->sysctl_tree == NULL) 324 return; 325 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 326 } 327 328 static void 329 device_sysctl_fini(device_t dev) 330 { 331 if (dev->sysctl_tree == NULL) 332 return; 333 sysctl_ctx_free(&dev->sysctl_ctx); 334 dev->sysctl_tree = NULL; 335 } 336 337 /* 338 * /dev/devctl implementation 339 */ 340 341 /* 342 * This design allows only one reader for /dev/devctl. This is not desirable 343 * in the long run, but will get a lot of hair out of this implementation. 344 * Maybe we should make this device a clonable device. 345 * 346 * Also note: we specifically do not attach a device to the device_t tree 347 * to avoid potential chicken and egg problems. One could argue that all 348 * of this belongs to the root node. One could also further argue that the 349 * sysctl interface that we have not might more properly be an ioctl 350 * interface, but at this stage of the game, I'm not inclined to rock that 351 * boat. 352 * 353 * I'm also not sure that the SIGIO support is done correctly or not, as 354 * I copied it from a driver that had SIGIO support that likely hasn't been 355 * tested since 3.4 or 2.2.8! 356 */ 357 358 /* Deprecated way to adjust queue length */ 359 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 360 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN | 361 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I", 362 "devctl disable -- deprecated"); 363 364 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 365 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 366 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 367 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 368 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 369 370 static d_open_t devopen; 371 static d_close_t devclose; 372 static d_read_t devread; 373 static d_ioctl_t devioctl; 374 static d_poll_t devpoll; 375 static d_kqfilter_t devkqfilter; 376 377 static struct cdevsw dev_cdevsw = { 378 .d_version = D_VERSION, 379 .d_open = devopen, 380 .d_close = devclose, 381 .d_read = devread, 382 .d_ioctl = devioctl, 383 .d_poll = devpoll, 384 .d_kqfilter = devkqfilter, 385 .d_name = "devctl", 386 }; 387 388 struct dev_event_info 389 { 390 char *dei_data; 391 TAILQ_ENTRY(dev_event_info) dei_link; 392 }; 393 394 TAILQ_HEAD(devq, dev_event_info); 395 396 static struct dev_softc 397 { 398 int inuse; 399 int nonblock; 400 int queued; 401 int async; 402 struct mtx mtx; 403 struct cv cv; 404 struct selinfo sel; 405 struct devq devq; 406 struct sigio *sigio; 407 } devsoftc; 408 409 static void filt_devctl_detach(struct knote *kn); 410 static int filt_devctl_read(struct knote *kn, long hint); 411 412 struct filterops devctl_rfiltops = { 413 .f_isfd = 1, 414 .f_detach = filt_devctl_detach, 415 .f_event = filt_devctl_read, 416 }; 417 418 static struct cdev *devctl_dev; 419 420 static void 421 devinit(void) 422 { 423 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 424 UID_ROOT, GID_WHEEL, 0600, "devctl"); 425 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 426 cv_init(&devsoftc.cv, "dev cv"); 427 TAILQ_INIT(&devsoftc.devq); 428 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 429 devctl2_init(); 430 } 431 432 static int 433 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 434 { 435 436 mtx_lock(&devsoftc.mtx); 437 if (devsoftc.inuse) { 438 mtx_unlock(&devsoftc.mtx); 439 return (EBUSY); 440 } 441 /* move to init */ 442 devsoftc.inuse = 1; 443 mtx_unlock(&devsoftc.mtx); 444 return (0); 445 } 446 447 static int 448 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 449 { 450 451 mtx_lock(&devsoftc.mtx); 452 devsoftc.inuse = 0; 453 devsoftc.nonblock = 0; 454 devsoftc.async = 0; 455 cv_broadcast(&devsoftc.cv); 456 funsetown(&devsoftc.sigio); 457 mtx_unlock(&devsoftc.mtx); 458 return (0); 459 } 460 461 /* 462 * The read channel for this device is used to report changes to 463 * userland in realtime. We are required to free the data as well as 464 * the n1 object because we allocate them separately. Also note that 465 * we return one record at a time. If you try to read this device a 466 * character at a time, you will lose the rest of the data. Listening 467 * programs are expected to cope. 468 */ 469 static int 470 devread(struct cdev *dev, struct uio *uio, int ioflag) 471 { 472 struct dev_event_info *n1; 473 int rv; 474 475 mtx_lock(&devsoftc.mtx); 476 while (TAILQ_EMPTY(&devsoftc.devq)) { 477 if (devsoftc.nonblock) { 478 mtx_unlock(&devsoftc.mtx); 479 return (EAGAIN); 480 } 481 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 482 if (rv) { 483 /* 484 * Need to translate ERESTART to EINTR here? -- jake 485 */ 486 mtx_unlock(&devsoftc.mtx); 487 return (rv); 488 } 489 } 490 n1 = TAILQ_FIRST(&devsoftc.devq); 491 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 492 devsoftc.queued--; 493 mtx_unlock(&devsoftc.mtx); 494 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 495 free(n1->dei_data, M_BUS); 496 free(n1, M_BUS); 497 return (rv); 498 } 499 500 static int 501 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 502 { 503 switch (cmd) { 504 505 case FIONBIO: 506 if (*(int*)data) 507 devsoftc.nonblock = 1; 508 else 509 devsoftc.nonblock = 0; 510 return (0); 511 case FIOASYNC: 512 if (*(int*)data) 513 devsoftc.async = 1; 514 else 515 devsoftc.async = 0; 516 return (0); 517 case FIOSETOWN: 518 return fsetown(*(int *)data, &devsoftc.sigio); 519 case FIOGETOWN: 520 *(int *)data = fgetown(&devsoftc.sigio); 521 return (0); 522 523 /* (un)Support for other fcntl() calls. */ 524 case FIOCLEX: 525 case FIONCLEX: 526 case FIONREAD: 527 default: 528 break; 529 } 530 return (ENOTTY); 531 } 532 533 static int 534 devpoll(struct cdev *dev, int events, struct thread *td) 535 { 536 int revents = 0; 537 538 mtx_lock(&devsoftc.mtx); 539 if (events & (POLLIN | POLLRDNORM)) { 540 if (!TAILQ_EMPTY(&devsoftc.devq)) 541 revents = events & (POLLIN | POLLRDNORM); 542 else 543 selrecord(td, &devsoftc.sel); 544 } 545 mtx_unlock(&devsoftc.mtx); 546 547 return (revents); 548 } 549 550 static int 551 devkqfilter(struct cdev *dev, struct knote *kn) 552 { 553 int error; 554 555 if (kn->kn_filter == EVFILT_READ) { 556 kn->kn_fop = &devctl_rfiltops; 557 knlist_add(&devsoftc.sel.si_note, kn, 0); 558 error = 0; 559 } else 560 error = EINVAL; 561 return (error); 562 } 563 564 static void 565 filt_devctl_detach(struct knote *kn) 566 { 567 568 knlist_remove(&devsoftc.sel.si_note, kn, 0); 569 } 570 571 static int 572 filt_devctl_read(struct knote *kn, long hint) 573 { 574 kn->kn_data = devsoftc.queued; 575 return (kn->kn_data != 0); 576 } 577 578 /** 579 * @brief Return whether the userland process is running 580 */ 581 boolean_t 582 devctl_process_running(void) 583 { 584 return (devsoftc.inuse == 1); 585 } 586 587 /** 588 * @brief Queue data to be read from the devctl device 589 * 590 * Generic interface to queue data to the devctl device. It is 591 * assumed that @p data is properly formatted. It is further assumed 592 * that @p data is allocated using the M_BUS malloc type. 593 */ 594 void 595 devctl_queue_data_f(char *data, int flags) 596 { 597 struct dev_event_info *n1 = NULL, *n2 = NULL; 598 599 if (strlen(data) == 0) 600 goto out; 601 if (devctl_queue_length == 0) 602 goto out; 603 n1 = malloc(sizeof(*n1), M_BUS, flags); 604 if (n1 == NULL) 605 goto out; 606 n1->dei_data = data; 607 mtx_lock(&devsoftc.mtx); 608 if (devctl_queue_length == 0) { 609 mtx_unlock(&devsoftc.mtx); 610 free(n1->dei_data, M_BUS); 611 free(n1, M_BUS); 612 return; 613 } 614 /* Leave at least one spot in the queue... */ 615 while (devsoftc.queued > devctl_queue_length - 1) { 616 n2 = TAILQ_FIRST(&devsoftc.devq); 617 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 618 free(n2->dei_data, M_BUS); 619 free(n2, M_BUS); 620 devsoftc.queued--; 621 } 622 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 623 devsoftc.queued++; 624 cv_broadcast(&devsoftc.cv); 625 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 626 mtx_unlock(&devsoftc.mtx); 627 selwakeup(&devsoftc.sel); 628 if (devsoftc.async && devsoftc.sigio != NULL) 629 pgsigio(&devsoftc.sigio, SIGIO, 0); 630 return; 631 out: 632 /* 633 * We have to free data on all error paths since the caller 634 * assumes it will be free'd when this item is dequeued. 635 */ 636 free(data, M_BUS); 637 return; 638 } 639 640 void 641 devctl_queue_data(char *data) 642 { 643 644 devctl_queue_data_f(data, M_NOWAIT); 645 } 646 647 /** 648 * @brief Send a 'notification' to userland, using standard ways 649 */ 650 void 651 devctl_notify_f(const char *system, const char *subsystem, const char *type, 652 const char *data, int flags) 653 { 654 int len = 0; 655 char *msg; 656 657 if (system == NULL) 658 return; /* BOGUS! Must specify system. */ 659 if (subsystem == NULL) 660 return; /* BOGUS! Must specify subsystem. */ 661 if (type == NULL) 662 return; /* BOGUS! Must specify type. */ 663 len += strlen(" system=") + strlen(system); 664 len += strlen(" subsystem=") + strlen(subsystem); 665 len += strlen(" type=") + strlen(type); 666 /* add in the data message plus newline. */ 667 if (data != NULL) 668 len += strlen(data); 669 len += 3; /* '!', '\n', and NUL */ 670 msg = malloc(len, M_BUS, flags); 671 if (msg == NULL) 672 return; /* Drop it on the floor */ 673 if (data != NULL) 674 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 675 system, subsystem, type, data); 676 else 677 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 678 system, subsystem, type); 679 devctl_queue_data_f(msg, flags); 680 } 681 682 void 683 devctl_notify(const char *system, const char *subsystem, const char *type, 684 const char *data) 685 { 686 687 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 688 } 689 690 /* 691 * Common routine that tries to make sending messages as easy as possible. 692 * We allocate memory for the data, copy strings into that, but do not 693 * free it unless there's an error. The dequeue part of the driver should 694 * free the data. We don't send data when the device is disabled. We do 695 * send data, even when we have no listeners, because we wish to avoid 696 * races relating to startup and restart of listening applications. 697 * 698 * devaddq is designed to string together the type of event, with the 699 * object of that event, plus the plug and play info and location info 700 * for that event. This is likely most useful for devices, but less 701 * useful for other consumers of this interface. Those should use 702 * the devctl_queue_data() interface instead. 703 */ 704 static void 705 devaddq(const char *type, const char *what, device_t dev) 706 { 707 char *data = NULL; 708 char *loc = NULL; 709 char *pnp = NULL; 710 const char *parstr; 711 712 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 713 return; 714 data = malloc(1024, M_BUS, M_NOWAIT); 715 if (data == NULL) 716 goto bad; 717 718 /* get the bus specific location of this device */ 719 loc = malloc(1024, M_BUS, M_NOWAIT); 720 if (loc == NULL) 721 goto bad; 722 *loc = '\0'; 723 bus_child_location_str(dev, loc, 1024); 724 725 /* Get the bus specific pnp info of this device */ 726 pnp = malloc(1024, M_BUS, M_NOWAIT); 727 if (pnp == NULL) 728 goto bad; 729 *pnp = '\0'; 730 bus_child_pnpinfo_str(dev, pnp, 1024); 731 732 /* Get the parent of this device, or / if high enough in the tree. */ 733 if (device_get_parent(dev) == NULL) 734 parstr = "."; /* Or '/' ? */ 735 else 736 parstr = device_get_nameunit(device_get_parent(dev)); 737 /* String it all together. */ 738 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 739 parstr); 740 free(loc, M_BUS); 741 free(pnp, M_BUS); 742 devctl_queue_data(data); 743 return; 744 bad: 745 free(pnp, M_BUS); 746 free(loc, M_BUS); 747 free(data, M_BUS); 748 return; 749 } 750 751 /* 752 * A device was added to the tree. We are called just after it successfully 753 * attaches (that is, probe and attach success for this device). No call 754 * is made if a device is merely parented into the tree. See devnomatch 755 * if probe fails. If attach fails, no notification is sent (but maybe 756 * we should have a different message for this). 757 */ 758 static void 759 devadded(device_t dev) 760 { 761 devaddq("+", device_get_nameunit(dev), dev); 762 } 763 764 /* 765 * A device was removed from the tree. We are called just before this 766 * happens. 767 */ 768 static void 769 devremoved(device_t dev) 770 { 771 devaddq("-", device_get_nameunit(dev), dev); 772 } 773 774 /* 775 * Called when there's no match for this device. This is only called 776 * the first time that no match happens, so we don't keep getting this 777 * message. Should that prove to be undesirable, we can change it. 778 * This is called when all drivers that can attach to a given bus 779 * decline to accept this device. Other errors may not be detected. 780 */ 781 static void 782 devnomatch(device_t dev) 783 { 784 devaddq("?", "", dev); 785 } 786 787 static int 788 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 789 { 790 struct dev_event_info *n1; 791 int dis, error; 792 793 dis = (devctl_queue_length == 0); 794 error = sysctl_handle_int(oidp, &dis, 0, req); 795 if (error || !req->newptr) 796 return (error); 797 if (mtx_initialized(&devsoftc.mtx)) 798 mtx_lock(&devsoftc.mtx); 799 if (dis) { 800 while (!TAILQ_EMPTY(&devsoftc.devq)) { 801 n1 = TAILQ_FIRST(&devsoftc.devq); 802 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 803 free(n1->dei_data, M_BUS); 804 free(n1, M_BUS); 805 } 806 devsoftc.queued = 0; 807 devctl_queue_length = 0; 808 } else { 809 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 810 } 811 if (mtx_initialized(&devsoftc.mtx)) 812 mtx_unlock(&devsoftc.mtx); 813 return (0); 814 } 815 816 static int 817 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 818 { 819 struct dev_event_info *n1; 820 int q, error; 821 822 q = devctl_queue_length; 823 error = sysctl_handle_int(oidp, &q, 0, req); 824 if (error || !req->newptr) 825 return (error); 826 if (q < 0) 827 return (EINVAL); 828 if (mtx_initialized(&devsoftc.mtx)) 829 mtx_lock(&devsoftc.mtx); 830 devctl_queue_length = q; 831 while (devsoftc.queued > devctl_queue_length) { 832 n1 = TAILQ_FIRST(&devsoftc.devq); 833 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 834 free(n1->dei_data, M_BUS); 835 free(n1, M_BUS); 836 devsoftc.queued--; 837 } 838 if (mtx_initialized(&devsoftc.mtx)) 839 mtx_unlock(&devsoftc.mtx); 840 return (0); 841 } 842 843 /* End of /dev/devctl code */ 844 845 static TAILQ_HEAD(,device) bus_data_devices; 846 static int bus_data_generation = 1; 847 848 static kobj_method_t null_methods[] = { 849 KOBJMETHOD_END 850 }; 851 852 DEFINE_CLASS(null, null_methods, 0); 853 854 /* 855 * Bus pass implementation 856 */ 857 858 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 859 int bus_current_pass = BUS_PASS_ROOT; 860 861 /** 862 * @internal 863 * @brief Register the pass level of a new driver attachment 864 * 865 * Register a new driver attachment's pass level. If no driver 866 * attachment with the same pass level has been added, then @p new 867 * will be added to the global passes list. 868 * 869 * @param new the new driver attachment 870 */ 871 static void 872 driver_register_pass(struct driverlink *new) 873 { 874 struct driverlink *dl; 875 876 /* We only consider pass numbers during boot. */ 877 if (bus_current_pass == BUS_PASS_DEFAULT) 878 return; 879 880 /* 881 * Walk the passes list. If we already know about this pass 882 * then there is nothing to do. If we don't, then insert this 883 * driver link into the list. 884 */ 885 TAILQ_FOREACH(dl, &passes, passlink) { 886 if (dl->pass < new->pass) 887 continue; 888 if (dl->pass == new->pass) 889 return; 890 TAILQ_INSERT_BEFORE(dl, new, passlink); 891 return; 892 } 893 TAILQ_INSERT_TAIL(&passes, new, passlink); 894 } 895 896 /** 897 * @brief Raise the current bus pass 898 * 899 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 900 * method on the root bus to kick off a new device tree scan for each 901 * new pass level that has at least one driver. 902 */ 903 void 904 bus_set_pass(int pass) 905 { 906 struct driverlink *dl; 907 908 if (bus_current_pass > pass) 909 panic("Attempt to lower bus pass level"); 910 911 TAILQ_FOREACH(dl, &passes, passlink) { 912 /* Skip pass values below the current pass level. */ 913 if (dl->pass <= bus_current_pass) 914 continue; 915 916 /* 917 * Bail once we hit a driver with a pass level that is 918 * too high. 919 */ 920 if (dl->pass > pass) 921 break; 922 923 /* 924 * Raise the pass level to the next level and rescan 925 * the tree. 926 */ 927 bus_current_pass = dl->pass; 928 BUS_NEW_PASS(root_bus); 929 } 930 931 /* 932 * If there isn't a driver registered for the requested pass, 933 * then bus_current_pass might still be less than 'pass'. Set 934 * it to 'pass' in that case. 935 */ 936 if (bus_current_pass < pass) 937 bus_current_pass = pass; 938 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 939 } 940 941 /* 942 * Devclass implementation 943 */ 944 945 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 946 947 /** 948 * @internal 949 * @brief Find or create a device class 950 * 951 * If a device class with the name @p classname exists, return it, 952 * otherwise if @p create is non-zero create and return a new device 953 * class. 954 * 955 * If @p parentname is non-NULL, the parent of the devclass is set to 956 * the devclass of that name. 957 * 958 * @param classname the devclass name to find or create 959 * @param parentname the parent devclass name or @c NULL 960 * @param create non-zero to create a devclass 961 */ 962 static devclass_t 963 devclass_find_internal(const char *classname, const char *parentname, 964 int create) 965 { 966 devclass_t dc; 967 968 PDEBUG(("looking for %s", classname)); 969 if (!classname) 970 return (NULL); 971 972 TAILQ_FOREACH(dc, &devclasses, link) { 973 if (!strcmp(dc->name, classname)) 974 break; 975 } 976 977 if (create && !dc) { 978 PDEBUG(("creating %s", classname)); 979 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 980 M_BUS, M_NOWAIT | M_ZERO); 981 if (!dc) 982 return (NULL); 983 dc->parent = NULL; 984 dc->name = (char*) (dc + 1); 985 strcpy(dc->name, classname); 986 TAILQ_INIT(&dc->drivers); 987 TAILQ_INSERT_TAIL(&devclasses, dc, link); 988 989 bus_data_generation_update(); 990 } 991 992 /* 993 * If a parent class is specified, then set that as our parent so 994 * that this devclass will support drivers for the parent class as 995 * well. If the parent class has the same name don't do this though 996 * as it creates a cycle that can trigger an infinite loop in 997 * device_probe_child() if a device exists for which there is no 998 * suitable driver. 999 */ 1000 if (parentname && dc && !dc->parent && 1001 strcmp(classname, parentname) != 0) { 1002 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1003 dc->parent->flags |= DC_HAS_CHILDREN; 1004 } 1005 1006 return (dc); 1007 } 1008 1009 /** 1010 * @brief Create a device class 1011 * 1012 * If a device class with the name @p classname exists, return it, 1013 * otherwise create and return a new device class. 1014 * 1015 * @param classname the devclass name to find or create 1016 */ 1017 devclass_t 1018 devclass_create(const char *classname) 1019 { 1020 return (devclass_find_internal(classname, NULL, TRUE)); 1021 } 1022 1023 /** 1024 * @brief Find a device class 1025 * 1026 * If a device class with the name @p classname exists, return it, 1027 * otherwise return @c NULL. 1028 * 1029 * @param classname the devclass name to find 1030 */ 1031 devclass_t 1032 devclass_find(const char *classname) 1033 { 1034 return (devclass_find_internal(classname, NULL, FALSE)); 1035 } 1036 1037 /** 1038 * @brief Register that a device driver has been added to a devclass 1039 * 1040 * Register that a device driver has been added to a devclass. This 1041 * is called by devclass_add_driver to accomplish the recursive 1042 * notification of all the children classes of dc, as well as dc. 1043 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1044 * the devclass. 1045 * 1046 * We do a full search here of the devclass list at each iteration 1047 * level to save storing children-lists in the devclass structure. If 1048 * we ever move beyond a few dozen devices doing this, we may need to 1049 * reevaluate... 1050 * 1051 * @param dc the devclass to edit 1052 * @param driver the driver that was just added 1053 */ 1054 static void 1055 devclass_driver_added(devclass_t dc, driver_t *driver) 1056 { 1057 devclass_t parent; 1058 int i; 1059 1060 /* 1061 * Call BUS_DRIVER_ADDED for any existing busses in this class. 1062 */ 1063 for (i = 0; i < dc->maxunit; i++) 1064 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1065 BUS_DRIVER_ADDED(dc->devices[i], driver); 1066 1067 /* 1068 * Walk through the children classes. Since we only keep a 1069 * single parent pointer around, we walk the entire list of 1070 * devclasses looking for children. We set the 1071 * DC_HAS_CHILDREN flag when a child devclass is created on 1072 * the parent, so we only walk the list for those devclasses 1073 * that have children. 1074 */ 1075 if (!(dc->flags & DC_HAS_CHILDREN)) 1076 return; 1077 parent = dc; 1078 TAILQ_FOREACH(dc, &devclasses, link) { 1079 if (dc->parent == parent) 1080 devclass_driver_added(dc, driver); 1081 } 1082 } 1083 1084 /** 1085 * @brief Add a device driver to a device class 1086 * 1087 * Add a device driver to a devclass. This is normally called 1088 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1089 * all devices in the devclass will be called to allow them to attempt 1090 * to re-probe any unmatched children. 1091 * 1092 * @param dc the devclass to edit 1093 * @param driver the driver to register 1094 */ 1095 int 1096 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1097 { 1098 driverlink_t dl; 1099 const char *parentname; 1100 1101 PDEBUG(("%s", DRIVERNAME(driver))); 1102 1103 /* Don't allow invalid pass values. */ 1104 if (pass <= BUS_PASS_ROOT) 1105 return (EINVAL); 1106 1107 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1108 if (!dl) 1109 return (ENOMEM); 1110 1111 /* 1112 * Compile the driver's methods. Also increase the reference count 1113 * so that the class doesn't get freed when the last instance 1114 * goes. This means we can safely use static methods and avoids a 1115 * double-free in devclass_delete_driver. 1116 */ 1117 kobj_class_compile((kobj_class_t) driver); 1118 1119 /* 1120 * If the driver has any base classes, make the 1121 * devclass inherit from the devclass of the driver's 1122 * first base class. This will allow the system to 1123 * search for drivers in both devclasses for children 1124 * of a device using this driver. 1125 */ 1126 if (driver->baseclasses) 1127 parentname = driver->baseclasses[0]->name; 1128 else 1129 parentname = NULL; 1130 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1131 1132 dl->driver = driver; 1133 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1134 driver->refs++; /* XXX: kobj_mtx */ 1135 dl->pass = pass; 1136 driver_register_pass(dl); 1137 1138 devclass_driver_added(dc, driver); 1139 bus_data_generation_update(); 1140 return (0); 1141 } 1142 1143 /** 1144 * @brief Register that a device driver has been deleted from a devclass 1145 * 1146 * Register that a device driver has been removed from a devclass. 1147 * This is called by devclass_delete_driver to accomplish the 1148 * recursive notification of all the children classes of busclass, as 1149 * well as busclass. Each layer will attempt to detach the driver 1150 * from any devices that are children of the bus's devclass. The function 1151 * will return an error if a device fails to detach. 1152 * 1153 * We do a full search here of the devclass list at each iteration 1154 * level to save storing children-lists in the devclass structure. If 1155 * we ever move beyond a few dozen devices doing this, we may need to 1156 * reevaluate... 1157 * 1158 * @param busclass the devclass of the parent bus 1159 * @param dc the devclass of the driver being deleted 1160 * @param driver the driver being deleted 1161 */ 1162 static int 1163 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1164 { 1165 devclass_t parent; 1166 device_t dev; 1167 int error, i; 1168 1169 /* 1170 * Disassociate from any devices. We iterate through all the 1171 * devices in the devclass of the driver and detach any which are 1172 * using the driver and which have a parent in the devclass which 1173 * we are deleting from. 1174 * 1175 * Note that since a driver can be in multiple devclasses, we 1176 * should not detach devices which are not children of devices in 1177 * the affected devclass. 1178 */ 1179 for (i = 0; i < dc->maxunit; i++) { 1180 if (dc->devices[i]) { 1181 dev = dc->devices[i]; 1182 if (dev->driver == driver && dev->parent && 1183 dev->parent->devclass == busclass) { 1184 if ((error = device_detach(dev)) != 0) 1185 return (error); 1186 BUS_PROBE_NOMATCH(dev->parent, dev); 1187 devnomatch(dev); 1188 dev->flags |= DF_DONENOMATCH; 1189 } 1190 } 1191 } 1192 1193 /* 1194 * Walk through the children classes. Since we only keep a 1195 * single parent pointer around, we walk the entire list of 1196 * devclasses looking for children. We set the 1197 * DC_HAS_CHILDREN flag when a child devclass is created on 1198 * the parent, so we only walk the list for those devclasses 1199 * that have children. 1200 */ 1201 if (!(busclass->flags & DC_HAS_CHILDREN)) 1202 return (0); 1203 parent = busclass; 1204 TAILQ_FOREACH(busclass, &devclasses, link) { 1205 if (busclass->parent == parent) { 1206 error = devclass_driver_deleted(busclass, dc, driver); 1207 if (error) 1208 return (error); 1209 } 1210 } 1211 return (0); 1212 } 1213 1214 /** 1215 * @brief Delete a device driver from a device class 1216 * 1217 * Delete a device driver from a devclass. This is normally called 1218 * automatically by DRIVER_MODULE(). 1219 * 1220 * If the driver is currently attached to any devices, 1221 * devclass_delete_driver() will first attempt to detach from each 1222 * device. If one of the detach calls fails, the driver will not be 1223 * deleted. 1224 * 1225 * @param dc the devclass to edit 1226 * @param driver the driver to unregister 1227 */ 1228 int 1229 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1230 { 1231 devclass_t dc = devclass_find(driver->name); 1232 driverlink_t dl; 1233 int error; 1234 1235 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1236 1237 if (!dc) 1238 return (0); 1239 1240 /* 1241 * Find the link structure in the bus' list of drivers. 1242 */ 1243 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1244 if (dl->driver == driver) 1245 break; 1246 } 1247 1248 if (!dl) { 1249 PDEBUG(("%s not found in %s list", driver->name, 1250 busclass->name)); 1251 return (ENOENT); 1252 } 1253 1254 error = devclass_driver_deleted(busclass, dc, driver); 1255 if (error != 0) 1256 return (error); 1257 1258 TAILQ_REMOVE(&busclass->drivers, dl, link); 1259 free(dl, M_BUS); 1260 1261 /* XXX: kobj_mtx */ 1262 driver->refs--; 1263 if (driver->refs == 0) 1264 kobj_class_free((kobj_class_t) driver); 1265 1266 bus_data_generation_update(); 1267 return (0); 1268 } 1269 1270 /** 1271 * @brief Quiesces a set of device drivers from a device class 1272 * 1273 * Quiesce a device driver from a devclass. This is normally called 1274 * automatically by DRIVER_MODULE(). 1275 * 1276 * If the driver is currently attached to any devices, 1277 * devclass_quiesece_driver() will first attempt to quiesce each 1278 * device. 1279 * 1280 * @param dc the devclass to edit 1281 * @param driver the driver to unregister 1282 */ 1283 static int 1284 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1285 { 1286 devclass_t dc = devclass_find(driver->name); 1287 driverlink_t dl; 1288 device_t dev; 1289 int i; 1290 int error; 1291 1292 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1293 1294 if (!dc) 1295 return (0); 1296 1297 /* 1298 * Find the link structure in the bus' list of drivers. 1299 */ 1300 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1301 if (dl->driver == driver) 1302 break; 1303 } 1304 1305 if (!dl) { 1306 PDEBUG(("%s not found in %s list", driver->name, 1307 busclass->name)); 1308 return (ENOENT); 1309 } 1310 1311 /* 1312 * Quiesce all devices. We iterate through all the devices in 1313 * the devclass of the driver and quiesce any which are using 1314 * the driver and which have a parent in the devclass which we 1315 * are quiescing. 1316 * 1317 * Note that since a driver can be in multiple devclasses, we 1318 * should not quiesce devices which are not children of 1319 * devices in the affected devclass. 1320 */ 1321 for (i = 0; i < dc->maxunit; i++) { 1322 if (dc->devices[i]) { 1323 dev = dc->devices[i]; 1324 if (dev->driver == driver && dev->parent && 1325 dev->parent->devclass == busclass) { 1326 if ((error = device_quiesce(dev)) != 0) 1327 return (error); 1328 } 1329 } 1330 } 1331 1332 return (0); 1333 } 1334 1335 /** 1336 * @internal 1337 */ 1338 static driverlink_t 1339 devclass_find_driver_internal(devclass_t dc, const char *classname) 1340 { 1341 driverlink_t dl; 1342 1343 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1344 1345 TAILQ_FOREACH(dl, &dc->drivers, link) { 1346 if (!strcmp(dl->driver->name, classname)) 1347 return (dl); 1348 } 1349 1350 PDEBUG(("not found")); 1351 return (NULL); 1352 } 1353 1354 /** 1355 * @brief Return the name of the devclass 1356 */ 1357 const char * 1358 devclass_get_name(devclass_t dc) 1359 { 1360 return (dc->name); 1361 } 1362 1363 /** 1364 * @brief Find a device given a unit number 1365 * 1366 * @param dc the devclass to search 1367 * @param unit the unit number to search for 1368 * 1369 * @returns the device with the given unit number or @c 1370 * NULL if there is no such device 1371 */ 1372 device_t 1373 devclass_get_device(devclass_t dc, int unit) 1374 { 1375 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1376 return (NULL); 1377 return (dc->devices[unit]); 1378 } 1379 1380 /** 1381 * @brief Find the softc field of a device given a unit number 1382 * 1383 * @param dc the devclass to search 1384 * @param unit the unit number to search for 1385 * 1386 * @returns the softc field of the device with the given 1387 * unit number or @c NULL if there is no such 1388 * device 1389 */ 1390 void * 1391 devclass_get_softc(devclass_t dc, int unit) 1392 { 1393 device_t dev; 1394 1395 dev = devclass_get_device(dc, unit); 1396 if (!dev) 1397 return (NULL); 1398 1399 return (device_get_softc(dev)); 1400 } 1401 1402 /** 1403 * @brief Get a list of devices in the devclass 1404 * 1405 * An array containing a list of all the devices in the given devclass 1406 * is allocated and returned in @p *devlistp. The number of devices 1407 * in the array is returned in @p *devcountp. The caller should free 1408 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1409 * 1410 * @param dc the devclass to examine 1411 * @param devlistp points at location for array pointer return 1412 * value 1413 * @param devcountp points at location for array size return value 1414 * 1415 * @retval 0 success 1416 * @retval ENOMEM the array allocation failed 1417 */ 1418 int 1419 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1420 { 1421 int count, i; 1422 device_t *list; 1423 1424 count = devclass_get_count(dc); 1425 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1426 if (!list) 1427 return (ENOMEM); 1428 1429 count = 0; 1430 for (i = 0; i < dc->maxunit; i++) { 1431 if (dc->devices[i]) { 1432 list[count] = dc->devices[i]; 1433 count++; 1434 } 1435 } 1436 1437 *devlistp = list; 1438 *devcountp = count; 1439 1440 return (0); 1441 } 1442 1443 /** 1444 * @brief Get a list of drivers in the devclass 1445 * 1446 * An array containing a list of pointers to all the drivers in the 1447 * given devclass is allocated and returned in @p *listp. The number 1448 * of drivers in the array is returned in @p *countp. The caller should 1449 * free the array using @c free(p, M_TEMP). 1450 * 1451 * @param dc the devclass to examine 1452 * @param listp gives location for array pointer return value 1453 * @param countp gives location for number of array elements 1454 * return value 1455 * 1456 * @retval 0 success 1457 * @retval ENOMEM the array allocation failed 1458 */ 1459 int 1460 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1461 { 1462 driverlink_t dl; 1463 driver_t **list; 1464 int count; 1465 1466 count = 0; 1467 TAILQ_FOREACH(dl, &dc->drivers, link) 1468 count++; 1469 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1470 if (list == NULL) 1471 return (ENOMEM); 1472 1473 count = 0; 1474 TAILQ_FOREACH(dl, &dc->drivers, link) { 1475 list[count] = dl->driver; 1476 count++; 1477 } 1478 *listp = list; 1479 *countp = count; 1480 1481 return (0); 1482 } 1483 1484 /** 1485 * @brief Get the number of devices in a devclass 1486 * 1487 * @param dc the devclass to examine 1488 */ 1489 int 1490 devclass_get_count(devclass_t dc) 1491 { 1492 int count, i; 1493 1494 count = 0; 1495 for (i = 0; i < dc->maxunit; i++) 1496 if (dc->devices[i]) 1497 count++; 1498 return (count); 1499 } 1500 1501 /** 1502 * @brief Get the maximum unit number used in a devclass 1503 * 1504 * Note that this is one greater than the highest currently-allocated 1505 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1506 * that not even the devclass has been allocated yet. 1507 * 1508 * @param dc the devclass to examine 1509 */ 1510 int 1511 devclass_get_maxunit(devclass_t dc) 1512 { 1513 if (dc == NULL) 1514 return (-1); 1515 return (dc->maxunit); 1516 } 1517 1518 /** 1519 * @brief Find a free unit number in a devclass 1520 * 1521 * This function searches for the first unused unit number greater 1522 * that or equal to @p unit. 1523 * 1524 * @param dc the devclass to examine 1525 * @param unit the first unit number to check 1526 */ 1527 int 1528 devclass_find_free_unit(devclass_t dc, int unit) 1529 { 1530 if (dc == NULL) 1531 return (unit); 1532 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1533 unit++; 1534 return (unit); 1535 } 1536 1537 /** 1538 * @brief Set the parent of a devclass 1539 * 1540 * The parent class is normally initialised automatically by 1541 * DRIVER_MODULE(). 1542 * 1543 * @param dc the devclass to edit 1544 * @param pdc the new parent devclass 1545 */ 1546 void 1547 devclass_set_parent(devclass_t dc, devclass_t pdc) 1548 { 1549 dc->parent = pdc; 1550 } 1551 1552 /** 1553 * @brief Get the parent of a devclass 1554 * 1555 * @param dc the devclass to examine 1556 */ 1557 devclass_t 1558 devclass_get_parent(devclass_t dc) 1559 { 1560 return (dc->parent); 1561 } 1562 1563 struct sysctl_ctx_list * 1564 devclass_get_sysctl_ctx(devclass_t dc) 1565 { 1566 return (&dc->sysctl_ctx); 1567 } 1568 1569 struct sysctl_oid * 1570 devclass_get_sysctl_tree(devclass_t dc) 1571 { 1572 return (dc->sysctl_tree); 1573 } 1574 1575 /** 1576 * @internal 1577 * @brief Allocate a unit number 1578 * 1579 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1580 * will do). The allocated unit number is returned in @p *unitp. 1581 1582 * @param dc the devclass to allocate from 1583 * @param unitp points at the location for the allocated unit 1584 * number 1585 * 1586 * @retval 0 success 1587 * @retval EEXIST the requested unit number is already allocated 1588 * @retval ENOMEM memory allocation failure 1589 */ 1590 static int 1591 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1592 { 1593 const char *s; 1594 int unit = *unitp; 1595 1596 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1597 1598 /* Ask the parent bus if it wants to wire this device. */ 1599 if (unit == -1) 1600 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1601 &unit); 1602 1603 /* If we were given a wired unit number, check for existing device */ 1604 /* XXX imp XXX */ 1605 if (unit != -1) { 1606 if (unit >= 0 && unit < dc->maxunit && 1607 dc->devices[unit] != NULL) { 1608 if (bootverbose) 1609 printf("%s: %s%d already exists; skipping it\n", 1610 dc->name, dc->name, *unitp); 1611 return (EEXIST); 1612 } 1613 } else { 1614 /* Unwired device, find the next available slot for it */ 1615 unit = 0; 1616 for (unit = 0;; unit++) { 1617 /* If there is an "at" hint for a unit then skip it. */ 1618 if (resource_string_value(dc->name, unit, "at", &s) == 1619 0) 1620 continue; 1621 1622 /* If this device slot is already in use, skip it. */ 1623 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1624 continue; 1625 1626 break; 1627 } 1628 } 1629 1630 /* 1631 * We've selected a unit beyond the length of the table, so let's 1632 * extend the table to make room for all units up to and including 1633 * this one. 1634 */ 1635 if (unit >= dc->maxunit) { 1636 device_t *newlist, *oldlist; 1637 int newsize; 1638 1639 oldlist = dc->devices; 1640 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1641 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1642 if (!newlist) 1643 return (ENOMEM); 1644 if (oldlist != NULL) 1645 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1646 bzero(newlist + dc->maxunit, 1647 sizeof(device_t) * (newsize - dc->maxunit)); 1648 dc->devices = newlist; 1649 dc->maxunit = newsize; 1650 if (oldlist != NULL) 1651 free(oldlist, M_BUS); 1652 } 1653 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1654 1655 *unitp = unit; 1656 return (0); 1657 } 1658 1659 /** 1660 * @internal 1661 * @brief Add a device to a devclass 1662 * 1663 * A unit number is allocated for the device (using the device's 1664 * preferred unit number if any) and the device is registered in the 1665 * devclass. This allows the device to be looked up by its unit 1666 * number, e.g. by decoding a dev_t minor number. 1667 * 1668 * @param dc the devclass to add to 1669 * @param dev the device to add 1670 * 1671 * @retval 0 success 1672 * @retval EEXIST the requested unit number is already allocated 1673 * @retval ENOMEM memory allocation failure 1674 */ 1675 static int 1676 devclass_add_device(devclass_t dc, device_t dev) 1677 { 1678 int buflen, error; 1679 1680 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1681 1682 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1683 if (buflen < 0) 1684 return (ENOMEM); 1685 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1686 if (!dev->nameunit) 1687 return (ENOMEM); 1688 1689 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1690 free(dev->nameunit, M_BUS); 1691 dev->nameunit = NULL; 1692 return (error); 1693 } 1694 dc->devices[dev->unit] = dev; 1695 dev->devclass = dc; 1696 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1697 1698 return (0); 1699 } 1700 1701 /** 1702 * @internal 1703 * @brief Delete a device from a devclass 1704 * 1705 * The device is removed from the devclass's device list and its unit 1706 * number is freed. 1707 1708 * @param dc the devclass to delete from 1709 * @param dev the device to delete 1710 * 1711 * @retval 0 success 1712 */ 1713 static int 1714 devclass_delete_device(devclass_t dc, device_t dev) 1715 { 1716 if (!dc || !dev) 1717 return (0); 1718 1719 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1720 1721 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1722 panic("devclass_delete_device: inconsistent device class"); 1723 dc->devices[dev->unit] = NULL; 1724 if (dev->flags & DF_WILDCARD) 1725 dev->unit = -1; 1726 dev->devclass = NULL; 1727 free(dev->nameunit, M_BUS); 1728 dev->nameunit = NULL; 1729 1730 return (0); 1731 } 1732 1733 /** 1734 * @internal 1735 * @brief Make a new device and add it as a child of @p parent 1736 * 1737 * @param parent the parent of the new device 1738 * @param name the devclass name of the new device or @c NULL 1739 * to leave the devclass unspecified 1740 * @parem unit the unit number of the new device of @c -1 to 1741 * leave the unit number unspecified 1742 * 1743 * @returns the new device 1744 */ 1745 static device_t 1746 make_device(device_t parent, const char *name, int unit) 1747 { 1748 device_t dev; 1749 devclass_t dc; 1750 1751 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1752 1753 if (name) { 1754 dc = devclass_find_internal(name, NULL, TRUE); 1755 if (!dc) { 1756 printf("make_device: can't find device class %s\n", 1757 name); 1758 return (NULL); 1759 } 1760 } else { 1761 dc = NULL; 1762 } 1763 1764 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1765 if (!dev) 1766 return (NULL); 1767 1768 dev->parent = parent; 1769 TAILQ_INIT(&dev->children); 1770 kobj_init((kobj_t) dev, &null_class); 1771 dev->driver = NULL; 1772 dev->devclass = NULL; 1773 dev->unit = unit; 1774 dev->nameunit = NULL; 1775 dev->desc = NULL; 1776 dev->busy = 0; 1777 dev->devflags = 0; 1778 dev->flags = DF_ENABLED; 1779 dev->order = 0; 1780 if (unit == -1) 1781 dev->flags |= DF_WILDCARD; 1782 if (name) { 1783 dev->flags |= DF_FIXEDCLASS; 1784 if (devclass_add_device(dc, dev)) { 1785 kobj_delete((kobj_t) dev, M_BUS); 1786 return (NULL); 1787 } 1788 } 1789 dev->ivars = NULL; 1790 dev->softc = NULL; 1791 1792 dev->state = DS_NOTPRESENT; 1793 1794 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1795 bus_data_generation_update(); 1796 1797 return (dev); 1798 } 1799 1800 /** 1801 * @internal 1802 * @brief Print a description of a device. 1803 */ 1804 static int 1805 device_print_child(device_t dev, device_t child) 1806 { 1807 int retval = 0; 1808 1809 if (device_is_alive(child)) 1810 retval += BUS_PRINT_CHILD(dev, child); 1811 else 1812 retval += device_printf(child, " not found\n"); 1813 1814 return (retval); 1815 } 1816 1817 /** 1818 * @brief Create a new device 1819 * 1820 * This creates a new device and adds it as a child of an existing 1821 * parent device. The new device will be added after the last existing 1822 * child with order zero. 1823 * 1824 * @param dev the device which will be the parent of the 1825 * new child device 1826 * @param name devclass name for new device or @c NULL if not 1827 * specified 1828 * @param unit unit number for new device or @c -1 if not 1829 * specified 1830 * 1831 * @returns the new device 1832 */ 1833 device_t 1834 device_add_child(device_t dev, const char *name, int unit) 1835 { 1836 return (device_add_child_ordered(dev, 0, name, unit)); 1837 } 1838 1839 /** 1840 * @brief Create a new device 1841 * 1842 * This creates a new device and adds it as a child of an existing 1843 * parent device. The new device will be added after the last existing 1844 * child with the same order. 1845 * 1846 * @param dev the device which will be the parent of the 1847 * new child device 1848 * @param order a value which is used to partially sort the 1849 * children of @p dev - devices created using 1850 * lower values of @p order appear first in @p 1851 * dev's list of children 1852 * @param name devclass name for new device or @c NULL if not 1853 * specified 1854 * @param unit unit number for new device or @c -1 if not 1855 * specified 1856 * 1857 * @returns the new device 1858 */ 1859 device_t 1860 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1861 { 1862 device_t child; 1863 device_t place; 1864 1865 PDEBUG(("%s at %s with order %u as unit %d", 1866 name, DEVICENAME(dev), order, unit)); 1867 KASSERT(name != NULL || unit == -1, 1868 ("child device with wildcard name and specific unit number")); 1869 1870 child = make_device(dev, name, unit); 1871 if (child == NULL) 1872 return (child); 1873 child->order = order; 1874 1875 TAILQ_FOREACH(place, &dev->children, link) { 1876 if (place->order > order) 1877 break; 1878 } 1879 1880 if (place) { 1881 /* 1882 * The device 'place' is the first device whose order is 1883 * greater than the new child. 1884 */ 1885 TAILQ_INSERT_BEFORE(place, child, link); 1886 } else { 1887 /* 1888 * The new child's order is greater or equal to the order of 1889 * any existing device. Add the child to the tail of the list. 1890 */ 1891 TAILQ_INSERT_TAIL(&dev->children, child, link); 1892 } 1893 1894 bus_data_generation_update(); 1895 return (child); 1896 } 1897 1898 /** 1899 * @brief Delete a device 1900 * 1901 * This function deletes a device along with all of its children. If 1902 * the device currently has a driver attached to it, the device is 1903 * detached first using device_detach(). 1904 * 1905 * @param dev the parent device 1906 * @param child the device to delete 1907 * 1908 * @retval 0 success 1909 * @retval non-zero a unit error code describing the error 1910 */ 1911 int 1912 device_delete_child(device_t dev, device_t child) 1913 { 1914 int error; 1915 device_t grandchild; 1916 1917 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1918 1919 /* remove children first */ 1920 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1921 error = device_delete_child(child, grandchild); 1922 if (error) 1923 return (error); 1924 } 1925 1926 if ((error = device_detach(child)) != 0) 1927 return (error); 1928 if (child->devclass) 1929 devclass_delete_device(child->devclass, child); 1930 if (child->parent) 1931 BUS_CHILD_DELETED(dev, child); 1932 TAILQ_REMOVE(&dev->children, child, link); 1933 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1934 kobj_delete((kobj_t) child, M_BUS); 1935 1936 bus_data_generation_update(); 1937 return (0); 1938 } 1939 1940 /** 1941 * @brief Delete all children devices of the given device, if any. 1942 * 1943 * This function deletes all children devices of the given device, if 1944 * any, using the device_delete_child() function for each device it 1945 * finds. If a child device cannot be deleted, this function will 1946 * return an error code. 1947 * 1948 * @param dev the parent device 1949 * 1950 * @retval 0 success 1951 * @retval non-zero a device would not detach 1952 */ 1953 int 1954 device_delete_children(device_t dev) 1955 { 1956 device_t child; 1957 int error; 1958 1959 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1960 1961 error = 0; 1962 1963 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1964 error = device_delete_child(dev, child); 1965 if (error) { 1966 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1967 break; 1968 } 1969 } 1970 return (error); 1971 } 1972 1973 /** 1974 * @brief Find a device given a unit number 1975 * 1976 * This is similar to devclass_get_devices() but only searches for 1977 * devices which have @p dev as a parent. 1978 * 1979 * @param dev the parent device to search 1980 * @param unit the unit number to search for. If the unit is -1, 1981 * return the first child of @p dev which has name 1982 * @p classname (that is, the one with the lowest unit.) 1983 * 1984 * @returns the device with the given unit number or @c 1985 * NULL if there is no such device 1986 */ 1987 device_t 1988 device_find_child(device_t dev, const char *classname, int unit) 1989 { 1990 devclass_t dc; 1991 device_t child; 1992 1993 dc = devclass_find(classname); 1994 if (!dc) 1995 return (NULL); 1996 1997 if (unit != -1) { 1998 child = devclass_get_device(dc, unit); 1999 if (child && child->parent == dev) 2000 return (child); 2001 } else { 2002 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2003 child = devclass_get_device(dc, unit); 2004 if (child && child->parent == dev) 2005 return (child); 2006 } 2007 } 2008 return (NULL); 2009 } 2010 2011 /** 2012 * @internal 2013 */ 2014 static driverlink_t 2015 first_matching_driver(devclass_t dc, device_t dev) 2016 { 2017 if (dev->devclass) 2018 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2019 return (TAILQ_FIRST(&dc->drivers)); 2020 } 2021 2022 /** 2023 * @internal 2024 */ 2025 static driverlink_t 2026 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2027 { 2028 if (dev->devclass) { 2029 driverlink_t dl; 2030 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2031 if (!strcmp(dev->devclass->name, dl->driver->name)) 2032 return (dl); 2033 return (NULL); 2034 } 2035 return (TAILQ_NEXT(last, link)); 2036 } 2037 2038 /** 2039 * @internal 2040 */ 2041 int 2042 device_probe_child(device_t dev, device_t child) 2043 { 2044 devclass_t dc; 2045 driverlink_t best = NULL; 2046 driverlink_t dl; 2047 int result, pri = 0; 2048 int hasclass = (child->devclass != NULL); 2049 2050 GIANT_REQUIRED; 2051 2052 dc = dev->devclass; 2053 if (!dc) 2054 panic("device_probe_child: parent device has no devclass"); 2055 2056 /* 2057 * If the state is already probed, then return. However, don't 2058 * return if we can rebid this object. 2059 */ 2060 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2061 return (0); 2062 2063 for (; dc; dc = dc->parent) { 2064 for (dl = first_matching_driver(dc, child); 2065 dl; 2066 dl = next_matching_driver(dc, child, dl)) { 2067 /* If this driver's pass is too high, then ignore it. */ 2068 if (dl->pass > bus_current_pass) 2069 continue; 2070 2071 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2072 result = device_set_driver(child, dl->driver); 2073 if (result == ENOMEM) 2074 return (result); 2075 else if (result != 0) 2076 continue; 2077 if (!hasclass) { 2078 if (device_set_devclass(child, 2079 dl->driver->name) != 0) { 2080 char const * devname = 2081 device_get_name(child); 2082 if (devname == NULL) 2083 devname = "(unknown)"; 2084 printf("driver bug: Unable to set " 2085 "devclass (class: %s " 2086 "devname: %s)\n", 2087 dl->driver->name, 2088 devname); 2089 (void)device_set_driver(child, NULL); 2090 continue; 2091 } 2092 } 2093 2094 /* Fetch any flags for the device before probing. */ 2095 resource_int_value(dl->driver->name, child->unit, 2096 "flags", &child->devflags); 2097 2098 result = DEVICE_PROBE(child); 2099 2100 /* Reset flags and devclass before the next probe. */ 2101 child->devflags = 0; 2102 if (!hasclass) 2103 (void)device_set_devclass(child, NULL); 2104 2105 /* 2106 * If the driver returns SUCCESS, there can be 2107 * no higher match for this device. 2108 */ 2109 if (result == 0) { 2110 best = dl; 2111 pri = 0; 2112 break; 2113 } 2114 2115 /* 2116 * The driver returned an error so it 2117 * certainly doesn't match. 2118 */ 2119 if (result > 0) { 2120 (void)device_set_driver(child, NULL); 2121 continue; 2122 } 2123 2124 /* 2125 * A priority lower than SUCCESS, remember the 2126 * best matching driver. Initialise the value 2127 * of pri for the first match. 2128 */ 2129 if (best == NULL || result > pri) { 2130 /* 2131 * Probes that return BUS_PROBE_NOWILDCARD 2132 * or lower only match on devices whose 2133 * driver was explicitly specified. 2134 */ 2135 if (result <= BUS_PROBE_NOWILDCARD && 2136 !(child->flags & DF_FIXEDCLASS)) 2137 continue; 2138 best = dl; 2139 pri = result; 2140 continue; 2141 } 2142 } 2143 /* 2144 * If we have an unambiguous match in this devclass, 2145 * don't look in the parent. 2146 */ 2147 if (best && pri == 0) 2148 break; 2149 } 2150 2151 /* 2152 * If we found a driver, change state and initialise the devclass. 2153 */ 2154 /* XXX What happens if we rebid and got no best? */ 2155 if (best) { 2156 /* 2157 * If this device was attached, and we were asked to 2158 * rescan, and it is a different driver, then we have 2159 * to detach the old driver and reattach this new one. 2160 * Note, we don't have to check for DF_REBID here 2161 * because if the state is > DS_ALIVE, we know it must 2162 * be. 2163 * 2164 * This assumes that all DF_REBID drivers can have 2165 * their probe routine called at any time and that 2166 * they are idempotent as well as completely benign in 2167 * normal operations. 2168 * 2169 * We also have to make sure that the detach 2170 * succeeded, otherwise we fail the operation (or 2171 * maybe it should just fail silently? I'm torn). 2172 */ 2173 if (child->state > DS_ALIVE && best->driver != child->driver) 2174 if ((result = device_detach(dev)) != 0) 2175 return (result); 2176 2177 /* Set the winning driver, devclass, and flags. */ 2178 if (!child->devclass) { 2179 result = device_set_devclass(child, best->driver->name); 2180 if (result != 0) 2181 return (result); 2182 } 2183 result = device_set_driver(child, best->driver); 2184 if (result != 0) 2185 return (result); 2186 resource_int_value(best->driver->name, child->unit, 2187 "flags", &child->devflags); 2188 2189 if (pri < 0) { 2190 /* 2191 * A bit bogus. Call the probe method again to make 2192 * sure that we have the right description. 2193 */ 2194 DEVICE_PROBE(child); 2195 #if 0 2196 child->flags |= DF_REBID; 2197 #endif 2198 } else 2199 child->flags &= ~DF_REBID; 2200 child->state = DS_ALIVE; 2201 2202 bus_data_generation_update(); 2203 return (0); 2204 } 2205 2206 return (ENXIO); 2207 } 2208 2209 /** 2210 * @brief Return the parent of a device 2211 */ 2212 device_t 2213 device_get_parent(device_t dev) 2214 { 2215 return (dev->parent); 2216 } 2217 2218 /** 2219 * @brief Get a list of children of a device 2220 * 2221 * An array containing a list of all the children of the given device 2222 * is allocated and returned in @p *devlistp. The number of devices 2223 * in the array is returned in @p *devcountp. The caller should free 2224 * the array using @c free(p, M_TEMP). 2225 * 2226 * @param dev the device to examine 2227 * @param devlistp points at location for array pointer return 2228 * value 2229 * @param devcountp points at location for array size return value 2230 * 2231 * @retval 0 success 2232 * @retval ENOMEM the array allocation failed 2233 */ 2234 int 2235 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2236 { 2237 int count; 2238 device_t child; 2239 device_t *list; 2240 2241 count = 0; 2242 TAILQ_FOREACH(child, &dev->children, link) { 2243 count++; 2244 } 2245 if (count == 0) { 2246 *devlistp = NULL; 2247 *devcountp = 0; 2248 return (0); 2249 } 2250 2251 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2252 if (!list) 2253 return (ENOMEM); 2254 2255 count = 0; 2256 TAILQ_FOREACH(child, &dev->children, link) { 2257 list[count] = child; 2258 count++; 2259 } 2260 2261 *devlistp = list; 2262 *devcountp = count; 2263 2264 return (0); 2265 } 2266 2267 /** 2268 * @brief Return the current driver for the device or @c NULL if there 2269 * is no driver currently attached 2270 */ 2271 driver_t * 2272 device_get_driver(device_t dev) 2273 { 2274 return (dev->driver); 2275 } 2276 2277 /** 2278 * @brief Return the current devclass for the device or @c NULL if 2279 * there is none. 2280 */ 2281 devclass_t 2282 device_get_devclass(device_t dev) 2283 { 2284 return (dev->devclass); 2285 } 2286 2287 /** 2288 * @brief Return the name of the device's devclass or @c NULL if there 2289 * is none. 2290 */ 2291 const char * 2292 device_get_name(device_t dev) 2293 { 2294 if (dev != NULL && dev->devclass) 2295 return (devclass_get_name(dev->devclass)); 2296 return (NULL); 2297 } 2298 2299 /** 2300 * @brief Return a string containing the device's devclass name 2301 * followed by an ascii representation of the device's unit number 2302 * (e.g. @c "foo2"). 2303 */ 2304 const char * 2305 device_get_nameunit(device_t dev) 2306 { 2307 return (dev->nameunit); 2308 } 2309 2310 /** 2311 * @brief Return the device's unit number. 2312 */ 2313 int 2314 device_get_unit(device_t dev) 2315 { 2316 return (dev->unit); 2317 } 2318 2319 /** 2320 * @brief Return the device's description string 2321 */ 2322 const char * 2323 device_get_desc(device_t dev) 2324 { 2325 return (dev->desc); 2326 } 2327 2328 /** 2329 * @brief Return the device's flags 2330 */ 2331 uint32_t 2332 device_get_flags(device_t dev) 2333 { 2334 return (dev->devflags); 2335 } 2336 2337 struct sysctl_ctx_list * 2338 device_get_sysctl_ctx(device_t dev) 2339 { 2340 return (&dev->sysctl_ctx); 2341 } 2342 2343 struct sysctl_oid * 2344 device_get_sysctl_tree(device_t dev) 2345 { 2346 return (dev->sysctl_tree); 2347 } 2348 2349 /** 2350 * @brief Print the name of the device followed by a colon and a space 2351 * 2352 * @returns the number of characters printed 2353 */ 2354 int 2355 device_print_prettyname(device_t dev) 2356 { 2357 const char *name = device_get_name(dev); 2358 2359 if (name == NULL) 2360 return (printf("unknown: ")); 2361 return (printf("%s%d: ", name, device_get_unit(dev))); 2362 } 2363 2364 /** 2365 * @brief Print the name of the device followed by a colon, a space 2366 * and the result of calling vprintf() with the value of @p fmt and 2367 * the following arguments. 2368 * 2369 * @returns the number of characters printed 2370 */ 2371 int 2372 device_printf(device_t dev, const char * fmt, ...) 2373 { 2374 va_list ap; 2375 int retval; 2376 2377 retval = device_print_prettyname(dev); 2378 va_start(ap, fmt); 2379 retval += vprintf(fmt, ap); 2380 va_end(ap); 2381 return (retval); 2382 } 2383 2384 /** 2385 * @internal 2386 */ 2387 static void 2388 device_set_desc_internal(device_t dev, const char* desc, int copy) 2389 { 2390 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2391 free(dev->desc, M_BUS); 2392 dev->flags &= ~DF_DESCMALLOCED; 2393 dev->desc = NULL; 2394 } 2395 2396 if (copy && desc) { 2397 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2398 if (dev->desc) { 2399 strcpy(dev->desc, desc); 2400 dev->flags |= DF_DESCMALLOCED; 2401 } 2402 } else { 2403 /* Avoid a -Wcast-qual warning */ 2404 dev->desc = (char *)(uintptr_t) desc; 2405 } 2406 2407 bus_data_generation_update(); 2408 } 2409 2410 /** 2411 * @brief Set the device's description 2412 * 2413 * The value of @c desc should be a string constant that will not 2414 * change (at least until the description is changed in a subsequent 2415 * call to device_set_desc() or device_set_desc_copy()). 2416 */ 2417 void 2418 device_set_desc(device_t dev, const char* desc) 2419 { 2420 device_set_desc_internal(dev, desc, FALSE); 2421 } 2422 2423 /** 2424 * @brief Set the device's description 2425 * 2426 * The string pointed to by @c desc is copied. Use this function if 2427 * the device description is generated, (e.g. with sprintf()). 2428 */ 2429 void 2430 device_set_desc_copy(device_t dev, const char* desc) 2431 { 2432 device_set_desc_internal(dev, desc, TRUE); 2433 } 2434 2435 /** 2436 * @brief Set the device's flags 2437 */ 2438 void 2439 device_set_flags(device_t dev, uint32_t flags) 2440 { 2441 dev->devflags = flags; 2442 } 2443 2444 /** 2445 * @brief Return the device's softc field 2446 * 2447 * The softc is allocated and zeroed when a driver is attached, based 2448 * on the size field of the driver. 2449 */ 2450 void * 2451 device_get_softc(device_t dev) 2452 { 2453 return (dev->softc); 2454 } 2455 2456 /** 2457 * @brief Set the device's softc field 2458 * 2459 * Most drivers do not need to use this since the softc is allocated 2460 * automatically when the driver is attached. 2461 */ 2462 void 2463 device_set_softc(device_t dev, void *softc) 2464 { 2465 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2466 free(dev->softc, M_BUS_SC); 2467 dev->softc = softc; 2468 if (dev->softc) 2469 dev->flags |= DF_EXTERNALSOFTC; 2470 else 2471 dev->flags &= ~DF_EXTERNALSOFTC; 2472 } 2473 2474 /** 2475 * @brief Free claimed softc 2476 * 2477 * Most drivers do not need to use this since the softc is freed 2478 * automatically when the driver is detached. 2479 */ 2480 void 2481 device_free_softc(void *softc) 2482 { 2483 free(softc, M_BUS_SC); 2484 } 2485 2486 /** 2487 * @brief Claim softc 2488 * 2489 * This function can be used to let the driver free the automatically 2490 * allocated softc using "device_free_softc()". This function is 2491 * useful when the driver is refcounting the softc and the softc 2492 * cannot be freed when the "device_detach" method is called. 2493 */ 2494 void 2495 device_claim_softc(device_t dev) 2496 { 2497 if (dev->softc) 2498 dev->flags |= DF_EXTERNALSOFTC; 2499 else 2500 dev->flags &= ~DF_EXTERNALSOFTC; 2501 } 2502 2503 /** 2504 * @brief Get the device's ivars field 2505 * 2506 * The ivars field is used by the parent device to store per-device 2507 * state (e.g. the physical location of the device or a list of 2508 * resources). 2509 */ 2510 void * 2511 device_get_ivars(device_t dev) 2512 { 2513 2514 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2515 return (dev->ivars); 2516 } 2517 2518 /** 2519 * @brief Set the device's ivars field 2520 */ 2521 void 2522 device_set_ivars(device_t dev, void * ivars) 2523 { 2524 2525 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2526 dev->ivars = ivars; 2527 } 2528 2529 /** 2530 * @brief Return the device's state 2531 */ 2532 device_state_t 2533 device_get_state(device_t dev) 2534 { 2535 return (dev->state); 2536 } 2537 2538 /** 2539 * @brief Set the DF_ENABLED flag for the device 2540 */ 2541 void 2542 device_enable(device_t dev) 2543 { 2544 dev->flags |= DF_ENABLED; 2545 } 2546 2547 /** 2548 * @brief Clear the DF_ENABLED flag for the device 2549 */ 2550 void 2551 device_disable(device_t dev) 2552 { 2553 dev->flags &= ~DF_ENABLED; 2554 } 2555 2556 /** 2557 * @brief Increment the busy counter for the device 2558 */ 2559 void 2560 device_busy(device_t dev) 2561 { 2562 if (dev->state < DS_ATTACHING) 2563 panic("device_busy: called for unattached device"); 2564 if (dev->busy == 0 && dev->parent) 2565 device_busy(dev->parent); 2566 dev->busy++; 2567 if (dev->state == DS_ATTACHED) 2568 dev->state = DS_BUSY; 2569 } 2570 2571 /** 2572 * @brief Decrement the busy counter for the device 2573 */ 2574 void 2575 device_unbusy(device_t dev) 2576 { 2577 if (dev->busy != 0 && dev->state != DS_BUSY && 2578 dev->state != DS_ATTACHING) 2579 panic("device_unbusy: called for non-busy device %s", 2580 device_get_nameunit(dev)); 2581 dev->busy--; 2582 if (dev->busy == 0) { 2583 if (dev->parent) 2584 device_unbusy(dev->parent); 2585 if (dev->state == DS_BUSY) 2586 dev->state = DS_ATTACHED; 2587 } 2588 } 2589 2590 /** 2591 * @brief Set the DF_QUIET flag for the device 2592 */ 2593 void 2594 device_quiet(device_t dev) 2595 { 2596 dev->flags |= DF_QUIET; 2597 } 2598 2599 /** 2600 * @brief Clear the DF_QUIET flag for the device 2601 */ 2602 void 2603 device_verbose(device_t dev) 2604 { 2605 dev->flags &= ~DF_QUIET; 2606 } 2607 2608 /** 2609 * @brief Return non-zero if the DF_QUIET flag is set on the device 2610 */ 2611 int 2612 device_is_quiet(device_t dev) 2613 { 2614 return ((dev->flags & DF_QUIET) != 0); 2615 } 2616 2617 /** 2618 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2619 */ 2620 int 2621 device_is_enabled(device_t dev) 2622 { 2623 return ((dev->flags & DF_ENABLED) != 0); 2624 } 2625 2626 /** 2627 * @brief Return non-zero if the device was successfully probed 2628 */ 2629 int 2630 device_is_alive(device_t dev) 2631 { 2632 return (dev->state >= DS_ALIVE); 2633 } 2634 2635 /** 2636 * @brief Return non-zero if the device currently has a driver 2637 * attached to it 2638 */ 2639 int 2640 device_is_attached(device_t dev) 2641 { 2642 return (dev->state >= DS_ATTACHED); 2643 } 2644 2645 /** 2646 * @brief Return non-zero if the device is currently suspended. 2647 */ 2648 int 2649 device_is_suspended(device_t dev) 2650 { 2651 return ((dev->flags & DF_SUSPENDED) != 0); 2652 } 2653 2654 /** 2655 * @brief Set the devclass of a device 2656 * @see devclass_add_device(). 2657 */ 2658 int 2659 device_set_devclass(device_t dev, const char *classname) 2660 { 2661 devclass_t dc; 2662 int error; 2663 2664 if (!classname) { 2665 if (dev->devclass) 2666 devclass_delete_device(dev->devclass, dev); 2667 return (0); 2668 } 2669 2670 if (dev->devclass) { 2671 printf("device_set_devclass: device class already set\n"); 2672 return (EINVAL); 2673 } 2674 2675 dc = devclass_find_internal(classname, NULL, TRUE); 2676 if (!dc) 2677 return (ENOMEM); 2678 2679 error = devclass_add_device(dc, dev); 2680 2681 bus_data_generation_update(); 2682 return (error); 2683 } 2684 2685 /** 2686 * @brief Set the driver of a device 2687 * 2688 * @retval 0 success 2689 * @retval EBUSY the device already has a driver attached 2690 * @retval ENOMEM a memory allocation failure occurred 2691 */ 2692 int 2693 device_set_driver(device_t dev, driver_t *driver) 2694 { 2695 if (dev->state >= DS_ATTACHED) 2696 return (EBUSY); 2697 2698 if (dev->driver == driver) 2699 return (0); 2700 2701 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2702 free(dev->softc, M_BUS_SC); 2703 dev->softc = NULL; 2704 } 2705 device_set_desc(dev, NULL); 2706 kobj_delete((kobj_t) dev, NULL); 2707 dev->driver = driver; 2708 if (driver) { 2709 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2710 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2711 dev->softc = malloc(driver->size, M_BUS_SC, 2712 M_NOWAIT | M_ZERO); 2713 if (!dev->softc) { 2714 kobj_delete((kobj_t) dev, NULL); 2715 kobj_init((kobj_t) dev, &null_class); 2716 dev->driver = NULL; 2717 return (ENOMEM); 2718 } 2719 } 2720 } else { 2721 kobj_init((kobj_t) dev, &null_class); 2722 } 2723 2724 bus_data_generation_update(); 2725 return (0); 2726 } 2727 2728 /** 2729 * @brief Probe a device, and return this status. 2730 * 2731 * This function is the core of the device autoconfiguration 2732 * system. Its purpose is to select a suitable driver for a device and 2733 * then call that driver to initialise the hardware appropriately. The 2734 * driver is selected by calling the DEVICE_PROBE() method of a set of 2735 * candidate drivers and then choosing the driver which returned the 2736 * best value. This driver is then attached to the device using 2737 * device_attach(). 2738 * 2739 * The set of suitable drivers is taken from the list of drivers in 2740 * the parent device's devclass. If the device was originally created 2741 * with a specific class name (see device_add_child()), only drivers 2742 * with that name are probed, otherwise all drivers in the devclass 2743 * are probed. If no drivers return successful probe values in the 2744 * parent devclass, the search continues in the parent of that 2745 * devclass (see devclass_get_parent()) if any. 2746 * 2747 * @param dev the device to initialise 2748 * 2749 * @retval 0 success 2750 * @retval ENXIO no driver was found 2751 * @retval ENOMEM memory allocation failure 2752 * @retval non-zero some other unix error code 2753 * @retval -1 Device already attached 2754 */ 2755 int 2756 device_probe(device_t dev) 2757 { 2758 int error; 2759 2760 GIANT_REQUIRED; 2761 2762 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2763 return (-1); 2764 2765 if (!(dev->flags & DF_ENABLED)) { 2766 if (bootverbose && device_get_name(dev) != NULL) { 2767 device_print_prettyname(dev); 2768 printf("not probed (disabled)\n"); 2769 } 2770 return (-1); 2771 } 2772 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2773 if (bus_current_pass == BUS_PASS_DEFAULT && 2774 !(dev->flags & DF_DONENOMATCH)) { 2775 BUS_PROBE_NOMATCH(dev->parent, dev); 2776 devnomatch(dev); 2777 dev->flags |= DF_DONENOMATCH; 2778 } 2779 return (error); 2780 } 2781 return (0); 2782 } 2783 2784 /** 2785 * @brief Probe a device and attach a driver if possible 2786 * 2787 * calls device_probe() and attaches if that was successful. 2788 */ 2789 int 2790 device_probe_and_attach(device_t dev) 2791 { 2792 int error; 2793 2794 GIANT_REQUIRED; 2795 2796 error = device_probe(dev); 2797 if (error == -1) 2798 return (0); 2799 else if (error != 0) 2800 return (error); 2801 2802 CURVNET_SET_QUIET(vnet0); 2803 error = device_attach(dev); 2804 CURVNET_RESTORE(); 2805 return error; 2806 } 2807 2808 /** 2809 * @brief Attach a device driver to a device 2810 * 2811 * This function is a wrapper around the DEVICE_ATTACH() driver 2812 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2813 * device's sysctl tree, optionally prints a description of the device 2814 * and queues a notification event for user-based device management 2815 * services. 2816 * 2817 * Normally this function is only called internally from 2818 * device_probe_and_attach(). 2819 * 2820 * @param dev the device to initialise 2821 * 2822 * @retval 0 success 2823 * @retval ENXIO no driver was found 2824 * @retval ENOMEM memory allocation failure 2825 * @retval non-zero some other unix error code 2826 */ 2827 int 2828 device_attach(device_t dev) 2829 { 2830 uint64_t attachtime; 2831 int error; 2832 2833 if (resource_disabled(dev->driver->name, dev->unit)) { 2834 device_disable(dev); 2835 if (bootverbose) 2836 device_printf(dev, "disabled via hints entry\n"); 2837 return (ENXIO); 2838 } 2839 2840 device_sysctl_init(dev); 2841 if (!device_is_quiet(dev)) 2842 device_print_child(dev->parent, dev); 2843 attachtime = get_cyclecount(); 2844 dev->state = DS_ATTACHING; 2845 if ((error = DEVICE_ATTACH(dev)) != 0) { 2846 printf("device_attach: %s%d attach returned %d\n", 2847 dev->driver->name, dev->unit, error); 2848 if (!(dev->flags & DF_FIXEDCLASS)) 2849 devclass_delete_device(dev->devclass, dev); 2850 (void)device_set_driver(dev, NULL); 2851 device_sysctl_fini(dev); 2852 KASSERT(dev->busy == 0, ("attach failed but busy")); 2853 dev->state = DS_NOTPRESENT; 2854 return (error); 2855 } 2856 attachtime = get_cyclecount() - attachtime; 2857 /* 2858 * 4 bits per device is a reasonable value for desktop and server 2859 * hardware with good get_cyclecount() implementations, but may 2860 * need to be adjusted on other platforms. 2861 */ 2862 #ifdef RANDOM_DEBUG 2863 printf("random: %s(): feeding %d bit(s) of entropy from %s%d\n", 2864 __func__, 4, dev->driver->name, dev->unit); 2865 #endif 2866 random_harvest(&attachtime, sizeof(attachtime), 4, RANDOM_ATTACH); 2867 device_sysctl_update(dev); 2868 if (dev->busy) 2869 dev->state = DS_BUSY; 2870 else 2871 dev->state = DS_ATTACHED; 2872 dev->flags &= ~DF_DONENOMATCH; 2873 devadded(dev); 2874 return (0); 2875 } 2876 2877 /** 2878 * @brief Detach a driver from a device 2879 * 2880 * This function is a wrapper around the DEVICE_DETACH() driver 2881 * method. If the call to DEVICE_DETACH() succeeds, it calls 2882 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2883 * notification event for user-based device management services and 2884 * cleans up the device's sysctl tree. 2885 * 2886 * @param dev the device to un-initialise 2887 * 2888 * @retval 0 success 2889 * @retval ENXIO no driver was found 2890 * @retval ENOMEM memory allocation failure 2891 * @retval non-zero some other unix error code 2892 */ 2893 int 2894 device_detach(device_t dev) 2895 { 2896 int error; 2897 2898 GIANT_REQUIRED; 2899 2900 PDEBUG(("%s", DEVICENAME(dev))); 2901 if (dev->state == DS_BUSY) 2902 return (EBUSY); 2903 if (dev->state != DS_ATTACHED) 2904 return (0); 2905 2906 if ((error = DEVICE_DETACH(dev)) != 0) 2907 return (error); 2908 devremoved(dev); 2909 if (!device_is_quiet(dev)) 2910 device_printf(dev, "detached\n"); 2911 if (dev->parent) 2912 BUS_CHILD_DETACHED(dev->parent, dev); 2913 2914 if (!(dev->flags & DF_FIXEDCLASS)) 2915 devclass_delete_device(dev->devclass, dev); 2916 2917 dev->state = DS_NOTPRESENT; 2918 (void)device_set_driver(dev, NULL); 2919 device_sysctl_fini(dev); 2920 2921 return (0); 2922 } 2923 2924 /** 2925 * @brief Tells a driver to quiesce itself. 2926 * 2927 * This function is a wrapper around the DEVICE_QUIESCE() driver 2928 * method. If the call to DEVICE_QUIESCE() succeeds. 2929 * 2930 * @param dev the device to quiesce 2931 * 2932 * @retval 0 success 2933 * @retval ENXIO no driver was found 2934 * @retval ENOMEM memory allocation failure 2935 * @retval non-zero some other unix error code 2936 */ 2937 int 2938 device_quiesce(device_t dev) 2939 { 2940 2941 PDEBUG(("%s", DEVICENAME(dev))); 2942 if (dev->state == DS_BUSY) 2943 return (EBUSY); 2944 if (dev->state != DS_ATTACHED) 2945 return (0); 2946 2947 return (DEVICE_QUIESCE(dev)); 2948 } 2949 2950 /** 2951 * @brief Notify a device of system shutdown 2952 * 2953 * This function calls the DEVICE_SHUTDOWN() driver method if the 2954 * device currently has an attached driver. 2955 * 2956 * @returns the value returned by DEVICE_SHUTDOWN() 2957 */ 2958 int 2959 device_shutdown(device_t dev) 2960 { 2961 if (dev->state < DS_ATTACHED) 2962 return (0); 2963 return (DEVICE_SHUTDOWN(dev)); 2964 } 2965 2966 /** 2967 * @brief Set the unit number of a device 2968 * 2969 * This function can be used to override the unit number used for a 2970 * device (e.g. to wire a device to a pre-configured unit number). 2971 */ 2972 int 2973 device_set_unit(device_t dev, int unit) 2974 { 2975 devclass_t dc; 2976 int err; 2977 2978 dc = device_get_devclass(dev); 2979 if (unit < dc->maxunit && dc->devices[unit]) 2980 return (EBUSY); 2981 err = devclass_delete_device(dc, dev); 2982 if (err) 2983 return (err); 2984 dev->unit = unit; 2985 err = devclass_add_device(dc, dev); 2986 if (err) 2987 return (err); 2988 2989 bus_data_generation_update(); 2990 return (0); 2991 } 2992 2993 /*======================================*/ 2994 /* 2995 * Some useful method implementations to make life easier for bus drivers. 2996 */ 2997 2998 /** 2999 * @brief Initialise a resource list. 3000 * 3001 * @param rl the resource list to initialise 3002 */ 3003 void 3004 resource_list_init(struct resource_list *rl) 3005 { 3006 STAILQ_INIT(rl); 3007 } 3008 3009 /** 3010 * @brief Reclaim memory used by a resource list. 3011 * 3012 * This function frees the memory for all resource entries on the list 3013 * (if any). 3014 * 3015 * @param rl the resource list to free 3016 */ 3017 void 3018 resource_list_free(struct resource_list *rl) 3019 { 3020 struct resource_list_entry *rle; 3021 3022 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3023 if (rle->res) 3024 panic("resource_list_free: resource entry is busy"); 3025 STAILQ_REMOVE_HEAD(rl, link); 3026 free(rle, M_BUS); 3027 } 3028 } 3029 3030 /** 3031 * @brief Add a resource entry. 3032 * 3033 * This function adds a resource entry using the given @p type, @p 3034 * start, @p end and @p count values. A rid value is chosen by 3035 * searching sequentially for the first unused rid starting at zero. 3036 * 3037 * @param rl the resource list to edit 3038 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3039 * @param start the start address of the resource 3040 * @param end the end address of the resource 3041 * @param count XXX end-start+1 3042 */ 3043 int 3044 resource_list_add_next(struct resource_list *rl, int type, u_long start, 3045 u_long end, u_long count) 3046 { 3047 int rid; 3048 3049 rid = 0; 3050 while (resource_list_find(rl, type, rid) != NULL) 3051 rid++; 3052 resource_list_add(rl, type, rid, start, end, count); 3053 return (rid); 3054 } 3055 3056 /** 3057 * @brief Add or modify a resource entry. 3058 * 3059 * If an existing entry exists with the same type and rid, it will be 3060 * modified using the given values of @p start, @p end and @p 3061 * count. If no entry exists, a new one will be created using the 3062 * given values. The resource list entry that matches is then returned. 3063 * 3064 * @param rl the resource list to edit 3065 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3066 * @param rid the resource identifier 3067 * @param start the start address of the resource 3068 * @param end the end address of the resource 3069 * @param count XXX end-start+1 3070 */ 3071 struct resource_list_entry * 3072 resource_list_add(struct resource_list *rl, int type, int rid, 3073 u_long start, u_long end, u_long count) 3074 { 3075 struct resource_list_entry *rle; 3076 3077 rle = resource_list_find(rl, type, rid); 3078 if (!rle) { 3079 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3080 M_NOWAIT); 3081 if (!rle) 3082 panic("resource_list_add: can't record entry"); 3083 STAILQ_INSERT_TAIL(rl, rle, link); 3084 rle->type = type; 3085 rle->rid = rid; 3086 rle->res = NULL; 3087 rle->flags = 0; 3088 } 3089 3090 if (rle->res) 3091 panic("resource_list_add: resource entry is busy"); 3092 3093 rle->start = start; 3094 rle->end = end; 3095 rle->count = count; 3096 return (rle); 3097 } 3098 3099 /** 3100 * @brief Determine if a resource entry is busy. 3101 * 3102 * Returns true if a resource entry is busy meaning that it has an 3103 * associated resource that is not an unallocated "reserved" resource. 3104 * 3105 * @param rl the resource list to search 3106 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3107 * @param rid the resource identifier 3108 * 3109 * @returns Non-zero if the entry is busy, zero otherwise. 3110 */ 3111 int 3112 resource_list_busy(struct resource_list *rl, int type, int rid) 3113 { 3114 struct resource_list_entry *rle; 3115 3116 rle = resource_list_find(rl, type, rid); 3117 if (rle == NULL || rle->res == NULL) 3118 return (0); 3119 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3120 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3121 ("reserved resource is active")); 3122 return (0); 3123 } 3124 return (1); 3125 } 3126 3127 /** 3128 * @brief Determine if a resource entry is reserved. 3129 * 3130 * Returns true if a resource entry is reserved meaning that it has an 3131 * associated "reserved" resource. The resource can either be 3132 * allocated or unallocated. 3133 * 3134 * @param rl the resource list to search 3135 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3136 * @param rid the resource identifier 3137 * 3138 * @returns Non-zero if the entry is reserved, zero otherwise. 3139 */ 3140 int 3141 resource_list_reserved(struct resource_list *rl, int type, int rid) 3142 { 3143 struct resource_list_entry *rle; 3144 3145 rle = resource_list_find(rl, type, rid); 3146 if (rle != NULL && rle->flags & RLE_RESERVED) 3147 return (1); 3148 return (0); 3149 } 3150 3151 /** 3152 * @brief Find a resource entry by type and rid. 3153 * 3154 * @param rl the resource list to search 3155 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3156 * @param rid the resource identifier 3157 * 3158 * @returns the resource entry pointer or NULL if there is no such 3159 * entry. 3160 */ 3161 struct resource_list_entry * 3162 resource_list_find(struct resource_list *rl, int type, int rid) 3163 { 3164 struct resource_list_entry *rle; 3165 3166 STAILQ_FOREACH(rle, rl, link) { 3167 if (rle->type == type && rle->rid == rid) 3168 return (rle); 3169 } 3170 return (NULL); 3171 } 3172 3173 /** 3174 * @brief Delete a resource entry. 3175 * 3176 * @param rl the resource list to edit 3177 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3178 * @param rid the resource identifier 3179 */ 3180 void 3181 resource_list_delete(struct resource_list *rl, int type, int rid) 3182 { 3183 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3184 3185 if (rle) { 3186 if (rle->res != NULL) 3187 panic("resource_list_delete: resource has not been released"); 3188 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3189 free(rle, M_BUS); 3190 } 3191 } 3192 3193 /** 3194 * @brief Allocate a reserved resource 3195 * 3196 * This can be used by busses to force the allocation of resources 3197 * that are always active in the system even if they are not allocated 3198 * by a driver (e.g. PCI BARs). This function is usually called when 3199 * adding a new child to the bus. The resource is allocated from the 3200 * parent bus when it is reserved. The resource list entry is marked 3201 * with RLE_RESERVED to note that it is a reserved resource. 3202 * 3203 * Subsequent attempts to allocate the resource with 3204 * resource_list_alloc() will succeed the first time and will set 3205 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3206 * resource that has been allocated is released with 3207 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3208 * the actual resource remains allocated. The resource can be released to 3209 * the parent bus by calling resource_list_unreserve(). 3210 * 3211 * @param rl the resource list to allocate from 3212 * @param bus the parent device of @p child 3213 * @param child the device for which the resource is being reserved 3214 * @param type the type of resource to allocate 3215 * @param rid a pointer to the resource identifier 3216 * @param start hint at the start of the resource range - pass 3217 * @c 0UL for any start address 3218 * @param end hint at the end of the resource range - pass 3219 * @c ~0UL for any end address 3220 * @param count hint at the size of range required - pass @c 1 3221 * for any size 3222 * @param flags any extra flags to control the resource 3223 * allocation - see @c RF_XXX flags in 3224 * <sys/rman.h> for details 3225 * 3226 * @returns the resource which was allocated or @c NULL if no 3227 * resource could be allocated 3228 */ 3229 struct resource * 3230 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3231 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3232 { 3233 struct resource_list_entry *rle = NULL; 3234 int passthrough = (device_get_parent(child) != bus); 3235 struct resource *r; 3236 3237 if (passthrough) 3238 panic( 3239 "resource_list_reserve() should only be called for direct children"); 3240 if (flags & RF_ACTIVE) 3241 panic( 3242 "resource_list_reserve() should only reserve inactive resources"); 3243 3244 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3245 flags); 3246 if (r != NULL) { 3247 rle = resource_list_find(rl, type, *rid); 3248 rle->flags |= RLE_RESERVED; 3249 } 3250 return (r); 3251 } 3252 3253 /** 3254 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3255 * 3256 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3257 * and passing the allocation up to the parent of @p bus. This assumes 3258 * that the first entry of @c device_get_ivars(child) is a struct 3259 * resource_list. This also handles 'passthrough' allocations where a 3260 * child is a remote descendant of bus by passing the allocation up to 3261 * the parent of bus. 3262 * 3263 * Typically, a bus driver would store a list of child resources 3264 * somewhere in the child device's ivars (see device_get_ivars()) and 3265 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3266 * then call resource_list_alloc() to perform the allocation. 3267 * 3268 * @param rl the resource list to allocate from 3269 * @param bus the parent device of @p child 3270 * @param child the device which is requesting an allocation 3271 * @param type the type of resource to allocate 3272 * @param rid a pointer to the resource identifier 3273 * @param start hint at the start of the resource range - pass 3274 * @c 0UL for any start address 3275 * @param end hint at the end of the resource range - pass 3276 * @c ~0UL for any end address 3277 * @param count hint at the size of range required - pass @c 1 3278 * for any size 3279 * @param flags any extra flags to control the resource 3280 * allocation - see @c RF_XXX flags in 3281 * <sys/rman.h> for details 3282 * 3283 * @returns the resource which was allocated or @c NULL if no 3284 * resource could be allocated 3285 */ 3286 struct resource * 3287 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3288 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3289 { 3290 struct resource_list_entry *rle = NULL; 3291 int passthrough = (device_get_parent(child) != bus); 3292 int isdefault = (start == 0UL && end == ~0UL); 3293 3294 if (passthrough) { 3295 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3296 type, rid, start, end, count, flags)); 3297 } 3298 3299 rle = resource_list_find(rl, type, *rid); 3300 3301 if (!rle) 3302 return (NULL); /* no resource of that type/rid */ 3303 3304 if (rle->res) { 3305 if (rle->flags & RLE_RESERVED) { 3306 if (rle->flags & RLE_ALLOCATED) 3307 return (NULL); 3308 if ((flags & RF_ACTIVE) && 3309 bus_activate_resource(child, type, *rid, 3310 rle->res) != 0) 3311 return (NULL); 3312 rle->flags |= RLE_ALLOCATED; 3313 return (rle->res); 3314 } 3315 device_printf(bus, 3316 "resource entry %#x type %d for child %s is busy\n", *rid, 3317 type, device_get_nameunit(child)); 3318 return (NULL); 3319 } 3320 3321 if (isdefault) { 3322 start = rle->start; 3323 count = ulmax(count, rle->count); 3324 end = ulmax(rle->end, start + count - 1); 3325 } 3326 3327 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3328 type, rid, start, end, count, flags); 3329 3330 /* 3331 * Record the new range. 3332 */ 3333 if (rle->res) { 3334 rle->start = rman_get_start(rle->res); 3335 rle->end = rman_get_end(rle->res); 3336 rle->count = count; 3337 } 3338 3339 return (rle->res); 3340 } 3341 3342 /** 3343 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3344 * 3345 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3346 * used with resource_list_alloc(). 3347 * 3348 * @param rl the resource list which was allocated from 3349 * @param bus the parent device of @p child 3350 * @param child the device which is requesting a release 3351 * @param type the type of resource to release 3352 * @param rid the resource identifier 3353 * @param res the resource to release 3354 * 3355 * @retval 0 success 3356 * @retval non-zero a standard unix error code indicating what 3357 * error condition prevented the operation 3358 */ 3359 int 3360 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3361 int type, int rid, struct resource *res) 3362 { 3363 struct resource_list_entry *rle = NULL; 3364 int passthrough = (device_get_parent(child) != bus); 3365 int error; 3366 3367 if (passthrough) { 3368 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3369 type, rid, res)); 3370 } 3371 3372 rle = resource_list_find(rl, type, rid); 3373 3374 if (!rle) 3375 panic("resource_list_release: can't find resource"); 3376 if (!rle->res) 3377 panic("resource_list_release: resource entry is not busy"); 3378 if (rle->flags & RLE_RESERVED) { 3379 if (rle->flags & RLE_ALLOCATED) { 3380 if (rman_get_flags(res) & RF_ACTIVE) { 3381 error = bus_deactivate_resource(child, type, 3382 rid, res); 3383 if (error) 3384 return (error); 3385 } 3386 rle->flags &= ~RLE_ALLOCATED; 3387 return (0); 3388 } 3389 return (EINVAL); 3390 } 3391 3392 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3393 type, rid, res); 3394 if (error) 3395 return (error); 3396 3397 rle->res = NULL; 3398 return (0); 3399 } 3400 3401 /** 3402 * @brief Release all active resources of a given type 3403 * 3404 * Release all active resources of a specified type. This is intended 3405 * to be used to cleanup resources leaked by a driver after detach or 3406 * a failed attach. 3407 * 3408 * @param rl the resource list which was allocated from 3409 * @param bus the parent device of @p child 3410 * @param child the device whose active resources are being released 3411 * @param type the type of resources to release 3412 * 3413 * @retval 0 success 3414 * @retval EBUSY at least one resource was active 3415 */ 3416 int 3417 resource_list_release_active(struct resource_list *rl, device_t bus, 3418 device_t child, int type) 3419 { 3420 struct resource_list_entry *rle; 3421 int error, retval; 3422 3423 retval = 0; 3424 STAILQ_FOREACH(rle, rl, link) { 3425 if (rle->type != type) 3426 continue; 3427 if (rle->res == NULL) 3428 continue; 3429 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3430 RLE_RESERVED) 3431 continue; 3432 retval = EBUSY; 3433 error = resource_list_release(rl, bus, child, type, 3434 rman_get_rid(rle->res), rle->res); 3435 if (error != 0) 3436 device_printf(bus, 3437 "Failed to release active resource: %d\n", error); 3438 } 3439 return (retval); 3440 } 3441 3442 3443 /** 3444 * @brief Fully release a reserved resource 3445 * 3446 * Fully releases a resource reserved via resource_list_reserve(). 3447 * 3448 * @param rl the resource list which was allocated from 3449 * @param bus the parent device of @p child 3450 * @param child the device whose reserved resource is being released 3451 * @param type the type of resource to release 3452 * @param rid the resource identifier 3453 * @param res the resource to release 3454 * 3455 * @retval 0 success 3456 * @retval non-zero a standard unix error code indicating what 3457 * error condition prevented the operation 3458 */ 3459 int 3460 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3461 int type, int rid) 3462 { 3463 struct resource_list_entry *rle = NULL; 3464 int passthrough = (device_get_parent(child) != bus); 3465 3466 if (passthrough) 3467 panic( 3468 "resource_list_unreserve() should only be called for direct children"); 3469 3470 rle = resource_list_find(rl, type, rid); 3471 3472 if (!rle) 3473 panic("resource_list_unreserve: can't find resource"); 3474 if (!(rle->flags & RLE_RESERVED)) 3475 return (EINVAL); 3476 if (rle->flags & RLE_ALLOCATED) 3477 return (EBUSY); 3478 rle->flags &= ~RLE_RESERVED; 3479 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3480 } 3481 3482 /** 3483 * @brief Print a description of resources in a resource list 3484 * 3485 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3486 * The name is printed if at least one resource of the given type is available. 3487 * The format is used to print resource start and end. 3488 * 3489 * @param rl the resource list to print 3490 * @param name the name of @p type, e.g. @c "memory" 3491 * @param type type type of resource entry to print 3492 * @param format printf(9) format string to print resource 3493 * start and end values 3494 * 3495 * @returns the number of characters printed 3496 */ 3497 int 3498 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3499 const char *format) 3500 { 3501 struct resource_list_entry *rle; 3502 int printed, retval; 3503 3504 printed = 0; 3505 retval = 0; 3506 /* Yes, this is kinda cheating */ 3507 STAILQ_FOREACH(rle, rl, link) { 3508 if (rle->type == type) { 3509 if (printed == 0) 3510 retval += printf(" %s ", name); 3511 else 3512 retval += printf(","); 3513 printed++; 3514 retval += printf(format, rle->start); 3515 if (rle->count > 1) { 3516 retval += printf("-"); 3517 retval += printf(format, rle->start + 3518 rle->count - 1); 3519 } 3520 } 3521 } 3522 return (retval); 3523 } 3524 3525 /** 3526 * @brief Releases all the resources in a list. 3527 * 3528 * @param rl The resource list to purge. 3529 * 3530 * @returns nothing 3531 */ 3532 void 3533 resource_list_purge(struct resource_list *rl) 3534 { 3535 struct resource_list_entry *rle; 3536 3537 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3538 if (rle->res) 3539 bus_release_resource(rman_get_device(rle->res), 3540 rle->type, rle->rid, rle->res); 3541 STAILQ_REMOVE_HEAD(rl, link); 3542 free(rle, M_BUS); 3543 } 3544 } 3545 3546 device_t 3547 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3548 { 3549 3550 return (device_add_child_ordered(dev, order, name, unit)); 3551 } 3552 3553 /** 3554 * @brief Helper function for implementing DEVICE_PROBE() 3555 * 3556 * This function can be used to help implement the DEVICE_PROBE() for 3557 * a bus (i.e. a device which has other devices attached to it). It 3558 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3559 * devclass. 3560 */ 3561 int 3562 bus_generic_probe(device_t dev) 3563 { 3564 devclass_t dc = dev->devclass; 3565 driverlink_t dl; 3566 3567 TAILQ_FOREACH(dl, &dc->drivers, link) { 3568 /* 3569 * If this driver's pass is too high, then ignore it. 3570 * For most drivers in the default pass, this will 3571 * never be true. For early-pass drivers they will 3572 * only call the identify routines of eligible drivers 3573 * when this routine is called. Drivers for later 3574 * passes should have their identify routines called 3575 * on early-pass busses during BUS_NEW_PASS(). 3576 */ 3577 if (dl->pass > bus_current_pass) 3578 continue; 3579 DEVICE_IDENTIFY(dl->driver, dev); 3580 } 3581 3582 return (0); 3583 } 3584 3585 /** 3586 * @brief Helper function for implementing DEVICE_ATTACH() 3587 * 3588 * This function can be used to help implement the DEVICE_ATTACH() for 3589 * a bus. It calls device_probe_and_attach() for each of the device's 3590 * children. 3591 */ 3592 int 3593 bus_generic_attach(device_t dev) 3594 { 3595 device_t child; 3596 3597 TAILQ_FOREACH(child, &dev->children, link) { 3598 device_probe_and_attach(child); 3599 } 3600 3601 return (0); 3602 } 3603 3604 /** 3605 * @brief Helper function for implementing DEVICE_DETACH() 3606 * 3607 * This function can be used to help implement the DEVICE_DETACH() for 3608 * a bus. It calls device_detach() for each of the device's 3609 * children. 3610 */ 3611 int 3612 bus_generic_detach(device_t dev) 3613 { 3614 device_t child; 3615 int error; 3616 3617 if (dev->state != DS_ATTACHED) 3618 return (EBUSY); 3619 3620 TAILQ_FOREACH(child, &dev->children, link) { 3621 if ((error = device_detach(child)) != 0) 3622 return (error); 3623 } 3624 3625 return (0); 3626 } 3627 3628 /** 3629 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3630 * 3631 * This function can be used to help implement the DEVICE_SHUTDOWN() 3632 * for a bus. It calls device_shutdown() for each of the device's 3633 * children. 3634 */ 3635 int 3636 bus_generic_shutdown(device_t dev) 3637 { 3638 device_t child; 3639 3640 TAILQ_FOREACH(child, &dev->children, link) { 3641 device_shutdown(child); 3642 } 3643 3644 return (0); 3645 } 3646 3647 /** 3648 * @brief Default function for suspending a child device. 3649 * 3650 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3651 */ 3652 int 3653 bus_generic_suspend_child(device_t dev, device_t child) 3654 { 3655 int error; 3656 3657 error = DEVICE_SUSPEND(child); 3658 3659 if (error == 0) 3660 child->flags |= DF_SUSPENDED; 3661 3662 return (error); 3663 } 3664 3665 /** 3666 * @brief Default function for resuming a child device. 3667 * 3668 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3669 */ 3670 int 3671 bus_generic_resume_child(device_t dev, device_t child) 3672 { 3673 3674 DEVICE_RESUME(child); 3675 child->flags &= ~DF_SUSPENDED; 3676 3677 return (0); 3678 } 3679 3680 /** 3681 * @brief Helper function for implementing DEVICE_SUSPEND() 3682 * 3683 * This function can be used to help implement the DEVICE_SUSPEND() 3684 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3685 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3686 * operation is aborted and any devices which were suspended are 3687 * resumed immediately by calling their DEVICE_RESUME() methods. 3688 */ 3689 int 3690 bus_generic_suspend(device_t dev) 3691 { 3692 int error; 3693 device_t child, child2; 3694 3695 TAILQ_FOREACH(child, &dev->children, link) { 3696 error = BUS_SUSPEND_CHILD(dev, child); 3697 if (error) { 3698 for (child2 = TAILQ_FIRST(&dev->children); 3699 child2 && child2 != child; 3700 child2 = TAILQ_NEXT(child2, link)) 3701 BUS_RESUME_CHILD(dev, child2); 3702 return (error); 3703 } 3704 } 3705 return (0); 3706 } 3707 3708 /** 3709 * @brief Helper function for implementing DEVICE_RESUME() 3710 * 3711 * This function can be used to help implement the DEVICE_RESUME() for 3712 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3713 */ 3714 int 3715 bus_generic_resume(device_t dev) 3716 { 3717 device_t child; 3718 3719 TAILQ_FOREACH(child, &dev->children, link) { 3720 BUS_RESUME_CHILD(dev, child); 3721 /* if resume fails, there's nothing we can usefully do... */ 3722 } 3723 return (0); 3724 } 3725 3726 /** 3727 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3728 * 3729 * This function prints the first part of the ascii representation of 3730 * @p child, including its name, unit and description (if any - see 3731 * device_set_desc()). 3732 * 3733 * @returns the number of characters printed 3734 */ 3735 int 3736 bus_print_child_header(device_t dev, device_t child) 3737 { 3738 int retval = 0; 3739 3740 if (device_get_desc(child)) { 3741 retval += device_printf(child, "<%s>", device_get_desc(child)); 3742 } else { 3743 retval += printf("%s", device_get_nameunit(child)); 3744 } 3745 3746 return (retval); 3747 } 3748 3749 /** 3750 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3751 * 3752 * This function prints the last part of the ascii representation of 3753 * @p child, which consists of the string @c " on " followed by the 3754 * name and unit of the @p dev. 3755 * 3756 * @returns the number of characters printed 3757 */ 3758 int 3759 bus_print_child_footer(device_t dev, device_t child) 3760 { 3761 return (printf(" on %s\n", device_get_nameunit(dev))); 3762 } 3763 3764 /** 3765 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3766 * 3767 * This function prints out the VM domain for the given device. 3768 * 3769 * @returns the number of characters printed 3770 */ 3771 int 3772 bus_print_child_domain(device_t dev, device_t child) 3773 { 3774 int domain; 3775 3776 /* No domain? Don't print anything */ 3777 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3778 return (0); 3779 3780 return (printf(" numa-domain %d", domain)); 3781 } 3782 3783 /** 3784 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3785 * 3786 * This function simply calls bus_print_child_header() followed by 3787 * bus_print_child_footer(). 3788 * 3789 * @returns the number of characters printed 3790 */ 3791 int 3792 bus_generic_print_child(device_t dev, device_t child) 3793 { 3794 int retval = 0; 3795 3796 retval += bus_print_child_header(dev, child); 3797 retval += bus_print_child_domain(dev, child); 3798 retval += bus_print_child_footer(dev, child); 3799 3800 return (retval); 3801 } 3802 3803 /** 3804 * @brief Stub function for implementing BUS_READ_IVAR(). 3805 * 3806 * @returns ENOENT 3807 */ 3808 int 3809 bus_generic_read_ivar(device_t dev, device_t child, int index, 3810 uintptr_t * result) 3811 { 3812 return (ENOENT); 3813 } 3814 3815 /** 3816 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3817 * 3818 * @returns ENOENT 3819 */ 3820 int 3821 bus_generic_write_ivar(device_t dev, device_t child, int index, 3822 uintptr_t value) 3823 { 3824 return (ENOENT); 3825 } 3826 3827 /** 3828 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3829 * 3830 * @returns NULL 3831 */ 3832 struct resource_list * 3833 bus_generic_get_resource_list(device_t dev, device_t child) 3834 { 3835 return (NULL); 3836 } 3837 3838 /** 3839 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3840 * 3841 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3842 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3843 * and then calls device_probe_and_attach() for each unattached child. 3844 */ 3845 void 3846 bus_generic_driver_added(device_t dev, driver_t *driver) 3847 { 3848 device_t child; 3849 3850 DEVICE_IDENTIFY(driver, dev); 3851 TAILQ_FOREACH(child, &dev->children, link) { 3852 if (child->state == DS_NOTPRESENT || 3853 (child->flags & DF_REBID)) 3854 device_probe_and_attach(child); 3855 } 3856 } 3857 3858 /** 3859 * @brief Helper function for implementing BUS_NEW_PASS(). 3860 * 3861 * This implementing of BUS_NEW_PASS() first calls the identify 3862 * routines for any drivers that probe at the current pass. Then it 3863 * walks the list of devices for this bus. If a device is already 3864 * attached, then it calls BUS_NEW_PASS() on that device. If the 3865 * device is not already attached, it attempts to attach a driver to 3866 * it. 3867 */ 3868 void 3869 bus_generic_new_pass(device_t dev) 3870 { 3871 driverlink_t dl; 3872 devclass_t dc; 3873 device_t child; 3874 3875 dc = dev->devclass; 3876 TAILQ_FOREACH(dl, &dc->drivers, link) { 3877 if (dl->pass == bus_current_pass) 3878 DEVICE_IDENTIFY(dl->driver, dev); 3879 } 3880 TAILQ_FOREACH(child, &dev->children, link) { 3881 if (child->state >= DS_ATTACHED) 3882 BUS_NEW_PASS(child); 3883 else if (child->state == DS_NOTPRESENT) 3884 device_probe_and_attach(child); 3885 } 3886 } 3887 3888 /** 3889 * @brief Helper function for implementing BUS_SETUP_INTR(). 3890 * 3891 * This simple implementation of BUS_SETUP_INTR() simply calls the 3892 * BUS_SETUP_INTR() method of the parent of @p dev. 3893 */ 3894 int 3895 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3896 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3897 void **cookiep) 3898 { 3899 /* Propagate up the bus hierarchy until someone handles it. */ 3900 if (dev->parent) 3901 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3902 filter, intr, arg, cookiep)); 3903 return (EINVAL); 3904 } 3905 3906 /** 3907 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3908 * 3909 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3910 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3911 */ 3912 int 3913 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3914 void *cookie) 3915 { 3916 /* Propagate up the bus hierarchy until someone handles it. */ 3917 if (dev->parent) 3918 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3919 return (EINVAL); 3920 } 3921 3922 /** 3923 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3924 * 3925 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3926 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3927 */ 3928 int 3929 bus_generic_adjust_resource(device_t dev, device_t child, int type, 3930 struct resource *r, u_long start, u_long end) 3931 { 3932 /* Propagate up the bus hierarchy until someone handles it. */ 3933 if (dev->parent) 3934 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 3935 end)); 3936 return (EINVAL); 3937 } 3938 3939 /** 3940 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3941 * 3942 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3943 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3944 */ 3945 struct resource * 3946 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3947 u_long start, u_long end, u_long count, u_int flags) 3948 { 3949 /* Propagate up the bus hierarchy until someone handles it. */ 3950 if (dev->parent) 3951 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3952 start, end, count, flags)); 3953 return (NULL); 3954 } 3955 3956 /** 3957 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3958 * 3959 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3960 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3961 */ 3962 int 3963 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3964 struct resource *r) 3965 { 3966 /* Propagate up the bus hierarchy until someone handles it. */ 3967 if (dev->parent) 3968 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3969 r)); 3970 return (EINVAL); 3971 } 3972 3973 /** 3974 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3975 * 3976 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3977 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3978 */ 3979 int 3980 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3981 struct resource *r) 3982 { 3983 /* Propagate up the bus hierarchy until someone handles it. */ 3984 if (dev->parent) 3985 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3986 r)); 3987 return (EINVAL); 3988 } 3989 3990 /** 3991 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3992 * 3993 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3994 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3995 */ 3996 int 3997 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3998 int rid, struct resource *r) 3999 { 4000 /* Propagate up the bus hierarchy until someone handles it. */ 4001 if (dev->parent) 4002 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4003 r)); 4004 return (EINVAL); 4005 } 4006 4007 /** 4008 * @brief Helper function for implementing BUS_BIND_INTR(). 4009 * 4010 * This simple implementation of BUS_BIND_INTR() simply calls the 4011 * BUS_BIND_INTR() method of the parent of @p dev. 4012 */ 4013 int 4014 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4015 int cpu) 4016 { 4017 4018 /* Propagate up the bus hierarchy until someone handles it. */ 4019 if (dev->parent) 4020 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4021 return (EINVAL); 4022 } 4023 4024 /** 4025 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4026 * 4027 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4028 * BUS_CONFIG_INTR() method of the parent of @p dev. 4029 */ 4030 int 4031 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4032 enum intr_polarity pol) 4033 { 4034 4035 /* Propagate up the bus hierarchy until someone handles it. */ 4036 if (dev->parent) 4037 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4038 return (EINVAL); 4039 } 4040 4041 /** 4042 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4043 * 4044 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4045 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4046 */ 4047 int 4048 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4049 void *cookie, const char *descr) 4050 { 4051 4052 /* Propagate up the bus hierarchy until someone handles it. */ 4053 if (dev->parent) 4054 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4055 descr)); 4056 return (EINVAL); 4057 } 4058 4059 /** 4060 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4061 * 4062 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4063 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4064 */ 4065 bus_dma_tag_t 4066 bus_generic_get_dma_tag(device_t dev, device_t child) 4067 { 4068 4069 /* Propagate up the bus hierarchy until someone handles it. */ 4070 if (dev->parent != NULL) 4071 return (BUS_GET_DMA_TAG(dev->parent, child)); 4072 return (NULL); 4073 } 4074 4075 /** 4076 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4077 * 4078 * This implementation of BUS_GET_RESOURCE() uses the 4079 * resource_list_find() function to do most of the work. It calls 4080 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4081 * search. 4082 */ 4083 int 4084 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4085 u_long *startp, u_long *countp) 4086 { 4087 struct resource_list * rl = NULL; 4088 struct resource_list_entry * rle = NULL; 4089 4090 rl = BUS_GET_RESOURCE_LIST(dev, child); 4091 if (!rl) 4092 return (EINVAL); 4093 4094 rle = resource_list_find(rl, type, rid); 4095 if (!rle) 4096 return (ENOENT); 4097 4098 if (startp) 4099 *startp = rle->start; 4100 if (countp) 4101 *countp = rle->count; 4102 4103 return (0); 4104 } 4105 4106 /** 4107 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4108 * 4109 * This implementation of BUS_SET_RESOURCE() uses the 4110 * resource_list_add() function to do most of the work. It calls 4111 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4112 * edit. 4113 */ 4114 int 4115 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4116 u_long start, u_long count) 4117 { 4118 struct resource_list * rl = NULL; 4119 4120 rl = BUS_GET_RESOURCE_LIST(dev, child); 4121 if (!rl) 4122 return (EINVAL); 4123 4124 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4125 4126 return (0); 4127 } 4128 4129 /** 4130 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4131 * 4132 * This implementation of BUS_DELETE_RESOURCE() uses the 4133 * resource_list_delete() function to do most of the work. It calls 4134 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4135 * edit. 4136 */ 4137 void 4138 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4139 { 4140 struct resource_list * rl = NULL; 4141 4142 rl = BUS_GET_RESOURCE_LIST(dev, child); 4143 if (!rl) 4144 return; 4145 4146 resource_list_delete(rl, type, rid); 4147 4148 return; 4149 } 4150 4151 /** 4152 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4153 * 4154 * This implementation of BUS_RELEASE_RESOURCE() uses the 4155 * resource_list_release() function to do most of the work. It calls 4156 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4157 */ 4158 int 4159 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4160 int rid, struct resource *r) 4161 { 4162 struct resource_list * rl = NULL; 4163 4164 if (device_get_parent(child) != dev) 4165 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4166 type, rid, r)); 4167 4168 rl = BUS_GET_RESOURCE_LIST(dev, child); 4169 if (!rl) 4170 return (EINVAL); 4171 4172 return (resource_list_release(rl, dev, child, type, rid, r)); 4173 } 4174 4175 /** 4176 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4177 * 4178 * This implementation of BUS_ALLOC_RESOURCE() uses the 4179 * resource_list_alloc() function to do most of the work. It calls 4180 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4181 */ 4182 struct resource * 4183 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4184 int *rid, u_long start, u_long end, u_long count, u_int flags) 4185 { 4186 struct resource_list * rl = NULL; 4187 4188 if (device_get_parent(child) != dev) 4189 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4190 type, rid, start, end, count, flags)); 4191 4192 rl = BUS_GET_RESOURCE_LIST(dev, child); 4193 if (!rl) 4194 return (NULL); 4195 4196 return (resource_list_alloc(rl, dev, child, type, rid, 4197 start, end, count, flags)); 4198 } 4199 4200 /** 4201 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4202 * 4203 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4204 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4205 */ 4206 int 4207 bus_generic_child_present(device_t dev, device_t child) 4208 { 4209 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4210 } 4211 4212 int 4213 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4214 { 4215 4216 if (dev->parent) 4217 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4218 4219 return (ENOENT); 4220 } 4221 4222 /* 4223 * Some convenience functions to make it easier for drivers to use the 4224 * resource-management functions. All these really do is hide the 4225 * indirection through the parent's method table, making for slightly 4226 * less-wordy code. In the future, it might make sense for this code 4227 * to maintain some sort of a list of resources allocated by each device. 4228 */ 4229 4230 int 4231 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4232 struct resource **res) 4233 { 4234 int i; 4235 4236 for (i = 0; rs[i].type != -1; i++) 4237 res[i] = NULL; 4238 for (i = 0; rs[i].type != -1; i++) { 4239 res[i] = bus_alloc_resource_any(dev, 4240 rs[i].type, &rs[i].rid, rs[i].flags); 4241 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4242 bus_release_resources(dev, rs, res); 4243 return (ENXIO); 4244 } 4245 } 4246 return (0); 4247 } 4248 4249 void 4250 bus_release_resources(device_t dev, const struct resource_spec *rs, 4251 struct resource **res) 4252 { 4253 int i; 4254 4255 for (i = 0; rs[i].type != -1; i++) 4256 if (res[i] != NULL) { 4257 bus_release_resource( 4258 dev, rs[i].type, rs[i].rid, res[i]); 4259 res[i] = NULL; 4260 } 4261 } 4262 4263 /** 4264 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4265 * 4266 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4267 * parent of @p dev. 4268 */ 4269 struct resource * 4270 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 4271 u_long count, u_int flags) 4272 { 4273 if (dev->parent == NULL) 4274 return (NULL); 4275 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4276 count, flags)); 4277 } 4278 4279 /** 4280 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4281 * 4282 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4283 * parent of @p dev. 4284 */ 4285 int 4286 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start, 4287 u_long end) 4288 { 4289 if (dev->parent == NULL) 4290 return (EINVAL); 4291 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4292 } 4293 4294 /** 4295 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4296 * 4297 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4298 * parent of @p dev. 4299 */ 4300 int 4301 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4302 { 4303 if (dev->parent == NULL) 4304 return (EINVAL); 4305 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4306 } 4307 4308 /** 4309 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4310 * 4311 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4312 * parent of @p dev. 4313 */ 4314 int 4315 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4316 { 4317 if (dev->parent == NULL) 4318 return (EINVAL); 4319 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4320 } 4321 4322 /** 4323 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4324 * 4325 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4326 * parent of @p dev. 4327 */ 4328 int 4329 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4330 { 4331 if (dev->parent == NULL) 4332 return (EINVAL); 4333 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 4334 } 4335 4336 /** 4337 * @brief Wrapper function for BUS_SETUP_INTR(). 4338 * 4339 * This function simply calls the BUS_SETUP_INTR() method of the 4340 * parent of @p dev. 4341 */ 4342 int 4343 bus_setup_intr(device_t dev, struct resource *r, int flags, 4344 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4345 { 4346 int error; 4347 4348 if (dev->parent == NULL) 4349 return (EINVAL); 4350 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4351 arg, cookiep); 4352 if (error != 0) 4353 return (error); 4354 if (handler != NULL && !(flags & INTR_MPSAFE)) 4355 device_printf(dev, "[GIANT-LOCKED]\n"); 4356 return (0); 4357 } 4358 4359 /** 4360 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4361 * 4362 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4363 * parent of @p dev. 4364 */ 4365 int 4366 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4367 { 4368 if (dev->parent == NULL) 4369 return (EINVAL); 4370 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4371 } 4372 4373 /** 4374 * @brief Wrapper function for BUS_BIND_INTR(). 4375 * 4376 * This function simply calls the BUS_BIND_INTR() method of the 4377 * parent of @p dev. 4378 */ 4379 int 4380 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4381 { 4382 if (dev->parent == NULL) 4383 return (EINVAL); 4384 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4385 } 4386 4387 /** 4388 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4389 * 4390 * This function first formats the requested description into a 4391 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4392 * the parent of @p dev. 4393 */ 4394 int 4395 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4396 const char *fmt, ...) 4397 { 4398 va_list ap; 4399 char descr[MAXCOMLEN + 1]; 4400 4401 if (dev->parent == NULL) 4402 return (EINVAL); 4403 va_start(ap, fmt); 4404 vsnprintf(descr, sizeof(descr), fmt, ap); 4405 va_end(ap); 4406 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4407 } 4408 4409 /** 4410 * @brief Wrapper function for BUS_SET_RESOURCE(). 4411 * 4412 * This function simply calls the BUS_SET_RESOURCE() method of the 4413 * parent of @p dev. 4414 */ 4415 int 4416 bus_set_resource(device_t dev, int type, int rid, 4417 u_long start, u_long count) 4418 { 4419 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4420 start, count)); 4421 } 4422 4423 /** 4424 * @brief Wrapper function for BUS_GET_RESOURCE(). 4425 * 4426 * This function simply calls the BUS_GET_RESOURCE() method of the 4427 * parent of @p dev. 4428 */ 4429 int 4430 bus_get_resource(device_t dev, int type, int rid, 4431 u_long *startp, u_long *countp) 4432 { 4433 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4434 startp, countp)); 4435 } 4436 4437 /** 4438 * @brief Wrapper function for BUS_GET_RESOURCE(). 4439 * 4440 * This function simply calls the BUS_GET_RESOURCE() method of the 4441 * parent of @p dev and returns the start value. 4442 */ 4443 u_long 4444 bus_get_resource_start(device_t dev, int type, int rid) 4445 { 4446 u_long start, count; 4447 int error; 4448 4449 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4450 &start, &count); 4451 if (error) 4452 return (0); 4453 return (start); 4454 } 4455 4456 /** 4457 * @brief Wrapper function for BUS_GET_RESOURCE(). 4458 * 4459 * This function simply calls the BUS_GET_RESOURCE() method of the 4460 * parent of @p dev and returns the count value. 4461 */ 4462 u_long 4463 bus_get_resource_count(device_t dev, int type, int rid) 4464 { 4465 u_long start, count; 4466 int error; 4467 4468 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4469 &start, &count); 4470 if (error) 4471 return (0); 4472 return (count); 4473 } 4474 4475 /** 4476 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4477 * 4478 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4479 * parent of @p dev. 4480 */ 4481 void 4482 bus_delete_resource(device_t dev, int type, int rid) 4483 { 4484 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4485 } 4486 4487 /** 4488 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4489 * 4490 * This function simply calls the BUS_CHILD_PRESENT() method of the 4491 * parent of @p dev. 4492 */ 4493 int 4494 bus_child_present(device_t child) 4495 { 4496 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4497 } 4498 4499 /** 4500 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4501 * 4502 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4503 * parent of @p dev. 4504 */ 4505 int 4506 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4507 { 4508 device_t parent; 4509 4510 parent = device_get_parent(child); 4511 if (parent == NULL) { 4512 *buf = '\0'; 4513 return (0); 4514 } 4515 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4516 } 4517 4518 /** 4519 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4520 * 4521 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4522 * parent of @p dev. 4523 */ 4524 int 4525 bus_child_location_str(device_t child, char *buf, size_t buflen) 4526 { 4527 device_t parent; 4528 4529 parent = device_get_parent(child); 4530 if (parent == NULL) { 4531 *buf = '\0'; 4532 return (0); 4533 } 4534 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4535 } 4536 4537 /** 4538 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4539 * 4540 * This function simply calls the BUS_GET_DMA_TAG() method of the 4541 * parent of @p dev. 4542 */ 4543 bus_dma_tag_t 4544 bus_get_dma_tag(device_t dev) 4545 { 4546 device_t parent; 4547 4548 parent = device_get_parent(dev); 4549 if (parent == NULL) 4550 return (NULL); 4551 return (BUS_GET_DMA_TAG(parent, dev)); 4552 } 4553 4554 /** 4555 * @brief Wrapper function for BUS_GET_DOMAIN(). 4556 * 4557 * This function simply calls the BUS_GET_DOMAIN() method of the 4558 * parent of @p dev. 4559 */ 4560 int 4561 bus_get_domain(device_t dev, int *domain) 4562 { 4563 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 4564 } 4565 4566 /* Resume all devices and then notify userland that we're up again. */ 4567 static int 4568 root_resume(device_t dev) 4569 { 4570 int error; 4571 4572 error = bus_generic_resume(dev); 4573 if (error == 0) 4574 devctl_notify("kern", "power", "resume", NULL); 4575 return (error); 4576 } 4577 4578 static int 4579 root_print_child(device_t dev, device_t child) 4580 { 4581 int retval = 0; 4582 4583 retval += bus_print_child_header(dev, child); 4584 retval += printf("\n"); 4585 4586 return (retval); 4587 } 4588 4589 static int 4590 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4591 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4592 { 4593 /* 4594 * If an interrupt mapping gets to here something bad has happened. 4595 */ 4596 panic("root_setup_intr"); 4597 } 4598 4599 /* 4600 * If we get here, assume that the device is permanant and really is 4601 * present in the system. Removable bus drivers are expected to intercept 4602 * this call long before it gets here. We return -1 so that drivers that 4603 * really care can check vs -1 or some ERRNO returned higher in the food 4604 * chain. 4605 */ 4606 static int 4607 root_child_present(device_t dev, device_t child) 4608 { 4609 return (-1); 4610 } 4611 4612 static kobj_method_t root_methods[] = { 4613 /* Device interface */ 4614 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4615 KOBJMETHOD(device_suspend, bus_generic_suspend), 4616 KOBJMETHOD(device_resume, root_resume), 4617 4618 /* Bus interface */ 4619 KOBJMETHOD(bus_print_child, root_print_child), 4620 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4621 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4622 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4623 KOBJMETHOD(bus_child_present, root_child_present), 4624 4625 KOBJMETHOD_END 4626 }; 4627 4628 static driver_t root_driver = { 4629 "root", 4630 root_methods, 4631 1, /* no softc */ 4632 }; 4633 4634 device_t root_bus; 4635 devclass_t root_devclass; 4636 4637 static int 4638 root_bus_module_handler(module_t mod, int what, void* arg) 4639 { 4640 switch (what) { 4641 case MOD_LOAD: 4642 TAILQ_INIT(&bus_data_devices); 4643 kobj_class_compile((kobj_class_t) &root_driver); 4644 root_bus = make_device(NULL, "root", 0); 4645 root_bus->desc = "System root bus"; 4646 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4647 root_bus->driver = &root_driver; 4648 root_bus->state = DS_ATTACHED; 4649 root_devclass = devclass_find_internal("root", NULL, FALSE); 4650 devinit(); 4651 return (0); 4652 4653 case MOD_SHUTDOWN: 4654 device_shutdown(root_bus); 4655 return (0); 4656 default: 4657 return (EOPNOTSUPP); 4658 } 4659 4660 return (0); 4661 } 4662 4663 static moduledata_t root_bus_mod = { 4664 "rootbus", 4665 root_bus_module_handler, 4666 NULL 4667 }; 4668 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4669 4670 /** 4671 * @brief Automatically configure devices 4672 * 4673 * This function begins the autoconfiguration process by calling 4674 * device_probe_and_attach() for each child of the @c root0 device. 4675 */ 4676 void 4677 root_bus_configure(void) 4678 { 4679 4680 PDEBUG((".")); 4681 4682 /* Eventually this will be split up, but this is sufficient for now. */ 4683 bus_set_pass(BUS_PASS_DEFAULT); 4684 } 4685 4686 /** 4687 * @brief Module handler for registering device drivers 4688 * 4689 * This module handler is used to automatically register device 4690 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4691 * devclass_add_driver() for the driver described by the 4692 * driver_module_data structure pointed to by @p arg 4693 */ 4694 int 4695 driver_module_handler(module_t mod, int what, void *arg) 4696 { 4697 struct driver_module_data *dmd; 4698 devclass_t bus_devclass; 4699 kobj_class_t driver; 4700 int error, pass; 4701 4702 dmd = (struct driver_module_data *)arg; 4703 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4704 error = 0; 4705 4706 switch (what) { 4707 case MOD_LOAD: 4708 if (dmd->dmd_chainevh) 4709 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4710 4711 pass = dmd->dmd_pass; 4712 driver = dmd->dmd_driver; 4713 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4714 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4715 error = devclass_add_driver(bus_devclass, driver, pass, 4716 dmd->dmd_devclass); 4717 break; 4718 4719 case MOD_UNLOAD: 4720 PDEBUG(("Unloading module: driver %s from bus %s", 4721 DRIVERNAME(dmd->dmd_driver), 4722 dmd->dmd_busname)); 4723 error = devclass_delete_driver(bus_devclass, 4724 dmd->dmd_driver); 4725 4726 if (!error && dmd->dmd_chainevh) 4727 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4728 break; 4729 case MOD_QUIESCE: 4730 PDEBUG(("Quiesce module: driver %s from bus %s", 4731 DRIVERNAME(dmd->dmd_driver), 4732 dmd->dmd_busname)); 4733 error = devclass_quiesce_driver(bus_devclass, 4734 dmd->dmd_driver); 4735 4736 if (!error && dmd->dmd_chainevh) 4737 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4738 break; 4739 default: 4740 error = EOPNOTSUPP; 4741 break; 4742 } 4743 4744 return (error); 4745 } 4746 4747 /** 4748 * @brief Enumerate all hinted devices for this bus. 4749 * 4750 * Walks through the hints for this bus and calls the bus_hinted_child 4751 * routine for each one it fines. It searches first for the specific 4752 * bus that's being probed for hinted children (eg isa0), and then for 4753 * generic children (eg isa). 4754 * 4755 * @param dev bus device to enumerate 4756 */ 4757 void 4758 bus_enumerate_hinted_children(device_t bus) 4759 { 4760 int i; 4761 const char *dname, *busname; 4762 int dunit; 4763 4764 /* 4765 * enumerate all devices on the specific bus 4766 */ 4767 busname = device_get_nameunit(bus); 4768 i = 0; 4769 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4770 BUS_HINTED_CHILD(bus, dname, dunit); 4771 4772 /* 4773 * and all the generic ones. 4774 */ 4775 busname = device_get_name(bus); 4776 i = 0; 4777 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4778 BUS_HINTED_CHILD(bus, dname, dunit); 4779 } 4780 4781 #ifdef BUS_DEBUG 4782 4783 /* the _short versions avoid iteration by not calling anything that prints 4784 * more than oneliners. I love oneliners. 4785 */ 4786 4787 static void 4788 print_device_short(device_t dev, int indent) 4789 { 4790 if (!dev) 4791 return; 4792 4793 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4794 dev->unit, dev->desc, 4795 (dev->parent? "":"no "), 4796 (TAILQ_EMPTY(&dev->children)? "no ":""), 4797 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4798 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4799 (dev->flags&DF_WILDCARD? "wildcard,":""), 4800 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4801 (dev->flags&DF_REBID? "rebiddable,":""), 4802 (dev->ivars? "":"no "), 4803 (dev->softc? "":"no "), 4804 dev->busy)); 4805 } 4806 4807 static void 4808 print_device(device_t dev, int indent) 4809 { 4810 if (!dev) 4811 return; 4812 4813 print_device_short(dev, indent); 4814 4815 indentprintf(("Parent:\n")); 4816 print_device_short(dev->parent, indent+1); 4817 indentprintf(("Driver:\n")); 4818 print_driver_short(dev->driver, indent+1); 4819 indentprintf(("Devclass:\n")); 4820 print_devclass_short(dev->devclass, indent+1); 4821 } 4822 4823 void 4824 print_device_tree_short(device_t dev, int indent) 4825 /* print the device and all its children (indented) */ 4826 { 4827 device_t child; 4828 4829 if (!dev) 4830 return; 4831 4832 print_device_short(dev, indent); 4833 4834 TAILQ_FOREACH(child, &dev->children, link) { 4835 print_device_tree_short(child, indent+1); 4836 } 4837 } 4838 4839 void 4840 print_device_tree(device_t dev, int indent) 4841 /* print the device and all its children (indented) */ 4842 { 4843 device_t child; 4844 4845 if (!dev) 4846 return; 4847 4848 print_device(dev, indent); 4849 4850 TAILQ_FOREACH(child, &dev->children, link) { 4851 print_device_tree(child, indent+1); 4852 } 4853 } 4854 4855 static void 4856 print_driver_short(driver_t *driver, int indent) 4857 { 4858 if (!driver) 4859 return; 4860 4861 indentprintf(("driver %s: softc size = %zd\n", 4862 driver->name, driver->size)); 4863 } 4864 4865 static void 4866 print_driver(driver_t *driver, int indent) 4867 { 4868 if (!driver) 4869 return; 4870 4871 print_driver_short(driver, indent); 4872 } 4873 4874 static void 4875 print_driver_list(driver_list_t drivers, int indent) 4876 { 4877 driverlink_t driver; 4878 4879 TAILQ_FOREACH(driver, &drivers, link) { 4880 print_driver(driver->driver, indent); 4881 } 4882 } 4883 4884 static void 4885 print_devclass_short(devclass_t dc, int indent) 4886 { 4887 if ( !dc ) 4888 return; 4889 4890 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4891 } 4892 4893 static void 4894 print_devclass(devclass_t dc, int indent) 4895 { 4896 int i; 4897 4898 if ( !dc ) 4899 return; 4900 4901 print_devclass_short(dc, indent); 4902 indentprintf(("Drivers:\n")); 4903 print_driver_list(dc->drivers, indent+1); 4904 4905 indentprintf(("Devices:\n")); 4906 for (i = 0; i < dc->maxunit; i++) 4907 if (dc->devices[i]) 4908 print_device(dc->devices[i], indent+1); 4909 } 4910 4911 void 4912 print_devclass_list_short(void) 4913 { 4914 devclass_t dc; 4915 4916 printf("Short listing of devclasses, drivers & devices:\n"); 4917 TAILQ_FOREACH(dc, &devclasses, link) { 4918 print_devclass_short(dc, 0); 4919 } 4920 } 4921 4922 void 4923 print_devclass_list(void) 4924 { 4925 devclass_t dc; 4926 4927 printf("Full listing of devclasses, drivers & devices:\n"); 4928 TAILQ_FOREACH(dc, &devclasses, link) { 4929 print_devclass(dc, 0); 4930 } 4931 } 4932 4933 #endif 4934 4935 /* 4936 * User-space access to the device tree. 4937 * 4938 * We implement a small set of nodes: 4939 * 4940 * hw.bus Single integer read method to obtain the 4941 * current generation count. 4942 * hw.bus.devices Reads the entire device tree in flat space. 4943 * hw.bus.rman Resource manager interface 4944 * 4945 * We might like to add the ability to scan devclasses and/or drivers to 4946 * determine what else is currently loaded/available. 4947 */ 4948 4949 static int 4950 sysctl_bus(SYSCTL_HANDLER_ARGS) 4951 { 4952 struct u_businfo ubus; 4953 4954 ubus.ub_version = BUS_USER_VERSION; 4955 ubus.ub_generation = bus_data_generation; 4956 4957 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4958 } 4959 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4960 "bus-related data"); 4961 4962 static int 4963 sysctl_devices(SYSCTL_HANDLER_ARGS) 4964 { 4965 int *name = (int *)arg1; 4966 u_int namelen = arg2; 4967 int index; 4968 struct device *dev; 4969 struct u_device udev; /* XXX this is a bit big */ 4970 int error; 4971 4972 if (namelen != 2) 4973 return (EINVAL); 4974 4975 if (bus_data_generation_check(name[0])) 4976 return (EINVAL); 4977 4978 index = name[1]; 4979 4980 /* 4981 * Scan the list of devices, looking for the requested index. 4982 */ 4983 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 4984 if (index-- == 0) 4985 break; 4986 } 4987 if (dev == NULL) 4988 return (ENOENT); 4989 4990 /* 4991 * Populate the return array. 4992 */ 4993 bzero(&udev, sizeof(udev)); 4994 udev.dv_handle = (uintptr_t)dev; 4995 udev.dv_parent = (uintptr_t)dev->parent; 4996 if (dev->nameunit != NULL) 4997 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 4998 if (dev->desc != NULL) 4999 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 5000 if (dev->driver != NULL && dev->driver->name != NULL) 5001 strlcpy(udev.dv_drivername, dev->driver->name, 5002 sizeof(udev.dv_drivername)); 5003 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 5004 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 5005 udev.dv_devflags = dev->devflags; 5006 udev.dv_flags = dev->flags; 5007 udev.dv_state = dev->state; 5008 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 5009 return (error); 5010 } 5011 5012 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 5013 "system device tree"); 5014 5015 int 5016 bus_data_generation_check(int generation) 5017 { 5018 if (generation != bus_data_generation) 5019 return (1); 5020 5021 /* XXX generate optimised lists here? */ 5022 return (0); 5023 } 5024 5025 void 5026 bus_data_generation_update(void) 5027 { 5028 bus_data_generation++; 5029 } 5030 5031 int 5032 bus_free_resource(device_t dev, int type, struct resource *r) 5033 { 5034 if (r == NULL) 5035 return (0); 5036 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5037 } 5038 5039 /* 5040 * /dev/devctl2 implementation. The existing /dev/devctl device has 5041 * implicit semantics on open, so it could not be reused for this. 5042 * Another option would be to call this /dev/bus? 5043 */ 5044 static int 5045 find_device(struct devreq *req, device_t *devp) 5046 { 5047 device_t dev; 5048 5049 /* 5050 * First, ensure that the name is nul terminated. 5051 */ 5052 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5053 return (EINVAL); 5054 5055 /* 5056 * Second, try to find an attached device whose name matches 5057 * 'name'. 5058 */ 5059 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5060 if (dev->nameunit != NULL && 5061 strcmp(dev->nameunit, req->dr_name) == 0) { 5062 *devp = dev; 5063 return (0); 5064 } 5065 } 5066 5067 /* Finally, give device enumerators a chance. */ 5068 dev = NULL; 5069 EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev); 5070 if (dev == NULL) 5071 return (ENOENT); 5072 *devp = dev; 5073 return (0); 5074 } 5075 5076 static bool 5077 driver_exists(struct device *bus, const char *driver) 5078 { 5079 devclass_t dc; 5080 5081 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5082 if (devclass_find_driver_internal(dc, driver) != NULL) 5083 return (true); 5084 } 5085 return (false); 5086 } 5087 5088 static int 5089 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5090 struct thread *td) 5091 { 5092 struct devreq *req; 5093 device_t dev; 5094 int error, old; 5095 5096 /* Locate the device to control. */ 5097 mtx_lock(&Giant); 5098 req = (struct devreq *)data; 5099 switch (cmd) { 5100 case DEV_ATTACH: 5101 case DEV_DETACH: 5102 case DEV_ENABLE: 5103 case DEV_DISABLE: 5104 case DEV_SUSPEND: 5105 case DEV_RESUME: 5106 case DEV_SET_DRIVER: 5107 error = priv_check(td, PRIV_DRIVER); 5108 if (error == 0) 5109 error = find_device(req, &dev); 5110 break; 5111 default: 5112 error = ENOTTY; 5113 break; 5114 } 5115 if (error) { 5116 mtx_unlock(&Giant); 5117 return (error); 5118 } 5119 5120 /* Perform the requested operation. */ 5121 switch (cmd) { 5122 case DEV_ATTACH: 5123 if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0) 5124 error = EBUSY; 5125 else if (!device_is_enabled(dev)) 5126 error = ENXIO; 5127 else 5128 error = device_probe_and_attach(dev); 5129 break; 5130 case DEV_DETACH: 5131 if (!device_is_attached(dev)) { 5132 error = ENXIO; 5133 break; 5134 } 5135 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5136 error = device_quiesce(dev); 5137 if (error) 5138 break; 5139 } 5140 error = device_detach(dev); 5141 break; 5142 case DEV_ENABLE: 5143 if (device_is_enabled(dev)) { 5144 error = EBUSY; 5145 break; 5146 } 5147 5148 /* 5149 * If the device has been probed but not attached (e.g. 5150 * when it has been disabled by a loader hint), just 5151 * attach the device rather than doing a full probe. 5152 */ 5153 device_enable(dev); 5154 if (device_is_alive(dev)) { 5155 /* 5156 * If the device was disabled via a hint, clear 5157 * the hint. 5158 */ 5159 if (resource_disabled(dev->driver->name, dev->unit)) 5160 resource_unset_value(dev->driver->name, 5161 dev->unit, "disabled"); 5162 error = device_attach(dev); 5163 } else 5164 error = device_probe_and_attach(dev); 5165 break; 5166 case DEV_DISABLE: 5167 if (!device_is_enabled(dev)) { 5168 error = ENXIO; 5169 break; 5170 } 5171 5172 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5173 error = device_quiesce(dev); 5174 if (error) 5175 break; 5176 } 5177 5178 /* 5179 * Force DF_FIXEDCLASS on around detach to preserve 5180 * the existing name. 5181 */ 5182 old = dev->flags; 5183 dev->flags |= DF_FIXEDCLASS; 5184 error = device_detach(dev); 5185 if (!(old & DF_FIXEDCLASS)) 5186 dev->flags &= ~DF_FIXEDCLASS; 5187 if (error == 0) 5188 device_disable(dev); 5189 break; 5190 case DEV_SUSPEND: 5191 if (device_is_suspended(dev)) { 5192 error = EBUSY; 5193 break; 5194 } 5195 if (device_get_parent(dev) == NULL) { 5196 error = EINVAL; 5197 break; 5198 } 5199 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5200 break; 5201 case DEV_RESUME: 5202 if (!device_is_suspended(dev)) { 5203 error = EINVAL; 5204 break; 5205 } 5206 if (device_get_parent(dev) == NULL) { 5207 error = EINVAL; 5208 break; 5209 } 5210 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5211 break; 5212 case DEV_SET_DRIVER: { 5213 devclass_t dc; 5214 char driver[128]; 5215 5216 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5217 if (error) 5218 break; 5219 if (driver[0] == '\0') { 5220 error = EINVAL; 5221 break; 5222 } 5223 if (dev->devclass != NULL && 5224 strcmp(driver, dev->devclass->name) == 0) 5225 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5226 break; 5227 5228 /* 5229 * Scan drivers for this device's bus looking for at 5230 * least one matching driver. 5231 */ 5232 if (dev->parent == NULL) { 5233 error = EINVAL; 5234 break; 5235 } 5236 if (!driver_exists(dev->parent, driver)) { 5237 error = ENOENT; 5238 break; 5239 } 5240 dc = devclass_create(driver); 5241 if (dc == NULL) { 5242 error = ENOMEM; 5243 break; 5244 } 5245 5246 /* Detach device if necessary. */ 5247 if (device_is_attached(dev)) { 5248 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5249 error = device_detach(dev); 5250 else 5251 error = EBUSY; 5252 if (error) 5253 break; 5254 } 5255 5256 /* Clear any previously-fixed device class and unit. */ 5257 if (dev->flags & DF_FIXEDCLASS) 5258 devclass_delete_device(dev->devclass, dev); 5259 dev->flags |= DF_WILDCARD; 5260 dev->unit = -1; 5261 5262 /* Force the new device class. */ 5263 error = devclass_add_device(dc, dev); 5264 if (error) 5265 break; 5266 dev->flags |= DF_FIXEDCLASS; 5267 error = device_probe_and_attach(dev); 5268 break; 5269 } 5270 } 5271 mtx_unlock(&Giant); 5272 return (error); 5273 } 5274 5275 static struct cdevsw devctl2_cdevsw = { 5276 .d_version = D_VERSION, 5277 .d_ioctl = devctl2_ioctl, 5278 .d_name = "devctl2", 5279 }; 5280 5281 static void 5282 devctl2_init(void) 5283 { 5284 5285 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5286 UID_ROOT, GID_WHEEL, 0600, "devctl2"); 5287 } 5288