1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bus.h" 33 #include "opt_ddb.h" 34 35 #include <sys/param.h> 36 #include <sys/conf.h> 37 #include <sys/domainset.h> 38 #include <sys/eventhandler.h> 39 #include <sys/filio.h> 40 #include <sys/lock.h> 41 #include <sys/kernel.h> 42 #include <sys/kobj.h> 43 #include <sys/limits.h> 44 #include <sys/malloc.h> 45 #include <sys/module.h> 46 #include <sys/mutex.h> 47 #include <sys/poll.h> 48 #include <sys/priv.h> 49 #include <sys/proc.h> 50 #include <sys/condvar.h> 51 #include <sys/queue.h> 52 #include <machine/bus.h> 53 #include <sys/random.h> 54 #include <sys/rman.h> 55 #include <sys/sbuf.h> 56 #include <sys/selinfo.h> 57 #include <sys/signalvar.h> 58 #include <sys/smp.h> 59 #include <sys/sysctl.h> 60 #include <sys/systm.h> 61 #include <sys/uio.h> 62 #include <sys/bus.h> 63 #include <sys/cpuset.h> 64 65 #include <net/vnet.h> 66 67 #include <machine/cpu.h> 68 #include <machine/stdarg.h> 69 70 #include <vm/uma.h> 71 #include <vm/vm.h> 72 73 #include <ddb/ddb.h> 74 75 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 76 NULL); 77 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 78 NULL); 79 80 /* 81 * Used to attach drivers to devclasses. 82 */ 83 typedef struct driverlink *driverlink_t; 84 struct driverlink { 85 kobj_class_t driver; 86 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 87 int pass; 88 int flags; 89 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 90 TAILQ_ENTRY(driverlink) passlink; 91 }; 92 93 /* 94 * Forward declarations 95 */ 96 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 97 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 98 typedef TAILQ_HEAD(device_list, _device) device_list_t; 99 100 struct devclass { 101 TAILQ_ENTRY(devclass) link; 102 devclass_t parent; /* parent in devclass hierarchy */ 103 driver_list_t drivers; /* bus devclasses store drivers for bus */ 104 char *name; 105 device_t *devices; /* array of devices indexed by unit */ 106 int maxunit; /* size of devices array */ 107 int flags; 108 #define DC_HAS_CHILDREN 1 109 110 struct sysctl_ctx_list sysctl_ctx; 111 struct sysctl_oid *sysctl_tree; 112 }; 113 114 /** 115 * @brief Implementation of _device. 116 * 117 * The structure is named "_device" instead of "device" to avoid type confusion 118 * caused by other subsystems defining a (struct device). 119 */ 120 struct _device { 121 /* 122 * A device is a kernel object. The first field must be the 123 * current ops table for the object. 124 */ 125 KOBJ_FIELDS; 126 127 /* 128 * Device hierarchy. 129 */ 130 TAILQ_ENTRY(_device) link; /**< list of devices in parent */ 131 TAILQ_ENTRY(_device) devlink; /**< global device list membership */ 132 device_t parent; /**< parent of this device */ 133 device_list_t children; /**< list of child devices */ 134 135 /* 136 * Details of this device. 137 */ 138 driver_t *driver; /**< current driver */ 139 devclass_t devclass; /**< current device class */ 140 int unit; /**< current unit number */ 141 char* nameunit; /**< name+unit e.g. foodev0 */ 142 char* desc; /**< driver specific description */ 143 int busy; /**< count of calls to device_busy() */ 144 device_state_t state; /**< current device state */ 145 uint32_t devflags; /**< api level flags for device_get_flags() */ 146 u_int flags; /**< internal device flags */ 147 u_int order; /**< order from device_add_child_ordered() */ 148 void *ivars; /**< instance variables */ 149 void *softc; /**< current driver's variables */ 150 151 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 152 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 153 }; 154 155 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 156 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 157 158 EVENTHANDLER_LIST_DEFINE(device_attach); 159 EVENTHANDLER_LIST_DEFINE(device_detach); 160 EVENTHANDLER_LIST_DEFINE(dev_lookup); 161 162 static int bus_child_location_sb(device_t child, struct sbuf *sb); 163 static int bus_child_pnpinfo_sb(device_t child, struct sbuf *sb); 164 static void devctl2_init(void); 165 static bool device_frozen; 166 167 #define DRIVERNAME(d) ((d)? d->name : "no driver") 168 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 169 170 #ifdef BUS_DEBUG 171 172 static int bus_debug = 1; 173 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 174 "Bus debug level"); 175 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 176 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 177 178 /** 179 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 180 * prevent syslog from deleting initial spaces 181 */ 182 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 183 184 static void print_device_short(device_t dev, int indent); 185 static void print_device(device_t dev, int indent); 186 void print_device_tree_short(device_t dev, int indent); 187 void print_device_tree(device_t dev, int indent); 188 static void print_driver_short(driver_t *driver, int indent); 189 static void print_driver(driver_t *driver, int indent); 190 static void print_driver_list(driver_list_t drivers, int indent); 191 static void print_devclass_short(devclass_t dc, int indent); 192 static void print_devclass(devclass_t dc, int indent); 193 void print_devclass_list_short(void); 194 void print_devclass_list(void); 195 196 #else 197 /* Make the compiler ignore the function calls */ 198 #define PDEBUG(a) /* nop */ 199 #define DEVICENAME(d) /* nop */ 200 201 #define print_device_short(d,i) /* nop */ 202 #define print_device(d,i) /* nop */ 203 #define print_device_tree_short(d,i) /* nop */ 204 #define print_device_tree(d,i) /* nop */ 205 #define print_driver_short(d,i) /* nop */ 206 #define print_driver(d,i) /* nop */ 207 #define print_driver_list(d,i) /* nop */ 208 #define print_devclass_short(d,i) /* nop */ 209 #define print_devclass(d,i) /* nop */ 210 #define print_devclass_list_short() /* nop */ 211 #define print_devclass_list() /* nop */ 212 #endif 213 214 /* 215 * dev sysctl tree 216 */ 217 218 enum { 219 DEVCLASS_SYSCTL_PARENT, 220 }; 221 222 static int 223 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 224 { 225 devclass_t dc = (devclass_t)arg1; 226 const char *value; 227 228 switch (arg2) { 229 case DEVCLASS_SYSCTL_PARENT: 230 value = dc->parent ? dc->parent->name : ""; 231 break; 232 default: 233 return (EINVAL); 234 } 235 return (SYSCTL_OUT_STR(req, value)); 236 } 237 238 static void 239 devclass_sysctl_init(devclass_t dc) 240 { 241 if (dc->sysctl_tree != NULL) 242 return; 243 sysctl_ctx_init(&dc->sysctl_ctx); 244 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 245 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 246 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 247 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 248 OID_AUTO, "%parent", 249 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 250 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 251 "parent class"); 252 } 253 254 enum { 255 DEVICE_SYSCTL_DESC, 256 DEVICE_SYSCTL_DRIVER, 257 DEVICE_SYSCTL_LOCATION, 258 DEVICE_SYSCTL_PNPINFO, 259 DEVICE_SYSCTL_PARENT, 260 }; 261 262 static int 263 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 264 { 265 struct sbuf sb; 266 device_t dev = (device_t)arg1; 267 int error; 268 269 sbuf_new_for_sysctl(&sb, NULL, 1024, req); 270 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 271 switch (arg2) { 272 case DEVICE_SYSCTL_DESC: 273 sbuf_cat(&sb, dev->desc ? dev->desc : ""); 274 break; 275 case DEVICE_SYSCTL_DRIVER: 276 sbuf_cat(&sb, dev->driver ? dev->driver->name : ""); 277 break; 278 case DEVICE_SYSCTL_LOCATION: 279 bus_child_location_sb(dev, &sb); 280 break; 281 case DEVICE_SYSCTL_PNPINFO: 282 bus_child_pnpinfo_sb(dev, &sb); 283 break; 284 case DEVICE_SYSCTL_PARENT: 285 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : ""); 286 break; 287 default: 288 sbuf_delete(&sb); 289 return (EINVAL); 290 } 291 error = sbuf_finish(&sb); 292 sbuf_delete(&sb); 293 return (error); 294 } 295 296 static void 297 device_sysctl_init(device_t dev) 298 { 299 devclass_t dc = dev->devclass; 300 int domain; 301 302 if (dev->sysctl_tree != NULL) 303 return; 304 devclass_sysctl_init(dc); 305 sysctl_ctx_init(&dev->sysctl_ctx); 306 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 307 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 308 dev->nameunit + strlen(dc->name), 309 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); 310 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 311 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 312 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 313 "device description"); 314 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 315 OID_AUTO, "%driver", 316 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 317 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 318 "device driver name"); 319 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 320 OID_AUTO, "%location", 321 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 322 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 323 "device location relative to parent"); 324 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 325 OID_AUTO, "%pnpinfo", 326 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 327 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 328 "device identification"); 329 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 330 OID_AUTO, "%parent", 331 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 332 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 333 "parent device"); 334 if (bus_get_domain(dev, &domain) == 0) 335 SYSCTL_ADD_INT(&dev->sysctl_ctx, 336 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 337 CTLFLAG_RD, NULL, domain, "NUMA domain"); 338 } 339 340 static void 341 device_sysctl_update(device_t dev) 342 { 343 devclass_t dc = dev->devclass; 344 345 if (dev->sysctl_tree == NULL) 346 return; 347 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 348 } 349 350 static void 351 device_sysctl_fini(device_t dev) 352 { 353 if (dev->sysctl_tree == NULL) 354 return; 355 sysctl_ctx_free(&dev->sysctl_ctx); 356 dev->sysctl_tree = NULL; 357 } 358 359 /* 360 * /dev/devctl implementation 361 */ 362 363 /* 364 * This design allows only one reader for /dev/devctl. This is not desirable 365 * in the long run, but will get a lot of hair out of this implementation. 366 * Maybe we should make this device a clonable device. 367 * 368 * Also note: we specifically do not attach a device to the device_t tree 369 * to avoid potential chicken and egg problems. One could argue that all 370 * of this belongs to the root node. 371 */ 372 373 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 374 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 375 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 376 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 377 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 378 379 static d_open_t devopen; 380 static d_close_t devclose; 381 static d_read_t devread; 382 static d_ioctl_t devioctl; 383 static d_poll_t devpoll; 384 static d_kqfilter_t devkqfilter; 385 386 static struct cdevsw dev_cdevsw = { 387 .d_version = D_VERSION, 388 .d_open = devopen, 389 .d_close = devclose, 390 .d_read = devread, 391 .d_ioctl = devioctl, 392 .d_poll = devpoll, 393 .d_kqfilter = devkqfilter, 394 .d_name = "devctl", 395 }; 396 397 #define DEVCTL_BUFFER (1024 - sizeof(void *)) 398 struct dev_event_info { 399 STAILQ_ENTRY(dev_event_info) dei_link; 400 char dei_data[DEVCTL_BUFFER]; 401 }; 402 403 STAILQ_HEAD(devq, dev_event_info); 404 405 static struct dev_softc { 406 int inuse; 407 int nonblock; 408 int queued; 409 int async; 410 struct mtx mtx; 411 struct cv cv; 412 struct selinfo sel; 413 struct devq devq; 414 struct sigio *sigio; 415 uma_zone_t zone; 416 } devsoftc; 417 418 static void filt_devctl_detach(struct knote *kn); 419 static int filt_devctl_read(struct knote *kn, long hint); 420 421 struct filterops devctl_rfiltops = { 422 .f_isfd = 1, 423 .f_detach = filt_devctl_detach, 424 .f_event = filt_devctl_read, 425 }; 426 427 static struct cdev *devctl_dev; 428 429 static void 430 devinit(void) 431 { 432 int reserve; 433 uma_zone_t z; 434 435 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 436 UID_ROOT, GID_WHEEL, 0600, "devctl"); 437 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 438 cv_init(&devsoftc.cv, "dev cv"); 439 STAILQ_INIT(&devsoftc.devq); 440 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 441 if (devctl_queue_length > 0) { 442 /* 443 * Allocate a zone for the messages. Preallocate 2% of these for 444 * a reserve. Allow only devctl_queue_length slabs to cap memory 445 * usage. The reserve usually allows coverage of surges of 446 * events during memory shortages. Normally we won't have to 447 * re-use events from the queue, but will in extreme shortages. 448 */ 449 z = devsoftc.zone = uma_zcreate("DEVCTL", 450 sizeof(struct dev_event_info), NULL, NULL, NULL, NULL, 451 UMA_ALIGN_PTR, 0); 452 reserve = max(devctl_queue_length / 50, 100); /* 2% reserve */ 453 uma_zone_set_max(z, devctl_queue_length); 454 uma_zone_set_maxcache(z, 0); 455 uma_zone_reserve(z, reserve); 456 uma_prealloc(z, reserve); 457 } 458 devctl2_init(); 459 } 460 461 static int 462 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 463 { 464 mtx_lock(&devsoftc.mtx); 465 if (devsoftc.inuse) { 466 mtx_unlock(&devsoftc.mtx); 467 return (EBUSY); 468 } 469 /* move to init */ 470 devsoftc.inuse = 1; 471 mtx_unlock(&devsoftc.mtx); 472 return (0); 473 } 474 475 static int 476 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 477 { 478 mtx_lock(&devsoftc.mtx); 479 devsoftc.inuse = 0; 480 devsoftc.nonblock = 0; 481 devsoftc.async = 0; 482 cv_broadcast(&devsoftc.cv); 483 funsetown(&devsoftc.sigio); 484 mtx_unlock(&devsoftc.mtx); 485 return (0); 486 } 487 488 /* 489 * The read channel for this device is used to report changes to 490 * userland in realtime. We are required to free the data as well as 491 * the n1 object because we allocate them separately. Also note that 492 * we return one record at a time. If you try to read this device a 493 * character at a time, you will lose the rest of the data. Listening 494 * programs are expected to cope. 495 */ 496 static int 497 devread(struct cdev *dev, struct uio *uio, int ioflag) 498 { 499 struct dev_event_info *n1; 500 int rv; 501 502 mtx_lock(&devsoftc.mtx); 503 while (STAILQ_EMPTY(&devsoftc.devq)) { 504 if (devsoftc.nonblock) { 505 mtx_unlock(&devsoftc.mtx); 506 return (EAGAIN); 507 } 508 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 509 if (rv) { 510 /* 511 * Need to translate ERESTART to EINTR here? -- jake 512 */ 513 mtx_unlock(&devsoftc.mtx); 514 return (rv); 515 } 516 } 517 n1 = STAILQ_FIRST(&devsoftc.devq); 518 STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); 519 devsoftc.queued--; 520 mtx_unlock(&devsoftc.mtx); 521 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 522 uma_zfree(devsoftc.zone, n1); 523 return (rv); 524 } 525 526 static int 527 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 528 { 529 switch (cmd) { 530 case FIONBIO: 531 if (*(int*)data) 532 devsoftc.nonblock = 1; 533 else 534 devsoftc.nonblock = 0; 535 return (0); 536 case FIOASYNC: 537 if (*(int*)data) 538 devsoftc.async = 1; 539 else 540 devsoftc.async = 0; 541 return (0); 542 case FIOSETOWN: 543 return fsetown(*(int *)data, &devsoftc.sigio); 544 case FIOGETOWN: 545 *(int *)data = fgetown(&devsoftc.sigio); 546 return (0); 547 548 /* (un)Support for other fcntl() calls. */ 549 case FIOCLEX: 550 case FIONCLEX: 551 case FIONREAD: 552 default: 553 break; 554 } 555 return (ENOTTY); 556 } 557 558 static int 559 devpoll(struct cdev *dev, int events, struct thread *td) 560 { 561 int revents = 0; 562 563 mtx_lock(&devsoftc.mtx); 564 if (events & (POLLIN | POLLRDNORM)) { 565 if (!STAILQ_EMPTY(&devsoftc.devq)) 566 revents = events & (POLLIN | POLLRDNORM); 567 else 568 selrecord(td, &devsoftc.sel); 569 } 570 mtx_unlock(&devsoftc.mtx); 571 572 return (revents); 573 } 574 575 static int 576 devkqfilter(struct cdev *dev, struct knote *kn) 577 { 578 int error; 579 580 if (kn->kn_filter == EVFILT_READ) { 581 kn->kn_fop = &devctl_rfiltops; 582 knlist_add(&devsoftc.sel.si_note, kn, 0); 583 error = 0; 584 } else 585 error = EINVAL; 586 return (error); 587 } 588 589 static void 590 filt_devctl_detach(struct knote *kn) 591 { 592 knlist_remove(&devsoftc.sel.si_note, kn, 0); 593 } 594 595 static int 596 filt_devctl_read(struct knote *kn, long hint) 597 { 598 kn->kn_data = devsoftc.queued; 599 return (kn->kn_data != 0); 600 } 601 602 /** 603 * @brief Return whether the userland process is running 604 */ 605 bool 606 devctl_process_running(void) 607 { 608 return (devsoftc.inuse == 1); 609 } 610 611 static struct dev_event_info * 612 devctl_alloc_dei(void) 613 { 614 struct dev_event_info *dei = NULL; 615 616 mtx_lock(&devsoftc.mtx); 617 if (devctl_queue_length == 0) 618 goto out; 619 dei = uma_zalloc(devsoftc.zone, M_NOWAIT); 620 if (dei == NULL) 621 dei = uma_zalloc(devsoftc.zone, M_NOWAIT | M_USE_RESERVE); 622 if (dei == NULL) { 623 /* 624 * Guard against no items in the queue. Normally, this won't 625 * happen, but if lots of events happen all at once and there's 626 * a chance we're out of allocated space but none have yet been 627 * queued when we get here, leaving nothing to steal. This can 628 * also happen with error injection. Fail safe by returning 629 * NULL in that case.. 630 */ 631 if (devsoftc.queued == 0) 632 goto out; 633 dei = STAILQ_FIRST(&devsoftc.devq); 634 STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); 635 devsoftc.queued--; 636 } 637 MPASS(dei != NULL); 638 *dei->dei_data = '\0'; 639 out: 640 mtx_unlock(&devsoftc.mtx); 641 return (dei); 642 } 643 644 static struct dev_event_info * 645 devctl_alloc_dei_sb(struct sbuf *sb) 646 { 647 struct dev_event_info *dei; 648 649 dei = devctl_alloc_dei(); 650 if (dei != NULL) 651 sbuf_new(sb, dei->dei_data, sizeof(dei->dei_data), SBUF_FIXEDLEN); 652 return (dei); 653 } 654 655 static void 656 devctl_free_dei(struct dev_event_info *dei) 657 { 658 uma_zfree(devsoftc.zone, dei); 659 } 660 661 static void 662 devctl_queue(struct dev_event_info *dei) 663 { 664 mtx_lock(&devsoftc.mtx); 665 STAILQ_INSERT_TAIL(&devsoftc.devq, dei, dei_link); 666 devsoftc.queued++; 667 cv_broadcast(&devsoftc.cv); 668 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 669 mtx_unlock(&devsoftc.mtx); 670 selwakeup(&devsoftc.sel); 671 if (devsoftc.async && devsoftc.sigio != NULL) 672 pgsigio(&devsoftc.sigio, SIGIO, 0); 673 } 674 675 /** 676 * @brief Send a 'notification' to userland, using standard ways 677 */ 678 void 679 devctl_notify(const char *system, const char *subsystem, const char *type, 680 const char *data) 681 { 682 struct dev_event_info *dei; 683 struct sbuf sb; 684 685 if (system == NULL || subsystem == NULL || type == NULL) 686 return; 687 dei = devctl_alloc_dei_sb(&sb); 688 if (dei == NULL) 689 return; 690 sbuf_cpy(&sb, "!system="); 691 sbuf_cat(&sb, system); 692 sbuf_cat(&sb, " subsystem="); 693 sbuf_cat(&sb, subsystem); 694 sbuf_cat(&sb, " type="); 695 sbuf_cat(&sb, type); 696 if (data != NULL) { 697 sbuf_putc(&sb, ' '); 698 sbuf_cat(&sb, data); 699 } 700 sbuf_putc(&sb, '\n'); 701 if (sbuf_finish(&sb) != 0) 702 devctl_free_dei(dei); /* overflow -> drop it */ 703 else 704 devctl_queue(dei); 705 } 706 707 /* 708 * Common routine that tries to make sending messages as easy as possible. 709 * We allocate memory for the data, copy strings into that, but do not 710 * free it unless there's an error. The dequeue part of the driver should 711 * free the data. We don't send data when the device is disabled. We do 712 * send data, even when we have no listeners, because we wish to avoid 713 * races relating to startup and restart of listening applications. 714 * 715 * devaddq is designed to string together the type of event, with the 716 * object of that event, plus the plug and play info and location info 717 * for that event. This is likely most useful for devices, but less 718 * useful for other consumers of this interface. Those should use 719 * the devctl_notify() interface instead. 720 * 721 * Output: 722 * ${type}${what} at $(location dev) $(pnp-info dev) on $(parent dev) 723 */ 724 static void 725 devaddq(const char *type, const char *what, device_t dev) 726 { 727 struct dev_event_info *dei; 728 const char *parstr; 729 struct sbuf sb; 730 731 dei = devctl_alloc_dei_sb(&sb); 732 if (dei == NULL) 733 return; 734 sbuf_cpy(&sb, type); 735 sbuf_cat(&sb, what); 736 sbuf_cat(&sb, " at "); 737 738 /* Add in the location */ 739 bus_child_location_sb(dev, &sb); 740 sbuf_putc(&sb, ' '); 741 742 /* Add in pnpinfo */ 743 bus_child_pnpinfo_sb(dev, &sb); 744 745 /* Get the parent of this device, or / if high enough in the tree. */ 746 if (device_get_parent(dev) == NULL) 747 parstr = "."; /* Or '/' ? */ 748 else 749 parstr = device_get_nameunit(device_get_parent(dev)); 750 sbuf_cat(&sb, " on "); 751 sbuf_cat(&sb, parstr); 752 sbuf_putc(&sb, '\n'); 753 if (sbuf_finish(&sb) != 0) 754 goto bad; 755 devctl_queue(dei); 756 return; 757 bad: 758 devctl_free_dei(dei); 759 } 760 761 /* 762 * A device was added to the tree. We are called just after it successfully 763 * attaches (that is, probe and attach success for this device). No call 764 * is made if a device is merely parented into the tree. See devnomatch 765 * if probe fails. If attach fails, no notification is sent (but maybe 766 * we should have a different message for this). 767 */ 768 static void 769 devadded(device_t dev) 770 { 771 devaddq("+", device_get_nameunit(dev), dev); 772 } 773 774 /* 775 * A device was removed from the tree. We are called just before this 776 * happens. 777 */ 778 static void 779 devremoved(device_t dev) 780 { 781 devaddq("-", device_get_nameunit(dev), dev); 782 } 783 784 /* 785 * Called when there's no match for this device. This is only called 786 * the first time that no match happens, so we don't keep getting this 787 * message. Should that prove to be undesirable, we can change it. 788 * This is called when all drivers that can attach to a given bus 789 * decline to accept this device. Other errors may not be detected. 790 */ 791 static void 792 devnomatch(device_t dev) 793 { 794 devaddq("?", "", dev); 795 } 796 797 static int 798 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 799 { 800 int q, error; 801 802 q = devctl_queue_length; 803 error = sysctl_handle_int(oidp, &q, 0, req); 804 if (error || !req->newptr) 805 return (error); 806 if (q < 0) 807 return (EINVAL); 808 809 /* 810 * When set as a tunable, we've not yet initialized the mutex. 811 * It is safe to just assign to devctl_queue_length and return 812 * as we're racing no one. We'll use whatever value set in 813 * devinit. 814 */ 815 if (!mtx_initialized(&devsoftc.mtx)) { 816 devctl_queue_length = q; 817 return (0); 818 } 819 820 /* 821 * XXX It's hard to grow or shrink the UMA zone. Only allow 822 * disabling the queue size for the moment until underlying 823 * UMA issues can be sorted out. 824 */ 825 if (q != 0) 826 return (EINVAL); 827 if (q == devctl_queue_length) 828 return (0); 829 mtx_lock(&devsoftc.mtx); 830 devctl_queue_length = 0; 831 uma_zdestroy(devsoftc.zone); 832 devsoftc.zone = 0; 833 mtx_unlock(&devsoftc.mtx); 834 return (0); 835 } 836 837 /** 838 * @brief safely quotes strings that might have double quotes in them. 839 * 840 * The devctl protocol relies on quoted strings having matching quotes. 841 * This routine quotes any internal quotes so the resulting string 842 * is safe to pass to snprintf to construct, for example pnp info strings. 843 * 844 * @param sb sbuf to place the characters into 845 * @param src Original buffer. 846 */ 847 void 848 devctl_safe_quote_sb(struct sbuf *sb, const char *src) 849 { 850 while (*src != '\0') { 851 if (*src == '"' || *src == '\\') 852 sbuf_putc(sb, '\\'); 853 sbuf_putc(sb, *src++); 854 } 855 } 856 857 /* End of /dev/devctl code */ 858 859 static struct device_list bus_data_devices; 860 static int bus_data_generation = 1; 861 862 static kobj_method_t null_methods[] = { 863 KOBJMETHOD_END 864 }; 865 866 DEFINE_CLASS(null, null_methods, 0); 867 868 /* 869 * Bus pass implementation 870 */ 871 872 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 873 int bus_current_pass = BUS_PASS_ROOT; 874 875 /** 876 * @internal 877 * @brief Register the pass level of a new driver attachment 878 * 879 * Register a new driver attachment's pass level. If no driver 880 * attachment with the same pass level has been added, then @p new 881 * will be added to the global passes list. 882 * 883 * @param new the new driver attachment 884 */ 885 static void 886 driver_register_pass(struct driverlink *new) 887 { 888 struct driverlink *dl; 889 890 /* We only consider pass numbers during boot. */ 891 if (bus_current_pass == BUS_PASS_DEFAULT) 892 return; 893 894 /* 895 * Walk the passes list. If we already know about this pass 896 * then there is nothing to do. If we don't, then insert this 897 * driver link into the list. 898 */ 899 TAILQ_FOREACH(dl, &passes, passlink) { 900 if (dl->pass < new->pass) 901 continue; 902 if (dl->pass == new->pass) 903 return; 904 TAILQ_INSERT_BEFORE(dl, new, passlink); 905 return; 906 } 907 TAILQ_INSERT_TAIL(&passes, new, passlink); 908 } 909 910 /** 911 * @brief Raise the current bus pass 912 * 913 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 914 * method on the root bus to kick off a new device tree scan for each 915 * new pass level that has at least one driver. 916 */ 917 void 918 bus_set_pass(int pass) 919 { 920 struct driverlink *dl; 921 922 if (bus_current_pass > pass) 923 panic("Attempt to lower bus pass level"); 924 925 TAILQ_FOREACH(dl, &passes, passlink) { 926 /* Skip pass values below the current pass level. */ 927 if (dl->pass <= bus_current_pass) 928 continue; 929 930 /* 931 * Bail once we hit a driver with a pass level that is 932 * too high. 933 */ 934 if (dl->pass > pass) 935 break; 936 937 /* 938 * Raise the pass level to the next level and rescan 939 * the tree. 940 */ 941 bus_current_pass = dl->pass; 942 BUS_NEW_PASS(root_bus); 943 } 944 945 /* 946 * If there isn't a driver registered for the requested pass, 947 * then bus_current_pass might still be less than 'pass'. Set 948 * it to 'pass' in that case. 949 */ 950 if (bus_current_pass < pass) 951 bus_current_pass = pass; 952 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 953 } 954 955 /* 956 * Devclass implementation 957 */ 958 959 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 960 961 /** 962 * @internal 963 * @brief Find or create a device class 964 * 965 * If a device class with the name @p classname exists, return it, 966 * otherwise if @p create is non-zero create and return a new device 967 * class. 968 * 969 * If @p parentname is non-NULL, the parent of the devclass is set to 970 * the devclass of that name. 971 * 972 * @param classname the devclass name to find or create 973 * @param parentname the parent devclass name or @c NULL 974 * @param create non-zero to create a devclass 975 */ 976 static devclass_t 977 devclass_find_internal(const char *classname, const char *parentname, 978 int create) 979 { 980 devclass_t dc; 981 982 PDEBUG(("looking for %s", classname)); 983 if (!classname) 984 return (NULL); 985 986 TAILQ_FOREACH(dc, &devclasses, link) { 987 if (!strcmp(dc->name, classname)) 988 break; 989 } 990 991 if (create && !dc) { 992 PDEBUG(("creating %s", classname)); 993 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 994 M_BUS, M_NOWAIT | M_ZERO); 995 if (!dc) 996 return (NULL); 997 dc->parent = NULL; 998 dc->name = (char*) (dc + 1); 999 strcpy(dc->name, classname); 1000 TAILQ_INIT(&dc->drivers); 1001 TAILQ_INSERT_TAIL(&devclasses, dc, link); 1002 1003 bus_data_generation_update(); 1004 } 1005 1006 /* 1007 * If a parent class is specified, then set that as our parent so 1008 * that this devclass will support drivers for the parent class as 1009 * well. If the parent class has the same name don't do this though 1010 * as it creates a cycle that can trigger an infinite loop in 1011 * device_probe_child() if a device exists for which there is no 1012 * suitable driver. 1013 */ 1014 if (parentname && dc && !dc->parent && 1015 strcmp(classname, parentname) != 0) { 1016 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1017 dc->parent->flags |= DC_HAS_CHILDREN; 1018 } 1019 1020 return (dc); 1021 } 1022 1023 /** 1024 * @brief Create a device class 1025 * 1026 * If a device class with the name @p classname exists, return it, 1027 * otherwise create and return a new device class. 1028 * 1029 * @param classname the devclass name to find or create 1030 */ 1031 devclass_t 1032 devclass_create(const char *classname) 1033 { 1034 return (devclass_find_internal(classname, NULL, TRUE)); 1035 } 1036 1037 /** 1038 * @brief Find a device class 1039 * 1040 * If a device class with the name @p classname exists, return it, 1041 * otherwise return @c NULL. 1042 * 1043 * @param classname the devclass name to find 1044 */ 1045 devclass_t 1046 devclass_find(const char *classname) 1047 { 1048 return (devclass_find_internal(classname, NULL, FALSE)); 1049 } 1050 1051 /** 1052 * @brief Register that a device driver has been added to a devclass 1053 * 1054 * Register that a device driver has been added to a devclass. This 1055 * is called by devclass_add_driver to accomplish the recursive 1056 * notification of all the children classes of dc, as well as dc. 1057 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1058 * the devclass. 1059 * 1060 * We do a full search here of the devclass list at each iteration 1061 * level to save storing children-lists in the devclass structure. If 1062 * we ever move beyond a few dozen devices doing this, we may need to 1063 * reevaluate... 1064 * 1065 * @param dc the devclass to edit 1066 * @param driver the driver that was just added 1067 */ 1068 static void 1069 devclass_driver_added(devclass_t dc, driver_t *driver) 1070 { 1071 devclass_t parent; 1072 int i; 1073 1074 /* 1075 * Call BUS_DRIVER_ADDED for any existing buses in this class. 1076 */ 1077 for (i = 0; i < dc->maxunit; i++) 1078 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1079 BUS_DRIVER_ADDED(dc->devices[i], driver); 1080 1081 /* 1082 * Walk through the children classes. Since we only keep a 1083 * single parent pointer around, we walk the entire list of 1084 * devclasses looking for children. We set the 1085 * DC_HAS_CHILDREN flag when a child devclass is created on 1086 * the parent, so we only walk the list for those devclasses 1087 * that have children. 1088 */ 1089 if (!(dc->flags & DC_HAS_CHILDREN)) 1090 return; 1091 parent = dc; 1092 TAILQ_FOREACH(dc, &devclasses, link) { 1093 if (dc->parent == parent) 1094 devclass_driver_added(dc, driver); 1095 } 1096 } 1097 1098 /** 1099 * @brief Add a device driver to a device class 1100 * 1101 * Add a device driver to a devclass. This is normally called 1102 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1103 * all devices in the devclass will be called to allow them to attempt 1104 * to re-probe any unmatched children. 1105 * 1106 * @param dc the devclass to edit 1107 * @param driver the driver to register 1108 */ 1109 int 1110 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1111 { 1112 driverlink_t dl; 1113 const char *parentname; 1114 1115 PDEBUG(("%s", DRIVERNAME(driver))); 1116 1117 /* Don't allow invalid pass values. */ 1118 if (pass <= BUS_PASS_ROOT) 1119 return (EINVAL); 1120 1121 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1122 if (!dl) 1123 return (ENOMEM); 1124 1125 /* 1126 * Compile the driver's methods. Also increase the reference count 1127 * so that the class doesn't get freed when the last instance 1128 * goes. This means we can safely use static methods and avoids a 1129 * double-free in devclass_delete_driver. 1130 */ 1131 kobj_class_compile((kobj_class_t) driver); 1132 1133 /* 1134 * If the driver has any base classes, make the 1135 * devclass inherit from the devclass of the driver's 1136 * first base class. This will allow the system to 1137 * search for drivers in both devclasses for children 1138 * of a device using this driver. 1139 */ 1140 if (driver->baseclasses) 1141 parentname = driver->baseclasses[0]->name; 1142 else 1143 parentname = NULL; 1144 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1145 1146 dl->driver = driver; 1147 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1148 driver->refs++; /* XXX: kobj_mtx */ 1149 dl->pass = pass; 1150 driver_register_pass(dl); 1151 1152 if (device_frozen) { 1153 dl->flags |= DL_DEFERRED_PROBE; 1154 } else { 1155 devclass_driver_added(dc, driver); 1156 } 1157 bus_data_generation_update(); 1158 return (0); 1159 } 1160 1161 /** 1162 * @brief Register that a device driver has been deleted from a devclass 1163 * 1164 * Register that a device driver has been removed from a devclass. 1165 * This is called by devclass_delete_driver to accomplish the 1166 * recursive notification of all the children classes of busclass, as 1167 * well as busclass. Each layer will attempt to detach the driver 1168 * from any devices that are children of the bus's devclass. The function 1169 * will return an error if a device fails to detach. 1170 * 1171 * We do a full search here of the devclass list at each iteration 1172 * level to save storing children-lists in the devclass structure. If 1173 * we ever move beyond a few dozen devices doing this, we may need to 1174 * reevaluate... 1175 * 1176 * @param busclass the devclass of the parent bus 1177 * @param dc the devclass of the driver being deleted 1178 * @param driver the driver being deleted 1179 */ 1180 static int 1181 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1182 { 1183 devclass_t parent; 1184 device_t dev; 1185 int error, i; 1186 1187 /* 1188 * Disassociate from any devices. We iterate through all the 1189 * devices in the devclass of the driver and detach any which are 1190 * using the driver and which have a parent in the devclass which 1191 * we are deleting from. 1192 * 1193 * Note that since a driver can be in multiple devclasses, we 1194 * should not detach devices which are not children of devices in 1195 * the affected devclass. 1196 * 1197 * If we're frozen, we don't generate NOMATCH events. Mark to 1198 * generate later. 1199 */ 1200 for (i = 0; i < dc->maxunit; i++) { 1201 if (dc->devices[i]) { 1202 dev = dc->devices[i]; 1203 if (dev->driver == driver && dev->parent && 1204 dev->parent->devclass == busclass) { 1205 if ((error = device_detach(dev)) != 0) 1206 return (error); 1207 if (device_frozen) { 1208 dev->flags &= ~DF_DONENOMATCH; 1209 dev->flags |= DF_NEEDNOMATCH; 1210 } else { 1211 BUS_PROBE_NOMATCH(dev->parent, dev); 1212 devnomatch(dev); 1213 dev->flags |= DF_DONENOMATCH; 1214 } 1215 } 1216 } 1217 } 1218 1219 /* 1220 * Walk through the children classes. Since we only keep a 1221 * single parent pointer around, we walk the entire list of 1222 * devclasses looking for children. We set the 1223 * DC_HAS_CHILDREN flag when a child devclass is created on 1224 * the parent, so we only walk the list for those devclasses 1225 * that have children. 1226 */ 1227 if (!(busclass->flags & DC_HAS_CHILDREN)) 1228 return (0); 1229 parent = busclass; 1230 TAILQ_FOREACH(busclass, &devclasses, link) { 1231 if (busclass->parent == parent) { 1232 error = devclass_driver_deleted(busclass, dc, driver); 1233 if (error) 1234 return (error); 1235 } 1236 } 1237 return (0); 1238 } 1239 1240 /** 1241 * @brief Delete a device driver from a device class 1242 * 1243 * Delete a device driver from a devclass. This is normally called 1244 * automatically by DRIVER_MODULE(). 1245 * 1246 * If the driver is currently attached to any devices, 1247 * devclass_delete_driver() will first attempt to detach from each 1248 * device. If one of the detach calls fails, the driver will not be 1249 * deleted. 1250 * 1251 * @param dc the devclass to edit 1252 * @param driver the driver to unregister 1253 */ 1254 int 1255 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1256 { 1257 devclass_t dc = devclass_find(driver->name); 1258 driverlink_t dl; 1259 int error; 1260 1261 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1262 1263 if (!dc) 1264 return (0); 1265 1266 /* 1267 * Find the link structure in the bus' list of drivers. 1268 */ 1269 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1270 if (dl->driver == driver) 1271 break; 1272 } 1273 1274 if (!dl) { 1275 PDEBUG(("%s not found in %s list", driver->name, 1276 busclass->name)); 1277 return (ENOENT); 1278 } 1279 1280 error = devclass_driver_deleted(busclass, dc, driver); 1281 if (error != 0) 1282 return (error); 1283 1284 TAILQ_REMOVE(&busclass->drivers, dl, link); 1285 free(dl, M_BUS); 1286 1287 /* XXX: kobj_mtx */ 1288 driver->refs--; 1289 if (driver->refs == 0) 1290 kobj_class_free((kobj_class_t) driver); 1291 1292 bus_data_generation_update(); 1293 return (0); 1294 } 1295 1296 /** 1297 * @brief Quiesces a set of device drivers from a device class 1298 * 1299 * Quiesce a device driver from a devclass. This is normally called 1300 * automatically by DRIVER_MODULE(). 1301 * 1302 * If the driver is currently attached to any devices, 1303 * devclass_quiesece_driver() will first attempt to quiesce each 1304 * device. 1305 * 1306 * @param dc the devclass to edit 1307 * @param driver the driver to unregister 1308 */ 1309 static int 1310 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1311 { 1312 devclass_t dc = devclass_find(driver->name); 1313 driverlink_t dl; 1314 device_t dev; 1315 int i; 1316 int error; 1317 1318 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1319 1320 if (!dc) 1321 return (0); 1322 1323 /* 1324 * Find the link structure in the bus' list of drivers. 1325 */ 1326 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1327 if (dl->driver == driver) 1328 break; 1329 } 1330 1331 if (!dl) { 1332 PDEBUG(("%s not found in %s list", driver->name, 1333 busclass->name)); 1334 return (ENOENT); 1335 } 1336 1337 /* 1338 * Quiesce all devices. We iterate through all the devices in 1339 * the devclass of the driver and quiesce any which are using 1340 * the driver and which have a parent in the devclass which we 1341 * are quiescing. 1342 * 1343 * Note that since a driver can be in multiple devclasses, we 1344 * should not quiesce devices which are not children of 1345 * devices in the affected devclass. 1346 */ 1347 for (i = 0; i < dc->maxunit; i++) { 1348 if (dc->devices[i]) { 1349 dev = dc->devices[i]; 1350 if (dev->driver == driver && dev->parent && 1351 dev->parent->devclass == busclass) { 1352 if ((error = device_quiesce(dev)) != 0) 1353 return (error); 1354 } 1355 } 1356 } 1357 1358 return (0); 1359 } 1360 1361 /** 1362 * @internal 1363 */ 1364 static driverlink_t 1365 devclass_find_driver_internal(devclass_t dc, const char *classname) 1366 { 1367 driverlink_t dl; 1368 1369 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1370 1371 TAILQ_FOREACH(dl, &dc->drivers, link) { 1372 if (!strcmp(dl->driver->name, classname)) 1373 return (dl); 1374 } 1375 1376 PDEBUG(("not found")); 1377 return (NULL); 1378 } 1379 1380 /** 1381 * @brief Return the name of the devclass 1382 */ 1383 const char * 1384 devclass_get_name(devclass_t dc) 1385 { 1386 return (dc->name); 1387 } 1388 1389 /** 1390 * @brief Find a device given a unit number 1391 * 1392 * @param dc the devclass to search 1393 * @param unit the unit number to search for 1394 * 1395 * @returns the device with the given unit number or @c 1396 * NULL if there is no such device 1397 */ 1398 device_t 1399 devclass_get_device(devclass_t dc, int unit) 1400 { 1401 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1402 return (NULL); 1403 return (dc->devices[unit]); 1404 } 1405 1406 /** 1407 * @brief Find the softc field of a device given a unit number 1408 * 1409 * @param dc the devclass to search 1410 * @param unit the unit number to search for 1411 * 1412 * @returns the softc field of the device with the given 1413 * unit number or @c NULL if there is no such 1414 * device 1415 */ 1416 void * 1417 devclass_get_softc(devclass_t dc, int unit) 1418 { 1419 device_t dev; 1420 1421 dev = devclass_get_device(dc, unit); 1422 if (!dev) 1423 return (NULL); 1424 1425 return (device_get_softc(dev)); 1426 } 1427 1428 /** 1429 * @brief Get a list of devices in the devclass 1430 * 1431 * An array containing a list of all the devices in the given devclass 1432 * is allocated and returned in @p *devlistp. The number of devices 1433 * in the array is returned in @p *devcountp. The caller should free 1434 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1435 * 1436 * @param dc the devclass to examine 1437 * @param devlistp points at location for array pointer return 1438 * value 1439 * @param devcountp points at location for array size return value 1440 * 1441 * @retval 0 success 1442 * @retval ENOMEM the array allocation failed 1443 */ 1444 int 1445 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1446 { 1447 int count, i; 1448 device_t *list; 1449 1450 count = devclass_get_count(dc); 1451 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1452 if (!list) 1453 return (ENOMEM); 1454 1455 count = 0; 1456 for (i = 0; i < dc->maxunit; i++) { 1457 if (dc->devices[i]) { 1458 list[count] = dc->devices[i]; 1459 count++; 1460 } 1461 } 1462 1463 *devlistp = list; 1464 *devcountp = count; 1465 1466 return (0); 1467 } 1468 1469 /** 1470 * @brief Get a list of drivers in the devclass 1471 * 1472 * An array containing a list of pointers to all the drivers in the 1473 * given devclass is allocated and returned in @p *listp. The number 1474 * of drivers in the array is returned in @p *countp. The caller should 1475 * free the array using @c free(p, M_TEMP). 1476 * 1477 * @param dc the devclass to examine 1478 * @param listp gives location for array pointer return value 1479 * @param countp gives location for number of array elements 1480 * return value 1481 * 1482 * @retval 0 success 1483 * @retval ENOMEM the array allocation failed 1484 */ 1485 int 1486 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1487 { 1488 driverlink_t dl; 1489 driver_t **list; 1490 int count; 1491 1492 count = 0; 1493 TAILQ_FOREACH(dl, &dc->drivers, link) 1494 count++; 1495 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1496 if (list == NULL) 1497 return (ENOMEM); 1498 1499 count = 0; 1500 TAILQ_FOREACH(dl, &dc->drivers, link) { 1501 list[count] = dl->driver; 1502 count++; 1503 } 1504 *listp = list; 1505 *countp = count; 1506 1507 return (0); 1508 } 1509 1510 /** 1511 * @brief Get the number of devices in a devclass 1512 * 1513 * @param dc the devclass to examine 1514 */ 1515 int 1516 devclass_get_count(devclass_t dc) 1517 { 1518 int count, i; 1519 1520 count = 0; 1521 for (i = 0; i < dc->maxunit; i++) 1522 if (dc->devices[i]) 1523 count++; 1524 return (count); 1525 } 1526 1527 /** 1528 * @brief Get the maximum unit number used in a devclass 1529 * 1530 * Note that this is one greater than the highest currently-allocated 1531 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1532 * that not even the devclass has been allocated yet. 1533 * 1534 * @param dc the devclass to examine 1535 */ 1536 int 1537 devclass_get_maxunit(devclass_t dc) 1538 { 1539 if (dc == NULL) 1540 return (-1); 1541 return (dc->maxunit); 1542 } 1543 1544 /** 1545 * @brief Find a free unit number in a devclass 1546 * 1547 * This function searches for the first unused unit number greater 1548 * that or equal to @p unit. 1549 * 1550 * @param dc the devclass to examine 1551 * @param unit the first unit number to check 1552 */ 1553 int 1554 devclass_find_free_unit(devclass_t dc, int unit) 1555 { 1556 if (dc == NULL) 1557 return (unit); 1558 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1559 unit++; 1560 return (unit); 1561 } 1562 1563 /** 1564 * @brief Set the parent of a devclass 1565 * 1566 * The parent class is normally initialised automatically by 1567 * DRIVER_MODULE(). 1568 * 1569 * @param dc the devclass to edit 1570 * @param pdc the new parent devclass 1571 */ 1572 void 1573 devclass_set_parent(devclass_t dc, devclass_t pdc) 1574 { 1575 dc->parent = pdc; 1576 } 1577 1578 /** 1579 * @brief Get the parent of a devclass 1580 * 1581 * @param dc the devclass to examine 1582 */ 1583 devclass_t 1584 devclass_get_parent(devclass_t dc) 1585 { 1586 return (dc->parent); 1587 } 1588 1589 struct sysctl_ctx_list * 1590 devclass_get_sysctl_ctx(devclass_t dc) 1591 { 1592 return (&dc->sysctl_ctx); 1593 } 1594 1595 struct sysctl_oid * 1596 devclass_get_sysctl_tree(devclass_t dc) 1597 { 1598 return (dc->sysctl_tree); 1599 } 1600 1601 /** 1602 * @internal 1603 * @brief Allocate a unit number 1604 * 1605 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1606 * will do). The allocated unit number is returned in @p *unitp. 1607 1608 * @param dc the devclass to allocate from 1609 * @param unitp points at the location for the allocated unit 1610 * number 1611 * 1612 * @retval 0 success 1613 * @retval EEXIST the requested unit number is already allocated 1614 * @retval ENOMEM memory allocation failure 1615 */ 1616 static int 1617 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1618 { 1619 const char *s; 1620 int unit = *unitp; 1621 1622 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1623 1624 /* Ask the parent bus if it wants to wire this device. */ 1625 if (unit == -1) 1626 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1627 &unit); 1628 1629 /* If we were given a wired unit number, check for existing device */ 1630 /* XXX imp XXX */ 1631 if (unit != -1) { 1632 if (unit >= 0 && unit < dc->maxunit && 1633 dc->devices[unit] != NULL) { 1634 if (bootverbose) 1635 printf("%s: %s%d already exists; skipping it\n", 1636 dc->name, dc->name, *unitp); 1637 return (EEXIST); 1638 } 1639 } else { 1640 /* Unwired device, find the next available slot for it */ 1641 unit = 0; 1642 for (unit = 0;; unit++) { 1643 /* If there is an "at" hint for a unit then skip it. */ 1644 if (resource_string_value(dc->name, unit, "at", &s) == 1645 0) 1646 continue; 1647 1648 /* If this device slot is already in use, skip it. */ 1649 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1650 continue; 1651 1652 break; 1653 } 1654 } 1655 1656 /* 1657 * We've selected a unit beyond the length of the table, so let's 1658 * extend the table to make room for all units up to and including 1659 * this one. 1660 */ 1661 if (unit >= dc->maxunit) { 1662 device_t *newlist, *oldlist; 1663 int newsize; 1664 1665 oldlist = dc->devices; 1666 newsize = roundup((unit + 1), 1667 MAX(1, MINALLOCSIZE / sizeof(device_t))); 1668 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1669 if (!newlist) 1670 return (ENOMEM); 1671 if (oldlist != NULL) 1672 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1673 bzero(newlist + dc->maxunit, 1674 sizeof(device_t) * (newsize - dc->maxunit)); 1675 dc->devices = newlist; 1676 dc->maxunit = newsize; 1677 if (oldlist != NULL) 1678 free(oldlist, M_BUS); 1679 } 1680 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1681 1682 *unitp = unit; 1683 return (0); 1684 } 1685 1686 /** 1687 * @internal 1688 * @brief Add a device to a devclass 1689 * 1690 * A unit number is allocated for the device (using the device's 1691 * preferred unit number if any) and the device is registered in the 1692 * devclass. This allows the device to be looked up by its unit 1693 * number, e.g. by decoding a dev_t minor number. 1694 * 1695 * @param dc the devclass to add to 1696 * @param dev the device to add 1697 * 1698 * @retval 0 success 1699 * @retval EEXIST the requested unit number is already allocated 1700 * @retval ENOMEM memory allocation failure 1701 */ 1702 static int 1703 devclass_add_device(devclass_t dc, device_t dev) 1704 { 1705 int buflen, error; 1706 1707 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1708 1709 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1710 if (buflen < 0) 1711 return (ENOMEM); 1712 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1713 if (!dev->nameunit) 1714 return (ENOMEM); 1715 1716 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1717 free(dev->nameunit, M_BUS); 1718 dev->nameunit = NULL; 1719 return (error); 1720 } 1721 dc->devices[dev->unit] = dev; 1722 dev->devclass = dc; 1723 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1724 1725 return (0); 1726 } 1727 1728 /** 1729 * @internal 1730 * @brief Delete a device from a devclass 1731 * 1732 * The device is removed from the devclass's device list and its unit 1733 * number is freed. 1734 1735 * @param dc the devclass to delete from 1736 * @param dev the device to delete 1737 * 1738 * @retval 0 success 1739 */ 1740 static int 1741 devclass_delete_device(devclass_t dc, device_t dev) 1742 { 1743 if (!dc || !dev) 1744 return (0); 1745 1746 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1747 1748 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1749 panic("devclass_delete_device: inconsistent device class"); 1750 dc->devices[dev->unit] = NULL; 1751 if (dev->flags & DF_WILDCARD) 1752 dev->unit = -1; 1753 dev->devclass = NULL; 1754 free(dev->nameunit, M_BUS); 1755 dev->nameunit = NULL; 1756 1757 return (0); 1758 } 1759 1760 /** 1761 * @internal 1762 * @brief Make a new device and add it as a child of @p parent 1763 * 1764 * @param parent the parent of the new device 1765 * @param name the devclass name of the new device or @c NULL 1766 * to leave the devclass unspecified 1767 * @parem unit the unit number of the new device of @c -1 to 1768 * leave the unit number unspecified 1769 * 1770 * @returns the new device 1771 */ 1772 static device_t 1773 make_device(device_t parent, const char *name, int unit) 1774 { 1775 device_t dev; 1776 devclass_t dc; 1777 1778 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1779 1780 if (name) { 1781 dc = devclass_find_internal(name, NULL, TRUE); 1782 if (!dc) { 1783 printf("make_device: can't find device class %s\n", 1784 name); 1785 return (NULL); 1786 } 1787 } else { 1788 dc = NULL; 1789 } 1790 1791 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1792 if (!dev) 1793 return (NULL); 1794 1795 dev->parent = parent; 1796 TAILQ_INIT(&dev->children); 1797 kobj_init((kobj_t) dev, &null_class); 1798 dev->driver = NULL; 1799 dev->devclass = NULL; 1800 dev->unit = unit; 1801 dev->nameunit = NULL; 1802 dev->desc = NULL; 1803 dev->busy = 0; 1804 dev->devflags = 0; 1805 dev->flags = DF_ENABLED; 1806 dev->order = 0; 1807 if (unit == -1) 1808 dev->flags |= DF_WILDCARD; 1809 if (name) { 1810 dev->flags |= DF_FIXEDCLASS; 1811 if (devclass_add_device(dc, dev)) { 1812 kobj_delete((kobj_t) dev, M_BUS); 1813 return (NULL); 1814 } 1815 } 1816 if (parent != NULL && device_has_quiet_children(parent)) 1817 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1818 dev->ivars = NULL; 1819 dev->softc = NULL; 1820 1821 dev->state = DS_NOTPRESENT; 1822 1823 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1824 bus_data_generation_update(); 1825 1826 return (dev); 1827 } 1828 1829 /** 1830 * @internal 1831 * @brief Print a description of a device. 1832 */ 1833 static int 1834 device_print_child(device_t dev, device_t child) 1835 { 1836 int retval = 0; 1837 1838 if (device_is_alive(child)) 1839 retval += BUS_PRINT_CHILD(dev, child); 1840 else 1841 retval += device_printf(child, " not found\n"); 1842 1843 return (retval); 1844 } 1845 1846 /** 1847 * @brief Create a new device 1848 * 1849 * This creates a new device and adds it as a child of an existing 1850 * parent device. The new device will be added after the last existing 1851 * child with order zero. 1852 * 1853 * @param dev the device which will be the parent of the 1854 * new child device 1855 * @param name devclass name for new device or @c NULL if not 1856 * specified 1857 * @param unit unit number for new device or @c -1 if not 1858 * specified 1859 * 1860 * @returns the new device 1861 */ 1862 device_t 1863 device_add_child(device_t dev, const char *name, int unit) 1864 { 1865 return (device_add_child_ordered(dev, 0, name, unit)); 1866 } 1867 1868 /** 1869 * @brief Create a new device 1870 * 1871 * This creates a new device and adds it as a child of an existing 1872 * parent device. The new device will be added after the last existing 1873 * child with the same order. 1874 * 1875 * @param dev the device which will be the parent of the 1876 * new child device 1877 * @param order a value which is used to partially sort the 1878 * children of @p dev - devices created using 1879 * lower values of @p order appear first in @p 1880 * dev's list of children 1881 * @param name devclass name for new device or @c NULL if not 1882 * specified 1883 * @param unit unit number for new device or @c -1 if not 1884 * specified 1885 * 1886 * @returns the new device 1887 */ 1888 device_t 1889 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1890 { 1891 device_t child; 1892 device_t place; 1893 1894 PDEBUG(("%s at %s with order %u as unit %d", 1895 name, DEVICENAME(dev), order, unit)); 1896 KASSERT(name != NULL || unit == -1, 1897 ("child device with wildcard name and specific unit number")); 1898 1899 child = make_device(dev, name, unit); 1900 if (child == NULL) 1901 return (child); 1902 child->order = order; 1903 1904 TAILQ_FOREACH(place, &dev->children, link) { 1905 if (place->order > order) 1906 break; 1907 } 1908 1909 if (place) { 1910 /* 1911 * The device 'place' is the first device whose order is 1912 * greater than the new child. 1913 */ 1914 TAILQ_INSERT_BEFORE(place, child, link); 1915 } else { 1916 /* 1917 * The new child's order is greater or equal to the order of 1918 * any existing device. Add the child to the tail of the list. 1919 */ 1920 TAILQ_INSERT_TAIL(&dev->children, child, link); 1921 } 1922 1923 bus_data_generation_update(); 1924 return (child); 1925 } 1926 1927 /** 1928 * @brief Delete a device 1929 * 1930 * This function deletes a device along with all of its children. If 1931 * the device currently has a driver attached to it, the device is 1932 * detached first using device_detach(). 1933 * 1934 * @param dev the parent device 1935 * @param child the device to delete 1936 * 1937 * @retval 0 success 1938 * @retval non-zero a unit error code describing the error 1939 */ 1940 int 1941 device_delete_child(device_t dev, device_t child) 1942 { 1943 int error; 1944 device_t grandchild; 1945 1946 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1947 1948 /* detach parent before deleting children, if any */ 1949 if ((error = device_detach(child)) != 0) 1950 return (error); 1951 1952 /* remove children second */ 1953 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1954 error = device_delete_child(child, grandchild); 1955 if (error) 1956 return (error); 1957 } 1958 1959 if (child->devclass) 1960 devclass_delete_device(child->devclass, child); 1961 if (child->parent) 1962 BUS_CHILD_DELETED(dev, child); 1963 TAILQ_REMOVE(&dev->children, child, link); 1964 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1965 kobj_delete((kobj_t) child, M_BUS); 1966 1967 bus_data_generation_update(); 1968 return (0); 1969 } 1970 1971 /** 1972 * @brief Delete all children devices of the given device, if any. 1973 * 1974 * This function deletes all children devices of the given device, if 1975 * any, using the device_delete_child() function for each device it 1976 * finds. If a child device cannot be deleted, this function will 1977 * return an error code. 1978 * 1979 * @param dev the parent device 1980 * 1981 * @retval 0 success 1982 * @retval non-zero a device would not detach 1983 */ 1984 int 1985 device_delete_children(device_t dev) 1986 { 1987 device_t child; 1988 int error; 1989 1990 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1991 1992 error = 0; 1993 1994 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1995 error = device_delete_child(dev, child); 1996 if (error) { 1997 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1998 break; 1999 } 2000 } 2001 return (error); 2002 } 2003 2004 /** 2005 * @brief Find a device given a unit number 2006 * 2007 * This is similar to devclass_get_devices() but only searches for 2008 * devices which have @p dev as a parent. 2009 * 2010 * @param dev the parent device to search 2011 * @param unit the unit number to search for. If the unit is -1, 2012 * return the first child of @p dev which has name 2013 * @p classname (that is, the one with the lowest unit.) 2014 * 2015 * @returns the device with the given unit number or @c 2016 * NULL if there is no such device 2017 */ 2018 device_t 2019 device_find_child(device_t dev, const char *classname, int unit) 2020 { 2021 devclass_t dc; 2022 device_t child; 2023 2024 dc = devclass_find(classname); 2025 if (!dc) 2026 return (NULL); 2027 2028 if (unit != -1) { 2029 child = devclass_get_device(dc, unit); 2030 if (child && child->parent == dev) 2031 return (child); 2032 } else { 2033 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2034 child = devclass_get_device(dc, unit); 2035 if (child && child->parent == dev) 2036 return (child); 2037 } 2038 } 2039 return (NULL); 2040 } 2041 2042 /** 2043 * @internal 2044 */ 2045 static driverlink_t 2046 first_matching_driver(devclass_t dc, device_t dev) 2047 { 2048 if (dev->devclass) 2049 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2050 return (TAILQ_FIRST(&dc->drivers)); 2051 } 2052 2053 /** 2054 * @internal 2055 */ 2056 static driverlink_t 2057 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2058 { 2059 if (dev->devclass) { 2060 driverlink_t dl; 2061 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2062 if (!strcmp(dev->devclass->name, dl->driver->name)) 2063 return (dl); 2064 return (NULL); 2065 } 2066 return (TAILQ_NEXT(last, link)); 2067 } 2068 2069 /** 2070 * @internal 2071 */ 2072 int 2073 device_probe_child(device_t dev, device_t child) 2074 { 2075 devclass_t dc; 2076 driverlink_t best = NULL; 2077 driverlink_t dl; 2078 int result, pri = 0; 2079 int hasclass = (child->devclass != NULL); 2080 2081 GIANT_REQUIRED; 2082 2083 dc = dev->devclass; 2084 if (!dc) 2085 panic("device_probe_child: parent device has no devclass"); 2086 2087 /* 2088 * If the state is already probed, then return. However, don't 2089 * return if we can rebid this object. 2090 */ 2091 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2092 return (0); 2093 2094 for (; dc; dc = dc->parent) { 2095 for (dl = first_matching_driver(dc, child); 2096 dl; 2097 dl = next_matching_driver(dc, child, dl)) { 2098 /* If this driver's pass is too high, then ignore it. */ 2099 if (dl->pass > bus_current_pass) 2100 continue; 2101 2102 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2103 result = device_set_driver(child, dl->driver); 2104 if (result == ENOMEM) 2105 return (result); 2106 else if (result != 0) 2107 continue; 2108 if (!hasclass) { 2109 if (device_set_devclass(child, 2110 dl->driver->name) != 0) { 2111 char const * devname = 2112 device_get_name(child); 2113 if (devname == NULL) 2114 devname = "(unknown)"; 2115 printf("driver bug: Unable to set " 2116 "devclass (class: %s " 2117 "devname: %s)\n", 2118 dl->driver->name, 2119 devname); 2120 (void)device_set_driver(child, NULL); 2121 continue; 2122 } 2123 } 2124 2125 /* Fetch any flags for the device before probing. */ 2126 resource_int_value(dl->driver->name, child->unit, 2127 "flags", &child->devflags); 2128 2129 result = DEVICE_PROBE(child); 2130 2131 /* Reset flags and devclass before the next probe. */ 2132 child->devflags = 0; 2133 if (!hasclass) 2134 (void)device_set_devclass(child, NULL); 2135 2136 /* 2137 * If the driver returns SUCCESS, there can be 2138 * no higher match for this device. 2139 */ 2140 if (result == 0) { 2141 best = dl; 2142 pri = 0; 2143 break; 2144 } 2145 2146 /* 2147 * Reset DF_QUIET in case this driver doesn't 2148 * end up as the best driver. 2149 */ 2150 device_verbose(child); 2151 2152 /* 2153 * Probes that return BUS_PROBE_NOWILDCARD or lower 2154 * only match on devices whose driver was explicitly 2155 * specified. 2156 */ 2157 if (result <= BUS_PROBE_NOWILDCARD && 2158 !(child->flags & DF_FIXEDCLASS)) { 2159 result = ENXIO; 2160 } 2161 2162 /* 2163 * The driver returned an error so it 2164 * certainly doesn't match. 2165 */ 2166 if (result > 0) { 2167 (void)device_set_driver(child, NULL); 2168 continue; 2169 } 2170 2171 /* 2172 * A priority lower than SUCCESS, remember the 2173 * best matching driver. Initialise the value 2174 * of pri for the first match. 2175 */ 2176 if (best == NULL || result > pri) { 2177 best = dl; 2178 pri = result; 2179 continue; 2180 } 2181 } 2182 /* 2183 * If we have an unambiguous match in this devclass, 2184 * don't look in the parent. 2185 */ 2186 if (best && pri == 0) 2187 break; 2188 } 2189 2190 /* 2191 * If we found a driver, change state and initialise the devclass. 2192 */ 2193 /* XXX What happens if we rebid and got no best? */ 2194 if (best) { 2195 /* 2196 * If this device was attached, and we were asked to 2197 * rescan, and it is a different driver, then we have 2198 * to detach the old driver and reattach this new one. 2199 * Note, we don't have to check for DF_REBID here 2200 * because if the state is > DS_ALIVE, we know it must 2201 * be. 2202 * 2203 * This assumes that all DF_REBID drivers can have 2204 * their probe routine called at any time and that 2205 * they are idempotent as well as completely benign in 2206 * normal operations. 2207 * 2208 * We also have to make sure that the detach 2209 * succeeded, otherwise we fail the operation (or 2210 * maybe it should just fail silently? I'm torn). 2211 */ 2212 if (child->state > DS_ALIVE && best->driver != child->driver) 2213 if ((result = device_detach(dev)) != 0) 2214 return (result); 2215 2216 /* Set the winning driver, devclass, and flags. */ 2217 if (!child->devclass) { 2218 result = device_set_devclass(child, best->driver->name); 2219 if (result != 0) 2220 return (result); 2221 } 2222 result = device_set_driver(child, best->driver); 2223 if (result != 0) 2224 return (result); 2225 resource_int_value(best->driver->name, child->unit, 2226 "flags", &child->devflags); 2227 2228 if (pri < 0) { 2229 /* 2230 * A bit bogus. Call the probe method again to make 2231 * sure that we have the right description. 2232 */ 2233 DEVICE_PROBE(child); 2234 #if 0 2235 child->flags |= DF_REBID; 2236 #endif 2237 } else 2238 child->flags &= ~DF_REBID; 2239 child->state = DS_ALIVE; 2240 2241 bus_data_generation_update(); 2242 return (0); 2243 } 2244 2245 return (ENXIO); 2246 } 2247 2248 /** 2249 * @brief Return the parent of a device 2250 */ 2251 device_t 2252 device_get_parent(device_t dev) 2253 { 2254 return (dev->parent); 2255 } 2256 2257 /** 2258 * @brief Get a list of children of a device 2259 * 2260 * An array containing a list of all the children of the given device 2261 * is allocated and returned in @p *devlistp. The number of devices 2262 * in the array is returned in @p *devcountp. The caller should free 2263 * the array using @c free(p, M_TEMP). 2264 * 2265 * @param dev the device to examine 2266 * @param devlistp points at location for array pointer return 2267 * value 2268 * @param devcountp points at location for array size return value 2269 * 2270 * @retval 0 success 2271 * @retval ENOMEM the array allocation failed 2272 */ 2273 int 2274 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2275 { 2276 int count; 2277 device_t child; 2278 device_t *list; 2279 2280 count = 0; 2281 TAILQ_FOREACH(child, &dev->children, link) { 2282 count++; 2283 } 2284 if (count == 0) { 2285 *devlistp = NULL; 2286 *devcountp = 0; 2287 return (0); 2288 } 2289 2290 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2291 if (!list) 2292 return (ENOMEM); 2293 2294 count = 0; 2295 TAILQ_FOREACH(child, &dev->children, link) { 2296 list[count] = child; 2297 count++; 2298 } 2299 2300 *devlistp = list; 2301 *devcountp = count; 2302 2303 return (0); 2304 } 2305 2306 /** 2307 * @brief Return the current driver for the device or @c NULL if there 2308 * is no driver currently attached 2309 */ 2310 driver_t * 2311 device_get_driver(device_t dev) 2312 { 2313 return (dev->driver); 2314 } 2315 2316 /** 2317 * @brief Return the current devclass for the device or @c NULL if 2318 * there is none. 2319 */ 2320 devclass_t 2321 device_get_devclass(device_t dev) 2322 { 2323 return (dev->devclass); 2324 } 2325 2326 /** 2327 * @brief Return the name of the device's devclass or @c NULL if there 2328 * is none. 2329 */ 2330 const char * 2331 device_get_name(device_t dev) 2332 { 2333 if (dev != NULL && dev->devclass) 2334 return (devclass_get_name(dev->devclass)); 2335 return (NULL); 2336 } 2337 2338 /** 2339 * @brief Return a string containing the device's devclass name 2340 * followed by an ascii representation of the device's unit number 2341 * (e.g. @c "foo2"). 2342 */ 2343 const char * 2344 device_get_nameunit(device_t dev) 2345 { 2346 return (dev->nameunit); 2347 } 2348 2349 /** 2350 * @brief Return the device's unit number. 2351 */ 2352 int 2353 device_get_unit(device_t dev) 2354 { 2355 return (dev->unit); 2356 } 2357 2358 /** 2359 * @brief Return the device's description string 2360 */ 2361 const char * 2362 device_get_desc(device_t dev) 2363 { 2364 return (dev->desc); 2365 } 2366 2367 /** 2368 * @brief Return the device's flags 2369 */ 2370 uint32_t 2371 device_get_flags(device_t dev) 2372 { 2373 return (dev->devflags); 2374 } 2375 2376 struct sysctl_ctx_list * 2377 device_get_sysctl_ctx(device_t dev) 2378 { 2379 return (&dev->sysctl_ctx); 2380 } 2381 2382 struct sysctl_oid * 2383 device_get_sysctl_tree(device_t dev) 2384 { 2385 return (dev->sysctl_tree); 2386 } 2387 2388 /** 2389 * @brief Print the name of the device followed by a colon and a space 2390 * 2391 * @returns the number of characters printed 2392 */ 2393 int 2394 device_print_prettyname(device_t dev) 2395 { 2396 const char *name = device_get_name(dev); 2397 2398 if (name == NULL) 2399 return (printf("unknown: ")); 2400 return (printf("%s%d: ", name, device_get_unit(dev))); 2401 } 2402 2403 /** 2404 * @brief Print the name of the device followed by a colon, a space 2405 * and the result of calling vprintf() with the value of @p fmt and 2406 * the following arguments. 2407 * 2408 * @returns the number of characters printed 2409 */ 2410 int 2411 device_printf(device_t dev, const char * fmt, ...) 2412 { 2413 char buf[128]; 2414 struct sbuf sb; 2415 const char *name; 2416 va_list ap; 2417 size_t retval; 2418 2419 retval = 0; 2420 2421 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2422 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 2423 2424 name = device_get_name(dev); 2425 2426 if (name == NULL) 2427 sbuf_cat(&sb, "unknown: "); 2428 else 2429 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2430 2431 va_start(ap, fmt); 2432 sbuf_vprintf(&sb, fmt, ap); 2433 va_end(ap); 2434 2435 sbuf_finish(&sb); 2436 sbuf_delete(&sb); 2437 2438 return (retval); 2439 } 2440 2441 /** 2442 * @brief Print the name of the device followed by a colon, a space 2443 * and the result of calling log() with the value of @p fmt and 2444 * the following arguments. 2445 * 2446 * @returns the number of characters printed 2447 */ 2448 int 2449 device_log(device_t dev, int pri, const char * fmt, ...) 2450 { 2451 char buf[128]; 2452 struct sbuf sb; 2453 const char *name; 2454 va_list ap; 2455 size_t retval; 2456 2457 retval = 0; 2458 2459 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2460 2461 name = device_get_name(dev); 2462 2463 if (name == NULL) 2464 sbuf_cat(&sb, "unknown: "); 2465 else 2466 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2467 2468 va_start(ap, fmt); 2469 sbuf_vprintf(&sb, fmt, ap); 2470 va_end(ap); 2471 2472 sbuf_finish(&sb); 2473 2474 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb)); 2475 retval = sbuf_len(&sb); 2476 2477 sbuf_delete(&sb); 2478 2479 return (retval); 2480 } 2481 2482 /** 2483 * @internal 2484 */ 2485 static void 2486 device_set_desc_internal(device_t dev, const char* desc, int copy) 2487 { 2488 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2489 free(dev->desc, M_BUS); 2490 dev->flags &= ~DF_DESCMALLOCED; 2491 dev->desc = NULL; 2492 } 2493 2494 if (copy && desc) { 2495 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2496 if (dev->desc) { 2497 strcpy(dev->desc, desc); 2498 dev->flags |= DF_DESCMALLOCED; 2499 } 2500 } else { 2501 /* Avoid a -Wcast-qual warning */ 2502 dev->desc = (char *)(uintptr_t) desc; 2503 } 2504 2505 bus_data_generation_update(); 2506 } 2507 2508 /** 2509 * @brief Set the device's description 2510 * 2511 * The value of @c desc should be a string constant that will not 2512 * change (at least until the description is changed in a subsequent 2513 * call to device_set_desc() or device_set_desc_copy()). 2514 */ 2515 void 2516 device_set_desc(device_t dev, const char* desc) 2517 { 2518 device_set_desc_internal(dev, desc, FALSE); 2519 } 2520 2521 /** 2522 * @brief Set the device's description 2523 * 2524 * The string pointed to by @c desc is copied. Use this function if 2525 * the device description is generated, (e.g. with sprintf()). 2526 */ 2527 void 2528 device_set_desc_copy(device_t dev, const char* desc) 2529 { 2530 device_set_desc_internal(dev, desc, TRUE); 2531 } 2532 2533 /** 2534 * @brief Set the device's flags 2535 */ 2536 void 2537 device_set_flags(device_t dev, uint32_t flags) 2538 { 2539 dev->devflags = flags; 2540 } 2541 2542 /** 2543 * @brief Return the device's softc field 2544 * 2545 * The softc is allocated and zeroed when a driver is attached, based 2546 * on the size field of the driver. 2547 */ 2548 void * 2549 device_get_softc(device_t dev) 2550 { 2551 return (dev->softc); 2552 } 2553 2554 /** 2555 * @brief Set the device's softc field 2556 * 2557 * Most drivers do not need to use this since the softc is allocated 2558 * automatically when the driver is attached. 2559 */ 2560 void 2561 device_set_softc(device_t dev, void *softc) 2562 { 2563 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2564 free(dev->softc, M_BUS_SC); 2565 dev->softc = softc; 2566 if (dev->softc) 2567 dev->flags |= DF_EXTERNALSOFTC; 2568 else 2569 dev->flags &= ~DF_EXTERNALSOFTC; 2570 } 2571 2572 /** 2573 * @brief Free claimed softc 2574 * 2575 * Most drivers do not need to use this since the softc is freed 2576 * automatically when the driver is detached. 2577 */ 2578 void 2579 device_free_softc(void *softc) 2580 { 2581 free(softc, M_BUS_SC); 2582 } 2583 2584 /** 2585 * @brief Claim softc 2586 * 2587 * This function can be used to let the driver free the automatically 2588 * allocated softc using "device_free_softc()". This function is 2589 * useful when the driver is refcounting the softc and the softc 2590 * cannot be freed when the "device_detach" method is called. 2591 */ 2592 void 2593 device_claim_softc(device_t dev) 2594 { 2595 if (dev->softc) 2596 dev->flags |= DF_EXTERNALSOFTC; 2597 else 2598 dev->flags &= ~DF_EXTERNALSOFTC; 2599 } 2600 2601 /** 2602 * @brief Get the device's ivars field 2603 * 2604 * The ivars field is used by the parent device to store per-device 2605 * state (e.g. the physical location of the device or a list of 2606 * resources). 2607 */ 2608 void * 2609 device_get_ivars(device_t dev) 2610 { 2611 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2612 return (dev->ivars); 2613 } 2614 2615 /** 2616 * @brief Set the device's ivars field 2617 */ 2618 void 2619 device_set_ivars(device_t dev, void * ivars) 2620 { 2621 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2622 dev->ivars = ivars; 2623 } 2624 2625 /** 2626 * @brief Return the device's state 2627 */ 2628 device_state_t 2629 device_get_state(device_t dev) 2630 { 2631 return (dev->state); 2632 } 2633 2634 /** 2635 * @brief Set the DF_ENABLED flag for the device 2636 */ 2637 void 2638 device_enable(device_t dev) 2639 { 2640 dev->flags |= DF_ENABLED; 2641 } 2642 2643 /** 2644 * @brief Clear the DF_ENABLED flag for the device 2645 */ 2646 void 2647 device_disable(device_t dev) 2648 { 2649 dev->flags &= ~DF_ENABLED; 2650 } 2651 2652 /** 2653 * @brief Increment the busy counter for the device 2654 */ 2655 void 2656 device_busy(device_t dev) 2657 { 2658 if (dev->state < DS_ATTACHING) 2659 panic("device_busy: called for unattached device"); 2660 if (dev->busy == 0 && dev->parent) 2661 device_busy(dev->parent); 2662 dev->busy++; 2663 if (dev->state == DS_ATTACHED) 2664 dev->state = DS_BUSY; 2665 } 2666 2667 /** 2668 * @brief Decrement the busy counter for the device 2669 */ 2670 void 2671 device_unbusy(device_t dev) 2672 { 2673 if (dev->busy != 0 && dev->state != DS_BUSY && 2674 dev->state != DS_ATTACHING) 2675 panic("device_unbusy: called for non-busy device %s", 2676 device_get_nameunit(dev)); 2677 dev->busy--; 2678 if (dev->busy == 0) { 2679 if (dev->parent) 2680 device_unbusy(dev->parent); 2681 if (dev->state == DS_BUSY) 2682 dev->state = DS_ATTACHED; 2683 } 2684 } 2685 2686 /** 2687 * @brief Set the DF_QUIET flag for the device 2688 */ 2689 void 2690 device_quiet(device_t dev) 2691 { 2692 dev->flags |= DF_QUIET; 2693 } 2694 2695 /** 2696 * @brief Set the DF_QUIET_CHILDREN flag for the device 2697 */ 2698 void 2699 device_quiet_children(device_t dev) 2700 { 2701 dev->flags |= DF_QUIET_CHILDREN; 2702 } 2703 2704 /** 2705 * @brief Clear the DF_QUIET flag for the device 2706 */ 2707 void 2708 device_verbose(device_t dev) 2709 { 2710 dev->flags &= ~DF_QUIET; 2711 } 2712 2713 /** 2714 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2715 */ 2716 int 2717 device_has_quiet_children(device_t dev) 2718 { 2719 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2720 } 2721 2722 /** 2723 * @brief Return non-zero if the DF_QUIET flag is set on the device 2724 */ 2725 int 2726 device_is_quiet(device_t dev) 2727 { 2728 return ((dev->flags & DF_QUIET) != 0); 2729 } 2730 2731 /** 2732 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2733 */ 2734 int 2735 device_is_enabled(device_t dev) 2736 { 2737 return ((dev->flags & DF_ENABLED) != 0); 2738 } 2739 2740 /** 2741 * @brief Return non-zero if the device was successfully probed 2742 */ 2743 int 2744 device_is_alive(device_t dev) 2745 { 2746 return (dev->state >= DS_ALIVE); 2747 } 2748 2749 /** 2750 * @brief Return non-zero if the device currently has a driver 2751 * attached to it 2752 */ 2753 int 2754 device_is_attached(device_t dev) 2755 { 2756 return (dev->state >= DS_ATTACHED); 2757 } 2758 2759 /** 2760 * @brief Return non-zero if the device is currently suspended. 2761 */ 2762 int 2763 device_is_suspended(device_t dev) 2764 { 2765 return ((dev->flags & DF_SUSPENDED) != 0); 2766 } 2767 2768 /** 2769 * @brief Set the devclass of a device 2770 * @see devclass_add_device(). 2771 */ 2772 int 2773 device_set_devclass(device_t dev, const char *classname) 2774 { 2775 devclass_t dc; 2776 int error; 2777 2778 if (!classname) { 2779 if (dev->devclass) 2780 devclass_delete_device(dev->devclass, dev); 2781 return (0); 2782 } 2783 2784 if (dev->devclass) { 2785 printf("device_set_devclass: device class already set\n"); 2786 return (EINVAL); 2787 } 2788 2789 dc = devclass_find_internal(classname, NULL, TRUE); 2790 if (!dc) 2791 return (ENOMEM); 2792 2793 error = devclass_add_device(dc, dev); 2794 2795 bus_data_generation_update(); 2796 return (error); 2797 } 2798 2799 /** 2800 * @brief Set the devclass of a device and mark the devclass fixed. 2801 * @see device_set_devclass() 2802 */ 2803 int 2804 device_set_devclass_fixed(device_t dev, const char *classname) 2805 { 2806 int error; 2807 2808 if (classname == NULL) 2809 return (EINVAL); 2810 2811 error = device_set_devclass(dev, classname); 2812 if (error) 2813 return (error); 2814 dev->flags |= DF_FIXEDCLASS; 2815 return (0); 2816 } 2817 2818 /** 2819 * @brief Query the device to determine if it's of a fixed devclass 2820 * @see device_set_devclass_fixed() 2821 */ 2822 bool 2823 device_is_devclass_fixed(device_t dev) 2824 { 2825 return ((dev->flags & DF_FIXEDCLASS) != 0); 2826 } 2827 2828 /** 2829 * @brief Set the driver of a device 2830 * 2831 * @retval 0 success 2832 * @retval EBUSY the device already has a driver attached 2833 * @retval ENOMEM a memory allocation failure occurred 2834 */ 2835 int 2836 device_set_driver(device_t dev, driver_t *driver) 2837 { 2838 int domain; 2839 struct domainset *policy; 2840 2841 if (dev->state >= DS_ATTACHED) 2842 return (EBUSY); 2843 2844 if (dev->driver == driver) 2845 return (0); 2846 2847 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2848 free(dev->softc, M_BUS_SC); 2849 dev->softc = NULL; 2850 } 2851 device_set_desc(dev, NULL); 2852 kobj_delete((kobj_t) dev, NULL); 2853 dev->driver = driver; 2854 if (driver) { 2855 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2856 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2857 if (bus_get_domain(dev, &domain) == 0) 2858 policy = DOMAINSET_PREF(domain); 2859 else 2860 policy = DOMAINSET_RR(); 2861 dev->softc = malloc_domainset(driver->size, M_BUS_SC, 2862 policy, M_NOWAIT | M_ZERO); 2863 if (!dev->softc) { 2864 kobj_delete((kobj_t) dev, NULL); 2865 kobj_init((kobj_t) dev, &null_class); 2866 dev->driver = NULL; 2867 return (ENOMEM); 2868 } 2869 } 2870 } else { 2871 kobj_init((kobj_t) dev, &null_class); 2872 } 2873 2874 bus_data_generation_update(); 2875 return (0); 2876 } 2877 2878 /** 2879 * @brief Probe a device, and return this status. 2880 * 2881 * This function is the core of the device autoconfiguration 2882 * system. Its purpose is to select a suitable driver for a device and 2883 * then call that driver to initialise the hardware appropriately. The 2884 * driver is selected by calling the DEVICE_PROBE() method of a set of 2885 * candidate drivers and then choosing the driver which returned the 2886 * best value. This driver is then attached to the device using 2887 * device_attach(). 2888 * 2889 * The set of suitable drivers is taken from the list of drivers in 2890 * the parent device's devclass. If the device was originally created 2891 * with a specific class name (see device_add_child()), only drivers 2892 * with that name are probed, otherwise all drivers in the devclass 2893 * are probed. If no drivers return successful probe values in the 2894 * parent devclass, the search continues in the parent of that 2895 * devclass (see devclass_get_parent()) if any. 2896 * 2897 * @param dev the device to initialise 2898 * 2899 * @retval 0 success 2900 * @retval ENXIO no driver was found 2901 * @retval ENOMEM memory allocation failure 2902 * @retval non-zero some other unix error code 2903 * @retval -1 Device already attached 2904 */ 2905 int 2906 device_probe(device_t dev) 2907 { 2908 int error; 2909 2910 GIANT_REQUIRED; 2911 2912 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2913 return (-1); 2914 2915 if (!(dev->flags & DF_ENABLED)) { 2916 if (bootverbose && device_get_name(dev) != NULL) { 2917 device_print_prettyname(dev); 2918 printf("not probed (disabled)\n"); 2919 } 2920 return (-1); 2921 } 2922 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2923 if (bus_current_pass == BUS_PASS_DEFAULT && 2924 !(dev->flags & DF_DONENOMATCH)) { 2925 BUS_PROBE_NOMATCH(dev->parent, dev); 2926 devnomatch(dev); 2927 dev->flags |= DF_DONENOMATCH; 2928 } 2929 return (error); 2930 } 2931 return (0); 2932 } 2933 2934 /** 2935 * @brief Probe a device and attach a driver if possible 2936 * 2937 * calls device_probe() and attaches if that was successful. 2938 */ 2939 int 2940 device_probe_and_attach(device_t dev) 2941 { 2942 int error; 2943 2944 GIANT_REQUIRED; 2945 2946 error = device_probe(dev); 2947 if (error == -1) 2948 return (0); 2949 else if (error != 0) 2950 return (error); 2951 2952 CURVNET_SET_QUIET(vnet0); 2953 error = device_attach(dev); 2954 CURVNET_RESTORE(); 2955 return error; 2956 } 2957 2958 /** 2959 * @brief Attach a device driver to a device 2960 * 2961 * This function is a wrapper around the DEVICE_ATTACH() driver 2962 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2963 * device's sysctl tree, optionally prints a description of the device 2964 * and queues a notification event for user-based device management 2965 * services. 2966 * 2967 * Normally this function is only called internally from 2968 * device_probe_and_attach(). 2969 * 2970 * @param dev the device to initialise 2971 * 2972 * @retval 0 success 2973 * @retval ENXIO no driver was found 2974 * @retval ENOMEM memory allocation failure 2975 * @retval non-zero some other unix error code 2976 */ 2977 int 2978 device_attach(device_t dev) 2979 { 2980 uint64_t attachtime; 2981 uint16_t attachentropy; 2982 int error; 2983 2984 if (resource_disabled(dev->driver->name, dev->unit)) { 2985 device_disable(dev); 2986 if (bootverbose) 2987 device_printf(dev, "disabled via hints entry\n"); 2988 return (ENXIO); 2989 } 2990 2991 device_sysctl_init(dev); 2992 if (!device_is_quiet(dev)) 2993 device_print_child(dev->parent, dev); 2994 attachtime = get_cyclecount(); 2995 dev->state = DS_ATTACHING; 2996 if ((error = DEVICE_ATTACH(dev)) != 0) { 2997 printf("device_attach: %s%d attach returned %d\n", 2998 dev->driver->name, dev->unit, error); 2999 if (!(dev->flags & DF_FIXEDCLASS)) 3000 devclass_delete_device(dev->devclass, dev); 3001 (void)device_set_driver(dev, NULL); 3002 device_sysctl_fini(dev); 3003 KASSERT(dev->busy == 0, ("attach failed but busy")); 3004 dev->state = DS_NOTPRESENT; 3005 return (error); 3006 } 3007 dev->flags |= DF_ATTACHED_ONCE; 3008 /* We only need the low bits of this time, but ranges from tens to thousands 3009 * have been seen, so keep 2 bytes' worth. 3010 */ 3011 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 3012 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 3013 device_sysctl_update(dev); 3014 if (dev->busy) 3015 dev->state = DS_BUSY; 3016 else 3017 dev->state = DS_ATTACHED; 3018 dev->flags &= ~DF_DONENOMATCH; 3019 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 3020 devadded(dev); 3021 return (0); 3022 } 3023 3024 /** 3025 * @brief Detach a driver from a device 3026 * 3027 * This function is a wrapper around the DEVICE_DETACH() driver 3028 * method. If the call to DEVICE_DETACH() succeeds, it calls 3029 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 3030 * notification event for user-based device management services and 3031 * cleans up the device's sysctl tree. 3032 * 3033 * @param dev the device to un-initialise 3034 * 3035 * @retval 0 success 3036 * @retval ENXIO no driver was found 3037 * @retval ENOMEM memory allocation failure 3038 * @retval non-zero some other unix error code 3039 */ 3040 int 3041 device_detach(device_t dev) 3042 { 3043 int error; 3044 3045 GIANT_REQUIRED; 3046 3047 PDEBUG(("%s", DEVICENAME(dev))); 3048 if (dev->state == DS_BUSY) 3049 return (EBUSY); 3050 if (dev->state == DS_ATTACHING) { 3051 device_printf(dev, "device in attaching state! Deferring detach.\n"); 3052 return (EBUSY); 3053 } 3054 if (dev->state != DS_ATTACHED) 3055 return (0); 3056 3057 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 3058 if ((error = DEVICE_DETACH(dev)) != 0) { 3059 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3060 EVHDEV_DETACH_FAILED); 3061 return (error); 3062 } else { 3063 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3064 EVHDEV_DETACH_COMPLETE); 3065 } 3066 devremoved(dev); 3067 if (!device_is_quiet(dev)) 3068 device_printf(dev, "detached\n"); 3069 if (dev->parent) 3070 BUS_CHILD_DETACHED(dev->parent, dev); 3071 3072 if (!(dev->flags & DF_FIXEDCLASS)) 3073 devclass_delete_device(dev->devclass, dev); 3074 3075 device_verbose(dev); 3076 dev->state = DS_NOTPRESENT; 3077 (void)device_set_driver(dev, NULL); 3078 device_sysctl_fini(dev); 3079 3080 return (0); 3081 } 3082 3083 /** 3084 * @brief Tells a driver to quiesce itself. 3085 * 3086 * This function is a wrapper around the DEVICE_QUIESCE() driver 3087 * method. If the call to DEVICE_QUIESCE() succeeds. 3088 * 3089 * @param dev the device to quiesce 3090 * 3091 * @retval 0 success 3092 * @retval ENXIO no driver was found 3093 * @retval ENOMEM memory allocation failure 3094 * @retval non-zero some other unix error code 3095 */ 3096 int 3097 device_quiesce(device_t dev) 3098 { 3099 PDEBUG(("%s", DEVICENAME(dev))); 3100 if (dev->state == DS_BUSY) 3101 return (EBUSY); 3102 if (dev->state != DS_ATTACHED) 3103 return (0); 3104 3105 return (DEVICE_QUIESCE(dev)); 3106 } 3107 3108 /** 3109 * @brief Notify a device of system shutdown 3110 * 3111 * This function calls the DEVICE_SHUTDOWN() driver method if the 3112 * device currently has an attached driver. 3113 * 3114 * @returns the value returned by DEVICE_SHUTDOWN() 3115 */ 3116 int 3117 device_shutdown(device_t dev) 3118 { 3119 if (dev->state < DS_ATTACHED) 3120 return (0); 3121 return (DEVICE_SHUTDOWN(dev)); 3122 } 3123 3124 /** 3125 * @brief Set the unit number of a device 3126 * 3127 * This function can be used to override the unit number used for a 3128 * device (e.g. to wire a device to a pre-configured unit number). 3129 */ 3130 int 3131 device_set_unit(device_t dev, int unit) 3132 { 3133 devclass_t dc; 3134 int err; 3135 3136 dc = device_get_devclass(dev); 3137 if (unit < dc->maxunit && dc->devices[unit]) 3138 return (EBUSY); 3139 err = devclass_delete_device(dc, dev); 3140 if (err) 3141 return (err); 3142 dev->unit = unit; 3143 err = devclass_add_device(dc, dev); 3144 if (err) 3145 return (err); 3146 3147 bus_data_generation_update(); 3148 return (0); 3149 } 3150 3151 /*======================================*/ 3152 /* 3153 * Some useful method implementations to make life easier for bus drivers. 3154 */ 3155 3156 void 3157 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 3158 { 3159 bzero(args, sz); 3160 args->size = sz; 3161 args->memattr = VM_MEMATTR_DEVICE; 3162 } 3163 3164 /** 3165 * @brief Initialise a resource list. 3166 * 3167 * @param rl the resource list to initialise 3168 */ 3169 void 3170 resource_list_init(struct resource_list *rl) 3171 { 3172 STAILQ_INIT(rl); 3173 } 3174 3175 /** 3176 * @brief Reclaim memory used by a resource list. 3177 * 3178 * This function frees the memory for all resource entries on the list 3179 * (if any). 3180 * 3181 * @param rl the resource list to free 3182 */ 3183 void 3184 resource_list_free(struct resource_list *rl) 3185 { 3186 struct resource_list_entry *rle; 3187 3188 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3189 if (rle->res) 3190 panic("resource_list_free: resource entry is busy"); 3191 STAILQ_REMOVE_HEAD(rl, link); 3192 free(rle, M_BUS); 3193 } 3194 } 3195 3196 /** 3197 * @brief Add a resource entry. 3198 * 3199 * This function adds a resource entry using the given @p type, @p 3200 * start, @p end and @p count values. A rid value is chosen by 3201 * searching sequentially for the first unused rid starting at zero. 3202 * 3203 * @param rl the resource list to edit 3204 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3205 * @param start the start address of the resource 3206 * @param end the end address of the resource 3207 * @param count XXX end-start+1 3208 */ 3209 int 3210 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 3211 rman_res_t end, rman_res_t count) 3212 { 3213 int rid; 3214 3215 rid = 0; 3216 while (resource_list_find(rl, type, rid) != NULL) 3217 rid++; 3218 resource_list_add(rl, type, rid, start, end, count); 3219 return (rid); 3220 } 3221 3222 /** 3223 * @brief Add or modify a resource entry. 3224 * 3225 * If an existing entry exists with the same type and rid, it will be 3226 * modified using the given values of @p start, @p end and @p 3227 * count. If no entry exists, a new one will be created using the 3228 * given values. The resource list entry that matches is then returned. 3229 * 3230 * @param rl the resource list to edit 3231 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3232 * @param rid the resource identifier 3233 * @param start the start address of the resource 3234 * @param end the end address of the resource 3235 * @param count XXX end-start+1 3236 */ 3237 struct resource_list_entry * 3238 resource_list_add(struct resource_list *rl, int type, int rid, 3239 rman_res_t start, rman_res_t end, rman_res_t count) 3240 { 3241 struct resource_list_entry *rle; 3242 3243 rle = resource_list_find(rl, type, rid); 3244 if (!rle) { 3245 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3246 M_NOWAIT); 3247 if (!rle) 3248 panic("resource_list_add: can't record entry"); 3249 STAILQ_INSERT_TAIL(rl, rle, link); 3250 rle->type = type; 3251 rle->rid = rid; 3252 rle->res = NULL; 3253 rle->flags = 0; 3254 } 3255 3256 if (rle->res) 3257 panic("resource_list_add: resource entry is busy"); 3258 3259 rle->start = start; 3260 rle->end = end; 3261 rle->count = count; 3262 return (rle); 3263 } 3264 3265 /** 3266 * @brief Determine if a resource entry is busy. 3267 * 3268 * Returns true if a resource entry is busy meaning that it has an 3269 * associated resource that is not an unallocated "reserved" resource. 3270 * 3271 * @param rl the resource list to search 3272 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3273 * @param rid the resource identifier 3274 * 3275 * @returns Non-zero if the entry is busy, zero otherwise. 3276 */ 3277 int 3278 resource_list_busy(struct resource_list *rl, int type, int rid) 3279 { 3280 struct resource_list_entry *rle; 3281 3282 rle = resource_list_find(rl, type, rid); 3283 if (rle == NULL || rle->res == NULL) 3284 return (0); 3285 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3286 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3287 ("reserved resource is active")); 3288 return (0); 3289 } 3290 return (1); 3291 } 3292 3293 /** 3294 * @brief Determine if a resource entry is reserved. 3295 * 3296 * Returns true if a resource entry is reserved meaning that it has an 3297 * associated "reserved" resource. The resource can either be 3298 * allocated or unallocated. 3299 * 3300 * @param rl the resource list to search 3301 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3302 * @param rid the resource identifier 3303 * 3304 * @returns Non-zero if the entry is reserved, zero otherwise. 3305 */ 3306 int 3307 resource_list_reserved(struct resource_list *rl, int type, int rid) 3308 { 3309 struct resource_list_entry *rle; 3310 3311 rle = resource_list_find(rl, type, rid); 3312 if (rle != NULL && rle->flags & RLE_RESERVED) 3313 return (1); 3314 return (0); 3315 } 3316 3317 /** 3318 * @brief Find a resource entry by type and rid. 3319 * 3320 * @param rl the resource list to search 3321 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3322 * @param rid the resource identifier 3323 * 3324 * @returns the resource entry pointer or NULL if there is no such 3325 * entry. 3326 */ 3327 struct resource_list_entry * 3328 resource_list_find(struct resource_list *rl, int type, int rid) 3329 { 3330 struct resource_list_entry *rle; 3331 3332 STAILQ_FOREACH(rle, rl, link) { 3333 if (rle->type == type && rle->rid == rid) 3334 return (rle); 3335 } 3336 return (NULL); 3337 } 3338 3339 /** 3340 * @brief Delete a resource entry. 3341 * 3342 * @param rl the resource list to edit 3343 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3344 * @param rid the resource identifier 3345 */ 3346 void 3347 resource_list_delete(struct resource_list *rl, int type, int rid) 3348 { 3349 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3350 3351 if (rle) { 3352 if (rle->res != NULL) 3353 panic("resource_list_delete: resource has not been released"); 3354 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3355 free(rle, M_BUS); 3356 } 3357 } 3358 3359 /** 3360 * @brief Allocate a reserved resource 3361 * 3362 * This can be used by buses to force the allocation of resources 3363 * that are always active in the system even if they are not allocated 3364 * by a driver (e.g. PCI BARs). This function is usually called when 3365 * adding a new child to the bus. The resource is allocated from the 3366 * parent bus when it is reserved. The resource list entry is marked 3367 * with RLE_RESERVED to note that it is a reserved resource. 3368 * 3369 * Subsequent attempts to allocate the resource with 3370 * resource_list_alloc() will succeed the first time and will set 3371 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3372 * resource that has been allocated is released with 3373 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3374 * the actual resource remains allocated. The resource can be released to 3375 * the parent bus by calling resource_list_unreserve(). 3376 * 3377 * @param rl the resource list to allocate from 3378 * @param bus the parent device of @p child 3379 * @param child the device for which the resource is being reserved 3380 * @param type the type of resource to allocate 3381 * @param rid a pointer to the resource identifier 3382 * @param start hint at the start of the resource range - pass 3383 * @c 0 for any start address 3384 * @param end hint at the end of the resource range - pass 3385 * @c ~0 for any end address 3386 * @param count hint at the size of range required - pass @c 1 3387 * for any size 3388 * @param flags any extra flags to control the resource 3389 * allocation - see @c RF_XXX flags in 3390 * <sys/rman.h> for details 3391 * 3392 * @returns the resource which was allocated or @c NULL if no 3393 * resource could be allocated 3394 */ 3395 struct resource * 3396 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3397 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3398 { 3399 struct resource_list_entry *rle = NULL; 3400 int passthrough = (device_get_parent(child) != bus); 3401 struct resource *r; 3402 3403 if (passthrough) 3404 panic( 3405 "resource_list_reserve() should only be called for direct children"); 3406 if (flags & RF_ACTIVE) 3407 panic( 3408 "resource_list_reserve() should only reserve inactive resources"); 3409 3410 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3411 flags); 3412 if (r != NULL) { 3413 rle = resource_list_find(rl, type, *rid); 3414 rle->flags |= RLE_RESERVED; 3415 } 3416 return (r); 3417 } 3418 3419 /** 3420 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3421 * 3422 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3423 * and passing the allocation up to the parent of @p bus. This assumes 3424 * that the first entry of @c device_get_ivars(child) is a struct 3425 * resource_list. This also handles 'passthrough' allocations where a 3426 * child is a remote descendant of bus by passing the allocation up to 3427 * the parent of bus. 3428 * 3429 * Typically, a bus driver would store a list of child resources 3430 * somewhere in the child device's ivars (see device_get_ivars()) and 3431 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3432 * then call resource_list_alloc() to perform the allocation. 3433 * 3434 * @param rl the resource list to allocate from 3435 * @param bus the parent device of @p child 3436 * @param child the device which is requesting an allocation 3437 * @param type the type of resource to allocate 3438 * @param rid a pointer to the resource identifier 3439 * @param start hint at the start of the resource range - pass 3440 * @c 0 for any start address 3441 * @param end hint at the end of the resource range - pass 3442 * @c ~0 for any end address 3443 * @param count hint at the size of range required - pass @c 1 3444 * for any size 3445 * @param flags any extra flags to control the resource 3446 * allocation - see @c RF_XXX flags in 3447 * <sys/rman.h> for details 3448 * 3449 * @returns the resource which was allocated or @c NULL if no 3450 * resource could be allocated 3451 */ 3452 struct resource * 3453 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3454 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3455 { 3456 struct resource_list_entry *rle = NULL; 3457 int passthrough = (device_get_parent(child) != bus); 3458 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3459 3460 if (passthrough) { 3461 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3462 type, rid, start, end, count, flags)); 3463 } 3464 3465 rle = resource_list_find(rl, type, *rid); 3466 3467 if (!rle) 3468 return (NULL); /* no resource of that type/rid */ 3469 3470 if (rle->res) { 3471 if (rle->flags & RLE_RESERVED) { 3472 if (rle->flags & RLE_ALLOCATED) 3473 return (NULL); 3474 if ((flags & RF_ACTIVE) && 3475 bus_activate_resource(child, type, *rid, 3476 rle->res) != 0) 3477 return (NULL); 3478 rle->flags |= RLE_ALLOCATED; 3479 return (rle->res); 3480 } 3481 device_printf(bus, 3482 "resource entry %#x type %d for child %s is busy\n", *rid, 3483 type, device_get_nameunit(child)); 3484 return (NULL); 3485 } 3486 3487 if (isdefault) { 3488 start = rle->start; 3489 count = ulmax(count, rle->count); 3490 end = ulmax(rle->end, start + count - 1); 3491 } 3492 3493 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3494 type, rid, start, end, count, flags); 3495 3496 /* 3497 * Record the new range. 3498 */ 3499 if (rle->res) { 3500 rle->start = rman_get_start(rle->res); 3501 rle->end = rman_get_end(rle->res); 3502 rle->count = count; 3503 } 3504 3505 return (rle->res); 3506 } 3507 3508 /** 3509 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3510 * 3511 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3512 * used with resource_list_alloc(). 3513 * 3514 * @param rl the resource list which was allocated from 3515 * @param bus the parent device of @p child 3516 * @param child the device which is requesting a release 3517 * @param type the type of resource to release 3518 * @param rid the resource identifier 3519 * @param res the resource to release 3520 * 3521 * @retval 0 success 3522 * @retval non-zero a standard unix error code indicating what 3523 * error condition prevented the operation 3524 */ 3525 int 3526 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3527 int type, int rid, struct resource *res) 3528 { 3529 struct resource_list_entry *rle = NULL; 3530 int passthrough = (device_get_parent(child) != bus); 3531 int error; 3532 3533 if (passthrough) { 3534 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3535 type, rid, res)); 3536 } 3537 3538 rle = resource_list_find(rl, type, rid); 3539 3540 if (!rle) 3541 panic("resource_list_release: can't find resource"); 3542 if (!rle->res) 3543 panic("resource_list_release: resource entry is not busy"); 3544 if (rle->flags & RLE_RESERVED) { 3545 if (rle->flags & RLE_ALLOCATED) { 3546 if (rman_get_flags(res) & RF_ACTIVE) { 3547 error = bus_deactivate_resource(child, type, 3548 rid, res); 3549 if (error) 3550 return (error); 3551 } 3552 rle->flags &= ~RLE_ALLOCATED; 3553 return (0); 3554 } 3555 return (EINVAL); 3556 } 3557 3558 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3559 type, rid, res); 3560 if (error) 3561 return (error); 3562 3563 rle->res = NULL; 3564 return (0); 3565 } 3566 3567 /** 3568 * @brief Release all active resources of a given type 3569 * 3570 * Release all active resources of a specified type. This is intended 3571 * to be used to cleanup resources leaked by a driver after detach or 3572 * a failed attach. 3573 * 3574 * @param rl the resource list which was allocated from 3575 * @param bus the parent device of @p child 3576 * @param child the device whose active resources are being released 3577 * @param type the type of resources to release 3578 * 3579 * @retval 0 success 3580 * @retval EBUSY at least one resource was active 3581 */ 3582 int 3583 resource_list_release_active(struct resource_list *rl, device_t bus, 3584 device_t child, int type) 3585 { 3586 struct resource_list_entry *rle; 3587 int error, retval; 3588 3589 retval = 0; 3590 STAILQ_FOREACH(rle, rl, link) { 3591 if (rle->type != type) 3592 continue; 3593 if (rle->res == NULL) 3594 continue; 3595 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3596 RLE_RESERVED) 3597 continue; 3598 retval = EBUSY; 3599 error = resource_list_release(rl, bus, child, type, 3600 rman_get_rid(rle->res), rle->res); 3601 if (error != 0) 3602 device_printf(bus, 3603 "Failed to release active resource: %d\n", error); 3604 } 3605 return (retval); 3606 } 3607 3608 /** 3609 * @brief Fully release a reserved resource 3610 * 3611 * Fully releases a resource reserved via resource_list_reserve(). 3612 * 3613 * @param rl the resource list which was allocated from 3614 * @param bus the parent device of @p child 3615 * @param child the device whose reserved resource is being released 3616 * @param type the type of resource to release 3617 * @param rid the resource identifier 3618 * @param res the resource to release 3619 * 3620 * @retval 0 success 3621 * @retval non-zero a standard unix error code indicating what 3622 * error condition prevented the operation 3623 */ 3624 int 3625 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3626 int type, int rid) 3627 { 3628 struct resource_list_entry *rle = NULL; 3629 int passthrough = (device_get_parent(child) != bus); 3630 3631 if (passthrough) 3632 panic( 3633 "resource_list_unreserve() should only be called for direct children"); 3634 3635 rle = resource_list_find(rl, type, rid); 3636 3637 if (!rle) 3638 panic("resource_list_unreserve: can't find resource"); 3639 if (!(rle->flags & RLE_RESERVED)) 3640 return (EINVAL); 3641 if (rle->flags & RLE_ALLOCATED) 3642 return (EBUSY); 3643 rle->flags &= ~RLE_RESERVED; 3644 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3645 } 3646 3647 /** 3648 * @brief Print a description of resources in a resource list 3649 * 3650 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3651 * The name is printed if at least one resource of the given type is available. 3652 * The format is used to print resource start and end. 3653 * 3654 * @param rl the resource list to print 3655 * @param name the name of @p type, e.g. @c "memory" 3656 * @param type type type of resource entry to print 3657 * @param format printf(9) format string to print resource 3658 * start and end values 3659 * 3660 * @returns the number of characters printed 3661 */ 3662 int 3663 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3664 const char *format) 3665 { 3666 struct resource_list_entry *rle; 3667 int printed, retval; 3668 3669 printed = 0; 3670 retval = 0; 3671 /* Yes, this is kinda cheating */ 3672 STAILQ_FOREACH(rle, rl, link) { 3673 if (rle->type == type) { 3674 if (printed == 0) 3675 retval += printf(" %s ", name); 3676 else 3677 retval += printf(","); 3678 printed++; 3679 retval += printf(format, rle->start); 3680 if (rle->count > 1) { 3681 retval += printf("-"); 3682 retval += printf(format, rle->start + 3683 rle->count - 1); 3684 } 3685 } 3686 } 3687 return (retval); 3688 } 3689 3690 /** 3691 * @brief Releases all the resources in a list. 3692 * 3693 * @param rl The resource list to purge. 3694 * 3695 * @returns nothing 3696 */ 3697 void 3698 resource_list_purge(struct resource_list *rl) 3699 { 3700 struct resource_list_entry *rle; 3701 3702 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3703 if (rle->res) 3704 bus_release_resource(rman_get_device(rle->res), 3705 rle->type, rle->rid, rle->res); 3706 STAILQ_REMOVE_HEAD(rl, link); 3707 free(rle, M_BUS); 3708 } 3709 } 3710 3711 device_t 3712 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3713 { 3714 return (device_add_child_ordered(dev, order, name, unit)); 3715 } 3716 3717 /** 3718 * @brief Helper function for implementing DEVICE_PROBE() 3719 * 3720 * This function can be used to help implement the DEVICE_PROBE() for 3721 * a bus (i.e. a device which has other devices attached to it). It 3722 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3723 * devclass. 3724 */ 3725 int 3726 bus_generic_probe(device_t dev) 3727 { 3728 devclass_t dc = dev->devclass; 3729 driverlink_t dl; 3730 3731 TAILQ_FOREACH(dl, &dc->drivers, link) { 3732 /* 3733 * If this driver's pass is too high, then ignore it. 3734 * For most drivers in the default pass, this will 3735 * never be true. For early-pass drivers they will 3736 * only call the identify routines of eligible drivers 3737 * when this routine is called. Drivers for later 3738 * passes should have their identify routines called 3739 * on early-pass buses during BUS_NEW_PASS(). 3740 */ 3741 if (dl->pass > bus_current_pass) 3742 continue; 3743 DEVICE_IDENTIFY(dl->driver, dev); 3744 } 3745 3746 return (0); 3747 } 3748 3749 /** 3750 * @brief Helper function for implementing DEVICE_ATTACH() 3751 * 3752 * This function can be used to help implement the DEVICE_ATTACH() for 3753 * a bus. It calls device_probe_and_attach() for each of the device's 3754 * children. 3755 */ 3756 int 3757 bus_generic_attach(device_t dev) 3758 { 3759 device_t child; 3760 3761 TAILQ_FOREACH(child, &dev->children, link) { 3762 device_probe_and_attach(child); 3763 } 3764 3765 return (0); 3766 } 3767 3768 /** 3769 * @brief Helper function for delaying attaching children 3770 * 3771 * Many buses can't run transactions on the bus which children need to probe and 3772 * attach until after interrupts and/or timers are running. This function 3773 * delays their attach until interrupts and timers are enabled. 3774 */ 3775 int 3776 bus_delayed_attach_children(device_t dev) 3777 { 3778 /* Probe and attach the bus children when interrupts are available */ 3779 config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev); 3780 3781 return (0); 3782 } 3783 3784 /** 3785 * @brief Helper function for implementing DEVICE_DETACH() 3786 * 3787 * This function can be used to help implement the DEVICE_DETACH() for 3788 * a bus. It calls device_detach() for each of the device's 3789 * children. 3790 */ 3791 int 3792 bus_generic_detach(device_t dev) 3793 { 3794 device_t child; 3795 int error; 3796 3797 if (dev->state != DS_ATTACHED) 3798 return (EBUSY); 3799 3800 /* 3801 * Detach children in the reverse order. 3802 * See bus_generic_suspend for details. 3803 */ 3804 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3805 if ((error = device_detach(child)) != 0) 3806 return (error); 3807 } 3808 3809 return (0); 3810 } 3811 3812 /** 3813 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3814 * 3815 * This function can be used to help implement the DEVICE_SHUTDOWN() 3816 * for a bus. It calls device_shutdown() for each of the device's 3817 * children. 3818 */ 3819 int 3820 bus_generic_shutdown(device_t dev) 3821 { 3822 device_t child; 3823 3824 /* 3825 * Shut down children in the reverse order. 3826 * See bus_generic_suspend for details. 3827 */ 3828 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3829 device_shutdown(child); 3830 } 3831 3832 return (0); 3833 } 3834 3835 /** 3836 * @brief Default function for suspending a child device. 3837 * 3838 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3839 */ 3840 int 3841 bus_generic_suspend_child(device_t dev, device_t child) 3842 { 3843 int error; 3844 3845 error = DEVICE_SUSPEND(child); 3846 3847 if (error == 0) 3848 child->flags |= DF_SUSPENDED; 3849 3850 return (error); 3851 } 3852 3853 /** 3854 * @brief Default function for resuming a child device. 3855 * 3856 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3857 */ 3858 int 3859 bus_generic_resume_child(device_t dev, device_t child) 3860 { 3861 DEVICE_RESUME(child); 3862 child->flags &= ~DF_SUSPENDED; 3863 3864 return (0); 3865 } 3866 3867 /** 3868 * @brief Helper function for implementing DEVICE_SUSPEND() 3869 * 3870 * This function can be used to help implement the DEVICE_SUSPEND() 3871 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3872 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3873 * operation is aborted and any devices which were suspended are 3874 * resumed immediately by calling their DEVICE_RESUME() methods. 3875 */ 3876 int 3877 bus_generic_suspend(device_t dev) 3878 { 3879 int error; 3880 device_t child; 3881 3882 /* 3883 * Suspend children in the reverse order. 3884 * For most buses all children are equal, so the order does not matter. 3885 * Other buses, such as acpi, carefully order their child devices to 3886 * express implicit dependencies between them. For such buses it is 3887 * safer to bring down devices in the reverse order. 3888 */ 3889 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3890 error = BUS_SUSPEND_CHILD(dev, child); 3891 if (error != 0) { 3892 child = TAILQ_NEXT(child, link); 3893 if (child != NULL) { 3894 TAILQ_FOREACH_FROM(child, &dev->children, link) 3895 BUS_RESUME_CHILD(dev, child); 3896 } 3897 return (error); 3898 } 3899 } 3900 return (0); 3901 } 3902 3903 /** 3904 * @brief Helper function for implementing DEVICE_RESUME() 3905 * 3906 * This function can be used to help implement the DEVICE_RESUME() for 3907 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3908 */ 3909 int 3910 bus_generic_resume(device_t dev) 3911 { 3912 device_t child; 3913 3914 TAILQ_FOREACH(child, &dev->children, link) { 3915 BUS_RESUME_CHILD(dev, child); 3916 /* if resume fails, there's nothing we can usefully do... */ 3917 } 3918 return (0); 3919 } 3920 3921 /** 3922 * @brief Helper function for implementing BUS_RESET_POST 3923 * 3924 * Bus can use this function to implement common operations of 3925 * re-attaching or resuming the children after the bus itself was 3926 * reset, and after restoring bus-unique state of children. 3927 * 3928 * @param dev The bus 3929 * #param flags DEVF_RESET_* 3930 */ 3931 int 3932 bus_helper_reset_post(device_t dev, int flags) 3933 { 3934 device_t child; 3935 int error, error1; 3936 3937 error = 0; 3938 TAILQ_FOREACH(child, &dev->children,link) { 3939 BUS_RESET_POST(dev, child); 3940 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3941 device_probe_and_attach(child) : 3942 BUS_RESUME_CHILD(dev, child); 3943 if (error == 0 && error1 != 0) 3944 error = error1; 3945 } 3946 return (error); 3947 } 3948 3949 static void 3950 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3951 { 3952 child = TAILQ_NEXT(child, link); 3953 if (child == NULL) 3954 return; 3955 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3956 BUS_RESET_POST(dev, child); 3957 if ((flags & DEVF_RESET_DETACH) != 0) 3958 device_probe_and_attach(child); 3959 else 3960 BUS_RESUME_CHILD(dev, child); 3961 } 3962 } 3963 3964 /** 3965 * @brief Helper function for implementing BUS_RESET_PREPARE 3966 * 3967 * Bus can use this function to implement common operations of 3968 * detaching or suspending the children before the bus itself is 3969 * reset, and then save bus-unique state of children that must 3970 * persists around reset. 3971 * 3972 * @param dev The bus 3973 * #param flags DEVF_RESET_* 3974 */ 3975 int 3976 bus_helper_reset_prepare(device_t dev, int flags) 3977 { 3978 device_t child; 3979 int error; 3980 3981 if (dev->state != DS_ATTACHED) 3982 return (EBUSY); 3983 3984 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3985 if ((flags & DEVF_RESET_DETACH) != 0) { 3986 error = device_get_state(child) == DS_ATTACHED ? 3987 device_detach(child) : 0; 3988 } else { 3989 error = BUS_SUSPEND_CHILD(dev, child); 3990 } 3991 if (error == 0) { 3992 error = BUS_RESET_PREPARE(dev, child); 3993 if (error != 0) { 3994 if ((flags & DEVF_RESET_DETACH) != 0) 3995 device_probe_and_attach(child); 3996 else 3997 BUS_RESUME_CHILD(dev, child); 3998 } 3999 } 4000 if (error != 0) { 4001 bus_helper_reset_prepare_rollback(dev, child, flags); 4002 return (error); 4003 } 4004 } 4005 return (0); 4006 } 4007 4008 /** 4009 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4010 * 4011 * This function prints the first part of the ascii representation of 4012 * @p child, including its name, unit and description (if any - see 4013 * device_set_desc()). 4014 * 4015 * @returns the number of characters printed 4016 */ 4017 int 4018 bus_print_child_header(device_t dev, device_t child) 4019 { 4020 int retval = 0; 4021 4022 if (device_get_desc(child)) { 4023 retval += device_printf(child, "<%s>", device_get_desc(child)); 4024 } else { 4025 retval += printf("%s", device_get_nameunit(child)); 4026 } 4027 4028 return (retval); 4029 } 4030 4031 /** 4032 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4033 * 4034 * This function prints the last part of the ascii representation of 4035 * @p child, which consists of the string @c " on " followed by the 4036 * name and unit of the @p dev. 4037 * 4038 * @returns the number of characters printed 4039 */ 4040 int 4041 bus_print_child_footer(device_t dev, device_t child) 4042 { 4043 return (printf(" on %s\n", device_get_nameunit(dev))); 4044 } 4045 4046 /** 4047 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4048 * 4049 * This function prints out the VM domain for the given device. 4050 * 4051 * @returns the number of characters printed 4052 */ 4053 int 4054 bus_print_child_domain(device_t dev, device_t child) 4055 { 4056 int domain; 4057 4058 /* No domain? Don't print anything */ 4059 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 4060 return (0); 4061 4062 return (printf(" numa-domain %d", domain)); 4063 } 4064 4065 /** 4066 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4067 * 4068 * This function simply calls bus_print_child_header() followed by 4069 * bus_print_child_footer(). 4070 * 4071 * @returns the number of characters printed 4072 */ 4073 int 4074 bus_generic_print_child(device_t dev, device_t child) 4075 { 4076 int retval = 0; 4077 4078 retval += bus_print_child_header(dev, child); 4079 retval += bus_print_child_domain(dev, child); 4080 retval += bus_print_child_footer(dev, child); 4081 4082 return (retval); 4083 } 4084 4085 /** 4086 * @brief Stub function for implementing BUS_READ_IVAR(). 4087 * 4088 * @returns ENOENT 4089 */ 4090 int 4091 bus_generic_read_ivar(device_t dev, device_t child, int index, 4092 uintptr_t * result) 4093 { 4094 return (ENOENT); 4095 } 4096 4097 /** 4098 * @brief Stub function for implementing BUS_WRITE_IVAR(). 4099 * 4100 * @returns ENOENT 4101 */ 4102 int 4103 bus_generic_write_ivar(device_t dev, device_t child, int index, 4104 uintptr_t value) 4105 { 4106 return (ENOENT); 4107 } 4108 4109 /** 4110 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 4111 * 4112 * @returns NULL 4113 */ 4114 struct resource_list * 4115 bus_generic_get_resource_list(device_t dev, device_t child) 4116 { 4117 return (NULL); 4118 } 4119 4120 /** 4121 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 4122 * 4123 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 4124 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 4125 * and then calls device_probe_and_attach() for each unattached child. 4126 */ 4127 void 4128 bus_generic_driver_added(device_t dev, driver_t *driver) 4129 { 4130 device_t child; 4131 4132 DEVICE_IDENTIFY(driver, dev); 4133 TAILQ_FOREACH(child, &dev->children, link) { 4134 if (child->state == DS_NOTPRESENT || 4135 (child->flags & DF_REBID)) 4136 device_probe_and_attach(child); 4137 } 4138 } 4139 4140 /** 4141 * @brief Helper function for implementing BUS_NEW_PASS(). 4142 * 4143 * This implementing of BUS_NEW_PASS() first calls the identify 4144 * routines for any drivers that probe at the current pass. Then it 4145 * walks the list of devices for this bus. If a device is already 4146 * attached, then it calls BUS_NEW_PASS() on that device. If the 4147 * device is not already attached, it attempts to attach a driver to 4148 * it. 4149 */ 4150 void 4151 bus_generic_new_pass(device_t dev) 4152 { 4153 driverlink_t dl; 4154 devclass_t dc; 4155 device_t child; 4156 4157 dc = dev->devclass; 4158 TAILQ_FOREACH(dl, &dc->drivers, link) { 4159 if (dl->pass == bus_current_pass) 4160 DEVICE_IDENTIFY(dl->driver, dev); 4161 } 4162 TAILQ_FOREACH(child, &dev->children, link) { 4163 if (child->state >= DS_ATTACHED) 4164 BUS_NEW_PASS(child); 4165 else if (child->state == DS_NOTPRESENT) 4166 device_probe_and_attach(child); 4167 } 4168 } 4169 4170 /** 4171 * @brief Helper function for implementing BUS_SETUP_INTR(). 4172 * 4173 * This simple implementation of BUS_SETUP_INTR() simply calls the 4174 * BUS_SETUP_INTR() method of the parent of @p dev. 4175 */ 4176 int 4177 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 4178 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 4179 void **cookiep) 4180 { 4181 /* Propagate up the bus hierarchy until someone handles it. */ 4182 if (dev->parent) 4183 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 4184 filter, intr, arg, cookiep)); 4185 return (EINVAL); 4186 } 4187 4188 /** 4189 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 4190 * 4191 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 4192 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 4193 */ 4194 int 4195 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 4196 void *cookie) 4197 { 4198 /* Propagate up the bus hierarchy until someone handles it. */ 4199 if (dev->parent) 4200 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 4201 return (EINVAL); 4202 } 4203 4204 /** 4205 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 4206 * 4207 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 4208 * BUS_SUSPEND_INTR() method of the parent of @p dev. 4209 */ 4210 int 4211 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 4212 { 4213 /* Propagate up the bus hierarchy until someone handles it. */ 4214 if (dev->parent) 4215 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 4216 return (EINVAL); 4217 } 4218 4219 /** 4220 * @brief Helper function for implementing BUS_RESUME_INTR(). 4221 * 4222 * This simple implementation of BUS_RESUME_INTR() simply calls the 4223 * BUS_RESUME_INTR() method of the parent of @p dev. 4224 */ 4225 int 4226 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 4227 { 4228 /* Propagate up the bus hierarchy until someone handles it. */ 4229 if (dev->parent) 4230 return (BUS_RESUME_INTR(dev->parent, child, irq)); 4231 return (EINVAL); 4232 } 4233 4234 /** 4235 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4236 * 4237 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 4238 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 4239 */ 4240 int 4241 bus_generic_adjust_resource(device_t dev, device_t child, int type, 4242 struct resource *r, rman_res_t start, rman_res_t end) 4243 { 4244 /* Propagate up the bus hierarchy until someone handles it. */ 4245 if (dev->parent) 4246 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 4247 end)); 4248 return (EINVAL); 4249 } 4250 4251 /** 4252 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4253 * 4254 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 4255 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 4256 */ 4257 struct resource * 4258 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4259 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4260 { 4261 /* Propagate up the bus hierarchy until someone handles it. */ 4262 if (dev->parent) 4263 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4264 start, end, count, flags)); 4265 return (NULL); 4266 } 4267 4268 /** 4269 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4270 * 4271 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4272 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4273 */ 4274 int 4275 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 4276 struct resource *r) 4277 { 4278 /* Propagate up the bus hierarchy until someone handles it. */ 4279 if (dev->parent) 4280 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 4281 r)); 4282 return (EINVAL); 4283 } 4284 4285 /** 4286 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4287 * 4288 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4289 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4290 */ 4291 int 4292 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 4293 struct resource *r) 4294 { 4295 /* Propagate up the bus hierarchy until someone handles it. */ 4296 if (dev->parent) 4297 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 4298 r)); 4299 return (EINVAL); 4300 } 4301 4302 /** 4303 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4304 * 4305 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4306 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4307 */ 4308 int 4309 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 4310 int rid, struct resource *r) 4311 { 4312 /* Propagate up the bus hierarchy until someone handles it. */ 4313 if (dev->parent) 4314 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4315 r)); 4316 return (EINVAL); 4317 } 4318 4319 /** 4320 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4321 * 4322 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4323 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4324 */ 4325 int 4326 bus_generic_map_resource(device_t dev, device_t child, int type, 4327 struct resource *r, struct resource_map_request *args, 4328 struct resource_map *map) 4329 { 4330 /* Propagate up the bus hierarchy until someone handles it. */ 4331 if (dev->parent) 4332 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 4333 map)); 4334 return (EINVAL); 4335 } 4336 4337 /** 4338 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4339 * 4340 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4341 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4342 */ 4343 int 4344 bus_generic_unmap_resource(device_t dev, device_t child, int type, 4345 struct resource *r, struct resource_map *map) 4346 { 4347 /* Propagate up the bus hierarchy until someone handles it. */ 4348 if (dev->parent) 4349 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 4350 return (EINVAL); 4351 } 4352 4353 /** 4354 * @brief Helper function for implementing BUS_BIND_INTR(). 4355 * 4356 * This simple implementation of BUS_BIND_INTR() simply calls the 4357 * BUS_BIND_INTR() method of the parent of @p dev. 4358 */ 4359 int 4360 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4361 int cpu) 4362 { 4363 /* Propagate up the bus hierarchy until someone handles it. */ 4364 if (dev->parent) 4365 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4366 return (EINVAL); 4367 } 4368 4369 /** 4370 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4371 * 4372 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4373 * BUS_CONFIG_INTR() method of the parent of @p dev. 4374 */ 4375 int 4376 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4377 enum intr_polarity pol) 4378 { 4379 /* Propagate up the bus hierarchy until someone handles it. */ 4380 if (dev->parent) 4381 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4382 return (EINVAL); 4383 } 4384 4385 /** 4386 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4387 * 4388 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4389 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4390 */ 4391 int 4392 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4393 void *cookie, const char *descr) 4394 { 4395 /* Propagate up the bus hierarchy until someone handles it. */ 4396 if (dev->parent) 4397 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4398 descr)); 4399 return (EINVAL); 4400 } 4401 4402 /** 4403 * @brief Helper function for implementing BUS_GET_CPUS(). 4404 * 4405 * This simple implementation of BUS_GET_CPUS() simply calls the 4406 * BUS_GET_CPUS() method of the parent of @p dev. 4407 */ 4408 int 4409 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4410 size_t setsize, cpuset_t *cpuset) 4411 { 4412 /* Propagate up the bus hierarchy until someone handles it. */ 4413 if (dev->parent != NULL) 4414 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4415 return (EINVAL); 4416 } 4417 4418 /** 4419 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4420 * 4421 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4422 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4423 */ 4424 bus_dma_tag_t 4425 bus_generic_get_dma_tag(device_t dev, device_t child) 4426 { 4427 /* Propagate up the bus hierarchy until someone handles it. */ 4428 if (dev->parent != NULL) 4429 return (BUS_GET_DMA_TAG(dev->parent, child)); 4430 return (NULL); 4431 } 4432 4433 /** 4434 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4435 * 4436 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4437 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4438 */ 4439 bus_space_tag_t 4440 bus_generic_get_bus_tag(device_t dev, device_t child) 4441 { 4442 /* Propagate up the bus hierarchy until someone handles it. */ 4443 if (dev->parent != NULL) 4444 return (BUS_GET_BUS_TAG(dev->parent, child)); 4445 return ((bus_space_tag_t)0); 4446 } 4447 4448 /** 4449 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4450 * 4451 * This implementation of BUS_GET_RESOURCE() uses the 4452 * resource_list_find() function to do most of the work. It calls 4453 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4454 * search. 4455 */ 4456 int 4457 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4458 rman_res_t *startp, rman_res_t *countp) 4459 { 4460 struct resource_list * rl = NULL; 4461 struct resource_list_entry * rle = NULL; 4462 4463 rl = BUS_GET_RESOURCE_LIST(dev, child); 4464 if (!rl) 4465 return (EINVAL); 4466 4467 rle = resource_list_find(rl, type, rid); 4468 if (!rle) 4469 return (ENOENT); 4470 4471 if (startp) 4472 *startp = rle->start; 4473 if (countp) 4474 *countp = rle->count; 4475 4476 return (0); 4477 } 4478 4479 /** 4480 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4481 * 4482 * This implementation of BUS_SET_RESOURCE() uses the 4483 * resource_list_add() function to do most of the work. It calls 4484 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4485 * edit. 4486 */ 4487 int 4488 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4489 rman_res_t start, rman_res_t count) 4490 { 4491 struct resource_list * rl = NULL; 4492 4493 rl = BUS_GET_RESOURCE_LIST(dev, child); 4494 if (!rl) 4495 return (EINVAL); 4496 4497 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4498 4499 return (0); 4500 } 4501 4502 /** 4503 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4504 * 4505 * This implementation of BUS_DELETE_RESOURCE() uses the 4506 * resource_list_delete() function to do most of the work. It calls 4507 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4508 * edit. 4509 */ 4510 void 4511 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4512 { 4513 struct resource_list * rl = NULL; 4514 4515 rl = BUS_GET_RESOURCE_LIST(dev, child); 4516 if (!rl) 4517 return; 4518 4519 resource_list_delete(rl, type, rid); 4520 4521 return; 4522 } 4523 4524 /** 4525 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4526 * 4527 * This implementation of BUS_RELEASE_RESOURCE() uses the 4528 * resource_list_release() function to do most of the work. It calls 4529 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4530 */ 4531 int 4532 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4533 int rid, struct resource *r) 4534 { 4535 struct resource_list * rl = NULL; 4536 4537 if (device_get_parent(child) != dev) 4538 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4539 type, rid, r)); 4540 4541 rl = BUS_GET_RESOURCE_LIST(dev, child); 4542 if (!rl) 4543 return (EINVAL); 4544 4545 return (resource_list_release(rl, dev, child, type, rid, r)); 4546 } 4547 4548 /** 4549 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4550 * 4551 * This implementation of BUS_ALLOC_RESOURCE() uses the 4552 * resource_list_alloc() function to do most of the work. It calls 4553 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4554 */ 4555 struct resource * 4556 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4557 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4558 { 4559 struct resource_list * rl = NULL; 4560 4561 if (device_get_parent(child) != dev) 4562 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4563 type, rid, start, end, count, flags)); 4564 4565 rl = BUS_GET_RESOURCE_LIST(dev, child); 4566 if (!rl) 4567 return (NULL); 4568 4569 return (resource_list_alloc(rl, dev, child, type, rid, 4570 start, end, count, flags)); 4571 } 4572 4573 /** 4574 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4575 * 4576 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4577 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4578 */ 4579 int 4580 bus_generic_child_present(device_t dev, device_t child) 4581 { 4582 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4583 } 4584 4585 int 4586 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4587 { 4588 if (dev->parent) 4589 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4590 4591 return (ENOENT); 4592 } 4593 4594 /** 4595 * @brief Helper function for implementing BUS_RESCAN(). 4596 * 4597 * This null implementation of BUS_RESCAN() always fails to indicate 4598 * the bus does not support rescanning. 4599 */ 4600 int 4601 bus_null_rescan(device_t dev) 4602 { 4603 return (ENXIO); 4604 } 4605 4606 /* 4607 * Some convenience functions to make it easier for drivers to use the 4608 * resource-management functions. All these really do is hide the 4609 * indirection through the parent's method table, making for slightly 4610 * less-wordy code. In the future, it might make sense for this code 4611 * to maintain some sort of a list of resources allocated by each device. 4612 */ 4613 4614 int 4615 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4616 struct resource **res) 4617 { 4618 int i; 4619 4620 for (i = 0; rs[i].type != -1; i++) 4621 res[i] = NULL; 4622 for (i = 0; rs[i].type != -1; i++) { 4623 res[i] = bus_alloc_resource_any(dev, 4624 rs[i].type, &rs[i].rid, rs[i].flags); 4625 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4626 bus_release_resources(dev, rs, res); 4627 return (ENXIO); 4628 } 4629 } 4630 return (0); 4631 } 4632 4633 void 4634 bus_release_resources(device_t dev, const struct resource_spec *rs, 4635 struct resource **res) 4636 { 4637 int i; 4638 4639 for (i = 0; rs[i].type != -1; i++) 4640 if (res[i] != NULL) { 4641 bus_release_resource( 4642 dev, rs[i].type, rs[i].rid, res[i]); 4643 res[i] = NULL; 4644 } 4645 } 4646 4647 /** 4648 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4649 * 4650 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4651 * parent of @p dev. 4652 */ 4653 struct resource * 4654 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4655 rman_res_t end, rman_res_t count, u_int flags) 4656 { 4657 struct resource *res; 4658 4659 if (dev->parent == NULL) 4660 return (NULL); 4661 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4662 count, flags); 4663 return (res); 4664 } 4665 4666 /** 4667 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4668 * 4669 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4670 * parent of @p dev. 4671 */ 4672 int 4673 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4674 rman_res_t end) 4675 { 4676 if (dev->parent == NULL) 4677 return (EINVAL); 4678 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4679 } 4680 4681 /** 4682 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4683 * 4684 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4685 * parent of @p dev. 4686 */ 4687 int 4688 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4689 { 4690 if (dev->parent == NULL) 4691 return (EINVAL); 4692 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4693 } 4694 4695 /** 4696 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4697 * 4698 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4699 * parent of @p dev. 4700 */ 4701 int 4702 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4703 { 4704 if (dev->parent == NULL) 4705 return (EINVAL); 4706 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4707 } 4708 4709 /** 4710 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4711 * 4712 * This function simply calls the BUS_MAP_RESOURCE() method of the 4713 * parent of @p dev. 4714 */ 4715 int 4716 bus_map_resource(device_t dev, int type, struct resource *r, 4717 struct resource_map_request *args, struct resource_map *map) 4718 { 4719 if (dev->parent == NULL) 4720 return (EINVAL); 4721 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4722 } 4723 4724 /** 4725 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4726 * 4727 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4728 * parent of @p dev. 4729 */ 4730 int 4731 bus_unmap_resource(device_t dev, int type, struct resource *r, 4732 struct resource_map *map) 4733 { 4734 if (dev->parent == NULL) 4735 return (EINVAL); 4736 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4737 } 4738 4739 /** 4740 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4741 * 4742 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4743 * parent of @p dev. 4744 */ 4745 int 4746 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4747 { 4748 int rv; 4749 4750 if (dev->parent == NULL) 4751 return (EINVAL); 4752 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4753 return (rv); 4754 } 4755 4756 /** 4757 * @brief Wrapper function for BUS_SETUP_INTR(). 4758 * 4759 * This function simply calls the BUS_SETUP_INTR() method of the 4760 * parent of @p dev. 4761 */ 4762 int 4763 bus_setup_intr(device_t dev, struct resource *r, int flags, 4764 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4765 { 4766 int error; 4767 4768 if (dev->parent == NULL) 4769 return (EINVAL); 4770 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4771 arg, cookiep); 4772 if (error != 0) 4773 return (error); 4774 if (handler != NULL && !(flags & INTR_MPSAFE)) 4775 device_printf(dev, "[GIANT-LOCKED]\n"); 4776 return (0); 4777 } 4778 4779 /** 4780 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4781 * 4782 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4783 * parent of @p dev. 4784 */ 4785 int 4786 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4787 { 4788 if (dev->parent == NULL) 4789 return (EINVAL); 4790 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4791 } 4792 4793 /** 4794 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4795 * 4796 * This function simply calls the BUS_SUSPEND_INTR() method of the 4797 * parent of @p dev. 4798 */ 4799 int 4800 bus_suspend_intr(device_t dev, struct resource *r) 4801 { 4802 if (dev->parent == NULL) 4803 return (EINVAL); 4804 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4805 } 4806 4807 /** 4808 * @brief Wrapper function for BUS_RESUME_INTR(). 4809 * 4810 * This function simply calls the BUS_RESUME_INTR() method of the 4811 * parent of @p dev. 4812 */ 4813 int 4814 bus_resume_intr(device_t dev, struct resource *r) 4815 { 4816 if (dev->parent == NULL) 4817 return (EINVAL); 4818 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4819 } 4820 4821 /** 4822 * @brief Wrapper function for BUS_BIND_INTR(). 4823 * 4824 * This function simply calls the BUS_BIND_INTR() method of the 4825 * parent of @p dev. 4826 */ 4827 int 4828 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4829 { 4830 if (dev->parent == NULL) 4831 return (EINVAL); 4832 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4833 } 4834 4835 /** 4836 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4837 * 4838 * This function first formats the requested description into a 4839 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4840 * the parent of @p dev. 4841 */ 4842 int 4843 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4844 const char *fmt, ...) 4845 { 4846 va_list ap; 4847 char descr[MAXCOMLEN + 1]; 4848 4849 if (dev->parent == NULL) 4850 return (EINVAL); 4851 va_start(ap, fmt); 4852 vsnprintf(descr, sizeof(descr), fmt, ap); 4853 va_end(ap); 4854 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4855 } 4856 4857 /** 4858 * @brief Wrapper function for BUS_SET_RESOURCE(). 4859 * 4860 * This function simply calls the BUS_SET_RESOURCE() method of the 4861 * parent of @p dev. 4862 */ 4863 int 4864 bus_set_resource(device_t dev, int type, int rid, 4865 rman_res_t start, rman_res_t count) 4866 { 4867 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4868 start, count)); 4869 } 4870 4871 /** 4872 * @brief Wrapper function for BUS_GET_RESOURCE(). 4873 * 4874 * This function simply calls the BUS_GET_RESOURCE() method of the 4875 * parent of @p dev. 4876 */ 4877 int 4878 bus_get_resource(device_t dev, int type, int rid, 4879 rman_res_t *startp, rman_res_t *countp) 4880 { 4881 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4882 startp, countp)); 4883 } 4884 4885 /** 4886 * @brief Wrapper function for BUS_GET_RESOURCE(). 4887 * 4888 * This function simply calls the BUS_GET_RESOURCE() method of the 4889 * parent of @p dev and returns the start value. 4890 */ 4891 rman_res_t 4892 bus_get_resource_start(device_t dev, int type, int rid) 4893 { 4894 rman_res_t start; 4895 rman_res_t count; 4896 int error; 4897 4898 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4899 &start, &count); 4900 if (error) 4901 return (0); 4902 return (start); 4903 } 4904 4905 /** 4906 * @brief Wrapper function for BUS_GET_RESOURCE(). 4907 * 4908 * This function simply calls the BUS_GET_RESOURCE() method of the 4909 * parent of @p dev and returns the count value. 4910 */ 4911 rman_res_t 4912 bus_get_resource_count(device_t dev, int type, int rid) 4913 { 4914 rman_res_t start; 4915 rman_res_t count; 4916 int error; 4917 4918 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4919 &start, &count); 4920 if (error) 4921 return (0); 4922 return (count); 4923 } 4924 4925 /** 4926 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4927 * 4928 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4929 * parent of @p dev. 4930 */ 4931 void 4932 bus_delete_resource(device_t dev, int type, int rid) 4933 { 4934 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4935 } 4936 4937 /** 4938 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4939 * 4940 * This function simply calls the BUS_CHILD_PRESENT() method of the 4941 * parent of @p dev. 4942 */ 4943 int 4944 bus_child_present(device_t child) 4945 { 4946 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4947 } 4948 4949 /** 4950 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4951 * 4952 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4953 * parent of @p dev. 4954 */ 4955 int 4956 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4957 { 4958 device_t parent; 4959 4960 parent = device_get_parent(child); 4961 if (parent == NULL) { 4962 *buf = '\0'; 4963 return (0); 4964 } 4965 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4966 } 4967 4968 /** 4969 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4970 * 4971 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4972 * parent of @p dev. 4973 */ 4974 int 4975 bus_child_location_str(device_t child, char *buf, size_t buflen) 4976 { 4977 device_t parent; 4978 4979 parent = device_get_parent(child); 4980 if (parent == NULL) { 4981 *buf = '\0'; 4982 return (0); 4983 } 4984 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4985 } 4986 4987 /** 4988 * @brief Wrapper function for bus_child_pnpinfo_str using sbuf 4989 * 4990 * A convenient wrapper frunction for bus_child_pnpinfo_str that allows 4991 * us to splat that into an sbuf. It uses unholy knowledge of sbuf to 4992 * accomplish this, however. It is an interim function until we can convert 4993 * this interface more fully. 4994 */ 4995 /* Note: we reach inside of sbuf because it's API isn't rich enough to do this */ 4996 #define SPACE(s) ((s)->s_size - (s)->s_len) 4997 #define EOB(s) ((s)->s_buf + (s)->s_len) 4998 4999 static int 5000 bus_child_pnpinfo_sb(device_t dev, struct sbuf *sb) 5001 { 5002 char *p; 5003 ssize_t space; 5004 5005 MPASS((sb->s_flags & SBUF_INCLUDENUL) == 0); 5006 MPASS(sb->s_size >= sb->s_len); 5007 if (sb->s_error != 0) 5008 return (-1); 5009 space = SPACE(sb); 5010 if (space <= 1) { 5011 sb->s_error = ENOMEM; 5012 return (-1); 5013 } 5014 p = EOB(sb); 5015 *p = '\0'; /* sbuf buffer isn't NUL terminated until sbuf_finish() */ 5016 bus_child_pnpinfo_str(dev, p, space); 5017 sb->s_len += strlen(p); 5018 return (0); 5019 } 5020 5021 /** 5022 * @brief Wrapper function for bus_child_pnpinfo_str using sbuf 5023 * 5024 * A convenient wrapper frunction for bus_child_pnpinfo_str that allows 5025 * us to splat that into an sbuf. It uses unholy knowledge of sbuf to 5026 * accomplish this, however. It is an interim function until we can convert 5027 * this interface more fully. 5028 */ 5029 static int 5030 bus_child_location_sb(device_t dev, struct sbuf *sb) 5031 { 5032 char *p; 5033 ssize_t space; 5034 5035 MPASS((sb->s_flags & SBUF_INCLUDENUL) == 0); 5036 MPASS(sb->s_size >= sb->s_len); 5037 if (sb->s_error != 0) 5038 return (-1); 5039 space = SPACE(sb); 5040 if (space <= 1) { 5041 sb->s_error = ENOMEM; 5042 return (-1); 5043 } 5044 p = EOB(sb); 5045 *p = '\0'; /* sbuf buffer isn't NUL terminated until sbuf_finish() */ 5046 bus_child_location_str(dev, p, space); 5047 sb->s_len += strlen(p); 5048 return (0); 5049 } 5050 #undef SPACE 5051 #undef EOB 5052 5053 /** 5054 * @brief Wrapper function for BUS_GET_CPUS(). 5055 * 5056 * This function simply calls the BUS_GET_CPUS() method of the 5057 * parent of @p dev. 5058 */ 5059 int 5060 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 5061 { 5062 device_t parent; 5063 5064 parent = device_get_parent(dev); 5065 if (parent == NULL) 5066 return (EINVAL); 5067 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 5068 } 5069 5070 /** 5071 * @brief Wrapper function for BUS_GET_DMA_TAG(). 5072 * 5073 * This function simply calls the BUS_GET_DMA_TAG() method of the 5074 * parent of @p dev. 5075 */ 5076 bus_dma_tag_t 5077 bus_get_dma_tag(device_t dev) 5078 { 5079 device_t parent; 5080 5081 parent = device_get_parent(dev); 5082 if (parent == NULL) 5083 return (NULL); 5084 return (BUS_GET_DMA_TAG(parent, dev)); 5085 } 5086 5087 /** 5088 * @brief Wrapper function for BUS_GET_BUS_TAG(). 5089 * 5090 * This function simply calls the BUS_GET_BUS_TAG() method of the 5091 * parent of @p dev. 5092 */ 5093 bus_space_tag_t 5094 bus_get_bus_tag(device_t dev) 5095 { 5096 device_t parent; 5097 5098 parent = device_get_parent(dev); 5099 if (parent == NULL) 5100 return ((bus_space_tag_t)0); 5101 return (BUS_GET_BUS_TAG(parent, dev)); 5102 } 5103 5104 /** 5105 * @brief Wrapper function for BUS_GET_DOMAIN(). 5106 * 5107 * This function simply calls the BUS_GET_DOMAIN() method of the 5108 * parent of @p dev. 5109 */ 5110 int 5111 bus_get_domain(device_t dev, int *domain) 5112 { 5113 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 5114 } 5115 5116 /* Resume all devices and then notify userland that we're up again. */ 5117 static int 5118 root_resume(device_t dev) 5119 { 5120 int error; 5121 5122 error = bus_generic_resume(dev); 5123 if (error == 0) { 5124 devctl_notify("kern", "power", "resume", NULL); /* Deprecated gone in 14 */ 5125 devctl_notify("kernel", "power", "resume", NULL); 5126 } 5127 return (error); 5128 } 5129 5130 static int 5131 root_print_child(device_t dev, device_t child) 5132 { 5133 int retval = 0; 5134 5135 retval += bus_print_child_header(dev, child); 5136 retval += printf("\n"); 5137 5138 return (retval); 5139 } 5140 5141 static int 5142 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 5143 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 5144 { 5145 /* 5146 * If an interrupt mapping gets to here something bad has happened. 5147 */ 5148 panic("root_setup_intr"); 5149 } 5150 5151 /* 5152 * If we get here, assume that the device is permanent and really is 5153 * present in the system. Removable bus drivers are expected to intercept 5154 * this call long before it gets here. We return -1 so that drivers that 5155 * really care can check vs -1 or some ERRNO returned higher in the food 5156 * chain. 5157 */ 5158 static int 5159 root_child_present(device_t dev, device_t child) 5160 { 5161 return (-1); 5162 } 5163 5164 static int 5165 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 5166 cpuset_t *cpuset) 5167 { 5168 switch (op) { 5169 case INTR_CPUS: 5170 /* Default to returning the set of all CPUs. */ 5171 if (setsize != sizeof(cpuset_t)) 5172 return (EINVAL); 5173 *cpuset = all_cpus; 5174 return (0); 5175 default: 5176 return (EINVAL); 5177 } 5178 } 5179 5180 static kobj_method_t root_methods[] = { 5181 /* Device interface */ 5182 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 5183 KOBJMETHOD(device_suspend, bus_generic_suspend), 5184 KOBJMETHOD(device_resume, root_resume), 5185 5186 /* Bus interface */ 5187 KOBJMETHOD(bus_print_child, root_print_child), 5188 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 5189 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 5190 KOBJMETHOD(bus_setup_intr, root_setup_intr), 5191 KOBJMETHOD(bus_child_present, root_child_present), 5192 KOBJMETHOD(bus_get_cpus, root_get_cpus), 5193 5194 KOBJMETHOD_END 5195 }; 5196 5197 static driver_t root_driver = { 5198 "root", 5199 root_methods, 5200 1, /* no softc */ 5201 }; 5202 5203 device_t root_bus; 5204 devclass_t root_devclass; 5205 5206 static int 5207 root_bus_module_handler(module_t mod, int what, void* arg) 5208 { 5209 switch (what) { 5210 case MOD_LOAD: 5211 TAILQ_INIT(&bus_data_devices); 5212 kobj_class_compile((kobj_class_t) &root_driver); 5213 root_bus = make_device(NULL, "root", 0); 5214 root_bus->desc = "System root bus"; 5215 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 5216 root_bus->driver = &root_driver; 5217 root_bus->state = DS_ATTACHED; 5218 root_devclass = devclass_find_internal("root", NULL, FALSE); 5219 devinit(); 5220 return (0); 5221 5222 case MOD_SHUTDOWN: 5223 device_shutdown(root_bus); 5224 return (0); 5225 default: 5226 return (EOPNOTSUPP); 5227 } 5228 5229 return (0); 5230 } 5231 5232 static moduledata_t root_bus_mod = { 5233 "rootbus", 5234 root_bus_module_handler, 5235 NULL 5236 }; 5237 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 5238 5239 /** 5240 * @brief Automatically configure devices 5241 * 5242 * This function begins the autoconfiguration process by calling 5243 * device_probe_and_attach() for each child of the @c root0 device. 5244 */ 5245 void 5246 root_bus_configure(void) 5247 { 5248 PDEBUG((".")); 5249 5250 /* Eventually this will be split up, but this is sufficient for now. */ 5251 bus_set_pass(BUS_PASS_DEFAULT); 5252 } 5253 5254 /** 5255 * @brief Module handler for registering device drivers 5256 * 5257 * This module handler is used to automatically register device 5258 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 5259 * devclass_add_driver() for the driver described by the 5260 * driver_module_data structure pointed to by @p arg 5261 */ 5262 int 5263 driver_module_handler(module_t mod, int what, void *arg) 5264 { 5265 struct driver_module_data *dmd; 5266 devclass_t bus_devclass; 5267 kobj_class_t driver; 5268 int error, pass; 5269 5270 dmd = (struct driver_module_data *)arg; 5271 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 5272 error = 0; 5273 5274 switch (what) { 5275 case MOD_LOAD: 5276 if (dmd->dmd_chainevh) 5277 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5278 5279 pass = dmd->dmd_pass; 5280 driver = dmd->dmd_driver; 5281 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 5282 DRIVERNAME(driver), dmd->dmd_busname, pass)); 5283 error = devclass_add_driver(bus_devclass, driver, pass, 5284 dmd->dmd_devclass); 5285 break; 5286 5287 case MOD_UNLOAD: 5288 PDEBUG(("Unloading module: driver %s from bus %s", 5289 DRIVERNAME(dmd->dmd_driver), 5290 dmd->dmd_busname)); 5291 error = devclass_delete_driver(bus_devclass, 5292 dmd->dmd_driver); 5293 5294 if (!error && dmd->dmd_chainevh) 5295 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5296 break; 5297 case MOD_QUIESCE: 5298 PDEBUG(("Quiesce module: driver %s from bus %s", 5299 DRIVERNAME(dmd->dmd_driver), 5300 dmd->dmd_busname)); 5301 error = devclass_quiesce_driver(bus_devclass, 5302 dmd->dmd_driver); 5303 5304 if (!error && dmd->dmd_chainevh) 5305 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5306 break; 5307 default: 5308 error = EOPNOTSUPP; 5309 break; 5310 } 5311 5312 return (error); 5313 } 5314 5315 /** 5316 * @brief Enumerate all hinted devices for this bus. 5317 * 5318 * Walks through the hints for this bus and calls the bus_hinted_child 5319 * routine for each one it fines. It searches first for the specific 5320 * bus that's being probed for hinted children (eg isa0), and then for 5321 * generic children (eg isa). 5322 * 5323 * @param dev bus device to enumerate 5324 */ 5325 void 5326 bus_enumerate_hinted_children(device_t bus) 5327 { 5328 int i; 5329 const char *dname, *busname; 5330 int dunit; 5331 5332 /* 5333 * enumerate all devices on the specific bus 5334 */ 5335 busname = device_get_nameunit(bus); 5336 i = 0; 5337 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5338 BUS_HINTED_CHILD(bus, dname, dunit); 5339 5340 /* 5341 * and all the generic ones. 5342 */ 5343 busname = device_get_name(bus); 5344 i = 0; 5345 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5346 BUS_HINTED_CHILD(bus, dname, dunit); 5347 } 5348 5349 #ifdef BUS_DEBUG 5350 5351 /* the _short versions avoid iteration by not calling anything that prints 5352 * more than oneliners. I love oneliners. 5353 */ 5354 5355 static void 5356 print_device_short(device_t dev, int indent) 5357 { 5358 if (!dev) 5359 return; 5360 5361 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5362 dev->unit, dev->desc, 5363 (dev->parent? "":"no "), 5364 (TAILQ_EMPTY(&dev->children)? "no ":""), 5365 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5366 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5367 (dev->flags&DF_WILDCARD? "wildcard,":""), 5368 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5369 (dev->flags&DF_REBID? "rebiddable,":""), 5370 (dev->flags&DF_SUSPENDED? "suspended,":""), 5371 (dev->ivars? "":"no "), 5372 (dev->softc? "":"no "), 5373 dev->busy)); 5374 } 5375 5376 static void 5377 print_device(device_t dev, int indent) 5378 { 5379 if (!dev) 5380 return; 5381 5382 print_device_short(dev, indent); 5383 5384 indentprintf(("Parent:\n")); 5385 print_device_short(dev->parent, indent+1); 5386 indentprintf(("Driver:\n")); 5387 print_driver_short(dev->driver, indent+1); 5388 indentprintf(("Devclass:\n")); 5389 print_devclass_short(dev->devclass, indent+1); 5390 } 5391 5392 void 5393 print_device_tree_short(device_t dev, int indent) 5394 /* print the device and all its children (indented) */ 5395 { 5396 device_t child; 5397 5398 if (!dev) 5399 return; 5400 5401 print_device_short(dev, indent); 5402 5403 TAILQ_FOREACH(child, &dev->children, link) { 5404 print_device_tree_short(child, indent+1); 5405 } 5406 } 5407 5408 void 5409 print_device_tree(device_t dev, int indent) 5410 /* print the device and all its children (indented) */ 5411 { 5412 device_t child; 5413 5414 if (!dev) 5415 return; 5416 5417 print_device(dev, indent); 5418 5419 TAILQ_FOREACH(child, &dev->children, link) { 5420 print_device_tree(child, indent+1); 5421 } 5422 } 5423 5424 static void 5425 print_driver_short(driver_t *driver, int indent) 5426 { 5427 if (!driver) 5428 return; 5429 5430 indentprintf(("driver %s: softc size = %zd\n", 5431 driver->name, driver->size)); 5432 } 5433 5434 static void 5435 print_driver(driver_t *driver, int indent) 5436 { 5437 if (!driver) 5438 return; 5439 5440 print_driver_short(driver, indent); 5441 } 5442 5443 static void 5444 print_driver_list(driver_list_t drivers, int indent) 5445 { 5446 driverlink_t driver; 5447 5448 TAILQ_FOREACH(driver, &drivers, link) { 5449 print_driver(driver->driver, indent); 5450 } 5451 } 5452 5453 static void 5454 print_devclass_short(devclass_t dc, int indent) 5455 { 5456 if ( !dc ) 5457 return; 5458 5459 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5460 } 5461 5462 static void 5463 print_devclass(devclass_t dc, int indent) 5464 { 5465 int i; 5466 5467 if ( !dc ) 5468 return; 5469 5470 print_devclass_short(dc, indent); 5471 indentprintf(("Drivers:\n")); 5472 print_driver_list(dc->drivers, indent+1); 5473 5474 indentprintf(("Devices:\n")); 5475 for (i = 0; i < dc->maxunit; i++) 5476 if (dc->devices[i]) 5477 print_device(dc->devices[i], indent+1); 5478 } 5479 5480 void 5481 print_devclass_list_short(void) 5482 { 5483 devclass_t dc; 5484 5485 printf("Short listing of devclasses, drivers & devices:\n"); 5486 TAILQ_FOREACH(dc, &devclasses, link) { 5487 print_devclass_short(dc, 0); 5488 } 5489 } 5490 5491 void 5492 print_devclass_list(void) 5493 { 5494 devclass_t dc; 5495 5496 printf("Full listing of devclasses, drivers & devices:\n"); 5497 TAILQ_FOREACH(dc, &devclasses, link) { 5498 print_devclass(dc, 0); 5499 } 5500 } 5501 5502 #endif 5503 5504 /* 5505 * User-space access to the device tree. 5506 * 5507 * We implement a small set of nodes: 5508 * 5509 * hw.bus Single integer read method to obtain the 5510 * current generation count. 5511 * hw.bus.devices Reads the entire device tree in flat space. 5512 * hw.bus.rman Resource manager interface 5513 * 5514 * We might like to add the ability to scan devclasses and/or drivers to 5515 * determine what else is currently loaded/available. 5516 */ 5517 5518 static int 5519 sysctl_bus_info(SYSCTL_HANDLER_ARGS) 5520 { 5521 struct u_businfo ubus; 5522 5523 ubus.ub_version = BUS_USER_VERSION; 5524 ubus.ub_generation = bus_data_generation; 5525 5526 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5527 } 5528 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | 5529 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", 5530 "bus-related data"); 5531 5532 static int 5533 sysctl_devices(SYSCTL_HANDLER_ARGS) 5534 { 5535 struct sbuf sb; 5536 int *name = (int *)arg1; 5537 u_int namelen = arg2; 5538 int index; 5539 device_t dev; 5540 struct u_device *udev; 5541 int error; 5542 5543 if (namelen != 2) 5544 return (EINVAL); 5545 5546 if (bus_data_generation_check(name[0])) 5547 return (EINVAL); 5548 5549 index = name[1]; 5550 5551 /* 5552 * Scan the list of devices, looking for the requested index. 5553 */ 5554 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5555 if (index-- == 0) 5556 break; 5557 } 5558 if (dev == NULL) 5559 return (ENOENT); 5560 5561 /* 5562 * Populate the return item, careful not to overflow the buffer. 5563 */ 5564 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5565 if (udev == NULL) 5566 return (ENOMEM); 5567 udev->dv_handle = (uintptr_t)dev; 5568 udev->dv_parent = (uintptr_t)dev->parent; 5569 udev->dv_devflags = dev->devflags; 5570 udev->dv_flags = dev->flags; 5571 udev->dv_state = dev->state; 5572 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN); 5573 if (dev->nameunit != NULL) 5574 sbuf_cat(&sb, dev->nameunit); 5575 sbuf_putc(&sb, '\0'); 5576 if (dev->desc != NULL) 5577 sbuf_cat(&sb, dev->desc); 5578 sbuf_putc(&sb, '\0'); 5579 if (dev->driver != NULL) 5580 sbuf_cat(&sb, dev->driver->name); 5581 sbuf_putc(&sb, '\0'); 5582 bus_child_pnpinfo_sb(dev, &sb); 5583 sbuf_putc(&sb, '\0'); 5584 bus_child_location_sb(dev, &sb); 5585 sbuf_putc(&sb, '\0'); 5586 error = sbuf_finish(&sb); 5587 if (error == 0) 5588 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5589 sbuf_delete(&sb); 5590 free(udev, M_BUS); 5591 return (error); 5592 } 5593 5594 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, 5595 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, 5596 "system device tree"); 5597 5598 int 5599 bus_data_generation_check(int generation) 5600 { 5601 if (generation != bus_data_generation) 5602 return (1); 5603 5604 /* XXX generate optimised lists here? */ 5605 return (0); 5606 } 5607 5608 void 5609 bus_data_generation_update(void) 5610 { 5611 atomic_add_int(&bus_data_generation, 1); 5612 } 5613 5614 int 5615 bus_free_resource(device_t dev, int type, struct resource *r) 5616 { 5617 if (r == NULL) 5618 return (0); 5619 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5620 } 5621 5622 device_t 5623 device_lookup_by_name(const char *name) 5624 { 5625 device_t dev; 5626 5627 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5628 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5629 return (dev); 5630 } 5631 return (NULL); 5632 } 5633 5634 /* 5635 * /dev/devctl2 implementation. The existing /dev/devctl device has 5636 * implicit semantics on open, so it could not be reused for this. 5637 * Another option would be to call this /dev/bus? 5638 */ 5639 static int 5640 find_device(struct devreq *req, device_t *devp) 5641 { 5642 device_t dev; 5643 5644 /* 5645 * First, ensure that the name is nul terminated. 5646 */ 5647 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5648 return (EINVAL); 5649 5650 /* 5651 * Second, try to find an attached device whose name matches 5652 * 'name'. 5653 */ 5654 dev = device_lookup_by_name(req->dr_name); 5655 if (dev != NULL) { 5656 *devp = dev; 5657 return (0); 5658 } 5659 5660 /* Finally, give device enumerators a chance. */ 5661 dev = NULL; 5662 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5663 if (dev == NULL) 5664 return (ENOENT); 5665 *devp = dev; 5666 return (0); 5667 } 5668 5669 static bool 5670 driver_exists(device_t bus, const char *driver) 5671 { 5672 devclass_t dc; 5673 5674 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5675 if (devclass_find_driver_internal(dc, driver) != NULL) 5676 return (true); 5677 } 5678 return (false); 5679 } 5680 5681 static void 5682 device_gen_nomatch(device_t dev) 5683 { 5684 device_t child; 5685 5686 if (dev->flags & DF_NEEDNOMATCH && 5687 dev->state == DS_NOTPRESENT) { 5688 BUS_PROBE_NOMATCH(dev->parent, dev); 5689 devnomatch(dev); 5690 dev->flags |= DF_DONENOMATCH; 5691 } 5692 dev->flags &= ~DF_NEEDNOMATCH; 5693 TAILQ_FOREACH(child, &dev->children, link) { 5694 device_gen_nomatch(child); 5695 } 5696 } 5697 5698 static void 5699 device_do_deferred_actions(void) 5700 { 5701 devclass_t dc; 5702 driverlink_t dl; 5703 5704 /* 5705 * Walk through the devclasses to find all the drivers we've tagged as 5706 * deferred during the freeze and call the driver added routines. They 5707 * have already been added to the lists in the background, so the driver 5708 * added routines that trigger a probe will have all the right bidders 5709 * for the probe auction. 5710 */ 5711 TAILQ_FOREACH(dc, &devclasses, link) { 5712 TAILQ_FOREACH(dl, &dc->drivers, link) { 5713 if (dl->flags & DL_DEFERRED_PROBE) { 5714 devclass_driver_added(dc, dl->driver); 5715 dl->flags &= ~DL_DEFERRED_PROBE; 5716 } 5717 } 5718 } 5719 5720 /* 5721 * We also defer no-match events during a freeze. Walk the tree and 5722 * generate all the pent-up events that are still relevant. 5723 */ 5724 device_gen_nomatch(root_bus); 5725 bus_data_generation_update(); 5726 } 5727 5728 static int 5729 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5730 struct thread *td) 5731 { 5732 struct devreq *req; 5733 device_t dev; 5734 int error, old; 5735 5736 /* Locate the device to control. */ 5737 mtx_lock(&Giant); 5738 req = (struct devreq *)data; 5739 switch (cmd) { 5740 case DEV_ATTACH: 5741 case DEV_DETACH: 5742 case DEV_ENABLE: 5743 case DEV_DISABLE: 5744 case DEV_SUSPEND: 5745 case DEV_RESUME: 5746 case DEV_SET_DRIVER: 5747 case DEV_CLEAR_DRIVER: 5748 case DEV_RESCAN: 5749 case DEV_DELETE: 5750 case DEV_RESET: 5751 error = priv_check(td, PRIV_DRIVER); 5752 if (error == 0) 5753 error = find_device(req, &dev); 5754 break; 5755 case DEV_FREEZE: 5756 case DEV_THAW: 5757 error = priv_check(td, PRIV_DRIVER); 5758 break; 5759 default: 5760 error = ENOTTY; 5761 break; 5762 } 5763 if (error) { 5764 mtx_unlock(&Giant); 5765 return (error); 5766 } 5767 5768 /* Perform the requested operation. */ 5769 switch (cmd) { 5770 case DEV_ATTACH: 5771 if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0) 5772 error = EBUSY; 5773 else if (!device_is_enabled(dev)) 5774 error = ENXIO; 5775 else 5776 error = device_probe_and_attach(dev); 5777 break; 5778 case DEV_DETACH: 5779 if (!device_is_attached(dev)) { 5780 error = ENXIO; 5781 break; 5782 } 5783 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5784 error = device_quiesce(dev); 5785 if (error) 5786 break; 5787 } 5788 error = device_detach(dev); 5789 break; 5790 case DEV_ENABLE: 5791 if (device_is_enabled(dev)) { 5792 error = EBUSY; 5793 break; 5794 } 5795 5796 /* 5797 * If the device has been probed but not attached (e.g. 5798 * when it has been disabled by a loader hint), just 5799 * attach the device rather than doing a full probe. 5800 */ 5801 device_enable(dev); 5802 if (device_is_alive(dev)) { 5803 /* 5804 * If the device was disabled via a hint, clear 5805 * the hint. 5806 */ 5807 if (resource_disabled(dev->driver->name, dev->unit)) 5808 resource_unset_value(dev->driver->name, 5809 dev->unit, "disabled"); 5810 error = device_attach(dev); 5811 } else 5812 error = device_probe_and_attach(dev); 5813 break; 5814 case DEV_DISABLE: 5815 if (!device_is_enabled(dev)) { 5816 error = ENXIO; 5817 break; 5818 } 5819 5820 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5821 error = device_quiesce(dev); 5822 if (error) 5823 break; 5824 } 5825 5826 /* 5827 * Force DF_FIXEDCLASS on around detach to preserve 5828 * the existing name. 5829 */ 5830 old = dev->flags; 5831 dev->flags |= DF_FIXEDCLASS; 5832 error = device_detach(dev); 5833 if (!(old & DF_FIXEDCLASS)) 5834 dev->flags &= ~DF_FIXEDCLASS; 5835 if (error == 0) 5836 device_disable(dev); 5837 break; 5838 case DEV_SUSPEND: 5839 if (device_is_suspended(dev)) { 5840 error = EBUSY; 5841 break; 5842 } 5843 if (device_get_parent(dev) == NULL) { 5844 error = EINVAL; 5845 break; 5846 } 5847 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5848 break; 5849 case DEV_RESUME: 5850 if (!device_is_suspended(dev)) { 5851 error = EINVAL; 5852 break; 5853 } 5854 if (device_get_parent(dev) == NULL) { 5855 error = EINVAL; 5856 break; 5857 } 5858 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5859 break; 5860 case DEV_SET_DRIVER: { 5861 devclass_t dc; 5862 char driver[128]; 5863 5864 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5865 if (error) 5866 break; 5867 if (driver[0] == '\0') { 5868 error = EINVAL; 5869 break; 5870 } 5871 if (dev->devclass != NULL && 5872 strcmp(driver, dev->devclass->name) == 0) 5873 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5874 break; 5875 5876 /* 5877 * Scan drivers for this device's bus looking for at 5878 * least one matching driver. 5879 */ 5880 if (dev->parent == NULL) { 5881 error = EINVAL; 5882 break; 5883 } 5884 if (!driver_exists(dev->parent, driver)) { 5885 error = ENOENT; 5886 break; 5887 } 5888 dc = devclass_create(driver); 5889 if (dc == NULL) { 5890 error = ENOMEM; 5891 break; 5892 } 5893 5894 /* Detach device if necessary. */ 5895 if (device_is_attached(dev)) { 5896 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5897 error = device_detach(dev); 5898 else 5899 error = EBUSY; 5900 if (error) 5901 break; 5902 } 5903 5904 /* Clear any previously-fixed device class and unit. */ 5905 if (dev->flags & DF_FIXEDCLASS) 5906 devclass_delete_device(dev->devclass, dev); 5907 dev->flags |= DF_WILDCARD; 5908 dev->unit = -1; 5909 5910 /* Force the new device class. */ 5911 error = devclass_add_device(dc, dev); 5912 if (error) 5913 break; 5914 dev->flags |= DF_FIXEDCLASS; 5915 error = device_probe_and_attach(dev); 5916 break; 5917 } 5918 case DEV_CLEAR_DRIVER: 5919 if (!(dev->flags & DF_FIXEDCLASS)) { 5920 error = 0; 5921 break; 5922 } 5923 if (device_is_attached(dev)) { 5924 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5925 error = device_detach(dev); 5926 else 5927 error = EBUSY; 5928 if (error) 5929 break; 5930 } 5931 5932 dev->flags &= ~DF_FIXEDCLASS; 5933 dev->flags |= DF_WILDCARD; 5934 devclass_delete_device(dev->devclass, dev); 5935 error = device_probe_and_attach(dev); 5936 break; 5937 case DEV_RESCAN: 5938 if (!device_is_attached(dev)) { 5939 error = ENXIO; 5940 break; 5941 } 5942 error = BUS_RESCAN(dev); 5943 break; 5944 case DEV_DELETE: { 5945 device_t parent; 5946 5947 parent = device_get_parent(dev); 5948 if (parent == NULL) { 5949 error = EINVAL; 5950 break; 5951 } 5952 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5953 if (bus_child_present(dev) != 0) { 5954 error = EBUSY; 5955 break; 5956 } 5957 } 5958 5959 error = device_delete_child(parent, dev); 5960 break; 5961 } 5962 case DEV_FREEZE: 5963 if (device_frozen) 5964 error = EBUSY; 5965 else 5966 device_frozen = true; 5967 break; 5968 case DEV_THAW: 5969 if (!device_frozen) 5970 error = EBUSY; 5971 else { 5972 device_do_deferred_actions(); 5973 device_frozen = false; 5974 } 5975 break; 5976 case DEV_RESET: 5977 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 5978 error = EINVAL; 5979 break; 5980 } 5981 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 5982 req->dr_flags); 5983 break; 5984 } 5985 mtx_unlock(&Giant); 5986 return (error); 5987 } 5988 5989 static struct cdevsw devctl2_cdevsw = { 5990 .d_version = D_VERSION, 5991 .d_ioctl = devctl2_ioctl, 5992 .d_name = "devctl2", 5993 }; 5994 5995 static void 5996 devctl2_init(void) 5997 { 5998 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5999 UID_ROOT, GID_WHEEL, 0600, "devctl2"); 6000 } 6001 6002 /* 6003 * APIs to manage deprecation and obsolescence. 6004 */ 6005 static int obsolete_panic = 0; 6006 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 6007 "Panic when obsolete features are used (0 = never, 1 = if osbolete, " 6008 "2 = if deprecated)"); 6009 6010 static void 6011 gone_panic(int major, int running, const char *msg) 6012 { 6013 switch (obsolete_panic) 6014 { 6015 case 0: 6016 return; 6017 case 1: 6018 if (running < major) 6019 return; 6020 /* FALLTHROUGH */ 6021 default: 6022 panic("%s", msg); 6023 } 6024 } 6025 6026 void 6027 _gone_in(int major, const char *msg) 6028 { 6029 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 6030 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 6031 printf("Obsolete code will be removed soon: %s\n", msg); 6032 else 6033 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 6034 major, msg); 6035 } 6036 6037 void 6038 _gone_in_dev(device_t dev, int major, const char *msg) 6039 { 6040 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 6041 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 6042 device_printf(dev, 6043 "Obsolete code will be removed soon: %s\n", msg); 6044 else 6045 device_printf(dev, 6046 "Deprecated code (to be removed in FreeBSD %d): %s\n", 6047 major, msg); 6048 } 6049 6050 #ifdef DDB 6051 DB_SHOW_COMMAND(device, db_show_device) 6052 { 6053 device_t dev; 6054 6055 if (!have_addr) 6056 return; 6057 6058 dev = (device_t)addr; 6059 6060 db_printf("name: %s\n", device_get_nameunit(dev)); 6061 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 6062 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 6063 db_printf(" addr: %p\n", dev); 6064 db_printf(" parent: %p\n", dev->parent); 6065 db_printf(" softc: %p\n", dev->softc); 6066 db_printf(" ivars: %p\n", dev->ivars); 6067 } 6068 6069 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 6070 { 6071 device_t dev; 6072 6073 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 6074 db_show_device((db_expr_t)dev, true, count, modif); 6075 } 6076 } 6077 #endif 6078