xref: /freebsd/sys/kern/subr_bus.c (revision 3ff01b231dfa83d518854c63e7c9cd1debd1139e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997,1998,2003 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_bus.h"
33 #include "opt_ddb.h"
34 
35 #include <sys/param.h>
36 #include <sys/conf.h>
37 #include <sys/domainset.h>
38 #include <sys/eventhandler.h>
39 #include <sys/filio.h>
40 #include <sys/lock.h>
41 #include <sys/kernel.h>
42 #include <sys/kobj.h>
43 #include <sys/limits.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/mutex.h>
47 #include <sys/poll.h>
48 #include <sys/priv.h>
49 #include <sys/proc.h>
50 #include <sys/condvar.h>
51 #include <sys/queue.h>
52 #include <machine/bus.h>
53 #include <sys/random.h>
54 #include <sys/rman.h>
55 #include <sys/sbuf.h>
56 #include <sys/selinfo.h>
57 #include <sys/signalvar.h>
58 #include <sys/smp.h>
59 #include <sys/sysctl.h>
60 #include <sys/systm.h>
61 #include <sys/uio.h>
62 #include <sys/bus.h>
63 #include <sys/cpuset.h>
64 
65 #include <net/vnet.h>
66 
67 #include <machine/cpu.h>
68 #include <machine/stdarg.h>
69 
70 #include <vm/uma.h>
71 #include <vm/vm.h>
72 
73 #include <ddb/ddb.h>
74 
75 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
76     NULL);
77 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
78     NULL);
79 
80 /*
81  * Used to attach drivers to devclasses.
82  */
83 typedef struct driverlink *driverlink_t;
84 struct driverlink {
85 	kobj_class_t	driver;
86 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
87 	int		pass;
88 	int		flags;
89 #define DL_DEFERRED_PROBE	1	/* Probe deferred on this */
90 	TAILQ_ENTRY(driverlink) passlink;
91 };
92 
93 /*
94  * Forward declarations
95  */
96 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
97 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
98 typedef TAILQ_HEAD(device_list, _device) device_list_t;
99 
100 struct devclass {
101 	TAILQ_ENTRY(devclass) link;
102 	devclass_t	parent;		/* parent in devclass hierarchy */
103 	driver_list_t	drivers;	/* bus devclasses store drivers for bus */
104 	char		*name;
105 	device_t	*devices;	/* array of devices indexed by unit */
106 	int		maxunit;	/* size of devices array */
107 	int		flags;
108 #define DC_HAS_CHILDREN		1
109 
110 	struct sysctl_ctx_list sysctl_ctx;
111 	struct sysctl_oid *sysctl_tree;
112 };
113 
114 /**
115  * @brief Implementation of _device.
116  *
117  * The structure is named "_device" instead of "device" to avoid type confusion
118  * caused by other subsystems defining a (struct device).
119  */
120 struct _device {
121 	/*
122 	 * A device is a kernel object. The first field must be the
123 	 * current ops table for the object.
124 	 */
125 	KOBJ_FIELDS;
126 
127 	/*
128 	 * Device hierarchy.
129 	 */
130 	TAILQ_ENTRY(_device)	link;	/**< list of devices in parent */
131 	TAILQ_ENTRY(_device)	devlink; /**< global device list membership */
132 	device_t	parent;		/**< parent of this device  */
133 	device_list_t	children;	/**< list of child devices */
134 
135 	/*
136 	 * Details of this device.
137 	 */
138 	driver_t	*driver;	/**< current driver */
139 	devclass_t	devclass;	/**< current device class */
140 	int		unit;		/**< current unit number */
141 	char*		nameunit;	/**< name+unit e.g. foodev0 */
142 	char*		desc;		/**< driver specific description */
143 	int		busy;		/**< count of calls to device_busy() */
144 	device_state_t	state;		/**< current device state  */
145 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
146 	u_int		flags;		/**< internal device flags  */
147 	u_int	order;			/**< order from device_add_child_ordered() */
148 	void	*ivars;			/**< instance variables  */
149 	void	*softc;			/**< current driver's variables  */
150 
151 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
152 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
153 };
154 
155 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
156 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
157 
158 EVENTHANDLER_LIST_DEFINE(device_attach);
159 EVENTHANDLER_LIST_DEFINE(device_detach);
160 EVENTHANDLER_LIST_DEFINE(dev_lookup);
161 
162 static int bus_child_location_sb(device_t child, struct sbuf *sb);
163 static int bus_child_pnpinfo_sb(device_t child, struct sbuf *sb);
164 static void devctl2_init(void);
165 static bool device_frozen;
166 
167 #define DRIVERNAME(d)	((d)? d->name : "no driver")
168 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
169 
170 #ifdef BUS_DEBUG
171 
172 static int bus_debug = 1;
173 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
174     "Bus debug level");
175 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
176 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
177 
178 /**
179  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
180  * prevent syslog from deleting initial spaces
181  */
182 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
183 
184 static void print_device_short(device_t dev, int indent);
185 static void print_device(device_t dev, int indent);
186 void print_device_tree_short(device_t dev, int indent);
187 void print_device_tree(device_t dev, int indent);
188 static void print_driver_short(driver_t *driver, int indent);
189 static void print_driver(driver_t *driver, int indent);
190 static void print_driver_list(driver_list_t drivers, int indent);
191 static void print_devclass_short(devclass_t dc, int indent);
192 static void print_devclass(devclass_t dc, int indent);
193 void print_devclass_list_short(void);
194 void print_devclass_list(void);
195 
196 #else
197 /* Make the compiler ignore the function calls */
198 #define PDEBUG(a)			/* nop */
199 #define DEVICENAME(d)			/* nop */
200 
201 #define print_device_short(d,i)		/* nop */
202 #define print_device(d,i)		/* nop */
203 #define print_device_tree_short(d,i)	/* nop */
204 #define print_device_tree(d,i)		/* nop */
205 #define print_driver_short(d,i)		/* nop */
206 #define print_driver(d,i)		/* nop */
207 #define print_driver_list(d,i)		/* nop */
208 #define print_devclass_short(d,i)	/* nop */
209 #define print_devclass(d,i)		/* nop */
210 #define print_devclass_list_short()	/* nop */
211 #define print_devclass_list()		/* nop */
212 #endif
213 
214 /*
215  * dev sysctl tree
216  */
217 
218 enum {
219 	DEVCLASS_SYSCTL_PARENT,
220 };
221 
222 static int
223 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
224 {
225 	devclass_t dc = (devclass_t)arg1;
226 	const char *value;
227 
228 	switch (arg2) {
229 	case DEVCLASS_SYSCTL_PARENT:
230 		value = dc->parent ? dc->parent->name : "";
231 		break;
232 	default:
233 		return (EINVAL);
234 	}
235 	return (SYSCTL_OUT_STR(req, value));
236 }
237 
238 static void
239 devclass_sysctl_init(devclass_t dc)
240 {
241 	if (dc->sysctl_tree != NULL)
242 		return;
243 	sysctl_ctx_init(&dc->sysctl_ctx);
244 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
245 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
246 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
247 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
248 	    OID_AUTO, "%parent",
249 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
250 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
251 	    "parent class");
252 }
253 
254 enum {
255 	DEVICE_SYSCTL_DESC,
256 	DEVICE_SYSCTL_DRIVER,
257 	DEVICE_SYSCTL_LOCATION,
258 	DEVICE_SYSCTL_PNPINFO,
259 	DEVICE_SYSCTL_PARENT,
260 };
261 
262 static int
263 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
264 {
265 	struct sbuf sb;
266 	device_t dev = (device_t)arg1;
267 	int error;
268 
269 	sbuf_new_for_sysctl(&sb, NULL, 1024, req);
270 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
271 	switch (arg2) {
272 	case DEVICE_SYSCTL_DESC:
273 		sbuf_cat(&sb, dev->desc ? dev->desc : "");
274 		break;
275 	case DEVICE_SYSCTL_DRIVER:
276 		sbuf_cat(&sb, dev->driver ? dev->driver->name : "");
277 		break;
278 	case DEVICE_SYSCTL_LOCATION:
279 		bus_child_location_sb(dev, &sb);
280 		break;
281 	case DEVICE_SYSCTL_PNPINFO:
282 		bus_child_pnpinfo_sb(dev, &sb);
283 		break;
284 	case DEVICE_SYSCTL_PARENT:
285 		sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : "");
286 		break;
287 	default:
288 		sbuf_delete(&sb);
289 		return (EINVAL);
290 	}
291 	error = sbuf_finish(&sb);
292 	sbuf_delete(&sb);
293 	return (error);
294 }
295 
296 static void
297 device_sysctl_init(device_t dev)
298 {
299 	devclass_t dc = dev->devclass;
300 	int domain;
301 
302 	if (dev->sysctl_tree != NULL)
303 		return;
304 	devclass_sysctl_init(dc);
305 	sysctl_ctx_init(&dev->sysctl_ctx);
306 	dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
307 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
308 	    dev->nameunit + strlen(dc->name),
309 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index");
310 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
311 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
312 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
313 	    "device description");
314 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
315 	    OID_AUTO, "%driver",
316 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
317 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
318 	    "device driver name");
319 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
320 	    OID_AUTO, "%location",
321 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
322 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
323 	    "device location relative to parent");
324 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
325 	    OID_AUTO, "%pnpinfo",
326 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
327 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
328 	    "device identification");
329 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
330 	    OID_AUTO, "%parent",
331 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
332 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
333 	    "parent device");
334 	if (bus_get_domain(dev, &domain) == 0)
335 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
336 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
337 		    CTLFLAG_RD, NULL, domain, "NUMA domain");
338 }
339 
340 static void
341 device_sysctl_update(device_t dev)
342 {
343 	devclass_t dc = dev->devclass;
344 
345 	if (dev->sysctl_tree == NULL)
346 		return;
347 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
348 }
349 
350 static void
351 device_sysctl_fini(device_t dev)
352 {
353 	if (dev->sysctl_tree == NULL)
354 		return;
355 	sysctl_ctx_free(&dev->sysctl_ctx);
356 	dev->sysctl_tree = NULL;
357 }
358 
359 /*
360  * /dev/devctl implementation
361  */
362 
363 /*
364  * This design allows only one reader for /dev/devctl.  This is not desirable
365  * in the long run, but will get a lot of hair out of this implementation.
366  * Maybe we should make this device a clonable device.
367  *
368  * Also note: we specifically do not attach a device to the device_t tree
369  * to avoid potential chicken and egg problems.  One could argue that all
370  * of this belongs to the root node.
371  */
372 
373 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
374 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
375 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
376 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
377     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
378 
379 static d_open_t		devopen;
380 static d_close_t	devclose;
381 static d_read_t		devread;
382 static d_ioctl_t	devioctl;
383 static d_poll_t		devpoll;
384 static d_kqfilter_t	devkqfilter;
385 
386 static struct cdevsw dev_cdevsw = {
387 	.d_version =	D_VERSION,
388 	.d_open =	devopen,
389 	.d_close =	devclose,
390 	.d_read =	devread,
391 	.d_ioctl =	devioctl,
392 	.d_poll =	devpoll,
393 	.d_kqfilter =	devkqfilter,
394 	.d_name =	"devctl",
395 };
396 
397 #define DEVCTL_BUFFER (1024 - sizeof(void *))
398 struct dev_event_info {
399 	STAILQ_ENTRY(dev_event_info) dei_link;
400 	char dei_data[DEVCTL_BUFFER];
401 };
402 
403 STAILQ_HEAD(devq, dev_event_info);
404 
405 static struct dev_softc {
406 	int		inuse;
407 	int		nonblock;
408 	int		queued;
409 	int		async;
410 	struct mtx	mtx;
411 	struct cv	cv;
412 	struct selinfo	sel;
413 	struct devq	devq;
414 	struct sigio	*sigio;
415 	uma_zone_t	zone;
416 } devsoftc;
417 
418 static void	filt_devctl_detach(struct knote *kn);
419 static int	filt_devctl_read(struct knote *kn, long hint);
420 
421 struct filterops devctl_rfiltops = {
422 	.f_isfd = 1,
423 	.f_detach = filt_devctl_detach,
424 	.f_event = filt_devctl_read,
425 };
426 
427 static struct cdev *devctl_dev;
428 
429 static void
430 devinit(void)
431 {
432 	int reserve;
433 	uma_zone_t z;
434 
435 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
436 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
437 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
438 	cv_init(&devsoftc.cv, "dev cv");
439 	STAILQ_INIT(&devsoftc.devq);
440 	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
441 	if (devctl_queue_length > 0) {
442 		/*
443 		 * Allocate a zone for the messages. Preallocate 2% of these for
444 		 * a reserve. Allow only devctl_queue_length slabs to cap memory
445 		 * usage.  The reserve usually allows coverage of surges of
446 		 * events during memory shortages. Normally we won't have to
447 		 * re-use events from the queue, but will in extreme shortages.
448 		 */
449 		z = devsoftc.zone = uma_zcreate("DEVCTL",
450 		    sizeof(struct dev_event_info), NULL, NULL, NULL, NULL,
451 		    UMA_ALIGN_PTR, 0);
452 		reserve = max(devctl_queue_length / 50, 100);	/* 2% reserve */
453 		uma_zone_set_max(z, devctl_queue_length);
454 		uma_zone_set_maxcache(z, 0);
455 		uma_zone_reserve(z, reserve);
456 		uma_prealloc(z, reserve);
457 	}
458 	devctl2_init();
459 }
460 
461 static int
462 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
463 {
464 	mtx_lock(&devsoftc.mtx);
465 	if (devsoftc.inuse) {
466 		mtx_unlock(&devsoftc.mtx);
467 		return (EBUSY);
468 	}
469 	/* move to init */
470 	devsoftc.inuse = 1;
471 	mtx_unlock(&devsoftc.mtx);
472 	return (0);
473 }
474 
475 static int
476 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
477 {
478 	mtx_lock(&devsoftc.mtx);
479 	devsoftc.inuse = 0;
480 	devsoftc.nonblock = 0;
481 	devsoftc.async = 0;
482 	cv_broadcast(&devsoftc.cv);
483 	funsetown(&devsoftc.sigio);
484 	mtx_unlock(&devsoftc.mtx);
485 	return (0);
486 }
487 
488 /*
489  * The read channel for this device is used to report changes to
490  * userland in realtime.  We are required to free the data as well as
491  * the n1 object because we allocate them separately.  Also note that
492  * we return one record at a time.  If you try to read this device a
493  * character at a time, you will lose the rest of the data.  Listening
494  * programs are expected to cope.
495  */
496 static int
497 devread(struct cdev *dev, struct uio *uio, int ioflag)
498 {
499 	struct dev_event_info *n1;
500 	int rv;
501 
502 	mtx_lock(&devsoftc.mtx);
503 	while (STAILQ_EMPTY(&devsoftc.devq)) {
504 		if (devsoftc.nonblock) {
505 			mtx_unlock(&devsoftc.mtx);
506 			return (EAGAIN);
507 		}
508 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
509 		if (rv) {
510 			/*
511 			 * Need to translate ERESTART to EINTR here? -- jake
512 			 */
513 			mtx_unlock(&devsoftc.mtx);
514 			return (rv);
515 		}
516 	}
517 	n1 = STAILQ_FIRST(&devsoftc.devq);
518 	STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link);
519 	devsoftc.queued--;
520 	mtx_unlock(&devsoftc.mtx);
521 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
522 	uma_zfree(devsoftc.zone, n1);
523 	return (rv);
524 }
525 
526 static	int
527 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
528 {
529 	switch (cmd) {
530 	case FIONBIO:
531 		if (*(int*)data)
532 			devsoftc.nonblock = 1;
533 		else
534 			devsoftc.nonblock = 0;
535 		return (0);
536 	case FIOASYNC:
537 		if (*(int*)data)
538 			devsoftc.async = 1;
539 		else
540 			devsoftc.async = 0;
541 		return (0);
542 	case FIOSETOWN:
543 		return fsetown(*(int *)data, &devsoftc.sigio);
544 	case FIOGETOWN:
545 		*(int *)data = fgetown(&devsoftc.sigio);
546 		return (0);
547 
548 		/* (un)Support for other fcntl() calls. */
549 	case FIOCLEX:
550 	case FIONCLEX:
551 	case FIONREAD:
552 	default:
553 		break;
554 	}
555 	return (ENOTTY);
556 }
557 
558 static	int
559 devpoll(struct cdev *dev, int events, struct thread *td)
560 {
561 	int	revents = 0;
562 
563 	mtx_lock(&devsoftc.mtx);
564 	if (events & (POLLIN | POLLRDNORM)) {
565 		if (!STAILQ_EMPTY(&devsoftc.devq))
566 			revents = events & (POLLIN | POLLRDNORM);
567 		else
568 			selrecord(td, &devsoftc.sel);
569 	}
570 	mtx_unlock(&devsoftc.mtx);
571 
572 	return (revents);
573 }
574 
575 static int
576 devkqfilter(struct cdev *dev, struct knote *kn)
577 {
578 	int error;
579 
580 	if (kn->kn_filter == EVFILT_READ) {
581 		kn->kn_fop = &devctl_rfiltops;
582 		knlist_add(&devsoftc.sel.si_note, kn, 0);
583 		error = 0;
584 	} else
585 		error = EINVAL;
586 	return (error);
587 }
588 
589 static void
590 filt_devctl_detach(struct knote *kn)
591 {
592 	knlist_remove(&devsoftc.sel.si_note, kn, 0);
593 }
594 
595 static int
596 filt_devctl_read(struct knote *kn, long hint)
597 {
598 	kn->kn_data = devsoftc.queued;
599 	return (kn->kn_data != 0);
600 }
601 
602 /**
603  * @brief Return whether the userland process is running
604  */
605 bool
606 devctl_process_running(void)
607 {
608 	return (devsoftc.inuse == 1);
609 }
610 
611 static struct dev_event_info *
612 devctl_alloc_dei(void)
613 {
614 	struct dev_event_info *dei = NULL;
615 
616 	mtx_lock(&devsoftc.mtx);
617 	if (devctl_queue_length == 0)
618 		goto out;
619 	dei = uma_zalloc(devsoftc.zone, M_NOWAIT);
620 	if (dei == NULL)
621 		dei = uma_zalloc(devsoftc.zone, M_NOWAIT | M_USE_RESERVE);
622 	if (dei == NULL) {
623 		/*
624 		 * Guard against no items in the queue. Normally, this won't
625 		 * happen, but if lots of events happen all at once and there's
626 		 * a chance we're out of allocated space but none have yet been
627 		 * queued when we get here, leaving nothing to steal. This can
628 		 * also happen with error injection. Fail safe by returning
629 		 * NULL in that case..
630 		 */
631 		if (devsoftc.queued == 0)
632 			goto out;
633 		dei = STAILQ_FIRST(&devsoftc.devq);
634 		STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link);
635 		devsoftc.queued--;
636 	}
637 	MPASS(dei != NULL);
638 	*dei->dei_data = '\0';
639 out:
640 	mtx_unlock(&devsoftc.mtx);
641 	return (dei);
642 }
643 
644 static struct dev_event_info *
645 devctl_alloc_dei_sb(struct sbuf *sb)
646 {
647 	struct dev_event_info *dei;
648 
649 	dei = devctl_alloc_dei();
650 	if (dei != NULL)
651 		sbuf_new(sb, dei->dei_data, sizeof(dei->dei_data), SBUF_FIXEDLEN);
652 	return (dei);
653 }
654 
655 static void
656 devctl_free_dei(struct dev_event_info *dei)
657 {
658 	uma_zfree(devsoftc.zone, dei);
659 }
660 
661 static void
662 devctl_queue(struct dev_event_info *dei)
663 {
664 	mtx_lock(&devsoftc.mtx);
665 	STAILQ_INSERT_TAIL(&devsoftc.devq, dei, dei_link);
666 	devsoftc.queued++;
667 	cv_broadcast(&devsoftc.cv);
668 	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
669 	mtx_unlock(&devsoftc.mtx);
670 	selwakeup(&devsoftc.sel);
671 	if (devsoftc.async && devsoftc.sigio != NULL)
672 		pgsigio(&devsoftc.sigio, SIGIO, 0);
673 }
674 
675 /**
676  * @brief Send a 'notification' to userland, using standard ways
677  */
678 void
679 devctl_notify(const char *system, const char *subsystem, const char *type,
680     const char *data)
681 {
682 	struct dev_event_info *dei;
683 	struct sbuf sb;
684 
685 	if (system == NULL || subsystem == NULL || type == NULL)
686 		return;
687 	dei = devctl_alloc_dei_sb(&sb);
688 	if (dei == NULL)
689 		return;
690 	sbuf_cpy(&sb, "!system=");
691 	sbuf_cat(&sb, system);
692 	sbuf_cat(&sb, " subsystem=");
693 	sbuf_cat(&sb, subsystem);
694 	sbuf_cat(&sb, " type=");
695 	sbuf_cat(&sb, type);
696 	if (data != NULL) {
697 		sbuf_putc(&sb, ' ');
698 		sbuf_cat(&sb, data);
699 	}
700 	sbuf_putc(&sb, '\n');
701 	if (sbuf_finish(&sb) != 0)
702 		devctl_free_dei(dei);	/* overflow -> drop it */
703 	else
704 		devctl_queue(dei);
705 }
706 
707 /*
708  * Common routine that tries to make sending messages as easy as possible.
709  * We allocate memory for the data, copy strings into that, but do not
710  * free it unless there's an error.  The dequeue part of the driver should
711  * free the data.  We don't send data when the device is disabled.  We do
712  * send data, even when we have no listeners, because we wish to avoid
713  * races relating to startup and restart of listening applications.
714  *
715  * devaddq is designed to string together the type of event, with the
716  * object of that event, plus the plug and play info and location info
717  * for that event.  This is likely most useful for devices, but less
718  * useful for other consumers of this interface.  Those should use
719  * the devctl_notify() interface instead.
720  *
721  * Output:
722  *	${type}${what} at $(location dev) $(pnp-info dev) on $(parent dev)
723  */
724 static void
725 devaddq(const char *type, const char *what, device_t dev)
726 {
727 	struct dev_event_info *dei;
728 	const char *parstr;
729 	struct sbuf sb;
730 
731 	dei = devctl_alloc_dei_sb(&sb);
732 	if (dei == NULL)
733 		return;
734 	sbuf_cpy(&sb, type);
735 	sbuf_cat(&sb, what);
736 	sbuf_cat(&sb, " at ");
737 
738 	/* Add in the location */
739 	bus_child_location_sb(dev, &sb);
740 	sbuf_putc(&sb, ' ');
741 
742 	/* Add in pnpinfo */
743 	bus_child_pnpinfo_sb(dev, &sb);
744 
745 	/* Get the parent of this device, or / if high enough in the tree. */
746 	if (device_get_parent(dev) == NULL)
747 		parstr = ".";	/* Or '/' ? */
748 	else
749 		parstr = device_get_nameunit(device_get_parent(dev));
750 	sbuf_cat(&sb, " on ");
751 	sbuf_cat(&sb, parstr);
752 	sbuf_putc(&sb, '\n');
753 	if (sbuf_finish(&sb) != 0)
754 		goto bad;
755 	devctl_queue(dei);
756 	return;
757 bad:
758 	devctl_free_dei(dei);
759 }
760 
761 /*
762  * A device was added to the tree.  We are called just after it successfully
763  * attaches (that is, probe and attach success for this device).  No call
764  * is made if a device is merely parented into the tree.  See devnomatch
765  * if probe fails.  If attach fails, no notification is sent (but maybe
766  * we should have a different message for this).
767  */
768 static void
769 devadded(device_t dev)
770 {
771 	devaddq("+", device_get_nameunit(dev), dev);
772 }
773 
774 /*
775  * A device was removed from the tree.  We are called just before this
776  * happens.
777  */
778 static void
779 devremoved(device_t dev)
780 {
781 	devaddq("-", device_get_nameunit(dev), dev);
782 }
783 
784 /*
785  * Called when there's no match for this device.  This is only called
786  * the first time that no match happens, so we don't keep getting this
787  * message.  Should that prove to be undesirable, we can change it.
788  * This is called when all drivers that can attach to a given bus
789  * decline to accept this device.  Other errors may not be detected.
790  */
791 static void
792 devnomatch(device_t dev)
793 {
794 	devaddq("?", "", dev);
795 }
796 
797 static int
798 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
799 {
800 	int q, error;
801 
802 	q = devctl_queue_length;
803 	error = sysctl_handle_int(oidp, &q, 0, req);
804 	if (error || !req->newptr)
805 		return (error);
806 	if (q < 0)
807 		return (EINVAL);
808 
809 	/*
810 	 * When set as a tunable, we've not yet initialized the mutex.
811 	 * It is safe to just assign to devctl_queue_length and return
812 	 * as we're racing no one. We'll use whatever value set in
813 	 * devinit.
814 	 */
815 	if (!mtx_initialized(&devsoftc.mtx)) {
816 		devctl_queue_length = q;
817 		return (0);
818 	}
819 
820 	/*
821 	 * XXX It's hard to grow or shrink the UMA zone. Only allow
822 	 * disabling the queue size for the moment until underlying
823 	 * UMA issues can be sorted out.
824 	 */
825 	if (q != 0)
826 		return (EINVAL);
827 	if (q == devctl_queue_length)
828 		return (0);
829 	mtx_lock(&devsoftc.mtx);
830 	devctl_queue_length = 0;
831 	uma_zdestroy(devsoftc.zone);
832 	devsoftc.zone = 0;
833 	mtx_unlock(&devsoftc.mtx);
834 	return (0);
835 }
836 
837 /**
838  * @brief safely quotes strings that might have double quotes in them.
839  *
840  * The devctl protocol relies on quoted strings having matching quotes.
841  * This routine quotes any internal quotes so the resulting string
842  * is safe to pass to snprintf to construct, for example pnp info strings.
843  *
844  * @param sb	sbuf to place the characters into
845  * @param src	Original buffer.
846  */
847 void
848 devctl_safe_quote_sb(struct sbuf *sb, const char *src)
849 {
850 	while (*src != '\0') {
851 		if (*src == '"' || *src == '\\')
852 			sbuf_putc(sb, '\\');
853 		sbuf_putc(sb, *src++);
854 	}
855 }
856 
857 /* End of /dev/devctl code */
858 
859 static struct device_list bus_data_devices;
860 static int bus_data_generation = 1;
861 
862 static kobj_method_t null_methods[] = {
863 	KOBJMETHOD_END
864 };
865 
866 DEFINE_CLASS(null, null_methods, 0);
867 
868 /*
869  * Bus pass implementation
870  */
871 
872 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
873 int bus_current_pass = BUS_PASS_ROOT;
874 
875 /**
876  * @internal
877  * @brief Register the pass level of a new driver attachment
878  *
879  * Register a new driver attachment's pass level.  If no driver
880  * attachment with the same pass level has been added, then @p new
881  * will be added to the global passes list.
882  *
883  * @param new		the new driver attachment
884  */
885 static void
886 driver_register_pass(struct driverlink *new)
887 {
888 	struct driverlink *dl;
889 
890 	/* We only consider pass numbers during boot. */
891 	if (bus_current_pass == BUS_PASS_DEFAULT)
892 		return;
893 
894 	/*
895 	 * Walk the passes list.  If we already know about this pass
896 	 * then there is nothing to do.  If we don't, then insert this
897 	 * driver link into the list.
898 	 */
899 	TAILQ_FOREACH(dl, &passes, passlink) {
900 		if (dl->pass < new->pass)
901 			continue;
902 		if (dl->pass == new->pass)
903 			return;
904 		TAILQ_INSERT_BEFORE(dl, new, passlink);
905 		return;
906 	}
907 	TAILQ_INSERT_TAIL(&passes, new, passlink);
908 }
909 
910 /**
911  * @brief Raise the current bus pass
912  *
913  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
914  * method on the root bus to kick off a new device tree scan for each
915  * new pass level that has at least one driver.
916  */
917 void
918 bus_set_pass(int pass)
919 {
920 	struct driverlink *dl;
921 
922 	if (bus_current_pass > pass)
923 		panic("Attempt to lower bus pass level");
924 
925 	TAILQ_FOREACH(dl, &passes, passlink) {
926 		/* Skip pass values below the current pass level. */
927 		if (dl->pass <= bus_current_pass)
928 			continue;
929 
930 		/*
931 		 * Bail once we hit a driver with a pass level that is
932 		 * too high.
933 		 */
934 		if (dl->pass > pass)
935 			break;
936 
937 		/*
938 		 * Raise the pass level to the next level and rescan
939 		 * the tree.
940 		 */
941 		bus_current_pass = dl->pass;
942 		BUS_NEW_PASS(root_bus);
943 	}
944 
945 	/*
946 	 * If there isn't a driver registered for the requested pass,
947 	 * then bus_current_pass might still be less than 'pass'.  Set
948 	 * it to 'pass' in that case.
949 	 */
950 	if (bus_current_pass < pass)
951 		bus_current_pass = pass;
952 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
953 }
954 
955 /*
956  * Devclass implementation
957  */
958 
959 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
960 
961 /**
962  * @internal
963  * @brief Find or create a device class
964  *
965  * If a device class with the name @p classname exists, return it,
966  * otherwise if @p create is non-zero create and return a new device
967  * class.
968  *
969  * If @p parentname is non-NULL, the parent of the devclass is set to
970  * the devclass of that name.
971  *
972  * @param classname	the devclass name to find or create
973  * @param parentname	the parent devclass name or @c NULL
974  * @param create	non-zero to create a devclass
975  */
976 static devclass_t
977 devclass_find_internal(const char *classname, const char *parentname,
978 		       int create)
979 {
980 	devclass_t dc;
981 
982 	PDEBUG(("looking for %s", classname));
983 	if (!classname)
984 		return (NULL);
985 
986 	TAILQ_FOREACH(dc, &devclasses, link) {
987 		if (!strcmp(dc->name, classname))
988 			break;
989 	}
990 
991 	if (create && !dc) {
992 		PDEBUG(("creating %s", classname));
993 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
994 		    M_BUS, M_NOWAIT | M_ZERO);
995 		if (!dc)
996 			return (NULL);
997 		dc->parent = NULL;
998 		dc->name = (char*) (dc + 1);
999 		strcpy(dc->name, classname);
1000 		TAILQ_INIT(&dc->drivers);
1001 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
1002 
1003 		bus_data_generation_update();
1004 	}
1005 
1006 	/*
1007 	 * If a parent class is specified, then set that as our parent so
1008 	 * that this devclass will support drivers for the parent class as
1009 	 * well.  If the parent class has the same name don't do this though
1010 	 * as it creates a cycle that can trigger an infinite loop in
1011 	 * device_probe_child() if a device exists for which there is no
1012 	 * suitable driver.
1013 	 */
1014 	if (parentname && dc && !dc->parent &&
1015 	    strcmp(classname, parentname) != 0) {
1016 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1017 		dc->parent->flags |= DC_HAS_CHILDREN;
1018 	}
1019 
1020 	return (dc);
1021 }
1022 
1023 /**
1024  * @brief Create a device class
1025  *
1026  * If a device class with the name @p classname exists, return it,
1027  * otherwise create and return a new device class.
1028  *
1029  * @param classname	the devclass name to find or create
1030  */
1031 devclass_t
1032 devclass_create(const char *classname)
1033 {
1034 	return (devclass_find_internal(classname, NULL, TRUE));
1035 }
1036 
1037 /**
1038  * @brief Find a device class
1039  *
1040  * If a device class with the name @p classname exists, return it,
1041  * otherwise return @c NULL.
1042  *
1043  * @param classname	the devclass name to find
1044  */
1045 devclass_t
1046 devclass_find(const char *classname)
1047 {
1048 	return (devclass_find_internal(classname, NULL, FALSE));
1049 }
1050 
1051 /**
1052  * @brief Register that a device driver has been added to a devclass
1053  *
1054  * Register that a device driver has been added to a devclass.  This
1055  * is called by devclass_add_driver to accomplish the recursive
1056  * notification of all the children classes of dc, as well as dc.
1057  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1058  * the devclass.
1059  *
1060  * We do a full search here of the devclass list at each iteration
1061  * level to save storing children-lists in the devclass structure.  If
1062  * we ever move beyond a few dozen devices doing this, we may need to
1063  * reevaluate...
1064  *
1065  * @param dc		the devclass to edit
1066  * @param driver	the driver that was just added
1067  */
1068 static void
1069 devclass_driver_added(devclass_t dc, driver_t *driver)
1070 {
1071 	devclass_t parent;
1072 	int i;
1073 
1074 	/*
1075 	 * Call BUS_DRIVER_ADDED for any existing buses in this class.
1076 	 */
1077 	for (i = 0; i < dc->maxunit; i++)
1078 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1079 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1080 
1081 	/*
1082 	 * Walk through the children classes.  Since we only keep a
1083 	 * single parent pointer around, we walk the entire list of
1084 	 * devclasses looking for children.  We set the
1085 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1086 	 * the parent, so we only walk the list for those devclasses
1087 	 * that have children.
1088 	 */
1089 	if (!(dc->flags & DC_HAS_CHILDREN))
1090 		return;
1091 	parent = dc;
1092 	TAILQ_FOREACH(dc, &devclasses, link) {
1093 		if (dc->parent == parent)
1094 			devclass_driver_added(dc, driver);
1095 	}
1096 }
1097 
1098 /**
1099  * @brief Add a device driver to a device class
1100  *
1101  * Add a device driver to a devclass. This is normally called
1102  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1103  * all devices in the devclass will be called to allow them to attempt
1104  * to re-probe any unmatched children.
1105  *
1106  * @param dc		the devclass to edit
1107  * @param driver	the driver to register
1108  */
1109 int
1110 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1111 {
1112 	driverlink_t dl;
1113 	const char *parentname;
1114 
1115 	PDEBUG(("%s", DRIVERNAME(driver)));
1116 
1117 	/* Don't allow invalid pass values. */
1118 	if (pass <= BUS_PASS_ROOT)
1119 		return (EINVAL);
1120 
1121 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1122 	if (!dl)
1123 		return (ENOMEM);
1124 
1125 	/*
1126 	 * Compile the driver's methods. Also increase the reference count
1127 	 * so that the class doesn't get freed when the last instance
1128 	 * goes. This means we can safely use static methods and avoids a
1129 	 * double-free in devclass_delete_driver.
1130 	 */
1131 	kobj_class_compile((kobj_class_t) driver);
1132 
1133 	/*
1134 	 * If the driver has any base classes, make the
1135 	 * devclass inherit from the devclass of the driver's
1136 	 * first base class. This will allow the system to
1137 	 * search for drivers in both devclasses for children
1138 	 * of a device using this driver.
1139 	 */
1140 	if (driver->baseclasses)
1141 		parentname = driver->baseclasses[0]->name;
1142 	else
1143 		parentname = NULL;
1144 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1145 
1146 	dl->driver = driver;
1147 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1148 	driver->refs++;		/* XXX: kobj_mtx */
1149 	dl->pass = pass;
1150 	driver_register_pass(dl);
1151 
1152 	if (device_frozen) {
1153 		dl->flags |= DL_DEFERRED_PROBE;
1154 	} else {
1155 		devclass_driver_added(dc, driver);
1156 	}
1157 	bus_data_generation_update();
1158 	return (0);
1159 }
1160 
1161 /**
1162  * @brief Register that a device driver has been deleted from a devclass
1163  *
1164  * Register that a device driver has been removed from a devclass.
1165  * This is called by devclass_delete_driver to accomplish the
1166  * recursive notification of all the children classes of busclass, as
1167  * well as busclass.  Each layer will attempt to detach the driver
1168  * from any devices that are children of the bus's devclass.  The function
1169  * will return an error if a device fails to detach.
1170  *
1171  * We do a full search here of the devclass list at each iteration
1172  * level to save storing children-lists in the devclass structure.  If
1173  * we ever move beyond a few dozen devices doing this, we may need to
1174  * reevaluate...
1175  *
1176  * @param busclass	the devclass of the parent bus
1177  * @param dc		the devclass of the driver being deleted
1178  * @param driver	the driver being deleted
1179  */
1180 static int
1181 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1182 {
1183 	devclass_t parent;
1184 	device_t dev;
1185 	int error, i;
1186 
1187 	/*
1188 	 * Disassociate from any devices.  We iterate through all the
1189 	 * devices in the devclass of the driver and detach any which are
1190 	 * using the driver and which have a parent in the devclass which
1191 	 * we are deleting from.
1192 	 *
1193 	 * Note that since a driver can be in multiple devclasses, we
1194 	 * should not detach devices which are not children of devices in
1195 	 * the affected devclass.
1196 	 *
1197 	 * If we're frozen, we don't generate NOMATCH events. Mark to
1198 	 * generate later.
1199 	 */
1200 	for (i = 0; i < dc->maxunit; i++) {
1201 		if (dc->devices[i]) {
1202 			dev = dc->devices[i];
1203 			if (dev->driver == driver && dev->parent &&
1204 			    dev->parent->devclass == busclass) {
1205 				if ((error = device_detach(dev)) != 0)
1206 					return (error);
1207 				if (device_frozen) {
1208 					dev->flags &= ~DF_DONENOMATCH;
1209 					dev->flags |= DF_NEEDNOMATCH;
1210 				} else {
1211 					BUS_PROBE_NOMATCH(dev->parent, dev);
1212 					devnomatch(dev);
1213 					dev->flags |= DF_DONENOMATCH;
1214 				}
1215 			}
1216 		}
1217 	}
1218 
1219 	/*
1220 	 * Walk through the children classes.  Since we only keep a
1221 	 * single parent pointer around, we walk the entire list of
1222 	 * devclasses looking for children.  We set the
1223 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1224 	 * the parent, so we only walk the list for those devclasses
1225 	 * that have children.
1226 	 */
1227 	if (!(busclass->flags & DC_HAS_CHILDREN))
1228 		return (0);
1229 	parent = busclass;
1230 	TAILQ_FOREACH(busclass, &devclasses, link) {
1231 		if (busclass->parent == parent) {
1232 			error = devclass_driver_deleted(busclass, dc, driver);
1233 			if (error)
1234 				return (error);
1235 		}
1236 	}
1237 	return (0);
1238 }
1239 
1240 /**
1241  * @brief Delete a device driver from a device class
1242  *
1243  * Delete a device driver from a devclass. This is normally called
1244  * automatically by DRIVER_MODULE().
1245  *
1246  * If the driver is currently attached to any devices,
1247  * devclass_delete_driver() will first attempt to detach from each
1248  * device. If one of the detach calls fails, the driver will not be
1249  * deleted.
1250  *
1251  * @param dc		the devclass to edit
1252  * @param driver	the driver to unregister
1253  */
1254 int
1255 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1256 {
1257 	devclass_t dc = devclass_find(driver->name);
1258 	driverlink_t dl;
1259 	int error;
1260 
1261 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1262 
1263 	if (!dc)
1264 		return (0);
1265 
1266 	/*
1267 	 * Find the link structure in the bus' list of drivers.
1268 	 */
1269 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1270 		if (dl->driver == driver)
1271 			break;
1272 	}
1273 
1274 	if (!dl) {
1275 		PDEBUG(("%s not found in %s list", driver->name,
1276 		    busclass->name));
1277 		return (ENOENT);
1278 	}
1279 
1280 	error = devclass_driver_deleted(busclass, dc, driver);
1281 	if (error != 0)
1282 		return (error);
1283 
1284 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1285 	free(dl, M_BUS);
1286 
1287 	/* XXX: kobj_mtx */
1288 	driver->refs--;
1289 	if (driver->refs == 0)
1290 		kobj_class_free((kobj_class_t) driver);
1291 
1292 	bus_data_generation_update();
1293 	return (0);
1294 }
1295 
1296 /**
1297  * @brief Quiesces a set of device drivers from a device class
1298  *
1299  * Quiesce a device driver from a devclass. This is normally called
1300  * automatically by DRIVER_MODULE().
1301  *
1302  * If the driver is currently attached to any devices,
1303  * devclass_quiesece_driver() will first attempt to quiesce each
1304  * device.
1305  *
1306  * @param dc		the devclass to edit
1307  * @param driver	the driver to unregister
1308  */
1309 static int
1310 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1311 {
1312 	devclass_t dc = devclass_find(driver->name);
1313 	driverlink_t dl;
1314 	device_t dev;
1315 	int i;
1316 	int error;
1317 
1318 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1319 
1320 	if (!dc)
1321 		return (0);
1322 
1323 	/*
1324 	 * Find the link structure in the bus' list of drivers.
1325 	 */
1326 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1327 		if (dl->driver == driver)
1328 			break;
1329 	}
1330 
1331 	if (!dl) {
1332 		PDEBUG(("%s not found in %s list", driver->name,
1333 		    busclass->name));
1334 		return (ENOENT);
1335 	}
1336 
1337 	/*
1338 	 * Quiesce all devices.  We iterate through all the devices in
1339 	 * the devclass of the driver and quiesce any which are using
1340 	 * the driver and which have a parent in the devclass which we
1341 	 * are quiescing.
1342 	 *
1343 	 * Note that since a driver can be in multiple devclasses, we
1344 	 * should not quiesce devices which are not children of
1345 	 * devices in the affected devclass.
1346 	 */
1347 	for (i = 0; i < dc->maxunit; i++) {
1348 		if (dc->devices[i]) {
1349 			dev = dc->devices[i];
1350 			if (dev->driver == driver && dev->parent &&
1351 			    dev->parent->devclass == busclass) {
1352 				if ((error = device_quiesce(dev)) != 0)
1353 					return (error);
1354 			}
1355 		}
1356 	}
1357 
1358 	return (0);
1359 }
1360 
1361 /**
1362  * @internal
1363  */
1364 static driverlink_t
1365 devclass_find_driver_internal(devclass_t dc, const char *classname)
1366 {
1367 	driverlink_t dl;
1368 
1369 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1370 
1371 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1372 		if (!strcmp(dl->driver->name, classname))
1373 			return (dl);
1374 	}
1375 
1376 	PDEBUG(("not found"));
1377 	return (NULL);
1378 }
1379 
1380 /**
1381  * @brief Return the name of the devclass
1382  */
1383 const char *
1384 devclass_get_name(devclass_t dc)
1385 {
1386 	return (dc->name);
1387 }
1388 
1389 /**
1390  * @brief Find a device given a unit number
1391  *
1392  * @param dc		the devclass to search
1393  * @param unit		the unit number to search for
1394  *
1395  * @returns		the device with the given unit number or @c
1396  *			NULL if there is no such device
1397  */
1398 device_t
1399 devclass_get_device(devclass_t dc, int unit)
1400 {
1401 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1402 		return (NULL);
1403 	return (dc->devices[unit]);
1404 }
1405 
1406 /**
1407  * @brief Find the softc field of a device given a unit number
1408  *
1409  * @param dc		the devclass to search
1410  * @param unit		the unit number to search for
1411  *
1412  * @returns		the softc field of the device with the given
1413  *			unit number or @c NULL if there is no such
1414  *			device
1415  */
1416 void *
1417 devclass_get_softc(devclass_t dc, int unit)
1418 {
1419 	device_t dev;
1420 
1421 	dev = devclass_get_device(dc, unit);
1422 	if (!dev)
1423 		return (NULL);
1424 
1425 	return (device_get_softc(dev));
1426 }
1427 
1428 /**
1429  * @brief Get a list of devices in the devclass
1430  *
1431  * An array containing a list of all the devices in the given devclass
1432  * is allocated and returned in @p *devlistp. The number of devices
1433  * in the array is returned in @p *devcountp. The caller should free
1434  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1435  *
1436  * @param dc		the devclass to examine
1437  * @param devlistp	points at location for array pointer return
1438  *			value
1439  * @param devcountp	points at location for array size return value
1440  *
1441  * @retval 0		success
1442  * @retval ENOMEM	the array allocation failed
1443  */
1444 int
1445 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1446 {
1447 	int count, i;
1448 	device_t *list;
1449 
1450 	count = devclass_get_count(dc);
1451 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1452 	if (!list)
1453 		return (ENOMEM);
1454 
1455 	count = 0;
1456 	for (i = 0; i < dc->maxunit; i++) {
1457 		if (dc->devices[i]) {
1458 			list[count] = dc->devices[i];
1459 			count++;
1460 		}
1461 	}
1462 
1463 	*devlistp = list;
1464 	*devcountp = count;
1465 
1466 	return (0);
1467 }
1468 
1469 /**
1470  * @brief Get a list of drivers in the devclass
1471  *
1472  * An array containing a list of pointers to all the drivers in the
1473  * given devclass is allocated and returned in @p *listp.  The number
1474  * of drivers in the array is returned in @p *countp. The caller should
1475  * free the array using @c free(p, M_TEMP).
1476  *
1477  * @param dc		the devclass to examine
1478  * @param listp		gives location for array pointer return value
1479  * @param countp	gives location for number of array elements
1480  *			return value
1481  *
1482  * @retval 0		success
1483  * @retval ENOMEM	the array allocation failed
1484  */
1485 int
1486 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1487 {
1488 	driverlink_t dl;
1489 	driver_t **list;
1490 	int count;
1491 
1492 	count = 0;
1493 	TAILQ_FOREACH(dl, &dc->drivers, link)
1494 		count++;
1495 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1496 	if (list == NULL)
1497 		return (ENOMEM);
1498 
1499 	count = 0;
1500 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1501 		list[count] = dl->driver;
1502 		count++;
1503 	}
1504 	*listp = list;
1505 	*countp = count;
1506 
1507 	return (0);
1508 }
1509 
1510 /**
1511  * @brief Get the number of devices in a devclass
1512  *
1513  * @param dc		the devclass to examine
1514  */
1515 int
1516 devclass_get_count(devclass_t dc)
1517 {
1518 	int count, i;
1519 
1520 	count = 0;
1521 	for (i = 0; i < dc->maxunit; i++)
1522 		if (dc->devices[i])
1523 			count++;
1524 	return (count);
1525 }
1526 
1527 /**
1528  * @brief Get the maximum unit number used in a devclass
1529  *
1530  * Note that this is one greater than the highest currently-allocated
1531  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1532  * that not even the devclass has been allocated yet.
1533  *
1534  * @param dc		the devclass to examine
1535  */
1536 int
1537 devclass_get_maxunit(devclass_t dc)
1538 {
1539 	if (dc == NULL)
1540 		return (-1);
1541 	return (dc->maxunit);
1542 }
1543 
1544 /**
1545  * @brief Find a free unit number in a devclass
1546  *
1547  * This function searches for the first unused unit number greater
1548  * that or equal to @p unit.
1549  *
1550  * @param dc		the devclass to examine
1551  * @param unit		the first unit number to check
1552  */
1553 int
1554 devclass_find_free_unit(devclass_t dc, int unit)
1555 {
1556 	if (dc == NULL)
1557 		return (unit);
1558 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1559 		unit++;
1560 	return (unit);
1561 }
1562 
1563 /**
1564  * @brief Set the parent of a devclass
1565  *
1566  * The parent class is normally initialised automatically by
1567  * DRIVER_MODULE().
1568  *
1569  * @param dc		the devclass to edit
1570  * @param pdc		the new parent devclass
1571  */
1572 void
1573 devclass_set_parent(devclass_t dc, devclass_t pdc)
1574 {
1575 	dc->parent = pdc;
1576 }
1577 
1578 /**
1579  * @brief Get the parent of a devclass
1580  *
1581  * @param dc		the devclass to examine
1582  */
1583 devclass_t
1584 devclass_get_parent(devclass_t dc)
1585 {
1586 	return (dc->parent);
1587 }
1588 
1589 struct sysctl_ctx_list *
1590 devclass_get_sysctl_ctx(devclass_t dc)
1591 {
1592 	return (&dc->sysctl_ctx);
1593 }
1594 
1595 struct sysctl_oid *
1596 devclass_get_sysctl_tree(devclass_t dc)
1597 {
1598 	return (dc->sysctl_tree);
1599 }
1600 
1601 /**
1602  * @internal
1603  * @brief Allocate a unit number
1604  *
1605  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1606  * will do). The allocated unit number is returned in @p *unitp.
1607 
1608  * @param dc		the devclass to allocate from
1609  * @param unitp		points at the location for the allocated unit
1610  *			number
1611  *
1612  * @retval 0		success
1613  * @retval EEXIST	the requested unit number is already allocated
1614  * @retval ENOMEM	memory allocation failure
1615  */
1616 static int
1617 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1618 {
1619 	const char *s;
1620 	int unit = *unitp;
1621 
1622 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1623 
1624 	/* Ask the parent bus if it wants to wire this device. */
1625 	if (unit == -1)
1626 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1627 		    &unit);
1628 
1629 	/* If we were given a wired unit number, check for existing device */
1630 	/* XXX imp XXX */
1631 	if (unit != -1) {
1632 		if (unit >= 0 && unit < dc->maxunit &&
1633 		    dc->devices[unit] != NULL) {
1634 			if (bootverbose)
1635 				printf("%s: %s%d already exists; skipping it\n",
1636 				    dc->name, dc->name, *unitp);
1637 			return (EEXIST);
1638 		}
1639 	} else {
1640 		/* Unwired device, find the next available slot for it */
1641 		unit = 0;
1642 		for (unit = 0;; unit++) {
1643 			/* If there is an "at" hint for a unit then skip it. */
1644 			if (resource_string_value(dc->name, unit, "at", &s) ==
1645 			    0)
1646 				continue;
1647 
1648 			/* If this device slot is already in use, skip it. */
1649 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1650 				continue;
1651 
1652 			break;
1653 		}
1654 	}
1655 
1656 	/*
1657 	 * We've selected a unit beyond the length of the table, so let's
1658 	 * extend the table to make room for all units up to and including
1659 	 * this one.
1660 	 */
1661 	if (unit >= dc->maxunit) {
1662 		device_t *newlist, *oldlist;
1663 		int newsize;
1664 
1665 		oldlist = dc->devices;
1666 		newsize = roundup((unit + 1),
1667 		    MAX(1, MINALLOCSIZE / sizeof(device_t)));
1668 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1669 		if (!newlist)
1670 			return (ENOMEM);
1671 		if (oldlist != NULL)
1672 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1673 		bzero(newlist + dc->maxunit,
1674 		    sizeof(device_t) * (newsize - dc->maxunit));
1675 		dc->devices = newlist;
1676 		dc->maxunit = newsize;
1677 		if (oldlist != NULL)
1678 			free(oldlist, M_BUS);
1679 	}
1680 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1681 
1682 	*unitp = unit;
1683 	return (0);
1684 }
1685 
1686 /**
1687  * @internal
1688  * @brief Add a device to a devclass
1689  *
1690  * A unit number is allocated for the device (using the device's
1691  * preferred unit number if any) and the device is registered in the
1692  * devclass. This allows the device to be looked up by its unit
1693  * number, e.g. by decoding a dev_t minor number.
1694  *
1695  * @param dc		the devclass to add to
1696  * @param dev		the device to add
1697  *
1698  * @retval 0		success
1699  * @retval EEXIST	the requested unit number is already allocated
1700  * @retval ENOMEM	memory allocation failure
1701  */
1702 static int
1703 devclass_add_device(devclass_t dc, device_t dev)
1704 {
1705 	int buflen, error;
1706 
1707 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1708 
1709 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1710 	if (buflen < 0)
1711 		return (ENOMEM);
1712 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1713 	if (!dev->nameunit)
1714 		return (ENOMEM);
1715 
1716 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1717 		free(dev->nameunit, M_BUS);
1718 		dev->nameunit = NULL;
1719 		return (error);
1720 	}
1721 	dc->devices[dev->unit] = dev;
1722 	dev->devclass = dc;
1723 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1724 
1725 	return (0);
1726 }
1727 
1728 /**
1729  * @internal
1730  * @brief Delete a device from a devclass
1731  *
1732  * The device is removed from the devclass's device list and its unit
1733  * number is freed.
1734 
1735  * @param dc		the devclass to delete from
1736  * @param dev		the device to delete
1737  *
1738  * @retval 0		success
1739  */
1740 static int
1741 devclass_delete_device(devclass_t dc, device_t dev)
1742 {
1743 	if (!dc || !dev)
1744 		return (0);
1745 
1746 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1747 
1748 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1749 		panic("devclass_delete_device: inconsistent device class");
1750 	dc->devices[dev->unit] = NULL;
1751 	if (dev->flags & DF_WILDCARD)
1752 		dev->unit = -1;
1753 	dev->devclass = NULL;
1754 	free(dev->nameunit, M_BUS);
1755 	dev->nameunit = NULL;
1756 
1757 	return (0);
1758 }
1759 
1760 /**
1761  * @internal
1762  * @brief Make a new device and add it as a child of @p parent
1763  *
1764  * @param parent	the parent of the new device
1765  * @param name		the devclass name of the new device or @c NULL
1766  *			to leave the devclass unspecified
1767  * @parem unit		the unit number of the new device of @c -1 to
1768  *			leave the unit number unspecified
1769  *
1770  * @returns the new device
1771  */
1772 static device_t
1773 make_device(device_t parent, const char *name, int unit)
1774 {
1775 	device_t dev;
1776 	devclass_t dc;
1777 
1778 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1779 
1780 	if (name) {
1781 		dc = devclass_find_internal(name, NULL, TRUE);
1782 		if (!dc) {
1783 			printf("make_device: can't find device class %s\n",
1784 			    name);
1785 			return (NULL);
1786 		}
1787 	} else {
1788 		dc = NULL;
1789 	}
1790 
1791 	dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1792 	if (!dev)
1793 		return (NULL);
1794 
1795 	dev->parent = parent;
1796 	TAILQ_INIT(&dev->children);
1797 	kobj_init((kobj_t) dev, &null_class);
1798 	dev->driver = NULL;
1799 	dev->devclass = NULL;
1800 	dev->unit = unit;
1801 	dev->nameunit = NULL;
1802 	dev->desc = NULL;
1803 	dev->busy = 0;
1804 	dev->devflags = 0;
1805 	dev->flags = DF_ENABLED;
1806 	dev->order = 0;
1807 	if (unit == -1)
1808 		dev->flags |= DF_WILDCARD;
1809 	if (name) {
1810 		dev->flags |= DF_FIXEDCLASS;
1811 		if (devclass_add_device(dc, dev)) {
1812 			kobj_delete((kobj_t) dev, M_BUS);
1813 			return (NULL);
1814 		}
1815 	}
1816 	if (parent != NULL && device_has_quiet_children(parent))
1817 		dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1818 	dev->ivars = NULL;
1819 	dev->softc = NULL;
1820 
1821 	dev->state = DS_NOTPRESENT;
1822 
1823 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1824 	bus_data_generation_update();
1825 
1826 	return (dev);
1827 }
1828 
1829 /**
1830  * @internal
1831  * @brief Print a description of a device.
1832  */
1833 static int
1834 device_print_child(device_t dev, device_t child)
1835 {
1836 	int retval = 0;
1837 
1838 	if (device_is_alive(child))
1839 		retval += BUS_PRINT_CHILD(dev, child);
1840 	else
1841 		retval += device_printf(child, " not found\n");
1842 
1843 	return (retval);
1844 }
1845 
1846 /**
1847  * @brief Create a new device
1848  *
1849  * This creates a new device and adds it as a child of an existing
1850  * parent device. The new device will be added after the last existing
1851  * child with order zero.
1852  *
1853  * @param dev		the device which will be the parent of the
1854  *			new child device
1855  * @param name		devclass name for new device or @c NULL if not
1856  *			specified
1857  * @param unit		unit number for new device or @c -1 if not
1858  *			specified
1859  *
1860  * @returns		the new device
1861  */
1862 device_t
1863 device_add_child(device_t dev, const char *name, int unit)
1864 {
1865 	return (device_add_child_ordered(dev, 0, name, unit));
1866 }
1867 
1868 /**
1869  * @brief Create a new device
1870  *
1871  * This creates a new device and adds it as a child of an existing
1872  * parent device. The new device will be added after the last existing
1873  * child with the same order.
1874  *
1875  * @param dev		the device which will be the parent of the
1876  *			new child device
1877  * @param order		a value which is used to partially sort the
1878  *			children of @p dev - devices created using
1879  *			lower values of @p order appear first in @p
1880  *			dev's list of children
1881  * @param name		devclass name for new device or @c NULL if not
1882  *			specified
1883  * @param unit		unit number for new device or @c -1 if not
1884  *			specified
1885  *
1886  * @returns		the new device
1887  */
1888 device_t
1889 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1890 {
1891 	device_t child;
1892 	device_t place;
1893 
1894 	PDEBUG(("%s at %s with order %u as unit %d",
1895 	    name, DEVICENAME(dev), order, unit));
1896 	KASSERT(name != NULL || unit == -1,
1897 	    ("child device with wildcard name and specific unit number"));
1898 
1899 	child = make_device(dev, name, unit);
1900 	if (child == NULL)
1901 		return (child);
1902 	child->order = order;
1903 
1904 	TAILQ_FOREACH(place, &dev->children, link) {
1905 		if (place->order > order)
1906 			break;
1907 	}
1908 
1909 	if (place) {
1910 		/*
1911 		 * The device 'place' is the first device whose order is
1912 		 * greater than the new child.
1913 		 */
1914 		TAILQ_INSERT_BEFORE(place, child, link);
1915 	} else {
1916 		/*
1917 		 * The new child's order is greater or equal to the order of
1918 		 * any existing device. Add the child to the tail of the list.
1919 		 */
1920 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1921 	}
1922 
1923 	bus_data_generation_update();
1924 	return (child);
1925 }
1926 
1927 /**
1928  * @brief Delete a device
1929  *
1930  * This function deletes a device along with all of its children. If
1931  * the device currently has a driver attached to it, the device is
1932  * detached first using device_detach().
1933  *
1934  * @param dev		the parent device
1935  * @param child		the device to delete
1936  *
1937  * @retval 0		success
1938  * @retval non-zero	a unit error code describing the error
1939  */
1940 int
1941 device_delete_child(device_t dev, device_t child)
1942 {
1943 	int error;
1944 	device_t grandchild;
1945 
1946 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1947 
1948 	/* detach parent before deleting children, if any */
1949 	if ((error = device_detach(child)) != 0)
1950 		return (error);
1951 
1952 	/* remove children second */
1953 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1954 		error = device_delete_child(child, grandchild);
1955 		if (error)
1956 			return (error);
1957 	}
1958 
1959 	if (child->devclass)
1960 		devclass_delete_device(child->devclass, child);
1961 	if (child->parent)
1962 		BUS_CHILD_DELETED(dev, child);
1963 	TAILQ_REMOVE(&dev->children, child, link);
1964 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1965 	kobj_delete((kobj_t) child, M_BUS);
1966 
1967 	bus_data_generation_update();
1968 	return (0);
1969 }
1970 
1971 /**
1972  * @brief Delete all children devices of the given device, if any.
1973  *
1974  * This function deletes all children devices of the given device, if
1975  * any, using the device_delete_child() function for each device it
1976  * finds. If a child device cannot be deleted, this function will
1977  * return an error code.
1978  *
1979  * @param dev		the parent device
1980  *
1981  * @retval 0		success
1982  * @retval non-zero	a device would not detach
1983  */
1984 int
1985 device_delete_children(device_t dev)
1986 {
1987 	device_t child;
1988 	int error;
1989 
1990 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1991 
1992 	error = 0;
1993 
1994 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1995 		error = device_delete_child(dev, child);
1996 		if (error) {
1997 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1998 			break;
1999 		}
2000 	}
2001 	return (error);
2002 }
2003 
2004 /**
2005  * @brief Find a device given a unit number
2006  *
2007  * This is similar to devclass_get_devices() but only searches for
2008  * devices which have @p dev as a parent.
2009  *
2010  * @param dev		the parent device to search
2011  * @param unit		the unit number to search for.  If the unit is -1,
2012  *			return the first child of @p dev which has name
2013  *			@p classname (that is, the one with the lowest unit.)
2014  *
2015  * @returns		the device with the given unit number or @c
2016  *			NULL if there is no such device
2017  */
2018 device_t
2019 device_find_child(device_t dev, const char *classname, int unit)
2020 {
2021 	devclass_t dc;
2022 	device_t child;
2023 
2024 	dc = devclass_find(classname);
2025 	if (!dc)
2026 		return (NULL);
2027 
2028 	if (unit != -1) {
2029 		child = devclass_get_device(dc, unit);
2030 		if (child && child->parent == dev)
2031 			return (child);
2032 	} else {
2033 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2034 			child = devclass_get_device(dc, unit);
2035 			if (child && child->parent == dev)
2036 				return (child);
2037 		}
2038 	}
2039 	return (NULL);
2040 }
2041 
2042 /**
2043  * @internal
2044  */
2045 static driverlink_t
2046 first_matching_driver(devclass_t dc, device_t dev)
2047 {
2048 	if (dev->devclass)
2049 		return (devclass_find_driver_internal(dc, dev->devclass->name));
2050 	return (TAILQ_FIRST(&dc->drivers));
2051 }
2052 
2053 /**
2054  * @internal
2055  */
2056 static driverlink_t
2057 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2058 {
2059 	if (dev->devclass) {
2060 		driverlink_t dl;
2061 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2062 			if (!strcmp(dev->devclass->name, dl->driver->name))
2063 				return (dl);
2064 		return (NULL);
2065 	}
2066 	return (TAILQ_NEXT(last, link));
2067 }
2068 
2069 /**
2070  * @internal
2071  */
2072 int
2073 device_probe_child(device_t dev, device_t child)
2074 {
2075 	devclass_t dc;
2076 	driverlink_t best = NULL;
2077 	driverlink_t dl;
2078 	int result, pri = 0;
2079 	int hasclass = (child->devclass != NULL);
2080 
2081 	GIANT_REQUIRED;
2082 
2083 	dc = dev->devclass;
2084 	if (!dc)
2085 		panic("device_probe_child: parent device has no devclass");
2086 
2087 	/*
2088 	 * If the state is already probed, then return.  However, don't
2089 	 * return if we can rebid this object.
2090 	 */
2091 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2092 		return (0);
2093 
2094 	for (; dc; dc = dc->parent) {
2095 		for (dl = first_matching_driver(dc, child);
2096 		     dl;
2097 		     dl = next_matching_driver(dc, child, dl)) {
2098 			/* If this driver's pass is too high, then ignore it. */
2099 			if (dl->pass > bus_current_pass)
2100 				continue;
2101 
2102 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2103 			result = device_set_driver(child, dl->driver);
2104 			if (result == ENOMEM)
2105 				return (result);
2106 			else if (result != 0)
2107 				continue;
2108 			if (!hasclass) {
2109 				if (device_set_devclass(child,
2110 				    dl->driver->name) != 0) {
2111 					char const * devname =
2112 					    device_get_name(child);
2113 					if (devname == NULL)
2114 						devname = "(unknown)";
2115 					printf("driver bug: Unable to set "
2116 					    "devclass (class: %s "
2117 					    "devname: %s)\n",
2118 					    dl->driver->name,
2119 					    devname);
2120 					(void)device_set_driver(child, NULL);
2121 					continue;
2122 				}
2123 			}
2124 
2125 			/* Fetch any flags for the device before probing. */
2126 			resource_int_value(dl->driver->name, child->unit,
2127 			    "flags", &child->devflags);
2128 
2129 			result = DEVICE_PROBE(child);
2130 
2131 			/* Reset flags and devclass before the next probe. */
2132 			child->devflags = 0;
2133 			if (!hasclass)
2134 				(void)device_set_devclass(child, NULL);
2135 
2136 			/*
2137 			 * If the driver returns SUCCESS, there can be
2138 			 * no higher match for this device.
2139 			 */
2140 			if (result == 0) {
2141 				best = dl;
2142 				pri = 0;
2143 				break;
2144 			}
2145 
2146 			/*
2147 			 * Reset DF_QUIET in case this driver doesn't
2148 			 * end up as the best driver.
2149 			 */
2150 			device_verbose(child);
2151 
2152 			/*
2153 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2154 			 * only match on devices whose driver was explicitly
2155 			 * specified.
2156 			 */
2157 			if (result <= BUS_PROBE_NOWILDCARD &&
2158 			    !(child->flags & DF_FIXEDCLASS)) {
2159 				result = ENXIO;
2160 			}
2161 
2162 			/*
2163 			 * The driver returned an error so it
2164 			 * certainly doesn't match.
2165 			 */
2166 			if (result > 0) {
2167 				(void)device_set_driver(child, NULL);
2168 				continue;
2169 			}
2170 
2171 			/*
2172 			 * A priority lower than SUCCESS, remember the
2173 			 * best matching driver. Initialise the value
2174 			 * of pri for the first match.
2175 			 */
2176 			if (best == NULL || result > pri) {
2177 				best = dl;
2178 				pri = result;
2179 				continue;
2180 			}
2181 		}
2182 		/*
2183 		 * If we have an unambiguous match in this devclass,
2184 		 * don't look in the parent.
2185 		 */
2186 		if (best && pri == 0)
2187 			break;
2188 	}
2189 
2190 	/*
2191 	 * If we found a driver, change state and initialise the devclass.
2192 	 */
2193 	/* XXX What happens if we rebid and got no best? */
2194 	if (best) {
2195 		/*
2196 		 * If this device was attached, and we were asked to
2197 		 * rescan, and it is a different driver, then we have
2198 		 * to detach the old driver and reattach this new one.
2199 		 * Note, we don't have to check for DF_REBID here
2200 		 * because if the state is > DS_ALIVE, we know it must
2201 		 * be.
2202 		 *
2203 		 * This assumes that all DF_REBID drivers can have
2204 		 * their probe routine called at any time and that
2205 		 * they are idempotent as well as completely benign in
2206 		 * normal operations.
2207 		 *
2208 		 * We also have to make sure that the detach
2209 		 * succeeded, otherwise we fail the operation (or
2210 		 * maybe it should just fail silently?  I'm torn).
2211 		 */
2212 		if (child->state > DS_ALIVE && best->driver != child->driver)
2213 			if ((result = device_detach(dev)) != 0)
2214 				return (result);
2215 
2216 		/* Set the winning driver, devclass, and flags. */
2217 		if (!child->devclass) {
2218 			result = device_set_devclass(child, best->driver->name);
2219 			if (result != 0)
2220 				return (result);
2221 		}
2222 		result = device_set_driver(child, best->driver);
2223 		if (result != 0)
2224 			return (result);
2225 		resource_int_value(best->driver->name, child->unit,
2226 		    "flags", &child->devflags);
2227 
2228 		if (pri < 0) {
2229 			/*
2230 			 * A bit bogus. Call the probe method again to make
2231 			 * sure that we have the right description.
2232 			 */
2233 			DEVICE_PROBE(child);
2234 #if 0
2235 			child->flags |= DF_REBID;
2236 #endif
2237 		} else
2238 			child->flags &= ~DF_REBID;
2239 		child->state = DS_ALIVE;
2240 
2241 		bus_data_generation_update();
2242 		return (0);
2243 	}
2244 
2245 	return (ENXIO);
2246 }
2247 
2248 /**
2249  * @brief Return the parent of a device
2250  */
2251 device_t
2252 device_get_parent(device_t dev)
2253 {
2254 	return (dev->parent);
2255 }
2256 
2257 /**
2258  * @brief Get a list of children of a device
2259  *
2260  * An array containing a list of all the children of the given device
2261  * is allocated and returned in @p *devlistp. The number of devices
2262  * in the array is returned in @p *devcountp. The caller should free
2263  * the array using @c free(p, M_TEMP).
2264  *
2265  * @param dev		the device to examine
2266  * @param devlistp	points at location for array pointer return
2267  *			value
2268  * @param devcountp	points at location for array size return value
2269  *
2270  * @retval 0		success
2271  * @retval ENOMEM	the array allocation failed
2272  */
2273 int
2274 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2275 {
2276 	int count;
2277 	device_t child;
2278 	device_t *list;
2279 
2280 	count = 0;
2281 	TAILQ_FOREACH(child, &dev->children, link) {
2282 		count++;
2283 	}
2284 	if (count == 0) {
2285 		*devlistp = NULL;
2286 		*devcountp = 0;
2287 		return (0);
2288 	}
2289 
2290 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2291 	if (!list)
2292 		return (ENOMEM);
2293 
2294 	count = 0;
2295 	TAILQ_FOREACH(child, &dev->children, link) {
2296 		list[count] = child;
2297 		count++;
2298 	}
2299 
2300 	*devlistp = list;
2301 	*devcountp = count;
2302 
2303 	return (0);
2304 }
2305 
2306 /**
2307  * @brief Return the current driver for the device or @c NULL if there
2308  * is no driver currently attached
2309  */
2310 driver_t *
2311 device_get_driver(device_t dev)
2312 {
2313 	return (dev->driver);
2314 }
2315 
2316 /**
2317  * @brief Return the current devclass for the device or @c NULL if
2318  * there is none.
2319  */
2320 devclass_t
2321 device_get_devclass(device_t dev)
2322 {
2323 	return (dev->devclass);
2324 }
2325 
2326 /**
2327  * @brief Return the name of the device's devclass or @c NULL if there
2328  * is none.
2329  */
2330 const char *
2331 device_get_name(device_t dev)
2332 {
2333 	if (dev != NULL && dev->devclass)
2334 		return (devclass_get_name(dev->devclass));
2335 	return (NULL);
2336 }
2337 
2338 /**
2339  * @brief Return a string containing the device's devclass name
2340  * followed by an ascii representation of the device's unit number
2341  * (e.g. @c "foo2").
2342  */
2343 const char *
2344 device_get_nameunit(device_t dev)
2345 {
2346 	return (dev->nameunit);
2347 }
2348 
2349 /**
2350  * @brief Return the device's unit number.
2351  */
2352 int
2353 device_get_unit(device_t dev)
2354 {
2355 	return (dev->unit);
2356 }
2357 
2358 /**
2359  * @brief Return the device's description string
2360  */
2361 const char *
2362 device_get_desc(device_t dev)
2363 {
2364 	return (dev->desc);
2365 }
2366 
2367 /**
2368  * @brief Return the device's flags
2369  */
2370 uint32_t
2371 device_get_flags(device_t dev)
2372 {
2373 	return (dev->devflags);
2374 }
2375 
2376 struct sysctl_ctx_list *
2377 device_get_sysctl_ctx(device_t dev)
2378 {
2379 	return (&dev->sysctl_ctx);
2380 }
2381 
2382 struct sysctl_oid *
2383 device_get_sysctl_tree(device_t dev)
2384 {
2385 	return (dev->sysctl_tree);
2386 }
2387 
2388 /**
2389  * @brief Print the name of the device followed by a colon and a space
2390  *
2391  * @returns the number of characters printed
2392  */
2393 int
2394 device_print_prettyname(device_t dev)
2395 {
2396 	const char *name = device_get_name(dev);
2397 
2398 	if (name == NULL)
2399 		return (printf("unknown: "));
2400 	return (printf("%s%d: ", name, device_get_unit(dev)));
2401 }
2402 
2403 /**
2404  * @brief Print the name of the device followed by a colon, a space
2405  * and the result of calling vprintf() with the value of @p fmt and
2406  * the following arguments.
2407  *
2408  * @returns the number of characters printed
2409  */
2410 int
2411 device_printf(device_t dev, const char * fmt, ...)
2412 {
2413 	char buf[128];
2414 	struct sbuf sb;
2415 	const char *name;
2416 	va_list ap;
2417 	size_t retval;
2418 
2419 	retval = 0;
2420 
2421 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
2422 	sbuf_set_drain(&sb, sbuf_printf_drain, &retval);
2423 
2424 	name = device_get_name(dev);
2425 
2426 	if (name == NULL)
2427 		sbuf_cat(&sb, "unknown: ");
2428 	else
2429 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2430 
2431 	va_start(ap, fmt);
2432 	sbuf_vprintf(&sb, fmt, ap);
2433 	va_end(ap);
2434 
2435 	sbuf_finish(&sb);
2436 	sbuf_delete(&sb);
2437 
2438 	return (retval);
2439 }
2440 
2441 /**
2442  * @brief Print the name of the device followed by a colon, a space
2443  * and the result of calling log() with the value of @p fmt and
2444  * the following arguments.
2445  *
2446  * @returns the number of characters printed
2447  */
2448 int
2449 device_log(device_t dev, int pri, const char * fmt, ...)
2450 {
2451 	char buf[128];
2452 	struct sbuf sb;
2453 	const char *name;
2454 	va_list ap;
2455 	size_t retval;
2456 
2457 	retval = 0;
2458 
2459 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
2460 
2461 	name = device_get_name(dev);
2462 
2463 	if (name == NULL)
2464 		sbuf_cat(&sb, "unknown: ");
2465 	else
2466 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2467 
2468 	va_start(ap, fmt);
2469 	sbuf_vprintf(&sb, fmt, ap);
2470 	va_end(ap);
2471 
2472 	sbuf_finish(&sb);
2473 
2474 	log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb));
2475 	retval = sbuf_len(&sb);
2476 
2477 	sbuf_delete(&sb);
2478 
2479 	return (retval);
2480 }
2481 
2482 /**
2483  * @internal
2484  */
2485 static void
2486 device_set_desc_internal(device_t dev, const char* desc, int copy)
2487 {
2488 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2489 		free(dev->desc, M_BUS);
2490 		dev->flags &= ~DF_DESCMALLOCED;
2491 		dev->desc = NULL;
2492 	}
2493 
2494 	if (copy && desc) {
2495 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2496 		if (dev->desc) {
2497 			strcpy(dev->desc, desc);
2498 			dev->flags |= DF_DESCMALLOCED;
2499 		}
2500 	} else {
2501 		/* Avoid a -Wcast-qual warning */
2502 		dev->desc = (char *)(uintptr_t) desc;
2503 	}
2504 
2505 	bus_data_generation_update();
2506 }
2507 
2508 /**
2509  * @brief Set the device's description
2510  *
2511  * The value of @c desc should be a string constant that will not
2512  * change (at least until the description is changed in a subsequent
2513  * call to device_set_desc() or device_set_desc_copy()).
2514  */
2515 void
2516 device_set_desc(device_t dev, const char* desc)
2517 {
2518 	device_set_desc_internal(dev, desc, FALSE);
2519 }
2520 
2521 /**
2522  * @brief Set the device's description
2523  *
2524  * The string pointed to by @c desc is copied. Use this function if
2525  * the device description is generated, (e.g. with sprintf()).
2526  */
2527 void
2528 device_set_desc_copy(device_t dev, const char* desc)
2529 {
2530 	device_set_desc_internal(dev, desc, TRUE);
2531 }
2532 
2533 /**
2534  * @brief Set the device's flags
2535  */
2536 void
2537 device_set_flags(device_t dev, uint32_t flags)
2538 {
2539 	dev->devflags = flags;
2540 }
2541 
2542 /**
2543  * @brief Return the device's softc field
2544  *
2545  * The softc is allocated and zeroed when a driver is attached, based
2546  * on the size field of the driver.
2547  */
2548 void *
2549 device_get_softc(device_t dev)
2550 {
2551 	return (dev->softc);
2552 }
2553 
2554 /**
2555  * @brief Set the device's softc field
2556  *
2557  * Most drivers do not need to use this since the softc is allocated
2558  * automatically when the driver is attached.
2559  */
2560 void
2561 device_set_softc(device_t dev, void *softc)
2562 {
2563 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2564 		free(dev->softc, M_BUS_SC);
2565 	dev->softc = softc;
2566 	if (dev->softc)
2567 		dev->flags |= DF_EXTERNALSOFTC;
2568 	else
2569 		dev->flags &= ~DF_EXTERNALSOFTC;
2570 }
2571 
2572 /**
2573  * @brief Free claimed softc
2574  *
2575  * Most drivers do not need to use this since the softc is freed
2576  * automatically when the driver is detached.
2577  */
2578 void
2579 device_free_softc(void *softc)
2580 {
2581 	free(softc, M_BUS_SC);
2582 }
2583 
2584 /**
2585  * @brief Claim softc
2586  *
2587  * This function can be used to let the driver free the automatically
2588  * allocated softc using "device_free_softc()". This function is
2589  * useful when the driver is refcounting the softc and the softc
2590  * cannot be freed when the "device_detach" method is called.
2591  */
2592 void
2593 device_claim_softc(device_t dev)
2594 {
2595 	if (dev->softc)
2596 		dev->flags |= DF_EXTERNALSOFTC;
2597 	else
2598 		dev->flags &= ~DF_EXTERNALSOFTC;
2599 }
2600 
2601 /**
2602  * @brief Get the device's ivars field
2603  *
2604  * The ivars field is used by the parent device to store per-device
2605  * state (e.g. the physical location of the device or a list of
2606  * resources).
2607  */
2608 void *
2609 device_get_ivars(device_t dev)
2610 {
2611 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2612 	return (dev->ivars);
2613 }
2614 
2615 /**
2616  * @brief Set the device's ivars field
2617  */
2618 void
2619 device_set_ivars(device_t dev, void * ivars)
2620 {
2621 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2622 	dev->ivars = ivars;
2623 }
2624 
2625 /**
2626  * @brief Return the device's state
2627  */
2628 device_state_t
2629 device_get_state(device_t dev)
2630 {
2631 	return (dev->state);
2632 }
2633 
2634 /**
2635  * @brief Set the DF_ENABLED flag for the device
2636  */
2637 void
2638 device_enable(device_t dev)
2639 {
2640 	dev->flags |= DF_ENABLED;
2641 }
2642 
2643 /**
2644  * @brief Clear the DF_ENABLED flag for the device
2645  */
2646 void
2647 device_disable(device_t dev)
2648 {
2649 	dev->flags &= ~DF_ENABLED;
2650 }
2651 
2652 /**
2653  * @brief Increment the busy counter for the device
2654  */
2655 void
2656 device_busy(device_t dev)
2657 {
2658 	if (dev->state < DS_ATTACHING)
2659 		panic("device_busy: called for unattached device");
2660 	if (dev->busy == 0 && dev->parent)
2661 		device_busy(dev->parent);
2662 	dev->busy++;
2663 	if (dev->state == DS_ATTACHED)
2664 		dev->state = DS_BUSY;
2665 }
2666 
2667 /**
2668  * @brief Decrement the busy counter for the device
2669  */
2670 void
2671 device_unbusy(device_t dev)
2672 {
2673 	if (dev->busy != 0 && dev->state != DS_BUSY &&
2674 	    dev->state != DS_ATTACHING)
2675 		panic("device_unbusy: called for non-busy device %s",
2676 		    device_get_nameunit(dev));
2677 	dev->busy--;
2678 	if (dev->busy == 0) {
2679 		if (dev->parent)
2680 			device_unbusy(dev->parent);
2681 		if (dev->state == DS_BUSY)
2682 			dev->state = DS_ATTACHED;
2683 	}
2684 }
2685 
2686 /**
2687  * @brief Set the DF_QUIET flag for the device
2688  */
2689 void
2690 device_quiet(device_t dev)
2691 {
2692 	dev->flags |= DF_QUIET;
2693 }
2694 
2695 /**
2696  * @brief Set the DF_QUIET_CHILDREN flag for the device
2697  */
2698 void
2699 device_quiet_children(device_t dev)
2700 {
2701 	dev->flags |= DF_QUIET_CHILDREN;
2702 }
2703 
2704 /**
2705  * @brief Clear the DF_QUIET flag for the device
2706  */
2707 void
2708 device_verbose(device_t dev)
2709 {
2710 	dev->flags &= ~DF_QUIET;
2711 }
2712 
2713 /**
2714  * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2715  */
2716 int
2717 device_has_quiet_children(device_t dev)
2718 {
2719 	return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2720 }
2721 
2722 /**
2723  * @brief Return non-zero if the DF_QUIET flag is set on the device
2724  */
2725 int
2726 device_is_quiet(device_t dev)
2727 {
2728 	return ((dev->flags & DF_QUIET) != 0);
2729 }
2730 
2731 /**
2732  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2733  */
2734 int
2735 device_is_enabled(device_t dev)
2736 {
2737 	return ((dev->flags & DF_ENABLED) != 0);
2738 }
2739 
2740 /**
2741  * @brief Return non-zero if the device was successfully probed
2742  */
2743 int
2744 device_is_alive(device_t dev)
2745 {
2746 	return (dev->state >= DS_ALIVE);
2747 }
2748 
2749 /**
2750  * @brief Return non-zero if the device currently has a driver
2751  * attached to it
2752  */
2753 int
2754 device_is_attached(device_t dev)
2755 {
2756 	return (dev->state >= DS_ATTACHED);
2757 }
2758 
2759 /**
2760  * @brief Return non-zero if the device is currently suspended.
2761  */
2762 int
2763 device_is_suspended(device_t dev)
2764 {
2765 	return ((dev->flags & DF_SUSPENDED) != 0);
2766 }
2767 
2768 /**
2769  * @brief Set the devclass of a device
2770  * @see devclass_add_device().
2771  */
2772 int
2773 device_set_devclass(device_t dev, const char *classname)
2774 {
2775 	devclass_t dc;
2776 	int error;
2777 
2778 	if (!classname) {
2779 		if (dev->devclass)
2780 			devclass_delete_device(dev->devclass, dev);
2781 		return (0);
2782 	}
2783 
2784 	if (dev->devclass) {
2785 		printf("device_set_devclass: device class already set\n");
2786 		return (EINVAL);
2787 	}
2788 
2789 	dc = devclass_find_internal(classname, NULL, TRUE);
2790 	if (!dc)
2791 		return (ENOMEM);
2792 
2793 	error = devclass_add_device(dc, dev);
2794 
2795 	bus_data_generation_update();
2796 	return (error);
2797 }
2798 
2799 /**
2800  * @brief Set the devclass of a device and mark the devclass fixed.
2801  * @see device_set_devclass()
2802  */
2803 int
2804 device_set_devclass_fixed(device_t dev, const char *classname)
2805 {
2806 	int error;
2807 
2808 	if (classname == NULL)
2809 		return (EINVAL);
2810 
2811 	error = device_set_devclass(dev, classname);
2812 	if (error)
2813 		return (error);
2814 	dev->flags |= DF_FIXEDCLASS;
2815 	return (0);
2816 }
2817 
2818 /**
2819  * @brief Query the device to determine if it's of a fixed devclass
2820  * @see device_set_devclass_fixed()
2821  */
2822 bool
2823 device_is_devclass_fixed(device_t dev)
2824 {
2825 	return ((dev->flags & DF_FIXEDCLASS) != 0);
2826 }
2827 
2828 /**
2829  * @brief Set the driver of a device
2830  *
2831  * @retval 0		success
2832  * @retval EBUSY	the device already has a driver attached
2833  * @retval ENOMEM	a memory allocation failure occurred
2834  */
2835 int
2836 device_set_driver(device_t dev, driver_t *driver)
2837 {
2838 	int domain;
2839 	struct domainset *policy;
2840 
2841 	if (dev->state >= DS_ATTACHED)
2842 		return (EBUSY);
2843 
2844 	if (dev->driver == driver)
2845 		return (0);
2846 
2847 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2848 		free(dev->softc, M_BUS_SC);
2849 		dev->softc = NULL;
2850 	}
2851 	device_set_desc(dev, NULL);
2852 	kobj_delete((kobj_t) dev, NULL);
2853 	dev->driver = driver;
2854 	if (driver) {
2855 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2856 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2857 			if (bus_get_domain(dev, &domain) == 0)
2858 				policy = DOMAINSET_PREF(domain);
2859 			else
2860 				policy = DOMAINSET_RR();
2861 			dev->softc = malloc_domainset(driver->size, M_BUS_SC,
2862 			    policy, M_NOWAIT | M_ZERO);
2863 			if (!dev->softc) {
2864 				kobj_delete((kobj_t) dev, NULL);
2865 				kobj_init((kobj_t) dev, &null_class);
2866 				dev->driver = NULL;
2867 				return (ENOMEM);
2868 			}
2869 		}
2870 	} else {
2871 		kobj_init((kobj_t) dev, &null_class);
2872 	}
2873 
2874 	bus_data_generation_update();
2875 	return (0);
2876 }
2877 
2878 /**
2879  * @brief Probe a device, and return this status.
2880  *
2881  * This function is the core of the device autoconfiguration
2882  * system. Its purpose is to select a suitable driver for a device and
2883  * then call that driver to initialise the hardware appropriately. The
2884  * driver is selected by calling the DEVICE_PROBE() method of a set of
2885  * candidate drivers and then choosing the driver which returned the
2886  * best value. This driver is then attached to the device using
2887  * device_attach().
2888  *
2889  * The set of suitable drivers is taken from the list of drivers in
2890  * the parent device's devclass. If the device was originally created
2891  * with a specific class name (see device_add_child()), only drivers
2892  * with that name are probed, otherwise all drivers in the devclass
2893  * are probed. If no drivers return successful probe values in the
2894  * parent devclass, the search continues in the parent of that
2895  * devclass (see devclass_get_parent()) if any.
2896  *
2897  * @param dev		the device to initialise
2898  *
2899  * @retval 0		success
2900  * @retval ENXIO	no driver was found
2901  * @retval ENOMEM	memory allocation failure
2902  * @retval non-zero	some other unix error code
2903  * @retval -1		Device already attached
2904  */
2905 int
2906 device_probe(device_t dev)
2907 {
2908 	int error;
2909 
2910 	GIANT_REQUIRED;
2911 
2912 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2913 		return (-1);
2914 
2915 	if (!(dev->flags & DF_ENABLED)) {
2916 		if (bootverbose && device_get_name(dev) != NULL) {
2917 			device_print_prettyname(dev);
2918 			printf("not probed (disabled)\n");
2919 		}
2920 		return (-1);
2921 	}
2922 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2923 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2924 		    !(dev->flags & DF_DONENOMATCH)) {
2925 			BUS_PROBE_NOMATCH(dev->parent, dev);
2926 			devnomatch(dev);
2927 			dev->flags |= DF_DONENOMATCH;
2928 		}
2929 		return (error);
2930 	}
2931 	return (0);
2932 }
2933 
2934 /**
2935  * @brief Probe a device and attach a driver if possible
2936  *
2937  * calls device_probe() and attaches if that was successful.
2938  */
2939 int
2940 device_probe_and_attach(device_t dev)
2941 {
2942 	int error;
2943 
2944 	GIANT_REQUIRED;
2945 
2946 	error = device_probe(dev);
2947 	if (error == -1)
2948 		return (0);
2949 	else if (error != 0)
2950 		return (error);
2951 
2952 	CURVNET_SET_QUIET(vnet0);
2953 	error = device_attach(dev);
2954 	CURVNET_RESTORE();
2955 	return error;
2956 }
2957 
2958 /**
2959  * @brief Attach a device driver to a device
2960  *
2961  * This function is a wrapper around the DEVICE_ATTACH() driver
2962  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2963  * device's sysctl tree, optionally prints a description of the device
2964  * and queues a notification event for user-based device management
2965  * services.
2966  *
2967  * Normally this function is only called internally from
2968  * device_probe_and_attach().
2969  *
2970  * @param dev		the device to initialise
2971  *
2972  * @retval 0		success
2973  * @retval ENXIO	no driver was found
2974  * @retval ENOMEM	memory allocation failure
2975  * @retval non-zero	some other unix error code
2976  */
2977 int
2978 device_attach(device_t dev)
2979 {
2980 	uint64_t attachtime;
2981 	uint16_t attachentropy;
2982 	int error;
2983 
2984 	if (resource_disabled(dev->driver->name, dev->unit)) {
2985 		device_disable(dev);
2986 		if (bootverbose)
2987 			 device_printf(dev, "disabled via hints entry\n");
2988 		return (ENXIO);
2989 	}
2990 
2991 	device_sysctl_init(dev);
2992 	if (!device_is_quiet(dev))
2993 		device_print_child(dev->parent, dev);
2994 	attachtime = get_cyclecount();
2995 	dev->state = DS_ATTACHING;
2996 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2997 		printf("device_attach: %s%d attach returned %d\n",
2998 		    dev->driver->name, dev->unit, error);
2999 		if (!(dev->flags & DF_FIXEDCLASS))
3000 			devclass_delete_device(dev->devclass, dev);
3001 		(void)device_set_driver(dev, NULL);
3002 		device_sysctl_fini(dev);
3003 		KASSERT(dev->busy == 0, ("attach failed but busy"));
3004 		dev->state = DS_NOTPRESENT;
3005 		return (error);
3006 	}
3007 	dev->flags |= DF_ATTACHED_ONCE;
3008 	/* We only need the low bits of this time, but ranges from tens to thousands
3009 	 * have been seen, so keep 2 bytes' worth.
3010 	 */
3011 	attachentropy = (uint16_t)(get_cyclecount() - attachtime);
3012 	random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
3013 	device_sysctl_update(dev);
3014 	if (dev->busy)
3015 		dev->state = DS_BUSY;
3016 	else
3017 		dev->state = DS_ATTACHED;
3018 	dev->flags &= ~DF_DONENOMATCH;
3019 	EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
3020 	devadded(dev);
3021 	return (0);
3022 }
3023 
3024 /**
3025  * @brief Detach a driver from a device
3026  *
3027  * This function is a wrapper around the DEVICE_DETACH() driver
3028  * method. If the call to DEVICE_DETACH() succeeds, it calls
3029  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
3030  * notification event for user-based device management services and
3031  * cleans up the device's sysctl tree.
3032  *
3033  * @param dev		the device to un-initialise
3034  *
3035  * @retval 0		success
3036  * @retval ENXIO	no driver was found
3037  * @retval ENOMEM	memory allocation failure
3038  * @retval non-zero	some other unix error code
3039  */
3040 int
3041 device_detach(device_t dev)
3042 {
3043 	int error;
3044 
3045 	GIANT_REQUIRED;
3046 
3047 	PDEBUG(("%s", DEVICENAME(dev)));
3048 	if (dev->state == DS_BUSY)
3049 		return (EBUSY);
3050 	if (dev->state == DS_ATTACHING) {
3051 		device_printf(dev, "device in attaching state! Deferring detach.\n");
3052 		return (EBUSY);
3053 	}
3054 	if (dev->state != DS_ATTACHED)
3055 		return (0);
3056 
3057 	EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
3058 	if ((error = DEVICE_DETACH(dev)) != 0) {
3059 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
3060 		    EVHDEV_DETACH_FAILED);
3061 		return (error);
3062 	} else {
3063 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
3064 		    EVHDEV_DETACH_COMPLETE);
3065 	}
3066 	devremoved(dev);
3067 	if (!device_is_quiet(dev))
3068 		device_printf(dev, "detached\n");
3069 	if (dev->parent)
3070 		BUS_CHILD_DETACHED(dev->parent, dev);
3071 
3072 	if (!(dev->flags & DF_FIXEDCLASS))
3073 		devclass_delete_device(dev->devclass, dev);
3074 
3075 	device_verbose(dev);
3076 	dev->state = DS_NOTPRESENT;
3077 	(void)device_set_driver(dev, NULL);
3078 	device_sysctl_fini(dev);
3079 
3080 	return (0);
3081 }
3082 
3083 /**
3084  * @brief Tells a driver to quiesce itself.
3085  *
3086  * This function is a wrapper around the DEVICE_QUIESCE() driver
3087  * method. If the call to DEVICE_QUIESCE() succeeds.
3088  *
3089  * @param dev		the device to quiesce
3090  *
3091  * @retval 0		success
3092  * @retval ENXIO	no driver was found
3093  * @retval ENOMEM	memory allocation failure
3094  * @retval non-zero	some other unix error code
3095  */
3096 int
3097 device_quiesce(device_t dev)
3098 {
3099 	PDEBUG(("%s", DEVICENAME(dev)));
3100 	if (dev->state == DS_BUSY)
3101 		return (EBUSY);
3102 	if (dev->state != DS_ATTACHED)
3103 		return (0);
3104 
3105 	return (DEVICE_QUIESCE(dev));
3106 }
3107 
3108 /**
3109  * @brief Notify a device of system shutdown
3110  *
3111  * This function calls the DEVICE_SHUTDOWN() driver method if the
3112  * device currently has an attached driver.
3113  *
3114  * @returns the value returned by DEVICE_SHUTDOWN()
3115  */
3116 int
3117 device_shutdown(device_t dev)
3118 {
3119 	if (dev->state < DS_ATTACHED)
3120 		return (0);
3121 	return (DEVICE_SHUTDOWN(dev));
3122 }
3123 
3124 /**
3125  * @brief Set the unit number of a device
3126  *
3127  * This function can be used to override the unit number used for a
3128  * device (e.g. to wire a device to a pre-configured unit number).
3129  */
3130 int
3131 device_set_unit(device_t dev, int unit)
3132 {
3133 	devclass_t dc;
3134 	int err;
3135 
3136 	dc = device_get_devclass(dev);
3137 	if (unit < dc->maxunit && dc->devices[unit])
3138 		return (EBUSY);
3139 	err = devclass_delete_device(dc, dev);
3140 	if (err)
3141 		return (err);
3142 	dev->unit = unit;
3143 	err = devclass_add_device(dc, dev);
3144 	if (err)
3145 		return (err);
3146 
3147 	bus_data_generation_update();
3148 	return (0);
3149 }
3150 
3151 /*======================================*/
3152 /*
3153  * Some useful method implementations to make life easier for bus drivers.
3154  */
3155 
3156 void
3157 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
3158 {
3159 	bzero(args, sz);
3160 	args->size = sz;
3161 	args->memattr = VM_MEMATTR_DEVICE;
3162 }
3163 
3164 /**
3165  * @brief Initialise a resource list.
3166  *
3167  * @param rl		the resource list to initialise
3168  */
3169 void
3170 resource_list_init(struct resource_list *rl)
3171 {
3172 	STAILQ_INIT(rl);
3173 }
3174 
3175 /**
3176  * @brief Reclaim memory used by a resource list.
3177  *
3178  * This function frees the memory for all resource entries on the list
3179  * (if any).
3180  *
3181  * @param rl		the resource list to free
3182  */
3183 void
3184 resource_list_free(struct resource_list *rl)
3185 {
3186 	struct resource_list_entry *rle;
3187 
3188 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3189 		if (rle->res)
3190 			panic("resource_list_free: resource entry is busy");
3191 		STAILQ_REMOVE_HEAD(rl, link);
3192 		free(rle, M_BUS);
3193 	}
3194 }
3195 
3196 /**
3197  * @brief Add a resource entry.
3198  *
3199  * This function adds a resource entry using the given @p type, @p
3200  * start, @p end and @p count values. A rid value is chosen by
3201  * searching sequentially for the first unused rid starting at zero.
3202  *
3203  * @param rl		the resource list to edit
3204  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3205  * @param start		the start address of the resource
3206  * @param end		the end address of the resource
3207  * @param count		XXX end-start+1
3208  */
3209 int
3210 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3211     rman_res_t end, rman_res_t count)
3212 {
3213 	int rid;
3214 
3215 	rid = 0;
3216 	while (resource_list_find(rl, type, rid) != NULL)
3217 		rid++;
3218 	resource_list_add(rl, type, rid, start, end, count);
3219 	return (rid);
3220 }
3221 
3222 /**
3223  * @brief Add or modify a resource entry.
3224  *
3225  * If an existing entry exists with the same type and rid, it will be
3226  * modified using the given values of @p start, @p end and @p
3227  * count. If no entry exists, a new one will be created using the
3228  * given values.  The resource list entry that matches is then returned.
3229  *
3230  * @param rl		the resource list to edit
3231  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3232  * @param rid		the resource identifier
3233  * @param start		the start address of the resource
3234  * @param end		the end address of the resource
3235  * @param count		XXX end-start+1
3236  */
3237 struct resource_list_entry *
3238 resource_list_add(struct resource_list *rl, int type, int rid,
3239     rman_res_t start, rman_res_t end, rman_res_t count)
3240 {
3241 	struct resource_list_entry *rle;
3242 
3243 	rle = resource_list_find(rl, type, rid);
3244 	if (!rle) {
3245 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3246 		    M_NOWAIT);
3247 		if (!rle)
3248 			panic("resource_list_add: can't record entry");
3249 		STAILQ_INSERT_TAIL(rl, rle, link);
3250 		rle->type = type;
3251 		rle->rid = rid;
3252 		rle->res = NULL;
3253 		rle->flags = 0;
3254 	}
3255 
3256 	if (rle->res)
3257 		panic("resource_list_add: resource entry is busy");
3258 
3259 	rle->start = start;
3260 	rle->end = end;
3261 	rle->count = count;
3262 	return (rle);
3263 }
3264 
3265 /**
3266  * @brief Determine if a resource entry is busy.
3267  *
3268  * Returns true if a resource entry is busy meaning that it has an
3269  * associated resource that is not an unallocated "reserved" resource.
3270  *
3271  * @param rl		the resource list to search
3272  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3273  * @param rid		the resource identifier
3274  *
3275  * @returns Non-zero if the entry is busy, zero otherwise.
3276  */
3277 int
3278 resource_list_busy(struct resource_list *rl, int type, int rid)
3279 {
3280 	struct resource_list_entry *rle;
3281 
3282 	rle = resource_list_find(rl, type, rid);
3283 	if (rle == NULL || rle->res == NULL)
3284 		return (0);
3285 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3286 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3287 		    ("reserved resource is active"));
3288 		return (0);
3289 	}
3290 	return (1);
3291 }
3292 
3293 /**
3294  * @brief Determine if a resource entry is reserved.
3295  *
3296  * Returns true if a resource entry is reserved meaning that it has an
3297  * associated "reserved" resource.  The resource can either be
3298  * allocated or unallocated.
3299  *
3300  * @param rl		the resource list to search
3301  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3302  * @param rid		the resource identifier
3303  *
3304  * @returns Non-zero if the entry is reserved, zero otherwise.
3305  */
3306 int
3307 resource_list_reserved(struct resource_list *rl, int type, int rid)
3308 {
3309 	struct resource_list_entry *rle;
3310 
3311 	rle = resource_list_find(rl, type, rid);
3312 	if (rle != NULL && rle->flags & RLE_RESERVED)
3313 		return (1);
3314 	return (0);
3315 }
3316 
3317 /**
3318  * @brief Find a resource entry by type and rid.
3319  *
3320  * @param rl		the resource list to search
3321  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3322  * @param rid		the resource identifier
3323  *
3324  * @returns the resource entry pointer or NULL if there is no such
3325  * entry.
3326  */
3327 struct resource_list_entry *
3328 resource_list_find(struct resource_list *rl, int type, int rid)
3329 {
3330 	struct resource_list_entry *rle;
3331 
3332 	STAILQ_FOREACH(rle, rl, link) {
3333 		if (rle->type == type && rle->rid == rid)
3334 			return (rle);
3335 	}
3336 	return (NULL);
3337 }
3338 
3339 /**
3340  * @brief Delete a resource entry.
3341  *
3342  * @param rl		the resource list to edit
3343  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3344  * @param rid		the resource identifier
3345  */
3346 void
3347 resource_list_delete(struct resource_list *rl, int type, int rid)
3348 {
3349 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3350 
3351 	if (rle) {
3352 		if (rle->res != NULL)
3353 			panic("resource_list_delete: resource has not been released");
3354 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3355 		free(rle, M_BUS);
3356 	}
3357 }
3358 
3359 /**
3360  * @brief Allocate a reserved resource
3361  *
3362  * This can be used by buses to force the allocation of resources
3363  * that are always active in the system even if they are not allocated
3364  * by a driver (e.g. PCI BARs).  This function is usually called when
3365  * adding a new child to the bus.  The resource is allocated from the
3366  * parent bus when it is reserved.  The resource list entry is marked
3367  * with RLE_RESERVED to note that it is a reserved resource.
3368  *
3369  * Subsequent attempts to allocate the resource with
3370  * resource_list_alloc() will succeed the first time and will set
3371  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3372  * resource that has been allocated is released with
3373  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3374  * the actual resource remains allocated.  The resource can be released to
3375  * the parent bus by calling resource_list_unreserve().
3376  *
3377  * @param rl		the resource list to allocate from
3378  * @param bus		the parent device of @p child
3379  * @param child		the device for which the resource is being reserved
3380  * @param type		the type of resource to allocate
3381  * @param rid		a pointer to the resource identifier
3382  * @param start		hint at the start of the resource range - pass
3383  *			@c 0 for any start address
3384  * @param end		hint at the end of the resource range - pass
3385  *			@c ~0 for any end address
3386  * @param count		hint at the size of range required - pass @c 1
3387  *			for any size
3388  * @param flags		any extra flags to control the resource
3389  *			allocation - see @c RF_XXX flags in
3390  *			<sys/rman.h> for details
3391  *
3392  * @returns		the resource which was allocated or @c NULL if no
3393  *			resource could be allocated
3394  */
3395 struct resource *
3396 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3397     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3398 {
3399 	struct resource_list_entry *rle = NULL;
3400 	int passthrough = (device_get_parent(child) != bus);
3401 	struct resource *r;
3402 
3403 	if (passthrough)
3404 		panic(
3405     "resource_list_reserve() should only be called for direct children");
3406 	if (flags & RF_ACTIVE)
3407 		panic(
3408     "resource_list_reserve() should only reserve inactive resources");
3409 
3410 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3411 	    flags);
3412 	if (r != NULL) {
3413 		rle = resource_list_find(rl, type, *rid);
3414 		rle->flags |= RLE_RESERVED;
3415 	}
3416 	return (r);
3417 }
3418 
3419 /**
3420  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3421  *
3422  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3423  * and passing the allocation up to the parent of @p bus. This assumes
3424  * that the first entry of @c device_get_ivars(child) is a struct
3425  * resource_list. This also handles 'passthrough' allocations where a
3426  * child is a remote descendant of bus by passing the allocation up to
3427  * the parent of bus.
3428  *
3429  * Typically, a bus driver would store a list of child resources
3430  * somewhere in the child device's ivars (see device_get_ivars()) and
3431  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3432  * then call resource_list_alloc() to perform the allocation.
3433  *
3434  * @param rl		the resource list to allocate from
3435  * @param bus		the parent device of @p child
3436  * @param child		the device which is requesting an allocation
3437  * @param type		the type of resource to allocate
3438  * @param rid		a pointer to the resource identifier
3439  * @param start		hint at the start of the resource range - pass
3440  *			@c 0 for any start address
3441  * @param end		hint at the end of the resource range - pass
3442  *			@c ~0 for any end address
3443  * @param count		hint at the size of range required - pass @c 1
3444  *			for any size
3445  * @param flags		any extra flags to control the resource
3446  *			allocation - see @c RF_XXX flags in
3447  *			<sys/rman.h> for details
3448  *
3449  * @returns		the resource which was allocated or @c NULL if no
3450  *			resource could be allocated
3451  */
3452 struct resource *
3453 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3454     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3455 {
3456 	struct resource_list_entry *rle = NULL;
3457 	int passthrough = (device_get_parent(child) != bus);
3458 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3459 
3460 	if (passthrough) {
3461 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3462 		    type, rid, start, end, count, flags));
3463 	}
3464 
3465 	rle = resource_list_find(rl, type, *rid);
3466 
3467 	if (!rle)
3468 		return (NULL);		/* no resource of that type/rid */
3469 
3470 	if (rle->res) {
3471 		if (rle->flags & RLE_RESERVED) {
3472 			if (rle->flags & RLE_ALLOCATED)
3473 				return (NULL);
3474 			if ((flags & RF_ACTIVE) &&
3475 			    bus_activate_resource(child, type, *rid,
3476 			    rle->res) != 0)
3477 				return (NULL);
3478 			rle->flags |= RLE_ALLOCATED;
3479 			return (rle->res);
3480 		}
3481 		device_printf(bus,
3482 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3483 		    type, device_get_nameunit(child));
3484 		return (NULL);
3485 	}
3486 
3487 	if (isdefault) {
3488 		start = rle->start;
3489 		count = ulmax(count, rle->count);
3490 		end = ulmax(rle->end, start + count - 1);
3491 	}
3492 
3493 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3494 	    type, rid, start, end, count, flags);
3495 
3496 	/*
3497 	 * Record the new range.
3498 	 */
3499 	if (rle->res) {
3500 		rle->start = rman_get_start(rle->res);
3501 		rle->end = rman_get_end(rle->res);
3502 		rle->count = count;
3503 	}
3504 
3505 	return (rle->res);
3506 }
3507 
3508 /**
3509  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3510  *
3511  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3512  * used with resource_list_alloc().
3513  *
3514  * @param rl		the resource list which was allocated from
3515  * @param bus		the parent device of @p child
3516  * @param child		the device which is requesting a release
3517  * @param type		the type of resource to release
3518  * @param rid		the resource identifier
3519  * @param res		the resource to release
3520  *
3521  * @retval 0		success
3522  * @retval non-zero	a standard unix error code indicating what
3523  *			error condition prevented the operation
3524  */
3525 int
3526 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3527     int type, int rid, struct resource *res)
3528 {
3529 	struct resource_list_entry *rle = NULL;
3530 	int passthrough = (device_get_parent(child) != bus);
3531 	int error;
3532 
3533 	if (passthrough) {
3534 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3535 		    type, rid, res));
3536 	}
3537 
3538 	rle = resource_list_find(rl, type, rid);
3539 
3540 	if (!rle)
3541 		panic("resource_list_release: can't find resource");
3542 	if (!rle->res)
3543 		panic("resource_list_release: resource entry is not busy");
3544 	if (rle->flags & RLE_RESERVED) {
3545 		if (rle->flags & RLE_ALLOCATED) {
3546 			if (rman_get_flags(res) & RF_ACTIVE) {
3547 				error = bus_deactivate_resource(child, type,
3548 				    rid, res);
3549 				if (error)
3550 					return (error);
3551 			}
3552 			rle->flags &= ~RLE_ALLOCATED;
3553 			return (0);
3554 		}
3555 		return (EINVAL);
3556 	}
3557 
3558 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3559 	    type, rid, res);
3560 	if (error)
3561 		return (error);
3562 
3563 	rle->res = NULL;
3564 	return (0);
3565 }
3566 
3567 /**
3568  * @brief Release all active resources of a given type
3569  *
3570  * Release all active resources of a specified type.  This is intended
3571  * to be used to cleanup resources leaked by a driver after detach or
3572  * a failed attach.
3573  *
3574  * @param rl		the resource list which was allocated from
3575  * @param bus		the parent device of @p child
3576  * @param child		the device whose active resources are being released
3577  * @param type		the type of resources to release
3578  *
3579  * @retval 0		success
3580  * @retval EBUSY	at least one resource was active
3581  */
3582 int
3583 resource_list_release_active(struct resource_list *rl, device_t bus,
3584     device_t child, int type)
3585 {
3586 	struct resource_list_entry *rle;
3587 	int error, retval;
3588 
3589 	retval = 0;
3590 	STAILQ_FOREACH(rle, rl, link) {
3591 		if (rle->type != type)
3592 			continue;
3593 		if (rle->res == NULL)
3594 			continue;
3595 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3596 		    RLE_RESERVED)
3597 			continue;
3598 		retval = EBUSY;
3599 		error = resource_list_release(rl, bus, child, type,
3600 		    rman_get_rid(rle->res), rle->res);
3601 		if (error != 0)
3602 			device_printf(bus,
3603 			    "Failed to release active resource: %d\n", error);
3604 	}
3605 	return (retval);
3606 }
3607 
3608 /**
3609  * @brief Fully release a reserved resource
3610  *
3611  * Fully releases a resource reserved via resource_list_reserve().
3612  *
3613  * @param rl		the resource list which was allocated from
3614  * @param bus		the parent device of @p child
3615  * @param child		the device whose reserved resource is being released
3616  * @param type		the type of resource to release
3617  * @param rid		the resource identifier
3618  * @param res		the resource to release
3619  *
3620  * @retval 0		success
3621  * @retval non-zero	a standard unix error code indicating what
3622  *			error condition prevented the operation
3623  */
3624 int
3625 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3626     int type, int rid)
3627 {
3628 	struct resource_list_entry *rle = NULL;
3629 	int passthrough = (device_get_parent(child) != bus);
3630 
3631 	if (passthrough)
3632 		panic(
3633     "resource_list_unreserve() should only be called for direct children");
3634 
3635 	rle = resource_list_find(rl, type, rid);
3636 
3637 	if (!rle)
3638 		panic("resource_list_unreserve: can't find resource");
3639 	if (!(rle->flags & RLE_RESERVED))
3640 		return (EINVAL);
3641 	if (rle->flags & RLE_ALLOCATED)
3642 		return (EBUSY);
3643 	rle->flags &= ~RLE_RESERVED;
3644 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3645 }
3646 
3647 /**
3648  * @brief Print a description of resources in a resource list
3649  *
3650  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3651  * The name is printed if at least one resource of the given type is available.
3652  * The format is used to print resource start and end.
3653  *
3654  * @param rl		the resource list to print
3655  * @param name		the name of @p type, e.g. @c "memory"
3656  * @param type		type type of resource entry to print
3657  * @param format	printf(9) format string to print resource
3658  *			start and end values
3659  *
3660  * @returns		the number of characters printed
3661  */
3662 int
3663 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3664     const char *format)
3665 {
3666 	struct resource_list_entry *rle;
3667 	int printed, retval;
3668 
3669 	printed = 0;
3670 	retval = 0;
3671 	/* Yes, this is kinda cheating */
3672 	STAILQ_FOREACH(rle, rl, link) {
3673 		if (rle->type == type) {
3674 			if (printed == 0)
3675 				retval += printf(" %s ", name);
3676 			else
3677 				retval += printf(",");
3678 			printed++;
3679 			retval += printf(format, rle->start);
3680 			if (rle->count > 1) {
3681 				retval += printf("-");
3682 				retval += printf(format, rle->start +
3683 						 rle->count - 1);
3684 			}
3685 		}
3686 	}
3687 	return (retval);
3688 }
3689 
3690 /**
3691  * @brief Releases all the resources in a list.
3692  *
3693  * @param rl		The resource list to purge.
3694  *
3695  * @returns		nothing
3696  */
3697 void
3698 resource_list_purge(struct resource_list *rl)
3699 {
3700 	struct resource_list_entry *rle;
3701 
3702 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3703 		if (rle->res)
3704 			bus_release_resource(rman_get_device(rle->res),
3705 			    rle->type, rle->rid, rle->res);
3706 		STAILQ_REMOVE_HEAD(rl, link);
3707 		free(rle, M_BUS);
3708 	}
3709 }
3710 
3711 device_t
3712 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3713 {
3714 	return (device_add_child_ordered(dev, order, name, unit));
3715 }
3716 
3717 /**
3718  * @brief Helper function for implementing DEVICE_PROBE()
3719  *
3720  * This function can be used to help implement the DEVICE_PROBE() for
3721  * a bus (i.e. a device which has other devices attached to it). It
3722  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3723  * devclass.
3724  */
3725 int
3726 bus_generic_probe(device_t dev)
3727 {
3728 	devclass_t dc = dev->devclass;
3729 	driverlink_t dl;
3730 
3731 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3732 		/*
3733 		 * If this driver's pass is too high, then ignore it.
3734 		 * For most drivers in the default pass, this will
3735 		 * never be true.  For early-pass drivers they will
3736 		 * only call the identify routines of eligible drivers
3737 		 * when this routine is called.  Drivers for later
3738 		 * passes should have their identify routines called
3739 		 * on early-pass buses during BUS_NEW_PASS().
3740 		 */
3741 		if (dl->pass > bus_current_pass)
3742 			continue;
3743 		DEVICE_IDENTIFY(dl->driver, dev);
3744 	}
3745 
3746 	return (0);
3747 }
3748 
3749 /**
3750  * @brief Helper function for implementing DEVICE_ATTACH()
3751  *
3752  * This function can be used to help implement the DEVICE_ATTACH() for
3753  * a bus. It calls device_probe_and_attach() for each of the device's
3754  * children.
3755  */
3756 int
3757 bus_generic_attach(device_t dev)
3758 {
3759 	device_t child;
3760 
3761 	TAILQ_FOREACH(child, &dev->children, link) {
3762 		device_probe_and_attach(child);
3763 	}
3764 
3765 	return (0);
3766 }
3767 
3768 /**
3769  * @brief Helper function for delaying attaching children
3770  *
3771  * Many buses can't run transactions on the bus which children need to probe and
3772  * attach until after interrupts and/or timers are running.  This function
3773  * delays their attach until interrupts and timers are enabled.
3774  */
3775 int
3776 bus_delayed_attach_children(device_t dev)
3777 {
3778 	/* Probe and attach the bus children when interrupts are available */
3779 	config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev);
3780 
3781 	return (0);
3782 }
3783 
3784 /**
3785  * @brief Helper function for implementing DEVICE_DETACH()
3786  *
3787  * This function can be used to help implement the DEVICE_DETACH() for
3788  * a bus. It calls device_detach() for each of the device's
3789  * children.
3790  */
3791 int
3792 bus_generic_detach(device_t dev)
3793 {
3794 	device_t child;
3795 	int error;
3796 
3797 	if (dev->state != DS_ATTACHED)
3798 		return (EBUSY);
3799 
3800 	/*
3801 	 * Detach children in the reverse order.
3802 	 * See bus_generic_suspend for details.
3803 	 */
3804 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3805 		if ((error = device_detach(child)) != 0)
3806 			return (error);
3807 	}
3808 
3809 	return (0);
3810 }
3811 
3812 /**
3813  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3814  *
3815  * This function can be used to help implement the DEVICE_SHUTDOWN()
3816  * for a bus. It calls device_shutdown() for each of the device's
3817  * children.
3818  */
3819 int
3820 bus_generic_shutdown(device_t dev)
3821 {
3822 	device_t child;
3823 
3824 	/*
3825 	 * Shut down children in the reverse order.
3826 	 * See bus_generic_suspend for details.
3827 	 */
3828 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3829 		device_shutdown(child);
3830 	}
3831 
3832 	return (0);
3833 }
3834 
3835 /**
3836  * @brief Default function for suspending a child device.
3837  *
3838  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3839  */
3840 int
3841 bus_generic_suspend_child(device_t dev, device_t child)
3842 {
3843 	int	error;
3844 
3845 	error = DEVICE_SUSPEND(child);
3846 
3847 	if (error == 0)
3848 		child->flags |= DF_SUSPENDED;
3849 
3850 	return (error);
3851 }
3852 
3853 /**
3854  * @brief Default function for resuming a child device.
3855  *
3856  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3857  */
3858 int
3859 bus_generic_resume_child(device_t dev, device_t child)
3860 {
3861 	DEVICE_RESUME(child);
3862 	child->flags &= ~DF_SUSPENDED;
3863 
3864 	return (0);
3865 }
3866 
3867 /**
3868  * @brief Helper function for implementing DEVICE_SUSPEND()
3869  *
3870  * This function can be used to help implement the DEVICE_SUSPEND()
3871  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3872  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3873  * operation is aborted and any devices which were suspended are
3874  * resumed immediately by calling their DEVICE_RESUME() methods.
3875  */
3876 int
3877 bus_generic_suspend(device_t dev)
3878 {
3879 	int		error;
3880 	device_t	child;
3881 
3882 	/*
3883 	 * Suspend children in the reverse order.
3884 	 * For most buses all children are equal, so the order does not matter.
3885 	 * Other buses, such as acpi, carefully order their child devices to
3886 	 * express implicit dependencies between them.  For such buses it is
3887 	 * safer to bring down devices in the reverse order.
3888 	 */
3889 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3890 		error = BUS_SUSPEND_CHILD(dev, child);
3891 		if (error != 0) {
3892 			child = TAILQ_NEXT(child, link);
3893 			if (child != NULL) {
3894 				TAILQ_FOREACH_FROM(child, &dev->children, link)
3895 					BUS_RESUME_CHILD(dev, child);
3896 			}
3897 			return (error);
3898 		}
3899 	}
3900 	return (0);
3901 }
3902 
3903 /**
3904  * @brief Helper function for implementing DEVICE_RESUME()
3905  *
3906  * This function can be used to help implement the DEVICE_RESUME() for
3907  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3908  */
3909 int
3910 bus_generic_resume(device_t dev)
3911 {
3912 	device_t	child;
3913 
3914 	TAILQ_FOREACH(child, &dev->children, link) {
3915 		BUS_RESUME_CHILD(dev, child);
3916 		/* if resume fails, there's nothing we can usefully do... */
3917 	}
3918 	return (0);
3919 }
3920 
3921 /**
3922  * @brief Helper function for implementing BUS_RESET_POST
3923  *
3924  * Bus can use this function to implement common operations of
3925  * re-attaching or resuming the children after the bus itself was
3926  * reset, and after restoring bus-unique state of children.
3927  *
3928  * @param dev	The bus
3929  * #param flags	DEVF_RESET_*
3930  */
3931 int
3932 bus_helper_reset_post(device_t dev, int flags)
3933 {
3934 	device_t child;
3935 	int error, error1;
3936 
3937 	error = 0;
3938 	TAILQ_FOREACH(child, &dev->children,link) {
3939 		BUS_RESET_POST(dev, child);
3940 		error1 = (flags & DEVF_RESET_DETACH) != 0 ?
3941 		    device_probe_and_attach(child) :
3942 		    BUS_RESUME_CHILD(dev, child);
3943 		if (error == 0 && error1 != 0)
3944 			error = error1;
3945 	}
3946 	return (error);
3947 }
3948 
3949 static void
3950 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
3951 {
3952 	child = TAILQ_NEXT(child, link);
3953 	if (child == NULL)
3954 		return;
3955 	TAILQ_FOREACH_FROM(child, &dev->children,link) {
3956 		BUS_RESET_POST(dev, child);
3957 		if ((flags & DEVF_RESET_DETACH) != 0)
3958 			device_probe_and_attach(child);
3959 		else
3960 			BUS_RESUME_CHILD(dev, child);
3961 	}
3962 }
3963 
3964 /**
3965  * @brief Helper function for implementing BUS_RESET_PREPARE
3966  *
3967  * Bus can use this function to implement common operations of
3968  * detaching or suspending the children before the bus itself is
3969  * reset, and then save bus-unique state of children that must
3970  * persists around reset.
3971  *
3972  * @param dev	The bus
3973  * #param flags	DEVF_RESET_*
3974  */
3975 int
3976 bus_helper_reset_prepare(device_t dev, int flags)
3977 {
3978 	device_t child;
3979 	int error;
3980 
3981 	if (dev->state != DS_ATTACHED)
3982 		return (EBUSY);
3983 
3984 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3985 		if ((flags & DEVF_RESET_DETACH) != 0) {
3986 			error = device_get_state(child) == DS_ATTACHED ?
3987 			    device_detach(child) : 0;
3988 		} else {
3989 			error = BUS_SUSPEND_CHILD(dev, child);
3990 		}
3991 		if (error == 0) {
3992 			error = BUS_RESET_PREPARE(dev, child);
3993 			if (error != 0) {
3994 				if ((flags & DEVF_RESET_DETACH) != 0)
3995 					device_probe_and_attach(child);
3996 				else
3997 					BUS_RESUME_CHILD(dev, child);
3998 			}
3999 		}
4000 		if (error != 0) {
4001 			bus_helper_reset_prepare_rollback(dev, child, flags);
4002 			return (error);
4003 		}
4004 	}
4005 	return (0);
4006 }
4007 
4008 /**
4009  * @brief Helper function for implementing BUS_PRINT_CHILD().
4010  *
4011  * This function prints the first part of the ascii representation of
4012  * @p child, including its name, unit and description (if any - see
4013  * device_set_desc()).
4014  *
4015  * @returns the number of characters printed
4016  */
4017 int
4018 bus_print_child_header(device_t dev, device_t child)
4019 {
4020 	int	retval = 0;
4021 
4022 	if (device_get_desc(child)) {
4023 		retval += device_printf(child, "<%s>", device_get_desc(child));
4024 	} else {
4025 		retval += printf("%s", device_get_nameunit(child));
4026 	}
4027 
4028 	return (retval);
4029 }
4030 
4031 /**
4032  * @brief Helper function for implementing BUS_PRINT_CHILD().
4033  *
4034  * This function prints the last part of the ascii representation of
4035  * @p child, which consists of the string @c " on " followed by the
4036  * name and unit of the @p dev.
4037  *
4038  * @returns the number of characters printed
4039  */
4040 int
4041 bus_print_child_footer(device_t dev, device_t child)
4042 {
4043 	return (printf(" on %s\n", device_get_nameunit(dev)));
4044 }
4045 
4046 /**
4047  * @brief Helper function for implementing BUS_PRINT_CHILD().
4048  *
4049  * This function prints out the VM domain for the given device.
4050  *
4051  * @returns the number of characters printed
4052  */
4053 int
4054 bus_print_child_domain(device_t dev, device_t child)
4055 {
4056 	int domain;
4057 
4058 	/* No domain? Don't print anything */
4059 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
4060 		return (0);
4061 
4062 	return (printf(" numa-domain %d", domain));
4063 }
4064 
4065 /**
4066  * @brief Helper function for implementing BUS_PRINT_CHILD().
4067  *
4068  * This function simply calls bus_print_child_header() followed by
4069  * bus_print_child_footer().
4070  *
4071  * @returns the number of characters printed
4072  */
4073 int
4074 bus_generic_print_child(device_t dev, device_t child)
4075 {
4076 	int	retval = 0;
4077 
4078 	retval += bus_print_child_header(dev, child);
4079 	retval += bus_print_child_domain(dev, child);
4080 	retval += bus_print_child_footer(dev, child);
4081 
4082 	return (retval);
4083 }
4084 
4085 /**
4086  * @brief Stub function for implementing BUS_READ_IVAR().
4087  *
4088  * @returns ENOENT
4089  */
4090 int
4091 bus_generic_read_ivar(device_t dev, device_t child, int index,
4092     uintptr_t * result)
4093 {
4094 	return (ENOENT);
4095 }
4096 
4097 /**
4098  * @brief Stub function for implementing BUS_WRITE_IVAR().
4099  *
4100  * @returns ENOENT
4101  */
4102 int
4103 bus_generic_write_ivar(device_t dev, device_t child, int index,
4104     uintptr_t value)
4105 {
4106 	return (ENOENT);
4107 }
4108 
4109 /**
4110  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
4111  *
4112  * @returns NULL
4113  */
4114 struct resource_list *
4115 bus_generic_get_resource_list(device_t dev, device_t child)
4116 {
4117 	return (NULL);
4118 }
4119 
4120 /**
4121  * @brief Helper function for implementing BUS_DRIVER_ADDED().
4122  *
4123  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
4124  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
4125  * and then calls device_probe_and_attach() for each unattached child.
4126  */
4127 void
4128 bus_generic_driver_added(device_t dev, driver_t *driver)
4129 {
4130 	device_t child;
4131 
4132 	DEVICE_IDENTIFY(driver, dev);
4133 	TAILQ_FOREACH(child, &dev->children, link) {
4134 		if (child->state == DS_NOTPRESENT ||
4135 		    (child->flags & DF_REBID))
4136 			device_probe_and_attach(child);
4137 	}
4138 }
4139 
4140 /**
4141  * @brief Helper function for implementing BUS_NEW_PASS().
4142  *
4143  * This implementing of BUS_NEW_PASS() first calls the identify
4144  * routines for any drivers that probe at the current pass.  Then it
4145  * walks the list of devices for this bus.  If a device is already
4146  * attached, then it calls BUS_NEW_PASS() on that device.  If the
4147  * device is not already attached, it attempts to attach a driver to
4148  * it.
4149  */
4150 void
4151 bus_generic_new_pass(device_t dev)
4152 {
4153 	driverlink_t dl;
4154 	devclass_t dc;
4155 	device_t child;
4156 
4157 	dc = dev->devclass;
4158 	TAILQ_FOREACH(dl, &dc->drivers, link) {
4159 		if (dl->pass == bus_current_pass)
4160 			DEVICE_IDENTIFY(dl->driver, dev);
4161 	}
4162 	TAILQ_FOREACH(child, &dev->children, link) {
4163 		if (child->state >= DS_ATTACHED)
4164 			BUS_NEW_PASS(child);
4165 		else if (child->state == DS_NOTPRESENT)
4166 			device_probe_and_attach(child);
4167 	}
4168 }
4169 
4170 /**
4171  * @brief Helper function for implementing BUS_SETUP_INTR().
4172  *
4173  * This simple implementation of BUS_SETUP_INTR() simply calls the
4174  * BUS_SETUP_INTR() method of the parent of @p dev.
4175  */
4176 int
4177 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
4178     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
4179     void **cookiep)
4180 {
4181 	/* Propagate up the bus hierarchy until someone handles it. */
4182 	if (dev->parent)
4183 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
4184 		    filter, intr, arg, cookiep));
4185 	return (EINVAL);
4186 }
4187 
4188 /**
4189  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
4190  *
4191  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
4192  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
4193  */
4194 int
4195 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
4196     void *cookie)
4197 {
4198 	/* Propagate up the bus hierarchy until someone handles it. */
4199 	if (dev->parent)
4200 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
4201 	return (EINVAL);
4202 }
4203 
4204 /**
4205  * @brief Helper function for implementing BUS_SUSPEND_INTR().
4206  *
4207  * This simple implementation of BUS_SUSPEND_INTR() simply calls the
4208  * BUS_SUSPEND_INTR() method of the parent of @p dev.
4209  */
4210 int
4211 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
4212 {
4213 	/* Propagate up the bus hierarchy until someone handles it. */
4214 	if (dev->parent)
4215 		return (BUS_SUSPEND_INTR(dev->parent, child, irq));
4216 	return (EINVAL);
4217 }
4218 
4219 /**
4220  * @brief Helper function for implementing BUS_RESUME_INTR().
4221  *
4222  * This simple implementation of BUS_RESUME_INTR() simply calls the
4223  * BUS_RESUME_INTR() method of the parent of @p dev.
4224  */
4225 int
4226 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
4227 {
4228 	/* Propagate up the bus hierarchy until someone handles it. */
4229 	if (dev->parent)
4230 		return (BUS_RESUME_INTR(dev->parent, child, irq));
4231 	return (EINVAL);
4232 }
4233 
4234 /**
4235  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4236  *
4237  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
4238  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
4239  */
4240 int
4241 bus_generic_adjust_resource(device_t dev, device_t child, int type,
4242     struct resource *r, rman_res_t start, rman_res_t end)
4243 {
4244 	/* Propagate up the bus hierarchy until someone handles it. */
4245 	if (dev->parent)
4246 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
4247 		    end));
4248 	return (EINVAL);
4249 }
4250 
4251 /**
4252  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4253  *
4254  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4255  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4256  */
4257 struct resource *
4258 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4259     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4260 {
4261 	/* Propagate up the bus hierarchy until someone handles it. */
4262 	if (dev->parent)
4263 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4264 		    start, end, count, flags));
4265 	return (NULL);
4266 }
4267 
4268 /**
4269  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4270  *
4271  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4272  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4273  */
4274 int
4275 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
4276     struct resource *r)
4277 {
4278 	/* Propagate up the bus hierarchy until someone handles it. */
4279 	if (dev->parent)
4280 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
4281 		    r));
4282 	return (EINVAL);
4283 }
4284 
4285 /**
4286  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4287  *
4288  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4289  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4290  */
4291 int
4292 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4293     struct resource *r)
4294 {
4295 	/* Propagate up the bus hierarchy until someone handles it. */
4296 	if (dev->parent)
4297 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4298 		    r));
4299 	return (EINVAL);
4300 }
4301 
4302 /**
4303  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4304  *
4305  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4306  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4307  */
4308 int
4309 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4310     int rid, struct resource *r)
4311 {
4312 	/* Propagate up the bus hierarchy until someone handles it. */
4313 	if (dev->parent)
4314 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4315 		    r));
4316 	return (EINVAL);
4317 }
4318 
4319 /**
4320  * @brief Helper function for implementing BUS_MAP_RESOURCE().
4321  *
4322  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4323  * BUS_MAP_RESOURCE() method of the parent of @p dev.
4324  */
4325 int
4326 bus_generic_map_resource(device_t dev, device_t child, int type,
4327     struct resource *r, struct resource_map_request *args,
4328     struct resource_map *map)
4329 {
4330 	/* Propagate up the bus hierarchy until someone handles it. */
4331 	if (dev->parent)
4332 		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
4333 		    map));
4334 	return (EINVAL);
4335 }
4336 
4337 /**
4338  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4339  *
4340  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4341  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4342  */
4343 int
4344 bus_generic_unmap_resource(device_t dev, device_t child, int type,
4345     struct resource *r, struct resource_map *map)
4346 {
4347 	/* Propagate up the bus hierarchy until someone handles it. */
4348 	if (dev->parent)
4349 		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
4350 	return (EINVAL);
4351 }
4352 
4353 /**
4354  * @brief Helper function for implementing BUS_BIND_INTR().
4355  *
4356  * This simple implementation of BUS_BIND_INTR() simply calls the
4357  * BUS_BIND_INTR() method of the parent of @p dev.
4358  */
4359 int
4360 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4361     int cpu)
4362 {
4363 	/* Propagate up the bus hierarchy until someone handles it. */
4364 	if (dev->parent)
4365 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4366 	return (EINVAL);
4367 }
4368 
4369 /**
4370  * @brief Helper function for implementing BUS_CONFIG_INTR().
4371  *
4372  * This simple implementation of BUS_CONFIG_INTR() simply calls the
4373  * BUS_CONFIG_INTR() method of the parent of @p dev.
4374  */
4375 int
4376 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4377     enum intr_polarity pol)
4378 {
4379 	/* Propagate up the bus hierarchy until someone handles it. */
4380 	if (dev->parent)
4381 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4382 	return (EINVAL);
4383 }
4384 
4385 /**
4386  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4387  *
4388  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4389  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4390  */
4391 int
4392 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4393     void *cookie, const char *descr)
4394 {
4395 	/* Propagate up the bus hierarchy until someone handles it. */
4396 	if (dev->parent)
4397 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4398 		    descr));
4399 	return (EINVAL);
4400 }
4401 
4402 /**
4403  * @brief Helper function for implementing BUS_GET_CPUS().
4404  *
4405  * This simple implementation of BUS_GET_CPUS() simply calls the
4406  * BUS_GET_CPUS() method of the parent of @p dev.
4407  */
4408 int
4409 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4410     size_t setsize, cpuset_t *cpuset)
4411 {
4412 	/* Propagate up the bus hierarchy until someone handles it. */
4413 	if (dev->parent != NULL)
4414 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4415 	return (EINVAL);
4416 }
4417 
4418 /**
4419  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4420  *
4421  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4422  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4423  */
4424 bus_dma_tag_t
4425 bus_generic_get_dma_tag(device_t dev, device_t child)
4426 {
4427 	/* Propagate up the bus hierarchy until someone handles it. */
4428 	if (dev->parent != NULL)
4429 		return (BUS_GET_DMA_TAG(dev->parent, child));
4430 	return (NULL);
4431 }
4432 
4433 /**
4434  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4435  *
4436  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4437  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4438  */
4439 bus_space_tag_t
4440 bus_generic_get_bus_tag(device_t dev, device_t child)
4441 {
4442 	/* Propagate up the bus hierarchy until someone handles it. */
4443 	if (dev->parent != NULL)
4444 		return (BUS_GET_BUS_TAG(dev->parent, child));
4445 	return ((bus_space_tag_t)0);
4446 }
4447 
4448 /**
4449  * @brief Helper function for implementing BUS_GET_RESOURCE().
4450  *
4451  * This implementation of BUS_GET_RESOURCE() uses the
4452  * resource_list_find() function to do most of the work. It calls
4453  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4454  * search.
4455  */
4456 int
4457 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4458     rman_res_t *startp, rman_res_t *countp)
4459 {
4460 	struct resource_list *		rl = NULL;
4461 	struct resource_list_entry *	rle = NULL;
4462 
4463 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4464 	if (!rl)
4465 		return (EINVAL);
4466 
4467 	rle = resource_list_find(rl, type, rid);
4468 	if (!rle)
4469 		return (ENOENT);
4470 
4471 	if (startp)
4472 		*startp = rle->start;
4473 	if (countp)
4474 		*countp = rle->count;
4475 
4476 	return (0);
4477 }
4478 
4479 /**
4480  * @brief Helper function for implementing BUS_SET_RESOURCE().
4481  *
4482  * This implementation of BUS_SET_RESOURCE() uses the
4483  * resource_list_add() function to do most of the work. It calls
4484  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4485  * edit.
4486  */
4487 int
4488 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4489     rman_res_t start, rman_res_t count)
4490 {
4491 	struct resource_list *		rl = NULL;
4492 
4493 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4494 	if (!rl)
4495 		return (EINVAL);
4496 
4497 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4498 
4499 	return (0);
4500 }
4501 
4502 /**
4503  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4504  *
4505  * This implementation of BUS_DELETE_RESOURCE() uses the
4506  * resource_list_delete() function to do most of the work. It calls
4507  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4508  * edit.
4509  */
4510 void
4511 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4512 {
4513 	struct resource_list *		rl = NULL;
4514 
4515 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4516 	if (!rl)
4517 		return;
4518 
4519 	resource_list_delete(rl, type, rid);
4520 
4521 	return;
4522 }
4523 
4524 /**
4525  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4526  *
4527  * This implementation of BUS_RELEASE_RESOURCE() uses the
4528  * resource_list_release() function to do most of the work. It calls
4529  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4530  */
4531 int
4532 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4533     int rid, struct resource *r)
4534 {
4535 	struct resource_list *		rl = NULL;
4536 
4537 	if (device_get_parent(child) != dev)
4538 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4539 		    type, rid, r));
4540 
4541 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4542 	if (!rl)
4543 		return (EINVAL);
4544 
4545 	return (resource_list_release(rl, dev, child, type, rid, r));
4546 }
4547 
4548 /**
4549  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4550  *
4551  * This implementation of BUS_ALLOC_RESOURCE() uses the
4552  * resource_list_alloc() function to do most of the work. It calls
4553  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4554  */
4555 struct resource *
4556 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4557     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4558 {
4559 	struct resource_list *		rl = NULL;
4560 
4561 	if (device_get_parent(child) != dev)
4562 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4563 		    type, rid, start, end, count, flags));
4564 
4565 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4566 	if (!rl)
4567 		return (NULL);
4568 
4569 	return (resource_list_alloc(rl, dev, child, type, rid,
4570 	    start, end, count, flags));
4571 }
4572 
4573 /**
4574  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4575  *
4576  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4577  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4578  */
4579 int
4580 bus_generic_child_present(device_t dev, device_t child)
4581 {
4582 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4583 }
4584 
4585 int
4586 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4587 {
4588 	if (dev->parent)
4589 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4590 
4591 	return (ENOENT);
4592 }
4593 
4594 /**
4595  * @brief Helper function for implementing BUS_RESCAN().
4596  *
4597  * This null implementation of BUS_RESCAN() always fails to indicate
4598  * the bus does not support rescanning.
4599  */
4600 int
4601 bus_null_rescan(device_t dev)
4602 {
4603 	return (ENXIO);
4604 }
4605 
4606 /*
4607  * Some convenience functions to make it easier for drivers to use the
4608  * resource-management functions.  All these really do is hide the
4609  * indirection through the parent's method table, making for slightly
4610  * less-wordy code.  In the future, it might make sense for this code
4611  * to maintain some sort of a list of resources allocated by each device.
4612  */
4613 
4614 int
4615 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4616     struct resource **res)
4617 {
4618 	int i;
4619 
4620 	for (i = 0; rs[i].type != -1; i++)
4621 		res[i] = NULL;
4622 	for (i = 0; rs[i].type != -1; i++) {
4623 		res[i] = bus_alloc_resource_any(dev,
4624 		    rs[i].type, &rs[i].rid, rs[i].flags);
4625 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4626 			bus_release_resources(dev, rs, res);
4627 			return (ENXIO);
4628 		}
4629 	}
4630 	return (0);
4631 }
4632 
4633 void
4634 bus_release_resources(device_t dev, const struct resource_spec *rs,
4635     struct resource **res)
4636 {
4637 	int i;
4638 
4639 	for (i = 0; rs[i].type != -1; i++)
4640 		if (res[i] != NULL) {
4641 			bus_release_resource(
4642 			    dev, rs[i].type, rs[i].rid, res[i]);
4643 			res[i] = NULL;
4644 		}
4645 }
4646 
4647 /**
4648  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4649  *
4650  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4651  * parent of @p dev.
4652  */
4653 struct resource *
4654 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4655     rman_res_t end, rman_res_t count, u_int flags)
4656 {
4657 	struct resource *res;
4658 
4659 	if (dev->parent == NULL)
4660 		return (NULL);
4661 	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4662 	    count, flags);
4663 	return (res);
4664 }
4665 
4666 /**
4667  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4668  *
4669  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4670  * parent of @p dev.
4671  */
4672 int
4673 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4674     rman_res_t end)
4675 {
4676 	if (dev->parent == NULL)
4677 		return (EINVAL);
4678 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4679 }
4680 
4681 /**
4682  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4683  *
4684  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4685  * parent of @p dev.
4686  */
4687 int
4688 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4689 {
4690 	if (dev->parent == NULL)
4691 		return (EINVAL);
4692 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4693 }
4694 
4695 /**
4696  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4697  *
4698  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4699  * parent of @p dev.
4700  */
4701 int
4702 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4703 {
4704 	if (dev->parent == NULL)
4705 		return (EINVAL);
4706 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4707 }
4708 
4709 /**
4710  * @brief Wrapper function for BUS_MAP_RESOURCE().
4711  *
4712  * This function simply calls the BUS_MAP_RESOURCE() method of the
4713  * parent of @p dev.
4714  */
4715 int
4716 bus_map_resource(device_t dev, int type, struct resource *r,
4717     struct resource_map_request *args, struct resource_map *map)
4718 {
4719 	if (dev->parent == NULL)
4720 		return (EINVAL);
4721 	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
4722 }
4723 
4724 /**
4725  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4726  *
4727  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4728  * parent of @p dev.
4729  */
4730 int
4731 bus_unmap_resource(device_t dev, int type, struct resource *r,
4732     struct resource_map *map)
4733 {
4734 	if (dev->parent == NULL)
4735 		return (EINVAL);
4736 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
4737 }
4738 
4739 /**
4740  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4741  *
4742  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4743  * parent of @p dev.
4744  */
4745 int
4746 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4747 {
4748 	int rv;
4749 
4750 	if (dev->parent == NULL)
4751 		return (EINVAL);
4752 	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
4753 	return (rv);
4754 }
4755 
4756 /**
4757  * @brief Wrapper function for BUS_SETUP_INTR().
4758  *
4759  * This function simply calls the BUS_SETUP_INTR() method of the
4760  * parent of @p dev.
4761  */
4762 int
4763 bus_setup_intr(device_t dev, struct resource *r, int flags,
4764     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4765 {
4766 	int error;
4767 
4768 	if (dev->parent == NULL)
4769 		return (EINVAL);
4770 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4771 	    arg, cookiep);
4772 	if (error != 0)
4773 		return (error);
4774 	if (handler != NULL && !(flags & INTR_MPSAFE))
4775 		device_printf(dev, "[GIANT-LOCKED]\n");
4776 	return (0);
4777 }
4778 
4779 /**
4780  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4781  *
4782  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4783  * parent of @p dev.
4784  */
4785 int
4786 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4787 {
4788 	if (dev->parent == NULL)
4789 		return (EINVAL);
4790 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4791 }
4792 
4793 /**
4794  * @brief Wrapper function for BUS_SUSPEND_INTR().
4795  *
4796  * This function simply calls the BUS_SUSPEND_INTR() method of the
4797  * parent of @p dev.
4798  */
4799 int
4800 bus_suspend_intr(device_t dev, struct resource *r)
4801 {
4802 	if (dev->parent == NULL)
4803 		return (EINVAL);
4804 	return (BUS_SUSPEND_INTR(dev->parent, dev, r));
4805 }
4806 
4807 /**
4808  * @brief Wrapper function for BUS_RESUME_INTR().
4809  *
4810  * This function simply calls the BUS_RESUME_INTR() method of the
4811  * parent of @p dev.
4812  */
4813 int
4814 bus_resume_intr(device_t dev, struct resource *r)
4815 {
4816 	if (dev->parent == NULL)
4817 		return (EINVAL);
4818 	return (BUS_RESUME_INTR(dev->parent, dev, r));
4819 }
4820 
4821 /**
4822  * @brief Wrapper function for BUS_BIND_INTR().
4823  *
4824  * This function simply calls the BUS_BIND_INTR() method of the
4825  * parent of @p dev.
4826  */
4827 int
4828 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4829 {
4830 	if (dev->parent == NULL)
4831 		return (EINVAL);
4832 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4833 }
4834 
4835 /**
4836  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4837  *
4838  * This function first formats the requested description into a
4839  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4840  * the parent of @p dev.
4841  */
4842 int
4843 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4844     const char *fmt, ...)
4845 {
4846 	va_list ap;
4847 	char descr[MAXCOMLEN + 1];
4848 
4849 	if (dev->parent == NULL)
4850 		return (EINVAL);
4851 	va_start(ap, fmt);
4852 	vsnprintf(descr, sizeof(descr), fmt, ap);
4853 	va_end(ap);
4854 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4855 }
4856 
4857 /**
4858  * @brief Wrapper function for BUS_SET_RESOURCE().
4859  *
4860  * This function simply calls the BUS_SET_RESOURCE() method of the
4861  * parent of @p dev.
4862  */
4863 int
4864 bus_set_resource(device_t dev, int type, int rid,
4865     rman_res_t start, rman_res_t count)
4866 {
4867 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4868 	    start, count));
4869 }
4870 
4871 /**
4872  * @brief Wrapper function for BUS_GET_RESOURCE().
4873  *
4874  * This function simply calls the BUS_GET_RESOURCE() method of the
4875  * parent of @p dev.
4876  */
4877 int
4878 bus_get_resource(device_t dev, int type, int rid,
4879     rman_res_t *startp, rman_res_t *countp)
4880 {
4881 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4882 	    startp, countp));
4883 }
4884 
4885 /**
4886  * @brief Wrapper function for BUS_GET_RESOURCE().
4887  *
4888  * This function simply calls the BUS_GET_RESOURCE() method of the
4889  * parent of @p dev and returns the start value.
4890  */
4891 rman_res_t
4892 bus_get_resource_start(device_t dev, int type, int rid)
4893 {
4894 	rman_res_t start;
4895 	rman_res_t count;
4896 	int error;
4897 
4898 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4899 	    &start, &count);
4900 	if (error)
4901 		return (0);
4902 	return (start);
4903 }
4904 
4905 /**
4906  * @brief Wrapper function for BUS_GET_RESOURCE().
4907  *
4908  * This function simply calls the BUS_GET_RESOURCE() method of the
4909  * parent of @p dev and returns the count value.
4910  */
4911 rman_res_t
4912 bus_get_resource_count(device_t dev, int type, int rid)
4913 {
4914 	rman_res_t start;
4915 	rman_res_t count;
4916 	int error;
4917 
4918 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4919 	    &start, &count);
4920 	if (error)
4921 		return (0);
4922 	return (count);
4923 }
4924 
4925 /**
4926  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4927  *
4928  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4929  * parent of @p dev.
4930  */
4931 void
4932 bus_delete_resource(device_t dev, int type, int rid)
4933 {
4934 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4935 }
4936 
4937 /**
4938  * @brief Wrapper function for BUS_CHILD_PRESENT().
4939  *
4940  * This function simply calls the BUS_CHILD_PRESENT() method of the
4941  * parent of @p dev.
4942  */
4943 int
4944 bus_child_present(device_t child)
4945 {
4946 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4947 }
4948 
4949 /**
4950  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4951  *
4952  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4953  * parent of @p dev.
4954  */
4955 int
4956 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4957 {
4958 	device_t parent;
4959 
4960 	parent = device_get_parent(child);
4961 	if (parent == NULL) {
4962 		*buf = '\0';
4963 		return (0);
4964 	}
4965 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4966 }
4967 
4968 /**
4969  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4970  *
4971  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4972  * parent of @p dev.
4973  */
4974 int
4975 bus_child_location_str(device_t child, char *buf, size_t buflen)
4976 {
4977 	device_t parent;
4978 
4979 	parent = device_get_parent(child);
4980 	if (parent == NULL) {
4981 		*buf = '\0';
4982 		return (0);
4983 	}
4984 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4985 }
4986 
4987 /**
4988  * @brief Wrapper function for bus_child_pnpinfo_str using sbuf
4989  *
4990  * A convenient wrapper frunction for bus_child_pnpinfo_str that allows
4991  * us to splat that into an sbuf. It uses unholy knowledge of sbuf to
4992  * accomplish this, however. It is an interim function until we can convert
4993  * this interface more fully.
4994  */
4995 /* Note: we reach inside of sbuf because it's API isn't rich enough to do this */
4996 #define	SPACE(s)	((s)->s_size - (s)->s_len)
4997 #define EOB(s)		((s)->s_buf + (s)->s_len)
4998 
4999 static int
5000 bus_child_pnpinfo_sb(device_t dev, struct sbuf *sb)
5001 {
5002 	char *p;
5003 	ssize_t space;
5004 
5005 	MPASS((sb->s_flags & SBUF_INCLUDENUL) == 0);
5006 	MPASS(sb->s_size >= sb->s_len);
5007 	if (sb->s_error != 0)
5008 		return (-1);
5009 	space = SPACE(sb);
5010 	if (space <= 1) {
5011 		sb->s_error = ENOMEM;
5012 		return (-1);
5013 	}
5014 	p = EOB(sb);
5015 	*p = '\0';	/* sbuf buffer isn't NUL terminated until sbuf_finish() */
5016 	bus_child_pnpinfo_str(dev, p, space);
5017 	sb->s_len += strlen(p);
5018 	return (0);
5019 }
5020 
5021 /**
5022  * @brief Wrapper function for bus_child_pnpinfo_str using sbuf
5023  *
5024  * A convenient wrapper frunction for bus_child_pnpinfo_str that allows
5025  * us to splat that into an sbuf. It uses unholy knowledge of sbuf to
5026  * accomplish this, however. It is an interim function until we can convert
5027  * this interface more fully.
5028  */
5029 static int
5030 bus_child_location_sb(device_t dev, struct sbuf *sb)
5031 {
5032 	char *p;
5033 	ssize_t space;
5034 
5035 	MPASS((sb->s_flags & SBUF_INCLUDENUL) == 0);
5036 	MPASS(sb->s_size >= sb->s_len);
5037 	if (sb->s_error != 0)
5038 		return (-1);
5039 	space = SPACE(sb);
5040 	if (space <= 1) {
5041 		sb->s_error = ENOMEM;
5042 		return (-1);
5043 	}
5044 	p = EOB(sb);
5045 	*p = '\0';	/* sbuf buffer isn't NUL terminated until sbuf_finish() */
5046 	bus_child_location_str(dev, p, space);
5047 	sb->s_len += strlen(p);
5048 	return (0);
5049 }
5050 #undef SPACE
5051 #undef EOB
5052 
5053 /**
5054  * @brief Wrapper function for BUS_GET_CPUS().
5055  *
5056  * This function simply calls the BUS_GET_CPUS() method of the
5057  * parent of @p dev.
5058  */
5059 int
5060 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
5061 {
5062 	device_t parent;
5063 
5064 	parent = device_get_parent(dev);
5065 	if (parent == NULL)
5066 		return (EINVAL);
5067 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
5068 }
5069 
5070 /**
5071  * @brief Wrapper function for BUS_GET_DMA_TAG().
5072  *
5073  * This function simply calls the BUS_GET_DMA_TAG() method of the
5074  * parent of @p dev.
5075  */
5076 bus_dma_tag_t
5077 bus_get_dma_tag(device_t dev)
5078 {
5079 	device_t parent;
5080 
5081 	parent = device_get_parent(dev);
5082 	if (parent == NULL)
5083 		return (NULL);
5084 	return (BUS_GET_DMA_TAG(parent, dev));
5085 }
5086 
5087 /**
5088  * @brief Wrapper function for BUS_GET_BUS_TAG().
5089  *
5090  * This function simply calls the BUS_GET_BUS_TAG() method of the
5091  * parent of @p dev.
5092  */
5093 bus_space_tag_t
5094 bus_get_bus_tag(device_t dev)
5095 {
5096 	device_t parent;
5097 
5098 	parent = device_get_parent(dev);
5099 	if (parent == NULL)
5100 		return ((bus_space_tag_t)0);
5101 	return (BUS_GET_BUS_TAG(parent, dev));
5102 }
5103 
5104 /**
5105  * @brief Wrapper function for BUS_GET_DOMAIN().
5106  *
5107  * This function simply calls the BUS_GET_DOMAIN() method of the
5108  * parent of @p dev.
5109  */
5110 int
5111 bus_get_domain(device_t dev, int *domain)
5112 {
5113 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
5114 }
5115 
5116 /* Resume all devices and then notify userland that we're up again. */
5117 static int
5118 root_resume(device_t dev)
5119 {
5120 	int error;
5121 
5122 	error = bus_generic_resume(dev);
5123 	if (error == 0) {
5124 		devctl_notify("kern", "power", "resume", NULL); /* Deprecated gone in 14 */
5125 		devctl_notify("kernel", "power", "resume", NULL);
5126 	}
5127 	return (error);
5128 }
5129 
5130 static int
5131 root_print_child(device_t dev, device_t child)
5132 {
5133 	int	retval = 0;
5134 
5135 	retval += bus_print_child_header(dev, child);
5136 	retval += printf("\n");
5137 
5138 	return (retval);
5139 }
5140 
5141 static int
5142 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
5143     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
5144 {
5145 	/*
5146 	 * If an interrupt mapping gets to here something bad has happened.
5147 	 */
5148 	panic("root_setup_intr");
5149 }
5150 
5151 /*
5152  * If we get here, assume that the device is permanent and really is
5153  * present in the system.  Removable bus drivers are expected to intercept
5154  * this call long before it gets here.  We return -1 so that drivers that
5155  * really care can check vs -1 or some ERRNO returned higher in the food
5156  * chain.
5157  */
5158 static int
5159 root_child_present(device_t dev, device_t child)
5160 {
5161 	return (-1);
5162 }
5163 
5164 static int
5165 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
5166     cpuset_t *cpuset)
5167 {
5168 	switch (op) {
5169 	case INTR_CPUS:
5170 		/* Default to returning the set of all CPUs. */
5171 		if (setsize != sizeof(cpuset_t))
5172 			return (EINVAL);
5173 		*cpuset = all_cpus;
5174 		return (0);
5175 	default:
5176 		return (EINVAL);
5177 	}
5178 }
5179 
5180 static kobj_method_t root_methods[] = {
5181 	/* Device interface */
5182 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
5183 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
5184 	KOBJMETHOD(device_resume,	root_resume),
5185 
5186 	/* Bus interface */
5187 	KOBJMETHOD(bus_print_child,	root_print_child),
5188 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
5189 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
5190 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
5191 	KOBJMETHOD(bus_child_present,	root_child_present),
5192 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
5193 
5194 	KOBJMETHOD_END
5195 };
5196 
5197 static driver_t root_driver = {
5198 	"root",
5199 	root_methods,
5200 	1,			/* no softc */
5201 };
5202 
5203 device_t	root_bus;
5204 devclass_t	root_devclass;
5205 
5206 static int
5207 root_bus_module_handler(module_t mod, int what, void* arg)
5208 {
5209 	switch (what) {
5210 	case MOD_LOAD:
5211 		TAILQ_INIT(&bus_data_devices);
5212 		kobj_class_compile((kobj_class_t) &root_driver);
5213 		root_bus = make_device(NULL, "root", 0);
5214 		root_bus->desc = "System root bus";
5215 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
5216 		root_bus->driver = &root_driver;
5217 		root_bus->state = DS_ATTACHED;
5218 		root_devclass = devclass_find_internal("root", NULL, FALSE);
5219 		devinit();
5220 		return (0);
5221 
5222 	case MOD_SHUTDOWN:
5223 		device_shutdown(root_bus);
5224 		return (0);
5225 	default:
5226 		return (EOPNOTSUPP);
5227 	}
5228 
5229 	return (0);
5230 }
5231 
5232 static moduledata_t root_bus_mod = {
5233 	"rootbus",
5234 	root_bus_module_handler,
5235 	NULL
5236 };
5237 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5238 
5239 /**
5240  * @brief Automatically configure devices
5241  *
5242  * This function begins the autoconfiguration process by calling
5243  * device_probe_and_attach() for each child of the @c root0 device.
5244  */
5245 void
5246 root_bus_configure(void)
5247 {
5248 	PDEBUG(("."));
5249 
5250 	/* Eventually this will be split up, but this is sufficient for now. */
5251 	bus_set_pass(BUS_PASS_DEFAULT);
5252 }
5253 
5254 /**
5255  * @brief Module handler for registering device drivers
5256  *
5257  * This module handler is used to automatically register device
5258  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
5259  * devclass_add_driver() for the driver described by the
5260  * driver_module_data structure pointed to by @p arg
5261  */
5262 int
5263 driver_module_handler(module_t mod, int what, void *arg)
5264 {
5265 	struct driver_module_data *dmd;
5266 	devclass_t bus_devclass;
5267 	kobj_class_t driver;
5268 	int error, pass;
5269 
5270 	dmd = (struct driver_module_data *)arg;
5271 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
5272 	error = 0;
5273 
5274 	switch (what) {
5275 	case MOD_LOAD:
5276 		if (dmd->dmd_chainevh)
5277 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5278 
5279 		pass = dmd->dmd_pass;
5280 		driver = dmd->dmd_driver;
5281 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5282 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
5283 		error = devclass_add_driver(bus_devclass, driver, pass,
5284 		    dmd->dmd_devclass);
5285 		break;
5286 
5287 	case MOD_UNLOAD:
5288 		PDEBUG(("Unloading module: driver %s from bus %s",
5289 		    DRIVERNAME(dmd->dmd_driver),
5290 		    dmd->dmd_busname));
5291 		error = devclass_delete_driver(bus_devclass,
5292 		    dmd->dmd_driver);
5293 
5294 		if (!error && dmd->dmd_chainevh)
5295 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5296 		break;
5297 	case MOD_QUIESCE:
5298 		PDEBUG(("Quiesce module: driver %s from bus %s",
5299 		    DRIVERNAME(dmd->dmd_driver),
5300 		    dmd->dmd_busname));
5301 		error = devclass_quiesce_driver(bus_devclass,
5302 		    dmd->dmd_driver);
5303 
5304 		if (!error && dmd->dmd_chainevh)
5305 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5306 		break;
5307 	default:
5308 		error = EOPNOTSUPP;
5309 		break;
5310 	}
5311 
5312 	return (error);
5313 }
5314 
5315 /**
5316  * @brief Enumerate all hinted devices for this bus.
5317  *
5318  * Walks through the hints for this bus and calls the bus_hinted_child
5319  * routine for each one it fines.  It searches first for the specific
5320  * bus that's being probed for hinted children (eg isa0), and then for
5321  * generic children (eg isa).
5322  *
5323  * @param	dev	bus device to enumerate
5324  */
5325 void
5326 bus_enumerate_hinted_children(device_t bus)
5327 {
5328 	int i;
5329 	const char *dname, *busname;
5330 	int dunit;
5331 
5332 	/*
5333 	 * enumerate all devices on the specific bus
5334 	 */
5335 	busname = device_get_nameunit(bus);
5336 	i = 0;
5337 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5338 		BUS_HINTED_CHILD(bus, dname, dunit);
5339 
5340 	/*
5341 	 * and all the generic ones.
5342 	 */
5343 	busname = device_get_name(bus);
5344 	i = 0;
5345 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5346 		BUS_HINTED_CHILD(bus, dname, dunit);
5347 }
5348 
5349 #ifdef BUS_DEBUG
5350 
5351 /* the _short versions avoid iteration by not calling anything that prints
5352  * more than oneliners. I love oneliners.
5353  */
5354 
5355 static void
5356 print_device_short(device_t dev, int indent)
5357 {
5358 	if (!dev)
5359 		return;
5360 
5361 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5362 	    dev->unit, dev->desc,
5363 	    (dev->parent? "":"no "),
5364 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5365 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5366 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5367 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5368 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5369 	    (dev->flags&DF_REBID? "rebiddable,":""),
5370 	    (dev->flags&DF_SUSPENDED? "suspended,":""),
5371 	    (dev->ivars? "":"no "),
5372 	    (dev->softc? "":"no "),
5373 	    dev->busy));
5374 }
5375 
5376 static void
5377 print_device(device_t dev, int indent)
5378 {
5379 	if (!dev)
5380 		return;
5381 
5382 	print_device_short(dev, indent);
5383 
5384 	indentprintf(("Parent:\n"));
5385 	print_device_short(dev->parent, indent+1);
5386 	indentprintf(("Driver:\n"));
5387 	print_driver_short(dev->driver, indent+1);
5388 	indentprintf(("Devclass:\n"));
5389 	print_devclass_short(dev->devclass, indent+1);
5390 }
5391 
5392 void
5393 print_device_tree_short(device_t dev, int indent)
5394 /* print the device and all its children (indented) */
5395 {
5396 	device_t child;
5397 
5398 	if (!dev)
5399 		return;
5400 
5401 	print_device_short(dev, indent);
5402 
5403 	TAILQ_FOREACH(child, &dev->children, link) {
5404 		print_device_tree_short(child, indent+1);
5405 	}
5406 }
5407 
5408 void
5409 print_device_tree(device_t dev, int indent)
5410 /* print the device and all its children (indented) */
5411 {
5412 	device_t child;
5413 
5414 	if (!dev)
5415 		return;
5416 
5417 	print_device(dev, indent);
5418 
5419 	TAILQ_FOREACH(child, &dev->children, link) {
5420 		print_device_tree(child, indent+1);
5421 	}
5422 }
5423 
5424 static void
5425 print_driver_short(driver_t *driver, int indent)
5426 {
5427 	if (!driver)
5428 		return;
5429 
5430 	indentprintf(("driver %s: softc size = %zd\n",
5431 	    driver->name, driver->size));
5432 }
5433 
5434 static void
5435 print_driver(driver_t *driver, int indent)
5436 {
5437 	if (!driver)
5438 		return;
5439 
5440 	print_driver_short(driver, indent);
5441 }
5442 
5443 static void
5444 print_driver_list(driver_list_t drivers, int indent)
5445 {
5446 	driverlink_t driver;
5447 
5448 	TAILQ_FOREACH(driver, &drivers, link) {
5449 		print_driver(driver->driver, indent);
5450 	}
5451 }
5452 
5453 static void
5454 print_devclass_short(devclass_t dc, int indent)
5455 {
5456 	if ( !dc )
5457 		return;
5458 
5459 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5460 }
5461 
5462 static void
5463 print_devclass(devclass_t dc, int indent)
5464 {
5465 	int i;
5466 
5467 	if ( !dc )
5468 		return;
5469 
5470 	print_devclass_short(dc, indent);
5471 	indentprintf(("Drivers:\n"));
5472 	print_driver_list(dc->drivers, indent+1);
5473 
5474 	indentprintf(("Devices:\n"));
5475 	for (i = 0; i < dc->maxunit; i++)
5476 		if (dc->devices[i])
5477 			print_device(dc->devices[i], indent+1);
5478 }
5479 
5480 void
5481 print_devclass_list_short(void)
5482 {
5483 	devclass_t dc;
5484 
5485 	printf("Short listing of devclasses, drivers & devices:\n");
5486 	TAILQ_FOREACH(dc, &devclasses, link) {
5487 		print_devclass_short(dc, 0);
5488 	}
5489 }
5490 
5491 void
5492 print_devclass_list(void)
5493 {
5494 	devclass_t dc;
5495 
5496 	printf("Full listing of devclasses, drivers & devices:\n");
5497 	TAILQ_FOREACH(dc, &devclasses, link) {
5498 		print_devclass(dc, 0);
5499 	}
5500 }
5501 
5502 #endif
5503 
5504 /*
5505  * User-space access to the device tree.
5506  *
5507  * We implement a small set of nodes:
5508  *
5509  * hw.bus			Single integer read method to obtain the
5510  *				current generation count.
5511  * hw.bus.devices		Reads the entire device tree in flat space.
5512  * hw.bus.rman			Resource manager interface
5513  *
5514  * We might like to add the ability to scan devclasses and/or drivers to
5515  * determine what else is currently loaded/available.
5516  */
5517 
5518 static int
5519 sysctl_bus_info(SYSCTL_HANDLER_ARGS)
5520 {
5521 	struct u_businfo	ubus;
5522 
5523 	ubus.ub_version = BUS_USER_VERSION;
5524 	ubus.ub_generation = bus_data_generation;
5525 
5526 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5527 }
5528 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD |
5529     CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo",
5530     "bus-related data");
5531 
5532 static int
5533 sysctl_devices(SYSCTL_HANDLER_ARGS)
5534 {
5535 	struct sbuf		sb;
5536 	int			*name = (int *)arg1;
5537 	u_int			namelen = arg2;
5538 	int			index;
5539 	device_t		dev;
5540 	struct u_device		*udev;
5541 	int			error;
5542 
5543 	if (namelen != 2)
5544 		return (EINVAL);
5545 
5546 	if (bus_data_generation_check(name[0]))
5547 		return (EINVAL);
5548 
5549 	index = name[1];
5550 
5551 	/*
5552 	 * Scan the list of devices, looking for the requested index.
5553 	 */
5554 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5555 		if (index-- == 0)
5556 			break;
5557 	}
5558 	if (dev == NULL)
5559 		return (ENOENT);
5560 
5561 	/*
5562 	 * Populate the return item, careful not to overflow the buffer.
5563 	 */
5564 	udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5565 	if (udev == NULL)
5566 		return (ENOMEM);
5567 	udev->dv_handle = (uintptr_t)dev;
5568 	udev->dv_parent = (uintptr_t)dev->parent;
5569 	udev->dv_devflags = dev->devflags;
5570 	udev->dv_flags = dev->flags;
5571 	udev->dv_state = dev->state;
5572 	sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN);
5573 	if (dev->nameunit != NULL)
5574 		sbuf_cat(&sb, dev->nameunit);
5575 	sbuf_putc(&sb, '\0');
5576 	if (dev->desc != NULL)
5577 		sbuf_cat(&sb, dev->desc);
5578 	sbuf_putc(&sb, '\0');
5579 	if (dev->driver != NULL)
5580 		sbuf_cat(&sb, dev->driver->name);
5581 	sbuf_putc(&sb, '\0');
5582 	bus_child_pnpinfo_sb(dev, &sb);
5583 	sbuf_putc(&sb, '\0');
5584 	bus_child_location_sb(dev, &sb);
5585 	sbuf_putc(&sb, '\0');
5586 	error = sbuf_finish(&sb);
5587 	if (error == 0)
5588 		error = SYSCTL_OUT(req, udev, sizeof(*udev));
5589 	sbuf_delete(&sb);
5590 	free(udev, M_BUS);
5591 	return (error);
5592 }
5593 
5594 SYSCTL_NODE(_hw_bus, OID_AUTO, devices,
5595     CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices,
5596     "system device tree");
5597 
5598 int
5599 bus_data_generation_check(int generation)
5600 {
5601 	if (generation != bus_data_generation)
5602 		return (1);
5603 
5604 	/* XXX generate optimised lists here? */
5605 	return (0);
5606 }
5607 
5608 void
5609 bus_data_generation_update(void)
5610 {
5611 	atomic_add_int(&bus_data_generation, 1);
5612 }
5613 
5614 int
5615 bus_free_resource(device_t dev, int type, struct resource *r)
5616 {
5617 	if (r == NULL)
5618 		return (0);
5619 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5620 }
5621 
5622 device_t
5623 device_lookup_by_name(const char *name)
5624 {
5625 	device_t dev;
5626 
5627 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5628 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5629 			return (dev);
5630 	}
5631 	return (NULL);
5632 }
5633 
5634 /*
5635  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5636  * implicit semantics on open, so it could not be reused for this.
5637  * Another option would be to call this /dev/bus?
5638  */
5639 static int
5640 find_device(struct devreq *req, device_t *devp)
5641 {
5642 	device_t dev;
5643 
5644 	/*
5645 	 * First, ensure that the name is nul terminated.
5646 	 */
5647 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5648 		return (EINVAL);
5649 
5650 	/*
5651 	 * Second, try to find an attached device whose name matches
5652 	 * 'name'.
5653 	 */
5654 	dev = device_lookup_by_name(req->dr_name);
5655 	if (dev != NULL) {
5656 		*devp = dev;
5657 		return (0);
5658 	}
5659 
5660 	/* Finally, give device enumerators a chance. */
5661 	dev = NULL;
5662 	EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5663 	if (dev == NULL)
5664 		return (ENOENT);
5665 	*devp = dev;
5666 	return (0);
5667 }
5668 
5669 static bool
5670 driver_exists(device_t bus, const char *driver)
5671 {
5672 	devclass_t dc;
5673 
5674 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5675 		if (devclass_find_driver_internal(dc, driver) != NULL)
5676 			return (true);
5677 	}
5678 	return (false);
5679 }
5680 
5681 static void
5682 device_gen_nomatch(device_t dev)
5683 {
5684 	device_t child;
5685 
5686 	if (dev->flags & DF_NEEDNOMATCH &&
5687 	    dev->state == DS_NOTPRESENT) {
5688 		BUS_PROBE_NOMATCH(dev->parent, dev);
5689 		devnomatch(dev);
5690 		dev->flags |= DF_DONENOMATCH;
5691 	}
5692 	dev->flags &= ~DF_NEEDNOMATCH;
5693 	TAILQ_FOREACH(child, &dev->children, link) {
5694 		device_gen_nomatch(child);
5695 	}
5696 }
5697 
5698 static void
5699 device_do_deferred_actions(void)
5700 {
5701 	devclass_t dc;
5702 	driverlink_t dl;
5703 
5704 	/*
5705 	 * Walk through the devclasses to find all the drivers we've tagged as
5706 	 * deferred during the freeze and call the driver added routines. They
5707 	 * have already been added to the lists in the background, so the driver
5708 	 * added routines that trigger a probe will have all the right bidders
5709 	 * for the probe auction.
5710 	 */
5711 	TAILQ_FOREACH(dc, &devclasses, link) {
5712 		TAILQ_FOREACH(dl, &dc->drivers, link) {
5713 			if (dl->flags & DL_DEFERRED_PROBE) {
5714 				devclass_driver_added(dc, dl->driver);
5715 				dl->flags &= ~DL_DEFERRED_PROBE;
5716 			}
5717 		}
5718 	}
5719 
5720 	/*
5721 	 * We also defer no-match events during a freeze. Walk the tree and
5722 	 * generate all the pent-up events that are still relevant.
5723 	 */
5724 	device_gen_nomatch(root_bus);
5725 	bus_data_generation_update();
5726 }
5727 
5728 static int
5729 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5730     struct thread *td)
5731 {
5732 	struct devreq *req;
5733 	device_t dev;
5734 	int error, old;
5735 
5736 	/* Locate the device to control. */
5737 	mtx_lock(&Giant);
5738 	req = (struct devreq *)data;
5739 	switch (cmd) {
5740 	case DEV_ATTACH:
5741 	case DEV_DETACH:
5742 	case DEV_ENABLE:
5743 	case DEV_DISABLE:
5744 	case DEV_SUSPEND:
5745 	case DEV_RESUME:
5746 	case DEV_SET_DRIVER:
5747 	case DEV_CLEAR_DRIVER:
5748 	case DEV_RESCAN:
5749 	case DEV_DELETE:
5750 	case DEV_RESET:
5751 		error = priv_check(td, PRIV_DRIVER);
5752 		if (error == 0)
5753 			error = find_device(req, &dev);
5754 		break;
5755 	case DEV_FREEZE:
5756 	case DEV_THAW:
5757 		error = priv_check(td, PRIV_DRIVER);
5758 		break;
5759 	default:
5760 		error = ENOTTY;
5761 		break;
5762 	}
5763 	if (error) {
5764 		mtx_unlock(&Giant);
5765 		return (error);
5766 	}
5767 
5768 	/* Perform the requested operation. */
5769 	switch (cmd) {
5770 	case DEV_ATTACH:
5771 		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5772 			error = EBUSY;
5773 		else if (!device_is_enabled(dev))
5774 			error = ENXIO;
5775 		else
5776 			error = device_probe_and_attach(dev);
5777 		break;
5778 	case DEV_DETACH:
5779 		if (!device_is_attached(dev)) {
5780 			error = ENXIO;
5781 			break;
5782 		}
5783 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5784 			error = device_quiesce(dev);
5785 			if (error)
5786 				break;
5787 		}
5788 		error = device_detach(dev);
5789 		break;
5790 	case DEV_ENABLE:
5791 		if (device_is_enabled(dev)) {
5792 			error = EBUSY;
5793 			break;
5794 		}
5795 
5796 		/*
5797 		 * If the device has been probed but not attached (e.g.
5798 		 * when it has been disabled by a loader hint), just
5799 		 * attach the device rather than doing a full probe.
5800 		 */
5801 		device_enable(dev);
5802 		if (device_is_alive(dev)) {
5803 			/*
5804 			 * If the device was disabled via a hint, clear
5805 			 * the hint.
5806 			 */
5807 			if (resource_disabled(dev->driver->name, dev->unit))
5808 				resource_unset_value(dev->driver->name,
5809 				    dev->unit, "disabled");
5810 			error = device_attach(dev);
5811 		} else
5812 			error = device_probe_and_attach(dev);
5813 		break;
5814 	case DEV_DISABLE:
5815 		if (!device_is_enabled(dev)) {
5816 			error = ENXIO;
5817 			break;
5818 		}
5819 
5820 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5821 			error = device_quiesce(dev);
5822 			if (error)
5823 				break;
5824 		}
5825 
5826 		/*
5827 		 * Force DF_FIXEDCLASS on around detach to preserve
5828 		 * the existing name.
5829 		 */
5830 		old = dev->flags;
5831 		dev->flags |= DF_FIXEDCLASS;
5832 		error = device_detach(dev);
5833 		if (!(old & DF_FIXEDCLASS))
5834 			dev->flags &= ~DF_FIXEDCLASS;
5835 		if (error == 0)
5836 			device_disable(dev);
5837 		break;
5838 	case DEV_SUSPEND:
5839 		if (device_is_suspended(dev)) {
5840 			error = EBUSY;
5841 			break;
5842 		}
5843 		if (device_get_parent(dev) == NULL) {
5844 			error = EINVAL;
5845 			break;
5846 		}
5847 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5848 		break;
5849 	case DEV_RESUME:
5850 		if (!device_is_suspended(dev)) {
5851 			error = EINVAL;
5852 			break;
5853 		}
5854 		if (device_get_parent(dev) == NULL) {
5855 			error = EINVAL;
5856 			break;
5857 		}
5858 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5859 		break;
5860 	case DEV_SET_DRIVER: {
5861 		devclass_t dc;
5862 		char driver[128];
5863 
5864 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5865 		if (error)
5866 			break;
5867 		if (driver[0] == '\0') {
5868 			error = EINVAL;
5869 			break;
5870 		}
5871 		if (dev->devclass != NULL &&
5872 		    strcmp(driver, dev->devclass->name) == 0)
5873 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5874 			break;
5875 
5876 		/*
5877 		 * Scan drivers for this device's bus looking for at
5878 		 * least one matching driver.
5879 		 */
5880 		if (dev->parent == NULL) {
5881 			error = EINVAL;
5882 			break;
5883 		}
5884 		if (!driver_exists(dev->parent, driver)) {
5885 			error = ENOENT;
5886 			break;
5887 		}
5888 		dc = devclass_create(driver);
5889 		if (dc == NULL) {
5890 			error = ENOMEM;
5891 			break;
5892 		}
5893 
5894 		/* Detach device if necessary. */
5895 		if (device_is_attached(dev)) {
5896 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5897 				error = device_detach(dev);
5898 			else
5899 				error = EBUSY;
5900 			if (error)
5901 				break;
5902 		}
5903 
5904 		/* Clear any previously-fixed device class and unit. */
5905 		if (dev->flags & DF_FIXEDCLASS)
5906 			devclass_delete_device(dev->devclass, dev);
5907 		dev->flags |= DF_WILDCARD;
5908 		dev->unit = -1;
5909 
5910 		/* Force the new device class. */
5911 		error = devclass_add_device(dc, dev);
5912 		if (error)
5913 			break;
5914 		dev->flags |= DF_FIXEDCLASS;
5915 		error = device_probe_and_attach(dev);
5916 		break;
5917 	}
5918 	case DEV_CLEAR_DRIVER:
5919 		if (!(dev->flags & DF_FIXEDCLASS)) {
5920 			error = 0;
5921 			break;
5922 		}
5923 		if (device_is_attached(dev)) {
5924 			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5925 				error = device_detach(dev);
5926 			else
5927 				error = EBUSY;
5928 			if (error)
5929 				break;
5930 		}
5931 
5932 		dev->flags &= ~DF_FIXEDCLASS;
5933 		dev->flags |= DF_WILDCARD;
5934 		devclass_delete_device(dev->devclass, dev);
5935 		error = device_probe_and_attach(dev);
5936 		break;
5937 	case DEV_RESCAN:
5938 		if (!device_is_attached(dev)) {
5939 			error = ENXIO;
5940 			break;
5941 		}
5942 		error = BUS_RESCAN(dev);
5943 		break;
5944 	case DEV_DELETE: {
5945 		device_t parent;
5946 
5947 		parent = device_get_parent(dev);
5948 		if (parent == NULL) {
5949 			error = EINVAL;
5950 			break;
5951 		}
5952 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5953 			if (bus_child_present(dev) != 0) {
5954 				error = EBUSY;
5955 				break;
5956 			}
5957 		}
5958 
5959 		error = device_delete_child(parent, dev);
5960 		break;
5961 	}
5962 	case DEV_FREEZE:
5963 		if (device_frozen)
5964 			error = EBUSY;
5965 		else
5966 			device_frozen = true;
5967 		break;
5968 	case DEV_THAW:
5969 		if (!device_frozen)
5970 			error = EBUSY;
5971 		else {
5972 			device_do_deferred_actions();
5973 			device_frozen = false;
5974 		}
5975 		break;
5976 	case DEV_RESET:
5977 		if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
5978 			error = EINVAL;
5979 			break;
5980 		}
5981 		error = BUS_RESET_CHILD(device_get_parent(dev), dev,
5982 		    req->dr_flags);
5983 		break;
5984 	}
5985 	mtx_unlock(&Giant);
5986 	return (error);
5987 }
5988 
5989 static struct cdevsw devctl2_cdevsw = {
5990 	.d_version =	D_VERSION,
5991 	.d_ioctl =	devctl2_ioctl,
5992 	.d_name =	"devctl2",
5993 };
5994 
5995 static void
5996 devctl2_init(void)
5997 {
5998 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5999 	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
6000 }
6001 
6002 /*
6003  * APIs to manage deprecation and obsolescence.
6004  */
6005 static int obsolete_panic = 0;
6006 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
6007     "Panic when obsolete features are used (0 = never, 1 = if osbolete, "
6008     "2 = if deprecated)");
6009 
6010 static void
6011 gone_panic(int major, int running, const char *msg)
6012 {
6013 	switch (obsolete_panic)
6014 	{
6015 	case 0:
6016 		return;
6017 	case 1:
6018 		if (running < major)
6019 			return;
6020 		/* FALLTHROUGH */
6021 	default:
6022 		panic("%s", msg);
6023 	}
6024 }
6025 
6026 void
6027 _gone_in(int major, const char *msg)
6028 {
6029 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
6030 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
6031 		printf("Obsolete code will be removed soon: %s\n", msg);
6032 	else
6033 		printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
6034 		    major, msg);
6035 }
6036 
6037 void
6038 _gone_in_dev(device_t dev, int major, const char *msg)
6039 {
6040 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
6041 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
6042 		device_printf(dev,
6043 		    "Obsolete code will be removed soon: %s\n", msg);
6044 	else
6045 		device_printf(dev,
6046 		    "Deprecated code (to be removed in FreeBSD %d): %s\n",
6047 		    major, msg);
6048 }
6049 
6050 #ifdef DDB
6051 DB_SHOW_COMMAND(device, db_show_device)
6052 {
6053 	device_t dev;
6054 
6055 	if (!have_addr)
6056 		return;
6057 
6058 	dev = (device_t)addr;
6059 
6060 	db_printf("name:    %s\n", device_get_nameunit(dev));
6061 	db_printf("  driver:  %s\n", DRIVERNAME(dev->driver));
6062 	db_printf("  class:   %s\n", DEVCLANAME(dev->devclass));
6063 	db_printf("  addr:    %p\n", dev);
6064 	db_printf("  parent:  %p\n", dev->parent);
6065 	db_printf("  softc:   %p\n", dev->softc);
6066 	db_printf("  ivars:   %p\n", dev->ivars);
6067 }
6068 
6069 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
6070 {
6071 	device_t dev;
6072 
6073 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6074 		db_show_device((db_expr_t)dev, true, count, modif);
6075 	}
6076 }
6077 #endif
6078