1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/conf.h> 34 #include <sys/filio.h> 35 #include <sys/lock.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/limits.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/mutex.h> 42 #include <sys/poll.h> 43 #include <sys/proc.h> 44 #include <sys/condvar.h> 45 #include <sys/queue.h> 46 #include <machine/bus.h> 47 #include <sys/rman.h> 48 #include <sys/selinfo.h> 49 #include <sys/signalvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/systm.h> 52 #include <sys/uio.h> 53 #include <sys/bus.h> 54 #include <sys/interrupt.h> 55 56 #include <machine/stdarg.h> 57 58 #include <vm/uma.h> 59 60 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 61 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 62 63 /* 64 * Used to attach drivers to devclasses. 65 */ 66 typedef struct driverlink *driverlink_t; 67 struct driverlink { 68 kobj_class_t driver; 69 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 70 int pass; 71 TAILQ_ENTRY(driverlink) passlink; 72 }; 73 74 /* 75 * Forward declarations 76 */ 77 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 78 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 79 typedef TAILQ_HEAD(device_list, device) device_list_t; 80 81 struct devclass { 82 TAILQ_ENTRY(devclass) link; 83 devclass_t parent; /* parent in devclass hierarchy */ 84 driver_list_t drivers; /* bus devclasses store drivers for bus */ 85 char *name; 86 device_t *devices; /* array of devices indexed by unit */ 87 int maxunit; /* size of devices array */ 88 int flags; 89 #define DC_HAS_CHILDREN 1 90 91 struct sysctl_ctx_list sysctl_ctx; 92 struct sysctl_oid *sysctl_tree; 93 }; 94 95 /** 96 * @brief Implementation of device. 97 */ 98 struct device { 99 /* 100 * A device is a kernel object. The first field must be the 101 * current ops table for the object. 102 */ 103 KOBJ_FIELDS; 104 105 /* 106 * Device hierarchy. 107 */ 108 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 109 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 110 device_t parent; /**< parent of this device */ 111 device_list_t children; /**< list of child devices */ 112 113 /* 114 * Details of this device. 115 */ 116 driver_t *driver; /**< current driver */ 117 devclass_t devclass; /**< current device class */ 118 int unit; /**< current unit number */ 119 char* nameunit; /**< name+unit e.g. foodev0 */ 120 char* desc; /**< driver specific description */ 121 int busy; /**< count of calls to device_busy() */ 122 device_state_t state; /**< current device state */ 123 uint32_t devflags; /**< api level flags for device_get_flags() */ 124 u_int flags; /**< internal device flags */ 125 #define DF_ENABLED 0x01 /* device should be probed/attached */ 126 #define DF_FIXEDCLASS 0x02 /* devclass specified at create time */ 127 #define DF_WILDCARD 0x04 /* unit was originally wildcard */ 128 #define DF_DESCMALLOCED 0x08 /* description was malloced */ 129 #define DF_QUIET 0x10 /* don't print verbose attach message */ 130 #define DF_DONENOMATCH 0x20 /* don't execute DEVICE_NOMATCH again */ 131 #define DF_EXTERNALSOFTC 0x40 /* softc not allocated by us */ 132 #define DF_REBID 0x80 /* Can rebid after attach */ 133 u_int order; /**< order from device_add_child_ordered() */ 134 void *ivars; /**< instance variables */ 135 void *softc; /**< current driver's variables */ 136 137 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 138 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 139 }; 140 141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 143 144 #ifdef BUS_DEBUG 145 146 static int bus_debug = 1; 147 TUNABLE_INT("bus.debug", &bus_debug); 148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0, 149 "Debug bus code"); 150 151 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 152 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 153 #define DRIVERNAME(d) ((d)? d->name : "no driver") 154 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 155 156 /** 157 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 158 * prevent syslog from deleting initial spaces 159 */ 160 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 161 162 static void print_device_short(device_t dev, int indent); 163 static void print_device(device_t dev, int indent); 164 void print_device_tree_short(device_t dev, int indent); 165 void print_device_tree(device_t dev, int indent); 166 static void print_driver_short(driver_t *driver, int indent); 167 static void print_driver(driver_t *driver, int indent); 168 static void print_driver_list(driver_list_t drivers, int indent); 169 static void print_devclass_short(devclass_t dc, int indent); 170 static void print_devclass(devclass_t dc, int indent); 171 void print_devclass_list_short(void); 172 void print_devclass_list(void); 173 174 #else 175 /* Make the compiler ignore the function calls */ 176 #define PDEBUG(a) /* nop */ 177 #define DEVICENAME(d) /* nop */ 178 #define DRIVERNAME(d) /* nop */ 179 #define DEVCLANAME(d) /* nop */ 180 181 #define print_device_short(d,i) /* nop */ 182 #define print_device(d,i) /* nop */ 183 #define print_device_tree_short(d,i) /* nop */ 184 #define print_device_tree(d,i) /* nop */ 185 #define print_driver_short(d,i) /* nop */ 186 #define print_driver(d,i) /* nop */ 187 #define print_driver_list(d,i) /* nop */ 188 #define print_devclass_short(d,i) /* nop */ 189 #define print_devclass(d,i) /* nop */ 190 #define print_devclass_list_short() /* nop */ 191 #define print_devclass_list() /* nop */ 192 #endif 193 194 /* 195 * dev sysctl tree 196 */ 197 198 enum { 199 DEVCLASS_SYSCTL_PARENT, 200 }; 201 202 static int 203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 204 { 205 devclass_t dc = (devclass_t)arg1; 206 const char *value; 207 208 switch (arg2) { 209 case DEVCLASS_SYSCTL_PARENT: 210 value = dc->parent ? dc->parent->name : ""; 211 break; 212 default: 213 return (EINVAL); 214 } 215 return (SYSCTL_OUT(req, value, strlen(value))); 216 } 217 218 static void 219 devclass_sysctl_init(devclass_t dc) 220 { 221 222 if (dc->sysctl_tree != NULL) 223 return; 224 sysctl_ctx_init(&dc->sysctl_ctx); 225 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 226 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 227 CTLFLAG_RD, NULL, ""); 228 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 229 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 230 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 231 "parent class"); 232 } 233 234 enum { 235 DEVICE_SYSCTL_DESC, 236 DEVICE_SYSCTL_DRIVER, 237 DEVICE_SYSCTL_LOCATION, 238 DEVICE_SYSCTL_PNPINFO, 239 DEVICE_SYSCTL_PARENT, 240 }; 241 242 static int 243 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 244 { 245 device_t dev = (device_t)arg1; 246 const char *value; 247 char *buf; 248 int error; 249 250 buf = NULL; 251 switch (arg2) { 252 case DEVICE_SYSCTL_DESC: 253 value = dev->desc ? dev->desc : ""; 254 break; 255 case DEVICE_SYSCTL_DRIVER: 256 value = dev->driver ? dev->driver->name : ""; 257 break; 258 case DEVICE_SYSCTL_LOCATION: 259 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 260 bus_child_location_str(dev, buf, 1024); 261 break; 262 case DEVICE_SYSCTL_PNPINFO: 263 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 264 bus_child_pnpinfo_str(dev, buf, 1024); 265 break; 266 case DEVICE_SYSCTL_PARENT: 267 value = dev->parent ? dev->parent->nameunit : ""; 268 break; 269 default: 270 return (EINVAL); 271 } 272 error = SYSCTL_OUT(req, value, strlen(value)); 273 if (buf != NULL) 274 free(buf, M_BUS); 275 return (error); 276 } 277 278 static void 279 device_sysctl_init(device_t dev) 280 { 281 devclass_t dc = dev->devclass; 282 283 if (dev->sysctl_tree != NULL) 284 return; 285 devclass_sysctl_init(dc); 286 sysctl_ctx_init(&dev->sysctl_ctx); 287 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 288 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 289 dev->nameunit + strlen(dc->name), 290 CTLFLAG_RD, NULL, ""); 291 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 292 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 293 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 294 "device description"); 295 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 296 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 297 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 298 "device driver name"); 299 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 300 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 301 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 302 "device location relative to parent"); 303 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 304 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 305 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 306 "device identification"); 307 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 308 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 309 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 310 "parent device"); 311 } 312 313 static void 314 device_sysctl_update(device_t dev) 315 { 316 devclass_t dc = dev->devclass; 317 318 if (dev->sysctl_tree == NULL) 319 return; 320 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 321 } 322 323 static void 324 device_sysctl_fini(device_t dev) 325 { 326 if (dev->sysctl_tree == NULL) 327 return; 328 sysctl_ctx_free(&dev->sysctl_ctx); 329 dev->sysctl_tree = NULL; 330 } 331 332 /* 333 * /dev/devctl implementation 334 */ 335 336 /* 337 * This design allows only one reader for /dev/devctl. This is not desirable 338 * in the long run, but will get a lot of hair out of this implementation. 339 * Maybe we should make this device a clonable device. 340 * 341 * Also note: we specifically do not attach a device to the device_t tree 342 * to avoid potential chicken and egg problems. One could argue that all 343 * of this belongs to the root node. One could also further argue that the 344 * sysctl interface that we have not might more properly be an ioctl 345 * interface, but at this stage of the game, I'm not inclined to rock that 346 * boat. 347 * 348 * I'm also not sure that the SIGIO support is done correctly or not, as 349 * I copied it from a driver that had SIGIO support that likely hasn't been 350 * tested since 3.4 or 2.2.8! 351 */ 352 353 /* Deprecated way to adjust queue length */ 354 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 355 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */ 356 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL, 357 0, sysctl_devctl_disable, "I", "devctl disable -- deprecated"); 358 359 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 360 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 361 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 362 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length); 363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL, 364 0, sysctl_devctl_queue, "I", "devctl queue length"); 365 366 static d_open_t devopen; 367 static d_close_t devclose; 368 static d_read_t devread; 369 static d_ioctl_t devioctl; 370 static d_poll_t devpoll; 371 372 static struct cdevsw dev_cdevsw = { 373 .d_version = D_VERSION, 374 .d_flags = D_NEEDGIANT, 375 .d_open = devopen, 376 .d_close = devclose, 377 .d_read = devread, 378 .d_ioctl = devioctl, 379 .d_poll = devpoll, 380 .d_name = "devctl", 381 }; 382 383 struct dev_event_info 384 { 385 char *dei_data; 386 TAILQ_ENTRY(dev_event_info) dei_link; 387 }; 388 389 TAILQ_HEAD(devq, dev_event_info); 390 391 static struct dev_softc 392 { 393 int inuse; 394 int nonblock; 395 int queued; 396 struct mtx mtx; 397 struct cv cv; 398 struct selinfo sel; 399 struct devq devq; 400 struct proc *async_proc; 401 } devsoftc; 402 403 static struct cdev *devctl_dev; 404 405 static void 406 devinit(void) 407 { 408 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 409 UID_ROOT, GID_WHEEL, 0600, "devctl"); 410 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 411 cv_init(&devsoftc.cv, "dev cv"); 412 TAILQ_INIT(&devsoftc.devq); 413 } 414 415 static int 416 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 417 { 418 if (devsoftc.inuse) 419 return (EBUSY); 420 /* move to init */ 421 devsoftc.inuse = 1; 422 devsoftc.nonblock = 0; 423 devsoftc.async_proc = NULL; 424 return (0); 425 } 426 427 static int 428 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 429 { 430 devsoftc.inuse = 0; 431 mtx_lock(&devsoftc.mtx); 432 cv_broadcast(&devsoftc.cv); 433 mtx_unlock(&devsoftc.mtx); 434 devsoftc.async_proc = NULL; 435 return (0); 436 } 437 438 /* 439 * The read channel for this device is used to report changes to 440 * userland in realtime. We are required to free the data as well as 441 * the n1 object because we allocate them separately. Also note that 442 * we return one record at a time. If you try to read this device a 443 * character at a time, you will lose the rest of the data. Listening 444 * programs are expected to cope. 445 */ 446 static int 447 devread(struct cdev *dev, struct uio *uio, int ioflag) 448 { 449 struct dev_event_info *n1; 450 int rv; 451 452 mtx_lock(&devsoftc.mtx); 453 while (TAILQ_EMPTY(&devsoftc.devq)) { 454 if (devsoftc.nonblock) { 455 mtx_unlock(&devsoftc.mtx); 456 return (EAGAIN); 457 } 458 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 459 if (rv) { 460 /* 461 * Need to translate ERESTART to EINTR here? -- jake 462 */ 463 mtx_unlock(&devsoftc.mtx); 464 return (rv); 465 } 466 } 467 n1 = TAILQ_FIRST(&devsoftc.devq); 468 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 469 devsoftc.queued--; 470 mtx_unlock(&devsoftc.mtx); 471 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 472 free(n1->dei_data, M_BUS); 473 free(n1, M_BUS); 474 return (rv); 475 } 476 477 static int 478 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 479 { 480 switch (cmd) { 481 482 case FIONBIO: 483 if (*(int*)data) 484 devsoftc.nonblock = 1; 485 else 486 devsoftc.nonblock = 0; 487 return (0); 488 case FIOASYNC: 489 if (*(int*)data) 490 devsoftc.async_proc = td->td_proc; 491 else 492 devsoftc.async_proc = NULL; 493 return (0); 494 495 /* (un)Support for other fcntl() calls. */ 496 case FIOCLEX: 497 case FIONCLEX: 498 case FIONREAD: 499 case FIOSETOWN: 500 case FIOGETOWN: 501 default: 502 break; 503 } 504 return (ENOTTY); 505 } 506 507 static int 508 devpoll(struct cdev *dev, int events, struct thread *td) 509 { 510 int revents = 0; 511 512 mtx_lock(&devsoftc.mtx); 513 if (events & (POLLIN | POLLRDNORM)) { 514 if (!TAILQ_EMPTY(&devsoftc.devq)) 515 revents = events & (POLLIN | POLLRDNORM); 516 else 517 selrecord(td, &devsoftc.sel); 518 } 519 mtx_unlock(&devsoftc.mtx); 520 521 return (revents); 522 } 523 524 /** 525 * @brief Return whether the userland process is running 526 */ 527 boolean_t 528 devctl_process_running(void) 529 { 530 return (devsoftc.inuse == 1); 531 } 532 533 /** 534 * @brief Queue data to be read from the devctl device 535 * 536 * Generic interface to queue data to the devctl device. It is 537 * assumed that @p data is properly formatted. It is further assumed 538 * that @p data is allocated using the M_BUS malloc type. 539 */ 540 void 541 devctl_queue_data_f(char *data, int flags) 542 { 543 struct dev_event_info *n1 = NULL, *n2 = NULL; 544 struct proc *p; 545 546 if (strlen(data) == 0) 547 goto out; 548 if (devctl_queue_length == 0) 549 goto out; 550 n1 = malloc(sizeof(*n1), M_BUS, flags); 551 if (n1 == NULL) 552 goto out; 553 n1->dei_data = data; 554 mtx_lock(&devsoftc.mtx); 555 if (devctl_queue_length == 0) { 556 mtx_unlock(&devsoftc.mtx); 557 free(n1->dei_data, M_BUS); 558 free(n1, M_BUS); 559 return; 560 } 561 /* Leave at least one spot in the queue... */ 562 while (devsoftc.queued > devctl_queue_length - 1) { 563 n2 = TAILQ_FIRST(&devsoftc.devq); 564 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 565 free(n2->dei_data, M_BUS); 566 free(n2, M_BUS); 567 devsoftc.queued--; 568 } 569 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 570 devsoftc.queued++; 571 cv_broadcast(&devsoftc.cv); 572 mtx_unlock(&devsoftc.mtx); 573 selwakeup(&devsoftc.sel); 574 p = devsoftc.async_proc; 575 if (p != NULL) { 576 PROC_LOCK(p); 577 kern_psignal(p, SIGIO); 578 PROC_UNLOCK(p); 579 } 580 return; 581 out: 582 /* 583 * We have to free data on all error paths since the caller 584 * assumes it will be free'd when this item is dequeued. 585 */ 586 free(data, M_BUS); 587 return; 588 } 589 590 void 591 devctl_queue_data(char *data) 592 { 593 594 devctl_queue_data_f(data, M_NOWAIT); 595 } 596 597 /** 598 * @brief Send a 'notification' to userland, using standard ways 599 */ 600 void 601 devctl_notify_f(const char *system, const char *subsystem, const char *type, 602 const char *data, int flags) 603 { 604 int len = 0; 605 char *msg; 606 607 if (system == NULL) 608 return; /* BOGUS! Must specify system. */ 609 if (subsystem == NULL) 610 return; /* BOGUS! Must specify subsystem. */ 611 if (type == NULL) 612 return; /* BOGUS! Must specify type. */ 613 len += strlen(" system=") + strlen(system); 614 len += strlen(" subsystem=") + strlen(subsystem); 615 len += strlen(" type=") + strlen(type); 616 /* add in the data message plus newline. */ 617 if (data != NULL) 618 len += strlen(data); 619 len += 3; /* '!', '\n', and NUL */ 620 msg = malloc(len, M_BUS, flags); 621 if (msg == NULL) 622 return; /* Drop it on the floor */ 623 if (data != NULL) 624 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 625 system, subsystem, type, data); 626 else 627 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 628 system, subsystem, type); 629 devctl_queue_data_f(msg, flags); 630 } 631 632 void 633 devctl_notify(const char *system, const char *subsystem, const char *type, 634 const char *data) 635 { 636 637 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 638 } 639 640 /* 641 * Common routine that tries to make sending messages as easy as possible. 642 * We allocate memory for the data, copy strings into that, but do not 643 * free it unless there's an error. The dequeue part of the driver should 644 * free the data. We don't send data when the device is disabled. We do 645 * send data, even when we have no listeners, because we wish to avoid 646 * races relating to startup and restart of listening applications. 647 * 648 * devaddq is designed to string together the type of event, with the 649 * object of that event, plus the plug and play info and location info 650 * for that event. This is likely most useful for devices, but less 651 * useful for other consumers of this interface. Those should use 652 * the devctl_queue_data() interface instead. 653 */ 654 static void 655 devaddq(const char *type, const char *what, device_t dev) 656 { 657 char *data = NULL; 658 char *loc = NULL; 659 char *pnp = NULL; 660 const char *parstr; 661 662 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 663 return; 664 data = malloc(1024, M_BUS, M_NOWAIT); 665 if (data == NULL) 666 goto bad; 667 668 /* get the bus specific location of this device */ 669 loc = malloc(1024, M_BUS, M_NOWAIT); 670 if (loc == NULL) 671 goto bad; 672 *loc = '\0'; 673 bus_child_location_str(dev, loc, 1024); 674 675 /* Get the bus specific pnp info of this device */ 676 pnp = malloc(1024, M_BUS, M_NOWAIT); 677 if (pnp == NULL) 678 goto bad; 679 *pnp = '\0'; 680 bus_child_pnpinfo_str(dev, pnp, 1024); 681 682 /* Get the parent of this device, or / if high enough in the tree. */ 683 if (device_get_parent(dev) == NULL) 684 parstr = "."; /* Or '/' ? */ 685 else 686 parstr = device_get_nameunit(device_get_parent(dev)); 687 /* String it all together. */ 688 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 689 parstr); 690 free(loc, M_BUS); 691 free(pnp, M_BUS); 692 devctl_queue_data(data); 693 return; 694 bad: 695 free(pnp, M_BUS); 696 free(loc, M_BUS); 697 free(data, M_BUS); 698 return; 699 } 700 701 /* 702 * A device was added to the tree. We are called just after it successfully 703 * attaches (that is, probe and attach success for this device). No call 704 * is made if a device is merely parented into the tree. See devnomatch 705 * if probe fails. If attach fails, no notification is sent (but maybe 706 * we should have a different message for this). 707 */ 708 static void 709 devadded(device_t dev) 710 { 711 devaddq("+", device_get_nameunit(dev), dev); 712 } 713 714 /* 715 * A device was removed from the tree. We are called just before this 716 * happens. 717 */ 718 static void 719 devremoved(device_t dev) 720 { 721 devaddq("-", device_get_nameunit(dev), dev); 722 } 723 724 /* 725 * Called when there's no match for this device. This is only called 726 * the first time that no match happens, so we don't keep getting this 727 * message. Should that prove to be undesirable, we can change it. 728 * This is called when all drivers that can attach to a given bus 729 * decline to accept this device. Other errors may not be detected. 730 */ 731 static void 732 devnomatch(device_t dev) 733 { 734 devaddq("?", "", dev); 735 } 736 737 static int 738 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 739 { 740 struct dev_event_info *n1; 741 int dis, error; 742 743 dis = devctl_queue_length == 0; 744 error = sysctl_handle_int(oidp, &dis, 0, req); 745 if (error || !req->newptr) 746 return (error); 747 mtx_lock(&devsoftc.mtx); 748 if (dis) { 749 while (!TAILQ_EMPTY(&devsoftc.devq)) { 750 n1 = TAILQ_FIRST(&devsoftc.devq); 751 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 752 free(n1->dei_data, M_BUS); 753 free(n1, M_BUS); 754 } 755 devsoftc.queued = 0; 756 devctl_queue_length = 0; 757 } else { 758 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 759 } 760 mtx_unlock(&devsoftc.mtx); 761 return (0); 762 } 763 764 static int 765 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 766 { 767 struct dev_event_info *n1; 768 int q, error; 769 770 q = devctl_queue_length; 771 error = sysctl_handle_int(oidp, &q, 0, req); 772 if (error || !req->newptr) 773 return (error); 774 if (q < 0) 775 return (EINVAL); 776 mtx_lock(&devsoftc.mtx); 777 devctl_queue_length = q; 778 while (devsoftc.queued > devctl_queue_length) { 779 n1 = TAILQ_FIRST(&devsoftc.devq); 780 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 781 free(n1->dei_data, M_BUS); 782 free(n1, M_BUS); 783 devsoftc.queued--; 784 } 785 mtx_unlock(&devsoftc.mtx); 786 return (0); 787 } 788 789 /* End of /dev/devctl code */ 790 791 static TAILQ_HEAD(,device) bus_data_devices; 792 static int bus_data_generation = 1; 793 794 static kobj_method_t null_methods[] = { 795 KOBJMETHOD_END 796 }; 797 798 DEFINE_CLASS(null, null_methods, 0); 799 800 /* 801 * Bus pass implementation 802 */ 803 804 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 805 int bus_current_pass = BUS_PASS_ROOT; 806 807 /** 808 * @internal 809 * @brief Register the pass level of a new driver attachment 810 * 811 * Register a new driver attachment's pass level. If no driver 812 * attachment with the same pass level has been added, then @p new 813 * will be added to the global passes list. 814 * 815 * @param new the new driver attachment 816 */ 817 static void 818 driver_register_pass(struct driverlink *new) 819 { 820 struct driverlink *dl; 821 822 /* We only consider pass numbers during boot. */ 823 if (bus_current_pass == BUS_PASS_DEFAULT) 824 return; 825 826 /* 827 * Walk the passes list. If we already know about this pass 828 * then there is nothing to do. If we don't, then insert this 829 * driver link into the list. 830 */ 831 TAILQ_FOREACH(dl, &passes, passlink) { 832 if (dl->pass < new->pass) 833 continue; 834 if (dl->pass == new->pass) 835 return; 836 TAILQ_INSERT_BEFORE(dl, new, passlink); 837 return; 838 } 839 TAILQ_INSERT_TAIL(&passes, new, passlink); 840 } 841 842 /** 843 * @brief Raise the current bus pass 844 * 845 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 846 * method on the root bus to kick off a new device tree scan for each 847 * new pass level that has at least one driver. 848 */ 849 void 850 bus_set_pass(int pass) 851 { 852 struct driverlink *dl; 853 854 if (bus_current_pass > pass) 855 panic("Attempt to lower bus pass level"); 856 857 TAILQ_FOREACH(dl, &passes, passlink) { 858 /* Skip pass values below the current pass level. */ 859 if (dl->pass <= bus_current_pass) 860 continue; 861 862 /* 863 * Bail once we hit a driver with a pass level that is 864 * too high. 865 */ 866 if (dl->pass > pass) 867 break; 868 869 /* 870 * Raise the pass level to the next level and rescan 871 * the tree. 872 */ 873 bus_current_pass = dl->pass; 874 BUS_NEW_PASS(root_bus); 875 } 876 877 /* 878 * If there isn't a driver registered for the requested pass, 879 * then bus_current_pass might still be less than 'pass'. Set 880 * it to 'pass' in that case. 881 */ 882 if (bus_current_pass < pass) 883 bus_current_pass = pass; 884 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 885 } 886 887 /* 888 * Devclass implementation 889 */ 890 891 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 892 893 /** 894 * @internal 895 * @brief Find or create a device class 896 * 897 * If a device class with the name @p classname exists, return it, 898 * otherwise if @p create is non-zero create and return a new device 899 * class. 900 * 901 * If @p parentname is non-NULL, the parent of the devclass is set to 902 * the devclass of that name. 903 * 904 * @param classname the devclass name to find or create 905 * @param parentname the parent devclass name or @c NULL 906 * @param create non-zero to create a devclass 907 */ 908 static devclass_t 909 devclass_find_internal(const char *classname, const char *parentname, 910 int create) 911 { 912 devclass_t dc; 913 914 PDEBUG(("looking for %s", classname)); 915 if (!classname) 916 return (NULL); 917 918 TAILQ_FOREACH(dc, &devclasses, link) { 919 if (!strcmp(dc->name, classname)) 920 break; 921 } 922 923 if (create && !dc) { 924 PDEBUG(("creating %s", classname)); 925 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 926 M_BUS, M_NOWAIT | M_ZERO); 927 if (!dc) 928 return (NULL); 929 dc->parent = NULL; 930 dc->name = (char*) (dc + 1); 931 strcpy(dc->name, classname); 932 TAILQ_INIT(&dc->drivers); 933 TAILQ_INSERT_TAIL(&devclasses, dc, link); 934 935 bus_data_generation_update(); 936 } 937 938 /* 939 * If a parent class is specified, then set that as our parent so 940 * that this devclass will support drivers for the parent class as 941 * well. If the parent class has the same name don't do this though 942 * as it creates a cycle that can trigger an infinite loop in 943 * device_probe_child() if a device exists for which there is no 944 * suitable driver. 945 */ 946 if (parentname && dc && !dc->parent && 947 strcmp(classname, parentname) != 0) { 948 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 949 dc->parent->flags |= DC_HAS_CHILDREN; 950 } 951 952 return (dc); 953 } 954 955 /** 956 * @brief Create a device class 957 * 958 * If a device class with the name @p classname exists, return it, 959 * otherwise create and return a new device class. 960 * 961 * @param classname the devclass name to find or create 962 */ 963 devclass_t 964 devclass_create(const char *classname) 965 { 966 return (devclass_find_internal(classname, NULL, TRUE)); 967 } 968 969 /** 970 * @brief Find a device class 971 * 972 * If a device class with the name @p classname exists, return it, 973 * otherwise return @c NULL. 974 * 975 * @param classname the devclass name to find 976 */ 977 devclass_t 978 devclass_find(const char *classname) 979 { 980 return (devclass_find_internal(classname, NULL, FALSE)); 981 } 982 983 /** 984 * @brief Register that a device driver has been added to a devclass 985 * 986 * Register that a device driver has been added to a devclass. This 987 * is called by devclass_add_driver to accomplish the recursive 988 * notification of all the children classes of dc, as well as dc. 989 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 990 * the devclass. 991 * 992 * We do a full search here of the devclass list at each iteration 993 * level to save storing children-lists in the devclass structure. If 994 * we ever move beyond a few dozen devices doing this, we may need to 995 * reevaluate... 996 * 997 * @param dc the devclass to edit 998 * @param driver the driver that was just added 999 */ 1000 static void 1001 devclass_driver_added(devclass_t dc, driver_t *driver) 1002 { 1003 devclass_t parent; 1004 int i; 1005 1006 /* 1007 * Call BUS_DRIVER_ADDED for any existing busses in this class. 1008 */ 1009 for (i = 0; i < dc->maxunit; i++) 1010 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1011 BUS_DRIVER_ADDED(dc->devices[i], driver); 1012 1013 /* 1014 * Walk through the children classes. Since we only keep a 1015 * single parent pointer around, we walk the entire list of 1016 * devclasses looking for children. We set the 1017 * DC_HAS_CHILDREN flag when a child devclass is created on 1018 * the parent, so we only walk the list for those devclasses 1019 * that have children. 1020 */ 1021 if (!(dc->flags & DC_HAS_CHILDREN)) 1022 return; 1023 parent = dc; 1024 TAILQ_FOREACH(dc, &devclasses, link) { 1025 if (dc->parent == parent) 1026 devclass_driver_added(dc, driver); 1027 } 1028 } 1029 1030 /** 1031 * @brief Add a device driver to a device class 1032 * 1033 * Add a device driver to a devclass. This is normally called 1034 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1035 * all devices in the devclass will be called to allow them to attempt 1036 * to re-probe any unmatched children. 1037 * 1038 * @param dc the devclass to edit 1039 * @param driver the driver to register 1040 */ 1041 int 1042 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1043 { 1044 driverlink_t dl; 1045 const char *parentname; 1046 1047 PDEBUG(("%s", DRIVERNAME(driver))); 1048 1049 /* Don't allow invalid pass values. */ 1050 if (pass <= BUS_PASS_ROOT) 1051 return (EINVAL); 1052 1053 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1054 if (!dl) 1055 return (ENOMEM); 1056 1057 /* 1058 * Compile the driver's methods. Also increase the reference count 1059 * so that the class doesn't get freed when the last instance 1060 * goes. This means we can safely use static methods and avoids a 1061 * double-free in devclass_delete_driver. 1062 */ 1063 kobj_class_compile((kobj_class_t) driver); 1064 1065 /* 1066 * If the driver has any base classes, make the 1067 * devclass inherit from the devclass of the driver's 1068 * first base class. This will allow the system to 1069 * search for drivers in both devclasses for children 1070 * of a device using this driver. 1071 */ 1072 if (driver->baseclasses) 1073 parentname = driver->baseclasses[0]->name; 1074 else 1075 parentname = NULL; 1076 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1077 1078 dl->driver = driver; 1079 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1080 driver->refs++; /* XXX: kobj_mtx */ 1081 dl->pass = pass; 1082 driver_register_pass(dl); 1083 1084 devclass_driver_added(dc, driver); 1085 bus_data_generation_update(); 1086 return (0); 1087 } 1088 1089 /** 1090 * @brief Register that a device driver has been deleted from a devclass 1091 * 1092 * Register that a device driver has been removed from a devclass. 1093 * This is called by devclass_delete_driver to accomplish the 1094 * recursive notification of all the children classes of busclass, as 1095 * well as busclass. Each layer will attempt to detach the driver 1096 * from any devices that are children of the bus's devclass. The function 1097 * will return an error if a device fails to detach. 1098 * 1099 * We do a full search here of the devclass list at each iteration 1100 * level to save storing children-lists in the devclass structure. If 1101 * we ever move beyond a few dozen devices doing this, we may need to 1102 * reevaluate... 1103 * 1104 * @param busclass the devclass of the parent bus 1105 * @param dc the devclass of the driver being deleted 1106 * @param driver the driver being deleted 1107 */ 1108 static int 1109 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1110 { 1111 devclass_t parent; 1112 device_t dev; 1113 int error, i; 1114 1115 /* 1116 * Disassociate from any devices. We iterate through all the 1117 * devices in the devclass of the driver and detach any which are 1118 * using the driver and which have a parent in the devclass which 1119 * we are deleting from. 1120 * 1121 * Note that since a driver can be in multiple devclasses, we 1122 * should not detach devices which are not children of devices in 1123 * the affected devclass. 1124 */ 1125 for (i = 0; i < dc->maxunit; i++) { 1126 if (dc->devices[i]) { 1127 dev = dc->devices[i]; 1128 if (dev->driver == driver && dev->parent && 1129 dev->parent->devclass == busclass) { 1130 if ((error = device_detach(dev)) != 0) 1131 return (error); 1132 BUS_PROBE_NOMATCH(dev->parent, dev); 1133 devnomatch(dev); 1134 dev->flags |= DF_DONENOMATCH; 1135 } 1136 } 1137 } 1138 1139 /* 1140 * Walk through the children classes. Since we only keep a 1141 * single parent pointer around, we walk the entire list of 1142 * devclasses looking for children. We set the 1143 * DC_HAS_CHILDREN flag when a child devclass is created on 1144 * the parent, so we only walk the list for those devclasses 1145 * that have children. 1146 */ 1147 if (!(busclass->flags & DC_HAS_CHILDREN)) 1148 return (0); 1149 parent = busclass; 1150 TAILQ_FOREACH(busclass, &devclasses, link) { 1151 if (busclass->parent == parent) { 1152 error = devclass_driver_deleted(busclass, dc, driver); 1153 if (error) 1154 return (error); 1155 } 1156 } 1157 return (0); 1158 } 1159 1160 /** 1161 * @brief Delete a device driver from a device class 1162 * 1163 * Delete a device driver from a devclass. This is normally called 1164 * automatically by DRIVER_MODULE(). 1165 * 1166 * If the driver is currently attached to any devices, 1167 * devclass_delete_driver() will first attempt to detach from each 1168 * device. If one of the detach calls fails, the driver will not be 1169 * deleted. 1170 * 1171 * @param dc the devclass to edit 1172 * @param driver the driver to unregister 1173 */ 1174 int 1175 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1176 { 1177 devclass_t dc = devclass_find(driver->name); 1178 driverlink_t dl; 1179 int error; 1180 1181 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1182 1183 if (!dc) 1184 return (0); 1185 1186 /* 1187 * Find the link structure in the bus' list of drivers. 1188 */ 1189 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1190 if (dl->driver == driver) 1191 break; 1192 } 1193 1194 if (!dl) { 1195 PDEBUG(("%s not found in %s list", driver->name, 1196 busclass->name)); 1197 return (ENOENT); 1198 } 1199 1200 error = devclass_driver_deleted(busclass, dc, driver); 1201 if (error != 0) 1202 return (error); 1203 1204 TAILQ_REMOVE(&busclass->drivers, dl, link); 1205 free(dl, M_BUS); 1206 1207 /* XXX: kobj_mtx */ 1208 driver->refs--; 1209 if (driver->refs == 0) 1210 kobj_class_free((kobj_class_t) driver); 1211 1212 bus_data_generation_update(); 1213 return (0); 1214 } 1215 1216 /** 1217 * @brief Quiesces a set of device drivers from a device class 1218 * 1219 * Quiesce a device driver from a devclass. This is normally called 1220 * automatically by DRIVER_MODULE(). 1221 * 1222 * If the driver is currently attached to any devices, 1223 * devclass_quiesece_driver() will first attempt to quiesce each 1224 * device. 1225 * 1226 * @param dc the devclass to edit 1227 * @param driver the driver to unregister 1228 */ 1229 static int 1230 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1231 { 1232 devclass_t dc = devclass_find(driver->name); 1233 driverlink_t dl; 1234 device_t dev; 1235 int i; 1236 int error; 1237 1238 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1239 1240 if (!dc) 1241 return (0); 1242 1243 /* 1244 * Find the link structure in the bus' list of drivers. 1245 */ 1246 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1247 if (dl->driver == driver) 1248 break; 1249 } 1250 1251 if (!dl) { 1252 PDEBUG(("%s not found in %s list", driver->name, 1253 busclass->name)); 1254 return (ENOENT); 1255 } 1256 1257 /* 1258 * Quiesce all devices. We iterate through all the devices in 1259 * the devclass of the driver and quiesce any which are using 1260 * the driver and which have a parent in the devclass which we 1261 * are quiescing. 1262 * 1263 * Note that since a driver can be in multiple devclasses, we 1264 * should not quiesce devices which are not children of 1265 * devices in the affected devclass. 1266 */ 1267 for (i = 0; i < dc->maxunit; i++) { 1268 if (dc->devices[i]) { 1269 dev = dc->devices[i]; 1270 if (dev->driver == driver && dev->parent && 1271 dev->parent->devclass == busclass) { 1272 if ((error = device_quiesce(dev)) != 0) 1273 return (error); 1274 } 1275 } 1276 } 1277 1278 return (0); 1279 } 1280 1281 /** 1282 * @internal 1283 */ 1284 static driverlink_t 1285 devclass_find_driver_internal(devclass_t dc, const char *classname) 1286 { 1287 driverlink_t dl; 1288 1289 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1290 1291 TAILQ_FOREACH(dl, &dc->drivers, link) { 1292 if (!strcmp(dl->driver->name, classname)) 1293 return (dl); 1294 } 1295 1296 PDEBUG(("not found")); 1297 return (NULL); 1298 } 1299 1300 /** 1301 * @brief Return the name of the devclass 1302 */ 1303 const char * 1304 devclass_get_name(devclass_t dc) 1305 { 1306 return (dc->name); 1307 } 1308 1309 /** 1310 * @brief Find a device given a unit number 1311 * 1312 * @param dc the devclass to search 1313 * @param unit the unit number to search for 1314 * 1315 * @returns the device with the given unit number or @c 1316 * NULL if there is no such device 1317 */ 1318 device_t 1319 devclass_get_device(devclass_t dc, int unit) 1320 { 1321 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1322 return (NULL); 1323 return (dc->devices[unit]); 1324 } 1325 1326 /** 1327 * @brief Find the softc field of a device given a unit number 1328 * 1329 * @param dc the devclass to search 1330 * @param unit the unit number to search for 1331 * 1332 * @returns the softc field of the device with the given 1333 * unit number or @c NULL if there is no such 1334 * device 1335 */ 1336 void * 1337 devclass_get_softc(devclass_t dc, int unit) 1338 { 1339 device_t dev; 1340 1341 dev = devclass_get_device(dc, unit); 1342 if (!dev) 1343 return (NULL); 1344 1345 return (device_get_softc(dev)); 1346 } 1347 1348 /** 1349 * @brief Get a list of devices in the devclass 1350 * 1351 * An array containing a list of all the devices in the given devclass 1352 * is allocated and returned in @p *devlistp. The number of devices 1353 * in the array is returned in @p *devcountp. The caller should free 1354 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1355 * 1356 * @param dc the devclass to examine 1357 * @param devlistp points at location for array pointer return 1358 * value 1359 * @param devcountp points at location for array size return value 1360 * 1361 * @retval 0 success 1362 * @retval ENOMEM the array allocation failed 1363 */ 1364 int 1365 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1366 { 1367 int count, i; 1368 device_t *list; 1369 1370 count = devclass_get_count(dc); 1371 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1372 if (!list) 1373 return (ENOMEM); 1374 1375 count = 0; 1376 for (i = 0; i < dc->maxunit; i++) { 1377 if (dc->devices[i]) { 1378 list[count] = dc->devices[i]; 1379 count++; 1380 } 1381 } 1382 1383 *devlistp = list; 1384 *devcountp = count; 1385 1386 return (0); 1387 } 1388 1389 /** 1390 * @brief Get a list of drivers in the devclass 1391 * 1392 * An array containing a list of pointers to all the drivers in the 1393 * given devclass is allocated and returned in @p *listp. The number 1394 * of drivers in the array is returned in @p *countp. The caller should 1395 * free the array using @c free(p, M_TEMP). 1396 * 1397 * @param dc the devclass to examine 1398 * @param listp gives location for array pointer return value 1399 * @param countp gives location for number of array elements 1400 * return value 1401 * 1402 * @retval 0 success 1403 * @retval ENOMEM the array allocation failed 1404 */ 1405 int 1406 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1407 { 1408 driverlink_t dl; 1409 driver_t **list; 1410 int count; 1411 1412 count = 0; 1413 TAILQ_FOREACH(dl, &dc->drivers, link) 1414 count++; 1415 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1416 if (list == NULL) 1417 return (ENOMEM); 1418 1419 count = 0; 1420 TAILQ_FOREACH(dl, &dc->drivers, link) { 1421 list[count] = dl->driver; 1422 count++; 1423 } 1424 *listp = list; 1425 *countp = count; 1426 1427 return (0); 1428 } 1429 1430 /** 1431 * @brief Get the number of devices in a devclass 1432 * 1433 * @param dc the devclass to examine 1434 */ 1435 int 1436 devclass_get_count(devclass_t dc) 1437 { 1438 int count, i; 1439 1440 count = 0; 1441 for (i = 0; i < dc->maxunit; i++) 1442 if (dc->devices[i]) 1443 count++; 1444 return (count); 1445 } 1446 1447 /** 1448 * @brief Get the maximum unit number used in a devclass 1449 * 1450 * Note that this is one greater than the highest currently-allocated 1451 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1452 * that not even the devclass has been allocated yet. 1453 * 1454 * @param dc the devclass to examine 1455 */ 1456 int 1457 devclass_get_maxunit(devclass_t dc) 1458 { 1459 if (dc == NULL) 1460 return (-1); 1461 return (dc->maxunit); 1462 } 1463 1464 /** 1465 * @brief Find a free unit number in a devclass 1466 * 1467 * This function searches for the first unused unit number greater 1468 * that or equal to @p unit. 1469 * 1470 * @param dc the devclass to examine 1471 * @param unit the first unit number to check 1472 */ 1473 int 1474 devclass_find_free_unit(devclass_t dc, int unit) 1475 { 1476 if (dc == NULL) 1477 return (unit); 1478 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1479 unit++; 1480 return (unit); 1481 } 1482 1483 /** 1484 * @brief Set the parent of a devclass 1485 * 1486 * The parent class is normally initialised automatically by 1487 * DRIVER_MODULE(). 1488 * 1489 * @param dc the devclass to edit 1490 * @param pdc the new parent devclass 1491 */ 1492 void 1493 devclass_set_parent(devclass_t dc, devclass_t pdc) 1494 { 1495 dc->parent = pdc; 1496 } 1497 1498 /** 1499 * @brief Get the parent of a devclass 1500 * 1501 * @param dc the devclass to examine 1502 */ 1503 devclass_t 1504 devclass_get_parent(devclass_t dc) 1505 { 1506 return (dc->parent); 1507 } 1508 1509 struct sysctl_ctx_list * 1510 devclass_get_sysctl_ctx(devclass_t dc) 1511 { 1512 return (&dc->sysctl_ctx); 1513 } 1514 1515 struct sysctl_oid * 1516 devclass_get_sysctl_tree(devclass_t dc) 1517 { 1518 return (dc->sysctl_tree); 1519 } 1520 1521 /** 1522 * @internal 1523 * @brief Allocate a unit number 1524 * 1525 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1526 * will do). The allocated unit number is returned in @p *unitp. 1527 1528 * @param dc the devclass to allocate from 1529 * @param unitp points at the location for the allocated unit 1530 * number 1531 * 1532 * @retval 0 success 1533 * @retval EEXIST the requested unit number is already allocated 1534 * @retval ENOMEM memory allocation failure 1535 */ 1536 static int 1537 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1538 { 1539 const char *s; 1540 int unit = *unitp; 1541 1542 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1543 1544 /* Ask the parent bus if it wants to wire this device. */ 1545 if (unit == -1) 1546 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1547 &unit); 1548 1549 /* If we were given a wired unit number, check for existing device */ 1550 /* XXX imp XXX */ 1551 if (unit != -1) { 1552 if (unit >= 0 && unit < dc->maxunit && 1553 dc->devices[unit] != NULL) { 1554 if (bootverbose) 1555 printf("%s: %s%d already exists; skipping it\n", 1556 dc->name, dc->name, *unitp); 1557 return (EEXIST); 1558 } 1559 } else { 1560 /* Unwired device, find the next available slot for it */ 1561 unit = 0; 1562 for (unit = 0;; unit++) { 1563 /* If there is an "at" hint for a unit then skip it. */ 1564 if (resource_string_value(dc->name, unit, "at", &s) == 1565 0) 1566 continue; 1567 1568 /* If this device slot is already in use, skip it. */ 1569 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1570 continue; 1571 1572 break; 1573 } 1574 } 1575 1576 /* 1577 * We've selected a unit beyond the length of the table, so let's 1578 * extend the table to make room for all units up to and including 1579 * this one. 1580 */ 1581 if (unit >= dc->maxunit) { 1582 device_t *newlist, *oldlist; 1583 int newsize; 1584 1585 oldlist = dc->devices; 1586 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1587 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1588 if (!newlist) 1589 return (ENOMEM); 1590 if (oldlist != NULL) 1591 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1592 bzero(newlist + dc->maxunit, 1593 sizeof(device_t) * (newsize - dc->maxunit)); 1594 dc->devices = newlist; 1595 dc->maxunit = newsize; 1596 if (oldlist != NULL) 1597 free(oldlist, M_BUS); 1598 } 1599 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1600 1601 *unitp = unit; 1602 return (0); 1603 } 1604 1605 /** 1606 * @internal 1607 * @brief Add a device to a devclass 1608 * 1609 * A unit number is allocated for the device (using the device's 1610 * preferred unit number if any) and the device is registered in the 1611 * devclass. This allows the device to be looked up by its unit 1612 * number, e.g. by decoding a dev_t minor number. 1613 * 1614 * @param dc the devclass to add to 1615 * @param dev the device to add 1616 * 1617 * @retval 0 success 1618 * @retval EEXIST the requested unit number is already allocated 1619 * @retval ENOMEM memory allocation failure 1620 */ 1621 static int 1622 devclass_add_device(devclass_t dc, device_t dev) 1623 { 1624 int buflen, error; 1625 1626 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1627 1628 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1629 if (buflen < 0) 1630 return (ENOMEM); 1631 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1632 if (!dev->nameunit) 1633 return (ENOMEM); 1634 1635 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1636 free(dev->nameunit, M_BUS); 1637 dev->nameunit = NULL; 1638 return (error); 1639 } 1640 dc->devices[dev->unit] = dev; 1641 dev->devclass = dc; 1642 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1643 1644 return (0); 1645 } 1646 1647 /** 1648 * @internal 1649 * @brief Delete a device from a devclass 1650 * 1651 * The device is removed from the devclass's device list and its unit 1652 * number is freed. 1653 1654 * @param dc the devclass to delete from 1655 * @param dev the device to delete 1656 * 1657 * @retval 0 success 1658 */ 1659 static int 1660 devclass_delete_device(devclass_t dc, device_t dev) 1661 { 1662 if (!dc || !dev) 1663 return (0); 1664 1665 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1666 1667 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1668 panic("devclass_delete_device: inconsistent device class"); 1669 dc->devices[dev->unit] = NULL; 1670 if (dev->flags & DF_WILDCARD) 1671 dev->unit = -1; 1672 dev->devclass = NULL; 1673 free(dev->nameunit, M_BUS); 1674 dev->nameunit = NULL; 1675 1676 return (0); 1677 } 1678 1679 /** 1680 * @internal 1681 * @brief Make a new device and add it as a child of @p parent 1682 * 1683 * @param parent the parent of the new device 1684 * @param name the devclass name of the new device or @c NULL 1685 * to leave the devclass unspecified 1686 * @parem unit the unit number of the new device of @c -1 to 1687 * leave the unit number unspecified 1688 * 1689 * @returns the new device 1690 */ 1691 static device_t 1692 make_device(device_t parent, const char *name, int unit) 1693 { 1694 device_t dev; 1695 devclass_t dc; 1696 1697 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1698 1699 if (name) { 1700 dc = devclass_find_internal(name, NULL, TRUE); 1701 if (!dc) { 1702 printf("make_device: can't find device class %s\n", 1703 name); 1704 return (NULL); 1705 } 1706 } else { 1707 dc = NULL; 1708 } 1709 1710 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1711 if (!dev) 1712 return (NULL); 1713 1714 dev->parent = parent; 1715 TAILQ_INIT(&dev->children); 1716 kobj_init((kobj_t) dev, &null_class); 1717 dev->driver = NULL; 1718 dev->devclass = NULL; 1719 dev->unit = unit; 1720 dev->nameunit = NULL; 1721 dev->desc = NULL; 1722 dev->busy = 0; 1723 dev->devflags = 0; 1724 dev->flags = DF_ENABLED; 1725 dev->order = 0; 1726 if (unit == -1) 1727 dev->flags |= DF_WILDCARD; 1728 if (name) { 1729 dev->flags |= DF_FIXEDCLASS; 1730 if (devclass_add_device(dc, dev)) { 1731 kobj_delete((kobj_t) dev, M_BUS); 1732 return (NULL); 1733 } 1734 } 1735 dev->ivars = NULL; 1736 dev->softc = NULL; 1737 1738 dev->state = DS_NOTPRESENT; 1739 1740 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1741 bus_data_generation_update(); 1742 1743 return (dev); 1744 } 1745 1746 /** 1747 * @internal 1748 * @brief Print a description of a device. 1749 */ 1750 static int 1751 device_print_child(device_t dev, device_t child) 1752 { 1753 int retval = 0; 1754 1755 if (device_is_alive(child)) 1756 retval += BUS_PRINT_CHILD(dev, child); 1757 else 1758 retval += device_printf(child, " not found\n"); 1759 1760 return (retval); 1761 } 1762 1763 /** 1764 * @brief Create a new device 1765 * 1766 * This creates a new device and adds it as a child of an existing 1767 * parent device. The new device will be added after the last existing 1768 * child with order zero. 1769 * 1770 * @param dev the device which will be the parent of the 1771 * new child device 1772 * @param name devclass name for new device or @c NULL if not 1773 * specified 1774 * @param unit unit number for new device or @c -1 if not 1775 * specified 1776 * 1777 * @returns the new device 1778 */ 1779 device_t 1780 device_add_child(device_t dev, const char *name, int unit) 1781 { 1782 return (device_add_child_ordered(dev, 0, name, unit)); 1783 } 1784 1785 /** 1786 * @brief Create a new device 1787 * 1788 * This creates a new device and adds it as a child of an existing 1789 * parent device. The new device will be added after the last existing 1790 * child with the same order. 1791 * 1792 * @param dev the device which will be the parent of the 1793 * new child device 1794 * @param order a value which is used to partially sort the 1795 * children of @p dev - devices created using 1796 * lower values of @p order appear first in @p 1797 * dev's list of children 1798 * @param name devclass name for new device or @c NULL if not 1799 * specified 1800 * @param unit unit number for new device or @c -1 if not 1801 * specified 1802 * 1803 * @returns the new device 1804 */ 1805 device_t 1806 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1807 { 1808 device_t child; 1809 device_t place; 1810 1811 PDEBUG(("%s at %s with order %u as unit %d", 1812 name, DEVICENAME(dev), order, unit)); 1813 KASSERT(name != NULL || unit == -1, 1814 ("child device with wildcard name and specific unit number")); 1815 1816 child = make_device(dev, name, unit); 1817 if (child == NULL) 1818 return (child); 1819 child->order = order; 1820 1821 TAILQ_FOREACH(place, &dev->children, link) { 1822 if (place->order > order) 1823 break; 1824 } 1825 1826 if (place) { 1827 /* 1828 * The device 'place' is the first device whose order is 1829 * greater than the new child. 1830 */ 1831 TAILQ_INSERT_BEFORE(place, child, link); 1832 } else { 1833 /* 1834 * The new child's order is greater or equal to the order of 1835 * any existing device. Add the child to the tail of the list. 1836 */ 1837 TAILQ_INSERT_TAIL(&dev->children, child, link); 1838 } 1839 1840 bus_data_generation_update(); 1841 return (child); 1842 } 1843 1844 /** 1845 * @brief Delete a device 1846 * 1847 * This function deletes a device along with all of its children. If 1848 * the device currently has a driver attached to it, the device is 1849 * detached first using device_detach(). 1850 * 1851 * @param dev the parent device 1852 * @param child the device to delete 1853 * 1854 * @retval 0 success 1855 * @retval non-zero a unit error code describing the error 1856 */ 1857 int 1858 device_delete_child(device_t dev, device_t child) 1859 { 1860 int error; 1861 device_t grandchild; 1862 1863 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1864 1865 /* remove children first */ 1866 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1867 error = device_delete_child(child, grandchild); 1868 if (error) 1869 return (error); 1870 } 1871 1872 if ((error = device_detach(child)) != 0) 1873 return (error); 1874 if (child->devclass) 1875 devclass_delete_device(child->devclass, child); 1876 TAILQ_REMOVE(&dev->children, child, link); 1877 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1878 kobj_delete((kobj_t) child, M_BUS); 1879 1880 bus_data_generation_update(); 1881 return (0); 1882 } 1883 1884 /** 1885 * @brief Delete all children devices of the given device, if any. 1886 * 1887 * This function deletes all children devices of the given device, if 1888 * any, using the device_delete_child() function for each device it 1889 * finds. If a child device cannot be deleted, this function will 1890 * return an error code. 1891 * 1892 * @param dev the parent device 1893 * 1894 * @retval 0 success 1895 * @retval non-zero a device would not detach 1896 */ 1897 int 1898 device_delete_children(device_t dev) 1899 { 1900 device_t child; 1901 int error; 1902 1903 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1904 1905 error = 0; 1906 1907 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1908 error = device_delete_child(dev, child); 1909 if (error) { 1910 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1911 break; 1912 } 1913 } 1914 return (error); 1915 } 1916 1917 /** 1918 * @brief Find a device given a unit number 1919 * 1920 * This is similar to devclass_get_devices() but only searches for 1921 * devices which have @p dev as a parent. 1922 * 1923 * @param dev the parent device to search 1924 * @param unit the unit number to search for. If the unit is -1, 1925 * return the first child of @p dev which has name 1926 * @p classname (that is, the one with the lowest unit.) 1927 * 1928 * @returns the device with the given unit number or @c 1929 * NULL if there is no such device 1930 */ 1931 device_t 1932 device_find_child(device_t dev, const char *classname, int unit) 1933 { 1934 devclass_t dc; 1935 device_t child; 1936 1937 dc = devclass_find(classname); 1938 if (!dc) 1939 return (NULL); 1940 1941 if (unit != -1) { 1942 child = devclass_get_device(dc, unit); 1943 if (child && child->parent == dev) 1944 return (child); 1945 } else { 1946 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1947 child = devclass_get_device(dc, unit); 1948 if (child && child->parent == dev) 1949 return (child); 1950 } 1951 } 1952 return (NULL); 1953 } 1954 1955 /** 1956 * @internal 1957 */ 1958 static driverlink_t 1959 first_matching_driver(devclass_t dc, device_t dev) 1960 { 1961 if (dev->devclass) 1962 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1963 return (TAILQ_FIRST(&dc->drivers)); 1964 } 1965 1966 /** 1967 * @internal 1968 */ 1969 static driverlink_t 1970 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1971 { 1972 if (dev->devclass) { 1973 driverlink_t dl; 1974 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1975 if (!strcmp(dev->devclass->name, dl->driver->name)) 1976 return (dl); 1977 return (NULL); 1978 } 1979 return (TAILQ_NEXT(last, link)); 1980 } 1981 1982 /** 1983 * @internal 1984 */ 1985 int 1986 device_probe_child(device_t dev, device_t child) 1987 { 1988 devclass_t dc; 1989 driverlink_t best = NULL; 1990 driverlink_t dl; 1991 int result, pri = 0; 1992 int hasclass = (child->devclass != NULL); 1993 1994 GIANT_REQUIRED; 1995 1996 dc = dev->devclass; 1997 if (!dc) 1998 panic("device_probe_child: parent device has no devclass"); 1999 2000 /* 2001 * If the state is already probed, then return. However, don't 2002 * return if we can rebid this object. 2003 */ 2004 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2005 return (0); 2006 2007 for (; dc; dc = dc->parent) { 2008 for (dl = first_matching_driver(dc, child); 2009 dl; 2010 dl = next_matching_driver(dc, child, dl)) { 2011 /* If this driver's pass is too high, then ignore it. */ 2012 if (dl->pass > bus_current_pass) 2013 continue; 2014 2015 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2016 result = device_set_driver(child, dl->driver); 2017 if (result == ENOMEM) 2018 return (result); 2019 else if (result != 0) 2020 continue; 2021 if (!hasclass) { 2022 if (device_set_devclass(child, 2023 dl->driver->name) != 0) { 2024 char const * devname = 2025 device_get_name(child); 2026 if (devname == NULL) 2027 devname = "(unknown)"; 2028 printf("driver bug: Unable to set " 2029 "devclass (class: %s " 2030 "devname: %s)\n", 2031 dl->driver->name, 2032 devname); 2033 (void)device_set_driver(child, NULL); 2034 continue; 2035 } 2036 } 2037 2038 /* Fetch any flags for the device before probing. */ 2039 resource_int_value(dl->driver->name, child->unit, 2040 "flags", &child->devflags); 2041 2042 result = DEVICE_PROBE(child); 2043 2044 /* Reset flags and devclass before the next probe. */ 2045 child->devflags = 0; 2046 if (!hasclass) 2047 (void)device_set_devclass(child, NULL); 2048 2049 /* 2050 * If the driver returns SUCCESS, there can be 2051 * no higher match for this device. 2052 */ 2053 if (result == 0) { 2054 best = dl; 2055 pri = 0; 2056 break; 2057 } 2058 2059 /* 2060 * The driver returned an error so it 2061 * certainly doesn't match. 2062 */ 2063 if (result > 0) { 2064 (void)device_set_driver(child, NULL); 2065 continue; 2066 } 2067 2068 /* 2069 * A priority lower than SUCCESS, remember the 2070 * best matching driver. Initialise the value 2071 * of pri for the first match. 2072 */ 2073 if (best == NULL || result > pri) { 2074 /* 2075 * Probes that return BUS_PROBE_NOWILDCARD 2076 * or lower only match when they are set 2077 * in stone by the parent bus. 2078 */ 2079 if (result <= BUS_PROBE_NOWILDCARD && 2080 child->flags & DF_WILDCARD) 2081 continue; 2082 best = dl; 2083 pri = result; 2084 continue; 2085 } 2086 } 2087 /* 2088 * If we have an unambiguous match in this devclass, 2089 * don't look in the parent. 2090 */ 2091 if (best && pri == 0) 2092 break; 2093 } 2094 2095 /* 2096 * If we found a driver, change state and initialise the devclass. 2097 */ 2098 /* XXX What happens if we rebid and got no best? */ 2099 if (best) { 2100 /* 2101 * If this device was attached, and we were asked to 2102 * rescan, and it is a different driver, then we have 2103 * to detach the old driver and reattach this new one. 2104 * Note, we don't have to check for DF_REBID here 2105 * because if the state is > DS_ALIVE, we know it must 2106 * be. 2107 * 2108 * This assumes that all DF_REBID drivers can have 2109 * their probe routine called at any time and that 2110 * they are idempotent as well as completely benign in 2111 * normal operations. 2112 * 2113 * We also have to make sure that the detach 2114 * succeeded, otherwise we fail the operation (or 2115 * maybe it should just fail silently? I'm torn). 2116 */ 2117 if (child->state > DS_ALIVE && best->driver != child->driver) 2118 if ((result = device_detach(dev)) != 0) 2119 return (result); 2120 2121 /* Set the winning driver, devclass, and flags. */ 2122 if (!child->devclass) { 2123 result = device_set_devclass(child, best->driver->name); 2124 if (result != 0) 2125 return (result); 2126 } 2127 result = device_set_driver(child, best->driver); 2128 if (result != 0) 2129 return (result); 2130 resource_int_value(best->driver->name, child->unit, 2131 "flags", &child->devflags); 2132 2133 if (pri < 0) { 2134 /* 2135 * A bit bogus. Call the probe method again to make 2136 * sure that we have the right description. 2137 */ 2138 DEVICE_PROBE(child); 2139 #if 0 2140 child->flags |= DF_REBID; 2141 #endif 2142 } else 2143 child->flags &= ~DF_REBID; 2144 child->state = DS_ALIVE; 2145 2146 bus_data_generation_update(); 2147 return (0); 2148 } 2149 2150 return (ENXIO); 2151 } 2152 2153 /** 2154 * @brief Return the parent of a device 2155 */ 2156 device_t 2157 device_get_parent(device_t dev) 2158 { 2159 return (dev->parent); 2160 } 2161 2162 /** 2163 * @brief Get a list of children of a device 2164 * 2165 * An array containing a list of all the children of the given device 2166 * is allocated and returned in @p *devlistp. The number of devices 2167 * in the array is returned in @p *devcountp. The caller should free 2168 * the array using @c free(p, M_TEMP). 2169 * 2170 * @param dev the device to examine 2171 * @param devlistp points at location for array pointer return 2172 * value 2173 * @param devcountp points at location for array size return value 2174 * 2175 * @retval 0 success 2176 * @retval ENOMEM the array allocation failed 2177 */ 2178 int 2179 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2180 { 2181 int count; 2182 device_t child; 2183 device_t *list; 2184 2185 count = 0; 2186 TAILQ_FOREACH(child, &dev->children, link) { 2187 count++; 2188 } 2189 if (count == 0) { 2190 *devlistp = NULL; 2191 *devcountp = 0; 2192 return (0); 2193 } 2194 2195 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2196 if (!list) 2197 return (ENOMEM); 2198 2199 count = 0; 2200 TAILQ_FOREACH(child, &dev->children, link) { 2201 list[count] = child; 2202 count++; 2203 } 2204 2205 *devlistp = list; 2206 *devcountp = count; 2207 2208 return (0); 2209 } 2210 2211 /** 2212 * @brief Return the current driver for the device or @c NULL if there 2213 * is no driver currently attached 2214 */ 2215 driver_t * 2216 device_get_driver(device_t dev) 2217 { 2218 return (dev->driver); 2219 } 2220 2221 /** 2222 * @brief Return the current devclass for the device or @c NULL if 2223 * there is none. 2224 */ 2225 devclass_t 2226 device_get_devclass(device_t dev) 2227 { 2228 return (dev->devclass); 2229 } 2230 2231 /** 2232 * @brief Return the name of the device's devclass or @c NULL if there 2233 * is none. 2234 */ 2235 const char * 2236 device_get_name(device_t dev) 2237 { 2238 if (dev != NULL && dev->devclass) 2239 return (devclass_get_name(dev->devclass)); 2240 return (NULL); 2241 } 2242 2243 /** 2244 * @brief Return a string containing the device's devclass name 2245 * followed by an ascii representation of the device's unit number 2246 * (e.g. @c "foo2"). 2247 */ 2248 const char * 2249 device_get_nameunit(device_t dev) 2250 { 2251 return (dev->nameunit); 2252 } 2253 2254 /** 2255 * @brief Return the device's unit number. 2256 */ 2257 int 2258 device_get_unit(device_t dev) 2259 { 2260 return (dev->unit); 2261 } 2262 2263 /** 2264 * @brief Return the device's description string 2265 */ 2266 const char * 2267 device_get_desc(device_t dev) 2268 { 2269 return (dev->desc); 2270 } 2271 2272 /** 2273 * @brief Return the device's flags 2274 */ 2275 uint32_t 2276 device_get_flags(device_t dev) 2277 { 2278 return (dev->devflags); 2279 } 2280 2281 struct sysctl_ctx_list * 2282 device_get_sysctl_ctx(device_t dev) 2283 { 2284 return (&dev->sysctl_ctx); 2285 } 2286 2287 struct sysctl_oid * 2288 device_get_sysctl_tree(device_t dev) 2289 { 2290 return (dev->sysctl_tree); 2291 } 2292 2293 /** 2294 * @brief Print the name of the device followed by a colon and a space 2295 * 2296 * @returns the number of characters printed 2297 */ 2298 int 2299 device_print_prettyname(device_t dev) 2300 { 2301 const char *name = device_get_name(dev); 2302 2303 if (name == NULL) 2304 return (printf("unknown: ")); 2305 return (printf("%s%d: ", name, device_get_unit(dev))); 2306 } 2307 2308 /** 2309 * @brief Print the name of the device followed by a colon, a space 2310 * and the result of calling vprintf() with the value of @p fmt and 2311 * the following arguments. 2312 * 2313 * @returns the number of characters printed 2314 */ 2315 int 2316 device_printf(device_t dev, const char * fmt, ...) 2317 { 2318 va_list ap; 2319 int retval; 2320 2321 retval = device_print_prettyname(dev); 2322 va_start(ap, fmt); 2323 retval += vprintf(fmt, ap); 2324 va_end(ap); 2325 return (retval); 2326 } 2327 2328 /** 2329 * @internal 2330 */ 2331 static void 2332 device_set_desc_internal(device_t dev, const char* desc, int copy) 2333 { 2334 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2335 free(dev->desc, M_BUS); 2336 dev->flags &= ~DF_DESCMALLOCED; 2337 dev->desc = NULL; 2338 } 2339 2340 if (copy && desc) { 2341 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2342 if (dev->desc) { 2343 strcpy(dev->desc, desc); 2344 dev->flags |= DF_DESCMALLOCED; 2345 } 2346 } else { 2347 /* Avoid a -Wcast-qual warning */ 2348 dev->desc = (char *)(uintptr_t) desc; 2349 } 2350 2351 bus_data_generation_update(); 2352 } 2353 2354 /** 2355 * @brief Set the device's description 2356 * 2357 * The value of @c desc should be a string constant that will not 2358 * change (at least until the description is changed in a subsequent 2359 * call to device_set_desc() or device_set_desc_copy()). 2360 */ 2361 void 2362 device_set_desc(device_t dev, const char* desc) 2363 { 2364 device_set_desc_internal(dev, desc, FALSE); 2365 } 2366 2367 /** 2368 * @brief Set the device's description 2369 * 2370 * The string pointed to by @c desc is copied. Use this function if 2371 * the device description is generated, (e.g. with sprintf()). 2372 */ 2373 void 2374 device_set_desc_copy(device_t dev, const char* desc) 2375 { 2376 device_set_desc_internal(dev, desc, TRUE); 2377 } 2378 2379 /** 2380 * @brief Set the device's flags 2381 */ 2382 void 2383 device_set_flags(device_t dev, uint32_t flags) 2384 { 2385 dev->devflags = flags; 2386 } 2387 2388 /** 2389 * @brief Return the device's softc field 2390 * 2391 * The softc is allocated and zeroed when a driver is attached, based 2392 * on the size field of the driver. 2393 */ 2394 void * 2395 device_get_softc(device_t dev) 2396 { 2397 return (dev->softc); 2398 } 2399 2400 /** 2401 * @brief Set the device's softc field 2402 * 2403 * Most drivers do not need to use this since the softc is allocated 2404 * automatically when the driver is attached. 2405 */ 2406 void 2407 device_set_softc(device_t dev, void *softc) 2408 { 2409 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2410 free(dev->softc, M_BUS_SC); 2411 dev->softc = softc; 2412 if (dev->softc) 2413 dev->flags |= DF_EXTERNALSOFTC; 2414 else 2415 dev->flags &= ~DF_EXTERNALSOFTC; 2416 } 2417 2418 /** 2419 * @brief Get the device's ivars field 2420 * 2421 * The ivars field is used by the parent device to store per-device 2422 * state (e.g. the physical location of the device or a list of 2423 * resources). 2424 */ 2425 void * 2426 device_get_ivars(device_t dev) 2427 { 2428 2429 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2430 return (dev->ivars); 2431 } 2432 2433 /** 2434 * @brief Set the device's ivars field 2435 */ 2436 void 2437 device_set_ivars(device_t dev, void * ivars) 2438 { 2439 2440 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2441 dev->ivars = ivars; 2442 } 2443 2444 /** 2445 * @brief Return the device's state 2446 */ 2447 device_state_t 2448 device_get_state(device_t dev) 2449 { 2450 return (dev->state); 2451 } 2452 2453 /** 2454 * @brief Set the DF_ENABLED flag for the device 2455 */ 2456 void 2457 device_enable(device_t dev) 2458 { 2459 dev->flags |= DF_ENABLED; 2460 } 2461 2462 /** 2463 * @brief Clear the DF_ENABLED flag for the device 2464 */ 2465 void 2466 device_disable(device_t dev) 2467 { 2468 dev->flags &= ~DF_ENABLED; 2469 } 2470 2471 /** 2472 * @brief Increment the busy counter for the device 2473 */ 2474 void 2475 device_busy(device_t dev) 2476 { 2477 if (dev->state < DS_ATTACHING) 2478 panic("device_busy: called for unattached device"); 2479 if (dev->busy == 0 && dev->parent) 2480 device_busy(dev->parent); 2481 dev->busy++; 2482 if (dev->state == DS_ATTACHED) 2483 dev->state = DS_BUSY; 2484 } 2485 2486 /** 2487 * @brief Decrement the busy counter for the device 2488 */ 2489 void 2490 device_unbusy(device_t dev) 2491 { 2492 if (dev->busy != 0 && dev->state != DS_BUSY && 2493 dev->state != DS_ATTACHING) 2494 panic("device_unbusy: called for non-busy device %s", 2495 device_get_nameunit(dev)); 2496 dev->busy--; 2497 if (dev->busy == 0) { 2498 if (dev->parent) 2499 device_unbusy(dev->parent); 2500 if (dev->state == DS_BUSY) 2501 dev->state = DS_ATTACHED; 2502 } 2503 } 2504 2505 /** 2506 * @brief Set the DF_QUIET flag for the device 2507 */ 2508 void 2509 device_quiet(device_t dev) 2510 { 2511 dev->flags |= DF_QUIET; 2512 } 2513 2514 /** 2515 * @brief Clear the DF_QUIET flag for the device 2516 */ 2517 void 2518 device_verbose(device_t dev) 2519 { 2520 dev->flags &= ~DF_QUIET; 2521 } 2522 2523 /** 2524 * @brief Return non-zero if the DF_QUIET flag is set on the device 2525 */ 2526 int 2527 device_is_quiet(device_t dev) 2528 { 2529 return ((dev->flags & DF_QUIET) != 0); 2530 } 2531 2532 /** 2533 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2534 */ 2535 int 2536 device_is_enabled(device_t dev) 2537 { 2538 return ((dev->flags & DF_ENABLED) != 0); 2539 } 2540 2541 /** 2542 * @brief Return non-zero if the device was successfully probed 2543 */ 2544 int 2545 device_is_alive(device_t dev) 2546 { 2547 return (dev->state >= DS_ALIVE); 2548 } 2549 2550 /** 2551 * @brief Return non-zero if the device currently has a driver 2552 * attached to it 2553 */ 2554 int 2555 device_is_attached(device_t dev) 2556 { 2557 return (dev->state >= DS_ATTACHED); 2558 } 2559 2560 /** 2561 * @brief Set the devclass of a device 2562 * @see devclass_add_device(). 2563 */ 2564 int 2565 device_set_devclass(device_t dev, const char *classname) 2566 { 2567 devclass_t dc; 2568 int error; 2569 2570 if (!classname) { 2571 if (dev->devclass) 2572 devclass_delete_device(dev->devclass, dev); 2573 return (0); 2574 } 2575 2576 if (dev->devclass) { 2577 printf("device_set_devclass: device class already set\n"); 2578 return (EINVAL); 2579 } 2580 2581 dc = devclass_find_internal(classname, NULL, TRUE); 2582 if (!dc) 2583 return (ENOMEM); 2584 2585 error = devclass_add_device(dc, dev); 2586 2587 bus_data_generation_update(); 2588 return (error); 2589 } 2590 2591 /** 2592 * @brief Set the driver of a device 2593 * 2594 * @retval 0 success 2595 * @retval EBUSY the device already has a driver attached 2596 * @retval ENOMEM a memory allocation failure occurred 2597 */ 2598 int 2599 device_set_driver(device_t dev, driver_t *driver) 2600 { 2601 if (dev->state >= DS_ATTACHED) 2602 return (EBUSY); 2603 2604 if (dev->driver == driver) 2605 return (0); 2606 2607 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2608 free(dev->softc, M_BUS_SC); 2609 dev->softc = NULL; 2610 } 2611 device_set_desc(dev, NULL); 2612 kobj_delete((kobj_t) dev, NULL); 2613 dev->driver = driver; 2614 if (driver) { 2615 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2616 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2617 dev->softc = malloc(driver->size, M_BUS_SC, 2618 M_NOWAIT | M_ZERO); 2619 if (!dev->softc) { 2620 kobj_delete((kobj_t) dev, NULL); 2621 kobj_init((kobj_t) dev, &null_class); 2622 dev->driver = NULL; 2623 return (ENOMEM); 2624 } 2625 } 2626 } else { 2627 kobj_init((kobj_t) dev, &null_class); 2628 } 2629 2630 bus_data_generation_update(); 2631 return (0); 2632 } 2633 2634 /** 2635 * @brief Probe a device, and return this status. 2636 * 2637 * This function is the core of the device autoconfiguration 2638 * system. Its purpose is to select a suitable driver for a device and 2639 * then call that driver to initialise the hardware appropriately. The 2640 * driver is selected by calling the DEVICE_PROBE() method of a set of 2641 * candidate drivers and then choosing the driver which returned the 2642 * best value. This driver is then attached to the device using 2643 * device_attach(). 2644 * 2645 * The set of suitable drivers is taken from the list of drivers in 2646 * the parent device's devclass. If the device was originally created 2647 * with a specific class name (see device_add_child()), only drivers 2648 * with that name are probed, otherwise all drivers in the devclass 2649 * are probed. If no drivers return successful probe values in the 2650 * parent devclass, the search continues in the parent of that 2651 * devclass (see devclass_get_parent()) if any. 2652 * 2653 * @param dev the device to initialise 2654 * 2655 * @retval 0 success 2656 * @retval ENXIO no driver was found 2657 * @retval ENOMEM memory allocation failure 2658 * @retval non-zero some other unix error code 2659 * @retval -1 Device already attached 2660 */ 2661 int 2662 device_probe(device_t dev) 2663 { 2664 int error; 2665 2666 GIANT_REQUIRED; 2667 2668 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2669 return (-1); 2670 2671 if (!(dev->flags & DF_ENABLED)) { 2672 if (bootverbose && device_get_name(dev) != NULL) { 2673 device_print_prettyname(dev); 2674 printf("not probed (disabled)\n"); 2675 } 2676 return (-1); 2677 } 2678 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2679 if (bus_current_pass == BUS_PASS_DEFAULT && 2680 !(dev->flags & DF_DONENOMATCH)) { 2681 BUS_PROBE_NOMATCH(dev->parent, dev); 2682 devnomatch(dev); 2683 dev->flags |= DF_DONENOMATCH; 2684 } 2685 return (error); 2686 } 2687 return (0); 2688 } 2689 2690 /** 2691 * @brief Probe a device and attach a driver if possible 2692 * 2693 * calls device_probe() and attaches if that was successful. 2694 */ 2695 int 2696 device_probe_and_attach(device_t dev) 2697 { 2698 int error; 2699 2700 GIANT_REQUIRED; 2701 2702 error = device_probe(dev); 2703 if (error == -1) 2704 return (0); 2705 else if (error != 0) 2706 return (error); 2707 return (device_attach(dev)); 2708 } 2709 2710 /** 2711 * @brief Attach a device driver to a device 2712 * 2713 * This function is a wrapper around the DEVICE_ATTACH() driver 2714 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2715 * device's sysctl tree, optionally prints a description of the device 2716 * and queues a notification event for user-based device management 2717 * services. 2718 * 2719 * Normally this function is only called internally from 2720 * device_probe_and_attach(). 2721 * 2722 * @param dev the device to initialise 2723 * 2724 * @retval 0 success 2725 * @retval ENXIO no driver was found 2726 * @retval ENOMEM memory allocation failure 2727 * @retval non-zero some other unix error code 2728 */ 2729 int 2730 device_attach(device_t dev) 2731 { 2732 int error; 2733 2734 device_sysctl_init(dev); 2735 if (!device_is_quiet(dev)) 2736 device_print_child(dev->parent, dev); 2737 dev->state = DS_ATTACHING; 2738 if ((error = DEVICE_ATTACH(dev)) != 0) { 2739 printf("device_attach: %s%d attach returned %d\n", 2740 dev->driver->name, dev->unit, error); 2741 if (!(dev->flags & DF_FIXEDCLASS)) 2742 devclass_delete_device(dev->devclass, dev); 2743 (void)device_set_driver(dev, NULL); 2744 device_sysctl_fini(dev); 2745 KASSERT(dev->busy == 0, ("attach failed but busy")); 2746 dev->state = DS_NOTPRESENT; 2747 return (error); 2748 } 2749 device_sysctl_update(dev); 2750 if (dev->busy) 2751 dev->state = DS_BUSY; 2752 else 2753 dev->state = DS_ATTACHED; 2754 dev->flags &= ~DF_DONENOMATCH; 2755 devadded(dev); 2756 return (0); 2757 } 2758 2759 /** 2760 * @brief Detach a driver from a device 2761 * 2762 * This function is a wrapper around the DEVICE_DETACH() driver 2763 * method. If the call to DEVICE_DETACH() succeeds, it calls 2764 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2765 * notification event for user-based device management services and 2766 * cleans up the device's sysctl tree. 2767 * 2768 * @param dev the device to un-initialise 2769 * 2770 * @retval 0 success 2771 * @retval ENXIO no driver was found 2772 * @retval ENOMEM memory allocation failure 2773 * @retval non-zero some other unix error code 2774 */ 2775 int 2776 device_detach(device_t dev) 2777 { 2778 int error; 2779 2780 GIANT_REQUIRED; 2781 2782 PDEBUG(("%s", DEVICENAME(dev))); 2783 if (dev->state == DS_BUSY) 2784 return (EBUSY); 2785 if (dev->state != DS_ATTACHED) 2786 return (0); 2787 2788 if ((error = DEVICE_DETACH(dev)) != 0) 2789 return (error); 2790 devremoved(dev); 2791 if (!device_is_quiet(dev)) 2792 device_printf(dev, "detached\n"); 2793 if (dev->parent) 2794 BUS_CHILD_DETACHED(dev->parent, dev); 2795 2796 if (!(dev->flags & DF_FIXEDCLASS)) 2797 devclass_delete_device(dev->devclass, dev); 2798 2799 dev->state = DS_NOTPRESENT; 2800 (void)device_set_driver(dev, NULL); 2801 device_sysctl_fini(dev); 2802 2803 return (0); 2804 } 2805 2806 /** 2807 * @brief Tells a driver to quiesce itself. 2808 * 2809 * This function is a wrapper around the DEVICE_QUIESCE() driver 2810 * method. If the call to DEVICE_QUIESCE() succeeds. 2811 * 2812 * @param dev the device to quiesce 2813 * 2814 * @retval 0 success 2815 * @retval ENXIO no driver was found 2816 * @retval ENOMEM memory allocation failure 2817 * @retval non-zero some other unix error code 2818 */ 2819 int 2820 device_quiesce(device_t dev) 2821 { 2822 2823 PDEBUG(("%s", DEVICENAME(dev))); 2824 if (dev->state == DS_BUSY) 2825 return (EBUSY); 2826 if (dev->state != DS_ATTACHED) 2827 return (0); 2828 2829 return (DEVICE_QUIESCE(dev)); 2830 } 2831 2832 /** 2833 * @brief Notify a device of system shutdown 2834 * 2835 * This function calls the DEVICE_SHUTDOWN() driver method if the 2836 * device currently has an attached driver. 2837 * 2838 * @returns the value returned by DEVICE_SHUTDOWN() 2839 */ 2840 int 2841 device_shutdown(device_t dev) 2842 { 2843 if (dev->state < DS_ATTACHED) 2844 return (0); 2845 return (DEVICE_SHUTDOWN(dev)); 2846 } 2847 2848 /** 2849 * @brief Set the unit number of a device 2850 * 2851 * This function can be used to override the unit number used for a 2852 * device (e.g. to wire a device to a pre-configured unit number). 2853 */ 2854 int 2855 device_set_unit(device_t dev, int unit) 2856 { 2857 devclass_t dc; 2858 int err; 2859 2860 dc = device_get_devclass(dev); 2861 if (unit < dc->maxunit && dc->devices[unit]) 2862 return (EBUSY); 2863 err = devclass_delete_device(dc, dev); 2864 if (err) 2865 return (err); 2866 dev->unit = unit; 2867 err = devclass_add_device(dc, dev); 2868 if (err) 2869 return (err); 2870 2871 bus_data_generation_update(); 2872 return (0); 2873 } 2874 2875 /*======================================*/ 2876 /* 2877 * Some useful method implementations to make life easier for bus drivers. 2878 */ 2879 2880 /** 2881 * @brief Initialise a resource list. 2882 * 2883 * @param rl the resource list to initialise 2884 */ 2885 void 2886 resource_list_init(struct resource_list *rl) 2887 { 2888 STAILQ_INIT(rl); 2889 } 2890 2891 /** 2892 * @brief Reclaim memory used by a resource list. 2893 * 2894 * This function frees the memory for all resource entries on the list 2895 * (if any). 2896 * 2897 * @param rl the resource list to free 2898 */ 2899 void 2900 resource_list_free(struct resource_list *rl) 2901 { 2902 struct resource_list_entry *rle; 2903 2904 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2905 if (rle->res) 2906 panic("resource_list_free: resource entry is busy"); 2907 STAILQ_REMOVE_HEAD(rl, link); 2908 free(rle, M_BUS); 2909 } 2910 } 2911 2912 /** 2913 * @brief Add a resource entry. 2914 * 2915 * This function adds a resource entry using the given @p type, @p 2916 * start, @p end and @p count values. A rid value is chosen by 2917 * searching sequentially for the first unused rid starting at zero. 2918 * 2919 * @param rl the resource list to edit 2920 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2921 * @param start the start address of the resource 2922 * @param end the end address of the resource 2923 * @param count XXX end-start+1 2924 */ 2925 int 2926 resource_list_add_next(struct resource_list *rl, int type, u_long start, 2927 u_long end, u_long count) 2928 { 2929 int rid; 2930 2931 rid = 0; 2932 while (resource_list_find(rl, type, rid) != NULL) 2933 rid++; 2934 resource_list_add(rl, type, rid, start, end, count); 2935 return (rid); 2936 } 2937 2938 /** 2939 * @brief Add or modify a resource entry. 2940 * 2941 * If an existing entry exists with the same type and rid, it will be 2942 * modified using the given values of @p start, @p end and @p 2943 * count. If no entry exists, a new one will be created using the 2944 * given values. The resource list entry that matches is then returned. 2945 * 2946 * @param rl the resource list to edit 2947 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2948 * @param rid the resource identifier 2949 * @param start the start address of the resource 2950 * @param end the end address of the resource 2951 * @param count XXX end-start+1 2952 */ 2953 struct resource_list_entry * 2954 resource_list_add(struct resource_list *rl, int type, int rid, 2955 u_long start, u_long end, u_long count) 2956 { 2957 struct resource_list_entry *rle; 2958 2959 rle = resource_list_find(rl, type, rid); 2960 if (!rle) { 2961 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2962 M_NOWAIT); 2963 if (!rle) 2964 panic("resource_list_add: can't record entry"); 2965 STAILQ_INSERT_TAIL(rl, rle, link); 2966 rle->type = type; 2967 rle->rid = rid; 2968 rle->res = NULL; 2969 rle->flags = 0; 2970 } 2971 2972 if (rle->res) 2973 panic("resource_list_add: resource entry is busy"); 2974 2975 rle->start = start; 2976 rle->end = end; 2977 rle->count = count; 2978 return (rle); 2979 } 2980 2981 /** 2982 * @brief Determine if a resource entry is busy. 2983 * 2984 * Returns true if a resource entry is busy meaning that it has an 2985 * associated resource that is not an unallocated "reserved" resource. 2986 * 2987 * @param rl the resource list to search 2988 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2989 * @param rid the resource identifier 2990 * 2991 * @returns Non-zero if the entry is busy, zero otherwise. 2992 */ 2993 int 2994 resource_list_busy(struct resource_list *rl, int type, int rid) 2995 { 2996 struct resource_list_entry *rle; 2997 2998 rle = resource_list_find(rl, type, rid); 2999 if (rle == NULL || rle->res == NULL) 3000 return (0); 3001 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3002 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3003 ("reserved resource is active")); 3004 return (0); 3005 } 3006 return (1); 3007 } 3008 3009 /** 3010 * @brief Determine if a resource entry is reserved. 3011 * 3012 * Returns true if a resource entry is reserved meaning that it has an 3013 * associated "reserved" resource. The resource can either be 3014 * allocated or unallocated. 3015 * 3016 * @param rl the resource list to search 3017 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3018 * @param rid the resource identifier 3019 * 3020 * @returns Non-zero if the entry is reserved, zero otherwise. 3021 */ 3022 int 3023 resource_list_reserved(struct resource_list *rl, int type, int rid) 3024 { 3025 struct resource_list_entry *rle; 3026 3027 rle = resource_list_find(rl, type, rid); 3028 if (rle != NULL && rle->flags & RLE_RESERVED) 3029 return (1); 3030 return (0); 3031 } 3032 3033 /** 3034 * @brief Find a resource entry by type and rid. 3035 * 3036 * @param rl the resource list to search 3037 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3038 * @param rid the resource identifier 3039 * 3040 * @returns the resource entry pointer or NULL if there is no such 3041 * entry. 3042 */ 3043 struct resource_list_entry * 3044 resource_list_find(struct resource_list *rl, int type, int rid) 3045 { 3046 struct resource_list_entry *rle; 3047 3048 STAILQ_FOREACH(rle, rl, link) { 3049 if (rle->type == type && rle->rid == rid) 3050 return (rle); 3051 } 3052 return (NULL); 3053 } 3054 3055 /** 3056 * @brief Delete a resource entry. 3057 * 3058 * @param rl the resource list to edit 3059 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3060 * @param rid the resource identifier 3061 */ 3062 void 3063 resource_list_delete(struct resource_list *rl, int type, int rid) 3064 { 3065 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3066 3067 if (rle) { 3068 if (rle->res != NULL) 3069 panic("resource_list_delete: resource has not been released"); 3070 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3071 free(rle, M_BUS); 3072 } 3073 } 3074 3075 /** 3076 * @brief Allocate a reserved resource 3077 * 3078 * This can be used by busses to force the allocation of resources 3079 * that are always active in the system even if they are not allocated 3080 * by a driver (e.g. PCI BARs). This function is usually called when 3081 * adding a new child to the bus. The resource is allocated from the 3082 * parent bus when it is reserved. The resource list entry is marked 3083 * with RLE_RESERVED to note that it is a reserved resource. 3084 * 3085 * Subsequent attempts to allocate the resource with 3086 * resource_list_alloc() will succeed the first time and will set 3087 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3088 * resource that has been allocated is released with 3089 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3090 * the actual resource remains allocated. The resource can be released to 3091 * the parent bus by calling resource_list_unreserve(). 3092 * 3093 * @param rl the resource list to allocate from 3094 * @param bus the parent device of @p child 3095 * @param child the device for which the resource is being reserved 3096 * @param type the type of resource to allocate 3097 * @param rid a pointer to the resource identifier 3098 * @param start hint at the start of the resource range - pass 3099 * @c 0UL for any start address 3100 * @param end hint at the end of the resource range - pass 3101 * @c ~0UL for any end address 3102 * @param count hint at the size of range required - pass @c 1 3103 * for any size 3104 * @param flags any extra flags to control the resource 3105 * allocation - see @c RF_XXX flags in 3106 * <sys/rman.h> for details 3107 * 3108 * @returns the resource which was allocated or @c NULL if no 3109 * resource could be allocated 3110 */ 3111 struct resource * 3112 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3113 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3114 { 3115 struct resource_list_entry *rle = NULL; 3116 int passthrough = (device_get_parent(child) != bus); 3117 struct resource *r; 3118 3119 if (passthrough) 3120 panic( 3121 "resource_list_reserve() should only be called for direct children"); 3122 if (flags & RF_ACTIVE) 3123 panic( 3124 "resource_list_reserve() should only reserve inactive resources"); 3125 3126 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3127 flags); 3128 if (r != NULL) { 3129 rle = resource_list_find(rl, type, *rid); 3130 rle->flags |= RLE_RESERVED; 3131 } 3132 return (r); 3133 } 3134 3135 /** 3136 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3137 * 3138 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3139 * and passing the allocation up to the parent of @p bus. This assumes 3140 * that the first entry of @c device_get_ivars(child) is a struct 3141 * resource_list. This also handles 'passthrough' allocations where a 3142 * child is a remote descendant of bus by passing the allocation up to 3143 * the parent of bus. 3144 * 3145 * Typically, a bus driver would store a list of child resources 3146 * somewhere in the child device's ivars (see device_get_ivars()) and 3147 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3148 * then call resource_list_alloc() to perform the allocation. 3149 * 3150 * @param rl the resource list to allocate from 3151 * @param bus the parent device of @p child 3152 * @param child the device which is requesting an allocation 3153 * @param type the type of resource to allocate 3154 * @param rid a pointer to the resource identifier 3155 * @param start hint at the start of the resource range - pass 3156 * @c 0UL for any start address 3157 * @param end hint at the end of the resource range - pass 3158 * @c ~0UL for any end address 3159 * @param count hint at the size of range required - pass @c 1 3160 * for any size 3161 * @param flags any extra flags to control the resource 3162 * allocation - see @c RF_XXX flags in 3163 * <sys/rman.h> for details 3164 * 3165 * @returns the resource which was allocated or @c NULL if no 3166 * resource could be allocated 3167 */ 3168 struct resource * 3169 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3170 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3171 { 3172 struct resource_list_entry *rle = NULL; 3173 int passthrough = (device_get_parent(child) != bus); 3174 int isdefault = (start == 0UL && end == ~0UL); 3175 3176 if (passthrough) { 3177 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3178 type, rid, start, end, count, flags)); 3179 } 3180 3181 rle = resource_list_find(rl, type, *rid); 3182 3183 if (!rle) 3184 return (NULL); /* no resource of that type/rid */ 3185 3186 if (rle->res) { 3187 if (rle->flags & RLE_RESERVED) { 3188 if (rle->flags & RLE_ALLOCATED) 3189 return (NULL); 3190 if ((flags & RF_ACTIVE) && 3191 bus_activate_resource(child, type, *rid, 3192 rle->res) != 0) 3193 return (NULL); 3194 rle->flags |= RLE_ALLOCATED; 3195 return (rle->res); 3196 } 3197 panic("resource_list_alloc: resource entry is busy"); 3198 } 3199 3200 if (isdefault) { 3201 start = rle->start; 3202 count = ulmax(count, rle->count); 3203 end = ulmax(rle->end, start + count - 1); 3204 } 3205 3206 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3207 type, rid, start, end, count, flags); 3208 3209 /* 3210 * Record the new range. 3211 */ 3212 if (rle->res) { 3213 rle->start = rman_get_start(rle->res); 3214 rle->end = rman_get_end(rle->res); 3215 rle->count = count; 3216 } 3217 3218 return (rle->res); 3219 } 3220 3221 /** 3222 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3223 * 3224 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3225 * used with resource_list_alloc(). 3226 * 3227 * @param rl the resource list which was allocated from 3228 * @param bus the parent device of @p child 3229 * @param child the device which is requesting a release 3230 * @param type the type of resource to release 3231 * @param rid the resource identifier 3232 * @param res the resource to release 3233 * 3234 * @retval 0 success 3235 * @retval non-zero a standard unix error code indicating what 3236 * error condition prevented the operation 3237 */ 3238 int 3239 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3240 int type, int rid, struct resource *res) 3241 { 3242 struct resource_list_entry *rle = NULL; 3243 int passthrough = (device_get_parent(child) != bus); 3244 int error; 3245 3246 if (passthrough) { 3247 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3248 type, rid, res)); 3249 } 3250 3251 rle = resource_list_find(rl, type, rid); 3252 3253 if (!rle) 3254 panic("resource_list_release: can't find resource"); 3255 if (!rle->res) 3256 panic("resource_list_release: resource entry is not busy"); 3257 if (rle->flags & RLE_RESERVED) { 3258 if (rle->flags & RLE_ALLOCATED) { 3259 if (rman_get_flags(res) & RF_ACTIVE) { 3260 error = bus_deactivate_resource(child, type, 3261 rid, res); 3262 if (error) 3263 return (error); 3264 } 3265 rle->flags &= ~RLE_ALLOCATED; 3266 return (0); 3267 } 3268 return (EINVAL); 3269 } 3270 3271 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3272 type, rid, res); 3273 if (error) 3274 return (error); 3275 3276 rle->res = NULL; 3277 return (0); 3278 } 3279 3280 /** 3281 * @brief Fully release a reserved resource 3282 * 3283 * Fully releases a resouce reserved via resource_list_reserve(). 3284 * 3285 * @param rl the resource list which was allocated from 3286 * @param bus the parent device of @p child 3287 * @param child the device whose reserved resource is being released 3288 * @param type the type of resource to release 3289 * @param rid the resource identifier 3290 * @param res the resource to release 3291 * 3292 * @retval 0 success 3293 * @retval non-zero a standard unix error code indicating what 3294 * error condition prevented the operation 3295 */ 3296 int 3297 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3298 int type, int rid) 3299 { 3300 struct resource_list_entry *rle = NULL; 3301 int passthrough = (device_get_parent(child) != bus); 3302 3303 if (passthrough) 3304 panic( 3305 "resource_list_unreserve() should only be called for direct children"); 3306 3307 rle = resource_list_find(rl, type, rid); 3308 3309 if (!rle) 3310 panic("resource_list_unreserve: can't find resource"); 3311 if (!(rle->flags & RLE_RESERVED)) 3312 return (EINVAL); 3313 if (rle->flags & RLE_ALLOCATED) 3314 return (EBUSY); 3315 rle->flags &= ~RLE_RESERVED; 3316 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3317 } 3318 3319 /** 3320 * @brief Print a description of resources in a resource list 3321 * 3322 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3323 * The name is printed if at least one resource of the given type is available. 3324 * The format is used to print resource start and end. 3325 * 3326 * @param rl the resource list to print 3327 * @param name the name of @p type, e.g. @c "memory" 3328 * @param type type type of resource entry to print 3329 * @param format printf(9) format string to print resource 3330 * start and end values 3331 * 3332 * @returns the number of characters printed 3333 */ 3334 int 3335 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3336 const char *format) 3337 { 3338 struct resource_list_entry *rle; 3339 int printed, retval; 3340 3341 printed = 0; 3342 retval = 0; 3343 /* Yes, this is kinda cheating */ 3344 STAILQ_FOREACH(rle, rl, link) { 3345 if (rle->type == type) { 3346 if (printed == 0) 3347 retval += printf(" %s ", name); 3348 else 3349 retval += printf(","); 3350 printed++; 3351 retval += printf(format, rle->start); 3352 if (rle->count > 1) { 3353 retval += printf("-"); 3354 retval += printf(format, rle->start + 3355 rle->count - 1); 3356 } 3357 } 3358 } 3359 return (retval); 3360 } 3361 3362 /** 3363 * @brief Releases all the resources in a list. 3364 * 3365 * @param rl The resource list to purge. 3366 * 3367 * @returns nothing 3368 */ 3369 void 3370 resource_list_purge(struct resource_list *rl) 3371 { 3372 struct resource_list_entry *rle; 3373 3374 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3375 if (rle->res) 3376 bus_release_resource(rman_get_device(rle->res), 3377 rle->type, rle->rid, rle->res); 3378 STAILQ_REMOVE_HEAD(rl, link); 3379 free(rle, M_BUS); 3380 } 3381 } 3382 3383 device_t 3384 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3385 { 3386 3387 return (device_add_child_ordered(dev, order, name, unit)); 3388 } 3389 3390 /** 3391 * @brief Helper function for implementing DEVICE_PROBE() 3392 * 3393 * This function can be used to help implement the DEVICE_PROBE() for 3394 * a bus (i.e. a device which has other devices attached to it). It 3395 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3396 * devclass. 3397 */ 3398 int 3399 bus_generic_probe(device_t dev) 3400 { 3401 devclass_t dc = dev->devclass; 3402 driverlink_t dl; 3403 3404 TAILQ_FOREACH(dl, &dc->drivers, link) { 3405 /* 3406 * If this driver's pass is too high, then ignore it. 3407 * For most drivers in the default pass, this will 3408 * never be true. For early-pass drivers they will 3409 * only call the identify routines of eligible drivers 3410 * when this routine is called. Drivers for later 3411 * passes should have their identify routines called 3412 * on early-pass busses during BUS_NEW_PASS(). 3413 */ 3414 if (dl->pass > bus_current_pass) 3415 continue; 3416 DEVICE_IDENTIFY(dl->driver, dev); 3417 } 3418 3419 return (0); 3420 } 3421 3422 /** 3423 * @brief Helper function for implementing DEVICE_ATTACH() 3424 * 3425 * This function can be used to help implement the DEVICE_ATTACH() for 3426 * a bus. It calls device_probe_and_attach() for each of the device's 3427 * children. 3428 */ 3429 int 3430 bus_generic_attach(device_t dev) 3431 { 3432 device_t child; 3433 3434 TAILQ_FOREACH(child, &dev->children, link) { 3435 device_probe_and_attach(child); 3436 } 3437 3438 return (0); 3439 } 3440 3441 /** 3442 * @brief Helper function for implementing DEVICE_DETACH() 3443 * 3444 * This function can be used to help implement the DEVICE_DETACH() for 3445 * a bus. It calls device_detach() for each of the device's 3446 * children. 3447 */ 3448 int 3449 bus_generic_detach(device_t dev) 3450 { 3451 device_t child; 3452 int error; 3453 3454 if (dev->state != DS_ATTACHED) 3455 return (EBUSY); 3456 3457 TAILQ_FOREACH(child, &dev->children, link) { 3458 if ((error = device_detach(child)) != 0) 3459 return (error); 3460 } 3461 3462 return (0); 3463 } 3464 3465 /** 3466 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3467 * 3468 * This function can be used to help implement the DEVICE_SHUTDOWN() 3469 * for a bus. It calls device_shutdown() for each of the device's 3470 * children. 3471 */ 3472 int 3473 bus_generic_shutdown(device_t dev) 3474 { 3475 device_t child; 3476 3477 TAILQ_FOREACH(child, &dev->children, link) { 3478 device_shutdown(child); 3479 } 3480 3481 return (0); 3482 } 3483 3484 /** 3485 * @brief Helper function for implementing DEVICE_SUSPEND() 3486 * 3487 * This function can be used to help implement the DEVICE_SUSPEND() 3488 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3489 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3490 * operation is aborted and any devices which were suspended are 3491 * resumed immediately by calling their DEVICE_RESUME() methods. 3492 */ 3493 int 3494 bus_generic_suspend(device_t dev) 3495 { 3496 int error; 3497 device_t child, child2; 3498 3499 TAILQ_FOREACH(child, &dev->children, link) { 3500 error = DEVICE_SUSPEND(child); 3501 if (error) { 3502 for (child2 = TAILQ_FIRST(&dev->children); 3503 child2 && child2 != child; 3504 child2 = TAILQ_NEXT(child2, link)) 3505 DEVICE_RESUME(child2); 3506 return (error); 3507 } 3508 } 3509 return (0); 3510 } 3511 3512 /** 3513 * @brief Helper function for implementing DEVICE_RESUME() 3514 * 3515 * This function can be used to help implement the DEVICE_RESUME() for 3516 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3517 */ 3518 int 3519 bus_generic_resume(device_t dev) 3520 { 3521 device_t child; 3522 3523 TAILQ_FOREACH(child, &dev->children, link) { 3524 DEVICE_RESUME(child); 3525 /* if resume fails, there's nothing we can usefully do... */ 3526 } 3527 return (0); 3528 } 3529 3530 /** 3531 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3532 * 3533 * This function prints the first part of the ascii representation of 3534 * @p child, including its name, unit and description (if any - see 3535 * device_set_desc()). 3536 * 3537 * @returns the number of characters printed 3538 */ 3539 int 3540 bus_print_child_header(device_t dev, device_t child) 3541 { 3542 int retval = 0; 3543 3544 if (device_get_desc(child)) { 3545 retval += device_printf(child, "<%s>", device_get_desc(child)); 3546 } else { 3547 retval += printf("%s", device_get_nameunit(child)); 3548 } 3549 3550 return (retval); 3551 } 3552 3553 /** 3554 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3555 * 3556 * This function prints the last part of the ascii representation of 3557 * @p child, which consists of the string @c " on " followed by the 3558 * name and unit of the @p dev. 3559 * 3560 * @returns the number of characters printed 3561 */ 3562 int 3563 bus_print_child_footer(device_t dev, device_t child) 3564 { 3565 return (printf(" on %s\n", device_get_nameunit(dev))); 3566 } 3567 3568 /** 3569 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3570 * 3571 * This function simply calls bus_print_child_header() followed by 3572 * bus_print_child_footer(). 3573 * 3574 * @returns the number of characters printed 3575 */ 3576 int 3577 bus_generic_print_child(device_t dev, device_t child) 3578 { 3579 int retval = 0; 3580 3581 retval += bus_print_child_header(dev, child); 3582 retval += bus_print_child_footer(dev, child); 3583 3584 return (retval); 3585 } 3586 3587 /** 3588 * @brief Stub function for implementing BUS_READ_IVAR(). 3589 * 3590 * @returns ENOENT 3591 */ 3592 int 3593 bus_generic_read_ivar(device_t dev, device_t child, int index, 3594 uintptr_t * result) 3595 { 3596 return (ENOENT); 3597 } 3598 3599 /** 3600 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3601 * 3602 * @returns ENOENT 3603 */ 3604 int 3605 bus_generic_write_ivar(device_t dev, device_t child, int index, 3606 uintptr_t value) 3607 { 3608 return (ENOENT); 3609 } 3610 3611 /** 3612 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3613 * 3614 * @returns NULL 3615 */ 3616 struct resource_list * 3617 bus_generic_get_resource_list(device_t dev, device_t child) 3618 { 3619 return (NULL); 3620 } 3621 3622 /** 3623 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3624 * 3625 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3626 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3627 * and then calls device_probe_and_attach() for each unattached child. 3628 */ 3629 void 3630 bus_generic_driver_added(device_t dev, driver_t *driver) 3631 { 3632 device_t child; 3633 3634 DEVICE_IDENTIFY(driver, dev); 3635 TAILQ_FOREACH(child, &dev->children, link) { 3636 if (child->state == DS_NOTPRESENT || 3637 (child->flags & DF_REBID)) 3638 device_probe_and_attach(child); 3639 } 3640 } 3641 3642 /** 3643 * @brief Helper function for implementing BUS_NEW_PASS(). 3644 * 3645 * This implementing of BUS_NEW_PASS() first calls the identify 3646 * routines for any drivers that probe at the current pass. Then it 3647 * walks the list of devices for this bus. If a device is already 3648 * attached, then it calls BUS_NEW_PASS() on that device. If the 3649 * device is not already attached, it attempts to attach a driver to 3650 * it. 3651 */ 3652 void 3653 bus_generic_new_pass(device_t dev) 3654 { 3655 driverlink_t dl; 3656 devclass_t dc; 3657 device_t child; 3658 3659 dc = dev->devclass; 3660 TAILQ_FOREACH(dl, &dc->drivers, link) { 3661 if (dl->pass == bus_current_pass) 3662 DEVICE_IDENTIFY(dl->driver, dev); 3663 } 3664 TAILQ_FOREACH(child, &dev->children, link) { 3665 if (child->state >= DS_ATTACHED) 3666 BUS_NEW_PASS(child); 3667 else if (child->state == DS_NOTPRESENT) 3668 device_probe_and_attach(child); 3669 } 3670 } 3671 3672 /** 3673 * @brief Helper function for implementing BUS_SETUP_INTR(). 3674 * 3675 * This simple implementation of BUS_SETUP_INTR() simply calls the 3676 * BUS_SETUP_INTR() method of the parent of @p dev. 3677 */ 3678 int 3679 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3680 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3681 void **cookiep) 3682 { 3683 /* Propagate up the bus hierarchy until someone handles it. */ 3684 if (dev->parent) 3685 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3686 filter, intr, arg, cookiep)); 3687 return (EINVAL); 3688 } 3689 3690 /** 3691 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3692 * 3693 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3694 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3695 */ 3696 int 3697 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3698 void *cookie) 3699 { 3700 /* Propagate up the bus hierarchy until someone handles it. */ 3701 if (dev->parent) 3702 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3703 return (EINVAL); 3704 } 3705 3706 /** 3707 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3708 * 3709 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3710 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3711 */ 3712 int 3713 bus_generic_adjust_resource(device_t dev, device_t child, int type, 3714 struct resource *r, u_long start, u_long end) 3715 { 3716 /* Propagate up the bus hierarchy until someone handles it. */ 3717 if (dev->parent) 3718 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 3719 end)); 3720 return (EINVAL); 3721 } 3722 3723 /** 3724 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3725 * 3726 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3727 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3728 */ 3729 struct resource * 3730 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3731 u_long start, u_long end, u_long count, u_int flags) 3732 { 3733 /* Propagate up the bus hierarchy until someone handles it. */ 3734 if (dev->parent) 3735 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3736 start, end, count, flags)); 3737 return (NULL); 3738 } 3739 3740 /** 3741 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3742 * 3743 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3744 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3745 */ 3746 int 3747 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3748 struct resource *r) 3749 { 3750 /* Propagate up the bus hierarchy until someone handles it. */ 3751 if (dev->parent) 3752 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3753 r)); 3754 return (EINVAL); 3755 } 3756 3757 /** 3758 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3759 * 3760 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3761 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3762 */ 3763 int 3764 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3765 struct resource *r) 3766 { 3767 /* Propagate up the bus hierarchy until someone handles it. */ 3768 if (dev->parent) 3769 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3770 r)); 3771 return (EINVAL); 3772 } 3773 3774 /** 3775 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3776 * 3777 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3778 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3779 */ 3780 int 3781 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3782 int rid, struct resource *r) 3783 { 3784 /* Propagate up the bus hierarchy until someone handles it. */ 3785 if (dev->parent) 3786 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3787 r)); 3788 return (EINVAL); 3789 } 3790 3791 /** 3792 * @brief Helper function for implementing BUS_BIND_INTR(). 3793 * 3794 * This simple implementation of BUS_BIND_INTR() simply calls the 3795 * BUS_BIND_INTR() method of the parent of @p dev. 3796 */ 3797 int 3798 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 3799 int cpu) 3800 { 3801 3802 /* Propagate up the bus hierarchy until someone handles it. */ 3803 if (dev->parent) 3804 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 3805 return (EINVAL); 3806 } 3807 3808 /** 3809 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3810 * 3811 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3812 * BUS_CONFIG_INTR() method of the parent of @p dev. 3813 */ 3814 int 3815 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3816 enum intr_polarity pol) 3817 { 3818 3819 /* Propagate up the bus hierarchy until someone handles it. */ 3820 if (dev->parent) 3821 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3822 return (EINVAL); 3823 } 3824 3825 /** 3826 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 3827 * 3828 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 3829 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 3830 */ 3831 int 3832 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 3833 void *cookie, const char *descr) 3834 { 3835 3836 /* Propagate up the bus hierarchy until someone handles it. */ 3837 if (dev->parent) 3838 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 3839 descr)); 3840 return (EINVAL); 3841 } 3842 3843 /** 3844 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 3845 * 3846 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 3847 * BUS_GET_DMA_TAG() method of the parent of @p dev. 3848 */ 3849 bus_dma_tag_t 3850 bus_generic_get_dma_tag(device_t dev, device_t child) 3851 { 3852 3853 /* Propagate up the bus hierarchy until someone handles it. */ 3854 if (dev->parent != NULL) 3855 return (BUS_GET_DMA_TAG(dev->parent, child)); 3856 return (NULL); 3857 } 3858 3859 /** 3860 * @brief Helper function for implementing BUS_GET_RESOURCE(). 3861 * 3862 * This implementation of BUS_GET_RESOURCE() uses the 3863 * resource_list_find() function to do most of the work. It calls 3864 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3865 * search. 3866 */ 3867 int 3868 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 3869 u_long *startp, u_long *countp) 3870 { 3871 struct resource_list * rl = NULL; 3872 struct resource_list_entry * rle = NULL; 3873 3874 rl = BUS_GET_RESOURCE_LIST(dev, child); 3875 if (!rl) 3876 return (EINVAL); 3877 3878 rle = resource_list_find(rl, type, rid); 3879 if (!rle) 3880 return (ENOENT); 3881 3882 if (startp) 3883 *startp = rle->start; 3884 if (countp) 3885 *countp = rle->count; 3886 3887 return (0); 3888 } 3889 3890 /** 3891 * @brief Helper function for implementing BUS_SET_RESOURCE(). 3892 * 3893 * This implementation of BUS_SET_RESOURCE() uses the 3894 * resource_list_add() function to do most of the work. It calls 3895 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3896 * edit. 3897 */ 3898 int 3899 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 3900 u_long start, u_long count) 3901 { 3902 struct resource_list * rl = NULL; 3903 3904 rl = BUS_GET_RESOURCE_LIST(dev, child); 3905 if (!rl) 3906 return (EINVAL); 3907 3908 resource_list_add(rl, type, rid, start, (start + count - 1), count); 3909 3910 return (0); 3911 } 3912 3913 /** 3914 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 3915 * 3916 * This implementation of BUS_DELETE_RESOURCE() uses the 3917 * resource_list_delete() function to do most of the work. It calls 3918 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3919 * edit. 3920 */ 3921 void 3922 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 3923 { 3924 struct resource_list * rl = NULL; 3925 3926 rl = BUS_GET_RESOURCE_LIST(dev, child); 3927 if (!rl) 3928 return; 3929 3930 resource_list_delete(rl, type, rid); 3931 3932 return; 3933 } 3934 3935 /** 3936 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3937 * 3938 * This implementation of BUS_RELEASE_RESOURCE() uses the 3939 * resource_list_release() function to do most of the work. It calls 3940 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3941 */ 3942 int 3943 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 3944 int rid, struct resource *r) 3945 { 3946 struct resource_list * rl = NULL; 3947 3948 if (device_get_parent(child) != dev) 3949 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 3950 type, rid, r)); 3951 3952 rl = BUS_GET_RESOURCE_LIST(dev, child); 3953 if (!rl) 3954 return (EINVAL); 3955 3956 return (resource_list_release(rl, dev, child, type, rid, r)); 3957 } 3958 3959 /** 3960 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3961 * 3962 * This implementation of BUS_ALLOC_RESOURCE() uses the 3963 * resource_list_alloc() function to do most of the work. It calls 3964 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3965 */ 3966 struct resource * 3967 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 3968 int *rid, u_long start, u_long end, u_long count, u_int flags) 3969 { 3970 struct resource_list * rl = NULL; 3971 3972 if (device_get_parent(child) != dev) 3973 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 3974 type, rid, start, end, count, flags)); 3975 3976 rl = BUS_GET_RESOURCE_LIST(dev, child); 3977 if (!rl) 3978 return (NULL); 3979 3980 return (resource_list_alloc(rl, dev, child, type, rid, 3981 start, end, count, flags)); 3982 } 3983 3984 /** 3985 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 3986 * 3987 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 3988 * BUS_CHILD_PRESENT() method of the parent of @p dev. 3989 */ 3990 int 3991 bus_generic_child_present(device_t dev, device_t child) 3992 { 3993 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 3994 } 3995 3996 /* 3997 * Some convenience functions to make it easier for drivers to use the 3998 * resource-management functions. All these really do is hide the 3999 * indirection through the parent's method table, making for slightly 4000 * less-wordy code. In the future, it might make sense for this code 4001 * to maintain some sort of a list of resources allocated by each device. 4002 */ 4003 4004 int 4005 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4006 struct resource **res) 4007 { 4008 int i; 4009 4010 for (i = 0; rs[i].type != -1; i++) 4011 res[i] = NULL; 4012 for (i = 0; rs[i].type != -1; i++) { 4013 res[i] = bus_alloc_resource_any(dev, 4014 rs[i].type, &rs[i].rid, rs[i].flags); 4015 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4016 bus_release_resources(dev, rs, res); 4017 return (ENXIO); 4018 } 4019 } 4020 return (0); 4021 } 4022 4023 void 4024 bus_release_resources(device_t dev, const struct resource_spec *rs, 4025 struct resource **res) 4026 { 4027 int i; 4028 4029 for (i = 0; rs[i].type != -1; i++) 4030 if (res[i] != NULL) { 4031 bus_release_resource( 4032 dev, rs[i].type, rs[i].rid, res[i]); 4033 res[i] = NULL; 4034 } 4035 } 4036 4037 /** 4038 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4039 * 4040 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4041 * parent of @p dev. 4042 */ 4043 struct resource * 4044 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 4045 u_long count, u_int flags) 4046 { 4047 if (dev->parent == NULL) 4048 return (NULL); 4049 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4050 count, flags)); 4051 } 4052 4053 /** 4054 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4055 * 4056 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4057 * parent of @p dev. 4058 */ 4059 int 4060 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start, 4061 u_long end) 4062 { 4063 if (dev->parent == NULL) 4064 return (EINVAL); 4065 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4066 } 4067 4068 /** 4069 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4070 * 4071 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4072 * parent of @p dev. 4073 */ 4074 int 4075 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4076 { 4077 if (dev->parent == NULL) 4078 return (EINVAL); 4079 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4080 } 4081 4082 /** 4083 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4084 * 4085 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4086 * parent of @p dev. 4087 */ 4088 int 4089 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4090 { 4091 if (dev->parent == NULL) 4092 return (EINVAL); 4093 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4094 } 4095 4096 /** 4097 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4098 * 4099 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4100 * parent of @p dev. 4101 */ 4102 int 4103 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4104 { 4105 if (dev->parent == NULL) 4106 return (EINVAL); 4107 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 4108 } 4109 4110 /** 4111 * @brief Wrapper function for BUS_SETUP_INTR(). 4112 * 4113 * This function simply calls the BUS_SETUP_INTR() method of the 4114 * parent of @p dev. 4115 */ 4116 int 4117 bus_setup_intr(device_t dev, struct resource *r, int flags, 4118 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4119 { 4120 int error; 4121 4122 if (dev->parent == NULL) 4123 return (EINVAL); 4124 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4125 arg, cookiep); 4126 if (error != 0) 4127 return (error); 4128 if (handler != NULL && !(flags & INTR_MPSAFE)) 4129 device_printf(dev, "[GIANT-LOCKED]\n"); 4130 return (0); 4131 } 4132 4133 /** 4134 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4135 * 4136 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4137 * parent of @p dev. 4138 */ 4139 int 4140 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4141 { 4142 if (dev->parent == NULL) 4143 return (EINVAL); 4144 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4145 } 4146 4147 /** 4148 * @brief Wrapper function for BUS_BIND_INTR(). 4149 * 4150 * This function simply calls the BUS_BIND_INTR() method of the 4151 * parent of @p dev. 4152 */ 4153 int 4154 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4155 { 4156 if (dev->parent == NULL) 4157 return (EINVAL); 4158 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4159 } 4160 4161 /** 4162 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4163 * 4164 * This function first formats the requested description into a 4165 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4166 * the parent of @p dev. 4167 */ 4168 int 4169 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4170 const char *fmt, ...) 4171 { 4172 va_list ap; 4173 char descr[MAXCOMLEN + 1]; 4174 4175 if (dev->parent == NULL) 4176 return (EINVAL); 4177 va_start(ap, fmt); 4178 vsnprintf(descr, sizeof(descr), fmt, ap); 4179 va_end(ap); 4180 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4181 } 4182 4183 /** 4184 * @brief Wrapper function for BUS_SET_RESOURCE(). 4185 * 4186 * This function simply calls the BUS_SET_RESOURCE() method of the 4187 * parent of @p dev. 4188 */ 4189 int 4190 bus_set_resource(device_t dev, int type, int rid, 4191 u_long start, u_long count) 4192 { 4193 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4194 start, count)); 4195 } 4196 4197 /** 4198 * @brief Wrapper function for BUS_GET_RESOURCE(). 4199 * 4200 * This function simply calls the BUS_GET_RESOURCE() method of the 4201 * parent of @p dev. 4202 */ 4203 int 4204 bus_get_resource(device_t dev, int type, int rid, 4205 u_long *startp, u_long *countp) 4206 { 4207 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4208 startp, countp)); 4209 } 4210 4211 /** 4212 * @brief Wrapper function for BUS_GET_RESOURCE(). 4213 * 4214 * This function simply calls the BUS_GET_RESOURCE() method of the 4215 * parent of @p dev and returns the start value. 4216 */ 4217 u_long 4218 bus_get_resource_start(device_t dev, int type, int rid) 4219 { 4220 u_long start, count; 4221 int error; 4222 4223 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4224 &start, &count); 4225 if (error) 4226 return (0); 4227 return (start); 4228 } 4229 4230 /** 4231 * @brief Wrapper function for BUS_GET_RESOURCE(). 4232 * 4233 * This function simply calls the BUS_GET_RESOURCE() method of the 4234 * parent of @p dev and returns the count value. 4235 */ 4236 u_long 4237 bus_get_resource_count(device_t dev, int type, int rid) 4238 { 4239 u_long start, count; 4240 int error; 4241 4242 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4243 &start, &count); 4244 if (error) 4245 return (0); 4246 return (count); 4247 } 4248 4249 /** 4250 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4251 * 4252 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4253 * parent of @p dev. 4254 */ 4255 void 4256 bus_delete_resource(device_t dev, int type, int rid) 4257 { 4258 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4259 } 4260 4261 /** 4262 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4263 * 4264 * This function simply calls the BUS_CHILD_PRESENT() method of the 4265 * parent of @p dev. 4266 */ 4267 int 4268 bus_child_present(device_t child) 4269 { 4270 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4271 } 4272 4273 /** 4274 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4275 * 4276 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4277 * parent of @p dev. 4278 */ 4279 int 4280 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4281 { 4282 device_t parent; 4283 4284 parent = device_get_parent(child); 4285 if (parent == NULL) { 4286 *buf = '\0'; 4287 return (0); 4288 } 4289 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4290 } 4291 4292 /** 4293 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4294 * 4295 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4296 * parent of @p dev. 4297 */ 4298 int 4299 bus_child_location_str(device_t child, char *buf, size_t buflen) 4300 { 4301 device_t parent; 4302 4303 parent = device_get_parent(child); 4304 if (parent == NULL) { 4305 *buf = '\0'; 4306 return (0); 4307 } 4308 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4309 } 4310 4311 /** 4312 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4313 * 4314 * This function simply calls the BUS_GET_DMA_TAG() method of the 4315 * parent of @p dev. 4316 */ 4317 bus_dma_tag_t 4318 bus_get_dma_tag(device_t dev) 4319 { 4320 device_t parent; 4321 4322 parent = device_get_parent(dev); 4323 if (parent == NULL) 4324 return (NULL); 4325 return (BUS_GET_DMA_TAG(parent, dev)); 4326 } 4327 4328 /* Resume all devices and then notify userland that we're up again. */ 4329 static int 4330 root_resume(device_t dev) 4331 { 4332 int error; 4333 4334 error = bus_generic_resume(dev); 4335 if (error == 0) 4336 devctl_notify("kern", "power", "resume", NULL); 4337 return (error); 4338 } 4339 4340 static int 4341 root_print_child(device_t dev, device_t child) 4342 { 4343 int retval = 0; 4344 4345 retval += bus_print_child_header(dev, child); 4346 retval += printf("\n"); 4347 4348 return (retval); 4349 } 4350 4351 static int 4352 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4353 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4354 { 4355 /* 4356 * If an interrupt mapping gets to here something bad has happened. 4357 */ 4358 panic("root_setup_intr"); 4359 } 4360 4361 /* 4362 * If we get here, assume that the device is permanant and really is 4363 * present in the system. Removable bus drivers are expected to intercept 4364 * this call long before it gets here. We return -1 so that drivers that 4365 * really care can check vs -1 or some ERRNO returned higher in the food 4366 * chain. 4367 */ 4368 static int 4369 root_child_present(device_t dev, device_t child) 4370 { 4371 return (-1); 4372 } 4373 4374 static kobj_method_t root_methods[] = { 4375 /* Device interface */ 4376 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4377 KOBJMETHOD(device_suspend, bus_generic_suspend), 4378 KOBJMETHOD(device_resume, root_resume), 4379 4380 /* Bus interface */ 4381 KOBJMETHOD(bus_print_child, root_print_child), 4382 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4383 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4384 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4385 KOBJMETHOD(bus_child_present, root_child_present), 4386 4387 KOBJMETHOD_END 4388 }; 4389 4390 static driver_t root_driver = { 4391 "root", 4392 root_methods, 4393 1, /* no softc */ 4394 }; 4395 4396 device_t root_bus; 4397 devclass_t root_devclass; 4398 4399 static int 4400 root_bus_module_handler(module_t mod, int what, void* arg) 4401 { 4402 switch (what) { 4403 case MOD_LOAD: 4404 TAILQ_INIT(&bus_data_devices); 4405 kobj_class_compile((kobj_class_t) &root_driver); 4406 root_bus = make_device(NULL, "root", 0); 4407 root_bus->desc = "System root bus"; 4408 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4409 root_bus->driver = &root_driver; 4410 root_bus->state = DS_ATTACHED; 4411 root_devclass = devclass_find_internal("root", NULL, FALSE); 4412 devinit(); 4413 return (0); 4414 4415 case MOD_SHUTDOWN: 4416 device_shutdown(root_bus); 4417 return (0); 4418 default: 4419 return (EOPNOTSUPP); 4420 } 4421 4422 return (0); 4423 } 4424 4425 static moduledata_t root_bus_mod = { 4426 "rootbus", 4427 root_bus_module_handler, 4428 NULL 4429 }; 4430 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4431 4432 /** 4433 * @brief Automatically configure devices 4434 * 4435 * This function begins the autoconfiguration process by calling 4436 * device_probe_and_attach() for each child of the @c root0 device. 4437 */ 4438 void 4439 root_bus_configure(void) 4440 { 4441 4442 PDEBUG((".")); 4443 4444 /* Eventually this will be split up, but this is sufficient for now. */ 4445 bus_set_pass(BUS_PASS_DEFAULT); 4446 } 4447 4448 /** 4449 * @brief Module handler for registering device drivers 4450 * 4451 * This module handler is used to automatically register device 4452 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4453 * devclass_add_driver() for the driver described by the 4454 * driver_module_data structure pointed to by @p arg 4455 */ 4456 int 4457 driver_module_handler(module_t mod, int what, void *arg) 4458 { 4459 struct driver_module_data *dmd; 4460 devclass_t bus_devclass; 4461 kobj_class_t driver; 4462 int error, pass; 4463 4464 dmd = (struct driver_module_data *)arg; 4465 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4466 error = 0; 4467 4468 switch (what) { 4469 case MOD_LOAD: 4470 if (dmd->dmd_chainevh) 4471 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4472 4473 pass = dmd->dmd_pass; 4474 driver = dmd->dmd_driver; 4475 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4476 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4477 error = devclass_add_driver(bus_devclass, driver, pass, 4478 dmd->dmd_devclass); 4479 break; 4480 4481 case MOD_UNLOAD: 4482 PDEBUG(("Unloading module: driver %s from bus %s", 4483 DRIVERNAME(dmd->dmd_driver), 4484 dmd->dmd_busname)); 4485 error = devclass_delete_driver(bus_devclass, 4486 dmd->dmd_driver); 4487 4488 if (!error && dmd->dmd_chainevh) 4489 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4490 break; 4491 case MOD_QUIESCE: 4492 PDEBUG(("Quiesce module: driver %s from bus %s", 4493 DRIVERNAME(dmd->dmd_driver), 4494 dmd->dmd_busname)); 4495 error = devclass_quiesce_driver(bus_devclass, 4496 dmd->dmd_driver); 4497 4498 if (!error && dmd->dmd_chainevh) 4499 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4500 break; 4501 default: 4502 error = EOPNOTSUPP; 4503 break; 4504 } 4505 4506 return (error); 4507 } 4508 4509 /** 4510 * @brief Enumerate all hinted devices for this bus. 4511 * 4512 * Walks through the hints for this bus and calls the bus_hinted_child 4513 * routine for each one it fines. It searches first for the specific 4514 * bus that's being probed for hinted children (eg isa0), and then for 4515 * generic children (eg isa). 4516 * 4517 * @param dev bus device to enumerate 4518 */ 4519 void 4520 bus_enumerate_hinted_children(device_t bus) 4521 { 4522 int i; 4523 const char *dname, *busname; 4524 int dunit; 4525 4526 /* 4527 * enumerate all devices on the specific bus 4528 */ 4529 busname = device_get_nameunit(bus); 4530 i = 0; 4531 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4532 BUS_HINTED_CHILD(bus, dname, dunit); 4533 4534 /* 4535 * and all the generic ones. 4536 */ 4537 busname = device_get_name(bus); 4538 i = 0; 4539 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4540 BUS_HINTED_CHILD(bus, dname, dunit); 4541 } 4542 4543 #ifdef BUS_DEBUG 4544 4545 /* the _short versions avoid iteration by not calling anything that prints 4546 * more than oneliners. I love oneliners. 4547 */ 4548 4549 static void 4550 print_device_short(device_t dev, int indent) 4551 { 4552 if (!dev) 4553 return; 4554 4555 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4556 dev->unit, dev->desc, 4557 (dev->parent? "":"no "), 4558 (TAILQ_EMPTY(&dev->children)? "no ":""), 4559 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4560 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4561 (dev->flags&DF_WILDCARD? "wildcard,":""), 4562 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4563 (dev->flags&DF_REBID? "rebiddable,":""), 4564 (dev->ivars? "":"no "), 4565 (dev->softc? "":"no "), 4566 dev->busy)); 4567 } 4568 4569 static void 4570 print_device(device_t dev, int indent) 4571 { 4572 if (!dev) 4573 return; 4574 4575 print_device_short(dev, indent); 4576 4577 indentprintf(("Parent:\n")); 4578 print_device_short(dev->parent, indent+1); 4579 indentprintf(("Driver:\n")); 4580 print_driver_short(dev->driver, indent+1); 4581 indentprintf(("Devclass:\n")); 4582 print_devclass_short(dev->devclass, indent+1); 4583 } 4584 4585 void 4586 print_device_tree_short(device_t dev, int indent) 4587 /* print the device and all its children (indented) */ 4588 { 4589 device_t child; 4590 4591 if (!dev) 4592 return; 4593 4594 print_device_short(dev, indent); 4595 4596 TAILQ_FOREACH(child, &dev->children, link) { 4597 print_device_tree_short(child, indent+1); 4598 } 4599 } 4600 4601 void 4602 print_device_tree(device_t dev, int indent) 4603 /* print the device and all its children (indented) */ 4604 { 4605 device_t child; 4606 4607 if (!dev) 4608 return; 4609 4610 print_device(dev, indent); 4611 4612 TAILQ_FOREACH(child, &dev->children, link) { 4613 print_device_tree(child, indent+1); 4614 } 4615 } 4616 4617 static void 4618 print_driver_short(driver_t *driver, int indent) 4619 { 4620 if (!driver) 4621 return; 4622 4623 indentprintf(("driver %s: softc size = %zd\n", 4624 driver->name, driver->size)); 4625 } 4626 4627 static void 4628 print_driver(driver_t *driver, int indent) 4629 { 4630 if (!driver) 4631 return; 4632 4633 print_driver_short(driver, indent); 4634 } 4635 4636 static void 4637 print_driver_list(driver_list_t drivers, int indent) 4638 { 4639 driverlink_t driver; 4640 4641 TAILQ_FOREACH(driver, &drivers, link) { 4642 print_driver(driver->driver, indent); 4643 } 4644 } 4645 4646 static void 4647 print_devclass_short(devclass_t dc, int indent) 4648 { 4649 if ( !dc ) 4650 return; 4651 4652 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4653 } 4654 4655 static void 4656 print_devclass(devclass_t dc, int indent) 4657 { 4658 int i; 4659 4660 if ( !dc ) 4661 return; 4662 4663 print_devclass_short(dc, indent); 4664 indentprintf(("Drivers:\n")); 4665 print_driver_list(dc->drivers, indent+1); 4666 4667 indentprintf(("Devices:\n")); 4668 for (i = 0; i < dc->maxunit; i++) 4669 if (dc->devices[i]) 4670 print_device(dc->devices[i], indent+1); 4671 } 4672 4673 void 4674 print_devclass_list_short(void) 4675 { 4676 devclass_t dc; 4677 4678 printf("Short listing of devclasses, drivers & devices:\n"); 4679 TAILQ_FOREACH(dc, &devclasses, link) { 4680 print_devclass_short(dc, 0); 4681 } 4682 } 4683 4684 void 4685 print_devclass_list(void) 4686 { 4687 devclass_t dc; 4688 4689 printf("Full listing of devclasses, drivers & devices:\n"); 4690 TAILQ_FOREACH(dc, &devclasses, link) { 4691 print_devclass(dc, 0); 4692 } 4693 } 4694 4695 #endif 4696 4697 /* 4698 * User-space access to the device tree. 4699 * 4700 * We implement a small set of nodes: 4701 * 4702 * hw.bus Single integer read method to obtain the 4703 * current generation count. 4704 * hw.bus.devices Reads the entire device tree in flat space. 4705 * hw.bus.rman Resource manager interface 4706 * 4707 * We might like to add the ability to scan devclasses and/or drivers to 4708 * determine what else is currently loaded/available. 4709 */ 4710 4711 static int 4712 sysctl_bus(SYSCTL_HANDLER_ARGS) 4713 { 4714 struct u_businfo ubus; 4715 4716 ubus.ub_version = BUS_USER_VERSION; 4717 ubus.ub_generation = bus_data_generation; 4718 4719 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4720 } 4721 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4722 "bus-related data"); 4723 4724 static int 4725 sysctl_devices(SYSCTL_HANDLER_ARGS) 4726 { 4727 int *name = (int *)arg1; 4728 u_int namelen = arg2; 4729 int index; 4730 struct device *dev; 4731 struct u_device udev; /* XXX this is a bit big */ 4732 int error; 4733 4734 if (namelen != 2) 4735 return (EINVAL); 4736 4737 if (bus_data_generation_check(name[0])) 4738 return (EINVAL); 4739 4740 index = name[1]; 4741 4742 /* 4743 * Scan the list of devices, looking for the requested index. 4744 */ 4745 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 4746 if (index-- == 0) 4747 break; 4748 } 4749 if (dev == NULL) 4750 return (ENOENT); 4751 4752 /* 4753 * Populate the return array. 4754 */ 4755 bzero(&udev, sizeof(udev)); 4756 udev.dv_handle = (uintptr_t)dev; 4757 udev.dv_parent = (uintptr_t)dev->parent; 4758 if (dev->nameunit != NULL) 4759 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 4760 if (dev->desc != NULL) 4761 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 4762 if (dev->driver != NULL && dev->driver->name != NULL) 4763 strlcpy(udev.dv_drivername, dev->driver->name, 4764 sizeof(udev.dv_drivername)); 4765 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 4766 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 4767 udev.dv_devflags = dev->devflags; 4768 udev.dv_flags = dev->flags; 4769 udev.dv_state = dev->state; 4770 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 4771 return (error); 4772 } 4773 4774 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 4775 "system device tree"); 4776 4777 int 4778 bus_data_generation_check(int generation) 4779 { 4780 if (generation != bus_data_generation) 4781 return (1); 4782 4783 /* XXX generate optimised lists here? */ 4784 return (0); 4785 } 4786 4787 void 4788 bus_data_generation_update(void) 4789 { 4790 bus_data_generation++; 4791 } 4792 4793 int 4794 bus_free_resource(device_t dev, int type, struct resource *r) 4795 { 4796 if (r == NULL) 4797 return (0); 4798 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 4799 } 4800