xref: /freebsd/sys/kern/subr_bus.c (revision 3c87aa1d3dc1d8dad3efad322852a8e1e76dee55)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/conf.h>
34 #include <sys/filio.h>
35 #include <sys/lock.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/poll.h>
43 #include <sys/proc.h>
44 #include <sys/condvar.h>
45 #include <sys/queue.h>
46 #include <machine/bus.h>
47 #include <sys/rman.h>
48 #include <sys/selinfo.h>
49 #include <sys/signalvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/uio.h>
53 #include <sys/bus.h>
54 #include <sys/interrupt.h>
55 
56 #include <machine/stdarg.h>
57 
58 #include <vm/uma.h>
59 
60 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
61 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
62 
63 /*
64  * Used to attach drivers to devclasses.
65  */
66 typedef struct driverlink *driverlink_t;
67 struct driverlink {
68 	kobj_class_t	driver;
69 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
70 	int		pass;
71 	TAILQ_ENTRY(driverlink) passlink;
72 };
73 
74 /*
75  * Forward declarations
76  */
77 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
78 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
79 typedef TAILQ_HEAD(device_list, device) device_list_t;
80 
81 struct devclass {
82 	TAILQ_ENTRY(devclass) link;
83 	devclass_t	parent;		/* parent in devclass hierarchy */
84 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
85 	char		*name;
86 	device_t	*devices;	/* array of devices indexed by unit */
87 	int		maxunit;	/* size of devices array */
88 	int		flags;
89 #define DC_HAS_CHILDREN		1
90 
91 	struct sysctl_ctx_list sysctl_ctx;
92 	struct sysctl_oid *sysctl_tree;
93 };
94 
95 /**
96  * @brief Implementation of device.
97  */
98 struct device {
99 	/*
100 	 * A device is a kernel object. The first field must be the
101 	 * current ops table for the object.
102 	 */
103 	KOBJ_FIELDS;
104 
105 	/*
106 	 * Device hierarchy.
107 	 */
108 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
109 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
110 	device_t	parent;		/**< parent of this device  */
111 	device_list_t	children;	/**< list of child devices */
112 
113 	/*
114 	 * Details of this device.
115 	 */
116 	driver_t	*driver;	/**< current driver */
117 	devclass_t	devclass;	/**< current device class */
118 	int		unit;		/**< current unit number */
119 	char*		nameunit;	/**< name+unit e.g. foodev0 */
120 	char*		desc;		/**< driver specific description */
121 	int		busy;		/**< count of calls to device_busy() */
122 	device_state_t	state;		/**< current device state  */
123 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
124 	u_int		flags;		/**< internal device flags  */
125 #define	DF_ENABLED	0x01		/* device should be probed/attached */
126 #define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
127 #define	DF_WILDCARD	0x04		/* unit was originally wildcard */
128 #define	DF_DESCMALLOCED	0x08		/* description was malloced */
129 #define	DF_QUIET	0x10		/* don't print verbose attach message */
130 #define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
131 #define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
132 #define	DF_REBID	0x80		/* Can rebid after attach */
133 	u_int	order;			/**< order from device_add_child_ordered() */
134 	void	*ivars;			/**< instance variables  */
135 	void	*softc;			/**< current driver's variables  */
136 
137 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139 };
140 
141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143 
144 #ifdef BUS_DEBUG
145 
146 static int bus_debug = 1;
147 TUNABLE_INT("bus.debug", &bus_debug);
148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
149     "Debug bus code");
150 
151 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
152 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
153 #define DRIVERNAME(d)	((d)? d->name : "no driver")
154 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
155 
156 /**
157  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
158  * prevent syslog from deleting initial spaces
159  */
160 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
161 
162 static void print_device_short(device_t dev, int indent);
163 static void print_device(device_t dev, int indent);
164 void print_device_tree_short(device_t dev, int indent);
165 void print_device_tree(device_t dev, int indent);
166 static void print_driver_short(driver_t *driver, int indent);
167 static void print_driver(driver_t *driver, int indent);
168 static void print_driver_list(driver_list_t drivers, int indent);
169 static void print_devclass_short(devclass_t dc, int indent);
170 static void print_devclass(devclass_t dc, int indent);
171 void print_devclass_list_short(void);
172 void print_devclass_list(void);
173 
174 #else
175 /* Make the compiler ignore the function calls */
176 #define PDEBUG(a)			/* nop */
177 #define DEVICENAME(d)			/* nop */
178 #define DRIVERNAME(d)			/* nop */
179 #define DEVCLANAME(d)			/* nop */
180 
181 #define print_device_short(d,i)		/* nop */
182 #define print_device(d,i)		/* nop */
183 #define print_device_tree_short(d,i)	/* nop */
184 #define print_device_tree(d,i)		/* nop */
185 #define print_driver_short(d,i)		/* nop */
186 #define print_driver(d,i)		/* nop */
187 #define print_driver_list(d,i)		/* nop */
188 #define print_devclass_short(d,i)	/* nop */
189 #define print_devclass(d,i)		/* nop */
190 #define print_devclass_list_short()	/* nop */
191 #define print_devclass_list()		/* nop */
192 #endif
193 
194 /*
195  * dev sysctl tree
196  */
197 
198 enum {
199 	DEVCLASS_SYSCTL_PARENT,
200 };
201 
202 static int
203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
204 {
205 	devclass_t dc = (devclass_t)arg1;
206 	const char *value;
207 
208 	switch (arg2) {
209 	case DEVCLASS_SYSCTL_PARENT:
210 		value = dc->parent ? dc->parent->name : "";
211 		break;
212 	default:
213 		return (EINVAL);
214 	}
215 	return (SYSCTL_OUT(req, value, strlen(value)));
216 }
217 
218 static void
219 devclass_sysctl_init(devclass_t dc)
220 {
221 
222 	if (dc->sysctl_tree != NULL)
223 		return;
224 	sysctl_ctx_init(&dc->sysctl_ctx);
225 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
226 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
227 	    CTLFLAG_RD, NULL, "");
228 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
229 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
230 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
231 	    "parent class");
232 }
233 
234 enum {
235 	DEVICE_SYSCTL_DESC,
236 	DEVICE_SYSCTL_DRIVER,
237 	DEVICE_SYSCTL_LOCATION,
238 	DEVICE_SYSCTL_PNPINFO,
239 	DEVICE_SYSCTL_PARENT,
240 };
241 
242 static int
243 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
244 {
245 	device_t dev = (device_t)arg1;
246 	const char *value;
247 	char *buf;
248 	int error;
249 
250 	buf = NULL;
251 	switch (arg2) {
252 	case DEVICE_SYSCTL_DESC:
253 		value = dev->desc ? dev->desc : "";
254 		break;
255 	case DEVICE_SYSCTL_DRIVER:
256 		value = dev->driver ? dev->driver->name : "";
257 		break;
258 	case DEVICE_SYSCTL_LOCATION:
259 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260 		bus_child_location_str(dev, buf, 1024);
261 		break;
262 	case DEVICE_SYSCTL_PNPINFO:
263 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
264 		bus_child_pnpinfo_str(dev, buf, 1024);
265 		break;
266 	case DEVICE_SYSCTL_PARENT:
267 		value = dev->parent ? dev->parent->nameunit : "";
268 		break;
269 	default:
270 		return (EINVAL);
271 	}
272 	error = SYSCTL_OUT(req, value, strlen(value));
273 	if (buf != NULL)
274 		free(buf, M_BUS);
275 	return (error);
276 }
277 
278 static void
279 device_sysctl_init(device_t dev)
280 {
281 	devclass_t dc = dev->devclass;
282 
283 	if (dev->sysctl_tree != NULL)
284 		return;
285 	devclass_sysctl_init(dc);
286 	sysctl_ctx_init(&dev->sysctl_ctx);
287 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
288 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
289 	    dev->nameunit + strlen(dc->name),
290 	    CTLFLAG_RD, NULL, "");
291 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
293 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
294 	    "device description");
295 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
297 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
298 	    "device driver name");
299 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
301 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
302 	    "device location relative to parent");
303 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
305 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
306 	    "device identification");
307 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
308 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
309 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
310 	    "parent device");
311 }
312 
313 static void
314 device_sysctl_update(device_t dev)
315 {
316 	devclass_t dc = dev->devclass;
317 
318 	if (dev->sysctl_tree == NULL)
319 		return;
320 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
321 }
322 
323 static void
324 device_sysctl_fini(device_t dev)
325 {
326 	if (dev->sysctl_tree == NULL)
327 		return;
328 	sysctl_ctx_free(&dev->sysctl_ctx);
329 	dev->sysctl_tree = NULL;
330 }
331 
332 /*
333  * /dev/devctl implementation
334  */
335 
336 /*
337  * This design allows only one reader for /dev/devctl.  This is not desirable
338  * in the long run, but will get a lot of hair out of this implementation.
339  * Maybe we should make this device a clonable device.
340  *
341  * Also note: we specifically do not attach a device to the device_t tree
342  * to avoid potential chicken and egg problems.  One could argue that all
343  * of this belongs to the root node.  One could also further argue that the
344  * sysctl interface that we have not might more properly be an ioctl
345  * interface, but at this stage of the game, I'm not inclined to rock that
346  * boat.
347  *
348  * I'm also not sure that the SIGIO support is done correctly or not, as
349  * I copied it from a driver that had SIGIO support that likely hasn't been
350  * tested since 3.4 or 2.2.8!
351  */
352 
353 /* Deprecated way to adjust queue length */
354 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
355 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */
356 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
357     0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
358 
359 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
360 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
361 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
362 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
364     0, sysctl_devctl_queue, "I", "devctl queue length");
365 
366 static d_open_t		devopen;
367 static d_close_t	devclose;
368 static d_read_t		devread;
369 static d_ioctl_t	devioctl;
370 static d_poll_t		devpoll;
371 
372 static struct cdevsw dev_cdevsw = {
373 	.d_version =	D_VERSION,
374 	.d_flags =	D_NEEDGIANT,
375 	.d_open =	devopen,
376 	.d_close =	devclose,
377 	.d_read =	devread,
378 	.d_ioctl =	devioctl,
379 	.d_poll =	devpoll,
380 	.d_name =	"devctl",
381 };
382 
383 struct dev_event_info
384 {
385 	char *dei_data;
386 	TAILQ_ENTRY(dev_event_info) dei_link;
387 };
388 
389 TAILQ_HEAD(devq, dev_event_info);
390 
391 static struct dev_softc
392 {
393 	int	inuse;
394 	int	nonblock;
395 	int	queued;
396 	struct mtx mtx;
397 	struct cv cv;
398 	struct selinfo sel;
399 	struct devq devq;
400 	struct proc *async_proc;
401 } devsoftc;
402 
403 static struct cdev *devctl_dev;
404 
405 static void
406 devinit(void)
407 {
408 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
409 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
410 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
411 	cv_init(&devsoftc.cv, "dev cv");
412 	TAILQ_INIT(&devsoftc.devq);
413 }
414 
415 static int
416 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
417 {
418 	if (devsoftc.inuse)
419 		return (EBUSY);
420 	/* move to init */
421 	devsoftc.inuse = 1;
422 	devsoftc.nonblock = 0;
423 	devsoftc.async_proc = NULL;
424 	return (0);
425 }
426 
427 static int
428 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
429 {
430 	devsoftc.inuse = 0;
431 	mtx_lock(&devsoftc.mtx);
432 	cv_broadcast(&devsoftc.cv);
433 	mtx_unlock(&devsoftc.mtx);
434 	devsoftc.async_proc = NULL;
435 	return (0);
436 }
437 
438 /*
439  * The read channel for this device is used to report changes to
440  * userland in realtime.  We are required to free the data as well as
441  * the n1 object because we allocate them separately.  Also note that
442  * we return one record at a time.  If you try to read this device a
443  * character at a time, you will lose the rest of the data.  Listening
444  * programs are expected to cope.
445  */
446 static int
447 devread(struct cdev *dev, struct uio *uio, int ioflag)
448 {
449 	struct dev_event_info *n1;
450 	int rv;
451 
452 	mtx_lock(&devsoftc.mtx);
453 	while (TAILQ_EMPTY(&devsoftc.devq)) {
454 		if (devsoftc.nonblock) {
455 			mtx_unlock(&devsoftc.mtx);
456 			return (EAGAIN);
457 		}
458 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
459 		if (rv) {
460 			/*
461 			 * Need to translate ERESTART to EINTR here? -- jake
462 			 */
463 			mtx_unlock(&devsoftc.mtx);
464 			return (rv);
465 		}
466 	}
467 	n1 = TAILQ_FIRST(&devsoftc.devq);
468 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
469 	devsoftc.queued--;
470 	mtx_unlock(&devsoftc.mtx);
471 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
472 	free(n1->dei_data, M_BUS);
473 	free(n1, M_BUS);
474 	return (rv);
475 }
476 
477 static	int
478 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
479 {
480 	switch (cmd) {
481 
482 	case FIONBIO:
483 		if (*(int*)data)
484 			devsoftc.nonblock = 1;
485 		else
486 			devsoftc.nonblock = 0;
487 		return (0);
488 	case FIOASYNC:
489 		if (*(int*)data)
490 			devsoftc.async_proc = td->td_proc;
491 		else
492 			devsoftc.async_proc = NULL;
493 		return (0);
494 
495 		/* (un)Support for other fcntl() calls. */
496 	case FIOCLEX:
497 	case FIONCLEX:
498 	case FIONREAD:
499 	case FIOSETOWN:
500 	case FIOGETOWN:
501 	default:
502 		break;
503 	}
504 	return (ENOTTY);
505 }
506 
507 static	int
508 devpoll(struct cdev *dev, int events, struct thread *td)
509 {
510 	int	revents = 0;
511 
512 	mtx_lock(&devsoftc.mtx);
513 	if (events & (POLLIN | POLLRDNORM)) {
514 		if (!TAILQ_EMPTY(&devsoftc.devq))
515 			revents = events & (POLLIN | POLLRDNORM);
516 		else
517 			selrecord(td, &devsoftc.sel);
518 	}
519 	mtx_unlock(&devsoftc.mtx);
520 
521 	return (revents);
522 }
523 
524 /**
525  * @brief Return whether the userland process is running
526  */
527 boolean_t
528 devctl_process_running(void)
529 {
530 	return (devsoftc.inuse == 1);
531 }
532 
533 /**
534  * @brief Queue data to be read from the devctl device
535  *
536  * Generic interface to queue data to the devctl device.  It is
537  * assumed that @p data is properly formatted.  It is further assumed
538  * that @p data is allocated using the M_BUS malloc type.
539  */
540 void
541 devctl_queue_data_f(char *data, int flags)
542 {
543 	struct dev_event_info *n1 = NULL, *n2 = NULL;
544 	struct proc *p;
545 
546 	if (strlen(data) == 0)
547 		goto out;
548 	if (devctl_queue_length == 0)
549 		goto out;
550 	n1 = malloc(sizeof(*n1), M_BUS, flags);
551 	if (n1 == NULL)
552 		goto out;
553 	n1->dei_data = data;
554 	mtx_lock(&devsoftc.mtx);
555 	if (devctl_queue_length == 0) {
556 		mtx_unlock(&devsoftc.mtx);
557 		free(n1->dei_data, M_BUS);
558 		free(n1, M_BUS);
559 		return;
560 	}
561 	/* Leave at least one spot in the queue... */
562 	while (devsoftc.queued > devctl_queue_length - 1) {
563 		n2 = TAILQ_FIRST(&devsoftc.devq);
564 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
565 		free(n2->dei_data, M_BUS);
566 		free(n2, M_BUS);
567 		devsoftc.queued--;
568 	}
569 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
570 	devsoftc.queued++;
571 	cv_broadcast(&devsoftc.cv);
572 	mtx_unlock(&devsoftc.mtx);
573 	selwakeup(&devsoftc.sel);
574 	p = devsoftc.async_proc;
575 	if (p != NULL) {
576 		PROC_LOCK(p);
577 		kern_psignal(p, SIGIO);
578 		PROC_UNLOCK(p);
579 	}
580 	return;
581 out:
582 	/*
583 	 * We have to free data on all error paths since the caller
584 	 * assumes it will be free'd when this item is dequeued.
585 	 */
586 	free(data, M_BUS);
587 	return;
588 }
589 
590 void
591 devctl_queue_data(char *data)
592 {
593 
594 	devctl_queue_data_f(data, M_NOWAIT);
595 }
596 
597 /**
598  * @brief Send a 'notification' to userland, using standard ways
599  */
600 void
601 devctl_notify_f(const char *system, const char *subsystem, const char *type,
602     const char *data, int flags)
603 {
604 	int len = 0;
605 	char *msg;
606 
607 	if (system == NULL)
608 		return;		/* BOGUS!  Must specify system. */
609 	if (subsystem == NULL)
610 		return;		/* BOGUS!  Must specify subsystem. */
611 	if (type == NULL)
612 		return;		/* BOGUS!  Must specify type. */
613 	len += strlen(" system=") + strlen(system);
614 	len += strlen(" subsystem=") + strlen(subsystem);
615 	len += strlen(" type=") + strlen(type);
616 	/* add in the data message plus newline. */
617 	if (data != NULL)
618 		len += strlen(data);
619 	len += 3;	/* '!', '\n', and NUL */
620 	msg = malloc(len, M_BUS, flags);
621 	if (msg == NULL)
622 		return;		/* Drop it on the floor */
623 	if (data != NULL)
624 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
625 		    system, subsystem, type, data);
626 	else
627 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
628 		    system, subsystem, type);
629 	devctl_queue_data_f(msg, flags);
630 }
631 
632 void
633 devctl_notify(const char *system, const char *subsystem, const char *type,
634     const char *data)
635 {
636 
637 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
638 }
639 
640 /*
641  * Common routine that tries to make sending messages as easy as possible.
642  * We allocate memory for the data, copy strings into that, but do not
643  * free it unless there's an error.  The dequeue part of the driver should
644  * free the data.  We don't send data when the device is disabled.  We do
645  * send data, even when we have no listeners, because we wish to avoid
646  * races relating to startup and restart of listening applications.
647  *
648  * devaddq is designed to string together the type of event, with the
649  * object of that event, plus the plug and play info and location info
650  * for that event.  This is likely most useful for devices, but less
651  * useful for other consumers of this interface.  Those should use
652  * the devctl_queue_data() interface instead.
653  */
654 static void
655 devaddq(const char *type, const char *what, device_t dev)
656 {
657 	char *data = NULL;
658 	char *loc = NULL;
659 	char *pnp = NULL;
660 	const char *parstr;
661 
662 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
663 		return;
664 	data = malloc(1024, M_BUS, M_NOWAIT);
665 	if (data == NULL)
666 		goto bad;
667 
668 	/* get the bus specific location of this device */
669 	loc = malloc(1024, M_BUS, M_NOWAIT);
670 	if (loc == NULL)
671 		goto bad;
672 	*loc = '\0';
673 	bus_child_location_str(dev, loc, 1024);
674 
675 	/* Get the bus specific pnp info of this device */
676 	pnp = malloc(1024, M_BUS, M_NOWAIT);
677 	if (pnp == NULL)
678 		goto bad;
679 	*pnp = '\0';
680 	bus_child_pnpinfo_str(dev, pnp, 1024);
681 
682 	/* Get the parent of this device, or / if high enough in the tree. */
683 	if (device_get_parent(dev) == NULL)
684 		parstr = ".";	/* Or '/' ? */
685 	else
686 		parstr = device_get_nameunit(device_get_parent(dev));
687 	/* String it all together. */
688 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
689 	  parstr);
690 	free(loc, M_BUS);
691 	free(pnp, M_BUS);
692 	devctl_queue_data(data);
693 	return;
694 bad:
695 	free(pnp, M_BUS);
696 	free(loc, M_BUS);
697 	free(data, M_BUS);
698 	return;
699 }
700 
701 /*
702  * A device was added to the tree.  We are called just after it successfully
703  * attaches (that is, probe and attach success for this device).  No call
704  * is made if a device is merely parented into the tree.  See devnomatch
705  * if probe fails.  If attach fails, no notification is sent (but maybe
706  * we should have a different message for this).
707  */
708 static void
709 devadded(device_t dev)
710 {
711 	devaddq("+", device_get_nameunit(dev), dev);
712 }
713 
714 /*
715  * A device was removed from the tree.  We are called just before this
716  * happens.
717  */
718 static void
719 devremoved(device_t dev)
720 {
721 	devaddq("-", device_get_nameunit(dev), dev);
722 }
723 
724 /*
725  * Called when there's no match for this device.  This is only called
726  * the first time that no match happens, so we don't keep getting this
727  * message.  Should that prove to be undesirable, we can change it.
728  * This is called when all drivers that can attach to a given bus
729  * decline to accept this device.  Other errors may not be detected.
730  */
731 static void
732 devnomatch(device_t dev)
733 {
734 	devaddq("?", "", dev);
735 }
736 
737 static int
738 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
739 {
740 	struct dev_event_info *n1;
741 	int dis, error;
742 
743 	dis = devctl_queue_length == 0;
744 	error = sysctl_handle_int(oidp, &dis, 0, req);
745 	if (error || !req->newptr)
746 		return (error);
747 	mtx_lock(&devsoftc.mtx);
748 	if (dis) {
749 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
750 			n1 = TAILQ_FIRST(&devsoftc.devq);
751 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
752 			free(n1->dei_data, M_BUS);
753 			free(n1, M_BUS);
754 		}
755 		devsoftc.queued = 0;
756 		devctl_queue_length = 0;
757 	} else {
758 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
759 	}
760 	mtx_unlock(&devsoftc.mtx);
761 	return (0);
762 }
763 
764 static int
765 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
766 {
767 	struct dev_event_info *n1;
768 	int q, error;
769 
770 	q = devctl_queue_length;
771 	error = sysctl_handle_int(oidp, &q, 0, req);
772 	if (error || !req->newptr)
773 		return (error);
774 	if (q < 0)
775 		return (EINVAL);
776 	mtx_lock(&devsoftc.mtx);
777 	devctl_queue_length = q;
778 	while (devsoftc.queued > devctl_queue_length) {
779 		n1 = TAILQ_FIRST(&devsoftc.devq);
780 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
781 		free(n1->dei_data, M_BUS);
782 		free(n1, M_BUS);
783 		devsoftc.queued--;
784 	}
785 	mtx_unlock(&devsoftc.mtx);
786 	return (0);
787 }
788 
789 /* End of /dev/devctl code */
790 
791 static TAILQ_HEAD(,device)	bus_data_devices;
792 static int bus_data_generation = 1;
793 
794 static kobj_method_t null_methods[] = {
795 	KOBJMETHOD_END
796 };
797 
798 DEFINE_CLASS(null, null_methods, 0);
799 
800 /*
801  * Bus pass implementation
802  */
803 
804 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
805 int bus_current_pass = BUS_PASS_ROOT;
806 
807 /**
808  * @internal
809  * @brief Register the pass level of a new driver attachment
810  *
811  * Register a new driver attachment's pass level.  If no driver
812  * attachment with the same pass level has been added, then @p new
813  * will be added to the global passes list.
814  *
815  * @param new		the new driver attachment
816  */
817 static void
818 driver_register_pass(struct driverlink *new)
819 {
820 	struct driverlink *dl;
821 
822 	/* We only consider pass numbers during boot. */
823 	if (bus_current_pass == BUS_PASS_DEFAULT)
824 		return;
825 
826 	/*
827 	 * Walk the passes list.  If we already know about this pass
828 	 * then there is nothing to do.  If we don't, then insert this
829 	 * driver link into the list.
830 	 */
831 	TAILQ_FOREACH(dl, &passes, passlink) {
832 		if (dl->pass < new->pass)
833 			continue;
834 		if (dl->pass == new->pass)
835 			return;
836 		TAILQ_INSERT_BEFORE(dl, new, passlink);
837 		return;
838 	}
839 	TAILQ_INSERT_TAIL(&passes, new, passlink);
840 }
841 
842 /**
843  * @brief Raise the current bus pass
844  *
845  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
846  * method on the root bus to kick off a new device tree scan for each
847  * new pass level that has at least one driver.
848  */
849 void
850 bus_set_pass(int pass)
851 {
852 	struct driverlink *dl;
853 
854 	if (bus_current_pass > pass)
855 		panic("Attempt to lower bus pass level");
856 
857 	TAILQ_FOREACH(dl, &passes, passlink) {
858 		/* Skip pass values below the current pass level. */
859 		if (dl->pass <= bus_current_pass)
860 			continue;
861 
862 		/*
863 		 * Bail once we hit a driver with a pass level that is
864 		 * too high.
865 		 */
866 		if (dl->pass > pass)
867 			break;
868 
869 		/*
870 		 * Raise the pass level to the next level and rescan
871 		 * the tree.
872 		 */
873 		bus_current_pass = dl->pass;
874 		BUS_NEW_PASS(root_bus);
875 	}
876 
877 	/*
878 	 * If there isn't a driver registered for the requested pass,
879 	 * then bus_current_pass might still be less than 'pass'.  Set
880 	 * it to 'pass' in that case.
881 	 */
882 	if (bus_current_pass < pass)
883 		bus_current_pass = pass;
884 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
885 }
886 
887 /*
888  * Devclass implementation
889  */
890 
891 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
892 
893 /**
894  * @internal
895  * @brief Find or create a device class
896  *
897  * If a device class with the name @p classname exists, return it,
898  * otherwise if @p create is non-zero create and return a new device
899  * class.
900  *
901  * If @p parentname is non-NULL, the parent of the devclass is set to
902  * the devclass of that name.
903  *
904  * @param classname	the devclass name to find or create
905  * @param parentname	the parent devclass name or @c NULL
906  * @param create	non-zero to create a devclass
907  */
908 static devclass_t
909 devclass_find_internal(const char *classname, const char *parentname,
910 		       int create)
911 {
912 	devclass_t dc;
913 
914 	PDEBUG(("looking for %s", classname));
915 	if (!classname)
916 		return (NULL);
917 
918 	TAILQ_FOREACH(dc, &devclasses, link) {
919 		if (!strcmp(dc->name, classname))
920 			break;
921 	}
922 
923 	if (create && !dc) {
924 		PDEBUG(("creating %s", classname));
925 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
926 		    M_BUS, M_NOWAIT | M_ZERO);
927 		if (!dc)
928 			return (NULL);
929 		dc->parent = NULL;
930 		dc->name = (char*) (dc + 1);
931 		strcpy(dc->name, classname);
932 		TAILQ_INIT(&dc->drivers);
933 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
934 
935 		bus_data_generation_update();
936 	}
937 
938 	/*
939 	 * If a parent class is specified, then set that as our parent so
940 	 * that this devclass will support drivers for the parent class as
941 	 * well.  If the parent class has the same name don't do this though
942 	 * as it creates a cycle that can trigger an infinite loop in
943 	 * device_probe_child() if a device exists for which there is no
944 	 * suitable driver.
945 	 */
946 	if (parentname && dc && !dc->parent &&
947 	    strcmp(classname, parentname) != 0) {
948 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
949 		dc->parent->flags |= DC_HAS_CHILDREN;
950 	}
951 
952 	return (dc);
953 }
954 
955 /**
956  * @brief Create a device class
957  *
958  * If a device class with the name @p classname exists, return it,
959  * otherwise create and return a new device class.
960  *
961  * @param classname	the devclass name to find or create
962  */
963 devclass_t
964 devclass_create(const char *classname)
965 {
966 	return (devclass_find_internal(classname, NULL, TRUE));
967 }
968 
969 /**
970  * @brief Find a device class
971  *
972  * If a device class with the name @p classname exists, return it,
973  * otherwise return @c NULL.
974  *
975  * @param classname	the devclass name to find
976  */
977 devclass_t
978 devclass_find(const char *classname)
979 {
980 	return (devclass_find_internal(classname, NULL, FALSE));
981 }
982 
983 /**
984  * @brief Register that a device driver has been added to a devclass
985  *
986  * Register that a device driver has been added to a devclass.  This
987  * is called by devclass_add_driver to accomplish the recursive
988  * notification of all the children classes of dc, as well as dc.
989  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
990  * the devclass.
991  *
992  * We do a full search here of the devclass list at each iteration
993  * level to save storing children-lists in the devclass structure.  If
994  * we ever move beyond a few dozen devices doing this, we may need to
995  * reevaluate...
996  *
997  * @param dc		the devclass to edit
998  * @param driver	the driver that was just added
999  */
1000 static void
1001 devclass_driver_added(devclass_t dc, driver_t *driver)
1002 {
1003 	devclass_t parent;
1004 	int i;
1005 
1006 	/*
1007 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1008 	 */
1009 	for (i = 0; i < dc->maxunit; i++)
1010 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1011 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1012 
1013 	/*
1014 	 * Walk through the children classes.  Since we only keep a
1015 	 * single parent pointer around, we walk the entire list of
1016 	 * devclasses looking for children.  We set the
1017 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1018 	 * the parent, so we only walk the list for those devclasses
1019 	 * that have children.
1020 	 */
1021 	if (!(dc->flags & DC_HAS_CHILDREN))
1022 		return;
1023 	parent = dc;
1024 	TAILQ_FOREACH(dc, &devclasses, link) {
1025 		if (dc->parent == parent)
1026 			devclass_driver_added(dc, driver);
1027 	}
1028 }
1029 
1030 /**
1031  * @brief Add a device driver to a device class
1032  *
1033  * Add a device driver to a devclass. This is normally called
1034  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1035  * all devices in the devclass will be called to allow them to attempt
1036  * to re-probe any unmatched children.
1037  *
1038  * @param dc		the devclass to edit
1039  * @param driver	the driver to register
1040  */
1041 int
1042 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1043 {
1044 	driverlink_t dl;
1045 	const char *parentname;
1046 
1047 	PDEBUG(("%s", DRIVERNAME(driver)));
1048 
1049 	/* Don't allow invalid pass values. */
1050 	if (pass <= BUS_PASS_ROOT)
1051 		return (EINVAL);
1052 
1053 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1054 	if (!dl)
1055 		return (ENOMEM);
1056 
1057 	/*
1058 	 * Compile the driver's methods. Also increase the reference count
1059 	 * so that the class doesn't get freed when the last instance
1060 	 * goes. This means we can safely use static methods and avoids a
1061 	 * double-free in devclass_delete_driver.
1062 	 */
1063 	kobj_class_compile((kobj_class_t) driver);
1064 
1065 	/*
1066 	 * If the driver has any base classes, make the
1067 	 * devclass inherit from the devclass of the driver's
1068 	 * first base class. This will allow the system to
1069 	 * search for drivers in both devclasses for children
1070 	 * of a device using this driver.
1071 	 */
1072 	if (driver->baseclasses)
1073 		parentname = driver->baseclasses[0]->name;
1074 	else
1075 		parentname = NULL;
1076 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1077 
1078 	dl->driver = driver;
1079 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1080 	driver->refs++;		/* XXX: kobj_mtx */
1081 	dl->pass = pass;
1082 	driver_register_pass(dl);
1083 
1084 	devclass_driver_added(dc, driver);
1085 	bus_data_generation_update();
1086 	return (0);
1087 }
1088 
1089 /**
1090  * @brief Register that a device driver has been deleted from a devclass
1091  *
1092  * Register that a device driver has been removed from a devclass.
1093  * This is called by devclass_delete_driver to accomplish the
1094  * recursive notification of all the children classes of busclass, as
1095  * well as busclass.  Each layer will attempt to detach the driver
1096  * from any devices that are children of the bus's devclass.  The function
1097  * will return an error if a device fails to detach.
1098  *
1099  * We do a full search here of the devclass list at each iteration
1100  * level to save storing children-lists in the devclass structure.  If
1101  * we ever move beyond a few dozen devices doing this, we may need to
1102  * reevaluate...
1103  *
1104  * @param busclass	the devclass of the parent bus
1105  * @param dc		the devclass of the driver being deleted
1106  * @param driver	the driver being deleted
1107  */
1108 static int
1109 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1110 {
1111 	devclass_t parent;
1112 	device_t dev;
1113 	int error, i;
1114 
1115 	/*
1116 	 * Disassociate from any devices.  We iterate through all the
1117 	 * devices in the devclass of the driver and detach any which are
1118 	 * using the driver and which have a parent in the devclass which
1119 	 * we are deleting from.
1120 	 *
1121 	 * Note that since a driver can be in multiple devclasses, we
1122 	 * should not detach devices which are not children of devices in
1123 	 * the affected devclass.
1124 	 */
1125 	for (i = 0; i < dc->maxunit; i++) {
1126 		if (dc->devices[i]) {
1127 			dev = dc->devices[i];
1128 			if (dev->driver == driver && dev->parent &&
1129 			    dev->parent->devclass == busclass) {
1130 				if ((error = device_detach(dev)) != 0)
1131 					return (error);
1132 				device_set_driver(dev, NULL);
1133 				BUS_PROBE_NOMATCH(dev->parent, dev);
1134 				devnomatch(dev);
1135 				dev->flags |= DF_DONENOMATCH;
1136 			}
1137 		}
1138 	}
1139 
1140 	/*
1141 	 * Walk through the children classes.  Since we only keep a
1142 	 * single parent pointer around, we walk the entire list of
1143 	 * devclasses looking for children.  We set the
1144 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1145 	 * the parent, so we only walk the list for those devclasses
1146 	 * that have children.
1147 	 */
1148 	if (!(busclass->flags & DC_HAS_CHILDREN))
1149 		return (0);
1150 	parent = busclass;
1151 	TAILQ_FOREACH(busclass, &devclasses, link) {
1152 		if (busclass->parent == parent) {
1153 			error = devclass_driver_deleted(busclass, dc, driver);
1154 			if (error)
1155 				return (error);
1156 		}
1157 	}
1158 	return (0);
1159 }
1160 
1161 /**
1162  * @brief Delete a device driver from a device class
1163  *
1164  * Delete a device driver from a devclass. This is normally called
1165  * automatically by DRIVER_MODULE().
1166  *
1167  * If the driver is currently attached to any devices,
1168  * devclass_delete_driver() will first attempt to detach from each
1169  * device. If one of the detach calls fails, the driver will not be
1170  * deleted.
1171  *
1172  * @param dc		the devclass to edit
1173  * @param driver	the driver to unregister
1174  */
1175 int
1176 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1177 {
1178 	devclass_t dc = devclass_find(driver->name);
1179 	driverlink_t dl;
1180 	int error;
1181 
1182 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1183 
1184 	if (!dc)
1185 		return (0);
1186 
1187 	/*
1188 	 * Find the link structure in the bus' list of drivers.
1189 	 */
1190 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1191 		if (dl->driver == driver)
1192 			break;
1193 	}
1194 
1195 	if (!dl) {
1196 		PDEBUG(("%s not found in %s list", driver->name,
1197 		    busclass->name));
1198 		return (ENOENT);
1199 	}
1200 
1201 	error = devclass_driver_deleted(busclass, dc, driver);
1202 	if (error != 0)
1203 		return (error);
1204 
1205 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1206 	free(dl, M_BUS);
1207 
1208 	/* XXX: kobj_mtx */
1209 	driver->refs--;
1210 	if (driver->refs == 0)
1211 		kobj_class_free((kobj_class_t) driver);
1212 
1213 	bus_data_generation_update();
1214 	return (0);
1215 }
1216 
1217 /**
1218  * @brief Quiesces a set of device drivers from a device class
1219  *
1220  * Quiesce a device driver from a devclass. This is normally called
1221  * automatically by DRIVER_MODULE().
1222  *
1223  * If the driver is currently attached to any devices,
1224  * devclass_quiesece_driver() will first attempt to quiesce each
1225  * device.
1226  *
1227  * @param dc		the devclass to edit
1228  * @param driver	the driver to unregister
1229  */
1230 static int
1231 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1232 {
1233 	devclass_t dc = devclass_find(driver->name);
1234 	driverlink_t dl;
1235 	device_t dev;
1236 	int i;
1237 	int error;
1238 
1239 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1240 
1241 	if (!dc)
1242 		return (0);
1243 
1244 	/*
1245 	 * Find the link structure in the bus' list of drivers.
1246 	 */
1247 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1248 		if (dl->driver == driver)
1249 			break;
1250 	}
1251 
1252 	if (!dl) {
1253 		PDEBUG(("%s not found in %s list", driver->name,
1254 		    busclass->name));
1255 		return (ENOENT);
1256 	}
1257 
1258 	/*
1259 	 * Quiesce all devices.  We iterate through all the devices in
1260 	 * the devclass of the driver and quiesce any which are using
1261 	 * the driver and which have a parent in the devclass which we
1262 	 * are quiescing.
1263 	 *
1264 	 * Note that since a driver can be in multiple devclasses, we
1265 	 * should not quiesce devices which are not children of
1266 	 * devices in the affected devclass.
1267 	 */
1268 	for (i = 0; i < dc->maxunit; i++) {
1269 		if (dc->devices[i]) {
1270 			dev = dc->devices[i];
1271 			if (dev->driver == driver && dev->parent &&
1272 			    dev->parent->devclass == busclass) {
1273 				if ((error = device_quiesce(dev)) != 0)
1274 					return (error);
1275 			}
1276 		}
1277 	}
1278 
1279 	return (0);
1280 }
1281 
1282 /**
1283  * @internal
1284  */
1285 static driverlink_t
1286 devclass_find_driver_internal(devclass_t dc, const char *classname)
1287 {
1288 	driverlink_t dl;
1289 
1290 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1291 
1292 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1293 		if (!strcmp(dl->driver->name, classname))
1294 			return (dl);
1295 	}
1296 
1297 	PDEBUG(("not found"));
1298 	return (NULL);
1299 }
1300 
1301 /**
1302  * @brief Return the name of the devclass
1303  */
1304 const char *
1305 devclass_get_name(devclass_t dc)
1306 {
1307 	return (dc->name);
1308 }
1309 
1310 /**
1311  * @brief Find a device given a unit number
1312  *
1313  * @param dc		the devclass to search
1314  * @param unit		the unit number to search for
1315  *
1316  * @returns		the device with the given unit number or @c
1317  *			NULL if there is no such device
1318  */
1319 device_t
1320 devclass_get_device(devclass_t dc, int unit)
1321 {
1322 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1323 		return (NULL);
1324 	return (dc->devices[unit]);
1325 }
1326 
1327 /**
1328  * @brief Find the softc field of a device given a unit number
1329  *
1330  * @param dc		the devclass to search
1331  * @param unit		the unit number to search for
1332  *
1333  * @returns		the softc field of the device with the given
1334  *			unit number or @c NULL if there is no such
1335  *			device
1336  */
1337 void *
1338 devclass_get_softc(devclass_t dc, int unit)
1339 {
1340 	device_t dev;
1341 
1342 	dev = devclass_get_device(dc, unit);
1343 	if (!dev)
1344 		return (NULL);
1345 
1346 	return (device_get_softc(dev));
1347 }
1348 
1349 /**
1350  * @brief Get a list of devices in the devclass
1351  *
1352  * An array containing a list of all the devices in the given devclass
1353  * is allocated and returned in @p *devlistp. The number of devices
1354  * in the array is returned in @p *devcountp. The caller should free
1355  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1356  *
1357  * @param dc		the devclass to examine
1358  * @param devlistp	points at location for array pointer return
1359  *			value
1360  * @param devcountp	points at location for array size return value
1361  *
1362  * @retval 0		success
1363  * @retval ENOMEM	the array allocation failed
1364  */
1365 int
1366 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1367 {
1368 	int count, i;
1369 	device_t *list;
1370 
1371 	count = devclass_get_count(dc);
1372 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1373 	if (!list)
1374 		return (ENOMEM);
1375 
1376 	count = 0;
1377 	for (i = 0; i < dc->maxunit; i++) {
1378 		if (dc->devices[i]) {
1379 			list[count] = dc->devices[i];
1380 			count++;
1381 		}
1382 	}
1383 
1384 	*devlistp = list;
1385 	*devcountp = count;
1386 
1387 	return (0);
1388 }
1389 
1390 /**
1391  * @brief Get a list of drivers in the devclass
1392  *
1393  * An array containing a list of pointers to all the drivers in the
1394  * given devclass is allocated and returned in @p *listp.  The number
1395  * of drivers in the array is returned in @p *countp. The caller should
1396  * free the array using @c free(p, M_TEMP).
1397  *
1398  * @param dc		the devclass to examine
1399  * @param listp		gives location for array pointer return value
1400  * @param countp	gives location for number of array elements
1401  *			return value
1402  *
1403  * @retval 0		success
1404  * @retval ENOMEM	the array allocation failed
1405  */
1406 int
1407 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1408 {
1409 	driverlink_t dl;
1410 	driver_t **list;
1411 	int count;
1412 
1413 	count = 0;
1414 	TAILQ_FOREACH(dl, &dc->drivers, link)
1415 		count++;
1416 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1417 	if (list == NULL)
1418 		return (ENOMEM);
1419 
1420 	count = 0;
1421 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1422 		list[count] = dl->driver;
1423 		count++;
1424 	}
1425 	*listp = list;
1426 	*countp = count;
1427 
1428 	return (0);
1429 }
1430 
1431 /**
1432  * @brief Get the number of devices in a devclass
1433  *
1434  * @param dc		the devclass to examine
1435  */
1436 int
1437 devclass_get_count(devclass_t dc)
1438 {
1439 	int count, i;
1440 
1441 	count = 0;
1442 	for (i = 0; i < dc->maxunit; i++)
1443 		if (dc->devices[i])
1444 			count++;
1445 	return (count);
1446 }
1447 
1448 /**
1449  * @brief Get the maximum unit number used in a devclass
1450  *
1451  * Note that this is one greater than the highest currently-allocated
1452  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1453  * that not even the devclass has been allocated yet.
1454  *
1455  * @param dc		the devclass to examine
1456  */
1457 int
1458 devclass_get_maxunit(devclass_t dc)
1459 {
1460 	if (dc == NULL)
1461 		return (-1);
1462 	return (dc->maxunit);
1463 }
1464 
1465 /**
1466  * @brief Find a free unit number in a devclass
1467  *
1468  * This function searches for the first unused unit number greater
1469  * that or equal to @p unit.
1470  *
1471  * @param dc		the devclass to examine
1472  * @param unit		the first unit number to check
1473  */
1474 int
1475 devclass_find_free_unit(devclass_t dc, int unit)
1476 {
1477 	if (dc == NULL)
1478 		return (unit);
1479 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1480 		unit++;
1481 	return (unit);
1482 }
1483 
1484 /**
1485  * @brief Set the parent of a devclass
1486  *
1487  * The parent class is normally initialised automatically by
1488  * DRIVER_MODULE().
1489  *
1490  * @param dc		the devclass to edit
1491  * @param pdc		the new parent devclass
1492  */
1493 void
1494 devclass_set_parent(devclass_t dc, devclass_t pdc)
1495 {
1496 	dc->parent = pdc;
1497 }
1498 
1499 /**
1500  * @brief Get the parent of a devclass
1501  *
1502  * @param dc		the devclass to examine
1503  */
1504 devclass_t
1505 devclass_get_parent(devclass_t dc)
1506 {
1507 	return (dc->parent);
1508 }
1509 
1510 struct sysctl_ctx_list *
1511 devclass_get_sysctl_ctx(devclass_t dc)
1512 {
1513 	return (&dc->sysctl_ctx);
1514 }
1515 
1516 struct sysctl_oid *
1517 devclass_get_sysctl_tree(devclass_t dc)
1518 {
1519 	return (dc->sysctl_tree);
1520 }
1521 
1522 /**
1523  * @internal
1524  * @brief Allocate a unit number
1525  *
1526  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1527  * will do). The allocated unit number is returned in @p *unitp.
1528 
1529  * @param dc		the devclass to allocate from
1530  * @param unitp		points at the location for the allocated unit
1531  *			number
1532  *
1533  * @retval 0		success
1534  * @retval EEXIST	the requested unit number is already allocated
1535  * @retval ENOMEM	memory allocation failure
1536  */
1537 static int
1538 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1539 {
1540 	const char *s;
1541 	int unit = *unitp;
1542 
1543 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1544 
1545 	/* Ask the parent bus if it wants to wire this device. */
1546 	if (unit == -1)
1547 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1548 		    &unit);
1549 
1550 	/* If we were given a wired unit number, check for existing device */
1551 	/* XXX imp XXX */
1552 	if (unit != -1) {
1553 		if (unit >= 0 && unit < dc->maxunit &&
1554 		    dc->devices[unit] != NULL) {
1555 			if (bootverbose)
1556 				printf("%s: %s%d already exists; skipping it\n",
1557 				    dc->name, dc->name, *unitp);
1558 			return (EEXIST);
1559 		}
1560 	} else {
1561 		/* Unwired device, find the next available slot for it */
1562 		unit = 0;
1563 		for (unit = 0;; unit++) {
1564 			/* If there is an "at" hint for a unit then skip it. */
1565 			if (resource_string_value(dc->name, unit, "at", &s) ==
1566 			    0)
1567 				continue;
1568 
1569 			/* If this device slot is already in use, skip it. */
1570 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1571 				continue;
1572 
1573 			break;
1574 		}
1575 	}
1576 
1577 	/*
1578 	 * We've selected a unit beyond the length of the table, so let's
1579 	 * extend the table to make room for all units up to and including
1580 	 * this one.
1581 	 */
1582 	if (unit >= dc->maxunit) {
1583 		device_t *newlist, *oldlist;
1584 		int newsize;
1585 
1586 		oldlist = dc->devices;
1587 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1588 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1589 		if (!newlist)
1590 			return (ENOMEM);
1591 		if (oldlist != NULL)
1592 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1593 		bzero(newlist + dc->maxunit,
1594 		    sizeof(device_t) * (newsize - dc->maxunit));
1595 		dc->devices = newlist;
1596 		dc->maxunit = newsize;
1597 		if (oldlist != NULL)
1598 			free(oldlist, M_BUS);
1599 	}
1600 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1601 
1602 	*unitp = unit;
1603 	return (0);
1604 }
1605 
1606 /**
1607  * @internal
1608  * @brief Add a device to a devclass
1609  *
1610  * A unit number is allocated for the device (using the device's
1611  * preferred unit number if any) and the device is registered in the
1612  * devclass. This allows the device to be looked up by its unit
1613  * number, e.g. by decoding a dev_t minor number.
1614  *
1615  * @param dc		the devclass to add to
1616  * @param dev		the device to add
1617  *
1618  * @retval 0		success
1619  * @retval EEXIST	the requested unit number is already allocated
1620  * @retval ENOMEM	memory allocation failure
1621  */
1622 static int
1623 devclass_add_device(devclass_t dc, device_t dev)
1624 {
1625 	int buflen, error;
1626 
1627 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1628 
1629 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1630 	if (buflen < 0)
1631 		return (ENOMEM);
1632 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1633 	if (!dev->nameunit)
1634 		return (ENOMEM);
1635 
1636 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1637 		free(dev->nameunit, M_BUS);
1638 		dev->nameunit = NULL;
1639 		return (error);
1640 	}
1641 	dc->devices[dev->unit] = dev;
1642 	dev->devclass = dc;
1643 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1644 
1645 	return (0);
1646 }
1647 
1648 /**
1649  * @internal
1650  * @brief Delete a device from a devclass
1651  *
1652  * The device is removed from the devclass's device list and its unit
1653  * number is freed.
1654 
1655  * @param dc		the devclass to delete from
1656  * @param dev		the device to delete
1657  *
1658  * @retval 0		success
1659  */
1660 static int
1661 devclass_delete_device(devclass_t dc, device_t dev)
1662 {
1663 	if (!dc || !dev)
1664 		return (0);
1665 
1666 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1667 
1668 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1669 		panic("devclass_delete_device: inconsistent device class");
1670 	dc->devices[dev->unit] = NULL;
1671 	if (dev->flags & DF_WILDCARD)
1672 		dev->unit = -1;
1673 	dev->devclass = NULL;
1674 	free(dev->nameunit, M_BUS);
1675 	dev->nameunit = NULL;
1676 
1677 	return (0);
1678 }
1679 
1680 /**
1681  * @internal
1682  * @brief Make a new device and add it as a child of @p parent
1683  *
1684  * @param parent	the parent of the new device
1685  * @param name		the devclass name of the new device or @c NULL
1686  *			to leave the devclass unspecified
1687  * @parem unit		the unit number of the new device of @c -1 to
1688  *			leave the unit number unspecified
1689  *
1690  * @returns the new device
1691  */
1692 static device_t
1693 make_device(device_t parent, const char *name, int unit)
1694 {
1695 	device_t dev;
1696 	devclass_t dc;
1697 
1698 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1699 
1700 	if (name) {
1701 		dc = devclass_find_internal(name, NULL, TRUE);
1702 		if (!dc) {
1703 			printf("make_device: can't find device class %s\n",
1704 			    name);
1705 			return (NULL);
1706 		}
1707 	} else {
1708 		dc = NULL;
1709 	}
1710 
1711 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1712 	if (!dev)
1713 		return (NULL);
1714 
1715 	dev->parent = parent;
1716 	TAILQ_INIT(&dev->children);
1717 	kobj_init((kobj_t) dev, &null_class);
1718 	dev->driver = NULL;
1719 	dev->devclass = NULL;
1720 	dev->unit = unit;
1721 	dev->nameunit = NULL;
1722 	dev->desc = NULL;
1723 	dev->busy = 0;
1724 	dev->devflags = 0;
1725 	dev->flags = DF_ENABLED;
1726 	dev->order = 0;
1727 	if (unit == -1)
1728 		dev->flags |= DF_WILDCARD;
1729 	if (name) {
1730 		dev->flags |= DF_FIXEDCLASS;
1731 		if (devclass_add_device(dc, dev)) {
1732 			kobj_delete((kobj_t) dev, M_BUS);
1733 			return (NULL);
1734 		}
1735 	}
1736 	dev->ivars = NULL;
1737 	dev->softc = NULL;
1738 
1739 	dev->state = DS_NOTPRESENT;
1740 
1741 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1742 	bus_data_generation_update();
1743 
1744 	return (dev);
1745 }
1746 
1747 /**
1748  * @internal
1749  * @brief Print a description of a device.
1750  */
1751 static int
1752 device_print_child(device_t dev, device_t child)
1753 {
1754 	int retval = 0;
1755 
1756 	if (device_is_alive(child))
1757 		retval += BUS_PRINT_CHILD(dev, child);
1758 	else
1759 		retval += device_printf(child, " not found\n");
1760 
1761 	return (retval);
1762 }
1763 
1764 /**
1765  * @brief Create a new device
1766  *
1767  * This creates a new device and adds it as a child of an existing
1768  * parent device. The new device will be added after the last existing
1769  * child with order zero.
1770  *
1771  * @param dev		the device which will be the parent of the
1772  *			new child device
1773  * @param name		devclass name for new device or @c NULL if not
1774  *			specified
1775  * @param unit		unit number for new device or @c -1 if not
1776  *			specified
1777  *
1778  * @returns		the new device
1779  */
1780 device_t
1781 device_add_child(device_t dev, const char *name, int unit)
1782 {
1783 	return (device_add_child_ordered(dev, 0, name, unit));
1784 }
1785 
1786 /**
1787  * @brief Create a new device
1788  *
1789  * This creates a new device and adds it as a child of an existing
1790  * parent device. The new device will be added after the last existing
1791  * child with the same order.
1792  *
1793  * @param dev		the device which will be the parent of the
1794  *			new child device
1795  * @param order		a value which is used to partially sort the
1796  *			children of @p dev - devices created using
1797  *			lower values of @p order appear first in @p
1798  *			dev's list of children
1799  * @param name		devclass name for new device or @c NULL if not
1800  *			specified
1801  * @param unit		unit number for new device or @c -1 if not
1802  *			specified
1803  *
1804  * @returns		the new device
1805  */
1806 device_t
1807 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1808 {
1809 	device_t child;
1810 	device_t place;
1811 
1812 	PDEBUG(("%s at %s with order %u as unit %d",
1813 	    name, DEVICENAME(dev), order, unit));
1814 
1815 	child = make_device(dev, name, unit);
1816 	if (child == NULL)
1817 		return (child);
1818 	child->order = order;
1819 
1820 	TAILQ_FOREACH(place, &dev->children, link) {
1821 		if (place->order > order)
1822 			break;
1823 	}
1824 
1825 	if (place) {
1826 		/*
1827 		 * The device 'place' is the first device whose order is
1828 		 * greater than the new child.
1829 		 */
1830 		TAILQ_INSERT_BEFORE(place, child, link);
1831 	} else {
1832 		/*
1833 		 * The new child's order is greater or equal to the order of
1834 		 * any existing device. Add the child to the tail of the list.
1835 		 */
1836 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1837 	}
1838 
1839 	bus_data_generation_update();
1840 	return (child);
1841 }
1842 
1843 /**
1844  * @brief Delete a device
1845  *
1846  * This function deletes a device along with all of its children. If
1847  * the device currently has a driver attached to it, the device is
1848  * detached first using device_detach().
1849  *
1850  * @param dev		the parent device
1851  * @param child		the device to delete
1852  *
1853  * @retval 0		success
1854  * @retval non-zero	a unit error code describing the error
1855  */
1856 int
1857 device_delete_child(device_t dev, device_t child)
1858 {
1859 	int error;
1860 	device_t grandchild;
1861 
1862 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1863 
1864 	/* remove children first */
1865 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1866 		error = device_delete_child(child, grandchild);
1867 		if (error)
1868 			return (error);
1869 	}
1870 
1871 	if ((error = device_detach(child)) != 0)
1872 		return (error);
1873 	if (child->devclass)
1874 		devclass_delete_device(child->devclass, child);
1875 	TAILQ_REMOVE(&dev->children, child, link);
1876 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1877 	kobj_delete((kobj_t) child, M_BUS);
1878 
1879 	bus_data_generation_update();
1880 	return (0);
1881 }
1882 
1883 /**
1884  * @brief Delete all children devices of the given device, if any.
1885  *
1886  * This function deletes all children devices of the given device, if
1887  * any, using the device_delete_child() function for each device it
1888  * finds. If a child device cannot be deleted, this function will
1889  * return an error code.
1890  *
1891  * @param dev		the parent device
1892  *
1893  * @retval 0		success
1894  * @retval non-zero	a device would not detach
1895  */
1896 int
1897 device_delete_all_children(device_t dev)
1898 {
1899 	device_t child;
1900 	int error;
1901 
1902 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1903 
1904 	error = 0;
1905 
1906 	while ( (child = TAILQ_FIRST(&dev->children)) ) {
1907 		error = device_delete_child(dev, child);
1908 		if (error) {
1909 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1910 			break;
1911 		}
1912 	}
1913 	return (error);
1914 }
1915 
1916 /**
1917  * @brief Find a device given a unit number
1918  *
1919  * This is similar to devclass_get_devices() but only searches for
1920  * devices which have @p dev as a parent.
1921  *
1922  * @param dev		the parent device to search
1923  * @param unit		the unit number to search for.  If the unit is -1,
1924  *			return the first child of @p dev which has name
1925  *			@p classname (that is, the one with the lowest unit.)
1926  *
1927  * @returns		the device with the given unit number or @c
1928  *			NULL if there is no such device
1929  */
1930 device_t
1931 device_find_child(device_t dev, const char *classname, int unit)
1932 {
1933 	devclass_t dc;
1934 	device_t child;
1935 
1936 	dc = devclass_find(classname);
1937 	if (!dc)
1938 		return (NULL);
1939 
1940 	if (unit != -1) {
1941 		child = devclass_get_device(dc, unit);
1942 		if (child && child->parent == dev)
1943 			return (child);
1944 	} else {
1945 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1946 			child = devclass_get_device(dc, unit);
1947 			if (child && child->parent == dev)
1948 				return (child);
1949 		}
1950 	}
1951 	return (NULL);
1952 }
1953 
1954 /**
1955  * @internal
1956  */
1957 static driverlink_t
1958 first_matching_driver(devclass_t dc, device_t dev)
1959 {
1960 	if (dev->devclass)
1961 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1962 	return (TAILQ_FIRST(&dc->drivers));
1963 }
1964 
1965 /**
1966  * @internal
1967  */
1968 static driverlink_t
1969 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1970 {
1971 	if (dev->devclass) {
1972 		driverlink_t dl;
1973 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1974 			if (!strcmp(dev->devclass->name, dl->driver->name))
1975 				return (dl);
1976 		return (NULL);
1977 	}
1978 	return (TAILQ_NEXT(last, link));
1979 }
1980 
1981 /**
1982  * @internal
1983  */
1984 int
1985 device_probe_child(device_t dev, device_t child)
1986 {
1987 	devclass_t dc;
1988 	driverlink_t best = NULL;
1989 	driverlink_t dl;
1990 	int result, pri = 0;
1991 	int hasclass = (child->devclass != NULL);
1992 
1993 	GIANT_REQUIRED;
1994 
1995 	dc = dev->devclass;
1996 	if (!dc)
1997 		panic("device_probe_child: parent device has no devclass");
1998 
1999 	/*
2000 	 * If the state is already probed, then return.  However, don't
2001 	 * return if we can rebid this object.
2002 	 */
2003 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2004 		return (0);
2005 
2006 	for (; dc; dc = dc->parent) {
2007 		for (dl = first_matching_driver(dc, child);
2008 		     dl;
2009 		     dl = next_matching_driver(dc, child, dl)) {
2010 
2011 			/* If this driver's pass is too high, then ignore it. */
2012 			if (dl->pass > bus_current_pass)
2013 				continue;
2014 
2015 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2016 			device_set_driver(child, dl->driver);
2017 			if (!hasclass) {
2018 				if (device_set_devclass(child, dl->driver->name)) {
2019 					printf("driver bug: Unable to set devclass (devname: %s)\n",
2020 					    (child ? device_get_name(child) :
2021 						"no device"));
2022 					device_set_driver(child, NULL);
2023 					continue;
2024 				}
2025 			}
2026 
2027 			/* Fetch any flags for the device before probing. */
2028 			resource_int_value(dl->driver->name, child->unit,
2029 			    "flags", &child->devflags);
2030 
2031 			result = DEVICE_PROBE(child);
2032 
2033 			/* Reset flags and devclass before the next probe. */
2034 			child->devflags = 0;
2035 			if (!hasclass)
2036 				device_set_devclass(child, NULL);
2037 
2038 			/*
2039 			 * If the driver returns SUCCESS, there can be
2040 			 * no higher match for this device.
2041 			 */
2042 			if (result == 0) {
2043 				best = dl;
2044 				pri = 0;
2045 				break;
2046 			}
2047 
2048 			/*
2049 			 * The driver returned an error so it
2050 			 * certainly doesn't match.
2051 			 */
2052 			if (result > 0) {
2053 				device_set_driver(child, NULL);
2054 				continue;
2055 			}
2056 
2057 			/*
2058 			 * A priority lower than SUCCESS, remember the
2059 			 * best matching driver. Initialise the value
2060 			 * of pri for the first match.
2061 			 */
2062 			if (best == NULL || result > pri) {
2063 				/*
2064 				 * Probes that return BUS_PROBE_NOWILDCARD
2065 				 * or lower only match when they are set
2066 				 * in stone by the parent bus.
2067 				 */
2068 				if (result <= BUS_PROBE_NOWILDCARD &&
2069 				    child->flags & DF_WILDCARD)
2070 					continue;
2071 				best = dl;
2072 				pri = result;
2073 				continue;
2074 			}
2075 		}
2076 		/*
2077 		 * If we have an unambiguous match in this devclass,
2078 		 * don't look in the parent.
2079 		 */
2080 		if (best && pri == 0)
2081 			break;
2082 	}
2083 
2084 	/*
2085 	 * If we found a driver, change state and initialise the devclass.
2086 	 */
2087 	/* XXX What happens if we rebid and got no best? */
2088 	if (best) {
2089 		/*
2090 		 * If this device was atached, and we were asked to
2091 		 * rescan, and it is a different driver, then we have
2092 		 * to detach the old driver and reattach this new one.
2093 		 * Note, we don't have to check for DF_REBID here
2094 		 * because if the state is > DS_ALIVE, we know it must
2095 		 * be.
2096 		 *
2097 		 * This assumes that all DF_REBID drivers can have
2098 		 * their probe routine called at any time and that
2099 		 * they are idempotent as well as completely benign in
2100 		 * normal operations.
2101 		 *
2102 		 * We also have to make sure that the detach
2103 		 * succeeded, otherwise we fail the operation (or
2104 		 * maybe it should just fail silently?  I'm torn).
2105 		 */
2106 		if (child->state > DS_ALIVE && best->driver != child->driver)
2107 			if ((result = device_detach(dev)) != 0)
2108 				return (result);
2109 
2110 		/* Set the winning driver, devclass, and flags. */
2111 		if (!child->devclass) {
2112 			result = device_set_devclass(child, best->driver->name);
2113 			if (result != 0)
2114 				return (result);
2115 		}
2116 		device_set_driver(child, best->driver);
2117 		resource_int_value(best->driver->name, child->unit,
2118 		    "flags", &child->devflags);
2119 
2120 		if (pri < 0) {
2121 			/*
2122 			 * A bit bogus. Call the probe method again to make
2123 			 * sure that we have the right description.
2124 			 */
2125 			DEVICE_PROBE(child);
2126 #if 0
2127 			child->flags |= DF_REBID;
2128 #endif
2129 		} else
2130 			child->flags &= ~DF_REBID;
2131 		child->state = DS_ALIVE;
2132 
2133 		bus_data_generation_update();
2134 		return (0);
2135 	}
2136 
2137 	return (ENXIO);
2138 }
2139 
2140 /**
2141  * @brief Return the parent of a device
2142  */
2143 device_t
2144 device_get_parent(device_t dev)
2145 {
2146 	return (dev->parent);
2147 }
2148 
2149 /**
2150  * @brief Get a list of children of a device
2151  *
2152  * An array containing a list of all the children of the given device
2153  * is allocated and returned in @p *devlistp. The number of devices
2154  * in the array is returned in @p *devcountp. The caller should free
2155  * the array using @c free(p, M_TEMP).
2156  *
2157  * @param dev		the device to examine
2158  * @param devlistp	points at location for array pointer return
2159  *			value
2160  * @param devcountp	points at location for array size return value
2161  *
2162  * @retval 0		success
2163  * @retval ENOMEM	the array allocation failed
2164  */
2165 int
2166 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2167 {
2168 	int count;
2169 	device_t child;
2170 	device_t *list;
2171 
2172 	count = 0;
2173 	TAILQ_FOREACH(child, &dev->children, link) {
2174 		count++;
2175 	}
2176 	if (count == 0) {
2177 		*devlistp = NULL;
2178 		*devcountp = 0;
2179 		return (0);
2180 	}
2181 
2182 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2183 	if (!list)
2184 		return (ENOMEM);
2185 
2186 	count = 0;
2187 	TAILQ_FOREACH(child, &dev->children, link) {
2188 		list[count] = child;
2189 		count++;
2190 	}
2191 
2192 	*devlistp = list;
2193 	*devcountp = count;
2194 
2195 	return (0);
2196 }
2197 
2198 /**
2199  * @brief Return the current driver for the device or @c NULL if there
2200  * is no driver currently attached
2201  */
2202 driver_t *
2203 device_get_driver(device_t dev)
2204 {
2205 	return (dev->driver);
2206 }
2207 
2208 /**
2209  * @brief Return the current devclass for the device or @c NULL if
2210  * there is none.
2211  */
2212 devclass_t
2213 device_get_devclass(device_t dev)
2214 {
2215 	return (dev->devclass);
2216 }
2217 
2218 /**
2219  * @brief Return the name of the device's devclass or @c NULL if there
2220  * is none.
2221  */
2222 const char *
2223 device_get_name(device_t dev)
2224 {
2225 	if (dev != NULL && dev->devclass)
2226 		return (devclass_get_name(dev->devclass));
2227 	return (NULL);
2228 }
2229 
2230 /**
2231  * @brief Return a string containing the device's devclass name
2232  * followed by an ascii representation of the device's unit number
2233  * (e.g. @c "foo2").
2234  */
2235 const char *
2236 device_get_nameunit(device_t dev)
2237 {
2238 	return (dev->nameunit);
2239 }
2240 
2241 /**
2242  * @brief Return the device's unit number.
2243  */
2244 int
2245 device_get_unit(device_t dev)
2246 {
2247 	return (dev->unit);
2248 }
2249 
2250 /**
2251  * @brief Return the device's description string
2252  */
2253 const char *
2254 device_get_desc(device_t dev)
2255 {
2256 	return (dev->desc);
2257 }
2258 
2259 /**
2260  * @brief Return the device's flags
2261  */
2262 uint32_t
2263 device_get_flags(device_t dev)
2264 {
2265 	return (dev->devflags);
2266 }
2267 
2268 struct sysctl_ctx_list *
2269 device_get_sysctl_ctx(device_t dev)
2270 {
2271 	return (&dev->sysctl_ctx);
2272 }
2273 
2274 struct sysctl_oid *
2275 device_get_sysctl_tree(device_t dev)
2276 {
2277 	return (dev->sysctl_tree);
2278 }
2279 
2280 /**
2281  * @brief Print the name of the device followed by a colon and a space
2282  *
2283  * @returns the number of characters printed
2284  */
2285 int
2286 device_print_prettyname(device_t dev)
2287 {
2288 	const char *name = device_get_name(dev);
2289 
2290 	if (name == NULL)
2291 		return (printf("unknown: "));
2292 	return (printf("%s%d: ", name, device_get_unit(dev)));
2293 }
2294 
2295 /**
2296  * @brief Print the name of the device followed by a colon, a space
2297  * and the result of calling vprintf() with the value of @p fmt and
2298  * the following arguments.
2299  *
2300  * @returns the number of characters printed
2301  */
2302 int
2303 device_printf(device_t dev, const char * fmt, ...)
2304 {
2305 	va_list ap;
2306 	int retval;
2307 
2308 	retval = device_print_prettyname(dev);
2309 	va_start(ap, fmt);
2310 	retval += vprintf(fmt, ap);
2311 	va_end(ap);
2312 	return (retval);
2313 }
2314 
2315 /**
2316  * @internal
2317  */
2318 static void
2319 device_set_desc_internal(device_t dev, const char* desc, int copy)
2320 {
2321 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2322 		free(dev->desc, M_BUS);
2323 		dev->flags &= ~DF_DESCMALLOCED;
2324 		dev->desc = NULL;
2325 	}
2326 
2327 	if (copy && desc) {
2328 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2329 		if (dev->desc) {
2330 			strcpy(dev->desc, desc);
2331 			dev->flags |= DF_DESCMALLOCED;
2332 		}
2333 	} else {
2334 		/* Avoid a -Wcast-qual warning */
2335 		dev->desc = (char *)(uintptr_t) desc;
2336 	}
2337 
2338 	bus_data_generation_update();
2339 }
2340 
2341 /**
2342  * @brief Set the device's description
2343  *
2344  * The value of @c desc should be a string constant that will not
2345  * change (at least until the description is changed in a subsequent
2346  * call to device_set_desc() or device_set_desc_copy()).
2347  */
2348 void
2349 device_set_desc(device_t dev, const char* desc)
2350 {
2351 	device_set_desc_internal(dev, desc, FALSE);
2352 }
2353 
2354 /**
2355  * @brief Set the device's description
2356  *
2357  * The string pointed to by @c desc is copied. Use this function if
2358  * the device description is generated, (e.g. with sprintf()).
2359  */
2360 void
2361 device_set_desc_copy(device_t dev, const char* desc)
2362 {
2363 	device_set_desc_internal(dev, desc, TRUE);
2364 }
2365 
2366 /**
2367  * @brief Set the device's flags
2368  */
2369 void
2370 device_set_flags(device_t dev, uint32_t flags)
2371 {
2372 	dev->devflags = flags;
2373 }
2374 
2375 /**
2376  * @brief Return the device's softc field
2377  *
2378  * The softc is allocated and zeroed when a driver is attached, based
2379  * on the size field of the driver.
2380  */
2381 void *
2382 device_get_softc(device_t dev)
2383 {
2384 	return (dev->softc);
2385 }
2386 
2387 /**
2388  * @brief Set the device's softc field
2389  *
2390  * Most drivers do not need to use this since the softc is allocated
2391  * automatically when the driver is attached.
2392  */
2393 void
2394 device_set_softc(device_t dev, void *softc)
2395 {
2396 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2397 		free(dev->softc, M_BUS_SC);
2398 	dev->softc = softc;
2399 	if (dev->softc)
2400 		dev->flags |= DF_EXTERNALSOFTC;
2401 	else
2402 		dev->flags &= ~DF_EXTERNALSOFTC;
2403 }
2404 
2405 /**
2406  * @brief Get the device's ivars field
2407  *
2408  * The ivars field is used by the parent device to store per-device
2409  * state (e.g. the physical location of the device or a list of
2410  * resources).
2411  */
2412 void *
2413 device_get_ivars(device_t dev)
2414 {
2415 
2416 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2417 	return (dev->ivars);
2418 }
2419 
2420 /**
2421  * @brief Set the device's ivars field
2422  */
2423 void
2424 device_set_ivars(device_t dev, void * ivars)
2425 {
2426 
2427 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2428 	dev->ivars = ivars;
2429 }
2430 
2431 /**
2432  * @brief Return the device's state
2433  */
2434 device_state_t
2435 device_get_state(device_t dev)
2436 {
2437 	return (dev->state);
2438 }
2439 
2440 /**
2441  * @brief Set the DF_ENABLED flag for the device
2442  */
2443 void
2444 device_enable(device_t dev)
2445 {
2446 	dev->flags |= DF_ENABLED;
2447 }
2448 
2449 /**
2450  * @brief Clear the DF_ENABLED flag for the device
2451  */
2452 void
2453 device_disable(device_t dev)
2454 {
2455 	dev->flags &= ~DF_ENABLED;
2456 }
2457 
2458 /**
2459  * @brief Increment the busy counter for the device
2460  */
2461 void
2462 device_busy(device_t dev)
2463 {
2464 	if (dev->state < DS_ATTACHED)
2465 		panic("device_busy: called for unattached device");
2466 	if (dev->busy == 0 && dev->parent)
2467 		device_busy(dev->parent);
2468 	dev->busy++;
2469 	dev->state = DS_BUSY;
2470 }
2471 
2472 /**
2473  * @brief Decrement the busy counter for the device
2474  */
2475 void
2476 device_unbusy(device_t dev)
2477 {
2478 	if (dev->state != DS_BUSY)
2479 		panic("device_unbusy: called for non-busy device %s",
2480 		    device_get_nameunit(dev));
2481 	dev->busy--;
2482 	if (dev->busy == 0) {
2483 		if (dev->parent)
2484 			device_unbusy(dev->parent);
2485 		dev->state = DS_ATTACHED;
2486 	}
2487 }
2488 
2489 /**
2490  * @brief Set the DF_QUIET flag for the device
2491  */
2492 void
2493 device_quiet(device_t dev)
2494 {
2495 	dev->flags |= DF_QUIET;
2496 }
2497 
2498 /**
2499  * @brief Clear the DF_QUIET flag for the device
2500  */
2501 void
2502 device_verbose(device_t dev)
2503 {
2504 	dev->flags &= ~DF_QUIET;
2505 }
2506 
2507 /**
2508  * @brief Return non-zero if the DF_QUIET flag is set on the device
2509  */
2510 int
2511 device_is_quiet(device_t dev)
2512 {
2513 	return ((dev->flags & DF_QUIET) != 0);
2514 }
2515 
2516 /**
2517  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2518  */
2519 int
2520 device_is_enabled(device_t dev)
2521 {
2522 	return ((dev->flags & DF_ENABLED) != 0);
2523 }
2524 
2525 /**
2526  * @brief Return non-zero if the device was successfully probed
2527  */
2528 int
2529 device_is_alive(device_t dev)
2530 {
2531 	return (dev->state >= DS_ALIVE);
2532 }
2533 
2534 /**
2535  * @brief Return non-zero if the device currently has a driver
2536  * attached to it
2537  */
2538 int
2539 device_is_attached(device_t dev)
2540 {
2541 	return (dev->state >= DS_ATTACHED);
2542 }
2543 
2544 /**
2545  * @brief Set the devclass of a device
2546  * @see devclass_add_device().
2547  */
2548 int
2549 device_set_devclass(device_t dev, const char *classname)
2550 {
2551 	devclass_t dc;
2552 	int error;
2553 
2554 	if (!classname) {
2555 		if (dev->devclass)
2556 			devclass_delete_device(dev->devclass, dev);
2557 		return (0);
2558 	}
2559 
2560 	if (dev->devclass) {
2561 		printf("device_set_devclass: device class already set\n");
2562 		return (EINVAL);
2563 	}
2564 
2565 	dc = devclass_find_internal(classname, NULL, TRUE);
2566 	if (!dc)
2567 		return (ENOMEM);
2568 
2569 	error = devclass_add_device(dc, dev);
2570 
2571 	bus_data_generation_update();
2572 	return (error);
2573 }
2574 
2575 /**
2576  * @brief Set the driver of a device
2577  *
2578  * @retval 0		success
2579  * @retval EBUSY	the device already has a driver attached
2580  * @retval ENOMEM	a memory allocation failure occurred
2581  */
2582 int
2583 device_set_driver(device_t dev, driver_t *driver)
2584 {
2585 	if (dev->state >= DS_ATTACHED)
2586 		return (EBUSY);
2587 
2588 	if (dev->driver == driver)
2589 		return (0);
2590 
2591 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2592 		free(dev->softc, M_BUS_SC);
2593 		dev->softc = NULL;
2594 	}
2595 	kobj_delete((kobj_t) dev, NULL);
2596 	dev->driver = driver;
2597 	if (driver) {
2598 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2599 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2600 			dev->softc = malloc(driver->size, M_BUS_SC,
2601 			    M_NOWAIT | M_ZERO);
2602 			if (!dev->softc) {
2603 				kobj_delete((kobj_t) dev, NULL);
2604 				kobj_init((kobj_t) dev, &null_class);
2605 				dev->driver = NULL;
2606 				return (ENOMEM);
2607 			}
2608 		}
2609 	} else {
2610 		kobj_init((kobj_t) dev, &null_class);
2611 	}
2612 
2613 	bus_data_generation_update();
2614 	return (0);
2615 }
2616 
2617 /**
2618  * @brief Probe a device, and return this status.
2619  *
2620  * This function is the core of the device autoconfiguration
2621  * system. Its purpose is to select a suitable driver for a device and
2622  * then call that driver to initialise the hardware appropriately. The
2623  * driver is selected by calling the DEVICE_PROBE() method of a set of
2624  * candidate drivers and then choosing the driver which returned the
2625  * best value. This driver is then attached to the device using
2626  * device_attach().
2627  *
2628  * The set of suitable drivers is taken from the list of drivers in
2629  * the parent device's devclass. If the device was originally created
2630  * with a specific class name (see device_add_child()), only drivers
2631  * with that name are probed, otherwise all drivers in the devclass
2632  * are probed. If no drivers return successful probe values in the
2633  * parent devclass, the search continues in the parent of that
2634  * devclass (see devclass_get_parent()) if any.
2635  *
2636  * @param dev		the device to initialise
2637  *
2638  * @retval 0		success
2639  * @retval ENXIO	no driver was found
2640  * @retval ENOMEM	memory allocation failure
2641  * @retval non-zero	some other unix error code
2642  * @retval -1		Device already attached
2643  */
2644 int
2645 device_probe(device_t dev)
2646 {
2647 	int error;
2648 
2649 	GIANT_REQUIRED;
2650 
2651 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2652 		return (-1);
2653 
2654 	if (!(dev->flags & DF_ENABLED)) {
2655 		if (bootverbose && device_get_name(dev) != NULL) {
2656 			device_print_prettyname(dev);
2657 			printf("not probed (disabled)\n");
2658 		}
2659 		return (-1);
2660 	}
2661 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2662 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2663 		    !(dev->flags & DF_DONENOMATCH)) {
2664 			BUS_PROBE_NOMATCH(dev->parent, dev);
2665 			devnomatch(dev);
2666 			dev->flags |= DF_DONENOMATCH;
2667 		}
2668 		return (error);
2669 	}
2670 	return (0);
2671 }
2672 
2673 /**
2674  * @brief Probe a device and attach a driver if possible
2675  *
2676  * calls device_probe() and attaches if that was successful.
2677  */
2678 int
2679 device_probe_and_attach(device_t dev)
2680 {
2681 	int error;
2682 
2683 	GIANT_REQUIRED;
2684 
2685 	error = device_probe(dev);
2686 	if (error == -1)
2687 		return (0);
2688 	else if (error != 0)
2689 		return (error);
2690 	return (device_attach(dev));
2691 }
2692 
2693 /**
2694  * @brief Attach a device driver to a device
2695  *
2696  * This function is a wrapper around the DEVICE_ATTACH() driver
2697  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2698  * device's sysctl tree, optionally prints a description of the device
2699  * and queues a notification event for user-based device management
2700  * services.
2701  *
2702  * Normally this function is only called internally from
2703  * device_probe_and_attach().
2704  *
2705  * @param dev		the device to initialise
2706  *
2707  * @retval 0		success
2708  * @retval ENXIO	no driver was found
2709  * @retval ENOMEM	memory allocation failure
2710  * @retval non-zero	some other unix error code
2711  */
2712 int
2713 device_attach(device_t dev)
2714 {
2715 	int error;
2716 
2717 	device_sysctl_init(dev);
2718 	if (!device_is_quiet(dev))
2719 		device_print_child(dev->parent, dev);
2720 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2721 		printf("device_attach: %s%d attach returned %d\n",
2722 		    dev->driver->name, dev->unit, error);
2723 		/* Unset the class; set in device_probe_child */
2724 		if (dev->devclass == NULL)
2725 			device_set_devclass(dev, NULL);
2726 		device_set_driver(dev, NULL);
2727 		device_sysctl_fini(dev);
2728 		dev->state = DS_NOTPRESENT;
2729 		return (error);
2730 	}
2731 	device_sysctl_update(dev);
2732 	dev->state = DS_ATTACHED;
2733 	dev->flags &= ~DF_DONENOMATCH;
2734 	devadded(dev);
2735 	return (0);
2736 }
2737 
2738 /**
2739  * @brief Detach a driver from a device
2740  *
2741  * This function is a wrapper around the DEVICE_DETACH() driver
2742  * method. If the call to DEVICE_DETACH() succeeds, it calls
2743  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2744  * notification event for user-based device management services and
2745  * cleans up the device's sysctl tree.
2746  *
2747  * @param dev		the device to un-initialise
2748  *
2749  * @retval 0		success
2750  * @retval ENXIO	no driver was found
2751  * @retval ENOMEM	memory allocation failure
2752  * @retval non-zero	some other unix error code
2753  */
2754 int
2755 device_detach(device_t dev)
2756 {
2757 	int error;
2758 
2759 	GIANT_REQUIRED;
2760 
2761 	PDEBUG(("%s", DEVICENAME(dev)));
2762 	if (dev->state == DS_BUSY)
2763 		return (EBUSY);
2764 	if (dev->state != DS_ATTACHED)
2765 		return (0);
2766 
2767 	if ((error = DEVICE_DETACH(dev)) != 0)
2768 		return (error);
2769 	devremoved(dev);
2770 	if (!device_is_quiet(dev))
2771 		device_printf(dev, "detached\n");
2772 	if (dev->parent)
2773 		BUS_CHILD_DETACHED(dev->parent, dev);
2774 
2775 	if (!(dev->flags & DF_FIXEDCLASS))
2776 		devclass_delete_device(dev->devclass, dev);
2777 
2778 	dev->state = DS_NOTPRESENT;
2779 	device_set_driver(dev, NULL);
2780 	device_set_desc(dev, NULL);
2781 	device_sysctl_fini(dev);
2782 
2783 	return (0);
2784 }
2785 
2786 /**
2787  * @brief Tells a driver to quiesce itself.
2788  *
2789  * This function is a wrapper around the DEVICE_QUIESCE() driver
2790  * method. If the call to DEVICE_QUIESCE() succeeds.
2791  *
2792  * @param dev		the device to quiesce
2793  *
2794  * @retval 0		success
2795  * @retval ENXIO	no driver was found
2796  * @retval ENOMEM	memory allocation failure
2797  * @retval non-zero	some other unix error code
2798  */
2799 int
2800 device_quiesce(device_t dev)
2801 {
2802 
2803 	PDEBUG(("%s", DEVICENAME(dev)));
2804 	if (dev->state == DS_BUSY)
2805 		return (EBUSY);
2806 	if (dev->state != DS_ATTACHED)
2807 		return (0);
2808 
2809 	return (DEVICE_QUIESCE(dev));
2810 }
2811 
2812 /**
2813  * @brief Notify a device of system shutdown
2814  *
2815  * This function calls the DEVICE_SHUTDOWN() driver method if the
2816  * device currently has an attached driver.
2817  *
2818  * @returns the value returned by DEVICE_SHUTDOWN()
2819  */
2820 int
2821 device_shutdown(device_t dev)
2822 {
2823 	if (dev->state < DS_ATTACHED)
2824 		return (0);
2825 	return (DEVICE_SHUTDOWN(dev));
2826 }
2827 
2828 /**
2829  * @brief Set the unit number of a device
2830  *
2831  * This function can be used to override the unit number used for a
2832  * device (e.g. to wire a device to a pre-configured unit number).
2833  */
2834 int
2835 device_set_unit(device_t dev, int unit)
2836 {
2837 	devclass_t dc;
2838 	int err;
2839 
2840 	dc = device_get_devclass(dev);
2841 	if (unit < dc->maxunit && dc->devices[unit])
2842 		return (EBUSY);
2843 	err = devclass_delete_device(dc, dev);
2844 	if (err)
2845 		return (err);
2846 	dev->unit = unit;
2847 	err = devclass_add_device(dc, dev);
2848 	if (err)
2849 		return (err);
2850 
2851 	bus_data_generation_update();
2852 	return (0);
2853 }
2854 
2855 /*======================================*/
2856 /*
2857  * Some useful method implementations to make life easier for bus drivers.
2858  */
2859 
2860 /**
2861  * @brief Initialise a resource list.
2862  *
2863  * @param rl		the resource list to initialise
2864  */
2865 void
2866 resource_list_init(struct resource_list *rl)
2867 {
2868 	STAILQ_INIT(rl);
2869 }
2870 
2871 /**
2872  * @brief Reclaim memory used by a resource list.
2873  *
2874  * This function frees the memory for all resource entries on the list
2875  * (if any).
2876  *
2877  * @param rl		the resource list to free
2878  */
2879 void
2880 resource_list_free(struct resource_list *rl)
2881 {
2882 	struct resource_list_entry *rle;
2883 
2884 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2885 		if (rle->res)
2886 			panic("resource_list_free: resource entry is busy");
2887 		STAILQ_REMOVE_HEAD(rl, link);
2888 		free(rle, M_BUS);
2889 	}
2890 }
2891 
2892 /**
2893  * @brief Add a resource entry.
2894  *
2895  * This function adds a resource entry using the given @p type, @p
2896  * start, @p end and @p count values. A rid value is chosen by
2897  * searching sequentially for the first unused rid starting at zero.
2898  *
2899  * @param rl		the resource list to edit
2900  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2901  * @param start		the start address of the resource
2902  * @param end		the end address of the resource
2903  * @param count		XXX end-start+1
2904  */
2905 int
2906 resource_list_add_next(struct resource_list *rl, int type, u_long start,
2907     u_long end, u_long count)
2908 {
2909 	int rid;
2910 
2911 	rid = 0;
2912 	while (resource_list_find(rl, type, rid) != NULL)
2913 		rid++;
2914 	resource_list_add(rl, type, rid, start, end, count);
2915 	return (rid);
2916 }
2917 
2918 /**
2919  * @brief Add or modify a resource entry.
2920  *
2921  * If an existing entry exists with the same type and rid, it will be
2922  * modified using the given values of @p start, @p end and @p
2923  * count. If no entry exists, a new one will be created using the
2924  * given values.  The resource list entry that matches is then returned.
2925  *
2926  * @param rl		the resource list to edit
2927  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2928  * @param rid		the resource identifier
2929  * @param start		the start address of the resource
2930  * @param end		the end address of the resource
2931  * @param count		XXX end-start+1
2932  */
2933 struct resource_list_entry *
2934 resource_list_add(struct resource_list *rl, int type, int rid,
2935     u_long start, u_long end, u_long count)
2936 {
2937 	struct resource_list_entry *rle;
2938 
2939 	rle = resource_list_find(rl, type, rid);
2940 	if (!rle) {
2941 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2942 		    M_NOWAIT);
2943 		if (!rle)
2944 			panic("resource_list_add: can't record entry");
2945 		STAILQ_INSERT_TAIL(rl, rle, link);
2946 		rle->type = type;
2947 		rle->rid = rid;
2948 		rle->res = NULL;
2949 		rle->flags = 0;
2950 	}
2951 
2952 	if (rle->res)
2953 		panic("resource_list_add: resource entry is busy");
2954 
2955 	rle->start = start;
2956 	rle->end = end;
2957 	rle->count = count;
2958 	return (rle);
2959 }
2960 
2961 /**
2962  * @brief Determine if a resource entry is busy.
2963  *
2964  * Returns true if a resource entry is busy meaning that it has an
2965  * associated resource that is not an unallocated "reserved" resource.
2966  *
2967  * @param rl		the resource list to search
2968  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2969  * @param rid		the resource identifier
2970  *
2971  * @returns Non-zero if the entry is busy, zero otherwise.
2972  */
2973 int
2974 resource_list_busy(struct resource_list *rl, int type, int rid)
2975 {
2976 	struct resource_list_entry *rle;
2977 
2978 	rle = resource_list_find(rl, type, rid);
2979 	if (rle == NULL || rle->res == NULL)
2980 		return (0);
2981 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2982 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2983 		    ("reserved resource is active"));
2984 		return (0);
2985 	}
2986 	return (1);
2987 }
2988 
2989 /**
2990  * @brief Determine if a resource entry is reserved.
2991  *
2992  * Returns true if a resource entry is reserved meaning that it has an
2993  * associated "reserved" resource.  The resource can either be
2994  * allocated or unallocated.
2995  *
2996  * @param rl		the resource list to search
2997  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2998  * @param rid		the resource identifier
2999  *
3000  * @returns Non-zero if the entry is reserved, zero otherwise.
3001  */
3002 int
3003 resource_list_reserved(struct resource_list *rl, int type, int rid)
3004 {
3005 	struct resource_list_entry *rle;
3006 
3007 	rle = resource_list_find(rl, type, rid);
3008 	if (rle != NULL && rle->flags & RLE_RESERVED)
3009 		return (1);
3010 	return (0);
3011 }
3012 
3013 /**
3014  * @brief Find a resource entry by type and rid.
3015  *
3016  * @param rl		the resource list to search
3017  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3018  * @param rid		the resource identifier
3019  *
3020  * @returns the resource entry pointer or NULL if there is no such
3021  * entry.
3022  */
3023 struct resource_list_entry *
3024 resource_list_find(struct resource_list *rl, int type, int rid)
3025 {
3026 	struct resource_list_entry *rle;
3027 
3028 	STAILQ_FOREACH(rle, rl, link) {
3029 		if (rle->type == type && rle->rid == rid)
3030 			return (rle);
3031 	}
3032 	return (NULL);
3033 }
3034 
3035 /**
3036  * @brief Delete a resource entry.
3037  *
3038  * @param rl		the resource list to edit
3039  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3040  * @param rid		the resource identifier
3041  */
3042 void
3043 resource_list_delete(struct resource_list *rl, int type, int rid)
3044 {
3045 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3046 
3047 	if (rle) {
3048 		if (rle->res != NULL)
3049 			panic("resource_list_delete: resource has not been released");
3050 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3051 		free(rle, M_BUS);
3052 	}
3053 }
3054 
3055 /**
3056  * @brief Allocate a reserved resource
3057  *
3058  * This can be used by busses to force the allocation of resources
3059  * that are always active in the system even if they are not allocated
3060  * by a driver (e.g. PCI BARs).  This function is usually called when
3061  * adding a new child to the bus.  The resource is allocated from the
3062  * parent bus when it is reserved.  The resource list entry is marked
3063  * with RLE_RESERVED to note that it is a reserved resource.
3064  *
3065  * Subsequent attempts to allocate the resource with
3066  * resource_list_alloc() will succeed the first time and will set
3067  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3068  * resource that has been allocated is released with
3069  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3070  * the actual resource remains allocated.  The resource can be released to
3071  * the parent bus by calling resource_list_unreserve().
3072  *
3073  * @param rl		the resource list to allocate from
3074  * @param bus		the parent device of @p child
3075  * @param child		the device for which the resource is being reserved
3076  * @param type		the type of resource to allocate
3077  * @param rid		a pointer to the resource identifier
3078  * @param start		hint at the start of the resource range - pass
3079  *			@c 0UL for any start address
3080  * @param end		hint at the end of the resource range - pass
3081  *			@c ~0UL for any end address
3082  * @param count		hint at the size of range required - pass @c 1
3083  *			for any size
3084  * @param flags		any extra flags to control the resource
3085  *			allocation - see @c RF_XXX flags in
3086  *			<sys/rman.h> for details
3087  *
3088  * @returns		the resource which was allocated or @c NULL if no
3089  *			resource could be allocated
3090  */
3091 struct resource *
3092 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3093     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3094 {
3095 	struct resource_list_entry *rle = NULL;
3096 	int passthrough = (device_get_parent(child) != bus);
3097 	struct resource *r;
3098 
3099 	if (passthrough)
3100 		panic(
3101     "resource_list_reserve() should only be called for direct children");
3102 	if (flags & RF_ACTIVE)
3103 		panic(
3104     "resource_list_reserve() should only reserve inactive resources");
3105 
3106 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3107 	    flags);
3108 	if (r != NULL) {
3109 		rle = resource_list_find(rl, type, *rid);
3110 		rle->flags |= RLE_RESERVED;
3111 	}
3112 	return (r);
3113 }
3114 
3115 /**
3116  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3117  *
3118  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3119  * and passing the allocation up to the parent of @p bus. This assumes
3120  * that the first entry of @c device_get_ivars(child) is a struct
3121  * resource_list. This also handles 'passthrough' allocations where a
3122  * child is a remote descendant of bus by passing the allocation up to
3123  * the parent of bus.
3124  *
3125  * Typically, a bus driver would store a list of child resources
3126  * somewhere in the child device's ivars (see device_get_ivars()) and
3127  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3128  * then call resource_list_alloc() to perform the allocation.
3129  *
3130  * @param rl		the resource list to allocate from
3131  * @param bus		the parent device of @p child
3132  * @param child		the device which is requesting an allocation
3133  * @param type		the type of resource to allocate
3134  * @param rid		a pointer to the resource identifier
3135  * @param start		hint at the start of the resource range - pass
3136  *			@c 0UL for any start address
3137  * @param end		hint at the end of the resource range - pass
3138  *			@c ~0UL for any end address
3139  * @param count		hint at the size of range required - pass @c 1
3140  *			for any size
3141  * @param flags		any extra flags to control the resource
3142  *			allocation - see @c RF_XXX flags in
3143  *			<sys/rman.h> for details
3144  *
3145  * @returns		the resource which was allocated or @c NULL if no
3146  *			resource could be allocated
3147  */
3148 struct resource *
3149 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3150     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3151 {
3152 	struct resource_list_entry *rle = NULL;
3153 	int passthrough = (device_get_parent(child) != bus);
3154 	int isdefault = (start == 0UL && end == ~0UL);
3155 
3156 	if (passthrough) {
3157 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3158 		    type, rid, start, end, count, flags));
3159 	}
3160 
3161 	rle = resource_list_find(rl, type, *rid);
3162 
3163 	if (!rle)
3164 		return (NULL);		/* no resource of that type/rid */
3165 
3166 	if (rle->res) {
3167 		if (rle->flags & RLE_RESERVED) {
3168 			if (rle->flags & RLE_ALLOCATED)
3169 				return (NULL);
3170 			if ((flags & RF_ACTIVE) &&
3171 			    bus_activate_resource(child, type, *rid,
3172 			    rle->res) != 0)
3173 				return (NULL);
3174 			rle->flags |= RLE_ALLOCATED;
3175 			return (rle->res);
3176 		}
3177 		panic("resource_list_alloc: resource entry is busy");
3178 	}
3179 
3180 	if (isdefault) {
3181 		start = rle->start;
3182 		count = ulmax(count, rle->count);
3183 		end = ulmax(rle->end, start + count - 1);
3184 	}
3185 
3186 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3187 	    type, rid, start, end, count, flags);
3188 
3189 	/*
3190 	 * Record the new range.
3191 	 */
3192 	if (rle->res) {
3193 		rle->start = rman_get_start(rle->res);
3194 		rle->end = rman_get_end(rle->res);
3195 		rle->count = count;
3196 	}
3197 
3198 	return (rle->res);
3199 }
3200 
3201 /**
3202  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3203  *
3204  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3205  * used with resource_list_alloc().
3206  *
3207  * @param rl		the resource list which was allocated from
3208  * @param bus		the parent device of @p child
3209  * @param child		the device which is requesting a release
3210  * @param type		the type of resource to release
3211  * @param rid		the resource identifier
3212  * @param res		the resource to release
3213  *
3214  * @retval 0		success
3215  * @retval non-zero	a standard unix error code indicating what
3216  *			error condition prevented the operation
3217  */
3218 int
3219 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3220     int type, int rid, struct resource *res)
3221 {
3222 	struct resource_list_entry *rle = NULL;
3223 	int passthrough = (device_get_parent(child) != bus);
3224 	int error;
3225 
3226 	if (passthrough) {
3227 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3228 		    type, rid, res));
3229 	}
3230 
3231 	rle = resource_list_find(rl, type, rid);
3232 
3233 	if (!rle)
3234 		panic("resource_list_release: can't find resource");
3235 	if (!rle->res)
3236 		panic("resource_list_release: resource entry is not busy");
3237 	if (rle->flags & RLE_RESERVED) {
3238 		if (rle->flags & RLE_ALLOCATED) {
3239 			if (rman_get_flags(res) & RF_ACTIVE) {
3240 				error = bus_deactivate_resource(child, type,
3241 				    rid, res);
3242 				if (error)
3243 					return (error);
3244 			}
3245 			rle->flags &= ~RLE_ALLOCATED;
3246 			return (0);
3247 		}
3248 		return (EINVAL);
3249 	}
3250 
3251 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3252 	    type, rid, res);
3253 	if (error)
3254 		return (error);
3255 
3256 	rle->res = NULL;
3257 	return (0);
3258 }
3259 
3260 /**
3261  * @brief Fully release a reserved resource
3262  *
3263  * Fully releases a resouce reserved via resource_list_reserve().
3264  *
3265  * @param rl		the resource list which was allocated from
3266  * @param bus		the parent device of @p child
3267  * @param child		the device whose reserved resource is being released
3268  * @param type		the type of resource to release
3269  * @param rid		the resource identifier
3270  * @param res		the resource to release
3271  *
3272  * @retval 0		success
3273  * @retval non-zero	a standard unix error code indicating what
3274  *			error condition prevented the operation
3275  */
3276 int
3277 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3278     int type, int rid)
3279 {
3280 	struct resource_list_entry *rle = NULL;
3281 	int passthrough = (device_get_parent(child) != bus);
3282 
3283 	if (passthrough)
3284 		panic(
3285     "resource_list_unreserve() should only be called for direct children");
3286 
3287 	rle = resource_list_find(rl, type, rid);
3288 
3289 	if (!rle)
3290 		panic("resource_list_unreserve: can't find resource");
3291 	if (!(rle->flags & RLE_RESERVED))
3292 		return (EINVAL);
3293 	if (rle->flags & RLE_ALLOCATED)
3294 		return (EBUSY);
3295 	rle->flags &= ~RLE_RESERVED;
3296 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3297 }
3298 
3299 /**
3300  * @brief Print a description of resources in a resource list
3301  *
3302  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3303  * The name is printed if at least one resource of the given type is available.
3304  * The format is used to print resource start and end.
3305  *
3306  * @param rl		the resource list to print
3307  * @param name		the name of @p type, e.g. @c "memory"
3308  * @param type		type type of resource entry to print
3309  * @param format	printf(9) format string to print resource
3310  *			start and end values
3311  *
3312  * @returns		the number of characters printed
3313  */
3314 int
3315 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3316     const char *format)
3317 {
3318 	struct resource_list_entry *rle;
3319 	int printed, retval;
3320 
3321 	printed = 0;
3322 	retval = 0;
3323 	/* Yes, this is kinda cheating */
3324 	STAILQ_FOREACH(rle, rl, link) {
3325 		if (rle->type == type) {
3326 			if (printed == 0)
3327 				retval += printf(" %s ", name);
3328 			else
3329 				retval += printf(",");
3330 			printed++;
3331 			retval += printf(format, rle->start);
3332 			if (rle->count > 1) {
3333 				retval += printf("-");
3334 				retval += printf(format, rle->start +
3335 						 rle->count - 1);
3336 			}
3337 		}
3338 	}
3339 	return (retval);
3340 }
3341 
3342 /**
3343  * @brief Releases all the resources in a list.
3344  *
3345  * @param rl		The resource list to purge.
3346  *
3347  * @returns		nothing
3348  */
3349 void
3350 resource_list_purge(struct resource_list *rl)
3351 {
3352 	struct resource_list_entry *rle;
3353 
3354 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3355 		if (rle->res)
3356 			bus_release_resource(rman_get_device(rle->res),
3357 			    rle->type, rle->rid, rle->res);
3358 		STAILQ_REMOVE_HEAD(rl, link);
3359 		free(rle, M_BUS);
3360 	}
3361 }
3362 
3363 device_t
3364 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3365 {
3366 
3367 	return (device_add_child_ordered(dev, order, name, unit));
3368 }
3369 
3370 /**
3371  * @brief Helper function for implementing DEVICE_PROBE()
3372  *
3373  * This function can be used to help implement the DEVICE_PROBE() for
3374  * a bus (i.e. a device which has other devices attached to it). It
3375  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3376  * devclass.
3377  */
3378 int
3379 bus_generic_probe(device_t dev)
3380 {
3381 	devclass_t dc = dev->devclass;
3382 	driverlink_t dl;
3383 
3384 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3385 		/*
3386 		 * If this driver's pass is too high, then ignore it.
3387 		 * For most drivers in the default pass, this will
3388 		 * never be true.  For early-pass drivers they will
3389 		 * only call the identify routines of eligible drivers
3390 		 * when this routine is called.  Drivers for later
3391 		 * passes should have their identify routines called
3392 		 * on early-pass busses during BUS_NEW_PASS().
3393 		 */
3394 		if (dl->pass > bus_current_pass)
3395 			continue;
3396 		DEVICE_IDENTIFY(dl->driver, dev);
3397 	}
3398 
3399 	return (0);
3400 }
3401 
3402 /**
3403  * @brief Helper function for implementing DEVICE_ATTACH()
3404  *
3405  * This function can be used to help implement the DEVICE_ATTACH() for
3406  * a bus. It calls device_probe_and_attach() for each of the device's
3407  * children.
3408  */
3409 int
3410 bus_generic_attach(device_t dev)
3411 {
3412 	device_t child;
3413 
3414 	TAILQ_FOREACH(child, &dev->children, link) {
3415 		device_probe_and_attach(child);
3416 	}
3417 
3418 	return (0);
3419 }
3420 
3421 /**
3422  * @brief Helper function for implementing DEVICE_DETACH()
3423  *
3424  * This function can be used to help implement the DEVICE_DETACH() for
3425  * a bus. It calls device_detach() for each of the device's
3426  * children.
3427  */
3428 int
3429 bus_generic_detach(device_t dev)
3430 {
3431 	device_t child;
3432 	int error;
3433 
3434 	if (dev->state != DS_ATTACHED)
3435 		return (EBUSY);
3436 
3437 	TAILQ_FOREACH(child, &dev->children, link) {
3438 		if ((error = device_detach(child)) != 0)
3439 			return (error);
3440 	}
3441 
3442 	return (0);
3443 }
3444 
3445 /**
3446  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3447  *
3448  * This function can be used to help implement the DEVICE_SHUTDOWN()
3449  * for a bus. It calls device_shutdown() for each of the device's
3450  * children.
3451  */
3452 int
3453 bus_generic_shutdown(device_t dev)
3454 {
3455 	device_t child;
3456 
3457 	TAILQ_FOREACH(child, &dev->children, link) {
3458 		device_shutdown(child);
3459 	}
3460 
3461 	return (0);
3462 }
3463 
3464 /**
3465  * @brief Helper function for implementing DEVICE_SUSPEND()
3466  *
3467  * This function can be used to help implement the DEVICE_SUSPEND()
3468  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3469  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3470  * operation is aborted and any devices which were suspended are
3471  * resumed immediately by calling their DEVICE_RESUME() methods.
3472  */
3473 int
3474 bus_generic_suspend(device_t dev)
3475 {
3476 	int		error;
3477 	device_t	child, child2;
3478 
3479 	TAILQ_FOREACH(child, &dev->children, link) {
3480 		error = DEVICE_SUSPEND(child);
3481 		if (error) {
3482 			for (child2 = TAILQ_FIRST(&dev->children);
3483 			     child2 && child2 != child;
3484 			     child2 = TAILQ_NEXT(child2, link))
3485 				DEVICE_RESUME(child2);
3486 			return (error);
3487 		}
3488 	}
3489 	return (0);
3490 }
3491 
3492 /**
3493  * @brief Helper function for implementing DEVICE_RESUME()
3494  *
3495  * This function can be used to help implement the DEVICE_RESUME() for
3496  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3497  */
3498 int
3499 bus_generic_resume(device_t dev)
3500 {
3501 	device_t	child;
3502 
3503 	TAILQ_FOREACH(child, &dev->children, link) {
3504 		DEVICE_RESUME(child);
3505 		/* if resume fails, there's nothing we can usefully do... */
3506 	}
3507 	return (0);
3508 }
3509 
3510 /**
3511  * @brief Helper function for implementing BUS_PRINT_CHILD().
3512  *
3513  * This function prints the first part of the ascii representation of
3514  * @p child, including its name, unit and description (if any - see
3515  * device_set_desc()).
3516  *
3517  * @returns the number of characters printed
3518  */
3519 int
3520 bus_print_child_header(device_t dev, device_t child)
3521 {
3522 	int	retval = 0;
3523 
3524 	if (device_get_desc(child)) {
3525 		retval += device_printf(child, "<%s>", device_get_desc(child));
3526 	} else {
3527 		retval += printf("%s", device_get_nameunit(child));
3528 	}
3529 
3530 	return (retval);
3531 }
3532 
3533 /**
3534  * @brief Helper function for implementing BUS_PRINT_CHILD().
3535  *
3536  * This function prints the last part of the ascii representation of
3537  * @p child, which consists of the string @c " on " followed by the
3538  * name and unit of the @p dev.
3539  *
3540  * @returns the number of characters printed
3541  */
3542 int
3543 bus_print_child_footer(device_t dev, device_t child)
3544 {
3545 	return (printf(" on %s\n", device_get_nameunit(dev)));
3546 }
3547 
3548 /**
3549  * @brief Helper function for implementing BUS_PRINT_CHILD().
3550  *
3551  * This function simply calls bus_print_child_header() followed by
3552  * bus_print_child_footer().
3553  *
3554  * @returns the number of characters printed
3555  */
3556 int
3557 bus_generic_print_child(device_t dev, device_t child)
3558 {
3559 	int	retval = 0;
3560 
3561 	retval += bus_print_child_header(dev, child);
3562 	retval += bus_print_child_footer(dev, child);
3563 
3564 	return (retval);
3565 }
3566 
3567 /**
3568  * @brief Stub function for implementing BUS_READ_IVAR().
3569  *
3570  * @returns ENOENT
3571  */
3572 int
3573 bus_generic_read_ivar(device_t dev, device_t child, int index,
3574     uintptr_t * result)
3575 {
3576 	return (ENOENT);
3577 }
3578 
3579 /**
3580  * @brief Stub function for implementing BUS_WRITE_IVAR().
3581  *
3582  * @returns ENOENT
3583  */
3584 int
3585 bus_generic_write_ivar(device_t dev, device_t child, int index,
3586     uintptr_t value)
3587 {
3588 	return (ENOENT);
3589 }
3590 
3591 /**
3592  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3593  *
3594  * @returns NULL
3595  */
3596 struct resource_list *
3597 bus_generic_get_resource_list(device_t dev, device_t child)
3598 {
3599 	return (NULL);
3600 }
3601 
3602 /**
3603  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3604  *
3605  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3606  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3607  * and then calls device_probe_and_attach() for each unattached child.
3608  */
3609 void
3610 bus_generic_driver_added(device_t dev, driver_t *driver)
3611 {
3612 	device_t child;
3613 
3614 	DEVICE_IDENTIFY(driver, dev);
3615 	TAILQ_FOREACH(child, &dev->children, link) {
3616 		if (child->state == DS_NOTPRESENT ||
3617 		    (child->flags & DF_REBID))
3618 			device_probe_and_attach(child);
3619 	}
3620 }
3621 
3622 /**
3623  * @brief Helper function for implementing BUS_NEW_PASS().
3624  *
3625  * This implementing of BUS_NEW_PASS() first calls the identify
3626  * routines for any drivers that probe at the current pass.  Then it
3627  * walks the list of devices for this bus.  If a device is already
3628  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3629  * device is not already attached, it attempts to attach a driver to
3630  * it.
3631  */
3632 void
3633 bus_generic_new_pass(device_t dev)
3634 {
3635 	driverlink_t dl;
3636 	devclass_t dc;
3637 	device_t child;
3638 
3639 	dc = dev->devclass;
3640 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3641 		if (dl->pass == bus_current_pass)
3642 			DEVICE_IDENTIFY(dl->driver, dev);
3643 	}
3644 	TAILQ_FOREACH(child, &dev->children, link) {
3645 		if (child->state >= DS_ATTACHED)
3646 			BUS_NEW_PASS(child);
3647 		else if (child->state == DS_NOTPRESENT)
3648 			device_probe_and_attach(child);
3649 	}
3650 }
3651 
3652 /**
3653  * @brief Helper function for implementing BUS_SETUP_INTR().
3654  *
3655  * This simple implementation of BUS_SETUP_INTR() simply calls the
3656  * BUS_SETUP_INTR() method of the parent of @p dev.
3657  */
3658 int
3659 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3660     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3661     void **cookiep)
3662 {
3663 	/* Propagate up the bus hierarchy until someone handles it. */
3664 	if (dev->parent)
3665 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3666 		    filter, intr, arg, cookiep));
3667 	return (EINVAL);
3668 }
3669 
3670 /**
3671  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3672  *
3673  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3674  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3675  */
3676 int
3677 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3678     void *cookie)
3679 {
3680 	/* Propagate up the bus hierarchy until someone handles it. */
3681 	if (dev->parent)
3682 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3683 	return (EINVAL);
3684 }
3685 
3686 /**
3687  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3688  *
3689  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3690  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3691  */
3692 int
3693 bus_generic_adjust_resource(device_t dev, device_t child, int type,
3694     struct resource *r, u_long start, u_long end)
3695 {
3696 	/* Propagate up the bus hierarchy until someone handles it. */
3697 	if (dev->parent)
3698 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3699 		    end));
3700 	return (EINVAL);
3701 }
3702 
3703 /**
3704  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3705  *
3706  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3707  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3708  */
3709 struct resource *
3710 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3711     u_long start, u_long end, u_long count, u_int flags)
3712 {
3713 	/* Propagate up the bus hierarchy until someone handles it. */
3714 	if (dev->parent)
3715 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3716 		    start, end, count, flags));
3717 	return (NULL);
3718 }
3719 
3720 /**
3721  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3722  *
3723  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3724  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3725  */
3726 int
3727 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3728     struct resource *r)
3729 {
3730 	/* Propagate up the bus hierarchy until someone handles it. */
3731 	if (dev->parent)
3732 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3733 		    r));
3734 	return (EINVAL);
3735 }
3736 
3737 /**
3738  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3739  *
3740  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3741  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3742  */
3743 int
3744 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3745     struct resource *r)
3746 {
3747 	/* Propagate up the bus hierarchy until someone handles it. */
3748 	if (dev->parent)
3749 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3750 		    r));
3751 	return (EINVAL);
3752 }
3753 
3754 /**
3755  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3756  *
3757  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3758  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3759  */
3760 int
3761 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3762     int rid, struct resource *r)
3763 {
3764 	/* Propagate up the bus hierarchy until someone handles it. */
3765 	if (dev->parent)
3766 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3767 		    r));
3768 	return (EINVAL);
3769 }
3770 
3771 /**
3772  * @brief Helper function for implementing BUS_BIND_INTR().
3773  *
3774  * This simple implementation of BUS_BIND_INTR() simply calls the
3775  * BUS_BIND_INTR() method of the parent of @p dev.
3776  */
3777 int
3778 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3779     int cpu)
3780 {
3781 
3782 	/* Propagate up the bus hierarchy until someone handles it. */
3783 	if (dev->parent)
3784 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3785 	return (EINVAL);
3786 }
3787 
3788 /**
3789  * @brief Helper function for implementing BUS_CONFIG_INTR().
3790  *
3791  * This simple implementation of BUS_CONFIG_INTR() simply calls the
3792  * BUS_CONFIG_INTR() method of the parent of @p dev.
3793  */
3794 int
3795 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3796     enum intr_polarity pol)
3797 {
3798 
3799 	/* Propagate up the bus hierarchy until someone handles it. */
3800 	if (dev->parent)
3801 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3802 	return (EINVAL);
3803 }
3804 
3805 /**
3806  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3807  *
3808  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3809  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3810  */
3811 int
3812 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3813     void *cookie, const char *descr)
3814 {
3815 
3816 	/* Propagate up the bus hierarchy until someone handles it. */
3817 	if (dev->parent)
3818 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3819 		    descr));
3820 	return (EINVAL);
3821 }
3822 
3823 /**
3824  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3825  *
3826  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3827  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3828  */
3829 bus_dma_tag_t
3830 bus_generic_get_dma_tag(device_t dev, device_t child)
3831 {
3832 
3833 	/* Propagate up the bus hierarchy until someone handles it. */
3834 	if (dev->parent != NULL)
3835 		return (BUS_GET_DMA_TAG(dev->parent, child));
3836 	return (NULL);
3837 }
3838 
3839 /**
3840  * @brief Helper function for implementing BUS_GET_RESOURCE().
3841  *
3842  * This implementation of BUS_GET_RESOURCE() uses the
3843  * resource_list_find() function to do most of the work. It calls
3844  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3845  * search.
3846  */
3847 int
3848 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3849     u_long *startp, u_long *countp)
3850 {
3851 	struct resource_list *		rl = NULL;
3852 	struct resource_list_entry *	rle = NULL;
3853 
3854 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3855 	if (!rl)
3856 		return (EINVAL);
3857 
3858 	rle = resource_list_find(rl, type, rid);
3859 	if (!rle)
3860 		return (ENOENT);
3861 
3862 	if (startp)
3863 		*startp = rle->start;
3864 	if (countp)
3865 		*countp = rle->count;
3866 
3867 	return (0);
3868 }
3869 
3870 /**
3871  * @brief Helper function for implementing BUS_SET_RESOURCE().
3872  *
3873  * This implementation of BUS_SET_RESOURCE() uses the
3874  * resource_list_add() function to do most of the work. It calls
3875  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3876  * edit.
3877  */
3878 int
3879 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3880     u_long start, u_long count)
3881 {
3882 	struct resource_list *		rl = NULL;
3883 
3884 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3885 	if (!rl)
3886 		return (EINVAL);
3887 
3888 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3889 
3890 	return (0);
3891 }
3892 
3893 /**
3894  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3895  *
3896  * This implementation of BUS_DELETE_RESOURCE() uses the
3897  * resource_list_delete() function to do most of the work. It calls
3898  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3899  * edit.
3900  */
3901 void
3902 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3903 {
3904 	struct resource_list *		rl = NULL;
3905 
3906 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3907 	if (!rl)
3908 		return;
3909 
3910 	resource_list_delete(rl, type, rid);
3911 
3912 	return;
3913 }
3914 
3915 /**
3916  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3917  *
3918  * This implementation of BUS_RELEASE_RESOURCE() uses the
3919  * resource_list_release() function to do most of the work. It calls
3920  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3921  */
3922 int
3923 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3924     int rid, struct resource *r)
3925 {
3926 	struct resource_list *		rl = NULL;
3927 
3928 	if (device_get_parent(child) != dev)
3929 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
3930 		    type, rid, r));
3931 
3932 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3933 	if (!rl)
3934 		return (EINVAL);
3935 
3936 	return (resource_list_release(rl, dev, child, type, rid, r));
3937 }
3938 
3939 /**
3940  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3941  *
3942  * This implementation of BUS_ALLOC_RESOURCE() uses the
3943  * resource_list_alloc() function to do most of the work. It calls
3944  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3945  */
3946 struct resource *
3947 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3948     int *rid, u_long start, u_long end, u_long count, u_int flags)
3949 {
3950 	struct resource_list *		rl = NULL;
3951 
3952 	if (device_get_parent(child) != dev)
3953 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
3954 		    type, rid, start, end, count, flags));
3955 
3956 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3957 	if (!rl)
3958 		return (NULL);
3959 
3960 	return (resource_list_alloc(rl, dev, child, type, rid,
3961 	    start, end, count, flags));
3962 }
3963 
3964 /**
3965  * @brief Helper function for implementing BUS_CHILD_PRESENT().
3966  *
3967  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3968  * BUS_CHILD_PRESENT() method of the parent of @p dev.
3969  */
3970 int
3971 bus_generic_child_present(device_t dev, device_t child)
3972 {
3973 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3974 }
3975 
3976 /*
3977  * Some convenience functions to make it easier for drivers to use the
3978  * resource-management functions.  All these really do is hide the
3979  * indirection through the parent's method table, making for slightly
3980  * less-wordy code.  In the future, it might make sense for this code
3981  * to maintain some sort of a list of resources allocated by each device.
3982  */
3983 
3984 int
3985 bus_alloc_resources(device_t dev, struct resource_spec *rs,
3986     struct resource **res)
3987 {
3988 	int i;
3989 
3990 	for (i = 0; rs[i].type != -1; i++)
3991 		res[i] = NULL;
3992 	for (i = 0; rs[i].type != -1; i++) {
3993 		res[i] = bus_alloc_resource_any(dev,
3994 		    rs[i].type, &rs[i].rid, rs[i].flags);
3995 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3996 			bus_release_resources(dev, rs, res);
3997 			return (ENXIO);
3998 		}
3999 	}
4000 	return (0);
4001 }
4002 
4003 void
4004 bus_release_resources(device_t dev, const struct resource_spec *rs,
4005     struct resource **res)
4006 {
4007 	int i;
4008 
4009 	for (i = 0; rs[i].type != -1; i++)
4010 		if (res[i] != NULL) {
4011 			bus_release_resource(
4012 			    dev, rs[i].type, rs[i].rid, res[i]);
4013 			res[i] = NULL;
4014 		}
4015 }
4016 
4017 /**
4018  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4019  *
4020  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4021  * parent of @p dev.
4022  */
4023 struct resource *
4024 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
4025     u_long count, u_int flags)
4026 {
4027 	if (dev->parent == NULL)
4028 		return (NULL);
4029 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4030 	    count, flags));
4031 }
4032 
4033 /**
4034  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4035  *
4036  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4037  * parent of @p dev.
4038  */
4039 int
4040 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
4041     u_long end)
4042 {
4043 	if (dev->parent == NULL)
4044 		return (EINVAL);
4045 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4046 }
4047 
4048 /**
4049  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4050  *
4051  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4052  * parent of @p dev.
4053  */
4054 int
4055 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4056 {
4057 	if (dev->parent == NULL)
4058 		return (EINVAL);
4059 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4060 }
4061 
4062 /**
4063  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4064  *
4065  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4066  * parent of @p dev.
4067  */
4068 int
4069 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4070 {
4071 	if (dev->parent == NULL)
4072 		return (EINVAL);
4073 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4074 }
4075 
4076 /**
4077  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4078  *
4079  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4080  * parent of @p dev.
4081  */
4082 int
4083 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4084 {
4085 	if (dev->parent == NULL)
4086 		return (EINVAL);
4087 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4088 }
4089 
4090 /**
4091  * @brief Wrapper function for BUS_SETUP_INTR().
4092  *
4093  * This function simply calls the BUS_SETUP_INTR() method of the
4094  * parent of @p dev.
4095  */
4096 int
4097 bus_setup_intr(device_t dev, struct resource *r, int flags,
4098     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4099 {
4100 	int error;
4101 
4102 	if (dev->parent == NULL)
4103 		return (EINVAL);
4104 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4105 	    arg, cookiep);
4106 	if (error != 0)
4107 		return (error);
4108 	if (handler != NULL && !(flags & INTR_MPSAFE))
4109 		device_printf(dev, "[GIANT-LOCKED]\n");
4110 	return (0);
4111 }
4112 
4113 /**
4114  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4115  *
4116  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4117  * parent of @p dev.
4118  */
4119 int
4120 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4121 {
4122 	if (dev->parent == NULL)
4123 		return (EINVAL);
4124 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4125 }
4126 
4127 /**
4128  * @brief Wrapper function for BUS_BIND_INTR().
4129  *
4130  * This function simply calls the BUS_BIND_INTR() method of the
4131  * parent of @p dev.
4132  */
4133 int
4134 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4135 {
4136 	if (dev->parent == NULL)
4137 		return (EINVAL);
4138 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4139 }
4140 
4141 /**
4142  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4143  *
4144  * This function first formats the requested description into a
4145  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4146  * the parent of @p dev.
4147  */
4148 int
4149 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4150     const char *fmt, ...)
4151 {
4152 	va_list ap;
4153 	char descr[MAXCOMLEN + 1];
4154 
4155 	if (dev->parent == NULL)
4156 		return (EINVAL);
4157 	va_start(ap, fmt);
4158 	vsnprintf(descr, sizeof(descr), fmt, ap);
4159 	va_end(ap);
4160 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4161 }
4162 
4163 /**
4164  * @brief Wrapper function for BUS_SET_RESOURCE().
4165  *
4166  * This function simply calls the BUS_SET_RESOURCE() method of the
4167  * parent of @p dev.
4168  */
4169 int
4170 bus_set_resource(device_t dev, int type, int rid,
4171     u_long start, u_long count)
4172 {
4173 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4174 	    start, count));
4175 }
4176 
4177 /**
4178  * @brief Wrapper function for BUS_GET_RESOURCE().
4179  *
4180  * This function simply calls the BUS_GET_RESOURCE() method of the
4181  * parent of @p dev.
4182  */
4183 int
4184 bus_get_resource(device_t dev, int type, int rid,
4185     u_long *startp, u_long *countp)
4186 {
4187 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4188 	    startp, countp));
4189 }
4190 
4191 /**
4192  * @brief Wrapper function for BUS_GET_RESOURCE().
4193  *
4194  * This function simply calls the BUS_GET_RESOURCE() method of the
4195  * parent of @p dev and returns the start value.
4196  */
4197 u_long
4198 bus_get_resource_start(device_t dev, int type, int rid)
4199 {
4200 	u_long start, count;
4201 	int error;
4202 
4203 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4204 	    &start, &count);
4205 	if (error)
4206 		return (0);
4207 	return (start);
4208 }
4209 
4210 /**
4211  * @brief Wrapper function for BUS_GET_RESOURCE().
4212  *
4213  * This function simply calls the BUS_GET_RESOURCE() method of the
4214  * parent of @p dev and returns the count value.
4215  */
4216 u_long
4217 bus_get_resource_count(device_t dev, int type, int rid)
4218 {
4219 	u_long start, count;
4220 	int error;
4221 
4222 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4223 	    &start, &count);
4224 	if (error)
4225 		return (0);
4226 	return (count);
4227 }
4228 
4229 /**
4230  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4231  *
4232  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4233  * parent of @p dev.
4234  */
4235 void
4236 bus_delete_resource(device_t dev, int type, int rid)
4237 {
4238 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4239 }
4240 
4241 /**
4242  * @brief Wrapper function for BUS_CHILD_PRESENT().
4243  *
4244  * This function simply calls the BUS_CHILD_PRESENT() method of the
4245  * parent of @p dev.
4246  */
4247 int
4248 bus_child_present(device_t child)
4249 {
4250 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4251 }
4252 
4253 /**
4254  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4255  *
4256  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4257  * parent of @p dev.
4258  */
4259 int
4260 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4261 {
4262 	device_t parent;
4263 
4264 	parent = device_get_parent(child);
4265 	if (parent == NULL) {
4266 		*buf = '\0';
4267 		return (0);
4268 	}
4269 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4270 }
4271 
4272 /**
4273  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4274  *
4275  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4276  * parent of @p dev.
4277  */
4278 int
4279 bus_child_location_str(device_t child, char *buf, size_t buflen)
4280 {
4281 	device_t parent;
4282 
4283 	parent = device_get_parent(child);
4284 	if (parent == NULL) {
4285 		*buf = '\0';
4286 		return (0);
4287 	}
4288 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4289 }
4290 
4291 /**
4292  * @brief Wrapper function for BUS_GET_DMA_TAG().
4293  *
4294  * This function simply calls the BUS_GET_DMA_TAG() method of the
4295  * parent of @p dev.
4296  */
4297 bus_dma_tag_t
4298 bus_get_dma_tag(device_t dev)
4299 {
4300 	device_t parent;
4301 
4302 	parent = device_get_parent(dev);
4303 	if (parent == NULL)
4304 		return (NULL);
4305 	return (BUS_GET_DMA_TAG(parent, dev));
4306 }
4307 
4308 /* Resume all devices and then notify userland that we're up again. */
4309 static int
4310 root_resume(device_t dev)
4311 {
4312 	int error;
4313 
4314 	error = bus_generic_resume(dev);
4315 	if (error == 0)
4316 		devctl_notify("kern", "power", "resume", NULL);
4317 	return (error);
4318 }
4319 
4320 static int
4321 root_print_child(device_t dev, device_t child)
4322 {
4323 	int	retval = 0;
4324 
4325 	retval += bus_print_child_header(dev, child);
4326 	retval += printf("\n");
4327 
4328 	return (retval);
4329 }
4330 
4331 static int
4332 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4333     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4334 {
4335 	/*
4336 	 * If an interrupt mapping gets to here something bad has happened.
4337 	 */
4338 	panic("root_setup_intr");
4339 }
4340 
4341 /*
4342  * If we get here, assume that the device is permanant and really is
4343  * present in the system.  Removable bus drivers are expected to intercept
4344  * this call long before it gets here.  We return -1 so that drivers that
4345  * really care can check vs -1 or some ERRNO returned higher in the food
4346  * chain.
4347  */
4348 static int
4349 root_child_present(device_t dev, device_t child)
4350 {
4351 	return (-1);
4352 }
4353 
4354 static kobj_method_t root_methods[] = {
4355 	/* Device interface */
4356 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4357 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4358 	KOBJMETHOD(device_resume,	root_resume),
4359 
4360 	/* Bus interface */
4361 	KOBJMETHOD(bus_print_child,	root_print_child),
4362 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4363 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4364 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4365 	KOBJMETHOD(bus_child_present,	root_child_present),
4366 
4367 	KOBJMETHOD_END
4368 };
4369 
4370 static driver_t root_driver = {
4371 	"root",
4372 	root_methods,
4373 	1,			/* no softc */
4374 };
4375 
4376 device_t	root_bus;
4377 devclass_t	root_devclass;
4378 
4379 static int
4380 root_bus_module_handler(module_t mod, int what, void* arg)
4381 {
4382 	switch (what) {
4383 	case MOD_LOAD:
4384 		TAILQ_INIT(&bus_data_devices);
4385 		kobj_class_compile((kobj_class_t) &root_driver);
4386 		root_bus = make_device(NULL, "root", 0);
4387 		root_bus->desc = "System root bus";
4388 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4389 		root_bus->driver = &root_driver;
4390 		root_bus->state = DS_ATTACHED;
4391 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4392 		devinit();
4393 		return (0);
4394 
4395 	case MOD_SHUTDOWN:
4396 		device_shutdown(root_bus);
4397 		return (0);
4398 	default:
4399 		return (EOPNOTSUPP);
4400 	}
4401 
4402 	return (0);
4403 }
4404 
4405 static moduledata_t root_bus_mod = {
4406 	"rootbus",
4407 	root_bus_module_handler,
4408 	NULL
4409 };
4410 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4411 
4412 /**
4413  * @brief Automatically configure devices
4414  *
4415  * This function begins the autoconfiguration process by calling
4416  * device_probe_and_attach() for each child of the @c root0 device.
4417  */
4418 void
4419 root_bus_configure(void)
4420 {
4421 
4422 	PDEBUG(("."));
4423 
4424 	/* Eventually this will be split up, but this is sufficient for now. */
4425 	bus_set_pass(BUS_PASS_DEFAULT);
4426 }
4427 
4428 /**
4429  * @brief Module handler for registering device drivers
4430  *
4431  * This module handler is used to automatically register device
4432  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4433  * devclass_add_driver() for the driver described by the
4434  * driver_module_data structure pointed to by @p arg
4435  */
4436 int
4437 driver_module_handler(module_t mod, int what, void *arg)
4438 {
4439 	struct driver_module_data *dmd;
4440 	devclass_t bus_devclass;
4441 	kobj_class_t driver;
4442 	int error, pass;
4443 
4444 	dmd = (struct driver_module_data *)arg;
4445 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4446 	error = 0;
4447 
4448 	switch (what) {
4449 	case MOD_LOAD:
4450 		if (dmd->dmd_chainevh)
4451 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4452 
4453 		pass = dmd->dmd_pass;
4454 		driver = dmd->dmd_driver;
4455 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4456 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4457 		error = devclass_add_driver(bus_devclass, driver, pass,
4458 		    dmd->dmd_devclass);
4459 		break;
4460 
4461 	case MOD_UNLOAD:
4462 		PDEBUG(("Unloading module: driver %s from bus %s",
4463 		    DRIVERNAME(dmd->dmd_driver),
4464 		    dmd->dmd_busname));
4465 		error = devclass_delete_driver(bus_devclass,
4466 		    dmd->dmd_driver);
4467 
4468 		if (!error && dmd->dmd_chainevh)
4469 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4470 		break;
4471 	case MOD_QUIESCE:
4472 		PDEBUG(("Quiesce module: driver %s from bus %s",
4473 		    DRIVERNAME(dmd->dmd_driver),
4474 		    dmd->dmd_busname));
4475 		error = devclass_quiesce_driver(bus_devclass,
4476 		    dmd->dmd_driver);
4477 
4478 		if (!error && dmd->dmd_chainevh)
4479 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4480 		break;
4481 	default:
4482 		error = EOPNOTSUPP;
4483 		break;
4484 	}
4485 
4486 	return (error);
4487 }
4488 
4489 /**
4490  * @brief Enumerate all hinted devices for this bus.
4491  *
4492  * Walks through the hints for this bus and calls the bus_hinted_child
4493  * routine for each one it fines.  It searches first for the specific
4494  * bus that's being probed for hinted children (eg isa0), and then for
4495  * generic children (eg isa).
4496  *
4497  * @param	dev	bus device to enumerate
4498  */
4499 void
4500 bus_enumerate_hinted_children(device_t bus)
4501 {
4502 	int i;
4503 	const char *dname, *busname;
4504 	int dunit;
4505 
4506 	/*
4507 	 * enumerate all devices on the specific bus
4508 	 */
4509 	busname = device_get_nameunit(bus);
4510 	i = 0;
4511 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4512 		BUS_HINTED_CHILD(bus, dname, dunit);
4513 
4514 	/*
4515 	 * and all the generic ones.
4516 	 */
4517 	busname = device_get_name(bus);
4518 	i = 0;
4519 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4520 		BUS_HINTED_CHILD(bus, dname, dunit);
4521 }
4522 
4523 #ifdef BUS_DEBUG
4524 
4525 /* the _short versions avoid iteration by not calling anything that prints
4526  * more than oneliners. I love oneliners.
4527  */
4528 
4529 static void
4530 print_device_short(device_t dev, int indent)
4531 {
4532 	if (!dev)
4533 		return;
4534 
4535 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4536 	    dev->unit, dev->desc,
4537 	    (dev->parent? "":"no "),
4538 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4539 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4540 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4541 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4542 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4543 	    (dev->flags&DF_REBID? "rebiddable,":""),
4544 	    (dev->ivars? "":"no "),
4545 	    (dev->softc? "":"no "),
4546 	    dev->busy));
4547 }
4548 
4549 static void
4550 print_device(device_t dev, int indent)
4551 {
4552 	if (!dev)
4553 		return;
4554 
4555 	print_device_short(dev, indent);
4556 
4557 	indentprintf(("Parent:\n"));
4558 	print_device_short(dev->parent, indent+1);
4559 	indentprintf(("Driver:\n"));
4560 	print_driver_short(dev->driver, indent+1);
4561 	indentprintf(("Devclass:\n"));
4562 	print_devclass_short(dev->devclass, indent+1);
4563 }
4564 
4565 void
4566 print_device_tree_short(device_t dev, int indent)
4567 /* print the device and all its children (indented) */
4568 {
4569 	device_t child;
4570 
4571 	if (!dev)
4572 		return;
4573 
4574 	print_device_short(dev, indent);
4575 
4576 	TAILQ_FOREACH(child, &dev->children, link) {
4577 		print_device_tree_short(child, indent+1);
4578 	}
4579 }
4580 
4581 void
4582 print_device_tree(device_t dev, int indent)
4583 /* print the device and all its children (indented) */
4584 {
4585 	device_t child;
4586 
4587 	if (!dev)
4588 		return;
4589 
4590 	print_device(dev, indent);
4591 
4592 	TAILQ_FOREACH(child, &dev->children, link) {
4593 		print_device_tree(child, indent+1);
4594 	}
4595 }
4596 
4597 static void
4598 print_driver_short(driver_t *driver, int indent)
4599 {
4600 	if (!driver)
4601 		return;
4602 
4603 	indentprintf(("driver %s: softc size = %zd\n",
4604 	    driver->name, driver->size));
4605 }
4606 
4607 static void
4608 print_driver(driver_t *driver, int indent)
4609 {
4610 	if (!driver)
4611 		return;
4612 
4613 	print_driver_short(driver, indent);
4614 }
4615 
4616 
4617 static void
4618 print_driver_list(driver_list_t drivers, int indent)
4619 {
4620 	driverlink_t driver;
4621 
4622 	TAILQ_FOREACH(driver, &drivers, link) {
4623 		print_driver(driver->driver, indent);
4624 	}
4625 }
4626 
4627 static void
4628 print_devclass_short(devclass_t dc, int indent)
4629 {
4630 	if ( !dc )
4631 		return;
4632 
4633 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4634 }
4635 
4636 static void
4637 print_devclass(devclass_t dc, int indent)
4638 {
4639 	int i;
4640 
4641 	if ( !dc )
4642 		return;
4643 
4644 	print_devclass_short(dc, indent);
4645 	indentprintf(("Drivers:\n"));
4646 	print_driver_list(dc->drivers, indent+1);
4647 
4648 	indentprintf(("Devices:\n"));
4649 	for (i = 0; i < dc->maxunit; i++)
4650 		if (dc->devices[i])
4651 			print_device(dc->devices[i], indent+1);
4652 }
4653 
4654 void
4655 print_devclass_list_short(void)
4656 {
4657 	devclass_t dc;
4658 
4659 	printf("Short listing of devclasses, drivers & devices:\n");
4660 	TAILQ_FOREACH(dc, &devclasses, link) {
4661 		print_devclass_short(dc, 0);
4662 	}
4663 }
4664 
4665 void
4666 print_devclass_list(void)
4667 {
4668 	devclass_t dc;
4669 
4670 	printf("Full listing of devclasses, drivers & devices:\n");
4671 	TAILQ_FOREACH(dc, &devclasses, link) {
4672 		print_devclass(dc, 0);
4673 	}
4674 }
4675 
4676 #endif
4677 
4678 /*
4679  * User-space access to the device tree.
4680  *
4681  * We implement a small set of nodes:
4682  *
4683  * hw.bus			Single integer read method to obtain the
4684  *				current generation count.
4685  * hw.bus.devices		Reads the entire device tree in flat space.
4686  * hw.bus.rman			Resource manager interface
4687  *
4688  * We might like to add the ability to scan devclasses and/or drivers to
4689  * determine what else is currently loaded/available.
4690  */
4691 
4692 static int
4693 sysctl_bus(SYSCTL_HANDLER_ARGS)
4694 {
4695 	struct u_businfo	ubus;
4696 
4697 	ubus.ub_version = BUS_USER_VERSION;
4698 	ubus.ub_generation = bus_data_generation;
4699 
4700 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4701 }
4702 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4703     "bus-related data");
4704 
4705 static int
4706 sysctl_devices(SYSCTL_HANDLER_ARGS)
4707 {
4708 	int			*name = (int *)arg1;
4709 	u_int			namelen = arg2;
4710 	int			index;
4711 	struct device		*dev;
4712 	struct u_device		udev;	/* XXX this is a bit big */
4713 	int			error;
4714 
4715 	if (namelen != 2)
4716 		return (EINVAL);
4717 
4718 	if (bus_data_generation_check(name[0]))
4719 		return (EINVAL);
4720 
4721 	index = name[1];
4722 
4723 	/*
4724 	 * Scan the list of devices, looking for the requested index.
4725 	 */
4726 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4727 		if (index-- == 0)
4728 			break;
4729 	}
4730 	if (dev == NULL)
4731 		return (ENOENT);
4732 
4733 	/*
4734 	 * Populate the return array.
4735 	 */
4736 	bzero(&udev, sizeof(udev));
4737 	udev.dv_handle = (uintptr_t)dev;
4738 	udev.dv_parent = (uintptr_t)dev->parent;
4739 	if (dev->nameunit != NULL)
4740 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4741 	if (dev->desc != NULL)
4742 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4743 	if (dev->driver != NULL && dev->driver->name != NULL)
4744 		strlcpy(udev.dv_drivername, dev->driver->name,
4745 		    sizeof(udev.dv_drivername));
4746 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4747 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4748 	udev.dv_devflags = dev->devflags;
4749 	udev.dv_flags = dev->flags;
4750 	udev.dv_state = dev->state;
4751 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4752 	return (error);
4753 }
4754 
4755 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4756     "system device tree");
4757 
4758 int
4759 bus_data_generation_check(int generation)
4760 {
4761 	if (generation != bus_data_generation)
4762 		return (1);
4763 
4764 	/* XXX generate optimised lists here? */
4765 	return (0);
4766 }
4767 
4768 void
4769 bus_data_generation_update(void)
4770 {
4771 	bus_data_generation++;
4772 }
4773 
4774 int
4775 bus_free_resource(device_t dev, int type, struct resource *r)
4776 {
4777 	if (r == NULL)
4778 		return (0);
4779 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4780 }
4781