xref: /freebsd/sys/kern/subr_bus.c (revision 3b8f08459569bf0faa21473e5cec2491e95c9349)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 #include "opt_random.h"
32 
33 #include <sys/param.h>
34 #include <sys/conf.h>
35 #include <sys/filio.h>
36 #include <sys/lock.h>
37 #include <sys/kernel.h>
38 #include <sys/kobj.h>
39 #include <sys/limits.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/poll.h>
44 #include <sys/proc.h>
45 #include <sys/condvar.h>
46 #include <sys/queue.h>
47 #include <machine/bus.h>
48 #include <sys/random.h>
49 #include <sys/rman.h>
50 #include <sys/selinfo.h>
51 #include <sys/signalvar.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/uio.h>
55 #include <sys/bus.h>
56 #include <sys/interrupt.h>
57 
58 #include <net/vnet.h>
59 
60 #include <machine/cpu.h>
61 #include <machine/stdarg.h>
62 
63 #include <vm/uma.h>
64 
65 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
66 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
67 
68 /*
69  * Used to attach drivers to devclasses.
70  */
71 typedef struct driverlink *driverlink_t;
72 struct driverlink {
73 	kobj_class_t	driver;
74 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
75 	int		pass;
76 	TAILQ_ENTRY(driverlink) passlink;
77 };
78 
79 /*
80  * Forward declarations
81  */
82 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
83 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
84 typedef TAILQ_HEAD(device_list, device) device_list_t;
85 
86 struct devclass {
87 	TAILQ_ENTRY(devclass) link;
88 	devclass_t	parent;		/* parent in devclass hierarchy */
89 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
90 	char		*name;
91 	device_t	*devices;	/* array of devices indexed by unit */
92 	int		maxunit;	/* size of devices array */
93 	int		flags;
94 #define DC_HAS_CHILDREN		1
95 
96 	struct sysctl_ctx_list sysctl_ctx;
97 	struct sysctl_oid *sysctl_tree;
98 };
99 
100 /**
101  * @brief Implementation of device.
102  */
103 struct device {
104 	/*
105 	 * A device is a kernel object. The first field must be the
106 	 * current ops table for the object.
107 	 */
108 	KOBJ_FIELDS;
109 
110 	/*
111 	 * Device hierarchy.
112 	 */
113 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
114 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
115 	device_t	parent;		/**< parent of this device  */
116 	device_list_t	children;	/**< list of child devices */
117 
118 	/*
119 	 * Details of this device.
120 	 */
121 	driver_t	*driver;	/**< current driver */
122 	devclass_t	devclass;	/**< current device class */
123 	int		unit;		/**< current unit number */
124 	char*		nameunit;	/**< name+unit e.g. foodev0 */
125 	char*		desc;		/**< driver specific description */
126 	int		busy;		/**< count of calls to device_busy() */
127 	device_state_t	state;		/**< current device state  */
128 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
129 	u_int		flags;		/**< internal device flags  */
130 #define	DF_ENABLED	0x01		/* device should be probed/attached */
131 #define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
132 #define	DF_WILDCARD	0x04		/* unit was originally wildcard */
133 #define	DF_DESCMALLOCED	0x08		/* description was malloced */
134 #define	DF_QUIET	0x10		/* don't print verbose attach message */
135 #define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
136 #define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
137 #define	DF_REBID	0x80		/* Can rebid after attach */
138 	u_int	order;			/**< order from device_add_child_ordered() */
139 	void	*ivars;			/**< instance variables  */
140 	void	*softc;			/**< current driver's variables  */
141 
142 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
143 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
144 };
145 
146 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
147 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
148 
149 #ifdef BUS_DEBUG
150 
151 static int bus_debug = 1;
152 TUNABLE_INT("bus.debug", &bus_debug);
153 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
154     "Debug bus code");
155 
156 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
157 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
158 #define DRIVERNAME(d)	((d)? d->name : "no driver")
159 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
160 
161 /**
162  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
163  * prevent syslog from deleting initial spaces
164  */
165 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
166 
167 static void print_device_short(device_t dev, int indent);
168 static void print_device(device_t dev, int indent);
169 void print_device_tree_short(device_t dev, int indent);
170 void print_device_tree(device_t dev, int indent);
171 static void print_driver_short(driver_t *driver, int indent);
172 static void print_driver(driver_t *driver, int indent);
173 static void print_driver_list(driver_list_t drivers, int indent);
174 static void print_devclass_short(devclass_t dc, int indent);
175 static void print_devclass(devclass_t dc, int indent);
176 void print_devclass_list_short(void);
177 void print_devclass_list(void);
178 
179 #else
180 /* Make the compiler ignore the function calls */
181 #define PDEBUG(a)			/* nop */
182 #define DEVICENAME(d)			/* nop */
183 #define DRIVERNAME(d)			/* nop */
184 #define DEVCLANAME(d)			/* nop */
185 
186 #define print_device_short(d,i)		/* nop */
187 #define print_device(d,i)		/* nop */
188 #define print_device_tree_short(d,i)	/* nop */
189 #define print_device_tree(d,i)		/* nop */
190 #define print_driver_short(d,i)		/* nop */
191 #define print_driver(d,i)		/* nop */
192 #define print_driver_list(d,i)		/* nop */
193 #define print_devclass_short(d,i)	/* nop */
194 #define print_devclass(d,i)		/* nop */
195 #define print_devclass_list_short()	/* nop */
196 #define print_devclass_list()		/* nop */
197 #endif
198 
199 /*
200  * dev sysctl tree
201  */
202 
203 enum {
204 	DEVCLASS_SYSCTL_PARENT,
205 };
206 
207 static int
208 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
209 {
210 	devclass_t dc = (devclass_t)arg1;
211 	const char *value;
212 
213 	switch (arg2) {
214 	case DEVCLASS_SYSCTL_PARENT:
215 		value = dc->parent ? dc->parent->name : "";
216 		break;
217 	default:
218 		return (EINVAL);
219 	}
220 	return (SYSCTL_OUT(req, value, strlen(value)));
221 }
222 
223 static void
224 devclass_sysctl_init(devclass_t dc)
225 {
226 
227 	if (dc->sysctl_tree != NULL)
228 		return;
229 	sysctl_ctx_init(&dc->sysctl_ctx);
230 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
231 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
232 	    CTLFLAG_RD, NULL, "");
233 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
234 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
235 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
236 	    "parent class");
237 }
238 
239 enum {
240 	DEVICE_SYSCTL_DESC,
241 	DEVICE_SYSCTL_DRIVER,
242 	DEVICE_SYSCTL_LOCATION,
243 	DEVICE_SYSCTL_PNPINFO,
244 	DEVICE_SYSCTL_PARENT,
245 };
246 
247 static int
248 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
249 {
250 	device_t dev = (device_t)arg1;
251 	const char *value;
252 	char *buf;
253 	int error;
254 
255 	buf = NULL;
256 	switch (arg2) {
257 	case DEVICE_SYSCTL_DESC:
258 		value = dev->desc ? dev->desc : "";
259 		break;
260 	case DEVICE_SYSCTL_DRIVER:
261 		value = dev->driver ? dev->driver->name : "";
262 		break;
263 	case DEVICE_SYSCTL_LOCATION:
264 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
265 		bus_child_location_str(dev, buf, 1024);
266 		break;
267 	case DEVICE_SYSCTL_PNPINFO:
268 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
269 		bus_child_pnpinfo_str(dev, buf, 1024);
270 		break;
271 	case DEVICE_SYSCTL_PARENT:
272 		value = dev->parent ? dev->parent->nameunit : "";
273 		break;
274 	default:
275 		return (EINVAL);
276 	}
277 	error = SYSCTL_OUT(req, value, strlen(value));
278 	if (buf != NULL)
279 		free(buf, M_BUS);
280 	return (error);
281 }
282 
283 static void
284 device_sysctl_init(device_t dev)
285 {
286 	devclass_t dc = dev->devclass;
287 
288 	if (dev->sysctl_tree != NULL)
289 		return;
290 	devclass_sysctl_init(dc);
291 	sysctl_ctx_init(&dev->sysctl_ctx);
292 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
293 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
294 	    dev->nameunit + strlen(dc->name),
295 	    CTLFLAG_RD, NULL, "");
296 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
297 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
298 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
299 	    "device description");
300 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
301 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
302 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
303 	    "device driver name");
304 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
305 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
306 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
307 	    "device location relative to parent");
308 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
309 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
310 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
311 	    "device identification");
312 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
313 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
314 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
315 	    "parent device");
316 }
317 
318 static void
319 device_sysctl_update(device_t dev)
320 {
321 	devclass_t dc = dev->devclass;
322 
323 	if (dev->sysctl_tree == NULL)
324 		return;
325 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
326 }
327 
328 static void
329 device_sysctl_fini(device_t dev)
330 {
331 	if (dev->sysctl_tree == NULL)
332 		return;
333 	sysctl_ctx_free(&dev->sysctl_ctx);
334 	dev->sysctl_tree = NULL;
335 }
336 
337 /*
338  * /dev/devctl implementation
339  */
340 
341 /*
342  * This design allows only one reader for /dev/devctl.  This is not desirable
343  * in the long run, but will get a lot of hair out of this implementation.
344  * Maybe we should make this device a clonable device.
345  *
346  * Also note: we specifically do not attach a device to the device_t tree
347  * to avoid potential chicken and egg problems.  One could argue that all
348  * of this belongs to the root node.  One could also further argue that the
349  * sysctl interface that we have not might more properly be an ioctl
350  * interface, but at this stage of the game, I'm not inclined to rock that
351  * boat.
352  *
353  * I'm also not sure that the SIGIO support is done correctly or not, as
354  * I copied it from a driver that had SIGIO support that likely hasn't been
355  * tested since 3.4 or 2.2.8!
356  */
357 
358 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
359 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
360 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
361 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
362 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW |
363     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
364 
365 static d_open_t		devopen;
366 static d_close_t	devclose;
367 static d_read_t		devread;
368 static d_ioctl_t	devioctl;
369 static d_poll_t		devpoll;
370 static d_kqfilter_t	devkqfilter;
371 
372 static struct cdevsw dev_cdevsw = {
373 	.d_version =	D_VERSION,
374 	.d_open =	devopen,
375 	.d_close =	devclose,
376 	.d_read =	devread,
377 	.d_ioctl =	devioctl,
378 	.d_poll =	devpoll,
379 	.d_kqfilter =	devkqfilter,
380 	.d_name =	"devctl",
381 };
382 
383 struct dev_event_info
384 {
385 	char *dei_data;
386 	TAILQ_ENTRY(dev_event_info) dei_link;
387 };
388 
389 TAILQ_HEAD(devq, dev_event_info);
390 
391 static struct dev_softc
392 {
393 	int	inuse;
394 	int	nonblock;
395 	int	queued;
396 	int	async;
397 	struct mtx mtx;
398 	struct cv cv;
399 	struct selinfo sel;
400 	struct devq devq;
401 	struct sigio *sigio;
402 } devsoftc;
403 
404 static void	filt_devctl_detach(struct knote *kn);
405 static int	filt_devctl_read(struct knote *kn, long hint);
406 
407 struct filterops devctl_rfiltops = {
408 	.f_isfd = 1,
409 	.f_detach = filt_devctl_detach,
410 	.f_event = filt_devctl_read,
411 };
412 
413 static struct cdev *devctl_dev;
414 
415 static void
416 devinit(void)
417 {
418 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
419 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
420 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
421 	cv_init(&devsoftc.cv, "dev cv");
422 	TAILQ_INIT(&devsoftc.devq);
423 	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
424 }
425 
426 static int
427 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
428 {
429 
430 	mtx_lock(&devsoftc.mtx);
431 	if (devsoftc.inuse) {
432 		mtx_unlock(&devsoftc.mtx);
433 		return (EBUSY);
434 	}
435 	/* move to init */
436 	devsoftc.inuse = 1;
437 	devsoftc.nonblock = 0;
438 	devsoftc.async = 0;
439 	mtx_unlock(&devsoftc.mtx);
440 	return (0);
441 }
442 
443 static int
444 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
445 {
446 
447 	mtx_lock(&devsoftc.mtx);
448 	devsoftc.inuse = 0;
449 	cv_broadcast(&devsoftc.cv);
450 	funsetown(&devsoftc.sigio);
451 	mtx_unlock(&devsoftc.mtx);
452 	return (0);
453 }
454 
455 /*
456  * The read channel for this device is used to report changes to
457  * userland in realtime.  We are required to free the data as well as
458  * the n1 object because we allocate them separately.  Also note that
459  * we return one record at a time.  If you try to read this device a
460  * character at a time, you will lose the rest of the data.  Listening
461  * programs are expected to cope.
462  */
463 static int
464 devread(struct cdev *dev, struct uio *uio, int ioflag)
465 {
466 	struct dev_event_info *n1;
467 	int rv;
468 
469 	mtx_lock(&devsoftc.mtx);
470 	while (TAILQ_EMPTY(&devsoftc.devq)) {
471 		if (devsoftc.nonblock) {
472 			mtx_unlock(&devsoftc.mtx);
473 			return (EAGAIN);
474 		}
475 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
476 		if (rv) {
477 			/*
478 			 * Need to translate ERESTART to EINTR here? -- jake
479 			 */
480 			mtx_unlock(&devsoftc.mtx);
481 			return (rv);
482 		}
483 	}
484 	n1 = TAILQ_FIRST(&devsoftc.devq);
485 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
486 	devsoftc.queued--;
487 	mtx_unlock(&devsoftc.mtx);
488 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
489 	free(n1->dei_data, M_BUS);
490 	free(n1, M_BUS);
491 	return (rv);
492 }
493 
494 static	int
495 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
496 {
497 	switch (cmd) {
498 
499 	case FIONBIO:
500 		if (*(int*)data)
501 			devsoftc.nonblock = 1;
502 		else
503 			devsoftc.nonblock = 0;
504 		return (0);
505 	case FIOASYNC:
506 		if (*(int*)data)
507 			devsoftc.async = 1;
508 		else
509 			devsoftc.async = 0;
510 		return (0);
511 	case FIOSETOWN:
512 		return fsetown(*(int *)data, &devsoftc.sigio);
513 	case FIOGETOWN:
514 		*(int *)data = fgetown(&devsoftc.sigio);
515 		return (0);
516 
517 		/* (un)Support for other fcntl() calls. */
518 	case FIOCLEX:
519 	case FIONCLEX:
520 	case FIONREAD:
521 	default:
522 		break;
523 	}
524 	return (ENOTTY);
525 }
526 
527 static	int
528 devpoll(struct cdev *dev, int events, struct thread *td)
529 {
530 	int	revents = 0;
531 
532 	mtx_lock(&devsoftc.mtx);
533 	if (events & (POLLIN | POLLRDNORM)) {
534 		if (!TAILQ_EMPTY(&devsoftc.devq))
535 			revents = events & (POLLIN | POLLRDNORM);
536 		else
537 			selrecord(td, &devsoftc.sel);
538 	}
539 	mtx_unlock(&devsoftc.mtx);
540 
541 	return (revents);
542 }
543 
544 static int
545 devkqfilter(struct cdev *dev, struct knote *kn)
546 {
547 	int error;
548 
549 	if (kn->kn_filter == EVFILT_READ) {
550 		kn->kn_fop = &devctl_rfiltops;
551 		knlist_add(&devsoftc.sel.si_note, kn, 0);
552 		error = 0;
553 	} else
554 		error = EINVAL;
555 	return (error);
556 }
557 
558 static void
559 filt_devctl_detach(struct knote *kn)
560 {
561 
562 	knlist_remove(&devsoftc.sel.si_note, kn, 0);
563 }
564 
565 static int
566 filt_devctl_read(struct knote *kn, long hint)
567 {
568 	kn->kn_data = devsoftc.queued;
569 	return (kn->kn_data != 0);
570 }
571 
572 /**
573  * @brief Return whether the userland process is running
574  */
575 boolean_t
576 devctl_process_running(void)
577 {
578 	return (devsoftc.inuse == 1);
579 }
580 
581 /**
582  * @brief Queue data to be read from the devctl device
583  *
584  * Generic interface to queue data to the devctl device.  It is
585  * assumed that @p data is properly formatted.  It is further assumed
586  * that @p data is allocated using the M_BUS malloc type.
587  */
588 void
589 devctl_queue_data_f(char *data, int flags)
590 {
591 	struct dev_event_info *n1 = NULL, *n2 = NULL;
592 
593 	if (strlen(data) == 0)
594 		goto out;
595 	if (devctl_queue_length == 0)
596 		goto out;
597 	n1 = malloc(sizeof(*n1), M_BUS, flags);
598 	if (n1 == NULL)
599 		goto out;
600 	n1->dei_data = data;
601 	mtx_lock(&devsoftc.mtx);
602 	if (devctl_queue_length == 0) {
603 		mtx_unlock(&devsoftc.mtx);
604 		free(n1->dei_data, M_BUS);
605 		free(n1, M_BUS);
606 		return;
607 	}
608 	/* Leave at least one spot in the queue... */
609 	while (devsoftc.queued > devctl_queue_length - 1) {
610 		n2 = TAILQ_FIRST(&devsoftc.devq);
611 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
612 		free(n2->dei_data, M_BUS);
613 		free(n2, M_BUS);
614 		devsoftc.queued--;
615 	}
616 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
617 	devsoftc.queued++;
618 	cv_broadcast(&devsoftc.cv);
619 	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
620 	mtx_unlock(&devsoftc.mtx);
621 	selwakeup(&devsoftc.sel);
622 	if (devsoftc.async && devsoftc.sigio != NULL)
623 		pgsigio(&devsoftc.sigio, SIGIO, 0);
624 	return;
625 out:
626 	/*
627 	 * We have to free data on all error paths since the caller
628 	 * assumes it will be free'd when this item is dequeued.
629 	 */
630 	free(data, M_BUS);
631 	return;
632 }
633 
634 void
635 devctl_queue_data(char *data)
636 {
637 
638 	devctl_queue_data_f(data, M_NOWAIT);
639 }
640 
641 /**
642  * @brief Send a 'notification' to userland, using standard ways
643  */
644 void
645 devctl_notify_f(const char *system, const char *subsystem, const char *type,
646     const char *data, int flags)
647 {
648 	int len = 0;
649 	char *msg;
650 
651 	if (system == NULL)
652 		return;		/* BOGUS!  Must specify system. */
653 	if (subsystem == NULL)
654 		return;		/* BOGUS!  Must specify subsystem. */
655 	if (type == NULL)
656 		return;		/* BOGUS!  Must specify type. */
657 	len += strlen(" system=") + strlen(system);
658 	len += strlen(" subsystem=") + strlen(subsystem);
659 	len += strlen(" type=") + strlen(type);
660 	/* add in the data message plus newline. */
661 	if (data != NULL)
662 		len += strlen(data);
663 	len += 3;	/* '!', '\n', and NUL */
664 	msg = malloc(len, M_BUS, flags);
665 	if (msg == NULL)
666 		return;		/* Drop it on the floor */
667 	if (data != NULL)
668 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
669 		    system, subsystem, type, data);
670 	else
671 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
672 		    system, subsystem, type);
673 	devctl_queue_data_f(msg, flags);
674 }
675 
676 void
677 devctl_notify(const char *system, const char *subsystem, const char *type,
678     const char *data)
679 {
680 
681 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
682 }
683 
684 /*
685  * Common routine that tries to make sending messages as easy as possible.
686  * We allocate memory for the data, copy strings into that, but do not
687  * free it unless there's an error.  The dequeue part of the driver should
688  * free the data.  We don't send data when queue length is 0.  We do send
689  * data, even when we have no listeners, because we wish to avoid races
690  * relating to startup and restart of listening applications.
691  *
692  * devaddq is designed to string together the type of event, with the
693  * object of that event, plus the plug and play info and location info
694  * for that event.  This is likely most useful for devices, but less
695  * useful for other consumers of this interface.  Those should use
696  * the devctl_queue_data() interface instead.
697  */
698 static void
699 devaddq(const char *type, const char *what, device_t dev)
700 {
701 	char *data = NULL;
702 	char *loc = NULL;
703 	char *pnp = NULL;
704 	const char *parstr;
705 
706 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
707 		return;
708 	data = malloc(1024, M_BUS, M_NOWAIT);
709 	if (data == NULL)
710 		goto bad;
711 
712 	/* get the bus specific location of this device */
713 	loc = malloc(1024, M_BUS, M_NOWAIT);
714 	if (loc == NULL)
715 		goto bad;
716 	*loc = '\0';
717 	bus_child_location_str(dev, loc, 1024);
718 
719 	/* Get the bus specific pnp info of this device */
720 	pnp = malloc(1024, M_BUS, M_NOWAIT);
721 	if (pnp == NULL)
722 		goto bad;
723 	*pnp = '\0';
724 	bus_child_pnpinfo_str(dev, pnp, 1024);
725 
726 	/* Get the parent of this device, or / if high enough in the tree. */
727 	if (device_get_parent(dev) == NULL)
728 		parstr = ".";	/* Or '/' ? */
729 	else
730 		parstr = device_get_nameunit(device_get_parent(dev));
731 	/* String it all together. */
732 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
733 	  parstr);
734 	free(loc, M_BUS);
735 	free(pnp, M_BUS);
736 	devctl_queue_data(data);
737 	return;
738 bad:
739 	free(pnp, M_BUS);
740 	free(loc, M_BUS);
741 	free(data, M_BUS);
742 	return;
743 }
744 
745 /*
746  * A device was added to the tree.  We are called just after it successfully
747  * attaches (that is, probe and attach success for this device).  No call
748  * is made if a device is merely parented into the tree.  See devnomatch
749  * if probe fails.  If attach fails, no notification is sent (but maybe
750  * we should have a different message for this).
751  */
752 static void
753 devadded(device_t dev)
754 {
755 	devaddq("+", device_get_nameunit(dev), dev);
756 }
757 
758 /*
759  * A device was removed from the tree.  We are called just before this
760  * happens.
761  */
762 static void
763 devremoved(device_t dev)
764 {
765 	devaddq("-", device_get_nameunit(dev), dev);
766 }
767 
768 /*
769  * Called when there's no match for this device.  This is only called
770  * the first time that no match happens, so we don't keep getting this
771  * message.  Should that prove to be undesirable, we can change it.
772  * This is called when all drivers that can attach to a given bus
773  * decline to accept this device.  Other errors may not be detected.
774  */
775 static void
776 devnomatch(device_t dev)
777 {
778 	devaddq("?", "", dev);
779 }
780 
781 static int
782 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
783 {
784 	struct dev_event_info *n1;
785 	int q, error;
786 
787 	q = devctl_queue_length;
788 	error = sysctl_handle_int(oidp, &q, 0, req);
789 	if (error || !req->newptr)
790 		return (error);
791 	if (q < 0)
792 		return (EINVAL);
793 	mtx_lock(&devsoftc.mtx);
794 	devctl_queue_length = q;
795 	while (devsoftc.queued > devctl_queue_length) {
796 		n1 = TAILQ_FIRST(&devsoftc.devq);
797 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
798 		free(n1->dei_data, M_BUS);
799 		free(n1, M_BUS);
800 		devsoftc.queued--;
801 	}
802 	mtx_unlock(&devsoftc.mtx);
803 	return (0);
804 }
805 
806 /* End of /dev/devctl code */
807 
808 static TAILQ_HEAD(,device)	bus_data_devices;
809 static int bus_data_generation = 1;
810 
811 static kobj_method_t null_methods[] = {
812 	KOBJMETHOD_END
813 };
814 
815 DEFINE_CLASS(null, null_methods, 0);
816 
817 /*
818  * Bus pass implementation
819  */
820 
821 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
822 int bus_current_pass = BUS_PASS_ROOT;
823 
824 /**
825  * @internal
826  * @brief Register the pass level of a new driver attachment
827  *
828  * Register a new driver attachment's pass level.  If no driver
829  * attachment with the same pass level has been added, then @p new
830  * will be added to the global passes list.
831  *
832  * @param new		the new driver attachment
833  */
834 static void
835 driver_register_pass(struct driverlink *new)
836 {
837 	struct driverlink *dl;
838 
839 	/* We only consider pass numbers during boot. */
840 	if (bus_current_pass == BUS_PASS_DEFAULT)
841 		return;
842 
843 	/*
844 	 * Walk the passes list.  If we already know about this pass
845 	 * then there is nothing to do.  If we don't, then insert this
846 	 * driver link into the list.
847 	 */
848 	TAILQ_FOREACH(dl, &passes, passlink) {
849 		if (dl->pass < new->pass)
850 			continue;
851 		if (dl->pass == new->pass)
852 			return;
853 		TAILQ_INSERT_BEFORE(dl, new, passlink);
854 		return;
855 	}
856 	TAILQ_INSERT_TAIL(&passes, new, passlink);
857 }
858 
859 /**
860  * @brief Raise the current bus pass
861  *
862  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
863  * method on the root bus to kick off a new device tree scan for each
864  * new pass level that has at least one driver.
865  */
866 void
867 bus_set_pass(int pass)
868 {
869 	struct driverlink *dl;
870 
871 	if (bus_current_pass > pass)
872 		panic("Attempt to lower bus pass level");
873 
874 	TAILQ_FOREACH(dl, &passes, passlink) {
875 		/* Skip pass values below the current pass level. */
876 		if (dl->pass <= bus_current_pass)
877 			continue;
878 
879 		/*
880 		 * Bail once we hit a driver with a pass level that is
881 		 * too high.
882 		 */
883 		if (dl->pass > pass)
884 			break;
885 
886 		/*
887 		 * Raise the pass level to the next level and rescan
888 		 * the tree.
889 		 */
890 		bus_current_pass = dl->pass;
891 		BUS_NEW_PASS(root_bus);
892 	}
893 
894 	/*
895 	 * If there isn't a driver registered for the requested pass,
896 	 * then bus_current_pass might still be less than 'pass'.  Set
897 	 * it to 'pass' in that case.
898 	 */
899 	if (bus_current_pass < pass)
900 		bus_current_pass = pass;
901 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
902 }
903 
904 /*
905  * Devclass implementation
906  */
907 
908 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
909 
910 /**
911  * @internal
912  * @brief Find or create a device class
913  *
914  * If a device class with the name @p classname exists, return it,
915  * otherwise if @p create is non-zero create and return a new device
916  * class.
917  *
918  * If @p parentname is non-NULL, the parent of the devclass is set to
919  * the devclass of that name.
920  *
921  * @param classname	the devclass name to find or create
922  * @param parentname	the parent devclass name or @c NULL
923  * @param create	non-zero to create a devclass
924  */
925 static devclass_t
926 devclass_find_internal(const char *classname, const char *parentname,
927 		       int create)
928 {
929 	devclass_t dc;
930 
931 	PDEBUG(("looking for %s", classname));
932 	if (!classname)
933 		return (NULL);
934 
935 	TAILQ_FOREACH(dc, &devclasses, link) {
936 		if (!strcmp(dc->name, classname))
937 			break;
938 	}
939 
940 	if (create && !dc) {
941 		PDEBUG(("creating %s", classname));
942 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
943 		    M_BUS, M_NOWAIT | M_ZERO);
944 		if (!dc)
945 			return (NULL);
946 		dc->parent = NULL;
947 		dc->name = (char*) (dc + 1);
948 		strcpy(dc->name, classname);
949 		TAILQ_INIT(&dc->drivers);
950 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
951 
952 		bus_data_generation_update();
953 	}
954 
955 	/*
956 	 * If a parent class is specified, then set that as our parent so
957 	 * that this devclass will support drivers for the parent class as
958 	 * well.  If the parent class has the same name don't do this though
959 	 * as it creates a cycle that can trigger an infinite loop in
960 	 * device_probe_child() if a device exists for which there is no
961 	 * suitable driver.
962 	 */
963 	if (parentname && dc && !dc->parent &&
964 	    strcmp(classname, parentname) != 0) {
965 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
966 		dc->parent->flags |= DC_HAS_CHILDREN;
967 	}
968 
969 	return (dc);
970 }
971 
972 /**
973  * @brief Create a device class
974  *
975  * If a device class with the name @p classname exists, return it,
976  * otherwise create and return a new device class.
977  *
978  * @param classname	the devclass name to find or create
979  */
980 devclass_t
981 devclass_create(const char *classname)
982 {
983 	return (devclass_find_internal(classname, NULL, TRUE));
984 }
985 
986 /**
987  * @brief Find a device class
988  *
989  * If a device class with the name @p classname exists, return it,
990  * otherwise return @c NULL.
991  *
992  * @param classname	the devclass name to find
993  */
994 devclass_t
995 devclass_find(const char *classname)
996 {
997 	return (devclass_find_internal(classname, NULL, FALSE));
998 }
999 
1000 /**
1001  * @brief Register that a device driver has been added to a devclass
1002  *
1003  * Register that a device driver has been added to a devclass.  This
1004  * is called by devclass_add_driver to accomplish the recursive
1005  * notification of all the children classes of dc, as well as dc.
1006  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1007  * the devclass.
1008  *
1009  * We do a full search here of the devclass list at each iteration
1010  * level to save storing children-lists in the devclass structure.  If
1011  * we ever move beyond a few dozen devices doing this, we may need to
1012  * reevaluate...
1013  *
1014  * @param dc		the devclass to edit
1015  * @param driver	the driver that was just added
1016  */
1017 static void
1018 devclass_driver_added(devclass_t dc, driver_t *driver)
1019 {
1020 	devclass_t parent;
1021 	int i;
1022 
1023 	/*
1024 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1025 	 */
1026 	for (i = 0; i < dc->maxunit; i++)
1027 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1028 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1029 
1030 	/*
1031 	 * Walk through the children classes.  Since we only keep a
1032 	 * single parent pointer around, we walk the entire list of
1033 	 * devclasses looking for children.  We set the
1034 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1035 	 * the parent, so we only walk the list for those devclasses
1036 	 * that have children.
1037 	 */
1038 	if (!(dc->flags & DC_HAS_CHILDREN))
1039 		return;
1040 	parent = dc;
1041 	TAILQ_FOREACH(dc, &devclasses, link) {
1042 		if (dc->parent == parent)
1043 			devclass_driver_added(dc, driver);
1044 	}
1045 }
1046 
1047 /**
1048  * @brief Add a device driver to a device class
1049  *
1050  * Add a device driver to a devclass. This is normally called
1051  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1052  * all devices in the devclass will be called to allow them to attempt
1053  * to re-probe any unmatched children.
1054  *
1055  * @param dc		the devclass to edit
1056  * @param driver	the driver to register
1057  */
1058 int
1059 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1060 {
1061 	driverlink_t dl;
1062 	const char *parentname;
1063 
1064 	PDEBUG(("%s", DRIVERNAME(driver)));
1065 
1066 	/* Don't allow invalid pass values. */
1067 	if (pass <= BUS_PASS_ROOT)
1068 		return (EINVAL);
1069 
1070 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1071 	if (!dl)
1072 		return (ENOMEM);
1073 
1074 	/*
1075 	 * Compile the driver's methods. Also increase the reference count
1076 	 * so that the class doesn't get freed when the last instance
1077 	 * goes. This means we can safely use static methods and avoids a
1078 	 * double-free in devclass_delete_driver.
1079 	 */
1080 	kobj_class_compile((kobj_class_t) driver);
1081 
1082 	/*
1083 	 * If the driver has any base classes, make the
1084 	 * devclass inherit from the devclass of the driver's
1085 	 * first base class. This will allow the system to
1086 	 * search for drivers in both devclasses for children
1087 	 * of a device using this driver.
1088 	 */
1089 	if (driver->baseclasses)
1090 		parentname = driver->baseclasses[0]->name;
1091 	else
1092 		parentname = NULL;
1093 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1094 
1095 	dl->driver = driver;
1096 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1097 	driver->refs++;		/* XXX: kobj_mtx */
1098 	dl->pass = pass;
1099 	driver_register_pass(dl);
1100 
1101 	devclass_driver_added(dc, driver);
1102 	bus_data_generation_update();
1103 	return (0);
1104 }
1105 
1106 /**
1107  * @brief Register that a device driver has been deleted from a devclass
1108  *
1109  * Register that a device driver has been removed from a devclass.
1110  * This is called by devclass_delete_driver to accomplish the
1111  * recursive notification of all the children classes of busclass, as
1112  * well as busclass.  Each layer will attempt to detach the driver
1113  * from any devices that are children of the bus's devclass.  The function
1114  * will return an error if a device fails to detach.
1115  *
1116  * We do a full search here of the devclass list at each iteration
1117  * level to save storing children-lists in the devclass structure.  If
1118  * we ever move beyond a few dozen devices doing this, we may need to
1119  * reevaluate...
1120  *
1121  * @param busclass	the devclass of the parent bus
1122  * @param dc		the devclass of the driver being deleted
1123  * @param driver	the driver being deleted
1124  */
1125 static int
1126 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1127 {
1128 	devclass_t parent;
1129 	device_t dev;
1130 	int error, i;
1131 
1132 	/*
1133 	 * Disassociate from any devices.  We iterate through all the
1134 	 * devices in the devclass of the driver and detach any which are
1135 	 * using the driver and which have a parent in the devclass which
1136 	 * we are deleting from.
1137 	 *
1138 	 * Note that since a driver can be in multiple devclasses, we
1139 	 * should not detach devices which are not children of devices in
1140 	 * the affected devclass.
1141 	 */
1142 	for (i = 0; i < dc->maxunit; i++) {
1143 		if (dc->devices[i]) {
1144 			dev = dc->devices[i];
1145 			if (dev->driver == driver && dev->parent &&
1146 			    dev->parent->devclass == busclass) {
1147 				if ((error = device_detach(dev)) != 0)
1148 					return (error);
1149 				BUS_PROBE_NOMATCH(dev->parent, dev);
1150 				devnomatch(dev);
1151 				dev->flags |= DF_DONENOMATCH;
1152 			}
1153 		}
1154 	}
1155 
1156 	/*
1157 	 * Walk through the children classes.  Since we only keep a
1158 	 * single parent pointer around, we walk the entire list of
1159 	 * devclasses looking for children.  We set the
1160 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1161 	 * the parent, so we only walk the list for those devclasses
1162 	 * that have children.
1163 	 */
1164 	if (!(busclass->flags & DC_HAS_CHILDREN))
1165 		return (0);
1166 	parent = busclass;
1167 	TAILQ_FOREACH(busclass, &devclasses, link) {
1168 		if (busclass->parent == parent) {
1169 			error = devclass_driver_deleted(busclass, dc, driver);
1170 			if (error)
1171 				return (error);
1172 		}
1173 	}
1174 	return (0);
1175 }
1176 
1177 /**
1178  * @brief Delete a device driver from a device class
1179  *
1180  * Delete a device driver from a devclass. This is normally called
1181  * automatically by DRIVER_MODULE().
1182  *
1183  * If the driver is currently attached to any devices,
1184  * devclass_delete_driver() will first attempt to detach from each
1185  * device. If one of the detach calls fails, the driver will not be
1186  * deleted.
1187  *
1188  * @param dc		the devclass to edit
1189  * @param driver	the driver to unregister
1190  */
1191 int
1192 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1193 {
1194 	devclass_t dc = devclass_find(driver->name);
1195 	driverlink_t dl;
1196 	int error;
1197 
1198 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1199 
1200 	if (!dc)
1201 		return (0);
1202 
1203 	/*
1204 	 * Find the link structure in the bus' list of drivers.
1205 	 */
1206 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1207 		if (dl->driver == driver)
1208 			break;
1209 	}
1210 
1211 	if (!dl) {
1212 		PDEBUG(("%s not found in %s list", driver->name,
1213 		    busclass->name));
1214 		return (ENOENT);
1215 	}
1216 
1217 	error = devclass_driver_deleted(busclass, dc, driver);
1218 	if (error != 0)
1219 		return (error);
1220 
1221 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1222 	free(dl, M_BUS);
1223 
1224 	/* XXX: kobj_mtx */
1225 	driver->refs--;
1226 	if (driver->refs == 0)
1227 		kobj_class_free((kobj_class_t) driver);
1228 
1229 	bus_data_generation_update();
1230 	return (0);
1231 }
1232 
1233 /**
1234  * @brief Quiesces a set of device drivers from a device class
1235  *
1236  * Quiesce a device driver from a devclass. This is normally called
1237  * automatically by DRIVER_MODULE().
1238  *
1239  * If the driver is currently attached to any devices,
1240  * devclass_quiesece_driver() will first attempt to quiesce each
1241  * device.
1242  *
1243  * @param dc		the devclass to edit
1244  * @param driver	the driver to unregister
1245  */
1246 static int
1247 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1248 {
1249 	devclass_t dc = devclass_find(driver->name);
1250 	driverlink_t dl;
1251 	device_t dev;
1252 	int i;
1253 	int error;
1254 
1255 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1256 
1257 	if (!dc)
1258 		return (0);
1259 
1260 	/*
1261 	 * Find the link structure in the bus' list of drivers.
1262 	 */
1263 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1264 		if (dl->driver == driver)
1265 			break;
1266 	}
1267 
1268 	if (!dl) {
1269 		PDEBUG(("%s not found in %s list", driver->name,
1270 		    busclass->name));
1271 		return (ENOENT);
1272 	}
1273 
1274 	/*
1275 	 * Quiesce all devices.  We iterate through all the devices in
1276 	 * the devclass of the driver and quiesce any which are using
1277 	 * the driver and which have a parent in the devclass which we
1278 	 * are quiescing.
1279 	 *
1280 	 * Note that since a driver can be in multiple devclasses, we
1281 	 * should not quiesce devices which are not children of
1282 	 * devices in the affected devclass.
1283 	 */
1284 	for (i = 0; i < dc->maxunit; i++) {
1285 		if (dc->devices[i]) {
1286 			dev = dc->devices[i];
1287 			if (dev->driver == driver && dev->parent &&
1288 			    dev->parent->devclass == busclass) {
1289 				if ((error = device_quiesce(dev)) != 0)
1290 					return (error);
1291 			}
1292 		}
1293 	}
1294 
1295 	return (0);
1296 }
1297 
1298 /**
1299  * @internal
1300  */
1301 static driverlink_t
1302 devclass_find_driver_internal(devclass_t dc, const char *classname)
1303 {
1304 	driverlink_t dl;
1305 
1306 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1307 
1308 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1309 		if (!strcmp(dl->driver->name, classname))
1310 			return (dl);
1311 	}
1312 
1313 	PDEBUG(("not found"));
1314 	return (NULL);
1315 }
1316 
1317 /**
1318  * @brief Return the name of the devclass
1319  */
1320 const char *
1321 devclass_get_name(devclass_t dc)
1322 {
1323 	return (dc->name);
1324 }
1325 
1326 /**
1327  * @brief Find a device given a unit number
1328  *
1329  * @param dc		the devclass to search
1330  * @param unit		the unit number to search for
1331  *
1332  * @returns		the device with the given unit number or @c
1333  *			NULL if there is no such device
1334  */
1335 device_t
1336 devclass_get_device(devclass_t dc, int unit)
1337 {
1338 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1339 		return (NULL);
1340 	return (dc->devices[unit]);
1341 }
1342 
1343 /**
1344  * @brief Find the softc field of a device given a unit number
1345  *
1346  * @param dc		the devclass to search
1347  * @param unit		the unit number to search for
1348  *
1349  * @returns		the softc field of the device with the given
1350  *			unit number or @c NULL if there is no such
1351  *			device
1352  */
1353 void *
1354 devclass_get_softc(devclass_t dc, int unit)
1355 {
1356 	device_t dev;
1357 
1358 	dev = devclass_get_device(dc, unit);
1359 	if (!dev)
1360 		return (NULL);
1361 
1362 	return (device_get_softc(dev));
1363 }
1364 
1365 /**
1366  * @brief Get a list of devices in the devclass
1367  *
1368  * An array containing a list of all the devices in the given devclass
1369  * is allocated and returned in @p *devlistp. The number of devices
1370  * in the array is returned in @p *devcountp. The caller should free
1371  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1372  *
1373  * @param dc		the devclass to examine
1374  * @param devlistp	points at location for array pointer return
1375  *			value
1376  * @param devcountp	points at location for array size return value
1377  *
1378  * @retval 0		success
1379  * @retval ENOMEM	the array allocation failed
1380  */
1381 int
1382 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1383 {
1384 	int count, i;
1385 	device_t *list;
1386 
1387 	count = devclass_get_count(dc);
1388 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1389 	if (!list)
1390 		return (ENOMEM);
1391 
1392 	count = 0;
1393 	for (i = 0; i < dc->maxunit; i++) {
1394 		if (dc->devices[i]) {
1395 			list[count] = dc->devices[i];
1396 			count++;
1397 		}
1398 	}
1399 
1400 	*devlistp = list;
1401 	*devcountp = count;
1402 
1403 	return (0);
1404 }
1405 
1406 /**
1407  * @brief Get a list of drivers in the devclass
1408  *
1409  * An array containing a list of pointers to all the drivers in the
1410  * given devclass is allocated and returned in @p *listp.  The number
1411  * of drivers in the array is returned in @p *countp. The caller should
1412  * free the array using @c free(p, M_TEMP).
1413  *
1414  * @param dc		the devclass to examine
1415  * @param listp		gives location for array pointer return value
1416  * @param countp	gives location for number of array elements
1417  *			return value
1418  *
1419  * @retval 0		success
1420  * @retval ENOMEM	the array allocation failed
1421  */
1422 int
1423 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1424 {
1425 	driverlink_t dl;
1426 	driver_t **list;
1427 	int count;
1428 
1429 	count = 0;
1430 	TAILQ_FOREACH(dl, &dc->drivers, link)
1431 		count++;
1432 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1433 	if (list == NULL)
1434 		return (ENOMEM);
1435 
1436 	count = 0;
1437 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1438 		list[count] = dl->driver;
1439 		count++;
1440 	}
1441 	*listp = list;
1442 	*countp = count;
1443 
1444 	return (0);
1445 }
1446 
1447 /**
1448  * @brief Get the number of devices in a devclass
1449  *
1450  * @param dc		the devclass to examine
1451  */
1452 int
1453 devclass_get_count(devclass_t dc)
1454 {
1455 	int count, i;
1456 
1457 	count = 0;
1458 	for (i = 0; i < dc->maxunit; i++)
1459 		if (dc->devices[i])
1460 			count++;
1461 	return (count);
1462 }
1463 
1464 /**
1465  * @brief Get the maximum unit number used in a devclass
1466  *
1467  * Note that this is one greater than the highest currently-allocated
1468  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1469  * that not even the devclass has been allocated yet.
1470  *
1471  * @param dc		the devclass to examine
1472  */
1473 int
1474 devclass_get_maxunit(devclass_t dc)
1475 {
1476 	if (dc == NULL)
1477 		return (-1);
1478 	return (dc->maxunit);
1479 }
1480 
1481 /**
1482  * @brief Find a free unit number in a devclass
1483  *
1484  * This function searches for the first unused unit number greater
1485  * that or equal to @p unit.
1486  *
1487  * @param dc		the devclass to examine
1488  * @param unit		the first unit number to check
1489  */
1490 int
1491 devclass_find_free_unit(devclass_t dc, int unit)
1492 {
1493 	if (dc == NULL)
1494 		return (unit);
1495 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1496 		unit++;
1497 	return (unit);
1498 }
1499 
1500 /**
1501  * @brief Set the parent of a devclass
1502  *
1503  * The parent class is normally initialised automatically by
1504  * DRIVER_MODULE().
1505  *
1506  * @param dc		the devclass to edit
1507  * @param pdc		the new parent devclass
1508  */
1509 void
1510 devclass_set_parent(devclass_t dc, devclass_t pdc)
1511 {
1512 	dc->parent = pdc;
1513 }
1514 
1515 /**
1516  * @brief Get the parent of a devclass
1517  *
1518  * @param dc		the devclass to examine
1519  */
1520 devclass_t
1521 devclass_get_parent(devclass_t dc)
1522 {
1523 	return (dc->parent);
1524 }
1525 
1526 struct sysctl_ctx_list *
1527 devclass_get_sysctl_ctx(devclass_t dc)
1528 {
1529 	return (&dc->sysctl_ctx);
1530 }
1531 
1532 struct sysctl_oid *
1533 devclass_get_sysctl_tree(devclass_t dc)
1534 {
1535 	return (dc->sysctl_tree);
1536 }
1537 
1538 /**
1539  * @internal
1540  * @brief Allocate a unit number
1541  *
1542  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1543  * will do). The allocated unit number is returned in @p *unitp.
1544 
1545  * @param dc		the devclass to allocate from
1546  * @param unitp		points at the location for the allocated unit
1547  *			number
1548  *
1549  * @retval 0		success
1550  * @retval EEXIST	the requested unit number is already allocated
1551  * @retval ENOMEM	memory allocation failure
1552  */
1553 static int
1554 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1555 {
1556 	const char *s;
1557 	int unit = *unitp;
1558 
1559 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1560 
1561 	/* Ask the parent bus if it wants to wire this device. */
1562 	if (unit == -1)
1563 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1564 		    &unit);
1565 
1566 	/* If we were given a wired unit number, check for existing device */
1567 	/* XXX imp XXX */
1568 	if (unit != -1) {
1569 		if (unit >= 0 && unit < dc->maxunit &&
1570 		    dc->devices[unit] != NULL) {
1571 			if (bootverbose)
1572 				printf("%s: %s%d already exists; skipping it\n",
1573 				    dc->name, dc->name, *unitp);
1574 			return (EEXIST);
1575 		}
1576 	} else {
1577 		/* Unwired device, find the next available slot for it */
1578 		unit = 0;
1579 		for (unit = 0;; unit++) {
1580 			/* If there is an "at" hint for a unit then skip it. */
1581 			if (resource_string_value(dc->name, unit, "at", &s) ==
1582 			    0)
1583 				continue;
1584 
1585 			/* If this device slot is already in use, skip it. */
1586 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1587 				continue;
1588 
1589 			break;
1590 		}
1591 	}
1592 
1593 	/*
1594 	 * We've selected a unit beyond the length of the table, so let's
1595 	 * extend the table to make room for all units up to and including
1596 	 * this one.
1597 	 */
1598 	if (unit >= dc->maxunit) {
1599 		device_t *newlist, *oldlist;
1600 		int newsize;
1601 
1602 		oldlist = dc->devices;
1603 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1604 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1605 		if (!newlist)
1606 			return (ENOMEM);
1607 		if (oldlist != NULL)
1608 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1609 		bzero(newlist + dc->maxunit,
1610 		    sizeof(device_t) * (newsize - dc->maxunit));
1611 		dc->devices = newlist;
1612 		dc->maxunit = newsize;
1613 		if (oldlist != NULL)
1614 			free(oldlist, M_BUS);
1615 	}
1616 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1617 
1618 	*unitp = unit;
1619 	return (0);
1620 }
1621 
1622 /**
1623  * @internal
1624  * @brief Add a device to a devclass
1625  *
1626  * A unit number is allocated for the device (using the device's
1627  * preferred unit number if any) and the device is registered in the
1628  * devclass. This allows the device to be looked up by its unit
1629  * number, e.g. by decoding a dev_t minor number.
1630  *
1631  * @param dc		the devclass to add to
1632  * @param dev		the device to add
1633  *
1634  * @retval 0		success
1635  * @retval EEXIST	the requested unit number is already allocated
1636  * @retval ENOMEM	memory allocation failure
1637  */
1638 static int
1639 devclass_add_device(devclass_t dc, device_t dev)
1640 {
1641 	int buflen, error;
1642 
1643 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1644 
1645 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1646 	if (buflen < 0)
1647 		return (ENOMEM);
1648 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1649 	if (!dev->nameunit)
1650 		return (ENOMEM);
1651 
1652 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1653 		free(dev->nameunit, M_BUS);
1654 		dev->nameunit = NULL;
1655 		return (error);
1656 	}
1657 	dc->devices[dev->unit] = dev;
1658 	dev->devclass = dc;
1659 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1660 
1661 	return (0);
1662 }
1663 
1664 /**
1665  * @internal
1666  * @brief Delete a device from a devclass
1667  *
1668  * The device is removed from the devclass's device list and its unit
1669  * number is freed.
1670 
1671  * @param dc		the devclass to delete from
1672  * @param dev		the device to delete
1673  *
1674  * @retval 0		success
1675  */
1676 static int
1677 devclass_delete_device(devclass_t dc, device_t dev)
1678 {
1679 	if (!dc || !dev)
1680 		return (0);
1681 
1682 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1683 
1684 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1685 		panic("devclass_delete_device: inconsistent device class");
1686 	dc->devices[dev->unit] = NULL;
1687 	if (dev->flags & DF_WILDCARD)
1688 		dev->unit = -1;
1689 	dev->devclass = NULL;
1690 	free(dev->nameunit, M_BUS);
1691 	dev->nameunit = NULL;
1692 
1693 	return (0);
1694 }
1695 
1696 /**
1697  * @internal
1698  * @brief Make a new device and add it as a child of @p parent
1699  *
1700  * @param parent	the parent of the new device
1701  * @param name		the devclass name of the new device or @c NULL
1702  *			to leave the devclass unspecified
1703  * @parem unit		the unit number of the new device of @c -1 to
1704  *			leave the unit number unspecified
1705  *
1706  * @returns the new device
1707  */
1708 static device_t
1709 make_device(device_t parent, const char *name, int unit)
1710 {
1711 	device_t dev;
1712 	devclass_t dc;
1713 
1714 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1715 
1716 	if (name) {
1717 		dc = devclass_find_internal(name, NULL, TRUE);
1718 		if (!dc) {
1719 			printf("make_device: can't find device class %s\n",
1720 			    name);
1721 			return (NULL);
1722 		}
1723 	} else {
1724 		dc = NULL;
1725 	}
1726 
1727 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1728 	if (!dev)
1729 		return (NULL);
1730 
1731 	dev->parent = parent;
1732 	TAILQ_INIT(&dev->children);
1733 	kobj_init((kobj_t) dev, &null_class);
1734 	dev->driver = NULL;
1735 	dev->devclass = NULL;
1736 	dev->unit = unit;
1737 	dev->nameunit = NULL;
1738 	dev->desc = NULL;
1739 	dev->busy = 0;
1740 	dev->devflags = 0;
1741 	dev->flags = DF_ENABLED;
1742 	dev->order = 0;
1743 	if (unit == -1)
1744 		dev->flags |= DF_WILDCARD;
1745 	if (name) {
1746 		dev->flags |= DF_FIXEDCLASS;
1747 		if (devclass_add_device(dc, dev)) {
1748 			kobj_delete((kobj_t) dev, M_BUS);
1749 			return (NULL);
1750 		}
1751 	}
1752 	dev->ivars = NULL;
1753 	dev->softc = NULL;
1754 
1755 	dev->state = DS_NOTPRESENT;
1756 
1757 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1758 	bus_data_generation_update();
1759 
1760 	return (dev);
1761 }
1762 
1763 /**
1764  * @internal
1765  * @brief Print a description of a device.
1766  */
1767 static int
1768 device_print_child(device_t dev, device_t child)
1769 {
1770 	int retval = 0;
1771 
1772 	if (device_is_alive(child))
1773 		retval += BUS_PRINT_CHILD(dev, child);
1774 	else
1775 		retval += device_printf(child, " not found\n");
1776 
1777 	return (retval);
1778 }
1779 
1780 /**
1781  * @brief Create a new device
1782  *
1783  * This creates a new device and adds it as a child of an existing
1784  * parent device. The new device will be added after the last existing
1785  * child with order zero.
1786  *
1787  * @param dev		the device which will be the parent of the
1788  *			new child device
1789  * @param name		devclass name for new device or @c NULL if not
1790  *			specified
1791  * @param unit		unit number for new device or @c -1 if not
1792  *			specified
1793  *
1794  * @returns		the new device
1795  */
1796 device_t
1797 device_add_child(device_t dev, const char *name, int unit)
1798 {
1799 	return (device_add_child_ordered(dev, 0, name, unit));
1800 }
1801 
1802 /**
1803  * @brief Create a new device
1804  *
1805  * This creates a new device and adds it as a child of an existing
1806  * parent device. The new device will be added after the last existing
1807  * child with the same order.
1808  *
1809  * @param dev		the device which will be the parent of the
1810  *			new child device
1811  * @param order		a value which is used to partially sort the
1812  *			children of @p dev - devices created using
1813  *			lower values of @p order appear first in @p
1814  *			dev's list of children
1815  * @param name		devclass name for new device or @c NULL if not
1816  *			specified
1817  * @param unit		unit number for new device or @c -1 if not
1818  *			specified
1819  *
1820  * @returns		the new device
1821  */
1822 device_t
1823 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1824 {
1825 	device_t child;
1826 	device_t place;
1827 
1828 	PDEBUG(("%s at %s with order %u as unit %d",
1829 	    name, DEVICENAME(dev), order, unit));
1830 	KASSERT(name != NULL || unit == -1,
1831 	    ("child device with wildcard name and specific unit number"));
1832 
1833 	child = make_device(dev, name, unit);
1834 	if (child == NULL)
1835 		return (child);
1836 	child->order = order;
1837 
1838 	TAILQ_FOREACH(place, &dev->children, link) {
1839 		if (place->order > order)
1840 			break;
1841 	}
1842 
1843 	if (place) {
1844 		/*
1845 		 * The device 'place' is the first device whose order is
1846 		 * greater than the new child.
1847 		 */
1848 		TAILQ_INSERT_BEFORE(place, child, link);
1849 	} else {
1850 		/*
1851 		 * The new child's order is greater or equal to the order of
1852 		 * any existing device. Add the child to the tail of the list.
1853 		 */
1854 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1855 	}
1856 
1857 	bus_data_generation_update();
1858 	return (child);
1859 }
1860 
1861 /**
1862  * @brief Delete a device
1863  *
1864  * This function deletes a device along with all of its children. If
1865  * the device currently has a driver attached to it, the device is
1866  * detached first using device_detach().
1867  *
1868  * @param dev		the parent device
1869  * @param child		the device to delete
1870  *
1871  * @retval 0		success
1872  * @retval non-zero	a unit error code describing the error
1873  */
1874 int
1875 device_delete_child(device_t dev, device_t child)
1876 {
1877 	int error;
1878 	device_t grandchild;
1879 
1880 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1881 
1882 	/* remove children first */
1883 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1884 		error = device_delete_child(child, grandchild);
1885 		if (error)
1886 			return (error);
1887 	}
1888 
1889 	if ((error = device_detach(child)) != 0)
1890 		return (error);
1891 	if (child->devclass)
1892 		devclass_delete_device(child->devclass, child);
1893 	if (child->parent)
1894 		BUS_CHILD_DELETED(dev, child);
1895 	TAILQ_REMOVE(&dev->children, child, link);
1896 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1897 	kobj_delete((kobj_t) child, M_BUS);
1898 
1899 	bus_data_generation_update();
1900 	return (0);
1901 }
1902 
1903 /**
1904  * @brief Delete all children devices of the given device, if any.
1905  *
1906  * This function deletes all children devices of the given device, if
1907  * any, using the device_delete_child() function for each device it
1908  * finds. If a child device cannot be deleted, this function will
1909  * return an error code.
1910  *
1911  * @param dev		the parent device
1912  *
1913  * @retval 0		success
1914  * @retval non-zero	a device would not detach
1915  */
1916 int
1917 device_delete_children(device_t dev)
1918 {
1919 	device_t child;
1920 	int error;
1921 
1922 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1923 
1924 	error = 0;
1925 
1926 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1927 		error = device_delete_child(dev, child);
1928 		if (error) {
1929 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1930 			break;
1931 		}
1932 	}
1933 	return (error);
1934 }
1935 
1936 /**
1937  * @brief Find a device given a unit number
1938  *
1939  * This is similar to devclass_get_devices() but only searches for
1940  * devices which have @p dev as a parent.
1941  *
1942  * @param dev		the parent device to search
1943  * @param unit		the unit number to search for.  If the unit is -1,
1944  *			return the first child of @p dev which has name
1945  *			@p classname (that is, the one with the lowest unit.)
1946  *
1947  * @returns		the device with the given unit number or @c
1948  *			NULL if there is no such device
1949  */
1950 device_t
1951 device_find_child(device_t dev, const char *classname, int unit)
1952 {
1953 	devclass_t dc;
1954 	device_t child;
1955 
1956 	dc = devclass_find(classname);
1957 	if (!dc)
1958 		return (NULL);
1959 
1960 	if (unit != -1) {
1961 		child = devclass_get_device(dc, unit);
1962 		if (child && child->parent == dev)
1963 			return (child);
1964 	} else {
1965 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1966 			child = devclass_get_device(dc, unit);
1967 			if (child && child->parent == dev)
1968 				return (child);
1969 		}
1970 	}
1971 	return (NULL);
1972 }
1973 
1974 /**
1975  * @internal
1976  */
1977 static driverlink_t
1978 first_matching_driver(devclass_t dc, device_t dev)
1979 {
1980 	if (dev->devclass)
1981 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1982 	return (TAILQ_FIRST(&dc->drivers));
1983 }
1984 
1985 /**
1986  * @internal
1987  */
1988 static driverlink_t
1989 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1990 {
1991 	if (dev->devclass) {
1992 		driverlink_t dl;
1993 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1994 			if (!strcmp(dev->devclass->name, dl->driver->name))
1995 				return (dl);
1996 		return (NULL);
1997 	}
1998 	return (TAILQ_NEXT(last, link));
1999 }
2000 
2001 /**
2002  * @internal
2003  */
2004 int
2005 device_probe_child(device_t dev, device_t child)
2006 {
2007 	devclass_t dc;
2008 	driverlink_t best = NULL;
2009 	driverlink_t dl;
2010 	int result, pri = 0;
2011 	int hasclass = (child->devclass != NULL);
2012 
2013 	GIANT_REQUIRED;
2014 
2015 	dc = dev->devclass;
2016 	if (!dc)
2017 		panic("device_probe_child: parent device has no devclass");
2018 
2019 	/*
2020 	 * If the state is already probed, then return.  However, don't
2021 	 * return if we can rebid this object.
2022 	 */
2023 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2024 		return (0);
2025 
2026 	for (; dc; dc = dc->parent) {
2027 		for (dl = first_matching_driver(dc, child);
2028 		     dl;
2029 		     dl = next_matching_driver(dc, child, dl)) {
2030 			/* If this driver's pass is too high, then ignore it. */
2031 			if (dl->pass > bus_current_pass)
2032 				continue;
2033 
2034 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2035 			result = device_set_driver(child, dl->driver);
2036 			if (result == ENOMEM)
2037 				return (result);
2038 			else if (result != 0)
2039 				continue;
2040 			if (!hasclass) {
2041 				if (device_set_devclass(child,
2042 				    dl->driver->name) != 0) {
2043 					char const * devname =
2044 					    device_get_name(child);
2045 					if (devname == NULL)
2046 						devname = "(unknown)";
2047 					printf("driver bug: Unable to set "
2048 					    "devclass (class: %s "
2049 					    "devname: %s)\n",
2050 					    dl->driver->name,
2051 					    devname);
2052 					(void)device_set_driver(child, NULL);
2053 					continue;
2054 				}
2055 			}
2056 
2057 			/* Fetch any flags for the device before probing. */
2058 			resource_int_value(dl->driver->name, child->unit,
2059 			    "flags", &child->devflags);
2060 
2061 			result = DEVICE_PROBE(child);
2062 
2063 			/* Reset flags and devclass before the next probe. */
2064 			child->devflags = 0;
2065 			if (!hasclass)
2066 				(void)device_set_devclass(child, NULL);
2067 
2068 			/*
2069 			 * If the driver returns SUCCESS, there can be
2070 			 * no higher match for this device.
2071 			 */
2072 			if (result == 0) {
2073 				best = dl;
2074 				pri = 0;
2075 				break;
2076 			}
2077 
2078 			/*
2079 			 * The driver returned an error so it
2080 			 * certainly doesn't match.
2081 			 */
2082 			if (result > 0) {
2083 				(void)device_set_driver(child, NULL);
2084 				continue;
2085 			}
2086 
2087 			/*
2088 			 * A priority lower than SUCCESS, remember the
2089 			 * best matching driver. Initialise the value
2090 			 * of pri for the first match.
2091 			 */
2092 			if (best == NULL || result > pri) {
2093 				/*
2094 				 * Probes that return BUS_PROBE_NOWILDCARD
2095 				 * or lower only match on devices whose
2096 				 * driver was explicitly specified.
2097 				 */
2098 				if (result <= BUS_PROBE_NOWILDCARD &&
2099 				    !(child->flags & DF_FIXEDCLASS))
2100 					continue;
2101 				best = dl;
2102 				pri = result;
2103 				continue;
2104 			}
2105 		}
2106 		/*
2107 		 * If we have an unambiguous match in this devclass,
2108 		 * don't look in the parent.
2109 		 */
2110 		if (best && pri == 0)
2111 			break;
2112 	}
2113 
2114 	/*
2115 	 * If we found a driver, change state and initialise the devclass.
2116 	 */
2117 	/* XXX What happens if we rebid and got no best? */
2118 	if (best) {
2119 		/*
2120 		 * If this device was attached, and we were asked to
2121 		 * rescan, and it is a different driver, then we have
2122 		 * to detach the old driver and reattach this new one.
2123 		 * Note, we don't have to check for DF_REBID here
2124 		 * because if the state is > DS_ALIVE, we know it must
2125 		 * be.
2126 		 *
2127 		 * This assumes that all DF_REBID drivers can have
2128 		 * their probe routine called at any time and that
2129 		 * they are idempotent as well as completely benign in
2130 		 * normal operations.
2131 		 *
2132 		 * We also have to make sure that the detach
2133 		 * succeeded, otherwise we fail the operation (or
2134 		 * maybe it should just fail silently?  I'm torn).
2135 		 */
2136 		if (child->state > DS_ALIVE && best->driver != child->driver)
2137 			if ((result = device_detach(dev)) != 0)
2138 				return (result);
2139 
2140 		/* Set the winning driver, devclass, and flags. */
2141 		if (!child->devclass) {
2142 			result = device_set_devclass(child, best->driver->name);
2143 			if (result != 0)
2144 				return (result);
2145 		}
2146 		result = device_set_driver(child, best->driver);
2147 		if (result != 0)
2148 			return (result);
2149 		resource_int_value(best->driver->name, child->unit,
2150 		    "flags", &child->devflags);
2151 
2152 		if (pri < 0) {
2153 			/*
2154 			 * A bit bogus. Call the probe method again to make
2155 			 * sure that we have the right description.
2156 			 */
2157 			DEVICE_PROBE(child);
2158 #if 0
2159 			child->flags |= DF_REBID;
2160 #endif
2161 		} else
2162 			child->flags &= ~DF_REBID;
2163 		child->state = DS_ALIVE;
2164 
2165 		bus_data_generation_update();
2166 		return (0);
2167 	}
2168 
2169 	return (ENXIO);
2170 }
2171 
2172 /**
2173  * @brief Return the parent of a device
2174  */
2175 device_t
2176 device_get_parent(device_t dev)
2177 {
2178 	return (dev->parent);
2179 }
2180 
2181 /**
2182  * @brief Get a list of children of a device
2183  *
2184  * An array containing a list of all the children of the given device
2185  * is allocated and returned in @p *devlistp. The number of devices
2186  * in the array is returned in @p *devcountp. The caller should free
2187  * the array using @c free(p, M_TEMP).
2188  *
2189  * @param dev		the device to examine
2190  * @param devlistp	points at location for array pointer return
2191  *			value
2192  * @param devcountp	points at location for array size return value
2193  *
2194  * @retval 0		success
2195  * @retval ENOMEM	the array allocation failed
2196  */
2197 int
2198 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2199 {
2200 	int count;
2201 	device_t child;
2202 	device_t *list;
2203 
2204 	count = 0;
2205 	TAILQ_FOREACH(child, &dev->children, link) {
2206 		count++;
2207 	}
2208 	if (count == 0) {
2209 		*devlistp = NULL;
2210 		*devcountp = 0;
2211 		return (0);
2212 	}
2213 
2214 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2215 	if (!list)
2216 		return (ENOMEM);
2217 
2218 	count = 0;
2219 	TAILQ_FOREACH(child, &dev->children, link) {
2220 		list[count] = child;
2221 		count++;
2222 	}
2223 
2224 	*devlistp = list;
2225 	*devcountp = count;
2226 
2227 	return (0);
2228 }
2229 
2230 /**
2231  * @brief Return the current driver for the device or @c NULL if there
2232  * is no driver currently attached
2233  */
2234 driver_t *
2235 device_get_driver(device_t dev)
2236 {
2237 	return (dev->driver);
2238 }
2239 
2240 /**
2241  * @brief Return the current devclass for the device or @c NULL if
2242  * there is none.
2243  */
2244 devclass_t
2245 device_get_devclass(device_t dev)
2246 {
2247 	return (dev->devclass);
2248 }
2249 
2250 /**
2251  * @brief Return the name of the device's devclass or @c NULL if there
2252  * is none.
2253  */
2254 const char *
2255 device_get_name(device_t dev)
2256 {
2257 	if (dev != NULL && dev->devclass)
2258 		return (devclass_get_name(dev->devclass));
2259 	return (NULL);
2260 }
2261 
2262 /**
2263  * @brief Return a string containing the device's devclass name
2264  * followed by an ascii representation of the device's unit number
2265  * (e.g. @c "foo2").
2266  */
2267 const char *
2268 device_get_nameunit(device_t dev)
2269 {
2270 	return (dev->nameunit);
2271 }
2272 
2273 /**
2274  * @brief Return the device's unit number.
2275  */
2276 int
2277 device_get_unit(device_t dev)
2278 {
2279 	return (dev->unit);
2280 }
2281 
2282 /**
2283  * @brief Return the device's description string
2284  */
2285 const char *
2286 device_get_desc(device_t dev)
2287 {
2288 	return (dev->desc);
2289 }
2290 
2291 /**
2292  * @brief Return the device's flags
2293  */
2294 uint32_t
2295 device_get_flags(device_t dev)
2296 {
2297 	return (dev->devflags);
2298 }
2299 
2300 struct sysctl_ctx_list *
2301 device_get_sysctl_ctx(device_t dev)
2302 {
2303 	return (&dev->sysctl_ctx);
2304 }
2305 
2306 struct sysctl_oid *
2307 device_get_sysctl_tree(device_t dev)
2308 {
2309 	return (dev->sysctl_tree);
2310 }
2311 
2312 /**
2313  * @brief Print the name of the device followed by a colon and a space
2314  *
2315  * @returns the number of characters printed
2316  */
2317 int
2318 device_print_prettyname(device_t dev)
2319 {
2320 	const char *name = device_get_name(dev);
2321 
2322 	if (name == NULL)
2323 		return (printf("unknown: "));
2324 	return (printf("%s%d: ", name, device_get_unit(dev)));
2325 }
2326 
2327 /**
2328  * @brief Print the name of the device followed by a colon, a space
2329  * and the result of calling vprintf() with the value of @p fmt and
2330  * the following arguments.
2331  *
2332  * @returns the number of characters printed
2333  */
2334 int
2335 device_printf(device_t dev, const char * fmt, ...)
2336 {
2337 	va_list ap;
2338 	int retval;
2339 
2340 	retval = device_print_prettyname(dev);
2341 	va_start(ap, fmt);
2342 	retval += vprintf(fmt, ap);
2343 	va_end(ap);
2344 	return (retval);
2345 }
2346 
2347 /**
2348  * @internal
2349  */
2350 static void
2351 device_set_desc_internal(device_t dev, const char* desc, int copy)
2352 {
2353 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2354 		free(dev->desc, M_BUS);
2355 		dev->flags &= ~DF_DESCMALLOCED;
2356 		dev->desc = NULL;
2357 	}
2358 
2359 	if (copy && desc) {
2360 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2361 		if (dev->desc) {
2362 			strcpy(dev->desc, desc);
2363 			dev->flags |= DF_DESCMALLOCED;
2364 		}
2365 	} else {
2366 		/* Avoid a -Wcast-qual warning */
2367 		dev->desc = (char *)(uintptr_t) desc;
2368 	}
2369 
2370 	bus_data_generation_update();
2371 }
2372 
2373 /**
2374  * @brief Set the device's description
2375  *
2376  * The value of @c desc should be a string constant that will not
2377  * change (at least until the description is changed in a subsequent
2378  * call to device_set_desc() or device_set_desc_copy()).
2379  */
2380 void
2381 device_set_desc(device_t dev, const char* desc)
2382 {
2383 	device_set_desc_internal(dev, desc, FALSE);
2384 }
2385 
2386 /**
2387  * @brief Set the device's description
2388  *
2389  * The string pointed to by @c desc is copied. Use this function if
2390  * the device description is generated, (e.g. with sprintf()).
2391  */
2392 void
2393 device_set_desc_copy(device_t dev, const char* desc)
2394 {
2395 	device_set_desc_internal(dev, desc, TRUE);
2396 }
2397 
2398 /**
2399  * @brief Set the device's flags
2400  */
2401 void
2402 device_set_flags(device_t dev, uint32_t flags)
2403 {
2404 	dev->devflags = flags;
2405 }
2406 
2407 /**
2408  * @brief Return the device's softc field
2409  *
2410  * The softc is allocated and zeroed when a driver is attached, based
2411  * on the size field of the driver.
2412  */
2413 void *
2414 device_get_softc(device_t dev)
2415 {
2416 	return (dev->softc);
2417 }
2418 
2419 /**
2420  * @brief Set the device's softc field
2421  *
2422  * Most drivers do not need to use this since the softc is allocated
2423  * automatically when the driver is attached.
2424  */
2425 void
2426 device_set_softc(device_t dev, void *softc)
2427 {
2428 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2429 		free(dev->softc, M_BUS_SC);
2430 	dev->softc = softc;
2431 	if (dev->softc)
2432 		dev->flags |= DF_EXTERNALSOFTC;
2433 	else
2434 		dev->flags &= ~DF_EXTERNALSOFTC;
2435 }
2436 
2437 /**
2438  * @brief Free claimed softc
2439  *
2440  * Most drivers do not need to use this since the softc is freed
2441  * automatically when the driver is detached.
2442  */
2443 void
2444 device_free_softc(void *softc)
2445 {
2446 	free(softc, M_BUS_SC);
2447 }
2448 
2449 /**
2450  * @brief Claim softc
2451  *
2452  * This function can be used to let the driver free the automatically
2453  * allocated softc using "device_free_softc()". This function is
2454  * useful when the driver is refcounting the softc and the softc
2455  * cannot be freed when the "device_detach" method is called.
2456  */
2457 void
2458 device_claim_softc(device_t dev)
2459 {
2460 	if (dev->softc)
2461 		dev->flags |= DF_EXTERNALSOFTC;
2462 	else
2463 		dev->flags &= ~DF_EXTERNALSOFTC;
2464 }
2465 
2466 /**
2467  * @brief Get the device's ivars field
2468  *
2469  * The ivars field is used by the parent device to store per-device
2470  * state (e.g. the physical location of the device or a list of
2471  * resources).
2472  */
2473 void *
2474 device_get_ivars(device_t dev)
2475 {
2476 
2477 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2478 	return (dev->ivars);
2479 }
2480 
2481 /**
2482  * @brief Set the device's ivars field
2483  */
2484 void
2485 device_set_ivars(device_t dev, void * ivars)
2486 {
2487 
2488 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2489 	dev->ivars = ivars;
2490 }
2491 
2492 /**
2493  * @brief Return the device's state
2494  */
2495 device_state_t
2496 device_get_state(device_t dev)
2497 {
2498 	return (dev->state);
2499 }
2500 
2501 /**
2502  * @brief Set the DF_ENABLED flag for the device
2503  */
2504 void
2505 device_enable(device_t dev)
2506 {
2507 	dev->flags |= DF_ENABLED;
2508 }
2509 
2510 /**
2511  * @brief Clear the DF_ENABLED flag for the device
2512  */
2513 void
2514 device_disable(device_t dev)
2515 {
2516 	dev->flags &= ~DF_ENABLED;
2517 }
2518 
2519 /**
2520  * @brief Increment the busy counter for the device
2521  */
2522 void
2523 device_busy(device_t dev)
2524 {
2525 	if (dev->state < DS_ATTACHING)
2526 		panic("device_busy: called for unattached device");
2527 	if (dev->busy == 0 && dev->parent)
2528 		device_busy(dev->parent);
2529 	dev->busy++;
2530 	if (dev->state == DS_ATTACHED)
2531 		dev->state = DS_BUSY;
2532 }
2533 
2534 /**
2535  * @brief Decrement the busy counter for the device
2536  */
2537 void
2538 device_unbusy(device_t dev)
2539 {
2540 	if (dev->busy != 0 && dev->state != DS_BUSY &&
2541 	    dev->state != DS_ATTACHING)
2542 		panic("device_unbusy: called for non-busy device %s",
2543 		    device_get_nameunit(dev));
2544 	dev->busy--;
2545 	if (dev->busy == 0) {
2546 		if (dev->parent)
2547 			device_unbusy(dev->parent);
2548 		if (dev->state == DS_BUSY)
2549 			dev->state = DS_ATTACHED;
2550 	}
2551 }
2552 
2553 /**
2554  * @brief Set the DF_QUIET flag for the device
2555  */
2556 void
2557 device_quiet(device_t dev)
2558 {
2559 	dev->flags |= DF_QUIET;
2560 }
2561 
2562 /**
2563  * @brief Clear the DF_QUIET flag for the device
2564  */
2565 void
2566 device_verbose(device_t dev)
2567 {
2568 	dev->flags &= ~DF_QUIET;
2569 }
2570 
2571 /**
2572  * @brief Return non-zero if the DF_QUIET flag is set on the device
2573  */
2574 int
2575 device_is_quiet(device_t dev)
2576 {
2577 	return ((dev->flags & DF_QUIET) != 0);
2578 }
2579 
2580 /**
2581  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2582  */
2583 int
2584 device_is_enabled(device_t dev)
2585 {
2586 	return ((dev->flags & DF_ENABLED) != 0);
2587 }
2588 
2589 /**
2590  * @brief Return non-zero if the device was successfully probed
2591  */
2592 int
2593 device_is_alive(device_t dev)
2594 {
2595 	return (dev->state >= DS_ALIVE);
2596 }
2597 
2598 /**
2599  * @brief Return non-zero if the device currently has a driver
2600  * attached to it
2601  */
2602 int
2603 device_is_attached(device_t dev)
2604 {
2605 	return (dev->state >= DS_ATTACHED);
2606 }
2607 
2608 /**
2609  * @brief Set the devclass of a device
2610  * @see devclass_add_device().
2611  */
2612 int
2613 device_set_devclass(device_t dev, const char *classname)
2614 {
2615 	devclass_t dc;
2616 	int error;
2617 
2618 	if (!classname) {
2619 		if (dev->devclass)
2620 			devclass_delete_device(dev->devclass, dev);
2621 		return (0);
2622 	}
2623 
2624 	if (dev->devclass) {
2625 		printf("device_set_devclass: device class already set\n");
2626 		return (EINVAL);
2627 	}
2628 
2629 	dc = devclass_find_internal(classname, NULL, TRUE);
2630 	if (!dc)
2631 		return (ENOMEM);
2632 
2633 	error = devclass_add_device(dc, dev);
2634 
2635 	bus_data_generation_update();
2636 	return (error);
2637 }
2638 
2639 /**
2640  * @brief Set the driver of a device
2641  *
2642  * @retval 0		success
2643  * @retval EBUSY	the device already has a driver attached
2644  * @retval ENOMEM	a memory allocation failure occurred
2645  */
2646 int
2647 device_set_driver(device_t dev, driver_t *driver)
2648 {
2649 	if (dev->state >= DS_ATTACHED)
2650 		return (EBUSY);
2651 
2652 	if (dev->driver == driver)
2653 		return (0);
2654 
2655 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2656 		free(dev->softc, M_BUS_SC);
2657 		dev->softc = NULL;
2658 	}
2659 	device_set_desc(dev, NULL);
2660 	kobj_delete((kobj_t) dev, NULL);
2661 	dev->driver = driver;
2662 	if (driver) {
2663 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2664 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2665 			dev->softc = malloc(driver->size, M_BUS_SC,
2666 			    M_NOWAIT | M_ZERO);
2667 			if (!dev->softc) {
2668 				kobj_delete((kobj_t) dev, NULL);
2669 				kobj_init((kobj_t) dev, &null_class);
2670 				dev->driver = NULL;
2671 				return (ENOMEM);
2672 			}
2673 		}
2674 	} else {
2675 		kobj_init((kobj_t) dev, &null_class);
2676 	}
2677 
2678 	bus_data_generation_update();
2679 	return (0);
2680 }
2681 
2682 /**
2683  * @brief Probe a device, and return this status.
2684  *
2685  * This function is the core of the device autoconfiguration
2686  * system. Its purpose is to select a suitable driver for a device and
2687  * then call that driver to initialise the hardware appropriately. The
2688  * driver is selected by calling the DEVICE_PROBE() method of a set of
2689  * candidate drivers and then choosing the driver which returned the
2690  * best value. This driver is then attached to the device using
2691  * device_attach().
2692  *
2693  * The set of suitable drivers is taken from the list of drivers in
2694  * the parent device's devclass. If the device was originally created
2695  * with a specific class name (see device_add_child()), only drivers
2696  * with that name are probed, otherwise all drivers in the devclass
2697  * are probed. If no drivers return successful probe values in the
2698  * parent devclass, the search continues in the parent of that
2699  * devclass (see devclass_get_parent()) if any.
2700  *
2701  * @param dev		the device to initialise
2702  *
2703  * @retval 0		success
2704  * @retval ENXIO	no driver was found
2705  * @retval ENOMEM	memory allocation failure
2706  * @retval non-zero	some other unix error code
2707  * @retval -1		Device already attached
2708  */
2709 int
2710 device_probe(device_t dev)
2711 {
2712 	int error;
2713 
2714 	GIANT_REQUIRED;
2715 
2716 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2717 		return (-1);
2718 
2719 	if (!(dev->flags & DF_ENABLED)) {
2720 		if (bootverbose && device_get_name(dev) != NULL) {
2721 			device_print_prettyname(dev);
2722 			printf("not probed (disabled)\n");
2723 		}
2724 		return (-1);
2725 	}
2726 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2727 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2728 		    !(dev->flags & DF_DONENOMATCH)) {
2729 			BUS_PROBE_NOMATCH(dev->parent, dev);
2730 			devnomatch(dev);
2731 			dev->flags |= DF_DONENOMATCH;
2732 		}
2733 		return (error);
2734 	}
2735 	return (0);
2736 }
2737 
2738 /**
2739  * @brief Probe a device and attach a driver if possible
2740  *
2741  * calls device_probe() and attaches if that was successful.
2742  */
2743 int
2744 device_probe_and_attach(device_t dev)
2745 {
2746 	int error;
2747 
2748 	GIANT_REQUIRED;
2749 
2750 	error = device_probe(dev);
2751 	if (error == -1)
2752 		return (0);
2753 	else if (error != 0)
2754 		return (error);
2755 
2756 	CURVNET_SET_QUIET(vnet0);
2757 	error = device_attach(dev);
2758 	CURVNET_RESTORE();
2759 	return error;
2760 }
2761 
2762 /**
2763  * @brief Attach a device driver to a device
2764  *
2765  * This function is a wrapper around the DEVICE_ATTACH() driver
2766  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2767  * device's sysctl tree, optionally prints a description of the device
2768  * and queues a notification event for user-based device management
2769  * services.
2770  *
2771  * Normally this function is only called internally from
2772  * device_probe_and_attach().
2773  *
2774  * @param dev		the device to initialise
2775  *
2776  * @retval 0		success
2777  * @retval ENXIO	no driver was found
2778  * @retval ENOMEM	memory allocation failure
2779  * @retval non-zero	some other unix error code
2780  */
2781 int
2782 device_attach(device_t dev)
2783 {
2784 	uint64_t attachtime;
2785 	int error;
2786 
2787 	if (resource_disabled(dev->driver->name, dev->unit)) {
2788 		device_disable(dev);
2789 		if (bootverbose)
2790 			 device_printf(dev, "disabled via hints entry\n");
2791 		return (ENXIO);
2792 	}
2793 
2794 	device_sysctl_init(dev);
2795 	if (!device_is_quiet(dev))
2796 		device_print_child(dev->parent, dev);
2797 	attachtime = get_cyclecount();
2798 	dev->state = DS_ATTACHING;
2799 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2800 		printf("device_attach: %s%d attach returned %d\n",
2801 		    dev->driver->name, dev->unit, error);
2802 		if (!(dev->flags & DF_FIXEDCLASS))
2803 			devclass_delete_device(dev->devclass, dev);
2804 		(void)device_set_driver(dev, NULL);
2805 		device_sysctl_fini(dev);
2806 		KASSERT(dev->busy == 0, ("attach failed but busy"));
2807 		dev->state = DS_NOTPRESENT;
2808 		return (error);
2809 	}
2810 	attachtime = get_cyclecount() - attachtime;
2811 	/*
2812 	 * 4 bits per device is a reasonable value for desktop and server
2813 	 * hardware with good get_cyclecount() implementations, but may
2814 	 * need to be adjusted on other platforms.
2815 	 */
2816 #ifdef RANDOM_DEBUG
2817 	printf("%s(): feeding %d bit(s) of entropy from %s%d\n",
2818 	    __func__, 4, dev->driver->name, dev->unit);
2819 #endif
2820 	random_harvest(&attachtime, sizeof(attachtime), 4, RANDOM_ATTACH);
2821 	device_sysctl_update(dev);
2822 	if (dev->busy)
2823 		dev->state = DS_BUSY;
2824 	else
2825 		dev->state = DS_ATTACHED;
2826 	dev->flags &= ~DF_DONENOMATCH;
2827 	devadded(dev);
2828 	return (0);
2829 }
2830 
2831 /**
2832  * @brief Detach a driver from a device
2833  *
2834  * This function is a wrapper around the DEVICE_DETACH() driver
2835  * method. If the call to DEVICE_DETACH() succeeds, it calls
2836  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2837  * notification event for user-based device management services and
2838  * cleans up the device's sysctl tree.
2839  *
2840  * @param dev		the device to un-initialise
2841  *
2842  * @retval 0		success
2843  * @retval ENXIO	no driver was found
2844  * @retval ENOMEM	memory allocation failure
2845  * @retval non-zero	some other unix error code
2846  */
2847 int
2848 device_detach(device_t dev)
2849 {
2850 	int error;
2851 
2852 	GIANT_REQUIRED;
2853 
2854 	PDEBUG(("%s", DEVICENAME(dev)));
2855 	if (dev->state == DS_BUSY)
2856 		return (EBUSY);
2857 	if (dev->state != DS_ATTACHED)
2858 		return (0);
2859 
2860 	if ((error = DEVICE_DETACH(dev)) != 0)
2861 		return (error);
2862 	devremoved(dev);
2863 	if (!device_is_quiet(dev))
2864 		device_printf(dev, "detached\n");
2865 	if (dev->parent)
2866 		BUS_CHILD_DETACHED(dev->parent, dev);
2867 
2868 	if (!(dev->flags & DF_FIXEDCLASS))
2869 		devclass_delete_device(dev->devclass, dev);
2870 
2871 	dev->state = DS_NOTPRESENT;
2872 	(void)device_set_driver(dev, NULL);
2873 	device_sysctl_fini(dev);
2874 
2875 	return (0);
2876 }
2877 
2878 /**
2879  * @brief Tells a driver to quiesce itself.
2880  *
2881  * This function is a wrapper around the DEVICE_QUIESCE() driver
2882  * method. If the call to DEVICE_QUIESCE() succeeds.
2883  *
2884  * @param dev		the device to quiesce
2885  *
2886  * @retval 0		success
2887  * @retval ENXIO	no driver was found
2888  * @retval ENOMEM	memory allocation failure
2889  * @retval non-zero	some other unix error code
2890  */
2891 int
2892 device_quiesce(device_t dev)
2893 {
2894 
2895 	PDEBUG(("%s", DEVICENAME(dev)));
2896 	if (dev->state == DS_BUSY)
2897 		return (EBUSY);
2898 	if (dev->state != DS_ATTACHED)
2899 		return (0);
2900 
2901 	return (DEVICE_QUIESCE(dev));
2902 }
2903 
2904 /**
2905  * @brief Notify a device of system shutdown
2906  *
2907  * This function calls the DEVICE_SHUTDOWN() driver method if the
2908  * device currently has an attached driver.
2909  *
2910  * @returns the value returned by DEVICE_SHUTDOWN()
2911  */
2912 int
2913 device_shutdown(device_t dev)
2914 {
2915 	if (dev->state < DS_ATTACHED)
2916 		return (0);
2917 	return (DEVICE_SHUTDOWN(dev));
2918 }
2919 
2920 /**
2921  * @brief Set the unit number of a device
2922  *
2923  * This function can be used to override the unit number used for a
2924  * device (e.g. to wire a device to a pre-configured unit number).
2925  */
2926 int
2927 device_set_unit(device_t dev, int unit)
2928 {
2929 	devclass_t dc;
2930 	int err;
2931 
2932 	dc = device_get_devclass(dev);
2933 	if (unit < dc->maxunit && dc->devices[unit])
2934 		return (EBUSY);
2935 	err = devclass_delete_device(dc, dev);
2936 	if (err)
2937 		return (err);
2938 	dev->unit = unit;
2939 	err = devclass_add_device(dc, dev);
2940 	if (err)
2941 		return (err);
2942 
2943 	bus_data_generation_update();
2944 	return (0);
2945 }
2946 
2947 /*======================================*/
2948 /*
2949  * Some useful method implementations to make life easier for bus drivers.
2950  */
2951 
2952 /**
2953  * @brief Initialise a resource list.
2954  *
2955  * @param rl		the resource list to initialise
2956  */
2957 void
2958 resource_list_init(struct resource_list *rl)
2959 {
2960 	STAILQ_INIT(rl);
2961 }
2962 
2963 /**
2964  * @brief Reclaim memory used by a resource list.
2965  *
2966  * This function frees the memory for all resource entries on the list
2967  * (if any).
2968  *
2969  * @param rl		the resource list to free
2970  */
2971 void
2972 resource_list_free(struct resource_list *rl)
2973 {
2974 	struct resource_list_entry *rle;
2975 
2976 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2977 		if (rle->res)
2978 			panic("resource_list_free: resource entry is busy");
2979 		STAILQ_REMOVE_HEAD(rl, link);
2980 		free(rle, M_BUS);
2981 	}
2982 }
2983 
2984 /**
2985  * @brief Add a resource entry.
2986  *
2987  * This function adds a resource entry using the given @p type, @p
2988  * start, @p end and @p count values. A rid value is chosen by
2989  * searching sequentially for the first unused rid starting at zero.
2990  *
2991  * @param rl		the resource list to edit
2992  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2993  * @param start		the start address of the resource
2994  * @param end		the end address of the resource
2995  * @param count		XXX end-start+1
2996  */
2997 int
2998 resource_list_add_next(struct resource_list *rl, int type, u_long start,
2999     u_long end, u_long count)
3000 {
3001 	int rid;
3002 
3003 	rid = 0;
3004 	while (resource_list_find(rl, type, rid) != NULL)
3005 		rid++;
3006 	resource_list_add(rl, type, rid, start, end, count);
3007 	return (rid);
3008 }
3009 
3010 /**
3011  * @brief Add or modify a resource entry.
3012  *
3013  * If an existing entry exists with the same type and rid, it will be
3014  * modified using the given values of @p start, @p end and @p
3015  * count. If no entry exists, a new one will be created using the
3016  * given values.  The resource list entry that matches is then returned.
3017  *
3018  * @param rl		the resource list to edit
3019  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3020  * @param rid		the resource identifier
3021  * @param start		the start address of the resource
3022  * @param end		the end address of the resource
3023  * @param count		XXX end-start+1
3024  */
3025 struct resource_list_entry *
3026 resource_list_add(struct resource_list *rl, int type, int rid,
3027     u_long start, u_long end, u_long count)
3028 {
3029 	struct resource_list_entry *rle;
3030 
3031 	rle = resource_list_find(rl, type, rid);
3032 	if (!rle) {
3033 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3034 		    M_NOWAIT);
3035 		if (!rle)
3036 			panic("resource_list_add: can't record entry");
3037 		STAILQ_INSERT_TAIL(rl, rle, link);
3038 		rle->type = type;
3039 		rle->rid = rid;
3040 		rle->res = NULL;
3041 		rle->flags = 0;
3042 	}
3043 
3044 	if (rle->res)
3045 		panic("resource_list_add: resource entry is busy");
3046 
3047 	rle->start = start;
3048 	rle->end = end;
3049 	rle->count = count;
3050 	return (rle);
3051 }
3052 
3053 /**
3054  * @brief Determine if a resource entry is busy.
3055  *
3056  * Returns true if a resource entry is busy meaning that it has an
3057  * associated resource that is not an unallocated "reserved" resource.
3058  *
3059  * @param rl		the resource list to search
3060  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3061  * @param rid		the resource identifier
3062  *
3063  * @returns Non-zero if the entry is busy, zero otherwise.
3064  */
3065 int
3066 resource_list_busy(struct resource_list *rl, int type, int rid)
3067 {
3068 	struct resource_list_entry *rle;
3069 
3070 	rle = resource_list_find(rl, type, rid);
3071 	if (rle == NULL || rle->res == NULL)
3072 		return (0);
3073 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3074 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3075 		    ("reserved resource is active"));
3076 		return (0);
3077 	}
3078 	return (1);
3079 }
3080 
3081 /**
3082  * @brief Determine if a resource entry is reserved.
3083  *
3084  * Returns true if a resource entry is reserved meaning that it has an
3085  * associated "reserved" resource.  The resource can either be
3086  * allocated or unallocated.
3087  *
3088  * @param rl		the resource list to search
3089  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3090  * @param rid		the resource identifier
3091  *
3092  * @returns Non-zero if the entry is reserved, zero otherwise.
3093  */
3094 int
3095 resource_list_reserved(struct resource_list *rl, int type, int rid)
3096 {
3097 	struct resource_list_entry *rle;
3098 
3099 	rle = resource_list_find(rl, type, rid);
3100 	if (rle != NULL && rle->flags & RLE_RESERVED)
3101 		return (1);
3102 	return (0);
3103 }
3104 
3105 /**
3106  * @brief Find a resource entry by type and rid.
3107  *
3108  * @param rl		the resource list to search
3109  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3110  * @param rid		the resource identifier
3111  *
3112  * @returns the resource entry pointer or NULL if there is no such
3113  * entry.
3114  */
3115 struct resource_list_entry *
3116 resource_list_find(struct resource_list *rl, int type, int rid)
3117 {
3118 	struct resource_list_entry *rle;
3119 
3120 	STAILQ_FOREACH(rle, rl, link) {
3121 		if (rle->type == type && rle->rid == rid)
3122 			return (rle);
3123 	}
3124 	return (NULL);
3125 }
3126 
3127 /**
3128  * @brief Delete a resource entry.
3129  *
3130  * @param rl		the resource list to edit
3131  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3132  * @param rid		the resource identifier
3133  */
3134 void
3135 resource_list_delete(struct resource_list *rl, int type, int rid)
3136 {
3137 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3138 
3139 	if (rle) {
3140 		if (rle->res != NULL)
3141 			panic("resource_list_delete: resource has not been released");
3142 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3143 		free(rle, M_BUS);
3144 	}
3145 }
3146 
3147 /**
3148  * @brief Allocate a reserved resource
3149  *
3150  * This can be used by busses to force the allocation of resources
3151  * that are always active in the system even if they are not allocated
3152  * by a driver (e.g. PCI BARs).  This function is usually called when
3153  * adding a new child to the bus.  The resource is allocated from the
3154  * parent bus when it is reserved.  The resource list entry is marked
3155  * with RLE_RESERVED to note that it is a reserved resource.
3156  *
3157  * Subsequent attempts to allocate the resource with
3158  * resource_list_alloc() will succeed the first time and will set
3159  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3160  * resource that has been allocated is released with
3161  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3162  * the actual resource remains allocated.  The resource can be released to
3163  * the parent bus by calling resource_list_unreserve().
3164  *
3165  * @param rl		the resource list to allocate from
3166  * @param bus		the parent device of @p child
3167  * @param child		the device for which the resource is being reserved
3168  * @param type		the type of resource to allocate
3169  * @param rid		a pointer to the resource identifier
3170  * @param start		hint at the start of the resource range - pass
3171  *			@c 0UL for any start address
3172  * @param end		hint at the end of the resource range - pass
3173  *			@c ~0UL for any end address
3174  * @param count		hint at the size of range required - pass @c 1
3175  *			for any size
3176  * @param flags		any extra flags to control the resource
3177  *			allocation - see @c RF_XXX flags in
3178  *			<sys/rman.h> for details
3179  *
3180  * @returns		the resource which was allocated or @c NULL if no
3181  *			resource could be allocated
3182  */
3183 struct resource *
3184 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3185     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3186 {
3187 	struct resource_list_entry *rle = NULL;
3188 	int passthrough = (device_get_parent(child) != bus);
3189 	struct resource *r;
3190 
3191 	if (passthrough)
3192 		panic(
3193     "resource_list_reserve() should only be called for direct children");
3194 	if (flags & RF_ACTIVE)
3195 		panic(
3196     "resource_list_reserve() should only reserve inactive resources");
3197 
3198 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3199 	    flags);
3200 	if (r != NULL) {
3201 		rle = resource_list_find(rl, type, *rid);
3202 		rle->flags |= RLE_RESERVED;
3203 	}
3204 	return (r);
3205 }
3206 
3207 /**
3208  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3209  *
3210  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3211  * and passing the allocation up to the parent of @p bus. This assumes
3212  * that the first entry of @c device_get_ivars(child) is a struct
3213  * resource_list. This also handles 'passthrough' allocations where a
3214  * child is a remote descendant of bus by passing the allocation up to
3215  * the parent of bus.
3216  *
3217  * Typically, a bus driver would store a list of child resources
3218  * somewhere in the child device's ivars (see device_get_ivars()) and
3219  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3220  * then call resource_list_alloc() to perform the allocation.
3221  *
3222  * @param rl		the resource list to allocate from
3223  * @param bus		the parent device of @p child
3224  * @param child		the device which is requesting an allocation
3225  * @param type		the type of resource to allocate
3226  * @param rid		a pointer to the resource identifier
3227  * @param start		hint at the start of the resource range - pass
3228  *			@c 0UL for any start address
3229  * @param end		hint at the end of the resource range - pass
3230  *			@c ~0UL for any end address
3231  * @param count		hint at the size of range required - pass @c 1
3232  *			for any size
3233  * @param flags		any extra flags to control the resource
3234  *			allocation - see @c RF_XXX flags in
3235  *			<sys/rman.h> for details
3236  *
3237  * @returns		the resource which was allocated or @c NULL if no
3238  *			resource could be allocated
3239  */
3240 struct resource *
3241 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3242     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3243 {
3244 	struct resource_list_entry *rle = NULL;
3245 	int passthrough = (device_get_parent(child) != bus);
3246 	int isdefault = (start == 0UL && end == ~0UL);
3247 
3248 	if (passthrough) {
3249 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3250 		    type, rid, start, end, count, flags));
3251 	}
3252 
3253 	rle = resource_list_find(rl, type, *rid);
3254 
3255 	if (!rle)
3256 		return (NULL);		/* no resource of that type/rid */
3257 
3258 	if (rle->res) {
3259 		if (rle->flags & RLE_RESERVED) {
3260 			if (rle->flags & RLE_ALLOCATED)
3261 				return (NULL);
3262 			if ((flags & RF_ACTIVE) &&
3263 			    bus_activate_resource(child, type, *rid,
3264 			    rle->res) != 0)
3265 				return (NULL);
3266 			rle->flags |= RLE_ALLOCATED;
3267 			return (rle->res);
3268 		}
3269 		panic("resource_list_alloc: resource entry is busy");
3270 	}
3271 
3272 	if (isdefault) {
3273 		start = rle->start;
3274 		count = ulmax(count, rle->count);
3275 		end = ulmax(rle->end, start + count - 1);
3276 	}
3277 
3278 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3279 	    type, rid, start, end, count, flags);
3280 
3281 	/*
3282 	 * Record the new range.
3283 	 */
3284 	if (rle->res) {
3285 		rle->start = rman_get_start(rle->res);
3286 		rle->end = rman_get_end(rle->res);
3287 		rle->count = count;
3288 	}
3289 
3290 	return (rle->res);
3291 }
3292 
3293 /**
3294  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3295  *
3296  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3297  * used with resource_list_alloc().
3298  *
3299  * @param rl		the resource list which was allocated from
3300  * @param bus		the parent device of @p child
3301  * @param child		the device which is requesting a release
3302  * @param type		the type of resource to release
3303  * @param rid		the resource identifier
3304  * @param res		the resource to release
3305  *
3306  * @retval 0		success
3307  * @retval non-zero	a standard unix error code indicating what
3308  *			error condition prevented the operation
3309  */
3310 int
3311 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3312     int type, int rid, struct resource *res)
3313 {
3314 	struct resource_list_entry *rle = NULL;
3315 	int passthrough = (device_get_parent(child) != bus);
3316 	int error;
3317 
3318 	if (passthrough) {
3319 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3320 		    type, rid, res));
3321 	}
3322 
3323 	rle = resource_list_find(rl, type, rid);
3324 
3325 	if (!rle)
3326 		panic("resource_list_release: can't find resource");
3327 	if (!rle->res)
3328 		panic("resource_list_release: resource entry is not busy");
3329 	if (rle->flags & RLE_RESERVED) {
3330 		if (rle->flags & RLE_ALLOCATED) {
3331 			if (rman_get_flags(res) & RF_ACTIVE) {
3332 				error = bus_deactivate_resource(child, type,
3333 				    rid, res);
3334 				if (error)
3335 					return (error);
3336 			}
3337 			rle->flags &= ~RLE_ALLOCATED;
3338 			return (0);
3339 		}
3340 		return (EINVAL);
3341 	}
3342 
3343 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3344 	    type, rid, res);
3345 	if (error)
3346 		return (error);
3347 
3348 	rle->res = NULL;
3349 	return (0);
3350 }
3351 
3352 /**
3353  * @brief Release all active resources of a given type
3354  *
3355  * Release all active resources of a specified type.  This is intended
3356  * to be used to cleanup resources leaked by a driver after detach or
3357  * a failed attach.
3358  *
3359  * @param rl		the resource list which was allocated from
3360  * @param bus		the parent device of @p child
3361  * @param child		the device whose active resources are being released
3362  * @param type		the type of resources to release
3363  *
3364  * @retval 0		success
3365  * @retval EBUSY	at least one resource was active
3366  */
3367 int
3368 resource_list_release_active(struct resource_list *rl, device_t bus,
3369     device_t child, int type)
3370 {
3371 	struct resource_list_entry *rle;
3372 	int error, retval;
3373 
3374 	retval = 0;
3375 	STAILQ_FOREACH(rle, rl, link) {
3376 		if (rle->type != type)
3377 			continue;
3378 		if (rle->res == NULL)
3379 			continue;
3380 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3381 		    RLE_RESERVED)
3382 			continue;
3383 		retval = EBUSY;
3384 		error = resource_list_release(rl, bus, child, type,
3385 		    rman_get_rid(rle->res), rle->res);
3386 		if (error != 0)
3387 			device_printf(bus,
3388 			    "Failed to release active resource: %d\n", error);
3389 	}
3390 	return (retval);
3391 }
3392 
3393 
3394 /**
3395  * @brief Fully release a reserved resource
3396  *
3397  * Fully releases a resource reserved via resource_list_reserve().
3398  *
3399  * @param rl		the resource list which was allocated from
3400  * @param bus		the parent device of @p child
3401  * @param child		the device whose reserved resource is being released
3402  * @param type		the type of resource to release
3403  * @param rid		the resource identifier
3404  * @param res		the resource to release
3405  *
3406  * @retval 0		success
3407  * @retval non-zero	a standard unix error code indicating what
3408  *			error condition prevented the operation
3409  */
3410 int
3411 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3412     int type, int rid)
3413 {
3414 	struct resource_list_entry *rle = NULL;
3415 	int passthrough = (device_get_parent(child) != bus);
3416 
3417 	if (passthrough)
3418 		panic(
3419     "resource_list_unreserve() should only be called for direct children");
3420 
3421 	rle = resource_list_find(rl, type, rid);
3422 
3423 	if (!rle)
3424 		panic("resource_list_unreserve: can't find resource");
3425 	if (!(rle->flags & RLE_RESERVED))
3426 		return (EINVAL);
3427 	if (rle->flags & RLE_ALLOCATED)
3428 		return (EBUSY);
3429 	rle->flags &= ~RLE_RESERVED;
3430 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3431 }
3432 
3433 /**
3434  * @brief Print a description of resources in a resource list
3435  *
3436  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3437  * The name is printed if at least one resource of the given type is available.
3438  * The format is used to print resource start and end.
3439  *
3440  * @param rl		the resource list to print
3441  * @param name		the name of @p type, e.g. @c "memory"
3442  * @param type		type type of resource entry to print
3443  * @param format	printf(9) format string to print resource
3444  *			start and end values
3445  *
3446  * @returns		the number of characters printed
3447  */
3448 int
3449 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3450     const char *format)
3451 {
3452 	struct resource_list_entry *rle;
3453 	int printed, retval;
3454 
3455 	printed = 0;
3456 	retval = 0;
3457 	/* Yes, this is kinda cheating */
3458 	STAILQ_FOREACH(rle, rl, link) {
3459 		if (rle->type == type) {
3460 			if (printed == 0)
3461 				retval += printf(" %s ", name);
3462 			else
3463 				retval += printf(",");
3464 			printed++;
3465 			retval += printf(format, rle->start);
3466 			if (rle->count > 1) {
3467 				retval += printf("-");
3468 				retval += printf(format, rle->start +
3469 						 rle->count - 1);
3470 			}
3471 		}
3472 	}
3473 	return (retval);
3474 }
3475 
3476 /**
3477  * @brief Releases all the resources in a list.
3478  *
3479  * @param rl		The resource list to purge.
3480  *
3481  * @returns		nothing
3482  */
3483 void
3484 resource_list_purge(struct resource_list *rl)
3485 {
3486 	struct resource_list_entry *rle;
3487 
3488 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3489 		if (rle->res)
3490 			bus_release_resource(rman_get_device(rle->res),
3491 			    rle->type, rle->rid, rle->res);
3492 		STAILQ_REMOVE_HEAD(rl, link);
3493 		free(rle, M_BUS);
3494 	}
3495 }
3496 
3497 device_t
3498 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3499 {
3500 
3501 	return (device_add_child_ordered(dev, order, name, unit));
3502 }
3503 
3504 /**
3505  * @brief Helper function for implementing DEVICE_PROBE()
3506  *
3507  * This function can be used to help implement the DEVICE_PROBE() for
3508  * a bus (i.e. a device which has other devices attached to it). It
3509  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3510  * devclass.
3511  */
3512 int
3513 bus_generic_probe(device_t dev)
3514 {
3515 	devclass_t dc = dev->devclass;
3516 	driverlink_t dl;
3517 
3518 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3519 		/*
3520 		 * If this driver's pass is too high, then ignore it.
3521 		 * For most drivers in the default pass, this will
3522 		 * never be true.  For early-pass drivers they will
3523 		 * only call the identify routines of eligible drivers
3524 		 * when this routine is called.  Drivers for later
3525 		 * passes should have their identify routines called
3526 		 * on early-pass busses during BUS_NEW_PASS().
3527 		 */
3528 		if (dl->pass > bus_current_pass)
3529 			continue;
3530 		DEVICE_IDENTIFY(dl->driver, dev);
3531 	}
3532 
3533 	return (0);
3534 }
3535 
3536 /**
3537  * @brief Helper function for implementing DEVICE_ATTACH()
3538  *
3539  * This function can be used to help implement the DEVICE_ATTACH() for
3540  * a bus. It calls device_probe_and_attach() for each of the device's
3541  * children.
3542  */
3543 int
3544 bus_generic_attach(device_t dev)
3545 {
3546 	device_t child;
3547 
3548 	TAILQ_FOREACH(child, &dev->children, link) {
3549 		device_probe_and_attach(child);
3550 	}
3551 
3552 	return (0);
3553 }
3554 
3555 /**
3556  * @brief Helper function for implementing DEVICE_DETACH()
3557  *
3558  * This function can be used to help implement the DEVICE_DETACH() for
3559  * a bus. It calls device_detach() for each of the device's
3560  * children.
3561  */
3562 int
3563 bus_generic_detach(device_t dev)
3564 {
3565 	device_t child;
3566 	int error;
3567 
3568 	if (dev->state != DS_ATTACHED)
3569 		return (EBUSY);
3570 
3571 	TAILQ_FOREACH(child, &dev->children, link) {
3572 		if ((error = device_detach(child)) != 0)
3573 			return (error);
3574 	}
3575 
3576 	return (0);
3577 }
3578 
3579 /**
3580  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3581  *
3582  * This function can be used to help implement the DEVICE_SHUTDOWN()
3583  * for a bus. It calls device_shutdown() for each of the device's
3584  * children.
3585  */
3586 int
3587 bus_generic_shutdown(device_t dev)
3588 {
3589 	device_t child;
3590 
3591 	TAILQ_FOREACH(child, &dev->children, link) {
3592 		device_shutdown(child);
3593 	}
3594 
3595 	return (0);
3596 }
3597 
3598 /**
3599  * @brief Helper function for implementing DEVICE_SUSPEND()
3600  *
3601  * This function can be used to help implement the DEVICE_SUSPEND()
3602  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3603  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3604  * operation is aborted and any devices which were suspended are
3605  * resumed immediately by calling their DEVICE_RESUME() methods.
3606  */
3607 int
3608 bus_generic_suspend(device_t dev)
3609 {
3610 	int		error;
3611 	device_t	child, child2;
3612 
3613 	TAILQ_FOREACH(child, &dev->children, link) {
3614 		error = DEVICE_SUSPEND(child);
3615 		if (error) {
3616 			for (child2 = TAILQ_FIRST(&dev->children);
3617 			     child2 && child2 != child;
3618 			     child2 = TAILQ_NEXT(child2, link))
3619 				DEVICE_RESUME(child2);
3620 			return (error);
3621 		}
3622 	}
3623 	return (0);
3624 }
3625 
3626 /**
3627  * @brief Helper function for implementing DEVICE_RESUME()
3628  *
3629  * This function can be used to help implement the DEVICE_RESUME() for
3630  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3631  */
3632 int
3633 bus_generic_resume(device_t dev)
3634 {
3635 	device_t	child;
3636 
3637 	TAILQ_FOREACH(child, &dev->children, link) {
3638 		DEVICE_RESUME(child);
3639 		/* if resume fails, there's nothing we can usefully do... */
3640 	}
3641 	return (0);
3642 }
3643 
3644 /**
3645  * @brief Helper function for implementing BUS_PRINT_CHILD().
3646  *
3647  * This function prints the first part of the ascii representation of
3648  * @p child, including its name, unit and description (if any - see
3649  * device_set_desc()).
3650  *
3651  * @returns the number of characters printed
3652  */
3653 int
3654 bus_print_child_header(device_t dev, device_t child)
3655 {
3656 	int	retval = 0;
3657 
3658 	if (device_get_desc(child)) {
3659 		retval += device_printf(child, "<%s>", device_get_desc(child));
3660 	} else {
3661 		retval += printf("%s", device_get_nameunit(child));
3662 	}
3663 
3664 	return (retval);
3665 }
3666 
3667 /**
3668  * @brief Helper function for implementing BUS_PRINT_CHILD().
3669  *
3670  * This function prints the last part of the ascii representation of
3671  * @p child, which consists of the string @c " on " followed by the
3672  * name and unit of the @p dev.
3673  *
3674  * @returns the number of characters printed
3675  */
3676 int
3677 bus_print_child_footer(device_t dev, device_t child)
3678 {
3679 	return (printf(" on %s\n", device_get_nameunit(dev)));
3680 }
3681 
3682 /**
3683  * @brief Helper function for implementing BUS_PRINT_CHILD().
3684  *
3685  * This function simply calls bus_print_child_header() followed by
3686  * bus_print_child_footer().
3687  *
3688  * @returns the number of characters printed
3689  */
3690 int
3691 bus_generic_print_child(device_t dev, device_t child)
3692 {
3693 	int	retval = 0;
3694 
3695 	retval += bus_print_child_header(dev, child);
3696 	retval += bus_print_child_footer(dev, child);
3697 
3698 	return (retval);
3699 }
3700 
3701 /**
3702  * @brief Stub function for implementing BUS_READ_IVAR().
3703  *
3704  * @returns ENOENT
3705  */
3706 int
3707 bus_generic_read_ivar(device_t dev, device_t child, int index,
3708     uintptr_t * result)
3709 {
3710 	return (ENOENT);
3711 }
3712 
3713 /**
3714  * @brief Stub function for implementing BUS_WRITE_IVAR().
3715  *
3716  * @returns ENOENT
3717  */
3718 int
3719 bus_generic_write_ivar(device_t dev, device_t child, int index,
3720     uintptr_t value)
3721 {
3722 	return (ENOENT);
3723 }
3724 
3725 /**
3726  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3727  *
3728  * @returns NULL
3729  */
3730 struct resource_list *
3731 bus_generic_get_resource_list(device_t dev, device_t child)
3732 {
3733 	return (NULL);
3734 }
3735 
3736 /**
3737  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3738  *
3739  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3740  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3741  * and then calls device_probe_and_attach() for each unattached child.
3742  */
3743 void
3744 bus_generic_driver_added(device_t dev, driver_t *driver)
3745 {
3746 	device_t child;
3747 
3748 	DEVICE_IDENTIFY(driver, dev);
3749 	TAILQ_FOREACH(child, &dev->children, link) {
3750 		if (child->state == DS_NOTPRESENT ||
3751 		    (child->flags & DF_REBID))
3752 			device_probe_and_attach(child);
3753 	}
3754 }
3755 
3756 /**
3757  * @brief Helper function for implementing BUS_NEW_PASS().
3758  *
3759  * This implementing of BUS_NEW_PASS() first calls the identify
3760  * routines for any drivers that probe at the current pass.  Then it
3761  * walks the list of devices for this bus.  If a device is already
3762  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3763  * device is not already attached, it attempts to attach a driver to
3764  * it.
3765  */
3766 void
3767 bus_generic_new_pass(device_t dev)
3768 {
3769 	driverlink_t dl;
3770 	devclass_t dc;
3771 	device_t child;
3772 
3773 	dc = dev->devclass;
3774 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3775 		if (dl->pass == bus_current_pass)
3776 			DEVICE_IDENTIFY(dl->driver, dev);
3777 	}
3778 	TAILQ_FOREACH(child, &dev->children, link) {
3779 		if (child->state >= DS_ATTACHED)
3780 			BUS_NEW_PASS(child);
3781 		else if (child->state == DS_NOTPRESENT)
3782 			device_probe_and_attach(child);
3783 	}
3784 }
3785 
3786 /**
3787  * @brief Helper function for implementing BUS_SETUP_INTR().
3788  *
3789  * This simple implementation of BUS_SETUP_INTR() simply calls the
3790  * BUS_SETUP_INTR() method of the parent of @p dev.
3791  */
3792 int
3793 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3794     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3795     void **cookiep)
3796 {
3797 	/* Propagate up the bus hierarchy until someone handles it. */
3798 	if (dev->parent)
3799 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3800 		    filter, intr, arg, cookiep));
3801 	return (EINVAL);
3802 }
3803 
3804 /**
3805  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3806  *
3807  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3808  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3809  */
3810 int
3811 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3812     void *cookie)
3813 {
3814 	/* Propagate up the bus hierarchy until someone handles it. */
3815 	if (dev->parent)
3816 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3817 	return (EINVAL);
3818 }
3819 
3820 /**
3821  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3822  *
3823  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3824  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3825  */
3826 int
3827 bus_generic_adjust_resource(device_t dev, device_t child, int type,
3828     struct resource *r, u_long start, u_long end)
3829 {
3830 	/* Propagate up the bus hierarchy until someone handles it. */
3831 	if (dev->parent)
3832 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3833 		    end));
3834 	return (EINVAL);
3835 }
3836 
3837 /**
3838  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3839  *
3840  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3841  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3842  */
3843 struct resource *
3844 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3845     u_long start, u_long end, u_long count, u_int flags)
3846 {
3847 	/* Propagate up the bus hierarchy until someone handles it. */
3848 	if (dev->parent)
3849 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3850 		    start, end, count, flags));
3851 	return (NULL);
3852 }
3853 
3854 /**
3855  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3856  *
3857  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3858  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3859  */
3860 int
3861 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3862     struct resource *r)
3863 {
3864 	/* Propagate up the bus hierarchy until someone handles it. */
3865 	if (dev->parent)
3866 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3867 		    r));
3868 	return (EINVAL);
3869 }
3870 
3871 /**
3872  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3873  *
3874  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3875  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3876  */
3877 int
3878 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3879     struct resource *r)
3880 {
3881 	/* Propagate up the bus hierarchy until someone handles it. */
3882 	if (dev->parent)
3883 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3884 		    r));
3885 	return (EINVAL);
3886 }
3887 
3888 /**
3889  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3890  *
3891  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3892  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3893  */
3894 int
3895 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3896     int rid, struct resource *r)
3897 {
3898 	/* Propagate up the bus hierarchy until someone handles it. */
3899 	if (dev->parent)
3900 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3901 		    r));
3902 	return (EINVAL);
3903 }
3904 
3905 /**
3906  * @brief Helper function for implementing BUS_BIND_INTR().
3907  *
3908  * This simple implementation of BUS_BIND_INTR() simply calls the
3909  * BUS_BIND_INTR() method of the parent of @p dev.
3910  */
3911 int
3912 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3913     int cpu)
3914 {
3915 
3916 	/* Propagate up the bus hierarchy until someone handles it. */
3917 	if (dev->parent)
3918 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3919 	return (EINVAL);
3920 }
3921 
3922 /**
3923  * @brief Helper function for implementing BUS_CONFIG_INTR().
3924  *
3925  * This simple implementation of BUS_CONFIG_INTR() simply calls the
3926  * BUS_CONFIG_INTR() method of the parent of @p dev.
3927  */
3928 int
3929 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3930     enum intr_polarity pol)
3931 {
3932 
3933 	/* Propagate up the bus hierarchy until someone handles it. */
3934 	if (dev->parent)
3935 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3936 	return (EINVAL);
3937 }
3938 
3939 /**
3940  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3941  *
3942  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3943  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3944  */
3945 int
3946 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3947     void *cookie, const char *descr)
3948 {
3949 
3950 	/* Propagate up the bus hierarchy until someone handles it. */
3951 	if (dev->parent)
3952 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3953 		    descr));
3954 	return (EINVAL);
3955 }
3956 
3957 /**
3958  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3959  *
3960  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3961  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3962  */
3963 bus_dma_tag_t
3964 bus_generic_get_dma_tag(device_t dev, device_t child)
3965 {
3966 
3967 	/* Propagate up the bus hierarchy until someone handles it. */
3968 	if (dev->parent != NULL)
3969 		return (BUS_GET_DMA_TAG(dev->parent, child));
3970 	return (NULL);
3971 }
3972 
3973 /**
3974  * @brief Helper function for implementing BUS_GET_RESOURCE().
3975  *
3976  * This implementation of BUS_GET_RESOURCE() uses the
3977  * resource_list_find() function to do most of the work. It calls
3978  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3979  * search.
3980  */
3981 int
3982 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3983     u_long *startp, u_long *countp)
3984 {
3985 	struct resource_list *		rl = NULL;
3986 	struct resource_list_entry *	rle = NULL;
3987 
3988 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3989 	if (!rl)
3990 		return (EINVAL);
3991 
3992 	rle = resource_list_find(rl, type, rid);
3993 	if (!rle)
3994 		return (ENOENT);
3995 
3996 	if (startp)
3997 		*startp = rle->start;
3998 	if (countp)
3999 		*countp = rle->count;
4000 
4001 	return (0);
4002 }
4003 
4004 /**
4005  * @brief Helper function for implementing BUS_SET_RESOURCE().
4006  *
4007  * This implementation of BUS_SET_RESOURCE() uses the
4008  * resource_list_add() function to do most of the work. It calls
4009  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4010  * edit.
4011  */
4012 int
4013 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4014     u_long start, u_long count)
4015 {
4016 	struct resource_list *		rl = NULL;
4017 
4018 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4019 	if (!rl)
4020 		return (EINVAL);
4021 
4022 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4023 
4024 	return (0);
4025 }
4026 
4027 /**
4028  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4029  *
4030  * This implementation of BUS_DELETE_RESOURCE() uses the
4031  * resource_list_delete() function to do most of the work. It calls
4032  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4033  * edit.
4034  */
4035 void
4036 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4037 {
4038 	struct resource_list *		rl = NULL;
4039 
4040 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4041 	if (!rl)
4042 		return;
4043 
4044 	resource_list_delete(rl, type, rid);
4045 
4046 	return;
4047 }
4048 
4049 /**
4050  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4051  *
4052  * This implementation of BUS_RELEASE_RESOURCE() uses the
4053  * resource_list_release() function to do most of the work. It calls
4054  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4055  */
4056 int
4057 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4058     int rid, struct resource *r)
4059 {
4060 	struct resource_list *		rl = NULL;
4061 
4062 	if (device_get_parent(child) != dev)
4063 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4064 		    type, rid, r));
4065 
4066 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4067 	if (!rl)
4068 		return (EINVAL);
4069 
4070 	return (resource_list_release(rl, dev, child, type, rid, r));
4071 }
4072 
4073 /**
4074  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4075  *
4076  * This implementation of BUS_ALLOC_RESOURCE() uses the
4077  * resource_list_alloc() function to do most of the work. It calls
4078  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4079  */
4080 struct resource *
4081 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4082     int *rid, u_long start, u_long end, u_long count, u_int flags)
4083 {
4084 	struct resource_list *		rl = NULL;
4085 
4086 	if (device_get_parent(child) != dev)
4087 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4088 		    type, rid, start, end, count, flags));
4089 
4090 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4091 	if (!rl)
4092 		return (NULL);
4093 
4094 	return (resource_list_alloc(rl, dev, child, type, rid,
4095 	    start, end, count, flags));
4096 }
4097 
4098 /**
4099  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4100  *
4101  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4102  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4103  */
4104 int
4105 bus_generic_child_present(device_t dev, device_t child)
4106 {
4107 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4108 }
4109 
4110 /*
4111  * Some convenience functions to make it easier for drivers to use the
4112  * resource-management functions.  All these really do is hide the
4113  * indirection through the parent's method table, making for slightly
4114  * less-wordy code.  In the future, it might make sense for this code
4115  * to maintain some sort of a list of resources allocated by each device.
4116  */
4117 
4118 int
4119 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4120     struct resource **res)
4121 {
4122 	int i;
4123 
4124 	for (i = 0; rs[i].type != -1; i++)
4125 		res[i] = NULL;
4126 	for (i = 0; rs[i].type != -1; i++) {
4127 		res[i] = bus_alloc_resource_any(dev,
4128 		    rs[i].type, &rs[i].rid, rs[i].flags);
4129 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4130 			bus_release_resources(dev, rs, res);
4131 			return (ENXIO);
4132 		}
4133 	}
4134 	return (0);
4135 }
4136 
4137 void
4138 bus_release_resources(device_t dev, const struct resource_spec *rs,
4139     struct resource **res)
4140 {
4141 	int i;
4142 
4143 	for (i = 0; rs[i].type != -1; i++)
4144 		if (res[i] != NULL) {
4145 			bus_release_resource(
4146 			    dev, rs[i].type, rs[i].rid, res[i]);
4147 			res[i] = NULL;
4148 		}
4149 }
4150 
4151 /**
4152  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4153  *
4154  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4155  * parent of @p dev.
4156  */
4157 struct resource *
4158 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
4159     u_long count, u_int flags)
4160 {
4161 	if (dev->parent == NULL)
4162 		return (NULL);
4163 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4164 	    count, flags));
4165 }
4166 
4167 /**
4168  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4169  *
4170  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4171  * parent of @p dev.
4172  */
4173 int
4174 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
4175     u_long end)
4176 {
4177 	if (dev->parent == NULL)
4178 		return (EINVAL);
4179 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4180 }
4181 
4182 /**
4183  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4184  *
4185  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4186  * parent of @p dev.
4187  */
4188 int
4189 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4190 {
4191 	if (dev->parent == NULL)
4192 		return (EINVAL);
4193 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4194 }
4195 
4196 /**
4197  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4198  *
4199  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4200  * parent of @p dev.
4201  */
4202 int
4203 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4204 {
4205 	if (dev->parent == NULL)
4206 		return (EINVAL);
4207 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4208 }
4209 
4210 /**
4211  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4212  *
4213  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4214  * parent of @p dev.
4215  */
4216 int
4217 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4218 {
4219 	if (dev->parent == NULL)
4220 		return (EINVAL);
4221 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4222 }
4223 
4224 /**
4225  * @brief Wrapper function for BUS_SETUP_INTR().
4226  *
4227  * This function simply calls the BUS_SETUP_INTR() method of the
4228  * parent of @p dev.
4229  */
4230 int
4231 bus_setup_intr(device_t dev, struct resource *r, int flags,
4232     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4233 {
4234 	int error;
4235 
4236 	if (dev->parent == NULL)
4237 		return (EINVAL);
4238 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4239 	    arg, cookiep);
4240 	if (error != 0)
4241 		return (error);
4242 	if (handler != NULL && !(flags & INTR_MPSAFE))
4243 		device_printf(dev, "[GIANT-LOCKED]\n");
4244 	return (0);
4245 }
4246 
4247 /**
4248  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4249  *
4250  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4251  * parent of @p dev.
4252  */
4253 int
4254 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4255 {
4256 	if (dev->parent == NULL)
4257 		return (EINVAL);
4258 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4259 }
4260 
4261 /**
4262  * @brief Wrapper function for BUS_BIND_INTR().
4263  *
4264  * This function simply calls the BUS_BIND_INTR() method of the
4265  * parent of @p dev.
4266  */
4267 int
4268 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4269 {
4270 	if (dev->parent == NULL)
4271 		return (EINVAL);
4272 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4273 }
4274 
4275 /**
4276  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4277  *
4278  * This function first formats the requested description into a
4279  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4280  * the parent of @p dev.
4281  */
4282 int
4283 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4284     const char *fmt, ...)
4285 {
4286 	va_list ap;
4287 	char descr[MAXCOMLEN + 1];
4288 
4289 	if (dev->parent == NULL)
4290 		return (EINVAL);
4291 	va_start(ap, fmt);
4292 	vsnprintf(descr, sizeof(descr), fmt, ap);
4293 	va_end(ap);
4294 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4295 }
4296 
4297 /**
4298  * @brief Wrapper function for BUS_SET_RESOURCE().
4299  *
4300  * This function simply calls the BUS_SET_RESOURCE() method of the
4301  * parent of @p dev.
4302  */
4303 int
4304 bus_set_resource(device_t dev, int type, int rid,
4305     u_long start, u_long count)
4306 {
4307 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4308 	    start, count));
4309 }
4310 
4311 /**
4312  * @brief Wrapper function for BUS_GET_RESOURCE().
4313  *
4314  * This function simply calls the BUS_GET_RESOURCE() method of the
4315  * parent of @p dev.
4316  */
4317 int
4318 bus_get_resource(device_t dev, int type, int rid,
4319     u_long *startp, u_long *countp)
4320 {
4321 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4322 	    startp, countp));
4323 }
4324 
4325 /**
4326  * @brief Wrapper function for BUS_GET_RESOURCE().
4327  *
4328  * This function simply calls the BUS_GET_RESOURCE() method of the
4329  * parent of @p dev and returns the start value.
4330  */
4331 u_long
4332 bus_get_resource_start(device_t dev, int type, int rid)
4333 {
4334 	u_long start, count;
4335 	int error;
4336 
4337 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4338 	    &start, &count);
4339 	if (error)
4340 		return (0);
4341 	return (start);
4342 }
4343 
4344 /**
4345  * @brief Wrapper function for BUS_GET_RESOURCE().
4346  *
4347  * This function simply calls the BUS_GET_RESOURCE() method of the
4348  * parent of @p dev and returns the count value.
4349  */
4350 u_long
4351 bus_get_resource_count(device_t dev, int type, int rid)
4352 {
4353 	u_long start, count;
4354 	int error;
4355 
4356 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4357 	    &start, &count);
4358 	if (error)
4359 		return (0);
4360 	return (count);
4361 }
4362 
4363 /**
4364  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4365  *
4366  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4367  * parent of @p dev.
4368  */
4369 void
4370 bus_delete_resource(device_t dev, int type, int rid)
4371 {
4372 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4373 }
4374 
4375 /**
4376  * @brief Wrapper function for BUS_CHILD_PRESENT().
4377  *
4378  * This function simply calls the BUS_CHILD_PRESENT() method of the
4379  * parent of @p dev.
4380  */
4381 int
4382 bus_child_present(device_t child)
4383 {
4384 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4385 }
4386 
4387 /**
4388  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4389  *
4390  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4391  * parent of @p dev.
4392  */
4393 int
4394 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4395 {
4396 	device_t parent;
4397 
4398 	parent = device_get_parent(child);
4399 	if (parent == NULL) {
4400 		*buf = '\0';
4401 		return (0);
4402 	}
4403 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4404 }
4405 
4406 /**
4407  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4408  *
4409  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4410  * parent of @p dev.
4411  */
4412 int
4413 bus_child_location_str(device_t child, char *buf, size_t buflen)
4414 {
4415 	device_t parent;
4416 
4417 	parent = device_get_parent(child);
4418 	if (parent == NULL) {
4419 		*buf = '\0';
4420 		return (0);
4421 	}
4422 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4423 }
4424 
4425 /**
4426  * @brief Wrapper function for BUS_GET_DMA_TAG().
4427  *
4428  * This function simply calls the BUS_GET_DMA_TAG() method of the
4429  * parent of @p dev.
4430  */
4431 bus_dma_tag_t
4432 bus_get_dma_tag(device_t dev)
4433 {
4434 	device_t parent;
4435 
4436 	parent = device_get_parent(dev);
4437 	if (parent == NULL)
4438 		return (NULL);
4439 	return (BUS_GET_DMA_TAG(parent, dev));
4440 }
4441 
4442 /* Resume all devices and then notify userland that we're up again. */
4443 static int
4444 root_resume(device_t dev)
4445 {
4446 	int error;
4447 
4448 	error = bus_generic_resume(dev);
4449 	if (error == 0)
4450 		devctl_notify("kern", "power", "resume", NULL);
4451 	return (error);
4452 }
4453 
4454 static int
4455 root_print_child(device_t dev, device_t child)
4456 {
4457 	int	retval = 0;
4458 
4459 	retval += bus_print_child_header(dev, child);
4460 	retval += printf("\n");
4461 
4462 	return (retval);
4463 }
4464 
4465 static int
4466 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4467     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4468 {
4469 	/*
4470 	 * If an interrupt mapping gets to here something bad has happened.
4471 	 */
4472 	panic("root_setup_intr");
4473 }
4474 
4475 /*
4476  * If we get here, assume that the device is permanant and really is
4477  * present in the system.  Removable bus drivers are expected to intercept
4478  * this call long before it gets here.  We return -1 so that drivers that
4479  * really care can check vs -1 or some ERRNO returned higher in the food
4480  * chain.
4481  */
4482 static int
4483 root_child_present(device_t dev, device_t child)
4484 {
4485 	return (-1);
4486 }
4487 
4488 static kobj_method_t root_methods[] = {
4489 	/* Device interface */
4490 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4491 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4492 	KOBJMETHOD(device_resume,	root_resume),
4493 
4494 	/* Bus interface */
4495 	KOBJMETHOD(bus_print_child,	root_print_child),
4496 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4497 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4498 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4499 	KOBJMETHOD(bus_child_present,	root_child_present),
4500 
4501 	KOBJMETHOD_END
4502 };
4503 
4504 static driver_t root_driver = {
4505 	"root",
4506 	root_methods,
4507 	1,			/* no softc */
4508 };
4509 
4510 device_t	root_bus;
4511 devclass_t	root_devclass;
4512 
4513 static int
4514 root_bus_module_handler(module_t mod, int what, void* arg)
4515 {
4516 	switch (what) {
4517 	case MOD_LOAD:
4518 		TAILQ_INIT(&bus_data_devices);
4519 		kobj_class_compile((kobj_class_t) &root_driver);
4520 		root_bus = make_device(NULL, "root", 0);
4521 		root_bus->desc = "System root bus";
4522 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4523 		root_bus->driver = &root_driver;
4524 		root_bus->state = DS_ATTACHED;
4525 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4526 		devinit();
4527 		return (0);
4528 
4529 	case MOD_SHUTDOWN:
4530 		device_shutdown(root_bus);
4531 		return (0);
4532 	default:
4533 		return (EOPNOTSUPP);
4534 	}
4535 
4536 	return (0);
4537 }
4538 
4539 static moduledata_t root_bus_mod = {
4540 	"rootbus",
4541 	root_bus_module_handler,
4542 	NULL
4543 };
4544 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4545 
4546 /**
4547  * @brief Automatically configure devices
4548  *
4549  * This function begins the autoconfiguration process by calling
4550  * device_probe_and_attach() for each child of the @c root0 device.
4551  */
4552 void
4553 root_bus_configure(void)
4554 {
4555 
4556 	PDEBUG(("."));
4557 
4558 	/* Eventually this will be split up, but this is sufficient for now. */
4559 	bus_set_pass(BUS_PASS_DEFAULT);
4560 }
4561 
4562 /**
4563  * @brief Module handler for registering device drivers
4564  *
4565  * This module handler is used to automatically register device
4566  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4567  * devclass_add_driver() for the driver described by the
4568  * driver_module_data structure pointed to by @p arg
4569  */
4570 int
4571 driver_module_handler(module_t mod, int what, void *arg)
4572 {
4573 	struct driver_module_data *dmd;
4574 	devclass_t bus_devclass;
4575 	kobj_class_t driver;
4576 	int error, pass;
4577 
4578 	dmd = (struct driver_module_data *)arg;
4579 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4580 	error = 0;
4581 
4582 	switch (what) {
4583 	case MOD_LOAD:
4584 		if (dmd->dmd_chainevh)
4585 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4586 
4587 		pass = dmd->dmd_pass;
4588 		driver = dmd->dmd_driver;
4589 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4590 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4591 		error = devclass_add_driver(bus_devclass, driver, pass,
4592 		    dmd->dmd_devclass);
4593 		break;
4594 
4595 	case MOD_UNLOAD:
4596 		PDEBUG(("Unloading module: driver %s from bus %s",
4597 		    DRIVERNAME(dmd->dmd_driver),
4598 		    dmd->dmd_busname));
4599 		error = devclass_delete_driver(bus_devclass,
4600 		    dmd->dmd_driver);
4601 
4602 		if (!error && dmd->dmd_chainevh)
4603 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4604 		break;
4605 	case MOD_QUIESCE:
4606 		PDEBUG(("Quiesce module: driver %s from bus %s",
4607 		    DRIVERNAME(dmd->dmd_driver),
4608 		    dmd->dmd_busname));
4609 		error = devclass_quiesce_driver(bus_devclass,
4610 		    dmd->dmd_driver);
4611 
4612 		if (!error && dmd->dmd_chainevh)
4613 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4614 		break;
4615 	default:
4616 		error = EOPNOTSUPP;
4617 		break;
4618 	}
4619 
4620 	return (error);
4621 }
4622 
4623 /**
4624  * @brief Enumerate all hinted devices for this bus.
4625  *
4626  * Walks through the hints for this bus and calls the bus_hinted_child
4627  * routine for each one it fines.  It searches first for the specific
4628  * bus that's being probed for hinted children (eg isa0), and then for
4629  * generic children (eg isa).
4630  *
4631  * @param	dev	bus device to enumerate
4632  */
4633 void
4634 bus_enumerate_hinted_children(device_t bus)
4635 {
4636 	int i;
4637 	const char *dname, *busname;
4638 	int dunit;
4639 
4640 	/*
4641 	 * enumerate all devices on the specific bus
4642 	 */
4643 	busname = device_get_nameunit(bus);
4644 	i = 0;
4645 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4646 		BUS_HINTED_CHILD(bus, dname, dunit);
4647 
4648 	/*
4649 	 * and all the generic ones.
4650 	 */
4651 	busname = device_get_name(bus);
4652 	i = 0;
4653 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4654 		BUS_HINTED_CHILD(bus, dname, dunit);
4655 }
4656 
4657 #ifdef BUS_DEBUG
4658 
4659 /* the _short versions avoid iteration by not calling anything that prints
4660  * more than oneliners. I love oneliners.
4661  */
4662 
4663 static void
4664 print_device_short(device_t dev, int indent)
4665 {
4666 	if (!dev)
4667 		return;
4668 
4669 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4670 	    dev->unit, dev->desc,
4671 	    (dev->parent? "":"no "),
4672 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4673 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4674 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4675 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4676 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4677 	    (dev->flags&DF_REBID? "rebiddable,":""),
4678 	    (dev->ivars? "":"no "),
4679 	    (dev->softc? "":"no "),
4680 	    dev->busy));
4681 }
4682 
4683 static void
4684 print_device(device_t dev, int indent)
4685 {
4686 	if (!dev)
4687 		return;
4688 
4689 	print_device_short(dev, indent);
4690 
4691 	indentprintf(("Parent:\n"));
4692 	print_device_short(dev->parent, indent+1);
4693 	indentprintf(("Driver:\n"));
4694 	print_driver_short(dev->driver, indent+1);
4695 	indentprintf(("Devclass:\n"));
4696 	print_devclass_short(dev->devclass, indent+1);
4697 }
4698 
4699 void
4700 print_device_tree_short(device_t dev, int indent)
4701 /* print the device and all its children (indented) */
4702 {
4703 	device_t child;
4704 
4705 	if (!dev)
4706 		return;
4707 
4708 	print_device_short(dev, indent);
4709 
4710 	TAILQ_FOREACH(child, &dev->children, link) {
4711 		print_device_tree_short(child, indent+1);
4712 	}
4713 }
4714 
4715 void
4716 print_device_tree(device_t dev, int indent)
4717 /* print the device and all its children (indented) */
4718 {
4719 	device_t child;
4720 
4721 	if (!dev)
4722 		return;
4723 
4724 	print_device(dev, indent);
4725 
4726 	TAILQ_FOREACH(child, &dev->children, link) {
4727 		print_device_tree(child, indent+1);
4728 	}
4729 }
4730 
4731 static void
4732 print_driver_short(driver_t *driver, int indent)
4733 {
4734 	if (!driver)
4735 		return;
4736 
4737 	indentprintf(("driver %s: softc size = %zd\n",
4738 	    driver->name, driver->size));
4739 }
4740 
4741 static void
4742 print_driver(driver_t *driver, int indent)
4743 {
4744 	if (!driver)
4745 		return;
4746 
4747 	print_driver_short(driver, indent);
4748 }
4749 
4750 static void
4751 print_driver_list(driver_list_t drivers, int indent)
4752 {
4753 	driverlink_t driver;
4754 
4755 	TAILQ_FOREACH(driver, &drivers, link) {
4756 		print_driver(driver->driver, indent);
4757 	}
4758 }
4759 
4760 static void
4761 print_devclass_short(devclass_t dc, int indent)
4762 {
4763 	if ( !dc )
4764 		return;
4765 
4766 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4767 }
4768 
4769 static void
4770 print_devclass(devclass_t dc, int indent)
4771 {
4772 	int i;
4773 
4774 	if ( !dc )
4775 		return;
4776 
4777 	print_devclass_short(dc, indent);
4778 	indentprintf(("Drivers:\n"));
4779 	print_driver_list(dc->drivers, indent+1);
4780 
4781 	indentprintf(("Devices:\n"));
4782 	for (i = 0; i < dc->maxunit; i++)
4783 		if (dc->devices[i])
4784 			print_device(dc->devices[i], indent+1);
4785 }
4786 
4787 void
4788 print_devclass_list_short(void)
4789 {
4790 	devclass_t dc;
4791 
4792 	printf("Short listing of devclasses, drivers & devices:\n");
4793 	TAILQ_FOREACH(dc, &devclasses, link) {
4794 		print_devclass_short(dc, 0);
4795 	}
4796 }
4797 
4798 void
4799 print_devclass_list(void)
4800 {
4801 	devclass_t dc;
4802 
4803 	printf("Full listing of devclasses, drivers & devices:\n");
4804 	TAILQ_FOREACH(dc, &devclasses, link) {
4805 		print_devclass(dc, 0);
4806 	}
4807 }
4808 
4809 #endif
4810 
4811 /*
4812  * User-space access to the device tree.
4813  *
4814  * We implement a small set of nodes:
4815  *
4816  * hw.bus			Single integer read method to obtain the
4817  *				current generation count.
4818  * hw.bus.devices		Reads the entire device tree in flat space.
4819  * hw.bus.rman			Resource manager interface
4820  *
4821  * We might like to add the ability to scan devclasses and/or drivers to
4822  * determine what else is currently loaded/available.
4823  */
4824 
4825 static int
4826 sysctl_bus(SYSCTL_HANDLER_ARGS)
4827 {
4828 	struct u_businfo	ubus;
4829 
4830 	ubus.ub_version = BUS_USER_VERSION;
4831 	ubus.ub_generation = bus_data_generation;
4832 
4833 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4834 }
4835 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4836     "bus-related data");
4837 
4838 static int
4839 sysctl_devices(SYSCTL_HANDLER_ARGS)
4840 {
4841 	int			*name = (int *)arg1;
4842 	u_int			namelen = arg2;
4843 	int			index;
4844 	struct device		*dev;
4845 	struct u_device		udev;	/* XXX this is a bit big */
4846 	int			error;
4847 
4848 	if (namelen != 2)
4849 		return (EINVAL);
4850 
4851 	if (bus_data_generation_check(name[0]))
4852 		return (EINVAL);
4853 
4854 	index = name[1];
4855 
4856 	/*
4857 	 * Scan the list of devices, looking for the requested index.
4858 	 */
4859 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4860 		if (index-- == 0)
4861 			break;
4862 	}
4863 	if (dev == NULL)
4864 		return (ENOENT);
4865 
4866 	/*
4867 	 * Populate the return array.
4868 	 */
4869 	bzero(&udev, sizeof(udev));
4870 	udev.dv_handle = (uintptr_t)dev;
4871 	udev.dv_parent = (uintptr_t)dev->parent;
4872 	if (dev->nameunit != NULL)
4873 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4874 	if (dev->desc != NULL)
4875 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4876 	if (dev->driver != NULL && dev->driver->name != NULL)
4877 		strlcpy(udev.dv_drivername, dev->driver->name,
4878 		    sizeof(udev.dv_drivername));
4879 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4880 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4881 	udev.dv_devflags = dev->devflags;
4882 	udev.dv_flags = dev->flags;
4883 	udev.dv_state = dev->state;
4884 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4885 	return (error);
4886 }
4887 
4888 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4889     "system device tree");
4890 
4891 int
4892 bus_data_generation_check(int generation)
4893 {
4894 	if (generation != bus_data_generation)
4895 		return (1);
4896 
4897 	/* XXX generate optimised lists here? */
4898 	return (0);
4899 }
4900 
4901 void
4902 bus_data_generation_update(void)
4903 {
4904 	bus_data_generation++;
4905 }
4906 
4907 int
4908 bus_free_resource(device_t dev, int type, struct resource *r)
4909 {
4910 	if (r == NULL)
4911 		return (0);
4912 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4913 }
4914