1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/conf.h> 34 #include <sys/filio.h> 35 #include <sys/lock.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/mutex.h> 41 #include <sys/poll.h> 42 #include <sys/proc.h> 43 #include <sys/condvar.h> 44 #include <sys/queue.h> 45 #include <machine/bus.h> 46 #include <sys/rman.h> 47 #include <sys/selinfo.h> 48 #include <sys/signalvar.h> 49 #include <sys/sysctl.h> 50 #include <sys/systm.h> 51 #include <sys/uio.h> 52 #include <sys/bus.h> 53 #include <sys/interrupt.h> 54 55 #include <machine/stdarg.h> 56 57 #include <vm/uma.h> 58 59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 61 62 /* 63 * Used to attach drivers to devclasses. 64 */ 65 typedef struct driverlink *driverlink_t; 66 struct driverlink { 67 kobj_class_t driver; 68 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 69 }; 70 71 /* 72 * Forward declarations 73 */ 74 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 75 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 76 typedef TAILQ_HEAD(device_list, device) device_list_t; 77 78 struct devclass { 79 TAILQ_ENTRY(devclass) link; 80 devclass_t parent; /* parent in devclass hierarchy */ 81 driver_list_t drivers; /* bus devclasses store drivers for bus */ 82 char *name; 83 device_t *devices; /* array of devices indexed by unit */ 84 int maxunit; /* size of devices array */ 85 86 struct sysctl_ctx_list sysctl_ctx; 87 struct sysctl_oid *sysctl_tree; 88 }; 89 90 /** 91 * @brief Implementation of device. 92 */ 93 struct device { 94 /* 95 * A device is a kernel object. The first field must be the 96 * current ops table for the object. 97 */ 98 KOBJ_FIELDS; 99 100 /* 101 * Device hierarchy. 102 */ 103 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 104 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 105 device_t parent; /**< parent of this device */ 106 device_list_t children; /**< list of child devices */ 107 108 /* 109 * Details of this device. 110 */ 111 driver_t *driver; /**< current driver */ 112 devclass_t devclass; /**< current device class */ 113 int unit; /**< current unit number */ 114 char* nameunit; /**< name+unit e.g. foodev0 */ 115 char* desc; /**< driver specific description */ 116 int busy; /**< count of calls to device_busy() */ 117 device_state_t state; /**< current device state */ 118 u_int32_t devflags; /**< api level flags for device_get_flags() */ 119 u_short flags; /**< internal device flags */ 120 #define DF_ENABLED 1 /* device should be probed/attached */ 121 #define DF_FIXEDCLASS 2 /* devclass specified at create time */ 122 #define DF_WILDCARD 4 /* unit was originally wildcard */ 123 #define DF_DESCMALLOCED 8 /* description was malloced */ 124 #define DF_QUIET 16 /* don't print verbose attach message */ 125 #define DF_DONENOMATCH 32 /* don't execute DEVICE_NOMATCH again */ 126 #define DF_EXTERNALSOFTC 64 /* softc not allocated by us */ 127 #define DF_REBID 128 /* Can rebid after attach */ 128 u_char order; /**< order from device_add_child_ordered() */ 129 u_char pad; 130 void *ivars; /**< instance variables */ 131 void *softc; /**< current driver's variables */ 132 133 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 134 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 135 }; 136 137 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 138 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 139 140 #ifdef BUS_DEBUG 141 142 static int bus_debug = 1; 143 TUNABLE_INT("bus.debug", &bus_debug); 144 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0, 145 "Debug bus code"); 146 147 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 148 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 149 #define DRIVERNAME(d) ((d)? d->name : "no driver") 150 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 151 152 /** 153 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 154 * prevent syslog from deleting initial spaces 155 */ 156 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 157 158 static void print_device_short(device_t dev, int indent); 159 static void print_device(device_t dev, int indent); 160 void print_device_tree_short(device_t dev, int indent); 161 void print_device_tree(device_t dev, int indent); 162 static void print_driver_short(driver_t *driver, int indent); 163 static void print_driver(driver_t *driver, int indent); 164 static void print_driver_list(driver_list_t drivers, int indent); 165 static void print_devclass_short(devclass_t dc, int indent); 166 static void print_devclass(devclass_t dc, int indent); 167 void print_devclass_list_short(void); 168 void print_devclass_list(void); 169 170 #else 171 /* Make the compiler ignore the function calls */ 172 #define PDEBUG(a) /* nop */ 173 #define DEVICENAME(d) /* nop */ 174 #define DRIVERNAME(d) /* nop */ 175 #define DEVCLANAME(d) /* nop */ 176 177 #define print_device_short(d,i) /* nop */ 178 #define print_device(d,i) /* nop */ 179 #define print_device_tree_short(d,i) /* nop */ 180 #define print_device_tree(d,i) /* nop */ 181 #define print_driver_short(d,i) /* nop */ 182 #define print_driver(d,i) /* nop */ 183 #define print_driver_list(d,i) /* nop */ 184 #define print_devclass_short(d,i) /* nop */ 185 #define print_devclass(d,i) /* nop */ 186 #define print_devclass_list_short() /* nop */ 187 #define print_devclass_list() /* nop */ 188 #endif 189 190 /* 191 * dev sysctl tree 192 */ 193 194 enum { 195 DEVCLASS_SYSCTL_PARENT, 196 }; 197 198 static int 199 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 200 { 201 devclass_t dc = (devclass_t)arg1; 202 const char *value; 203 204 switch (arg2) { 205 case DEVCLASS_SYSCTL_PARENT: 206 value = dc->parent ? dc->parent->name : ""; 207 break; 208 default: 209 return (EINVAL); 210 } 211 return (SYSCTL_OUT(req, value, strlen(value))); 212 } 213 214 static void 215 devclass_sysctl_init(devclass_t dc) 216 { 217 218 if (dc->sysctl_tree != NULL) 219 return; 220 sysctl_ctx_init(&dc->sysctl_ctx); 221 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 222 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 223 CTLFLAG_RD, NULL, ""); 224 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 225 OID_AUTO, "%parent", CTLFLAG_RD, 226 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 227 "parent class"); 228 } 229 230 enum { 231 DEVICE_SYSCTL_DESC, 232 DEVICE_SYSCTL_DRIVER, 233 DEVICE_SYSCTL_LOCATION, 234 DEVICE_SYSCTL_PNPINFO, 235 DEVICE_SYSCTL_PARENT, 236 }; 237 238 static int 239 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 240 { 241 device_t dev = (device_t)arg1; 242 const char *value; 243 char *buf; 244 int error; 245 246 buf = NULL; 247 switch (arg2) { 248 case DEVICE_SYSCTL_DESC: 249 value = dev->desc ? dev->desc : ""; 250 break; 251 case DEVICE_SYSCTL_DRIVER: 252 value = dev->driver ? dev->driver->name : ""; 253 break; 254 case DEVICE_SYSCTL_LOCATION: 255 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 256 bus_child_location_str(dev, buf, 1024); 257 break; 258 case DEVICE_SYSCTL_PNPINFO: 259 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 260 bus_child_pnpinfo_str(dev, buf, 1024); 261 break; 262 case DEVICE_SYSCTL_PARENT: 263 value = dev->parent ? dev->parent->nameunit : ""; 264 break; 265 default: 266 return (EINVAL); 267 } 268 error = SYSCTL_OUT(req, value, strlen(value)); 269 if (buf != NULL) 270 free(buf, M_BUS); 271 return (error); 272 } 273 274 static void 275 device_sysctl_init(device_t dev) 276 { 277 devclass_t dc = dev->devclass; 278 279 if (dev->sysctl_tree != NULL) 280 return; 281 devclass_sysctl_init(dc); 282 sysctl_ctx_init(&dev->sysctl_ctx); 283 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 284 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 285 dev->nameunit + strlen(dc->name), 286 CTLFLAG_RD, NULL, ""); 287 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 288 OID_AUTO, "%desc", CTLFLAG_RD, 289 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 290 "device description"); 291 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 292 OID_AUTO, "%driver", CTLFLAG_RD, 293 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 294 "device driver name"); 295 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 296 OID_AUTO, "%location", CTLFLAG_RD, 297 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 298 "device location relative to parent"); 299 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 300 OID_AUTO, "%pnpinfo", CTLFLAG_RD, 301 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 302 "device identification"); 303 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 304 OID_AUTO, "%parent", CTLFLAG_RD, 305 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 306 "parent device"); 307 } 308 309 static void 310 device_sysctl_update(device_t dev) 311 { 312 devclass_t dc = dev->devclass; 313 314 if (dev->sysctl_tree == NULL) 315 return; 316 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 317 } 318 319 static void 320 device_sysctl_fini(device_t dev) 321 { 322 if (dev->sysctl_tree == NULL) 323 return; 324 sysctl_ctx_free(&dev->sysctl_ctx); 325 dev->sysctl_tree = NULL; 326 } 327 328 /* 329 * /dev/devctl implementation 330 */ 331 332 /* 333 * This design allows only one reader for /dev/devctl. This is not desirable 334 * in the long run, but will get a lot of hair out of this implementation. 335 * Maybe we should make this device a clonable device. 336 * 337 * Also note: we specifically do not attach a device to the device_t tree 338 * to avoid potential chicken and egg problems. One could argue that all 339 * of this belongs to the root node. One could also further argue that the 340 * sysctl interface that we have not might more properly be an ioctl 341 * interface, but at this stage of the game, I'm not inclined to rock that 342 * boat. 343 * 344 * I'm also not sure that the SIGIO support is done correctly or not, as 345 * I copied it from a driver that had SIGIO support that likely hasn't been 346 * tested since 3.4 or 2.2.8! 347 */ 348 349 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 350 static int devctl_disable = 0; 351 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable); 352 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL, 353 0, sysctl_devctl_disable, "I", "devctl disable"); 354 355 static d_open_t devopen; 356 static d_close_t devclose; 357 static d_read_t devread; 358 static d_ioctl_t devioctl; 359 static d_poll_t devpoll; 360 361 static struct cdevsw dev_cdevsw = { 362 .d_version = D_VERSION, 363 .d_flags = D_NEEDGIANT, 364 .d_open = devopen, 365 .d_close = devclose, 366 .d_read = devread, 367 .d_ioctl = devioctl, 368 .d_poll = devpoll, 369 .d_name = "devctl", 370 }; 371 372 struct dev_event_info 373 { 374 char *dei_data; 375 TAILQ_ENTRY(dev_event_info) dei_link; 376 }; 377 378 TAILQ_HEAD(devq, dev_event_info); 379 380 static struct dev_softc 381 { 382 int inuse; 383 int nonblock; 384 struct mtx mtx; 385 struct cv cv; 386 struct selinfo sel; 387 struct devq devq; 388 struct proc *async_proc; 389 } devsoftc; 390 391 static struct cdev *devctl_dev; 392 393 static void 394 devinit(void) 395 { 396 devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, 397 "devctl"); 398 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 399 cv_init(&devsoftc.cv, "dev cv"); 400 TAILQ_INIT(&devsoftc.devq); 401 } 402 403 static int 404 devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td) 405 { 406 if (devsoftc.inuse) 407 return (EBUSY); 408 /* move to init */ 409 devsoftc.inuse = 1; 410 devsoftc.nonblock = 0; 411 devsoftc.async_proc = NULL; 412 return (0); 413 } 414 415 static int 416 devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td) 417 { 418 devsoftc.inuse = 0; 419 mtx_lock(&devsoftc.mtx); 420 cv_broadcast(&devsoftc.cv); 421 mtx_unlock(&devsoftc.mtx); 422 423 return (0); 424 } 425 426 /* 427 * The read channel for this device is used to report changes to 428 * userland in realtime. We are required to free the data as well as 429 * the n1 object because we allocate them separately. Also note that 430 * we return one record at a time. If you try to read this device a 431 * character at a time, you will lose the rest of the data. Listening 432 * programs are expected to cope. 433 */ 434 static int 435 devread(struct cdev *dev, struct uio *uio, int ioflag) 436 { 437 struct dev_event_info *n1; 438 int rv; 439 440 mtx_lock(&devsoftc.mtx); 441 while (TAILQ_EMPTY(&devsoftc.devq)) { 442 if (devsoftc.nonblock) { 443 mtx_unlock(&devsoftc.mtx); 444 return (EAGAIN); 445 } 446 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 447 if (rv) { 448 /* 449 * Need to translate ERESTART to EINTR here? -- jake 450 */ 451 mtx_unlock(&devsoftc.mtx); 452 return (rv); 453 } 454 } 455 n1 = TAILQ_FIRST(&devsoftc.devq); 456 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 457 mtx_unlock(&devsoftc.mtx); 458 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 459 free(n1->dei_data, M_BUS); 460 free(n1, M_BUS); 461 return (rv); 462 } 463 464 static int 465 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td) 466 { 467 switch (cmd) { 468 469 case FIONBIO: 470 if (*(int*)data) 471 devsoftc.nonblock = 1; 472 else 473 devsoftc.nonblock = 0; 474 return (0); 475 case FIOASYNC: 476 if (*(int*)data) 477 devsoftc.async_proc = td->td_proc; 478 else 479 devsoftc.async_proc = NULL; 480 return (0); 481 482 /* (un)Support for other fcntl() calls. */ 483 case FIOCLEX: 484 case FIONCLEX: 485 case FIONREAD: 486 case FIOSETOWN: 487 case FIOGETOWN: 488 default: 489 break; 490 } 491 return (ENOTTY); 492 } 493 494 static int 495 devpoll(struct cdev *dev, int events, d_thread_t *td) 496 { 497 int revents = 0; 498 499 mtx_lock(&devsoftc.mtx); 500 if (events & (POLLIN | POLLRDNORM)) { 501 if (!TAILQ_EMPTY(&devsoftc.devq)) 502 revents = events & (POLLIN | POLLRDNORM); 503 else 504 selrecord(td, &devsoftc.sel); 505 } 506 mtx_unlock(&devsoftc.mtx); 507 508 return (revents); 509 } 510 511 /** 512 * @brief Return whether the userland process is running 513 */ 514 boolean_t 515 devctl_process_running(void) 516 { 517 return (devsoftc.inuse == 1); 518 } 519 520 /** 521 * @brief Queue data to be read from the devctl device 522 * 523 * Generic interface to queue data to the devctl device. It is 524 * assumed that @p data is properly formatted. It is further assumed 525 * that @p data is allocated using the M_BUS malloc type. 526 */ 527 void 528 devctl_queue_data(char *data) 529 { 530 struct dev_event_info *n1 = NULL; 531 struct proc *p; 532 533 n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT); 534 if (n1 == NULL) 535 return; 536 n1->dei_data = data; 537 mtx_lock(&devsoftc.mtx); 538 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 539 cv_broadcast(&devsoftc.cv); 540 mtx_unlock(&devsoftc.mtx); 541 selwakeup(&devsoftc.sel); 542 p = devsoftc.async_proc; 543 if (p != NULL) { 544 PROC_LOCK(p); 545 psignal(p, SIGIO); 546 PROC_UNLOCK(p); 547 } 548 } 549 550 /** 551 * @brief Send a 'notification' to userland, using standard ways 552 */ 553 void 554 devctl_notify(const char *system, const char *subsystem, const char *type, 555 const char *data) 556 { 557 int len = 0; 558 char *msg; 559 560 if (system == NULL) 561 return; /* BOGUS! Must specify system. */ 562 if (subsystem == NULL) 563 return; /* BOGUS! Must specify subsystem. */ 564 if (type == NULL) 565 return; /* BOGUS! Must specify type. */ 566 len += strlen(" system=") + strlen(system); 567 len += strlen(" subsystem=") + strlen(subsystem); 568 len += strlen(" type=") + strlen(type); 569 /* add in the data message plus newline. */ 570 if (data != NULL) 571 len += strlen(data); 572 len += 3; /* '!', '\n', and NUL */ 573 msg = malloc(len, M_BUS, M_NOWAIT); 574 if (msg == NULL) 575 return; /* Drop it on the floor */ 576 if (data != NULL) 577 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 578 system, subsystem, type, data); 579 else 580 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 581 system, subsystem, type); 582 devctl_queue_data(msg); 583 } 584 585 /* 586 * Common routine that tries to make sending messages as easy as possible. 587 * We allocate memory for the data, copy strings into that, but do not 588 * free it unless there's an error. The dequeue part of the driver should 589 * free the data. We don't send data when the device is disabled. We do 590 * send data, even when we have no listeners, because we wish to avoid 591 * races relating to startup and restart of listening applications. 592 * 593 * devaddq is designed to string together the type of event, with the 594 * object of that event, plus the plug and play info and location info 595 * for that event. This is likely most useful for devices, but less 596 * useful for other consumers of this interface. Those should use 597 * the devctl_queue_data() interface instead. 598 */ 599 static void 600 devaddq(const char *type, const char *what, device_t dev) 601 { 602 char *data = NULL; 603 char *loc = NULL; 604 char *pnp = NULL; 605 const char *parstr; 606 607 if (devctl_disable) 608 return; 609 data = malloc(1024, M_BUS, M_NOWAIT); 610 if (data == NULL) 611 goto bad; 612 613 /* get the bus specific location of this device */ 614 loc = malloc(1024, M_BUS, M_NOWAIT); 615 if (loc == NULL) 616 goto bad; 617 *loc = '\0'; 618 bus_child_location_str(dev, loc, 1024); 619 620 /* Get the bus specific pnp info of this device */ 621 pnp = malloc(1024, M_BUS, M_NOWAIT); 622 if (pnp == NULL) 623 goto bad; 624 *pnp = '\0'; 625 bus_child_pnpinfo_str(dev, pnp, 1024); 626 627 /* Get the parent of this device, or / if high enough in the tree. */ 628 if (device_get_parent(dev) == NULL) 629 parstr = "."; /* Or '/' ? */ 630 else 631 parstr = device_get_nameunit(device_get_parent(dev)); 632 /* String it all together. */ 633 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 634 parstr); 635 free(loc, M_BUS); 636 free(pnp, M_BUS); 637 devctl_queue_data(data); 638 return; 639 bad: 640 free(pnp, M_BUS); 641 free(loc, M_BUS); 642 free(data, M_BUS); 643 return; 644 } 645 646 /* 647 * A device was added to the tree. We are called just after it successfully 648 * attaches (that is, probe and attach success for this device). No call 649 * is made if a device is merely parented into the tree. See devnomatch 650 * if probe fails. If attach fails, no notification is sent (but maybe 651 * we should have a different message for this). 652 */ 653 static void 654 devadded(device_t dev) 655 { 656 char *pnp = NULL; 657 char *tmp = NULL; 658 659 pnp = malloc(1024, M_BUS, M_NOWAIT); 660 if (pnp == NULL) 661 goto fail; 662 tmp = malloc(1024, M_BUS, M_NOWAIT); 663 if (tmp == NULL) 664 goto fail; 665 *pnp = '\0'; 666 bus_child_pnpinfo_str(dev, pnp, 1024); 667 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 668 devaddq("+", tmp, dev); 669 fail: 670 if (pnp != NULL) 671 free(pnp, M_BUS); 672 if (tmp != NULL) 673 free(tmp, M_BUS); 674 return; 675 } 676 677 /* 678 * A device was removed from the tree. We are called just before this 679 * happens. 680 */ 681 static void 682 devremoved(device_t dev) 683 { 684 char *pnp = NULL; 685 char *tmp = NULL; 686 687 pnp = malloc(1024, M_BUS, M_NOWAIT); 688 if (pnp == NULL) 689 goto fail; 690 tmp = malloc(1024, M_BUS, M_NOWAIT); 691 if (tmp == NULL) 692 goto fail; 693 *pnp = '\0'; 694 bus_child_pnpinfo_str(dev, pnp, 1024); 695 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 696 devaddq("-", tmp, dev); 697 fail: 698 if (pnp != NULL) 699 free(pnp, M_BUS); 700 if (tmp != NULL) 701 free(tmp, M_BUS); 702 return; 703 } 704 705 /* 706 * Called when there's no match for this device. This is only called 707 * the first time that no match happens, so we don't keep getitng this 708 * message. Should that prove to be undesirable, we can change it. 709 * This is called when all drivers that can attach to a given bus 710 * decline to accept this device. Other errrors may not be detected. 711 */ 712 static void 713 devnomatch(device_t dev) 714 { 715 devaddq("?", "", dev); 716 } 717 718 static int 719 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 720 { 721 struct dev_event_info *n1; 722 int dis, error; 723 724 dis = devctl_disable; 725 error = sysctl_handle_int(oidp, &dis, 0, req); 726 if (error || !req->newptr) 727 return (error); 728 mtx_lock(&devsoftc.mtx); 729 devctl_disable = dis; 730 if (dis) { 731 while (!TAILQ_EMPTY(&devsoftc.devq)) { 732 n1 = TAILQ_FIRST(&devsoftc.devq); 733 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 734 free(n1->dei_data, M_BUS); 735 free(n1, M_BUS); 736 } 737 } 738 mtx_unlock(&devsoftc.mtx); 739 return (0); 740 } 741 742 /* End of /dev/devctl code */ 743 744 static TAILQ_HEAD(,device) bus_data_devices; 745 static int bus_data_generation = 1; 746 747 static kobj_method_t null_methods[] = { 748 KOBJMETHOD_END 749 }; 750 751 DEFINE_CLASS(null, null_methods, 0); 752 753 /* 754 * Devclass implementation 755 */ 756 757 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 758 759 760 /** 761 * @internal 762 * @brief Find or create a device class 763 * 764 * If a device class with the name @p classname exists, return it, 765 * otherwise if @p create is non-zero create and return a new device 766 * class. 767 * 768 * If @p parentname is non-NULL, the parent of the devclass is set to 769 * the devclass of that name. 770 * 771 * @param classname the devclass name to find or create 772 * @param parentname the parent devclass name or @c NULL 773 * @param create non-zero to create a devclass 774 */ 775 static devclass_t 776 devclass_find_internal(const char *classname, const char *parentname, 777 int create) 778 { 779 devclass_t dc; 780 781 PDEBUG(("looking for %s", classname)); 782 if (!classname) 783 return (NULL); 784 785 TAILQ_FOREACH(dc, &devclasses, link) { 786 if (!strcmp(dc->name, classname)) 787 break; 788 } 789 790 if (create && !dc) { 791 PDEBUG(("creating %s", classname)); 792 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 793 M_BUS, M_NOWAIT|M_ZERO); 794 if (!dc) 795 return (NULL); 796 dc->parent = NULL; 797 dc->name = (char*) (dc + 1); 798 strcpy(dc->name, classname); 799 TAILQ_INIT(&dc->drivers); 800 TAILQ_INSERT_TAIL(&devclasses, dc, link); 801 802 bus_data_generation_update(); 803 } 804 805 /* 806 * If a parent class is specified, then set that as our parent so 807 * that this devclass will support drivers for the parent class as 808 * well. If the parent class has the same name don't do this though 809 * as it creates a cycle that can trigger an infinite loop in 810 * device_probe_child() if a device exists for which there is no 811 * suitable driver. 812 */ 813 if (parentname && dc && !dc->parent && 814 strcmp(classname, parentname) != 0) { 815 dc->parent = devclass_find_internal(parentname, NULL, FALSE); 816 } 817 818 return (dc); 819 } 820 821 /** 822 * @brief Create a device class 823 * 824 * If a device class with the name @p classname exists, return it, 825 * otherwise create and return a new device class. 826 * 827 * @param classname the devclass name to find or create 828 */ 829 devclass_t 830 devclass_create(const char *classname) 831 { 832 return (devclass_find_internal(classname, NULL, TRUE)); 833 } 834 835 /** 836 * @brief Find a device class 837 * 838 * If a device class with the name @p classname exists, return it, 839 * otherwise return @c NULL. 840 * 841 * @param classname the devclass name to find 842 */ 843 devclass_t 844 devclass_find(const char *classname) 845 { 846 return (devclass_find_internal(classname, NULL, FALSE)); 847 } 848 849 /** 850 * @brief Add a device driver to a device class 851 * 852 * Add a device driver to a devclass. This is normally called 853 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 854 * all devices in the devclass will be called to allow them to attempt 855 * to re-probe any unmatched children. 856 * 857 * @param dc the devclass to edit 858 * @param driver the driver to register 859 */ 860 int 861 devclass_add_driver(devclass_t dc, driver_t *driver) 862 { 863 driverlink_t dl; 864 int i; 865 866 PDEBUG(("%s", DRIVERNAME(driver))); 867 868 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 869 if (!dl) 870 return (ENOMEM); 871 872 /* 873 * Compile the driver's methods. Also increase the reference count 874 * so that the class doesn't get freed when the last instance 875 * goes. This means we can safely use static methods and avoids a 876 * double-free in devclass_delete_driver. 877 */ 878 kobj_class_compile((kobj_class_t) driver); 879 880 /* 881 * Make sure the devclass which the driver is implementing exists. 882 */ 883 devclass_find_internal(driver->name, NULL, TRUE); 884 885 dl->driver = driver; 886 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 887 driver->refs++; /* XXX: kobj_mtx */ 888 889 /* 890 * Call BUS_DRIVER_ADDED for any existing busses in this class. 891 */ 892 for (i = 0; i < dc->maxunit; i++) 893 if (dc->devices[i]) 894 BUS_DRIVER_ADDED(dc->devices[i], driver); 895 896 bus_data_generation_update(); 897 return (0); 898 } 899 900 /** 901 * @brief Delete a device driver from a device class 902 * 903 * Delete a device driver from a devclass. This is normally called 904 * automatically by DRIVER_MODULE(). 905 * 906 * If the driver is currently attached to any devices, 907 * devclass_delete_driver() will first attempt to detach from each 908 * device. If one of the detach calls fails, the driver will not be 909 * deleted. 910 * 911 * @param dc the devclass to edit 912 * @param driver the driver to unregister 913 */ 914 int 915 devclass_delete_driver(devclass_t busclass, driver_t *driver) 916 { 917 devclass_t dc = devclass_find(driver->name); 918 driverlink_t dl; 919 device_t dev; 920 int i; 921 int error; 922 923 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 924 925 if (!dc) 926 return (0); 927 928 /* 929 * Find the link structure in the bus' list of drivers. 930 */ 931 TAILQ_FOREACH(dl, &busclass->drivers, link) { 932 if (dl->driver == driver) 933 break; 934 } 935 936 if (!dl) { 937 PDEBUG(("%s not found in %s list", driver->name, 938 busclass->name)); 939 return (ENOENT); 940 } 941 942 /* 943 * Disassociate from any devices. We iterate through all the 944 * devices in the devclass of the driver and detach any which are 945 * using the driver and which have a parent in the devclass which 946 * we are deleting from. 947 * 948 * Note that since a driver can be in multiple devclasses, we 949 * should not detach devices which are not children of devices in 950 * the affected devclass. 951 */ 952 for (i = 0; i < dc->maxunit; i++) { 953 if (dc->devices[i]) { 954 dev = dc->devices[i]; 955 if (dev->driver == driver && dev->parent && 956 dev->parent->devclass == busclass) { 957 if ((error = device_detach(dev)) != 0) 958 return (error); 959 device_set_driver(dev, NULL); 960 } 961 } 962 } 963 964 TAILQ_REMOVE(&busclass->drivers, dl, link); 965 free(dl, M_BUS); 966 967 /* XXX: kobj_mtx */ 968 driver->refs--; 969 if (driver->refs == 0) 970 kobj_class_free((kobj_class_t) driver); 971 972 bus_data_generation_update(); 973 return (0); 974 } 975 976 /** 977 * @brief Quiesces a set of device drivers from a device class 978 * 979 * Quiesce a device driver from a devclass. This is normally called 980 * automatically by DRIVER_MODULE(). 981 * 982 * If the driver is currently attached to any devices, 983 * devclass_quiesece_driver() will first attempt to quiesce each 984 * device. 985 * 986 * @param dc the devclass to edit 987 * @param driver the driver to unregister 988 */ 989 int 990 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 991 { 992 devclass_t dc = devclass_find(driver->name); 993 driverlink_t dl; 994 device_t dev; 995 int i; 996 int error; 997 998 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 999 1000 if (!dc) 1001 return (0); 1002 1003 /* 1004 * Find the link structure in the bus' list of drivers. 1005 */ 1006 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1007 if (dl->driver == driver) 1008 break; 1009 } 1010 1011 if (!dl) { 1012 PDEBUG(("%s not found in %s list", driver->name, 1013 busclass->name)); 1014 return (ENOENT); 1015 } 1016 1017 /* 1018 * Quiesce all devices. We iterate through all the devices in 1019 * the devclass of the driver and quiesce any which are using 1020 * the driver and which have a parent in the devclass which we 1021 * are quiescing. 1022 * 1023 * Note that since a driver can be in multiple devclasses, we 1024 * should not quiesce devices which are not children of 1025 * devices in the affected devclass. 1026 */ 1027 for (i = 0; i < dc->maxunit; i++) { 1028 if (dc->devices[i]) { 1029 dev = dc->devices[i]; 1030 if (dev->driver == driver && dev->parent && 1031 dev->parent->devclass == busclass) { 1032 if ((error = device_quiesce(dev)) != 0) 1033 return (error); 1034 } 1035 } 1036 } 1037 1038 return (0); 1039 } 1040 1041 /** 1042 * @internal 1043 */ 1044 static driverlink_t 1045 devclass_find_driver_internal(devclass_t dc, const char *classname) 1046 { 1047 driverlink_t dl; 1048 1049 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1050 1051 TAILQ_FOREACH(dl, &dc->drivers, link) { 1052 if (!strcmp(dl->driver->name, classname)) 1053 return (dl); 1054 } 1055 1056 PDEBUG(("not found")); 1057 return (NULL); 1058 } 1059 1060 /** 1061 * @brief Search a devclass for a driver 1062 * 1063 * This function searches the devclass's list of drivers and returns 1064 * the first driver whose name is @p classname or @c NULL if there is 1065 * no driver of that name. 1066 * 1067 * @param dc the devclass to search 1068 * @param classname the driver name to search for 1069 */ 1070 kobj_class_t 1071 devclass_find_driver(devclass_t dc, const char *classname) 1072 { 1073 driverlink_t dl; 1074 1075 dl = devclass_find_driver_internal(dc, classname); 1076 if (dl) 1077 return (dl->driver); 1078 return (NULL); 1079 } 1080 1081 /** 1082 * @brief Return the name of the devclass 1083 */ 1084 const char * 1085 devclass_get_name(devclass_t dc) 1086 { 1087 return (dc->name); 1088 } 1089 1090 /** 1091 * @brief Find a device given a unit number 1092 * 1093 * @param dc the devclass to search 1094 * @param unit the unit number to search for 1095 * 1096 * @returns the device with the given unit number or @c 1097 * NULL if there is no such device 1098 */ 1099 device_t 1100 devclass_get_device(devclass_t dc, int unit) 1101 { 1102 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1103 return (NULL); 1104 return (dc->devices[unit]); 1105 } 1106 1107 /** 1108 * @brief Find the softc field of a device given a unit number 1109 * 1110 * @param dc the devclass to search 1111 * @param unit the unit number to search for 1112 * 1113 * @returns the softc field of the device with the given 1114 * unit number or @c NULL if there is no such 1115 * device 1116 */ 1117 void * 1118 devclass_get_softc(devclass_t dc, int unit) 1119 { 1120 device_t dev; 1121 1122 dev = devclass_get_device(dc, unit); 1123 if (!dev) 1124 return (NULL); 1125 1126 return (device_get_softc(dev)); 1127 } 1128 1129 /** 1130 * @brief Get a list of devices in the devclass 1131 * 1132 * An array containing a list of all the devices in the given devclass 1133 * is allocated and returned in @p *devlistp. The number of devices 1134 * in the array is returned in @p *devcountp. The caller should free 1135 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1136 * 1137 * @param dc the devclass to examine 1138 * @param devlistp points at location for array pointer return 1139 * value 1140 * @param devcountp points at location for array size return value 1141 * 1142 * @retval 0 success 1143 * @retval ENOMEM the array allocation failed 1144 */ 1145 int 1146 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1147 { 1148 int count, i; 1149 device_t *list; 1150 1151 count = devclass_get_count(dc); 1152 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1153 if (!list) 1154 return (ENOMEM); 1155 1156 count = 0; 1157 for (i = 0; i < dc->maxunit; i++) { 1158 if (dc->devices[i]) { 1159 list[count] = dc->devices[i]; 1160 count++; 1161 } 1162 } 1163 1164 *devlistp = list; 1165 *devcountp = count; 1166 1167 return (0); 1168 } 1169 1170 /** 1171 * @brief Get a list of drivers in the devclass 1172 * 1173 * An array containing a list of pointers to all the drivers in the 1174 * given devclass is allocated and returned in @p *listp. The number 1175 * of drivers in the array is returned in @p *countp. The caller should 1176 * free the array using @c free(p, M_TEMP). 1177 * 1178 * @param dc the devclass to examine 1179 * @param listp gives location for array pointer return value 1180 * @param countp gives location for number of array elements 1181 * return value 1182 * 1183 * @retval 0 success 1184 * @retval ENOMEM the array allocation failed 1185 */ 1186 int 1187 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1188 { 1189 driverlink_t dl; 1190 driver_t **list; 1191 int count; 1192 1193 count = 0; 1194 TAILQ_FOREACH(dl, &dc->drivers, link) 1195 count++; 1196 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1197 if (list == NULL) 1198 return (ENOMEM); 1199 1200 count = 0; 1201 TAILQ_FOREACH(dl, &dc->drivers, link) { 1202 list[count] = dl->driver; 1203 count++; 1204 } 1205 *listp = list; 1206 *countp = count; 1207 1208 return (0); 1209 } 1210 1211 /** 1212 * @brief Get the number of devices in a devclass 1213 * 1214 * @param dc the devclass to examine 1215 */ 1216 int 1217 devclass_get_count(devclass_t dc) 1218 { 1219 int count, i; 1220 1221 count = 0; 1222 for (i = 0; i < dc->maxunit; i++) 1223 if (dc->devices[i]) 1224 count++; 1225 return (count); 1226 } 1227 1228 /** 1229 * @brief Get the maximum unit number used in a devclass 1230 * 1231 * Note that this is one greater than the highest currently-allocated 1232 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1233 * that not even the devclass has been allocated yet. 1234 * 1235 * @param dc the devclass to examine 1236 */ 1237 int 1238 devclass_get_maxunit(devclass_t dc) 1239 { 1240 if (dc == NULL) 1241 return (-1); 1242 return (dc->maxunit); 1243 } 1244 1245 /** 1246 * @brief Find a free unit number in a devclass 1247 * 1248 * This function searches for the first unused unit number greater 1249 * that or equal to @p unit. 1250 * 1251 * @param dc the devclass to examine 1252 * @param unit the first unit number to check 1253 */ 1254 int 1255 devclass_find_free_unit(devclass_t dc, int unit) 1256 { 1257 if (dc == NULL) 1258 return (unit); 1259 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1260 unit++; 1261 return (unit); 1262 } 1263 1264 /** 1265 * @brief Set the parent of a devclass 1266 * 1267 * The parent class is normally initialised automatically by 1268 * DRIVER_MODULE(). 1269 * 1270 * @param dc the devclass to edit 1271 * @param pdc the new parent devclass 1272 */ 1273 void 1274 devclass_set_parent(devclass_t dc, devclass_t pdc) 1275 { 1276 dc->parent = pdc; 1277 } 1278 1279 /** 1280 * @brief Get the parent of a devclass 1281 * 1282 * @param dc the devclass to examine 1283 */ 1284 devclass_t 1285 devclass_get_parent(devclass_t dc) 1286 { 1287 return (dc->parent); 1288 } 1289 1290 struct sysctl_ctx_list * 1291 devclass_get_sysctl_ctx(devclass_t dc) 1292 { 1293 return (&dc->sysctl_ctx); 1294 } 1295 1296 struct sysctl_oid * 1297 devclass_get_sysctl_tree(devclass_t dc) 1298 { 1299 return (dc->sysctl_tree); 1300 } 1301 1302 /** 1303 * @internal 1304 * @brief Allocate a unit number 1305 * 1306 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1307 * will do). The allocated unit number is returned in @p *unitp. 1308 1309 * @param dc the devclass to allocate from 1310 * @param unitp points at the location for the allocated unit 1311 * number 1312 * 1313 * @retval 0 success 1314 * @retval EEXIST the requested unit number is already allocated 1315 * @retval ENOMEM memory allocation failure 1316 */ 1317 static int 1318 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1319 { 1320 const char *s; 1321 int unit = *unitp; 1322 1323 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1324 1325 /* Ask the parent bus if it wants to wire this device. */ 1326 if (unit == -1) 1327 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1328 &unit); 1329 1330 /* If we were given a wired unit number, check for existing device */ 1331 /* XXX imp XXX */ 1332 if (unit != -1) { 1333 if (unit >= 0 && unit < dc->maxunit && 1334 dc->devices[unit] != NULL) { 1335 if (bootverbose) 1336 printf("%s: %s%d already exists; skipping it\n", 1337 dc->name, dc->name, *unitp); 1338 return (EEXIST); 1339 } 1340 } else { 1341 /* Unwired device, find the next available slot for it */ 1342 unit = 0; 1343 for (unit = 0;; unit++) { 1344 /* If there is an "at" hint for a unit then skip it. */ 1345 if (resource_string_value(dc->name, unit, "at", &s) == 1346 0) 1347 continue; 1348 1349 /* If this device slot is already in use, skip it. */ 1350 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1351 continue; 1352 1353 break; 1354 } 1355 } 1356 1357 /* 1358 * We've selected a unit beyond the length of the table, so let's 1359 * extend the table to make room for all units up to and including 1360 * this one. 1361 */ 1362 if (unit >= dc->maxunit) { 1363 device_t *newlist, *oldlist; 1364 int newsize; 1365 1366 oldlist = dc->devices; 1367 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1368 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1369 if (!newlist) 1370 return (ENOMEM); 1371 if (oldlist != NULL) 1372 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1373 bzero(newlist + dc->maxunit, 1374 sizeof(device_t) * (newsize - dc->maxunit)); 1375 dc->devices = newlist; 1376 dc->maxunit = newsize; 1377 if (oldlist != NULL) 1378 free(oldlist, M_BUS); 1379 } 1380 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1381 1382 *unitp = unit; 1383 return (0); 1384 } 1385 1386 /** 1387 * @internal 1388 * @brief Add a device to a devclass 1389 * 1390 * A unit number is allocated for the device (using the device's 1391 * preferred unit number if any) and the device is registered in the 1392 * devclass. This allows the device to be looked up by its unit 1393 * number, e.g. by decoding a dev_t minor number. 1394 * 1395 * @param dc the devclass to add to 1396 * @param dev the device to add 1397 * 1398 * @retval 0 success 1399 * @retval EEXIST the requested unit number is already allocated 1400 * @retval ENOMEM memory allocation failure 1401 */ 1402 static int 1403 devclass_add_device(devclass_t dc, device_t dev) 1404 { 1405 int buflen, error; 1406 1407 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1408 1409 buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit); 1410 if (buflen < 0) 1411 return (ENOMEM); 1412 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1413 if (!dev->nameunit) 1414 return (ENOMEM); 1415 1416 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1417 free(dev->nameunit, M_BUS); 1418 dev->nameunit = NULL; 1419 return (error); 1420 } 1421 dc->devices[dev->unit] = dev; 1422 dev->devclass = dc; 1423 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1424 1425 return (0); 1426 } 1427 1428 /** 1429 * @internal 1430 * @brief Delete a device from a devclass 1431 * 1432 * The device is removed from the devclass's device list and its unit 1433 * number is freed. 1434 1435 * @param dc the devclass to delete from 1436 * @param dev the device to delete 1437 * 1438 * @retval 0 success 1439 */ 1440 static int 1441 devclass_delete_device(devclass_t dc, device_t dev) 1442 { 1443 if (!dc || !dev) 1444 return (0); 1445 1446 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1447 1448 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1449 panic("devclass_delete_device: inconsistent device class"); 1450 dc->devices[dev->unit] = NULL; 1451 if (dev->flags & DF_WILDCARD) 1452 dev->unit = -1; 1453 dev->devclass = NULL; 1454 free(dev->nameunit, M_BUS); 1455 dev->nameunit = NULL; 1456 1457 return (0); 1458 } 1459 1460 /** 1461 * @internal 1462 * @brief Make a new device and add it as a child of @p parent 1463 * 1464 * @param parent the parent of the new device 1465 * @param name the devclass name of the new device or @c NULL 1466 * to leave the devclass unspecified 1467 * @parem unit the unit number of the new device of @c -1 to 1468 * leave the unit number unspecified 1469 * 1470 * @returns the new device 1471 */ 1472 static device_t 1473 make_device(device_t parent, const char *name, int unit) 1474 { 1475 device_t dev; 1476 devclass_t dc; 1477 1478 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1479 1480 if (name) { 1481 dc = devclass_find_internal(name, NULL, TRUE); 1482 if (!dc) { 1483 printf("make_device: can't find device class %s\n", 1484 name); 1485 return (NULL); 1486 } 1487 } else { 1488 dc = NULL; 1489 } 1490 1491 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1492 if (!dev) 1493 return (NULL); 1494 1495 dev->parent = parent; 1496 TAILQ_INIT(&dev->children); 1497 kobj_init((kobj_t) dev, &null_class); 1498 dev->driver = NULL; 1499 dev->devclass = NULL; 1500 dev->unit = unit; 1501 dev->nameunit = NULL; 1502 dev->desc = NULL; 1503 dev->busy = 0; 1504 dev->devflags = 0; 1505 dev->flags = DF_ENABLED; 1506 dev->order = 0; 1507 if (unit == -1) 1508 dev->flags |= DF_WILDCARD; 1509 if (name) { 1510 dev->flags |= DF_FIXEDCLASS; 1511 if (devclass_add_device(dc, dev)) { 1512 kobj_delete((kobj_t) dev, M_BUS); 1513 return (NULL); 1514 } 1515 } 1516 dev->ivars = NULL; 1517 dev->softc = NULL; 1518 1519 dev->state = DS_NOTPRESENT; 1520 1521 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1522 bus_data_generation_update(); 1523 1524 return (dev); 1525 } 1526 1527 /** 1528 * @internal 1529 * @brief Print a description of a device. 1530 */ 1531 static int 1532 device_print_child(device_t dev, device_t child) 1533 { 1534 int retval = 0; 1535 1536 if (device_is_alive(child)) 1537 retval += BUS_PRINT_CHILD(dev, child); 1538 else 1539 retval += device_printf(child, " not found\n"); 1540 1541 return (retval); 1542 } 1543 1544 /** 1545 * @brief Create a new device 1546 * 1547 * This creates a new device and adds it as a child of an existing 1548 * parent device. The new device will be added after the last existing 1549 * child with order zero. 1550 * 1551 * @param dev the device which will be the parent of the 1552 * new child device 1553 * @param name devclass name for new device or @c NULL if not 1554 * specified 1555 * @param unit unit number for new device or @c -1 if not 1556 * specified 1557 * 1558 * @returns the new device 1559 */ 1560 device_t 1561 device_add_child(device_t dev, const char *name, int unit) 1562 { 1563 return (device_add_child_ordered(dev, 0, name, unit)); 1564 } 1565 1566 /** 1567 * @brief Create a new device 1568 * 1569 * This creates a new device and adds it as a child of an existing 1570 * parent device. The new device will be added after the last existing 1571 * child with the same order. 1572 * 1573 * @param dev the device which will be the parent of the 1574 * new child device 1575 * @param order a value which is used to partially sort the 1576 * children of @p dev - devices created using 1577 * lower values of @p order appear first in @p 1578 * dev's list of children 1579 * @param name devclass name for new device or @c NULL if not 1580 * specified 1581 * @param unit unit number for new device or @c -1 if not 1582 * specified 1583 * 1584 * @returns the new device 1585 */ 1586 device_t 1587 device_add_child_ordered(device_t dev, int order, const char *name, int unit) 1588 { 1589 device_t child; 1590 device_t place; 1591 1592 PDEBUG(("%s at %s with order %d as unit %d", 1593 name, DEVICENAME(dev), order, unit)); 1594 1595 child = make_device(dev, name, unit); 1596 if (child == NULL) 1597 return (child); 1598 child->order = order; 1599 1600 TAILQ_FOREACH(place, &dev->children, link) { 1601 if (place->order > order) 1602 break; 1603 } 1604 1605 if (place) { 1606 /* 1607 * The device 'place' is the first device whose order is 1608 * greater than the new child. 1609 */ 1610 TAILQ_INSERT_BEFORE(place, child, link); 1611 } else { 1612 /* 1613 * The new child's order is greater or equal to the order of 1614 * any existing device. Add the child to the tail of the list. 1615 */ 1616 TAILQ_INSERT_TAIL(&dev->children, child, link); 1617 } 1618 1619 bus_data_generation_update(); 1620 return (child); 1621 } 1622 1623 /** 1624 * @brief Delete a device 1625 * 1626 * This function deletes a device along with all of its children. If 1627 * the device currently has a driver attached to it, the device is 1628 * detached first using device_detach(). 1629 * 1630 * @param dev the parent device 1631 * @param child the device to delete 1632 * 1633 * @retval 0 success 1634 * @retval non-zero a unit error code describing the error 1635 */ 1636 int 1637 device_delete_child(device_t dev, device_t child) 1638 { 1639 int error; 1640 device_t grandchild; 1641 1642 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1643 1644 /* remove children first */ 1645 while ( (grandchild = TAILQ_FIRST(&child->children)) ) { 1646 error = device_delete_child(child, grandchild); 1647 if (error) 1648 return (error); 1649 } 1650 1651 if ((error = device_detach(child)) != 0) 1652 return (error); 1653 if (child->devclass) 1654 devclass_delete_device(child->devclass, child); 1655 TAILQ_REMOVE(&dev->children, child, link); 1656 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1657 kobj_delete((kobj_t) child, M_BUS); 1658 1659 bus_data_generation_update(); 1660 return (0); 1661 } 1662 1663 /** 1664 * @brief Find a device given a unit number 1665 * 1666 * This is similar to devclass_get_devices() but only searches for 1667 * devices which have @p dev as a parent. 1668 * 1669 * @param dev the parent device to search 1670 * @param unit the unit number to search for. If the unit is -1, 1671 * return the first child of @p dev which has name 1672 * @p classname (that is, the one with the lowest unit.) 1673 * 1674 * @returns the device with the given unit number or @c 1675 * NULL if there is no such device 1676 */ 1677 device_t 1678 device_find_child(device_t dev, const char *classname, int unit) 1679 { 1680 devclass_t dc; 1681 device_t child; 1682 1683 dc = devclass_find(classname); 1684 if (!dc) 1685 return (NULL); 1686 1687 if (unit != -1) { 1688 child = devclass_get_device(dc, unit); 1689 if (child && child->parent == dev) 1690 return (child); 1691 } else { 1692 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1693 child = devclass_get_device(dc, unit); 1694 if (child && child->parent == dev) 1695 return (child); 1696 } 1697 } 1698 return (NULL); 1699 } 1700 1701 /** 1702 * @internal 1703 */ 1704 static driverlink_t 1705 first_matching_driver(devclass_t dc, device_t dev) 1706 { 1707 if (dev->devclass) 1708 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1709 return (TAILQ_FIRST(&dc->drivers)); 1710 } 1711 1712 /** 1713 * @internal 1714 */ 1715 static driverlink_t 1716 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1717 { 1718 if (dev->devclass) { 1719 driverlink_t dl; 1720 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1721 if (!strcmp(dev->devclass->name, dl->driver->name)) 1722 return (dl); 1723 return (NULL); 1724 } 1725 return (TAILQ_NEXT(last, link)); 1726 } 1727 1728 /** 1729 * @internal 1730 */ 1731 int 1732 device_probe_child(device_t dev, device_t child) 1733 { 1734 devclass_t dc; 1735 driverlink_t best = NULL; 1736 driverlink_t dl; 1737 int result, pri = 0; 1738 int hasclass = (child->devclass != NULL); 1739 1740 GIANT_REQUIRED; 1741 1742 dc = dev->devclass; 1743 if (!dc) 1744 panic("device_probe_child: parent device has no devclass"); 1745 1746 /* 1747 * If the state is already probed, then return. However, don't 1748 * return if we can rebid this object. 1749 */ 1750 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 1751 return (0); 1752 1753 for (; dc; dc = dc->parent) { 1754 for (dl = first_matching_driver(dc, child); 1755 dl; 1756 dl = next_matching_driver(dc, child, dl)) { 1757 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1758 device_set_driver(child, dl->driver); 1759 if (!hasclass) { 1760 if (device_set_devclass(child, dl->driver->name)) { 1761 PDEBUG(("Unable to set device class")); 1762 device_set_driver(child, NULL); 1763 continue; 1764 } 1765 } 1766 1767 /* Fetch any flags for the device before probing. */ 1768 resource_int_value(dl->driver->name, child->unit, 1769 "flags", &child->devflags); 1770 1771 result = DEVICE_PROBE(child); 1772 1773 /* Reset flags and devclass before the next probe. */ 1774 child->devflags = 0; 1775 if (!hasclass) 1776 device_set_devclass(child, NULL); 1777 1778 /* 1779 * If the driver returns SUCCESS, there can be 1780 * no higher match for this device. 1781 */ 1782 if (result == 0) { 1783 best = dl; 1784 pri = 0; 1785 break; 1786 } 1787 1788 /* 1789 * The driver returned an error so it 1790 * certainly doesn't match. 1791 */ 1792 if (result > 0) { 1793 device_set_driver(child, NULL); 1794 continue; 1795 } 1796 1797 /* 1798 * A priority lower than SUCCESS, remember the 1799 * best matching driver. Initialise the value 1800 * of pri for the first match. 1801 */ 1802 if (best == NULL || result > pri) { 1803 /* 1804 * Probes that return BUS_PROBE_NOWILDCARD 1805 * or lower only match when they are set 1806 * in stone by the parent bus. 1807 */ 1808 if (result <= BUS_PROBE_NOWILDCARD && 1809 child->flags & DF_WILDCARD) 1810 continue; 1811 best = dl; 1812 pri = result; 1813 continue; 1814 } 1815 } 1816 /* 1817 * If we have an unambiguous match in this devclass, 1818 * don't look in the parent. 1819 */ 1820 if (best && pri == 0) 1821 break; 1822 } 1823 1824 /* 1825 * If we found a driver, change state and initialise the devclass. 1826 */ 1827 /* XXX What happens if we rebid and got no best? */ 1828 if (best) { 1829 /* 1830 * If this device was atached, and we were asked to 1831 * rescan, and it is a different driver, then we have 1832 * to detach the old driver and reattach this new one. 1833 * Note, we don't have to check for DF_REBID here 1834 * because if the state is > DS_ALIVE, we know it must 1835 * be. 1836 * 1837 * This assumes that all DF_REBID drivers can have 1838 * their probe routine called at any time and that 1839 * they are idempotent as well as completely benign in 1840 * normal operations. 1841 * 1842 * We also have to make sure that the detach 1843 * succeeded, otherwise we fail the operation (or 1844 * maybe it should just fail silently? I'm torn). 1845 */ 1846 if (child->state > DS_ALIVE && best->driver != child->driver) 1847 if ((result = device_detach(dev)) != 0) 1848 return (result); 1849 1850 /* Set the winning driver, devclass, and flags. */ 1851 if (!child->devclass) { 1852 result = device_set_devclass(child, best->driver->name); 1853 if (result != 0) 1854 return (result); 1855 } 1856 device_set_driver(child, best->driver); 1857 resource_int_value(best->driver->name, child->unit, 1858 "flags", &child->devflags); 1859 1860 if (pri < 0) { 1861 /* 1862 * A bit bogus. Call the probe method again to make 1863 * sure that we have the right description. 1864 */ 1865 DEVICE_PROBE(child); 1866 #if 0 1867 child->flags |= DF_REBID; 1868 #endif 1869 } else 1870 child->flags &= ~DF_REBID; 1871 child->state = DS_ALIVE; 1872 1873 bus_data_generation_update(); 1874 return (0); 1875 } 1876 1877 return (ENXIO); 1878 } 1879 1880 /** 1881 * @brief Return the parent of a device 1882 */ 1883 device_t 1884 device_get_parent(device_t dev) 1885 { 1886 return (dev->parent); 1887 } 1888 1889 /** 1890 * @brief Get a list of children of a device 1891 * 1892 * An array containing a list of all the children of the given device 1893 * is allocated and returned in @p *devlistp. The number of devices 1894 * in the array is returned in @p *devcountp. The caller should free 1895 * the array using @c free(p, M_TEMP). 1896 * 1897 * @param dev the device to examine 1898 * @param devlistp points at location for array pointer return 1899 * value 1900 * @param devcountp points at location for array size return value 1901 * 1902 * @retval 0 success 1903 * @retval ENOMEM the array allocation failed 1904 */ 1905 int 1906 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1907 { 1908 int count; 1909 device_t child; 1910 device_t *list; 1911 1912 count = 0; 1913 TAILQ_FOREACH(child, &dev->children, link) { 1914 count++; 1915 } 1916 1917 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1918 if (!list) 1919 return (ENOMEM); 1920 1921 count = 0; 1922 TAILQ_FOREACH(child, &dev->children, link) { 1923 list[count] = child; 1924 count++; 1925 } 1926 1927 *devlistp = list; 1928 *devcountp = count; 1929 1930 return (0); 1931 } 1932 1933 /** 1934 * @brief Return the current driver for the device or @c NULL if there 1935 * is no driver currently attached 1936 */ 1937 driver_t * 1938 device_get_driver(device_t dev) 1939 { 1940 return (dev->driver); 1941 } 1942 1943 /** 1944 * @brief Return the current devclass for the device or @c NULL if 1945 * there is none. 1946 */ 1947 devclass_t 1948 device_get_devclass(device_t dev) 1949 { 1950 return (dev->devclass); 1951 } 1952 1953 /** 1954 * @brief Return the name of the device's devclass or @c NULL if there 1955 * is none. 1956 */ 1957 const char * 1958 device_get_name(device_t dev) 1959 { 1960 if (dev != NULL && dev->devclass) 1961 return (devclass_get_name(dev->devclass)); 1962 return (NULL); 1963 } 1964 1965 /** 1966 * @brief Return a string containing the device's devclass name 1967 * followed by an ascii representation of the device's unit number 1968 * (e.g. @c "foo2"). 1969 */ 1970 const char * 1971 device_get_nameunit(device_t dev) 1972 { 1973 return (dev->nameunit); 1974 } 1975 1976 /** 1977 * @brief Return the device's unit number. 1978 */ 1979 int 1980 device_get_unit(device_t dev) 1981 { 1982 return (dev->unit); 1983 } 1984 1985 /** 1986 * @brief Return the device's description string 1987 */ 1988 const char * 1989 device_get_desc(device_t dev) 1990 { 1991 return (dev->desc); 1992 } 1993 1994 /** 1995 * @brief Return the device's flags 1996 */ 1997 u_int32_t 1998 device_get_flags(device_t dev) 1999 { 2000 return (dev->devflags); 2001 } 2002 2003 struct sysctl_ctx_list * 2004 device_get_sysctl_ctx(device_t dev) 2005 { 2006 return (&dev->sysctl_ctx); 2007 } 2008 2009 struct sysctl_oid * 2010 device_get_sysctl_tree(device_t dev) 2011 { 2012 return (dev->sysctl_tree); 2013 } 2014 2015 /** 2016 * @brief Print the name of the device followed by a colon and a space 2017 * 2018 * @returns the number of characters printed 2019 */ 2020 int 2021 device_print_prettyname(device_t dev) 2022 { 2023 const char *name = device_get_name(dev); 2024 2025 if (name == NULL) 2026 return (printf("unknown: ")); 2027 return (printf("%s%d: ", name, device_get_unit(dev))); 2028 } 2029 2030 /** 2031 * @brief Print the name of the device followed by a colon, a space 2032 * and the result of calling vprintf() with the value of @p fmt and 2033 * the following arguments. 2034 * 2035 * @returns the number of characters printed 2036 */ 2037 int 2038 device_printf(device_t dev, const char * fmt, ...) 2039 { 2040 va_list ap; 2041 int retval; 2042 2043 retval = device_print_prettyname(dev); 2044 va_start(ap, fmt); 2045 retval += vprintf(fmt, ap); 2046 va_end(ap); 2047 return (retval); 2048 } 2049 2050 /** 2051 * @internal 2052 */ 2053 static void 2054 device_set_desc_internal(device_t dev, const char* desc, int copy) 2055 { 2056 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2057 free(dev->desc, M_BUS); 2058 dev->flags &= ~DF_DESCMALLOCED; 2059 dev->desc = NULL; 2060 } 2061 2062 if (copy && desc) { 2063 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2064 if (dev->desc) { 2065 strcpy(dev->desc, desc); 2066 dev->flags |= DF_DESCMALLOCED; 2067 } 2068 } else { 2069 /* Avoid a -Wcast-qual warning */ 2070 dev->desc = (char *)(uintptr_t) desc; 2071 } 2072 2073 bus_data_generation_update(); 2074 } 2075 2076 /** 2077 * @brief Set the device's description 2078 * 2079 * The value of @c desc should be a string constant that will not 2080 * change (at least until the description is changed in a subsequent 2081 * call to device_set_desc() or device_set_desc_copy()). 2082 */ 2083 void 2084 device_set_desc(device_t dev, const char* desc) 2085 { 2086 device_set_desc_internal(dev, desc, FALSE); 2087 } 2088 2089 /** 2090 * @brief Set the device's description 2091 * 2092 * The string pointed to by @c desc is copied. Use this function if 2093 * the device description is generated, (e.g. with sprintf()). 2094 */ 2095 void 2096 device_set_desc_copy(device_t dev, const char* desc) 2097 { 2098 device_set_desc_internal(dev, desc, TRUE); 2099 } 2100 2101 /** 2102 * @brief Set the device's flags 2103 */ 2104 void 2105 device_set_flags(device_t dev, u_int32_t flags) 2106 { 2107 dev->devflags = flags; 2108 } 2109 2110 /** 2111 * @brief Return the device's softc field 2112 * 2113 * The softc is allocated and zeroed when a driver is attached, based 2114 * on the size field of the driver. 2115 */ 2116 void * 2117 device_get_softc(device_t dev) 2118 { 2119 return (dev->softc); 2120 } 2121 2122 /** 2123 * @brief Set the device's softc field 2124 * 2125 * Most drivers do not need to use this since the softc is allocated 2126 * automatically when the driver is attached. 2127 */ 2128 void 2129 device_set_softc(device_t dev, void *softc) 2130 { 2131 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2132 free(dev->softc, M_BUS_SC); 2133 dev->softc = softc; 2134 if (dev->softc) 2135 dev->flags |= DF_EXTERNALSOFTC; 2136 else 2137 dev->flags &= ~DF_EXTERNALSOFTC; 2138 } 2139 2140 /** 2141 * @brief Get the device's ivars field 2142 * 2143 * The ivars field is used by the parent device to store per-device 2144 * state (e.g. the physical location of the device or a list of 2145 * resources). 2146 */ 2147 void * 2148 device_get_ivars(device_t dev) 2149 { 2150 2151 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2152 return (dev->ivars); 2153 } 2154 2155 /** 2156 * @brief Set the device's ivars field 2157 */ 2158 void 2159 device_set_ivars(device_t dev, void * ivars) 2160 { 2161 2162 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2163 dev->ivars = ivars; 2164 } 2165 2166 /** 2167 * @brief Return the device's state 2168 */ 2169 device_state_t 2170 device_get_state(device_t dev) 2171 { 2172 return (dev->state); 2173 } 2174 2175 /** 2176 * @brief Set the DF_ENABLED flag for the device 2177 */ 2178 void 2179 device_enable(device_t dev) 2180 { 2181 dev->flags |= DF_ENABLED; 2182 } 2183 2184 /** 2185 * @brief Clear the DF_ENABLED flag for the device 2186 */ 2187 void 2188 device_disable(device_t dev) 2189 { 2190 dev->flags &= ~DF_ENABLED; 2191 } 2192 2193 /** 2194 * @brief Increment the busy counter for the device 2195 */ 2196 void 2197 device_busy(device_t dev) 2198 { 2199 if (dev->state < DS_ATTACHED) 2200 panic("device_busy: called for unattached device"); 2201 if (dev->busy == 0 && dev->parent) 2202 device_busy(dev->parent); 2203 dev->busy++; 2204 dev->state = DS_BUSY; 2205 } 2206 2207 /** 2208 * @brief Decrement the busy counter for the device 2209 */ 2210 void 2211 device_unbusy(device_t dev) 2212 { 2213 if (dev->state != DS_BUSY) 2214 panic("device_unbusy: called for non-busy device %s", 2215 device_get_nameunit(dev)); 2216 dev->busy--; 2217 if (dev->busy == 0) { 2218 if (dev->parent) 2219 device_unbusy(dev->parent); 2220 dev->state = DS_ATTACHED; 2221 } 2222 } 2223 2224 /** 2225 * @brief Set the DF_QUIET flag for the device 2226 */ 2227 void 2228 device_quiet(device_t dev) 2229 { 2230 dev->flags |= DF_QUIET; 2231 } 2232 2233 /** 2234 * @brief Clear the DF_QUIET flag for the device 2235 */ 2236 void 2237 device_verbose(device_t dev) 2238 { 2239 dev->flags &= ~DF_QUIET; 2240 } 2241 2242 /** 2243 * @brief Return non-zero if the DF_QUIET flag is set on the device 2244 */ 2245 int 2246 device_is_quiet(device_t dev) 2247 { 2248 return ((dev->flags & DF_QUIET) != 0); 2249 } 2250 2251 /** 2252 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2253 */ 2254 int 2255 device_is_enabled(device_t dev) 2256 { 2257 return ((dev->flags & DF_ENABLED) != 0); 2258 } 2259 2260 /** 2261 * @brief Return non-zero if the device was successfully probed 2262 */ 2263 int 2264 device_is_alive(device_t dev) 2265 { 2266 return (dev->state >= DS_ALIVE); 2267 } 2268 2269 /** 2270 * @brief Return non-zero if the device currently has a driver 2271 * attached to it 2272 */ 2273 int 2274 device_is_attached(device_t dev) 2275 { 2276 return (dev->state >= DS_ATTACHED); 2277 } 2278 2279 /** 2280 * @brief Set the devclass of a device 2281 * @see devclass_add_device(). 2282 */ 2283 int 2284 device_set_devclass(device_t dev, const char *classname) 2285 { 2286 devclass_t dc; 2287 int error; 2288 2289 if (!classname) { 2290 if (dev->devclass) 2291 devclass_delete_device(dev->devclass, dev); 2292 return (0); 2293 } 2294 2295 if (dev->devclass) { 2296 printf("device_set_devclass: device class already set\n"); 2297 return (EINVAL); 2298 } 2299 2300 dc = devclass_find_internal(classname, NULL, TRUE); 2301 if (!dc) 2302 return (ENOMEM); 2303 2304 error = devclass_add_device(dc, dev); 2305 2306 bus_data_generation_update(); 2307 return (error); 2308 } 2309 2310 /** 2311 * @brief Set the driver of a device 2312 * 2313 * @retval 0 success 2314 * @retval EBUSY the device already has a driver attached 2315 * @retval ENOMEM a memory allocation failure occurred 2316 */ 2317 int 2318 device_set_driver(device_t dev, driver_t *driver) 2319 { 2320 if (dev->state >= DS_ATTACHED) 2321 return (EBUSY); 2322 2323 if (dev->driver == driver) 2324 return (0); 2325 2326 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2327 free(dev->softc, M_BUS_SC); 2328 dev->softc = NULL; 2329 } 2330 kobj_delete((kobj_t) dev, NULL); 2331 dev->driver = driver; 2332 if (driver) { 2333 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2334 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2335 dev->softc = malloc(driver->size, M_BUS_SC, 2336 M_NOWAIT | M_ZERO); 2337 if (!dev->softc) { 2338 kobj_delete((kobj_t) dev, NULL); 2339 kobj_init((kobj_t) dev, &null_class); 2340 dev->driver = NULL; 2341 return (ENOMEM); 2342 } 2343 } 2344 } else { 2345 kobj_init((kobj_t) dev, &null_class); 2346 } 2347 2348 bus_data_generation_update(); 2349 return (0); 2350 } 2351 2352 /** 2353 * @brief Probe a device, and return this status. 2354 * 2355 * This function is the core of the device autoconfiguration 2356 * system. Its purpose is to select a suitable driver for a device and 2357 * then call that driver to initialise the hardware appropriately. The 2358 * driver is selected by calling the DEVICE_PROBE() method of a set of 2359 * candidate drivers and then choosing the driver which returned the 2360 * best value. This driver is then attached to the device using 2361 * device_attach(). 2362 * 2363 * The set of suitable drivers is taken from the list of drivers in 2364 * the parent device's devclass. If the device was originally created 2365 * with a specific class name (see device_add_child()), only drivers 2366 * with that name are probed, otherwise all drivers in the devclass 2367 * are probed. If no drivers return successful probe values in the 2368 * parent devclass, the search continues in the parent of that 2369 * devclass (see devclass_get_parent()) if any. 2370 * 2371 * @param dev the device to initialise 2372 * 2373 * @retval 0 success 2374 * @retval ENXIO no driver was found 2375 * @retval ENOMEM memory allocation failure 2376 * @retval non-zero some other unix error code 2377 * @retval -1 Device already attached 2378 */ 2379 int 2380 device_probe(device_t dev) 2381 { 2382 int error; 2383 2384 GIANT_REQUIRED; 2385 2386 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2387 return (-1); 2388 2389 if (!(dev->flags & DF_ENABLED)) { 2390 if (bootverbose && device_get_name(dev) != NULL) { 2391 device_print_prettyname(dev); 2392 printf("not probed (disabled)\n"); 2393 } 2394 return (-1); 2395 } 2396 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2397 if (!(dev->flags & DF_DONENOMATCH)) { 2398 BUS_PROBE_NOMATCH(dev->parent, dev); 2399 devnomatch(dev); 2400 dev->flags |= DF_DONENOMATCH; 2401 } 2402 return (error); 2403 } 2404 return (0); 2405 } 2406 2407 /** 2408 * @brief Probe a device and attach a driver if possible 2409 * 2410 * calls device_probe() and attaches if that was successful. 2411 */ 2412 int 2413 device_probe_and_attach(device_t dev) 2414 { 2415 int error; 2416 2417 GIANT_REQUIRED; 2418 2419 error = device_probe(dev); 2420 if (error == -1) 2421 return (0); 2422 else if (error != 0) 2423 return (error); 2424 return (device_attach(dev)); 2425 } 2426 2427 /** 2428 * @brief Attach a device driver to a device 2429 * 2430 * This function is a wrapper around the DEVICE_ATTACH() driver 2431 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2432 * device's sysctl tree, optionally prints a description of the device 2433 * and queues a notification event for user-based device management 2434 * services. 2435 * 2436 * Normally this function is only called internally from 2437 * device_probe_and_attach(). 2438 * 2439 * @param dev the device to initialise 2440 * 2441 * @retval 0 success 2442 * @retval ENXIO no driver was found 2443 * @retval ENOMEM memory allocation failure 2444 * @retval non-zero some other unix error code 2445 */ 2446 int 2447 device_attach(device_t dev) 2448 { 2449 int error; 2450 2451 device_sysctl_init(dev); 2452 if (!device_is_quiet(dev)) 2453 device_print_child(dev->parent, dev); 2454 if ((error = DEVICE_ATTACH(dev)) != 0) { 2455 printf("device_attach: %s%d attach returned %d\n", 2456 dev->driver->name, dev->unit, error); 2457 /* Unset the class; set in device_probe_child */ 2458 if (dev->devclass == NULL) 2459 device_set_devclass(dev, NULL); 2460 device_set_driver(dev, NULL); 2461 device_sysctl_fini(dev); 2462 dev->state = DS_NOTPRESENT; 2463 return (error); 2464 } 2465 device_sysctl_update(dev); 2466 dev->state = DS_ATTACHED; 2467 devadded(dev); 2468 return (0); 2469 } 2470 2471 /** 2472 * @brief Detach a driver from a device 2473 * 2474 * This function is a wrapper around the DEVICE_DETACH() driver 2475 * method. If the call to DEVICE_DETACH() succeeds, it calls 2476 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2477 * notification event for user-based device management services and 2478 * cleans up the device's sysctl tree. 2479 * 2480 * @param dev the device to un-initialise 2481 * 2482 * @retval 0 success 2483 * @retval ENXIO no driver was found 2484 * @retval ENOMEM memory allocation failure 2485 * @retval non-zero some other unix error code 2486 */ 2487 int 2488 device_detach(device_t dev) 2489 { 2490 int error; 2491 2492 GIANT_REQUIRED; 2493 2494 PDEBUG(("%s", DEVICENAME(dev))); 2495 if (dev->state == DS_BUSY) 2496 return (EBUSY); 2497 if (dev->state != DS_ATTACHED) 2498 return (0); 2499 2500 if ((error = DEVICE_DETACH(dev)) != 0) 2501 return (error); 2502 devremoved(dev); 2503 if (!device_is_quiet(dev)) 2504 device_printf(dev, "detached\n"); 2505 if (dev->parent) 2506 BUS_CHILD_DETACHED(dev->parent, dev); 2507 2508 if (!(dev->flags & DF_FIXEDCLASS)) 2509 devclass_delete_device(dev->devclass, dev); 2510 2511 dev->state = DS_NOTPRESENT; 2512 device_set_driver(dev, NULL); 2513 device_set_desc(dev, NULL); 2514 device_sysctl_fini(dev); 2515 2516 return (0); 2517 } 2518 2519 /** 2520 * @brief Tells a driver to quiesce itself. 2521 * 2522 * This function is a wrapper around the DEVICE_QUIESCE() driver 2523 * method. If the call to DEVICE_QUIESCE() succeeds. 2524 * 2525 * @param dev the device to quiesce 2526 * 2527 * @retval 0 success 2528 * @retval ENXIO no driver was found 2529 * @retval ENOMEM memory allocation failure 2530 * @retval non-zero some other unix error code 2531 */ 2532 int 2533 device_quiesce(device_t dev) 2534 { 2535 2536 PDEBUG(("%s", DEVICENAME(dev))); 2537 if (dev->state == DS_BUSY) 2538 return (EBUSY); 2539 if (dev->state != DS_ATTACHED) 2540 return (0); 2541 2542 return (DEVICE_QUIESCE(dev)); 2543 } 2544 2545 /** 2546 * @brief Notify a device of system shutdown 2547 * 2548 * This function calls the DEVICE_SHUTDOWN() driver method if the 2549 * device currently has an attached driver. 2550 * 2551 * @returns the value returned by DEVICE_SHUTDOWN() 2552 */ 2553 int 2554 device_shutdown(device_t dev) 2555 { 2556 if (dev->state < DS_ATTACHED) 2557 return (0); 2558 return (DEVICE_SHUTDOWN(dev)); 2559 } 2560 2561 /** 2562 * @brief Set the unit number of a device 2563 * 2564 * This function can be used to override the unit number used for a 2565 * device (e.g. to wire a device to a pre-configured unit number). 2566 */ 2567 int 2568 device_set_unit(device_t dev, int unit) 2569 { 2570 devclass_t dc; 2571 int err; 2572 2573 dc = device_get_devclass(dev); 2574 if (unit < dc->maxunit && dc->devices[unit]) 2575 return (EBUSY); 2576 err = devclass_delete_device(dc, dev); 2577 if (err) 2578 return (err); 2579 dev->unit = unit; 2580 err = devclass_add_device(dc, dev); 2581 if (err) 2582 return (err); 2583 2584 bus_data_generation_update(); 2585 return (0); 2586 } 2587 2588 /*======================================*/ 2589 /* 2590 * Some useful method implementations to make life easier for bus drivers. 2591 */ 2592 2593 /** 2594 * @brief Initialise a resource list. 2595 * 2596 * @param rl the resource list to initialise 2597 */ 2598 void 2599 resource_list_init(struct resource_list *rl) 2600 { 2601 STAILQ_INIT(rl); 2602 } 2603 2604 /** 2605 * @brief Reclaim memory used by a resource list. 2606 * 2607 * This function frees the memory for all resource entries on the list 2608 * (if any). 2609 * 2610 * @param rl the resource list to free 2611 */ 2612 void 2613 resource_list_free(struct resource_list *rl) 2614 { 2615 struct resource_list_entry *rle; 2616 2617 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2618 if (rle->res) 2619 panic("resource_list_free: resource entry is busy"); 2620 STAILQ_REMOVE_HEAD(rl, link); 2621 free(rle, M_BUS); 2622 } 2623 } 2624 2625 /** 2626 * @brief Add a resource entry. 2627 * 2628 * This function adds a resource entry using the given @p type, @p 2629 * start, @p end and @p count values. A rid value is chosen by 2630 * searching sequentially for the first unused rid starting at zero. 2631 * 2632 * @param rl the resource list to edit 2633 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2634 * @param start the start address of the resource 2635 * @param end the end address of the resource 2636 * @param count XXX end-start+1 2637 */ 2638 int 2639 resource_list_add_next(struct resource_list *rl, int type, u_long start, 2640 u_long end, u_long count) 2641 { 2642 int rid; 2643 2644 rid = 0; 2645 while (resource_list_find(rl, type, rid) != NULL) 2646 rid++; 2647 resource_list_add(rl, type, rid, start, end, count); 2648 return (rid); 2649 } 2650 2651 /** 2652 * @brief Add or modify a resource entry. 2653 * 2654 * If an existing entry exists with the same type and rid, it will be 2655 * modified using the given values of @p start, @p end and @p 2656 * count. If no entry exists, a new one will be created using the 2657 * given values. The resource list entry that matches is then returned. 2658 * 2659 * @param rl the resource list to edit 2660 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2661 * @param rid the resource identifier 2662 * @param start the start address of the resource 2663 * @param end the end address of the resource 2664 * @param count XXX end-start+1 2665 */ 2666 struct resource_list_entry * 2667 resource_list_add(struct resource_list *rl, int type, int rid, 2668 u_long start, u_long end, u_long count) 2669 { 2670 struct resource_list_entry *rle; 2671 2672 rle = resource_list_find(rl, type, rid); 2673 if (!rle) { 2674 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2675 M_NOWAIT); 2676 if (!rle) 2677 panic("resource_list_add: can't record entry"); 2678 STAILQ_INSERT_TAIL(rl, rle, link); 2679 rle->type = type; 2680 rle->rid = rid; 2681 rle->res = NULL; 2682 } 2683 2684 if (rle->res) 2685 panic("resource_list_add: resource entry is busy"); 2686 2687 rle->start = start; 2688 rle->end = end; 2689 rle->count = count; 2690 return (rle); 2691 } 2692 2693 /** 2694 * @brief Find a resource entry by type and rid. 2695 * 2696 * @param rl the resource list to search 2697 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2698 * @param rid the resource identifier 2699 * 2700 * @returns the resource entry pointer or NULL if there is no such 2701 * entry. 2702 */ 2703 struct resource_list_entry * 2704 resource_list_find(struct resource_list *rl, int type, int rid) 2705 { 2706 struct resource_list_entry *rle; 2707 2708 STAILQ_FOREACH(rle, rl, link) { 2709 if (rle->type == type && rle->rid == rid) 2710 return (rle); 2711 } 2712 return (NULL); 2713 } 2714 2715 /** 2716 * @brief Delete a resource entry. 2717 * 2718 * @param rl the resource list to edit 2719 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2720 * @param rid the resource identifier 2721 */ 2722 void 2723 resource_list_delete(struct resource_list *rl, int type, int rid) 2724 { 2725 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2726 2727 if (rle) { 2728 if (rle->res != NULL) 2729 panic("resource_list_delete: resource has not been released"); 2730 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 2731 free(rle, M_BUS); 2732 } 2733 } 2734 2735 /** 2736 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 2737 * 2738 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 2739 * and passing the allocation up to the parent of @p bus. This assumes 2740 * that the first entry of @c device_get_ivars(child) is a struct 2741 * resource_list. This also handles 'passthrough' allocations where a 2742 * child is a remote descendant of bus by passing the allocation up to 2743 * the parent of bus. 2744 * 2745 * Typically, a bus driver would store a list of child resources 2746 * somewhere in the child device's ivars (see device_get_ivars()) and 2747 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 2748 * then call resource_list_alloc() to perform the allocation. 2749 * 2750 * @param rl the resource list to allocate from 2751 * @param bus the parent device of @p child 2752 * @param child the device which is requesting an allocation 2753 * @param type the type of resource to allocate 2754 * @param rid a pointer to the resource identifier 2755 * @param start hint at the start of the resource range - pass 2756 * @c 0UL for any start address 2757 * @param end hint at the end of the resource range - pass 2758 * @c ~0UL for any end address 2759 * @param count hint at the size of range required - pass @c 1 2760 * for any size 2761 * @param flags any extra flags to control the resource 2762 * allocation - see @c RF_XXX flags in 2763 * <sys/rman.h> for details 2764 * 2765 * @returns the resource which was allocated or @c NULL if no 2766 * resource could be allocated 2767 */ 2768 struct resource * 2769 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 2770 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 2771 { 2772 struct resource_list_entry *rle = NULL; 2773 int passthrough = (device_get_parent(child) != bus); 2774 int isdefault = (start == 0UL && end == ~0UL); 2775 2776 if (passthrough) { 2777 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2778 type, rid, start, end, count, flags)); 2779 } 2780 2781 rle = resource_list_find(rl, type, *rid); 2782 2783 if (!rle) 2784 return (NULL); /* no resource of that type/rid */ 2785 2786 if (rle->res) 2787 panic("resource_list_alloc: resource entry is busy"); 2788 2789 if (isdefault) { 2790 start = rle->start; 2791 count = ulmax(count, rle->count); 2792 end = ulmax(rle->end, start + count - 1); 2793 } 2794 2795 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2796 type, rid, start, end, count, flags); 2797 2798 /* 2799 * Record the new range. 2800 */ 2801 if (rle->res) { 2802 rle->start = rman_get_start(rle->res); 2803 rle->end = rman_get_end(rle->res); 2804 rle->count = count; 2805 } 2806 2807 return (rle->res); 2808 } 2809 2810 /** 2811 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 2812 * 2813 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 2814 * used with resource_list_alloc(). 2815 * 2816 * @param rl the resource list which was allocated from 2817 * @param bus the parent device of @p child 2818 * @param child the device which is requesting a release 2819 * @param type the type of resource to allocate 2820 * @param rid the resource identifier 2821 * @param res the resource to release 2822 * 2823 * @retval 0 success 2824 * @retval non-zero a standard unix error code indicating what 2825 * error condition prevented the operation 2826 */ 2827 int 2828 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 2829 int type, int rid, struct resource *res) 2830 { 2831 struct resource_list_entry *rle = NULL; 2832 int passthrough = (device_get_parent(child) != bus); 2833 int error; 2834 2835 if (passthrough) { 2836 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2837 type, rid, res)); 2838 } 2839 2840 rle = resource_list_find(rl, type, rid); 2841 2842 if (!rle) 2843 panic("resource_list_release: can't find resource"); 2844 if (!rle->res) 2845 panic("resource_list_release: resource entry is not busy"); 2846 2847 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2848 type, rid, res); 2849 if (error) 2850 return (error); 2851 2852 rle->res = NULL; 2853 return (0); 2854 } 2855 2856 /** 2857 * @brief Print a description of resources in a resource list 2858 * 2859 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 2860 * The name is printed if at least one resource of the given type is available. 2861 * The format is used to print resource start and end. 2862 * 2863 * @param rl the resource list to print 2864 * @param name the name of @p type, e.g. @c "memory" 2865 * @param type type type of resource entry to print 2866 * @param format printf(9) format string to print resource 2867 * start and end values 2868 * 2869 * @returns the number of characters printed 2870 */ 2871 int 2872 resource_list_print_type(struct resource_list *rl, const char *name, int type, 2873 const char *format) 2874 { 2875 struct resource_list_entry *rle; 2876 int printed, retval; 2877 2878 printed = 0; 2879 retval = 0; 2880 /* Yes, this is kinda cheating */ 2881 STAILQ_FOREACH(rle, rl, link) { 2882 if (rle->type == type) { 2883 if (printed == 0) 2884 retval += printf(" %s ", name); 2885 else 2886 retval += printf(","); 2887 printed++; 2888 retval += printf(format, rle->start); 2889 if (rle->count > 1) { 2890 retval += printf("-"); 2891 retval += printf(format, rle->start + 2892 rle->count - 1); 2893 } 2894 } 2895 } 2896 return (retval); 2897 } 2898 2899 /** 2900 * @brief Releases all the resources in a list. 2901 * 2902 * @param rl The resource list to purge. 2903 * 2904 * @returns nothing 2905 */ 2906 void 2907 resource_list_purge(struct resource_list *rl) 2908 { 2909 struct resource_list_entry *rle; 2910 2911 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2912 if (rle->res) 2913 bus_release_resource(rman_get_device(rle->res), 2914 rle->type, rle->rid, rle->res); 2915 STAILQ_REMOVE_HEAD(rl, link); 2916 free(rle, M_BUS); 2917 } 2918 } 2919 2920 device_t 2921 bus_generic_add_child(device_t dev, int order, const char *name, int unit) 2922 { 2923 2924 return (device_add_child_ordered(dev, order, name, unit)); 2925 } 2926 2927 /** 2928 * @brief Helper function for implementing DEVICE_PROBE() 2929 * 2930 * This function can be used to help implement the DEVICE_PROBE() for 2931 * a bus (i.e. a device which has other devices attached to it). It 2932 * calls the DEVICE_IDENTIFY() method of each driver in the device's 2933 * devclass. 2934 */ 2935 int 2936 bus_generic_probe(device_t dev) 2937 { 2938 devclass_t dc = dev->devclass; 2939 driverlink_t dl; 2940 2941 TAILQ_FOREACH(dl, &dc->drivers, link) { 2942 DEVICE_IDENTIFY(dl->driver, dev); 2943 } 2944 2945 return (0); 2946 } 2947 2948 /** 2949 * @brief Helper function for implementing DEVICE_ATTACH() 2950 * 2951 * This function can be used to help implement the DEVICE_ATTACH() for 2952 * a bus. It calls device_probe_and_attach() for each of the device's 2953 * children. 2954 */ 2955 int 2956 bus_generic_attach(device_t dev) 2957 { 2958 device_t child; 2959 2960 TAILQ_FOREACH(child, &dev->children, link) { 2961 device_probe_and_attach(child); 2962 } 2963 2964 return (0); 2965 } 2966 2967 /** 2968 * @brief Helper function for implementing DEVICE_DETACH() 2969 * 2970 * This function can be used to help implement the DEVICE_DETACH() for 2971 * a bus. It calls device_detach() for each of the device's 2972 * children. 2973 */ 2974 int 2975 bus_generic_detach(device_t dev) 2976 { 2977 device_t child; 2978 int error; 2979 2980 if (dev->state != DS_ATTACHED) 2981 return (EBUSY); 2982 2983 TAILQ_FOREACH(child, &dev->children, link) { 2984 if ((error = device_detach(child)) != 0) 2985 return (error); 2986 } 2987 2988 return (0); 2989 } 2990 2991 /** 2992 * @brief Helper function for implementing DEVICE_SHUTDOWN() 2993 * 2994 * This function can be used to help implement the DEVICE_SHUTDOWN() 2995 * for a bus. It calls device_shutdown() for each of the device's 2996 * children. 2997 */ 2998 int 2999 bus_generic_shutdown(device_t dev) 3000 { 3001 device_t child; 3002 3003 TAILQ_FOREACH(child, &dev->children, link) { 3004 device_shutdown(child); 3005 } 3006 3007 return (0); 3008 } 3009 3010 /** 3011 * @brief Helper function for implementing DEVICE_SUSPEND() 3012 * 3013 * This function can be used to help implement the DEVICE_SUSPEND() 3014 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3015 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3016 * operation is aborted and any devices which were suspended are 3017 * resumed immediately by calling their DEVICE_RESUME() methods. 3018 */ 3019 int 3020 bus_generic_suspend(device_t dev) 3021 { 3022 int error; 3023 device_t child, child2; 3024 3025 TAILQ_FOREACH(child, &dev->children, link) { 3026 error = DEVICE_SUSPEND(child); 3027 if (error) { 3028 for (child2 = TAILQ_FIRST(&dev->children); 3029 child2 && child2 != child; 3030 child2 = TAILQ_NEXT(child2, link)) 3031 DEVICE_RESUME(child2); 3032 return (error); 3033 } 3034 } 3035 return (0); 3036 } 3037 3038 /** 3039 * @brief Helper function for implementing DEVICE_RESUME() 3040 * 3041 * This function can be used to help implement the DEVICE_RESUME() for 3042 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3043 */ 3044 int 3045 bus_generic_resume(device_t dev) 3046 { 3047 device_t child; 3048 3049 TAILQ_FOREACH(child, &dev->children, link) { 3050 DEVICE_RESUME(child); 3051 /* if resume fails, there's nothing we can usefully do... */ 3052 } 3053 return (0); 3054 } 3055 3056 /** 3057 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3058 * 3059 * This function prints the first part of the ascii representation of 3060 * @p child, including its name, unit and description (if any - see 3061 * device_set_desc()). 3062 * 3063 * @returns the number of characters printed 3064 */ 3065 int 3066 bus_print_child_header(device_t dev, device_t child) 3067 { 3068 int retval = 0; 3069 3070 if (device_get_desc(child)) { 3071 retval += device_printf(child, "<%s>", device_get_desc(child)); 3072 } else { 3073 retval += printf("%s", device_get_nameunit(child)); 3074 } 3075 3076 return (retval); 3077 } 3078 3079 /** 3080 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3081 * 3082 * This function prints the last part of the ascii representation of 3083 * @p child, which consists of the string @c " on " followed by the 3084 * name and unit of the @p dev. 3085 * 3086 * @returns the number of characters printed 3087 */ 3088 int 3089 bus_print_child_footer(device_t dev, device_t child) 3090 { 3091 return (printf(" on %s\n", device_get_nameunit(dev))); 3092 } 3093 3094 /** 3095 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3096 * 3097 * This function simply calls bus_print_child_header() followed by 3098 * bus_print_child_footer(). 3099 * 3100 * @returns the number of characters printed 3101 */ 3102 int 3103 bus_generic_print_child(device_t dev, device_t child) 3104 { 3105 int retval = 0; 3106 3107 retval += bus_print_child_header(dev, child); 3108 retval += bus_print_child_footer(dev, child); 3109 3110 return (retval); 3111 } 3112 3113 /** 3114 * @brief Stub function for implementing BUS_READ_IVAR(). 3115 * 3116 * @returns ENOENT 3117 */ 3118 int 3119 bus_generic_read_ivar(device_t dev, device_t child, int index, 3120 uintptr_t * result) 3121 { 3122 return (ENOENT); 3123 } 3124 3125 /** 3126 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3127 * 3128 * @returns ENOENT 3129 */ 3130 int 3131 bus_generic_write_ivar(device_t dev, device_t child, int index, 3132 uintptr_t value) 3133 { 3134 return (ENOENT); 3135 } 3136 3137 /** 3138 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3139 * 3140 * @returns NULL 3141 */ 3142 struct resource_list * 3143 bus_generic_get_resource_list(device_t dev, device_t child) 3144 { 3145 return (NULL); 3146 } 3147 3148 /** 3149 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3150 * 3151 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3152 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3153 * and then calls device_probe_and_attach() for each unattached child. 3154 */ 3155 void 3156 bus_generic_driver_added(device_t dev, driver_t *driver) 3157 { 3158 device_t child; 3159 3160 DEVICE_IDENTIFY(driver, dev); 3161 TAILQ_FOREACH(child, &dev->children, link) { 3162 if (child->state == DS_NOTPRESENT || 3163 (child->flags & DF_REBID)) 3164 device_probe_and_attach(child); 3165 } 3166 } 3167 3168 /** 3169 * @brief Helper function for implementing BUS_SETUP_INTR(). 3170 * 3171 * This simple implementation of BUS_SETUP_INTR() simply calls the 3172 * BUS_SETUP_INTR() method of the parent of @p dev. 3173 */ 3174 int 3175 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3176 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3177 void **cookiep) 3178 { 3179 /* Propagate up the bus hierarchy until someone handles it. */ 3180 if (dev->parent) 3181 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3182 filter, intr, arg, cookiep)); 3183 return (EINVAL); 3184 } 3185 3186 /** 3187 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3188 * 3189 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3190 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3191 */ 3192 int 3193 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3194 void *cookie) 3195 { 3196 /* Propagate up the bus hierarchy until someone handles it. */ 3197 if (dev->parent) 3198 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3199 return (EINVAL); 3200 } 3201 3202 /** 3203 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3204 * 3205 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3206 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3207 */ 3208 struct resource * 3209 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3210 u_long start, u_long end, u_long count, u_int flags) 3211 { 3212 /* Propagate up the bus hierarchy until someone handles it. */ 3213 if (dev->parent) 3214 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3215 start, end, count, flags)); 3216 return (NULL); 3217 } 3218 3219 /** 3220 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3221 * 3222 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3223 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3224 */ 3225 int 3226 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3227 struct resource *r) 3228 { 3229 /* Propagate up the bus hierarchy until someone handles it. */ 3230 if (dev->parent) 3231 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3232 r)); 3233 return (EINVAL); 3234 } 3235 3236 /** 3237 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3238 * 3239 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3240 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3241 */ 3242 int 3243 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3244 struct resource *r) 3245 { 3246 /* Propagate up the bus hierarchy until someone handles it. */ 3247 if (dev->parent) 3248 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3249 r)); 3250 return (EINVAL); 3251 } 3252 3253 /** 3254 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3255 * 3256 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3257 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3258 */ 3259 int 3260 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3261 int rid, struct resource *r) 3262 { 3263 /* Propagate up the bus hierarchy until someone handles it. */ 3264 if (dev->parent) 3265 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3266 r)); 3267 return (EINVAL); 3268 } 3269 3270 /** 3271 * @brief Helper function for implementing BUS_BIND_INTR(). 3272 * 3273 * This simple implementation of BUS_BIND_INTR() simply calls the 3274 * BUS_BIND_INTR() method of the parent of @p dev. 3275 */ 3276 int 3277 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 3278 int cpu) 3279 { 3280 3281 /* Propagate up the bus hierarchy until someone handles it. */ 3282 if (dev->parent) 3283 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 3284 return (EINVAL); 3285 } 3286 3287 /** 3288 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3289 * 3290 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3291 * BUS_CONFIG_INTR() method of the parent of @p dev. 3292 */ 3293 int 3294 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3295 enum intr_polarity pol) 3296 { 3297 3298 /* Propagate up the bus hierarchy until someone handles it. */ 3299 if (dev->parent) 3300 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3301 return (EINVAL); 3302 } 3303 3304 /** 3305 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 3306 * 3307 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 3308 * BUS_GET_DMA_TAG() method of the parent of @p dev. 3309 */ 3310 bus_dma_tag_t 3311 bus_generic_get_dma_tag(device_t dev, device_t child) 3312 { 3313 3314 /* Propagate up the bus hierarchy until someone handles it. */ 3315 if (dev->parent != NULL) 3316 return (BUS_GET_DMA_TAG(dev->parent, child)); 3317 return (NULL); 3318 } 3319 3320 /** 3321 * @brief Helper function for implementing BUS_GET_RESOURCE(). 3322 * 3323 * This implementation of BUS_GET_RESOURCE() uses the 3324 * resource_list_find() function to do most of the work. It calls 3325 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3326 * search. 3327 */ 3328 int 3329 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 3330 u_long *startp, u_long *countp) 3331 { 3332 struct resource_list * rl = NULL; 3333 struct resource_list_entry * rle = NULL; 3334 3335 rl = BUS_GET_RESOURCE_LIST(dev, child); 3336 if (!rl) 3337 return (EINVAL); 3338 3339 rle = resource_list_find(rl, type, rid); 3340 if (!rle) 3341 return (ENOENT); 3342 3343 if (startp) 3344 *startp = rle->start; 3345 if (countp) 3346 *countp = rle->count; 3347 3348 return (0); 3349 } 3350 3351 /** 3352 * @brief Helper function for implementing BUS_SET_RESOURCE(). 3353 * 3354 * This implementation of BUS_SET_RESOURCE() uses the 3355 * resource_list_add() function to do most of the work. It calls 3356 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3357 * edit. 3358 */ 3359 int 3360 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 3361 u_long start, u_long count) 3362 { 3363 struct resource_list * rl = NULL; 3364 3365 rl = BUS_GET_RESOURCE_LIST(dev, child); 3366 if (!rl) 3367 return (EINVAL); 3368 3369 resource_list_add(rl, type, rid, start, (start + count - 1), count); 3370 3371 return (0); 3372 } 3373 3374 /** 3375 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 3376 * 3377 * This implementation of BUS_DELETE_RESOURCE() uses the 3378 * resource_list_delete() function to do most of the work. It calls 3379 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3380 * edit. 3381 */ 3382 void 3383 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 3384 { 3385 struct resource_list * rl = NULL; 3386 3387 rl = BUS_GET_RESOURCE_LIST(dev, child); 3388 if (!rl) 3389 return; 3390 3391 resource_list_delete(rl, type, rid); 3392 3393 return; 3394 } 3395 3396 /** 3397 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3398 * 3399 * This implementation of BUS_RELEASE_RESOURCE() uses the 3400 * resource_list_release() function to do most of the work. It calls 3401 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3402 */ 3403 int 3404 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 3405 int rid, struct resource *r) 3406 { 3407 struct resource_list * rl = NULL; 3408 3409 rl = BUS_GET_RESOURCE_LIST(dev, child); 3410 if (!rl) 3411 return (EINVAL); 3412 3413 return (resource_list_release(rl, dev, child, type, rid, r)); 3414 } 3415 3416 /** 3417 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3418 * 3419 * This implementation of BUS_ALLOC_RESOURCE() uses the 3420 * resource_list_alloc() function to do most of the work. It calls 3421 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3422 */ 3423 struct resource * 3424 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 3425 int *rid, u_long start, u_long end, u_long count, u_int flags) 3426 { 3427 struct resource_list * rl = NULL; 3428 3429 rl = BUS_GET_RESOURCE_LIST(dev, child); 3430 if (!rl) 3431 return (NULL); 3432 3433 return (resource_list_alloc(rl, dev, child, type, rid, 3434 start, end, count, flags)); 3435 } 3436 3437 /** 3438 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 3439 * 3440 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 3441 * BUS_CHILD_PRESENT() method of the parent of @p dev. 3442 */ 3443 int 3444 bus_generic_child_present(device_t dev, device_t child) 3445 { 3446 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 3447 } 3448 3449 /* 3450 * Some convenience functions to make it easier for drivers to use the 3451 * resource-management functions. All these really do is hide the 3452 * indirection through the parent's method table, making for slightly 3453 * less-wordy code. In the future, it might make sense for this code 3454 * to maintain some sort of a list of resources allocated by each device. 3455 */ 3456 3457 int 3458 bus_alloc_resources(device_t dev, struct resource_spec *rs, 3459 struct resource **res) 3460 { 3461 int i; 3462 3463 for (i = 0; rs[i].type != -1; i++) 3464 res[i] = NULL; 3465 for (i = 0; rs[i].type != -1; i++) { 3466 res[i] = bus_alloc_resource_any(dev, 3467 rs[i].type, &rs[i].rid, rs[i].flags); 3468 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 3469 bus_release_resources(dev, rs, res); 3470 return (ENXIO); 3471 } 3472 } 3473 return (0); 3474 } 3475 3476 void 3477 bus_release_resources(device_t dev, const struct resource_spec *rs, 3478 struct resource **res) 3479 { 3480 int i; 3481 3482 for (i = 0; rs[i].type != -1; i++) 3483 if (res[i] != NULL) { 3484 bus_release_resource( 3485 dev, rs[i].type, rs[i].rid, res[i]); 3486 res[i] = NULL; 3487 } 3488 } 3489 3490 /** 3491 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 3492 * 3493 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 3494 * parent of @p dev. 3495 */ 3496 struct resource * 3497 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 3498 u_long count, u_int flags) 3499 { 3500 if (dev->parent == NULL) 3501 return (NULL); 3502 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 3503 count, flags)); 3504 } 3505 3506 /** 3507 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 3508 * 3509 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 3510 * parent of @p dev. 3511 */ 3512 int 3513 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 3514 { 3515 if (dev->parent == NULL) 3516 return (EINVAL); 3517 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3518 } 3519 3520 /** 3521 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 3522 * 3523 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 3524 * parent of @p dev. 3525 */ 3526 int 3527 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 3528 { 3529 if (dev->parent == NULL) 3530 return (EINVAL); 3531 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3532 } 3533 3534 /** 3535 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 3536 * 3537 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 3538 * parent of @p dev. 3539 */ 3540 int 3541 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 3542 { 3543 if (dev->parent == NULL) 3544 return (EINVAL); 3545 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 3546 } 3547 3548 /** 3549 * @brief Wrapper function for BUS_SETUP_INTR(). 3550 * 3551 * This function simply calls the BUS_SETUP_INTR() method of the 3552 * parent of @p dev. 3553 */ 3554 int 3555 bus_setup_intr(device_t dev, struct resource *r, int flags, 3556 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 3557 { 3558 int error; 3559 3560 if (dev->parent == NULL) 3561 return (EINVAL); 3562 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 3563 arg, cookiep); 3564 if (error != 0) 3565 return (error); 3566 if (handler != NULL && !(flags & INTR_MPSAFE)) 3567 device_printf(dev, "[GIANT-LOCKED]\n"); 3568 if (bootverbose && (flags & INTR_MPSAFE)) 3569 device_printf(dev, "[MPSAFE]\n"); 3570 if (filter != NULL) { 3571 if (handler == NULL) 3572 device_printf(dev, "[FILTER]\n"); 3573 else 3574 device_printf(dev, "[FILTER+ITHREAD]\n"); 3575 } else 3576 device_printf(dev, "[ITHREAD]\n"); 3577 return (0); 3578 } 3579 3580 /** 3581 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 3582 * 3583 * This function simply calls the BUS_TEARDOWN_INTR() method of the 3584 * parent of @p dev. 3585 */ 3586 int 3587 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 3588 { 3589 if (dev->parent == NULL) 3590 return (EINVAL); 3591 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 3592 } 3593 3594 /** 3595 * @brief Wrapper function for BUS_BIND_INTR(). 3596 * 3597 * This function simply calls the BUS_BIND_INTR() method of the 3598 * parent of @p dev. 3599 */ 3600 int 3601 bus_bind_intr(device_t dev, struct resource *r, int cpu) 3602 { 3603 if (dev->parent == NULL) 3604 return (EINVAL); 3605 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 3606 } 3607 3608 /** 3609 * @brief Wrapper function for BUS_SET_RESOURCE(). 3610 * 3611 * This function simply calls the BUS_SET_RESOURCE() method of the 3612 * parent of @p dev. 3613 */ 3614 int 3615 bus_set_resource(device_t dev, int type, int rid, 3616 u_long start, u_long count) 3617 { 3618 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 3619 start, count)); 3620 } 3621 3622 /** 3623 * @brief Wrapper function for BUS_GET_RESOURCE(). 3624 * 3625 * This function simply calls the BUS_GET_RESOURCE() method of the 3626 * parent of @p dev. 3627 */ 3628 int 3629 bus_get_resource(device_t dev, int type, int rid, 3630 u_long *startp, u_long *countp) 3631 { 3632 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3633 startp, countp)); 3634 } 3635 3636 /** 3637 * @brief Wrapper function for BUS_GET_RESOURCE(). 3638 * 3639 * This function simply calls the BUS_GET_RESOURCE() method of the 3640 * parent of @p dev and returns the start value. 3641 */ 3642 u_long 3643 bus_get_resource_start(device_t dev, int type, int rid) 3644 { 3645 u_long start, count; 3646 int error; 3647 3648 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3649 &start, &count); 3650 if (error) 3651 return (0); 3652 return (start); 3653 } 3654 3655 /** 3656 * @brief Wrapper function for BUS_GET_RESOURCE(). 3657 * 3658 * This function simply calls the BUS_GET_RESOURCE() method of the 3659 * parent of @p dev and returns the count value. 3660 */ 3661 u_long 3662 bus_get_resource_count(device_t dev, int type, int rid) 3663 { 3664 u_long start, count; 3665 int error; 3666 3667 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3668 &start, &count); 3669 if (error) 3670 return (0); 3671 return (count); 3672 } 3673 3674 /** 3675 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 3676 * 3677 * This function simply calls the BUS_DELETE_RESOURCE() method of the 3678 * parent of @p dev. 3679 */ 3680 void 3681 bus_delete_resource(device_t dev, int type, int rid) 3682 { 3683 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 3684 } 3685 3686 /** 3687 * @brief Wrapper function for BUS_CHILD_PRESENT(). 3688 * 3689 * This function simply calls the BUS_CHILD_PRESENT() method of the 3690 * parent of @p dev. 3691 */ 3692 int 3693 bus_child_present(device_t child) 3694 { 3695 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 3696 } 3697 3698 /** 3699 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 3700 * 3701 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 3702 * parent of @p dev. 3703 */ 3704 int 3705 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 3706 { 3707 device_t parent; 3708 3709 parent = device_get_parent(child); 3710 if (parent == NULL) { 3711 *buf = '\0'; 3712 return (0); 3713 } 3714 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 3715 } 3716 3717 /** 3718 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 3719 * 3720 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 3721 * parent of @p dev. 3722 */ 3723 int 3724 bus_child_location_str(device_t child, char *buf, size_t buflen) 3725 { 3726 device_t parent; 3727 3728 parent = device_get_parent(child); 3729 if (parent == NULL) { 3730 *buf = '\0'; 3731 return (0); 3732 } 3733 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 3734 } 3735 3736 /** 3737 * @brief Wrapper function for BUS_GET_DMA_TAG(). 3738 * 3739 * This function simply calls the BUS_GET_DMA_TAG() method of the 3740 * parent of @p dev. 3741 */ 3742 bus_dma_tag_t 3743 bus_get_dma_tag(device_t dev) 3744 { 3745 device_t parent; 3746 3747 parent = device_get_parent(dev); 3748 if (parent == NULL) 3749 return (NULL); 3750 return (BUS_GET_DMA_TAG(parent, dev)); 3751 } 3752 3753 /* Resume all devices and then notify userland that we're up again. */ 3754 static int 3755 root_resume(device_t dev) 3756 { 3757 int error; 3758 3759 error = bus_generic_resume(dev); 3760 if (error == 0) 3761 devctl_notify("kern", "power", "resume", NULL); 3762 return (error); 3763 } 3764 3765 static int 3766 root_print_child(device_t dev, device_t child) 3767 { 3768 int retval = 0; 3769 3770 retval += bus_print_child_header(dev, child); 3771 retval += printf("\n"); 3772 3773 return (retval); 3774 } 3775 3776 static int 3777 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 3778 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 3779 { 3780 /* 3781 * If an interrupt mapping gets to here something bad has happened. 3782 */ 3783 panic("root_setup_intr"); 3784 } 3785 3786 /* 3787 * If we get here, assume that the device is permanant and really is 3788 * present in the system. Removable bus drivers are expected to intercept 3789 * this call long before it gets here. We return -1 so that drivers that 3790 * really care can check vs -1 or some ERRNO returned higher in the food 3791 * chain. 3792 */ 3793 static int 3794 root_child_present(device_t dev, device_t child) 3795 { 3796 return (-1); 3797 } 3798 3799 static kobj_method_t root_methods[] = { 3800 /* Device interface */ 3801 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 3802 KOBJMETHOD(device_suspend, bus_generic_suspend), 3803 KOBJMETHOD(device_resume, root_resume), 3804 3805 /* Bus interface */ 3806 KOBJMETHOD(bus_print_child, root_print_child), 3807 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 3808 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 3809 KOBJMETHOD(bus_setup_intr, root_setup_intr), 3810 KOBJMETHOD(bus_child_present, root_child_present), 3811 3812 KOBJMETHOD_END 3813 }; 3814 3815 static driver_t root_driver = { 3816 "root", 3817 root_methods, 3818 1, /* no softc */ 3819 }; 3820 3821 device_t root_bus; 3822 devclass_t root_devclass; 3823 3824 static int 3825 root_bus_module_handler(module_t mod, int what, void* arg) 3826 { 3827 switch (what) { 3828 case MOD_LOAD: 3829 TAILQ_INIT(&bus_data_devices); 3830 kobj_class_compile((kobj_class_t) &root_driver); 3831 root_bus = make_device(NULL, "root", 0); 3832 root_bus->desc = "System root bus"; 3833 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 3834 root_bus->driver = &root_driver; 3835 root_bus->state = DS_ATTACHED; 3836 root_devclass = devclass_find_internal("root", NULL, FALSE); 3837 devinit(); 3838 return (0); 3839 3840 case MOD_SHUTDOWN: 3841 device_shutdown(root_bus); 3842 return (0); 3843 default: 3844 return (EOPNOTSUPP); 3845 } 3846 3847 return (0); 3848 } 3849 3850 static moduledata_t root_bus_mod = { 3851 "rootbus", 3852 root_bus_module_handler, 3853 NULL 3854 }; 3855 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 3856 3857 /** 3858 * @brief Automatically configure devices 3859 * 3860 * This function begins the autoconfiguration process by calling 3861 * device_probe_and_attach() for each child of the @c root0 device. 3862 */ 3863 void 3864 root_bus_configure(void) 3865 { 3866 device_t dev; 3867 3868 PDEBUG((".")); 3869 3870 TAILQ_FOREACH(dev, &root_bus->children, link) { 3871 device_probe_and_attach(dev); 3872 } 3873 } 3874 3875 /** 3876 * @brief Module handler for registering device drivers 3877 * 3878 * This module handler is used to automatically register device 3879 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 3880 * devclass_add_driver() for the driver described by the 3881 * driver_module_data structure pointed to by @p arg 3882 */ 3883 int 3884 driver_module_handler(module_t mod, int what, void *arg) 3885 { 3886 int error; 3887 struct driver_module_data *dmd; 3888 devclass_t bus_devclass; 3889 kobj_class_t driver; 3890 3891 dmd = (struct driver_module_data *)arg; 3892 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 3893 error = 0; 3894 3895 switch (what) { 3896 case MOD_LOAD: 3897 if (dmd->dmd_chainevh) 3898 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3899 3900 driver = dmd->dmd_driver; 3901 PDEBUG(("Loading module: driver %s on bus %s", 3902 DRIVERNAME(driver), dmd->dmd_busname)); 3903 error = devclass_add_driver(bus_devclass, driver); 3904 if (error) 3905 break; 3906 3907 /* 3908 * If the driver has any base classes, make the 3909 * devclass inherit from the devclass of the driver's 3910 * first base class. This will allow the system to 3911 * search for drivers in both devclasses for children 3912 * of a device using this driver. 3913 */ 3914 if (driver->baseclasses) { 3915 const char *parentname; 3916 parentname = driver->baseclasses[0]->name; 3917 *dmd->dmd_devclass = 3918 devclass_find_internal(driver->name, 3919 parentname, TRUE); 3920 } else { 3921 *dmd->dmd_devclass = 3922 devclass_find_internal(driver->name, NULL, TRUE); 3923 } 3924 break; 3925 3926 case MOD_UNLOAD: 3927 PDEBUG(("Unloading module: driver %s from bus %s", 3928 DRIVERNAME(dmd->dmd_driver), 3929 dmd->dmd_busname)); 3930 error = devclass_delete_driver(bus_devclass, 3931 dmd->dmd_driver); 3932 3933 if (!error && dmd->dmd_chainevh) 3934 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3935 break; 3936 case MOD_QUIESCE: 3937 PDEBUG(("Quiesce module: driver %s from bus %s", 3938 DRIVERNAME(dmd->dmd_driver), 3939 dmd->dmd_busname)); 3940 error = devclass_quiesce_driver(bus_devclass, 3941 dmd->dmd_driver); 3942 3943 if (!error && dmd->dmd_chainevh) 3944 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3945 break; 3946 default: 3947 error = EOPNOTSUPP; 3948 break; 3949 } 3950 3951 return (error); 3952 } 3953 3954 /** 3955 * @brief Enumerate all hinted devices for this bus. 3956 * 3957 * Walks through the hints for this bus and calls the bus_hinted_child 3958 * routine for each one it fines. It searches first for the specific 3959 * bus that's being probed for hinted children (eg isa0), and then for 3960 * generic children (eg isa). 3961 * 3962 * @param dev bus device to enumerate 3963 */ 3964 void 3965 bus_enumerate_hinted_children(device_t bus) 3966 { 3967 int i; 3968 const char *dname, *busname; 3969 int dunit; 3970 3971 /* 3972 * enumerate all devices on the specific bus 3973 */ 3974 busname = device_get_nameunit(bus); 3975 i = 0; 3976 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 3977 BUS_HINTED_CHILD(bus, dname, dunit); 3978 3979 /* 3980 * and all the generic ones. 3981 */ 3982 busname = device_get_name(bus); 3983 i = 0; 3984 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 3985 BUS_HINTED_CHILD(bus, dname, dunit); 3986 } 3987 3988 #ifdef BUS_DEBUG 3989 3990 /* the _short versions avoid iteration by not calling anything that prints 3991 * more than oneliners. I love oneliners. 3992 */ 3993 3994 static void 3995 print_device_short(device_t dev, int indent) 3996 { 3997 if (!dev) 3998 return; 3999 4000 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4001 dev->unit, dev->desc, 4002 (dev->parent? "":"no "), 4003 (TAILQ_EMPTY(&dev->children)? "no ":""), 4004 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4005 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4006 (dev->flags&DF_WILDCARD? "wildcard,":""), 4007 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4008 (dev->flags&DF_REBID? "rebiddable,":""), 4009 (dev->ivars? "":"no "), 4010 (dev->softc? "":"no "), 4011 dev->busy)); 4012 } 4013 4014 static void 4015 print_device(device_t dev, int indent) 4016 { 4017 if (!dev) 4018 return; 4019 4020 print_device_short(dev, indent); 4021 4022 indentprintf(("Parent:\n")); 4023 print_device_short(dev->parent, indent+1); 4024 indentprintf(("Driver:\n")); 4025 print_driver_short(dev->driver, indent+1); 4026 indentprintf(("Devclass:\n")); 4027 print_devclass_short(dev->devclass, indent+1); 4028 } 4029 4030 void 4031 print_device_tree_short(device_t dev, int indent) 4032 /* print the device and all its children (indented) */ 4033 { 4034 device_t child; 4035 4036 if (!dev) 4037 return; 4038 4039 print_device_short(dev, indent); 4040 4041 TAILQ_FOREACH(child, &dev->children, link) { 4042 print_device_tree_short(child, indent+1); 4043 } 4044 } 4045 4046 void 4047 print_device_tree(device_t dev, int indent) 4048 /* print the device and all its children (indented) */ 4049 { 4050 device_t child; 4051 4052 if (!dev) 4053 return; 4054 4055 print_device(dev, indent); 4056 4057 TAILQ_FOREACH(child, &dev->children, link) { 4058 print_device_tree(child, indent+1); 4059 } 4060 } 4061 4062 static void 4063 print_driver_short(driver_t *driver, int indent) 4064 { 4065 if (!driver) 4066 return; 4067 4068 indentprintf(("driver %s: softc size = %zd\n", 4069 driver->name, driver->size)); 4070 } 4071 4072 static void 4073 print_driver(driver_t *driver, int indent) 4074 { 4075 if (!driver) 4076 return; 4077 4078 print_driver_short(driver, indent); 4079 } 4080 4081 4082 static void 4083 print_driver_list(driver_list_t drivers, int indent) 4084 { 4085 driverlink_t driver; 4086 4087 TAILQ_FOREACH(driver, &drivers, link) { 4088 print_driver(driver->driver, indent); 4089 } 4090 } 4091 4092 static void 4093 print_devclass_short(devclass_t dc, int indent) 4094 { 4095 if ( !dc ) 4096 return; 4097 4098 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4099 } 4100 4101 static void 4102 print_devclass(devclass_t dc, int indent) 4103 { 4104 int i; 4105 4106 if ( !dc ) 4107 return; 4108 4109 print_devclass_short(dc, indent); 4110 indentprintf(("Drivers:\n")); 4111 print_driver_list(dc->drivers, indent+1); 4112 4113 indentprintf(("Devices:\n")); 4114 for (i = 0; i < dc->maxunit; i++) 4115 if (dc->devices[i]) 4116 print_device(dc->devices[i], indent+1); 4117 } 4118 4119 void 4120 print_devclass_list_short(void) 4121 { 4122 devclass_t dc; 4123 4124 printf("Short listing of devclasses, drivers & devices:\n"); 4125 TAILQ_FOREACH(dc, &devclasses, link) { 4126 print_devclass_short(dc, 0); 4127 } 4128 } 4129 4130 void 4131 print_devclass_list(void) 4132 { 4133 devclass_t dc; 4134 4135 printf("Full listing of devclasses, drivers & devices:\n"); 4136 TAILQ_FOREACH(dc, &devclasses, link) { 4137 print_devclass(dc, 0); 4138 } 4139 } 4140 4141 #endif 4142 4143 /* 4144 * User-space access to the device tree. 4145 * 4146 * We implement a small set of nodes: 4147 * 4148 * hw.bus Single integer read method to obtain the 4149 * current generation count. 4150 * hw.bus.devices Reads the entire device tree in flat space. 4151 * hw.bus.rman Resource manager interface 4152 * 4153 * We might like to add the ability to scan devclasses and/or drivers to 4154 * determine what else is currently loaded/available. 4155 */ 4156 4157 static int 4158 sysctl_bus(SYSCTL_HANDLER_ARGS) 4159 { 4160 struct u_businfo ubus; 4161 4162 ubus.ub_version = BUS_USER_VERSION; 4163 ubus.ub_generation = bus_data_generation; 4164 4165 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4166 } 4167 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4168 "bus-related data"); 4169 4170 static int 4171 sysctl_devices(SYSCTL_HANDLER_ARGS) 4172 { 4173 int *name = (int *)arg1; 4174 u_int namelen = arg2; 4175 int index; 4176 struct device *dev; 4177 struct u_device udev; /* XXX this is a bit big */ 4178 int error; 4179 4180 if (namelen != 2) 4181 return (EINVAL); 4182 4183 if (bus_data_generation_check(name[0])) 4184 return (EINVAL); 4185 4186 index = name[1]; 4187 4188 /* 4189 * Scan the list of devices, looking for the requested index. 4190 */ 4191 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 4192 if (index-- == 0) 4193 break; 4194 } 4195 if (dev == NULL) 4196 return (ENOENT); 4197 4198 /* 4199 * Populate the return array. 4200 */ 4201 bzero(&udev, sizeof(udev)); 4202 udev.dv_handle = (uintptr_t)dev; 4203 udev.dv_parent = (uintptr_t)dev->parent; 4204 if (dev->nameunit != NULL) 4205 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 4206 if (dev->desc != NULL) 4207 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 4208 if (dev->driver != NULL && dev->driver->name != NULL) 4209 strlcpy(udev.dv_drivername, dev->driver->name, 4210 sizeof(udev.dv_drivername)); 4211 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 4212 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 4213 udev.dv_devflags = dev->devflags; 4214 udev.dv_flags = dev->flags; 4215 udev.dv_state = dev->state; 4216 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 4217 return (error); 4218 } 4219 4220 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 4221 "system device tree"); 4222 4223 int 4224 bus_data_generation_check(int generation) 4225 { 4226 if (generation != bus_data_generation) 4227 return (1); 4228 4229 /* XXX generate optimised lists here? */ 4230 return (0); 4231 } 4232 4233 void 4234 bus_data_generation_update(void) 4235 { 4236 bus_data_generation++; 4237 } 4238 4239 int 4240 bus_free_resource(device_t dev, int type, struct resource *r) 4241 { 4242 if (r == NULL) 4243 return (0); 4244 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 4245 } 4246