1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bus.h" 33 #include "opt_ddb.h" 34 35 #include <sys/param.h> 36 #include <sys/conf.h> 37 #include <sys/domainset.h> 38 #include <sys/eventhandler.h> 39 #include <sys/lock.h> 40 #include <sys/kernel.h> 41 #include <sys/limits.h> 42 #include <sys/malloc.h> 43 #include <sys/module.h> 44 #include <sys/mutex.h> 45 #include <sys/priv.h> 46 #include <machine/bus.h> 47 #include <sys/random.h> 48 #include <sys/refcount.h> 49 #include <sys/rman.h> 50 #include <sys/sbuf.h> 51 #include <sys/smp.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 #include <sys/bus.h> 55 #include <sys/cpuset.h> 56 57 #include <net/vnet.h> 58 59 #include <machine/cpu.h> 60 #include <machine/stdarg.h> 61 62 #include <vm/uma.h> 63 #include <vm/vm.h> 64 65 #include <ddb/ddb.h> 66 67 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 68 NULL); 69 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 70 NULL); 71 72 /* 73 * Used to attach drivers to devclasses. 74 */ 75 typedef struct driverlink *driverlink_t; 76 struct driverlink { 77 kobj_class_t driver; 78 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 79 int pass; 80 int flags; 81 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 82 TAILQ_ENTRY(driverlink) passlink; 83 }; 84 85 /* 86 * Forward declarations 87 */ 88 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 89 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 90 typedef TAILQ_HEAD(device_list, _device) device_list_t; 91 92 struct devclass { 93 TAILQ_ENTRY(devclass) link; 94 devclass_t parent; /* parent in devclass hierarchy */ 95 driver_list_t drivers; /* bus devclasses store drivers for bus */ 96 char *name; 97 device_t *devices; /* array of devices indexed by unit */ 98 int maxunit; /* size of devices array */ 99 int flags; 100 #define DC_HAS_CHILDREN 1 101 102 struct sysctl_ctx_list sysctl_ctx; 103 struct sysctl_oid *sysctl_tree; 104 }; 105 106 /** 107 * @brief Implementation of _device. 108 * 109 * The structure is named "_device" instead of "device" to avoid type confusion 110 * caused by other subsystems defining a (struct device). 111 */ 112 struct _device { 113 /* 114 * A device is a kernel object. The first field must be the 115 * current ops table for the object. 116 */ 117 KOBJ_FIELDS; 118 119 /* 120 * Device hierarchy. 121 */ 122 TAILQ_ENTRY(_device) link; /**< list of devices in parent */ 123 TAILQ_ENTRY(_device) devlink; /**< global device list membership */ 124 device_t parent; /**< parent of this device */ 125 device_list_t children; /**< list of child devices */ 126 127 /* 128 * Details of this device. 129 */ 130 driver_t *driver; /**< current driver */ 131 devclass_t devclass; /**< current device class */ 132 int unit; /**< current unit number */ 133 char* nameunit; /**< name+unit e.g. foodev0 */ 134 char* desc; /**< driver specific description */ 135 u_int busy; /**< count of calls to device_busy() */ 136 device_state_t state; /**< current device state */ 137 uint32_t devflags; /**< api level flags for device_get_flags() */ 138 u_int flags; /**< internal device flags */ 139 u_int order; /**< order from device_add_child_ordered() */ 140 void *ivars; /**< instance variables */ 141 void *softc; /**< current driver's variables */ 142 143 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 144 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 145 }; 146 147 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 148 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 149 150 EVENTHANDLER_LIST_DEFINE(device_attach); 151 EVENTHANDLER_LIST_DEFINE(device_detach); 152 EVENTHANDLER_LIST_DEFINE(device_nomatch); 153 EVENTHANDLER_LIST_DEFINE(dev_lookup); 154 155 static void devctl2_init(void); 156 static bool device_frozen; 157 158 #define DRIVERNAME(d) ((d)? d->name : "no driver") 159 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 160 161 #ifdef BUS_DEBUG 162 163 static int bus_debug = 1; 164 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 165 "Bus debug level"); 166 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 167 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 168 169 /** 170 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 171 * prevent syslog from deleting initial spaces 172 */ 173 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 174 175 static void print_device_short(device_t dev, int indent); 176 static void print_device(device_t dev, int indent); 177 void print_device_tree_short(device_t dev, int indent); 178 void print_device_tree(device_t dev, int indent); 179 static void print_driver_short(driver_t *driver, int indent); 180 static void print_driver(driver_t *driver, int indent); 181 static void print_driver_list(driver_list_t drivers, int indent); 182 static void print_devclass_short(devclass_t dc, int indent); 183 static void print_devclass(devclass_t dc, int indent); 184 void print_devclass_list_short(void); 185 void print_devclass_list(void); 186 187 #else 188 /* Make the compiler ignore the function calls */ 189 #define PDEBUG(a) /* nop */ 190 #define DEVICENAME(d) /* nop */ 191 192 #define print_device_short(d,i) /* nop */ 193 #define print_device(d,i) /* nop */ 194 #define print_device_tree_short(d,i) /* nop */ 195 #define print_device_tree(d,i) /* nop */ 196 #define print_driver_short(d,i) /* nop */ 197 #define print_driver(d,i) /* nop */ 198 #define print_driver_list(d,i) /* nop */ 199 #define print_devclass_short(d,i) /* nop */ 200 #define print_devclass(d,i) /* nop */ 201 #define print_devclass_list_short() /* nop */ 202 #define print_devclass_list() /* nop */ 203 #endif 204 205 /* 206 * dev sysctl tree 207 */ 208 209 enum { 210 DEVCLASS_SYSCTL_PARENT, 211 }; 212 213 static int 214 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 215 { 216 devclass_t dc = (devclass_t)arg1; 217 const char *value; 218 219 switch (arg2) { 220 case DEVCLASS_SYSCTL_PARENT: 221 value = dc->parent ? dc->parent->name : ""; 222 break; 223 default: 224 return (EINVAL); 225 } 226 return (SYSCTL_OUT_STR(req, value)); 227 } 228 229 static void 230 devclass_sysctl_init(devclass_t dc) 231 { 232 if (dc->sysctl_tree != NULL) 233 return; 234 sysctl_ctx_init(&dc->sysctl_ctx); 235 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 236 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 237 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 238 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 239 OID_AUTO, "%parent", 240 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 241 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 242 "parent class"); 243 } 244 245 enum { 246 DEVICE_SYSCTL_DESC, 247 DEVICE_SYSCTL_DRIVER, 248 DEVICE_SYSCTL_LOCATION, 249 DEVICE_SYSCTL_PNPINFO, 250 DEVICE_SYSCTL_PARENT, 251 }; 252 253 static int 254 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 255 { 256 struct sbuf sb; 257 device_t dev = (device_t)arg1; 258 int error; 259 260 sbuf_new_for_sysctl(&sb, NULL, 1024, req); 261 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 262 bus_topo_lock(); 263 switch (arg2) { 264 case DEVICE_SYSCTL_DESC: 265 sbuf_cat(&sb, dev->desc ? dev->desc : ""); 266 break; 267 case DEVICE_SYSCTL_DRIVER: 268 sbuf_cat(&sb, dev->driver ? dev->driver->name : ""); 269 break; 270 case DEVICE_SYSCTL_LOCATION: 271 bus_child_location(dev, &sb); 272 break; 273 case DEVICE_SYSCTL_PNPINFO: 274 bus_child_pnpinfo(dev, &sb); 275 break; 276 case DEVICE_SYSCTL_PARENT: 277 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : ""); 278 break; 279 default: 280 error = EINVAL; 281 goto out; 282 } 283 error = sbuf_finish(&sb); 284 out: 285 bus_topo_unlock(); 286 sbuf_delete(&sb); 287 return (error); 288 } 289 290 static void 291 device_sysctl_init(device_t dev) 292 { 293 devclass_t dc = dev->devclass; 294 int domain; 295 296 if (dev->sysctl_tree != NULL) 297 return; 298 devclass_sysctl_init(dc); 299 sysctl_ctx_init(&dev->sysctl_ctx); 300 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 301 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 302 dev->nameunit + strlen(dc->name), 303 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); 304 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 305 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 306 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 307 "device description"); 308 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 309 OID_AUTO, "%driver", 310 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 311 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 312 "device driver name"); 313 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 314 OID_AUTO, "%location", 315 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 316 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 317 "device location relative to parent"); 318 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 319 OID_AUTO, "%pnpinfo", 320 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 321 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 322 "device identification"); 323 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 324 OID_AUTO, "%parent", 325 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 326 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 327 "parent device"); 328 if (bus_get_domain(dev, &domain) == 0) 329 SYSCTL_ADD_INT(&dev->sysctl_ctx, 330 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 331 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain"); 332 } 333 334 static void 335 device_sysctl_update(device_t dev) 336 { 337 devclass_t dc = dev->devclass; 338 339 if (dev->sysctl_tree == NULL) 340 return; 341 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 342 } 343 344 static void 345 device_sysctl_fini(device_t dev) 346 { 347 if (dev->sysctl_tree == NULL) 348 return; 349 sysctl_ctx_free(&dev->sysctl_ctx); 350 dev->sysctl_tree = NULL; 351 } 352 353 static struct device_list bus_data_devices; 354 static int bus_data_generation = 1; 355 356 static kobj_method_t null_methods[] = { 357 KOBJMETHOD_END 358 }; 359 360 DEFINE_CLASS(null, null_methods, 0); 361 362 void 363 bus_topo_assert(void) 364 { 365 366 GIANT_REQUIRED; 367 } 368 369 struct mtx * 370 bus_topo_mtx(void) 371 { 372 373 return (&Giant); 374 } 375 376 void 377 bus_topo_lock(void) 378 { 379 380 mtx_lock(bus_topo_mtx()); 381 } 382 383 void 384 bus_topo_unlock(void) 385 { 386 387 mtx_unlock(bus_topo_mtx()); 388 } 389 390 /* 391 * Bus pass implementation 392 */ 393 394 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 395 int bus_current_pass = BUS_PASS_ROOT; 396 397 /** 398 * @internal 399 * @brief Register the pass level of a new driver attachment 400 * 401 * Register a new driver attachment's pass level. If no driver 402 * attachment with the same pass level has been added, then @p new 403 * will be added to the global passes list. 404 * 405 * @param new the new driver attachment 406 */ 407 static void 408 driver_register_pass(struct driverlink *new) 409 { 410 struct driverlink *dl; 411 412 /* We only consider pass numbers during boot. */ 413 if (bus_current_pass == BUS_PASS_DEFAULT) 414 return; 415 416 /* 417 * Walk the passes list. If we already know about this pass 418 * then there is nothing to do. If we don't, then insert this 419 * driver link into the list. 420 */ 421 TAILQ_FOREACH(dl, &passes, passlink) { 422 if (dl->pass < new->pass) 423 continue; 424 if (dl->pass == new->pass) 425 return; 426 TAILQ_INSERT_BEFORE(dl, new, passlink); 427 return; 428 } 429 TAILQ_INSERT_TAIL(&passes, new, passlink); 430 } 431 432 /** 433 * @brief Raise the current bus pass 434 * 435 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 436 * method on the root bus to kick off a new device tree scan for each 437 * new pass level that has at least one driver. 438 */ 439 void 440 bus_set_pass(int pass) 441 { 442 struct driverlink *dl; 443 444 if (bus_current_pass > pass) 445 panic("Attempt to lower bus pass level"); 446 447 TAILQ_FOREACH(dl, &passes, passlink) { 448 /* Skip pass values below the current pass level. */ 449 if (dl->pass <= bus_current_pass) 450 continue; 451 452 /* 453 * Bail once we hit a driver with a pass level that is 454 * too high. 455 */ 456 if (dl->pass > pass) 457 break; 458 459 /* 460 * Raise the pass level to the next level and rescan 461 * the tree. 462 */ 463 bus_current_pass = dl->pass; 464 BUS_NEW_PASS(root_bus); 465 } 466 467 /* 468 * If there isn't a driver registered for the requested pass, 469 * then bus_current_pass might still be less than 'pass'. Set 470 * it to 'pass' in that case. 471 */ 472 if (bus_current_pass < pass) 473 bus_current_pass = pass; 474 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 475 } 476 477 /* 478 * Devclass implementation 479 */ 480 481 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 482 483 /** 484 * @internal 485 * @brief Find or create a device class 486 * 487 * If a device class with the name @p classname exists, return it, 488 * otherwise if @p create is non-zero create and return a new device 489 * class. 490 * 491 * If @p parentname is non-NULL, the parent of the devclass is set to 492 * the devclass of that name. 493 * 494 * @param classname the devclass name to find or create 495 * @param parentname the parent devclass name or @c NULL 496 * @param create non-zero to create a devclass 497 */ 498 static devclass_t 499 devclass_find_internal(const char *classname, const char *parentname, 500 int create) 501 { 502 devclass_t dc; 503 504 PDEBUG(("looking for %s", classname)); 505 if (!classname) 506 return (NULL); 507 508 TAILQ_FOREACH(dc, &devclasses, link) { 509 if (!strcmp(dc->name, classname)) 510 break; 511 } 512 513 if (create && !dc) { 514 PDEBUG(("creating %s", classname)); 515 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 516 M_BUS, M_NOWAIT | M_ZERO); 517 if (!dc) 518 return (NULL); 519 dc->parent = NULL; 520 dc->name = (char*) (dc + 1); 521 strcpy(dc->name, classname); 522 TAILQ_INIT(&dc->drivers); 523 TAILQ_INSERT_TAIL(&devclasses, dc, link); 524 525 bus_data_generation_update(); 526 } 527 528 /* 529 * If a parent class is specified, then set that as our parent so 530 * that this devclass will support drivers for the parent class as 531 * well. If the parent class has the same name don't do this though 532 * as it creates a cycle that can trigger an infinite loop in 533 * device_probe_child() if a device exists for which there is no 534 * suitable driver. 535 */ 536 if (parentname && dc && !dc->parent && 537 strcmp(classname, parentname) != 0) { 538 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 539 dc->parent->flags |= DC_HAS_CHILDREN; 540 } 541 542 return (dc); 543 } 544 545 /** 546 * @brief Create a device class 547 * 548 * If a device class with the name @p classname exists, return it, 549 * otherwise create and return a new device class. 550 * 551 * @param classname the devclass name to find or create 552 */ 553 devclass_t 554 devclass_create(const char *classname) 555 { 556 return (devclass_find_internal(classname, NULL, TRUE)); 557 } 558 559 /** 560 * @brief Find a device class 561 * 562 * If a device class with the name @p classname exists, return it, 563 * otherwise return @c NULL. 564 * 565 * @param classname the devclass name to find 566 */ 567 devclass_t 568 devclass_find(const char *classname) 569 { 570 return (devclass_find_internal(classname, NULL, FALSE)); 571 } 572 573 /** 574 * @brief Register that a device driver has been added to a devclass 575 * 576 * Register that a device driver has been added to a devclass. This 577 * is called by devclass_add_driver to accomplish the recursive 578 * notification of all the children classes of dc, as well as dc. 579 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 580 * the devclass. 581 * 582 * We do a full search here of the devclass list at each iteration 583 * level to save storing children-lists in the devclass structure. If 584 * we ever move beyond a few dozen devices doing this, we may need to 585 * reevaluate... 586 * 587 * @param dc the devclass to edit 588 * @param driver the driver that was just added 589 */ 590 static void 591 devclass_driver_added(devclass_t dc, driver_t *driver) 592 { 593 devclass_t parent; 594 int i; 595 596 /* 597 * Call BUS_DRIVER_ADDED for any existing buses in this class. 598 */ 599 for (i = 0; i < dc->maxunit; i++) 600 if (dc->devices[i] && device_is_attached(dc->devices[i])) 601 BUS_DRIVER_ADDED(dc->devices[i], driver); 602 603 /* 604 * Walk through the children classes. Since we only keep a 605 * single parent pointer around, we walk the entire list of 606 * devclasses looking for children. We set the 607 * DC_HAS_CHILDREN flag when a child devclass is created on 608 * the parent, so we only walk the list for those devclasses 609 * that have children. 610 */ 611 if (!(dc->flags & DC_HAS_CHILDREN)) 612 return; 613 parent = dc; 614 TAILQ_FOREACH(dc, &devclasses, link) { 615 if (dc->parent == parent) 616 devclass_driver_added(dc, driver); 617 } 618 } 619 620 static void 621 device_handle_nomatch(device_t dev) 622 { 623 BUS_PROBE_NOMATCH(dev->parent, dev); 624 EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev); 625 dev->flags |= DF_DONENOMATCH; 626 } 627 628 /** 629 * @brief Add a device driver to a device class 630 * 631 * Add a device driver to a devclass. This is normally called 632 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 633 * all devices in the devclass will be called to allow them to attempt 634 * to re-probe any unmatched children. 635 * 636 * @param dc the devclass to edit 637 * @param driver the driver to register 638 */ 639 int 640 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 641 { 642 driverlink_t dl; 643 devclass_t child_dc; 644 const char *parentname; 645 646 PDEBUG(("%s", DRIVERNAME(driver))); 647 648 /* Don't allow invalid pass values. */ 649 if (pass <= BUS_PASS_ROOT) 650 return (EINVAL); 651 652 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 653 if (!dl) 654 return (ENOMEM); 655 656 /* 657 * Compile the driver's methods. Also increase the reference count 658 * so that the class doesn't get freed when the last instance 659 * goes. This means we can safely use static methods and avoids a 660 * double-free in devclass_delete_driver. 661 */ 662 kobj_class_compile((kobj_class_t) driver); 663 664 /* 665 * If the driver has any base classes, make the 666 * devclass inherit from the devclass of the driver's 667 * first base class. This will allow the system to 668 * search for drivers in both devclasses for children 669 * of a device using this driver. 670 */ 671 if (driver->baseclasses) 672 parentname = driver->baseclasses[0]->name; 673 else 674 parentname = NULL; 675 child_dc = devclass_find_internal(driver->name, parentname, TRUE); 676 if (dcp != NULL) 677 *dcp = child_dc; 678 679 dl->driver = driver; 680 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 681 driver->refs++; /* XXX: kobj_mtx */ 682 dl->pass = pass; 683 driver_register_pass(dl); 684 685 if (device_frozen) { 686 dl->flags |= DL_DEFERRED_PROBE; 687 } else { 688 devclass_driver_added(dc, driver); 689 } 690 bus_data_generation_update(); 691 return (0); 692 } 693 694 /** 695 * @brief Register that a device driver has been deleted from a devclass 696 * 697 * Register that a device driver has been removed from a devclass. 698 * This is called by devclass_delete_driver to accomplish the 699 * recursive notification of all the children classes of busclass, as 700 * well as busclass. Each layer will attempt to detach the driver 701 * from any devices that are children of the bus's devclass. The function 702 * will return an error if a device fails to detach. 703 * 704 * We do a full search here of the devclass list at each iteration 705 * level to save storing children-lists in the devclass structure. If 706 * we ever move beyond a few dozen devices doing this, we may need to 707 * reevaluate... 708 * 709 * @param busclass the devclass of the parent bus 710 * @param dc the devclass of the driver being deleted 711 * @param driver the driver being deleted 712 */ 713 static int 714 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 715 { 716 devclass_t parent; 717 device_t dev; 718 int error, i; 719 720 /* 721 * Disassociate from any devices. We iterate through all the 722 * devices in the devclass of the driver and detach any which are 723 * using the driver and which have a parent in the devclass which 724 * we are deleting from. 725 * 726 * Note that since a driver can be in multiple devclasses, we 727 * should not detach devices which are not children of devices in 728 * the affected devclass. 729 * 730 * If we're frozen, we don't generate NOMATCH events. Mark to 731 * generate later. 732 */ 733 for (i = 0; i < dc->maxunit; i++) { 734 if (dc->devices[i]) { 735 dev = dc->devices[i]; 736 if (dev->driver == driver && dev->parent && 737 dev->parent->devclass == busclass) { 738 if ((error = device_detach(dev)) != 0) 739 return (error); 740 if (device_frozen) { 741 dev->flags &= ~DF_DONENOMATCH; 742 dev->flags |= DF_NEEDNOMATCH; 743 } else { 744 device_handle_nomatch(dev); 745 } 746 } 747 } 748 } 749 750 /* 751 * Walk through the children classes. Since we only keep a 752 * single parent pointer around, we walk the entire list of 753 * devclasses looking for children. We set the 754 * DC_HAS_CHILDREN flag when a child devclass is created on 755 * the parent, so we only walk the list for those devclasses 756 * that have children. 757 */ 758 if (!(busclass->flags & DC_HAS_CHILDREN)) 759 return (0); 760 parent = busclass; 761 TAILQ_FOREACH(busclass, &devclasses, link) { 762 if (busclass->parent == parent) { 763 error = devclass_driver_deleted(busclass, dc, driver); 764 if (error) 765 return (error); 766 } 767 } 768 return (0); 769 } 770 771 /** 772 * @brief Delete a device driver from a device class 773 * 774 * Delete a device driver from a devclass. This is normally called 775 * automatically by DRIVER_MODULE(). 776 * 777 * If the driver is currently attached to any devices, 778 * devclass_delete_driver() will first attempt to detach from each 779 * device. If one of the detach calls fails, the driver will not be 780 * deleted. 781 * 782 * @param dc the devclass to edit 783 * @param driver the driver to unregister 784 */ 785 int 786 devclass_delete_driver(devclass_t busclass, driver_t *driver) 787 { 788 devclass_t dc = devclass_find(driver->name); 789 driverlink_t dl; 790 int error; 791 792 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 793 794 if (!dc) 795 return (0); 796 797 /* 798 * Find the link structure in the bus' list of drivers. 799 */ 800 TAILQ_FOREACH(dl, &busclass->drivers, link) { 801 if (dl->driver == driver) 802 break; 803 } 804 805 if (!dl) { 806 PDEBUG(("%s not found in %s list", driver->name, 807 busclass->name)); 808 return (ENOENT); 809 } 810 811 error = devclass_driver_deleted(busclass, dc, driver); 812 if (error != 0) 813 return (error); 814 815 TAILQ_REMOVE(&busclass->drivers, dl, link); 816 free(dl, M_BUS); 817 818 /* XXX: kobj_mtx */ 819 driver->refs--; 820 if (driver->refs == 0) 821 kobj_class_free((kobj_class_t) driver); 822 823 bus_data_generation_update(); 824 return (0); 825 } 826 827 /** 828 * @brief Quiesces a set of device drivers from a device class 829 * 830 * Quiesce a device driver from a devclass. This is normally called 831 * automatically by DRIVER_MODULE(). 832 * 833 * If the driver is currently attached to any devices, 834 * devclass_quiesece_driver() will first attempt to quiesce each 835 * device. 836 * 837 * @param dc the devclass to edit 838 * @param driver the driver to unregister 839 */ 840 static int 841 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 842 { 843 devclass_t dc = devclass_find(driver->name); 844 driverlink_t dl; 845 device_t dev; 846 int i; 847 int error; 848 849 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 850 851 if (!dc) 852 return (0); 853 854 /* 855 * Find the link structure in the bus' list of drivers. 856 */ 857 TAILQ_FOREACH(dl, &busclass->drivers, link) { 858 if (dl->driver == driver) 859 break; 860 } 861 862 if (!dl) { 863 PDEBUG(("%s not found in %s list", driver->name, 864 busclass->name)); 865 return (ENOENT); 866 } 867 868 /* 869 * Quiesce all devices. We iterate through all the devices in 870 * the devclass of the driver and quiesce any which are using 871 * the driver and which have a parent in the devclass which we 872 * are quiescing. 873 * 874 * Note that since a driver can be in multiple devclasses, we 875 * should not quiesce devices which are not children of 876 * devices in the affected devclass. 877 */ 878 for (i = 0; i < dc->maxunit; i++) { 879 if (dc->devices[i]) { 880 dev = dc->devices[i]; 881 if (dev->driver == driver && dev->parent && 882 dev->parent->devclass == busclass) { 883 if ((error = device_quiesce(dev)) != 0) 884 return (error); 885 } 886 } 887 } 888 889 return (0); 890 } 891 892 /** 893 * @internal 894 */ 895 static driverlink_t 896 devclass_find_driver_internal(devclass_t dc, const char *classname) 897 { 898 driverlink_t dl; 899 900 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 901 902 TAILQ_FOREACH(dl, &dc->drivers, link) { 903 if (!strcmp(dl->driver->name, classname)) 904 return (dl); 905 } 906 907 PDEBUG(("not found")); 908 return (NULL); 909 } 910 911 /** 912 * @brief Return the name of the devclass 913 */ 914 const char * 915 devclass_get_name(devclass_t dc) 916 { 917 return (dc->name); 918 } 919 920 /** 921 * @brief Find a device given a unit number 922 * 923 * @param dc the devclass to search 924 * @param unit the unit number to search for 925 * 926 * @returns the device with the given unit number or @c 927 * NULL if there is no such device 928 */ 929 device_t 930 devclass_get_device(devclass_t dc, int unit) 931 { 932 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 933 return (NULL); 934 return (dc->devices[unit]); 935 } 936 937 /** 938 * @brief Find the softc field of a device given a unit number 939 * 940 * @param dc the devclass to search 941 * @param unit the unit number to search for 942 * 943 * @returns the softc field of the device with the given 944 * unit number or @c NULL if there is no such 945 * device 946 */ 947 void * 948 devclass_get_softc(devclass_t dc, int unit) 949 { 950 device_t dev; 951 952 dev = devclass_get_device(dc, unit); 953 if (!dev) 954 return (NULL); 955 956 return (device_get_softc(dev)); 957 } 958 959 /** 960 * @brief Get a list of devices in the devclass 961 * 962 * An array containing a list of all the devices in the given devclass 963 * is allocated and returned in @p *devlistp. The number of devices 964 * in the array is returned in @p *devcountp. The caller should free 965 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 966 * 967 * @param dc the devclass to examine 968 * @param devlistp points at location for array pointer return 969 * value 970 * @param devcountp points at location for array size return value 971 * 972 * @retval 0 success 973 * @retval ENOMEM the array allocation failed 974 */ 975 int 976 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 977 { 978 int count, i; 979 device_t *list; 980 981 count = devclass_get_count(dc); 982 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 983 if (!list) 984 return (ENOMEM); 985 986 count = 0; 987 for (i = 0; i < dc->maxunit; i++) { 988 if (dc->devices[i]) { 989 list[count] = dc->devices[i]; 990 count++; 991 } 992 } 993 994 *devlistp = list; 995 *devcountp = count; 996 997 return (0); 998 } 999 1000 /** 1001 * @brief Get a list of drivers in the devclass 1002 * 1003 * An array containing a list of pointers to all the drivers in the 1004 * given devclass is allocated and returned in @p *listp. The number 1005 * of drivers in the array is returned in @p *countp. The caller should 1006 * free the array using @c free(p, M_TEMP). 1007 * 1008 * @param dc the devclass to examine 1009 * @param listp gives location for array pointer return value 1010 * @param countp gives location for number of array elements 1011 * return value 1012 * 1013 * @retval 0 success 1014 * @retval ENOMEM the array allocation failed 1015 */ 1016 int 1017 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1018 { 1019 driverlink_t dl; 1020 driver_t **list; 1021 int count; 1022 1023 count = 0; 1024 TAILQ_FOREACH(dl, &dc->drivers, link) 1025 count++; 1026 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1027 if (list == NULL) 1028 return (ENOMEM); 1029 1030 count = 0; 1031 TAILQ_FOREACH(dl, &dc->drivers, link) { 1032 list[count] = dl->driver; 1033 count++; 1034 } 1035 *listp = list; 1036 *countp = count; 1037 1038 return (0); 1039 } 1040 1041 /** 1042 * @brief Get the number of devices in a devclass 1043 * 1044 * @param dc the devclass to examine 1045 */ 1046 int 1047 devclass_get_count(devclass_t dc) 1048 { 1049 int count, i; 1050 1051 count = 0; 1052 for (i = 0; i < dc->maxunit; i++) 1053 if (dc->devices[i]) 1054 count++; 1055 return (count); 1056 } 1057 1058 /** 1059 * @brief Get the maximum unit number used in a devclass 1060 * 1061 * Note that this is one greater than the highest currently-allocated 1062 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1063 * that not even the devclass has been allocated yet. 1064 * 1065 * @param dc the devclass to examine 1066 */ 1067 int 1068 devclass_get_maxunit(devclass_t dc) 1069 { 1070 if (dc == NULL) 1071 return (-1); 1072 return (dc->maxunit); 1073 } 1074 1075 /** 1076 * @brief Find a free unit number in a devclass 1077 * 1078 * This function searches for the first unused unit number greater 1079 * that or equal to @p unit. 1080 * 1081 * @param dc the devclass to examine 1082 * @param unit the first unit number to check 1083 */ 1084 int 1085 devclass_find_free_unit(devclass_t dc, int unit) 1086 { 1087 if (dc == NULL) 1088 return (unit); 1089 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1090 unit++; 1091 return (unit); 1092 } 1093 1094 /** 1095 * @brief Set the parent of a devclass 1096 * 1097 * The parent class is normally initialised automatically by 1098 * DRIVER_MODULE(). 1099 * 1100 * @param dc the devclass to edit 1101 * @param pdc the new parent devclass 1102 */ 1103 void 1104 devclass_set_parent(devclass_t dc, devclass_t pdc) 1105 { 1106 dc->parent = pdc; 1107 } 1108 1109 /** 1110 * @brief Get the parent of a devclass 1111 * 1112 * @param dc the devclass to examine 1113 */ 1114 devclass_t 1115 devclass_get_parent(devclass_t dc) 1116 { 1117 return (dc->parent); 1118 } 1119 1120 struct sysctl_ctx_list * 1121 devclass_get_sysctl_ctx(devclass_t dc) 1122 { 1123 return (&dc->sysctl_ctx); 1124 } 1125 1126 struct sysctl_oid * 1127 devclass_get_sysctl_tree(devclass_t dc) 1128 { 1129 return (dc->sysctl_tree); 1130 } 1131 1132 /** 1133 * @internal 1134 * @brief Allocate a unit number 1135 * 1136 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1137 * will do). The allocated unit number is returned in @p *unitp. 1138 1139 * @param dc the devclass to allocate from 1140 * @param unitp points at the location for the allocated unit 1141 * number 1142 * 1143 * @retval 0 success 1144 * @retval EEXIST the requested unit number is already allocated 1145 * @retval ENOMEM memory allocation failure 1146 */ 1147 static int 1148 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1149 { 1150 const char *s; 1151 int unit = *unitp; 1152 1153 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1154 1155 /* Ask the parent bus if it wants to wire this device. */ 1156 if (unit == -1) 1157 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1158 &unit); 1159 1160 /* If we were given a wired unit number, check for existing device */ 1161 /* XXX imp XXX */ 1162 if (unit != -1) { 1163 if (unit >= 0 && unit < dc->maxunit && 1164 dc->devices[unit] != NULL) { 1165 if (bootverbose) 1166 printf("%s: %s%d already exists; skipping it\n", 1167 dc->name, dc->name, *unitp); 1168 return (EEXIST); 1169 } 1170 } else { 1171 /* Unwired device, find the next available slot for it */ 1172 unit = 0; 1173 for (unit = 0;; unit++) { 1174 /* If this device slot is already in use, skip it. */ 1175 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1176 continue; 1177 1178 /* If there is an "at" hint for a unit then skip it. */ 1179 if (resource_string_value(dc->name, unit, "at", &s) == 1180 0) 1181 continue; 1182 1183 break; 1184 } 1185 } 1186 1187 /* 1188 * We've selected a unit beyond the length of the table, so let's 1189 * extend the table to make room for all units up to and including 1190 * this one. 1191 */ 1192 if (unit >= dc->maxunit) { 1193 device_t *newlist, *oldlist; 1194 int newsize; 1195 1196 oldlist = dc->devices; 1197 newsize = roundup((unit + 1), 1198 MAX(1, MINALLOCSIZE / sizeof(device_t))); 1199 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1200 if (!newlist) 1201 return (ENOMEM); 1202 if (oldlist != NULL) 1203 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1204 bzero(newlist + dc->maxunit, 1205 sizeof(device_t) * (newsize - dc->maxunit)); 1206 dc->devices = newlist; 1207 dc->maxunit = newsize; 1208 if (oldlist != NULL) 1209 free(oldlist, M_BUS); 1210 } 1211 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1212 1213 *unitp = unit; 1214 return (0); 1215 } 1216 1217 /** 1218 * @internal 1219 * @brief Add a device to a devclass 1220 * 1221 * A unit number is allocated for the device (using the device's 1222 * preferred unit number if any) and the device is registered in the 1223 * devclass. This allows the device to be looked up by its unit 1224 * number, e.g. by decoding a dev_t minor number. 1225 * 1226 * @param dc the devclass to add to 1227 * @param dev the device to add 1228 * 1229 * @retval 0 success 1230 * @retval EEXIST the requested unit number is already allocated 1231 * @retval ENOMEM memory allocation failure 1232 */ 1233 static int 1234 devclass_add_device(devclass_t dc, device_t dev) 1235 { 1236 int buflen, error; 1237 1238 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1239 1240 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1241 if (buflen < 0) 1242 return (ENOMEM); 1243 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1244 if (!dev->nameunit) 1245 return (ENOMEM); 1246 1247 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1248 free(dev->nameunit, M_BUS); 1249 dev->nameunit = NULL; 1250 return (error); 1251 } 1252 dc->devices[dev->unit] = dev; 1253 dev->devclass = dc; 1254 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1255 1256 return (0); 1257 } 1258 1259 /** 1260 * @internal 1261 * @brief Delete a device from a devclass 1262 * 1263 * The device is removed from the devclass's device list and its unit 1264 * number is freed. 1265 1266 * @param dc the devclass to delete from 1267 * @param dev the device to delete 1268 * 1269 * @retval 0 success 1270 */ 1271 static int 1272 devclass_delete_device(devclass_t dc, device_t dev) 1273 { 1274 if (!dc || !dev) 1275 return (0); 1276 1277 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1278 1279 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1280 panic("devclass_delete_device: inconsistent device class"); 1281 dc->devices[dev->unit] = NULL; 1282 if (dev->flags & DF_WILDCARD) 1283 dev->unit = -1; 1284 dev->devclass = NULL; 1285 free(dev->nameunit, M_BUS); 1286 dev->nameunit = NULL; 1287 1288 return (0); 1289 } 1290 1291 /** 1292 * @internal 1293 * @brief Make a new device and add it as a child of @p parent 1294 * 1295 * @param parent the parent of the new device 1296 * @param name the devclass name of the new device or @c NULL 1297 * to leave the devclass unspecified 1298 * @parem unit the unit number of the new device of @c -1 to 1299 * leave the unit number unspecified 1300 * 1301 * @returns the new device 1302 */ 1303 static device_t 1304 make_device(device_t parent, const char *name, int unit) 1305 { 1306 device_t dev; 1307 devclass_t dc; 1308 1309 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1310 1311 if (name) { 1312 dc = devclass_find_internal(name, NULL, TRUE); 1313 if (!dc) { 1314 printf("make_device: can't find device class %s\n", 1315 name); 1316 return (NULL); 1317 } 1318 } else { 1319 dc = NULL; 1320 } 1321 1322 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1323 if (!dev) 1324 return (NULL); 1325 1326 dev->parent = parent; 1327 TAILQ_INIT(&dev->children); 1328 kobj_init((kobj_t) dev, &null_class); 1329 dev->driver = NULL; 1330 dev->devclass = NULL; 1331 dev->unit = unit; 1332 dev->nameunit = NULL; 1333 dev->desc = NULL; 1334 dev->busy = 0; 1335 dev->devflags = 0; 1336 dev->flags = DF_ENABLED; 1337 dev->order = 0; 1338 if (unit == -1) 1339 dev->flags |= DF_WILDCARD; 1340 if (name) { 1341 dev->flags |= DF_FIXEDCLASS; 1342 if (devclass_add_device(dc, dev)) { 1343 kobj_delete((kobj_t) dev, M_BUS); 1344 return (NULL); 1345 } 1346 } 1347 if (parent != NULL && device_has_quiet_children(parent)) 1348 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1349 dev->ivars = NULL; 1350 dev->softc = NULL; 1351 1352 dev->state = DS_NOTPRESENT; 1353 1354 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1355 bus_data_generation_update(); 1356 1357 return (dev); 1358 } 1359 1360 /** 1361 * @internal 1362 * @brief Print a description of a device. 1363 */ 1364 static int 1365 device_print_child(device_t dev, device_t child) 1366 { 1367 int retval = 0; 1368 1369 if (device_is_alive(child)) 1370 retval += BUS_PRINT_CHILD(dev, child); 1371 else 1372 retval += device_printf(child, " not found\n"); 1373 1374 return (retval); 1375 } 1376 1377 /** 1378 * @brief Create a new device 1379 * 1380 * This creates a new device and adds it as a child of an existing 1381 * parent device. The new device will be added after the last existing 1382 * child with order zero. 1383 * 1384 * @param dev the device which will be the parent of the 1385 * new child device 1386 * @param name devclass name for new device or @c NULL if not 1387 * specified 1388 * @param unit unit number for new device or @c -1 if not 1389 * specified 1390 * 1391 * @returns the new device 1392 */ 1393 device_t 1394 device_add_child(device_t dev, const char *name, int unit) 1395 { 1396 return (device_add_child_ordered(dev, 0, name, unit)); 1397 } 1398 1399 /** 1400 * @brief Create a new device 1401 * 1402 * This creates a new device and adds it as a child of an existing 1403 * parent device. The new device will be added after the last existing 1404 * child with the same order. 1405 * 1406 * @param dev the device which will be the parent of the 1407 * new child device 1408 * @param order a value which is used to partially sort the 1409 * children of @p dev - devices created using 1410 * lower values of @p order appear first in @p 1411 * dev's list of children 1412 * @param name devclass name for new device or @c NULL if not 1413 * specified 1414 * @param unit unit number for new device or @c -1 if not 1415 * specified 1416 * 1417 * @returns the new device 1418 */ 1419 device_t 1420 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1421 { 1422 device_t child; 1423 device_t place; 1424 1425 PDEBUG(("%s at %s with order %u as unit %d", 1426 name, DEVICENAME(dev), order, unit)); 1427 KASSERT(name != NULL || unit == -1, 1428 ("child device with wildcard name and specific unit number")); 1429 1430 child = make_device(dev, name, unit); 1431 if (child == NULL) 1432 return (child); 1433 child->order = order; 1434 1435 TAILQ_FOREACH(place, &dev->children, link) { 1436 if (place->order > order) 1437 break; 1438 } 1439 1440 if (place) { 1441 /* 1442 * The device 'place' is the first device whose order is 1443 * greater than the new child. 1444 */ 1445 TAILQ_INSERT_BEFORE(place, child, link); 1446 } else { 1447 /* 1448 * The new child's order is greater or equal to the order of 1449 * any existing device. Add the child to the tail of the list. 1450 */ 1451 TAILQ_INSERT_TAIL(&dev->children, child, link); 1452 } 1453 1454 bus_data_generation_update(); 1455 return (child); 1456 } 1457 1458 /** 1459 * @brief Delete a device 1460 * 1461 * This function deletes a device along with all of its children. If 1462 * the device currently has a driver attached to it, the device is 1463 * detached first using device_detach(). 1464 * 1465 * @param dev the parent device 1466 * @param child the device to delete 1467 * 1468 * @retval 0 success 1469 * @retval non-zero a unit error code describing the error 1470 */ 1471 int 1472 device_delete_child(device_t dev, device_t child) 1473 { 1474 int error; 1475 device_t grandchild; 1476 1477 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1478 1479 /* detach parent before deleting children, if any */ 1480 if ((error = device_detach(child)) != 0) 1481 return (error); 1482 1483 /* remove children second */ 1484 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1485 error = device_delete_child(child, grandchild); 1486 if (error) 1487 return (error); 1488 } 1489 1490 if (child->devclass) 1491 devclass_delete_device(child->devclass, child); 1492 if (child->parent) 1493 BUS_CHILD_DELETED(dev, child); 1494 TAILQ_REMOVE(&dev->children, child, link); 1495 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1496 kobj_delete((kobj_t) child, M_BUS); 1497 1498 bus_data_generation_update(); 1499 return (0); 1500 } 1501 1502 /** 1503 * @brief Delete all children devices of the given device, if any. 1504 * 1505 * This function deletes all children devices of the given device, if 1506 * any, using the device_delete_child() function for each device it 1507 * finds. If a child device cannot be deleted, this function will 1508 * return an error code. 1509 * 1510 * @param dev the parent device 1511 * 1512 * @retval 0 success 1513 * @retval non-zero a device would not detach 1514 */ 1515 int 1516 device_delete_children(device_t dev) 1517 { 1518 device_t child; 1519 int error; 1520 1521 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1522 1523 error = 0; 1524 1525 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1526 error = device_delete_child(dev, child); 1527 if (error) { 1528 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1529 break; 1530 } 1531 } 1532 return (error); 1533 } 1534 1535 /** 1536 * @brief Find a device given a unit number 1537 * 1538 * This is similar to devclass_get_devices() but only searches for 1539 * devices which have @p dev as a parent. 1540 * 1541 * @param dev the parent device to search 1542 * @param unit the unit number to search for. If the unit is -1, 1543 * return the first child of @p dev which has name 1544 * @p classname (that is, the one with the lowest unit.) 1545 * 1546 * @returns the device with the given unit number or @c 1547 * NULL if there is no such device 1548 */ 1549 device_t 1550 device_find_child(device_t dev, const char *classname, int unit) 1551 { 1552 devclass_t dc; 1553 device_t child; 1554 1555 dc = devclass_find(classname); 1556 if (!dc) 1557 return (NULL); 1558 1559 if (unit != -1) { 1560 child = devclass_get_device(dc, unit); 1561 if (child && child->parent == dev) 1562 return (child); 1563 } else { 1564 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1565 child = devclass_get_device(dc, unit); 1566 if (child && child->parent == dev) 1567 return (child); 1568 } 1569 } 1570 return (NULL); 1571 } 1572 1573 /** 1574 * @internal 1575 */ 1576 static driverlink_t 1577 first_matching_driver(devclass_t dc, device_t dev) 1578 { 1579 if (dev->devclass) 1580 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1581 return (TAILQ_FIRST(&dc->drivers)); 1582 } 1583 1584 /** 1585 * @internal 1586 */ 1587 static driverlink_t 1588 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1589 { 1590 if (dev->devclass) { 1591 driverlink_t dl; 1592 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1593 if (!strcmp(dev->devclass->name, dl->driver->name)) 1594 return (dl); 1595 return (NULL); 1596 } 1597 return (TAILQ_NEXT(last, link)); 1598 } 1599 1600 /** 1601 * @internal 1602 */ 1603 int 1604 device_probe_child(device_t dev, device_t child) 1605 { 1606 devclass_t dc; 1607 driverlink_t best = NULL; 1608 driverlink_t dl; 1609 int result, pri = 0; 1610 /* We should preserve the devclass (or lack of) set by the bus. */ 1611 int hasclass = (child->devclass != NULL); 1612 1613 bus_topo_assert(); 1614 1615 dc = dev->devclass; 1616 if (!dc) 1617 panic("device_probe_child: parent device has no devclass"); 1618 1619 /* 1620 * If the state is already probed, then return. 1621 */ 1622 if (child->state == DS_ALIVE) 1623 return (0); 1624 1625 for (; dc; dc = dc->parent) { 1626 for (dl = first_matching_driver(dc, child); 1627 dl; 1628 dl = next_matching_driver(dc, child, dl)) { 1629 /* If this driver's pass is too high, then ignore it. */ 1630 if (dl->pass > bus_current_pass) 1631 continue; 1632 1633 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1634 result = device_set_driver(child, dl->driver); 1635 if (result == ENOMEM) 1636 return (result); 1637 else if (result != 0) 1638 continue; 1639 if (!hasclass) { 1640 if (device_set_devclass(child, 1641 dl->driver->name) != 0) { 1642 char const * devname = 1643 device_get_name(child); 1644 if (devname == NULL) 1645 devname = "(unknown)"; 1646 printf("driver bug: Unable to set " 1647 "devclass (class: %s " 1648 "devname: %s)\n", 1649 dl->driver->name, 1650 devname); 1651 (void)device_set_driver(child, NULL); 1652 continue; 1653 } 1654 } 1655 1656 /* Fetch any flags for the device before probing. */ 1657 resource_int_value(dl->driver->name, child->unit, 1658 "flags", &child->devflags); 1659 1660 result = DEVICE_PROBE(child); 1661 1662 /* 1663 * If the driver returns SUCCESS, there can be 1664 * no higher match for this device. 1665 */ 1666 if (result == 0) { 1667 best = dl; 1668 pri = 0; 1669 break; 1670 } 1671 1672 /* Reset flags and devclass before the next probe. */ 1673 child->devflags = 0; 1674 if (!hasclass) 1675 (void)device_set_devclass(child, NULL); 1676 1677 /* 1678 * Reset DF_QUIET in case this driver doesn't 1679 * end up as the best driver. 1680 */ 1681 device_verbose(child); 1682 1683 /* 1684 * Probes that return BUS_PROBE_NOWILDCARD or lower 1685 * only match on devices whose driver was explicitly 1686 * specified. 1687 */ 1688 if (result <= BUS_PROBE_NOWILDCARD && 1689 !(child->flags & DF_FIXEDCLASS)) { 1690 result = ENXIO; 1691 } 1692 1693 /* 1694 * The driver returned an error so it 1695 * certainly doesn't match. 1696 */ 1697 if (result > 0) { 1698 (void)device_set_driver(child, NULL); 1699 continue; 1700 } 1701 1702 /* 1703 * A priority lower than SUCCESS, remember the 1704 * best matching driver. Initialise the value 1705 * of pri for the first match. 1706 */ 1707 if (best == NULL || result > pri) { 1708 best = dl; 1709 pri = result; 1710 continue; 1711 } 1712 } 1713 /* 1714 * If we have an unambiguous match in this devclass, 1715 * don't look in the parent. 1716 */ 1717 if (best && pri == 0) 1718 break; 1719 } 1720 1721 if (best == NULL) 1722 return (ENXIO); 1723 1724 /* 1725 * If we found a driver, change state and initialise the devclass. 1726 */ 1727 if (pri < 0) { 1728 /* Set the winning driver, devclass, and flags. */ 1729 result = device_set_driver(child, best->driver); 1730 if (result != 0) 1731 return (result); 1732 if (!child->devclass) { 1733 result = device_set_devclass(child, best->driver->name); 1734 if (result != 0) { 1735 (void)device_set_driver(child, NULL); 1736 return (result); 1737 } 1738 } 1739 resource_int_value(best->driver->name, child->unit, 1740 "flags", &child->devflags); 1741 1742 /* 1743 * A bit bogus. Call the probe method again to make sure 1744 * that we have the right description. 1745 */ 1746 result = DEVICE_PROBE(child); 1747 if (result > 0) { 1748 if (!hasclass) 1749 (void)device_set_devclass(child, NULL); 1750 (void)device_set_driver(child, NULL); 1751 return (result); 1752 } 1753 } 1754 1755 child->state = DS_ALIVE; 1756 bus_data_generation_update(); 1757 return (0); 1758 } 1759 1760 /** 1761 * @brief Return the parent of a device 1762 */ 1763 device_t 1764 device_get_parent(device_t dev) 1765 { 1766 return (dev->parent); 1767 } 1768 1769 /** 1770 * @brief Get a list of children of a device 1771 * 1772 * An array containing a list of all the children of the given device 1773 * is allocated and returned in @p *devlistp. The number of devices 1774 * in the array is returned in @p *devcountp. The caller should free 1775 * the array using @c free(p, M_TEMP). 1776 * 1777 * @param dev the device to examine 1778 * @param devlistp points at location for array pointer return 1779 * value 1780 * @param devcountp points at location for array size return value 1781 * 1782 * @retval 0 success 1783 * @retval ENOMEM the array allocation failed 1784 */ 1785 int 1786 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1787 { 1788 int count; 1789 device_t child; 1790 device_t *list; 1791 1792 count = 0; 1793 TAILQ_FOREACH(child, &dev->children, link) { 1794 count++; 1795 } 1796 if (count == 0) { 1797 *devlistp = NULL; 1798 *devcountp = 0; 1799 return (0); 1800 } 1801 1802 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1803 if (!list) 1804 return (ENOMEM); 1805 1806 count = 0; 1807 TAILQ_FOREACH(child, &dev->children, link) { 1808 list[count] = child; 1809 count++; 1810 } 1811 1812 *devlistp = list; 1813 *devcountp = count; 1814 1815 return (0); 1816 } 1817 1818 /** 1819 * @brief Return the current driver for the device or @c NULL if there 1820 * is no driver currently attached 1821 */ 1822 driver_t * 1823 device_get_driver(device_t dev) 1824 { 1825 return (dev->driver); 1826 } 1827 1828 /** 1829 * @brief Return the current devclass for the device or @c NULL if 1830 * there is none. 1831 */ 1832 devclass_t 1833 device_get_devclass(device_t dev) 1834 { 1835 return (dev->devclass); 1836 } 1837 1838 /** 1839 * @brief Return the name of the device's devclass or @c NULL if there 1840 * is none. 1841 */ 1842 const char * 1843 device_get_name(device_t dev) 1844 { 1845 if (dev != NULL && dev->devclass) 1846 return (devclass_get_name(dev->devclass)); 1847 return (NULL); 1848 } 1849 1850 /** 1851 * @brief Return a string containing the device's devclass name 1852 * followed by an ascii representation of the device's unit number 1853 * (e.g. @c "foo2"). 1854 */ 1855 const char * 1856 device_get_nameunit(device_t dev) 1857 { 1858 return (dev->nameunit); 1859 } 1860 1861 /** 1862 * @brief Return the device's unit number. 1863 */ 1864 int 1865 device_get_unit(device_t dev) 1866 { 1867 return (dev->unit); 1868 } 1869 1870 /** 1871 * @brief Return the device's description string 1872 */ 1873 const char * 1874 device_get_desc(device_t dev) 1875 { 1876 return (dev->desc); 1877 } 1878 1879 /** 1880 * @brief Return the device's flags 1881 */ 1882 uint32_t 1883 device_get_flags(device_t dev) 1884 { 1885 return (dev->devflags); 1886 } 1887 1888 struct sysctl_ctx_list * 1889 device_get_sysctl_ctx(device_t dev) 1890 { 1891 return (&dev->sysctl_ctx); 1892 } 1893 1894 struct sysctl_oid * 1895 device_get_sysctl_tree(device_t dev) 1896 { 1897 return (dev->sysctl_tree); 1898 } 1899 1900 /** 1901 * @brief Print the name of the device followed by a colon and a space 1902 * 1903 * @returns the number of characters printed 1904 */ 1905 int 1906 device_print_prettyname(device_t dev) 1907 { 1908 const char *name = device_get_name(dev); 1909 1910 if (name == NULL) 1911 return (printf("unknown: ")); 1912 return (printf("%s%d: ", name, device_get_unit(dev))); 1913 } 1914 1915 /** 1916 * @brief Print the name of the device followed by a colon, a space 1917 * and the result of calling vprintf() with the value of @p fmt and 1918 * the following arguments. 1919 * 1920 * @returns the number of characters printed 1921 */ 1922 int 1923 device_printf(device_t dev, const char * fmt, ...) 1924 { 1925 char buf[128]; 1926 struct sbuf sb; 1927 const char *name; 1928 va_list ap; 1929 size_t retval; 1930 1931 retval = 0; 1932 1933 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1934 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 1935 1936 name = device_get_name(dev); 1937 1938 if (name == NULL) 1939 sbuf_cat(&sb, "unknown: "); 1940 else 1941 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 1942 1943 va_start(ap, fmt); 1944 sbuf_vprintf(&sb, fmt, ap); 1945 va_end(ap); 1946 1947 sbuf_finish(&sb); 1948 sbuf_delete(&sb); 1949 1950 return (retval); 1951 } 1952 1953 /** 1954 * @brief Print the name of the device followed by a colon, a space 1955 * and the result of calling log() with the value of @p fmt and 1956 * the following arguments. 1957 * 1958 * @returns the number of characters printed 1959 */ 1960 int 1961 device_log(device_t dev, int pri, const char * fmt, ...) 1962 { 1963 char buf[128]; 1964 struct sbuf sb; 1965 const char *name; 1966 va_list ap; 1967 size_t retval; 1968 1969 retval = 0; 1970 1971 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1972 1973 name = device_get_name(dev); 1974 1975 if (name == NULL) 1976 sbuf_cat(&sb, "unknown: "); 1977 else 1978 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 1979 1980 va_start(ap, fmt); 1981 sbuf_vprintf(&sb, fmt, ap); 1982 va_end(ap); 1983 1984 sbuf_finish(&sb); 1985 1986 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb)); 1987 retval = sbuf_len(&sb); 1988 1989 sbuf_delete(&sb); 1990 1991 return (retval); 1992 } 1993 1994 /** 1995 * @internal 1996 */ 1997 static void 1998 device_set_desc_internal(device_t dev, const char* desc, int copy) 1999 { 2000 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2001 free(dev->desc, M_BUS); 2002 dev->flags &= ~DF_DESCMALLOCED; 2003 dev->desc = NULL; 2004 } 2005 2006 if (copy && desc) { 2007 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2008 if (dev->desc) { 2009 strcpy(dev->desc, desc); 2010 dev->flags |= DF_DESCMALLOCED; 2011 } 2012 } else { 2013 /* Avoid a -Wcast-qual warning */ 2014 dev->desc = (char *)(uintptr_t) desc; 2015 } 2016 2017 bus_data_generation_update(); 2018 } 2019 2020 /** 2021 * @brief Set the device's description 2022 * 2023 * The value of @c desc should be a string constant that will not 2024 * change (at least until the description is changed in a subsequent 2025 * call to device_set_desc() or device_set_desc_copy()). 2026 */ 2027 void 2028 device_set_desc(device_t dev, const char* desc) 2029 { 2030 device_set_desc_internal(dev, desc, FALSE); 2031 } 2032 2033 /** 2034 * @brief Set the device's description 2035 * 2036 * The string pointed to by @c desc is copied. Use this function if 2037 * the device description is generated, (e.g. with sprintf()). 2038 */ 2039 void 2040 device_set_desc_copy(device_t dev, const char* desc) 2041 { 2042 device_set_desc_internal(dev, desc, TRUE); 2043 } 2044 2045 /** 2046 * @brief Set the device's flags 2047 */ 2048 void 2049 device_set_flags(device_t dev, uint32_t flags) 2050 { 2051 dev->devflags = flags; 2052 } 2053 2054 /** 2055 * @brief Return the device's softc field 2056 * 2057 * The softc is allocated and zeroed when a driver is attached, based 2058 * on the size field of the driver. 2059 */ 2060 void * 2061 device_get_softc(device_t dev) 2062 { 2063 return (dev->softc); 2064 } 2065 2066 /** 2067 * @brief Set the device's softc field 2068 * 2069 * Most drivers do not need to use this since the softc is allocated 2070 * automatically when the driver is attached. 2071 */ 2072 void 2073 device_set_softc(device_t dev, void *softc) 2074 { 2075 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2076 free(dev->softc, M_BUS_SC); 2077 dev->softc = softc; 2078 if (dev->softc) 2079 dev->flags |= DF_EXTERNALSOFTC; 2080 else 2081 dev->flags &= ~DF_EXTERNALSOFTC; 2082 } 2083 2084 /** 2085 * @brief Free claimed softc 2086 * 2087 * Most drivers do not need to use this since the softc is freed 2088 * automatically when the driver is detached. 2089 */ 2090 void 2091 device_free_softc(void *softc) 2092 { 2093 free(softc, M_BUS_SC); 2094 } 2095 2096 /** 2097 * @brief Claim softc 2098 * 2099 * This function can be used to let the driver free the automatically 2100 * allocated softc using "device_free_softc()". This function is 2101 * useful when the driver is refcounting the softc and the softc 2102 * cannot be freed when the "device_detach" method is called. 2103 */ 2104 void 2105 device_claim_softc(device_t dev) 2106 { 2107 if (dev->softc) 2108 dev->flags |= DF_EXTERNALSOFTC; 2109 else 2110 dev->flags &= ~DF_EXTERNALSOFTC; 2111 } 2112 2113 /** 2114 * @brief Get the device's ivars field 2115 * 2116 * The ivars field is used by the parent device to store per-device 2117 * state (e.g. the physical location of the device or a list of 2118 * resources). 2119 */ 2120 void * 2121 device_get_ivars(device_t dev) 2122 { 2123 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2124 return (dev->ivars); 2125 } 2126 2127 /** 2128 * @brief Set the device's ivars field 2129 */ 2130 void 2131 device_set_ivars(device_t dev, void * ivars) 2132 { 2133 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2134 dev->ivars = ivars; 2135 } 2136 2137 /** 2138 * @brief Return the device's state 2139 */ 2140 device_state_t 2141 device_get_state(device_t dev) 2142 { 2143 return (dev->state); 2144 } 2145 2146 /** 2147 * @brief Set the DF_ENABLED flag for the device 2148 */ 2149 void 2150 device_enable(device_t dev) 2151 { 2152 dev->flags |= DF_ENABLED; 2153 } 2154 2155 /** 2156 * @brief Clear the DF_ENABLED flag for the device 2157 */ 2158 void 2159 device_disable(device_t dev) 2160 { 2161 dev->flags &= ~DF_ENABLED; 2162 } 2163 2164 /** 2165 * @brief Increment the busy counter for the device 2166 */ 2167 void 2168 device_busy(device_t dev) 2169 { 2170 2171 /* 2172 * Mark the device as busy, recursively up the tree if this busy count 2173 * goes 0->1. 2174 */ 2175 if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL) 2176 device_busy(dev->parent); 2177 } 2178 2179 /** 2180 * @brief Decrement the busy counter for the device 2181 */ 2182 void 2183 device_unbusy(device_t dev) 2184 { 2185 2186 /* 2187 * Mark the device as unbsy, recursively if this is the last busy count. 2188 */ 2189 if (refcount_release(&dev->busy) && dev->parent != NULL) 2190 device_unbusy(dev->parent); 2191 } 2192 2193 /** 2194 * @brief Set the DF_QUIET flag for the device 2195 */ 2196 void 2197 device_quiet(device_t dev) 2198 { 2199 dev->flags |= DF_QUIET; 2200 } 2201 2202 /** 2203 * @brief Set the DF_QUIET_CHILDREN flag for the device 2204 */ 2205 void 2206 device_quiet_children(device_t dev) 2207 { 2208 dev->flags |= DF_QUIET_CHILDREN; 2209 } 2210 2211 /** 2212 * @brief Clear the DF_QUIET flag for the device 2213 */ 2214 void 2215 device_verbose(device_t dev) 2216 { 2217 dev->flags &= ~DF_QUIET; 2218 } 2219 2220 ssize_t 2221 device_get_property(device_t dev, const char *prop, void *val, size_t sz, 2222 device_property_type_t type) 2223 { 2224 device_t bus = device_get_parent(dev); 2225 2226 switch (type) { 2227 case DEVICE_PROP_ANY: 2228 case DEVICE_PROP_BUFFER: 2229 case DEVICE_PROP_HANDLE: /* Size checks done in implementation. */ 2230 break; 2231 case DEVICE_PROP_UINT32: 2232 if (sz % 4 != 0) 2233 return (-1); 2234 break; 2235 case DEVICE_PROP_UINT64: 2236 if (sz % 8 != 0) 2237 return (-1); 2238 break; 2239 default: 2240 return (-1); 2241 } 2242 2243 return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type)); 2244 } 2245 2246 bool 2247 device_has_property(device_t dev, const char *prop) 2248 { 2249 return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0); 2250 } 2251 2252 /** 2253 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2254 */ 2255 int 2256 device_has_quiet_children(device_t dev) 2257 { 2258 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2259 } 2260 2261 /** 2262 * @brief Return non-zero if the DF_QUIET flag is set on the device 2263 */ 2264 int 2265 device_is_quiet(device_t dev) 2266 { 2267 return ((dev->flags & DF_QUIET) != 0); 2268 } 2269 2270 /** 2271 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2272 */ 2273 int 2274 device_is_enabled(device_t dev) 2275 { 2276 return ((dev->flags & DF_ENABLED) != 0); 2277 } 2278 2279 /** 2280 * @brief Return non-zero if the device was successfully probed 2281 */ 2282 int 2283 device_is_alive(device_t dev) 2284 { 2285 return (dev->state >= DS_ALIVE); 2286 } 2287 2288 /** 2289 * @brief Return non-zero if the device currently has a driver 2290 * attached to it 2291 */ 2292 int 2293 device_is_attached(device_t dev) 2294 { 2295 return (dev->state >= DS_ATTACHED); 2296 } 2297 2298 /** 2299 * @brief Return non-zero if the device is currently suspended. 2300 */ 2301 int 2302 device_is_suspended(device_t dev) 2303 { 2304 return ((dev->flags & DF_SUSPENDED) != 0); 2305 } 2306 2307 /** 2308 * @brief Set the devclass of a device 2309 * @see devclass_add_device(). 2310 */ 2311 int 2312 device_set_devclass(device_t dev, const char *classname) 2313 { 2314 devclass_t dc; 2315 int error; 2316 2317 if (!classname) { 2318 if (dev->devclass) 2319 devclass_delete_device(dev->devclass, dev); 2320 return (0); 2321 } 2322 2323 if (dev->devclass) { 2324 printf("device_set_devclass: device class already set\n"); 2325 return (EINVAL); 2326 } 2327 2328 dc = devclass_find_internal(classname, NULL, TRUE); 2329 if (!dc) 2330 return (ENOMEM); 2331 2332 error = devclass_add_device(dc, dev); 2333 2334 bus_data_generation_update(); 2335 return (error); 2336 } 2337 2338 /** 2339 * @brief Set the devclass of a device and mark the devclass fixed. 2340 * @see device_set_devclass() 2341 */ 2342 int 2343 device_set_devclass_fixed(device_t dev, const char *classname) 2344 { 2345 int error; 2346 2347 if (classname == NULL) 2348 return (EINVAL); 2349 2350 error = device_set_devclass(dev, classname); 2351 if (error) 2352 return (error); 2353 dev->flags |= DF_FIXEDCLASS; 2354 return (0); 2355 } 2356 2357 /** 2358 * @brief Query the device to determine if it's of a fixed devclass 2359 * @see device_set_devclass_fixed() 2360 */ 2361 bool 2362 device_is_devclass_fixed(device_t dev) 2363 { 2364 return ((dev->flags & DF_FIXEDCLASS) != 0); 2365 } 2366 2367 /** 2368 * @brief Set the driver of a device 2369 * 2370 * @retval 0 success 2371 * @retval EBUSY the device already has a driver attached 2372 * @retval ENOMEM a memory allocation failure occurred 2373 */ 2374 int 2375 device_set_driver(device_t dev, driver_t *driver) 2376 { 2377 int domain; 2378 struct domainset *policy; 2379 2380 if (dev->state >= DS_ATTACHED) 2381 return (EBUSY); 2382 2383 if (dev->driver == driver) 2384 return (0); 2385 2386 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2387 free(dev->softc, M_BUS_SC); 2388 dev->softc = NULL; 2389 } 2390 device_set_desc(dev, NULL); 2391 kobj_delete((kobj_t) dev, NULL); 2392 dev->driver = driver; 2393 if (driver) { 2394 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2395 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2396 if (bus_get_domain(dev, &domain) == 0) 2397 policy = DOMAINSET_PREF(domain); 2398 else 2399 policy = DOMAINSET_RR(); 2400 dev->softc = malloc_domainset(driver->size, M_BUS_SC, 2401 policy, M_NOWAIT | M_ZERO); 2402 if (!dev->softc) { 2403 kobj_delete((kobj_t) dev, NULL); 2404 kobj_init((kobj_t) dev, &null_class); 2405 dev->driver = NULL; 2406 return (ENOMEM); 2407 } 2408 } 2409 } else { 2410 kobj_init((kobj_t) dev, &null_class); 2411 } 2412 2413 bus_data_generation_update(); 2414 return (0); 2415 } 2416 2417 /** 2418 * @brief Probe a device, and return this status. 2419 * 2420 * This function is the core of the device autoconfiguration 2421 * system. Its purpose is to select a suitable driver for a device and 2422 * then call that driver to initialise the hardware appropriately. The 2423 * driver is selected by calling the DEVICE_PROBE() method of a set of 2424 * candidate drivers and then choosing the driver which returned the 2425 * best value. This driver is then attached to the device using 2426 * device_attach(). 2427 * 2428 * The set of suitable drivers is taken from the list of drivers in 2429 * the parent device's devclass. If the device was originally created 2430 * with a specific class name (see device_add_child()), only drivers 2431 * with that name are probed, otherwise all drivers in the devclass 2432 * are probed. If no drivers return successful probe values in the 2433 * parent devclass, the search continues in the parent of that 2434 * devclass (see devclass_get_parent()) if any. 2435 * 2436 * @param dev the device to initialise 2437 * 2438 * @retval 0 success 2439 * @retval ENXIO no driver was found 2440 * @retval ENOMEM memory allocation failure 2441 * @retval non-zero some other unix error code 2442 * @retval -1 Device already attached 2443 */ 2444 int 2445 device_probe(device_t dev) 2446 { 2447 int error; 2448 2449 bus_topo_assert(); 2450 2451 if (dev->state >= DS_ALIVE) 2452 return (-1); 2453 2454 if (!(dev->flags & DF_ENABLED)) { 2455 if (bootverbose && device_get_name(dev) != NULL) { 2456 device_print_prettyname(dev); 2457 printf("not probed (disabled)\n"); 2458 } 2459 return (-1); 2460 } 2461 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2462 if (bus_current_pass == BUS_PASS_DEFAULT && 2463 !(dev->flags & DF_DONENOMATCH)) { 2464 device_handle_nomatch(dev); 2465 } 2466 return (error); 2467 } 2468 return (0); 2469 } 2470 2471 /** 2472 * @brief Probe a device and attach a driver if possible 2473 * 2474 * calls device_probe() and attaches if that was successful. 2475 */ 2476 int 2477 device_probe_and_attach(device_t dev) 2478 { 2479 int error; 2480 2481 bus_topo_assert(); 2482 2483 error = device_probe(dev); 2484 if (error == -1) 2485 return (0); 2486 else if (error != 0) 2487 return (error); 2488 2489 CURVNET_SET_QUIET(vnet0); 2490 error = device_attach(dev); 2491 CURVNET_RESTORE(); 2492 return error; 2493 } 2494 2495 /** 2496 * @brief Attach a device driver to a device 2497 * 2498 * This function is a wrapper around the DEVICE_ATTACH() driver 2499 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2500 * device's sysctl tree, optionally prints a description of the device 2501 * and queues a notification event for user-based device management 2502 * services. 2503 * 2504 * Normally this function is only called internally from 2505 * device_probe_and_attach(). 2506 * 2507 * @param dev the device to initialise 2508 * 2509 * @retval 0 success 2510 * @retval ENXIO no driver was found 2511 * @retval ENOMEM memory allocation failure 2512 * @retval non-zero some other unix error code 2513 */ 2514 int 2515 device_attach(device_t dev) 2516 { 2517 uint64_t attachtime; 2518 uint16_t attachentropy; 2519 int error; 2520 2521 if (resource_disabled(dev->driver->name, dev->unit)) { 2522 device_disable(dev); 2523 if (bootverbose) 2524 device_printf(dev, "disabled via hints entry\n"); 2525 return (ENXIO); 2526 } 2527 2528 device_sysctl_init(dev); 2529 if (!device_is_quiet(dev)) 2530 device_print_child(dev->parent, dev); 2531 attachtime = get_cyclecount(); 2532 dev->state = DS_ATTACHING; 2533 if ((error = DEVICE_ATTACH(dev)) != 0) { 2534 printf("device_attach: %s%d attach returned %d\n", 2535 dev->driver->name, dev->unit, error); 2536 if (!(dev->flags & DF_FIXEDCLASS)) 2537 devclass_delete_device(dev->devclass, dev); 2538 (void)device_set_driver(dev, NULL); 2539 device_sysctl_fini(dev); 2540 KASSERT(dev->busy == 0, ("attach failed but busy")); 2541 dev->state = DS_NOTPRESENT; 2542 return (error); 2543 } 2544 dev->flags |= DF_ATTACHED_ONCE; 2545 /* We only need the low bits of this time, but ranges from tens to thousands 2546 * have been seen, so keep 2 bytes' worth. 2547 */ 2548 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 2549 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 2550 device_sysctl_update(dev); 2551 dev->state = DS_ATTACHED; 2552 dev->flags &= ~DF_DONENOMATCH; 2553 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 2554 return (0); 2555 } 2556 2557 /** 2558 * @brief Detach a driver from a device 2559 * 2560 * This function is a wrapper around the DEVICE_DETACH() driver 2561 * method. If the call to DEVICE_DETACH() succeeds, it calls 2562 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2563 * notification event for user-based device management services and 2564 * cleans up the device's sysctl tree. 2565 * 2566 * @param dev the device to un-initialise 2567 * 2568 * @retval 0 success 2569 * @retval ENXIO no driver was found 2570 * @retval ENOMEM memory allocation failure 2571 * @retval non-zero some other unix error code 2572 */ 2573 int 2574 device_detach(device_t dev) 2575 { 2576 int error; 2577 2578 bus_topo_assert(); 2579 2580 PDEBUG(("%s", DEVICENAME(dev))); 2581 if (dev->busy > 0) 2582 return (EBUSY); 2583 if (dev->state == DS_ATTACHING) { 2584 device_printf(dev, "device in attaching state! Deferring detach.\n"); 2585 return (EBUSY); 2586 } 2587 if (dev->state != DS_ATTACHED) 2588 return (0); 2589 2590 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 2591 if ((error = DEVICE_DETACH(dev)) != 0) { 2592 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2593 EVHDEV_DETACH_FAILED); 2594 return (error); 2595 } else { 2596 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2597 EVHDEV_DETACH_COMPLETE); 2598 } 2599 if (!device_is_quiet(dev)) 2600 device_printf(dev, "detached\n"); 2601 if (dev->parent) 2602 BUS_CHILD_DETACHED(dev->parent, dev); 2603 2604 if (!(dev->flags & DF_FIXEDCLASS)) 2605 devclass_delete_device(dev->devclass, dev); 2606 2607 device_verbose(dev); 2608 dev->state = DS_NOTPRESENT; 2609 (void)device_set_driver(dev, NULL); 2610 device_sysctl_fini(dev); 2611 2612 return (0); 2613 } 2614 2615 /** 2616 * @brief Tells a driver to quiesce itself. 2617 * 2618 * This function is a wrapper around the DEVICE_QUIESCE() driver 2619 * method. If the call to DEVICE_QUIESCE() succeeds. 2620 * 2621 * @param dev the device to quiesce 2622 * 2623 * @retval 0 success 2624 * @retval ENXIO no driver was found 2625 * @retval ENOMEM memory allocation failure 2626 * @retval non-zero some other unix error code 2627 */ 2628 int 2629 device_quiesce(device_t dev) 2630 { 2631 PDEBUG(("%s", DEVICENAME(dev))); 2632 if (dev->busy > 0) 2633 return (EBUSY); 2634 if (dev->state != DS_ATTACHED) 2635 return (0); 2636 2637 return (DEVICE_QUIESCE(dev)); 2638 } 2639 2640 /** 2641 * @brief Notify a device of system shutdown 2642 * 2643 * This function calls the DEVICE_SHUTDOWN() driver method if the 2644 * device currently has an attached driver. 2645 * 2646 * @returns the value returned by DEVICE_SHUTDOWN() 2647 */ 2648 int 2649 device_shutdown(device_t dev) 2650 { 2651 if (dev->state < DS_ATTACHED) 2652 return (0); 2653 return (DEVICE_SHUTDOWN(dev)); 2654 } 2655 2656 /** 2657 * @brief Set the unit number of a device 2658 * 2659 * This function can be used to override the unit number used for a 2660 * device (e.g. to wire a device to a pre-configured unit number). 2661 */ 2662 int 2663 device_set_unit(device_t dev, int unit) 2664 { 2665 devclass_t dc; 2666 int err; 2667 2668 if (unit == dev->unit) 2669 return (0); 2670 dc = device_get_devclass(dev); 2671 if (unit < dc->maxunit && dc->devices[unit]) 2672 return (EBUSY); 2673 err = devclass_delete_device(dc, dev); 2674 if (err) 2675 return (err); 2676 dev->unit = unit; 2677 err = devclass_add_device(dc, dev); 2678 if (err) 2679 return (err); 2680 2681 bus_data_generation_update(); 2682 return (0); 2683 } 2684 2685 /*======================================*/ 2686 /* 2687 * Some useful method implementations to make life easier for bus drivers. 2688 */ 2689 2690 void 2691 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 2692 { 2693 bzero(args, sz); 2694 args->size = sz; 2695 args->memattr = VM_MEMATTR_DEVICE; 2696 } 2697 2698 /** 2699 * @brief Initialise a resource list. 2700 * 2701 * @param rl the resource list to initialise 2702 */ 2703 void 2704 resource_list_init(struct resource_list *rl) 2705 { 2706 STAILQ_INIT(rl); 2707 } 2708 2709 /** 2710 * @brief Reclaim memory used by a resource list. 2711 * 2712 * This function frees the memory for all resource entries on the list 2713 * (if any). 2714 * 2715 * @param rl the resource list to free 2716 */ 2717 void 2718 resource_list_free(struct resource_list *rl) 2719 { 2720 struct resource_list_entry *rle; 2721 2722 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2723 if (rle->res) 2724 panic("resource_list_free: resource entry is busy"); 2725 STAILQ_REMOVE_HEAD(rl, link); 2726 free(rle, M_BUS); 2727 } 2728 } 2729 2730 /** 2731 * @brief Add a resource entry. 2732 * 2733 * This function adds a resource entry using the given @p type, @p 2734 * start, @p end and @p count values. A rid value is chosen by 2735 * searching sequentially for the first unused rid starting at zero. 2736 * 2737 * @param rl the resource list to edit 2738 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2739 * @param start the start address of the resource 2740 * @param end the end address of the resource 2741 * @param count XXX end-start+1 2742 */ 2743 int 2744 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 2745 rman_res_t end, rman_res_t count) 2746 { 2747 int rid; 2748 2749 rid = 0; 2750 while (resource_list_find(rl, type, rid) != NULL) 2751 rid++; 2752 resource_list_add(rl, type, rid, start, end, count); 2753 return (rid); 2754 } 2755 2756 /** 2757 * @brief Add or modify a resource entry. 2758 * 2759 * If an existing entry exists with the same type and rid, it will be 2760 * modified using the given values of @p start, @p end and @p 2761 * count. If no entry exists, a new one will be created using the 2762 * given values. The resource list entry that matches is then returned. 2763 * 2764 * @param rl the resource list to edit 2765 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2766 * @param rid the resource identifier 2767 * @param start the start address of the resource 2768 * @param end the end address of the resource 2769 * @param count XXX end-start+1 2770 */ 2771 struct resource_list_entry * 2772 resource_list_add(struct resource_list *rl, int type, int rid, 2773 rman_res_t start, rman_res_t end, rman_res_t count) 2774 { 2775 struct resource_list_entry *rle; 2776 2777 rle = resource_list_find(rl, type, rid); 2778 if (!rle) { 2779 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2780 M_NOWAIT); 2781 if (!rle) 2782 panic("resource_list_add: can't record entry"); 2783 STAILQ_INSERT_TAIL(rl, rle, link); 2784 rle->type = type; 2785 rle->rid = rid; 2786 rle->res = NULL; 2787 rle->flags = 0; 2788 } 2789 2790 if (rle->res) 2791 panic("resource_list_add: resource entry is busy"); 2792 2793 rle->start = start; 2794 rle->end = end; 2795 rle->count = count; 2796 return (rle); 2797 } 2798 2799 /** 2800 * @brief Determine if a resource entry is busy. 2801 * 2802 * Returns true if a resource entry is busy meaning that it has an 2803 * associated resource that is not an unallocated "reserved" resource. 2804 * 2805 * @param rl the resource list to search 2806 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2807 * @param rid the resource identifier 2808 * 2809 * @returns Non-zero if the entry is busy, zero otherwise. 2810 */ 2811 int 2812 resource_list_busy(struct resource_list *rl, int type, int rid) 2813 { 2814 struct resource_list_entry *rle; 2815 2816 rle = resource_list_find(rl, type, rid); 2817 if (rle == NULL || rle->res == NULL) 2818 return (0); 2819 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 2820 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 2821 ("reserved resource is active")); 2822 return (0); 2823 } 2824 return (1); 2825 } 2826 2827 /** 2828 * @brief Determine if a resource entry is reserved. 2829 * 2830 * Returns true if a resource entry is reserved meaning that it has an 2831 * associated "reserved" resource. The resource can either be 2832 * allocated or unallocated. 2833 * 2834 * @param rl the resource list to search 2835 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2836 * @param rid the resource identifier 2837 * 2838 * @returns Non-zero if the entry is reserved, zero otherwise. 2839 */ 2840 int 2841 resource_list_reserved(struct resource_list *rl, int type, int rid) 2842 { 2843 struct resource_list_entry *rle; 2844 2845 rle = resource_list_find(rl, type, rid); 2846 if (rle != NULL && rle->flags & RLE_RESERVED) 2847 return (1); 2848 return (0); 2849 } 2850 2851 /** 2852 * @brief Find a resource entry by type and rid. 2853 * 2854 * @param rl the resource list to search 2855 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2856 * @param rid the resource identifier 2857 * 2858 * @returns the resource entry pointer or NULL if there is no such 2859 * entry. 2860 */ 2861 struct resource_list_entry * 2862 resource_list_find(struct resource_list *rl, int type, int rid) 2863 { 2864 struct resource_list_entry *rle; 2865 2866 STAILQ_FOREACH(rle, rl, link) { 2867 if (rle->type == type && rle->rid == rid) 2868 return (rle); 2869 } 2870 return (NULL); 2871 } 2872 2873 /** 2874 * @brief Delete a resource entry. 2875 * 2876 * @param rl the resource list to edit 2877 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2878 * @param rid the resource identifier 2879 */ 2880 void 2881 resource_list_delete(struct resource_list *rl, int type, int rid) 2882 { 2883 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2884 2885 if (rle) { 2886 if (rle->res != NULL) 2887 panic("resource_list_delete: resource has not been released"); 2888 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 2889 free(rle, M_BUS); 2890 } 2891 } 2892 2893 /** 2894 * @brief Allocate a reserved resource 2895 * 2896 * This can be used by buses to force the allocation of resources 2897 * that are always active in the system even if they are not allocated 2898 * by a driver (e.g. PCI BARs). This function is usually called when 2899 * adding a new child to the bus. The resource is allocated from the 2900 * parent bus when it is reserved. The resource list entry is marked 2901 * with RLE_RESERVED to note that it is a reserved resource. 2902 * 2903 * Subsequent attempts to allocate the resource with 2904 * resource_list_alloc() will succeed the first time and will set 2905 * RLE_ALLOCATED to note that it has been allocated. When a reserved 2906 * resource that has been allocated is released with 2907 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 2908 * the actual resource remains allocated. The resource can be released to 2909 * the parent bus by calling resource_list_unreserve(). 2910 * 2911 * @param rl the resource list to allocate from 2912 * @param bus the parent device of @p child 2913 * @param child the device for which the resource is being reserved 2914 * @param type the type of resource to allocate 2915 * @param rid a pointer to the resource identifier 2916 * @param start hint at the start of the resource range - pass 2917 * @c 0 for any start address 2918 * @param end hint at the end of the resource range - pass 2919 * @c ~0 for any end address 2920 * @param count hint at the size of range required - pass @c 1 2921 * for any size 2922 * @param flags any extra flags to control the resource 2923 * allocation - see @c RF_XXX flags in 2924 * <sys/rman.h> for details 2925 * 2926 * @returns the resource which was allocated or @c NULL if no 2927 * resource could be allocated 2928 */ 2929 struct resource * 2930 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 2931 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 2932 { 2933 struct resource_list_entry *rle = NULL; 2934 int passthrough = (device_get_parent(child) != bus); 2935 struct resource *r; 2936 2937 if (passthrough) 2938 panic( 2939 "resource_list_reserve() should only be called for direct children"); 2940 if (flags & RF_ACTIVE) 2941 panic( 2942 "resource_list_reserve() should only reserve inactive resources"); 2943 2944 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 2945 flags); 2946 if (r != NULL) { 2947 rle = resource_list_find(rl, type, *rid); 2948 rle->flags |= RLE_RESERVED; 2949 } 2950 return (r); 2951 } 2952 2953 /** 2954 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 2955 * 2956 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 2957 * and passing the allocation up to the parent of @p bus. This assumes 2958 * that the first entry of @c device_get_ivars(child) is a struct 2959 * resource_list. This also handles 'passthrough' allocations where a 2960 * child is a remote descendant of bus by passing the allocation up to 2961 * the parent of bus. 2962 * 2963 * Typically, a bus driver would store a list of child resources 2964 * somewhere in the child device's ivars (see device_get_ivars()) and 2965 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 2966 * then call resource_list_alloc() to perform the allocation. 2967 * 2968 * @param rl the resource list to allocate from 2969 * @param bus the parent device of @p child 2970 * @param child the device which is requesting an allocation 2971 * @param type the type of resource to allocate 2972 * @param rid a pointer to the resource identifier 2973 * @param start hint at the start of the resource range - pass 2974 * @c 0 for any start address 2975 * @param end hint at the end of the resource range - pass 2976 * @c ~0 for any end address 2977 * @param count hint at the size of range required - pass @c 1 2978 * for any size 2979 * @param flags any extra flags to control the resource 2980 * allocation - see @c RF_XXX flags in 2981 * <sys/rman.h> for details 2982 * 2983 * @returns the resource which was allocated or @c NULL if no 2984 * resource could be allocated 2985 */ 2986 struct resource * 2987 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 2988 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 2989 { 2990 struct resource_list_entry *rle = NULL; 2991 int passthrough = (device_get_parent(child) != bus); 2992 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 2993 2994 if (passthrough) { 2995 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2996 type, rid, start, end, count, flags)); 2997 } 2998 2999 rle = resource_list_find(rl, type, *rid); 3000 3001 if (!rle) 3002 return (NULL); /* no resource of that type/rid */ 3003 3004 if (rle->res) { 3005 if (rle->flags & RLE_RESERVED) { 3006 if (rle->flags & RLE_ALLOCATED) 3007 return (NULL); 3008 if ((flags & RF_ACTIVE) && 3009 bus_activate_resource(child, type, *rid, 3010 rle->res) != 0) 3011 return (NULL); 3012 rle->flags |= RLE_ALLOCATED; 3013 return (rle->res); 3014 } 3015 device_printf(bus, 3016 "resource entry %#x type %d for child %s is busy\n", *rid, 3017 type, device_get_nameunit(child)); 3018 return (NULL); 3019 } 3020 3021 if (isdefault) { 3022 start = rle->start; 3023 count = ulmax(count, rle->count); 3024 end = ulmax(rle->end, start + count - 1); 3025 } 3026 3027 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3028 type, rid, start, end, count, flags); 3029 3030 /* 3031 * Record the new range. 3032 */ 3033 if (rle->res) { 3034 rle->start = rman_get_start(rle->res); 3035 rle->end = rman_get_end(rle->res); 3036 rle->count = count; 3037 } 3038 3039 return (rle->res); 3040 } 3041 3042 /** 3043 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3044 * 3045 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3046 * used with resource_list_alloc(). 3047 * 3048 * @param rl the resource list which was allocated from 3049 * @param bus the parent device of @p child 3050 * @param child the device which is requesting a release 3051 * @param type the type of resource to release 3052 * @param rid the resource identifier 3053 * @param res the resource to release 3054 * 3055 * @retval 0 success 3056 * @retval non-zero a standard unix error code indicating what 3057 * error condition prevented the operation 3058 */ 3059 int 3060 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3061 int type, int rid, struct resource *res) 3062 { 3063 struct resource_list_entry *rle = NULL; 3064 int passthrough = (device_get_parent(child) != bus); 3065 int error; 3066 3067 if (passthrough) { 3068 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3069 type, rid, res)); 3070 } 3071 3072 rle = resource_list_find(rl, type, rid); 3073 3074 if (!rle) 3075 panic("resource_list_release: can't find resource"); 3076 if (!rle->res) 3077 panic("resource_list_release: resource entry is not busy"); 3078 if (rle->flags & RLE_RESERVED) { 3079 if (rle->flags & RLE_ALLOCATED) { 3080 if (rman_get_flags(res) & RF_ACTIVE) { 3081 error = bus_deactivate_resource(child, type, 3082 rid, res); 3083 if (error) 3084 return (error); 3085 } 3086 rle->flags &= ~RLE_ALLOCATED; 3087 return (0); 3088 } 3089 return (EINVAL); 3090 } 3091 3092 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3093 type, rid, res); 3094 if (error) 3095 return (error); 3096 3097 rle->res = NULL; 3098 return (0); 3099 } 3100 3101 /** 3102 * @brief Release all active resources of a given type 3103 * 3104 * Release all active resources of a specified type. This is intended 3105 * to be used to cleanup resources leaked by a driver after detach or 3106 * a failed attach. 3107 * 3108 * @param rl the resource list which was allocated from 3109 * @param bus the parent device of @p child 3110 * @param child the device whose active resources are being released 3111 * @param type the type of resources to release 3112 * 3113 * @retval 0 success 3114 * @retval EBUSY at least one resource was active 3115 */ 3116 int 3117 resource_list_release_active(struct resource_list *rl, device_t bus, 3118 device_t child, int type) 3119 { 3120 struct resource_list_entry *rle; 3121 int error, retval; 3122 3123 retval = 0; 3124 STAILQ_FOREACH(rle, rl, link) { 3125 if (rle->type != type) 3126 continue; 3127 if (rle->res == NULL) 3128 continue; 3129 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3130 RLE_RESERVED) 3131 continue; 3132 retval = EBUSY; 3133 error = resource_list_release(rl, bus, child, type, 3134 rman_get_rid(rle->res), rle->res); 3135 if (error != 0) 3136 device_printf(bus, 3137 "Failed to release active resource: %d\n", error); 3138 } 3139 return (retval); 3140 } 3141 3142 /** 3143 * @brief Fully release a reserved resource 3144 * 3145 * Fully releases a resource reserved via resource_list_reserve(). 3146 * 3147 * @param rl the resource list which was allocated from 3148 * @param bus the parent device of @p child 3149 * @param child the device whose reserved resource is being released 3150 * @param type the type of resource to release 3151 * @param rid the resource identifier 3152 * @param res the resource to release 3153 * 3154 * @retval 0 success 3155 * @retval non-zero a standard unix error code indicating what 3156 * error condition prevented the operation 3157 */ 3158 int 3159 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3160 int type, int rid) 3161 { 3162 struct resource_list_entry *rle = NULL; 3163 int passthrough = (device_get_parent(child) != bus); 3164 3165 if (passthrough) 3166 panic( 3167 "resource_list_unreserve() should only be called for direct children"); 3168 3169 rle = resource_list_find(rl, type, rid); 3170 3171 if (!rle) 3172 panic("resource_list_unreserve: can't find resource"); 3173 if (!(rle->flags & RLE_RESERVED)) 3174 return (EINVAL); 3175 if (rle->flags & RLE_ALLOCATED) 3176 return (EBUSY); 3177 rle->flags &= ~RLE_RESERVED; 3178 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3179 } 3180 3181 /** 3182 * @brief Print a description of resources in a resource list 3183 * 3184 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3185 * The name is printed if at least one resource of the given type is available. 3186 * The format is used to print resource start and end. 3187 * 3188 * @param rl the resource list to print 3189 * @param name the name of @p type, e.g. @c "memory" 3190 * @param type type type of resource entry to print 3191 * @param format printf(9) format string to print resource 3192 * start and end values 3193 * 3194 * @returns the number of characters printed 3195 */ 3196 int 3197 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3198 const char *format) 3199 { 3200 struct resource_list_entry *rle; 3201 int printed, retval; 3202 3203 printed = 0; 3204 retval = 0; 3205 /* Yes, this is kinda cheating */ 3206 STAILQ_FOREACH(rle, rl, link) { 3207 if (rle->type == type) { 3208 if (printed == 0) 3209 retval += printf(" %s ", name); 3210 else 3211 retval += printf(","); 3212 printed++; 3213 retval += printf(format, rle->start); 3214 if (rle->count > 1) { 3215 retval += printf("-"); 3216 retval += printf(format, rle->start + 3217 rle->count - 1); 3218 } 3219 } 3220 } 3221 return (retval); 3222 } 3223 3224 /** 3225 * @brief Releases all the resources in a list. 3226 * 3227 * @param rl The resource list to purge. 3228 * 3229 * @returns nothing 3230 */ 3231 void 3232 resource_list_purge(struct resource_list *rl) 3233 { 3234 struct resource_list_entry *rle; 3235 3236 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3237 if (rle->res) 3238 bus_release_resource(rman_get_device(rle->res), 3239 rle->type, rle->rid, rle->res); 3240 STAILQ_REMOVE_HEAD(rl, link); 3241 free(rle, M_BUS); 3242 } 3243 } 3244 3245 device_t 3246 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3247 { 3248 return (device_add_child_ordered(dev, order, name, unit)); 3249 } 3250 3251 /** 3252 * @brief Helper function for implementing DEVICE_PROBE() 3253 * 3254 * This function can be used to help implement the DEVICE_PROBE() for 3255 * a bus (i.e. a device which has other devices attached to it). It 3256 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3257 * devclass. 3258 */ 3259 int 3260 bus_generic_probe(device_t dev) 3261 { 3262 devclass_t dc = dev->devclass; 3263 driverlink_t dl; 3264 3265 TAILQ_FOREACH(dl, &dc->drivers, link) { 3266 /* 3267 * If this driver's pass is too high, then ignore it. 3268 * For most drivers in the default pass, this will 3269 * never be true. For early-pass drivers they will 3270 * only call the identify routines of eligible drivers 3271 * when this routine is called. Drivers for later 3272 * passes should have their identify routines called 3273 * on early-pass buses during BUS_NEW_PASS(). 3274 */ 3275 if (dl->pass > bus_current_pass) 3276 continue; 3277 DEVICE_IDENTIFY(dl->driver, dev); 3278 } 3279 3280 return (0); 3281 } 3282 3283 /** 3284 * @brief Helper function for implementing DEVICE_ATTACH() 3285 * 3286 * This function can be used to help implement the DEVICE_ATTACH() for 3287 * a bus. It calls device_probe_and_attach() for each of the device's 3288 * children. 3289 */ 3290 int 3291 bus_generic_attach(device_t dev) 3292 { 3293 device_t child; 3294 3295 TAILQ_FOREACH(child, &dev->children, link) { 3296 device_probe_and_attach(child); 3297 } 3298 3299 return (0); 3300 } 3301 3302 /** 3303 * @brief Helper function for delaying attaching children 3304 * 3305 * Many buses can't run transactions on the bus which children need to probe and 3306 * attach until after interrupts and/or timers are running. This function 3307 * delays their attach until interrupts and timers are enabled. 3308 */ 3309 int 3310 bus_delayed_attach_children(device_t dev) 3311 { 3312 /* Probe and attach the bus children when interrupts are available */ 3313 config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev); 3314 3315 return (0); 3316 } 3317 3318 /** 3319 * @brief Helper function for implementing DEVICE_DETACH() 3320 * 3321 * This function can be used to help implement the DEVICE_DETACH() for 3322 * a bus. It calls device_detach() for each of the device's 3323 * children. 3324 */ 3325 int 3326 bus_generic_detach(device_t dev) 3327 { 3328 device_t child; 3329 int error; 3330 3331 if (dev->state != DS_ATTACHED) 3332 return (EBUSY); 3333 3334 /* 3335 * Detach children in the reverse order. 3336 * See bus_generic_suspend for details. 3337 */ 3338 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3339 if ((error = device_detach(child)) != 0) 3340 return (error); 3341 } 3342 3343 return (0); 3344 } 3345 3346 /** 3347 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3348 * 3349 * This function can be used to help implement the DEVICE_SHUTDOWN() 3350 * for a bus. It calls device_shutdown() for each of the device's 3351 * children. 3352 */ 3353 int 3354 bus_generic_shutdown(device_t dev) 3355 { 3356 device_t child; 3357 3358 /* 3359 * Shut down children in the reverse order. 3360 * See bus_generic_suspend for details. 3361 */ 3362 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3363 device_shutdown(child); 3364 } 3365 3366 return (0); 3367 } 3368 3369 /** 3370 * @brief Default function for suspending a child device. 3371 * 3372 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3373 */ 3374 int 3375 bus_generic_suspend_child(device_t dev, device_t child) 3376 { 3377 int error; 3378 3379 error = DEVICE_SUSPEND(child); 3380 3381 if (error == 0) 3382 child->flags |= DF_SUSPENDED; 3383 3384 return (error); 3385 } 3386 3387 /** 3388 * @brief Default function for resuming a child device. 3389 * 3390 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3391 */ 3392 int 3393 bus_generic_resume_child(device_t dev, device_t child) 3394 { 3395 DEVICE_RESUME(child); 3396 child->flags &= ~DF_SUSPENDED; 3397 3398 return (0); 3399 } 3400 3401 /** 3402 * @brief Helper function for implementing DEVICE_SUSPEND() 3403 * 3404 * This function can be used to help implement the DEVICE_SUSPEND() 3405 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3406 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3407 * operation is aborted and any devices which were suspended are 3408 * resumed immediately by calling their DEVICE_RESUME() methods. 3409 */ 3410 int 3411 bus_generic_suspend(device_t dev) 3412 { 3413 int error; 3414 device_t child; 3415 3416 /* 3417 * Suspend children in the reverse order. 3418 * For most buses all children are equal, so the order does not matter. 3419 * Other buses, such as acpi, carefully order their child devices to 3420 * express implicit dependencies between them. For such buses it is 3421 * safer to bring down devices in the reverse order. 3422 */ 3423 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3424 error = BUS_SUSPEND_CHILD(dev, child); 3425 if (error != 0) { 3426 child = TAILQ_NEXT(child, link); 3427 if (child != NULL) { 3428 TAILQ_FOREACH_FROM(child, &dev->children, link) 3429 BUS_RESUME_CHILD(dev, child); 3430 } 3431 return (error); 3432 } 3433 } 3434 return (0); 3435 } 3436 3437 /** 3438 * @brief Helper function for implementing DEVICE_RESUME() 3439 * 3440 * This function can be used to help implement the DEVICE_RESUME() for 3441 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3442 */ 3443 int 3444 bus_generic_resume(device_t dev) 3445 { 3446 device_t child; 3447 3448 TAILQ_FOREACH(child, &dev->children, link) { 3449 BUS_RESUME_CHILD(dev, child); 3450 /* if resume fails, there's nothing we can usefully do... */ 3451 } 3452 return (0); 3453 } 3454 3455 /** 3456 * @brief Helper function for implementing BUS_RESET_POST 3457 * 3458 * Bus can use this function to implement common operations of 3459 * re-attaching or resuming the children after the bus itself was 3460 * reset, and after restoring bus-unique state of children. 3461 * 3462 * @param dev The bus 3463 * #param flags DEVF_RESET_* 3464 */ 3465 int 3466 bus_helper_reset_post(device_t dev, int flags) 3467 { 3468 device_t child; 3469 int error, error1; 3470 3471 error = 0; 3472 TAILQ_FOREACH(child, &dev->children,link) { 3473 BUS_RESET_POST(dev, child); 3474 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3475 device_probe_and_attach(child) : 3476 BUS_RESUME_CHILD(dev, child); 3477 if (error == 0 && error1 != 0) 3478 error = error1; 3479 } 3480 return (error); 3481 } 3482 3483 static void 3484 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3485 { 3486 child = TAILQ_NEXT(child, link); 3487 if (child == NULL) 3488 return; 3489 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3490 BUS_RESET_POST(dev, child); 3491 if ((flags & DEVF_RESET_DETACH) != 0) 3492 device_probe_and_attach(child); 3493 else 3494 BUS_RESUME_CHILD(dev, child); 3495 } 3496 } 3497 3498 /** 3499 * @brief Helper function for implementing BUS_RESET_PREPARE 3500 * 3501 * Bus can use this function to implement common operations of 3502 * detaching or suspending the children before the bus itself is 3503 * reset, and then save bus-unique state of children that must 3504 * persists around reset. 3505 * 3506 * @param dev The bus 3507 * #param flags DEVF_RESET_* 3508 */ 3509 int 3510 bus_helper_reset_prepare(device_t dev, int flags) 3511 { 3512 device_t child; 3513 int error; 3514 3515 if (dev->state != DS_ATTACHED) 3516 return (EBUSY); 3517 3518 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3519 if ((flags & DEVF_RESET_DETACH) != 0) { 3520 error = device_get_state(child) == DS_ATTACHED ? 3521 device_detach(child) : 0; 3522 } else { 3523 error = BUS_SUSPEND_CHILD(dev, child); 3524 } 3525 if (error == 0) { 3526 error = BUS_RESET_PREPARE(dev, child); 3527 if (error != 0) { 3528 if ((flags & DEVF_RESET_DETACH) != 0) 3529 device_probe_and_attach(child); 3530 else 3531 BUS_RESUME_CHILD(dev, child); 3532 } 3533 } 3534 if (error != 0) { 3535 bus_helper_reset_prepare_rollback(dev, child, flags); 3536 return (error); 3537 } 3538 } 3539 return (0); 3540 } 3541 3542 /** 3543 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3544 * 3545 * This function prints the first part of the ascii representation of 3546 * @p child, including its name, unit and description (if any - see 3547 * device_set_desc()). 3548 * 3549 * @returns the number of characters printed 3550 */ 3551 int 3552 bus_print_child_header(device_t dev, device_t child) 3553 { 3554 int retval = 0; 3555 3556 if (device_get_desc(child)) { 3557 retval += device_printf(child, "<%s>", device_get_desc(child)); 3558 } else { 3559 retval += printf("%s", device_get_nameunit(child)); 3560 } 3561 3562 return (retval); 3563 } 3564 3565 /** 3566 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3567 * 3568 * This function prints the last part of the ascii representation of 3569 * @p child, which consists of the string @c " on " followed by the 3570 * name and unit of the @p dev. 3571 * 3572 * @returns the number of characters printed 3573 */ 3574 int 3575 bus_print_child_footer(device_t dev, device_t child) 3576 { 3577 return (printf(" on %s\n", device_get_nameunit(dev))); 3578 } 3579 3580 /** 3581 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3582 * 3583 * This function prints out the VM domain for the given device. 3584 * 3585 * @returns the number of characters printed 3586 */ 3587 int 3588 bus_print_child_domain(device_t dev, device_t child) 3589 { 3590 int domain; 3591 3592 /* No domain? Don't print anything */ 3593 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3594 return (0); 3595 3596 return (printf(" numa-domain %d", domain)); 3597 } 3598 3599 /** 3600 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3601 * 3602 * This function simply calls bus_print_child_header() followed by 3603 * bus_print_child_footer(). 3604 * 3605 * @returns the number of characters printed 3606 */ 3607 int 3608 bus_generic_print_child(device_t dev, device_t child) 3609 { 3610 int retval = 0; 3611 3612 retval += bus_print_child_header(dev, child); 3613 retval += bus_print_child_domain(dev, child); 3614 retval += bus_print_child_footer(dev, child); 3615 3616 return (retval); 3617 } 3618 3619 /** 3620 * @brief Stub function for implementing BUS_READ_IVAR(). 3621 * 3622 * @returns ENOENT 3623 */ 3624 int 3625 bus_generic_read_ivar(device_t dev, device_t child, int index, 3626 uintptr_t * result) 3627 { 3628 return (ENOENT); 3629 } 3630 3631 /** 3632 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3633 * 3634 * @returns ENOENT 3635 */ 3636 int 3637 bus_generic_write_ivar(device_t dev, device_t child, int index, 3638 uintptr_t value) 3639 { 3640 return (ENOENT); 3641 } 3642 3643 /** 3644 * @brief Helper function for implementing BUS_GET_PROPERTY(). 3645 * 3646 * This simply calls the BUS_GET_PROPERTY of the parent of dev, 3647 * until a non-default implementation is found. 3648 */ 3649 ssize_t 3650 bus_generic_get_property(device_t dev, device_t child, const char *propname, 3651 void *propvalue, size_t size, device_property_type_t type) 3652 { 3653 if (device_get_parent(dev) != NULL) 3654 return (BUS_GET_PROPERTY(device_get_parent(dev), child, 3655 propname, propvalue, size, type)); 3656 3657 return (-1); 3658 } 3659 3660 /** 3661 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3662 * 3663 * @returns NULL 3664 */ 3665 struct resource_list * 3666 bus_generic_get_resource_list(device_t dev, device_t child) 3667 { 3668 return (NULL); 3669 } 3670 3671 /** 3672 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3673 * 3674 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3675 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3676 * and then calls device_probe_and_attach() for each unattached child. 3677 */ 3678 void 3679 bus_generic_driver_added(device_t dev, driver_t *driver) 3680 { 3681 device_t child; 3682 3683 DEVICE_IDENTIFY(driver, dev); 3684 TAILQ_FOREACH(child, &dev->children, link) { 3685 if (child->state == DS_NOTPRESENT) 3686 device_probe_and_attach(child); 3687 } 3688 } 3689 3690 /** 3691 * @brief Helper function for implementing BUS_NEW_PASS(). 3692 * 3693 * This implementing of BUS_NEW_PASS() first calls the identify 3694 * routines for any drivers that probe at the current pass. Then it 3695 * walks the list of devices for this bus. If a device is already 3696 * attached, then it calls BUS_NEW_PASS() on that device. If the 3697 * device is not already attached, it attempts to attach a driver to 3698 * it. 3699 */ 3700 void 3701 bus_generic_new_pass(device_t dev) 3702 { 3703 driverlink_t dl; 3704 devclass_t dc; 3705 device_t child; 3706 3707 dc = dev->devclass; 3708 TAILQ_FOREACH(dl, &dc->drivers, link) { 3709 if (dl->pass == bus_current_pass) 3710 DEVICE_IDENTIFY(dl->driver, dev); 3711 } 3712 TAILQ_FOREACH(child, &dev->children, link) { 3713 if (child->state >= DS_ATTACHED) 3714 BUS_NEW_PASS(child); 3715 else if (child->state == DS_NOTPRESENT) 3716 device_probe_and_attach(child); 3717 } 3718 } 3719 3720 /** 3721 * @brief Helper function for implementing BUS_SETUP_INTR(). 3722 * 3723 * This simple implementation of BUS_SETUP_INTR() simply calls the 3724 * BUS_SETUP_INTR() method of the parent of @p dev. 3725 */ 3726 int 3727 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3728 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3729 void **cookiep) 3730 { 3731 /* Propagate up the bus hierarchy until someone handles it. */ 3732 if (dev->parent) 3733 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3734 filter, intr, arg, cookiep)); 3735 return (EINVAL); 3736 } 3737 3738 /** 3739 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3740 * 3741 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3742 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3743 */ 3744 int 3745 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3746 void *cookie) 3747 { 3748 /* Propagate up the bus hierarchy until someone handles it. */ 3749 if (dev->parent) 3750 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3751 return (EINVAL); 3752 } 3753 3754 /** 3755 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 3756 * 3757 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 3758 * BUS_SUSPEND_INTR() method of the parent of @p dev. 3759 */ 3760 int 3761 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 3762 { 3763 /* Propagate up the bus hierarchy until someone handles it. */ 3764 if (dev->parent) 3765 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 3766 return (EINVAL); 3767 } 3768 3769 /** 3770 * @brief Helper function for implementing BUS_RESUME_INTR(). 3771 * 3772 * This simple implementation of BUS_RESUME_INTR() simply calls the 3773 * BUS_RESUME_INTR() method of the parent of @p dev. 3774 */ 3775 int 3776 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 3777 { 3778 /* Propagate up the bus hierarchy until someone handles it. */ 3779 if (dev->parent) 3780 return (BUS_RESUME_INTR(dev->parent, child, irq)); 3781 return (EINVAL); 3782 } 3783 3784 /** 3785 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3786 * 3787 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3788 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3789 */ 3790 int 3791 bus_generic_adjust_resource(device_t dev, device_t child, int type, 3792 struct resource *r, rman_res_t start, rman_res_t end) 3793 { 3794 /* Propagate up the bus hierarchy until someone handles it. */ 3795 if (dev->parent) 3796 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 3797 end)); 3798 return (EINVAL); 3799 } 3800 3801 /* 3802 * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE(). 3803 * 3804 * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the 3805 * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev. If there is no 3806 * parent, no translation happens. 3807 */ 3808 int 3809 bus_generic_translate_resource(device_t dev, int type, rman_res_t start, 3810 rman_res_t *newstart) 3811 { 3812 if (dev->parent) 3813 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, 3814 newstart)); 3815 *newstart = start; 3816 return (0); 3817 } 3818 3819 /** 3820 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3821 * 3822 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3823 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3824 */ 3825 struct resource * 3826 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3827 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3828 { 3829 /* Propagate up the bus hierarchy until someone handles it. */ 3830 if (dev->parent) 3831 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3832 start, end, count, flags)); 3833 return (NULL); 3834 } 3835 3836 /** 3837 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3838 * 3839 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3840 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3841 */ 3842 int 3843 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3844 struct resource *r) 3845 { 3846 /* Propagate up the bus hierarchy until someone handles it. */ 3847 if (dev->parent) 3848 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3849 r)); 3850 return (EINVAL); 3851 } 3852 3853 /** 3854 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3855 * 3856 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3857 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3858 */ 3859 int 3860 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3861 struct resource *r) 3862 { 3863 /* Propagate up the bus hierarchy until someone handles it. */ 3864 if (dev->parent) 3865 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3866 r)); 3867 return (EINVAL); 3868 } 3869 3870 /** 3871 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3872 * 3873 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3874 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3875 */ 3876 int 3877 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3878 int rid, struct resource *r) 3879 { 3880 /* Propagate up the bus hierarchy until someone handles it. */ 3881 if (dev->parent) 3882 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3883 r)); 3884 return (EINVAL); 3885 } 3886 3887 /** 3888 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 3889 * 3890 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 3891 * BUS_MAP_RESOURCE() method of the parent of @p dev. 3892 */ 3893 int 3894 bus_generic_map_resource(device_t dev, device_t child, int type, 3895 struct resource *r, struct resource_map_request *args, 3896 struct resource_map *map) 3897 { 3898 /* Propagate up the bus hierarchy until someone handles it. */ 3899 if (dev->parent) 3900 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 3901 map)); 3902 return (EINVAL); 3903 } 3904 3905 /** 3906 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 3907 * 3908 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 3909 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 3910 */ 3911 int 3912 bus_generic_unmap_resource(device_t dev, device_t child, int type, 3913 struct resource *r, struct resource_map *map) 3914 { 3915 /* Propagate up the bus hierarchy until someone handles it. */ 3916 if (dev->parent) 3917 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 3918 return (EINVAL); 3919 } 3920 3921 /** 3922 * @brief Helper function for implementing BUS_BIND_INTR(). 3923 * 3924 * This simple implementation of BUS_BIND_INTR() simply calls the 3925 * BUS_BIND_INTR() method of the parent of @p dev. 3926 */ 3927 int 3928 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 3929 int cpu) 3930 { 3931 /* Propagate up the bus hierarchy until someone handles it. */ 3932 if (dev->parent) 3933 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 3934 return (EINVAL); 3935 } 3936 3937 /** 3938 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3939 * 3940 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3941 * BUS_CONFIG_INTR() method of the parent of @p dev. 3942 */ 3943 int 3944 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3945 enum intr_polarity pol) 3946 { 3947 /* Propagate up the bus hierarchy until someone handles it. */ 3948 if (dev->parent) 3949 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3950 return (EINVAL); 3951 } 3952 3953 /** 3954 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 3955 * 3956 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 3957 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 3958 */ 3959 int 3960 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 3961 void *cookie, const char *descr) 3962 { 3963 /* Propagate up the bus hierarchy until someone handles it. */ 3964 if (dev->parent) 3965 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 3966 descr)); 3967 return (EINVAL); 3968 } 3969 3970 /** 3971 * @brief Helper function for implementing BUS_GET_CPUS(). 3972 * 3973 * This simple implementation of BUS_GET_CPUS() simply calls the 3974 * BUS_GET_CPUS() method of the parent of @p dev. 3975 */ 3976 int 3977 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 3978 size_t setsize, cpuset_t *cpuset) 3979 { 3980 /* Propagate up the bus hierarchy until someone handles it. */ 3981 if (dev->parent != NULL) 3982 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 3983 return (EINVAL); 3984 } 3985 3986 /** 3987 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 3988 * 3989 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 3990 * BUS_GET_DMA_TAG() method of the parent of @p dev. 3991 */ 3992 bus_dma_tag_t 3993 bus_generic_get_dma_tag(device_t dev, device_t child) 3994 { 3995 /* Propagate up the bus hierarchy until someone handles it. */ 3996 if (dev->parent != NULL) 3997 return (BUS_GET_DMA_TAG(dev->parent, child)); 3998 return (NULL); 3999 } 4000 4001 /** 4002 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4003 * 4004 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4005 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4006 */ 4007 bus_space_tag_t 4008 bus_generic_get_bus_tag(device_t dev, device_t child) 4009 { 4010 /* Propagate up the bus hierarchy until someone handles it. */ 4011 if (dev->parent != NULL) 4012 return (BUS_GET_BUS_TAG(dev->parent, child)); 4013 return ((bus_space_tag_t)0); 4014 } 4015 4016 /** 4017 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4018 * 4019 * This implementation of BUS_GET_RESOURCE() uses the 4020 * resource_list_find() function to do most of the work. It calls 4021 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4022 * search. 4023 */ 4024 int 4025 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4026 rman_res_t *startp, rman_res_t *countp) 4027 { 4028 struct resource_list * rl = NULL; 4029 struct resource_list_entry * rle = NULL; 4030 4031 rl = BUS_GET_RESOURCE_LIST(dev, child); 4032 if (!rl) 4033 return (EINVAL); 4034 4035 rle = resource_list_find(rl, type, rid); 4036 if (!rle) 4037 return (ENOENT); 4038 4039 if (startp) 4040 *startp = rle->start; 4041 if (countp) 4042 *countp = rle->count; 4043 4044 return (0); 4045 } 4046 4047 /** 4048 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4049 * 4050 * This implementation of BUS_SET_RESOURCE() uses the 4051 * resource_list_add() function to do most of the work. It calls 4052 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4053 * edit. 4054 */ 4055 int 4056 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4057 rman_res_t start, rman_res_t count) 4058 { 4059 struct resource_list * rl = NULL; 4060 4061 rl = BUS_GET_RESOURCE_LIST(dev, child); 4062 if (!rl) 4063 return (EINVAL); 4064 4065 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4066 4067 return (0); 4068 } 4069 4070 /** 4071 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4072 * 4073 * This implementation of BUS_DELETE_RESOURCE() uses the 4074 * resource_list_delete() function to do most of the work. It calls 4075 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4076 * edit. 4077 */ 4078 void 4079 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4080 { 4081 struct resource_list * rl = NULL; 4082 4083 rl = BUS_GET_RESOURCE_LIST(dev, child); 4084 if (!rl) 4085 return; 4086 4087 resource_list_delete(rl, type, rid); 4088 4089 return; 4090 } 4091 4092 /** 4093 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4094 * 4095 * This implementation of BUS_RELEASE_RESOURCE() uses the 4096 * resource_list_release() function to do most of the work. It calls 4097 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4098 */ 4099 int 4100 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4101 int rid, struct resource *r) 4102 { 4103 struct resource_list * rl = NULL; 4104 4105 if (device_get_parent(child) != dev) 4106 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4107 type, rid, r)); 4108 4109 rl = BUS_GET_RESOURCE_LIST(dev, child); 4110 if (!rl) 4111 return (EINVAL); 4112 4113 return (resource_list_release(rl, dev, child, type, rid, r)); 4114 } 4115 4116 /** 4117 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4118 * 4119 * This implementation of BUS_ALLOC_RESOURCE() uses the 4120 * resource_list_alloc() function to do most of the work. It calls 4121 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4122 */ 4123 struct resource * 4124 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4125 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4126 { 4127 struct resource_list * rl = NULL; 4128 4129 if (device_get_parent(child) != dev) 4130 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4131 type, rid, start, end, count, flags)); 4132 4133 rl = BUS_GET_RESOURCE_LIST(dev, child); 4134 if (!rl) 4135 return (NULL); 4136 4137 return (resource_list_alloc(rl, dev, child, type, rid, 4138 start, end, count, flags)); 4139 } 4140 4141 /** 4142 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4143 * 4144 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4145 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4146 */ 4147 int 4148 bus_generic_child_present(device_t dev, device_t child) 4149 { 4150 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4151 } 4152 4153 int 4154 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4155 { 4156 if (dev->parent) 4157 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4158 4159 return (ENOENT); 4160 } 4161 4162 /** 4163 * @brief Helper function to implement normal BUS_GET_DEVICE_PATH() 4164 * 4165 * This function knows how to (a) pass the request up the tree if there's 4166 * a parent and (b) Knows how to supply a FreeBSD locator. 4167 * 4168 * @param bus bus in the walk up the tree 4169 * @param child leaf node to print information about 4170 * @param locator BUS_LOCATOR_xxx string for locator 4171 * @param sb Buffer to print information into 4172 */ 4173 int 4174 bus_generic_get_device_path(device_t bus, device_t child, const char *locator, 4175 struct sbuf *sb) 4176 { 4177 int rv = 0; 4178 device_t parent; 4179 4180 /* 4181 * We don't recurse on ACPI since either we know the handle for the 4182 * device or we don't. And if we're in the generic routine, we don't 4183 * have a ACPI override. All other locators build up a path by having 4184 * their parents create a path and then adding the path element for this 4185 * node. That's why we recurse with parent, bus rather than the typical 4186 * parent, child: each spot in the tree is independent of what our child 4187 * will do with this path. 4188 */ 4189 parent = device_get_parent(bus); 4190 if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) { 4191 rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb); 4192 } 4193 if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) { 4194 if (rv == 0) { 4195 sbuf_printf(sb, "/%s", device_get_nameunit(child)); 4196 } 4197 return (rv); 4198 } 4199 /* 4200 * Don't know what to do. So assume we do nothing. Not sure that's 4201 * the right thing, but keeps us from having a big list here. 4202 */ 4203 return (0); 4204 } 4205 4206 4207 /** 4208 * @brief Helper function for implementing BUS_RESCAN(). 4209 * 4210 * This null implementation of BUS_RESCAN() always fails to indicate 4211 * the bus does not support rescanning. 4212 */ 4213 int 4214 bus_null_rescan(device_t dev) 4215 { 4216 return (ENODEV); 4217 } 4218 4219 /* 4220 * Some convenience functions to make it easier for drivers to use the 4221 * resource-management functions. All these really do is hide the 4222 * indirection through the parent's method table, making for slightly 4223 * less-wordy code. In the future, it might make sense for this code 4224 * to maintain some sort of a list of resources allocated by each device. 4225 */ 4226 4227 int 4228 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4229 struct resource **res) 4230 { 4231 int i; 4232 4233 for (i = 0; rs[i].type != -1; i++) 4234 res[i] = NULL; 4235 for (i = 0; rs[i].type != -1; i++) { 4236 res[i] = bus_alloc_resource_any(dev, 4237 rs[i].type, &rs[i].rid, rs[i].flags); 4238 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4239 bus_release_resources(dev, rs, res); 4240 return (ENXIO); 4241 } 4242 } 4243 return (0); 4244 } 4245 4246 void 4247 bus_release_resources(device_t dev, const struct resource_spec *rs, 4248 struct resource **res) 4249 { 4250 int i; 4251 4252 for (i = 0; rs[i].type != -1; i++) 4253 if (res[i] != NULL) { 4254 bus_release_resource( 4255 dev, rs[i].type, rs[i].rid, res[i]); 4256 res[i] = NULL; 4257 } 4258 } 4259 4260 /** 4261 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4262 * 4263 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4264 * parent of @p dev. 4265 */ 4266 struct resource * 4267 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4268 rman_res_t end, rman_res_t count, u_int flags) 4269 { 4270 struct resource *res; 4271 4272 if (dev->parent == NULL) 4273 return (NULL); 4274 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4275 count, flags); 4276 return (res); 4277 } 4278 4279 /** 4280 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4281 * 4282 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4283 * parent of @p dev. 4284 */ 4285 int 4286 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4287 rman_res_t end) 4288 { 4289 if (dev->parent == NULL) 4290 return (EINVAL); 4291 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4292 } 4293 4294 /** 4295 * @brief Wrapper function for BUS_TRANSLATE_RESOURCE(). 4296 * 4297 * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the 4298 * parent of @p dev. 4299 */ 4300 int 4301 bus_translate_resource(device_t dev, int type, rman_res_t start, 4302 rman_res_t *newstart) 4303 { 4304 if (dev->parent == NULL) 4305 return (EINVAL); 4306 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart)); 4307 } 4308 4309 /** 4310 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4311 * 4312 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4313 * parent of @p dev. 4314 */ 4315 int 4316 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4317 { 4318 if (dev->parent == NULL) 4319 return (EINVAL); 4320 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4321 } 4322 4323 /** 4324 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4325 * 4326 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4327 * parent of @p dev. 4328 */ 4329 int 4330 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4331 { 4332 if (dev->parent == NULL) 4333 return (EINVAL); 4334 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4335 } 4336 4337 /** 4338 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4339 * 4340 * This function simply calls the BUS_MAP_RESOURCE() method of the 4341 * parent of @p dev. 4342 */ 4343 int 4344 bus_map_resource(device_t dev, int type, struct resource *r, 4345 struct resource_map_request *args, struct resource_map *map) 4346 { 4347 if (dev->parent == NULL) 4348 return (EINVAL); 4349 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4350 } 4351 4352 /** 4353 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4354 * 4355 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4356 * parent of @p dev. 4357 */ 4358 int 4359 bus_unmap_resource(device_t dev, int type, struct resource *r, 4360 struct resource_map *map) 4361 { 4362 if (dev->parent == NULL) 4363 return (EINVAL); 4364 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4365 } 4366 4367 /** 4368 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4369 * 4370 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4371 * parent of @p dev. 4372 */ 4373 int 4374 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4375 { 4376 int rv; 4377 4378 if (dev->parent == NULL) 4379 return (EINVAL); 4380 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4381 return (rv); 4382 } 4383 4384 /** 4385 * @brief Wrapper function for BUS_SETUP_INTR(). 4386 * 4387 * This function simply calls the BUS_SETUP_INTR() method of the 4388 * parent of @p dev. 4389 */ 4390 int 4391 bus_setup_intr(device_t dev, struct resource *r, int flags, 4392 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4393 { 4394 int error; 4395 4396 if (dev->parent == NULL) 4397 return (EINVAL); 4398 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4399 arg, cookiep); 4400 if (error != 0) 4401 return (error); 4402 if (handler != NULL && !(flags & INTR_MPSAFE)) 4403 device_printf(dev, "[GIANT-LOCKED]\n"); 4404 return (0); 4405 } 4406 4407 /** 4408 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4409 * 4410 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4411 * parent of @p dev. 4412 */ 4413 int 4414 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4415 { 4416 if (dev->parent == NULL) 4417 return (EINVAL); 4418 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4419 } 4420 4421 /** 4422 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4423 * 4424 * This function simply calls the BUS_SUSPEND_INTR() method of the 4425 * parent of @p dev. 4426 */ 4427 int 4428 bus_suspend_intr(device_t dev, struct resource *r) 4429 { 4430 if (dev->parent == NULL) 4431 return (EINVAL); 4432 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4433 } 4434 4435 /** 4436 * @brief Wrapper function for BUS_RESUME_INTR(). 4437 * 4438 * This function simply calls the BUS_RESUME_INTR() method of the 4439 * parent of @p dev. 4440 */ 4441 int 4442 bus_resume_intr(device_t dev, struct resource *r) 4443 { 4444 if (dev->parent == NULL) 4445 return (EINVAL); 4446 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4447 } 4448 4449 /** 4450 * @brief Wrapper function for BUS_BIND_INTR(). 4451 * 4452 * This function simply calls the BUS_BIND_INTR() method of the 4453 * parent of @p dev. 4454 */ 4455 int 4456 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4457 { 4458 if (dev->parent == NULL) 4459 return (EINVAL); 4460 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4461 } 4462 4463 /** 4464 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4465 * 4466 * This function first formats the requested description into a 4467 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4468 * the parent of @p dev. 4469 */ 4470 int 4471 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4472 const char *fmt, ...) 4473 { 4474 va_list ap; 4475 char descr[MAXCOMLEN + 1]; 4476 4477 if (dev->parent == NULL) 4478 return (EINVAL); 4479 va_start(ap, fmt); 4480 vsnprintf(descr, sizeof(descr), fmt, ap); 4481 va_end(ap); 4482 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4483 } 4484 4485 /** 4486 * @brief Wrapper function for BUS_SET_RESOURCE(). 4487 * 4488 * This function simply calls the BUS_SET_RESOURCE() method of the 4489 * parent of @p dev. 4490 */ 4491 int 4492 bus_set_resource(device_t dev, int type, int rid, 4493 rman_res_t start, rman_res_t count) 4494 { 4495 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4496 start, count)); 4497 } 4498 4499 /** 4500 * @brief Wrapper function for BUS_GET_RESOURCE(). 4501 * 4502 * This function simply calls the BUS_GET_RESOURCE() method of the 4503 * parent of @p dev. 4504 */ 4505 int 4506 bus_get_resource(device_t dev, int type, int rid, 4507 rman_res_t *startp, rman_res_t *countp) 4508 { 4509 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4510 startp, countp)); 4511 } 4512 4513 /** 4514 * @brief Wrapper function for BUS_GET_RESOURCE(). 4515 * 4516 * This function simply calls the BUS_GET_RESOURCE() method of the 4517 * parent of @p dev and returns the start value. 4518 */ 4519 rman_res_t 4520 bus_get_resource_start(device_t dev, int type, int rid) 4521 { 4522 rman_res_t start; 4523 rman_res_t count; 4524 int error; 4525 4526 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4527 &start, &count); 4528 if (error) 4529 return (0); 4530 return (start); 4531 } 4532 4533 /** 4534 * @brief Wrapper function for BUS_GET_RESOURCE(). 4535 * 4536 * This function simply calls the BUS_GET_RESOURCE() method of the 4537 * parent of @p dev and returns the count value. 4538 */ 4539 rman_res_t 4540 bus_get_resource_count(device_t dev, int type, int rid) 4541 { 4542 rman_res_t start; 4543 rman_res_t count; 4544 int error; 4545 4546 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4547 &start, &count); 4548 if (error) 4549 return (0); 4550 return (count); 4551 } 4552 4553 /** 4554 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4555 * 4556 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4557 * parent of @p dev. 4558 */ 4559 void 4560 bus_delete_resource(device_t dev, int type, int rid) 4561 { 4562 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4563 } 4564 4565 /** 4566 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4567 * 4568 * This function simply calls the BUS_CHILD_PRESENT() method of the 4569 * parent of @p dev. 4570 */ 4571 int 4572 bus_child_present(device_t child) 4573 { 4574 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4575 } 4576 4577 /** 4578 * @brief Wrapper function for BUS_CHILD_PNPINFO(). 4579 * 4580 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p 4581 * dev. 4582 */ 4583 int 4584 bus_child_pnpinfo(device_t child, struct sbuf *sb) 4585 { 4586 device_t parent; 4587 4588 parent = device_get_parent(child); 4589 if (parent == NULL) 4590 return (0); 4591 return (BUS_CHILD_PNPINFO(parent, child, sb)); 4592 } 4593 4594 /** 4595 * @brief Generic implementation that does nothing for bus_child_pnpinfo 4596 * 4597 * This function has the right signature and returns 0 since the sbuf is passed 4598 * to us to append to. 4599 */ 4600 int 4601 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb) 4602 { 4603 return (0); 4604 } 4605 4606 /** 4607 * @brief Wrapper function for BUS_CHILD_LOCATION(). 4608 * 4609 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of 4610 * @p dev. 4611 */ 4612 int 4613 bus_child_location(device_t child, struct sbuf *sb) 4614 { 4615 device_t parent; 4616 4617 parent = device_get_parent(child); 4618 if (parent == NULL) 4619 return (0); 4620 return (BUS_CHILD_LOCATION(parent, child, sb)); 4621 } 4622 4623 /** 4624 * @brief Generic implementation that does nothing for bus_child_location 4625 * 4626 * This function has the right signature and returns 0 since the sbuf is passed 4627 * to us to append to. 4628 */ 4629 int 4630 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb) 4631 { 4632 return (0); 4633 } 4634 4635 /** 4636 * @brief Wrapper function for BUS_GET_CPUS(). 4637 * 4638 * This function simply calls the BUS_GET_CPUS() method of the 4639 * parent of @p dev. 4640 */ 4641 int 4642 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 4643 { 4644 device_t parent; 4645 4646 parent = device_get_parent(dev); 4647 if (parent == NULL) 4648 return (EINVAL); 4649 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 4650 } 4651 4652 /** 4653 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4654 * 4655 * This function simply calls the BUS_GET_DMA_TAG() method of the 4656 * parent of @p dev. 4657 */ 4658 bus_dma_tag_t 4659 bus_get_dma_tag(device_t dev) 4660 { 4661 device_t parent; 4662 4663 parent = device_get_parent(dev); 4664 if (parent == NULL) 4665 return (NULL); 4666 return (BUS_GET_DMA_TAG(parent, dev)); 4667 } 4668 4669 /** 4670 * @brief Wrapper function for BUS_GET_BUS_TAG(). 4671 * 4672 * This function simply calls the BUS_GET_BUS_TAG() method of the 4673 * parent of @p dev. 4674 */ 4675 bus_space_tag_t 4676 bus_get_bus_tag(device_t dev) 4677 { 4678 device_t parent; 4679 4680 parent = device_get_parent(dev); 4681 if (parent == NULL) 4682 return ((bus_space_tag_t)0); 4683 return (BUS_GET_BUS_TAG(parent, dev)); 4684 } 4685 4686 /** 4687 * @brief Wrapper function for BUS_GET_DOMAIN(). 4688 * 4689 * This function simply calls the BUS_GET_DOMAIN() method of the 4690 * parent of @p dev. 4691 */ 4692 int 4693 bus_get_domain(device_t dev, int *domain) 4694 { 4695 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 4696 } 4697 4698 /* Resume all devices and then notify userland that we're up again. */ 4699 static int 4700 root_resume(device_t dev) 4701 { 4702 int error; 4703 4704 error = bus_generic_resume(dev); 4705 if (error == 0) { 4706 devctl_notify("kern", "power", "resume", NULL); /* Deprecated gone in 14 */ 4707 devctl_notify("kernel", "power", "resume", NULL); 4708 } 4709 return (error); 4710 } 4711 4712 static int 4713 root_print_child(device_t dev, device_t child) 4714 { 4715 int retval = 0; 4716 4717 retval += bus_print_child_header(dev, child); 4718 retval += printf("\n"); 4719 4720 return (retval); 4721 } 4722 4723 static int 4724 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4725 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4726 { 4727 /* 4728 * If an interrupt mapping gets to here something bad has happened. 4729 */ 4730 panic("root_setup_intr"); 4731 } 4732 4733 /* 4734 * If we get here, assume that the device is permanent and really is 4735 * present in the system. Removable bus drivers are expected to intercept 4736 * this call long before it gets here. We return -1 so that drivers that 4737 * really care can check vs -1 or some ERRNO returned higher in the food 4738 * chain. 4739 */ 4740 static int 4741 root_child_present(device_t dev, device_t child) 4742 { 4743 return (-1); 4744 } 4745 4746 static int 4747 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 4748 cpuset_t *cpuset) 4749 { 4750 switch (op) { 4751 case INTR_CPUS: 4752 /* Default to returning the set of all CPUs. */ 4753 if (setsize != sizeof(cpuset_t)) 4754 return (EINVAL); 4755 *cpuset = all_cpus; 4756 return (0); 4757 default: 4758 return (EINVAL); 4759 } 4760 } 4761 4762 static kobj_method_t root_methods[] = { 4763 /* Device interface */ 4764 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4765 KOBJMETHOD(device_suspend, bus_generic_suspend), 4766 KOBJMETHOD(device_resume, root_resume), 4767 4768 /* Bus interface */ 4769 KOBJMETHOD(bus_print_child, root_print_child), 4770 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4771 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4772 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4773 KOBJMETHOD(bus_child_present, root_child_present), 4774 KOBJMETHOD(bus_get_cpus, root_get_cpus), 4775 4776 KOBJMETHOD_END 4777 }; 4778 4779 static driver_t root_driver = { 4780 "root", 4781 root_methods, 4782 1, /* no softc */ 4783 }; 4784 4785 device_t root_bus; 4786 devclass_t root_devclass; 4787 4788 static int 4789 root_bus_module_handler(module_t mod, int what, void* arg) 4790 { 4791 switch (what) { 4792 case MOD_LOAD: 4793 TAILQ_INIT(&bus_data_devices); 4794 kobj_class_compile((kobj_class_t) &root_driver); 4795 root_bus = make_device(NULL, "root", 0); 4796 root_bus->desc = "System root bus"; 4797 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4798 root_bus->driver = &root_driver; 4799 root_bus->state = DS_ATTACHED; 4800 root_devclass = devclass_find_internal("root", NULL, FALSE); 4801 devctl2_init(); 4802 return (0); 4803 4804 case MOD_SHUTDOWN: 4805 device_shutdown(root_bus); 4806 return (0); 4807 default: 4808 return (EOPNOTSUPP); 4809 } 4810 4811 return (0); 4812 } 4813 4814 static moduledata_t root_bus_mod = { 4815 "rootbus", 4816 root_bus_module_handler, 4817 NULL 4818 }; 4819 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4820 4821 /** 4822 * @brief Automatically configure devices 4823 * 4824 * This function begins the autoconfiguration process by calling 4825 * device_probe_and_attach() for each child of the @c root0 device. 4826 */ 4827 void 4828 root_bus_configure(void) 4829 { 4830 PDEBUG((".")); 4831 4832 /* Eventually this will be split up, but this is sufficient for now. */ 4833 bus_set_pass(BUS_PASS_DEFAULT); 4834 } 4835 4836 /** 4837 * @brief Module handler for registering device drivers 4838 * 4839 * This module handler is used to automatically register device 4840 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4841 * devclass_add_driver() for the driver described by the 4842 * driver_module_data structure pointed to by @p arg 4843 */ 4844 int 4845 driver_module_handler(module_t mod, int what, void *arg) 4846 { 4847 struct driver_module_data *dmd; 4848 devclass_t bus_devclass; 4849 kobj_class_t driver; 4850 int error, pass; 4851 4852 dmd = (struct driver_module_data *)arg; 4853 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4854 error = 0; 4855 4856 switch (what) { 4857 case MOD_LOAD: 4858 if (dmd->dmd_chainevh) 4859 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4860 4861 pass = dmd->dmd_pass; 4862 driver = dmd->dmd_driver; 4863 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4864 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4865 error = devclass_add_driver(bus_devclass, driver, pass, 4866 dmd->dmd_devclass); 4867 break; 4868 4869 case MOD_UNLOAD: 4870 PDEBUG(("Unloading module: driver %s from bus %s", 4871 DRIVERNAME(dmd->dmd_driver), 4872 dmd->dmd_busname)); 4873 error = devclass_delete_driver(bus_devclass, 4874 dmd->dmd_driver); 4875 4876 if (!error && dmd->dmd_chainevh) 4877 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4878 break; 4879 case MOD_QUIESCE: 4880 PDEBUG(("Quiesce module: driver %s from bus %s", 4881 DRIVERNAME(dmd->dmd_driver), 4882 dmd->dmd_busname)); 4883 error = devclass_quiesce_driver(bus_devclass, 4884 dmd->dmd_driver); 4885 4886 if (!error && dmd->dmd_chainevh) 4887 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4888 break; 4889 default: 4890 error = EOPNOTSUPP; 4891 break; 4892 } 4893 4894 return (error); 4895 } 4896 4897 /** 4898 * @brief Enumerate all hinted devices for this bus. 4899 * 4900 * Walks through the hints for this bus and calls the bus_hinted_child 4901 * routine for each one it fines. It searches first for the specific 4902 * bus that's being probed for hinted children (eg isa0), and then for 4903 * generic children (eg isa). 4904 * 4905 * @param dev bus device to enumerate 4906 */ 4907 void 4908 bus_enumerate_hinted_children(device_t bus) 4909 { 4910 int i; 4911 const char *dname, *busname; 4912 int dunit; 4913 4914 /* 4915 * enumerate all devices on the specific bus 4916 */ 4917 busname = device_get_nameunit(bus); 4918 i = 0; 4919 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4920 BUS_HINTED_CHILD(bus, dname, dunit); 4921 4922 /* 4923 * and all the generic ones. 4924 */ 4925 busname = device_get_name(bus); 4926 i = 0; 4927 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4928 BUS_HINTED_CHILD(bus, dname, dunit); 4929 } 4930 4931 #ifdef BUS_DEBUG 4932 4933 /* the _short versions avoid iteration by not calling anything that prints 4934 * more than oneliners. I love oneliners. 4935 */ 4936 4937 static void 4938 print_device_short(device_t dev, int indent) 4939 { 4940 if (!dev) 4941 return; 4942 4943 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4944 dev->unit, dev->desc, 4945 (dev->parent? "":"no "), 4946 (TAILQ_EMPTY(&dev->children)? "no ":""), 4947 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4948 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4949 (dev->flags&DF_WILDCARD? "wildcard,":""), 4950 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4951 (dev->flags&DF_SUSPENDED? "suspended,":""), 4952 (dev->ivars? "":"no "), 4953 (dev->softc? "":"no "), 4954 dev->busy)); 4955 } 4956 4957 static void 4958 print_device(device_t dev, int indent) 4959 { 4960 if (!dev) 4961 return; 4962 4963 print_device_short(dev, indent); 4964 4965 indentprintf(("Parent:\n")); 4966 print_device_short(dev->parent, indent+1); 4967 indentprintf(("Driver:\n")); 4968 print_driver_short(dev->driver, indent+1); 4969 indentprintf(("Devclass:\n")); 4970 print_devclass_short(dev->devclass, indent+1); 4971 } 4972 4973 void 4974 print_device_tree_short(device_t dev, int indent) 4975 /* print the device and all its children (indented) */ 4976 { 4977 device_t child; 4978 4979 if (!dev) 4980 return; 4981 4982 print_device_short(dev, indent); 4983 4984 TAILQ_FOREACH(child, &dev->children, link) { 4985 print_device_tree_short(child, indent+1); 4986 } 4987 } 4988 4989 void 4990 print_device_tree(device_t dev, int indent) 4991 /* print the device and all its children (indented) */ 4992 { 4993 device_t child; 4994 4995 if (!dev) 4996 return; 4997 4998 print_device(dev, indent); 4999 5000 TAILQ_FOREACH(child, &dev->children, link) { 5001 print_device_tree(child, indent+1); 5002 } 5003 } 5004 5005 static void 5006 print_driver_short(driver_t *driver, int indent) 5007 { 5008 if (!driver) 5009 return; 5010 5011 indentprintf(("driver %s: softc size = %zd\n", 5012 driver->name, driver->size)); 5013 } 5014 5015 static void 5016 print_driver(driver_t *driver, int indent) 5017 { 5018 if (!driver) 5019 return; 5020 5021 print_driver_short(driver, indent); 5022 } 5023 5024 static void 5025 print_driver_list(driver_list_t drivers, int indent) 5026 { 5027 driverlink_t driver; 5028 5029 TAILQ_FOREACH(driver, &drivers, link) { 5030 print_driver(driver->driver, indent); 5031 } 5032 } 5033 5034 static void 5035 print_devclass_short(devclass_t dc, int indent) 5036 { 5037 if ( !dc ) 5038 return; 5039 5040 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5041 } 5042 5043 static void 5044 print_devclass(devclass_t dc, int indent) 5045 { 5046 int i; 5047 5048 if ( !dc ) 5049 return; 5050 5051 print_devclass_short(dc, indent); 5052 indentprintf(("Drivers:\n")); 5053 print_driver_list(dc->drivers, indent+1); 5054 5055 indentprintf(("Devices:\n")); 5056 for (i = 0; i < dc->maxunit; i++) 5057 if (dc->devices[i]) 5058 print_device(dc->devices[i], indent+1); 5059 } 5060 5061 void 5062 print_devclass_list_short(void) 5063 { 5064 devclass_t dc; 5065 5066 printf("Short listing of devclasses, drivers & devices:\n"); 5067 TAILQ_FOREACH(dc, &devclasses, link) { 5068 print_devclass_short(dc, 0); 5069 } 5070 } 5071 5072 void 5073 print_devclass_list(void) 5074 { 5075 devclass_t dc; 5076 5077 printf("Full listing of devclasses, drivers & devices:\n"); 5078 TAILQ_FOREACH(dc, &devclasses, link) { 5079 print_devclass(dc, 0); 5080 } 5081 } 5082 5083 #endif 5084 5085 /* 5086 * User-space access to the device tree. 5087 * 5088 * We implement a small set of nodes: 5089 * 5090 * hw.bus Single integer read method to obtain the 5091 * current generation count. 5092 * hw.bus.devices Reads the entire device tree in flat space. 5093 * hw.bus.rman Resource manager interface 5094 * 5095 * We might like to add the ability to scan devclasses and/or drivers to 5096 * determine what else is currently loaded/available. 5097 */ 5098 5099 static int 5100 sysctl_bus_info(SYSCTL_HANDLER_ARGS) 5101 { 5102 struct u_businfo ubus; 5103 5104 ubus.ub_version = BUS_USER_VERSION; 5105 ubus.ub_generation = bus_data_generation; 5106 5107 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5108 } 5109 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | 5110 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", 5111 "bus-related data"); 5112 5113 static int 5114 sysctl_devices(SYSCTL_HANDLER_ARGS) 5115 { 5116 struct sbuf sb; 5117 int *name = (int *)arg1; 5118 u_int namelen = arg2; 5119 int index; 5120 device_t dev; 5121 struct u_device *udev; 5122 int error; 5123 5124 if (namelen != 2) 5125 return (EINVAL); 5126 5127 if (bus_data_generation_check(name[0])) 5128 return (EINVAL); 5129 5130 index = name[1]; 5131 5132 /* 5133 * Scan the list of devices, looking for the requested index. 5134 */ 5135 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5136 if (index-- == 0) 5137 break; 5138 } 5139 if (dev == NULL) 5140 return (ENOENT); 5141 5142 /* 5143 * Populate the return item, careful not to overflow the buffer. 5144 */ 5145 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5146 if (udev == NULL) 5147 return (ENOMEM); 5148 udev->dv_handle = (uintptr_t)dev; 5149 udev->dv_parent = (uintptr_t)dev->parent; 5150 udev->dv_devflags = dev->devflags; 5151 udev->dv_flags = dev->flags; 5152 udev->dv_state = dev->state; 5153 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN); 5154 if (dev->nameunit != NULL) 5155 sbuf_cat(&sb, dev->nameunit); 5156 sbuf_putc(&sb, '\0'); 5157 if (dev->desc != NULL) 5158 sbuf_cat(&sb, dev->desc); 5159 sbuf_putc(&sb, '\0'); 5160 if (dev->driver != NULL) 5161 sbuf_cat(&sb, dev->driver->name); 5162 sbuf_putc(&sb, '\0'); 5163 bus_child_pnpinfo(dev, &sb); 5164 sbuf_putc(&sb, '\0'); 5165 bus_child_location(dev, &sb); 5166 sbuf_putc(&sb, '\0'); 5167 error = sbuf_finish(&sb); 5168 if (error == 0) 5169 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5170 sbuf_delete(&sb); 5171 free(udev, M_BUS); 5172 return (error); 5173 } 5174 5175 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, 5176 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, 5177 "system device tree"); 5178 5179 int 5180 bus_data_generation_check(int generation) 5181 { 5182 if (generation != bus_data_generation) 5183 return (1); 5184 5185 /* XXX generate optimised lists here? */ 5186 return (0); 5187 } 5188 5189 void 5190 bus_data_generation_update(void) 5191 { 5192 atomic_add_int(&bus_data_generation, 1); 5193 } 5194 5195 int 5196 bus_free_resource(device_t dev, int type, struct resource *r) 5197 { 5198 if (r == NULL) 5199 return (0); 5200 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5201 } 5202 5203 device_t 5204 device_lookup_by_name(const char *name) 5205 { 5206 device_t dev; 5207 5208 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5209 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5210 return (dev); 5211 } 5212 return (NULL); 5213 } 5214 5215 /* 5216 * /dev/devctl2 implementation. The existing /dev/devctl device has 5217 * implicit semantics on open, so it could not be reused for this. 5218 * Another option would be to call this /dev/bus? 5219 */ 5220 static int 5221 find_device(struct devreq *req, device_t *devp) 5222 { 5223 device_t dev; 5224 5225 /* 5226 * First, ensure that the name is nul terminated. 5227 */ 5228 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5229 return (EINVAL); 5230 5231 /* 5232 * Second, try to find an attached device whose name matches 5233 * 'name'. 5234 */ 5235 dev = device_lookup_by_name(req->dr_name); 5236 if (dev != NULL) { 5237 *devp = dev; 5238 return (0); 5239 } 5240 5241 /* Finally, give device enumerators a chance. */ 5242 dev = NULL; 5243 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5244 if (dev == NULL) 5245 return (ENOENT); 5246 *devp = dev; 5247 return (0); 5248 } 5249 5250 static bool 5251 driver_exists(device_t bus, const char *driver) 5252 { 5253 devclass_t dc; 5254 5255 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5256 if (devclass_find_driver_internal(dc, driver) != NULL) 5257 return (true); 5258 } 5259 return (false); 5260 } 5261 5262 static void 5263 device_gen_nomatch(device_t dev) 5264 { 5265 device_t child; 5266 5267 if (dev->flags & DF_NEEDNOMATCH && 5268 dev->state == DS_NOTPRESENT) { 5269 device_handle_nomatch(dev); 5270 } 5271 dev->flags &= ~DF_NEEDNOMATCH; 5272 TAILQ_FOREACH(child, &dev->children, link) { 5273 device_gen_nomatch(child); 5274 } 5275 } 5276 5277 static void 5278 device_do_deferred_actions(void) 5279 { 5280 devclass_t dc; 5281 driverlink_t dl; 5282 5283 /* 5284 * Walk through the devclasses to find all the drivers we've tagged as 5285 * deferred during the freeze and call the driver added routines. They 5286 * have already been added to the lists in the background, so the driver 5287 * added routines that trigger a probe will have all the right bidders 5288 * for the probe auction. 5289 */ 5290 TAILQ_FOREACH(dc, &devclasses, link) { 5291 TAILQ_FOREACH(dl, &dc->drivers, link) { 5292 if (dl->flags & DL_DEFERRED_PROBE) { 5293 devclass_driver_added(dc, dl->driver); 5294 dl->flags &= ~DL_DEFERRED_PROBE; 5295 } 5296 } 5297 } 5298 5299 /* 5300 * We also defer no-match events during a freeze. Walk the tree and 5301 * generate all the pent-up events that are still relevant. 5302 */ 5303 device_gen_nomatch(root_bus); 5304 bus_data_generation_update(); 5305 } 5306 5307 static char * 5308 device_get_path(device_t dev, const char *locator) 5309 { 5310 struct sbuf *sb; 5311 ssize_t len; 5312 char *rv = NULL; 5313 int error; 5314 5315 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | SBUF_INCLUDENUL); 5316 error = BUS_GET_DEVICE_PATH(device_get_parent(dev), dev, locator, sb); 5317 sbuf_finish(sb); /* Note: errors checked with sbuf_len() below */ 5318 if (error != 0) 5319 goto out; 5320 len = sbuf_len(sb); 5321 if (len <= 1) 5322 goto out; 5323 rv = malloc(len, M_BUS, M_NOWAIT); 5324 memcpy(rv, sbuf_data(sb), len); 5325 out: 5326 sbuf_delete(sb); 5327 return (rv); 5328 } 5329 5330 static int 5331 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5332 struct thread *td) 5333 { 5334 struct devreq *req; 5335 device_t dev; 5336 int error, old; 5337 5338 /* Locate the device to control. */ 5339 bus_topo_lock(); 5340 req = (struct devreq *)data; 5341 switch (cmd) { 5342 case DEV_ATTACH: 5343 case DEV_DETACH: 5344 case DEV_ENABLE: 5345 case DEV_DISABLE: 5346 case DEV_SUSPEND: 5347 case DEV_RESUME: 5348 case DEV_SET_DRIVER: 5349 case DEV_CLEAR_DRIVER: 5350 case DEV_RESCAN: 5351 case DEV_DELETE: 5352 case DEV_RESET: 5353 error = priv_check(td, PRIV_DRIVER); 5354 if (error == 0) 5355 error = find_device(req, &dev); 5356 break; 5357 case DEV_FREEZE: 5358 case DEV_THAW: 5359 error = priv_check(td, PRIV_DRIVER); 5360 break; 5361 case DEV_GET_PATH: 5362 error = find_device(req, &dev); 5363 break; 5364 default: 5365 error = ENOTTY; 5366 break; 5367 } 5368 if (error) { 5369 bus_topo_unlock(); 5370 return (error); 5371 } 5372 5373 /* Perform the requested operation. */ 5374 switch (cmd) { 5375 case DEV_ATTACH: 5376 if (device_is_attached(dev)) 5377 error = EBUSY; 5378 else if (!device_is_enabled(dev)) 5379 error = ENXIO; 5380 else 5381 error = device_probe_and_attach(dev); 5382 break; 5383 case DEV_DETACH: 5384 if (!device_is_attached(dev)) { 5385 error = ENXIO; 5386 break; 5387 } 5388 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5389 error = device_quiesce(dev); 5390 if (error) 5391 break; 5392 } 5393 error = device_detach(dev); 5394 break; 5395 case DEV_ENABLE: 5396 if (device_is_enabled(dev)) { 5397 error = EBUSY; 5398 break; 5399 } 5400 5401 /* 5402 * If the device has been probed but not attached (e.g. 5403 * when it has been disabled by a loader hint), just 5404 * attach the device rather than doing a full probe. 5405 */ 5406 device_enable(dev); 5407 if (device_is_alive(dev)) { 5408 /* 5409 * If the device was disabled via a hint, clear 5410 * the hint. 5411 */ 5412 if (resource_disabled(dev->driver->name, dev->unit)) 5413 resource_unset_value(dev->driver->name, 5414 dev->unit, "disabled"); 5415 error = device_attach(dev); 5416 } else 5417 error = device_probe_and_attach(dev); 5418 break; 5419 case DEV_DISABLE: 5420 if (!device_is_enabled(dev)) { 5421 error = ENXIO; 5422 break; 5423 } 5424 5425 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5426 error = device_quiesce(dev); 5427 if (error) 5428 break; 5429 } 5430 5431 /* 5432 * Force DF_FIXEDCLASS on around detach to preserve 5433 * the existing name. 5434 */ 5435 old = dev->flags; 5436 dev->flags |= DF_FIXEDCLASS; 5437 error = device_detach(dev); 5438 if (!(old & DF_FIXEDCLASS)) 5439 dev->flags &= ~DF_FIXEDCLASS; 5440 if (error == 0) 5441 device_disable(dev); 5442 break; 5443 case DEV_SUSPEND: 5444 if (device_is_suspended(dev)) { 5445 error = EBUSY; 5446 break; 5447 } 5448 if (device_get_parent(dev) == NULL) { 5449 error = EINVAL; 5450 break; 5451 } 5452 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5453 break; 5454 case DEV_RESUME: 5455 if (!device_is_suspended(dev)) { 5456 error = EINVAL; 5457 break; 5458 } 5459 if (device_get_parent(dev) == NULL) { 5460 error = EINVAL; 5461 break; 5462 } 5463 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5464 break; 5465 case DEV_SET_DRIVER: { 5466 devclass_t dc; 5467 char driver[128]; 5468 5469 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5470 if (error) 5471 break; 5472 if (driver[0] == '\0') { 5473 error = EINVAL; 5474 break; 5475 } 5476 if (dev->devclass != NULL && 5477 strcmp(driver, dev->devclass->name) == 0) 5478 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5479 break; 5480 5481 /* 5482 * Scan drivers for this device's bus looking for at 5483 * least one matching driver. 5484 */ 5485 if (dev->parent == NULL) { 5486 error = EINVAL; 5487 break; 5488 } 5489 if (!driver_exists(dev->parent, driver)) { 5490 error = ENOENT; 5491 break; 5492 } 5493 dc = devclass_create(driver); 5494 if (dc == NULL) { 5495 error = ENOMEM; 5496 break; 5497 } 5498 5499 /* Detach device if necessary. */ 5500 if (device_is_attached(dev)) { 5501 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5502 error = device_detach(dev); 5503 else 5504 error = EBUSY; 5505 if (error) 5506 break; 5507 } 5508 5509 /* Clear any previously-fixed device class and unit. */ 5510 if (dev->flags & DF_FIXEDCLASS) 5511 devclass_delete_device(dev->devclass, dev); 5512 dev->flags |= DF_WILDCARD; 5513 dev->unit = -1; 5514 5515 /* Force the new device class. */ 5516 error = devclass_add_device(dc, dev); 5517 if (error) 5518 break; 5519 dev->flags |= DF_FIXEDCLASS; 5520 error = device_probe_and_attach(dev); 5521 break; 5522 } 5523 case DEV_CLEAR_DRIVER: 5524 if (!(dev->flags & DF_FIXEDCLASS)) { 5525 error = 0; 5526 break; 5527 } 5528 if (device_is_attached(dev)) { 5529 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5530 error = device_detach(dev); 5531 else 5532 error = EBUSY; 5533 if (error) 5534 break; 5535 } 5536 5537 dev->flags &= ~DF_FIXEDCLASS; 5538 dev->flags |= DF_WILDCARD; 5539 devclass_delete_device(dev->devclass, dev); 5540 error = device_probe_and_attach(dev); 5541 break; 5542 case DEV_RESCAN: 5543 if (!device_is_attached(dev)) { 5544 error = ENXIO; 5545 break; 5546 } 5547 error = BUS_RESCAN(dev); 5548 break; 5549 case DEV_DELETE: { 5550 device_t parent; 5551 5552 parent = device_get_parent(dev); 5553 if (parent == NULL) { 5554 error = EINVAL; 5555 break; 5556 } 5557 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5558 if (bus_child_present(dev) != 0) { 5559 error = EBUSY; 5560 break; 5561 } 5562 } 5563 5564 error = device_delete_child(parent, dev); 5565 break; 5566 } 5567 case DEV_FREEZE: 5568 if (device_frozen) 5569 error = EBUSY; 5570 else 5571 device_frozen = true; 5572 break; 5573 case DEV_THAW: 5574 if (!device_frozen) 5575 error = EBUSY; 5576 else { 5577 device_do_deferred_actions(); 5578 device_frozen = false; 5579 } 5580 break; 5581 case DEV_RESET: 5582 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 5583 error = EINVAL; 5584 break; 5585 } 5586 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 5587 req->dr_flags); 5588 break; 5589 case DEV_GET_PATH: { 5590 char locator[64]; 5591 char *path; 5592 ssize_t len; 5593 5594 error = copyinstr(req->dr_buffer.buffer, locator, sizeof(locator), NULL); 5595 if (error) 5596 break; 5597 path = device_get_path(dev, locator); 5598 if (path == NULL) { 5599 error = ENOMEM; 5600 break; 5601 } 5602 len = strlen(path) + 1; 5603 if (req->dr_buffer.length < len) { 5604 error = ENAMETOOLONG; 5605 } else { 5606 error = copyout(path, req->dr_buffer.buffer, len); 5607 } 5608 req->dr_buffer.length = len; 5609 free(path, M_BUS); 5610 break; 5611 } 5612 } 5613 bus_topo_unlock(); 5614 return (error); 5615 } 5616 5617 static struct cdevsw devctl2_cdevsw = { 5618 .d_version = D_VERSION, 5619 .d_ioctl = devctl2_ioctl, 5620 .d_name = "devctl2", 5621 }; 5622 5623 static void 5624 devctl2_init(void) 5625 { 5626 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5627 UID_ROOT, GID_WHEEL, 0644, "devctl2"); 5628 } 5629 5630 /* 5631 * For maintaining device 'at' location info to avoid recomputing it 5632 */ 5633 struct device_location_node { 5634 const char *dln_locator; 5635 const char *dln_path; 5636 TAILQ_ENTRY(device_location_node) dln_link; 5637 }; 5638 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t; 5639 5640 struct device_location_cache { 5641 device_location_list_t dlc_list; 5642 }; 5643 5644 5645 /* 5646 * Location cache for wired devices. 5647 */ 5648 device_location_cache_t * 5649 dev_wired_cache_init(void) 5650 { 5651 device_location_cache_t *dcp; 5652 5653 dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO); 5654 TAILQ_INIT(&dcp->dlc_list); 5655 5656 return (dcp); 5657 } 5658 5659 void 5660 dev_wired_cache_fini(device_location_cache_t *dcp) 5661 { 5662 struct device_location_node *dln, *tdln; 5663 5664 TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) { 5665 /* Note: one allocation for both node and locator, but not path */ 5666 free(__DECONST(void *, dln->dln_path), M_BUS); 5667 free(dln, M_BUS); 5668 } 5669 free(dcp, M_BUS); 5670 } 5671 5672 static struct device_location_node * 5673 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator) 5674 { 5675 struct device_location_node *dln; 5676 5677 TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) { 5678 if (strcmp(locator, dln->dln_locator) == 0) 5679 return (dln); 5680 } 5681 5682 return (NULL); 5683 } 5684 5685 static struct device_location_node * 5686 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path) 5687 { 5688 struct device_location_node *dln; 5689 char *l; 5690 5691 dln = malloc(sizeof(*dln) + strlen(locator) + 1, M_BUS, M_WAITOK | M_ZERO); 5692 dln->dln_locator = l = (char *)(dln + 1); 5693 memcpy(l, locator, strlen(locator) + 1); 5694 dln->dln_path = path; 5695 TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link); 5696 5697 return (dln); 5698 } 5699 5700 bool 5701 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev, const char *at) 5702 { 5703 const char *cp, *path; 5704 char locator[32]; 5705 int len; 5706 struct device_location_node *res; 5707 5708 cp = strchr(at, ':'); 5709 if (cp == NULL) 5710 return (false); 5711 len = cp - at; 5712 if (len > sizeof(locator) - 1) /* Skip too long locator */ 5713 return (false); 5714 memcpy(locator, at, len); 5715 locator[len] = '\0'; 5716 cp++; 5717 5718 /* maybe cache this inside device_t and look that up, but not yet */ 5719 res = dev_wired_cache_lookup(dcp, locator); 5720 if (res == NULL) { 5721 path = device_get_path(dev, locator); 5722 res = dev_wired_cache_add(dcp, locator, path); 5723 } 5724 if (res == NULL || res->dln_path == NULL) 5725 return (false); 5726 5727 return (strcmp(res->dln_path, cp) == 0); 5728 } 5729 5730 /* 5731 * APIs to manage deprecation and obsolescence. 5732 */ 5733 static int obsolete_panic = 0; 5734 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 5735 "Panic when obsolete features are used (0 = never, 1 = if obsolete, " 5736 "2 = if deprecated)"); 5737 5738 static void 5739 gone_panic(int major, int running, const char *msg) 5740 { 5741 switch (obsolete_panic) 5742 { 5743 case 0: 5744 return; 5745 case 1: 5746 if (running < major) 5747 return; 5748 /* FALLTHROUGH */ 5749 default: 5750 panic("%s", msg); 5751 } 5752 } 5753 5754 void 5755 _gone_in(int major, const char *msg) 5756 { 5757 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5758 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5759 printf("Obsolete code will be removed soon: %s\n", msg); 5760 else 5761 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 5762 major, msg); 5763 } 5764 5765 void 5766 _gone_in_dev(device_t dev, int major, const char *msg) 5767 { 5768 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5769 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5770 device_printf(dev, 5771 "Obsolete code will be removed soon: %s\n", msg); 5772 else 5773 device_printf(dev, 5774 "Deprecated code (to be removed in FreeBSD %d): %s\n", 5775 major, msg); 5776 } 5777 5778 #ifdef DDB 5779 DB_SHOW_COMMAND(device, db_show_device) 5780 { 5781 device_t dev; 5782 5783 if (!have_addr) 5784 return; 5785 5786 dev = (device_t)addr; 5787 5788 db_printf("name: %s\n", device_get_nameunit(dev)); 5789 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 5790 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 5791 db_printf(" addr: %p\n", dev); 5792 db_printf(" parent: %p\n", dev->parent); 5793 db_printf(" softc: %p\n", dev->softc); 5794 db_printf(" ivars: %p\n", dev->ivars); 5795 } 5796 5797 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 5798 { 5799 device_t dev; 5800 5801 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5802 db_show_device((db_expr_t)dev, true, count, modif); 5803 } 5804 } 5805 #endif 5806