1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 #include "opt_random.h" 32 33 #include <sys/param.h> 34 #include <sys/conf.h> 35 #include <sys/filio.h> 36 #include <sys/lock.h> 37 #include <sys/kernel.h> 38 #include <sys/kobj.h> 39 #include <sys/limits.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/mutex.h> 43 #include <sys/poll.h> 44 #include <sys/proc.h> 45 #include <sys/condvar.h> 46 #include <sys/queue.h> 47 #include <machine/bus.h> 48 #include <sys/random.h> 49 #include <sys/rman.h> 50 #include <sys/selinfo.h> 51 #include <sys/signalvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 #include <sys/uio.h> 55 #include <sys/bus.h> 56 #include <sys/interrupt.h> 57 #include <sys/cpuset.h> 58 59 #include <net/vnet.h> 60 61 #include <machine/cpu.h> 62 #include <machine/stdarg.h> 63 64 #include <vm/uma.h> 65 66 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 67 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 68 69 /* 70 * Used to attach drivers to devclasses. 71 */ 72 typedef struct driverlink *driverlink_t; 73 struct driverlink { 74 kobj_class_t driver; 75 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 76 int pass; 77 TAILQ_ENTRY(driverlink) passlink; 78 }; 79 80 /* 81 * Forward declarations 82 */ 83 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 84 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 85 typedef TAILQ_HEAD(device_list, device) device_list_t; 86 87 struct devclass { 88 TAILQ_ENTRY(devclass) link; 89 devclass_t parent; /* parent in devclass hierarchy */ 90 driver_list_t drivers; /* bus devclasses store drivers for bus */ 91 char *name; 92 device_t *devices; /* array of devices indexed by unit */ 93 int maxunit; /* size of devices array */ 94 int flags; 95 #define DC_HAS_CHILDREN 1 96 97 struct sysctl_ctx_list sysctl_ctx; 98 struct sysctl_oid *sysctl_tree; 99 }; 100 101 /** 102 * @brief Implementation of device. 103 */ 104 struct device { 105 /* 106 * A device is a kernel object. The first field must be the 107 * current ops table for the object. 108 */ 109 KOBJ_FIELDS; 110 111 /* 112 * Device hierarchy. 113 */ 114 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 115 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 116 device_t parent; /**< parent of this device */ 117 device_list_t children; /**< list of child devices */ 118 119 /* 120 * Details of this device. 121 */ 122 driver_t *driver; /**< current driver */ 123 devclass_t devclass; /**< current device class */ 124 int unit; /**< current unit number */ 125 char* nameunit; /**< name+unit e.g. foodev0 */ 126 char* desc; /**< driver specific description */ 127 int busy; /**< count of calls to device_busy() */ 128 device_state_t state; /**< current device state */ 129 uint32_t devflags; /**< api level flags for device_get_flags() */ 130 u_int flags; /**< internal device flags */ 131 #define DF_ENABLED 0x01 /* device should be probed/attached */ 132 #define DF_FIXEDCLASS 0x02 /* devclass specified at create time */ 133 #define DF_WILDCARD 0x04 /* unit was originally wildcard */ 134 #define DF_DESCMALLOCED 0x08 /* description was malloced */ 135 #define DF_QUIET 0x10 /* don't print verbose attach message */ 136 #define DF_DONENOMATCH 0x20 /* don't execute DEVICE_NOMATCH again */ 137 #define DF_EXTERNALSOFTC 0x40 /* softc not allocated by us */ 138 #define DF_REBID 0x80 /* Can rebid after attach */ 139 #define DF_SUSPENDED 0x100 /* Device is suspended. */ 140 u_int order; /**< order from device_add_child_ordered() */ 141 void *ivars; /**< instance variables */ 142 void *softc; /**< current driver's variables */ 143 144 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 145 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 146 }; 147 148 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 149 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 150 151 #ifdef BUS_DEBUG 152 153 static int bus_debug = 1; 154 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 155 "Bus debug level"); 156 157 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 158 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 159 #define DRIVERNAME(d) ((d)? d->name : "no driver") 160 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 161 162 /** 163 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 164 * prevent syslog from deleting initial spaces 165 */ 166 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 167 168 static void print_device_short(device_t dev, int indent); 169 static void print_device(device_t dev, int indent); 170 void print_device_tree_short(device_t dev, int indent); 171 void print_device_tree(device_t dev, int indent); 172 static void print_driver_short(driver_t *driver, int indent); 173 static void print_driver(driver_t *driver, int indent); 174 static void print_driver_list(driver_list_t drivers, int indent); 175 static void print_devclass_short(devclass_t dc, int indent); 176 static void print_devclass(devclass_t dc, int indent); 177 void print_devclass_list_short(void); 178 void print_devclass_list(void); 179 180 #else 181 /* Make the compiler ignore the function calls */ 182 #define PDEBUG(a) /* nop */ 183 #define DEVICENAME(d) /* nop */ 184 #define DRIVERNAME(d) /* nop */ 185 #define DEVCLANAME(d) /* nop */ 186 187 #define print_device_short(d,i) /* nop */ 188 #define print_device(d,i) /* nop */ 189 #define print_device_tree_short(d,i) /* nop */ 190 #define print_device_tree(d,i) /* nop */ 191 #define print_driver_short(d,i) /* nop */ 192 #define print_driver(d,i) /* nop */ 193 #define print_driver_list(d,i) /* nop */ 194 #define print_devclass_short(d,i) /* nop */ 195 #define print_devclass(d,i) /* nop */ 196 #define print_devclass_list_short() /* nop */ 197 #define print_devclass_list() /* nop */ 198 #endif 199 200 /* 201 * dev sysctl tree 202 */ 203 204 enum { 205 DEVCLASS_SYSCTL_PARENT, 206 }; 207 208 static int 209 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 210 { 211 devclass_t dc = (devclass_t)arg1; 212 const char *value; 213 214 switch (arg2) { 215 case DEVCLASS_SYSCTL_PARENT: 216 value = dc->parent ? dc->parent->name : ""; 217 break; 218 default: 219 return (EINVAL); 220 } 221 return (SYSCTL_OUT(req, value, strlen(value))); 222 } 223 224 static void 225 devclass_sysctl_init(devclass_t dc) 226 { 227 228 if (dc->sysctl_tree != NULL) 229 return; 230 sysctl_ctx_init(&dc->sysctl_ctx); 231 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 232 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 233 CTLFLAG_RD, NULL, ""); 234 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 235 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 236 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 237 "parent class"); 238 } 239 240 enum { 241 DEVICE_SYSCTL_DESC, 242 DEVICE_SYSCTL_DRIVER, 243 DEVICE_SYSCTL_LOCATION, 244 DEVICE_SYSCTL_PNPINFO, 245 DEVICE_SYSCTL_PARENT, 246 }; 247 248 static int 249 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 250 { 251 device_t dev = (device_t)arg1; 252 const char *value; 253 char *buf; 254 int error; 255 256 buf = NULL; 257 switch (arg2) { 258 case DEVICE_SYSCTL_DESC: 259 value = dev->desc ? dev->desc : ""; 260 break; 261 case DEVICE_SYSCTL_DRIVER: 262 value = dev->driver ? dev->driver->name : ""; 263 break; 264 case DEVICE_SYSCTL_LOCATION: 265 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 266 bus_child_location_str(dev, buf, 1024); 267 break; 268 case DEVICE_SYSCTL_PNPINFO: 269 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 270 bus_child_pnpinfo_str(dev, buf, 1024); 271 break; 272 case DEVICE_SYSCTL_PARENT: 273 value = dev->parent ? dev->parent->nameunit : ""; 274 break; 275 default: 276 return (EINVAL); 277 } 278 error = SYSCTL_OUT(req, value, strlen(value)); 279 if (buf != NULL) 280 free(buf, M_BUS); 281 return (error); 282 } 283 284 static void 285 device_sysctl_init(device_t dev) 286 { 287 devclass_t dc = dev->devclass; 288 289 if (dev->sysctl_tree != NULL) 290 return; 291 devclass_sysctl_init(dc); 292 sysctl_ctx_init(&dev->sysctl_ctx); 293 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 294 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 295 dev->nameunit + strlen(dc->name), 296 CTLFLAG_RD, NULL, ""); 297 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 298 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 299 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 300 "device description"); 301 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 302 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 303 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 304 "device driver name"); 305 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 306 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 307 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 308 "device location relative to parent"); 309 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 310 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 311 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 312 "device identification"); 313 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 314 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 315 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 316 "parent device"); 317 } 318 319 static void 320 device_sysctl_update(device_t dev) 321 { 322 devclass_t dc = dev->devclass; 323 324 if (dev->sysctl_tree == NULL) 325 return; 326 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 327 } 328 329 static void 330 device_sysctl_fini(device_t dev) 331 { 332 if (dev->sysctl_tree == NULL) 333 return; 334 sysctl_ctx_free(&dev->sysctl_ctx); 335 dev->sysctl_tree = NULL; 336 } 337 338 /* 339 * /dev/devctl implementation 340 */ 341 342 /* 343 * This design allows only one reader for /dev/devctl. This is not desirable 344 * in the long run, but will get a lot of hair out of this implementation. 345 * Maybe we should make this device a clonable device. 346 * 347 * Also note: we specifically do not attach a device to the device_t tree 348 * to avoid potential chicken and egg problems. One could argue that all 349 * of this belongs to the root node. One could also further argue that the 350 * sysctl interface that we have not might more properly be an ioctl 351 * interface, but at this stage of the game, I'm not inclined to rock that 352 * boat. 353 * 354 * I'm also not sure that the SIGIO support is done correctly or not, as 355 * I copied it from a driver that had SIGIO support that likely hasn't been 356 * tested since 3.4 or 2.2.8! 357 */ 358 359 /* Deprecated way to adjust queue length */ 360 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 361 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN | 362 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I", 363 "devctl disable -- deprecated"); 364 365 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 366 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 367 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 368 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 369 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 370 371 static d_open_t devopen; 372 static d_close_t devclose; 373 static d_read_t devread; 374 static d_ioctl_t devioctl; 375 static d_poll_t devpoll; 376 static d_kqfilter_t devkqfilter; 377 378 static struct cdevsw dev_cdevsw = { 379 .d_version = D_VERSION, 380 .d_open = devopen, 381 .d_close = devclose, 382 .d_read = devread, 383 .d_ioctl = devioctl, 384 .d_poll = devpoll, 385 .d_kqfilter = devkqfilter, 386 .d_name = "devctl", 387 }; 388 389 struct dev_event_info 390 { 391 char *dei_data; 392 TAILQ_ENTRY(dev_event_info) dei_link; 393 }; 394 395 TAILQ_HEAD(devq, dev_event_info); 396 397 static struct dev_softc 398 { 399 int inuse; 400 int nonblock; 401 int queued; 402 int async; 403 struct mtx mtx; 404 struct cv cv; 405 struct selinfo sel; 406 struct devq devq; 407 struct sigio *sigio; 408 } devsoftc; 409 410 static void filt_devctl_detach(struct knote *kn); 411 static int filt_devctl_read(struct knote *kn, long hint); 412 413 struct filterops devctl_rfiltops = { 414 .f_isfd = 1, 415 .f_detach = filt_devctl_detach, 416 .f_event = filt_devctl_read, 417 }; 418 419 static struct cdev *devctl_dev; 420 421 static void 422 devinit(void) 423 { 424 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 425 UID_ROOT, GID_WHEEL, 0600, "devctl"); 426 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 427 cv_init(&devsoftc.cv, "dev cv"); 428 TAILQ_INIT(&devsoftc.devq); 429 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 430 } 431 432 static int 433 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 434 { 435 436 mtx_lock(&devsoftc.mtx); 437 if (devsoftc.inuse) { 438 mtx_unlock(&devsoftc.mtx); 439 return (EBUSY); 440 } 441 /* move to init */ 442 devsoftc.inuse = 1; 443 mtx_unlock(&devsoftc.mtx); 444 return (0); 445 } 446 447 static int 448 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 449 { 450 451 mtx_lock(&devsoftc.mtx); 452 devsoftc.inuse = 0; 453 devsoftc.nonblock = 0; 454 devsoftc.async = 0; 455 cv_broadcast(&devsoftc.cv); 456 funsetown(&devsoftc.sigio); 457 mtx_unlock(&devsoftc.mtx); 458 return (0); 459 } 460 461 /* 462 * The read channel for this device is used to report changes to 463 * userland in realtime. We are required to free the data as well as 464 * the n1 object because we allocate them separately. Also note that 465 * we return one record at a time. If you try to read this device a 466 * character at a time, you will lose the rest of the data. Listening 467 * programs are expected to cope. 468 */ 469 static int 470 devread(struct cdev *dev, struct uio *uio, int ioflag) 471 { 472 struct dev_event_info *n1; 473 int rv; 474 475 mtx_lock(&devsoftc.mtx); 476 while (TAILQ_EMPTY(&devsoftc.devq)) { 477 if (devsoftc.nonblock) { 478 mtx_unlock(&devsoftc.mtx); 479 return (EAGAIN); 480 } 481 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 482 if (rv) { 483 /* 484 * Need to translate ERESTART to EINTR here? -- jake 485 */ 486 mtx_unlock(&devsoftc.mtx); 487 return (rv); 488 } 489 } 490 n1 = TAILQ_FIRST(&devsoftc.devq); 491 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 492 devsoftc.queued--; 493 mtx_unlock(&devsoftc.mtx); 494 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 495 free(n1->dei_data, M_BUS); 496 free(n1, M_BUS); 497 return (rv); 498 } 499 500 static int 501 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 502 { 503 switch (cmd) { 504 505 case FIONBIO: 506 if (*(int*)data) 507 devsoftc.nonblock = 1; 508 else 509 devsoftc.nonblock = 0; 510 return (0); 511 case FIOASYNC: 512 if (*(int*)data) 513 devsoftc.async = 1; 514 else 515 devsoftc.async = 0; 516 return (0); 517 case FIOSETOWN: 518 return fsetown(*(int *)data, &devsoftc.sigio); 519 case FIOGETOWN: 520 *(int *)data = fgetown(&devsoftc.sigio); 521 return (0); 522 523 /* (un)Support for other fcntl() calls. */ 524 case FIOCLEX: 525 case FIONCLEX: 526 case FIONREAD: 527 default: 528 break; 529 } 530 return (ENOTTY); 531 } 532 533 static int 534 devpoll(struct cdev *dev, int events, struct thread *td) 535 { 536 int revents = 0; 537 538 mtx_lock(&devsoftc.mtx); 539 if (events & (POLLIN | POLLRDNORM)) { 540 if (!TAILQ_EMPTY(&devsoftc.devq)) 541 revents = events & (POLLIN | POLLRDNORM); 542 else 543 selrecord(td, &devsoftc.sel); 544 } 545 mtx_unlock(&devsoftc.mtx); 546 547 return (revents); 548 } 549 550 static int 551 devkqfilter(struct cdev *dev, struct knote *kn) 552 { 553 int error; 554 555 if (kn->kn_filter == EVFILT_READ) { 556 kn->kn_fop = &devctl_rfiltops; 557 knlist_add(&devsoftc.sel.si_note, kn, 0); 558 error = 0; 559 } else 560 error = EINVAL; 561 return (error); 562 } 563 564 static void 565 filt_devctl_detach(struct knote *kn) 566 { 567 568 knlist_remove(&devsoftc.sel.si_note, kn, 0); 569 } 570 571 static int 572 filt_devctl_read(struct knote *kn, long hint) 573 { 574 kn->kn_data = devsoftc.queued; 575 return (kn->kn_data != 0); 576 } 577 578 /** 579 * @brief Return whether the userland process is running 580 */ 581 boolean_t 582 devctl_process_running(void) 583 { 584 return (devsoftc.inuse == 1); 585 } 586 587 /** 588 * @brief Queue data to be read from the devctl device 589 * 590 * Generic interface to queue data to the devctl device. It is 591 * assumed that @p data is properly formatted. It is further assumed 592 * that @p data is allocated using the M_BUS malloc type. 593 */ 594 void 595 devctl_queue_data_f(char *data, int flags) 596 { 597 struct dev_event_info *n1 = NULL, *n2 = NULL; 598 599 if (strlen(data) == 0) 600 goto out; 601 if (devctl_queue_length == 0) 602 goto out; 603 n1 = malloc(sizeof(*n1), M_BUS, flags); 604 if (n1 == NULL) 605 goto out; 606 n1->dei_data = data; 607 mtx_lock(&devsoftc.mtx); 608 if (devctl_queue_length == 0) { 609 mtx_unlock(&devsoftc.mtx); 610 free(n1->dei_data, M_BUS); 611 free(n1, M_BUS); 612 return; 613 } 614 /* Leave at least one spot in the queue... */ 615 while (devsoftc.queued > devctl_queue_length - 1) { 616 n2 = TAILQ_FIRST(&devsoftc.devq); 617 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 618 free(n2->dei_data, M_BUS); 619 free(n2, M_BUS); 620 devsoftc.queued--; 621 } 622 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 623 devsoftc.queued++; 624 cv_broadcast(&devsoftc.cv); 625 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 626 mtx_unlock(&devsoftc.mtx); 627 selwakeup(&devsoftc.sel); 628 if (devsoftc.async && devsoftc.sigio != NULL) 629 pgsigio(&devsoftc.sigio, SIGIO, 0); 630 return; 631 out: 632 /* 633 * We have to free data on all error paths since the caller 634 * assumes it will be free'd when this item is dequeued. 635 */ 636 free(data, M_BUS); 637 return; 638 } 639 640 void 641 devctl_queue_data(char *data) 642 { 643 644 devctl_queue_data_f(data, M_NOWAIT); 645 } 646 647 /** 648 * @brief Send a 'notification' to userland, using standard ways 649 */ 650 void 651 devctl_notify_f(const char *system, const char *subsystem, const char *type, 652 const char *data, int flags) 653 { 654 int len = 0; 655 char *msg; 656 657 if (system == NULL) 658 return; /* BOGUS! Must specify system. */ 659 if (subsystem == NULL) 660 return; /* BOGUS! Must specify subsystem. */ 661 if (type == NULL) 662 return; /* BOGUS! Must specify type. */ 663 len += strlen(" system=") + strlen(system); 664 len += strlen(" subsystem=") + strlen(subsystem); 665 len += strlen(" type=") + strlen(type); 666 /* add in the data message plus newline. */ 667 if (data != NULL) 668 len += strlen(data); 669 len += 3; /* '!', '\n', and NUL */ 670 msg = malloc(len, M_BUS, flags); 671 if (msg == NULL) 672 return; /* Drop it on the floor */ 673 if (data != NULL) 674 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 675 system, subsystem, type, data); 676 else 677 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 678 system, subsystem, type); 679 devctl_queue_data_f(msg, flags); 680 } 681 682 void 683 devctl_notify(const char *system, const char *subsystem, const char *type, 684 const char *data) 685 { 686 687 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 688 } 689 690 /* 691 * Common routine that tries to make sending messages as easy as possible. 692 * We allocate memory for the data, copy strings into that, but do not 693 * free it unless there's an error. The dequeue part of the driver should 694 * free the data. We don't send data when the device is disabled. We do 695 * send data, even when we have no listeners, because we wish to avoid 696 * races relating to startup and restart of listening applications. 697 * 698 * devaddq is designed to string together the type of event, with the 699 * object of that event, plus the plug and play info and location info 700 * for that event. This is likely most useful for devices, but less 701 * useful for other consumers of this interface. Those should use 702 * the devctl_queue_data() interface instead. 703 */ 704 static void 705 devaddq(const char *type, const char *what, device_t dev) 706 { 707 char *data = NULL; 708 char *loc = NULL; 709 char *pnp = NULL; 710 const char *parstr; 711 712 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 713 return; 714 data = malloc(1024, M_BUS, M_NOWAIT); 715 if (data == NULL) 716 goto bad; 717 718 /* get the bus specific location of this device */ 719 loc = malloc(1024, M_BUS, M_NOWAIT); 720 if (loc == NULL) 721 goto bad; 722 *loc = '\0'; 723 bus_child_location_str(dev, loc, 1024); 724 725 /* Get the bus specific pnp info of this device */ 726 pnp = malloc(1024, M_BUS, M_NOWAIT); 727 if (pnp == NULL) 728 goto bad; 729 *pnp = '\0'; 730 bus_child_pnpinfo_str(dev, pnp, 1024); 731 732 /* Get the parent of this device, or / if high enough in the tree. */ 733 if (device_get_parent(dev) == NULL) 734 parstr = "."; /* Or '/' ? */ 735 else 736 parstr = device_get_nameunit(device_get_parent(dev)); 737 /* String it all together. */ 738 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 739 parstr); 740 free(loc, M_BUS); 741 free(pnp, M_BUS); 742 devctl_queue_data(data); 743 return; 744 bad: 745 free(pnp, M_BUS); 746 free(loc, M_BUS); 747 free(data, M_BUS); 748 return; 749 } 750 751 /* 752 * A device was added to the tree. We are called just after it successfully 753 * attaches (that is, probe and attach success for this device). No call 754 * is made if a device is merely parented into the tree. See devnomatch 755 * if probe fails. If attach fails, no notification is sent (but maybe 756 * we should have a different message for this). 757 */ 758 static void 759 devadded(device_t dev) 760 { 761 devaddq("+", device_get_nameunit(dev), dev); 762 } 763 764 /* 765 * A device was removed from the tree. We are called just before this 766 * happens. 767 */ 768 static void 769 devremoved(device_t dev) 770 { 771 devaddq("-", device_get_nameunit(dev), dev); 772 } 773 774 /* 775 * Called when there's no match for this device. This is only called 776 * the first time that no match happens, so we don't keep getting this 777 * message. Should that prove to be undesirable, we can change it. 778 * This is called when all drivers that can attach to a given bus 779 * decline to accept this device. Other errors may not be detected. 780 */ 781 static void 782 devnomatch(device_t dev) 783 { 784 devaddq("?", "", dev); 785 } 786 787 static int 788 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 789 { 790 struct dev_event_info *n1; 791 int dis, error; 792 793 dis = (devctl_queue_length == 0); 794 error = sysctl_handle_int(oidp, &dis, 0, req); 795 if (error || !req->newptr) 796 return (error); 797 if (mtx_initialized(&devsoftc.mtx)) 798 mtx_lock(&devsoftc.mtx); 799 if (dis) { 800 while (!TAILQ_EMPTY(&devsoftc.devq)) { 801 n1 = TAILQ_FIRST(&devsoftc.devq); 802 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 803 free(n1->dei_data, M_BUS); 804 free(n1, M_BUS); 805 } 806 devsoftc.queued = 0; 807 devctl_queue_length = 0; 808 } else { 809 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 810 } 811 if (mtx_initialized(&devsoftc.mtx)) 812 mtx_unlock(&devsoftc.mtx); 813 return (0); 814 } 815 816 static int 817 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 818 { 819 struct dev_event_info *n1; 820 int q, error; 821 822 q = devctl_queue_length; 823 error = sysctl_handle_int(oidp, &q, 0, req); 824 if (error || !req->newptr) 825 return (error); 826 if (q < 0) 827 return (EINVAL); 828 if (mtx_initialized(&devsoftc.mtx)) 829 mtx_lock(&devsoftc.mtx); 830 devctl_queue_length = q; 831 while (devsoftc.queued > devctl_queue_length) { 832 n1 = TAILQ_FIRST(&devsoftc.devq); 833 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 834 free(n1->dei_data, M_BUS); 835 free(n1, M_BUS); 836 devsoftc.queued--; 837 } 838 if (mtx_initialized(&devsoftc.mtx)) 839 mtx_unlock(&devsoftc.mtx); 840 return (0); 841 } 842 843 /* End of /dev/devctl code */ 844 845 static TAILQ_HEAD(,device) bus_data_devices; 846 static int bus_data_generation = 1; 847 848 static kobj_method_t null_methods[] = { 849 KOBJMETHOD_END 850 }; 851 852 DEFINE_CLASS(null, null_methods, 0); 853 854 /* 855 * Bus pass implementation 856 */ 857 858 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 859 int bus_current_pass = BUS_PASS_ROOT; 860 861 /** 862 * @internal 863 * @brief Register the pass level of a new driver attachment 864 * 865 * Register a new driver attachment's pass level. If no driver 866 * attachment with the same pass level has been added, then @p new 867 * will be added to the global passes list. 868 * 869 * @param new the new driver attachment 870 */ 871 static void 872 driver_register_pass(struct driverlink *new) 873 { 874 struct driverlink *dl; 875 876 /* We only consider pass numbers during boot. */ 877 if (bus_current_pass == BUS_PASS_DEFAULT) 878 return; 879 880 /* 881 * Walk the passes list. If we already know about this pass 882 * then there is nothing to do. If we don't, then insert this 883 * driver link into the list. 884 */ 885 TAILQ_FOREACH(dl, &passes, passlink) { 886 if (dl->pass < new->pass) 887 continue; 888 if (dl->pass == new->pass) 889 return; 890 TAILQ_INSERT_BEFORE(dl, new, passlink); 891 return; 892 } 893 TAILQ_INSERT_TAIL(&passes, new, passlink); 894 } 895 896 /** 897 * @brief Raise the current bus pass 898 * 899 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 900 * method on the root bus to kick off a new device tree scan for each 901 * new pass level that has at least one driver. 902 */ 903 void 904 bus_set_pass(int pass) 905 { 906 struct driverlink *dl; 907 908 if (bus_current_pass > pass) 909 panic("Attempt to lower bus pass level"); 910 911 TAILQ_FOREACH(dl, &passes, passlink) { 912 /* Skip pass values below the current pass level. */ 913 if (dl->pass <= bus_current_pass) 914 continue; 915 916 /* 917 * Bail once we hit a driver with a pass level that is 918 * too high. 919 */ 920 if (dl->pass > pass) 921 break; 922 923 /* 924 * Raise the pass level to the next level and rescan 925 * the tree. 926 */ 927 bus_current_pass = dl->pass; 928 BUS_NEW_PASS(root_bus); 929 } 930 931 /* 932 * If there isn't a driver registered for the requested pass, 933 * then bus_current_pass might still be less than 'pass'. Set 934 * it to 'pass' in that case. 935 */ 936 if (bus_current_pass < pass) 937 bus_current_pass = pass; 938 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 939 } 940 941 /* 942 * Devclass implementation 943 */ 944 945 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 946 947 /** 948 * @internal 949 * @brief Find or create a device class 950 * 951 * If a device class with the name @p classname exists, return it, 952 * otherwise if @p create is non-zero create and return a new device 953 * class. 954 * 955 * If @p parentname is non-NULL, the parent of the devclass is set to 956 * the devclass of that name. 957 * 958 * @param classname the devclass name to find or create 959 * @param parentname the parent devclass name or @c NULL 960 * @param create non-zero to create a devclass 961 */ 962 static devclass_t 963 devclass_find_internal(const char *classname, const char *parentname, 964 int create) 965 { 966 devclass_t dc; 967 968 PDEBUG(("looking for %s", classname)); 969 if (!classname) 970 return (NULL); 971 972 TAILQ_FOREACH(dc, &devclasses, link) { 973 if (!strcmp(dc->name, classname)) 974 break; 975 } 976 977 if (create && !dc) { 978 PDEBUG(("creating %s", classname)); 979 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 980 M_BUS, M_NOWAIT | M_ZERO); 981 if (!dc) 982 return (NULL); 983 dc->parent = NULL; 984 dc->name = (char*) (dc + 1); 985 strcpy(dc->name, classname); 986 TAILQ_INIT(&dc->drivers); 987 TAILQ_INSERT_TAIL(&devclasses, dc, link); 988 989 bus_data_generation_update(); 990 } 991 992 /* 993 * If a parent class is specified, then set that as our parent so 994 * that this devclass will support drivers for the parent class as 995 * well. If the parent class has the same name don't do this though 996 * as it creates a cycle that can trigger an infinite loop in 997 * device_probe_child() if a device exists for which there is no 998 * suitable driver. 999 */ 1000 if (parentname && dc && !dc->parent && 1001 strcmp(classname, parentname) != 0) { 1002 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1003 dc->parent->flags |= DC_HAS_CHILDREN; 1004 } 1005 1006 return (dc); 1007 } 1008 1009 /** 1010 * @brief Create a device class 1011 * 1012 * If a device class with the name @p classname exists, return it, 1013 * otherwise create and return a new device class. 1014 * 1015 * @param classname the devclass name to find or create 1016 */ 1017 devclass_t 1018 devclass_create(const char *classname) 1019 { 1020 return (devclass_find_internal(classname, NULL, TRUE)); 1021 } 1022 1023 /** 1024 * @brief Find a device class 1025 * 1026 * If a device class with the name @p classname exists, return it, 1027 * otherwise return @c NULL. 1028 * 1029 * @param classname the devclass name to find 1030 */ 1031 devclass_t 1032 devclass_find(const char *classname) 1033 { 1034 return (devclass_find_internal(classname, NULL, FALSE)); 1035 } 1036 1037 /** 1038 * @brief Register that a device driver has been added to a devclass 1039 * 1040 * Register that a device driver has been added to a devclass. This 1041 * is called by devclass_add_driver to accomplish the recursive 1042 * notification of all the children classes of dc, as well as dc. 1043 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1044 * the devclass. 1045 * 1046 * We do a full search here of the devclass list at each iteration 1047 * level to save storing children-lists in the devclass structure. If 1048 * we ever move beyond a few dozen devices doing this, we may need to 1049 * reevaluate... 1050 * 1051 * @param dc the devclass to edit 1052 * @param driver the driver that was just added 1053 */ 1054 static void 1055 devclass_driver_added(devclass_t dc, driver_t *driver) 1056 { 1057 devclass_t parent; 1058 int i; 1059 1060 /* 1061 * Call BUS_DRIVER_ADDED for any existing busses in this class. 1062 */ 1063 for (i = 0; i < dc->maxunit; i++) 1064 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1065 BUS_DRIVER_ADDED(dc->devices[i], driver); 1066 1067 /* 1068 * Walk through the children classes. Since we only keep a 1069 * single parent pointer around, we walk the entire list of 1070 * devclasses looking for children. We set the 1071 * DC_HAS_CHILDREN flag when a child devclass is created on 1072 * the parent, so we only walk the list for those devclasses 1073 * that have children. 1074 */ 1075 if (!(dc->flags & DC_HAS_CHILDREN)) 1076 return; 1077 parent = dc; 1078 TAILQ_FOREACH(dc, &devclasses, link) { 1079 if (dc->parent == parent) 1080 devclass_driver_added(dc, driver); 1081 } 1082 } 1083 1084 /** 1085 * @brief Add a device driver to a device class 1086 * 1087 * Add a device driver to a devclass. This is normally called 1088 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1089 * all devices in the devclass will be called to allow them to attempt 1090 * to re-probe any unmatched children. 1091 * 1092 * @param dc the devclass to edit 1093 * @param driver the driver to register 1094 */ 1095 int 1096 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1097 { 1098 driverlink_t dl; 1099 const char *parentname; 1100 1101 PDEBUG(("%s", DRIVERNAME(driver))); 1102 1103 /* Don't allow invalid pass values. */ 1104 if (pass <= BUS_PASS_ROOT) 1105 return (EINVAL); 1106 1107 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1108 if (!dl) 1109 return (ENOMEM); 1110 1111 /* 1112 * Compile the driver's methods. Also increase the reference count 1113 * so that the class doesn't get freed when the last instance 1114 * goes. This means we can safely use static methods and avoids a 1115 * double-free in devclass_delete_driver. 1116 */ 1117 kobj_class_compile((kobj_class_t) driver); 1118 1119 /* 1120 * If the driver has any base classes, make the 1121 * devclass inherit from the devclass of the driver's 1122 * first base class. This will allow the system to 1123 * search for drivers in both devclasses for children 1124 * of a device using this driver. 1125 */ 1126 if (driver->baseclasses) 1127 parentname = driver->baseclasses[0]->name; 1128 else 1129 parentname = NULL; 1130 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1131 1132 dl->driver = driver; 1133 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1134 driver->refs++; /* XXX: kobj_mtx */ 1135 dl->pass = pass; 1136 driver_register_pass(dl); 1137 1138 devclass_driver_added(dc, driver); 1139 bus_data_generation_update(); 1140 return (0); 1141 } 1142 1143 /** 1144 * @brief Register that a device driver has been deleted from a devclass 1145 * 1146 * Register that a device driver has been removed from a devclass. 1147 * This is called by devclass_delete_driver to accomplish the 1148 * recursive notification of all the children classes of busclass, as 1149 * well as busclass. Each layer will attempt to detach the driver 1150 * from any devices that are children of the bus's devclass. The function 1151 * will return an error if a device fails to detach. 1152 * 1153 * We do a full search here of the devclass list at each iteration 1154 * level to save storing children-lists in the devclass structure. If 1155 * we ever move beyond a few dozen devices doing this, we may need to 1156 * reevaluate... 1157 * 1158 * @param busclass the devclass of the parent bus 1159 * @param dc the devclass of the driver being deleted 1160 * @param driver the driver being deleted 1161 */ 1162 static int 1163 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1164 { 1165 devclass_t parent; 1166 device_t dev; 1167 int error, i; 1168 1169 /* 1170 * Disassociate from any devices. We iterate through all the 1171 * devices in the devclass of the driver and detach any which are 1172 * using the driver and which have a parent in the devclass which 1173 * we are deleting from. 1174 * 1175 * Note that since a driver can be in multiple devclasses, we 1176 * should not detach devices which are not children of devices in 1177 * the affected devclass. 1178 */ 1179 for (i = 0; i < dc->maxunit; i++) { 1180 if (dc->devices[i]) { 1181 dev = dc->devices[i]; 1182 if (dev->driver == driver && dev->parent && 1183 dev->parent->devclass == busclass) { 1184 if ((error = device_detach(dev)) != 0) 1185 return (error); 1186 BUS_PROBE_NOMATCH(dev->parent, dev); 1187 devnomatch(dev); 1188 dev->flags |= DF_DONENOMATCH; 1189 } 1190 } 1191 } 1192 1193 /* 1194 * Walk through the children classes. Since we only keep a 1195 * single parent pointer around, we walk the entire list of 1196 * devclasses looking for children. We set the 1197 * DC_HAS_CHILDREN flag when a child devclass is created on 1198 * the parent, so we only walk the list for those devclasses 1199 * that have children. 1200 */ 1201 if (!(busclass->flags & DC_HAS_CHILDREN)) 1202 return (0); 1203 parent = busclass; 1204 TAILQ_FOREACH(busclass, &devclasses, link) { 1205 if (busclass->parent == parent) { 1206 error = devclass_driver_deleted(busclass, dc, driver); 1207 if (error) 1208 return (error); 1209 } 1210 } 1211 return (0); 1212 } 1213 1214 /** 1215 * @brief Delete a device driver from a device class 1216 * 1217 * Delete a device driver from a devclass. This is normally called 1218 * automatically by DRIVER_MODULE(). 1219 * 1220 * If the driver is currently attached to any devices, 1221 * devclass_delete_driver() will first attempt to detach from each 1222 * device. If one of the detach calls fails, the driver will not be 1223 * deleted. 1224 * 1225 * @param dc the devclass to edit 1226 * @param driver the driver to unregister 1227 */ 1228 int 1229 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1230 { 1231 devclass_t dc = devclass_find(driver->name); 1232 driverlink_t dl; 1233 int error; 1234 1235 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1236 1237 if (!dc) 1238 return (0); 1239 1240 /* 1241 * Find the link structure in the bus' list of drivers. 1242 */ 1243 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1244 if (dl->driver == driver) 1245 break; 1246 } 1247 1248 if (!dl) { 1249 PDEBUG(("%s not found in %s list", driver->name, 1250 busclass->name)); 1251 return (ENOENT); 1252 } 1253 1254 error = devclass_driver_deleted(busclass, dc, driver); 1255 if (error != 0) 1256 return (error); 1257 1258 TAILQ_REMOVE(&busclass->drivers, dl, link); 1259 free(dl, M_BUS); 1260 1261 /* XXX: kobj_mtx */ 1262 driver->refs--; 1263 if (driver->refs == 0) 1264 kobj_class_free((kobj_class_t) driver); 1265 1266 bus_data_generation_update(); 1267 return (0); 1268 } 1269 1270 /** 1271 * @brief Quiesces a set of device drivers from a device class 1272 * 1273 * Quiesce a device driver from a devclass. This is normally called 1274 * automatically by DRIVER_MODULE(). 1275 * 1276 * If the driver is currently attached to any devices, 1277 * devclass_quiesece_driver() will first attempt to quiesce each 1278 * device. 1279 * 1280 * @param dc the devclass to edit 1281 * @param driver the driver to unregister 1282 */ 1283 static int 1284 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1285 { 1286 devclass_t dc = devclass_find(driver->name); 1287 driverlink_t dl; 1288 device_t dev; 1289 int i; 1290 int error; 1291 1292 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1293 1294 if (!dc) 1295 return (0); 1296 1297 /* 1298 * Find the link structure in the bus' list of drivers. 1299 */ 1300 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1301 if (dl->driver == driver) 1302 break; 1303 } 1304 1305 if (!dl) { 1306 PDEBUG(("%s not found in %s list", driver->name, 1307 busclass->name)); 1308 return (ENOENT); 1309 } 1310 1311 /* 1312 * Quiesce all devices. We iterate through all the devices in 1313 * the devclass of the driver and quiesce any which are using 1314 * the driver and which have a parent in the devclass which we 1315 * are quiescing. 1316 * 1317 * Note that since a driver can be in multiple devclasses, we 1318 * should not quiesce devices which are not children of 1319 * devices in the affected devclass. 1320 */ 1321 for (i = 0; i < dc->maxunit; i++) { 1322 if (dc->devices[i]) { 1323 dev = dc->devices[i]; 1324 if (dev->driver == driver && dev->parent && 1325 dev->parent->devclass == busclass) { 1326 if ((error = device_quiesce(dev)) != 0) 1327 return (error); 1328 } 1329 } 1330 } 1331 1332 return (0); 1333 } 1334 1335 /** 1336 * @internal 1337 */ 1338 static driverlink_t 1339 devclass_find_driver_internal(devclass_t dc, const char *classname) 1340 { 1341 driverlink_t dl; 1342 1343 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1344 1345 TAILQ_FOREACH(dl, &dc->drivers, link) { 1346 if (!strcmp(dl->driver->name, classname)) 1347 return (dl); 1348 } 1349 1350 PDEBUG(("not found")); 1351 return (NULL); 1352 } 1353 1354 /** 1355 * @brief Return the name of the devclass 1356 */ 1357 const char * 1358 devclass_get_name(devclass_t dc) 1359 { 1360 return (dc->name); 1361 } 1362 1363 /** 1364 * @brief Find a device given a unit number 1365 * 1366 * @param dc the devclass to search 1367 * @param unit the unit number to search for 1368 * 1369 * @returns the device with the given unit number or @c 1370 * NULL if there is no such device 1371 */ 1372 device_t 1373 devclass_get_device(devclass_t dc, int unit) 1374 { 1375 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1376 return (NULL); 1377 return (dc->devices[unit]); 1378 } 1379 1380 /** 1381 * @brief Find the softc field of a device given a unit number 1382 * 1383 * @param dc the devclass to search 1384 * @param unit the unit number to search for 1385 * 1386 * @returns the softc field of the device with the given 1387 * unit number or @c NULL if there is no such 1388 * device 1389 */ 1390 void * 1391 devclass_get_softc(devclass_t dc, int unit) 1392 { 1393 device_t dev; 1394 1395 dev = devclass_get_device(dc, unit); 1396 if (!dev) 1397 return (NULL); 1398 1399 return (device_get_softc(dev)); 1400 } 1401 1402 /** 1403 * @brief Get a list of devices in the devclass 1404 * 1405 * An array containing a list of all the devices in the given devclass 1406 * is allocated and returned in @p *devlistp. The number of devices 1407 * in the array is returned in @p *devcountp. The caller should free 1408 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1409 * 1410 * @param dc the devclass to examine 1411 * @param devlistp points at location for array pointer return 1412 * value 1413 * @param devcountp points at location for array size return value 1414 * 1415 * @retval 0 success 1416 * @retval ENOMEM the array allocation failed 1417 */ 1418 int 1419 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1420 { 1421 int count, i; 1422 device_t *list; 1423 1424 count = devclass_get_count(dc); 1425 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1426 if (!list) 1427 return (ENOMEM); 1428 1429 count = 0; 1430 for (i = 0; i < dc->maxunit; i++) { 1431 if (dc->devices[i]) { 1432 list[count] = dc->devices[i]; 1433 count++; 1434 } 1435 } 1436 1437 *devlistp = list; 1438 *devcountp = count; 1439 1440 return (0); 1441 } 1442 1443 /** 1444 * @brief Get a list of drivers in the devclass 1445 * 1446 * An array containing a list of pointers to all the drivers in the 1447 * given devclass is allocated and returned in @p *listp. The number 1448 * of drivers in the array is returned in @p *countp. The caller should 1449 * free the array using @c free(p, M_TEMP). 1450 * 1451 * @param dc the devclass to examine 1452 * @param listp gives location for array pointer return value 1453 * @param countp gives location for number of array elements 1454 * return value 1455 * 1456 * @retval 0 success 1457 * @retval ENOMEM the array allocation failed 1458 */ 1459 int 1460 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1461 { 1462 driverlink_t dl; 1463 driver_t **list; 1464 int count; 1465 1466 count = 0; 1467 TAILQ_FOREACH(dl, &dc->drivers, link) 1468 count++; 1469 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1470 if (list == NULL) 1471 return (ENOMEM); 1472 1473 count = 0; 1474 TAILQ_FOREACH(dl, &dc->drivers, link) { 1475 list[count] = dl->driver; 1476 count++; 1477 } 1478 *listp = list; 1479 *countp = count; 1480 1481 return (0); 1482 } 1483 1484 /** 1485 * @brief Get the number of devices in a devclass 1486 * 1487 * @param dc the devclass to examine 1488 */ 1489 int 1490 devclass_get_count(devclass_t dc) 1491 { 1492 int count, i; 1493 1494 count = 0; 1495 for (i = 0; i < dc->maxunit; i++) 1496 if (dc->devices[i]) 1497 count++; 1498 return (count); 1499 } 1500 1501 /** 1502 * @brief Get the maximum unit number used in a devclass 1503 * 1504 * Note that this is one greater than the highest currently-allocated 1505 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1506 * that not even the devclass has been allocated yet. 1507 * 1508 * @param dc the devclass to examine 1509 */ 1510 int 1511 devclass_get_maxunit(devclass_t dc) 1512 { 1513 if (dc == NULL) 1514 return (-1); 1515 return (dc->maxunit); 1516 } 1517 1518 /** 1519 * @brief Find a free unit number in a devclass 1520 * 1521 * This function searches for the first unused unit number greater 1522 * that or equal to @p unit. 1523 * 1524 * @param dc the devclass to examine 1525 * @param unit the first unit number to check 1526 */ 1527 int 1528 devclass_find_free_unit(devclass_t dc, int unit) 1529 { 1530 if (dc == NULL) 1531 return (unit); 1532 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1533 unit++; 1534 return (unit); 1535 } 1536 1537 /** 1538 * @brief Set the parent of a devclass 1539 * 1540 * The parent class is normally initialised automatically by 1541 * DRIVER_MODULE(). 1542 * 1543 * @param dc the devclass to edit 1544 * @param pdc the new parent devclass 1545 */ 1546 void 1547 devclass_set_parent(devclass_t dc, devclass_t pdc) 1548 { 1549 dc->parent = pdc; 1550 } 1551 1552 /** 1553 * @brief Get the parent of a devclass 1554 * 1555 * @param dc the devclass to examine 1556 */ 1557 devclass_t 1558 devclass_get_parent(devclass_t dc) 1559 { 1560 return (dc->parent); 1561 } 1562 1563 struct sysctl_ctx_list * 1564 devclass_get_sysctl_ctx(devclass_t dc) 1565 { 1566 return (&dc->sysctl_ctx); 1567 } 1568 1569 struct sysctl_oid * 1570 devclass_get_sysctl_tree(devclass_t dc) 1571 { 1572 return (dc->sysctl_tree); 1573 } 1574 1575 /** 1576 * @internal 1577 * @brief Allocate a unit number 1578 * 1579 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1580 * will do). The allocated unit number is returned in @p *unitp. 1581 1582 * @param dc the devclass to allocate from 1583 * @param unitp points at the location for the allocated unit 1584 * number 1585 * 1586 * @retval 0 success 1587 * @retval EEXIST the requested unit number is already allocated 1588 * @retval ENOMEM memory allocation failure 1589 */ 1590 static int 1591 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1592 { 1593 const char *s; 1594 int unit = *unitp; 1595 1596 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1597 1598 /* Ask the parent bus if it wants to wire this device. */ 1599 if (unit == -1) 1600 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1601 &unit); 1602 1603 /* If we were given a wired unit number, check for existing device */ 1604 /* XXX imp XXX */ 1605 if (unit != -1) { 1606 if (unit >= 0 && unit < dc->maxunit && 1607 dc->devices[unit] != NULL) { 1608 if (bootverbose) 1609 printf("%s: %s%d already exists; skipping it\n", 1610 dc->name, dc->name, *unitp); 1611 return (EEXIST); 1612 } 1613 } else { 1614 /* Unwired device, find the next available slot for it */ 1615 unit = 0; 1616 for (unit = 0;; unit++) { 1617 /* If there is an "at" hint for a unit then skip it. */ 1618 if (resource_string_value(dc->name, unit, "at", &s) == 1619 0) 1620 continue; 1621 1622 /* If this device slot is already in use, skip it. */ 1623 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1624 continue; 1625 1626 break; 1627 } 1628 } 1629 1630 /* 1631 * We've selected a unit beyond the length of the table, so let's 1632 * extend the table to make room for all units up to and including 1633 * this one. 1634 */ 1635 if (unit >= dc->maxunit) { 1636 device_t *newlist, *oldlist; 1637 int newsize; 1638 1639 oldlist = dc->devices; 1640 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1641 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1642 if (!newlist) 1643 return (ENOMEM); 1644 if (oldlist != NULL) 1645 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1646 bzero(newlist + dc->maxunit, 1647 sizeof(device_t) * (newsize - dc->maxunit)); 1648 dc->devices = newlist; 1649 dc->maxunit = newsize; 1650 if (oldlist != NULL) 1651 free(oldlist, M_BUS); 1652 } 1653 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1654 1655 *unitp = unit; 1656 return (0); 1657 } 1658 1659 /** 1660 * @internal 1661 * @brief Add a device to a devclass 1662 * 1663 * A unit number is allocated for the device (using the device's 1664 * preferred unit number if any) and the device is registered in the 1665 * devclass. This allows the device to be looked up by its unit 1666 * number, e.g. by decoding a dev_t minor number. 1667 * 1668 * @param dc the devclass to add to 1669 * @param dev the device to add 1670 * 1671 * @retval 0 success 1672 * @retval EEXIST the requested unit number is already allocated 1673 * @retval ENOMEM memory allocation failure 1674 */ 1675 static int 1676 devclass_add_device(devclass_t dc, device_t dev) 1677 { 1678 int buflen, error; 1679 1680 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1681 1682 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1683 if (buflen < 0) 1684 return (ENOMEM); 1685 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1686 if (!dev->nameunit) 1687 return (ENOMEM); 1688 1689 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1690 free(dev->nameunit, M_BUS); 1691 dev->nameunit = NULL; 1692 return (error); 1693 } 1694 dc->devices[dev->unit] = dev; 1695 dev->devclass = dc; 1696 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1697 1698 return (0); 1699 } 1700 1701 /** 1702 * @internal 1703 * @brief Delete a device from a devclass 1704 * 1705 * The device is removed from the devclass's device list and its unit 1706 * number is freed. 1707 1708 * @param dc the devclass to delete from 1709 * @param dev the device to delete 1710 * 1711 * @retval 0 success 1712 */ 1713 static int 1714 devclass_delete_device(devclass_t dc, device_t dev) 1715 { 1716 if (!dc || !dev) 1717 return (0); 1718 1719 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1720 1721 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1722 panic("devclass_delete_device: inconsistent device class"); 1723 dc->devices[dev->unit] = NULL; 1724 if (dev->flags & DF_WILDCARD) 1725 dev->unit = -1; 1726 dev->devclass = NULL; 1727 free(dev->nameunit, M_BUS); 1728 dev->nameunit = NULL; 1729 1730 return (0); 1731 } 1732 1733 /** 1734 * @internal 1735 * @brief Make a new device and add it as a child of @p parent 1736 * 1737 * @param parent the parent of the new device 1738 * @param name the devclass name of the new device or @c NULL 1739 * to leave the devclass unspecified 1740 * @parem unit the unit number of the new device of @c -1 to 1741 * leave the unit number unspecified 1742 * 1743 * @returns the new device 1744 */ 1745 static device_t 1746 make_device(device_t parent, const char *name, int unit) 1747 { 1748 device_t dev; 1749 devclass_t dc; 1750 1751 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1752 1753 if (name) { 1754 dc = devclass_find_internal(name, NULL, TRUE); 1755 if (!dc) { 1756 printf("make_device: can't find device class %s\n", 1757 name); 1758 return (NULL); 1759 } 1760 } else { 1761 dc = NULL; 1762 } 1763 1764 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1765 if (!dev) 1766 return (NULL); 1767 1768 dev->parent = parent; 1769 TAILQ_INIT(&dev->children); 1770 kobj_init((kobj_t) dev, &null_class); 1771 dev->driver = NULL; 1772 dev->devclass = NULL; 1773 dev->unit = unit; 1774 dev->nameunit = NULL; 1775 dev->desc = NULL; 1776 dev->busy = 0; 1777 dev->devflags = 0; 1778 dev->flags = DF_ENABLED; 1779 dev->order = 0; 1780 if (unit == -1) 1781 dev->flags |= DF_WILDCARD; 1782 if (name) { 1783 dev->flags |= DF_FIXEDCLASS; 1784 if (devclass_add_device(dc, dev)) { 1785 kobj_delete((kobj_t) dev, M_BUS); 1786 return (NULL); 1787 } 1788 } 1789 dev->ivars = NULL; 1790 dev->softc = NULL; 1791 1792 dev->state = DS_NOTPRESENT; 1793 1794 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1795 bus_data_generation_update(); 1796 1797 return (dev); 1798 } 1799 1800 /** 1801 * @internal 1802 * @brief Print a description of a device. 1803 */ 1804 static int 1805 device_print_child(device_t dev, device_t child) 1806 { 1807 int retval = 0; 1808 1809 if (device_is_alive(child)) 1810 retval += BUS_PRINT_CHILD(dev, child); 1811 else 1812 retval += device_printf(child, " not found\n"); 1813 1814 return (retval); 1815 } 1816 1817 /** 1818 * @brief Create a new device 1819 * 1820 * This creates a new device and adds it as a child of an existing 1821 * parent device. The new device will be added after the last existing 1822 * child with order zero. 1823 * 1824 * @param dev the device which will be the parent of the 1825 * new child device 1826 * @param name devclass name for new device or @c NULL if not 1827 * specified 1828 * @param unit unit number for new device or @c -1 if not 1829 * specified 1830 * 1831 * @returns the new device 1832 */ 1833 device_t 1834 device_add_child(device_t dev, const char *name, int unit) 1835 { 1836 return (device_add_child_ordered(dev, 0, name, unit)); 1837 } 1838 1839 /** 1840 * @brief Create a new device 1841 * 1842 * This creates a new device and adds it as a child of an existing 1843 * parent device. The new device will be added after the last existing 1844 * child with the same order. 1845 * 1846 * @param dev the device which will be the parent of the 1847 * new child device 1848 * @param order a value which is used to partially sort the 1849 * children of @p dev - devices created using 1850 * lower values of @p order appear first in @p 1851 * dev's list of children 1852 * @param name devclass name for new device or @c NULL if not 1853 * specified 1854 * @param unit unit number for new device or @c -1 if not 1855 * specified 1856 * 1857 * @returns the new device 1858 */ 1859 device_t 1860 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1861 { 1862 device_t child; 1863 device_t place; 1864 1865 PDEBUG(("%s at %s with order %u as unit %d", 1866 name, DEVICENAME(dev), order, unit)); 1867 KASSERT(name != NULL || unit == -1, 1868 ("child device with wildcard name and specific unit number")); 1869 1870 child = make_device(dev, name, unit); 1871 if (child == NULL) 1872 return (child); 1873 child->order = order; 1874 1875 TAILQ_FOREACH(place, &dev->children, link) { 1876 if (place->order > order) 1877 break; 1878 } 1879 1880 if (place) { 1881 /* 1882 * The device 'place' is the first device whose order is 1883 * greater than the new child. 1884 */ 1885 TAILQ_INSERT_BEFORE(place, child, link); 1886 } else { 1887 /* 1888 * The new child's order is greater or equal to the order of 1889 * any existing device. Add the child to the tail of the list. 1890 */ 1891 TAILQ_INSERT_TAIL(&dev->children, child, link); 1892 } 1893 1894 bus_data_generation_update(); 1895 return (child); 1896 } 1897 1898 /** 1899 * @brief Delete a device 1900 * 1901 * This function deletes a device along with all of its children. If 1902 * the device currently has a driver attached to it, the device is 1903 * detached first using device_detach(). 1904 * 1905 * @param dev the parent device 1906 * @param child the device to delete 1907 * 1908 * @retval 0 success 1909 * @retval non-zero a unit error code describing the error 1910 */ 1911 int 1912 device_delete_child(device_t dev, device_t child) 1913 { 1914 int error; 1915 device_t grandchild; 1916 1917 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1918 1919 /* remove children first */ 1920 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1921 error = device_delete_child(child, grandchild); 1922 if (error) 1923 return (error); 1924 } 1925 1926 if ((error = device_detach(child)) != 0) 1927 return (error); 1928 if (child->devclass) 1929 devclass_delete_device(child->devclass, child); 1930 if (child->parent) 1931 BUS_CHILD_DELETED(dev, child); 1932 TAILQ_REMOVE(&dev->children, child, link); 1933 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1934 kobj_delete((kobj_t) child, M_BUS); 1935 1936 bus_data_generation_update(); 1937 return (0); 1938 } 1939 1940 /** 1941 * @brief Delete all children devices of the given device, if any. 1942 * 1943 * This function deletes all children devices of the given device, if 1944 * any, using the device_delete_child() function for each device it 1945 * finds. If a child device cannot be deleted, this function will 1946 * return an error code. 1947 * 1948 * @param dev the parent device 1949 * 1950 * @retval 0 success 1951 * @retval non-zero a device would not detach 1952 */ 1953 int 1954 device_delete_children(device_t dev) 1955 { 1956 device_t child; 1957 int error; 1958 1959 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1960 1961 error = 0; 1962 1963 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1964 error = device_delete_child(dev, child); 1965 if (error) { 1966 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1967 break; 1968 } 1969 } 1970 return (error); 1971 } 1972 1973 /** 1974 * @brief Find a device given a unit number 1975 * 1976 * This is similar to devclass_get_devices() but only searches for 1977 * devices which have @p dev as a parent. 1978 * 1979 * @param dev the parent device to search 1980 * @param unit the unit number to search for. If the unit is -1, 1981 * return the first child of @p dev which has name 1982 * @p classname (that is, the one with the lowest unit.) 1983 * 1984 * @returns the device with the given unit number or @c 1985 * NULL if there is no such device 1986 */ 1987 device_t 1988 device_find_child(device_t dev, const char *classname, int unit) 1989 { 1990 devclass_t dc; 1991 device_t child; 1992 1993 dc = devclass_find(classname); 1994 if (!dc) 1995 return (NULL); 1996 1997 if (unit != -1) { 1998 child = devclass_get_device(dc, unit); 1999 if (child && child->parent == dev) 2000 return (child); 2001 } else { 2002 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2003 child = devclass_get_device(dc, unit); 2004 if (child && child->parent == dev) 2005 return (child); 2006 } 2007 } 2008 return (NULL); 2009 } 2010 2011 /** 2012 * @internal 2013 */ 2014 static driverlink_t 2015 first_matching_driver(devclass_t dc, device_t dev) 2016 { 2017 if (dev->devclass) 2018 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2019 return (TAILQ_FIRST(&dc->drivers)); 2020 } 2021 2022 /** 2023 * @internal 2024 */ 2025 static driverlink_t 2026 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2027 { 2028 if (dev->devclass) { 2029 driverlink_t dl; 2030 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2031 if (!strcmp(dev->devclass->name, dl->driver->name)) 2032 return (dl); 2033 return (NULL); 2034 } 2035 return (TAILQ_NEXT(last, link)); 2036 } 2037 2038 /** 2039 * @internal 2040 */ 2041 int 2042 device_probe_child(device_t dev, device_t child) 2043 { 2044 devclass_t dc; 2045 driverlink_t best = NULL; 2046 driverlink_t dl; 2047 int result, pri = 0; 2048 int hasclass = (child->devclass != NULL); 2049 2050 GIANT_REQUIRED; 2051 2052 dc = dev->devclass; 2053 if (!dc) 2054 panic("device_probe_child: parent device has no devclass"); 2055 2056 /* 2057 * If the state is already probed, then return. However, don't 2058 * return if we can rebid this object. 2059 */ 2060 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2061 return (0); 2062 2063 for (; dc; dc = dc->parent) { 2064 for (dl = first_matching_driver(dc, child); 2065 dl; 2066 dl = next_matching_driver(dc, child, dl)) { 2067 /* If this driver's pass is too high, then ignore it. */ 2068 if (dl->pass > bus_current_pass) 2069 continue; 2070 2071 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2072 result = device_set_driver(child, dl->driver); 2073 if (result == ENOMEM) 2074 return (result); 2075 else if (result != 0) 2076 continue; 2077 if (!hasclass) { 2078 if (device_set_devclass(child, 2079 dl->driver->name) != 0) { 2080 char const * devname = 2081 device_get_name(child); 2082 if (devname == NULL) 2083 devname = "(unknown)"; 2084 printf("driver bug: Unable to set " 2085 "devclass (class: %s " 2086 "devname: %s)\n", 2087 dl->driver->name, 2088 devname); 2089 (void)device_set_driver(child, NULL); 2090 continue; 2091 } 2092 } 2093 2094 /* Fetch any flags for the device before probing. */ 2095 resource_int_value(dl->driver->name, child->unit, 2096 "flags", &child->devflags); 2097 2098 result = DEVICE_PROBE(child); 2099 2100 /* Reset flags and devclass before the next probe. */ 2101 child->devflags = 0; 2102 if (!hasclass) 2103 (void)device_set_devclass(child, NULL); 2104 2105 /* 2106 * If the driver returns SUCCESS, there can be 2107 * no higher match for this device. 2108 */ 2109 if (result == 0) { 2110 best = dl; 2111 pri = 0; 2112 break; 2113 } 2114 2115 /* 2116 * The driver returned an error so it 2117 * certainly doesn't match. 2118 */ 2119 if (result > 0) { 2120 (void)device_set_driver(child, NULL); 2121 continue; 2122 } 2123 2124 /* 2125 * A priority lower than SUCCESS, remember the 2126 * best matching driver. Initialise the value 2127 * of pri for the first match. 2128 */ 2129 if (best == NULL || result > pri) { 2130 /* 2131 * Probes that return BUS_PROBE_NOWILDCARD 2132 * or lower only match on devices whose 2133 * driver was explicitly specified. 2134 */ 2135 if (result <= BUS_PROBE_NOWILDCARD && 2136 !(child->flags & DF_FIXEDCLASS)) 2137 continue; 2138 best = dl; 2139 pri = result; 2140 continue; 2141 } 2142 } 2143 /* 2144 * If we have an unambiguous match in this devclass, 2145 * don't look in the parent. 2146 */ 2147 if (best && pri == 0) 2148 break; 2149 } 2150 2151 /* 2152 * If we found a driver, change state and initialise the devclass. 2153 */ 2154 /* XXX What happens if we rebid and got no best? */ 2155 if (best) { 2156 /* 2157 * If this device was attached, and we were asked to 2158 * rescan, and it is a different driver, then we have 2159 * to detach the old driver and reattach this new one. 2160 * Note, we don't have to check for DF_REBID here 2161 * because if the state is > DS_ALIVE, we know it must 2162 * be. 2163 * 2164 * This assumes that all DF_REBID drivers can have 2165 * their probe routine called at any time and that 2166 * they are idempotent as well as completely benign in 2167 * normal operations. 2168 * 2169 * We also have to make sure that the detach 2170 * succeeded, otherwise we fail the operation (or 2171 * maybe it should just fail silently? I'm torn). 2172 */ 2173 if (child->state > DS_ALIVE && best->driver != child->driver) 2174 if ((result = device_detach(dev)) != 0) 2175 return (result); 2176 2177 /* Set the winning driver, devclass, and flags. */ 2178 if (!child->devclass) { 2179 result = device_set_devclass(child, best->driver->name); 2180 if (result != 0) 2181 return (result); 2182 } 2183 result = device_set_driver(child, best->driver); 2184 if (result != 0) 2185 return (result); 2186 resource_int_value(best->driver->name, child->unit, 2187 "flags", &child->devflags); 2188 2189 if (pri < 0) { 2190 /* 2191 * A bit bogus. Call the probe method again to make 2192 * sure that we have the right description. 2193 */ 2194 DEVICE_PROBE(child); 2195 #if 0 2196 child->flags |= DF_REBID; 2197 #endif 2198 } else 2199 child->flags &= ~DF_REBID; 2200 child->state = DS_ALIVE; 2201 2202 bus_data_generation_update(); 2203 return (0); 2204 } 2205 2206 return (ENXIO); 2207 } 2208 2209 /** 2210 * @brief Return the parent of a device 2211 */ 2212 device_t 2213 device_get_parent(device_t dev) 2214 { 2215 return (dev->parent); 2216 } 2217 2218 /** 2219 * @brief Get a list of children of a device 2220 * 2221 * An array containing a list of all the children of the given device 2222 * is allocated and returned in @p *devlistp. The number of devices 2223 * in the array is returned in @p *devcountp. The caller should free 2224 * the array using @c free(p, M_TEMP). 2225 * 2226 * @param dev the device to examine 2227 * @param devlistp points at location for array pointer return 2228 * value 2229 * @param devcountp points at location for array size return value 2230 * 2231 * @retval 0 success 2232 * @retval ENOMEM the array allocation failed 2233 */ 2234 int 2235 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2236 { 2237 int count; 2238 device_t child; 2239 device_t *list; 2240 2241 count = 0; 2242 TAILQ_FOREACH(child, &dev->children, link) { 2243 count++; 2244 } 2245 if (count == 0) { 2246 *devlistp = NULL; 2247 *devcountp = 0; 2248 return (0); 2249 } 2250 2251 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2252 if (!list) 2253 return (ENOMEM); 2254 2255 count = 0; 2256 TAILQ_FOREACH(child, &dev->children, link) { 2257 list[count] = child; 2258 count++; 2259 } 2260 2261 *devlistp = list; 2262 *devcountp = count; 2263 2264 return (0); 2265 } 2266 2267 /** 2268 * @brief Return the current driver for the device or @c NULL if there 2269 * is no driver currently attached 2270 */ 2271 driver_t * 2272 device_get_driver(device_t dev) 2273 { 2274 return (dev->driver); 2275 } 2276 2277 /** 2278 * @brief Return the current devclass for the device or @c NULL if 2279 * there is none. 2280 */ 2281 devclass_t 2282 device_get_devclass(device_t dev) 2283 { 2284 return (dev->devclass); 2285 } 2286 2287 /** 2288 * @brief Return the name of the device's devclass or @c NULL if there 2289 * is none. 2290 */ 2291 const char * 2292 device_get_name(device_t dev) 2293 { 2294 if (dev != NULL && dev->devclass) 2295 return (devclass_get_name(dev->devclass)); 2296 return (NULL); 2297 } 2298 2299 /** 2300 * @brief Return a string containing the device's devclass name 2301 * followed by an ascii representation of the device's unit number 2302 * (e.g. @c "foo2"). 2303 */ 2304 const char * 2305 device_get_nameunit(device_t dev) 2306 { 2307 return (dev->nameunit); 2308 } 2309 2310 /** 2311 * @brief Return the device's unit number. 2312 */ 2313 int 2314 device_get_unit(device_t dev) 2315 { 2316 return (dev->unit); 2317 } 2318 2319 /** 2320 * @brief Return the device's description string 2321 */ 2322 const char * 2323 device_get_desc(device_t dev) 2324 { 2325 return (dev->desc); 2326 } 2327 2328 /** 2329 * @brief Return the device's flags 2330 */ 2331 uint32_t 2332 device_get_flags(device_t dev) 2333 { 2334 return (dev->devflags); 2335 } 2336 2337 struct sysctl_ctx_list * 2338 device_get_sysctl_ctx(device_t dev) 2339 { 2340 return (&dev->sysctl_ctx); 2341 } 2342 2343 struct sysctl_oid * 2344 device_get_sysctl_tree(device_t dev) 2345 { 2346 return (dev->sysctl_tree); 2347 } 2348 2349 /** 2350 * @brief Print the name of the device followed by a colon and a space 2351 * 2352 * @returns the number of characters printed 2353 */ 2354 int 2355 device_print_prettyname(device_t dev) 2356 { 2357 const char *name = device_get_name(dev); 2358 2359 if (name == NULL) 2360 return (printf("unknown: ")); 2361 return (printf("%s%d: ", name, device_get_unit(dev))); 2362 } 2363 2364 /** 2365 * @brief Print the name of the device followed by a colon, a space 2366 * and the result of calling vprintf() with the value of @p fmt and 2367 * the following arguments. 2368 * 2369 * @returns the number of characters printed 2370 */ 2371 int 2372 device_printf(device_t dev, const char * fmt, ...) 2373 { 2374 va_list ap; 2375 int retval; 2376 2377 retval = device_print_prettyname(dev); 2378 va_start(ap, fmt); 2379 retval += vprintf(fmt, ap); 2380 va_end(ap); 2381 return (retval); 2382 } 2383 2384 /** 2385 * @internal 2386 */ 2387 static void 2388 device_set_desc_internal(device_t dev, const char* desc, int copy) 2389 { 2390 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2391 free(dev->desc, M_BUS); 2392 dev->flags &= ~DF_DESCMALLOCED; 2393 dev->desc = NULL; 2394 } 2395 2396 if (copy && desc) { 2397 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2398 if (dev->desc) { 2399 strcpy(dev->desc, desc); 2400 dev->flags |= DF_DESCMALLOCED; 2401 } 2402 } else { 2403 /* Avoid a -Wcast-qual warning */ 2404 dev->desc = (char *)(uintptr_t) desc; 2405 } 2406 2407 bus_data_generation_update(); 2408 } 2409 2410 /** 2411 * @brief Set the device's description 2412 * 2413 * The value of @c desc should be a string constant that will not 2414 * change (at least until the description is changed in a subsequent 2415 * call to device_set_desc() or device_set_desc_copy()). 2416 */ 2417 void 2418 device_set_desc(device_t dev, const char* desc) 2419 { 2420 device_set_desc_internal(dev, desc, FALSE); 2421 } 2422 2423 /** 2424 * @brief Set the device's description 2425 * 2426 * The string pointed to by @c desc is copied. Use this function if 2427 * the device description is generated, (e.g. with sprintf()). 2428 */ 2429 void 2430 device_set_desc_copy(device_t dev, const char* desc) 2431 { 2432 device_set_desc_internal(dev, desc, TRUE); 2433 } 2434 2435 /** 2436 * @brief Set the device's flags 2437 */ 2438 void 2439 device_set_flags(device_t dev, uint32_t flags) 2440 { 2441 dev->devflags = flags; 2442 } 2443 2444 /** 2445 * @brief Return the device's softc field 2446 * 2447 * The softc is allocated and zeroed when a driver is attached, based 2448 * on the size field of the driver. 2449 */ 2450 void * 2451 device_get_softc(device_t dev) 2452 { 2453 return (dev->softc); 2454 } 2455 2456 /** 2457 * @brief Set the device's softc field 2458 * 2459 * Most drivers do not need to use this since the softc is allocated 2460 * automatically when the driver is attached. 2461 */ 2462 void 2463 device_set_softc(device_t dev, void *softc) 2464 { 2465 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2466 free(dev->softc, M_BUS_SC); 2467 dev->softc = softc; 2468 if (dev->softc) 2469 dev->flags |= DF_EXTERNALSOFTC; 2470 else 2471 dev->flags &= ~DF_EXTERNALSOFTC; 2472 } 2473 2474 /** 2475 * @brief Free claimed softc 2476 * 2477 * Most drivers do not need to use this since the softc is freed 2478 * automatically when the driver is detached. 2479 */ 2480 void 2481 device_free_softc(void *softc) 2482 { 2483 free(softc, M_BUS_SC); 2484 } 2485 2486 /** 2487 * @brief Claim softc 2488 * 2489 * This function can be used to let the driver free the automatically 2490 * allocated softc using "device_free_softc()". This function is 2491 * useful when the driver is refcounting the softc and the softc 2492 * cannot be freed when the "device_detach" method is called. 2493 */ 2494 void 2495 device_claim_softc(device_t dev) 2496 { 2497 if (dev->softc) 2498 dev->flags |= DF_EXTERNALSOFTC; 2499 else 2500 dev->flags &= ~DF_EXTERNALSOFTC; 2501 } 2502 2503 /** 2504 * @brief Get the device's ivars field 2505 * 2506 * The ivars field is used by the parent device to store per-device 2507 * state (e.g. the physical location of the device or a list of 2508 * resources). 2509 */ 2510 void * 2511 device_get_ivars(device_t dev) 2512 { 2513 2514 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2515 return (dev->ivars); 2516 } 2517 2518 /** 2519 * @brief Set the device's ivars field 2520 */ 2521 void 2522 device_set_ivars(device_t dev, void * ivars) 2523 { 2524 2525 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2526 dev->ivars = ivars; 2527 } 2528 2529 /** 2530 * @brief Return the device's state 2531 */ 2532 device_state_t 2533 device_get_state(device_t dev) 2534 { 2535 return (dev->state); 2536 } 2537 2538 /** 2539 * @brief Set the DF_ENABLED flag for the device 2540 */ 2541 void 2542 device_enable(device_t dev) 2543 { 2544 dev->flags |= DF_ENABLED; 2545 } 2546 2547 /** 2548 * @brief Clear the DF_ENABLED flag for the device 2549 */ 2550 void 2551 device_disable(device_t dev) 2552 { 2553 dev->flags &= ~DF_ENABLED; 2554 } 2555 2556 /** 2557 * @brief Increment the busy counter for the device 2558 */ 2559 void 2560 device_busy(device_t dev) 2561 { 2562 if (dev->state < DS_ATTACHING) 2563 panic("device_busy: called for unattached device"); 2564 if (dev->busy == 0 && dev->parent) 2565 device_busy(dev->parent); 2566 dev->busy++; 2567 if (dev->state == DS_ATTACHED) 2568 dev->state = DS_BUSY; 2569 } 2570 2571 /** 2572 * @brief Decrement the busy counter for the device 2573 */ 2574 void 2575 device_unbusy(device_t dev) 2576 { 2577 if (dev->busy != 0 && dev->state != DS_BUSY && 2578 dev->state != DS_ATTACHING) 2579 panic("device_unbusy: called for non-busy device %s", 2580 device_get_nameunit(dev)); 2581 dev->busy--; 2582 if (dev->busy == 0) { 2583 if (dev->parent) 2584 device_unbusy(dev->parent); 2585 if (dev->state == DS_BUSY) 2586 dev->state = DS_ATTACHED; 2587 } 2588 } 2589 2590 /** 2591 * @brief Set the DF_QUIET flag for the device 2592 */ 2593 void 2594 device_quiet(device_t dev) 2595 { 2596 dev->flags |= DF_QUIET; 2597 } 2598 2599 /** 2600 * @brief Clear the DF_QUIET flag for the device 2601 */ 2602 void 2603 device_verbose(device_t dev) 2604 { 2605 dev->flags &= ~DF_QUIET; 2606 } 2607 2608 /** 2609 * @brief Return non-zero if the DF_QUIET flag is set on the device 2610 */ 2611 int 2612 device_is_quiet(device_t dev) 2613 { 2614 return ((dev->flags & DF_QUIET) != 0); 2615 } 2616 2617 /** 2618 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2619 */ 2620 int 2621 device_is_enabled(device_t dev) 2622 { 2623 return ((dev->flags & DF_ENABLED) != 0); 2624 } 2625 2626 /** 2627 * @brief Return non-zero if the device was successfully probed 2628 */ 2629 int 2630 device_is_alive(device_t dev) 2631 { 2632 return (dev->state >= DS_ALIVE); 2633 } 2634 2635 /** 2636 * @brief Return non-zero if the device currently has a driver 2637 * attached to it 2638 */ 2639 int 2640 device_is_attached(device_t dev) 2641 { 2642 return (dev->state >= DS_ATTACHED); 2643 } 2644 2645 /** 2646 * @brief Set the devclass of a device 2647 * @see devclass_add_device(). 2648 */ 2649 int 2650 device_set_devclass(device_t dev, const char *classname) 2651 { 2652 devclass_t dc; 2653 int error; 2654 2655 if (!classname) { 2656 if (dev->devclass) 2657 devclass_delete_device(dev->devclass, dev); 2658 return (0); 2659 } 2660 2661 if (dev->devclass) { 2662 printf("device_set_devclass: device class already set\n"); 2663 return (EINVAL); 2664 } 2665 2666 dc = devclass_find_internal(classname, NULL, TRUE); 2667 if (!dc) 2668 return (ENOMEM); 2669 2670 error = devclass_add_device(dc, dev); 2671 2672 bus_data_generation_update(); 2673 return (error); 2674 } 2675 2676 /** 2677 * @brief Set the driver of a device 2678 * 2679 * @retval 0 success 2680 * @retval EBUSY the device already has a driver attached 2681 * @retval ENOMEM a memory allocation failure occurred 2682 */ 2683 int 2684 device_set_driver(device_t dev, driver_t *driver) 2685 { 2686 if (dev->state >= DS_ATTACHED) 2687 return (EBUSY); 2688 2689 if (dev->driver == driver) 2690 return (0); 2691 2692 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2693 free(dev->softc, M_BUS_SC); 2694 dev->softc = NULL; 2695 } 2696 device_set_desc(dev, NULL); 2697 kobj_delete((kobj_t) dev, NULL); 2698 dev->driver = driver; 2699 if (driver) { 2700 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2701 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2702 dev->softc = malloc(driver->size, M_BUS_SC, 2703 M_NOWAIT | M_ZERO); 2704 if (!dev->softc) { 2705 kobj_delete((kobj_t) dev, NULL); 2706 kobj_init((kobj_t) dev, &null_class); 2707 dev->driver = NULL; 2708 return (ENOMEM); 2709 } 2710 } 2711 } else { 2712 kobj_init((kobj_t) dev, &null_class); 2713 } 2714 2715 bus_data_generation_update(); 2716 return (0); 2717 } 2718 2719 /** 2720 * @brief Probe a device, and return this status. 2721 * 2722 * This function is the core of the device autoconfiguration 2723 * system. Its purpose is to select a suitable driver for a device and 2724 * then call that driver to initialise the hardware appropriately. The 2725 * driver is selected by calling the DEVICE_PROBE() method of a set of 2726 * candidate drivers and then choosing the driver which returned the 2727 * best value. This driver is then attached to the device using 2728 * device_attach(). 2729 * 2730 * The set of suitable drivers is taken from the list of drivers in 2731 * the parent device's devclass. If the device was originally created 2732 * with a specific class name (see device_add_child()), only drivers 2733 * with that name are probed, otherwise all drivers in the devclass 2734 * are probed. If no drivers return successful probe values in the 2735 * parent devclass, the search continues in the parent of that 2736 * devclass (see devclass_get_parent()) if any. 2737 * 2738 * @param dev the device to initialise 2739 * 2740 * @retval 0 success 2741 * @retval ENXIO no driver was found 2742 * @retval ENOMEM memory allocation failure 2743 * @retval non-zero some other unix error code 2744 * @retval -1 Device already attached 2745 */ 2746 int 2747 device_probe(device_t dev) 2748 { 2749 int error; 2750 2751 GIANT_REQUIRED; 2752 2753 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2754 return (-1); 2755 2756 if (!(dev->flags & DF_ENABLED)) { 2757 if (bootverbose && device_get_name(dev) != NULL) { 2758 device_print_prettyname(dev); 2759 printf("not probed (disabled)\n"); 2760 } 2761 return (-1); 2762 } 2763 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2764 if (bus_current_pass == BUS_PASS_DEFAULT && 2765 !(dev->flags & DF_DONENOMATCH)) { 2766 BUS_PROBE_NOMATCH(dev->parent, dev); 2767 devnomatch(dev); 2768 dev->flags |= DF_DONENOMATCH; 2769 } 2770 return (error); 2771 } 2772 return (0); 2773 } 2774 2775 /** 2776 * @brief Probe a device and attach a driver if possible 2777 * 2778 * calls device_probe() and attaches if that was successful. 2779 */ 2780 int 2781 device_probe_and_attach(device_t dev) 2782 { 2783 int error; 2784 2785 GIANT_REQUIRED; 2786 2787 error = device_probe(dev); 2788 if (error == -1) 2789 return (0); 2790 else if (error != 0) 2791 return (error); 2792 2793 CURVNET_SET_QUIET(vnet0); 2794 error = device_attach(dev); 2795 CURVNET_RESTORE(); 2796 return error; 2797 } 2798 2799 /** 2800 * @brief Attach a device driver to a device 2801 * 2802 * This function is a wrapper around the DEVICE_ATTACH() driver 2803 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2804 * device's sysctl tree, optionally prints a description of the device 2805 * and queues a notification event for user-based device management 2806 * services. 2807 * 2808 * Normally this function is only called internally from 2809 * device_probe_and_attach(). 2810 * 2811 * @param dev the device to initialise 2812 * 2813 * @retval 0 success 2814 * @retval ENXIO no driver was found 2815 * @retval ENOMEM memory allocation failure 2816 * @retval non-zero some other unix error code 2817 */ 2818 int 2819 device_attach(device_t dev) 2820 { 2821 uint64_t attachtime; 2822 int error; 2823 2824 if (resource_disabled(dev->driver->name, dev->unit)) { 2825 device_disable(dev); 2826 if (bootverbose) 2827 device_printf(dev, "disabled via hints entry\n"); 2828 return (ENXIO); 2829 } 2830 2831 device_sysctl_init(dev); 2832 if (!device_is_quiet(dev)) 2833 device_print_child(dev->parent, dev); 2834 attachtime = get_cyclecount(); 2835 dev->state = DS_ATTACHING; 2836 if ((error = DEVICE_ATTACH(dev)) != 0) { 2837 printf("device_attach: %s%d attach returned %d\n", 2838 dev->driver->name, dev->unit, error); 2839 if (!(dev->flags & DF_FIXEDCLASS)) 2840 devclass_delete_device(dev->devclass, dev); 2841 (void)device_set_driver(dev, NULL); 2842 device_sysctl_fini(dev); 2843 KASSERT(dev->busy == 0, ("attach failed but busy")); 2844 dev->state = DS_NOTPRESENT; 2845 return (error); 2846 } 2847 attachtime = get_cyclecount() - attachtime; 2848 /* 2849 * 4 bits per device is a reasonable value for desktop and server 2850 * hardware with good get_cyclecount() implementations, but may 2851 * need to be adjusted on other platforms. 2852 */ 2853 #ifdef RANDOM_DEBUG 2854 printf("%s(): feeding %d bit(s) of entropy from %s%d\n", 2855 __func__, 4, dev->driver->name, dev->unit); 2856 #endif 2857 random_harvest(&attachtime, sizeof(attachtime), 4, RANDOM_ATTACH); 2858 device_sysctl_update(dev); 2859 if (dev->busy) 2860 dev->state = DS_BUSY; 2861 else 2862 dev->state = DS_ATTACHED; 2863 dev->flags &= ~DF_DONENOMATCH; 2864 devadded(dev); 2865 return (0); 2866 } 2867 2868 /** 2869 * @brief Detach a driver from a device 2870 * 2871 * This function is a wrapper around the DEVICE_DETACH() driver 2872 * method. If the call to DEVICE_DETACH() succeeds, it calls 2873 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2874 * notification event for user-based device management services and 2875 * cleans up the device's sysctl tree. 2876 * 2877 * @param dev the device to un-initialise 2878 * 2879 * @retval 0 success 2880 * @retval ENXIO no driver was found 2881 * @retval ENOMEM memory allocation failure 2882 * @retval non-zero some other unix error code 2883 */ 2884 int 2885 device_detach(device_t dev) 2886 { 2887 int error; 2888 2889 GIANT_REQUIRED; 2890 2891 PDEBUG(("%s", DEVICENAME(dev))); 2892 if (dev->state == DS_BUSY) 2893 return (EBUSY); 2894 if (dev->state != DS_ATTACHED) 2895 return (0); 2896 2897 if ((error = DEVICE_DETACH(dev)) != 0) 2898 return (error); 2899 devremoved(dev); 2900 if (!device_is_quiet(dev)) 2901 device_printf(dev, "detached\n"); 2902 if (dev->parent) 2903 BUS_CHILD_DETACHED(dev->parent, dev); 2904 2905 if (!(dev->flags & DF_FIXEDCLASS)) 2906 devclass_delete_device(dev->devclass, dev); 2907 2908 dev->state = DS_NOTPRESENT; 2909 (void)device_set_driver(dev, NULL); 2910 device_sysctl_fini(dev); 2911 2912 return (0); 2913 } 2914 2915 /** 2916 * @brief Tells a driver to quiesce itself. 2917 * 2918 * This function is a wrapper around the DEVICE_QUIESCE() driver 2919 * method. If the call to DEVICE_QUIESCE() succeeds. 2920 * 2921 * @param dev the device to quiesce 2922 * 2923 * @retval 0 success 2924 * @retval ENXIO no driver was found 2925 * @retval ENOMEM memory allocation failure 2926 * @retval non-zero some other unix error code 2927 */ 2928 int 2929 device_quiesce(device_t dev) 2930 { 2931 2932 PDEBUG(("%s", DEVICENAME(dev))); 2933 if (dev->state == DS_BUSY) 2934 return (EBUSY); 2935 if (dev->state != DS_ATTACHED) 2936 return (0); 2937 2938 return (DEVICE_QUIESCE(dev)); 2939 } 2940 2941 /** 2942 * @brief Notify a device of system shutdown 2943 * 2944 * This function calls the DEVICE_SHUTDOWN() driver method if the 2945 * device currently has an attached driver. 2946 * 2947 * @returns the value returned by DEVICE_SHUTDOWN() 2948 */ 2949 int 2950 device_shutdown(device_t dev) 2951 { 2952 if (dev->state < DS_ATTACHED) 2953 return (0); 2954 return (DEVICE_SHUTDOWN(dev)); 2955 } 2956 2957 /** 2958 * @brief Set the unit number of a device 2959 * 2960 * This function can be used to override the unit number used for a 2961 * device (e.g. to wire a device to a pre-configured unit number). 2962 */ 2963 int 2964 device_set_unit(device_t dev, int unit) 2965 { 2966 devclass_t dc; 2967 int err; 2968 2969 dc = device_get_devclass(dev); 2970 if (unit < dc->maxunit && dc->devices[unit]) 2971 return (EBUSY); 2972 err = devclass_delete_device(dc, dev); 2973 if (err) 2974 return (err); 2975 dev->unit = unit; 2976 err = devclass_add_device(dc, dev); 2977 if (err) 2978 return (err); 2979 2980 bus_data_generation_update(); 2981 return (0); 2982 } 2983 2984 /*======================================*/ 2985 /* 2986 * Some useful method implementations to make life easier for bus drivers. 2987 */ 2988 2989 /** 2990 * @brief Initialise a resource list. 2991 * 2992 * @param rl the resource list to initialise 2993 */ 2994 void 2995 resource_list_init(struct resource_list *rl) 2996 { 2997 STAILQ_INIT(rl); 2998 } 2999 3000 /** 3001 * @brief Reclaim memory used by a resource list. 3002 * 3003 * This function frees the memory for all resource entries on the list 3004 * (if any). 3005 * 3006 * @param rl the resource list to free 3007 */ 3008 void 3009 resource_list_free(struct resource_list *rl) 3010 { 3011 struct resource_list_entry *rle; 3012 3013 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3014 if (rle->res) 3015 panic("resource_list_free: resource entry is busy"); 3016 STAILQ_REMOVE_HEAD(rl, link); 3017 free(rle, M_BUS); 3018 } 3019 } 3020 3021 /** 3022 * @brief Add a resource entry. 3023 * 3024 * This function adds a resource entry using the given @p type, @p 3025 * start, @p end and @p count values. A rid value is chosen by 3026 * searching sequentially for the first unused rid starting at zero. 3027 * 3028 * @param rl the resource list to edit 3029 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3030 * @param start the start address of the resource 3031 * @param end the end address of the resource 3032 * @param count XXX end-start+1 3033 */ 3034 int 3035 resource_list_add_next(struct resource_list *rl, int type, u_long start, 3036 u_long end, u_long count) 3037 { 3038 int rid; 3039 3040 rid = 0; 3041 while (resource_list_find(rl, type, rid) != NULL) 3042 rid++; 3043 resource_list_add(rl, type, rid, start, end, count); 3044 return (rid); 3045 } 3046 3047 /** 3048 * @brief Add or modify a resource entry. 3049 * 3050 * If an existing entry exists with the same type and rid, it will be 3051 * modified using the given values of @p start, @p end and @p 3052 * count. If no entry exists, a new one will be created using the 3053 * given values. The resource list entry that matches is then returned. 3054 * 3055 * @param rl the resource list to edit 3056 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3057 * @param rid the resource identifier 3058 * @param start the start address of the resource 3059 * @param end the end address of the resource 3060 * @param count XXX end-start+1 3061 */ 3062 struct resource_list_entry * 3063 resource_list_add(struct resource_list *rl, int type, int rid, 3064 u_long start, u_long end, u_long count) 3065 { 3066 struct resource_list_entry *rle; 3067 3068 rle = resource_list_find(rl, type, rid); 3069 if (!rle) { 3070 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3071 M_NOWAIT); 3072 if (!rle) 3073 panic("resource_list_add: can't record entry"); 3074 STAILQ_INSERT_TAIL(rl, rle, link); 3075 rle->type = type; 3076 rle->rid = rid; 3077 rle->res = NULL; 3078 rle->flags = 0; 3079 } 3080 3081 if (rle->res) 3082 panic("resource_list_add: resource entry is busy"); 3083 3084 rle->start = start; 3085 rle->end = end; 3086 rle->count = count; 3087 return (rle); 3088 } 3089 3090 /** 3091 * @brief Determine if a resource entry is busy. 3092 * 3093 * Returns true if a resource entry is busy meaning that it has an 3094 * associated resource that is not an unallocated "reserved" resource. 3095 * 3096 * @param rl the resource list to search 3097 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3098 * @param rid the resource identifier 3099 * 3100 * @returns Non-zero if the entry is busy, zero otherwise. 3101 */ 3102 int 3103 resource_list_busy(struct resource_list *rl, int type, int rid) 3104 { 3105 struct resource_list_entry *rle; 3106 3107 rle = resource_list_find(rl, type, rid); 3108 if (rle == NULL || rle->res == NULL) 3109 return (0); 3110 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3111 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3112 ("reserved resource is active")); 3113 return (0); 3114 } 3115 return (1); 3116 } 3117 3118 /** 3119 * @brief Determine if a resource entry is reserved. 3120 * 3121 * Returns true if a resource entry is reserved meaning that it has an 3122 * associated "reserved" resource. The resource can either be 3123 * allocated or unallocated. 3124 * 3125 * @param rl the resource list to search 3126 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3127 * @param rid the resource identifier 3128 * 3129 * @returns Non-zero if the entry is reserved, zero otherwise. 3130 */ 3131 int 3132 resource_list_reserved(struct resource_list *rl, int type, int rid) 3133 { 3134 struct resource_list_entry *rle; 3135 3136 rle = resource_list_find(rl, type, rid); 3137 if (rle != NULL && rle->flags & RLE_RESERVED) 3138 return (1); 3139 return (0); 3140 } 3141 3142 /** 3143 * @brief Find a resource entry by type and rid. 3144 * 3145 * @param rl the resource list to search 3146 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3147 * @param rid the resource identifier 3148 * 3149 * @returns the resource entry pointer or NULL if there is no such 3150 * entry. 3151 */ 3152 struct resource_list_entry * 3153 resource_list_find(struct resource_list *rl, int type, int rid) 3154 { 3155 struct resource_list_entry *rle; 3156 3157 STAILQ_FOREACH(rle, rl, link) { 3158 if (rle->type == type && rle->rid == rid) 3159 return (rle); 3160 } 3161 return (NULL); 3162 } 3163 3164 /** 3165 * @brief Delete a resource entry. 3166 * 3167 * @param rl the resource list to edit 3168 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3169 * @param rid the resource identifier 3170 */ 3171 void 3172 resource_list_delete(struct resource_list *rl, int type, int rid) 3173 { 3174 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3175 3176 if (rle) { 3177 if (rle->res != NULL) 3178 panic("resource_list_delete: resource has not been released"); 3179 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3180 free(rle, M_BUS); 3181 } 3182 } 3183 3184 /** 3185 * @brief Allocate a reserved resource 3186 * 3187 * This can be used by busses to force the allocation of resources 3188 * that are always active in the system even if they are not allocated 3189 * by a driver (e.g. PCI BARs). This function is usually called when 3190 * adding a new child to the bus. The resource is allocated from the 3191 * parent bus when it is reserved. The resource list entry is marked 3192 * with RLE_RESERVED to note that it is a reserved resource. 3193 * 3194 * Subsequent attempts to allocate the resource with 3195 * resource_list_alloc() will succeed the first time and will set 3196 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3197 * resource that has been allocated is released with 3198 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3199 * the actual resource remains allocated. The resource can be released to 3200 * the parent bus by calling resource_list_unreserve(). 3201 * 3202 * @param rl the resource list to allocate from 3203 * @param bus the parent device of @p child 3204 * @param child the device for which the resource is being reserved 3205 * @param type the type of resource to allocate 3206 * @param rid a pointer to the resource identifier 3207 * @param start hint at the start of the resource range - pass 3208 * @c 0UL for any start address 3209 * @param end hint at the end of the resource range - pass 3210 * @c ~0UL for any end address 3211 * @param count hint at the size of range required - pass @c 1 3212 * for any size 3213 * @param flags any extra flags to control the resource 3214 * allocation - see @c RF_XXX flags in 3215 * <sys/rman.h> for details 3216 * 3217 * @returns the resource which was allocated or @c NULL if no 3218 * resource could be allocated 3219 */ 3220 struct resource * 3221 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3222 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3223 { 3224 struct resource_list_entry *rle = NULL; 3225 int passthrough = (device_get_parent(child) != bus); 3226 struct resource *r; 3227 3228 if (passthrough) 3229 panic( 3230 "resource_list_reserve() should only be called for direct children"); 3231 if (flags & RF_ACTIVE) 3232 panic( 3233 "resource_list_reserve() should only reserve inactive resources"); 3234 3235 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3236 flags); 3237 if (r != NULL) { 3238 rle = resource_list_find(rl, type, *rid); 3239 rle->flags |= RLE_RESERVED; 3240 } 3241 return (r); 3242 } 3243 3244 /** 3245 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3246 * 3247 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3248 * and passing the allocation up to the parent of @p bus. This assumes 3249 * that the first entry of @c device_get_ivars(child) is a struct 3250 * resource_list. This also handles 'passthrough' allocations where a 3251 * child is a remote descendant of bus by passing the allocation up to 3252 * the parent of bus. 3253 * 3254 * Typically, a bus driver would store a list of child resources 3255 * somewhere in the child device's ivars (see device_get_ivars()) and 3256 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3257 * then call resource_list_alloc() to perform the allocation. 3258 * 3259 * @param rl the resource list to allocate from 3260 * @param bus the parent device of @p child 3261 * @param child the device which is requesting an allocation 3262 * @param type the type of resource to allocate 3263 * @param rid a pointer to the resource identifier 3264 * @param start hint at the start of the resource range - pass 3265 * @c 0UL for any start address 3266 * @param end hint at the end of the resource range - pass 3267 * @c ~0UL for any end address 3268 * @param count hint at the size of range required - pass @c 1 3269 * for any size 3270 * @param flags any extra flags to control the resource 3271 * allocation - see @c RF_XXX flags in 3272 * <sys/rman.h> for details 3273 * 3274 * @returns the resource which was allocated or @c NULL if no 3275 * resource could be allocated 3276 */ 3277 struct resource * 3278 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3279 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 3280 { 3281 struct resource_list_entry *rle = NULL; 3282 int passthrough = (device_get_parent(child) != bus); 3283 int isdefault = (start == 0UL && end == ~0UL); 3284 3285 if (passthrough) { 3286 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3287 type, rid, start, end, count, flags)); 3288 } 3289 3290 rle = resource_list_find(rl, type, *rid); 3291 3292 if (!rle) 3293 return (NULL); /* no resource of that type/rid */ 3294 3295 if (rle->res) { 3296 if (rle->flags & RLE_RESERVED) { 3297 if (rle->flags & RLE_ALLOCATED) 3298 return (NULL); 3299 if ((flags & RF_ACTIVE) && 3300 bus_activate_resource(child, type, *rid, 3301 rle->res) != 0) 3302 return (NULL); 3303 rle->flags |= RLE_ALLOCATED; 3304 return (rle->res); 3305 } 3306 device_printf(bus, 3307 "resource entry %#x type %d for child %s is busy\n", *rid, 3308 type, device_get_nameunit(child)); 3309 return (NULL); 3310 } 3311 3312 if (isdefault) { 3313 start = rle->start; 3314 count = ulmax(count, rle->count); 3315 end = ulmax(rle->end, start + count - 1); 3316 } 3317 3318 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3319 type, rid, start, end, count, flags); 3320 3321 /* 3322 * Record the new range. 3323 */ 3324 if (rle->res) { 3325 rle->start = rman_get_start(rle->res); 3326 rle->end = rman_get_end(rle->res); 3327 rle->count = count; 3328 } 3329 3330 return (rle->res); 3331 } 3332 3333 /** 3334 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3335 * 3336 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3337 * used with resource_list_alloc(). 3338 * 3339 * @param rl the resource list which was allocated from 3340 * @param bus the parent device of @p child 3341 * @param child the device which is requesting a release 3342 * @param type the type of resource to release 3343 * @param rid the resource identifier 3344 * @param res the resource to release 3345 * 3346 * @retval 0 success 3347 * @retval non-zero a standard unix error code indicating what 3348 * error condition prevented the operation 3349 */ 3350 int 3351 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3352 int type, int rid, struct resource *res) 3353 { 3354 struct resource_list_entry *rle = NULL; 3355 int passthrough = (device_get_parent(child) != bus); 3356 int error; 3357 3358 if (passthrough) { 3359 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3360 type, rid, res)); 3361 } 3362 3363 rle = resource_list_find(rl, type, rid); 3364 3365 if (!rle) 3366 panic("resource_list_release: can't find resource"); 3367 if (!rle->res) 3368 panic("resource_list_release: resource entry is not busy"); 3369 if (rle->flags & RLE_RESERVED) { 3370 if (rle->flags & RLE_ALLOCATED) { 3371 if (rman_get_flags(res) & RF_ACTIVE) { 3372 error = bus_deactivate_resource(child, type, 3373 rid, res); 3374 if (error) 3375 return (error); 3376 } 3377 rle->flags &= ~RLE_ALLOCATED; 3378 return (0); 3379 } 3380 return (EINVAL); 3381 } 3382 3383 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3384 type, rid, res); 3385 if (error) 3386 return (error); 3387 3388 rle->res = NULL; 3389 return (0); 3390 } 3391 3392 /** 3393 * @brief Release all active resources of a given type 3394 * 3395 * Release all active resources of a specified type. This is intended 3396 * to be used to cleanup resources leaked by a driver after detach or 3397 * a failed attach. 3398 * 3399 * @param rl the resource list which was allocated from 3400 * @param bus the parent device of @p child 3401 * @param child the device whose active resources are being released 3402 * @param type the type of resources to release 3403 * 3404 * @retval 0 success 3405 * @retval EBUSY at least one resource was active 3406 */ 3407 int 3408 resource_list_release_active(struct resource_list *rl, device_t bus, 3409 device_t child, int type) 3410 { 3411 struct resource_list_entry *rle; 3412 int error, retval; 3413 3414 retval = 0; 3415 STAILQ_FOREACH(rle, rl, link) { 3416 if (rle->type != type) 3417 continue; 3418 if (rle->res == NULL) 3419 continue; 3420 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3421 RLE_RESERVED) 3422 continue; 3423 retval = EBUSY; 3424 error = resource_list_release(rl, bus, child, type, 3425 rman_get_rid(rle->res), rle->res); 3426 if (error != 0) 3427 device_printf(bus, 3428 "Failed to release active resource: %d\n", error); 3429 } 3430 return (retval); 3431 } 3432 3433 3434 /** 3435 * @brief Fully release a reserved resource 3436 * 3437 * Fully releases a resource reserved via resource_list_reserve(). 3438 * 3439 * @param rl the resource list which was allocated from 3440 * @param bus the parent device of @p child 3441 * @param child the device whose reserved resource is being released 3442 * @param type the type of resource to release 3443 * @param rid the resource identifier 3444 * @param res the resource to release 3445 * 3446 * @retval 0 success 3447 * @retval non-zero a standard unix error code indicating what 3448 * error condition prevented the operation 3449 */ 3450 int 3451 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3452 int type, int rid) 3453 { 3454 struct resource_list_entry *rle = NULL; 3455 int passthrough = (device_get_parent(child) != bus); 3456 3457 if (passthrough) 3458 panic( 3459 "resource_list_unreserve() should only be called for direct children"); 3460 3461 rle = resource_list_find(rl, type, rid); 3462 3463 if (!rle) 3464 panic("resource_list_unreserve: can't find resource"); 3465 if (!(rle->flags & RLE_RESERVED)) 3466 return (EINVAL); 3467 if (rle->flags & RLE_ALLOCATED) 3468 return (EBUSY); 3469 rle->flags &= ~RLE_RESERVED; 3470 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3471 } 3472 3473 /** 3474 * @brief Print a description of resources in a resource list 3475 * 3476 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3477 * The name is printed if at least one resource of the given type is available. 3478 * The format is used to print resource start and end. 3479 * 3480 * @param rl the resource list to print 3481 * @param name the name of @p type, e.g. @c "memory" 3482 * @param type type type of resource entry to print 3483 * @param format printf(9) format string to print resource 3484 * start and end values 3485 * 3486 * @returns the number of characters printed 3487 */ 3488 int 3489 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3490 const char *format) 3491 { 3492 struct resource_list_entry *rle; 3493 int printed, retval; 3494 3495 printed = 0; 3496 retval = 0; 3497 /* Yes, this is kinda cheating */ 3498 STAILQ_FOREACH(rle, rl, link) { 3499 if (rle->type == type) { 3500 if (printed == 0) 3501 retval += printf(" %s ", name); 3502 else 3503 retval += printf(","); 3504 printed++; 3505 retval += printf(format, rle->start); 3506 if (rle->count > 1) { 3507 retval += printf("-"); 3508 retval += printf(format, rle->start + 3509 rle->count - 1); 3510 } 3511 } 3512 } 3513 return (retval); 3514 } 3515 3516 /** 3517 * @brief Releases all the resources in a list. 3518 * 3519 * @param rl The resource list to purge. 3520 * 3521 * @returns nothing 3522 */ 3523 void 3524 resource_list_purge(struct resource_list *rl) 3525 { 3526 struct resource_list_entry *rle; 3527 3528 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3529 if (rle->res) 3530 bus_release_resource(rman_get_device(rle->res), 3531 rle->type, rle->rid, rle->res); 3532 STAILQ_REMOVE_HEAD(rl, link); 3533 free(rle, M_BUS); 3534 } 3535 } 3536 3537 device_t 3538 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3539 { 3540 3541 return (device_add_child_ordered(dev, order, name, unit)); 3542 } 3543 3544 /** 3545 * @brief Helper function for implementing DEVICE_PROBE() 3546 * 3547 * This function can be used to help implement the DEVICE_PROBE() for 3548 * a bus (i.e. a device which has other devices attached to it). It 3549 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3550 * devclass. 3551 */ 3552 int 3553 bus_generic_probe(device_t dev) 3554 { 3555 devclass_t dc = dev->devclass; 3556 driverlink_t dl; 3557 3558 TAILQ_FOREACH(dl, &dc->drivers, link) { 3559 /* 3560 * If this driver's pass is too high, then ignore it. 3561 * For most drivers in the default pass, this will 3562 * never be true. For early-pass drivers they will 3563 * only call the identify routines of eligible drivers 3564 * when this routine is called. Drivers for later 3565 * passes should have their identify routines called 3566 * on early-pass busses during BUS_NEW_PASS(). 3567 */ 3568 if (dl->pass > bus_current_pass) 3569 continue; 3570 DEVICE_IDENTIFY(dl->driver, dev); 3571 } 3572 3573 return (0); 3574 } 3575 3576 /** 3577 * @brief Helper function for implementing DEVICE_ATTACH() 3578 * 3579 * This function can be used to help implement the DEVICE_ATTACH() for 3580 * a bus. It calls device_probe_and_attach() for each of the device's 3581 * children. 3582 */ 3583 int 3584 bus_generic_attach(device_t dev) 3585 { 3586 device_t child; 3587 3588 TAILQ_FOREACH(child, &dev->children, link) { 3589 device_probe_and_attach(child); 3590 } 3591 3592 return (0); 3593 } 3594 3595 /** 3596 * @brief Helper function for implementing DEVICE_DETACH() 3597 * 3598 * This function can be used to help implement the DEVICE_DETACH() for 3599 * a bus. It calls device_detach() for each of the device's 3600 * children. 3601 */ 3602 int 3603 bus_generic_detach(device_t dev) 3604 { 3605 device_t child; 3606 int error; 3607 3608 if (dev->state != DS_ATTACHED) 3609 return (EBUSY); 3610 3611 TAILQ_FOREACH(child, &dev->children, link) { 3612 if ((error = device_detach(child)) != 0) 3613 return (error); 3614 } 3615 3616 return (0); 3617 } 3618 3619 /** 3620 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3621 * 3622 * This function can be used to help implement the DEVICE_SHUTDOWN() 3623 * for a bus. It calls device_shutdown() for each of the device's 3624 * children. 3625 */ 3626 int 3627 bus_generic_shutdown(device_t dev) 3628 { 3629 device_t child; 3630 3631 TAILQ_FOREACH(child, &dev->children, link) { 3632 device_shutdown(child); 3633 } 3634 3635 return (0); 3636 } 3637 3638 /** 3639 * @brief Default function for suspending a child device. 3640 * 3641 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3642 */ 3643 int 3644 bus_generic_suspend_child(device_t dev, device_t child) 3645 { 3646 int error; 3647 3648 error = DEVICE_SUSPEND(child); 3649 3650 if (error == 0) 3651 dev->flags |= DF_SUSPENDED; 3652 3653 return (error); 3654 } 3655 3656 /** 3657 * @brief Default function for resuming a child device. 3658 * 3659 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3660 */ 3661 int 3662 bus_generic_resume_child(device_t dev, device_t child) 3663 { 3664 3665 DEVICE_RESUME(child); 3666 dev->flags &= ~DF_SUSPENDED; 3667 3668 return (0); 3669 } 3670 3671 /** 3672 * @brief Helper function for implementing DEVICE_SUSPEND() 3673 * 3674 * This function can be used to help implement the DEVICE_SUSPEND() 3675 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3676 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3677 * operation is aborted and any devices which were suspended are 3678 * resumed immediately by calling their DEVICE_RESUME() methods. 3679 */ 3680 int 3681 bus_generic_suspend(device_t dev) 3682 { 3683 int error; 3684 device_t child, child2; 3685 3686 TAILQ_FOREACH(child, &dev->children, link) { 3687 error = BUS_SUSPEND_CHILD(dev, child); 3688 if (error) { 3689 for (child2 = TAILQ_FIRST(&dev->children); 3690 child2 && child2 != child; 3691 child2 = TAILQ_NEXT(child2, link)) 3692 BUS_RESUME_CHILD(dev, child2); 3693 return (error); 3694 } 3695 } 3696 return (0); 3697 } 3698 3699 /** 3700 * @brief Helper function for implementing DEVICE_RESUME() 3701 * 3702 * This function can be used to help implement the DEVICE_RESUME() for 3703 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3704 */ 3705 int 3706 bus_generic_resume(device_t dev) 3707 { 3708 device_t child; 3709 3710 TAILQ_FOREACH(child, &dev->children, link) { 3711 BUS_RESUME_CHILD(dev, child); 3712 /* if resume fails, there's nothing we can usefully do... */ 3713 } 3714 return (0); 3715 } 3716 3717 /** 3718 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3719 * 3720 * This function prints the first part of the ascii representation of 3721 * @p child, including its name, unit and description (if any - see 3722 * device_set_desc()). 3723 * 3724 * @returns the number of characters printed 3725 */ 3726 int 3727 bus_print_child_header(device_t dev, device_t child) 3728 { 3729 int retval = 0; 3730 3731 if (device_get_desc(child)) { 3732 retval += device_printf(child, "<%s>", device_get_desc(child)); 3733 } else { 3734 retval += printf("%s", device_get_nameunit(child)); 3735 } 3736 3737 return (retval); 3738 } 3739 3740 /** 3741 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3742 * 3743 * This function prints the last part of the ascii representation of 3744 * @p child, which consists of the string @c " on " followed by the 3745 * name and unit of the @p dev. 3746 * 3747 * @returns the number of characters printed 3748 */ 3749 int 3750 bus_print_child_footer(device_t dev, device_t child) 3751 { 3752 return (printf(" on %s\n", device_get_nameunit(dev))); 3753 } 3754 3755 /** 3756 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3757 * 3758 * This function prints out the VM domain for the given device. 3759 * 3760 * @returns the number of characters printed 3761 */ 3762 int 3763 bus_print_child_domain(device_t dev, device_t child) 3764 { 3765 int domain; 3766 3767 /* No domain? Don't print anything */ 3768 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3769 return (0); 3770 3771 return (printf(" numa-domain %d", domain)); 3772 } 3773 3774 /** 3775 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3776 * 3777 * This function simply calls bus_print_child_header() followed by 3778 * bus_print_child_footer(). 3779 * 3780 * @returns the number of characters printed 3781 */ 3782 int 3783 bus_generic_print_child(device_t dev, device_t child) 3784 { 3785 int retval = 0; 3786 3787 retval += bus_print_child_header(dev, child); 3788 retval += bus_print_child_domain(dev, child); 3789 retval += bus_print_child_footer(dev, child); 3790 3791 return (retval); 3792 } 3793 3794 /** 3795 * @brief Stub function for implementing BUS_READ_IVAR(). 3796 * 3797 * @returns ENOENT 3798 */ 3799 int 3800 bus_generic_read_ivar(device_t dev, device_t child, int index, 3801 uintptr_t * result) 3802 { 3803 return (ENOENT); 3804 } 3805 3806 /** 3807 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3808 * 3809 * @returns ENOENT 3810 */ 3811 int 3812 bus_generic_write_ivar(device_t dev, device_t child, int index, 3813 uintptr_t value) 3814 { 3815 return (ENOENT); 3816 } 3817 3818 /** 3819 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3820 * 3821 * @returns NULL 3822 */ 3823 struct resource_list * 3824 bus_generic_get_resource_list(device_t dev, device_t child) 3825 { 3826 return (NULL); 3827 } 3828 3829 /** 3830 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3831 * 3832 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3833 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3834 * and then calls device_probe_and_attach() for each unattached child. 3835 */ 3836 void 3837 bus_generic_driver_added(device_t dev, driver_t *driver) 3838 { 3839 device_t child; 3840 3841 DEVICE_IDENTIFY(driver, dev); 3842 TAILQ_FOREACH(child, &dev->children, link) { 3843 if (child->state == DS_NOTPRESENT || 3844 (child->flags & DF_REBID)) 3845 device_probe_and_attach(child); 3846 } 3847 } 3848 3849 /** 3850 * @brief Helper function for implementing BUS_NEW_PASS(). 3851 * 3852 * This implementing of BUS_NEW_PASS() first calls the identify 3853 * routines for any drivers that probe at the current pass. Then it 3854 * walks the list of devices for this bus. If a device is already 3855 * attached, then it calls BUS_NEW_PASS() on that device. If the 3856 * device is not already attached, it attempts to attach a driver to 3857 * it. 3858 */ 3859 void 3860 bus_generic_new_pass(device_t dev) 3861 { 3862 driverlink_t dl; 3863 devclass_t dc; 3864 device_t child; 3865 3866 dc = dev->devclass; 3867 TAILQ_FOREACH(dl, &dc->drivers, link) { 3868 if (dl->pass == bus_current_pass) 3869 DEVICE_IDENTIFY(dl->driver, dev); 3870 } 3871 TAILQ_FOREACH(child, &dev->children, link) { 3872 if (child->state >= DS_ATTACHED) 3873 BUS_NEW_PASS(child); 3874 else if (child->state == DS_NOTPRESENT) 3875 device_probe_and_attach(child); 3876 } 3877 } 3878 3879 /** 3880 * @brief Helper function for implementing BUS_SETUP_INTR(). 3881 * 3882 * This simple implementation of BUS_SETUP_INTR() simply calls the 3883 * BUS_SETUP_INTR() method of the parent of @p dev. 3884 */ 3885 int 3886 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3887 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3888 void **cookiep) 3889 { 3890 /* Propagate up the bus hierarchy until someone handles it. */ 3891 if (dev->parent) 3892 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3893 filter, intr, arg, cookiep)); 3894 return (EINVAL); 3895 } 3896 3897 /** 3898 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3899 * 3900 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3901 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3902 */ 3903 int 3904 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3905 void *cookie) 3906 { 3907 /* Propagate up the bus hierarchy until someone handles it. */ 3908 if (dev->parent) 3909 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3910 return (EINVAL); 3911 } 3912 3913 /** 3914 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3915 * 3916 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3917 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3918 */ 3919 int 3920 bus_generic_adjust_resource(device_t dev, device_t child, int type, 3921 struct resource *r, u_long start, u_long end) 3922 { 3923 /* Propagate up the bus hierarchy until someone handles it. */ 3924 if (dev->parent) 3925 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 3926 end)); 3927 return (EINVAL); 3928 } 3929 3930 /** 3931 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3932 * 3933 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3934 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3935 */ 3936 struct resource * 3937 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3938 u_long start, u_long end, u_long count, u_int flags) 3939 { 3940 /* Propagate up the bus hierarchy until someone handles it. */ 3941 if (dev->parent) 3942 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3943 start, end, count, flags)); 3944 return (NULL); 3945 } 3946 3947 /** 3948 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3949 * 3950 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3951 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3952 */ 3953 int 3954 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3955 struct resource *r) 3956 { 3957 /* Propagate up the bus hierarchy until someone handles it. */ 3958 if (dev->parent) 3959 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3960 r)); 3961 return (EINVAL); 3962 } 3963 3964 /** 3965 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3966 * 3967 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3968 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3969 */ 3970 int 3971 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3972 struct resource *r) 3973 { 3974 /* Propagate up the bus hierarchy until someone handles it. */ 3975 if (dev->parent) 3976 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3977 r)); 3978 return (EINVAL); 3979 } 3980 3981 /** 3982 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3983 * 3984 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3985 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3986 */ 3987 int 3988 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3989 int rid, struct resource *r) 3990 { 3991 /* Propagate up the bus hierarchy until someone handles it. */ 3992 if (dev->parent) 3993 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3994 r)); 3995 return (EINVAL); 3996 } 3997 3998 /** 3999 * @brief Helper function for implementing BUS_BIND_INTR(). 4000 * 4001 * This simple implementation of BUS_BIND_INTR() simply calls the 4002 * BUS_BIND_INTR() method of the parent of @p dev. 4003 */ 4004 int 4005 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4006 int cpu) 4007 { 4008 4009 /* Propagate up the bus hierarchy until someone handles it. */ 4010 if (dev->parent) 4011 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4012 return (EINVAL); 4013 } 4014 4015 /** 4016 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4017 * 4018 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4019 * BUS_CONFIG_INTR() method of the parent of @p dev. 4020 */ 4021 int 4022 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4023 enum intr_polarity pol) 4024 { 4025 4026 /* Propagate up the bus hierarchy until someone handles it. */ 4027 if (dev->parent) 4028 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4029 return (EINVAL); 4030 } 4031 4032 /** 4033 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4034 * 4035 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4036 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4037 */ 4038 int 4039 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4040 void *cookie, const char *descr) 4041 { 4042 4043 /* Propagate up the bus hierarchy until someone handles it. */ 4044 if (dev->parent) 4045 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4046 descr)); 4047 return (EINVAL); 4048 } 4049 4050 /** 4051 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4052 * 4053 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4054 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4055 */ 4056 bus_dma_tag_t 4057 bus_generic_get_dma_tag(device_t dev, device_t child) 4058 { 4059 4060 /* Propagate up the bus hierarchy until someone handles it. */ 4061 if (dev->parent != NULL) 4062 return (BUS_GET_DMA_TAG(dev->parent, child)); 4063 return (NULL); 4064 } 4065 4066 /** 4067 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4068 * 4069 * This implementation of BUS_GET_RESOURCE() uses the 4070 * resource_list_find() function to do most of the work. It calls 4071 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4072 * search. 4073 */ 4074 int 4075 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4076 u_long *startp, u_long *countp) 4077 { 4078 struct resource_list * rl = NULL; 4079 struct resource_list_entry * rle = NULL; 4080 4081 rl = BUS_GET_RESOURCE_LIST(dev, child); 4082 if (!rl) 4083 return (EINVAL); 4084 4085 rle = resource_list_find(rl, type, rid); 4086 if (!rle) 4087 return (ENOENT); 4088 4089 if (startp) 4090 *startp = rle->start; 4091 if (countp) 4092 *countp = rle->count; 4093 4094 return (0); 4095 } 4096 4097 /** 4098 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4099 * 4100 * This implementation of BUS_SET_RESOURCE() uses the 4101 * resource_list_add() function to do most of the work. It calls 4102 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4103 * edit. 4104 */ 4105 int 4106 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4107 u_long start, u_long count) 4108 { 4109 struct resource_list * rl = NULL; 4110 4111 rl = BUS_GET_RESOURCE_LIST(dev, child); 4112 if (!rl) 4113 return (EINVAL); 4114 4115 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4116 4117 return (0); 4118 } 4119 4120 /** 4121 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4122 * 4123 * This implementation of BUS_DELETE_RESOURCE() uses the 4124 * resource_list_delete() function to do most of the work. It calls 4125 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4126 * edit. 4127 */ 4128 void 4129 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4130 { 4131 struct resource_list * rl = NULL; 4132 4133 rl = BUS_GET_RESOURCE_LIST(dev, child); 4134 if (!rl) 4135 return; 4136 4137 resource_list_delete(rl, type, rid); 4138 4139 return; 4140 } 4141 4142 /** 4143 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4144 * 4145 * This implementation of BUS_RELEASE_RESOURCE() uses the 4146 * resource_list_release() function to do most of the work. It calls 4147 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4148 */ 4149 int 4150 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4151 int rid, struct resource *r) 4152 { 4153 struct resource_list * rl = NULL; 4154 4155 if (device_get_parent(child) != dev) 4156 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4157 type, rid, r)); 4158 4159 rl = BUS_GET_RESOURCE_LIST(dev, child); 4160 if (!rl) 4161 return (EINVAL); 4162 4163 return (resource_list_release(rl, dev, child, type, rid, r)); 4164 } 4165 4166 /** 4167 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4168 * 4169 * This implementation of BUS_ALLOC_RESOURCE() uses the 4170 * resource_list_alloc() function to do most of the work. It calls 4171 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4172 */ 4173 struct resource * 4174 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4175 int *rid, u_long start, u_long end, u_long count, u_int flags) 4176 { 4177 struct resource_list * rl = NULL; 4178 4179 if (device_get_parent(child) != dev) 4180 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4181 type, rid, start, end, count, flags)); 4182 4183 rl = BUS_GET_RESOURCE_LIST(dev, child); 4184 if (!rl) 4185 return (NULL); 4186 4187 return (resource_list_alloc(rl, dev, child, type, rid, 4188 start, end, count, flags)); 4189 } 4190 4191 /** 4192 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4193 * 4194 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4195 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4196 */ 4197 int 4198 bus_generic_child_present(device_t dev, device_t child) 4199 { 4200 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4201 } 4202 4203 int 4204 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4205 { 4206 4207 if (dev->parent) 4208 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4209 4210 return (ENOENT); 4211 } 4212 4213 /* 4214 * Some convenience functions to make it easier for drivers to use the 4215 * resource-management functions. All these really do is hide the 4216 * indirection through the parent's method table, making for slightly 4217 * less-wordy code. In the future, it might make sense for this code 4218 * to maintain some sort of a list of resources allocated by each device. 4219 */ 4220 4221 int 4222 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4223 struct resource **res) 4224 { 4225 int i; 4226 4227 for (i = 0; rs[i].type != -1; i++) 4228 res[i] = NULL; 4229 for (i = 0; rs[i].type != -1; i++) { 4230 res[i] = bus_alloc_resource_any(dev, 4231 rs[i].type, &rs[i].rid, rs[i].flags); 4232 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4233 bus_release_resources(dev, rs, res); 4234 return (ENXIO); 4235 } 4236 } 4237 return (0); 4238 } 4239 4240 void 4241 bus_release_resources(device_t dev, const struct resource_spec *rs, 4242 struct resource **res) 4243 { 4244 int i; 4245 4246 for (i = 0; rs[i].type != -1; i++) 4247 if (res[i] != NULL) { 4248 bus_release_resource( 4249 dev, rs[i].type, rs[i].rid, res[i]); 4250 res[i] = NULL; 4251 } 4252 } 4253 4254 /** 4255 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4256 * 4257 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4258 * parent of @p dev. 4259 */ 4260 struct resource * 4261 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 4262 u_long count, u_int flags) 4263 { 4264 if (dev->parent == NULL) 4265 return (NULL); 4266 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4267 count, flags)); 4268 } 4269 4270 /** 4271 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4272 * 4273 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4274 * parent of @p dev. 4275 */ 4276 int 4277 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start, 4278 u_long end) 4279 { 4280 if (dev->parent == NULL) 4281 return (EINVAL); 4282 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4283 } 4284 4285 /** 4286 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4287 * 4288 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4289 * parent of @p dev. 4290 */ 4291 int 4292 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4293 { 4294 if (dev->parent == NULL) 4295 return (EINVAL); 4296 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4297 } 4298 4299 /** 4300 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4301 * 4302 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4303 * parent of @p dev. 4304 */ 4305 int 4306 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4307 { 4308 if (dev->parent == NULL) 4309 return (EINVAL); 4310 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4311 } 4312 4313 /** 4314 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4315 * 4316 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4317 * parent of @p dev. 4318 */ 4319 int 4320 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4321 { 4322 if (dev->parent == NULL) 4323 return (EINVAL); 4324 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 4325 } 4326 4327 /** 4328 * @brief Wrapper function for BUS_SETUP_INTR(). 4329 * 4330 * This function simply calls the BUS_SETUP_INTR() method of the 4331 * parent of @p dev. 4332 */ 4333 int 4334 bus_setup_intr(device_t dev, struct resource *r, int flags, 4335 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4336 { 4337 int error; 4338 4339 if (dev->parent == NULL) 4340 return (EINVAL); 4341 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4342 arg, cookiep); 4343 if (error != 0) 4344 return (error); 4345 if (handler != NULL && !(flags & INTR_MPSAFE)) 4346 device_printf(dev, "[GIANT-LOCKED]\n"); 4347 return (0); 4348 } 4349 4350 /** 4351 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4352 * 4353 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4354 * parent of @p dev. 4355 */ 4356 int 4357 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4358 { 4359 if (dev->parent == NULL) 4360 return (EINVAL); 4361 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4362 } 4363 4364 /** 4365 * @brief Wrapper function for BUS_BIND_INTR(). 4366 * 4367 * This function simply calls the BUS_BIND_INTR() method of the 4368 * parent of @p dev. 4369 */ 4370 int 4371 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4372 { 4373 if (dev->parent == NULL) 4374 return (EINVAL); 4375 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4376 } 4377 4378 /** 4379 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4380 * 4381 * This function first formats the requested description into a 4382 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4383 * the parent of @p dev. 4384 */ 4385 int 4386 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4387 const char *fmt, ...) 4388 { 4389 va_list ap; 4390 char descr[MAXCOMLEN + 1]; 4391 4392 if (dev->parent == NULL) 4393 return (EINVAL); 4394 va_start(ap, fmt); 4395 vsnprintf(descr, sizeof(descr), fmt, ap); 4396 va_end(ap); 4397 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4398 } 4399 4400 /** 4401 * @brief Wrapper function for BUS_SET_RESOURCE(). 4402 * 4403 * This function simply calls the BUS_SET_RESOURCE() method of the 4404 * parent of @p dev. 4405 */ 4406 int 4407 bus_set_resource(device_t dev, int type, int rid, 4408 u_long start, u_long count) 4409 { 4410 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4411 start, count)); 4412 } 4413 4414 /** 4415 * @brief Wrapper function for BUS_GET_RESOURCE(). 4416 * 4417 * This function simply calls the BUS_GET_RESOURCE() method of the 4418 * parent of @p dev. 4419 */ 4420 int 4421 bus_get_resource(device_t dev, int type, int rid, 4422 u_long *startp, u_long *countp) 4423 { 4424 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4425 startp, countp)); 4426 } 4427 4428 /** 4429 * @brief Wrapper function for BUS_GET_RESOURCE(). 4430 * 4431 * This function simply calls the BUS_GET_RESOURCE() method of the 4432 * parent of @p dev and returns the start value. 4433 */ 4434 u_long 4435 bus_get_resource_start(device_t dev, int type, int rid) 4436 { 4437 u_long start, count; 4438 int error; 4439 4440 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4441 &start, &count); 4442 if (error) 4443 return (0); 4444 return (start); 4445 } 4446 4447 /** 4448 * @brief Wrapper function for BUS_GET_RESOURCE(). 4449 * 4450 * This function simply calls the BUS_GET_RESOURCE() method of the 4451 * parent of @p dev and returns the count value. 4452 */ 4453 u_long 4454 bus_get_resource_count(device_t dev, int type, int rid) 4455 { 4456 u_long start, count; 4457 int error; 4458 4459 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4460 &start, &count); 4461 if (error) 4462 return (0); 4463 return (count); 4464 } 4465 4466 /** 4467 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4468 * 4469 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4470 * parent of @p dev. 4471 */ 4472 void 4473 bus_delete_resource(device_t dev, int type, int rid) 4474 { 4475 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4476 } 4477 4478 /** 4479 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4480 * 4481 * This function simply calls the BUS_CHILD_PRESENT() method of the 4482 * parent of @p dev. 4483 */ 4484 int 4485 bus_child_present(device_t child) 4486 { 4487 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4488 } 4489 4490 /** 4491 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4492 * 4493 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4494 * parent of @p dev. 4495 */ 4496 int 4497 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4498 { 4499 device_t parent; 4500 4501 parent = device_get_parent(child); 4502 if (parent == NULL) { 4503 *buf = '\0'; 4504 return (0); 4505 } 4506 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4507 } 4508 4509 /** 4510 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4511 * 4512 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4513 * parent of @p dev. 4514 */ 4515 int 4516 bus_child_location_str(device_t child, char *buf, size_t buflen) 4517 { 4518 device_t parent; 4519 4520 parent = device_get_parent(child); 4521 if (parent == NULL) { 4522 *buf = '\0'; 4523 return (0); 4524 } 4525 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4526 } 4527 4528 /** 4529 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4530 * 4531 * This function simply calls the BUS_GET_DMA_TAG() method of the 4532 * parent of @p dev. 4533 */ 4534 bus_dma_tag_t 4535 bus_get_dma_tag(device_t dev) 4536 { 4537 device_t parent; 4538 4539 parent = device_get_parent(dev); 4540 if (parent == NULL) 4541 return (NULL); 4542 return (BUS_GET_DMA_TAG(parent, dev)); 4543 } 4544 4545 /* Resume all devices and then notify userland that we're up again. */ 4546 static int 4547 root_resume(device_t dev) 4548 { 4549 int error; 4550 4551 error = bus_generic_resume(dev); 4552 if (error == 0) 4553 devctl_notify("kern", "power", "resume", NULL); 4554 return (error); 4555 } 4556 4557 static int 4558 root_print_child(device_t dev, device_t child) 4559 { 4560 int retval = 0; 4561 4562 retval += bus_print_child_header(dev, child); 4563 retval += printf("\n"); 4564 4565 return (retval); 4566 } 4567 4568 static int 4569 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4570 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4571 { 4572 /* 4573 * If an interrupt mapping gets to here something bad has happened. 4574 */ 4575 panic("root_setup_intr"); 4576 } 4577 4578 /* 4579 * If we get here, assume that the device is permanant and really is 4580 * present in the system. Removable bus drivers are expected to intercept 4581 * this call long before it gets here. We return -1 so that drivers that 4582 * really care can check vs -1 or some ERRNO returned higher in the food 4583 * chain. 4584 */ 4585 static int 4586 root_child_present(device_t dev, device_t child) 4587 { 4588 return (-1); 4589 } 4590 4591 static kobj_method_t root_methods[] = { 4592 /* Device interface */ 4593 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4594 KOBJMETHOD(device_suspend, bus_generic_suspend), 4595 KOBJMETHOD(device_resume, root_resume), 4596 4597 /* Bus interface */ 4598 KOBJMETHOD(bus_print_child, root_print_child), 4599 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4600 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4601 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4602 KOBJMETHOD(bus_child_present, root_child_present), 4603 4604 KOBJMETHOD_END 4605 }; 4606 4607 static driver_t root_driver = { 4608 "root", 4609 root_methods, 4610 1, /* no softc */ 4611 }; 4612 4613 device_t root_bus; 4614 devclass_t root_devclass; 4615 4616 static int 4617 root_bus_module_handler(module_t mod, int what, void* arg) 4618 { 4619 switch (what) { 4620 case MOD_LOAD: 4621 TAILQ_INIT(&bus_data_devices); 4622 kobj_class_compile((kobj_class_t) &root_driver); 4623 root_bus = make_device(NULL, "root", 0); 4624 root_bus->desc = "System root bus"; 4625 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4626 root_bus->driver = &root_driver; 4627 root_bus->state = DS_ATTACHED; 4628 root_devclass = devclass_find_internal("root", NULL, FALSE); 4629 devinit(); 4630 return (0); 4631 4632 case MOD_SHUTDOWN: 4633 device_shutdown(root_bus); 4634 return (0); 4635 default: 4636 return (EOPNOTSUPP); 4637 } 4638 4639 return (0); 4640 } 4641 4642 static moduledata_t root_bus_mod = { 4643 "rootbus", 4644 root_bus_module_handler, 4645 NULL 4646 }; 4647 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4648 4649 /** 4650 * @brief Automatically configure devices 4651 * 4652 * This function begins the autoconfiguration process by calling 4653 * device_probe_and_attach() for each child of the @c root0 device. 4654 */ 4655 void 4656 root_bus_configure(void) 4657 { 4658 4659 PDEBUG((".")); 4660 4661 /* Eventually this will be split up, but this is sufficient for now. */ 4662 bus_set_pass(BUS_PASS_DEFAULT); 4663 } 4664 4665 /** 4666 * @brief Module handler for registering device drivers 4667 * 4668 * This module handler is used to automatically register device 4669 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4670 * devclass_add_driver() for the driver described by the 4671 * driver_module_data structure pointed to by @p arg 4672 */ 4673 int 4674 driver_module_handler(module_t mod, int what, void *arg) 4675 { 4676 struct driver_module_data *dmd; 4677 devclass_t bus_devclass; 4678 kobj_class_t driver; 4679 int error, pass; 4680 4681 dmd = (struct driver_module_data *)arg; 4682 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4683 error = 0; 4684 4685 switch (what) { 4686 case MOD_LOAD: 4687 if (dmd->dmd_chainevh) 4688 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4689 4690 pass = dmd->dmd_pass; 4691 driver = dmd->dmd_driver; 4692 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4693 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4694 error = devclass_add_driver(bus_devclass, driver, pass, 4695 dmd->dmd_devclass); 4696 break; 4697 4698 case MOD_UNLOAD: 4699 PDEBUG(("Unloading module: driver %s from bus %s", 4700 DRIVERNAME(dmd->dmd_driver), 4701 dmd->dmd_busname)); 4702 error = devclass_delete_driver(bus_devclass, 4703 dmd->dmd_driver); 4704 4705 if (!error && dmd->dmd_chainevh) 4706 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4707 break; 4708 case MOD_QUIESCE: 4709 PDEBUG(("Quiesce module: driver %s from bus %s", 4710 DRIVERNAME(dmd->dmd_driver), 4711 dmd->dmd_busname)); 4712 error = devclass_quiesce_driver(bus_devclass, 4713 dmd->dmd_driver); 4714 4715 if (!error && dmd->dmd_chainevh) 4716 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4717 break; 4718 default: 4719 error = EOPNOTSUPP; 4720 break; 4721 } 4722 4723 return (error); 4724 } 4725 4726 /** 4727 * @brief Enumerate all hinted devices for this bus. 4728 * 4729 * Walks through the hints for this bus and calls the bus_hinted_child 4730 * routine for each one it fines. It searches first for the specific 4731 * bus that's being probed for hinted children (eg isa0), and then for 4732 * generic children (eg isa). 4733 * 4734 * @param dev bus device to enumerate 4735 */ 4736 void 4737 bus_enumerate_hinted_children(device_t bus) 4738 { 4739 int i; 4740 const char *dname, *busname; 4741 int dunit; 4742 4743 /* 4744 * enumerate all devices on the specific bus 4745 */ 4746 busname = device_get_nameunit(bus); 4747 i = 0; 4748 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4749 BUS_HINTED_CHILD(bus, dname, dunit); 4750 4751 /* 4752 * and all the generic ones. 4753 */ 4754 busname = device_get_name(bus); 4755 i = 0; 4756 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4757 BUS_HINTED_CHILD(bus, dname, dunit); 4758 } 4759 4760 #ifdef BUS_DEBUG 4761 4762 /* the _short versions avoid iteration by not calling anything that prints 4763 * more than oneliners. I love oneliners. 4764 */ 4765 4766 static void 4767 print_device_short(device_t dev, int indent) 4768 { 4769 if (!dev) 4770 return; 4771 4772 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4773 dev->unit, dev->desc, 4774 (dev->parent? "":"no "), 4775 (TAILQ_EMPTY(&dev->children)? "no ":""), 4776 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4777 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4778 (dev->flags&DF_WILDCARD? "wildcard,":""), 4779 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4780 (dev->flags&DF_REBID? "rebiddable,":""), 4781 (dev->ivars? "":"no "), 4782 (dev->softc? "":"no "), 4783 dev->busy)); 4784 } 4785 4786 static void 4787 print_device(device_t dev, int indent) 4788 { 4789 if (!dev) 4790 return; 4791 4792 print_device_short(dev, indent); 4793 4794 indentprintf(("Parent:\n")); 4795 print_device_short(dev->parent, indent+1); 4796 indentprintf(("Driver:\n")); 4797 print_driver_short(dev->driver, indent+1); 4798 indentprintf(("Devclass:\n")); 4799 print_devclass_short(dev->devclass, indent+1); 4800 } 4801 4802 void 4803 print_device_tree_short(device_t dev, int indent) 4804 /* print the device and all its children (indented) */ 4805 { 4806 device_t child; 4807 4808 if (!dev) 4809 return; 4810 4811 print_device_short(dev, indent); 4812 4813 TAILQ_FOREACH(child, &dev->children, link) { 4814 print_device_tree_short(child, indent+1); 4815 } 4816 } 4817 4818 void 4819 print_device_tree(device_t dev, int indent) 4820 /* print the device and all its children (indented) */ 4821 { 4822 device_t child; 4823 4824 if (!dev) 4825 return; 4826 4827 print_device(dev, indent); 4828 4829 TAILQ_FOREACH(child, &dev->children, link) { 4830 print_device_tree(child, indent+1); 4831 } 4832 } 4833 4834 static void 4835 print_driver_short(driver_t *driver, int indent) 4836 { 4837 if (!driver) 4838 return; 4839 4840 indentprintf(("driver %s: softc size = %zd\n", 4841 driver->name, driver->size)); 4842 } 4843 4844 static void 4845 print_driver(driver_t *driver, int indent) 4846 { 4847 if (!driver) 4848 return; 4849 4850 print_driver_short(driver, indent); 4851 } 4852 4853 static void 4854 print_driver_list(driver_list_t drivers, int indent) 4855 { 4856 driverlink_t driver; 4857 4858 TAILQ_FOREACH(driver, &drivers, link) { 4859 print_driver(driver->driver, indent); 4860 } 4861 } 4862 4863 static void 4864 print_devclass_short(devclass_t dc, int indent) 4865 { 4866 if ( !dc ) 4867 return; 4868 4869 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4870 } 4871 4872 static void 4873 print_devclass(devclass_t dc, int indent) 4874 { 4875 int i; 4876 4877 if ( !dc ) 4878 return; 4879 4880 print_devclass_short(dc, indent); 4881 indentprintf(("Drivers:\n")); 4882 print_driver_list(dc->drivers, indent+1); 4883 4884 indentprintf(("Devices:\n")); 4885 for (i = 0; i < dc->maxunit; i++) 4886 if (dc->devices[i]) 4887 print_device(dc->devices[i], indent+1); 4888 } 4889 4890 void 4891 print_devclass_list_short(void) 4892 { 4893 devclass_t dc; 4894 4895 printf("Short listing of devclasses, drivers & devices:\n"); 4896 TAILQ_FOREACH(dc, &devclasses, link) { 4897 print_devclass_short(dc, 0); 4898 } 4899 } 4900 4901 void 4902 print_devclass_list(void) 4903 { 4904 devclass_t dc; 4905 4906 printf("Full listing of devclasses, drivers & devices:\n"); 4907 TAILQ_FOREACH(dc, &devclasses, link) { 4908 print_devclass(dc, 0); 4909 } 4910 } 4911 4912 #endif 4913 4914 /* 4915 * User-space access to the device tree. 4916 * 4917 * We implement a small set of nodes: 4918 * 4919 * hw.bus Single integer read method to obtain the 4920 * current generation count. 4921 * hw.bus.devices Reads the entire device tree in flat space. 4922 * hw.bus.rman Resource manager interface 4923 * 4924 * We might like to add the ability to scan devclasses and/or drivers to 4925 * determine what else is currently loaded/available. 4926 */ 4927 4928 static int 4929 sysctl_bus(SYSCTL_HANDLER_ARGS) 4930 { 4931 struct u_businfo ubus; 4932 4933 ubus.ub_version = BUS_USER_VERSION; 4934 ubus.ub_generation = bus_data_generation; 4935 4936 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4937 } 4938 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4939 "bus-related data"); 4940 4941 static int 4942 sysctl_devices(SYSCTL_HANDLER_ARGS) 4943 { 4944 int *name = (int *)arg1; 4945 u_int namelen = arg2; 4946 int index; 4947 struct device *dev; 4948 struct u_device udev; /* XXX this is a bit big */ 4949 int error; 4950 4951 if (namelen != 2) 4952 return (EINVAL); 4953 4954 if (bus_data_generation_check(name[0])) 4955 return (EINVAL); 4956 4957 index = name[1]; 4958 4959 /* 4960 * Scan the list of devices, looking for the requested index. 4961 */ 4962 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 4963 if (index-- == 0) 4964 break; 4965 } 4966 if (dev == NULL) 4967 return (ENOENT); 4968 4969 /* 4970 * Populate the return array. 4971 */ 4972 bzero(&udev, sizeof(udev)); 4973 udev.dv_handle = (uintptr_t)dev; 4974 udev.dv_parent = (uintptr_t)dev->parent; 4975 if (dev->nameunit != NULL) 4976 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 4977 if (dev->desc != NULL) 4978 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 4979 if (dev->driver != NULL && dev->driver->name != NULL) 4980 strlcpy(udev.dv_drivername, dev->driver->name, 4981 sizeof(udev.dv_drivername)); 4982 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 4983 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 4984 udev.dv_devflags = dev->devflags; 4985 udev.dv_flags = dev->flags; 4986 udev.dv_state = dev->state; 4987 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 4988 return (error); 4989 } 4990 4991 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 4992 "system device tree"); 4993 4994 int 4995 bus_data_generation_check(int generation) 4996 { 4997 if (generation != bus_data_generation) 4998 return (1); 4999 5000 /* XXX generate optimised lists here? */ 5001 return (0); 5002 } 5003 5004 void 5005 bus_data_generation_update(void) 5006 { 5007 bus_data_generation++; 5008 } 5009 5010 int 5011 bus_free_resource(device_t dev, int type, struct resource *r) 5012 { 5013 if (r == NULL) 5014 return (0); 5015 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5016 } 5017