1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/conf.h> 34 #include <sys/filio.h> 35 #include <sys/lock.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/mutex.h> 41 #include <sys/poll.h> 42 #include <sys/proc.h> 43 #include <sys/condvar.h> 44 #include <sys/queue.h> 45 #include <machine/bus.h> 46 #include <sys/rman.h> 47 #include <sys/selinfo.h> 48 #include <sys/signalvar.h> 49 #include <sys/sysctl.h> 50 #include <sys/systm.h> 51 #include <sys/uio.h> 52 #include <sys/bus.h> 53 #include <sys/interrupt.h> 54 55 #include <machine/stdarg.h> 56 57 #include <vm/uma.h> 58 59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 61 62 /* 63 * Used to attach drivers to devclasses. 64 */ 65 typedef struct driverlink *driverlink_t; 66 struct driverlink { 67 kobj_class_t driver; 68 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 69 }; 70 71 /* 72 * Forward declarations 73 */ 74 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 75 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 76 typedef TAILQ_HEAD(device_list, device) device_list_t; 77 78 struct devclass { 79 TAILQ_ENTRY(devclass) link; 80 devclass_t parent; /* parent in devclass hierarchy */ 81 driver_list_t drivers; /* bus devclasses store drivers for bus */ 82 char *name; 83 device_t *devices; /* array of devices indexed by unit */ 84 int maxunit; /* size of devices array */ 85 86 struct sysctl_ctx_list sysctl_ctx; 87 struct sysctl_oid *sysctl_tree; 88 }; 89 90 /** 91 * @brief Implementation of device. 92 */ 93 struct device { 94 /* 95 * A device is a kernel object. The first field must be the 96 * current ops table for the object. 97 */ 98 KOBJ_FIELDS; 99 100 /* 101 * Device hierarchy. 102 */ 103 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 104 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 105 device_t parent; /**< parent of this device */ 106 device_list_t children; /**< list of child devices */ 107 108 /* 109 * Details of this device. 110 */ 111 driver_t *driver; /**< current driver */ 112 devclass_t devclass; /**< current device class */ 113 int unit; /**< current unit number */ 114 char* nameunit; /**< name+unit e.g. foodev0 */ 115 char* desc; /**< driver specific description */ 116 int busy; /**< count of calls to device_busy() */ 117 device_state_t state; /**< current device state */ 118 u_int32_t devflags; /**< api level flags for device_get_flags() */ 119 u_short flags; /**< internal device flags */ 120 #define DF_ENABLED 1 /* device should be probed/attached */ 121 #define DF_FIXEDCLASS 2 /* devclass specified at create time */ 122 #define DF_WILDCARD 4 /* unit was originally wildcard */ 123 #define DF_DESCMALLOCED 8 /* description was malloced */ 124 #define DF_QUIET 16 /* don't print verbose attach message */ 125 #define DF_DONENOMATCH 32 /* don't execute DEVICE_NOMATCH again */ 126 #define DF_EXTERNALSOFTC 64 /* softc not allocated by us */ 127 #define DF_REBID 128 /* Can rebid after attach */ 128 u_char order; /**< order from device_add_child_ordered() */ 129 u_char pad; 130 void *ivars; /**< instance variables */ 131 void *softc; /**< current driver's variables */ 132 133 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 134 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 135 }; 136 137 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 138 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 139 140 #ifdef BUS_DEBUG 141 142 static int bus_debug = 1; 143 TUNABLE_INT("bus.debug", &bus_debug); 144 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0, 145 "Debug bus code"); 146 147 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 148 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 149 #define DRIVERNAME(d) ((d)? d->name : "no driver") 150 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 151 152 /** 153 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 154 * prevent syslog from deleting initial spaces 155 */ 156 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 157 158 static void print_device_short(device_t dev, int indent); 159 static void print_device(device_t dev, int indent); 160 void print_device_tree_short(device_t dev, int indent); 161 void print_device_tree(device_t dev, int indent); 162 static void print_driver_short(driver_t *driver, int indent); 163 static void print_driver(driver_t *driver, int indent); 164 static void print_driver_list(driver_list_t drivers, int indent); 165 static void print_devclass_short(devclass_t dc, int indent); 166 static void print_devclass(devclass_t dc, int indent); 167 void print_devclass_list_short(void); 168 void print_devclass_list(void); 169 170 #else 171 /* Make the compiler ignore the function calls */ 172 #define PDEBUG(a) /* nop */ 173 #define DEVICENAME(d) /* nop */ 174 #define DRIVERNAME(d) /* nop */ 175 #define DEVCLANAME(d) /* nop */ 176 177 #define print_device_short(d,i) /* nop */ 178 #define print_device(d,i) /* nop */ 179 #define print_device_tree_short(d,i) /* nop */ 180 #define print_device_tree(d,i) /* nop */ 181 #define print_driver_short(d,i) /* nop */ 182 #define print_driver(d,i) /* nop */ 183 #define print_driver_list(d,i) /* nop */ 184 #define print_devclass_short(d,i) /* nop */ 185 #define print_devclass(d,i) /* nop */ 186 #define print_devclass_list_short() /* nop */ 187 #define print_devclass_list() /* nop */ 188 #endif 189 190 /* 191 * dev sysctl tree 192 */ 193 194 enum { 195 DEVCLASS_SYSCTL_PARENT, 196 }; 197 198 static int 199 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 200 { 201 devclass_t dc = (devclass_t)arg1; 202 const char *value; 203 204 switch (arg2) { 205 case DEVCLASS_SYSCTL_PARENT: 206 value = dc->parent ? dc->parent->name : ""; 207 break; 208 default: 209 return (EINVAL); 210 } 211 return (SYSCTL_OUT(req, value, strlen(value))); 212 } 213 214 static void 215 devclass_sysctl_init(devclass_t dc) 216 { 217 218 if (dc->sysctl_tree != NULL) 219 return; 220 sysctl_ctx_init(&dc->sysctl_ctx); 221 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 222 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 223 CTLFLAG_RD, 0, ""); 224 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 225 OID_AUTO, "%parent", CTLFLAG_RD, 226 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 227 "parent class"); 228 } 229 230 enum { 231 DEVICE_SYSCTL_DESC, 232 DEVICE_SYSCTL_DRIVER, 233 DEVICE_SYSCTL_LOCATION, 234 DEVICE_SYSCTL_PNPINFO, 235 DEVICE_SYSCTL_PARENT, 236 }; 237 238 static int 239 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 240 { 241 device_t dev = (device_t)arg1; 242 const char *value; 243 char *buf; 244 int error; 245 246 buf = NULL; 247 switch (arg2) { 248 case DEVICE_SYSCTL_DESC: 249 value = dev->desc ? dev->desc : ""; 250 break; 251 case DEVICE_SYSCTL_DRIVER: 252 value = dev->driver ? dev->driver->name : ""; 253 break; 254 case DEVICE_SYSCTL_LOCATION: 255 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 256 bus_child_location_str(dev, buf, 1024); 257 break; 258 case DEVICE_SYSCTL_PNPINFO: 259 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 260 bus_child_pnpinfo_str(dev, buf, 1024); 261 break; 262 case DEVICE_SYSCTL_PARENT: 263 value = dev->parent ? dev->parent->nameunit : ""; 264 break; 265 default: 266 return (EINVAL); 267 } 268 error = SYSCTL_OUT(req, value, strlen(value)); 269 if (buf != NULL) 270 free(buf, M_BUS); 271 return (error); 272 } 273 274 static void 275 device_sysctl_init(device_t dev) 276 { 277 devclass_t dc = dev->devclass; 278 279 if (dev->sysctl_tree != NULL) 280 return; 281 devclass_sysctl_init(dc); 282 sysctl_ctx_init(&dev->sysctl_ctx); 283 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 284 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 285 dev->nameunit + strlen(dc->name), 286 CTLFLAG_RD, 0, ""); 287 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 288 OID_AUTO, "%desc", CTLFLAG_RD, 289 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 290 "device description"); 291 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 292 OID_AUTO, "%driver", CTLFLAG_RD, 293 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 294 "device driver name"); 295 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 296 OID_AUTO, "%location", CTLFLAG_RD, 297 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 298 "device location relative to parent"); 299 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 300 OID_AUTO, "%pnpinfo", CTLFLAG_RD, 301 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 302 "device identification"); 303 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 304 OID_AUTO, "%parent", CTLFLAG_RD, 305 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 306 "parent device"); 307 } 308 309 static void 310 device_sysctl_update(device_t dev) 311 { 312 devclass_t dc = dev->devclass; 313 314 if (dev->sysctl_tree == NULL) 315 return; 316 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 317 } 318 319 static void 320 device_sysctl_fini(device_t dev) 321 { 322 if (dev->sysctl_tree == NULL) 323 return; 324 sysctl_ctx_free(&dev->sysctl_ctx); 325 dev->sysctl_tree = NULL; 326 } 327 328 /* 329 * /dev/devctl implementation 330 */ 331 332 /* 333 * This design allows only one reader for /dev/devctl. This is not desirable 334 * in the long run, but will get a lot of hair out of this implementation. 335 * Maybe we should make this device a clonable device. 336 * 337 * Also note: we specifically do not attach a device to the device_t tree 338 * to avoid potential chicken and egg problems. One could argue that all 339 * of this belongs to the root node. One could also further argue that the 340 * sysctl interface that we have not might more properly be an ioctl 341 * interface, but at this stage of the game, I'm not inclined to rock that 342 * boat. 343 * 344 * I'm also not sure that the SIGIO support is done correctly or not, as 345 * I copied it from a driver that had SIGIO support that likely hasn't been 346 * tested since 3.4 or 2.2.8! 347 */ 348 349 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 350 static int devctl_disable = 0; 351 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable); 352 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 353 sysctl_devctl_disable, "I", "devctl disable"); 354 355 static d_open_t devopen; 356 static d_close_t devclose; 357 static d_read_t devread; 358 static d_ioctl_t devioctl; 359 static d_poll_t devpoll; 360 361 static struct cdevsw dev_cdevsw = { 362 .d_version = D_VERSION, 363 .d_flags = D_NEEDGIANT, 364 .d_open = devopen, 365 .d_close = devclose, 366 .d_read = devread, 367 .d_ioctl = devioctl, 368 .d_poll = devpoll, 369 .d_name = "devctl", 370 }; 371 372 struct dev_event_info 373 { 374 char *dei_data; 375 TAILQ_ENTRY(dev_event_info) dei_link; 376 }; 377 378 TAILQ_HEAD(devq, dev_event_info); 379 380 static struct dev_softc 381 { 382 int inuse; 383 int nonblock; 384 struct mtx mtx; 385 struct cv cv; 386 struct selinfo sel; 387 struct devq devq; 388 struct proc *async_proc; 389 } devsoftc; 390 391 static struct cdev *devctl_dev; 392 393 static void 394 devinit(void) 395 { 396 devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, 397 "devctl"); 398 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 399 cv_init(&devsoftc.cv, "dev cv"); 400 TAILQ_INIT(&devsoftc.devq); 401 } 402 403 static int 404 devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td) 405 { 406 if (devsoftc.inuse) 407 return (EBUSY); 408 /* move to init */ 409 devsoftc.inuse = 1; 410 devsoftc.nonblock = 0; 411 devsoftc.async_proc = NULL; 412 return (0); 413 } 414 415 static int 416 devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td) 417 { 418 devsoftc.inuse = 0; 419 mtx_lock(&devsoftc.mtx); 420 cv_broadcast(&devsoftc.cv); 421 mtx_unlock(&devsoftc.mtx); 422 423 return (0); 424 } 425 426 /* 427 * The read channel for this device is used to report changes to 428 * userland in realtime. We are required to free the data as well as 429 * the n1 object because we allocate them separately. Also note that 430 * we return one record at a time. If you try to read this device a 431 * character at a time, you will lose the rest of the data. Listening 432 * programs are expected to cope. 433 */ 434 static int 435 devread(struct cdev *dev, struct uio *uio, int ioflag) 436 { 437 struct dev_event_info *n1; 438 int rv; 439 440 mtx_lock(&devsoftc.mtx); 441 while (TAILQ_EMPTY(&devsoftc.devq)) { 442 if (devsoftc.nonblock) { 443 mtx_unlock(&devsoftc.mtx); 444 return (EAGAIN); 445 } 446 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 447 if (rv) { 448 /* 449 * Need to translate ERESTART to EINTR here? -- jake 450 */ 451 mtx_unlock(&devsoftc.mtx); 452 return (rv); 453 } 454 } 455 n1 = TAILQ_FIRST(&devsoftc.devq); 456 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 457 mtx_unlock(&devsoftc.mtx); 458 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 459 free(n1->dei_data, M_BUS); 460 free(n1, M_BUS); 461 return (rv); 462 } 463 464 static int 465 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td) 466 { 467 switch (cmd) { 468 469 case FIONBIO: 470 if (*(int*)data) 471 devsoftc.nonblock = 1; 472 else 473 devsoftc.nonblock = 0; 474 return (0); 475 case FIOASYNC: 476 if (*(int*)data) 477 devsoftc.async_proc = td->td_proc; 478 else 479 devsoftc.async_proc = NULL; 480 return (0); 481 482 /* (un)Support for other fcntl() calls. */ 483 case FIOCLEX: 484 case FIONCLEX: 485 case FIONREAD: 486 case FIOSETOWN: 487 case FIOGETOWN: 488 default: 489 break; 490 } 491 return (ENOTTY); 492 } 493 494 static int 495 devpoll(struct cdev *dev, int events, d_thread_t *td) 496 { 497 int revents = 0; 498 499 mtx_lock(&devsoftc.mtx); 500 if (events & (POLLIN | POLLRDNORM)) { 501 if (!TAILQ_EMPTY(&devsoftc.devq)) 502 revents = events & (POLLIN | POLLRDNORM); 503 else 504 selrecord(td, &devsoftc.sel); 505 } 506 mtx_unlock(&devsoftc.mtx); 507 508 return (revents); 509 } 510 511 /** 512 * @brief Queue data to be read from the devctl device 513 * 514 * Generic interface to queue data to the devctl device. It is 515 * assumed that @p data is properly formatted. It is further assumed 516 * that @p data is allocated using the M_BUS malloc type. 517 */ 518 void 519 devctl_queue_data(char *data) 520 { 521 struct dev_event_info *n1 = NULL; 522 struct proc *p; 523 524 n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT); 525 if (n1 == NULL) 526 return; 527 n1->dei_data = data; 528 mtx_lock(&devsoftc.mtx); 529 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 530 cv_broadcast(&devsoftc.cv); 531 mtx_unlock(&devsoftc.mtx); 532 selwakeup(&devsoftc.sel); 533 p = devsoftc.async_proc; 534 if (p != NULL) { 535 PROC_LOCK(p); 536 psignal(p, SIGIO); 537 PROC_UNLOCK(p); 538 } 539 } 540 541 /** 542 * @brief Send a 'notification' to userland, using standard ways 543 */ 544 void 545 devctl_notify(const char *system, const char *subsystem, const char *type, 546 const char *data) 547 { 548 int len = 0; 549 char *msg; 550 551 if (system == NULL) 552 return; /* BOGUS! Must specify system. */ 553 if (subsystem == NULL) 554 return; /* BOGUS! Must specify subsystem. */ 555 if (type == NULL) 556 return; /* BOGUS! Must specify type. */ 557 len += strlen(" system=") + strlen(system); 558 len += strlen(" subsystem=") + strlen(subsystem); 559 len += strlen(" type=") + strlen(type); 560 /* add in the data message plus newline. */ 561 if (data != NULL) 562 len += strlen(data); 563 len += 3; /* '!', '\n', and NUL */ 564 msg = malloc(len, M_BUS, M_NOWAIT); 565 if (msg == NULL) 566 return; /* Drop it on the floor */ 567 if (data != NULL) 568 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 569 system, subsystem, type, data); 570 else 571 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 572 system, subsystem, type); 573 devctl_queue_data(msg); 574 } 575 576 /* 577 * Common routine that tries to make sending messages as easy as possible. 578 * We allocate memory for the data, copy strings into that, but do not 579 * free it unless there's an error. The dequeue part of the driver should 580 * free the data. We don't send data when the device is disabled. We do 581 * send data, even when we have no listeners, because we wish to avoid 582 * races relating to startup and restart of listening applications. 583 * 584 * devaddq is designed to string together the type of event, with the 585 * object of that event, plus the plug and play info and location info 586 * for that event. This is likely most useful for devices, but less 587 * useful for other consumers of this interface. Those should use 588 * the devctl_queue_data() interface instead. 589 */ 590 static void 591 devaddq(const char *type, const char *what, device_t dev) 592 { 593 char *data = NULL; 594 char *loc = NULL; 595 char *pnp = NULL; 596 const char *parstr; 597 598 if (devctl_disable) 599 return; 600 data = malloc(1024, M_BUS, M_NOWAIT); 601 if (data == NULL) 602 goto bad; 603 604 /* get the bus specific location of this device */ 605 loc = malloc(1024, M_BUS, M_NOWAIT); 606 if (loc == NULL) 607 goto bad; 608 *loc = '\0'; 609 bus_child_location_str(dev, loc, 1024); 610 611 /* Get the bus specific pnp info of this device */ 612 pnp = malloc(1024, M_BUS, M_NOWAIT); 613 if (pnp == NULL) 614 goto bad; 615 *pnp = '\0'; 616 bus_child_pnpinfo_str(dev, pnp, 1024); 617 618 /* Get the parent of this device, or / if high enough in the tree. */ 619 if (device_get_parent(dev) == NULL) 620 parstr = "."; /* Or '/' ? */ 621 else 622 parstr = device_get_nameunit(device_get_parent(dev)); 623 /* String it all together. */ 624 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 625 parstr); 626 free(loc, M_BUS); 627 free(pnp, M_BUS); 628 devctl_queue_data(data); 629 return; 630 bad: 631 free(pnp, M_BUS); 632 free(loc, M_BUS); 633 free(data, M_BUS); 634 return; 635 } 636 637 /* 638 * A device was added to the tree. We are called just after it successfully 639 * attaches (that is, probe and attach success for this device). No call 640 * is made if a device is merely parented into the tree. See devnomatch 641 * if probe fails. If attach fails, no notification is sent (but maybe 642 * we should have a different message for this). 643 */ 644 static void 645 devadded(device_t dev) 646 { 647 char *pnp = NULL; 648 char *tmp = NULL; 649 650 pnp = malloc(1024, M_BUS, M_NOWAIT); 651 if (pnp == NULL) 652 goto fail; 653 tmp = malloc(1024, M_BUS, M_NOWAIT); 654 if (tmp == NULL) 655 goto fail; 656 *pnp = '\0'; 657 bus_child_pnpinfo_str(dev, pnp, 1024); 658 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 659 devaddq("+", tmp, dev); 660 fail: 661 if (pnp != NULL) 662 free(pnp, M_BUS); 663 if (tmp != NULL) 664 free(tmp, M_BUS); 665 return; 666 } 667 668 /* 669 * A device was removed from the tree. We are called just before this 670 * happens. 671 */ 672 static void 673 devremoved(device_t dev) 674 { 675 char *pnp = NULL; 676 char *tmp = NULL; 677 678 pnp = malloc(1024, M_BUS, M_NOWAIT); 679 if (pnp == NULL) 680 goto fail; 681 tmp = malloc(1024, M_BUS, M_NOWAIT); 682 if (tmp == NULL) 683 goto fail; 684 *pnp = '\0'; 685 bus_child_pnpinfo_str(dev, pnp, 1024); 686 snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 687 devaddq("-", tmp, dev); 688 fail: 689 if (pnp != NULL) 690 free(pnp, M_BUS); 691 if (tmp != NULL) 692 free(tmp, M_BUS); 693 return; 694 } 695 696 /* 697 * Called when there's no match for this device. This is only called 698 * the first time that no match happens, so we don't keep getitng this 699 * message. Should that prove to be undesirable, we can change it. 700 * This is called when all drivers that can attach to a given bus 701 * decline to accept this device. Other errrors may not be detected. 702 */ 703 static void 704 devnomatch(device_t dev) 705 { 706 devaddq("?", "", dev); 707 } 708 709 static int 710 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 711 { 712 struct dev_event_info *n1; 713 int dis, error; 714 715 dis = devctl_disable; 716 error = sysctl_handle_int(oidp, &dis, 0, req); 717 if (error || !req->newptr) 718 return (error); 719 mtx_lock(&devsoftc.mtx); 720 devctl_disable = dis; 721 if (dis) { 722 while (!TAILQ_EMPTY(&devsoftc.devq)) { 723 n1 = TAILQ_FIRST(&devsoftc.devq); 724 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 725 free(n1->dei_data, M_BUS); 726 free(n1, M_BUS); 727 } 728 } 729 mtx_unlock(&devsoftc.mtx); 730 return (0); 731 } 732 733 /* End of /dev/devctl code */ 734 735 TAILQ_HEAD(,device) bus_data_devices; 736 static int bus_data_generation = 1; 737 738 kobj_method_t null_methods[] = { 739 { 0, 0 } 740 }; 741 742 DEFINE_CLASS(null, null_methods, 0); 743 744 /* 745 * Devclass implementation 746 */ 747 748 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 749 750 751 /** 752 * @internal 753 * @brief Find or create a device class 754 * 755 * If a device class with the name @p classname exists, return it, 756 * otherwise if @p create is non-zero create and return a new device 757 * class. 758 * 759 * If @p parentname is non-NULL, the parent of the devclass is set to 760 * the devclass of that name. 761 * 762 * @param classname the devclass name to find or create 763 * @param parentname the parent devclass name or @c NULL 764 * @param create non-zero to create a devclass 765 */ 766 static devclass_t 767 devclass_find_internal(const char *classname, const char *parentname, 768 int create) 769 { 770 devclass_t dc; 771 772 PDEBUG(("looking for %s", classname)); 773 if (!classname) 774 return (NULL); 775 776 TAILQ_FOREACH(dc, &devclasses, link) { 777 if (!strcmp(dc->name, classname)) 778 break; 779 } 780 781 if (create && !dc) { 782 PDEBUG(("creating %s", classname)); 783 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 784 M_BUS, M_NOWAIT|M_ZERO); 785 if (!dc) 786 return (NULL); 787 dc->parent = NULL; 788 dc->name = (char*) (dc + 1); 789 strcpy(dc->name, classname); 790 TAILQ_INIT(&dc->drivers); 791 TAILQ_INSERT_TAIL(&devclasses, dc, link); 792 793 bus_data_generation_update(); 794 } 795 796 /* 797 * If a parent class is specified, then set that as our parent so 798 * that this devclass will support drivers for the parent class as 799 * well. If the parent class has the same name don't do this though 800 * as it creates a cycle that can trigger an infinite loop in 801 * device_probe_child() if a device exists for which there is no 802 * suitable driver. 803 */ 804 if (parentname && dc && !dc->parent && 805 strcmp(classname, parentname) != 0) { 806 dc->parent = devclass_find_internal(parentname, NULL, FALSE); 807 } 808 809 return (dc); 810 } 811 812 /** 813 * @brief Create a device class 814 * 815 * If a device class with the name @p classname exists, return it, 816 * otherwise create and return a new device class. 817 * 818 * @param classname the devclass name to find or create 819 */ 820 devclass_t 821 devclass_create(const char *classname) 822 { 823 return (devclass_find_internal(classname, NULL, TRUE)); 824 } 825 826 /** 827 * @brief Find a device class 828 * 829 * If a device class with the name @p classname exists, return it, 830 * otherwise return @c NULL. 831 * 832 * @param classname the devclass name to find 833 */ 834 devclass_t 835 devclass_find(const char *classname) 836 { 837 return (devclass_find_internal(classname, NULL, FALSE)); 838 } 839 840 /** 841 * @brief Add a device driver to a device class 842 * 843 * Add a device driver to a devclass. This is normally called 844 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 845 * all devices in the devclass will be called to allow them to attempt 846 * to re-probe any unmatched children. 847 * 848 * @param dc the devclass to edit 849 * @param driver the driver to register 850 */ 851 int 852 devclass_add_driver(devclass_t dc, driver_t *driver) 853 { 854 driverlink_t dl; 855 int i; 856 857 PDEBUG(("%s", DRIVERNAME(driver))); 858 859 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 860 if (!dl) 861 return (ENOMEM); 862 863 /* 864 * Compile the driver's methods. Also increase the reference count 865 * so that the class doesn't get freed when the last instance 866 * goes. This means we can safely use static methods and avoids a 867 * double-free in devclass_delete_driver. 868 */ 869 kobj_class_compile((kobj_class_t) driver); 870 871 /* 872 * Make sure the devclass which the driver is implementing exists. 873 */ 874 devclass_find_internal(driver->name, NULL, TRUE); 875 876 dl->driver = driver; 877 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 878 driver->refs++; /* XXX: kobj_mtx */ 879 880 /* 881 * Call BUS_DRIVER_ADDED for any existing busses in this class. 882 */ 883 for (i = 0; i < dc->maxunit; i++) 884 if (dc->devices[i]) 885 BUS_DRIVER_ADDED(dc->devices[i], driver); 886 887 bus_data_generation_update(); 888 return (0); 889 } 890 891 /** 892 * @brief Delete a device driver from a device class 893 * 894 * Delete a device driver from a devclass. This is normally called 895 * automatically by DRIVER_MODULE(). 896 * 897 * If the driver is currently attached to any devices, 898 * devclass_delete_driver() will first attempt to detach from each 899 * device. If one of the detach calls fails, the driver will not be 900 * deleted. 901 * 902 * @param dc the devclass to edit 903 * @param driver the driver to unregister 904 */ 905 int 906 devclass_delete_driver(devclass_t busclass, driver_t *driver) 907 { 908 devclass_t dc = devclass_find(driver->name); 909 driverlink_t dl; 910 device_t dev; 911 int i; 912 int error; 913 914 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 915 916 if (!dc) 917 return (0); 918 919 /* 920 * Find the link structure in the bus' list of drivers. 921 */ 922 TAILQ_FOREACH(dl, &busclass->drivers, link) { 923 if (dl->driver == driver) 924 break; 925 } 926 927 if (!dl) { 928 PDEBUG(("%s not found in %s list", driver->name, 929 busclass->name)); 930 return (ENOENT); 931 } 932 933 /* 934 * Disassociate from any devices. We iterate through all the 935 * devices in the devclass of the driver and detach any which are 936 * using the driver and which have a parent in the devclass which 937 * we are deleting from. 938 * 939 * Note that since a driver can be in multiple devclasses, we 940 * should not detach devices which are not children of devices in 941 * the affected devclass. 942 */ 943 for (i = 0; i < dc->maxunit; i++) { 944 if (dc->devices[i]) { 945 dev = dc->devices[i]; 946 if (dev->driver == driver && dev->parent && 947 dev->parent->devclass == busclass) { 948 if ((error = device_detach(dev)) != 0) 949 return (error); 950 device_set_driver(dev, NULL); 951 } 952 } 953 } 954 955 TAILQ_REMOVE(&busclass->drivers, dl, link); 956 free(dl, M_BUS); 957 958 /* XXX: kobj_mtx */ 959 driver->refs--; 960 if (driver->refs == 0) 961 kobj_class_free((kobj_class_t) driver); 962 963 bus_data_generation_update(); 964 return (0); 965 } 966 967 /** 968 * @brief Quiesces a set of device drivers from a device class 969 * 970 * Quiesce a device driver from a devclass. This is normally called 971 * automatically by DRIVER_MODULE(). 972 * 973 * If the driver is currently attached to any devices, 974 * devclass_quiesece_driver() will first attempt to quiesce each 975 * device. 976 * 977 * @param dc the devclass to edit 978 * @param driver the driver to unregister 979 */ 980 int 981 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 982 { 983 devclass_t dc = devclass_find(driver->name); 984 driverlink_t dl; 985 device_t dev; 986 int i; 987 int error; 988 989 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 990 991 if (!dc) 992 return (0); 993 994 /* 995 * Find the link structure in the bus' list of drivers. 996 */ 997 TAILQ_FOREACH(dl, &busclass->drivers, link) { 998 if (dl->driver == driver) 999 break; 1000 } 1001 1002 if (!dl) { 1003 PDEBUG(("%s not found in %s list", driver->name, 1004 busclass->name)); 1005 return (ENOENT); 1006 } 1007 1008 /* 1009 * Quiesce all devices. We iterate through all the devices in 1010 * the devclass of the driver and quiesce any which are using 1011 * the driver and which have a parent in the devclass which we 1012 * are quiescing. 1013 * 1014 * Note that since a driver can be in multiple devclasses, we 1015 * should not quiesce devices which are not children of 1016 * devices in the affected devclass. 1017 */ 1018 for (i = 0; i < dc->maxunit; i++) { 1019 if (dc->devices[i]) { 1020 dev = dc->devices[i]; 1021 if (dev->driver == driver && dev->parent && 1022 dev->parent->devclass == busclass) { 1023 if ((error = device_quiesce(dev)) != 0) 1024 return (error); 1025 } 1026 } 1027 } 1028 1029 return (0); 1030 } 1031 1032 /** 1033 * @internal 1034 */ 1035 static driverlink_t 1036 devclass_find_driver_internal(devclass_t dc, const char *classname) 1037 { 1038 driverlink_t dl; 1039 1040 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1041 1042 TAILQ_FOREACH(dl, &dc->drivers, link) { 1043 if (!strcmp(dl->driver->name, classname)) 1044 return (dl); 1045 } 1046 1047 PDEBUG(("not found")); 1048 return (NULL); 1049 } 1050 1051 /** 1052 * @brief Search a devclass for a driver 1053 * 1054 * This function searches the devclass's list of drivers and returns 1055 * the first driver whose name is @p classname or @c NULL if there is 1056 * no driver of that name. 1057 * 1058 * @param dc the devclass to search 1059 * @param classname the driver name to search for 1060 */ 1061 kobj_class_t 1062 devclass_find_driver(devclass_t dc, const char *classname) 1063 { 1064 driverlink_t dl; 1065 1066 dl = devclass_find_driver_internal(dc, classname); 1067 if (dl) 1068 return (dl->driver); 1069 return (NULL); 1070 } 1071 1072 /** 1073 * @brief Return the name of the devclass 1074 */ 1075 const char * 1076 devclass_get_name(devclass_t dc) 1077 { 1078 return (dc->name); 1079 } 1080 1081 /** 1082 * @brief Find a device given a unit number 1083 * 1084 * @param dc the devclass to search 1085 * @param unit the unit number to search for 1086 * 1087 * @returns the device with the given unit number or @c 1088 * NULL if there is no such device 1089 */ 1090 device_t 1091 devclass_get_device(devclass_t dc, int unit) 1092 { 1093 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1094 return (NULL); 1095 return (dc->devices[unit]); 1096 } 1097 1098 /** 1099 * @brief Find the softc field of a device given a unit number 1100 * 1101 * @param dc the devclass to search 1102 * @param unit the unit number to search for 1103 * 1104 * @returns the softc field of the device with the given 1105 * unit number or @c NULL if there is no such 1106 * device 1107 */ 1108 void * 1109 devclass_get_softc(devclass_t dc, int unit) 1110 { 1111 device_t dev; 1112 1113 dev = devclass_get_device(dc, unit); 1114 if (!dev) 1115 return (NULL); 1116 1117 return (device_get_softc(dev)); 1118 } 1119 1120 /** 1121 * @brief Get a list of devices in the devclass 1122 * 1123 * An array containing a list of all the devices in the given devclass 1124 * is allocated and returned in @p *devlistp. The number of devices 1125 * in the array is returned in @p *devcountp. The caller should free 1126 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1127 * 1128 * @param dc the devclass to examine 1129 * @param devlistp points at location for array pointer return 1130 * value 1131 * @param devcountp points at location for array size return value 1132 * 1133 * @retval 0 success 1134 * @retval ENOMEM the array allocation failed 1135 */ 1136 int 1137 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1138 { 1139 int count, i; 1140 device_t *list; 1141 1142 count = devclass_get_count(dc); 1143 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1144 if (!list) 1145 return (ENOMEM); 1146 1147 count = 0; 1148 for (i = 0; i < dc->maxunit; i++) { 1149 if (dc->devices[i]) { 1150 list[count] = dc->devices[i]; 1151 count++; 1152 } 1153 } 1154 1155 *devlistp = list; 1156 *devcountp = count; 1157 1158 return (0); 1159 } 1160 1161 /** 1162 * @brief Get a list of drivers in the devclass 1163 * 1164 * An array containing a list of pointers to all the drivers in the 1165 * given devclass is allocated and returned in @p *listp. The number 1166 * of drivers in the array is returned in @p *countp. The caller should 1167 * free the array using @c free(p, M_TEMP). 1168 * 1169 * @param dc the devclass to examine 1170 * @param listp gives location for array pointer return value 1171 * @param countp gives location for number of array elements 1172 * return value 1173 * 1174 * @retval 0 success 1175 * @retval ENOMEM the array allocation failed 1176 */ 1177 int 1178 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1179 { 1180 driverlink_t dl; 1181 driver_t **list; 1182 int count; 1183 1184 count = 0; 1185 TAILQ_FOREACH(dl, &dc->drivers, link) 1186 count++; 1187 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1188 if (list == NULL) 1189 return (ENOMEM); 1190 1191 count = 0; 1192 TAILQ_FOREACH(dl, &dc->drivers, link) { 1193 list[count] = dl->driver; 1194 count++; 1195 } 1196 *listp = list; 1197 *countp = count; 1198 1199 return (0); 1200 } 1201 1202 /** 1203 * @brief Get the number of devices in a devclass 1204 * 1205 * @param dc the devclass to examine 1206 */ 1207 int 1208 devclass_get_count(devclass_t dc) 1209 { 1210 int count, i; 1211 1212 count = 0; 1213 for (i = 0; i < dc->maxunit; i++) 1214 if (dc->devices[i]) 1215 count++; 1216 return (count); 1217 } 1218 1219 /** 1220 * @brief Get the maximum unit number used in a devclass 1221 * 1222 * Note that this is one greater than the highest currently-allocated 1223 * unit. 1224 * 1225 * @param dc the devclass to examine 1226 */ 1227 int 1228 devclass_get_maxunit(devclass_t dc) 1229 { 1230 return (dc->maxunit); 1231 } 1232 1233 /** 1234 * @brief Find a free unit number in a devclass 1235 * 1236 * This function searches for the first unused unit number greater 1237 * that or equal to @p unit. 1238 * 1239 * @param dc the devclass to examine 1240 * @param unit the first unit number to check 1241 */ 1242 int 1243 devclass_find_free_unit(devclass_t dc, int unit) 1244 { 1245 if (dc == NULL) 1246 return (unit); 1247 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1248 unit++; 1249 return (unit); 1250 } 1251 1252 /** 1253 * @brief Set the parent of a devclass 1254 * 1255 * The parent class is normally initialised automatically by 1256 * DRIVER_MODULE(). 1257 * 1258 * @param dc the devclass to edit 1259 * @param pdc the new parent devclass 1260 */ 1261 void 1262 devclass_set_parent(devclass_t dc, devclass_t pdc) 1263 { 1264 dc->parent = pdc; 1265 } 1266 1267 /** 1268 * @brief Get the parent of a devclass 1269 * 1270 * @param dc the devclass to examine 1271 */ 1272 devclass_t 1273 devclass_get_parent(devclass_t dc) 1274 { 1275 return (dc->parent); 1276 } 1277 1278 struct sysctl_ctx_list * 1279 devclass_get_sysctl_ctx(devclass_t dc) 1280 { 1281 return (&dc->sysctl_ctx); 1282 } 1283 1284 struct sysctl_oid * 1285 devclass_get_sysctl_tree(devclass_t dc) 1286 { 1287 return (dc->sysctl_tree); 1288 } 1289 1290 /** 1291 * @internal 1292 * @brief Allocate a unit number 1293 * 1294 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1295 * will do). The allocated unit number is returned in @p *unitp. 1296 1297 * @param dc the devclass to allocate from 1298 * @param unitp points at the location for the allocated unit 1299 * number 1300 * 1301 * @retval 0 success 1302 * @retval EEXIST the requested unit number is already allocated 1303 * @retval ENOMEM memory allocation failure 1304 */ 1305 static int 1306 devclass_alloc_unit(devclass_t dc, int *unitp) 1307 { 1308 int unit = *unitp; 1309 1310 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1311 1312 /* If we were given a wired unit number, check for existing device */ 1313 /* XXX imp XXX */ 1314 if (unit != -1) { 1315 if (unit >= 0 && unit < dc->maxunit && 1316 dc->devices[unit] != NULL) { 1317 if (bootverbose) 1318 printf("%s: %s%d already exists; skipping it\n", 1319 dc->name, dc->name, *unitp); 1320 return (EEXIST); 1321 } 1322 } else { 1323 /* Unwired device, find the next available slot for it */ 1324 unit = 0; 1325 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1326 unit++; 1327 } 1328 1329 /* 1330 * We've selected a unit beyond the length of the table, so let's 1331 * extend the table to make room for all units up to and including 1332 * this one. 1333 */ 1334 if (unit >= dc->maxunit) { 1335 device_t *newlist; 1336 int newsize; 1337 1338 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1339 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1340 if (!newlist) 1341 return (ENOMEM); 1342 bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit); 1343 bzero(newlist + dc->maxunit, 1344 sizeof(device_t) * (newsize - dc->maxunit)); 1345 if (dc->devices) 1346 free(dc->devices, M_BUS); 1347 dc->devices = newlist; 1348 dc->maxunit = newsize; 1349 } 1350 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1351 1352 *unitp = unit; 1353 return (0); 1354 } 1355 1356 /** 1357 * @internal 1358 * @brief Add a device to a devclass 1359 * 1360 * A unit number is allocated for the device (using the device's 1361 * preferred unit number if any) and the device is registered in the 1362 * devclass. This allows the device to be looked up by its unit 1363 * number, e.g. by decoding a dev_t minor number. 1364 * 1365 * @param dc the devclass to add to 1366 * @param dev the device to add 1367 * 1368 * @retval 0 success 1369 * @retval EEXIST the requested unit number is already allocated 1370 * @retval ENOMEM memory allocation failure 1371 */ 1372 static int 1373 devclass_add_device(devclass_t dc, device_t dev) 1374 { 1375 int buflen, error; 1376 1377 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1378 1379 buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit); 1380 if (buflen < 0) 1381 return (ENOMEM); 1382 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1383 if (!dev->nameunit) 1384 return (ENOMEM); 1385 1386 if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) { 1387 free(dev->nameunit, M_BUS); 1388 dev->nameunit = NULL; 1389 return (error); 1390 } 1391 dc->devices[dev->unit] = dev; 1392 dev->devclass = dc; 1393 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1394 1395 return (0); 1396 } 1397 1398 /** 1399 * @internal 1400 * @brief Delete a device from a devclass 1401 * 1402 * The device is removed from the devclass's device list and its unit 1403 * number is freed. 1404 1405 * @param dc the devclass to delete from 1406 * @param dev the device to delete 1407 * 1408 * @retval 0 success 1409 */ 1410 static int 1411 devclass_delete_device(devclass_t dc, device_t dev) 1412 { 1413 if (!dc || !dev) 1414 return (0); 1415 1416 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1417 1418 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1419 panic("devclass_delete_device: inconsistent device class"); 1420 dc->devices[dev->unit] = NULL; 1421 if (dev->flags & DF_WILDCARD) 1422 dev->unit = -1; 1423 dev->devclass = NULL; 1424 free(dev->nameunit, M_BUS); 1425 dev->nameunit = NULL; 1426 1427 return (0); 1428 } 1429 1430 /** 1431 * @internal 1432 * @brief Make a new device and add it as a child of @p parent 1433 * 1434 * @param parent the parent of the new device 1435 * @param name the devclass name of the new device or @c NULL 1436 * to leave the devclass unspecified 1437 * @parem unit the unit number of the new device of @c -1 to 1438 * leave the unit number unspecified 1439 * 1440 * @returns the new device 1441 */ 1442 static device_t 1443 make_device(device_t parent, const char *name, int unit) 1444 { 1445 device_t dev; 1446 devclass_t dc; 1447 1448 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1449 1450 if (name) { 1451 dc = devclass_find_internal(name, NULL, TRUE); 1452 if (!dc) { 1453 printf("make_device: can't find device class %s\n", 1454 name); 1455 return (NULL); 1456 } 1457 } else { 1458 dc = NULL; 1459 } 1460 1461 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1462 if (!dev) 1463 return (NULL); 1464 1465 dev->parent = parent; 1466 TAILQ_INIT(&dev->children); 1467 kobj_init((kobj_t) dev, &null_class); 1468 dev->driver = NULL; 1469 dev->devclass = NULL; 1470 dev->unit = unit; 1471 dev->nameunit = NULL; 1472 dev->desc = NULL; 1473 dev->busy = 0; 1474 dev->devflags = 0; 1475 dev->flags = DF_ENABLED; 1476 dev->order = 0; 1477 if (unit == -1) 1478 dev->flags |= DF_WILDCARD; 1479 if (name) { 1480 dev->flags |= DF_FIXEDCLASS; 1481 if (devclass_add_device(dc, dev)) { 1482 kobj_delete((kobj_t) dev, M_BUS); 1483 return (NULL); 1484 } 1485 } 1486 dev->ivars = NULL; 1487 dev->softc = NULL; 1488 1489 dev->state = DS_NOTPRESENT; 1490 1491 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1492 bus_data_generation_update(); 1493 1494 return (dev); 1495 } 1496 1497 /** 1498 * @internal 1499 * @brief Print a description of a device. 1500 */ 1501 static int 1502 device_print_child(device_t dev, device_t child) 1503 { 1504 int retval = 0; 1505 1506 if (device_is_alive(child)) 1507 retval += BUS_PRINT_CHILD(dev, child); 1508 else 1509 retval += device_printf(child, " not found\n"); 1510 1511 return (retval); 1512 } 1513 1514 /** 1515 * @brief Create a new device 1516 * 1517 * This creates a new device and adds it as a child of an existing 1518 * parent device. The new device will be added after the last existing 1519 * child with order zero. 1520 * 1521 * @param dev the device which will be the parent of the 1522 * new child device 1523 * @param name devclass name for new device or @c NULL if not 1524 * specified 1525 * @param unit unit number for new device or @c -1 if not 1526 * specified 1527 * 1528 * @returns the new device 1529 */ 1530 device_t 1531 device_add_child(device_t dev, const char *name, int unit) 1532 { 1533 return (device_add_child_ordered(dev, 0, name, unit)); 1534 } 1535 1536 /** 1537 * @brief Create a new device 1538 * 1539 * This creates a new device and adds it as a child of an existing 1540 * parent device. The new device will be added after the last existing 1541 * child with the same order. 1542 * 1543 * @param dev the device which will be the parent of the 1544 * new child device 1545 * @param order a value which is used to partially sort the 1546 * children of @p dev - devices created using 1547 * lower values of @p order appear first in @p 1548 * dev's list of children 1549 * @param name devclass name for new device or @c NULL if not 1550 * specified 1551 * @param unit unit number for new device or @c -1 if not 1552 * specified 1553 * 1554 * @returns the new device 1555 */ 1556 device_t 1557 device_add_child_ordered(device_t dev, int order, const char *name, int unit) 1558 { 1559 device_t child; 1560 device_t place; 1561 1562 PDEBUG(("%s at %s with order %d as unit %d", 1563 name, DEVICENAME(dev), order, unit)); 1564 1565 child = make_device(dev, name, unit); 1566 if (child == NULL) 1567 return (child); 1568 child->order = order; 1569 1570 TAILQ_FOREACH(place, &dev->children, link) { 1571 if (place->order > order) 1572 break; 1573 } 1574 1575 if (place) { 1576 /* 1577 * The device 'place' is the first device whose order is 1578 * greater than the new child. 1579 */ 1580 TAILQ_INSERT_BEFORE(place, child, link); 1581 } else { 1582 /* 1583 * The new child's order is greater or equal to the order of 1584 * any existing device. Add the child to the tail of the list. 1585 */ 1586 TAILQ_INSERT_TAIL(&dev->children, child, link); 1587 } 1588 1589 bus_data_generation_update(); 1590 return (child); 1591 } 1592 1593 /** 1594 * @brief Delete a device 1595 * 1596 * This function deletes a device along with all of its children. If 1597 * the device currently has a driver attached to it, the device is 1598 * detached first using device_detach(). 1599 * 1600 * @param dev the parent device 1601 * @param child the device to delete 1602 * 1603 * @retval 0 success 1604 * @retval non-zero a unit error code describing the error 1605 */ 1606 int 1607 device_delete_child(device_t dev, device_t child) 1608 { 1609 int error; 1610 device_t grandchild; 1611 1612 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1613 1614 /* remove children first */ 1615 while ( (grandchild = TAILQ_FIRST(&child->children)) ) { 1616 error = device_delete_child(child, grandchild); 1617 if (error) 1618 return (error); 1619 } 1620 1621 if ((error = device_detach(child)) != 0) 1622 return (error); 1623 if (child->devclass) 1624 devclass_delete_device(child->devclass, child); 1625 TAILQ_REMOVE(&dev->children, child, link); 1626 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1627 kobj_delete((kobj_t) child, M_BUS); 1628 1629 bus_data_generation_update(); 1630 return (0); 1631 } 1632 1633 /** 1634 * @brief Find a device given a unit number 1635 * 1636 * This is similar to devclass_get_devices() but only searches for 1637 * devices which have @p dev as a parent. 1638 * 1639 * @param dev the parent device to search 1640 * @param unit the unit number to search for. If the unit is -1, 1641 * return the first child of @p dev which has name 1642 * @p classname (that is, the one with the lowest unit.) 1643 * 1644 * @returns the device with the given unit number or @c 1645 * NULL if there is no such device 1646 */ 1647 device_t 1648 device_find_child(device_t dev, const char *classname, int unit) 1649 { 1650 devclass_t dc; 1651 device_t child; 1652 1653 dc = devclass_find(classname); 1654 if (!dc) 1655 return (NULL); 1656 1657 if (unit != -1) { 1658 child = devclass_get_device(dc, unit); 1659 if (child && child->parent == dev) 1660 return (child); 1661 } else { 1662 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1663 child = devclass_get_device(dc, unit); 1664 if (child && child->parent == dev) 1665 return (child); 1666 } 1667 } 1668 return (NULL); 1669 } 1670 1671 /** 1672 * @internal 1673 */ 1674 static driverlink_t 1675 first_matching_driver(devclass_t dc, device_t dev) 1676 { 1677 if (dev->devclass) 1678 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1679 return (TAILQ_FIRST(&dc->drivers)); 1680 } 1681 1682 /** 1683 * @internal 1684 */ 1685 static driverlink_t 1686 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1687 { 1688 if (dev->devclass) { 1689 driverlink_t dl; 1690 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1691 if (!strcmp(dev->devclass->name, dl->driver->name)) 1692 return (dl); 1693 return (NULL); 1694 } 1695 return (TAILQ_NEXT(last, link)); 1696 } 1697 1698 /** 1699 * @internal 1700 */ 1701 int 1702 device_probe_child(device_t dev, device_t child) 1703 { 1704 devclass_t dc; 1705 driverlink_t best = NULL; 1706 driverlink_t dl; 1707 int result, pri = 0; 1708 int hasclass = (child->devclass != 0); 1709 1710 GIANT_REQUIRED; 1711 1712 dc = dev->devclass; 1713 if (!dc) 1714 panic("device_probe_child: parent device has no devclass"); 1715 1716 /* 1717 * If the state is already probed, then return. However, don't 1718 * return if we can rebid this object. 1719 */ 1720 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 1721 return (0); 1722 1723 for (; dc; dc = dc->parent) { 1724 for (dl = first_matching_driver(dc, child); 1725 dl; 1726 dl = next_matching_driver(dc, child, dl)) { 1727 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1728 device_set_driver(child, dl->driver); 1729 if (!hasclass) 1730 device_set_devclass(child, dl->driver->name); 1731 1732 /* Fetch any flags for the device before probing. */ 1733 resource_int_value(dl->driver->name, child->unit, 1734 "flags", &child->devflags); 1735 1736 result = DEVICE_PROBE(child); 1737 1738 /* Reset flags and devclass before the next probe. */ 1739 child->devflags = 0; 1740 if (!hasclass) 1741 device_set_devclass(child, NULL); 1742 1743 /* 1744 * If the driver returns SUCCESS, there can be 1745 * no higher match for this device. 1746 */ 1747 if (result == 0) { 1748 best = dl; 1749 pri = 0; 1750 break; 1751 } 1752 1753 /* 1754 * The driver returned an error so it 1755 * certainly doesn't match. 1756 */ 1757 if (result > 0) { 1758 device_set_driver(child, NULL); 1759 continue; 1760 } 1761 1762 /* 1763 * A priority lower than SUCCESS, remember the 1764 * best matching driver. Initialise the value 1765 * of pri for the first match. 1766 */ 1767 if (best == NULL || result > pri) { 1768 best = dl; 1769 pri = result; 1770 continue; 1771 } 1772 } 1773 /* 1774 * If we have an unambiguous match in this devclass, 1775 * don't look in the parent. 1776 */ 1777 if (best && pri == 0) 1778 break; 1779 } 1780 1781 /* 1782 * If we found a driver, change state and initialise the devclass. 1783 */ 1784 /* XXX What happens if we rebid and got no best? */ 1785 if (best) { 1786 /* 1787 * If this device was atached, and we were asked to 1788 * rescan, and it is a different driver, then we have 1789 * to detach the old driver and reattach this new one. 1790 * Note, we don't have to check for DF_REBID here 1791 * because if the state is > DS_ALIVE, we know it must 1792 * be. 1793 * 1794 * This assumes that all DF_REBID drivers can have 1795 * their probe routine called at any time and that 1796 * they are idempotent as well as completely benign in 1797 * normal operations. 1798 * 1799 * We also have to make sure that the detach 1800 * succeeded, otherwise we fail the operation (or 1801 * maybe it should just fail silently? I'm torn). 1802 */ 1803 if (child->state > DS_ALIVE && best->driver != child->driver) 1804 if ((result = device_detach(dev)) != 0) 1805 return (result); 1806 1807 /* Set the winning driver, devclass, and flags. */ 1808 if (!child->devclass) 1809 device_set_devclass(child, best->driver->name); 1810 device_set_driver(child, best->driver); 1811 resource_int_value(best->driver->name, child->unit, 1812 "flags", &child->devflags); 1813 1814 if (pri < 0) { 1815 /* 1816 * A bit bogus. Call the probe method again to make 1817 * sure that we have the right description. 1818 */ 1819 DEVICE_PROBE(child); 1820 #if 0 1821 child->flags |= DF_REBID; 1822 #endif 1823 } else 1824 child->flags &= ~DF_REBID; 1825 child->state = DS_ALIVE; 1826 1827 bus_data_generation_update(); 1828 return (0); 1829 } 1830 1831 return (ENXIO); 1832 } 1833 1834 /** 1835 * @brief Return the parent of a device 1836 */ 1837 device_t 1838 device_get_parent(device_t dev) 1839 { 1840 return (dev->parent); 1841 } 1842 1843 /** 1844 * @brief Get a list of children of a device 1845 * 1846 * An array containing a list of all the children of the given device 1847 * is allocated and returned in @p *devlistp. The number of devices 1848 * in the array is returned in @p *devcountp. The caller should free 1849 * the array using @c free(p, M_TEMP). 1850 * 1851 * @param dev the device to examine 1852 * @param devlistp points at location for array pointer return 1853 * value 1854 * @param devcountp points at location for array size return value 1855 * 1856 * @retval 0 success 1857 * @retval ENOMEM the array allocation failed 1858 */ 1859 int 1860 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1861 { 1862 int count; 1863 device_t child; 1864 device_t *list; 1865 1866 count = 0; 1867 TAILQ_FOREACH(child, &dev->children, link) { 1868 count++; 1869 } 1870 1871 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1872 if (!list) 1873 return (ENOMEM); 1874 1875 count = 0; 1876 TAILQ_FOREACH(child, &dev->children, link) { 1877 list[count] = child; 1878 count++; 1879 } 1880 1881 *devlistp = list; 1882 *devcountp = count; 1883 1884 return (0); 1885 } 1886 1887 /** 1888 * @brief Return the current driver for the device or @c NULL if there 1889 * is no driver currently attached 1890 */ 1891 driver_t * 1892 device_get_driver(device_t dev) 1893 { 1894 return (dev->driver); 1895 } 1896 1897 /** 1898 * @brief Return the current devclass for the device or @c NULL if 1899 * there is none. 1900 */ 1901 devclass_t 1902 device_get_devclass(device_t dev) 1903 { 1904 return (dev->devclass); 1905 } 1906 1907 /** 1908 * @brief Return the name of the device's devclass or @c NULL if there 1909 * is none. 1910 */ 1911 const char * 1912 device_get_name(device_t dev) 1913 { 1914 if (dev != NULL && dev->devclass) 1915 return (devclass_get_name(dev->devclass)); 1916 return (NULL); 1917 } 1918 1919 /** 1920 * @brief Return a string containing the device's devclass name 1921 * followed by an ascii representation of the device's unit number 1922 * (e.g. @c "foo2"). 1923 */ 1924 const char * 1925 device_get_nameunit(device_t dev) 1926 { 1927 return (dev->nameunit); 1928 } 1929 1930 /** 1931 * @brief Return the device's unit number. 1932 */ 1933 int 1934 device_get_unit(device_t dev) 1935 { 1936 return (dev->unit); 1937 } 1938 1939 /** 1940 * @brief Return the device's description string 1941 */ 1942 const char * 1943 device_get_desc(device_t dev) 1944 { 1945 return (dev->desc); 1946 } 1947 1948 /** 1949 * @brief Return the device's flags 1950 */ 1951 u_int32_t 1952 device_get_flags(device_t dev) 1953 { 1954 return (dev->devflags); 1955 } 1956 1957 struct sysctl_ctx_list * 1958 device_get_sysctl_ctx(device_t dev) 1959 { 1960 return (&dev->sysctl_ctx); 1961 } 1962 1963 struct sysctl_oid * 1964 device_get_sysctl_tree(device_t dev) 1965 { 1966 return (dev->sysctl_tree); 1967 } 1968 1969 /** 1970 * @brief Print the name of the device followed by a colon and a space 1971 * 1972 * @returns the number of characters printed 1973 */ 1974 int 1975 device_print_prettyname(device_t dev) 1976 { 1977 const char *name = device_get_name(dev); 1978 1979 if (name == 0) 1980 return (printf("unknown: ")); 1981 return (printf("%s%d: ", name, device_get_unit(dev))); 1982 } 1983 1984 /** 1985 * @brief Print the name of the device followed by a colon, a space 1986 * and the result of calling vprintf() with the value of @p fmt and 1987 * the following arguments. 1988 * 1989 * @returns the number of characters printed 1990 */ 1991 int 1992 device_printf(device_t dev, const char * fmt, ...) 1993 { 1994 va_list ap; 1995 int retval; 1996 1997 retval = device_print_prettyname(dev); 1998 va_start(ap, fmt); 1999 retval += vprintf(fmt, ap); 2000 va_end(ap); 2001 return (retval); 2002 } 2003 2004 /** 2005 * @internal 2006 */ 2007 static void 2008 device_set_desc_internal(device_t dev, const char* desc, int copy) 2009 { 2010 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2011 free(dev->desc, M_BUS); 2012 dev->flags &= ~DF_DESCMALLOCED; 2013 dev->desc = NULL; 2014 } 2015 2016 if (copy && desc) { 2017 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2018 if (dev->desc) { 2019 strcpy(dev->desc, desc); 2020 dev->flags |= DF_DESCMALLOCED; 2021 } 2022 } else { 2023 /* Avoid a -Wcast-qual warning */ 2024 dev->desc = (char *)(uintptr_t) desc; 2025 } 2026 2027 bus_data_generation_update(); 2028 } 2029 2030 /** 2031 * @brief Set the device's description 2032 * 2033 * The value of @c desc should be a string constant that will not 2034 * change (at least until the description is changed in a subsequent 2035 * call to device_set_desc() or device_set_desc_copy()). 2036 */ 2037 void 2038 device_set_desc(device_t dev, const char* desc) 2039 { 2040 device_set_desc_internal(dev, desc, FALSE); 2041 } 2042 2043 /** 2044 * @brief Set the device's description 2045 * 2046 * The string pointed to by @c desc is copied. Use this function if 2047 * the device description is generated, (e.g. with sprintf()). 2048 */ 2049 void 2050 device_set_desc_copy(device_t dev, const char* desc) 2051 { 2052 device_set_desc_internal(dev, desc, TRUE); 2053 } 2054 2055 /** 2056 * @brief Set the device's flags 2057 */ 2058 void 2059 device_set_flags(device_t dev, u_int32_t flags) 2060 { 2061 dev->devflags = flags; 2062 } 2063 2064 /** 2065 * @brief Return the device's softc field 2066 * 2067 * The softc is allocated and zeroed when a driver is attached, based 2068 * on the size field of the driver. 2069 */ 2070 void * 2071 device_get_softc(device_t dev) 2072 { 2073 return (dev->softc); 2074 } 2075 2076 /** 2077 * @brief Set the device's softc field 2078 * 2079 * Most drivers do not need to use this since the softc is allocated 2080 * automatically when the driver is attached. 2081 */ 2082 void 2083 device_set_softc(device_t dev, void *softc) 2084 { 2085 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2086 free(dev->softc, M_BUS_SC); 2087 dev->softc = softc; 2088 if (dev->softc) 2089 dev->flags |= DF_EXTERNALSOFTC; 2090 else 2091 dev->flags &= ~DF_EXTERNALSOFTC; 2092 } 2093 2094 /** 2095 * @brief Get the device's ivars field 2096 * 2097 * The ivars field is used by the parent device to store per-device 2098 * state (e.g. the physical location of the device or a list of 2099 * resources). 2100 */ 2101 void * 2102 device_get_ivars(device_t dev) 2103 { 2104 2105 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2106 return (dev->ivars); 2107 } 2108 2109 /** 2110 * @brief Set the device's ivars field 2111 */ 2112 void 2113 device_set_ivars(device_t dev, void * ivars) 2114 { 2115 2116 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2117 dev->ivars = ivars; 2118 } 2119 2120 /** 2121 * @brief Return the device's state 2122 */ 2123 device_state_t 2124 device_get_state(device_t dev) 2125 { 2126 return (dev->state); 2127 } 2128 2129 /** 2130 * @brief Set the DF_ENABLED flag for the device 2131 */ 2132 void 2133 device_enable(device_t dev) 2134 { 2135 dev->flags |= DF_ENABLED; 2136 } 2137 2138 /** 2139 * @brief Clear the DF_ENABLED flag for the device 2140 */ 2141 void 2142 device_disable(device_t dev) 2143 { 2144 dev->flags &= ~DF_ENABLED; 2145 } 2146 2147 /** 2148 * @brief Increment the busy counter for the device 2149 */ 2150 void 2151 device_busy(device_t dev) 2152 { 2153 if (dev->state < DS_ATTACHED) 2154 panic("device_busy: called for unattached device"); 2155 if (dev->busy == 0 && dev->parent) 2156 device_busy(dev->parent); 2157 dev->busy++; 2158 dev->state = DS_BUSY; 2159 } 2160 2161 /** 2162 * @brief Decrement the busy counter for the device 2163 */ 2164 void 2165 device_unbusy(device_t dev) 2166 { 2167 if (dev->state != DS_BUSY) 2168 panic("device_unbusy: called for non-busy device %s", 2169 device_get_nameunit(dev)); 2170 dev->busy--; 2171 if (dev->busy == 0) { 2172 if (dev->parent) 2173 device_unbusy(dev->parent); 2174 dev->state = DS_ATTACHED; 2175 } 2176 } 2177 2178 /** 2179 * @brief Set the DF_QUIET flag for the device 2180 */ 2181 void 2182 device_quiet(device_t dev) 2183 { 2184 dev->flags |= DF_QUIET; 2185 } 2186 2187 /** 2188 * @brief Clear the DF_QUIET flag for the device 2189 */ 2190 void 2191 device_verbose(device_t dev) 2192 { 2193 dev->flags &= ~DF_QUIET; 2194 } 2195 2196 /** 2197 * @brief Return non-zero if the DF_QUIET flag is set on the device 2198 */ 2199 int 2200 device_is_quiet(device_t dev) 2201 { 2202 return ((dev->flags & DF_QUIET) != 0); 2203 } 2204 2205 /** 2206 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2207 */ 2208 int 2209 device_is_enabled(device_t dev) 2210 { 2211 return ((dev->flags & DF_ENABLED) != 0); 2212 } 2213 2214 /** 2215 * @brief Return non-zero if the device was successfully probed 2216 */ 2217 int 2218 device_is_alive(device_t dev) 2219 { 2220 return (dev->state >= DS_ALIVE); 2221 } 2222 2223 /** 2224 * @brief Return non-zero if the device currently has a driver 2225 * attached to it 2226 */ 2227 int 2228 device_is_attached(device_t dev) 2229 { 2230 return (dev->state >= DS_ATTACHED); 2231 } 2232 2233 /** 2234 * @brief Set the devclass of a device 2235 * @see devclass_add_device(). 2236 */ 2237 int 2238 device_set_devclass(device_t dev, const char *classname) 2239 { 2240 devclass_t dc; 2241 int error; 2242 2243 if (!classname) { 2244 if (dev->devclass) 2245 devclass_delete_device(dev->devclass, dev); 2246 return (0); 2247 } 2248 2249 if (dev->devclass) { 2250 printf("device_set_devclass: device class already set\n"); 2251 return (EINVAL); 2252 } 2253 2254 dc = devclass_find_internal(classname, NULL, TRUE); 2255 if (!dc) 2256 return (ENOMEM); 2257 2258 error = devclass_add_device(dc, dev); 2259 2260 bus_data_generation_update(); 2261 return (error); 2262 } 2263 2264 /** 2265 * @brief Set the driver of a device 2266 * 2267 * @retval 0 success 2268 * @retval EBUSY the device already has a driver attached 2269 * @retval ENOMEM a memory allocation failure occurred 2270 */ 2271 int 2272 device_set_driver(device_t dev, driver_t *driver) 2273 { 2274 if (dev->state >= DS_ATTACHED) 2275 return (EBUSY); 2276 2277 if (dev->driver == driver) 2278 return (0); 2279 2280 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2281 free(dev->softc, M_BUS_SC); 2282 dev->softc = NULL; 2283 } 2284 kobj_delete((kobj_t) dev, NULL); 2285 dev->driver = driver; 2286 if (driver) { 2287 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2288 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2289 dev->softc = malloc(driver->size, M_BUS_SC, 2290 M_NOWAIT | M_ZERO); 2291 if (!dev->softc) { 2292 kobj_delete((kobj_t) dev, NULL); 2293 kobj_init((kobj_t) dev, &null_class); 2294 dev->driver = NULL; 2295 return (ENOMEM); 2296 } 2297 } 2298 } else { 2299 kobj_init((kobj_t) dev, &null_class); 2300 } 2301 2302 bus_data_generation_update(); 2303 return (0); 2304 } 2305 2306 /** 2307 * @brief Probe a device and attach a driver if possible 2308 * 2309 * This function is the core of the device autoconfiguration 2310 * system. Its purpose is to select a suitable driver for a device and 2311 * then call that driver to initialise the hardware appropriately. The 2312 * driver is selected by calling the DEVICE_PROBE() method of a set of 2313 * candidate drivers and then choosing the driver which returned the 2314 * best value. This driver is then attached to the device using 2315 * device_attach(). 2316 * 2317 * The set of suitable drivers is taken from the list of drivers in 2318 * the parent device's devclass. If the device was originally created 2319 * with a specific class name (see device_add_child()), only drivers 2320 * with that name are probed, otherwise all drivers in the devclass 2321 * are probed. If no drivers return successful probe values in the 2322 * parent devclass, the search continues in the parent of that 2323 * devclass (see devclass_get_parent()) if any. 2324 * 2325 * @param dev the device to initialise 2326 * 2327 * @retval 0 success 2328 * @retval ENXIO no driver was found 2329 * @retval ENOMEM memory allocation failure 2330 * @retval non-zero some other unix error code 2331 */ 2332 int 2333 device_probe_and_attach(device_t dev) 2334 { 2335 int error; 2336 2337 GIANT_REQUIRED; 2338 2339 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2340 return (0); 2341 2342 if (!(dev->flags & DF_ENABLED)) { 2343 if (bootverbose && device_get_name(dev) != NULL) { 2344 device_print_prettyname(dev); 2345 printf("not probed (disabled)\n"); 2346 } 2347 return (0); 2348 } 2349 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2350 if (!(dev->flags & DF_DONENOMATCH)) { 2351 BUS_PROBE_NOMATCH(dev->parent, dev); 2352 devnomatch(dev); 2353 dev->flags |= DF_DONENOMATCH; 2354 } 2355 return (error); 2356 } 2357 error = device_attach(dev); 2358 2359 return (error); 2360 } 2361 2362 /** 2363 * @brief Attach a device driver to a device 2364 * 2365 * This function is a wrapper around the DEVICE_ATTACH() driver 2366 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2367 * device's sysctl tree, optionally prints a description of the device 2368 * and queues a notification event for user-based device management 2369 * services. 2370 * 2371 * Normally this function is only called internally from 2372 * device_probe_and_attach(). 2373 * 2374 * @param dev the device to initialise 2375 * 2376 * @retval 0 success 2377 * @retval ENXIO no driver was found 2378 * @retval ENOMEM memory allocation failure 2379 * @retval non-zero some other unix error code 2380 */ 2381 int 2382 device_attach(device_t dev) 2383 { 2384 int error; 2385 2386 device_sysctl_init(dev); 2387 if (!device_is_quiet(dev)) 2388 device_print_child(dev->parent, dev); 2389 if ((error = DEVICE_ATTACH(dev)) != 0) { 2390 printf("device_attach: %s%d attach returned %d\n", 2391 dev->driver->name, dev->unit, error); 2392 /* Unset the class; set in device_probe_child */ 2393 if (dev->devclass == NULL) 2394 device_set_devclass(dev, NULL); 2395 device_set_driver(dev, NULL); 2396 device_sysctl_fini(dev); 2397 dev->state = DS_NOTPRESENT; 2398 return (error); 2399 } 2400 device_sysctl_update(dev); 2401 dev->state = DS_ATTACHED; 2402 devadded(dev); 2403 return (0); 2404 } 2405 2406 /** 2407 * @brief Detach a driver from a device 2408 * 2409 * This function is a wrapper around the DEVICE_DETACH() driver 2410 * method. If the call to DEVICE_DETACH() succeeds, it calls 2411 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2412 * notification event for user-based device management services and 2413 * cleans up the device's sysctl tree. 2414 * 2415 * @param dev the device to un-initialise 2416 * 2417 * @retval 0 success 2418 * @retval ENXIO no driver was found 2419 * @retval ENOMEM memory allocation failure 2420 * @retval non-zero some other unix error code 2421 */ 2422 int 2423 device_detach(device_t dev) 2424 { 2425 int error; 2426 2427 GIANT_REQUIRED; 2428 2429 PDEBUG(("%s", DEVICENAME(dev))); 2430 if (dev->state == DS_BUSY) 2431 return (EBUSY); 2432 if (dev->state != DS_ATTACHED) 2433 return (0); 2434 2435 if ((error = DEVICE_DETACH(dev)) != 0) 2436 return (error); 2437 devremoved(dev); 2438 device_printf(dev, "detached\n"); 2439 if (dev->parent) 2440 BUS_CHILD_DETACHED(dev->parent, dev); 2441 2442 if (!(dev->flags & DF_FIXEDCLASS)) 2443 devclass_delete_device(dev->devclass, dev); 2444 2445 dev->state = DS_NOTPRESENT; 2446 device_set_driver(dev, NULL); 2447 device_set_desc(dev, NULL); 2448 device_sysctl_fini(dev); 2449 2450 return (0); 2451 } 2452 2453 /** 2454 * @brief Tells a driver to quiesce itself. 2455 * 2456 * This function is a wrapper around the DEVICE_QUIESCE() driver 2457 * method. If the call to DEVICE_QUIESCE() succeeds. 2458 * 2459 * @param dev the device to quiesce 2460 * 2461 * @retval 0 success 2462 * @retval ENXIO no driver was found 2463 * @retval ENOMEM memory allocation failure 2464 * @retval non-zero some other unix error code 2465 */ 2466 int 2467 device_quiesce(device_t dev) 2468 { 2469 2470 PDEBUG(("%s", DEVICENAME(dev))); 2471 if (dev->state == DS_BUSY) 2472 return (EBUSY); 2473 if (dev->state != DS_ATTACHED) 2474 return (0); 2475 2476 return (DEVICE_QUIESCE(dev)); 2477 } 2478 2479 /** 2480 * @brief Notify a device of system shutdown 2481 * 2482 * This function calls the DEVICE_SHUTDOWN() driver method if the 2483 * device currently has an attached driver. 2484 * 2485 * @returns the value returned by DEVICE_SHUTDOWN() 2486 */ 2487 int 2488 device_shutdown(device_t dev) 2489 { 2490 if (dev->state < DS_ATTACHED) 2491 return (0); 2492 return (DEVICE_SHUTDOWN(dev)); 2493 } 2494 2495 /** 2496 * @brief Set the unit number of a device 2497 * 2498 * This function can be used to override the unit number used for a 2499 * device (e.g. to wire a device to a pre-configured unit number). 2500 */ 2501 int 2502 device_set_unit(device_t dev, int unit) 2503 { 2504 devclass_t dc; 2505 int err; 2506 2507 dc = device_get_devclass(dev); 2508 if (unit < dc->maxunit && dc->devices[unit]) 2509 return (EBUSY); 2510 err = devclass_delete_device(dc, dev); 2511 if (err) 2512 return (err); 2513 dev->unit = unit; 2514 err = devclass_add_device(dc, dev); 2515 if (err) 2516 return (err); 2517 2518 bus_data_generation_update(); 2519 return (0); 2520 } 2521 2522 /*======================================*/ 2523 /* 2524 * Some useful method implementations to make life easier for bus drivers. 2525 */ 2526 2527 /** 2528 * @brief Initialise a resource list. 2529 * 2530 * @param rl the resource list to initialise 2531 */ 2532 void 2533 resource_list_init(struct resource_list *rl) 2534 { 2535 STAILQ_INIT(rl); 2536 } 2537 2538 /** 2539 * @brief Reclaim memory used by a resource list. 2540 * 2541 * This function frees the memory for all resource entries on the list 2542 * (if any). 2543 * 2544 * @param rl the resource list to free 2545 */ 2546 void 2547 resource_list_free(struct resource_list *rl) 2548 { 2549 struct resource_list_entry *rle; 2550 2551 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2552 if (rle->res) 2553 panic("resource_list_free: resource entry is busy"); 2554 STAILQ_REMOVE_HEAD(rl, link); 2555 free(rle, M_BUS); 2556 } 2557 } 2558 2559 /** 2560 * @brief Add a resource entry. 2561 * 2562 * This function adds a resource entry using the given @p type, @p 2563 * start, @p end and @p count values. A rid value is chosen by 2564 * searching sequentially for the first unused rid starting at zero. 2565 * 2566 * @param rl the resource list to edit 2567 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2568 * @param start the start address of the resource 2569 * @param end the end address of the resource 2570 * @param count XXX end-start+1 2571 */ 2572 int 2573 resource_list_add_next(struct resource_list *rl, int type, u_long start, 2574 u_long end, u_long count) 2575 { 2576 int rid; 2577 2578 rid = 0; 2579 while (resource_list_find(rl, type, rid) != NULL) 2580 rid++; 2581 resource_list_add(rl, type, rid, start, end, count); 2582 return (rid); 2583 } 2584 2585 /** 2586 * @brief Add or modify a resource entry. 2587 * 2588 * If an existing entry exists with the same type and rid, it will be 2589 * modified using the given values of @p start, @p end and @p 2590 * count. If no entry exists, a new one will be created using the 2591 * given values. The resource list entry that matches is then returned. 2592 * 2593 * @param rl the resource list to edit 2594 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2595 * @param rid the resource identifier 2596 * @param start the start address of the resource 2597 * @param end the end address of the resource 2598 * @param count XXX end-start+1 2599 */ 2600 struct resource_list_entry * 2601 resource_list_add(struct resource_list *rl, int type, int rid, 2602 u_long start, u_long end, u_long count) 2603 { 2604 struct resource_list_entry *rle; 2605 2606 rle = resource_list_find(rl, type, rid); 2607 if (!rle) { 2608 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2609 M_NOWAIT); 2610 if (!rle) 2611 panic("resource_list_add: can't record entry"); 2612 STAILQ_INSERT_TAIL(rl, rle, link); 2613 rle->type = type; 2614 rle->rid = rid; 2615 rle->res = NULL; 2616 } 2617 2618 if (rle->res) 2619 panic("resource_list_add: resource entry is busy"); 2620 2621 rle->start = start; 2622 rle->end = end; 2623 rle->count = count; 2624 return (rle); 2625 } 2626 2627 /** 2628 * @brief Find a resource entry by type and rid. 2629 * 2630 * @param rl the resource list to search 2631 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2632 * @param rid the resource identifier 2633 * 2634 * @returns the resource entry pointer or NULL if there is no such 2635 * entry. 2636 */ 2637 struct resource_list_entry * 2638 resource_list_find(struct resource_list *rl, int type, int rid) 2639 { 2640 struct resource_list_entry *rle; 2641 2642 STAILQ_FOREACH(rle, rl, link) { 2643 if (rle->type == type && rle->rid == rid) 2644 return (rle); 2645 } 2646 return (NULL); 2647 } 2648 2649 /** 2650 * @brief Delete a resource entry. 2651 * 2652 * @param rl the resource list to edit 2653 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2654 * @param rid the resource identifier 2655 */ 2656 void 2657 resource_list_delete(struct resource_list *rl, int type, int rid) 2658 { 2659 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2660 2661 if (rle) { 2662 if (rle->res != NULL) 2663 panic("resource_list_delete: resource has not been released"); 2664 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 2665 free(rle, M_BUS); 2666 } 2667 } 2668 2669 /** 2670 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 2671 * 2672 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 2673 * and passing the allocation up to the parent of @p bus. This assumes 2674 * that the first entry of @c device_get_ivars(child) is a struct 2675 * resource_list. This also handles 'passthrough' allocations where a 2676 * child is a remote descendant of bus by passing the allocation up to 2677 * the parent of bus. 2678 * 2679 * Typically, a bus driver would store a list of child resources 2680 * somewhere in the child device's ivars (see device_get_ivars()) and 2681 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 2682 * then call resource_list_alloc() to perform the allocation. 2683 * 2684 * @param rl the resource list to allocate from 2685 * @param bus the parent device of @p child 2686 * @param child the device which is requesting an allocation 2687 * @param type the type of resource to allocate 2688 * @param rid a pointer to the resource identifier 2689 * @param start hint at the start of the resource range - pass 2690 * @c 0UL for any start address 2691 * @param end hint at the end of the resource range - pass 2692 * @c ~0UL for any end address 2693 * @param count hint at the size of range required - pass @c 1 2694 * for any size 2695 * @param flags any extra flags to control the resource 2696 * allocation - see @c RF_XXX flags in 2697 * <sys/rman.h> for details 2698 * 2699 * @returns the resource which was allocated or @c NULL if no 2700 * resource could be allocated 2701 */ 2702 struct resource * 2703 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 2704 int type, int *rid, u_long start, u_long end, u_long count, u_int flags) 2705 { 2706 struct resource_list_entry *rle = NULL; 2707 int passthrough = (device_get_parent(child) != bus); 2708 int isdefault = (start == 0UL && end == ~0UL); 2709 2710 if (passthrough) { 2711 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2712 type, rid, start, end, count, flags)); 2713 } 2714 2715 rle = resource_list_find(rl, type, *rid); 2716 2717 if (!rle) 2718 return (NULL); /* no resource of that type/rid */ 2719 2720 if (rle->res) 2721 panic("resource_list_alloc: resource entry is busy"); 2722 2723 if (isdefault) { 2724 start = rle->start; 2725 count = ulmax(count, rle->count); 2726 end = ulmax(rle->end, start + count - 1); 2727 } 2728 2729 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2730 type, rid, start, end, count, flags); 2731 2732 /* 2733 * Record the new range. 2734 */ 2735 if (rle->res) { 2736 rle->start = rman_get_start(rle->res); 2737 rle->end = rman_get_end(rle->res); 2738 rle->count = count; 2739 } 2740 2741 return (rle->res); 2742 } 2743 2744 /** 2745 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 2746 * 2747 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 2748 * used with resource_list_alloc(). 2749 * 2750 * @param rl the resource list which was allocated from 2751 * @param bus the parent device of @p child 2752 * @param child the device which is requesting a release 2753 * @param type the type of resource to allocate 2754 * @param rid the resource identifier 2755 * @param res the resource to release 2756 * 2757 * @retval 0 success 2758 * @retval non-zero a standard unix error code indicating what 2759 * error condition prevented the operation 2760 */ 2761 int 2762 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 2763 int type, int rid, struct resource *res) 2764 { 2765 struct resource_list_entry *rle = NULL; 2766 int passthrough = (device_get_parent(child) != bus); 2767 int error; 2768 2769 if (passthrough) { 2770 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2771 type, rid, res)); 2772 } 2773 2774 rle = resource_list_find(rl, type, rid); 2775 2776 if (!rle) 2777 panic("resource_list_release: can't find resource"); 2778 if (!rle->res) 2779 panic("resource_list_release: resource entry is not busy"); 2780 2781 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2782 type, rid, res); 2783 if (error) 2784 return (error); 2785 2786 rle->res = NULL; 2787 return (0); 2788 } 2789 2790 /** 2791 * @brief Print a description of resources in a resource list 2792 * 2793 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 2794 * The name is printed if at least one resource of the given type is available. 2795 * The format is used to print resource start and end. 2796 * 2797 * @param rl the resource list to print 2798 * @param name the name of @p type, e.g. @c "memory" 2799 * @param type type type of resource entry to print 2800 * @param format printf(9) format string to print resource 2801 * start and end values 2802 * 2803 * @returns the number of characters printed 2804 */ 2805 int 2806 resource_list_print_type(struct resource_list *rl, const char *name, int type, 2807 const char *format) 2808 { 2809 struct resource_list_entry *rle; 2810 int printed, retval; 2811 2812 printed = 0; 2813 retval = 0; 2814 /* Yes, this is kinda cheating */ 2815 STAILQ_FOREACH(rle, rl, link) { 2816 if (rle->type == type) { 2817 if (printed == 0) 2818 retval += printf(" %s ", name); 2819 else 2820 retval += printf(","); 2821 printed++; 2822 retval += printf(format, rle->start); 2823 if (rle->count > 1) { 2824 retval += printf("-"); 2825 retval += printf(format, rle->start + 2826 rle->count - 1); 2827 } 2828 } 2829 } 2830 return (retval); 2831 } 2832 2833 /** 2834 * @brief Releases all the resources in a list. 2835 * 2836 * @param rl The resource list to purge. 2837 * 2838 * @returns nothing 2839 */ 2840 void 2841 resource_list_purge(struct resource_list *rl) 2842 { 2843 struct resource_list_entry *rle; 2844 2845 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2846 if (rle->res) 2847 bus_release_resource(rman_get_device(rle->res), 2848 rle->type, rle->rid, rle->res); 2849 STAILQ_REMOVE_HEAD(rl, link); 2850 free(rle, M_BUS); 2851 } 2852 } 2853 2854 device_t 2855 bus_generic_add_child(device_t dev, int order, const char *name, int unit) 2856 { 2857 2858 return (device_add_child_ordered(dev, order, name, unit)); 2859 } 2860 2861 /** 2862 * @brief Helper function for implementing DEVICE_PROBE() 2863 * 2864 * This function can be used to help implement the DEVICE_PROBE() for 2865 * a bus (i.e. a device which has other devices attached to it). It 2866 * calls the DEVICE_IDENTIFY() method of each driver in the device's 2867 * devclass. 2868 */ 2869 int 2870 bus_generic_probe(device_t dev) 2871 { 2872 devclass_t dc = dev->devclass; 2873 driverlink_t dl; 2874 2875 TAILQ_FOREACH(dl, &dc->drivers, link) { 2876 DEVICE_IDENTIFY(dl->driver, dev); 2877 } 2878 2879 return (0); 2880 } 2881 2882 /** 2883 * @brief Helper function for implementing DEVICE_ATTACH() 2884 * 2885 * This function can be used to help implement the DEVICE_ATTACH() for 2886 * a bus. It calls device_probe_and_attach() for each of the device's 2887 * children. 2888 */ 2889 int 2890 bus_generic_attach(device_t dev) 2891 { 2892 device_t child; 2893 2894 TAILQ_FOREACH(child, &dev->children, link) { 2895 device_probe_and_attach(child); 2896 } 2897 2898 return (0); 2899 } 2900 2901 /** 2902 * @brief Helper function for implementing DEVICE_DETACH() 2903 * 2904 * This function can be used to help implement the DEVICE_DETACH() for 2905 * a bus. It calls device_detach() for each of the device's 2906 * children. 2907 */ 2908 int 2909 bus_generic_detach(device_t dev) 2910 { 2911 device_t child; 2912 int error; 2913 2914 if (dev->state != DS_ATTACHED) 2915 return (EBUSY); 2916 2917 TAILQ_FOREACH(child, &dev->children, link) { 2918 if ((error = device_detach(child)) != 0) 2919 return (error); 2920 } 2921 2922 return (0); 2923 } 2924 2925 /** 2926 * @brief Helper function for implementing DEVICE_SHUTDOWN() 2927 * 2928 * This function can be used to help implement the DEVICE_SHUTDOWN() 2929 * for a bus. It calls device_shutdown() for each of the device's 2930 * children. 2931 */ 2932 int 2933 bus_generic_shutdown(device_t dev) 2934 { 2935 device_t child; 2936 2937 TAILQ_FOREACH(child, &dev->children, link) { 2938 device_shutdown(child); 2939 } 2940 2941 return (0); 2942 } 2943 2944 /** 2945 * @brief Helper function for implementing DEVICE_SUSPEND() 2946 * 2947 * This function can be used to help implement the DEVICE_SUSPEND() 2948 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 2949 * children. If any call to DEVICE_SUSPEND() fails, the suspend 2950 * operation is aborted and any devices which were suspended are 2951 * resumed immediately by calling their DEVICE_RESUME() methods. 2952 */ 2953 int 2954 bus_generic_suspend(device_t dev) 2955 { 2956 int error; 2957 device_t child, child2; 2958 2959 TAILQ_FOREACH(child, &dev->children, link) { 2960 error = DEVICE_SUSPEND(child); 2961 if (error) { 2962 for (child2 = TAILQ_FIRST(&dev->children); 2963 child2 && child2 != child; 2964 child2 = TAILQ_NEXT(child2, link)) 2965 DEVICE_RESUME(child2); 2966 return (error); 2967 } 2968 } 2969 return (0); 2970 } 2971 2972 /** 2973 * @brief Helper function for implementing DEVICE_RESUME() 2974 * 2975 * This function can be used to help implement the DEVICE_RESUME() for 2976 * a bus. It calls DEVICE_RESUME() on each of the device's children. 2977 */ 2978 int 2979 bus_generic_resume(device_t dev) 2980 { 2981 device_t child; 2982 2983 TAILQ_FOREACH(child, &dev->children, link) { 2984 DEVICE_RESUME(child); 2985 /* if resume fails, there's nothing we can usefully do... */ 2986 } 2987 return (0); 2988 } 2989 2990 /** 2991 * @brief Helper function for implementing BUS_PRINT_CHILD(). 2992 * 2993 * This function prints the first part of the ascii representation of 2994 * @p child, including its name, unit and description (if any - see 2995 * device_set_desc()). 2996 * 2997 * @returns the number of characters printed 2998 */ 2999 int 3000 bus_print_child_header(device_t dev, device_t child) 3001 { 3002 int retval = 0; 3003 3004 if (device_get_desc(child)) { 3005 retval += device_printf(child, "<%s>", device_get_desc(child)); 3006 } else { 3007 retval += printf("%s", device_get_nameunit(child)); 3008 } 3009 3010 return (retval); 3011 } 3012 3013 /** 3014 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3015 * 3016 * This function prints the last part of the ascii representation of 3017 * @p child, which consists of the string @c " on " followed by the 3018 * name and unit of the @p dev. 3019 * 3020 * @returns the number of characters printed 3021 */ 3022 int 3023 bus_print_child_footer(device_t dev, device_t child) 3024 { 3025 return (printf(" on %s\n", device_get_nameunit(dev))); 3026 } 3027 3028 /** 3029 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3030 * 3031 * This function simply calls bus_print_child_header() followed by 3032 * bus_print_child_footer(). 3033 * 3034 * @returns the number of characters printed 3035 */ 3036 int 3037 bus_generic_print_child(device_t dev, device_t child) 3038 { 3039 int retval = 0; 3040 3041 retval += bus_print_child_header(dev, child); 3042 retval += bus_print_child_footer(dev, child); 3043 3044 return (retval); 3045 } 3046 3047 /** 3048 * @brief Stub function for implementing BUS_READ_IVAR(). 3049 * 3050 * @returns ENOENT 3051 */ 3052 int 3053 bus_generic_read_ivar(device_t dev, device_t child, int index, 3054 uintptr_t * result) 3055 { 3056 return (ENOENT); 3057 } 3058 3059 /** 3060 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3061 * 3062 * @returns ENOENT 3063 */ 3064 int 3065 bus_generic_write_ivar(device_t dev, device_t child, int index, 3066 uintptr_t value) 3067 { 3068 return (ENOENT); 3069 } 3070 3071 /** 3072 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3073 * 3074 * @returns NULL 3075 */ 3076 struct resource_list * 3077 bus_generic_get_resource_list(device_t dev, device_t child) 3078 { 3079 return (NULL); 3080 } 3081 3082 /** 3083 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3084 * 3085 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3086 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3087 * and then calls device_probe_and_attach() for each unattached child. 3088 */ 3089 void 3090 bus_generic_driver_added(device_t dev, driver_t *driver) 3091 { 3092 device_t child; 3093 3094 DEVICE_IDENTIFY(driver, dev); 3095 TAILQ_FOREACH(child, &dev->children, link) { 3096 if (child->state == DS_NOTPRESENT || 3097 (child->flags & DF_REBID)) 3098 device_probe_and_attach(child); 3099 } 3100 } 3101 3102 /** 3103 * @brief Helper function for implementing BUS_SETUP_INTR(). 3104 * 3105 * This simple implementation of BUS_SETUP_INTR() simply calls the 3106 * BUS_SETUP_INTR() method of the parent of @p dev. 3107 */ 3108 int 3109 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3110 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3111 void **cookiep) 3112 { 3113 /* Propagate up the bus hierarchy until someone handles it. */ 3114 if (dev->parent) 3115 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3116 filter, intr, arg, cookiep)); 3117 return (EINVAL); 3118 } 3119 3120 /** 3121 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3122 * 3123 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3124 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3125 */ 3126 int 3127 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3128 void *cookie) 3129 { 3130 /* Propagate up the bus hierarchy until someone handles it. */ 3131 if (dev->parent) 3132 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3133 return (EINVAL); 3134 } 3135 3136 /** 3137 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3138 * 3139 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3140 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3141 */ 3142 struct resource * 3143 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3144 u_long start, u_long end, u_long count, u_int flags) 3145 { 3146 /* Propagate up the bus hierarchy until someone handles it. */ 3147 if (dev->parent) 3148 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3149 start, end, count, flags)); 3150 return (NULL); 3151 } 3152 3153 /** 3154 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3155 * 3156 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3157 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3158 */ 3159 int 3160 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3161 struct resource *r) 3162 { 3163 /* Propagate up the bus hierarchy until someone handles it. */ 3164 if (dev->parent) 3165 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3166 r)); 3167 return (EINVAL); 3168 } 3169 3170 /** 3171 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3172 * 3173 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3174 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 3175 */ 3176 int 3177 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 3178 struct resource *r) 3179 { 3180 /* Propagate up the bus hierarchy until someone handles it. */ 3181 if (dev->parent) 3182 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 3183 r)); 3184 return (EINVAL); 3185 } 3186 3187 /** 3188 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 3189 * 3190 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 3191 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 3192 */ 3193 int 3194 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 3195 int rid, struct resource *r) 3196 { 3197 /* Propagate up the bus hierarchy until someone handles it. */ 3198 if (dev->parent) 3199 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 3200 r)); 3201 return (EINVAL); 3202 } 3203 3204 /** 3205 * @brief Helper function for implementing BUS_CONFIG_INTR(). 3206 * 3207 * This simple implementation of BUS_CONFIG_INTR() simply calls the 3208 * BUS_CONFIG_INTR() method of the parent of @p dev. 3209 */ 3210 int 3211 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 3212 enum intr_polarity pol) 3213 { 3214 3215 /* Propagate up the bus hierarchy until someone handles it. */ 3216 if (dev->parent) 3217 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 3218 return (EINVAL); 3219 } 3220 3221 /** 3222 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 3223 * 3224 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 3225 * BUS_GET_DMA_TAG() method of the parent of @p dev. 3226 */ 3227 bus_dma_tag_t 3228 bus_generic_get_dma_tag(device_t dev, device_t child) 3229 { 3230 3231 /* Propagate up the bus hierarchy until someone handles it. */ 3232 if (dev->parent != NULL) 3233 return (BUS_GET_DMA_TAG(dev->parent, child)); 3234 return (NULL); 3235 } 3236 3237 /** 3238 * @brief Helper function for implementing BUS_GET_RESOURCE(). 3239 * 3240 * This implementation of BUS_GET_RESOURCE() uses the 3241 * resource_list_find() function to do most of the work. It calls 3242 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3243 * search. 3244 */ 3245 int 3246 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 3247 u_long *startp, u_long *countp) 3248 { 3249 struct resource_list * rl = NULL; 3250 struct resource_list_entry * rle = NULL; 3251 3252 rl = BUS_GET_RESOURCE_LIST(dev, child); 3253 if (!rl) 3254 return (EINVAL); 3255 3256 rle = resource_list_find(rl, type, rid); 3257 if (!rle) 3258 return (ENOENT); 3259 3260 if (startp) 3261 *startp = rle->start; 3262 if (countp) 3263 *countp = rle->count; 3264 3265 return (0); 3266 } 3267 3268 /** 3269 * @brief Helper function for implementing BUS_SET_RESOURCE(). 3270 * 3271 * This implementation of BUS_SET_RESOURCE() uses the 3272 * resource_list_add() function to do most of the work. It calls 3273 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3274 * edit. 3275 */ 3276 int 3277 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 3278 u_long start, u_long count) 3279 { 3280 struct resource_list * rl = NULL; 3281 3282 rl = BUS_GET_RESOURCE_LIST(dev, child); 3283 if (!rl) 3284 return (EINVAL); 3285 3286 resource_list_add(rl, type, rid, start, (start + count - 1), count); 3287 3288 return (0); 3289 } 3290 3291 /** 3292 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 3293 * 3294 * This implementation of BUS_DELETE_RESOURCE() uses the 3295 * resource_list_delete() function to do most of the work. It calls 3296 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 3297 * edit. 3298 */ 3299 void 3300 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 3301 { 3302 struct resource_list * rl = NULL; 3303 3304 rl = BUS_GET_RESOURCE_LIST(dev, child); 3305 if (!rl) 3306 return; 3307 3308 resource_list_delete(rl, type, rid); 3309 3310 return; 3311 } 3312 3313 /** 3314 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3315 * 3316 * This implementation of BUS_RELEASE_RESOURCE() uses the 3317 * resource_list_release() function to do most of the work. It calls 3318 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3319 */ 3320 int 3321 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 3322 int rid, struct resource *r) 3323 { 3324 struct resource_list * rl = NULL; 3325 3326 rl = BUS_GET_RESOURCE_LIST(dev, child); 3327 if (!rl) 3328 return (EINVAL); 3329 3330 return (resource_list_release(rl, dev, child, type, rid, r)); 3331 } 3332 3333 /** 3334 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3335 * 3336 * This implementation of BUS_ALLOC_RESOURCE() uses the 3337 * resource_list_alloc() function to do most of the work. It calls 3338 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 3339 */ 3340 struct resource * 3341 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 3342 int *rid, u_long start, u_long end, u_long count, u_int flags) 3343 { 3344 struct resource_list * rl = NULL; 3345 3346 rl = BUS_GET_RESOURCE_LIST(dev, child); 3347 if (!rl) 3348 return (NULL); 3349 3350 return (resource_list_alloc(rl, dev, child, type, rid, 3351 start, end, count, flags)); 3352 } 3353 3354 /** 3355 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 3356 * 3357 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 3358 * BUS_CHILD_PRESENT() method of the parent of @p dev. 3359 */ 3360 int 3361 bus_generic_child_present(device_t dev, device_t child) 3362 { 3363 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 3364 } 3365 3366 /* 3367 * Some convenience functions to make it easier for drivers to use the 3368 * resource-management functions. All these really do is hide the 3369 * indirection through the parent's method table, making for slightly 3370 * less-wordy code. In the future, it might make sense for this code 3371 * to maintain some sort of a list of resources allocated by each device. 3372 */ 3373 3374 int 3375 bus_alloc_resources(device_t dev, struct resource_spec *rs, 3376 struct resource **res) 3377 { 3378 int i; 3379 3380 for (i = 0; rs[i].type != -1; i++) 3381 res[i] = NULL; 3382 for (i = 0; rs[i].type != -1; i++) { 3383 res[i] = bus_alloc_resource_any(dev, 3384 rs[i].type, &rs[i].rid, rs[i].flags); 3385 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 3386 bus_release_resources(dev, rs, res); 3387 return (ENXIO); 3388 } 3389 } 3390 return (0); 3391 } 3392 3393 void 3394 bus_release_resources(device_t dev, const struct resource_spec *rs, 3395 struct resource **res) 3396 { 3397 int i; 3398 3399 for (i = 0; rs[i].type != -1; i++) 3400 if (res[i] != NULL) { 3401 bus_release_resource( 3402 dev, rs[i].type, rs[i].rid, res[i]); 3403 res[i] = NULL; 3404 } 3405 } 3406 3407 /** 3408 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 3409 * 3410 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 3411 * parent of @p dev. 3412 */ 3413 struct resource * 3414 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 3415 u_long count, u_int flags) 3416 { 3417 if (dev->parent == NULL) 3418 return (NULL); 3419 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 3420 count, flags)); 3421 } 3422 3423 /** 3424 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 3425 * 3426 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 3427 * parent of @p dev. 3428 */ 3429 int 3430 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 3431 { 3432 if (dev->parent == NULL) 3433 return (EINVAL); 3434 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3435 } 3436 3437 /** 3438 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 3439 * 3440 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 3441 * parent of @p dev. 3442 */ 3443 int 3444 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 3445 { 3446 if (dev->parent == NULL) 3447 return (EINVAL); 3448 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 3449 } 3450 3451 /** 3452 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 3453 * 3454 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 3455 * parent of @p dev. 3456 */ 3457 int 3458 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 3459 { 3460 if (dev->parent == NULL) 3461 return (EINVAL); 3462 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 3463 } 3464 3465 /** 3466 * @brief Wrapper function for BUS_SETUP_INTR(). 3467 * 3468 * This function simply calls the BUS_SETUP_INTR() method of the 3469 * parent of @p dev. 3470 */ 3471 int 3472 bus_setup_intr(device_t dev, struct resource *r, int flags, 3473 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 3474 { 3475 int error; 3476 3477 if (dev->parent != NULL) { 3478 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, 3479 filter, handler, arg, cookiep); 3480 if (error == 0) { 3481 if (handler != NULL && !(flags & INTR_MPSAFE)) 3482 device_printf(dev, "[GIANT-LOCKED]\n"); 3483 if (bootverbose && (flags & INTR_MPSAFE)) 3484 device_printf(dev, "[MPSAFE]\n"); 3485 if (filter != NULL) { 3486 if (handler == NULL) 3487 device_printf(dev, "[FILTER]\n"); 3488 else 3489 device_printf(dev, "[FILTER+ITHREAD]\n"); 3490 } else 3491 device_printf(dev, "[ITHREAD]\n"); 3492 } 3493 } else 3494 error = EINVAL; 3495 return (error); 3496 } 3497 3498 /** 3499 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 3500 * 3501 * This function simply calls the BUS_TEARDOWN_INTR() method of the 3502 * parent of @p dev. 3503 */ 3504 int 3505 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 3506 { 3507 if (dev->parent == NULL) 3508 return (EINVAL); 3509 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 3510 } 3511 3512 /** 3513 * @brief Wrapper function for BUS_SET_RESOURCE(). 3514 * 3515 * This function simply calls the BUS_SET_RESOURCE() method of the 3516 * parent of @p dev. 3517 */ 3518 int 3519 bus_set_resource(device_t dev, int type, int rid, 3520 u_long start, u_long count) 3521 { 3522 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 3523 start, count)); 3524 } 3525 3526 /** 3527 * @brief Wrapper function for BUS_GET_RESOURCE(). 3528 * 3529 * This function simply calls the BUS_GET_RESOURCE() method of the 3530 * parent of @p dev. 3531 */ 3532 int 3533 bus_get_resource(device_t dev, int type, int rid, 3534 u_long *startp, u_long *countp) 3535 { 3536 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3537 startp, countp)); 3538 } 3539 3540 /** 3541 * @brief Wrapper function for BUS_GET_RESOURCE(). 3542 * 3543 * This function simply calls the BUS_GET_RESOURCE() method of the 3544 * parent of @p dev and returns the start value. 3545 */ 3546 u_long 3547 bus_get_resource_start(device_t dev, int type, int rid) 3548 { 3549 u_long start, count; 3550 int error; 3551 3552 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3553 &start, &count); 3554 if (error) 3555 return (0); 3556 return (start); 3557 } 3558 3559 /** 3560 * @brief Wrapper function for BUS_GET_RESOURCE(). 3561 * 3562 * This function simply calls the BUS_GET_RESOURCE() method of the 3563 * parent of @p dev and returns the count value. 3564 */ 3565 u_long 3566 bus_get_resource_count(device_t dev, int type, int rid) 3567 { 3568 u_long start, count; 3569 int error; 3570 3571 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 3572 &start, &count); 3573 if (error) 3574 return (0); 3575 return (count); 3576 } 3577 3578 /** 3579 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 3580 * 3581 * This function simply calls the BUS_DELETE_RESOURCE() method of the 3582 * parent of @p dev. 3583 */ 3584 void 3585 bus_delete_resource(device_t dev, int type, int rid) 3586 { 3587 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 3588 } 3589 3590 /** 3591 * @brief Wrapper function for BUS_CHILD_PRESENT(). 3592 * 3593 * This function simply calls the BUS_CHILD_PRESENT() method of the 3594 * parent of @p dev. 3595 */ 3596 int 3597 bus_child_present(device_t child) 3598 { 3599 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 3600 } 3601 3602 /** 3603 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 3604 * 3605 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 3606 * parent of @p dev. 3607 */ 3608 int 3609 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 3610 { 3611 device_t parent; 3612 3613 parent = device_get_parent(child); 3614 if (parent == NULL) { 3615 *buf = '\0'; 3616 return (0); 3617 } 3618 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 3619 } 3620 3621 /** 3622 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 3623 * 3624 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 3625 * parent of @p dev. 3626 */ 3627 int 3628 bus_child_location_str(device_t child, char *buf, size_t buflen) 3629 { 3630 device_t parent; 3631 3632 parent = device_get_parent(child); 3633 if (parent == NULL) { 3634 *buf = '\0'; 3635 return (0); 3636 } 3637 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 3638 } 3639 3640 /** 3641 * @brief Wrapper function for BUS_GET_DMA_TAG(). 3642 * 3643 * This function simply calls the BUS_GET_DMA_TAG() method of the 3644 * parent of @p dev. 3645 */ 3646 bus_dma_tag_t 3647 bus_get_dma_tag(device_t dev) 3648 { 3649 device_t parent; 3650 3651 parent = device_get_parent(dev); 3652 if (parent == NULL) 3653 return (NULL); 3654 return (BUS_GET_DMA_TAG(parent, dev)); 3655 } 3656 3657 /* Resume all devices and then notify userland that we're up again. */ 3658 static int 3659 root_resume(device_t dev) 3660 { 3661 int error; 3662 3663 error = bus_generic_resume(dev); 3664 if (error == 0) 3665 devctl_notify("kern", "power", "resume", NULL); 3666 return (error); 3667 } 3668 3669 static int 3670 root_print_child(device_t dev, device_t child) 3671 { 3672 int retval = 0; 3673 3674 retval += bus_print_child_header(dev, child); 3675 retval += printf("\n"); 3676 3677 return (retval); 3678 } 3679 3680 static int 3681 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg, 3682 void **cookiep) 3683 { 3684 /* 3685 * If an interrupt mapping gets to here something bad has happened. 3686 */ 3687 panic("root_setup_intr"); 3688 } 3689 3690 /* 3691 * If we get here, assume that the device is permanant and really is 3692 * present in the system. Removable bus drivers are expected to intercept 3693 * this call long before it gets here. We return -1 so that drivers that 3694 * really care can check vs -1 or some ERRNO returned higher in the food 3695 * chain. 3696 */ 3697 static int 3698 root_child_present(device_t dev, device_t child) 3699 { 3700 return (-1); 3701 } 3702 3703 static kobj_method_t root_methods[] = { 3704 /* Device interface */ 3705 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 3706 KOBJMETHOD(device_suspend, bus_generic_suspend), 3707 KOBJMETHOD(device_resume, root_resume), 3708 3709 /* Bus interface */ 3710 KOBJMETHOD(bus_print_child, root_print_child), 3711 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 3712 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 3713 KOBJMETHOD(bus_setup_intr, root_setup_intr), 3714 KOBJMETHOD(bus_child_present, root_child_present), 3715 3716 { 0, 0 } 3717 }; 3718 3719 static driver_t root_driver = { 3720 "root", 3721 root_methods, 3722 1, /* no softc */ 3723 }; 3724 3725 device_t root_bus; 3726 devclass_t root_devclass; 3727 3728 static int 3729 root_bus_module_handler(module_t mod, int what, void* arg) 3730 { 3731 switch (what) { 3732 case MOD_LOAD: 3733 TAILQ_INIT(&bus_data_devices); 3734 kobj_class_compile((kobj_class_t) &root_driver); 3735 root_bus = make_device(NULL, "root", 0); 3736 root_bus->desc = "System root bus"; 3737 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 3738 root_bus->driver = &root_driver; 3739 root_bus->state = DS_ATTACHED; 3740 root_devclass = devclass_find_internal("root", NULL, FALSE); 3741 devinit(); 3742 return (0); 3743 3744 case MOD_SHUTDOWN: 3745 device_shutdown(root_bus); 3746 return (0); 3747 default: 3748 return (EOPNOTSUPP); 3749 } 3750 3751 return (0); 3752 } 3753 3754 static moduledata_t root_bus_mod = { 3755 "rootbus", 3756 root_bus_module_handler, 3757 0 3758 }; 3759 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 3760 3761 /** 3762 * @brief Automatically configure devices 3763 * 3764 * This function begins the autoconfiguration process by calling 3765 * device_probe_and_attach() for each child of the @c root0 device. 3766 */ 3767 void 3768 root_bus_configure(void) 3769 { 3770 device_t dev; 3771 3772 PDEBUG((".")); 3773 3774 TAILQ_FOREACH(dev, &root_bus->children, link) { 3775 device_probe_and_attach(dev); 3776 } 3777 } 3778 3779 /** 3780 * @brief Module handler for registering device drivers 3781 * 3782 * This module handler is used to automatically register device 3783 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 3784 * devclass_add_driver() for the driver described by the 3785 * driver_module_data structure pointed to by @p arg 3786 */ 3787 int 3788 driver_module_handler(module_t mod, int what, void *arg) 3789 { 3790 int error; 3791 struct driver_module_data *dmd; 3792 devclass_t bus_devclass; 3793 kobj_class_t driver; 3794 3795 dmd = (struct driver_module_data *)arg; 3796 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 3797 error = 0; 3798 3799 switch (what) { 3800 case MOD_LOAD: 3801 if (dmd->dmd_chainevh) 3802 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3803 3804 driver = dmd->dmd_driver; 3805 PDEBUG(("Loading module: driver %s on bus %s", 3806 DRIVERNAME(driver), dmd->dmd_busname)); 3807 error = devclass_add_driver(bus_devclass, driver); 3808 if (error) 3809 break; 3810 3811 /* 3812 * If the driver has any base classes, make the 3813 * devclass inherit from the devclass of the driver's 3814 * first base class. This will allow the system to 3815 * search for drivers in both devclasses for children 3816 * of a device using this driver. 3817 */ 3818 if (driver->baseclasses) { 3819 const char *parentname; 3820 parentname = driver->baseclasses[0]->name; 3821 *dmd->dmd_devclass = 3822 devclass_find_internal(driver->name, 3823 parentname, TRUE); 3824 } else { 3825 *dmd->dmd_devclass = 3826 devclass_find_internal(driver->name, NULL, TRUE); 3827 } 3828 break; 3829 3830 case MOD_UNLOAD: 3831 PDEBUG(("Unloading module: driver %s from bus %s", 3832 DRIVERNAME(dmd->dmd_driver), 3833 dmd->dmd_busname)); 3834 error = devclass_delete_driver(bus_devclass, 3835 dmd->dmd_driver); 3836 3837 if (!error && dmd->dmd_chainevh) 3838 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3839 break; 3840 case MOD_QUIESCE: 3841 PDEBUG(("Quiesce module: driver %s from bus %s", 3842 DRIVERNAME(dmd->dmd_driver), 3843 dmd->dmd_busname)); 3844 error = devclass_quiesce_driver(bus_devclass, 3845 dmd->dmd_driver); 3846 3847 if (!error && dmd->dmd_chainevh) 3848 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3849 break; 3850 default: 3851 error = EOPNOTSUPP; 3852 break; 3853 } 3854 3855 return (error); 3856 } 3857 3858 /** 3859 * @brief Enumerate all hinted devices for this bus. 3860 * 3861 * Walks through the hints for this bus and calls the bus_hinted_child 3862 * routine for each one it fines. It searches first for the specific 3863 * bus that's being probed for hinted children (eg isa0), and then for 3864 * generic children (eg isa). 3865 * 3866 * @param dev bus device to enumerate 3867 */ 3868 void 3869 bus_enumerate_hinted_children(device_t bus) 3870 { 3871 int i; 3872 const char *dname, *busname; 3873 int dunit; 3874 3875 /* 3876 * enumerate all devices on the specific bus 3877 */ 3878 busname = device_get_nameunit(bus); 3879 i = 0; 3880 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 3881 BUS_HINTED_CHILD(bus, dname, dunit); 3882 3883 /* 3884 * and all the generic ones. 3885 */ 3886 busname = device_get_name(bus); 3887 i = 0; 3888 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 3889 BUS_HINTED_CHILD(bus, dname, dunit); 3890 } 3891 3892 #ifdef BUS_DEBUG 3893 3894 /* the _short versions avoid iteration by not calling anything that prints 3895 * more than oneliners. I love oneliners. 3896 */ 3897 3898 static void 3899 print_device_short(device_t dev, int indent) 3900 { 3901 if (!dev) 3902 return; 3903 3904 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 3905 dev->unit, dev->desc, 3906 (dev->parent? "":"no "), 3907 (TAILQ_EMPTY(&dev->children)? "no ":""), 3908 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 3909 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 3910 (dev->flags&DF_WILDCARD? "wildcard,":""), 3911 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 3912 (dev->flags&DF_REBID? "rebiddable,":""), 3913 (dev->ivars? "":"no "), 3914 (dev->softc? "":"no "), 3915 dev->busy)); 3916 } 3917 3918 static void 3919 print_device(device_t dev, int indent) 3920 { 3921 if (!dev) 3922 return; 3923 3924 print_device_short(dev, indent); 3925 3926 indentprintf(("Parent:\n")); 3927 print_device_short(dev->parent, indent+1); 3928 indentprintf(("Driver:\n")); 3929 print_driver_short(dev->driver, indent+1); 3930 indentprintf(("Devclass:\n")); 3931 print_devclass_short(dev->devclass, indent+1); 3932 } 3933 3934 void 3935 print_device_tree_short(device_t dev, int indent) 3936 /* print the device and all its children (indented) */ 3937 { 3938 device_t child; 3939 3940 if (!dev) 3941 return; 3942 3943 print_device_short(dev, indent); 3944 3945 TAILQ_FOREACH(child, &dev->children, link) { 3946 print_device_tree_short(child, indent+1); 3947 } 3948 } 3949 3950 void 3951 print_device_tree(device_t dev, int indent) 3952 /* print the device and all its children (indented) */ 3953 { 3954 device_t child; 3955 3956 if (!dev) 3957 return; 3958 3959 print_device(dev, indent); 3960 3961 TAILQ_FOREACH(child, &dev->children, link) { 3962 print_device_tree(child, indent+1); 3963 } 3964 } 3965 3966 static void 3967 print_driver_short(driver_t *driver, int indent) 3968 { 3969 if (!driver) 3970 return; 3971 3972 indentprintf(("driver %s: softc size = %zd\n", 3973 driver->name, driver->size)); 3974 } 3975 3976 static void 3977 print_driver(driver_t *driver, int indent) 3978 { 3979 if (!driver) 3980 return; 3981 3982 print_driver_short(driver, indent); 3983 } 3984 3985 3986 static void 3987 print_driver_list(driver_list_t drivers, int indent) 3988 { 3989 driverlink_t driver; 3990 3991 TAILQ_FOREACH(driver, &drivers, link) { 3992 print_driver(driver->driver, indent); 3993 } 3994 } 3995 3996 static void 3997 print_devclass_short(devclass_t dc, int indent) 3998 { 3999 if ( !dc ) 4000 return; 4001 4002 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4003 } 4004 4005 static void 4006 print_devclass(devclass_t dc, int indent) 4007 { 4008 int i; 4009 4010 if ( !dc ) 4011 return; 4012 4013 print_devclass_short(dc, indent); 4014 indentprintf(("Drivers:\n")); 4015 print_driver_list(dc->drivers, indent+1); 4016 4017 indentprintf(("Devices:\n")); 4018 for (i = 0; i < dc->maxunit; i++) 4019 if (dc->devices[i]) 4020 print_device(dc->devices[i], indent+1); 4021 } 4022 4023 void 4024 print_devclass_list_short(void) 4025 { 4026 devclass_t dc; 4027 4028 printf("Short listing of devclasses, drivers & devices:\n"); 4029 TAILQ_FOREACH(dc, &devclasses, link) { 4030 print_devclass_short(dc, 0); 4031 } 4032 } 4033 4034 void 4035 print_devclass_list(void) 4036 { 4037 devclass_t dc; 4038 4039 printf("Full listing of devclasses, drivers & devices:\n"); 4040 TAILQ_FOREACH(dc, &devclasses, link) { 4041 print_devclass(dc, 0); 4042 } 4043 } 4044 4045 #endif 4046 4047 /* 4048 * User-space access to the device tree. 4049 * 4050 * We implement a small set of nodes: 4051 * 4052 * hw.bus Single integer read method to obtain the 4053 * current generation count. 4054 * hw.bus.devices Reads the entire device tree in flat space. 4055 * hw.bus.rman Resource manager interface 4056 * 4057 * We might like to add the ability to scan devclasses and/or drivers to 4058 * determine what else is currently loaded/available. 4059 */ 4060 4061 static int 4062 sysctl_bus(SYSCTL_HANDLER_ARGS) 4063 { 4064 struct u_businfo ubus; 4065 4066 ubus.ub_version = BUS_USER_VERSION; 4067 ubus.ub_generation = bus_data_generation; 4068 4069 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4070 } 4071 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4072 "bus-related data"); 4073 4074 static int 4075 sysctl_devices(SYSCTL_HANDLER_ARGS) 4076 { 4077 int *name = (int *)arg1; 4078 u_int namelen = arg2; 4079 int index; 4080 struct device *dev; 4081 struct u_device udev; /* XXX this is a bit big */ 4082 int error; 4083 4084 if (namelen != 2) 4085 return (EINVAL); 4086 4087 if (bus_data_generation_check(name[0])) 4088 return (EINVAL); 4089 4090 index = name[1]; 4091 4092 /* 4093 * Scan the list of devices, looking for the requested index. 4094 */ 4095 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 4096 if (index-- == 0) 4097 break; 4098 } 4099 if (dev == NULL) 4100 return (ENOENT); 4101 4102 /* 4103 * Populate the return array. 4104 */ 4105 bzero(&udev, sizeof(udev)); 4106 udev.dv_handle = (uintptr_t)dev; 4107 udev.dv_parent = (uintptr_t)dev->parent; 4108 if (dev->nameunit != NULL) 4109 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 4110 if (dev->desc != NULL) 4111 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 4112 if (dev->driver != NULL && dev->driver->name != NULL) 4113 strlcpy(udev.dv_drivername, dev->driver->name, 4114 sizeof(udev.dv_drivername)); 4115 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 4116 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 4117 udev.dv_devflags = dev->devflags; 4118 udev.dv_flags = dev->flags; 4119 udev.dv_state = dev->state; 4120 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 4121 return (error); 4122 } 4123 4124 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 4125 "system device tree"); 4126 4127 int 4128 bus_data_generation_check(int generation) 4129 { 4130 if (generation != bus_data_generation) 4131 return (1); 4132 4133 /* XXX generate optimised lists here? */ 4134 return (0); 4135 } 4136 4137 void 4138 bus_data_generation_update(void) 4139 { 4140 bus_data_generation++; 4141 } 4142 4143 int 4144 bus_free_resource(device_t dev, int type, struct resource *r) 4145 { 4146 if (r == NULL) 4147 return (0); 4148 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 4149 } 4150