1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bus.h" 33 #include "opt_ddb.h" 34 35 #include <sys/param.h> 36 #include <sys/conf.h> 37 #include <sys/eventhandler.h> 38 #include <sys/filio.h> 39 #include <sys/lock.h> 40 #include <sys/kernel.h> 41 #include <sys/kobj.h> 42 #include <sys/limits.h> 43 #include <sys/malloc.h> 44 #include <sys/module.h> 45 #include <sys/mutex.h> 46 #include <sys/poll.h> 47 #include <sys/priv.h> 48 #include <sys/proc.h> 49 #include <sys/condvar.h> 50 #include <sys/queue.h> 51 #include <machine/bus.h> 52 #include <sys/random.h> 53 #include <sys/rman.h> 54 #include <sys/sbuf.h> 55 #include <sys/selinfo.h> 56 #include <sys/signalvar.h> 57 #include <sys/smp.h> 58 #include <sys/sysctl.h> 59 #include <sys/systm.h> 60 #include <sys/uio.h> 61 #include <sys/bus.h> 62 #include <sys/cpuset.h> 63 64 #include <net/vnet.h> 65 66 #include <machine/cpu.h> 67 #include <machine/stdarg.h> 68 69 #include <vm/uma.h> 70 #include <vm/vm.h> 71 72 #include <ddb/ddb.h> 73 74 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 75 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 76 77 /* 78 * Used to attach drivers to devclasses. 79 */ 80 typedef struct driverlink *driverlink_t; 81 struct driverlink { 82 kobj_class_t driver; 83 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 84 int pass; 85 int flags; 86 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 87 TAILQ_ENTRY(driverlink) passlink; 88 }; 89 90 /* 91 * Forward declarations 92 */ 93 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 94 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 95 typedef TAILQ_HEAD(device_list, device) device_list_t; 96 97 struct devclass { 98 TAILQ_ENTRY(devclass) link; 99 devclass_t parent; /* parent in devclass hierarchy */ 100 driver_list_t drivers; /* bus devclasses store drivers for bus */ 101 char *name; 102 device_t *devices; /* array of devices indexed by unit */ 103 int maxunit; /* size of devices array */ 104 int flags; 105 #define DC_HAS_CHILDREN 1 106 107 struct sysctl_ctx_list sysctl_ctx; 108 struct sysctl_oid *sysctl_tree; 109 }; 110 111 /** 112 * @brief Implementation of device. 113 */ 114 struct device { 115 /* 116 * A device is a kernel object. The first field must be the 117 * current ops table for the object. 118 */ 119 KOBJ_FIELDS; 120 121 /* 122 * Device hierarchy. 123 */ 124 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 125 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 126 device_t parent; /**< parent of this device */ 127 device_list_t children; /**< list of child devices */ 128 129 /* 130 * Details of this device. 131 */ 132 driver_t *driver; /**< current driver */ 133 devclass_t devclass; /**< current device class */ 134 int unit; /**< current unit number */ 135 char* nameunit; /**< name+unit e.g. foodev0 */ 136 char* desc; /**< driver specific description */ 137 int busy; /**< count of calls to device_busy() */ 138 device_state_t state; /**< current device state */ 139 uint32_t devflags; /**< api level flags for device_get_flags() */ 140 u_int flags; /**< internal device flags */ 141 u_int order; /**< order from device_add_child_ordered() */ 142 void *ivars; /**< instance variables */ 143 void *softc; /**< current driver's variables */ 144 145 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 146 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 147 }; 148 149 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 150 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 151 152 EVENTHANDLER_LIST_DEFINE(device_attach); 153 EVENTHANDLER_LIST_DEFINE(device_detach); 154 EVENTHANDLER_LIST_DEFINE(dev_lookup); 155 156 static void devctl2_init(void); 157 static bool device_frozen; 158 159 #define DRIVERNAME(d) ((d)? d->name : "no driver") 160 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 161 162 #ifdef BUS_DEBUG 163 164 static int bus_debug = 1; 165 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 166 "Bus debug level"); 167 168 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 169 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 170 171 /** 172 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 173 * prevent syslog from deleting initial spaces 174 */ 175 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 176 177 static void print_device_short(device_t dev, int indent); 178 static void print_device(device_t dev, int indent); 179 void print_device_tree_short(device_t dev, int indent); 180 void print_device_tree(device_t dev, int indent); 181 static void print_driver_short(driver_t *driver, int indent); 182 static void print_driver(driver_t *driver, int indent); 183 static void print_driver_list(driver_list_t drivers, int indent); 184 static void print_devclass_short(devclass_t dc, int indent); 185 static void print_devclass(devclass_t dc, int indent); 186 void print_devclass_list_short(void); 187 void print_devclass_list(void); 188 189 #else 190 /* Make the compiler ignore the function calls */ 191 #define PDEBUG(a) /* nop */ 192 #define DEVICENAME(d) /* nop */ 193 194 #define print_device_short(d,i) /* nop */ 195 #define print_device(d,i) /* nop */ 196 #define print_device_tree_short(d,i) /* nop */ 197 #define print_device_tree(d,i) /* nop */ 198 #define print_driver_short(d,i) /* nop */ 199 #define print_driver(d,i) /* nop */ 200 #define print_driver_list(d,i) /* nop */ 201 #define print_devclass_short(d,i) /* nop */ 202 #define print_devclass(d,i) /* nop */ 203 #define print_devclass_list_short() /* nop */ 204 #define print_devclass_list() /* nop */ 205 #endif 206 207 /* 208 * dev sysctl tree 209 */ 210 211 enum { 212 DEVCLASS_SYSCTL_PARENT, 213 }; 214 215 static int 216 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 217 { 218 devclass_t dc = (devclass_t)arg1; 219 const char *value; 220 221 switch (arg2) { 222 case DEVCLASS_SYSCTL_PARENT: 223 value = dc->parent ? dc->parent->name : ""; 224 break; 225 default: 226 return (EINVAL); 227 } 228 return (SYSCTL_OUT_STR(req, value)); 229 } 230 231 static void 232 devclass_sysctl_init(devclass_t dc) 233 { 234 235 if (dc->sysctl_tree != NULL) 236 return; 237 sysctl_ctx_init(&dc->sysctl_ctx); 238 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 239 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 240 CTLFLAG_RD, NULL, ""); 241 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 242 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 243 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 244 "parent class"); 245 } 246 247 enum { 248 DEVICE_SYSCTL_DESC, 249 DEVICE_SYSCTL_DRIVER, 250 DEVICE_SYSCTL_LOCATION, 251 DEVICE_SYSCTL_PNPINFO, 252 DEVICE_SYSCTL_PARENT, 253 }; 254 255 static int 256 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 257 { 258 device_t dev = (device_t)arg1; 259 const char *value; 260 char *buf; 261 int error; 262 263 buf = NULL; 264 switch (arg2) { 265 case DEVICE_SYSCTL_DESC: 266 value = dev->desc ? dev->desc : ""; 267 break; 268 case DEVICE_SYSCTL_DRIVER: 269 value = dev->driver ? dev->driver->name : ""; 270 break; 271 case DEVICE_SYSCTL_LOCATION: 272 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 273 bus_child_location_str(dev, buf, 1024); 274 break; 275 case DEVICE_SYSCTL_PNPINFO: 276 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 277 bus_child_pnpinfo_str(dev, buf, 1024); 278 break; 279 case DEVICE_SYSCTL_PARENT: 280 value = dev->parent ? dev->parent->nameunit : ""; 281 break; 282 default: 283 return (EINVAL); 284 } 285 error = SYSCTL_OUT_STR(req, value); 286 if (buf != NULL) 287 free(buf, M_BUS); 288 return (error); 289 } 290 291 static void 292 device_sysctl_init(device_t dev) 293 { 294 devclass_t dc = dev->devclass; 295 int domain; 296 297 if (dev->sysctl_tree != NULL) 298 return; 299 devclass_sysctl_init(dc); 300 sysctl_ctx_init(&dev->sysctl_ctx); 301 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 302 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 303 dev->nameunit + strlen(dc->name), 304 CTLFLAG_RD, NULL, "", "device_index"); 305 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 306 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 307 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 308 "device description"); 309 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 310 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 311 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 312 "device driver name"); 313 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 314 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 315 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 316 "device location relative to parent"); 317 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 318 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 319 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 320 "device identification"); 321 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 322 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 323 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 324 "parent device"); 325 if (bus_get_domain(dev, &domain) == 0) 326 SYSCTL_ADD_INT(&dev->sysctl_ctx, 327 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 328 CTLFLAG_RD, NULL, domain, "NUMA domain"); 329 } 330 331 static void 332 device_sysctl_update(device_t dev) 333 { 334 devclass_t dc = dev->devclass; 335 336 if (dev->sysctl_tree == NULL) 337 return; 338 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 339 } 340 341 static void 342 device_sysctl_fini(device_t dev) 343 { 344 if (dev->sysctl_tree == NULL) 345 return; 346 sysctl_ctx_free(&dev->sysctl_ctx); 347 dev->sysctl_tree = NULL; 348 } 349 350 /* 351 * /dev/devctl implementation 352 */ 353 354 /* 355 * This design allows only one reader for /dev/devctl. This is not desirable 356 * in the long run, but will get a lot of hair out of this implementation. 357 * Maybe we should make this device a clonable device. 358 * 359 * Also note: we specifically do not attach a device to the device_t tree 360 * to avoid potential chicken and egg problems. One could argue that all 361 * of this belongs to the root node. One could also further argue that the 362 * sysctl interface that we have not might more properly be an ioctl 363 * interface, but at this stage of the game, I'm not inclined to rock that 364 * boat. 365 * 366 * I'm also not sure that the SIGIO support is done correctly or not, as 367 * I copied it from a driver that had SIGIO support that likely hasn't been 368 * tested since 3.4 or 2.2.8! 369 */ 370 371 /* Deprecated way to adjust queue length */ 372 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 373 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN | 374 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I", 375 "devctl disable -- deprecated"); 376 377 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 378 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 379 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 380 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 381 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 382 383 static d_open_t devopen; 384 static d_close_t devclose; 385 static d_read_t devread; 386 static d_ioctl_t devioctl; 387 static d_poll_t devpoll; 388 static d_kqfilter_t devkqfilter; 389 390 static struct cdevsw dev_cdevsw = { 391 .d_version = D_VERSION, 392 .d_open = devopen, 393 .d_close = devclose, 394 .d_read = devread, 395 .d_ioctl = devioctl, 396 .d_poll = devpoll, 397 .d_kqfilter = devkqfilter, 398 .d_name = "devctl", 399 }; 400 401 struct dev_event_info 402 { 403 char *dei_data; 404 TAILQ_ENTRY(dev_event_info) dei_link; 405 }; 406 407 TAILQ_HEAD(devq, dev_event_info); 408 409 static struct dev_softc 410 { 411 int inuse; 412 int nonblock; 413 int queued; 414 int async; 415 struct mtx mtx; 416 struct cv cv; 417 struct selinfo sel; 418 struct devq devq; 419 struct sigio *sigio; 420 } devsoftc; 421 422 static void filt_devctl_detach(struct knote *kn); 423 static int filt_devctl_read(struct knote *kn, long hint); 424 425 struct filterops devctl_rfiltops = { 426 .f_isfd = 1, 427 .f_detach = filt_devctl_detach, 428 .f_event = filt_devctl_read, 429 }; 430 431 static struct cdev *devctl_dev; 432 433 static void 434 devinit(void) 435 { 436 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 437 UID_ROOT, GID_WHEEL, 0600, "devctl"); 438 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 439 cv_init(&devsoftc.cv, "dev cv"); 440 TAILQ_INIT(&devsoftc.devq); 441 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 442 devctl2_init(); 443 } 444 445 static int 446 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 447 { 448 449 mtx_lock(&devsoftc.mtx); 450 if (devsoftc.inuse) { 451 mtx_unlock(&devsoftc.mtx); 452 return (EBUSY); 453 } 454 /* move to init */ 455 devsoftc.inuse = 1; 456 mtx_unlock(&devsoftc.mtx); 457 return (0); 458 } 459 460 static int 461 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 462 { 463 464 mtx_lock(&devsoftc.mtx); 465 devsoftc.inuse = 0; 466 devsoftc.nonblock = 0; 467 devsoftc.async = 0; 468 cv_broadcast(&devsoftc.cv); 469 funsetown(&devsoftc.sigio); 470 mtx_unlock(&devsoftc.mtx); 471 return (0); 472 } 473 474 /* 475 * The read channel for this device is used to report changes to 476 * userland in realtime. We are required to free the data as well as 477 * the n1 object because we allocate them separately. Also note that 478 * we return one record at a time. If you try to read this device a 479 * character at a time, you will lose the rest of the data. Listening 480 * programs are expected to cope. 481 */ 482 static int 483 devread(struct cdev *dev, struct uio *uio, int ioflag) 484 { 485 struct dev_event_info *n1; 486 int rv; 487 488 mtx_lock(&devsoftc.mtx); 489 while (TAILQ_EMPTY(&devsoftc.devq)) { 490 if (devsoftc.nonblock) { 491 mtx_unlock(&devsoftc.mtx); 492 return (EAGAIN); 493 } 494 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 495 if (rv) { 496 /* 497 * Need to translate ERESTART to EINTR here? -- jake 498 */ 499 mtx_unlock(&devsoftc.mtx); 500 return (rv); 501 } 502 } 503 n1 = TAILQ_FIRST(&devsoftc.devq); 504 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 505 devsoftc.queued--; 506 mtx_unlock(&devsoftc.mtx); 507 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 508 free(n1->dei_data, M_BUS); 509 free(n1, M_BUS); 510 return (rv); 511 } 512 513 static int 514 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 515 { 516 switch (cmd) { 517 518 case FIONBIO: 519 if (*(int*)data) 520 devsoftc.nonblock = 1; 521 else 522 devsoftc.nonblock = 0; 523 return (0); 524 case FIOASYNC: 525 if (*(int*)data) 526 devsoftc.async = 1; 527 else 528 devsoftc.async = 0; 529 return (0); 530 case FIOSETOWN: 531 return fsetown(*(int *)data, &devsoftc.sigio); 532 case FIOGETOWN: 533 *(int *)data = fgetown(&devsoftc.sigio); 534 return (0); 535 536 /* (un)Support for other fcntl() calls. */ 537 case FIOCLEX: 538 case FIONCLEX: 539 case FIONREAD: 540 default: 541 break; 542 } 543 return (ENOTTY); 544 } 545 546 static int 547 devpoll(struct cdev *dev, int events, struct thread *td) 548 { 549 int revents = 0; 550 551 mtx_lock(&devsoftc.mtx); 552 if (events & (POLLIN | POLLRDNORM)) { 553 if (!TAILQ_EMPTY(&devsoftc.devq)) 554 revents = events & (POLLIN | POLLRDNORM); 555 else 556 selrecord(td, &devsoftc.sel); 557 } 558 mtx_unlock(&devsoftc.mtx); 559 560 return (revents); 561 } 562 563 static int 564 devkqfilter(struct cdev *dev, struct knote *kn) 565 { 566 int error; 567 568 if (kn->kn_filter == EVFILT_READ) { 569 kn->kn_fop = &devctl_rfiltops; 570 knlist_add(&devsoftc.sel.si_note, kn, 0); 571 error = 0; 572 } else 573 error = EINVAL; 574 return (error); 575 } 576 577 static void 578 filt_devctl_detach(struct knote *kn) 579 { 580 581 knlist_remove(&devsoftc.sel.si_note, kn, 0); 582 } 583 584 static int 585 filt_devctl_read(struct knote *kn, long hint) 586 { 587 kn->kn_data = devsoftc.queued; 588 return (kn->kn_data != 0); 589 } 590 591 /** 592 * @brief Return whether the userland process is running 593 */ 594 boolean_t 595 devctl_process_running(void) 596 { 597 return (devsoftc.inuse == 1); 598 } 599 600 /** 601 * @brief Queue data to be read from the devctl device 602 * 603 * Generic interface to queue data to the devctl device. It is 604 * assumed that @p data is properly formatted. It is further assumed 605 * that @p data is allocated using the M_BUS malloc type. 606 */ 607 void 608 devctl_queue_data_f(char *data, int flags) 609 { 610 struct dev_event_info *n1 = NULL, *n2 = NULL; 611 612 if (strlen(data) == 0) 613 goto out; 614 if (devctl_queue_length == 0) 615 goto out; 616 n1 = malloc(sizeof(*n1), M_BUS, flags); 617 if (n1 == NULL) 618 goto out; 619 n1->dei_data = data; 620 mtx_lock(&devsoftc.mtx); 621 if (devctl_queue_length == 0) { 622 mtx_unlock(&devsoftc.mtx); 623 free(n1->dei_data, M_BUS); 624 free(n1, M_BUS); 625 return; 626 } 627 /* Leave at least one spot in the queue... */ 628 while (devsoftc.queued > devctl_queue_length - 1) { 629 n2 = TAILQ_FIRST(&devsoftc.devq); 630 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 631 free(n2->dei_data, M_BUS); 632 free(n2, M_BUS); 633 devsoftc.queued--; 634 } 635 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 636 devsoftc.queued++; 637 cv_broadcast(&devsoftc.cv); 638 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 639 mtx_unlock(&devsoftc.mtx); 640 selwakeup(&devsoftc.sel); 641 if (devsoftc.async && devsoftc.sigio != NULL) 642 pgsigio(&devsoftc.sigio, SIGIO, 0); 643 return; 644 out: 645 /* 646 * We have to free data on all error paths since the caller 647 * assumes it will be free'd when this item is dequeued. 648 */ 649 free(data, M_BUS); 650 return; 651 } 652 653 void 654 devctl_queue_data(char *data) 655 { 656 657 devctl_queue_data_f(data, M_NOWAIT); 658 } 659 660 /** 661 * @brief Send a 'notification' to userland, using standard ways 662 */ 663 void 664 devctl_notify_f(const char *system, const char *subsystem, const char *type, 665 const char *data, int flags) 666 { 667 int len = 0; 668 char *msg; 669 670 if (system == NULL) 671 return; /* BOGUS! Must specify system. */ 672 if (subsystem == NULL) 673 return; /* BOGUS! Must specify subsystem. */ 674 if (type == NULL) 675 return; /* BOGUS! Must specify type. */ 676 len += strlen(" system=") + strlen(system); 677 len += strlen(" subsystem=") + strlen(subsystem); 678 len += strlen(" type=") + strlen(type); 679 /* add in the data message plus newline. */ 680 if (data != NULL) 681 len += strlen(data); 682 len += 3; /* '!', '\n', and NUL */ 683 msg = malloc(len, M_BUS, flags); 684 if (msg == NULL) 685 return; /* Drop it on the floor */ 686 if (data != NULL) 687 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 688 system, subsystem, type, data); 689 else 690 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 691 system, subsystem, type); 692 devctl_queue_data_f(msg, flags); 693 } 694 695 void 696 devctl_notify(const char *system, const char *subsystem, const char *type, 697 const char *data) 698 { 699 700 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 701 } 702 703 /* 704 * Common routine that tries to make sending messages as easy as possible. 705 * We allocate memory for the data, copy strings into that, but do not 706 * free it unless there's an error. The dequeue part of the driver should 707 * free the data. We don't send data when the device is disabled. We do 708 * send data, even when we have no listeners, because we wish to avoid 709 * races relating to startup and restart of listening applications. 710 * 711 * devaddq is designed to string together the type of event, with the 712 * object of that event, plus the plug and play info and location info 713 * for that event. This is likely most useful for devices, but less 714 * useful for other consumers of this interface. Those should use 715 * the devctl_queue_data() interface instead. 716 */ 717 static void 718 devaddq(const char *type, const char *what, device_t dev) 719 { 720 char *data = NULL; 721 char *loc = NULL; 722 char *pnp = NULL; 723 const char *parstr; 724 725 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 726 return; 727 data = malloc(1024, M_BUS, M_NOWAIT); 728 if (data == NULL) 729 goto bad; 730 731 /* get the bus specific location of this device */ 732 loc = malloc(1024, M_BUS, M_NOWAIT); 733 if (loc == NULL) 734 goto bad; 735 *loc = '\0'; 736 bus_child_location_str(dev, loc, 1024); 737 738 /* Get the bus specific pnp info of this device */ 739 pnp = malloc(1024, M_BUS, M_NOWAIT); 740 if (pnp == NULL) 741 goto bad; 742 *pnp = '\0'; 743 bus_child_pnpinfo_str(dev, pnp, 1024); 744 745 /* Get the parent of this device, or / if high enough in the tree. */ 746 if (device_get_parent(dev) == NULL) 747 parstr = "."; /* Or '/' ? */ 748 else 749 parstr = device_get_nameunit(device_get_parent(dev)); 750 /* String it all together. */ 751 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 752 parstr); 753 free(loc, M_BUS); 754 free(pnp, M_BUS); 755 devctl_queue_data(data); 756 return; 757 bad: 758 free(pnp, M_BUS); 759 free(loc, M_BUS); 760 free(data, M_BUS); 761 return; 762 } 763 764 /* 765 * A device was added to the tree. We are called just after it successfully 766 * attaches (that is, probe and attach success for this device). No call 767 * is made if a device is merely parented into the tree. See devnomatch 768 * if probe fails. If attach fails, no notification is sent (but maybe 769 * we should have a different message for this). 770 */ 771 static void 772 devadded(device_t dev) 773 { 774 devaddq("+", device_get_nameunit(dev), dev); 775 } 776 777 /* 778 * A device was removed from the tree. We are called just before this 779 * happens. 780 */ 781 static void 782 devremoved(device_t dev) 783 { 784 devaddq("-", device_get_nameunit(dev), dev); 785 } 786 787 /* 788 * Called when there's no match for this device. This is only called 789 * the first time that no match happens, so we don't keep getting this 790 * message. Should that prove to be undesirable, we can change it. 791 * This is called when all drivers that can attach to a given bus 792 * decline to accept this device. Other errors may not be detected. 793 */ 794 static void 795 devnomatch(device_t dev) 796 { 797 devaddq("?", "", dev); 798 } 799 800 static int 801 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 802 { 803 struct dev_event_info *n1; 804 int dis, error; 805 806 dis = (devctl_queue_length == 0); 807 error = sysctl_handle_int(oidp, &dis, 0, req); 808 if (error || !req->newptr) 809 return (error); 810 if (mtx_initialized(&devsoftc.mtx)) 811 mtx_lock(&devsoftc.mtx); 812 if (dis) { 813 while (!TAILQ_EMPTY(&devsoftc.devq)) { 814 n1 = TAILQ_FIRST(&devsoftc.devq); 815 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 816 free(n1->dei_data, M_BUS); 817 free(n1, M_BUS); 818 } 819 devsoftc.queued = 0; 820 devctl_queue_length = 0; 821 } else { 822 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 823 } 824 if (mtx_initialized(&devsoftc.mtx)) 825 mtx_unlock(&devsoftc.mtx); 826 return (0); 827 } 828 829 static int 830 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 831 { 832 struct dev_event_info *n1; 833 int q, error; 834 835 q = devctl_queue_length; 836 error = sysctl_handle_int(oidp, &q, 0, req); 837 if (error || !req->newptr) 838 return (error); 839 if (q < 0) 840 return (EINVAL); 841 if (mtx_initialized(&devsoftc.mtx)) 842 mtx_lock(&devsoftc.mtx); 843 devctl_queue_length = q; 844 while (devsoftc.queued > devctl_queue_length) { 845 n1 = TAILQ_FIRST(&devsoftc.devq); 846 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 847 free(n1->dei_data, M_BUS); 848 free(n1, M_BUS); 849 devsoftc.queued--; 850 } 851 if (mtx_initialized(&devsoftc.mtx)) 852 mtx_unlock(&devsoftc.mtx); 853 return (0); 854 } 855 856 /** 857 * @brief safely quotes strings that might have double quotes in them. 858 * 859 * The devctl protocol relies on quoted strings having matching quotes. 860 * This routine quotes any internal quotes so the resulting string 861 * is safe to pass to snprintf to construct, for example pnp info strings. 862 * Strings are always terminated with a NUL, but may be truncated if longer 863 * than @p len bytes after quotes. 864 * 865 * @param sb sbuf to place the characters into 866 * @param src Original buffer. 867 */ 868 void 869 devctl_safe_quote_sb(struct sbuf *sb, const char *src) 870 { 871 872 while (*src != '\0') { 873 if (*src == '"' || *src == '\\') 874 sbuf_putc(sb, '\\'); 875 sbuf_putc(sb, *src++); 876 } 877 } 878 879 /* End of /dev/devctl code */ 880 881 static TAILQ_HEAD(,device) bus_data_devices; 882 static int bus_data_generation = 1; 883 884 static kobj_method_t null_methods[] = { 885 KOBJMETHOD_END 886 }; 887 888 DEFINE_CLASS(null, null_methods, 0); 889 890 /* 891 * Bus pass implementation 892 */ 893 894 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 895 int bus_current_pass = BUS_PASS_ROOT; 896 897 /** 898 * @internal 899 * @brief Register the pass level of a new driver attachment 900 * 901 * Register a new driver attachment's pass level. If no driver 902 * attachment with the same pass level has been added, then @p new 903 * will be added to the global passes list. 904 * 905 * @param new the new driver attachment 906 */ 907 static void 908 driver_register_pass(struct driverlink *new) 909 { 910 struct driverlink *dl; 911 912 /* We only consider pass numbers during boot. */ 913 if (bus_current_pass == BUS_PASS_DEFAULT) 914 return; 915 916 /* 917 * Walk the passes list. If we already know about this pass 918 * then there is nothing to do. If we don't, then insert this 919 * driver link into the list. 920 */ 921 TAILQ_FOREACH(dl, &passes, passlink) { 922 if (dl->pass < new->pass) 923 continue; 924 if (dl->pass == new->pass) 925 return; 926 TAILQ_INSERT_BEFORE(dl, new, passlink); 927 return; 928 } 929 TAILQ_INSERT_TAIL(&passes, new, passlink); 930 } 931 932 /** 933 * @brief Raise the current bus pass 934 * 935 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 936 * method on the root bus to kick off a new device tree scan for each 937 * new pass level that has at least one driver. 938 */ 939 void 940 bus_set_pass(int pass) 941 { 942 struct driverlink *dl; 943 944 if (bus_current_pass > pass) 945 panic("Attempt to lower bus pass level"); 946 947 TAILQ_FOREACH(dl, &passes, passlink) { 948 /* Skip pass values below the current pass level. */ 949 if (dl->pass <= bus_current_pass) 950 continue; 951 952 /* 953 * Bail once we hit a driver with a pass level that is 954 * too high. 955 */ 956 if (dl->pass > pass) 957 break; 958 959 /* 960 * Raise the pass level to the next level and rescan 961 * the tree. 962 */ 963 bus_current_pass = dl->pass; 964 BUS_NEW_PASS(root_bus); 965 } 966 967 /* 968 * If there isn't a driver registered for the requested pass, 969 * then bus_current_pass might still be less than 'pass'. Set 970 * it to 'pass' in that case. 971 */ 972 if (bus_current_pass < pass) 973 bus_current_pass = pass; 974 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 975 } 976 977 /* 978 * Devclass implementation 979 */ 980 981 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 982 983 /** 984 * @internal 985 * @brief Find or create a device class 986 * 987 * If a device class with the name @p classname exists, return it, 988 * otherwise if @p create is non-zero create and return a new device 989 * class. 990 * 991 * If @p parentname is non-NULL, the parent of the devclass is set to 992 * the devclass of that name. 993 * 994 * @param classname the devclass name to find or create 995 * @param parentname the parent devclass name or @c NULL 996 * @param create non-zero to create a devclass 997 */ 998 static devclass_t 999 devclass_find_internal(const char *classname, const char *parentname, 1000 int create) 1001 { 1002 devclass_t dc; 1003 1004 PDEBUG(("looking for %s", classname)); 1005 if (!classname) 1006 return (NULL); 1007 1008 TAILQ_FOREACH(dc, &devclasses, link) { 1009 if (!strcmp(dc->name, classname)) 1010 break; 1011 } 1012 1013 if (create && !dc) { 1014 PDEBUG(("creating %s", classname)); 1015 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 1016 M_BUS, M_NOWAIT | M_ZERO); 1017 if (!dc) 1018 return (NULL); 1019 dc->parent = NULL; 1020 dc->name = (char*) (dc + 1); 1021 strcpy(dc->name, classname); 1022 TAILQ_INIT(&dc->drivers); 1023 TAILQ_INSERT_TAIL(&devclasses, dc, link); 1024 1025 bus_data_generation_update(); 1026 } 1027 1028 /* 1029 * If a parent class is specified, then set that as our parent so 1030 * that this devclass will support drivers for the parent class as 1031 * well. If the parent class has the same name don't do this though 1032 * as it creates a cycle that can trigger an infinite loop in 1033 * device_probe_child() if a device exists for which there is no 1034 * suitable driver. 1035 */ 1036 if (parentname && dc && !dc->parent && 1037 strcmp(classname, parentname) != 0) { 1038 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1039 dc->parent->flags |= DC_HAS_CHILDREN; 1040 } 1041 1042 return (dc); 1043 } 1044 1045 /** 1046 * @brief Create a device class 1047 * 1048 * If a device class with the name @p classname exists, return it, 1049 * otherwise create and return a new device class. 1050 * 1051 * @param classname the devclass name to find or create 1052 */ 1053 devclass_t 1054 devclass_create(const char *classname) 1055 { 1056 return (devclass_find_internal(classname, NULL, TRUE)); 1057 } 1058 1059 /** 1060 * @brief Find a device class 1061 * 1062 * If a device class with the name @p classname exists, return it, 1063 * otherwise return @c NULL. 1064 * 1065 * @param classname the devclass name to find 1066 */ 1067 devclass_t 1068 devclass_find(const char *classname) 1069 { 1070 return (devclass_find_internal(classname, NULL, FALSE)); 1071 } 1072 1073 /** 1074 * @brief Register that a device driver has been added to a devclass 1075 * 1076 * Register that a device driver has been added to a devclass. This 1077 * is called by devclass_add_driver to accomplish the recursive 1078 * notification of all the children classes of dc, as well as dc. 1079 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1080 * the devclass. 1081 * 1082 * We do a full search here of the devclass list at each iteration 1083 * level to save storing children-lists in the devclass structure. If 1084 * we ever move beyond a few dozen devices doing this, we may need to 1085 * reevaluate... 1086 * 1087 * @param dc the devclass to edit 1088 * @param driver the driver that was just added 1089 */ 1090 static void 1091 devclass_driver_added(devclass_t dc, driver_t *driver) 1092 { 1093 devclass_t parent; 1094 int i; 1095 1096 /* 1097 * Call BUS_DRIVER_ADDED for any existing buses in this class. 1098 */ 1099 for (i = 0; i < dc->maxunit; i++) 1100 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1101 BUS_DRIVER_ADDED(dc->devices[i], driver); 1102 1103 /* 1104 * Walk through the children classes. Since we only keep a 1105 * single parent pointer around, we walk the entire list of 1106 * devclasses looking for children. We set the 1107 * DC_HAS_CHILDREN flag when a child devclass is created on 1108 * the parent, so we only walk the list for those devclasses 1109 * that have children. 1110 */ 1111 if (!(dc->flags & DC_HAS_CHILDREN)) 1112 return; 1113 parent = dc; 1114 TAILQ_FOREACH(dc, &devclasses, link) { 1115 if (dc->parent == parent) 1116 devclass_driver_added(dc, driver); 1117 } 1118 } 1119 1120 /** 1121 * @brief Add a device driver to a device class 1122 * 1123 * Add a device driver to a devclass. This is normally called 1124 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1125 * all devices in the devclass will be called to allow them to attempt 1126 * to re-probe any unmatched children. 1127 * 1128 * @param dc the devclass to edit 1129 * @param driver the driver to register 1130 */ 1131 int 1132 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1133 { 1134 driverlink_t dl; 1135 const char *parentname; 1136 1137 PDEBUG(("%s", DRIVERNAME(driver))); 1138 1139 /* Don't allow invalid pass values. */ 1140 if (pass <= BUS_PASS_ROOT) 1141 return (EINVAL); 1142 1143 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1144 if (!dl) 1145 return (ENOMEM); 1146 1147 /* 1148 * Compile the driver's methods. Also increase the reference count 1149 * so that the class doesn't get freed when the last instance 1150 * goes. This means we can safely use static methods and avoids a 1151 * double-free in devclass_delete_driver. 1152 */ 1153 kobj_class_compile((kobj_class_t) driver); 1154 1155 /* 1156 * If the driver has any base classes, make the 1157 * devclass inherit from the devclass of the driver's 1158 * first base class. This will allow the system to 1159 * search for drivers in both devclasses for children 1160 * of a device using this driver. 1161 */ 1162 if (driver->baseclasses) 1163 parentname = driver->baseclasses[0]->name; 1164 else 1165 parentname = NULL; 1166 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1167 1168 dl->driver = driver; 1169 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1170 driver->refs++; /* XXX: kobj_mtx */ 1171 dl->pass = pass; 1172 driver_register_pass(dl); 1173 1174 if (device_frozen) { 1175 dl->flags |= DL_DEFERRED_PROBE; 1176 } else { 1177 devclass_driver_added(dc, driver); 1178 } 1179 bus_data_generation_update(); 1180 return (0); 1181 } 1182 1183 /** 1184 * @brief Register that a device driver has been deleted from a devclass 1185 * 1186 * Register that a device driver has been removed from a devclass. 1187 * This is called by devclass_delete_driver to accomplish the 1188 * recursive notification of all the children classes of busclass, as 1189 * well as busclass. Each layer will attempt to detach the driver 1190 * from any devices that are children of the bus's devclass. The function 1191 * will return an error if a device fails to detach. 1192 * 1193 * We do a full search here of the devclass list at each iteration 1194 * level to save storing children-lists in the devclass structure. If 1195 * we ever move beyond a few dozen devices doing this, we may need to 1196 * reevaluate... 1197 * 1198 * @param busclass the devclass of the parent bus 1199 * @param dc the devclass of the driver being deleted 1200 * @param driver the driver being deleted 1201 */ 1202 static int 1203 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1204 { 1205 devclass_t parent; 1206 device_t dev; 1207 int error, i; 1208 1209 /* 1210 * Disassociate from any devices. We iterate through all the 1211 * devices in the devclass of the driver and detach any which are 1212 * using the driver and which have a parent in the devclass which 1213 * we are deleting from. 1214 * 1215 * Note that since a driver can be in multiple devclasses, we 1216 * should not detach devices which are not children of devices in 1217 * the affected devclass. 1218 * 1219 * If we're frozen, we don't generate NOMATCH events. Mark to 1220 * generate later. 1221 */ 1222 for (i = 0; i < dc->maxunit; i++) { 1223 if (dc->devices[i]) { 1224 dev = dc->devices[i]; 1225 if (dev->driver == driver && dev->parent && 1226 dev->parent->devclass == busclass) { 1227 if ((error = device_detach(dev)) != 0) 1228 return (error); 1229 if (device_frozen) { 1230 dev->flags &= ~DF_DONENOMATCH; 1231 dev->flags |= DF_NEEDNOMATCH; 1232 } else { 1233 BUS_PROBE_NOMATCH(dev->parent, dev); 1234 devnomatch(dev); 1235 dev->flags |= DF_DONENOMATCH; 1236 } 1237 } 1238 } 1239 } 1240 1241 /* 1242 * Walk through the children classes. Since we only keep a 1243 * single parent pointer around, we walk the entire list of 1244 * devclasses looking for children. We set the 1245 * DC_HAS_CHILDREN flag when a child devclass is created on 1246 * the parent, so we only walk the list for those devclasses 1247 * that have children. 1248 */ 1249 if (!(busclass->flags & DC_HAS_CHILDREN)) 1250 return (0); 1251 parent = busclass; 1252 TAILQ_FOREACH(busclass, &devclasses, link) { 1253 if (busclass->parent == parent) { 1254 error = devclass_driver_deleted(busclass, dc, driver); 1255 if (error) 1256 return (error); 1257 } 1258 } 1259 return (0); 1260 } 1261 1262 /** 1263 * @brief Delete a device driver from a device class 1264 * 1265 * Delete a device driver from a devclass. This is normally called 1266 * automatically by DRIVER_MODULE(). 1267 * 1268 * If the driver is currently attached to any devices, 1269 * devclass_delete_driver() will first attempt to detach from each 1270 * device. If one of the detach calls fails, the driver will not be 1271 * deleted. 1272 * 1273 * @param dc the devclass to edit 1274 * @param driver the driver to unregister 1275 */ 1276 int 1277 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1278 { 1279 devclass_t dc = devclass_find(driver->name); 1280 driverlink_t dl; 1281 int error; 1282 1283 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1284 1285 if (!dc) 1286 return (0); 1287 1288 /* 1289 * Find the link structure in the bus' list of drivers. 1290 */ 1291 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1292 if (dl->driver == driver) 1293 break; 1294 } 1295 1296 if (!dl) { 1297 PDEBUG(("%s not found in %s list", driver->name, 1298 busclass->name)); 1299 return (ENOENT); 1300 } 1301 1302 error = devclass_driver_deleted(busclass, dc, driver); 1303 if (error != 0) 1304 return (error); 1305 1306 TAILQ_REMOVE(&busclass->drivers, dl, link); 1307 free(dl, M_BUS); 1308 1309 /* XXX: kobj_mtx */ 1310 driver->refs--; 1311 if (driver->refs == 0) 1312 kobj_class_free((kobj_class_t) driver); 1313 1314 bus_data_generation_update(); 1315 return (0); 1316 } 1317 1318 /** 1319 * @brief Quiesces a set of device drivers from a device class 1320 * 1321 * Quiesce a device driver from a devclass. This is normally called 1322 * automatically by DRIVER_MODULE(). 1323 * 1324 * If the driver is currently attached to any devices, 1325 * devclass_quiesece_driver() will first attempt to quiesce each 1326 * device. 1327 * 1328 * @param dc the devclass to edit 1329 * @param driver the driver to unregister 1330 */ 1331 static int 1332 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1333 { 1334 devclass_t dc = devclass_find(driver->name); 1335 driverlink_t dl; 1336 device_t dev; 1337 int i; 1338 int error; 1339 1340 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1341 1342 if (!dc) 1343 return (0); 1344 1345 /* 1346 * Find the link structure in the bus' list of drivers. 1347 */ 1348 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1349 if (dl->driver == driver) 1350 break; 1351 } 1352 1353 if (!dl) { 1354 PDEBUG(("%s not found in %s list", driver->name, 1355 busclass->name)); 1356 return (ENOENT); 1357 } 1358 1359 /* 1360 * Quiesce all devices. We iterate through all the devices in 1361 * the devclass of the driver and quiesce any which are using 1362 * the driver and which have a parent in the devclass which we 1363 * are quiescing. 1364 * 1365 * Note that since a driver can be in multiple devclasses, we 1366 * should not quiesce devices which are not children of 1367 * devices in the affected devclass. 1368 */ 1369 for (i = 0; i < dc->maxunit; i++) { 1370 if (dc->devices[i]) { 1371 dev = dc->devices[i]; 1372 if (dev->driver == driver && dev->parent && 1373 dev->parent->devclass == busclass) { 1374 if ((error = device_quiesce(dev)) != 0) 1375 return (error); 1376 } 1377 } 1378 } 1379 1380 return (0); 1381 } 1382 1383 /** 1384 * @internal 1385 */ 1386 static driverlink_t 1387 devclass_find_driver_internal(devclass_t dc, const char *classname) 1388 { 1389 driverlink_t dl; 1390 1391 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1392 1393 TAILQ_FOREACH(dl, &dc->drivers, link) { 1394 if (!strcmp(dl->driver->name, classname)) 1395 return (dl); 1396 } 1397 1398 PDEBUG(("not found")); 1399 return (NULL); 1400 } 1401 1402 /** 1403 * @brief Return the name of the devclass 1404 */ 1405 const char * 1406 devclass_get_name(devclass_t dc) 1407 { 1408 return (dc->name); 1409 } 1410 1411 /** 1412 * @brief Find a device given a unit number 1413 * 1414 * @param dc the devclass to search 1415 * @param unit the unit number to search for 1416 * 1417 * @returns the device with the given unit number or @c 1418 * NULL if there is no such device 1419 */ 1420 device_t 1421 devclass_get_device(devclass_t dc, int unit) 1422 { 1423 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1424 return (NULL); 1425 return (dc->devices[unit]); 1426 } 1427 1428 /** 1429 * @brief Find the softc field of a device given a unit number 1430 * 1431 * @param dc the devclass to search 1432 * @param unit the unit number to search for 1433 * 1434 * @returns the softc field of the device with the given 1435 * unit number or @c NULL if there is no such 1436 * device 1437 */ 1438 void * 1439 devclass_get_softc(devclass_t dc, int unit) 1440 { 1441 device_t dev; 1442 1443 dev = devclass_get_device(dc, unit); 1444 if (!dev) 1445 return (NULL); 1446 1447 return (device_get_softc(dev)); 1448 } 1449 1450 /** 1451 * @brief Get a list of devices in the devclass 1452 * 1453 * An array containing a list of all the devices in the given devclass 1454 * is allocated and returned in @p *devlistp. The number of devices 1455 * in the array is returned in @p *devcountp. The caller should free 1456 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1457 * 1458 * @param dc the devclass to examine 1459 * @param devlistp points at location for array pointer return 1460 * value 1461 * @param devcountp points at location for array size return value 1462 * 1463 * @retval 0 success 1464 * @retval ENOMEM the array allocation failed 1465 */ 1466 int 1467 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1468 { 1469 int count, i; 1470 device_t *list; 1471 1472 count = devclass_get_count(dc); 1473 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1474 if (!list) 1475 return (ENOMEM); 1476 1477 count = 0; 1478 for (i = 0; i < dc->maxunit; i++) { 1479 if (dc->devices[i]) { 1480 list[count] = dc->devices[i]; 1481 count++; 1482 } 1483 } 1484 1485 *devlistp = list; 1486 *devcountp = count; 1487 1488 return (0); 1489 } 1490 1491 /** 1492 * @brief Get a list of drivers in the devclass 1493 * 1494 * An array containing a list of pointers to all the drivers in the 1495 * given devclass is allocated and returned in @p *listp. The number 1496 * of drivers in the array is returned in @p *countp. The caller should 1497 * free the array using @c free(p, M_TEMP). 1498 * 1499 * @param dc the devclass to examine 1500 * @param listp gives location for array pointer return value 1501 * @param countp gives location for number of array elements 1502 * return value 1503 * 1504 * @retval 0 success 1505 * @retval ENOMEM the array allocation failed 1506 */ 1507 int 1508 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1509 { 1510 driverlink_t dl; 1511 driver_t **list; 1512 int count; 1513 1514 count = 0; 1515 TAILQ_FOREACH(dl, &dc->drivers, link) 1516 count++; 1517 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1518 if (list == NULL) 1519 return (ENOMEM); 1520 1521 count = 0; 1522 TAILQ_FOREACH(dl, &dc->drivers, link) { 1523 list[count] = dl->driver; 1524 count++; 1525 } 1526 *listp = list; 1527 *countp = count; 1528 1529 return (0); 1530 } 1531 1532 /** 1533 * @brief Get the number of devices in a devclass 1534 * 1535 * @param dc the devclass to examine 1536 */ 1537 int 1538 devclass_get_count(devclass_t dc) 1539 { 1540 int count, i; 1541 1542 count = 0; 1543 for (i = 0; i < dc->maxunit; i++) 1544 if (dc->devices[i]) 1545 count++; 1546 return (count); 1547 } 1548 1549 /** 1550 * @brief Get the maximum unit number used in a devclass 1551 * 1552 * Note that this is one greater than the highest currently-allocated 1553 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1554 * that not even the devclass has been allocated yet. 1555 * 1556 * @param dc the devclass to examine 1557 */ 1558 int 1559 devclass_get_maxunit(devclass_t dc) 1560 { 1561 if (dc == NULL) 1562 return (-1); 1563 return (dc->maxunit); 1564 } 1565 1566 /** 1567 * @brief Find a free unit number in a devclass 1568 * 1569 * This function searches for the first unused unit number greater 1570 * that or equal to @p unit. 1571 * 1572 * @param dc the devclass to examine 1573 * @param unit the first unit number to check 1574 */ 1575 int 1576 devclass_find_free_unit(devclass_t dc, int unit) 1577 { 1578 if (dc == NULL) 1579 return (unit); 1580 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1581 unit++; 1582 return (unit); 1583 } 1584 1585 /** 1586 * @brief Set the parent of a devclass 1587 * 1588 * The parent class is normally initialised automatically by 1589 * DRIVER_MODULE(). 1590 * 1591 * @param dc the devclass to edit 1592 * @param pdc the new parent devclass 1593 */ 1594 void 1595 devclass_set_parent(devclass_t dc, devclass_t pdc) 1596 { 1597 dc->parent = pdc; 1598 } 1599 1600 /** 1601 * @brief Get the parent of a devclass 1602 * 1603 * @param dc the devclass to examine 1604 */ 1605 devclass_t 1606 devclass_get_parent(devclass_t dc) 1607 { 1608 return (dc->parent); 1609 } 1610 1611 struct sysctl_ctx_list * 1612 devclass_get_sysctl_ctx(devclass_t dc) 1613 { 1614 return (&dc->sysctl_ctx); 1615 } 1616 1617 struct sysctl_oid * 1618 devclass_get_sysctl_tree(devclass_t dc) 1619 { 1620 return (dc->sysctl_tree); 1621 } 1622 1623 /** 1624 * @internal 1625 * @brief Allocate a unit number 1626 * 1627 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1628 * will do). The allocated unit number is returned in @p *unitp. 1629 1630 * @param dc the devclass to allocate from 1631 * @param unitp points at the location for the allocated unit 1632 * number 1633 * 1634 * @retval 0 success 1635 * @retval EEXIST the requested unit number is already allocated 1636 * @retval ENOMEM memory allocation failure 1637 */ 1638 static int 1639 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1640 { 1641 const char *s; 1642 int unit = *unitp; 1643 1644 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1645 1646 /* Ask the parent bus if it wants to wire this device. */ 1647 if (unit == -1) 1648 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1649 &unit); 1650 1651 /* If we were given a wired unit number, check for existing device */ 1652 /* XXX imp XXX */ 1653 if (unit != -1) { 1654 if (unit >= 0 && unit < dc->maxunit && 1655 dc->devices[unit] != NULL) { 1656 if (bootverbose) 1657 printf("%s: %s%d already exists; skipping it\n", 1658 dc->name, dc->name, *unitp); 1659 return (EEXIST); 1660 } 1661 } else { 1662 /* Unwired device, find the next available slot for it */ 1663 unit = 0; 1664 for (unit = 0;; unit++) { 1665 /* If there is an "at" hint for a unit then skip it. */ 1666 if (resource_string_value(dc->name, unit, "at", &s) == 1667 0) 1668 continue; 1669 1670 /* If this device slot is already in use, skip it. */ 1671 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1672 continue; 1673 1674 break; 1675 } 1676 } 1677 1678 /* 1679 * We've selected a unit beyond the length of the table, so let's 1680 * extend the table to make room for all units up to and including 1681 * this one. 1682 */ 1683 if (unit >= dc->maxunit) { 1684 device_t *newlist, *oldlist; 1685 int newsize; 1686 1687 oldlist = dc->devices; 1688 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1689 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1690 if (!newlist) 1691 return (ENOMEM); 1692 if (oldlist != NULL) 1693 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1694 bzero(newlist + dc->maxunit, 1695 sizeof(device_t) * (newsize - dc->maxunit)); 1696 dc->devices = newlist; 1697 dc->maxunit = newsize; 1698 if (oldlist != NULL) 1699 free(oldlist, M_BUS); 1700 } 1701 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1702 1703 *unitp = unit; 1704 return (0); 1705 } 1706 1707 /** 1708 * @internal 1709 * @brief Add a device to a devclass 1710 * 1711 * A unit number is allocated for the device (using the device's 1712 * preferred unit number if any) and the device is registered in the 1713 * devclass. This allows the device to be looked up by its unit 1714 * number, e.g. by decoding a dev_t minor number. 1715 * 1716 * @param dc the devclass to add to 1717 * @param dev the device to add 1718 * 1719 * @retval 0 success 1720 * @retval EEXIST the requested unit number is already allocated 1721 * @retval ENOMEM memory allocation failure 1722 */ 1723 static int 1724 devclass_add_device(devclass_t dc, device_t dev) 1725 { 1726 int buflen, error; 1727 1728 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1729 1730 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1731 if (buflen < 0) 1732 return (ENOMEM); 1733 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1734 if (!dev->nameunit) 1735 return (ENOMEM); 1736 1737 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1738 free(dev->nameunit, M_BUS); 1739 dev->nameunit = NULL; 1740 return (error); 1741 } 1742 dc->devices[dev->unit] = dev; 1743 dev->devclass = dc; 1744 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1745 1746 return (0); 1747 } 1748 1749 /** 1750 * @internal 1751 * @brief Delete a device from a devclass 1752 * 1753 * The device is removed from the devclass's device list and its unit 1754 * number is freed. 1755 1756 * @param dc the devclass to delete from 1757 * @param dev the device to delete 1758 * 1759 * @retval 0 success 1760 */ 1761 static int 1762 devclass_delete_device(devclass_t dc, device_t dev) 1763 { 1764 if (!dc || !dev) 1765 return (0); 1766 1767 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1768 1769 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1770 panic("devclass_delete_device: inconsistent device class"); 1771 dc->devices[dev->unit] = NULL; 1772 if (dev->flags & DF_WILDCARD) 1773 dev->unit = -1; 1774 dev->devclass = NULL; 1775 free(dev->nameunit, M_BUS); 1776 dev->nameunit = NULL; 1777 1778 return (0); 1779 } 1780 1781 /** 1782 * @internal 1783 * @brief Make a new device and add it as a child of @p parent 1784 * 1785 * @param parent the parent of the new device 1786 * @param name the devclass name of the new device or @c NULL 1787 * to leave the devclass unspecified 1788 * @parem unit the unit number of the new device of @c -1 to 1789 * leave the unit number unspecified 1790 * 1791 * @returns the new device 1792 */ 1793 static device_t 1794 make_device(device_t parent, const char *name, int unit) 1795 { 1796 device_t dev; 1797 devclass_t dc; 1798 1799 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1800 1801 if (name) { 1802 dc = devclass_find_internal(name, NULL, TRUE); 1803 if (!dc) { 1804 printf("make_device: can't find device class %s\n", 1805 name); 1806 return (NULL); 1807 } 1808 } else { 1809 dc = NULL; 1810 } 1811 1812 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1813 if (!dev) 1814 return (NULL); 1815 1816 dev->parent = parent; 1817 TAILQ_INIT(&dev->children); 1818 kobj_init((kobj_t) dev, &null_class); 1819 dev->driver = NULL; 1820 dev->devclass = NULL; 1821 dev->unit = unit; 1822 dev->nameunit = NULL; 1823 dev->desc = NULL; 1824 dev->busy = 0; 1825 dev->devflags = 0; 1826 dev->flags = DF_ENABLED; 1827 dev->order = 0; 1828 if (unit == -1) 1829 dev->flags |= DF_WILDCARD; 1830 if (name) { 1831 dev->flags |= DF_FIXEDCLASS; 1832 if (devclass_add_device(dc, dev)) { 1833 kobj_delete((kobj_t) dev, M_BUS); 1834 return (NULL); 1835 } 1836 } 1837 if (parent != NULL && device_has_quiet_children(parent)) 1838 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1839 dev->ivars = NULL; 1840 dev->softc = NULL; 1841 1842 dev->state = DS_NOTPRESENT; 1843 1844 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1845 bus_data_generation_update(); 1846 1847 return (dev); 1848 } 1849 1850 /** 1851 * @internal 1852 * @brief Print a description of a device. 1853 */ 1854 static int 1855 device_print_child(device_t dev, device_t child) 1856 { 1857 int retval = 0; 1858 1859 if (device_is_alive(child)) 1860 retval += BUS_PRINT_CHILD(dev, child); 1861 else 1862 retval += device_printf(child, " not found\n"); 1863 1864 return (retval); 1865 } 1866 1867 /** 1868 * @brief Create a new device 1869 * 1870 * This creates a new device and adds it as a child of an existing 1871 * parent device. The new device will be added after the last existing 1872 * child with order zero. 1873 * 1874 * @param dev the device which will be the parent of the 1875 * new child device 1876 * @param name devclass name for new device or @c NULL if not 1877 * specified 1878 * @param unit unit number for new device or @c -1 if not 1879 * specified 1880 * 1881 * @returns the new device 1882 */ 1883 device_t 1884 device_add_child(device_t dev, const char *name, int unit) 1885 { 1886 return (device_add_child_ordered(dev, 0, name, unit)); 1887 } 1888 1889 /** 1890 * @brief Create a new device 1891 * 1892 * This creates a new device and adds it as a child of an existing 1893 * parent device. The new device will be added after the last existing 1894 * child with the same order. 1895 * 1896 * @param dev the device which will be the parent of the 1897 * new child device 1898 * @param order a value which is used to partially sort the 1899 * children of @p dev - devices created using 1900 * lower values of @p order appear first in @p 1901 * dev's list of children 1902 * @param name devclass name for new device or @c NULL if not 1903 * specified 1904 * @param unit unit number for new device or @c -1 if not 1905 * specified 1906 * 1907 * @returns the new device 1908 */ 1909 device_t 1910 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1911 { 1912 device_t child; 1913 device_t place; 1914 1915 PDEBUG(("%s at %s with order %u as unit %d", 1916 name, DEVICENAME(dev), order, unit)); 1917 KASSERT(name != NULL || unit == -1, 1918 ("child device with wildcard name and specific unit number")); 1919 1920 child = make_device(dev, name, unit); 1921 if (child == NULL) 1922 return (child); 1923 child->order = order; 1924 1925 TAILQ_FOREACH(place, &dev->children, link) { 1926 if (place->order > order) 1927 break; 1928 } 1929 1930 if (place) { 1931 /* 1932 * The device 'place' is the first device whose order is 1933 * greater than the new child. 1934 */ 1935 TAILQ_INSERT_BEFORE(place, child, link); 1936 } else { 1937 /* 1938 * The new child's order is greater or equal to the order of 1939 * any existing device. Add the child to the tail of the list. 1940 */ 1941 TAILQ_INSERT_TAIL(&dev->children, child, link); 1942 } 1943 1944 bus_data_generation_update(); 1945 return (child); 1946 } 1947 1948 /** 1949 * @brief Delete a device 1950 * 1951 * This function deletes a device along with all of its children. If 1952 * the device currently has a driver attached to it, the device is 1953 * detached first using device_detach(). 1954 * 1955 * @param dev the parent device 1956 * @param child the device to delete 1957 * 1958 * @retval 0 success 1959 * @retval non-zero a unit error code describing the error 1960 */ 1961 int 1962 device_delete_child(device_t dev, device_t child) 1963 { 1964 int error; 1965 device_t grandchild; 1966 1967 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1968 1969 /* detach parent before deleting children, if any */ 1970 if ((error = device_detach(child)) != 0) 1971 return (error); 1972 1973 /* remove children second */ 1974 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1975 error = device_delete_child(child, grandchild); 1976 if (error) 1977 return (error); 1978 } 1979 1980 if (child->devclass) 1981 devclass_delete_device(child->devclass, child); 1982 if (child->parent) 1983 BUS_CHILD_DELETED(dev, child); 1984 TAILQ_REMOVE(&dev->children, child, link); 1985 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1986 kobj_delete((kobj_t) child, M_BUS); 1987 1988 bus_data_generation_update(); 1989 return (0); 1990 } 1991 1992 /** 1993 * @brief Delete all children devices of the given device, if any. 1994 * 1995 * This function deletes all children devices of the given device, if 1996 * any, using the device_delete_child() function for each device it 1997 * finds. If a child device cannot be deleted, this function will 1998 * return an error code. 1999 * 2000 * @param dev the parent device 2001 * 2002 * @retval 0 success 2003 * @retval non-zero a device would not detach 2004 */ 2005 int 2006 device_delete_children(device_t dev) 2007 { 2008 device_t child; 2009 int error; 2010 2011 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 2012 2013 error = 0; 2014 2015 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 2016 error = device_delete_child(dev, child); 2017 if (error) { 2018 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 2019 break; 2020 } 2021 } 2022 return (error); 2023 } 2024 2025 /** 2026 * @brief Find a device given a unit number 2027 * 2028 * This is similar to devclass_get_devices() but only searches for 2029 * devices which have @p dev as a parent. 2030 * 2031 * @param dev the parent device to search 2032 * @param unit the unit number to search for. If the unit is -1, 2033 * return the first child of @p dev which has name 2034 * @p classname (that is, the one with the lowest unit.) 2035 * 2036 * @returns the device with the given unit number or @c 2037 * NULL if there is no such device 2038 */ 2039 device_t 2040 device_find_child(device_t dev, const char *classname, int unit) 2041 { 2042 devclass_t dc; 2043 device_t child; 2044 2045 dc = devclass_find(classname); 2046 if (!dc) 2047 return (NULL); 2048 2049 if (unit != -1) { 2050 child = devclass_get_device(dc, unit); 2051 if (child && child->parent == dev) 2052 return (child); 2053 } else { 2054 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2055 child = devclass_get_device(dc, unit); 2056 if (child && child->parent == dev) 2057 return (child); 2058 } 2059 } 2060 return (NULL); 2061 } 2062 2063 /** 2064 * @internal 2065 */ 2066 static driverlink_t 2067 first_matching_driver(devclass_t dc, device_t dev) 2068 { 2069 if (dev->devclass) 2070 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2071 return (TAILQ_FIRST(&dc->drivers)); 2072 } 2073 2074 /** 2075 * @internal 2076 */ 2077 static driverlink_t 2078 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2079 { 2080 if (dev->devclass) { 2081 driverlink_t dl; 2082 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2083 if (!strcmp(dev->devclass->name, dl->driver->name)) 2084 return (dl); 2085 return (NULL); 2086 } 2087 return (TAILQ_NEXT(last, link)); 2088 } 2089 2090 /** 2091 * @internal 2092 */ 2093 int 2094 device_probe_child(device_t dev, device_t child) 2095 { 2096 devclass_t dc; 2097 driverlink_t best = NULL; 2098 driverlink_t dl; 2099 int result, pri = 0; 2100 int hasclass = (child->devclass != NULL); 2101 2102 GIANT_REQUIRED; 2103 2104 dc = dev->devclass; 2105 if (!dc) 2106 panic("device_probe_child: parent device has no devclass"); 2107 2108 /* 2109 * If the state is already probed, then return. However, don't 2110 * return if we can rebid this object. 2111 */ 2112 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2113 return (0); 2114 2115 for (; dc; dc = dc->parent) { 2116 for (dl = first_matching_driver(dc, child); 2117 dl; 2118 dl = next_matching_driver(dc, child, dl)) { 2119 /* If this driver's pass is too high, then ignore it. */ 2120 if (dl->pass > bus_current_pass) 2121 continue; 2122 2123 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2124 result = device_set_driver(child, dl->driver); 2125 if (result == ENOMEM) 2126 return (result); 2127 else if (result != 0) 2128 continue; 2129 if (!hasclass) { 2130 if (device_set_devclass(child, 2131 dl->driver->name) != 0) { 2132 char const * devname = 2133 device_get_name(child); 2134 if (devname == NULL) 2135 devname = "(unknown)"; 2136 printf("driver bug: Unable to set " 2137 "devclass (class: %s " 2138 "devname: %s)\n", 2139 dl->driver->name, 2140 devname); 2141 (void)device_set_driver(child, NULL); 2142 continue; 2143 } 2144 } 2145 2146 /* Fetch any flags for the device before probing. */ 2147 resource_int_value(dl->driver->name, child->unit, 2148 "flags", &child->devflags); 2149 2150 result = DEVICE_PROBE(child); 2151 2152 /* Reset flags and devclass before the next probe. */ 2153 child->devflags = 0; 2154 if (!hasclass) 2155 (void)device_set_devclass(child, NULL); 2156 2157 /* 2158 * If the driver returns SUCCESS, there can be 2159 * no higher match for this device. 2160 */ 2161 if (result == 0) { 2162 best = dl; 2163 pri = 0; 2164 break; 2165 } 2166 2167 /* 2168 * Reset DF_QUIET in case this driver doesn't 2169 * end up as the best driver. 2170 */ 2171 device_verbose(child); 2172 2173 /* 2174 * Probes that return BUS_PROBE_NOWILDCARD or lower 2175 * only match on devices whose driver was explicitly 2176 * specified. 2177 */ 2178 if (result <= BUS_PROBE_NOWILDCARD && 2179 !(child->flags & DF_FIXEDCLASS)) { 2180 result = ENXIO; 2181 } 2182 2183 /* 2184 * The driver returned an error so it 2185 * certainly doesn't match. 2186 */ 2187 if (result > 0) { 2188 (void)device_set_driver(child, NULL); 2189 continue; 2190 } 2191 2192 /* 2193 * A priority lower than SUCCESS, remember the 2194 * best matching driver. Initialise the value 2195 * of pri for the first match. 2196 */ 2197 if (best == NULL || result > pri) { 2198 best = dl; 2199 pri = result; 2200 continue; 2201 } 2202 } 2203 /* 2204 * If we have an unambiguous match in this devclass, 2205 * don't look in the parent. 2206 */ 2207 if (best && pri == 0) 2208 break; 2209 } 2210 2211 /* 2212 * If we found a driver, change state and initialise the devclass. 2213 */ 2214 /* XXX What happens if we rebid and got no best? */ 2215 if (best) { 2216 /* 2217 * If this device was attached, and we were asked to 2218 * rescan, and it is a different driver, then we have 2219 * to detach the old driver and reattach this new one. 2220 * Note, we don't have to check for DF_REBID here 2221 * because if the state is > DS_ALIVE, we know it must 2222 * be. 2223 * 2224 * This assumes that all DF_REBID drivers can have 2225 * their probe routine called at any time and that 2226 * they are idempotent as well as completely benign in 2227 * normal operations. 2228 * 2229 * We also have to make sure that the detach 2230 * succeeded, otherwise we fail the operation (or 2231 * maybe it should just fail silently? I'm torn). 2232 */ 2233 if (child->state > DS_ALIVE && best->driver != child->driver) 2234 if ((result = device_detach(dev)) != 0) 2235 return (result); 2236 2237 /* Set the winning driver, devclass, and flags. */ 2238 if (!child->devclass) { 2239 result = device_set_devclass(child, best->driver->name); 2240 if (result != 0) 2241 return (result); 2242 } 2243 result = device_set_driver(child, best->driver); 2244 if (result != 0) 2245 return (result); 2246 resource_int_value(best->driver->name, child->unit, 2247 "flags", &child->devflags); 2248 2249 if (pri < 0) { 2250 /* 2251 * A bit bogus. Call the probe method again to make 2252 * sure that we have the right description. 2253 */ 2254 DEVICE_PROBE(child); 2255 #if 0 2256 child->flags |= DF_REBID; 2257 #endif 2258 } else 2259 child->flags &= ~DF_REBID; 2260 child->state = DS_ALIVE; 2261 2262 bus_data_generation_update(); 2263 return (0); 2264 } 2265 2266 return (ENXIO); 2267 } 2268 2269 /** 2270 * @brief Return the parent of a device 2271 */ 2272 device_t 2273 device_get_parent(device_t dev) 2274 { 2275 return (dev->parent); 2276 } 2277 2278 /** 2279 * @brief Get a list of children of a device 2280 * 2281 * An array containing a list of all the children of the given device 2282 * is allocated and returned in @p *devlistp. The number of devices 2283 * in the array is returned in @p *devcountp. The caller should free 2284 * the array using @c free(p, M_TEMP). 2285 * 2286 * @param dev the device to examine 2287 * @param devlistp points at location for array pointer return 2288 * value 2289 * @param devcountp points at location for array size return value 2290 * 2291 * @retval 0 success 2292 * @retval ENOMEM the array allocation failed 2293 */ 2294 int 2295 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2296 { 2297 int count; 2298 device_t child; 2299 device_t *list; 2300 2301 count = 0; 2302 TAILQ_FOREACH(child, &dev->children, link) { 2303 count++; 2304 } 2305 if (count == 0) { 2306 *devlistp = NULL; 2307 *devcountp = 0; 2308 return (0); 2309 } 2310 2311 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2312 if (!list) 2313 return (ENOMEM); 2314 2315 count = 0; 2316 TAILQ_FOREACH(child, &dev->children, link) { 2317 list[count] = child; 2318 count++; 2319 } 2320 2321 *devlistp = list; 2322 *devcountp = count; 2323 2324 return (0); 2325 } 2326 2327 /** 2328 * @brief Return the current driver for the device or @c NULL if there 2329 * is no driver currently attached 2330 */ 2331 driver_t * 2332 device_get_driver(device_t dev) 2333 { 2334 return (dev->driver); 2335 } 2336 2337 /** 2338 * @brief Return the current devclass for the device or @c NULL if 2339 * there is none. 2340 */ 2341 devclass_t 2342 device_get_devclass(device_t dev) 2343 { 2344 return (dev->devclass); 2345 } 2346 2347 /** 2348 * @brief Return the name of the device's devclass or @c NULL if there 2349 * is none. 2350 */ 2351 const char * 2352 device_get_name(device_t dev) 2353 { 2354 if (dev != NULL && dev->devclass) 2355 return (devclass_get_name(dev->devclass)); 2356 return (NULL); 2357 } 2358 2359 /** 2360 * @brief Return a string containing the device's devclass name 2361 * followed by an ascii representation of the device's unit number 2362 * (e.g. @c "foo2"). 2363 */ 2364 const char * 2365 device_get_nameunit(device_t dev) 2366 { 2367 return (dev->nameunit); 2368 } 2369 2370 /** 2371 * @brief Return the device's unit number. 2372 */ 2373 int 2374 device_get_unit(device_t dev) 2375 { 2376 return (dev->unit); 2377 } 2378 2379 /** 2380 * @brief Return the device's description string 2381 */ 2382 const char * 2383 device_get_desc(device_t dev) 2384 { 2385 return (dev->desc); 2386 } 2387 2388 /** 2389 * @brief Return the device's flags 2390 */ 2391 uint32_t 2392 device_get_flags(device_t dev) 2393 { 2394 return (dev->devflags); 2395 } 2396 2397 struct sysctl_ctx_list * 2398 device_get_sysctl_ctx(device_t dev) 2399 { 2400 return (&dev->sysctl_ctx); 2401 } 2402 2403 struct sysctl_oid * 2404 device_get_sysctl_tree(device_t dev) 2405 { 2406 return (dev->sysctl_tree); 2407 } 2408 2409 /** 2410 * @brief Print the name of the device followed by a colon and a space 2411 * 2412 * @returns the number of characters printed 2413 */ 2414 int 2415 device_print_prettyname(device_t dev) 2416 { 2417 const char *name = device_get_name(dev); 2418 2419 if (name == NULL) 2420 return (printf("unknown: ")); 2421 return (printf("%s%d: ", name, device_get_unit(dev))); 2422 } 2423 2424 /** 2425 * @brief Print the name of the device followed by a colon, a space 2426 * and the result of calling vprintf() with the value of @p fmt and 2427 * the following arguments. 2428 * 2429 * @returns the number of characters printed 2430 */ 2431 int 2432 device_printf(device_t dev, const char * fmt, ...) 2433 { 2434 va_list ap; 2435 int retval; 2436 2437 retval = device_print_prettyname(dev); 2438 va_start(ap, fmt); 2439 retval += vprintf(fmt, ap); 2440 va_end(ap); 2441 return (retval); 2442 } 2443 2444 /** 2445 * @internal 2446 */ 2447 static void 2448 device_set_desc_internal(device_t dev, const char* desc, int copy) 2449 { 2450 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2451 free(dev->desc, M_BUS); 2452 dev->flags &= ~DF_DESCMALLOCED; 2453 dev->desc = NULL; 2454 } 2455 2456 if (copy && desc) { 2457 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2458 if (dev->desc) { 2459 strcpy(dev->desc, desc); 2460 dev->flags |= DF_DESCMALLOCED; 2461 } 2462 } else { 2463 /* Avoid a -Wcast-qual warning */ 2464 dev->desc = (char *)(uintptr_t) desc; 2465 } 2466 2467 bus_data_generation_update(); 2468 } 2469 2470 /** 2471 * @brief Set the device's description 2472 * 2473 * The value of @c desc should be a string constant that will not 2474 * change (at least until the description is changed in a subsequent 2475 * call to device_set_desc() or device_set_desc_copy()). 2476 */ 2477 void 2478 device_set_desc(device_t dev, const char* desc) 2479 { 2480 device_set_desc_internal(dev, desc, FALSE); 2481 } 2482 2483 /** 2484 * @brief Set the device's description 2485 * 2486 * The string pointed to by @c desc is copied. Use this function if 2487 * the device description is generated, (e.g. with sprintf()). 2488 */ 2489 void 2490 device_set_desc_copy(device_t dev, const char* desc) 2491 { 2492 device_set_desc_internal(dev, desc, TRUE); 2493 } 2494 2495 /** 2496 * @brief Set the device's flags 2497 */ 2498 void 2499 device_set_flags(device_t dev, uint32_t flags) 2500 { 2501 dev->devflags = flags; 2502 } 2503 2504 /** 2505 * @brief Return the device's softc field 2506 * 2507 * The softc is allocated and zeroed when a driver is attached, based 2508 * on the size field of the driver. 2509 */ 2510 void * 2511 device_get_softc(device_t dev) 2512 { 2513 return (dev->softc); 2514 } 2515 2516 /** 2517 * @brief Set the device's softc field 2518 * 2519 * Most drivers do not need to use this since the softc is allocated 2520 * automatically when the driver is attached. 2521 */ 2522 void 2523 device_set_softc(device_t dev, void *softc) 2524 { 2525 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2526 free(dev->softc, M_BUS_SC); 2527 dev->softc = softc; 2528 if (dev->softc) 2529 dev->flags |= DF_EXTERNALSOFTC; 2530 else 2531 dev->flags &= ~DF_EXTERNALSOFTC; 2532 } 2533 2534 /** 2535 * @brief Free claimed softc 2536 * 2537 * Most drivers do not need to use this since the softc is freed 2538 * automatically when the driver is detached. 2539 */ 2540 void 2541 device_free_softc(void *softc) 2542 { 2543 free(softc, M_BUS_SC); 2544 } 2545 2546 /** 2547 * @brief Claim softc 2548 * 2549 * This function can be used to let the driver free the automatically 2550 * allocated softc using "device_free_softc()". This function is 2551 * useful when the driver is refcounting the softc and the softc 2552 * cannot be freed when the "device_detach" method is called. 2553 */ 2554 void 2555 device_claim_softc(device_t dev) 2556 { 2557 if (dev->softc) 2558 dev->flags |= DF_EXTERNALSOFTC; 2559 else 2560 dev->flags &= ~DF_EXTERNALSOFTC; 2561 } 2562 2563 /** 2564 * @brief Get the device's ivars field 2565 * 2566 * The ivars field is used by the parent device to store per-device 2567 * state (e.g. the physical location of the device or a list of 2568 * resources). 2569 */ 2570 void * 2571 device_get_ivars(device_t dev) 2572 { 2573 2574 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2575 return (dev->ivars); 2576 } 2577 2578 /** 2579 * @brief Set the device's ivars field 2580 */ 2581 void 2582 device_set_ivars(device_t dev, void * ivars) 2583 { 2584 2585 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2586 dev->ivars = ivars; 2587 } 2588 2589 /** 2590 * @brief Return the device's state 2591 */ 2592 device_state_t 2593 device_get_state(device_t dev) 2594 { 2595 return (dev->state); 2596 } 2597 2598 /** 2599 * @brief Set the DF_ENABLED flag for the device 2600 */ 2601 void 2602 device_enable(device_t dev) 2603 { 2604 dev->flags |= DF_ENABLED; 2605 } 2606 2607 /** 2608 * @brief Clear the DF_ENABLED flag for the device 2609 */ 2610 void 2611 device_disable(device_t dev) 2612 { 2613 dev->flags &= ~DF_ENABLED; 2614 } 2615 2616 /** 2617 * @brief Increment the busy counter for the device 2618 */ 2619 void 2620 device_busy(device_t dev) 2621 { 2622 if (dev->state < DS_ATTACHING) 2623 panic("device_busy: called for unattached device"); 2624 if (dev->busy == 0 && dev->parent) 2625 device_busy(dev->parent); 2626 dev->busy++; 2627 if (dev->state == DS_ATTACHED) 2628 dev->state = DS_BUSY; 2629 } 2630 2631 /** 2632 * @brief Decrement the busy counter for the device 2633 */ 2634 void 2635 device_unbusy(device_t dev) 2636 { 2637 if (dev->busy != 0 && dev->state != DS_BUSY && 2638 dev->state != DS_ATTACHING) 2639 panic("device_unbusy: called for non-busy device %s", 2640 device_get_nameunit(dev)); 2641 dev->busy--; 2642 if (dev->busy == 0) { 2643 if (dev->parent) 2644 device_unbusy(dev->parent); 2645 if (dev->state == DS_BUSY) 2646 dev->state = DS_ATTACHED; 2647 } 2648 } 2649 2650 /** 2651 * @brief Set the DF_QUIET flag for the device 2652 */ 2653 void 2654 device_quiet(device_t dev) 2655 { 2656 dev->flags |= DF_QUIET; 2657 } 2658 2659 /** 2660 * @brief Set the DF_QUIET_CHILDREN flag for the device 2661 */ 2662 void 2663 device_quiet_children(device_t dev) 2664 { 2665 dev->flags |= DF_QUIET_CHILDREN; 2666 } 2667 2668 /** 2669 * @brief Clear the DF_QUIET flag for the device 2670 */ 2671 void 2672 device_verbose(device_t dev) 2673 { 2674 dev->flags &= ~DF_QUIET; 2675 } 2676 2677 /** 2678 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2679 */ 2680 int 2681 device_has_quiet_children(device_t dev) 2682 { 2683 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2684 } 2685 2686 /** 2687 * @brief Return non-zero if the DF_QUIET flag is set on the device 2688 */ 2689 int 2690 device_is_quiet(device_t dev) 2691 { 2692 return ((dev->flags & DF_QUIET) != 0); 2693 } 2694 2695 /** 2696 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2697 */ 2698 int 2699 device_is_enabled(device_t dev) 2700 { 2701 return ((dev->flags & DF_ENABLED) != 0); 2702 } 2703 2704 /** 2705 * @brief Return non-zero if the device was successfully probed 2706 */ 2707 int 2708 device_is_alive(device_t dev) 2709 { 2710 return (dev->state >= DS_ALIVE); 2711 } 2712 2713 /** 2714 * @brief Return non-zero if the device currently has a driver 2715 * attached to it 2716 */ 2717 int 2718 device_is_attached(device_t dev) 2719 { 2720 return (dev->state >= DS_ATTACHED); 2721 } 2722 2723 /** 2724 * @brief Return non-zero if the device is currently suspended. 2725 */ 2726 int 2727 device_is_suspended(device_t dev) 2728 { 2729 return ((dev->flags & DF_SUSPENDED) != 0); 2730 } 2731 2732 /** 2733 * @brief Set the devclass of a device 2734 * @see devclass_add_device(). 2735 */ 2736 int 2737 device_set_devclass(device_t dev, const char *classname) 2738 { 2739 devclass_t dc; 2740 int error; 2741 2742 if (!classname) { 2743 if (dev->devclass) 2744 devclass_delete_device(dev->devclass, dev); 2745 return (0); 2746 } 2747 2748 if (dev->devclass) { 2749 printf("device_set_devclass: device class already set\n"); 2750 return (EINVAL); 2751 } 2752 2753 dc = devclass_find_internal(classname, NULL, TRUE); 2754 if (!dc) 2755 return (ENOMEM); 2756 2757 error = devclass_add_device(dc, dev); 2758 2759 bus_data_generation_update(); 2760 return (error); 2761 } 2762 2763 /** 2764 * @brief Set the devclass of a device and mark the devclass fixed. 2765 * @see device_set_devclass() 2766 */ 2767 int 2768 device_set_devclass_fixed(device_t dev, const char *classname) 2769 { 2770 int error; 2771 2772 if (classname == NULL) 2773 return (EINVAL); 2774 2775 error = device_set_devclass(dev, classname); 2776 if (error) 2777 return (error); 2778 dev->flags |= DF_FIXEDCLASS; 2779 return (0); 2780 } 2781 2782 /** 2783 * @brief Set the driver of a device 2784 * 2785 * @retval 0 success 2786 * @retval EBUSY the device already has a driver attached 2787 * @retval ENOMEM a memory allocation failure occurred 2788 */ 2789 int 2790 device_set_driver(device_t dev, driver_t *driver) 2791 { 2792 if (dev->state >= DS_ATTACHED) 2793 return (EBUSY); 2794 2795 if (dev->driver == driver) 2796 return (0); 2797 2798 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2799 free(dev->softc, M_BUS_SC); 2800 dev->softc = NULL; 2801 } 2802 device_set_desc(dev, NULL); 2803 kobj_delete((kobj_t) dev, NULL); 2804 dev->driver = driver; 2805 if (driver) { 2806 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2807 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2808 dev->softc = malloc(driver->size, M_BUS_SC, 2809 M_NOWAIT | M_ZERO); 2810 if (!dev->softc) { 2811 kobj_delete((kobj_t) dev, NULL); 2812 kobj_init((kobj_t) dev, &null_class); 2813 dev->driver = NULL; 2814 return (ENOMEM); 2815 } 2816 } 2817 } else { 2818 kobj_init((kobj_t) dev, &null_class); 2819 } 2820 2821 bus_data_generation_update(); 2822 return (0); 2823 } 2824 2825 /** 2826 * @brief Probe a device, and return this status. 2827 * 2828 * This function is the core of the device autoconfiguration 2829 * system. Its purpose is to select a suitable driver for a device and 2830 * then call that driver to initialise the hardware appropriately. The 2831 * driver is selected by calling the DEVICE_PROBE() method of a set of 2832 * candidate drivers and then choosing the driver which returned the 2833 * best value. This driver is then attached to the device using 2834 * device_attach(). 2835 * 2836 * The set of suitable drivers is taken from the list of drivers in 2837 * the parent device's devclass. If the device was originally created 2838 * with a specific class name (see device_add_child()), only drivers 2839 * with that name are probed, otherwise all drivers in the devclass 2840 * are probed. If no drivers return successful probe values in the 2841 * parent devclass, the search continues in the parent of that 2842 * devclass (see devclass_get_parent()) if any. 2843 * 2844 * @param dev the device to initialise 2845 * 2846 * @retval 0 success 2847 * @retval ENXIO no driver was found 2848 * @retval ENOMEM memory allocation failure 2849 * @retval non-zero some other unix error code 2850 * @retval -1 Device already attached 2851 */ 2852 int 2853 device_probe(device_t dev) 2854 { 2855 int error; 2856 2857 GIANT_REQUIRED; 2858 2859 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2860 return (-1); 2861 2862 if (!(dev->flags & DF_ENABLED)) { 2863 if (bootverbose && device_get_name(dev) != NULL) { 2864 device_print_prettyname(dev); 2865 printf("not probed (disabled)\n"); 2866 } 2867 return (-1); 2868 } 2869 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2870 if (bus_current_pass == BUS_PASS_DEFAULT && 2871 !(dev->flags & DF_DONENOMATCH)) { 2872 BUS_PROBE_NOMATCH(dev->parent, dev); 2873 devnomatch(dev); 2874 dev->flags |= DF_DONENOMATCH; 2875 } 2876 return (error); 2877 } 2878 return (0); 2879 } 2880 2881 /** 2882 * @brief Probe a device and attach a driver if possible 2883 * 2884 * calls device_probe() and attaches if that was successful. 2885 */ 2886 int 2887 device_probe_and_attach(device_t dev) 2888 { 2889 int error; 2890 2891 GIANT_REQUIRED; 2892 2893 error = device_probe(dev); 2894 if (error == -1) 2895 return (0); 2896 else if (error != 0) 2897 return (error); 2898 2899 CURVNET_SET_QUIET(vnet0); 2900 error = device_attach(dev); 2901 CURVNET_RESTORE(); 2902 return error; 2903 } 2904 2905 /** 2906 * @brief Attach a device driver to a device 2907 * 2908 * This function is a wrapper around the DEVICE_ATTACH() driver 2909 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2910 * device's sysctl tree, optionally prints a description of the device 2911 * and queues a notification event for user-based device management 2912 * services. 2913 * 2914 * Normally this function is only called internally from 2915 * device_probe_and_attach(). 2916 * 2917 * @param dev the device to initialise 2918 * 2919 * @retval 0 success 2920 * @retval ENXIO no driver was found 2921 * @retval ENOMEM memory allocation failure 2922 * @retval non-zero some other unix error code 2923 */ 2924 int 2925 device_attach(device_t dev) 2926 { 2927 uint64_t attachtime; 2928 int error; 2929 2930 if (resource_disabled(dev->driver->name, dev->unit)) { 2931 device_disable(dev); 2932 if (bootverbose) 2933 device_printf(dev, "disabled via hints entry\n"); 2934 return (ENXIO); 2935 } 2936 2937 device_sysctl_init(dev); 2938 if (!device_is_quiet(dev)) 2939 device_print_child(dev->parent, dev); 2940 attachtime = get_cyclecount(); 2941 dev->state = DS_ATTACHING; 2942 if ((error = DEVICE_ATTACH(dev)) != 0) { 2943 printf("device_attach: %s%d attach returned %d\n", 2944 dev->driver->name, dev->unit, error); 2945 if (!(dev->flags & DF_FIXEDCLASS)) 2946 devclass_delete_device(dev->devclass, dev); 2947 (void)device_set_driver(dev, NULL); 2948 device_sysctl_fini(dev); 2949 KASSERT(dev->busy == 0, ("attach failed but busy")); 2950 dev->state = DS_NOTPRESENT; 2951 return (error); 2952 } 2953 dev->flags |= DF_ATTACHED_ONCE; 2954 attachtime = get_cyclecount() - attachtime; 2955 /* 2956 * 4 bits per device is a reasonable value for desktop and server 2957 * hardware with good get_cyclecount() implementations, but WILL 2958 * need to be adjusted on other platforms. 2959 */ 2960 #define RANDOM_PROBE_BIT_GUESS 4 2961 if (bootverbose) 2962 printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n", 2963 sizeof(attachtime), RANDOM_PROBE_BIT_GUESS, 2964 dev->driver->name, dev->unit); 2965 random_harvest_direct(&attachtime, sizeof(attachtime), 2966 RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH); 2967 device_sysctl_update(dev); 2968 if (dev->busy) 2969 dev->state = DS_BUSY; 2970 else 2971 dev->state = DS_ATTACHED; 2972 dev->flags &= ~DF_DONENOMATCH; 2973 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 2974 devadded(dev); 2975 return (0); 2976 } 2977 2978 /** 2979 * @brief Detach a driver from a device 2980 * 2981 * This function is a wrapper around the DEVICE_DETACH() driver 2982 * method. If the call to DEVICE_DETACH() succeeds, it calls 2983 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2984 * notification event for user-based device management services and 2985 * cleans up the device's sysctl tree. 2986 * 2987 * @param dev the device to un-initialise 2988 * 2989 * @retval 0 success 2990 * @retval ENXIO no driver was found 2991 * @retval ENOMEM memory allocation failure 2992 * @retval non-zero some other unix error code 2993 */ 2994 int 2995 device_detach(device_t dev) 2996 { 2997 int error; 2998 2999 GIANT_REQUIRED; 3000 3001 PDEBUG(("%s", DEVICENAME(dev))); 3002 if (dev->state == DS_BUSY) 3003 return (EBUSY); 3004 if (dev->state != DS_ATTACHED) 3005 return (0); 3006 3007 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 3008 if ((error = DEVICE_DETACH(dev)) != 0) { 3009 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3010 EVHDEV_DETACH_FAILED); 3011 return (error); 3012 } else { 3013 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3014 EVHDEV_DETACH_COMPLETE); 3015 } 3016 devremoved(dev); 3017 if (!device_is_quiet(dev)) 3018 device_printf(dev, "detached\n"); 3019 if (dev->parent) 3020 BUS_CHILD_DETACHED(dev->parent, dev); 3021 3022 if (!(dev->flags & DF_FIXEDCLASS)) 3023 devclass_delete_device(dev->devclass, dev); 3024 3025 device_verbose(dev); 3026 dev->state = DS_NOTPRESENT; 3027 (void)device_set_driver(dev, NULL); 3028 device_sysctl_fini(dev); 3029 3030 return (0); 3031 } 3032 3033 /** 3034 * @brief Tells a driver to quiesce itself. 3035 * 3036 * This function is a wrapper around the DEVICE_QUIESCE() driver 3037 * method. If the call to DEVICE_QUIESCE() succeeds. 3038 * 3039 * @param dev the device to quiesce 3040 * 3041 * @retval 0 success 3042 * @retval ENXIO no driver was found 3043 * @retval ENOMEM memory allocation failure 3044 * @retval non-zero some other unix error code 3045 */ 3046 int 3047 device_quiesce(device_t dev) 3048 { 3049 3050 PDEBUG(("%s", DEVICENAME(dev))); 3051 if (dev->state == DS_BUSY) 3052 return (EBUSY); 3053 if (dev->state != DS_ATTACHED) 3054 return (0); 3055 3056 return (DEVICE_QUIESCE(dev)); 3057 } 3058 3059 /** 3060 * @brief Notify a device of system shutdown 3061 * 3062 * This function calls the DEVICE_SHUTDOWN() driver method if the 3063 * device currently has an attached driver. 3064 * 3065 * @returns the value returned by DEVICE_SHUTDOWN() 3066 */ 3067 int 3068 device_shutdown(device_t dev) 3069 { 3070 if (dev->state < DS_ATTACHED) 3071 return (0); 3072 return (DEVICE_SHUTDOWN(dev)); 3073 } 3074 3075 /** 3076 * @brief Set the unit number of a device 3077 * 3078 * This function can be used to override the unit number used for a 3079 * device (e.g. to wire a device to a pre-configured unit number). 3080 */ 3081 int 3082 device_set_unit(device_t dev, int unit) 3083 { 3084 devclass_t dc; 3085 int err; 3086 3087 dc = device_get_devclass(dev); 3088 if (unit < dc->maxunit && dc->devices[unit]) 3089 return (EBUSY); 3090 err = devclass_delete_device(dc, dev); 3091 if (err) 3092 return (err); 3093 dev->unit = unit; 3094 err = devclass_add_device(dc, dev); 3095 if (err) 3096 return (err); 3097 3098 bus_data_generation_update(); 3099 return (0); 3100 } 3101 3102 /*======================================*/ 3103 /* 3104 * Some useful method implementations to make life easier for bus drivers. 3105 */ 3106 3107 void 3108 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 3109 { 3110 3111 bzero(args, sz); 3112 args->size = sz; 3113 args->memattr = VM_MEMATTR_UNCACHEABLE; 3114 } 3115 3116 /** 3117 * @brief Initialise a resource list. 3118 * 3119 * @param rl the resource list to initialise 3120 */ 3121 void 3122 resource_list_init(struct resource_list *rl) 3123 { 3124 STAILQ_INIT(rl); 3125 } 3126 3127 /** 3128 * @brief Reclaim memory used by a resource list. 3129 * 3130 * This function frees the memory for all resource entries on the list 3131 * (if any). 3132 * 3133 * @param rl the resource list to free 3134 */ 3135 void 3136 resource_list_free(struct resource_list *rl) 3137 { 3138 struct resource_list_entry *rle; 3139 3140 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3141 if (rle->res) 3142 panic("resource_list_free: resource entry is busy"); 3143 STAILQ_REMOVE_HEAD(rl, link); 3144 free(rle, M_BUS); 3145 } 3146 } 3147 3148 /** 3149 * @brief Add a resource entry. 3150 * 3151 * This function adds a resource entry using the given @p type, @p 3152 * start, @p end and @p count values. A rid value is chosen by 3153 * searching sequentially for the first unused rid starting at zero. 3154 * 3155 * @param rl the resource list to edit 3156 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3157 * @param start the start address of the resource 3158 * @param end the end address of the resource 3159 * @param count XXX end-start+1 3160 */ 3161 int 3162 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 3163 rman_res_t end, rman_res_t count) 3164 { 3165 int rid; 3166 3167 rid = 0; 3168 while (resource_list_find(rl, type, rid) != NULL) 3169 rid++; 3170 resource_list_add(rl, type, rid, start, end, count); 3171 return (rid); 3172 } 3173 3174 /** 3175 * @brief Add or modify a resource entry. 3176 * 3177 * If an existing entry exists with the same type and rid, it will be 3178 * modified using the given values of @p start, @p end and @p 3179 * count. If no entry exists, a new one will be created using the 3180 * given values. The resource list entry that matches is then returned. 3181 * 3182 * @param rl the resource list to edit 3183 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3184 * @param rid the resource identifier 3185 * @param start the start address of the resource 3186 * @param end the end address of the resource 3187 * @param count XXX end-start+1 3188 */ 3189 struct resource_list_entry * 3190 resource_list_add(struct resource_list *rl, int type, int rid, 3191 rman_res_t start, rman_res_t end, rman_res_t count) 3192 { 3193 struct resource_list_entry *rle; 3194 3195 rle = resource_list_find(rl, type, rid); 3196 if (!rle) { 3197 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3198 M_NOWAIT); 3199 if (!rle) 3200 panic("resource_list_add: can't record entry"); 3201 STAILQ_INSERT_TAIL(rl, rle, link); 3202 rle->type = type; 3203 rle->rid = rid; 3204 rle->res = NULL; 3205 rle->flags = 0; 3206 } 3207 3208 if (rle->res) 3209 panic("resource_list_add: resource entry is busy"); 3210 3211 rle->start = start; 3212 rle->end = end; 3213 rle->count = count; 3214 return (rle); 3215 } 3216 3217 /** 3218 * @brief Determine if a resource entry is busy. 3219 * 3220 * Returns true if a resource entry is busy meaning that it has an 3221 * associated resource that is not an unallocated "reserved" resource. 3222 * 3223 * @param rl the resource list to search 3224 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3225 * @param rid the resource identifier 3226 * 3227 * @returns Non-zero if the entry is busy, zero otherwise. 3228 */ 3229 int 3230 resource_list_busy(struct resource_list *rl, int type, int rid) 3231 { 3232 struct resource_list_entry *rle; 3233 3234 rle = resource_list_find(rl, type, rid); 3235 if (rle == NULL || rle->res == NULL) 3236 return (0); 3237 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3238 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3239 ("reserved resource is active")); 3240 return (0); 3241 } 3242 return (1); 3243 } 3244 3245 /** 3246 * @brief Determine if a resource entry is reserved. 3247 * 3248 * Returns true if a resource entry is reserved meaning that it has an 3249 * associated "reserved" resource. The resource can either be 3250 * allocated or unallocated. 3251 * 3252 * @param rl the resource list to search 3253 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3254 * @param rid the resource identifier 3255 * 3256 * @returns Non-zero if the entry is reserved, zero otherwise. 3257 */ 3258 int 3259 resource_list_reserved(struct resource_list *rl, int type, int rid) 3260 { 3261 struct resource_list_entry *rle; 3262 3263 rle = resource_list_find(rl, type, rid); 3264 if (rle != NULL && rle->flags & RLE_RESERVED) 3265 return (1); 3266 return (0); 3267 } 3268 3269 /** 3270 * @brief Find a resource entry by type and rid. 3271 * 3272 * @param rl the resource list to search 3273 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3274 * @param rid the resource identifier 3275 * 3276 * @returns the resource entry pointer or NULL if there is no such 3277 * entry. 3278 */ 3279 struct resource_list_entry * 3280 resource_list_find(struct resource_list *rl, int type, int rid) 3281 { 3282 struct resource_list_entry *rle; 3283 3284 STAILQ_FOREACH(rle, rl, link) { 3285 if (rle->type == type && rle->rid == rid) 3286 return (rle); 3287 } 3288 return (NULL); 3289 } 3290 3291 /** 3292 * @brief Delete a resource entry. 3293 * 3294 * @param rl the resource list to edit 3295 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3296 * @param rid the resource identifier 3297 */ 3298 void 3299 resource_list_delete(struct resource_list *rl, int type, int rid) 3300 { 3301 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3302 3303 if (rle) { 3304 if (rle->res != NULL) 3305 panic("resource_list_delete: resource has not been released"); 3306 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3307 free(rle, M_BUS); 3308 } 3309 } 3310 3311 /** 3312 * @brief Allocate a reserved resource 3313 * 3314 * This can be used by buses to force the allocation of resources 3315 * that are always active in the system even if they are not allocated 3316 * by a driver (e.g. PCI BARs). This function is usually called when 3317 * adding a new child to the bus. The resource is allocated from the 3318 * parent bus when it is reserved. The resource list entry is marked 3319 * with RLE_RESERVED to note that it is a reserved resource. 3320 * 3321 * Subsequent attempts to allocate the resource with 3322 * resource_list_alloc() will succeed the first time and will set 3323 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3324 * resource that has been allocated is released with 3325 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3326 * the actual resource remains allocated. The resource can be released to 3327 * the parent bus by calling resource_list_unreserve(). 3328 * 3329 * @param rl the resource list to allocate from 3330 * @param bus the parent device of @p child 3331 * @param child the device for which the resource is being reserved 3332 * @param type the type of resource to allocate 3333 * @param rid a pointer to the resource identifier 3334 * @param start hint at the start of the resource range - pass 3335 * @c 0 for any start address 3336 * @param end hint at the end of the resource range - pass 3337 * @c ~0 for any end address 3338 * @param count hint at the size of range required - pass @c 1 3339 * for any size 3340 * @param flags any extra flags to control the resource 3341 * allocation - see @c RF_XXX flags in 3342 * <sys/rman.h> for details 3343 * 3344 * @returns the resource which was allocated or @c NULL if no 3345 * resource could be allocated 3346 */ 3347 struct resource * 3348 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3349 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3350 { 3351 struct resource_list_entry *rle = NULL; 3352 int passthrough = (device_get_parent(child) != bus); 3353 struct resource *r; 3354 3355 if (passthrough) 3356 panic( 3357 "resource_list_reserve() should only be called for direct children"); 3358 if (flags & RF_ACTIVE) 3359 panic( 3360 "resource_list_reserve() should only reserve inactive resources"); 3361 3362 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3363 flags); 3364 if (r != NULL) { 3365 rle = resource_list_find(rl, type, *rid); 3366 rle->flags |= RLE_RESERVED; 3367 } 3368 return (r); 3369 } 3370 3371 /** 3372 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3373 * 3374 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3375 * and passing the allocation up to the parent of @p bus. This assumes 3376 * that the first entry of @c device_get_ivars(child) is a struct 3377 * resource_list. This also handles 'passthrough' allocations where a 3378 * child is a remote descendant of bus by passing the allocation up to 3379 * the parent of bus. 3380 * 3381 * Typically, a bus driver would store a list of child resources 3382 * somewhere in the child device's ivars (see device_get_ivars()) and 3383 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3384 * then call resource_list_alloc() to perform the allocation. 3385 * 3386 * @param rl the resource list to allocate from 3387 * @param bus the parent device of @p child 3388 * @param child the device which is requesting an allocation 3389 * @param type the type of resource to allocate 3390 * @param rid a pointer to the resource identifier 3391 * @param start hint at the start of the resource range - pass 3392 * @c 0 for any start address 3393 * @param end hint at the end of the resource range - pass 3394 * @c ~0 for any end address 3395 * @param count hint at the size of range required - pass @c 1 3396 * for any size 3397 * @param flags any extra flags to control the resource 3398 * allocation - see @c RF_XXX flags in 3399 * <sys/rman.h> for details 3400 * 3401 * @returns the resource which was allocated or @c NULL if no 3402 * resource could be allocated 3403 */ 3404 struct resource * 3405 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3406 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3407 { 3408 struct resource_list_entry *rle = NULL; 3409 int passthrough = (device_get_parent(child) != bus); 3410 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3411 3412 if (passthrough) { 3413 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3414 type, rid, start, end, count, flags)); 3415 } 3416 3417 rle = resource_list_find(rl, type, *rid); 3418 3419 if (!rle) 3420 return (NULL); /* no resource of that type/rid */ 3421 3422 if (rle->res) { 3423 if (rle->flags & RLE_RESERVED) { 3424 if (rle->flags & RLE_ALLOCATED) 3425 return (NULL); 3426 if ((flags & RF_ACTIVE) && 3427 bus_activate_resource(child, type, *rid, 3428 rle->res) != 0) 3429 return (NULL); 3430 rle->flags |= RLE_ALLOCATED; 3431 return (rle->res); 3432 } 3433 device_printf(bus, 3434 "resource entry %#x type %d for child %s is busy\n", *rid, 3435 type, device_get_nameunit(child)); 3436 return (NULL); 3437 } 3438 3439 if (isdefault) { 3440 start = rle->start; 3441 count = ulmax(count, rle->count); 3442 end = ulmax(rle->end, start + count - 1); 3443 } 3444 3445 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3446 type, rid, start, end, count, flags); 3447 3448 /* 3449 * Record the new range. 3450 */ 3451 if (rle->res) { 3452 rle->start = rman_get_start(rle->res); 3453 rle->end = rman_get_end(rle->res); 3454 rle->count = count; 3455 } 3456 3457 return (rle->res); 3458 } 3459 3460 /** 3461 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3462 * 3463 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3464 * used with resource_list_alloc(). 3465 * 3466 * @param rl the resource list which was allocated from 3467 * @param bus the parent device of @p child 3468 * @param child the device which is requesting a release 3469 * @param type the type of resource to release 3470 * @param rid the resource identifier 3471 * @param res the resource to release 3472 * 3473 * @retval 0 success 3474 * @retval non-zero a standard unix error code indicating what 3475 * error condition prevented the operation 3476 */ 3477 int 3478 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3479 int type, int rid, struct resource *res) 3480 { 3481 struct resource_list_entry *rle = NULL; 3482 int passthrough = (device_get_parent(child) != bus); 3483 int error; 3484 3485 if (passthrough) { 3486 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3487 type, rid, res)); 3488 } 3489 3490 rle = resource_list_find(rl, type, rid); 3491 3492 if (!rle) 3493 panic("resource_list_release: can't find resource"); 3494 if (!rle->res) 3495 panic("resource_list_release: resource entry is not busy"); 3496 if (rle->flags & RLE_RESERVED) { 3497 if (rle->flags & RLE_ALLOCATED) { 3498 if (rman_get_flags(res) & RF_ACTIVE) { 3499 error = bus_deactivate_resource(child, type, 3500 rid, res); 3501 if (error) 3502 return (error); 3503 } 3504 rle->flags &= ~RLE_ALLOCATED; 3505 return (0); 3506 } 3507 return (EINVAL); 3508 } 3509 3510 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3511 type, rid, res); 3512 if (error) 3513 return (error); 3514 3515 rle->res = NULL; 3516 return (0); 3517 } 3518 3519 /** 3520 * @brief Release all active resources of a given type 3521 * 3522 * Release all active resources of a specified type. This is intended 3523 * to be used to cleanup resources leaked by a driver after detach or 3524 * a failed attach. 3525 * 3526 * @param rl the resource list which was allocated from 3527 * @param bus the parent device of @p child 3528 * @param child the device whose active resources are being released 3529 * @param type the type of resources to release 3530 * 3531 * @retval 0 success 3532 * @retval EBUSY at least one resource was active 3533 */ 3534 int 3535 resource_list_release_active(struct resource_list *rl, device_t bus, 3536 device_t child, int type) 3537 { 3538 struct resource_list_entry *rle; 3539 int error, retval; 3540 3541 retval = 0; 3542 STAILQ_FOREACH(rle, rl, link) { 3543 if (rle->type != type) 3544 continue; 3545 if (rle->res == NULL) 3546 continue; 3547 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3548 RLE_RESERVED) 3549 continue; 3550 retval = EBUSY; 3551 error = resource_list_release(rl, bus, child, type, 3552 rman_get_rid(rle->res), rle->res); 3553 if (error != 0) 3554 device_printf(bus, 3555 "Failed to release active resource: %d\n", error); 3556 } 3557 return (retval); 3558 } 3559 3560 3561 /** 3562 * @brief Fully release a reserved resource 3563 * 3564 * Fully releases a resource reserved via resource_list_reserve(). 3565 * 3566 * @param rl the resource list which was allocated from 3567 * @param bus the parent device of @p child 3568 * @param child the device whose reserved resource is being released 3569 * @param type the type of resource to release 3570 * @param rid the resource identifier 3571 * @param res the resource to release 3572 * 3573 * @retval 0 success 3574 * @retval non-zero a standard unix error code indicating what 3575 * error condition prevented the operation 3576 */ 3577 int 3578 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3579 int type, int rid) 3580 { 3581 struct resource_list_entry *rle = NULL; 3582 int passthrough = (device_get_parent(child) != bus); 3583 3584 if (passthrough) 3585 panic( 3586 "resource_list_unreserve() should only be called for direct children"); 3587 3588 rle = resource_list_find(rl, type, rid); 3589 3590 if (!rle) 3591 panic("resource_list_unreserve: can't find resource"); 3592 if (!(rle->flags & RLE_RESERVED)) 3593 return (EINVAL); 3594 if (rle->flags & RLE_ALLOCATED) 3595 return (EBUSY); 3596 rle->flags &= ~RLE_RESERVED; 3597 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3598 } 3599 3600 /** 3601 * @brief Print a description of resources in a resource list 3602 * 3603 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3604 * The name is printed if at least one resource of the given type is available. 3605 * The format is used to print resource start and end. 3606 * 3607 * @param rl the resource list to print 3608 * @param name the name of @p type, e.g. @c "memory" 3609 * @param type type type of resource entry to print 3610 * @param format printf(9) format string to print resource 3611 * start and end values 3612 * 3613 * @returns the number of characters printed 3614 */ 3615 int 3616 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3617 const char *format) 3618 { 3619 struct resource_list_entry *rle; 3620 int printed, retval; 3621 3622 printed = 0; 3623 retval = 0; 3624 /* Yes, this is kinda cheating */ 3625 STAILQ_FOREACH(rle, rl, link) { 3626 if (rle->type == type) { 3627 if (printed == 0) 3628 retval += printf(" %s ", name); 3629 else 3630 retval += printf(","); 3631 printed++; 3632 retval += printf(format, rle->start); 3633 if (rle->count > 1) { 3634 retval += printf("-"); 3635 retval += printf(format, rle->start + 3636 rle->count - 1); 3637 } 3638 } 3639 } 3640 return (retval); 3641 } 3642 3643 /** 3644 * @brief Releases all the resources in a list. 3645 * 3646 * @param rl The resource list to purge. 3647 * 3648 * @returns nothing 3649 */ 3650 void 3651 resource_list_purge(struct resource_list *rl) 3652 { 3653 struct resource_list_entry *rle; 3654 3655 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3656 if (rle->res) 3657 bus_release_resource(rman_get_device(rle->res), 3658 rle->type, rle->rid, rle->res); 3659 STAILQ_REMOVE_HEAD(rl, link); 3660 free(rle, M_BUS); 3661 } 3662 } 3663 3664 device_t 3665 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3666 { 3667 3668 return (device_add_child_ordered(dev, order, name, unit)); 3669 } 3670 3671 /** 3672 * @brief Helper function for implementing DEVICE_PROBE() 3673 * 3674 * This function can be used to help implement the DEVICE_PROBE() for 3675 * a bus (i.e. a device which has other devices attached to it). It 3676 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3677 * devclass. 3678 */ 3679 int 3680 bus_generic_probe(device_t dev) 3681 { 3682 devclass_t dc = dev->devclass; 3683 driverlink_t dl; 3684 3685 TAILQ_FOREACH(dl, &dc->drivers, link) { 3686 /* 3687 * If this driver's pass is too high, then ignore it. 3688 * For most drivers in the default pass, this will 3689 * never be true. For early-pass drivers they will 3690 * only call the identify routines of eligible drivers 3691 * when this routine is called. Drivers for later 3692 * passes should have their identify routines called 3693 * on early-pass buses during BUS_NEW_PASS(). 3694 */ 3695 if (dl->pass > bus_current_pass) 3696 continue; 3697 DEVICE_IDENTIFY(dl->driver, dev); 3698 } 3699 3700 return (0); 3701 } 3702 3703 /** 3704 * @brief Helper function for implementing DEVICE_ATTACH() 3705 * 3706 * This function can be used to help implement the DEVICE_ATTACH() for 3707 * a bus. It calls device_probe_and_attach() for each of the device's 3708 * children. 3709 */ 3710 int 3711 bus_generic_attach(device_t dev) 3712 { 3713 device_t child; 3714 3715 TAILQ_FOREACH(child, &dev->children, link) { 3716 device_probe_and_attach(child); 3717 } 3718 3719 return (0); 3720 } 3721 3722 /** 3723 * @brief Helper function for implementing DEVICE_DETACH() 3724 * 3725 * This function can be used to help implement the DEVICE_DETACH() for 3726 * a bus. It calls device_detach() for each of the device's 3727 * children. 3728 */ 3729 int 3730 bus_generic_detach(device_t dev) 3731 { 3732 device_t child; 3733 int error; 3734 3735 if (dev->state != DS_ATTACHED) 3736 return (EBUSY); 3737 3738 /* 3739 * Detach children in the reverse order. 3740 * See bus_generic_suspend for details. 3741 */ 3742 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3743 if ((error = device_detach(child)) != 0) 3744 return (error); 3745 } 3746 3747 return (0); 3748 } 3749 3750 /** 3751 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3752 * 3753 * This function can be used to help implement the DEVICE_SHUTDOWN() 3754 * for a bus. It calls device_shutdown() for each of the device's 3755 * children. 3756 */ 3757 int 3758 bus_generic_shutdown(device_t dev) 3759 { 3760 device_t child; 3761 3762 /* 3763 * Shut down children in the reverse order. 3764 * See bus_generic_suspend for details. 3765 */ 3766 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3767 device_shutdown(child); 3768 } 3769 3770 return (0); 3771 } 3772 3773 /** 3774 * @brief Default function for suspending a child device. 3775 * 3776 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3777 */ 3778 int 3779 bus_generic_suspend_child(device_t dev, device_t child) 3780 { 3781 int error; 3782 3783 error = DEVICE_SUSPEND(child); 3784 3785 if (error == 0) 3786 child->flags |= DF_SUSPENDED; 3787 3788 return (error); 3789 } 3790 3791 /** 3792 * @brief Default function for resuming a child device. 3793 * 3794 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3795 */ 3796 int 3797 bus_generic_resume_child(device_t dev, device_t child) 3798 { 3799 3800 DEVICE_RESUME(child); 3801 child->flags &= ~DF_SUSPENDED; 3802 3803 return (0); 3804 } 3805 3806 /** 3807 * @brief Helper function for implementing DEVICE_SUSPEND() 3808 * 3809 * This function can be used to help implement the DEVICE_SUSPEND() 3810 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3811 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3812 * operation is aborted and any devices which were suspended are 3813 * resumed immediately by calling their DEVICE_RESUME() methods. 3814 */ 3815 int 3816 bus_generic_suspend(device_t dev) 3817 { 3818 int error; 3819 device_t child; 3820 3821 /* 3822 * Suspend children in the reverse order. 3823 * For most buses all children are equal, so the order does not matter. 3824 * Other buses, such as acpi, carefully order their child devices to 3825 * express implicit dependencies between them. For such buses it is 3826 * safer to bring down devices in the reverse order. 3827 */ 3828 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3829 error = BUS_SUSPEND_CHILD(dev, child); 3830 if (error != 0) { 3831 child = TAILQ_NEXT(child, link); 3832 if (child != NULL) { 3833 TAILQ_FOREACH_FROM(child, &dev->children, link) 3834 BUS_RESUME_CHILD(dev, child); 3835 } 3836 return (error); 3837 } 3838 } 3839 return (0); 3840 } 3841 3842 /** 3843 * @brief Helper function for implementing DEVICE_RESUME() 3844 * 3845 * This function can be used to help implement the DEVICE_RESUME() for 3846 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3847 */ 3848 int 3849 bus_generic_resume(device_t dev) 3850 { 3851 device_t child; 3852 3853 TAILQ_FOREACH(child, &dev->children, link) { 3854 BUS_RESUME_CHILD(dev, child); 3855 /* if resume fails, there's nothing we can usefully do... */ 3856 } 3857 return (0); 3858 } 3859 3860 /** 3861 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3862 * 3863 * This function prints the first part of the ascii representation of 3864 * @p child, including its name, unit and description (if any - see 3865 * device_set_desc()). 3866 * 3867 * @returns the number of characters printed 3868 */ 3869 int 3870 bus_print_child_header(device_t dev, device_t child) 3871 { 3872 int retval = 0; 3873 3874 if (device_get_desc(child)) { 3875 retval += device_printf(child, "<%s>", device_get_desc(child)); 3876 } else { 3877 retval += printf("%s", device_get_nameunit(child)); 3878 } 3879 3880 return (retval); 3881 } 3882 3883 /** 3884 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3885 * 3886 * This function prints the last part of the ascii representation of 3887 * @p child, which consists of the string @c " on " followed by the 3888 * name and unit of the @p dev. 3889 * 3890 * @returns the number of characters printed 3891 */ 3892 int 3893 bus_print_child_footer(device_t dev, device_t child) 3894 { 3895 return (printf(" on %s\n", device_get_nameunit(dev))); 3896 } 3897 3898 /** 3899 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3900 * 3901 * This function prints out the VM domain for the given device. 3902 * 3903 * @returns the number of characters printed 3904 */ 3905 int 3906 bus_print_child_domain(device_t dev, device_t child) 3907 { 3908 int domain; 3909 3910 /* No domain? Don't print anything */ 3911 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3912 return (0); 3913 3914 return (printf(" numa-domain %d", domain)); 3915 } 3916 3917 /** 3918 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3919 * 3920 * This function simply calls bus_print_child_header() followed by 3921 * bus_print_child_footer(). 3922 * 3923 * @returns the number of characters printed 3924 */ 3925 int 3926 bus_generic_print_child(device_t dev, device_t child) 3927 { 3928 int retval = 0; 3929 3930 retval += bus_print_child_header(dev, child); 3931 retval += bus_print_child_domain(dev, child); 3932 retval += bus_print_child_footer(dev, child); 3933 3934 return (retval); 3935 } 3936 3937 /** 3938 * @brief Stub function for implementing BUS_READ_IVAR(). 3939 * 3940 * @returns ENOENT 3941 */ 3942 int 3943 bus_generic_read_ivar(device_t dev, device_t child, int index, 3944 uintptr_t * result) 3945 { 3946 return (ENOENT); 3947 } 3948 3949 /** 3950 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3951 * 3952 * @returns ENOENT 3953 */ 3954 int 3955 bus_generic_write_ivar(device_t dev, device_t child, int index, 3956 uintptr_t value) 3957 { 3958 return (ENOENT); 3959 } 3960 3961 /** 3962 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3963 * 3964 * @returns NULL 3965 */ 3966 struct resource_list * 3967 bus_generic_get_resource_list(device_t dev, device_t child) 3968 { 3969 return (NULL); 3970 } 3971 3972 /** 3973 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3974 * 3975 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3976 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3977 * and then calls device_probe_and_attach() for each unattached child. 3978 */ 3979 void 3980 bus_generic_driver_added(device_t dev, driver_t *driver) 3981 { 3982 device_t child; 3983 3984 DEVICE_IDENTIFY(driver, dev); 3985 TAILQ_FOREACH(child, &dev->children, link) { 3986 if (child->state == DS_NOTPRESENT || 3987 (child->flags & DF_REBID)) 3988 device_probe_and_attach(child); 3989 } 3990 } 3991 3992 /** 3993 * @brief Helper function for implementing BUS_NEW_PASS(). 3994 * 3995 * This implementing of BUS_NEW_PASS() first calls the identify 3996 * routines for any drivers that probe at the current pass. Then it 3997 * walks the list of devices for this bus. If a device is already 3998 * attached, then it calls BUS_NEW_PASS() on that device. If the 3999 * device is not already attached, it attempts to attach a driver to 4000 * it. 4001 */ 4002 void 4003 bus_generic_new_pass(device_t dev) 4004 { 4005 driverlink_t dl; 4006 devclass_t dc; 4007 device_t child; 4008 4009 dc = dev->devclass; 4010 TAILQ_FOREACH(dl, &dc->drivers, link) { 4011 if (dl->pass == bus_current_pass) 4012 DEVICE_IDENTIFY(dl->driver, dev); 4013 } 4014 TAILQ_FOREACH(child, &dev->children, link) { 4015 if (child->state >= DS_ATTACHED) 4016 BUS_NEW_PASS(child); 4017 else if (child->state == DS_NOTPRESENT) 4018 device_probe_and_attach(child); 4019 } 4020 } 4021 4022 /** 4023 * @brief Helper function for implementing BUS_SETUP_INTR(). 4024 * 4025 * This simple implementation of BUS_SETUP_INTR() simply calls the 4026 * BUS_SETUP_INTR() method of the parent of @p dev. 4027 */ 4028 int 4029 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 4030 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 4031 void **cookiep) 4032 { 4033 /* Propagate up the bus hierarchy until someone handles it. */ 4034 if (dev->parent) 4035 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 4036 filter, intr, arg, cookiep)); 4037 return (EINVAL); 4038 } 4039 4040 /** 4041 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 4042 * 4043 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 4044 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 4045 */ 4046 int 4047 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 4048 void *cookie) 4049 { 4050 /* Propagate up the bus hierarchy until someone handles it. */ 4051 if (dev->parent) 4052 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 4053 return (EINVAL); 4054 } 4055 4056 /** 4057 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4058 * 4059 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 4060 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 4061 */ 4062 int 4063 bus_generic_adjust_resource(device_t dev, device_t child, int type, 4064 struct resource *r, rman_res_t start, rman_res_t end) 4065 { 4066 /* Propagate up the bus hierarchy until someone handles it. */ 4067 if (dev->parent) 4068 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 4069 end)); 4070 return (EINVAL); 4071 } 4072 4073 /** 4074 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4075 * 4076 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 4077 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 4078 */ 4079 struct resource * 4080 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4081 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4082 { 4083 /* Propagate up the bus hierarchy until someone handles it. */ 4084 if (dev->parent) 4085 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4086 start, end, count, flags)); 4087 return (NULL); 4088 } 4089 4090 /** 4091 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4092 * 4093 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4094 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4095 */ 4096 int 4097 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 4098 struct resource *r) 4099 { 4100 /* Propagate up the bus hierarchy until someone handles it. */ 4101 if (dev->parent) 4102 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 4103 r)); 4104 return (EINVAL); 4105 } 4106 4107 /** 4108 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4109 * 4110 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4111 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4112 */ 4113 int 4114 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 4115 struct resource *r) 4116 { 4117 /* Propagate up the bus hierarchy until someone handles it. */ 4118 if (dev->parent) 4119 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 4120 r)); 4121 return (EINVAL); 4122 } 4123 4124 /** 4125 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4126 * 4127 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4128 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4129 */ 4130 int 4131 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 4132 int rid, struct resource *r) 4133 { 4134 /* Propagate up the bus hierarchy until someone handles it. */ 4135 if (dev->parent) 4136 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4137 r)); 4138 return (EINVAL); 4139 } 4140 4141 /** 4142 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4143 * 4144 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4145 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4146 */ 4147 int 4148 bus_generic_map_resource(device_t dev, device_t child, int type, 4149 struct resource *r, struct resource_map_request *args, 4150 struct resource_map *map) 4151 { 4152 /* Propagate up the bus hierarchy until someone handles it. */ 4153 if (dev->parent) 4154 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 4155 map)); 4156 return (EINVAL); 4157 } 4158 4159 /** 4160 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4161 * 4162 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4163 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4164 */ 4165 int 4166 bus_generic_unmap_resource(device_t dev, device_t child, int type, 4167 struct resource *r, struct resource_map *map) 4168 { 4169 /* Propagate up the bus hierarchy until someone handles it. */ 4170 if (dev->parent) 4171 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 4172 return (EINVAL); 4173 } 4174 4175 /** 4176 * @brief Helper function for implementing BUS_BIND_INTR(). 4177 * 4178 * This simple implementation of BUS_BIND_INTR() simply calls the 4179 * BUS_BIND_INTR() method of the parent of @p dev. 4180 */ 4181 int 4182 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4183 int cpu) 4184 { 4185 4186 /* Propagate up the bus hierarchy until someone handles it. */ 4187 if (dev->parent) 4188 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4189 return (EINVAL); 4190 } 4191 4192 /** 4193 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4194 * 4195 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4196 * BUS_CONFIG_INTR() method of the parent of @p dev. 4197 */ 4198 int 4199 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4200 enum intr_polarity pol) 4201 { 4202 4203 /* Propagate up the bus hierarchy until someone handles it. */ 4204 if (dev->parent) 4205 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4206 return (EINVAL); 4207 } 4208 4209 /** 4210 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4211 * 4212 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4213 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4214 */ 4215 int 4216 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4217 void *cookie, const char *descr) 4218 { 4219 4220 /* Propagate up the bus hierarchy until someone handles it. */ 4221 if (dev->parent) 4222 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4223 descr)); 4224 return (EINVAL); 4225 } 4226 4227 /** 4228 * @brief Helper function for implementing BUS_GET_CPUS(). 4229 * 4230 * This simple implementation of BUS_GET_CPUS() simply calls the 4231 * BUS_GET_CPUS() method of the parent of @p dev. 4232 */ 4233 int 4234 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4235 size_t setsize, cpuset_t *cpuset) 4236 { 4237 4238 /* Propagate up the bus hierarchy until someone handles it. */ 4239 if (dev->parent != NULL) 4240 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4241 return (EINVAL); 4242 } 4243 4244 /** 4245 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4246 * 4247 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4248 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4249 */ 4250 bus_dma_tag_t 4251 bus_generic_get_dma_tag(device_t dev, device_t child) 4252 { 4253 4254 /* Propagate up the bus hierarchy until someone handles it. */ 4255 if (dev->parent != NULL) 4256 return (BUS_GET_DMA_TAG(dev->parent, child)); 4257 return (NULL); 4258 } 4259 4260 /** 4261 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4262 * 4263 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4264 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4265 */ 4266 bus_space_tag_t 4267 bus_generic_get_bus_tag(device_t dev, device_t child) 4268 { 4269 4270 /* Propagate up the bus hierarchy until someone handles it. */ 4271 if (dev->parent != NULL) 4272 return (BUS_GET_BUS_TAG(dev->parent, child)); 4273 return ((bus_space_tag_t)0); 4274 } 4275 4276 /** 4277 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4278 * 4279 * This implementation of BUS_GET_RESOURCE() uses the 4280 * resource_list_find() function to do most of the work. It calls 4281 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4282 * search. 4283 */ 4284 int 4285 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4286 rman_res_t *startp, rman_res_t *countp) 4287 { 4288 struct resource_list * rl = NULL; 4289 struct resource_list_entry * rle = NULL; 4290 4291 rl = BUS_GET_RESOURCE_LIST(dev, child); 4292 if (!rl) 4293 return (EINVAL); 4294 4295 rle = resource_list_find(rl, type, rid); 4296 if (!rle) 4297 return (ENOENT); 4298 4299 if (startp) 4300 *startp = rle->start; 4301 if (countp) 4302 *countp = rle->count; 4303 4304 return (0); 4305 } 4306 4307 /** 4308 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4309 * 4310 * This implementation of BUS_SET_RESOURCE() uses the 4311 * resource_list_add() function to do most of the work. It calls 4312 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4313 * edit. 4314 */ 4315 int 4316 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4317 rman_res_t start, rman_res_t count) 4318 { 4319 struct resource_list * rl = NULL; 4320 4321 rl = BUS_GET_RESOURCE_LIST(dev, child); 4322 if (!rl) 4323 return (EINVAL); 4324 4325 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4326 4327 return (0); 4328 } 4329 4330 /** 4331 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4332 * 4333 * This implementation of BUS_DELETE_RESOURCE() uses the 4334 * resource_list_delete() function to do most of the work. It calls 4335 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4336 * edit. 4337 */ 4338 void 4339 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4340 { 4341 struct resource_list * rl = NULL; 4342 4343 rl = BUS_GET_RESOURCE_LIST(dev, child); 4344 if (!rl) 4345 return; 4346 4347 resource_list_delete(rl, type, rid); 4348 4349 return; 4350 } 4351 4352 /** 4353 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4354 * 4355 * This implementation of BUS_RELEASE_RESOURCE() uses the 4356 * resource_list_release() function to do most of the work. It calls 4357 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4358 */ 4359 int 4360 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4361 int rid, struct resource *r) 4362 { 4363 struct resource_list * rl = NULL; 4364 4365 if (device_get_parent(child) != dev) 4366 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4367 type, rid, r)); 4368 4369 rl = BUS_GET_RESOURCE_LIST(dev, child); 4370 if (!rl) 4371 return (EINVAL); 4372 4373 return (resource_list_release(rl, dev, child, type, rid, r)); 4374 } 4375 4376 /** 4377 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4378 * 4379 * This implementation of BUS_ALLOC_RESOURCE() uses the 4380 * resource_list_alloc() function to do most of the work. It calls 4381 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4382 */ 4383 struct resource * 4384 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4385 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4386 { 4387 struct resource_list * rl = NULL; 4388 4389 if (device_get_parent(child) != dev) 4390 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4391 type, rid, start, end, count, flags)); 4392 4393 rl = BUS_GET_RESOURCE_LIST(dev, child); 4394 if (!rl) 4395 return (NULL); 4396 4397 return (resource_list_alloc(rl, dev, child, type, rid, 4398 start, end, count, flags)); 4399 } 4400 4401 /** 4402 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4403 * 4404 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4405 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4406 */ 4407 int 4408 bus_generic_child_present(device_t dev, device_t child) 4409 { 4410 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4411 } 4412 4413 int 4414 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4415 { 4416 4417 if (dev->parent) 4418 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4419 4420 return (ENOENT); 4421 } 4422 4423 /** 4424 * @brief Helper function for implementing BUS_RESCAN(). 4425 * 4426 * This null implementation of BUS_RESCAN() always fails to indicate 4427 * the bus does not support rescanning. 4428 */ 4429 int 4430 bus_null_rescan(device_t dev) 4431 { 4432 4433 return (ENXIO); 4434 } 4435 4436 /* 4437 * Some convenience functions to make it easier for drivers to use the 4438 * resource-management functions. All these really do is hide the 4439 * indirection through the parent's method table, making for slightly 4440 * less-wordy code. In the future, it might make sense for this code 4441 * to maintain some sort of a list of resources allocated by each device. 4442 */ 4443 4444 int 4445 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4446 struct resource **res) 4447 { 4448 int i; 4449 4450 for (i = 0; rs[i].type != -1; i++) 4451 res[i] = NULL; 4452 for (i = 0; rs[i].type != -1; i++) { 4453 res[i] = bus_alloc_resource_any(dev, 4454 rs[i].type, &rs[i].rid, rs[i].flags); 4455 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4456 bus_release_resources(dev, rs, res); 4457 return (ENXIO); 4458 } 4459 } 4460 return (0); 4461 } 4462 4463 void 4464 bus_release_resources(device_t dev, const struct resource_spec *rs, 4465 struct resource **res) 4466 { 4467 int i; 4468 4469 for (i = 0; rs[i].type != -1; i++) 4470 if (res[i] != NULL) { 4471 bus_release_resource( 4472 dev, rs[i].type, rs[i].rid, res[i]); 4473 res[i] = NULL; 4474 } 4475 } 4476 4477 /** 4478 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4479 * 4480 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4481 * parent of @p dev. 4482 */ 4483 struct resource * 4484 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4485 rman_res_t end, rman_res_t count, u_int flags) 4486 { 4487 struct resource *res; 4488 4489 if (dev->parent == NULL) 4490 return (NULL); 4491 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4492 count, flags); 4493 return (res); 4494 } 4495 4496 /** 4497 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4498 * 4499 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4500 * parent of @p dev. 4501 */ 4502 int 4503 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4504 rman_res_t end) 4505 { 4506 if (dev->parent == NULL) 4507 return (EINVAL); 4508 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4509 } 4510 4511 /** 4512 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4513 * 4514 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4515 * parent of @p dev. 4516 */ 4517 int 4518 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4519 { 4520 if (dev->parent == NULL) 4521 return (EINVAL); 4522 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4523 } 4524 4525 /** 4526 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4527 * 4528 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4529 * parent of @p dev. 4530 */ 4531 int 4532 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4533 { 4534 if (dev->parent == NULL) 4535 return (EINVAL); 4536 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4537 } 4538 4539 /** 4540 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4541 * 4542 * This function simply calls the BUS_MAP_RESOURCE() method of the 4543 * parent of @p dev. 4544 */ 4545 int 4546 bus_map_resource(device_t dev, int type, struct resource *r, 4547 struct resource_map_request *args, struct resource_map *map) 4548 { 4549 if (dev->parent == NULL) 4550 return (EINVAL); 4551 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4552 } 4553 4554 /** 4555 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4556 * 4557 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4558 * parent of @p dev. 4559 */ 4560 int 4561 bus_unmap_resource(device_t dev, int type, struct resource *r, 4562 struct resource_map *map) 4563 { 4564 if (dev->parent == NULL) 4565 return (EINVAL); 4566 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4567 } 4568 4569 /** 4570 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4571 * 4572 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4573 * parent of @p dev. 4574 */ 4575 int 4576 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4577 { 4578 int rv; 4579 4580 if (dev->parent == NULL) 4581 return (EINVAL); 4582 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4583 return (rv); 4584 } 4585 4586 /** 4587 * @brief Wrapper function for BUS_SETUP_INTR(). 4588 * 4589 * This function simply calls the BUS_SETUP_INTR() method of the 4590 * parent of @p dev. 4591 */ 4592 int 4593 bus_setup_intr(device_t dev, struct resource *r, int flags, 4594 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4595 { 4596 int error; 4597 4598 if (dev->parent == NULL) 4599 return (EINVAL); 4600 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4601 arg, cookiep); 4602 if (error != 0) 4603 return (error); 4604 if (handler != NULL && !(flags & INTR_MPSAFE)) 4605 device_printf(dev, "[GIANT-LOCKED]\n"); 4606 return (0); 4607 } 4608 4609 /** 4610 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4611 * 4612 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4613 * parent of @p dev. 4614 */ 4615 int 4616 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4617 { 4618 if (dev->parent == NULL) 4619 return (EINVAL); 4620 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4621 } 4622 4623 /** 4624 * @brief Wrapper function for BUS_BIND_INTR(). 4625 * 4626 * This function simply calls the BUS_BIND_INTR() method of the 4627 * parent of @p dev. 4628 */ 4629 int 4630 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4631 { 4632 if (dev->parent == NULL) 4633 return (EINVAL); 4634 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4635 } 4636 4637 /** 4638 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4639 * 4640 * This function first formats the requested description into a 4641 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4642 * the parent of @p dev. 4643 */ 4644 int 4645 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4646 const char *fmt, ...) 4647 { 4648 va_list ap; 4649 char descr[MAXCOMLEN + 1]; 4650 4651 if (dev->parent == NULL) 4652 return (EINVAL); 4653 va_start(ap, fmt); 4654 vsnprintf(descr, sizeof(descr), fmt, ap); 4655 va_end(ap); 4656 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4657 } 4658 4659 /** 4660 * @brief Wrapper function for BUS_SET_RESOURCE(). 4661 * 4662 * This function simply calls the BUS_SET_RESOURCE() method of the 4663 * parent of @p dev. 4664 */ 4665 int 4666 bus_set_resource(device_t dev, int type, int rid, 4667 rman_res_t start, rman_res_t count) 4668 { 4669 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4670 start, count)); 4671 } 4672 4673 /** 4674 * @brief Wrapper function for BUS_GET_RESOURCE(). 4675 * 4676 * This function simply calls the BUS_GET_RESOURCE() method of the 4677 * parent of @p dev. 4678 */ 4679 int 4680 bus_get_resource(device_t dev, int type, int rid, 4681 rman_res_t *startp, rman_res_t *countp) 4682 { 4683 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4684 startp, countp)); 4685 } 4686 4687 /** 4688 * @brief Wrapper function for BUS_GET_RESOURCE(). 4689 * 4690 * This function simply calls the BUS_GET_RESOURCE() method of the 4691 * parent of @p dev and returns the start value. 4692 */ 4693 rman_res_t 4694 bus_get_resource_start(device_t dev, int type, int rid) 4695 { 4696 rman_res_t start; 4697 rman_res_t count; 4698 int error; 4699 4700 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4701 &start, &count); 4702 if (error) 4703 return (0); 4704 return (start); 4705 } 4706 4707 /** 4708 * @brief Wrapper function for BUS_GET_RESOURCE(). 4709 * 4710 * This function simply calls the BUS_GET_RESOURCE() method of the 4711 * parent of @p dev and returns the count value. 4712 */ 4713 rman_res_t 4714 bus_get_resource_count(device_t dev, int type, int rid) 4715 { 4716 rman_res_t start; 4717 rman_res_t count; 4718 int error; 4719 4720 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4721 &start, &count); 4722 if (error) 4723 return (0); 4724 return (count); 4725 } 4726 4727 /** 4728 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4729 * 4730 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4731 * parent of @p dev. 4732 */ 4733 void 4734 bus_delete_resource(device_t dev, int type, int rid) 4735 { 4736 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4737 } 4738 4739 /** 4740 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4741 * 4742 * This function simply calls the BUS_CHILD_PRESENT() method of the 4743 * parent of @p dev. 4744 */ 4745 int 4746 bus_child_present(device_t child) 4747 { 4748 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4749 } 4750 4751 /** 4752 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4753 * 4754 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4755 * parent of @p dev. 4756 */ 4757 int 4758 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4759 { 4760 device_t parent; 4761 4762 parent = device_get_parent(child); 4763 if (parent == NULL) { 4764 *buf = '\0'; 4765 return (0); 4766 } 4767 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4768 } 4769 4770 /** 4771 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4772 * 4773 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4774 * parent of @p dev. 4775 */ 4776 int 4777 bus_child_location_str(device_t child, char *buf, size_t buflen) 4778 { 4779 device_t parent; 4780 4781 parent = device_get_parent(child); 4782 if (parent == NULL) { 4783 *buf = '\0'; 4784 return (0); 4785 } 4786 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4787 } 4788 4789 /** 4790 * @brief Wrapper function for BUS_GET_CPUS(). 4791 * 4792 * This function simply calls the BUS_GET_CPUS() method of the 4793 * parent of @p dev. 4794 */ 4795 int 4796 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 4797 { 4798 device_t parent; 4799 4800 parent = device_get_parent(dev); 4801 if (parent == NULL) 4802 return (EINVAL); 4803 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 4804 } 4805 4806 /** 4807 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4808 * 4809 * This function simply calls the BUS_GET_DMA_TAG() method of the 4810 * parent of @p dev. 4811 */ 4812 bus_dma_tag_t 4813 bus_get_dma_tag(device_t dev) 4814 { 4815 device_t parent; 4816 4817 parent = device_get_parent(dev); 4818 if (parent == NULL) 4819 return (NULL); 4820 return (BUS_GET_DMA_TAG(parent, dev)); 4821 } 4822 4823 /** 4824 * @brief Wrapper function for BUS_GET_BUS_TAG(). 4825 * 4826 * This function simply calls the BUS_GET_BUS_TAG() method of the 4827 * parent of @p dev. 4828 */ 4829 bus_space_tag_t 4830 bus_get_bus_tag(device_t dev) 4831 { 4832 device_t parent; 4833 4834 parent = device_get_parent(dev); 4835 if (parent == NULL) 4836 return ((bus_space_tag_t)0); 4837 return (BUS_GET_BUS_TAG(parent, dev)); 4838 } 4839 4840 /** 4841 * @brief Wrapper function for BUS_GET_DOMAIN(). 4842 * 4843 * This function simply calls the BUS_GET_DOMAIN() method of the 4844 * parent of @p dev. 4845 */ 4846 int 4847 bus_get_domain(device_t dev, int *domain) 4848 { 4849 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 4850 } 4851 4852 /* Resume all devices and then notify userland that we're up again. */ 4853 static int 4854 root_resume(device_t dev) 4855 { 4856 int error; 4857 4858 error = bus_generic_resume(dev); 4859 if (error == 0) 4860 devctl_notify("kern", "power", "resume", NULL); 4861 return (error); 4862 } 4863 4864 static int 4865 root_print_child(device_t dev, device_t child) 4866 { 4867 int retval = 0; 4868 4869 retval += bus_print_child_header(dev, child); 4870 retval += printf("\n"); 4871 4872 return (retval); 4873 } 4874 4875 static int 4876 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4877 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4878 { 4879 /* 4880 * If an interrupt mapping gets to here something bad has happened. 4881 */ 4882 panic("root_setup_intr"); 4883 } 4884 4885 /* 4886 * If we get here, assume that the device is permanent and really is 4887 * present in the system. Removable bus drivers are expected to intercept 4888 * this call long before it gets here. We return -1 so that drivers that 4889 * really care can check vs -1 or some ERRNO returned higher in the food 4890 * chain. 4891 */ 4892 static int 4893 root_child_present(device_t dev, device_t child) 4894 { 4895 return (-1); 4896 } 4897 4898 static int 4899 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 4900 cpuset_t *cpuset) 4901 { 4902 4903 switch (op) { 4904 case INTR_CPUS: 4905 /* Default to returning the set of all CPUs. */ 4906 if (setsize != sizeof(cpuset_t)) 4907 return (EINVAL); 4908 *cpuset = all_cpus; 4909 return (0); 4910 default: 4911 return (EINVAL); 4912 } 4913 } 4914 4915 static kobj_method_t root_methods[] = { 4916 /* Device interface */ 4917 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4918 KOBJMETHOD(device_suspend, bus_generic_suspend), 4919 KOBJMETHOD(device_resume, root_resume), 4920 4921 /* Bus interface */ 4922 KOBJMETHOD(bus_print_child, root_print_child), 4923 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4924 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4925 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4926 KOBJMETHOD(bus_child_present, root_child_present), 4927 KOBJMETHOD(bus_get_cpus, root_get_cpus), 4928 4929 KOBJMETHOD_END 4930 }; 4931 4932 static driver_t root_driver = { 4933 "root", 4934 root_methods, 4935 1, /* no softc */ 4936 }; 4937 4938 device_t root_bus; 4939 devclass_t root_devclass; 4940 4941 static int 4942 root_bus_module_handler(module_t mod, int what, void* arg) 4943 { 4944 switch (what) { 4945 case MOD_LOAD: 4946 TAILQ_INIT(&bus_data_devices); 4947 kobj_class_compile((kobj_class_t) &root_driver); 4948 root_bus = make_device(NULL, "root", 0); 4949 root_bus->desc = "System root bus"; 4950 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4951 root_bus->driver = &root_driver; 4952 root_bus->state = DS_ATTACHED; 4953 root_devclass = devclass_find_internal("root", NULL, FALSE); 4954 devinit(); 4955 return (0); 4956 4957 case MOD_SHUTDOWN: 4958 device_shutdown(root_bus); 4959 return (0); 4960 default: 4961 return (EOPNOTSUPP); 4962 } 4963 4964 return (0); 4965 } 4966 4967 static moduledata_t root_bus_mod = { 4968 "rootbus", 4969 root_bus_module_handler, 4970 NULL 4971 }; 4972 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4973 4974 /** 4975 * @brief Automatically configure devices 4976 * 4977 * This function begins the autoconfiguration process by calling 4978 * device_probe_and_attach() for each child of the @c root0 device. 4979 */ 4980 void 4981 root_bus_configure(void) 4982 { 4983 4984 PDEBUG((".")); 4985 4986 /* Eventually this will be split up, but this is sufficient for now. */ 4987 bus_set_pass(BUS_PASS_DEFAULT); 4988 } 4989 4990 /** 4991 * @brief Module handler for registering device drivers 4992 * 4993 * This module handler is used to automatically register device 4994 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4995 * devclass_add_driver() for the driver described by the 4996 * driver_module_data structure pointed to by @p arg 4997 */ 4998 int 4999 driver_module_handler(module_t mod, int what, void *arg) 5000 { 5001 struct driver_module_data *dmd; 5002 devclass_t bus_devclass; 5003 kobj_class_t driver; 5004 int error, pass; 5005 5006 dmd = (struct driver_module_data *)arg; 5007 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 5008 error = 0; 5009 5010 switch (what) { 5011 case MOD_LOAD: 5012 if (dmd->dmd_chainevh) 5013 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5014 5015 pass = dmd->dmd_pass; 5016 driver = dmd->dmd_driver; 5017 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 5018 DRIVERNAME(driver), dmd->dmd_busname, pass)); 5019 error = devclass_add_driver(bus_devclass, driver, pass, 5020 dmd->dmd_devclass); 5021 break; 5022 5023 case MOD_UNLOAD: 5024 PDEBUG(("Unloading module: driver %s from bus %s", 5025 DRIVERNAME(dmd->dmd_driver), 5026 dmd->dmd_busname)); 5027 error = devclass_delete_driver(bus_devclass, 5028 dmd->dmd_driver); 5029 5030 if (!error && dmd->dmd_chainevh) 5031 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5032 break; 5033 case MOD_QUIESCE: 5034 PDEBUG(("Quiesce module: driver %s from bus %s", 5035 DRIVERNAME(dmd->dmd_driver), 5036 dmd->dmd_busname)); 5037 error = devclass_quiesce_driver(bus_devclass, 5038 dmd->dmd_driver); 5039 5040 if (!error && dmd->dmd_chainevh) 5041 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5042 break; 5043 default: 5044 error = EOPNOTSUPP; 5045 break; 5046 } 5047 5048 return (error); 5049 } 5050 5051 /** 5052 * @brief Enumerate all hinted devices for this bus. 5053 * 5054 * Walks through the hints for this bus and calls the bus_hinted_child 5055 * routine for each one it fines. It searches first for the specific 5056 * bus that's being probed for hinted children (eg isa0), and then for 5057 * generic children (eg isa). 5058 * 5059 * @param dev bus device to enumerate 5060 */ 5061 void 5062 bus_enumerate_hinted_children(device_t bus) 5063 { 5064 int i; 5065 const char *dname, *busname; 5066 int dunit; 5067 5068 /* 5069 * enumerate all devices on the specific bus 5070 */ 5071 busname = device_get_nameunit(bus); 5072 i = 0; 5073 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5074 BUS_HINTED_CHILD(bus, dname, dunit); 5075 5076 /* 5077 * and all the generic ones. 5078 */ 5079 busname = device_get_name(bus); 5080 i = 0; 5081 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5082 BUS_HINTED_CHILD(bus, dname, dunit); 5083 } 5084 5085 #ifdef BUS_DEBUG 5086 5087 /* the _short versions avoid iteration by not calling anything that prints 5088 * more than oneliners. I love oneliners. 5089 */ 5090 5091 static void 5092 print_device_short(device_t dev, int indent) 5093 { 5094 if (!dev) 5095 return; 5096 5097 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5098 dev->unit, dev->desc, 5099 (dev->parent? "":"no "), 5100 (TAILQ_EMPTY(&dev->children)? "no ":""), 5101 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5102 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5103 (dev->flags&DF_WILDCARD? "wildcard,":""), 5104 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5105 (dev->flags&DF_REBID? "rebiddable,":""), 5106 (dev->flags&DF_SUSPENDED? "suspended,":""), 5107 (dev->ivars? "":"no "), 5108 (dev->softc? "":"no "), 5109 dev->busy)); 5110 } 5111 5112 static void 5113 print_device(device_t dev, int indent) 5114 { 5115 if (!dev) 5116 return; 5117 5118 print_device_short(dev, indent); 5119 5120 indentprintf(("Parent:\n")); 5121 print_device_short(dev->parent, indent+1); 5122 indentprintf(("Driver:\n")); 5123 print_driver_short(dev->driver, indent+1); 5124 indentprintf(("Devclass:\n")); 5125 print_devclass_short(dev->devclass, indent+1); 5126 } 5127 5128 void 5129 print_device_tree_short(device_t dev, int indent) 5130 /* print the device and all its children (indented) */ 5131 { 5132 device_t child; 5133 5134 if (!dev) 5135 return; 5136 5137 print_device_short(dev, indent); 5138 5139 TAILQ_FOREACH(child, &dev->children, link) { 5140 print_device_tree_short(child, indent+1); 5141 } 5142 } 5143 5144 void 5145 print_device_tree(device_t dev, int indent) 5146 /* print the device and all its children (indented) */ 5147 { 5148 device_t child; 5149 5150 if (!dev) 5151 return; 5152 5153 print_device(dev, indent); 5154 5155 TAILQ_FOREACH(child, &dev->children, link) { 5156 print_device_tree(child, indent+1); 5157 } 5158 } 5159 5160 static void 5161 print_driver_short(driver_t *driver, int indent) 5162 { 5163 if (!driver) 5164 return; 5165 5166 indentprintf(("driver %s: softc size = %zd\n", 5167 driver->name, driver->size)); 5168 } 5169 5170 static void 5171 print_driver(driver_t *driver, int indent) 5172 { 5173 if (!driver) 5174 return; 5175 5176 print_driver_short(driver, indent); 5177 } 5178 5179 static void 5180 print_driver_list(driver_list_t drivers, int indent) 5181 { 5182 driverlink_t driver; 5183 5184 TAILQ_FOREACH(driver, &drivers, link) { 5185 print_driver(driver->driver, indent); 5186 } 5187 } 5188 5189 static void 5190 print_devclass_short(devclass_t dc, int indent) 5191 { 5192 if ( !dc ) 5193 return; 5194 5195 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5196 } 5197 5198 static void 5199 print_devclass(devclass_t dc, int indent) 5200 { 5201 int i; 5202 5203 if ( !dc ) 5204 return; 5205 5206 print_devclass_short(dc, indent); 5207 indentprintf(("Drivers:\n")); 5208 print_driver_list(dc->drivers, indent+1); 5209 5210 indentprintf(("Devices:\n")); 5211 for (i = 0; i < dc->maxunit; i++) 5212 if (dc->devices[i]) 5213 print_device(dc->devices[i], indent+1); 5214 } 5215 5216 void 5217 print_devclass_list_short(void) 5218 { 5219 devclass_t dc; 5220 5221 printf("Short listing of devclasses, drivers & devices:\n"); 5222 TAILQ_FOREACH(dc, &devclasses, link) { 5223 print_devclass_short(dc, 0); 5224 } 5225 } 5226 5227 void 5228 print_devclass_list(void) 5229 { 5230 devclass_t dc; 5231 5232 printf("Full listing of devclasses, drivers & devices:\n"); 5233 TAILQ_FOREACH(dc, &devclasses, link) { 5234 print_devclass(dc, 0); 5235 } 5236 } 5237 5238 #endif 5239 5240 /* 5241 * User-space access to the device tree. 5242 * 5243 * We implement a small set of nodes: 5244 * 5245 * hw.bus Single integer read method to obtain the 5246 * current generation count. 5247 * hw.bus.devices Reads the entire device tree in flat space. 5248 * hw.bus.rman Resource manager interface 5249 * 5250 * We might like to add the ability to scan devclasses and/or drivers to 5251 * determine what else is currently loaded/available. 5252 */ 5253 5254 static int 5255 sysctl_bus(SYSCTL_HANDLER_ARGS) 5256 { 5257 struct u_businfo ubus; 5258 5259 ubus.ub_version = BUS_USER_VERSION; 5260 ubus.ub_generation = bus_data_generation; 5261 5262 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5263 } 5264 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 5265 "bus-related data"); 5266 5267 static int 5268 sysctl_devices(SYSCTL_HANDLER_ARGS) 5269 { 5270 int *name = (int *)arg1; 5271 u_int namelen = arg2; 5272 int index; 5273 device_t dev; 5274 struct u_device *udev; 5275 int error; 5276 char *walker, *ep; 5277 5278 if (namelen != 2) 5279 return (EINVAL); 5280 5281 if (bus_data_generation_check(name[0])) 5282 return (EINVAL); 5283 5284 index = name[1]; 5285 5286 /* 5287 * Scan the list of devices, looking for the requested index. 5288 */ 5289 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5290 if (index-- == 0) 5291 break; 5292 } 5293 if (dev == NULL) 5294 return (ENOENT); 5295 5296 /* 5297 * Populate the return item, careful not to overflow the buffer. 5298 */ 5299 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5300 if (udev == NULL) 5301 return (ENOMEM); 5302 udev->dv_handle = (uintptr_t)dev; 5303 udev->dv_parent = (uintptr_t)dev->parent; 5304 udev->dv_devflags = dev->devflags; 5305 udev->dv_flags = dev->flags; 5306 udev->dv_state = dev->state; 5307 walker = udev->dv_fields; 5308 ep = walker + sizeof(udev->dv_fields); 5309 #define CP(src) \ 5310 if ((src) == NULL) \ 5311 *walker++ = '\0'; \ 5312 else { \ 5313 strlcpy(walker, (src), ep - walker); \ 5314 walker += strlen(walker) + 1; \ 5315 } \ 5316 if (walker >= ep) \ 5317 break; 5318 5319 do { 5320 CP(dev->nameunit); 5321 CP(dev->desc); 5322 CP(dev->driver != NULL ? dev->driver->name : NULL); 5323 bus_child_pnpinfo_str(dev, walker, ep - walker); 5324 walker += strlen(walker) + 1; 5325 if (walker >= ep) 5326 break; 5327 bus_child_location_str(dev, walker, ep - walker); 5328 walker += strlen(walker) + 1; 5329 if (walker >= ep) 5330 break; 5331 *walker++ = '\0'; 5332 } while (0); 5333 #undef CP 5334 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5335 free(udev, M_BUS); 5336 return (error); 5337 } 5338 5339 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 5340 "system device tree"); 5341 5342 int 5343 bus_data_generation_check(int generation) 5344 { 5345 if (generation != bus_data_generation) 5346 return (1); 5347 5348 /* XXX generate optimised lists here? */ 5349 return (0); 5350 } 5351 5352 void 5353 bus_data_generation_update(void) 5354 { 5355 bus_data_generation++; 5356 } 5357 5358 int 5359 bus_free_resource(device_t dev, int type, struct resource *r) 5360 { 5361 if (r == NULL) 5362 return (0); 5363 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5364 } 5365 5366 device_t 5367 device_lookup_by_name(const char *name) 5368 { 5369 device_t dev; 5370 5371 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5372 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5373 return (dev); 5374 } 5375 return (NULL); 5376 } 5377 5378 /* 5379 * /dev/devctl2 implementation. The existing /dev/devctl device has 5380 * implicit semantics on open, so it could not be reused for this. 5381 * Another option would be to call this /dev/bus? 5382 */ 5383 static int 5384 find_device(struct devreq *req, device_t *devp) 5385 { 5386 device_t dev; 5387 5388 /* 5389 * First, ensure that the name is nul terminated. 5390 */ 5391 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5392 return (EINVAL); 5393 5394 /* 5395 * Second, try to find an attached device whose name matches 5396 * 'name'. 5397 */ 5398 dev = device_lookup_by_name(req->dr_name); 5399 if (dev != NULL) { 5400 *devp = dev; 5401 return (0); 5402 } 5403 5404 /* Finally, give device enumerators a chance. */ 5405 dev = NULL; 5406 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5407 if (dev == NULL) 5408 return (ENOENT); 5409 *devp = dev; 5410 return (0); 5411 } 5412 5413 static bool 5414 driver_exists(device_t bus, const char *driver) 5415 { 5416 devclass_t dc; 5417 5418 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5419 if (devclass_find_driver_internal(dc, driver) != NULL) 5420 return (true); 5421 } 5422 return (false); 5423 } 5424 5425 static void 5426 device_gen_nomatch(device_t dev) 5427 { 5428 device_t child; 5429 5430 if (dev->flags & DF_NEEDNOMATCH && 5431 dev->state == DS_NOTPRESENT) { 5432 BUS_PROBE_NOMATCH(dev->parent, dev); 5433 devnomatch(dev); 5434 dev->flags |= DF_DONENOMATCH; 5435 } 5436 dev->flags &= ~DF_NEEDNOMATCH; 5437 TAILQ_FOREACH(child, &dev->children, link) { 5438 device_gen_nomatch(child); 5439 } 5440 } 5441 5442 static void 5443 device_do_deferred_actions(void) 5444 { 5445 devclass_t dc; 5446 driverlink_t dl; 5447 5448 /* 5449 * Walk through the devclasses to find all the drivers we've tagged as 5450 * deferred during the freeze and call the driver added routines. They 5451 * have already been added to the lists in the background, so the driver 5452 * added routines that trigger a probe will have all the right bidders 5453 * for the probe auction. 5454 */ 5455 TAILQ_FOREACH(dc, &devclasses, link) { 5456 TAILQ_FOREACH(dl, &dc->drivers, link) { 5457 if (dl->flags & DL_DEFERRED_PROBE) { 5458 devclass_driver_added(dc, dl->driver); 5459 dl->flags &= ~DL_DEFERRED_PROBE; 5460 } 5461 } 5462 } 5463 5464 /* 5465 * We also defer no-match events during a freeze. Walk the tree and 5466 * generate all the pent-up events that are still relevant. 5467 */ 5468 device_gen_nomatch(root_bus); 5469 bus_data_generation_update(); 5470 } 5471 5472 static int 5473 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5474 struct thread *td) 5475 { 5476 struct devreq *req; 5477 device_t dev; 5478 int error, old; 5479 5480 /* Locate the device to control. */ 5481 mtx_lock(&Giant); 5482 req = (struct devreq *)data; 5483 switch (cmd) { 5484 case DEV_ATTACH: 5485 case DEV_DETACH: 5486 case DEV_ENABLE: 5487 case DEV_DISABLE: 5488 case DEV_SUSPEND: 5489 case DEV_RESUME: 5490 case DEV_SET_DRIVER: 5491 case DEV_CLEAR_DRIVER: 5492 case DEV_RESCAN: 5493 case DEV_DELETE: 5494 error = priv_check(td, PRIV_DRIVER); 5495 if (error == 0) 5496 error = find_device(req, &dev); 5497 break; 5498 case DEV_FREEZE: 5499 case DEV_THAW: 5500 error = priv_check(td, PRIV_DRIVER); 5501 break; 5502 default: 5503 error = ENOTTY; 5504 break; 5505 } 5506 if (error) { 5507 mtx_unlock(&Giant); 5508 return (error); 5509 } 5510 5511 /* Perform the requested operation. */ 5512 switch (cmd) { 5513 case DEV_ATTACH: 5514 if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0) 5515 error = EBUSY; 5516 else if (!device_is_enabled(dev)) 5517 error = ENXIO; 5518 else 5519 error = device_probe_and_attach(dev); 5520 break; 5521 case DEV_DETACH: 5522 if (!device_is_attached(dev)) { 5523 error = ENXIO; 5524 break; 5525 } 5526 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5527 error = device_quiesce(dev); 5528 if (error) 5529 break; 5530 } 5531 error = device_detach(dev); 5532 break; 5533 case DEV_ENABLE: 5534 if (device_is_enabled(dev)) { 5535 error = EBUSY; 5536 break; 5537 } 5538 5539 /* 5540 * If the device has been probed but not attached (e.g. 5541 * when it has been disabled by a loader hint), just 5542 * attach the device rather than doing a full probe. 5543 */ 5544 device_enable(dev); 5545 if (device_is_alive(dev)) { 5546 /* 5547 * If the device was disabled via a hint, clear 5548 * the hint. 5549 */ 5550 if (resource_disabled(dev->driver->name, dev->unit)) 5551 resource_unset_value(dev->driver->name, 5552 dev->unit, "disabled"); 5553 error = device_attach(dev); 5554 } else 5555 error = device_probe_and_attach(dev); 5556 break; 5557 case DEV_DISABLE: 5558 if (!device_is_enabled(dev)) { 5559 error = ENXIO; 5560 break; 5561 } 5562 5563 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5564 error = device_quiesce(dev); 5565 if (error) 5566 break; 5567 } 5568 5569 /* 5570 * Force DF_FIXEDCLASS on around detach to preserve 5571 * the existing name. 5572 */ 5573 old = dev->flags; 5574 dev->flags |= DF_FIXEDCLASS; 5575 error = device_detach(dev); 5576 if (!(old & DF_FIXEDCLASS)) 5577 dev->flags &= ~DF_FIXEDCLASS; 5578 if (error == 0) 5579 device_disable(dev); 5580 break; 5581 case DEV_SUSPEND: 5582 if (device_is_suspended(dev)) { 5583 error = EBUSY; 5584 break; 5585 } 5586 if (device_get_parent(dev) == NULL) { 5587 error = EINVAL; 5588 break; 5589 } 5590 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5591 break; 5592 case DEV_RESUME: 5593 if (!device_is_suspended(dev)) { 5594 error = EINVAL; 5595 break; 5596 } 5597 if (device_get_parent(dev) == NULL) { 5598 error = EINVAL; 5599 break; 5600 } 5601 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5602 break; 5603 case DEV_SET_DRIVER: { 5604 devclass_t dc; 5605 char driver[128]; 5606 5607 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5608 if (error) 5609 break; 5610 if (driver[0] == '\0') { 5611 error = EINVAL; 5612 break; 5613 } 5614 if (dev->devclass != NULL && 5615 strcmp(driver, dev->devclass->name) == 0) 5616 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5617 break; 5618 5619 /* 5620 * Scan drivers for this device's bus looking for at 5621 * least one matching driver. 5622 */ 5623 if (dev->parent == NULL) { 5624 error = EINVAL; 5625 break; 5626 } 5627 if (!driver_exists(dev->parent, driver)) { 5628 error = ENOENT; 5629 break; 5630 } 5631 dc = devclass_create(driver); 5632 if (dc == NULL) { 5633 error = ENOMEM; 5634 break; 5635 } 5636 5637 /* Detach device if necessary. */ 5638 if (device_is_attached(dev)) { 5639 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5640 error = device_detach(dev); 5641 else 5642 error = EBUSY; 5643 if (error) 5644 break; 5645 } 5646 5647 /* Clear any previously-fixed device class and unit. */ 5648 if (dev->flags & DF_FIXEDCLASS) 5649 devclass_delete_device(dev->devclass, dev); 5650 dev->flags |= DF_WILDCARD; 5651 dev->unit = -1; 5652 5653 /* Force the new device class. */ 5654 error = devclass_add_device(dc, dev); 5655 if (error) 5656 break; 5657 dev->flags |= DF_FIXEDCLASS; 5658 error = device_probe_and_attach(dev); 5659 break; 5660 } 5661 case DEV_CLEAR_DRIVER: 5662 if (!(dev->flags & DF_FIXEDCLASS)) { 5663 error = 0; 5664 break; 5665 } 5666 if (device_is_attached(dev)) { 5667 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5668 error = device_detach(dev); 5669 else 5670 error = EBUSY; 5671 if (error) 5672 break; 5673 } 5674 5675 dev->flags &= ~DF_FIXEDCLASS; 5676 dev->flags |= DF_WILDCARD; 5677 devclass_delete_device(dev->devclass, dev); 5678 error = device_probe_and_attach(dev); 5679 break; 5680 case DEV_RESCAN: 5681 if (!device_is_attached(dev)) { 5682 error = ENXIO; 5683 break; 5684 } 5685 error = BUS_RESCAN(dev); 5686 break; 5687 case DEV_DELETE: { 5688 device_t parent; 5689 5690 parent = device_get_parent(dev); 5691 if (parent == NULL) { 5692 error = EINVAL; 5693 break; 5694 } 5695 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5696 if (bus_child_present(dev) != 0) { 5697 error = EBUSY; 5698 break; 5699 } 5700 } 5701 5702 error = device_delete_child(parent, dev); 5703 break; 5704 } 5705 case DEV_FREEZE: 5706 if (device_frozen) 5707 error = EBUSY; 5708 else 5709 device_frozen = true; 5710 break; 5711 case DEV_THAW: 5712 if (!device_frozen) 5713 error = EBUSY; 5714 else { 5715 device_do_deferred_actions(); 5716 device_frozen = false; 5717 } 5718 break; 5719 } 5720 mtx_unlock(&Giant); 5721 return (error); 5722 } 5723 5724 static struct cdevsw devctl2_cdevsw = { 5725 .d_version = D_VERSION, 5726 .d_ioctl = devctl2_ioctl, 5727 .d_name = "devctl2", 5728 }; 5729 5730 static void 5731 devctl2_init(void) 5732 { 5733 5734 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5735 UID_ROOT, GID_WHEEL, 0600, "devctl2"); 5736 } 5737 5738 /* 5739 * APIs to manage deprecation and obsolescence. 5740 */ 5741 static int obsolete_panic = 0; 5742 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 5743 "Bus debug level"); 5744 /* 0 - don't panic, 1 - panic if already obsolete, 2 - panic if deprecated */ 5745 static void 5746 gone_panic(int major, int running, const char *msg) 5747 { 5748 5749 switch (obsolete_panic) 5750 { 5751 case 0: 5752 return; 5753 case 1: 5754 if (running < major) 5755 return; 5756 /* FALLTHROUGH */ 5757 default: 5758 panic("%s", msg); 5759 } 5760 } 5761 5762 void 5763 _gone_in(int major, const char *msg) 5764 { 5765 5766 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5767 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5768 printf("Obsolete code will removed soon: %s\n", msg); 5769 else if (P_OSREL_MAJOR(__FreeBSD_version) + 1 == major) 5770 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 5771 major, msg); 5772 } 5773 5774 void 5775 _gone_in_dev(device_t dev, int major, const char *msg) 5776 { 5777 5778 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5779 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5780 device_printf(dev, 5781 "Obsolete code will removed soon: %s\n", msg); 5782 else if (P_OSREL_MAJOR(__FreeBSD_version) + 1 == major) 5783 device_printf(dev, 5784 "Deprecated code (to be removed in FreeBSD %d): %s\n", 5785 major, msg); 5786 } 5787 5788 #ifdef DDB 5789 DB_SHOW_COMMAND(device, db_show_device) 5790 { 5791 device_t dev; 5792 5793 if (!have_addr) 5794 return; 5795 5796 dev = (device_t)addr; 5797 5798 db_printf("name: %s\n", device_get_nameunit(dev)); 5799 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 5800 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 5801 db_printf(" addr: %p\n", dev); 5802 db_printf(" parent: %p\n", dev->parent); 5803 db_printf(" softc: %p\n", dev->softc); 5804 db_printf(" ivars: %p\n", dev->ivars); 5805 } 5806 5807 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 5808 { 5809 device_t dev; 5810 5811 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5812 db_show_device((db_expr_t)dev, true, count, modif); 5813 } 5814 } 5815 #endif 5816