1 /*- 2 * Copyright (c) 1997,1998,2003 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/conf.h> 34 #include <sys/filio.h> 35 #include <sys/lock.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/limits.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/mutex.h> 42 #include <sys/poll.h> 43 #include <sys/priv.h> 44 #include <sys/proc.h> 45 #include <sys/condvar.h> 46 #include <sys/queue.h> 47 #include <machine/bus.h> 48 #include <sys/random.h> 49 #include <sys/rman.h> 50 #include <sys/selinfo.h> 51 #include <sys/signalvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 #include <sys/uio.h> 55 #include <sys/bus.h> 56 #include <sys/interrupt.h> 57 #include <sys/cpuset.h> 58 59 #include <net/vnet.h> 60 61 #include <machine/cpu.h> 62 #include <machine/stdarg.h> 63 64 #include <vm/uma.h> 65 66 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 67 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 68 69 /* 70 * Used to attach drivers to devclasses. 71 */ 72 typedef struct driverlink *driverlink_t; 73 struct driverlink { 74 kobj_class_t driver; 75 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 76 int pass; 77 TAILQ_ENTRY(driverlink) passlink; 78 }; 79 80 /* 81 * Forward declarations 82 */ 83 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 84 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 85 typedef TAILQ_HEAD(device_list, device) device_list_t; 86 87 struct devclass { 88 TAILQ_ENTRY(devclass) link; 89 devclass_t parent; /* parent in devclass hierarchy */ 90 driver_list_t drivers; /* bus devclasses store drivers for bus */ 91 char *name; 92 device_t *devices; /* array of devices indexed by unit */ 93 int maxunit; /* size of devices array */ 94 int flags; 95 #define DC_HAS_CHILDREN 1 96 97 struct sysctl_ctx_list sysctl_ctx; 98 struct sysctl_oid *sysctl_tree; 99 }; 100 101 /** 102 * @brief Implementation of device. 103 */ 104 struct device { 105 /* 106 * A device is a kernel object. The first field must be the 107 * current ops table for the object. 108 */ 109 KOBJ_FIELDS; 110 111 /* 112 * Device hierarchy. 113 */ 114 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 115 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 116 device_t parent; /**< parent of this device */ 117 device_list_t children; /**< list of child devices */ 118 119 /* 120 * Details of this device. 121 */ 122 driver_t *driver; /**< current driver */ 123 devclass_t devclass; /**< current device class */ 124 int unit; /**< current unit number */ 125 char* nameunit; /**< name+unit e.g. foodev0 */ 126 char* desc; /**< driver specific description */ 127 int busy; /**< count of calls to device_busy() */ 128 device_state_t state; /**< current device state */ 129 uint32_t devflags; /**< api level flags for device_get_flags() */ 130 u_int flags; /**< internal device flags */ 131 u_int order; /**< order from device_add_child_ordered() */ 132 void *ivars; /**< instance variables */ 133 void *softc; /**< current driver's variables */ 134 135 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 136 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 137 }; 138 139 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 140 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 141 142 static void devctl2_init(void); 143 144 #ifdef BUS_DEBUG 145 146 static int bus_debug = 1; 147 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 148 "Bus debug level"); 149 150 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 151 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 152 #define DRIVERNAME(d) ((d)? d->name : "no driver") 153 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 154 155 /** 156 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 157 * prevent syslog from deleting initial spaces 158 */ 159 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 160 161 static void print_device_short(device_t dev, int indent); 162 static void print_device(device_t dev, int indent); 163 void print_device_tree_short(device_t dev, int indent); 164 void print_device_tree(device_t dev, int indent); 165 static void print_driver_short(driver_t *driver, int indent); 166 static void print_driver(driver_t *driver, int indent); 167 static void print_driver_list(driver_list_t drivers, int indent); 168 static void print_devclass_short(devclass_t dc, int indent); 169 static void print_devclass(devclass_t dc, int indent); 170 void print_devclass_list_short(void); 171 void print_devclass_list(void); 172 173 #else 174 /* Make the compiler ignore the function calls */ 175 #define PDEBUG(a) /* nop */ 176 #define DEVICENAME(d) /* nop */ 177 #define DRIVERNAME(d) /* nop */ 178 #define DEVCLANAME(d) /* nop */ 179 180 #define print_device_short(d,i) /* nop */ 181 #define print_device(d,i) /* nop */ 182 #define print_device_tree_short(d,i) /* nop */ 183 #define print_device_tree(d,i) /* nop */ 184 #define print_driver_short(d,i) /* nop */ 185 #define print_driver(d,i) /* nop */ 186 #define print_driver_list(d,i) /* nop */ 187 #define print_devclass_short(d,i) /* nop */ 188 #define print_devclass(d,i) /* nop */ 189 #define print_devclass_list_short() /* nop */ 190 #define print_devclass_list() /* nop */ 191 #endif 192 193 /* 194 * dev sysctl tree 195 */ 196 197 enum { 198 DEVCLASS_SYSCTL_PARENT, 199 }; 200 201 static int 202 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 203 { 204 devclass_t dc = (devclass_t)arg1; 205 const char *value; 206 207 switch (arg2) { 208 case DEVCLASS_SYSCTL_PARENT: 209 value = dc->parent ? dc->parent->name : ""; 210 break; 211 default: 212 return (EINVAL); 213 } 214 return (SYSCTL_OUT_STR(req, value)); 215 } 216 217 static void 218 devclass_sysctl_init(devclass_t dc) 219 { 220 221 if (dc->sysctl_tree != NULL) 222 return; 223 sysctl_ctx_init(&dc->sysctl_ctx); 224 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 225 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 226 CTLFLAG_RD, NULL, ""); 227 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 228 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 229 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 230 "parent class"); 231 } 232 233 enum { 234 DEVICE_SYSCTL_DESC, 235 DEVICE_SYSCTL_DRIVER, 236 DEVICE_SYSCTL_LOCATION, 237 DEVICE_SYSCTL_PNPINFO, 238 DEVICE_SYSCTL_PARENT, 239 }; 240 241 static int 242 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 243 { 244 device_t dev = (device_t)arg1; 245 const char *value; 246 char *buf; 247 int error; 248 249 buf = NULL; 250 switch (arg2) { 251 case DEVICE_SYSCTL_DESC: 252 value = dev->desc ? dev->desc : ""; 253 break; 254 case DEVICE_SYSCTL_DRIVER: 255 value = dev->driver ? dev->driver->name : ""; 256 break; 257 case DEVICE_SYSCTL_LOCATION: 258 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 259 bus_child_location_str(dev, buf, 1024); 260 break; 261 case DEVICE_SYSCTL_PNPINFO: 262 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 263 bus_child_pnpinfo_str(dev, buf, 1024); 264 break; 265 case DEVICE_SYSCTL_PARENT: 266 value = dev->parent ? dev->parent->nameunit : ""; 267 break; 268 default: 269 return (EINVAL); 270 } 271 error = SYSCTL_OUT_STR(req, value); 272 if (buf != NULL) 273 free(buf, M_BUS); 274 return (error); 275 } 276 277 static void 278 device_sysctl_init(device_t dev) 279 { 280 devclass_t dc = dev->devclass; 281 int domain; 282 283 if (dev->sysctl_tree != NULL) 284 return; 285 devclass_sysctl_init(dc); 286 sysctl_ctx_init(&dev->sysctl_ctx); 287 dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx, 288 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 289 dev->nameunit + strlen(dc->name), 290 CTLFLAG_RD, NULL, ""); 291 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 292 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 293 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 294 "device description"); 295 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 296 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 297 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 298 "device driver name"); 299 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 300 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 301 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 302 "device location relative to parent"); 303 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 304 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 305 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 306 "device identification"); 307 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 308 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 309 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 310 "parent device"); 311 if (bus_get_domain(dev, &domain) == 0) 312 SYSCTL_ADD_INT(&dev->sysctl_ctx, 313 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 314 CTLFLAG_RD, NULL, domain, "NUMA domain"); 315 } 316 317 static void 318 device_sysctl_update(device_t dev) 319 { 320 devclass_t dc = dev->devclass; 321 322 if (dev->sysctl_tree == NULL) 323 return; 324 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 325 } 326 327 static void 328 device_sysctl_fini(device_t dev) 329 { 330 if (dev->sysctl_tree == NULL) 331 return; 332 sysctl_ctx_free(&dev->sysctl_ctx); 333 dev->sysctl_tree = NULL; 334 } 335 336 /* 337 * /dev/devctl implementation 338 */ 339 340 /* 341 * This design allows only one reader for /dev/devctl. This is not desirable 342 * in the long run, but will get a lot of hair out of this implementation. 343 * Maybe we should make this device a clonable device. 344 * 345 * Also note: we specifically do not attach a device to the device_t tree 346 * to avoid potential chicken and egg problems. One could argue that all 347 * of this belongs to the root node. One could also further argue that the 348 * sysctl interface that we have not might more properly be an ioctl 349 * interface, but at this stage of the game, I'm not inclined to rock that 350 * boat. 351 * 352 * I'm also not sure that the SIGIO support is done correctly or not, as 353 * I copied it from a driver that had SIGIO support that likely hasn't been 354 * tested since 3.4 or 2.2.8! 355 */ 356 357 /* Deprecated way to adjust queue length */ 358 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 359 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN | 360 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I", 361 "devctl disable -- deprecated"); 362 363 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 364 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 365 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 366 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 367 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 368 369 static d_open_t devopen; 370 static d_close_t devclose; 371 static d_read_t devread; 372 static d_ioctl_t devioctl; 373 static d_poll_t devpoll; 374 static d_kqfilter_t devkqfilter; 375 376 static struct cdevsw dev_cdevsw = { 377 .d_version = D_VERSION, 378 .d_open = devopen, 379 .d_close = devclose, 380 .d_read = devread, 381 .d_ioctl = devioctl, 382 .d_poll = devpoll, 383 .d_kqfilter = devkqfilter, 384 .d_name = "devctl", 385 }; 386 387 struct dev_event_info 388 { 389 char *dei_data; 390 TAILQ_ENTRY(dev_event_info) dei_link; 391 }; 392 393 TAILQ_HEAD(devq, dev_event_info); 394 395 static struct dev_softc 396 { 397 int inuse; 398 int nonblock; 399 int queued; 400 int async; 401 struct mtx mtx; 402 struct cv cv; 403 struct selinfo sel; 404 struct devq devq; 405 struct sigio *sigio; 406 } devsoftc; 407 408 static void filt_devctl_detach(struct knote *kn); 409 static int filt_devctl_read(struct knote *kn, long hint); 410 411 struct filterops devctl_rfiltops = { 412 .f_isfd = 1, 413 .f_detach = filt_devctl_detach, 414 .f_event = filt_devctl_read, 415 }; 416 417 static struct cdev *devctl_dev; 418 419 static void 420 devinit(void) 421 { 422 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 423 UID_ROOT, GID_WHEEL, 0600, "devctl"); 424 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 425 cv_init(&devsoftc.cv, "dev cv"); 426 TAILQ_INIT(&devsoftc.devq); 427 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 428 devctl2_init(); 429 } 430 431 static int 432 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 433 { 434 435 mtx_lock(&devsoftc.mtx); 436 if (devsoftc.inuse) { 437 mtx_unlock(&devsoftc.mtx); 438 return (EBUSY); 439 } 440 /* move to init */ 441 devsoftc.inuse = 1; 442 mtx_unlock(&devsoftc.mtx); 443 return (0); 444 } 445 446 static int 447 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 448 { 449 450 mtx_lock(&devsoftc.mtx); 451 devsoftc.inuse = 0; 452 devsoftc.nonblock = 0; 453 devsoftc.async = 0; 454 cv_broadcast(&devsoftc.cv); 455 funsetown(&devsoftc.sigio); 456 mtx_unlock(&devsoftc.mtx); 457 return (0); 458 } 459 460 /* 461 * The read channel for this device is used to report changes to 462 * userland in realtime. We are required to free the data as well as 463 * the n1 object because we allocate them separately. Also note that 464 * we return one record at a time. If you try to read this device a 465 * character at a time, you will lose the rest of the data. Listening 466 * programs are expected to cope. 467 */ 468 static int 469 devread(struct cdev *dev, struct uio *uio, int ioflag) 470 { 471 struct dev_event_info *n1; 472 int rv; 473 474 mtx_lock(&devsoftc.mtx); 475 while (TAILQ_EMPTY(&devsoftc.devq)) { 476 if (devsoftc.nonblock) { 477 mtx_unlock(&devsoftc.mtx); 478 return (EAGAIN); 479 } 480 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 481 if (rv) { 482 /* 483 * Need to translate ERESTART to EINTR here? -- jake 484 */ 485 mtx_unlock(&devsoftc.mtx); 486 return (rv); 487 } 488 } 489 n1 = TAILQ_FIRST(&devsoftc.devq); 490 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 491 devsoftc.queued--; 492 mtx_unlock(&devsoftc.mtx); 493 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 494 free(n1->dei_data, M_BUS); 495 free(n1, M_BUS); 496 return (rv); 497 } 498 499 static int 500 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 501 { 502 switch (cmd) { 503 504 case FIONBIO: 505 if (*(int*)data) 506 devsoftc.nonblock = 1; 507 else 508 devsoftc.nonblock = 0; 509 return (0); 510 case FIOASYNC: 511 if (*(int*)data) 512 devsoftc.async = 1; 513 else 514 devsoftc.async = 0; 515 return (0); 516 case FIOSETOWN: 517 return fsetown(*(int *)data, &devsoftc.sigio); 518 case FIOGETOWN: 519 *(int *)data = fgetown(&devsoftc.sigio); 520 return (0); 521 522 /* (un)Support for other fcntl() calls. */ 523 case FIOCLEX: 524 case FIONCLEX: 525 case FIONREAD: 526 default: 527 break; 528 } 529 return (ENOTTY); 530 } 531 532 static int 533 devpoll(struct cdev *dev, int events, struct thread *td) 534 { 535 int revents = 0; 536 537 mtx_lock(&devsoftc.mtx); 538 if (events & (POLLIN | POLLRDNORM)) { 539 if (!TAILQ_EMPTY(&devsoftc.devq)) 540 revents = events & (POLLIN | POLLRDNORM); 541 else 542 selrecord(td, &devsoftc.sel); 543 } 544 mtx_unlock(&devsoftc.mtx); 545 546 return (revents); 547 } 548 549 static int 550 devkqfilter(struct cdev *dev, struct knote *kn) 551 { 552 int error; 553 554 if (kn->kn_filter == EVFILT_READ) { 555 kn->kn_fop = &devctl_rfiltops; 556 knlist_add(&devsoftc.sel.si_note, kn, 0); 557 error = 0; 558 } else 559 error = EINVAL; 560 return (error); 561 } 562 563 static void 564 filt_devctl_detach(struct knote *kn) 565 { 566 567 knlist_remove(&devsoftc.sel.si_note, kn, 0); 568 } 569 570 static int 571 filt_devctl_read(struct knote *kn, long hint) 572 { 573 kn->kn_data = devsoftc.queued; 574 return (kn->kn_data != 0); 575 } 576 577 /** 578 * @brief Return whether the userland process is running 579 */ 580 boolean_t 581 devctl_process_running(void) 582 { 583 return (devsoftc.inuse == 1); 584 } 585 586 /** 587 * @brief Queue data to be read from the devctl device 588 * 589 * Generic interface to queue data to the devctl device. It is 590 * assumed that @p data is properly formatted. It is further assumed 591 * that @p data is allocated using the M_BUS malloc type. 592 */ 593 void 594 devctl_queue_data_f(char *data, int flags) 595 { 596 struct dev_event_info *n1 = NULL, *n2 = NULL; 597 598 if (strlen(data) == 0) 599 goto out; 600 if (devctl_queue_length == 0) 601 goto out; 602 n1 = malloc(sizeof(*n1), M_BUS, flags); 603 if (n1 == NULL) 604 goto out; 605 n1->dei_data = data; 606 mtx_lock(&devsoftc.mtx); 607 if (devctl_queue_length == 0) { 608 mtx_unlock(&devsoftc.mtx); 609 free(n1->dei_data, M_BUS); 610 free(n1, M_BUS); 611 return; 612 } 613 /* Leave at least one spot in the queue... */ 614 while (devsoftc.queued > devctl_queue_length - 1) { 615 n2 = TAILQ_FIRST(&devsoftc.devq); 616 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 617 free(n2->dei_data, M_BUS); 618 free(n2, M_BUS); 619 devsoftc.queued--; 620 } 621 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 622 devsoftc.queued++; 623 cv_broadcast(&devsoftc.cv); 624 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 625 mtx_unlock(&devsoftc.mtx); 626 selwakeup(&devsoftc.sel); 627 if (devsoftc.async && devsoftc.sigio != NULL) 628 pgsigio(&devsoftc.sigio, SIGIO, 0); 629 return; 630 out: 631 /* 632 * We have to free data on all error paths since the caller 633 * assumes it will be free'd when this item is dequeued. 634 */ 635 free(data, M_BUS); 636 return; 637 } 638 639 void 640 devctl_queue_data(char *data) 641 { 642 643 devctl_queue_data_f(data, M_NOWAIT); 644 } 645 646 /** 647 * @brief Send a 'notification' to userland, using standard ways 648 */ 649 void 650 devctl_notify_f(const char *system, const char *subsystem, const char *type, 651 const char *data, int flags) 652 { 653 int len = 0; 654 char *msg; 655 656 if (system == NULL) 657 return; /* BOGUS! Must specify system. */ 658 if (subsystem == NULL) 659 return; /* BOGUS! Must specify subsystem. */ 660 if (type == NULL) 661 return; /* BOGUS! Must specify type. */ 662 len += strlen(" system=") + strlen(system); 663 len += strlen(" subsystem=") + strlen(subsystem); 664 len += strlen(" type=") + strlen(type); 665 /* add in the data message plus newline. */ 666 if (data != NULL) 667 len += strlen(data); 668 len += 3; /* '!', '\n', and NUL */ 669 msg = malloc(len, M_BUS, flags); 670 if (msg == NULL) 671 return; /* Drop it on the floor */ 672 if (data != NULL) 673 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 674 system, subsystem, type, data); 675 else 676 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 677 system, subsystem, type); 678 devctl_queue_data_f(msg, flags); 679 } 680 681 void 682 devctl_notify(const char *system, const char *subsystem, const char *type, 683 const char *data) 684 { 685 686 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 687 } 688 689 /* 690 * Common routine that tries to make sending messages as easy as possible. 691 * We allocate memory for the data, copy strings into that, but do not 692 * free it unless there's an error. The dequeue part of the driver should 693 * free the data. We don't send data when the device is disabled. We do 694 * send data, even when we have no listeners, because we wish to avoid 695 * races relating to startup and restart of listening applications. 696 * 697 * devaddq is designed to string together the type of event, with the 698 * object of that event, plus the plug and play info and location info 699 * for that event. This is likely most useful for devices, but less 700 * useful for other consumers of this interface. Those should use 701 * the devctl_queue_data() interface instead. 702 */ 703 static void 704 devaddq(const char *type, const char *what, device_t dev) 705 { 706 char *data = NULL; 707 char *loc = NULL; 708 char *pnp = NULL; 709 const char *parstr; 710 711 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 712 return; 713 data = malloc(1024, M_BUS, M_NOWAIT); 714 if (data == NULL) 715 goto bad; 716 717 /* get the bus specific location of this device */ 718 loc = malloc(1024, M_BUS, M_NOWAIT); 719 if (loc == NULL) 720 goto bad; 721 *loc = '\0'; 722 bus_child_location_str(dev, loc, 1024); 723 724 /* Get the bus specific pnp info of this device */ 725 pnp = malloc(1024, M_BUS, M_NOWAIT); 726 if (pnp == NULL) 727 goto bad; 728 *pnp = '\0'; 729 bus_child_pnpinfo_str(dev, pnp, 1024); 730 731 /* Get the parent of this device, or / if high enough in the tree. */ 732 if (device_get_parent(dev) == NULL) 733 parstr = "."; /* Or '/' ? */ 734 else 735 parstr = device_get_nameunit(device_get_parent(dev)); 736 /* String it all together. */ 737 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 738 parstr); 739 free(loc, M_BUS); 740 free(pnp, M_BUS); 741 devctl_queue_data(data); 742 return; 743 bad: 744 free(pnp, M_BUS); 745 free(loc, M_BUS); 746 free(data, M_BUS); 747 return; 748 } 749 750 /* 751 * A device was added to the tree. We are called just after it successfully 752 * attaches (that is, probe and attach success for this device). No call 753 * is made if a device is merely parented into the tree. See devnomatch 754 * if probe fails. If attach fails, no notification is sent (but maybe 755 * we should have a different message for this). 756 */ 757 static void 758 devadded(device_t dev) 759 { 760 devaddq("+", device_get_nameunit(dev), dev); 761 } 762 763 /* 764 * A device was removed from the tree. We are called just before this 765 * happens. 766 */ 767 static void 768 devremoved(device_t dev) 769 { 770 devaddq("-", device_get_nameunit(dev), dev); 771 } 772 773 /* 774 * Called when there's no match for this device. This is only called 775 * the first time that no match happens, so we don't keep getting this 776 * message. Should that prove to be undesirable, we can change it. 777 * This is called when all drivers that can attach to a given bus 778 * decline to accept this device. Other errors may not be detected. 779 */ 780 static void 781 devnomatch(device_t dev) 782 { 783 devaddq("?", "", dev); 784 } 785 786 static int 787 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 788 { 789 struct dev_event_info *n1; 790 int dis, error; 791 792 dis = (devctl_queue_length == 0); 793 error = sysctl_handle_int(oidp, &dis, 0, req); 794 if (error || !req->newptr) 795 return (error); 796 if (mtx_initialized(&devsoftc.mtx)) 797 mtx_lock(&devsoftc.mtx); 798 if (dis) { 799 while (!TAILQ_EMPTY(&devsoftc.devq)) { 800 n1 = TAILQ_FIRST(&devsoftc.devq); 801 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 802 free(n1->dei_data, M_BUS); 803 free(n1, M_BUS); 804 } 805 devsoftc.queued = 0; 806 devctl_queue_length = 0; 807 } else { 808 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 809 } 810 if (mtx_initialized(&devsoftc.mtx)) 811 mtx_unlock(&devsoftc.mtx); 812 return (0); 813 } 814 815 static int 816 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 817 { 818 struct dev_event_info *n1; 819 int q, error; 820 821 q = devctl_queue_length; 822 error = sysctl_handle_int(oidp, &q, 0, req); 823 if (error || !req->newptr) 824 return (error); 825 if (q < 0) 826 return (EINVAL); 827 if (mtx_initialized(&devsoftc.mtx)) 828 mtx_lock(&devsoftc.mtx); 829 devctl_queue_length = q; 830 while (devsoftc.queued > devctl_queue_length) { 831 n1 = TAILQ_FIRST(&devsoftc.devq); 832 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 833 free(n1->dei_data, M_BUS); 834 free(n1, M_BUS); 835 devsoftc.queued--; 836 } 837 if (mtx_initialized(&devsoftc.mtx)) 838 mtx_unlock(&devsoftc.mtx); 839 return (0); 840 } 841 842 /* End of /dev/devctl code */ 843 844 static TAILQ_HEAD(,device) bus_data_devices; 845 static int bus_data_generation = 1; 846 847 static kobj_method_t null_methods[] = { 848 KOBJMETHOD_END 849 }; 850 851 DEFINE_CLASS(null, null_methods, 0); 852 853 /* 854 * Bus pass implementation 855 */ 856 857 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 858 int bus_current_pass = BUS_PASS_ROOT; 859 860 /** 861 * @internal 862 * @brief Register the pass level of a new driver attachment 863 * 864 * Register a new driver attachment's pass level. If no driver 865 * attachment with the same pass level has been added, then @p new 866 * will be added to the global passes list. 867 * 868 * @param new the new driver attachment 869 */ 870 static void 871 driver_register_pass(struct driverlink *new) 872 { 873 struct driverlink *dl; 874 875 /* We only consider pass numbers during boot. */ 876 if (bus_current_pass == BUS_PASS_DEFAULT) 877 return; 878 879 /* 880 * Walk the passes list. If we already know about this pass 881 * then there is nothing to do. If we don't, then insert this 882 * driver link into the list. 883 */ 884 TAILQ_FOREACH(dl, &passes, passlink) { 885 if (dl->pass < new->pass) 886 continue; 887 if (dl->pass == new->pass) 888 return; 889 TAILQ_INSERT_BEFORE(dl, new, passlink); 890 return; 891 } 892 TAILQ_INSERT_TAIL(&passes, new, passlink); 893 } 894 895 /** 896 * @brief Raise the current bus pass 897 * 898 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 899 * method on the root bus to kick off a new device tree scan for each 900 * new pass level that has at least one driver. 901 */ 902 void 903 bus_set_pass(int pass) 904 { 905 struct driverlink *dl; 906 907 if (bus_current_pass > pass) 908 panic("Attempt to lower bus pass level"); 909 910 TAILQ_FOREACH(dl, &passes, passlink) { 911 /* Skip pass values below the current pass level. */ 912 if (dl->pass <= bus_current_pass) 913 continue; 914 915 /* 916 * Bail once we hit a driver with a pass level that is 917 * too high. 918 */ 919 if (dl->pass > pass) 920 break; 921 922 /* 923 * Raise the pass level to the next level and rescan 924 * the tree. 925 */ 926 bus_current_pass = dl->pass; 927 BUS_NEW_PASS(root_bus); 928 } 929 930 /* 931 * If there isn't a driver registered for the requested pass, 932 * then bus_current_pass might still be less than 'pass'. Set 933 * it to 'pass' in that case. 934 */ 935 if (bus_current_pass < pass) 936 bus_current_pass = pass; 937 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 938 } 939 940 /* 941 * Devclass implementation 942 */ 943 944 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 945 946 /** 947 * @internal 948 * @brief Find or create a device class 949 * 950 * If a device class with the name @p classname exists, return it, 951 * otherwise if @p create is non-zero create and return a new device 952 * class. 953 * 954 * If @p parentname is non-NULL, the parent of the devclass is set to 955 * the devclass of that name. 956 * 957 * @param classname the devclass name to find or create 958 * @param parentname the parent devclass name or @c NULL 959 * @param create non-zero to create a devclass 960 */ 961 static devclass_t 962 devclass_find_internal(const char *classname, const char *parentname, 963 int create) 964 { 965 devclass_t dc; 966 967 PDEBUG(("looking for %s", classname)); 968 if (!classname) 969 return (NULL); 970 971 TAILQ_FOREACH(dc, &devclasses, link) { 972 if (!strcmp(dc->name, classname)) 973 break; 974 } 975 976 if (create && !dc) { 977 PDEBUG(("creating %s", classname)); 978 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 979 M_BUS, M_NOWAIT | M_ZERO); 980 if (!dc) 981 return (NULL); 982 dc->parent = NULL; 983 dc->name = (char*) (dc + 1); 984 strcpy(dc->name, classname); 985 TAILQ_INIT(&dc->drivers); 986 TAILQ_INSERT_TAIL(&devclasses, dc, link); 987 988 bus_data_generation_update(); 989 } 990 991 /* 992 * If a parent class is specified, then set that as our parent so 993 * that this devclass will support drivers for the parent class as 994 * well. If the parent class has the same name don't do this though 995 * as it creates a cycle that can trigger an infinite loop in 996 * device_probe_child() if a device exists for which there is no 997 * suitable driver. 998 */ 999 if (parentname && dc && !dc->parent && 1000 strcmp(classname, parentname) != 0) { 1001 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1002 dc->parent->flags |= DC_HAS_CHILDREN; 1003 } 1004 1005 return (dc); 1006 } 1007 1008 /** 1009 * @brief Create a device class 1010 * 1011 * If a device class with the name @p classname exists, return it, 1012 * otherwise create and return a new device class. 1013 * 1014 * @param classname the devclass name to find or create 1015 */ 1016 devclass_t 1017 devclass_create(const char *classname) 1018 { 1019 return (devclass_find_internal(classname, NULL, TRUE)); 1020 } 1021 1022 /** 1023 * @brief Find a device class 1024 * 1025 * If a device class with the name @p classname exists, return it, 1026 * otherwise return @c NULL. 1027 * 1028 * @param classname the devclass name to find 1029 */ 1030 devclass_t 1031 devclass_find(const char *classname) 1032 { 1033 return (devclass_find_internal(classname, NULL, FALSE)); 1034 } 1035 1036 /** 1037 * @brief Register that a device driver has been added to a devclass 1038 * 1039 * Register that a device driver has been added to a devclass. This 1040 * is called by devclass_add_driver to accomplish the recursive 1041 * notification of all the children classes of dc, as well as dc. 1042 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1043 * the devclass. 1044 * 1045 * We do a full search here of the devclass list at each iteration 1046 * level to save storing children-lists in the devclass structure. If 1047 * we ever move beyond a few dozen devices doing this, we may need to 1048 * reevaluate... 1049 * 1050 * @param dc the devclass to edit 1051 * @param driver the driver that was just added 1052 */ 1053 static void 1054 devclass_driver_added(devclass_t dc, driver_t *driver) 1055 { 1056 devclass_t parent; 1057 int i; 1058 1059 /* 1060 * Call BUS_DRIVER_ADDED for any existing busses in this class. 1061 */ 1062 for (i = 0; i < dc->maxunit; i++) 1063 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1064 BUS_DRIVER_ADDED(dc->devices[i], driver); 1065 1066 /* 1067 * Walk through the children classes. Since we only keep a 1068 * single parent pointer around, we walk the entire list of 1069 * devclasses looking for children. We set the 1070 * DC_HAS_CHILDREN flag when a child devclass is created on 1071 * the parent, so we only walk the list for those devclasses 1072 * that have children. 1073 */ 1074 if (!(dc->flags & DC_HAS_CHILDREN)) 1075 return; 1076 parent = dc; 1077 TAILQ_FOREACH(dc, &devclasses, link) { 1078 if (dc->parent == parent) 1079 devclass_driver_added(dc, driver); 1080 } 1081 } 1082 1083 /** 1084 * @brief Add a device driver to a device class 1085 * 1086 * Add a device driver to a devclass. This is normally called 1087 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1088 * all devices in the devclass will be called to allow them to attempt 1089 * to re-probe any unmatched children. 1090 * 1091 * @param dc the devclass to edit 1092 * @param driver the driver to register 1093 */ 1094 int 1095 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1096 { 1097 driverlink_t dl; 1098 const char *parentname; 1099 1100 PDEBUG(("%s", DRIVERNAME(driver))); 1101 1102 /* Don't allow invalid pass values. */ 1103 if (pass <= BUS_PASS_ROOT) 1104 return (EINVAL); 1105 1106 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1107 if (!dl) 1108 return (ENOMEM); 1109 1110 /* 1111 * Compile the driver's methods. Also increase the reference count 1112 * so that the class doesn't get freed when the last instance 1113 * goes. This means we can safely use static methods and avoids a 1114 * double-free in devclass_delete_driver. 1115 */ 1116 kobj_class_compile((kobj_class_t) driver); 1117 1118 /* 1119 * If the driver has any base classes, make the 1120 * devclass inherit from the devclass of the driver's 1121 * first base class. This will allow the system to 1122 * search for drivers in both devclasses for children 1123 * of a device using this driver. 1124 */ 1125 if (driver->baseclasses) 1126 parentname = driver->baseclasses[0]->name; 1127 else 1128 parentname = NULL; 1129 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1130 1131 dl->driver = driver; 1132 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1133 driver->refs++; /* XXX: kobj_mtx */ 1134 dl->pass = pass; 1135 driver_register_pass(dl); 1136 1137 devclass_driver_added(dc, driver); 1138 bus_data_generation_update(); 1139 return (0); 1140 } 1141 1142 /** 1143 * @brief Register that a device driver has been deleted from a devclass 1144 * 1145 * Register that a device driver has been removed from a devclass. 1146 * This is called by devclass_delete_driver to accomplish the 1147 * recursive notification of all the children classes of busclass, as 1148 * well as busclass. Each layer will attempt to detach the driver 1149 * from any devices that are children of the bus's devclass. The function 1150 * will return an error if a device fails to detach. 1151 * 1152 * We do a full search here of the devclass list at each iteration 1153 * level to save storing children-lists in the devclass structure. If 1154 * we ever move beyond a few dozen devices doing this, we may need to 1155 * reevaluate... 1156 * 1157 * @param busclass the devclass of the parent bus 1158 * @param dc the devclass of the driver being deleted 1159 * @param driver the driver being deleted 1160 */ 1161 static int 1162 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1163 { 1164 devclass_t parent; 1165 device_t dev; 1166 int error, i; 1167 1168 /* 1169 * Disassociate from any devices. We iterate through all the 1170 * devices in the devclass of the driver and detach any which are 1171 * using the driver and which have a parent in the devclass which 1172 * we are deleting from. 1173 * 1174 * Note that since a driver can be in multiple devclasses, we 1175 * should not detach devices which are not children of devices in 1176 * the affected devclass. 1177 */ 1178 for (i = 0; i < dc->maxunit; i++) { 1179 if (dc->devices[i]) { 1180 dev = dc->devices[i]; 1181 if (dev->driver == driver && dev->parent && 1182 dev->parent->devclass == busclass) { 1183 if ((error = device_detach(dev)) != 0) 1184 return (error); 1185 BUS_PROBE_NOMATCH(dev->parent, dev); 1186 devnomatch(dev); 1187 dev->flags |= DF_DONENOMATCH; 1188 } 1189 } 1190 } 1191 1192 /* 1193 * Walk through the children classes. Since we only keep a 1194 * single parent pointer around, we walk the entire list of 1195 * devclasses looking for children. We set the 1196 * DC_HAS_CHILDREN flag when a child devclass is created on 1197 * the parent, so we only walk the list for those devclasses 1198 * that have children. 1199 */ 1200 if (!(busclass->flags & DC_HAS_CHILDREN)) 1201 return (0); 1202 parent = busclass; 1203 TAILQ_FOREACH(busclass, &devclasses, link) { 1204 if (busclass->parent == parent) { 1205 error = devclass_driver_deleted(busclass, dc, driver); 1206 if (error) 1207 return (error); 1208 } 1209 } 1210 return (0); 1211 } 1212 1213 /** 1214 * @brief Delete a device driver from a device class 1215 * 1216 * Delete a device driver from a devclass. This is normally called 1217 * automatically by DRIVER_MODULE(). 1218 * 1219 * If the driver is currently attached to any devices, 1220 * devclass_delete_driver() will first attempt to detach from each 1221 * device. If one of the detach calls fails, the driver will not be 1222 * deleted. 1223 * 1224 * @param dc the devclass to edit 1225 * @param driver the driver to unregister 1226 */ 1227 int 1228 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1229 { 1230 devclass_t dc = devclass_find(driver->name); 1231 driverlink_t dl; 1232 int error; 1233 1234 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1235 1236 if (!dc) 1237 return (0); 1238 1239 /* 1240 * Find the link structure in the bus' list of drivers. 1241 */ 1242 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1243 if (dl->driver == driver) 1244 break; 1245 } 1246 1247 if (!dl) { 1248 PDEBUG(("%s not found in %s list", driver->name, 1249 busclass->name)); 1250 return (ENOENT); 1251 } 1252 1253 error = devclass_driver_deleted(busclass, dc, driver); 1254 if (error != 0) 1255 return (error); 1256 1257 TAILQ_REMOVE(&busclass->drivers, dl, link); 1258 free(dl, M_BUS); 1259 1260 /* XXX: kobj_mtx */ 1261 driver->refs--; 1262 if (driver->refs == 0) 1263 kobj_class_free((kobj_class_t) driver); 1264 1265 bus_data_generation_update(); 1266 return (0); 1267 } 1268 1269 /** 1270 * @brief Quiesces a set of device drivers from a device class 1271 * 1272 * Quiesce a device driver from a devclass. This is normally called 1273 * automatically by DRIVER_MODULE(). 1274 * 1275 * If the driver is currently attached to any devices, 1276 * devclass_quiesece_driver() will first attempt to quiesce each 1277 * device. 1278 * 1279 * @param dc the devclass to edit 1280 * @param driver the driver to unregister 1281 */ 1282 static int 1283 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1284 { 1285 devclass_t dc = devclass_find(driver->name); 1286 driverlink_t dl; 1287 device_t dev; 1288 int i; 1289 int error; 1290 1291 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1292 1293 if (!dc) 1294 return (0); 1295 1296 /* 1297 * Find the link structure in the bus' list of drivers. 1298 */ 1299 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1300 if (dl->driver == driver) 1301 break; 1302 } 1303 1304 if (!dl) { 1305 PDEBUG(("%s not found in %s list", driver->name, 1306 busclass->name)); 1307 return (ENOENT); 1308 } 1309 1310 /* 1311 * Quiesce all devices. We iterate through all the devices in 1312 * the devclass of the driver and quiesce any which are using 1313 * the driver and which have a parent in the devclass which we 1314 * are quiescing. 1315 * 1316 * Note that since a driver can be in multiple devclasses, we 1317 * should not quiesce devices which are not children of 1318 * devices in the affected devclass. 1319 */ 1320 for (i = 0; i < dc->maxunit; i++) { 1321 if (dc->devices[i]) { 1322 dev = dc->devices[i]; 1323 if (dev->driver == driver && dev->parent && 1324 dev->parent->devclass == busclass) { 1325 if ((error = device_quiesce(dev)) != 0) 1326 return (error); 1327 } 1328 } 1329 } 1330 1331 return (0); 1332 } 1333 1334 /** 1335 * @internal 1336 */ 1337 static driverlink_t 1338 devclass_find_driver_internal(devclass_t dc, const char *classname) 1339 { 1340 driverlink_t dl; 1341 1342 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1343 1344 TAILQ_FOREACH(dl, &dc->drivers, link) { 1345 if (!strcmp(dl->driver->name, classname)) 1346 return (dl); 1347 } 1348 1349 PDEBUG(("not found")); 1350 return (NULL); 1351 } 1352 1353 /** 1354 * @brief Return the name of the devclass 1355 */ 1356 const char * 1357 devclass_get_name(devclass_t dc) 1358 { 1359 return (dc->name); 1360 } 1361 1362 /** 1363 * @brief Find a device given a unit number 1364 * 1365 * @param dc the devclass to search 1366 * @param unit the unit number to search for 1367 * 1368 * @returns the device with the given unit number or @c 1369 * NULL if there is no such device 1370 */ 1371 device_t 1372 devclass_get_device(devclass_t dc, int unit) 1373 { 1374 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1375 return (NULL); 1376 return (dc->devices[unit]); 1377 } 1378 1379 /** 1380 * @brief Find the softc field of a device given a unit number 1381 * 1382 * @param dc the devclass to search 1383 * @param unit the unit number to search for 1384 * 1385 * @returns the softc field of the device with the given 1386 * unit number or @c NULL if there is no such 1387 * device 1388 */ 1389 void * 1390 devclass_get_softc(devclass_t dc, int unit) 1391 { 1392 device_t dev; 1393 1394 dev = devclass_get_device(dc, unit); 1395 if (!dev) 1396 return (NULL); 1397 1398 return (device_get_softc(dev)); 1399 } 1400 1401 /** 1402 * @brief Get a list of devices in the devclass 1403 * 1404 * An array containing a list of all the devices in the given devclass 1405 * is allocated and returned in @p *devlistp. The number of devices 1406 * in the array is returned in @p *devcountp. The caller should free 1407 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1408 * 1409 * @param dc the devclass to examine 1410 * @param devlistp points at location for array pointer return 1411 * value 1412 * @param devcountp points at location for array size return value 1413 * 1414 * @retval 0 success 1415 * @retval ENOMEM the array allocation failed 1416 */ 1417 int 1418 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1419 { 1420 int count, i; 1421 device_t *list; 1422 1423 count = devclass_get_count(dc); 1424 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1425 if (!list) 1426 return (ENOMEM); 1427 1428 count = 0; 1429 for (i = 0; i < dc->maxunit; i++) { 1430 if (dc->devices[i]) { 1431 list[count] = dc->devices[i]; 1432 count++; 1433 } 1434 } 1435 1436 *devlistp = list; 1437 *devcountp = count; 1438 1439 return (0); 1440 } 1441 1442 /** 1443 * @brief Get a list of drivers in the devclass 1444 * 1445 * An array containing a list of pointers to all the drivers in the 1446 * given devclass is allocated and returned in @p *listp. The number 1447 * of drivers in the array is returned in @p *countp. The caller should 1448 * free the array using @c free(p, M_TEMP). 1449 * 1450 * @param dc the devclass to examine 1451 * @param listp gives location for array pointer return value 1452 * @param countp gives location for number of array elements 1453 * return value 1454 * 1455 * @retval 0 success 1456 * @retval ENOMEM the array allocation failed 1457 */ 1458 int 1459 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1460 { 1461 driverlink_t dl; 1462 driver_t **list; 1463 int count; 1464 1465 count = 0; 1466 TAILQ_FOREACH(dl, &dc->drivers, link) 1467 count++; 1468 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1469 if (list == NULL) 1470 return (ENOMEM); 1471 1472 count = 0; 1473 TAILQ_FOREACH(dl, &dc->drivers, link) { 1474 list[count] = dl->driver; 1475 count++; 1476 } 1477 *listp = list; 1478 *countp = count; 1479 1480 return (0); 1481 } 1482 1483 /** 1484 * @brief Get the number of devices in a devclass 1485 * 1486 * @param dc the devclass to examine 1487 */ 1488 int 1489 devclass_get_count(devclass_t dc) 1490 { 1491 int count, i; 1492 1493 count = 0; 1494 for (i = 0; i < dc->maxunit; i++) 1495 if (dc->devices[i]) 1496 count++; 1497 return (count); 1498 } 1499 1500 /** 1501 * @brief Get the maximum unit number used in a devclass 1502 * 1503 * Note that this is one greater than the highest currently-allocated 1504 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1505 * that not even the devclass has been allocated yet. 1506 * 1507 * @param dc the devclass to examine 1508 */ 1509 int 1510 devclass_get_maxunit(devclass_t dc) 1511 { 1512 if (dc == NULL) 1513 return (-1); 1514 return (dc->maxunit); 1515 } 1516 1517 /** 1518 * @brief Find a free unit number in a devclass 1519 * 1520 * This function searches for the first unused unit number greater 1521 * that or equal to @p unit. 1522 * 1523 * @param dc the devclass to examine 1524 * @param unit the first unit number to check 1525 */ 1526 int 1527 devclass_find_free_unit(devclass_t dc, int unit) 1528 { 1529 if (dc == NULL) 1530 return (unit); 1531 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1532 unit++; 1533 return (unit); 1534 } 1535 1536 /** 1537 * @brief Set the parent of a devclass 1538 * 1539 * The parent class is normally initialised automatically by 1540 * DRIVER_MODULE(). 1541 * 1542 * @param dc the devclass to edit 1543 * @param pdc the new parent devclass 1544 */ 1545 void 1546 devclass_set_parent(devclass_t dc, devclass_t pdc) 1547 { 1548 dc->parent = pdc; 1549 } 1550 1551 /** 1552 * @brief Get the parent of a devclass 1553 * 1554 * @param dc the devclass to examine 1555 */ 1556 devclass_t 1557 devclass_get_parent(devclass_t dc) 1558 { 1559 return (dc->parent); 1560 } 1561 1562 struct sysctl_ctx_list * 1563 devclass_get_sysctl_ctx(devclass_t dc) 1564 { 1565 return (&dc->sysctl_ctx); 1566 } 1567 1568 struct sysctl_oid * 1569 devclass_get_sysctl_tree(devclass_t dc) 1570 { 1571 return (dc->sysctl_tree); 1572 } 1573 1574 /** 1575 * @internal 1576 * @brief Allocate a unit number 1577 * 1578 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1579 * will do). The allocated unit number is returned in @p *unitp. 1580 1581 * @param dc the devclass to allocate from 1582 * @param unitp points at the location for the allocated unit 1583 * number 1584 * 1585 * @retval 0 success 1586 * @retval EEXIST the requested unit number is already allocated 1587 * @retval ENOMEM memory allocation failure 1588 */ 1589 static int 1590 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1591 { 1592 const char *s; 1593 int unit = *unitp; 1594 1595 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1596 1597 /* Ask the parent bus if it wants to wire this device. */ 1598 if (unit == -1) 1599 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1600 &unit); 1601 1602 /* If we were given a wired unit number, check for existing device */ 1603 /* XXX imp XXX */ 1604 if (unit != -1) { 1605 if (unit >= 0 && unit < dc->maxunit && 1606 dc->devices[unit] != NULL) { 1607 if (bootverbose) 1608 printf("%s: %s%d already exists; skipping it\n", 1609 dc->name, dc->name, *unitp); 1610 return (EEXIST); 1611 } 1612 } else { 1613 /* Unwired device, find the next available slot for it */ 1614 unit = 0; 1615 for (unit = 0;; unit++) { 1616 /* If there is an "at" hint for a unit then skip it. */ 1617 if (resource_string_value(dc->name, unit, "at", &s) == 1618 0) 1619 continue; 1620 1621 /* If this device slot is already in use, skip it. */ 1622 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1623 continue; 1624 1625 break; 1626 } 1627 } 1628 1629 /* 1630 * We've selected a unit beyond the length of the table, so let's 1631 * extend the table to make room for all units up to and including 1632 * this one. 1633 */ 1634 if (unit >= dc->maxunit) { 1635 device_t *newlist, *oldlist; 1636 int newsize; 1637 1638 oldlist = dc->devices; 1639 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1640 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1641 if (!newlist) 1642 return (ENOMEM); 1643 if (oldlist != NULL) 1644 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1645 bzero(newlist + dc->maxunit, 1646 sizeof(device_t) * (newsize - dc->maxunit)); 1647 dc->devices = newlist; 1648 dc->maxunit = newsize; 1649 if (oldlist != NULL) 1650 free(oldlist, M_BUS); 1651 } 1652 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1653 1654 *unitp = unit; 1655 return (0); 1656 } 1657 1658 /** 1659 * @internal 1660 * @brief Add a device to a devclass 1661 * 1662 * A unit number is allocated for the device (using the device's 1663 * preferred unit number if any) and the device is registered in the 1664 * devclass. This allows the device to be looked up by its unit 1665 * number, e.g. by decoding a dev_t minor number. 1666 * 1667 * @param dc the devclass to add to 1668 * @param dev the device to add 1669 * 1670 * @retval 0 success 1671 * @retval EEXIST the requested unit number is already allocated 1672 * @retval ENOMEM memory allocation failure 1673 */ 1674 static int 1675 devclass_add_device(devclass_t dc, device_t dev) 1676 { 1677 int buflen, error; 1678 1679 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1680 1681 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1682 if (buflen < 0) 1683 return (ENOMEM); 1684 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1685 if (!dev->nameunit) 1686 return (ENOMEM); 1687 1688 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1689 free(dev->nameunit, M_BUS); 1690 dev->nameunit = NULL; 1691 return (error); 1692 } 1693 dc->devices[dev->unit] = dev; 1694 dev->devclass = dc; 1695 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1696 1697 return (0); 1698 } 1699 1700 /** 1701 * @internal 1702 * @brief Delete a device from a devclass 1703 * 1704 * The device is removed from the devclass's device list and its unit 1705 * number is freed. 1706 1707 * @param dc the devclass to delete from 1708 * @param dev the device to delete 1709 * 1710 * @retval 0 success 1711 */ 1712 static int 1713 devclass_delete_device(devclass_t dc, device_t dev) 1714 { 1715 if (!dc || !dev) 1716 return (0); 1717 1718 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1719 1720 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1721 panic("devclass_delete_device: inconsistent device class"); 1722 dc->devices[dev->unit] = NULL; 1723 if (dev->flags & DF_WILDCARD) 1724 dev->unit = -1; 1725 dev->devclass = NULL; 1726 free(dev->nameunit, M_BUS); 1727 dev->nameunit = NULL; 1728 1729 return (0); 1730 } 1731 1732 /** 1733 * @internal 1734 * @brief Make a new device and add it as a child of @p parent 1735 * 1736 * @param parent the parent of the new device 1737 * @param name the devclass name of the new device or @c NULL 1738 * to leave the devclass unspecified 1739 * @parem unit the unit number of the new device of @c -1 to 1740 * leave the unit number unspecified 1741 * 1742 * @returns the new device 1743 */ 1744 static device_t 1745 make_device(device_t parent, const char *name, int unit) 1746 { 1747 device_t dev; 1748 devclass_t dc; 1749 1750 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1751 1752 if (name) { 1753 dc = devclass_find_internal(name, NULL, TRUE); 1754 if (!dc) { 1755 printf("make_device: can't find device class %s\n", 1756 name); 1757 return (NULL); 1758 } 1759 } else { 1760 dc = NULL; 1761 } 1762 1763 dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO); 1764 if (!dev) 1765 return (NULL); 1766 1767 dev->parent = parent; 1768 TAILQ_INIT(&dev->children); 1769 kobj_init((kobj_t) dev, &null_class); 1770 dev->driver = NULL; 1771 dev->devclass = NULL; 1772 dev->unit = unit; 1773 dev->nameunit = NULL; 1774 dev->desc = NULL; 1775 dev->busy = 0; 1776 dev->devflags = 0; 1777 dev->flags = DF_ENABLED; 1778 dev->order = 0; 1779 if (unit == -1) 1780 dev->flags |= DF_WILDCARD; 1781 if (name) { 1782 dev->flags |= DF_FIXEDCLASS; 1783 if (devclass_add_device(dc, dev)) { 1784 kobj_delete((kobj_t) dev, M_BUS); 1785 return (NULL); 1786 } 1787 } 1788 dev->ivars = NULL; 1789 dev->softc = NULL; 1790 1791 dev->state = DS_NOTPRESENT; 1792 1793 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1794 bus_data_generation_update(); 1795 1796 return (dev); 1797 } 1798 1799 /** 1800 * @internal 1801 * @brief Print a description of a device. 1802 */ 1803 static int 1804 device_print_child(device_t dev, device_t child) 1805 { 1806 int retval = 0; 1807 1808 if (device_is_alive(child)) 1809 retval += BUS_PRINT_CHILD(dev, child); 1810 else 1811 retval += device_printf(child, " not found\n"); 1812 1813 return (retval); 1814 } 1815 1816 /** 1817 * @brief Create a new device 1818 * 1819 * This creates a new device and adds it as a child of an existing 1820 * parent device. The new device will be added after the last existing 1821 * child with order zero. 1822 * 1823 * @param dev the device which will be the parent of the 1824 * new child device 1825 * @param name devclass name for new device or @c NULL if not 1826 * specified 1827 * @param unit unit number for new device or @c -1 if not 1828 * specified 1829 * 1830 * @returns the new device 1831 */ 1832 device_t 1833 device_add_child(device_t dev, const char *name, int unit) 1834 { 1835 return (device_add_child_ordered(dev, 0, name, unit)); 1836 } 1837 1838 /** 1839 * @brief Create a new device 1840 * 1841 * This creates a new device and adds it as a child of an existing 1842 * parent device. The new device will be added after the last existing 1843 * child with the same order. 1844 * 1845 * @param dev the device which will be the parent of the 1846 * new child device 1847 * @param order a value which is used to partially sort the 1848 * children of @p dev - devices created using 1849 * lower values of @p order appear first in @p 1850 * dev's list of children 1851 * @param name devclass name for new device or @c NULL if not 1852 * specified 1853 * @param unit unit number for new device or @c -1 if not 1854 * specified 1855 * 1856 * @returns the new device 1857 */ 1858 device_t 1859 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1860 { 1861 device_t child; 1862 device_t place; 1863 1864 PDEBUG(("%s at %s with order %u as unit %d", 1865 name, DEVICENAME(dev), order, unit)); 1866 KASSERT(name != NULL || unit == -1, 1867 ("child device with wildcard name and specific unit number")); 1868 1869 child = make_device(dev, name, unit); 1870 if (child == NULL) 1871 return (child); 1872 child->order = order; 1873 1874 TAILQ_FOREACH(place, &dev->children, link) { 1875 if (place->order > order) 1876 break; 1877 } 1878 1879 if (place) { 1880 /* 1881 * The device 'place' is the first device whose order is 1882 * greater than the new child. 1883 */ 1884 TAILQ_INSERT_BEFORE(place, child, link); 1885 } else { 1886 /* 1887 * The new child's order is greater or equal to the order of 1888 * any existing device. Add the child to the tail of the list. 1889 */ 1890 TAILQ_INSERT_TAIL(&dev->children, child, link); 1891 } 1892 1893 bus_data_generation_update(); 1894 return (child); 1895 } 1896 1897 /** 1898 * @brief Delete a device 1899 * 1900 * This function deletes a device along with all of its children. If 1901 * the device currently has a driver attached to it, the device is 1902 * detached first using device_detach(). 1903 * 1904 * @param dev the parent device 1905 * @param child the device to delete 1906 * 1907 * @retval 0 success 1908 * @retval non-zero a unit error code describing the error 1909 */ 1910 int 1911 device_delete_child(device_t dev, device_t child) 1912 { 1913 int error; 1914 device_t grandchild; 1915 1916 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1917 1918 /* remove children first */ 1919 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1920 error = device_delete_child(child, grandchild); 1921 if (error) 1922 return (error); 1923 } 1924 1925 if ((error = device_detach(child)) != 0) 1926 return (error); 1927 if (child->devclass) 1928 devclass_delete_device(child->devclass, child); 1929 if (child->parent) 1930 BUS_CHILD_DELETED(dev, child); 1931 TAILQ_REMOVE(&dev->children, child, link); 1932 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1933 kobj_delete((kobj_t) child, M_BUS); 1934 1935 bus_data_generation_update(); 1936 return (0); 1937 } 1938 1939 /** 1940 * @brief Delete all children devices of the given device, if any. 1941 * 1942 * This function deletes all children devices of the given device, if 1943 * any, using the device_delete_child() function for each device it 1944 * finds. If a child device cannot be deleted, this function will 1945 * return an error code. 1946 * 1947 * @param dev the parent device 1948 * 1949 * @retval 0 success 1950 * @retval non-zero a device would not detach 1951 */ 1952 int 1953 device_delete_children(device_t dev) 1954 { 1955 device_t child; 1956 int error; 1957 1958 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1959 1960 error = 0; 1961 1962 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1963 error = device_delete_child(dev, child); 1964 if (error) { 1965 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1966 break; 1967 } 1968 } 1969 return (error); 1970 } 1971 1972 /** 1973 * @brief Find a device given a unit number 1974 * 1975 * This is similar to devclass_get_devices() but only searches for 1976 * devices which have @p dev as a parent. 1977 * 1978 * @param dev the parent device to search 1979 * @param unit the unit number to search for. If the unit is -1, 1980 * return the first child of @p dev which has name 1981 * @p classname (that is, the one with the lowest unit.) 1982 * 1983 * @returns the device with the given unit number or @c 1984 * NULL if there is no such device 1985 */ 1986 device_t 1987 device_find_child(device_t dev, const char *classname, int unit) 1988 { 1989 devclass_t dc; 1990 device_t child; 1991 1992 dc = devclass_find(classname); 1993 if (!dc) 1994 return (NULL); 1995 1996 if (unit != -1) { 1997 child = devclass_get_device(dc, unit); 1998 if (child && child->parent == dev) 1999 return (child); 2000 } else { 2001 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2002 child = devclass_get_device(dc, unit); 2003 if (child && child->parent == dev) 2004 return (child); 2005 } 2006 } 2007 return (NULL); 2008 } 2009 2010 /** 2011 * @internal 2012 */ 2013 static driverlink_t 2014 first_matching_driver(devclass_t dc, device_t dev) 2015 { 2016 if (dev->devclass) 2017 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2018 return (TAILQ_FIRST(&dc->drivers)); 2019 } 2020 2021 /** 2022 * @internal 2023 */ 2024 static driverlink_t 2025 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2026 { 2027 if (dev->devclass) { 2028 driverlink_t dl; 2029 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2030 if (!strcmp(dev->devclass->name, dl->driver->name)) 2031 return (dl); 2032 return (NULL); 2033 } 2034 return (TAILQ_NEXT(last, link)); 2035 } 2036 2037 /** 2038 * @internal 2039 */ 2040 int 2041 device_probe_child(device_t dev, device_t child) 2042 { 2043 devclass_t dc; 2044 driverlink_t best = NULL; 2045 driverlink_t dl; 2046 int result, pri = 0; 2047 int hasclass = (child->devclass != NULL); 2048 2049 GIANT_REQUIRED; 2050 2051 dc = dev->devclass; 2052 if (!dc) 2053 panic("device_probe_child: parent device has no devclass"); 2054 2055 /* 2056 * If the state is already probed, then return. However, don't 2057 * return if we can rebid this object. 2058 */ 2059 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2060 return (0); 2061 2062 for (; dc; dc = dc->parent) { 2063 for (dl = first_matching_driver(dc, child); 2064 dl; 2065 dl = next_matching_driver(dc, child, dl)) { 2066 /* If this driver's pass is too high, then ignore it. */ 2067 if (dl->pass > bus_current_pass) 2068 continue; 2069 2070 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2071 result = device_set_driver(child, dl->driver); 2072 if (result == ENOMEM) 2073 return (result); 2074 else if (result != 0) 2075 continue; 2076 if (!hasclass) { 2077 if (device_set_devclass(child, 2078 dl->driver->name) != 0) { 2079 char const * devname = 2080 device_get_name(child); 2081 if (devname == NULL) 2082 devname = "(unknown)"; 2083 printf("driver bug: Unable to set " 2084 "devclass (class: %s " 2085 "devname: %s)\n", 2086 dl->driver->name, 2087 devname); 2088 (void)device_set_driver(child, NULL); 2089 continue; 2090 } 2091 } 2092 2093 /* Fetch any flags for the device before probing. */ 2094 resource_int_value(dl->driver->name, child->unit, 2095 "flags", &child->devflags); 2096 2097 result = DEVICE_PROBE(child); 2098 2099 /* Reset flags and devclass before the next probe. */ 2100 child->devflags = 0; 2101 if (!hasclass) 2102 (void)device_set_devclass(child, NULL); 2103 2104 /* 2105 * If the driver returns SUCCESS, there can be 2106 * no higher match for this device. 2107 */ 2108 if (result == 0) { 2109 best = dl; 2110 pri = 0; 2111 break; 2112 } 2113 2114 /* 2115 * Probes that return BUS_PROBE_NOWILDCARD or lower 2116 * only match on devices whose driver was explicitly 2117 * specified. 2118 */ 2119 if (result <= BUS_PROBE_NOWILDCARD && 2120 !(child->flags & DF_FIXEDCLASS)) { 2121 result = ENXIO; 2122 } 2123 2124 /* 2125 * The driver returned an error so it 2126 * certainly doesn't match. 2127 */ 2128 if (result > 0) { 2129 (void)device_set_driver(child, NULL); 2130 continue; 2131 } 2132 2133 /* 2134 * A priority lower than SUCCESS, remember the 2135 * best matching driver. Initialise the value 2136 * of pri for the first match. 2137 */ 2138 if (best == NULL || result > pri) { 2139 best = dl; 2140 pri = result; 2141 continue; 2142 } 2143 } 2144 /* 2145 * If we have an unambiguous match in this devclass, 2146 * don't look in the parent. 2147 */ 2148 if (best && pri == 0) 2149 break; 2150 } 2151 2152 /* 2153 * If we found a driver, change state and initialise the devclass. 2154 */ 2155 /* XXX What happens if we rebid and got no best? */ 2156 if (best) { 2157 /* 2158 * If this device was attached, and we were asked to 2159 * rescan, and it is a different driver, then we have 2160 * to detach the old driver and reattach this new one. 2161 * Note, we don't have to check for DF_REBID here 2162 * because if the state is > DS_ALIVE, we know it must 2163 * be. 2164 * 2165 * This assumes that all DF_REBID drivers can have 2166 * their probe routine called at any time and that 2167 * they are idempotent as well as completely benign in 2168 * normal operations. 2169 * 2170 * We also have to make sure that the detach 2171 * succeeded, otherwise we fail the operation (or 2172 * maybe it should just fail silently? I'm torn). 2173 */ 2174 if (child->state > DS_ALIVE && best->driver != child->driver) 2175 if ((result = device_detach(dev)) != 0) 2176 return (result); 2177 2178 /* Set the winning driver, devclass, and flags. */ 2179 if (!child->devclass) { 2180 result = device_set_devclass(child, best->driver->name); 2181 if (result != 0) 2182 return (result); 2183 } 2184 result = device_set_driver(child, best->driver); 2185 if (result != 0) 2186 return (result); 2187 resource_int_value(best->driver->name, child->unit, 2188 "flags", &child->devflags); 2189 2190 if (pri < 0) { 2191 /* 2192 * A bit bogus. Call the probe method again to make 2193 * sure that we have the right description. 2194 */ 2195 DEVICE_PROBE(child); 2196 #if 0 2197 child->flags |= DF_REBID; 2198 #endif 2199 } else 2200 child->flags &= ~DF_REBID; 2201 child->state = DS_ALIVE; 2202 2203 bus_data_generation_update(); 2204 return (0); 2205 } 2206 2207 return (ENXIO); 2208 } 2209 2210 /** 2211 * @brief Return the parent of a device 2212 */ 2213 device_t 2214 device_get_parent(device_t dev) 2215 { 2216 return (dev->parent); 2217 } 2218 2219 /** 2220 * @brief Get a list of children of a device 2221 * 2222 * An array containing a list of all the children of the given device 2223 * is allocated and returned in @p *devlistp. The number of devices 2224 * in the array is returned in @p *devcountp. The caller should free 2225 * the array using @c free(p, M_TEMP). 2226 * 2227 * @param dev the device to examine 2228 * @param devlistp points at location for array pointer return 2229 * value 2230 * @param devcountp points at location for array size return value 2231 * 2232 * @retval 0 success 2233 * @retval ENOMEM the array allocation failed 2234 */ 2235 int 2236 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2237 { 2238 int count; 2239 device_t child; 2240 device_t *list; 2241 2242 count = 0; 2243 TAILQ_FOREACH(child, &dev->children, link) { 2244 count++; 2245 } 2246 if (count == 0) { 2247 *devlistp = NULL; 2248 *devcountp = 0; 2249 return (0); 2250 } 2251 2252 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2253 if (!list) 2254 return (ENOMEM); 2255 2256 count = 0; 2257 TAILQ_FOREACH(child, &dev->children, link) { 2258 list[count] = child; 2259 count++; 2260 } 2261 2262 *devlistp = list; 2263 *devcountp = count; 2264 2265 return (0); 2266 } 2267 2268 /** 2269 * @brief Return the current driver for the device or @c NULL if there 2270 * is no driver currently attached 2271 */ 2272 driver_t * 2273 device_get_driver(device_t dev) 2274 { 2275 return (dev->driver); 2276 } 2277 2278 /** 2279 * @brief Return the current devclass for the device or @c NULL if 2280 * there is none. 2281 */ 2282 devclass_t 2283 device_get_devclass(device_t dev) 2284 { 2285 return (dev->devclass); 2286 } 2287 2288 /** 2289 * @brief Return the name of the device's devclass or @c NULL if there 2290 * is none. 2291 */ 2292 const char * 2293 device_get_name(device_t dev) 2294 { 2295 if (dev != NULL && dev->devclass) 2296 return (devclass_get_name(dev->devclass)); 2297 return (NULL); 2298 } 2299 2300 /** 2301 * @brief Return a string containing the device's devclass name 2302 * followed by an ascii representation of the device's unit number 2303 * (e.g. @c "foo2"). 2304 */ 2305 const char * 2306 device_get_nameunit(device_t dev) 2307 { 2308 return (dev->nameunit); 2309 } 2310 2311 /** 2312 * @brief Return the device's unit number. 2313 */ 2314 int 2315 device_get_unit(device_t dev) 2316 { 2317 return (dev->unit); 2318 } 2319 2320 /** 2321 * @brief Return the device's description string 2322 */ 2323 const char * 2324 device_get_desc(device_t dev) 2325 { 2326 return (dev->desc); 2327 } 2328 2329 /** 2330 * @brief Return the device's flags 2331 */ 2332 uint32_t 2333 device_get_flags(device_t dev) 2334 { 2335 return (dev->devflags); 2336 } 2337 2338 struct sysctl_ctx_list * 2339 device_get_sysctl_ctx(device_t dev) 2340 { 2341 return (&dev->sysctl_ctx); 2342 } 2343 2344 struct sysctl_oid * 2345 device_get_sysctl_tree(device_t dev) 2346 { 2347 return (dev->sysctl_tree); 2348 } 2349 2350 /** 2351 * @brief Print the name of the device followed by a colon and a space 2352 * 2353 * @returns the number of characters printed 2354 */ 2355 int 2356 device_print_prettyname(device_t dev) 2357 { 2358 const char *name = device_get_name(dev); 2359 2360 if (name == NULL) 2361 return (printf("unknown: ")); 2362 return (printf("%s%d: ", name, device_get_unit(dev))); 2363 } 2364 2365 /** 2366 * @brief Print the name of the device followed by a colon, a space 2367 * and the result of calling vprintf() with the value of @p fmt and 2368 * the following arguments. 2369 * 2370 * @returns the number of characters printed 2371 */ 2372 int 2373 device_printf(device_t dev, const char * fmt, ...) 2374 { 2375 va_list ap; 2376 int retval; 2377 2378 retval = device_print_prettyname(dev); 2379 va_start(ap, fmt); 2380 retval += vprintf(fmt, ap); 2381 va_end(ap); 2382 return (retval); 2383 } 2384 2385 /** 2386 * @internal 2387 */ 2388 static void 2389 device_set_desc_internal(device_t dev, const char* desc, int copy) 2390 { 2391 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2392 free(dev->desc, M_BUS); 2393 dev->flags &= ~DF_DESCMALLOCED; 2394 dev->desc = NULL; 2395 } 2396 2397 if (copy && desc) { 2398 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2399 if (dev->desc) { 2400 strcpy(dev->desc, desc); 2401 dev->flags |= DF_DESCMALLOCED; 2402 } 2403 } else { 2404 /* Avoid a -Wcast-qual warning */ 2405 dev->desc = (char *)(uintptr_t) desc; 2406 } 2407 2408 bus_data_generation_update(); 2409 } 2410 2411 /** 2412 * @brief Set the device's description 2413 * 2414 * The value of @c desc should be a string constant that will not 2415 * change (at least until the description is changed in a subsequent 2416 * call to device_set_desc() or device_set_desc_copy()). 2417 */ 2418 void 2419 device_set_desc(device_t dev, const char* desc) 2420 { 2421 device_set_desc_internal(dev, desc, FALSE); 2422 } 2423 2424 /** 2425 * @brief Set the device's description 2426 * 2427 * The string pointed to by @c desc is copied. Use this function if 2428 * the device description is generated, (e.g. with sprintf()). 2429 */ 2430 void 2431 device_set_desc_copy(device_t dev, const char* desc) 2432 { 2433 device_set_desc_internal(dev, desc, TRUE); 2434 } 2435 2436 /** 2437 * @brief Set the device's flags 2438 */ 2439 void 2440 device_set_flags(device_t dev, uint32_t flags) 2441 { 2442 dev->devflags = flags; 2443 } 2444 2445 /** 2446 * @brief Return the device's softc field 2447 * 2448 * The softc is allocated and zeroed when a driver is attached, based 2449 * on the size field of the driver. 2450 */ 2451 void * 2452 device_get_softc(device_t dev) 2453 { 2454 return (dev->softc); 2455 } 2456 2457 /** 2458 * @brief Set the device's softc field 2459 * 2460 * Most drivers do not need to use this since the softc is allocated 2461 * automatically when the driver is attached. 2462 */ 2463 void 2464 device_set_softc(device_t dev, void *softc) 2465 { 2466 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2467 free(dev->softc, M_BUS_SC); 2468 dev->softc = softc; 2469 if (dev->softc) 2470 dev->flags |= DF_EXTERNALSOFTC; 2471 else 2472 dev->flags &= ~DF_EXTERNALSOFTC; 2473 } 2474 2475 /** 2476 * @brief Free claimed softc 2477 * 2478 * Most drivers do not need to use this since the softc is freed 2479 * automatically when the driver is detached. 2480 */ 2481 void 2482 device_free_softc(void *softc) 2483 { 2484 free(softc, M_BUS_SC); 2485 } 2486 2487 /** 2488 * @brief Claim softc 2489 * 2490 * This function can be used to let the driver free the automatically 2491 * allocated softc using "device_free_softc()". This function is 2492 * useful when the driver is refcounting the softc and the softc 2493 * cannot be freed when the "device_detach" method is called. 2494 */ 2495 void 2496 device_claim_softc(device_t dev) 2497 { 2498 if (dev->softc) 2499 dev->flags |= DF_EXTERNALSOFTC; 2500 else 2501 dev->flags &= ~DF_EXTERNALSOFTC; 2502 } 2503 2504 /** 2505 * @brief Get the device's ivars field 2506 * 2507 * The ivars field is used by the parent device to store per-device 2508 * state (e.g. the physical location of the device or a list of 2509 * resources). 2510 */ 2511 void * 2512 device_get_ivars(device_t dev) 2513 { 2514 2515 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2516 return (dev->ivars); 2517 } 2518 2519 /** 2520 * @brief Set the device's ivars field 2521 */ 2522 void 2523 device_set_ivars(device_t dev, void * ivars) 2524 { 2525 2526 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2527 dev->ivars = ivars; 2528 } 2529 2530 /** 2531 * @brief Return the device's state 2532 */ 2533 device_state_t 2534 device_get_state(device_t dev) 2535 { 2536 return (dev->state); 2537 } 2538 2539 /** 2540 * @brief Set the DF_ENABLED flag for the device 2541 */ 2542 void 2543 device_enable(device_t dev) 2544 { 2545 dev->flags |= DF_ENABLED; 2546 } 2547 2548 /** 2549 * @brief Clear the DF_ENABLED flag for the device 2550 */ 2551 void 2552 device_disable(device_t dev) 2553 { 2554 dev->flags &= ~DF_ENABLED; 2555 } 2556 2557 /** 2558 * @brief Increment the busy counter for the device 2559 */ 2560 void 2561 device_busy(device_t dev) 2562 { 2563 if (dev->state < DS_ATTACHING) 2564 panic("device_busy: called for unattached device"); 2565 if (dev->busy == 0 && dev->parent) 2566 device_busy(dev->parent); 2567 dev->busy++; 2568 if (dev->state == DS_ATTACHED) 2569 dev->state = DS_BUSY; 2570 } 2571 2572 /** 2573 * @brief Decrement the busy counter for the device 2574 */ 2575 void 2576 device_unbusy(device_t dev) 2577 { 2578 if (dev->busy != 0 && dev->state != DS_BUSY && 2579 dev->state != DS_ATTACHING) 2580 panic("device_unbusy: called for non-busy device %s", 2581 device_get_nameunit(dev)); 2582 dev->busy--; 2583 if (dev->busy == 0) { 2584 if (dev->parent) 2585 device_unbusy(dev->parent); 2586 if (dev->state == DS_BUSY) 2587 dev->state = DS_ATTACHED; 2588 } 2589 } 2590 2591 /** 2592 * @brief Set the DF_QUIET flag for the device 2593 */ 2594 void 2595 device_quiet(device_t dev) 2596 { 2597 dev->flags |= DF_QUIET; 2598 } 2599 2600 /** 2601 * @brief Clear the DF_QUIET flag for the device 2602 */ 2603 void 2604 device_verbose(device_t dev) 2605 { 2606 dev->flags &= ~DF_QUIET; 2607 } 2608 2609 /** 2610 * @brief Return non-zero if the DF_QUIET flag is set on the device 2611 */ 2612 int 2613 device_is_quiet(device_t dev) 2614 { 2615 return ((dev->flags & DF_QUIET) != 0); 2616 } 2617 2618 /** 2619 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2620 */ 2621 int 2622 device_is_enabled(device_t dev) 2623 { 2624 return ((dev->flags & DF_ENABLED) != 0); 2625 } 2626 2627 /** 2628 * @brief Return non-zero if the device was successfully probed 2629 */ 2630 int 2631 device_is_alive(device_t dev) 2632 { 2633 return (dev->state >= DS_ALIVE); 2634 } 2635 2636 /** 2637 * @brief Return non-zero if the device currently has a driver 2638 * attached to it 2639 */ 2640 int 2641 device_is_attached(device_t dev) 2642 { 2643 return (dev->state >= DS_ATTACHED); 2644 } 2645 2646 /** 2647 * @brief Return non-zero if the device is currently suspended. 2648 */ 2649 int 2650 device_is_suspended(device_t dev) 2651 { 2652 return ((dev->flags & DF_SUSPENDED) != 0); 2653 } 2654 2655 /** 2656 * @brief Set the devclass of a device 2657 * @see devclass_add_device(). 2658 */ 2659 int 2660 device_set_devclass(device_t dev, const char *classname) 2661 { 2662 devclass_t dc; 2663 int error; 2664 2665 if (!classname) { 2666 if (dev->devclass) 2667 devclass_delete_device(dev->devclass, dev); 2668 return (0); 2669 } 2670 2671 if (dev->devclass) { 2672 printf("device_set_devclass: device class already set\n"); 2673 return (EINVAL); 2674 } 2675 2676 dc = devclass_find_internal(classname, NULL, TRUE); 2677 if (!dc) 2678 return (ENOMEM); 2679 2680 error = devclass_add_device(dc, dev); 2681 2682 bus_data_generation_update(); 2683 return (error); 2684 } 2685 2686 /** 2687 * @brief Set the devclass of a device and mark the devclass fixed. 2688 * @see device_set_devclass() 2689 */ 2690 int 2691 device_set_devclass_fixed(device_t dev, const char *classname) 2692 { 2693 int error; 2694 2695 if (classname == NULL) 2696 return (EINVAL); 2697 2698 error = device_set_devclass(dev, classname); 2699 if (error) 2700 return (error); 2701 dev->flags |= DF_FIXEDCLASS; 2702 return (0); 2703 } 2704 2705 /** 2706 * @brief Set the driver of a device 2707 * 2708 * @retval 0 success 2709 * @retval EBUSY the device already has a driver attached 2710 * @retval ENOMEM a memory allocation failure occurred 2711 */ 2712 int 2713 device_set_driver(device_t dev, driver_t *driver) 2714 { 2715 if (dev->state >= DS_ATTACHED) 2716 return (EBUSY); 2717 2718 if (dev->driver == driver) 2719 return (0); 2720 2721 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2722 free(dev->softc, M_BUS_SC); 2723 dev->softc = NULL; 2724 } 2725 device_set_desc(dev, NULL); 2726 kobj_delete((kobj_t) dev, NULL); 2727 dev->driver = driver; 2728 if (driver) { 2729 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2730 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2731 dev->softc = malloc(driver->size, M_BUS_SC, 2732 M_NOWAIT | M_ZERO); 2733 if (!dev->softc) { 2734 kobj_delete((kobj_t) dev, NULL); 2735 kobj_init((kobj_t) dev, &null_class); 2736 dev->driver = NULL; 2737 return (ENOMEM); 2738 } 2739 } 2740 } else { 2741 kobj_init((kobj_t) dev, &null_class); 2742 } 2743 2744 bus_data_generation_update(); 2745 return (0); 2746 } 2747 2748 /** 2749 * @brief Probe a device, and return this status. 2750 * 2751 * This function is the core of the device autoconfiguration 2752 * system. Its purpose is to select a suitable driver for a device and 2753 * then call that driver to initialise the hardware appropriately. The 2754 * driver is selected by calling the DEVICE_PROBE() method of a set of 2755 * candidate drivers and then choosing the driver which returned the 2756 * best value. This driver is then attached to the device using 2757 * device_attach(). 2758 * 2759 * The set of suitable drivers is taken from the list of drivers in 2760 * the parent device's devclass. If the device was originally created 2761 * with a specific class name (see device_add_child()), only drivers 2762 * with that name are probed, otherwise all drivers in the devclass 2763 * are probed. If no drivers return successful probe values in the 2764 * parent devclass, the search continues in the parent of that 2765 * devclass (see devclass_get_parent()) if any. 2766 * 2767 * @param dev the device to initialise 2768 * 2769 * @retval 0 success 2770 * @retval ENXIO no driver was found 2771 * @retval ENOMEM memory allocation failure 2772 * @retval non-zero some other unix error code 2773 * @retval -1 Device already attached 2774 */ 2775 int 2776 device_probe(device_t dev) 2777 { 2778 int error; 2779 2780 GIANT_REQUIRED; 2781 2782 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2783 return (-1); 2784 2785 if (!(dev->flags & DF_ENABLED)) { 2786 if (bootverbose && device_get_name(dev) != NULL) { 2787 device_print_prettyname(dev); 2788 printf("not probed (disabled)\n"); 2789 } 2790 return (-1); 2791 } 2792 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2793 if (bus_current_pass == BUS_PASS_DEFAULT && 2794 !(dev->flags & DF_DONENOMATCH)) { 2795 BUS_PROBE_NOMATCH(dev->parent, dev); 2796 devnomatch(dev); 2797 dev->flags |= DF_DONENOMATCH; 2798 } 2799 return (error); 2800 } 2801 return (0); 2802 } 2803 2804 /** 2805 * @brief Probe a device and attach a driver if possible 2806 * 2807 * calls device_probe() and attaches if that was successful. 2808 */ 2809 int 2810 device_probe_and_attach(device_t dev) 2811 { 2812 int error; 2813 2814 GIANT_REQUIRED; 2815 2816 error = device_probe(dev); 2817 if (error == -1) 2818 return (0); 2819 else if (error != 0) 2820 return (error); 2821 2822 CURVNET_SET_QUIET(vnet0); 2823 error = device_attach(dev); 2824 CURVNET_RESTORE(); 2825 return error; 2826 } 2827 2828 /** 2829 * @brief Attach a device driver to a device 2830 * 2831 * This function is a wrapper around the DEVICE_ATTACH() driver 2832 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2833 * device's sysctl tree, optionally prints a description of the device 2834 * and queues a notification event for user-based device management 2835 * services. 2836 * 2837 * Normally this function is only called internally from 2838 * device_probe_and_attach(). 2839 * 2840 * @param dev the device to initialise 2841 * 2842 * @retval 0 success 2843 * @retval ENXIO no driver was found 2844 * @retval ENOMEM memory allocation failure 2845 * @retval non-zero some other unix error code 2846 */ 2847 int 2848 device_attach(device_t dev) 2849 { 2850 uint64_t attachtime; 2851 int error; 2852 2853 if (resource_disabled(dev->driver->name, dev->unit)) { 2854 device_disable(dev); 2855 if (bootverbose) 2856 device_printf(dev, "disabled via hints entry\n"); 2857 return (ENXIO); 2858 } 2859 2860 device_sysctl_init(dev); 2861 if (!device_is_quiet(dev)) 2862 device_print_child(dev->parent, dev); 2863 attachtime = get_cyclecount(); 2864 dev->state = DS_ATTACHING; 2865 if ((error = DEVICE_ATTACH(dev)) != 0) { 2866 printf("device_attach: %s%d attach returned %d\n", 2867 dev->driver->name, dev->unit, error); 2868 if (!(dev->flags & DF_FIXEDCLASS)) 2869 devclass_delete_device(dev->devclass, dev); 2870 (void)device_set_driver(dev, NULL); 2871 device_sysctl_fini(dev); 2872 KASSERT(dev->busy == 0, ("attach failed but busy")); 2873 dev->state = DS_NOTPRESENT; 2874 return (error); 2875 } 2876 attachtime = get_cyclecount() - attachtime; 2877 /* 2878 * 4 bits per device is a reasonable value for desktop and server 2879 * hardware with good get_cyclecount() implementations, but WILL 2880 * need to be adjusted on other platforms. 2881 */ 2882 #define RANDOM_PROBE_BIT_GUESS 4 2883 if (bootverbose) 2884 printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n", 2885 sizeof(attachtime), RANDOM_PROBE_BIT_GUESS, 2886 dev->driver->name, dev->unit); 2887 random_harvest_direct(&attachtime, sizeof(attachtime), 2888 RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH); 2889 device_sysctl_update(dev); 2890 if (dev->busy) 2891 dev->state = DS_BUSY; 2892 else 2893 dev->state = DS_ATTACHED; 2894 dev->flags &= ~DF_DONENOMATCH; 2895 devadded(dev); 2896 return (0); 2897 } 2898 2899 /** 2900 * @brief Detach a driver from a device 2901 * 2902 * This function is a wrapper around the DEVICE_DETACH() driver 2903 * method. If the call to DEVICE_DETACH() succeeds, it calls 2904 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2905 * notification event for user-based device management services and 2906 * cleans up the device's sysctl tree. 2907 * 2908 * @param dev the device to un-initialise 2909 * 2910 * @retval 0 success 2911 * @retval ENXIO no driver was found 2912 * @retval ENOMEM memory allocation failure 2913 * @retval non-zero some other unix error code 2914 */ 2915 int 2916 device_detach(device_t dev) 2917 { 2918 int error; 2919 2920 GIANT_REQUIRED; 2921 2922 PDEBUG(("%s", DEVICENAME(dev))); 2923 if (dev->state == DS_BUSY) 2924 return (EBUSY); 2925 if (dev->state != DS_ATTACHED) 2926 return (0); 2927 2928 if ((error = DEVICE_DETACH(dev)) != 0) 2929 return (error); 2930 devremoved(dev); 2931 if (!device_is_quiet(dev)) 2932 device_printf(dev, "detached\n"); 2933 if (dev->parent) 2934 BUS_CHILD_DETACHED(dev->parent, dev); 2935 2936 if (!(dev->flags & DF_FIXEDCLASS)) 2937 devclass_delete_device(dev->devclass, dev); 2938 2939 dev->state = DS_NOTPRESENT; 2940 (void)device_set_driver(dev, NULL); 2941 device_sysctl_fini(dev); 2942 2943 return (0); 2944 } 2945 2946 /** 2947 * @brief Tells a driver to quiesce itself. 2948 * 2949 * This function is a wrapper around the DEVICE_QUIESCE() driver 2950 * method. If the call to DEVICE_QUIESCE() succeeds. 2951 * 2952 * @param dev the device to quiesce 2953 * 2954 * @retval 0 success 2955 * @retval ENXIO no driver was found 2956 * @retval ENOMEM memory allocation failure 2957 * @retval non-zero some other unix error code 2958 */ 2959 int 2960 device_quiesce(device_t dev) 2961 { 2962 2963 PDEBUG(("%s", DEVICENAME(dev))); 2964 if (dev->state == DS_BUSY) 2965 return (EBUSY); 2966 if (dev->state != DS_ATTACHED) 2967 return (0); 2968 2969 return (DEVICE_QUIESCE(dev)); 2970 } 2971 2972 /** 2973 * @brief Notify a device of system shutdown 2974 * 2975 * This function calls the DEVICE_SHUTDOWN() driver method if the 2976 * device currently has an attached driver. 2977 * 2978 * @returns the value returned by DEVICE_SHUTDOWN() 2979 */ 2980 int 2981 device_shutdown(device_t dev) 2982 { 2983 if (dev->state < DS_ATTACHED) 2984 return (0); 2985 return (DEVICE_SHUTDOWN(dev)); 2986 } 2987 2988 /** 2989 * @brief Set the unit number of a device 2990 * 2991 * This function can be used to override the unit number used for a 2992 * device (e.g. to wire a device to a pre-configured unit number). 2993 */ 2994 int 2995 device_set_unit(device_t dev, int unit) 2996 { 2997 devclass_t dc; 2998 int err; 2999 3000 dc = device_get_devclass(dev); 3001 if (unit < dc->maxunit && dc->devices[unit]) 3002 return (EBUSY); 3003 err = devclass_delete_device(dc, dev); 3004 if (err) 3005 return (err); 3006 dev->unit = unit; 3007 err = devclass_add_device(dc, dev); 3008 if (err) 3009 return (err); 3010 3011 bus_data_generation_update(); 3012 return (0); 3013 } 3014 3015 /*======================================*/ 3016 /* 3017 * Some useful method implementations to make life easier for bus drivers. 3018 */ 3019 3020 /** 3021 * @brief Initialise a resource list. 3022 * 3023 * @param rl the resource list to initialise 3024 */ 3025 void 3026 resource_list_init(struct resource_list *rl) 3027 { 3028 STAILQ_INIT(rl); 3029 } 3030 3031 /** 3032 * @brief Reclaim memory used by a resource list. 3033 * 3034 * This function frees the memory for all resource entries on the list 3035 * (if any). 3036 * 3037 * @param rl the resource list to free 3038 */ 3039 void 3040 resource_list_free(struct resource_list *rl) 3041 { 3042 struct resource_list_entry *rle; 3043 3044 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3045 if (rle->res) 3046 panic("resource_list_free: resource entry is busy"); 3047 STAILQ_REMOVE_HEAD(rl, link); 3048 free(rle, M_BUS); 3049 } 3050 } 3051 3052 /** 3053 * @brief Add a resource entry. 3054 * 3055 * This function adds a resource entry using the given @p type, @p 3056 * start, @p end and @p count values. A rid value is chosen by 3057 * searching sequentially for the first unused rid starting at zero. 3058 * 3059 * @param rl the resource list to edit 3060 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3061 * @param start the start address of the resource 3062 * @param end the end address of the resource 3063 * @param count XXX end-start+1 3064 */ 3065 int 3066 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 3067 rman_res_t end, rman_res_t count) 3068 { 3069 int rid; 3070 3071 rid = 0; 3072 while (resource_list_find(rl, type, rid) != NULL) 3073 rid++; 3074 resource_list_add(rl, type, rid, start, end, count); 3075 return (rid); 3076 } 3077 3078 /** 3079 * @brief Add or modify a resource entry. 3080 * 3081 * If an existing entry exists with the same type and rid, it will be 3082 * modified using the given values of @p start, @p end and @p 3083 * count. If no entry exists, a new one will be created using the 3084 * given values. The resource list entry that matches is then returned. 3085 * 3086 * @param rl the resource list to edit 3087 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3088 * @param rid the resource identifier 3089 * @param start the start address of the resource 3090 * @param end the end address of the resource 3091 * @param count XXX end-start+1 3092 */ 3093 struct resource_list_entry * 3094 resource_list_add(struct resource_list *rl, int type, int rid, 3095 rman_res_t start, rman_res_t end, rman_res_t count) 3096 { 3097 struct resource_list_entry *rle; 3098 3099 rle = resource_list_find(rl, type, rid); 3100 if (!rle) { 3101 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3102 M_NOWAIT); 3103 if (!rle) 3104 panic("resource_list_add: can't record entry"); 3105 STAILQ_INSERT_TAIL(rl, rle, link); 3106 rle->type = type; 3107 rle->rid = rid; 3108 rle->res = NULL; 3109 rle->flags = 0; 3110 } 3111 3112 if (rle->res) 3113 panic("resource_list_add: resource entry is busy"); 3114 3115 rle->start = start; 3116 rle->end = end; 3117 rle->count = count; 3118 return (rle); 3119 } 3120 3121 /** 3122 * @brief Determine if a resource entry is busy. 3123 * 3124 * Returns true if a resource entry is busy meaning that it has an 3125 * associated resource that is not an unallocated "reserved" resource. 3126 * 3127 * @param rl the resource list to search 3128 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3129 * @param rid the resource identifier 3130 * 3131 * @returns Non-zero if the entry is busy, zero otherwise. 3132 */ 3133 int 3134 resource_list_busy(struct resource_list *rl, int type, int rid) 3135 { 3136 struct resource_list_entry *rle; 3137 3138 rle = resource_list_find(rl, type, rid); 3139 if (rle == NULL || rle->res == NULL) 3140 return (0); 3141 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3142 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3143 ("reserved resource is active")); 3144 return (0); 3145 } 3146 return (1); 3147 } 3148 3149 /** 3150 * @brief Determine if a resource entry is reserved. 3151 * 3152 * Returns true if a resource entry is reserved meaning that it has an 3153 * associated "reserved" resource. The resource can either be 3154 * allocated or unallocated. 3155 * 3156 * @param rl the resource list to search 3157 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3158 * @param rid the resource identifier 3159 * 3160 * @returns Non-zero if the entry is reserved, zero otherwise. 3161 */ 3162 int 3163 resource_list_reserved(struct resource_list *rl, int type, int rid) 3164 { 3165 struct resource_list_entry *rle; 3166 3167 rle = resource_list_find(rl, type, rid); 3168 if (rle != NULL && rle->flags & RLE_RESERVED) 3169 return (1); 3170 return (0); 3171 } 3172 3173 /** 3174 * @brief Find a resource entry by type and rid. 3175 * 3176 * @param rl the resource list to search 3177 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3178 * @param rid the resource identifier 3179 * 3180 * @returns the resource entry pointer or NULL if there is no such 3181 * entry. 3182 */ 3183 struct resource_list_entry * 3184 resource_list_find(struct resource_list *rl, int type, int rid) 3185 { 3186 struct resource_list_entry *rle; 3187 3188 STAILQ_FOREACH(rle, rl, link) { 3189 if (rle->type == type && rle->rid == rid) 3190 return (rle); 3191 } 3192 return (NULL); 3193 } 3194 3195 /** 3196 * @brief Delete a resource entry. 3197 * 3198 * @param rl the resource list to edit 3199 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3200 * @param rid the resource identifier 3201 */ 3202 void 3203 resource_list_delete(struct resource_list *rl, int type, int rid) 3204 { 3205 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3206 3207 if (rle) { 3208 if (rle->res != NULL) 3209 panic("resource_list_delete: resource has not been released"); 3210 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3211 free(rle, M_BUS); 3212 } 3213 } 3214 3215 /** 3216 * @brief Allocate a reserved resource 3217 * 3218 * This can be used by busses to force the allocation of resources 3219 * that are always active in the system even if they are not allocated 3220 * by a driver (e.g. PCI BARs). This function is usually called when 3221 * adding a new child to the bus. The resource is allocated from the 3222 * parent bus when it is reserved. The resource list entry is marked 3223 * with RLE_RESERVED to note that it is a reserved resource. 3224 * 3225 * Subsequent attempts to allocate the resource with 3226 * resource_list_alloc() will succeed the first time and will set 3227 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3228 * resource that has been allocated is released with 3229 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3230 * the actual resource remains allocated. The resource can be released to 3231 * the parent bus by calling resource_list_unreserve(). 3232 * 3233 * @param rl the resource list to allocate from 3234 * @param bus the parent device of @p child 3235 * @param child the device for which the resource is being reserved 3236 * @param type the type of resource to allocate 3237 * @param rid a pointer to the resource identifier 3238 * @param start hint at the start of the resource range - pass 3239 * @c 0UL for any start address 3240 * @param end hint at the end of the resource range - pass 3241 * @c ~0UL for any end address 3242 * @param count hint at the size of range required - pass @c 1 3243 * for any size 3244 * @param flags any extra flags to control the resource 3245 * allocation - see @c RF_XXX flags in 3246 * <sys/rman.h> for details 3247 * 3248 * @returns the resource which was allocated or @c NULL if no 3249 * resource could be allocated 3250 */ 3251 struct resource * 3252 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3253 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3254 { 3255 struct resource_list_entry *rle = NULL; 3256 int passthrough = (device_get_parent(child) != bus); 3257 struct resource *r; 3258 3259 if (passthrough) 3260 panic( 3261 "resource_list_reserve() should only be called for direct children"); 3262 if (flags & RF_ACTIVE) 3263 panic( 3264 "resource_list_reserve() should only reserve inactive resources"); 3265 3266 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3267 flags); 3268 if (r != NULL) { 3269 rle = resource_list_find(rl, type, *rid); 3270 rle->flags |= RLE_RESERVED; 3271 } 3272 return (r); 3273 } 3274 3275 /** 3276 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3277 * 3278 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3279 * and passing the allocation up to the parent of @p bus. This assumes 3280 * that the first entry of @c device_get_ivars(child) is a struct 3281 * resource_list. This also handles 'passthrough' allocations where a 3282 * child is a remote descendant of bus by passing the allocation up to 3283 * the parent of bus. 3284 * 3285 * Typically, a bus driver would store a list of child resources 3286 * somewhere in the child device's ivars (see device_get_ivars()) and 3287 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3288 * then call resource_list_alloc() to perform the allocation. 3289 * 3290 * @param rl the resource list to allocate from 3291 * @param bus the parent device of @p child 3292 * @param child the device which is requesting an allocation 3293 * @param type the type of resource to allocate 3294 * @param rid a pointer to the resource identifier 3295 * @param start hint at the start of the resource range - pass 3296 * @c 0UL for any start address 3297 * @param end hint at the end of the resource range - pass 3298 * @c ~0UL for any end address 3299 * @param count hint at the size of range required - pass @c 1 3300 * for any size 3301 * @param flags any extra flags to control the resource 3302 * allocation - see @c RF_XXX flags in 3303 * <sys/rman.h> for details 3304 * 3305 * @returns the resource which was allocated or @c NULL if no 3306 * resource could be allocated 3307 */ 3308 struct resource * 3309 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3310 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3311 { 3312 struct resource_list_entry *rle = NULL; 3313 int passthrough = (device_get_parent(child) != bus); 3314 int isdefault = (start == 0UL && end == ~0UL); 3315 3316 if (passthrough) { 3317 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3318 type, rid, start, end, count, flags)); 3319 } 3320 3321 rle = resource_list_find(rl, type, *rid); 3322 3323 if (!rle) 3324 return (NULL); /* no resource of that type/rid */ 3325 3326 if (rle->res) { 3327 if (rle->flags & RLE_RESERVED) { 3328 if (rle->flags & RLE_ALLOCATED) 3329 return (NULL); 3330 if ((flags & RF_ACTIVE) && 3331 bus_activate_resource(child, type, *rid, 3332 rle->res) != 0) 3333 return (NULL); 3334 rle->flags |= RLE_ALLOCATED; 3335 return (rle->res); 3336 } 3337 device_printf(bus, 3338 "resource entry %#x type %d for child %s is busy\n", *rid, 3339 type, device_get_nameunit(child)); 3340 return (NULL); 3341 } 3342 3343 if (isdefault) { 3344 start = rle->start; 3345 count = ulmax(count, rle->count); 3346 end = ulmax(rle->end, start + count - 1); 3347 } 3348 3349 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3350 type, rid, start, end, count, flags); 3351 3352 /* 3353 * Record the new range. 3354 */ 3355 if (rle->res) { 3356 rle->start = rman_get_start(rle->res); 3357 rle->end = rman_get_end(rle->res); 3358 rle->count = count; 3359 } 3360 3361 return (rle->res); 3362 } 3363 3364 /** 3365 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3366 * 3367 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3368 * used with resource_list_alloc(). 3369 * 3370 * @param rl the resource list which was allocated from 3371 * @param bus the parent device of @p child 3372 * @param child the device which is requesting a release 3373 * @param type the type of resource to release 3374 * @param rid the resource identifier 3375 * @param res the resource to release 3376 * 3377 * @retval 0 success 3378 * @retval non-zero a standard unix error code indicating what 3379 * error condition prevented the operation 3380 */ 3381 int 3382 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3383 int type, int rid, struct resource *res) 3384 { 3385 struct resource_list_entry *rle = NULL; 3386 int passthrough = (device_get_parent(child) != bus); 3387 int error; 3388 3389 if (passthrough) { 3390 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3391 type, rid, res)); 3392 } 3393 3394 rle = resource_list_find(rl, type, rid); 3395 3396 if (!rle) 3397 panic("resource_list_release: can't find resource"); 3398 if (!rle->res) 3399 panic("resource_list_release: resource entry is not busy"); 3400 if (rle->flags & RLE_RESERVED) { 3401 if (rle->flags & RLE_ALLOCATED) { 3402 if (rman_get_flags(res) & RF_ACTIVE) { 3403 error = bus_deactivate_resource(child, type, 3404 rid, res); 3405 if (error) 3406 return (error); 3407 } 3408 rle->flags &= ~RLE_ALLOCATED; 3409 return (0); 3410 } 3411 return (EINVAL); 3412 } 3413 3414 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3415 type, rid, res); 3416 if (error) 3417 return (error); 3418 3419 rle->res = NULL; 3420 return (0); 3421 } 3422 3423 /** 3424 * @brief Release all active resources of a given type 3425 * 3426 * Release all active resources of a specified type. This is intended 3427 * to be used to cleanup resources leaked by a driver after detach or 3428 * a failed attach. 3429 * 3430 * @param rl the resource list which was allocated from 3431 * @param bus the parent device of @p child 3432 * @param child the device whose active resources are being released 3433 * @param type the type of resources to release 3434 * 3435 * @retval 0 success 3436 * @retval EBUSY at least one resource was active 3437 */ 3438 int 3439 resource_list_release_active(struct resource_list *rl, device_t bus, 3440 device_t child, int type) 3441 { 3442 struct resource_list_entry *rle; 3443 int error, retval; 3444 3445 retval = 0; 3446 STAILQ_FOREACH(rle, rl, link) { 3447 if (rle->type != type) 3448 continue; 3449 if (rle->res == NULL) 3450 continue; 3451 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3452 RLE_RESERVED) 3453 continue; 3454 retval = EBUSY; 3455 error = resource_list_release(rl, bus, child, type, 3456 rman_get_rid(rle->res), rle->res); 3457 if (error != 0) 3458 device_printf(bus, 3459 "Failed to release active resource: %d\n", error); 3460 } 3461 return (retval); 3462 } 3463 3464 3465 /** 3466 * @brief Fully release a reserved resource 3467 * 3468 * Fully releases a resource reserved via resource_list_reserve(). 3469 * 3470 * @param rl the resource list which was allocated from 3471 * @param bus the parent device of @p child 3472 * @param child the device whose reserved resource is being released 3473 * @param type the type of resource to release 3474 * @param rid the resource identifier 3475 * @param res the resource to release 3476 * 3477 * @retval 0 success 3478 * @retval non-zero a standard unix error code indicating what 3479 * error condition prevented the operation 3480 */ 3481 int 3482 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3483 int type, int rid) 3484 { 3485 struct resource_list_entry *rle = NULL; 3486 int passthrough = (device_get_parent(child) != bus); 3487 3488 if (passthrough) 3489 panic( 3490 "resource_list_unreserve() should only be called for direct children"); 3491 3492 rle = resource_list_find(rl, type, rid); 3493 3494 if (!rle) 3495 panic("resource_list_unreserve: can't find resource"); 3496 if (!(rle->flags & RLE_RESERVED)) 3497 return (EINVAL); 3498 if (rle->flags & RLE_ALLOCATED) 3499 return (EBUSY); 3500 rle->flags &= ~RLE_RESERVED; 3501 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3502 } 3503 3504 /** 3505 * @brief Print a description of resources in a resource list 3506 * 3507 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3508 * The name is printed if at least one resource of the given type is available. 3509 * The format is used to print resource start and end. 3510 * 3511 * @param rl the resource list to print 3512 * @param name the name of @p type, e.g. @c "memory" 3513 * @param type type type of resource entry to print 3514 * @param format printf(9) format string to print resource 3515 * start and end values 3516 * 3517 * @returns the number of characters printed 3518 */ 3519 int 3520 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3521 const char *format) 3522 { 3523 struct resource_list_entry *rle; 3524 int printed, retval; 3525 3526 printed = 0; 3527 retval = 0; 3528 /* Yes, this is kinda cheating */ 3529 STAILQ_FOREACH(rle, rl, link) { 3530 if (rle->type == type) { 3531 if (printed == 0) 3532 retval += printf(" %s ", name); 3533 else 3534 retval += printf(","); 3535 printed++; 3536 retval += printf(format, rle->start); 3537 if (rle->count > 1) { 3538 retval += printf("-"); 3539 retval += printf(format, rle->start + 3540 rle->count - 1); 3541 } 3542 } 3543 } 3544 return (retval); 3545 } 3546 3547 /** 3548 * @brief Releases all the resources in a list. 3549 * 3550 * @param rl The resource list to purge. 3551 * 3552 * @returns nothing 3553 */ 3554 void 3555 resource_list_purge(struct resource_list *rl) 3556 { 3557 struct resource_list_entry *rle; 3558 3559 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3560 if (rle->res) 3561 bus_release_resource(rman_get_device(rle->res), 3562 rle->type, rle->rid, rle->res); 3563 STAILQ_REMOVE_HEAD(rl, link); 3564 free(rle, M_BUS); 3565 } 3566 } 3567 3568 device_t 3569 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3570 { 3571 3572 return (device_add_child_ordered(dev, order, name, unit)); 3573 } 3574 3575 /** 3576 * @brief Helper function for implementing DEVICE_PROBE() 3577 * 3578 * This function can be used to help implement the DEVICE_PROBE() for 3579 * a bus (i.e. a device which has other devices attached to it). It 3580 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3581 * devclass. 3582 */ 3583 int 3584 bus_generic_probe(device_t dev) 3585 { 3586 devclass_t dc = dev->devclass; 3587 driverlink_t dl; 3588 3589 TAILQ_FOREACH(dl, &dc->drivers, link) { 3590 /* 3591 * If this driver's pass is too high, then ignore it. 3592 * For most drivers in the default pass, this will 3593 * never be true. For early-pass drivers they will 3594 * only call the identify routines of eligible drivers 3595 * when this routine is called. Drivers for later 3596 * passes should have their identify routines called 3597 * on early-pass busses during BUS_NEW_PASS(). 3598 */ 3599 if (dl->pass > bus_current_pass) 3600 continue; 3601 DEVICE_IDENTIFY(dl->driver, dev); 3602 } 3603 3604 return (0); 3605 } 3606 3607 /** 3608 * @brief Helper function for implementing DEVICE_ATTACH() 3609 * 3610 * This function can be used to help implement the DEVICE_ATTACH() for 3611 * a bus. It calls device_probe_and_attach() for each of the device's 3612 * children. 3613 */ 3614 int 3615 bus_generic_attach(device_t dev) 3616 { 3617 device_t child; 3618 3619 TAILQ_FOREACH(child, &dev->children, link) { 3620 device_probe_and_attach(child); 3621 } 3622 3623 return (0); 3624 } 3625 3626 /** 3627 * @brief Helper function for implementing DEVICE_DETACH() 3628 * 3629 * This function can be used to help implement the DEVICE_DETACH() for 3630 * a bus. It calls device_detach() for each of the device's 3631 * children. 3632 */ 3633 int 3634 bus_generic_detach(device_t dev) 3635 { 3636 device_t child; 3637 int error; 3638 3639 if (dev->state != DS_ATTACHED) 3640 return (EBUSY); 3641 3642 TAILQ_FOREACH(child, &dev->children, link) { 3643 if ((error = device_detach(child)) != 0) 3644 return (error); 3645 } 3646 3647 return (0); 3648 } 3649 3650 /** 3651 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3652 * 3653 * This function can be used to help implement the DEVICE_SHUTDOWN() 3654 * for a bus. It calls device_shutdown() for each of the device's 3655 * children. 3656 */ 3657 int 3658 bus_generic_shutdown(device_t dev) 3659 { 3660 device_t child; 3661 3662 TAILQ_FOREACH(child, &dev->children, link) { 3663 device_shutdown(child); 3664 } 3665 3666 return (0); 3667 } 3668 3669 /** 3670 * @brief Default function for suspending a child device. 3671 * 3672 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3673 */ 3674 int 3675 bus_generic_suspend_child(device_t dev, device_t child) 3676 { 3677 int error; 3678 3679 error = DEVICE_SUSPEND(child); 3680 3681 if (error == 0) 3682 child->flags |= DF_SUSPENDED; 3683 3684 return (error); 3685 } 3686 3687 /** 3688 * @brief Default function for resuming a child device. 3689 * 3690 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3691 */ 3692 int 3693 bus_generic_resume_child(device_t dev, device_t child) 3694 { 3695 3696 DEVICE_RESUME(child); 3697 child->flags &= ~DF_SUSPENDED; 3698 3699 return (0); 3700 } 3701 3702 /** 3703 * @brief Helper function for implementing DEVICE_SUSPEND() 3704 * 3705 * This function can be used to help implement the DEVICE_SUSPEND() 3706 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3707 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3708 * operation is aborted and any devices which were suspended are 3709 * resumed immediately by calling their DEVICE_RESUME() methods. 3710 */ 3711 int 3712 bus_generic_suspend(device_t dev) 3713 { 3714 int error; 3715 device_t child, child2; 3716 3717 TAILQ_FOREACH(child, &dev->children, link) { 3718 error = BUS_SUSPEND_CHILD(dev, child); 3719 if (error) { 3720 for (child2 = TAILQ_FIRST(&dev->children); 3721 child2 && child2 != child; 3722 child2 = TAILQ_NEXT(child2, link)) 3723 BUS_RESUME_CHILD(dev, child2); 3724 return (error); 3725 } 3726 } 3727 return (0); 3728 } 3729 3730 /** 3731 * @brief Helper function for implementing DEVICE_RESUME() 3732 * 3733 * This function can be used to help implement the DEVICE_RESUME() for 3734 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3735 */ 3736 int 3737 bus_generic_resume(device_t dev) 3738 { 3739 device_t child; 3740 3741 TAILQ_FOREACH(child, &dev->children, link) { 3742 BUS_RESUME_CHILD(dev, child); 3743 /* if resume fails, there's nothing we can usefully do... */ 3744 } 3745 return (0); 3746 } 3747 3748 /** 3749 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3750 * 3751 * This function prints the first part of the ascii representation of 3752 * @p child, including its name, unit and description (if any - see 3753 * device_set_desc()). 3754 * 3755 * @returns the number of characters printed 3756 */ 3757 int 3758 bus_print_child_header(device_t dev, device_t child) 3759 { 3760 int retval = 0; 3761 3762 if (device_get_desc(child)) { 3763 retval += device_printf(child, "<%s>", device_get_desc(child)); 3764 } else { 3765 retval += printf("%s", device_get_nameunit(child)); 3766 } 3767 3768 return (retval); 3769 } 3770 3771 /** 3772 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3773 * 3774 * This function prints the last part of the ascii representation of 3775 * @p child, which consists of the string @c " on " followed by the 3776 * name and unit of the @p dev. 3777 * 3778 * @returns the number of characters printed 3779 */ 3780 int 3781 bus_print_child_footer(device_t dev, device_t child) 3782 { 3783 return (printf(" on %s\n", device_get_nameunit(dev))); 3784 } 3785 3786 /** 3787 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3788 * 3789 * This function prints out the VM domain for the given device. 3790 * 3791 * @returns the number of characters printed 3792 */ 3793 int 3794 bus_print_child_domain(device_t dev, device_t child) 3795 { 3796 int domain; 3797 3798 /* No domain? Don't print anything */ 3799 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3800 return (0); 3801 3802 return (printf(" numa-domain %d", domain)); 3803 } 3804 3805 /** 3806 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3807 * 3808 * This function simply calls bus_print_child_header() followed by 3809 * bus_print_child_footer(). 3810 * 3811 * @returns the number of characters printed 3812 */ 3813 int 3814 bus_generic_print_child(device_t dev, device_t child) 3815 { 3816 int retval = 0; 3817 3818 retval += bus_print_child_header(dev, child); 3819 retval += bus_print_child_domain(dev, child); 3820 retval += bus_print_child_footer(dev, child); 3821 3822 return (retval); 3823 } 3824 3825 /** 3826 * @brief Stub function for implementing BUS_READ_IVAR(). 3827 * 3828 * @returns ENOENT 3829 */ 3830 int 3831 bus_generic_read_ivar(device_t dev, device_t child, int index, 3832 uintptr_t * result) 3833 { 3834 return (ENOENT); 3835 } 3836 3837 /** 3838 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3839 * 3840 * @returns ENOENT 3841 */ 3842 int 3843 bus_generic_write_ivar(device_t dev, device_t child, int index, 3844 uintptr_t value) 3845 { 3846 return (ENOENT); 3847 } 3848 3849 /** 3850 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3851 * 3852 * @returns NULL 3853 */ 3854 struct resource_list * 3855 bus_generic_get_resource_list(device_t dev, device_t child) 3856 { 3857 return (NULL); 3858 } 3859 3860 /** 3861 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3862 * 3863 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3864 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3865 * and then calls device_probe_and_attach() for each unattached child. 3866 */ 3867 void 3868 bus_generic_driver_added(device_t dev, driver_t *driver) 3869 { 3870 device_t child; 3871 3872 DEVICE_IDENTIFY(driver, dev); 3873 TAILQ_FOREACH(child, &dev->children, link) { 3874 if (child->state == DS_NOTPRESENT || 3875 (child->flags & DF_REBID)) 3876 device_probe_and_attach(child); 3877 } 3878 } 3879 3880 /** 3881 * @brief Helper function for implementing BUS_NEW_PASS(). 3882 * 3883 * This implementing of BUS_NEW_PASS() first calls the identify 3884 * routines for any drivers that probe at the current pass. Then it 3885 * walks the list of devices for this bus. If a device is already 3886 * attached, then it calls BUS_NEW_PASS() on that device. If the 3887 * device is not already attached, it attempts to attach a driver to 3888 * it. 3889 */ 3890 void 3891 bus_generic_new_pass(device_t dev) 3892 { 3893 driverlink_t dl; 3894 devclass_t dc; 3895 device_t child; 3896 3897 dc = dev->devclass; 3898 TAILQ_FOREACH(dl, &dc->drivers, link) { 3899 if (dl->pass == bus_current_pass) 3900 DEVICE_IDENTIFY(dl->driver, dev); 3901 } 3902 TAILQ_FOREACH(child, &dev->children, link) { 3903 if (child->state >= DS_ATTACHED) 3904 BUS_NEW_PASS(child); 3905 else if (child->state == DS_NOTPRESENT) 3906 device_probe_and_attach(child); 3907 } 3908 } 3909 3910 /** 3911 * @brief Helper function for implementing BUS_SETUP_INTR(). 3912 * 3913 * This simple implementation of BUS_SETUP_INTR() simply calls the 3914 * BUS_SETUP_INTR() method of the parent of @p dev. 3915 */ 3916 int 3917 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3918 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3919 void **cookiep) 3920 { 3921 /* Propagate up the bus hierarchy until someone handles it. */ 3922 if (dev->parent) 3923 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3924 filter, intr, arg, cookiep)); 3925 return (EINVAL); 3926 } 3927 3928 /** 3929 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3930 * 3931 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3932 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3933 */ 3934 int 3935 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3936 void *cookie) 3937 { 3938 /* Propagate up the bus hierarchy until someone handles it. */ 3939 if (dev->parent) 3940 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3941 return (EINVAL); 3942 } 3943 3944 /** 3945 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3946 * 3947 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3948 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3949 */ 3950 int 3951 bus_generic_adjust_resource(device_t dev, device_t child, int type, 3952 struct resource *r, rman_res_t start, rman_res_t end) 3953 { 3954 /* Propagate up the bus hierarchy until someone handles it. */ 3955 if (dev->parent) 3956 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 3957 end)); 3958 return (EINVAL); 3959 } 3960 3961 /** 3962 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 3963 * 3964 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 3965 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 3966 */ 3967 struct resource * 3968 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 3969 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3970 { 3971 /* Propagate up the bus hierarchy until someone handles it. */ 3972 if (dev->parent) 3973 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 3974 start, end, count, flags)); 3975 return (NULL); 3976 } 3977 3978 /** 3979 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 3980 * 3981 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 3982 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 3983 */ 3984 int 3985 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 3986 struct resource *r) 3987 { 3988 /* Propagate up the bus hierarchy until someone handles it. */ 3989 if (dev->parent) 3990 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 3991 r)); 3992 return (EINVAL); 3993 } 3994 3995 /** 3996 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 3997 * 3998 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 3999 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4000 */ 4001 int 4002 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 4003 struct resource *r) 4004 { 4005 /* Propagate up the bus hierarchy until someone handles it. */ 4006 if (dev->parent) 4007 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 4008 r)); 4009 return (EINVAL); 4010 } 4011 4012 /** 4013 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4014 * 4015 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4016 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4017 */ 4018 int 4019 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 4020 int rid, struct resource *r) 4021 { 4022 /* Propagate up the bus hierarchy until someone handles it. */ 4023 if (dev->parent) 4024 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4025 r)); 4026 return (EINVAL); 4027 } 4028 4029 /** 4030 * @brief Helper function for implementing BUS_BIND_INTR(). 4031 * 4032 * This simple implementation of BUS_BIND_INTR() simply calls the 4033 * BUS_BIND_INTR() method of the parent of @p dev. 4034 */ 4035 int 4036 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4037 int cpu) 4038 { 4039 4040 /* Propagate up the bus hierarchy until someone handles it. */ 4041 if (dev->parent) 4042 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4043 return (EINVAL); 4044 } 4045 4046 /** 4047 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4048 * 4049 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4050 * BUS_CONFIG_INTR() method of the parent of @p dev. 4051 */ 4052 int 4053 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4054 enum intr_polarity pol) 4055 { 4056 4057 /* Propagate up the bus hierarchy until someone handles it. */ 4058 if (dev->parent) 4059 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4060 return (EINVAL); 4061 } 4062 4063 /** 4064 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4065 * 4066 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4067 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4068 */ 4069 int 4070 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4071 void *cookie, const char *descr) 4072 { 4073 4074 /* Propagate up the bus hierarchy until someone handles it. */ 4075 if (dev->parent) 4076 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4077 descr)); 4078 return (EINVAL); 4079 } 4080 4081 /** 4082 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4083 * 4084 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4085 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4086 */ 4087 bus_dma_tag_t 4088 bus_generic_get_dma_tag(device_t dev, device_t child) 4089 { 4090 4091 /* Propagate up the bus hierarchy until someone handles it. */ 4092 if (dev->parent != NULL) 4093 return (BUS_GET_DMA_TAG(dev->parent, child)); 4094 return (NULL); 4095 } 4096 4097 /** 4098 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4099 * 4100 * This implementation of BUS_GET_RESOURCE() uses the 4101 * resource_list_find() function to do most of the work. It calls 4102 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4103 * search. 4104 */ 4105 int 4106 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4107 rman_res_t *startp, rman_res_t *countp) 4108 { 4109 struct resource_list * rl = NULL; 4110 struct resource_list_entry * rle = NULL; 4111 4112 rl = BUS_GET_RESOURCE_LIST(dev, child); 4113 if (!rl) 4114 return (EINVAL); 4115 4116 rle = resource_list_find(rl, type, rid); 4117 if (!rle) 4118 return (ENOENT); 4119 4120 if (startp) 4121 *startp = rle->start; 4122 if (countp) 4123 *countp = rle->count; 4124 4125 return (0); 4126 } 4127 4128 /** 4129 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4130 * 4131 * This implementation of BUS_SET_RESOURCE() uses the 4132 * resource_list_add() function to do most of the work. It calls 4133 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4134 * edit. 4135 */ 4136 int 4137 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4138 rman_res_t start, rman_res_t count) 4139 { 4140 struct resource_list * rl = NULL; 4141 4142 rl = BUS_GET_RESOURCE_LIST(dev, child); 4143 if (!rl) 4144 return (EINVAL); 4145 4146 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4147 4148 return (0); 4149 } 4150 4151 /** 4152 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4153 * 4154 * This implementation of BUS_DELETE_RESOURCE() uses the 4155 * resource_list_delete() function to do most of the work. It calls 4156 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4157 * edit. 4158 */ 4159 void 4160 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4161 { 4162 struct resource_list * rl = NULL; 4163 4164 rl = BUS_GET_RESOURCE_LIST(dev, child); 4165 if (!rl) 4166 return; 4167 4168 resource_list_delete(rl, type, rid); 4169 4170 return; 4171 } 4172 4173 /** 4174 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4175 * 4176 * This implementation of BUS_RELEASE_RESOURCE() uses the 4177 * resource_list_release() function to do most of the work. It calls 4178 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4179 */ 4180 int 4181 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4182 int rid, struct resource *r) 4183 { 4184 struct resource_list * rl = NULL; 4185 4186 if (device_get_parent(child) != dev) 4187 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4188 type, rid, r)); 4189 4190 rl = BUS_GET_RESOURCE_LIST(dev, child); 4191 if (!rl) 4192 return (EINVAL); 4193 4194 return (resource_list_release(rl, dev, child, type, rid, r)); 4195 } 4196 4197 /** 4198 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4199 * 4200 * This implementation of BUS_ALLOC_RESOURCE() uses the 4201 * resource_list_alloc() function to do most of the work. It calls 4202 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4203 */ 4204 struct resource * 4205 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4206 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4207 { 4208 struct resource_list * rl = NULL; 4209 4210 if (device_get_parent(child) != dev) 4211 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4212 type, rid, start, end, count, flags)); 4213 4214 rl = BUS_GET_RESOURCE_LIST(dev, child); 4215 if (!rl) 4216 return (NULL); 4217 4218 return (resource_list_alloc(rl, dev, child, type, rid, 4219 start, end, count, flags)); 4220 } 4221 4222 /** 4223 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4224 * 4225 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4226 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4227 */ 4228 int 4229 bus_generic_child_present(device_t dev, device_t child) 4230 { 4231 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4232 } 4233 4234 int 4235 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4236 { 4237 4238 if (dev->parent) 4239 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4240 4241 return (ENOENT); 4242 } 4243 4244 /* 4245 * Some convenience functions to make it easier for drivers to use the 4246 * resource-management functions. All these really do is hide the 4247 * indirection through the parent's method table, making for slightly 4248 * less-wordy code. In the future, it might make sense for this code 4249 * to maintain some sort of a list of resources allocated by each device. 4250 */ 4251 4252 int 4253 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4254 struct resource **res) 4255 { 4256 int i; 4257 4258 for (i = 0; rs[i].type != -1; i++) 4259 res[i] = NULL; 4260 for (i = 0; rs[i].type != -1; i++) { 4261 res[i] = bus_alloc_resource_any(dev, 4262 rs[i].type, &rs[i].rid, rs[i].flags); 4263 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4264 bus_release_resources(dev, rs, res); 4265 return (ENXIO); 4266 } 4267 } 4268 return (0); 4269 } 4270 4271 void 4272 bus_release_resources(device_t dev, const struct resource_spec *rs, 4273 struct resource **res) 4274 { 4275 int i; 4276 4277 for (i = 0; rs[i].type != -1; i++) 4278 if (res[i] != NULL) { 4279 bus_release_resource( 4280 dev, rs[i].type, rs[i].rid, res[i]); 4281 res[i] = NULL; 4282 } 4283 } 4284 4285 /** 4286 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4287 * 4288 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4289 * parent of @p dev. 4290 */ 4291 struct resource * 4292 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, rman_res_t end, 4293 rman_res_t count, u_int flags) 4294 { 4295 if (dev->parent == NULL) 4296 return (NULL); 4297 return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4298 count, flags)); 4299 } 4300 4301 /** 4302 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4303 * 4304 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4305 * parent of @p dev. 4306 */ 4307 int 4308 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4309 rman_res_t end) 4310 { 4311 if (dev->parent == NULL) 4312 return (EINVAL); 4313 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4314 } 4315 4316 /** 4317 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4318 * 4319 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4320 * parent of @p dev. 4321 */ 4322 int 4323 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4324 { 4325 if (dev->parent == NULL) 4326 return (EINVAL); 4327 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4328 } 4329 4330 /** 4331 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4332 * 4333 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4334 * parent of @p dev. 4335 */ 4336 int 4337 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4338 { 4339 if (dev->parent == NULL) 4340 return (EINVAL); 4341 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4342 } 4343 4344 /** 4345 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4346 * 4347 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4348 * parent of @p dev. 4349 */ 4350 int 4351 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4352 { 4353 if (dev->parent == NULL) 4354 return (EINVAL); 4355 return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 4356 } 4357 4358 /** 4359 * @brief Wrapper function for BUS_SETUP_INTR(). 4360 * 4361 * This function simply calls the BUS_SETUP_INTR() method of the 4362 * parent of @p dev. 4363 */ 4364 int 4365 bus_setup_intr(device_t dev, struct resource *r, int flags, 4366 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4367 { 4368 int error; 4369 4370 if (dev->parent == NULL) 4371 return (EINVAL); 4372 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4373 arg, cookiep); 4374 if (error != 0) 4375 return (error); 4376 if (handler != NULL && !(flags & INTR_MPSAFE)) 4377 device_printf(dev, "[GIANT-LOCKED]\n"); 4378 return (0); 4379 } 4380 4381 /** 4382 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4383 * 4384 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4385 * parent of @p dev. 4386 */ 4387 int 4388 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4389 { 4390 if (dev->parent == NULL) 4391 return (EINVAL); 4392 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4393 } 4394 4395 /** 4396 * @brief Wrapper function for BUS_BIND_INTR(). 4397 * 4398 * This function simply calls the BUS_BIND_INTR() method of the 4399 * parent of @p dev. 4400 */ 4401 int 4402 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4403 { 4404 if (dev->parent == NULL) 4405 return (EINVAL); 4406 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4407 } 4408 4409 /** 4410 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4411 * 4412 * This function first formats the requested description into a 4413 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4414 * the parent of @p dev. 4415 */ 4416 int 4417 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4418 const char *fmt, ...) 4419 { 4420 va_list ap; 4421 char descr[MAXCOMLEN + 1]; 4422 4423 if (dev->parent == NULL) 4424 return (EINVAL); 4425 va_start(ap, fmt); 4426 vsnprintf(descr, sizeof(descr), fmt, ap); 4427 va_end(ap); 4428 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4429 } 4430 4431 /** 4432 * @brief Wrapper function for BUS_SET_RESOURCE(). 4433 * 4434 * This function simply calls the BUS_SET_RESOURCE() method of the 4435 * parent of @p dev. 4436 */ 4437 int 4438 bus_set_resource(device_t dev, int type, int rid, 4439 rman_res_t start, rman_res_t count) 4440 { 4441 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4442 start, count)); 4443 } 4444 4445 /** 4446 * @brief Wrapper function for BUS_GET_RESOURCE(). 4447 * 4448 * This function simply calls the BUS_GET_RESOURCE() method of the 4449 * parent of @p dev. 4450 */ 4451 int 4452 bus_get_resource(device_t dev, int type, int rid, 4453 rman_res_t *startp, rman_res_t *countp) 4454 { 4455 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4456 startp, countp)); 4457 } 4458 4459 /** 4460 * @brief Wrapper function for BUS_GET_RESOURCE(). 4461 * 4462 * This function simply calls the BUS_GET_RESOURCE() method of the 4463 * parent of @p dev and returns the start value. 4464 */ 4465 rman_res_t 4466 bus_get_resource_start(device_t dev, int type, int rid) 4467 { 4468 rman_res_t start; 4469 rman_res_t count; 4470 int error; 4471 4472 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4473 &start, &count); 4474 if (error) 4475 return (0); 4476 return (start); 4477 } 4478 4479 /** 4480 * @brief Wrapper function for BUS_GET_RESOURCE(). 4481 * 4482 * This function simply calls the BUS_GET_RESOURCE() method of the 4483 * parent of @p dev and returns the count value. 4484 */ 4485 rman_res_t 4486 bus_get_resource_count(device_t dev, int type, int rid) 4487 { 4488 rman_res_t start; 4489 rman_res_t count; 4490 int error; 4491 4492 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4493 &start, &count); 4494 if (error) 4495 return (0); 4496 return (count); 4497 } 4498 4499 /** 4500 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4501 * 4502 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4503 * parent of @p dev. 4504 */ 4505 void 4506 bus_delete_resource(device_t dev, int type, int rid) 4507 { 4508 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4509 } 4510 4511 /** 4512 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4513 * 4514 * This function simply calls the BUS_CHILD_PRESENT() method of the 4515 * parent of @p dev. 4516 */ 4517 int 4518 bus_child_present(device_t child) 4519 { 4520 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4521 } 4522 4523 /** 4524 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4525 * 4526 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4527 * parent of @p dev. 4528 */ 4529 int 4530 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4531 { 4532 device_t parent; 4533 4534 parent = device_get_parent(child); 4535 if (parent == NULL) { 4536 *buf = '\0'; 4537 return (0); 4538 } 4539 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4540 } 4541 4542 /** 4543 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4544 * 4545 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4546 * parent of @p dev. 4547 */ 4548 int 4549 bus_child_location_str(device_t child, char *buf, size_t buflen) 4550 { 4551 device_t parent; 4552 4553 parent = device_get_parent(child); 4554 if (parent == NULL) { 4555 *buf = '\0'; 4556 return (0); 4557 } 4558 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4559 } 4560 4561 /** 4562 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4563 * 4564 * This function simply calls the BUS_GET_DMA_TAG() method of the 4565 * parent of @p dev. 4566 */ 4567 bus_dma_tag_t 4568 bus_get_dma_tag(device_t dev) 4569 { 4570 device_t parent; 4571 4572 parent = device_get_parent(dev); 4573 if (parent == NULL) 4574 return (NULL); 4575 return (BUS_GET_DMA_TAG(parent, dev)); 4576 } 4577 4578 /** 4579 * @brief Wrapper function for BUS_GET_DOMAIN(). 4580 * 4581 * This function simply calls the BUS_GET_DOMAIN() method of the 4582 * parent of @p dev. 4583 */ 4584 int 4585 bus_get_domain(device_t dev, int *domain) 4586 { 4587 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 4588 } 4589 4590 /* Resume all devices and then notify userland that we're up again. */ 4591 static int 4592 root_resume(device_t dev) 4593 { 4594 int error; 4595 4596 error = bus_generic_resume(dev); 4597 if (error == 0) 4598 devctl_notify("kern", "power", "resume", NULL); 4599 return (error); 4600 } 4601 4602 static int 4603 root_print_child(device_t dev, device_t child) 4604 { 4605 int retval = 0; 4606 4607 retval += bus_print_child_header(dev, child); 4608 retval += printf("\n"); 4609 4610 return (retval); 4611 } 4612 4613 static int 4614 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4615 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4616 { 4617 /* 4618 * If an interrupt mapping gets to here something bad has happened. 4619 */ 4620 panic("root_setup_intr"); 4621 } 4622 4623 /* 4624 * If we get here, assume that the device is permanant and really is 4625 * present in the system. Removable bus drivers are expected to intercept 4626 * this call long before it gets here. We return -1 so that drivers that 4627 * really care can check vs -1 or some ERRNO returned higher in the food 4628 * chain. 4629 */ 4630 static int 4631 root_child_present(device_t dev, device_t child) 4632 { 4633 return (-1); 4634 } 4635 4636 static kobj_method_t root_methods[] = { 4637 /* Device interface */ 4638 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4639 KOBJMETHOD(device_suspend, bus_generic_suspend), 4640 KOBJMETHOD(device_resume, root_resume), 4641 4642 /* Bus interface */ 4643 KOBJMETHOD(bus_print_child, root_print_child), 4644 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4645 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4646 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4647 KOBJMETHOD(bus_child_present, root_child_present), 4648 4649 KOBJMETHOD_END 4650 }; 4651 4652 static driver_t root_driver = { 4653 "root", 4654 root_methods, 4655 1, /* no softc */ 4656 }; 4657 4658 device_t root_bus; 4659 devclass_t root_devclass; 4660 4661 static int 4662 root_bus_module_handler(module_t mod, int what, void* arg) 4663 { 4664 switch (what) { 4665 case MOD_LOAD: 4666 TAILQ_INIT(&bus_data_devices); 4667 kobj_class_compile((kobj_class_t) &root_driver); 4668 root_bus = make_device(NULL, "root", 0); 4669 root_bus->desc = "System root bus"; 4670 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4671 root_bus->driver = &root_driver; 4672 root_bus->state = DS_ATTACHED; 4673 root_devclass = devclass_find_internal("root", NULL, FALSE); 4674 devinit(); 4675 return (0); 4676 4677 case MOD_SHUTDOWN: 4678 device_shutdown(root_bus); 4679 return (0); 4680 default: 4681 return (EOPNOTSUPP); 4682 } 4683 4684 return (0); 4685 } 4686 4687 static moduledata_t root_bus_mod = { 4688 "rootbus", 4689 root_bus_module_handler, 4690 NULL 4691 }; 4692 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4693 4694 /** 4695 * @brief Automatically configure devices 4696 * 4697 * This function begins the autoconfiguration process by calling 4698 * device_probe_and_attach() for each child of the @c root0 device. 4699 */ 4700 void 4701 root_bus_configure(void) 4702 { 4703 4704 PDEBUG((".")); 4705 4706 /* Eventually this will be split up, but this is sufficient for now. */ 4707 bus_set_pass(BUS_PASS_DEFAULT); 4708 } 4709 4710 /** 4711 * @brief Module handler for registering device drivers 4712 * 4713 * This module handler is used to automatically register device 4714 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4715 * devclass_add_driver() for the driver described by the 4716 * driver_module_data structure pointed to by @p arg 4717 */ 4718 int 4719 driver_module_handler(module_t mod, int what, void *arg) 4720 { 4721 struct driver_module_data *dmd; 4722 devclass_t bus_devclass; 4723 kobj_class_t driver; 4724 int error, pass; 4725 4726 dmd = (struct driver_module_data *)arg; 4727 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4728 error = 0; 4729 4730 switch (what) { 4731 case MOD_LOAD: 4732 if (dmd->dmd_chainevh) 4733 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4734 4735 pass = dmd->dmd_pass; 4736 driver = dmd->dmd_driver; 4737 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4738 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4739 error = devclass_add_driver(bus_devclass, driver, pass, 4740 dmd->dmd_devclass); 4741 break; 4742 4743 case MOD_UNLOAD: 4744 PDEBUG(("Unloading module: driver %s from bus %s", 4745 DRIVERNAME(dmd->dmd_driver), 4746 dmd->dmd_busname)); 4747 error = devclass_delete_driver(bus_devclass, 4748 dmd->dmd_driver); 4749 4750 if (!error && dmd->dmd_chainevh) 4751 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4752 break; 4753 case MOD_QUIESCE: 4754 PDEBUG(("Quiesce module: driver %s from bus %s", 4755 DRIVERNAME(dmd->dmd_driver), 4756 dmd->dmd_busname)); 4757 error = devclass_quiesce_driver(bus_devclass, 4758 dmd->dmd_driver); 4759 4760 if (!error && dmd->dmd_chainevh) 4761 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4762 break; 4763 default: 4764 error = EOPNOTSUPP; 4765 break; 4766 } 4767 4768 return (error); 4769 } 4770 4771 /** 4772 * @brief Enumerate all hinted devices for this bus. 4773 * 4774 * Walks through the hints for this bus and calls the bus_hinted_child 4775 * routine for each one it fines. It searches first for the specific 4776 * bus that's being probed for hinted children (eg isa0), and then for 4777 * generic children (eg isa). 4778 * 4779 * @param dev bus device to enumerate 4780 */ 4781 void 4782 bus_enumerate_hinted_children(device_t bus) 4783 { 4784 int i; 4785 const char *dname, *busname; 4786 int dunit; 4787 4788 /* 4789 * enumerate all devices on the specific bus 4790 */ 4791 busname = device_get_nameunit(bus); 4792 i = 0; 4793 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4794 BUS_HINTED_CHILD(bus, dname, dunit); 4795 4796 /* 4797 * and all the generic ones. 4798 */ 4799 busname = device_get_name(bus); 4800 i = 0; 4801 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 4802 BUS_HINTED_CHILD(bus, dname, dunit); 4803 } 4804 4805 #ifdef BUS_DEBUG 4806 4807 /* the _short versions avoid iteration by not calling anything that prints 4808 * more than oneliners. I love oneliners. 4809 */ 4810 4811 static void 4812 print_device_short(device_t dev, int indent) 4813 { 4814 if (!dev) 4815 return; 4816 4817 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 4818 dev->unit, dev->desc, 4819 (dev->parent? "":"no "), 4820 (TAILQ_EMPTY(&dev->children)? "no ":""), 4821 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 4822 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 4823 (dev->flags&DF_WILDCARD? "wildcard,":""), 4824 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 4825 (dev->flags&DF_REBID? "rebiddable,":""), 4826 (dev->ivars? "":"no "), 4827 (dev->softc? "":"no "), 4828 dev->busy)); 4829 } 4830 4831 static void 4832 print_device(device_t dev, int indent) 4833 { 4834 if (!dev) 4835 return; 4836 4837 print_device_short(dev, indent); 4838 4839 indentprintf(("Parent:\n")); 4840 print_device_short(dev->parent, indent+1); 4841 indentprintf(("Driver:\n")); 4842 print_driver_short(dev->driver, indent+1); 4843 indentprintf(("Devclass:\n")); 4844 print_devclass_short(dev->devclass, indent+1); 4845 } 4846 4847 void 4848 print_device_tree_short(device_t dev, int indent) 4849 /* print the device and all its children (indented) */ 4850 { 4851 device_t child; 4852 4853 if (!dev) 4854 return; 4855 4856 print_device_short(dev, indent); 4857 4858 TAILQ_FOREACH(child, &dev->children, link) { 4859 print_device_tree_short(child, indent+1); 4860 } 4861 } 4862 4863 void 4864 print_device_tree(device_t dev, int indent) 4865 /* print the device and all its children (indented) */ 4866 { 4867 device_t child; 4868 4869 if (!dev) 4870 return; 4871 4872 print_device(dev, indent); 4873 4874 TAILQ_FOREACH(child, &dev->children, link) { 4875 print_device_tree(child, indent+1); 4876 } 4877 } 4878 4879 static void 4880 print_driver_short(driver_t *driver, int indent) 4881 { 4882 if (!driver) 4883 return; 4884 4885 indentprintf(("driver %s: softc size = %zd\n", 4886 driver->name, driver->size)); 4887 } 4888 4889 static void 4890 print_driver(driver_t *driver, int indent) 4891 { 4892 if (!driver) 4893 return; 4894 4895 print_driver_short(driver, indent); 4896 } 4897 4898 static void 4899 print_driver_list(driver_list_t drivers, int indent) 4900 { 4901 driverlink_t driver; 4902 4903 TAILQ_FOREACH(driver, &drivers, link) { 4904 print_driver(driver->driver, indent); 4905 } 4906 } 4907 4908 static void 4909 print_devclass_short(devclass_t dc, int indent) 4910 { 4911 if ( !dc ) 4912 return; 4913 4914 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 4915 } 4916 4917 static void 4918 print_devclass(devclass_t dc, int indent) 4919 { 4920 int i; 4921 4922 if ( !dc ) 4923 return; 4924 4925 print_devclass_short(dc, indent); 4926 indentprintf(("Drivers:\n")); 4927 print_driver_list(dc->drivers, indent+1); 4928 4929 indentprintf(("Devices:\n")); 4930 for (i = 0; i < dc->maxunit; i++) 4931 if (dc->devices[i]) 4932 print_device(dc->devices[i], indent+1); 4933 } 4934 4935 void 4936 print_devclass_list_short(void) 4937 { 4938 devclass_t dc; 4939 4940 printf("Short listing of devclasses, drivers & devices:\n"); 4941 TAILQ_FOREACH(dc, &devclasses, link) { 4942 print_devclass_short(dc, 0); 4943 } 4944 } 4945 4946 void 4947 print_devclass_list(void) 4948 { 4949 devclass_t dc; 4950 4951 printf("Full listing of devclasses, drivers & devices:\n"); 4952 TAILQ_FOREACH(dc, &devclasses, link) { 4953 print_devclass(dc, 0); 4954 } 4955 } 4956 4957 #endif 4958 4959 /* 4960 * User-space access to the device tree. 4961 * 4962 * We implement a small set of nodes: 4963 * 4964 * hw.bus Single integer read method to obtain the 4965 * current generation count. 4966 * hw.bus.devices Reads the entire device tree in flat space. 4967 * hw.bus.rman Resource manager interface 4968 * 4969 * We might like to add the ability to scan devclasses and/or drivers to 4970 * determine what else is currently loaded/available. 4971 */ 4972 4973 static int 4974 sysctl_bus(SYSCTL_HANDLER_ARGS) 4975 { 4976 struct u_businfo ubus; 4977 4978 ubus.ub_version = BUS_USER_VERSION; 4979 ubus.ub_generation = bus_data_generation; 4980 4981 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 4982 } 4983 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 4984 "bus-related data"); 4985 4986 static int 4987 sysctl_devices(SYSCTL_HANDLER_ARGS) 4988 { 4989 int *name = (int *)arg1; 4990 u_int namelen = arg2; 4991 int index; 4992 struct device *dev; 4993 struct u_device udev; /* XXX this is a bit big */ 4994 int error; 4995 4996 if (namelen != 2) 4997 return (EINVAL); 4998 4999 if (bus_data_generation_check(name[0])) 5000 return (EINVAL); 5001 5002 index = name[1]; 5003 5004 /* 5005 * Scan the list of devices, looking for the requested index. 5006 */ 5007 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5008 if (index-- == 0) 5009 break; 5010 } 5011 if (dev == NULL) 5012 return (ENOENT); 5013 5014 /* 5015 * Populate the return array. 5016 */ 5017 bzero(&udev, sizeof(udev)); 5018 udev.dv_handle = (uintptr_t)dev; 5019 udev.dv_parent = (uintptr_t)dev->parent; 5020 if (dev->nameunit != NULL) 5021 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 5022 if (dev->desc != NULL) 5023 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 5024 if (dev->driver != NULL && dev->driver->name != NULL) 5025 strlcpy(udev.dv_drivername, dev->driver->name, 5026 sizeof(udev.dv_drivername)); 5027 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 5028 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 5029 udev.dv_devflags = dev->devflags; 5030 udev.dv_flags = dev->flags; 5031 udev.dv_state = dev->state; 5032 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 5033 return (error); 5034 } 5035 5036 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 5037 "system device tree"); 5038 5039 int 5040 bus_data_generation_check(int generation) 5041 { 5042 if (generation != bus_data_generation) 5043 return (1); 5044 5045 /* XXX generate optimised lists here? */ 5046 return (0); 5047 } 5048 5049 void 5050 bus_data_generation_update(void) 5051 { 5052 bus_data_generation++; 5053 } 5054 5055 int 5056 bus_free_resource(device_t dev, int type, struct resource *r) 5057 { 5058 if (r == NULL) 5059 return (0); 5060 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5061 } 5062 5063 /* 5064 * /dev/devctl2 implementation. The existing /dev/devctl device has 5065 * implicit semantics on open, so it could not be reused for this. 5066 * Another option would be to call this /dev/bus? 5067 */ 5068 static int 5069 find_device(struct devreq *req, device_t *devp) 5070 { 5071 device_t dev; 5072 5073 /* 5074 * First, ensure that the name is nul terminated. 5075 */ 5076 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5077 return (EINVAL); 5078 5079 /* 5080 * Second, try to find an attached device whose name matches 5081 * 'name'. 5082 */ 5083 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5084 if (dev->nameunit != NULL && 5085 strcmp(dev->nameunit, req->dr_name) == 0) { 5086 *devp = dev; 5087 return (0); 5088 } 5089 } 5090 5091 /* Finally, give device enumerators a chance. */ 5092 dev = NULL; 5093 EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev); 5094 if (dev == NULL) 5095 return (ENOENT); 5096 *devp = dev; 5097 return (0); 5098 } 5099 5100 static bool 5101 driver_exists(struct device *bus, const char *driver) 5102 { 5103 devclass_t dc; 5104 5105 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5106 if (devclass_find_driver_internal(dc, driver) != NULL) 5107 return (true); 5108 } 5109 return (false); 5110 } 5111 5112 static int 5113 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5114 struct thread *td) 5115 { 5116 struct devreq *req; 5117 device_t dev; 5118 int error, old; 5119 5120 /* Locate the device to control. */ 5121 mtx_lock(&Giant); 5122 req = (struct devreq *)data; 5123 switch (cmd) { 5124 case DEV_ATTACH: 5125 case DEV_DETACH: 5126 case DEV_ENABLE: 5127 case DEV_DISABLE: 5128 case DEV_SUSPEND: 5129 case DEV_RESUME: 5130 case DEV_SET_DRIVER: 5131 error = priv_check(td, PRIV_DRIVER); 5132 if (error == 0) 5133 error = find_device(req, &dev); 5134 break; 5135 default: 5136 error = ENOTTY; 5137 break; 5138 } 5139 if (error) { 5140 mtx_unlock(&Giant); 5141 return (error); 5142 } 5143 5144 /* Perform the requested operation. */ 5145 switch (cmd) { 5146 case DEV_ATTACH: 5147 if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0) 5148 error = EBUSY; 5149 else if (!device_is_enabled(dev)) 5150 error = ENXIO; 5151 else 5152 error = device_probe_and_attach(dev); 5153 break; 5154 case DEV_DETACH: 5155 if (!device_is_attached(dev)) { 5156 error = ENXIO; 5157 break; 5158 } 5159 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5160 error = device_quiesce(dev); 5161 if (error) 5162 break; 5163 } 5164 error = device_detach(dev); 5165 break; 5166 case DEV_ENABLE: 5167 if (device_is_enabled(dev)) { 5168 error = EBUSY; 5169 break; 5170 } 5171 5172 /* 5173 * If the device has been probed but not attached (e.g. 5174 * when it has been disabled by a loader hint), just 5175 * attach the device rather than doing a full probe. 5176 */ 5177 device_enable(dev); 5178 if (device_is_alive(dev)) { 5179 /* 5180 * If the device was disabled via a hint, clear 5181 * the hint. 5182 */ 5183 if (resource_disabled(dev->driver->name, dev->unit)) 5184 resource_unset_value(dev->driver->name, 5185 dev->unit, "disabled"); 5186 error = device_attach(dev); 5187 } else 5188 error = device_probe_and_attach(dev); 5189 break; 5190 case DEV_DISABLE: 5191 if (!device_is_enabled(dev)) { 5192 error = ENXIO; 5193 break; 5194 } 5195 5196 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5197 error = device_quiesce(dev); 5198 if (error) 5199 break; 5200 } 5201 5202 /* 5203 * Force DF_FIXEDCLASS on around detach to preserve 5204 * the existing name. 5205 */ 5206 old = dev->flags; 5207 dev->flags |= DF_FIXEDCLASS; 5208 error = device_detach(dev); 5209 if (!(old & DF_FIXEDCLASS)) 5210 dev->flags &= ~DF_FIXEDCLASS; 5211 if (error == 0) 5212 device_disable(dev); 5213 break; 5214 case DEV_SUSPEND: 5215 if (device_is_suspended(dev)) { 5216 error = EBUSY; 5217 break; 5218 } 5219 if (device_get_parent(dev) == NULL) { 5220 error = EINVAL; 5221 break; 5222 } 5223 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5224 break; 5225 case DEV_RESUME: 5226 if (!device_is_suspended(dev)) { 5227 error = EINVAL; 5228 break; 5229 } 5230 if (device_get_parent(dev) == NULL) { 5231 error = EINVAL; 5232 break; 5233 } 5234 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5235 break; 5236 case DEV_SET_DRIVER: { 5237 devclass_t dc; 5238 char driver[128]; 5239 5240 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5241 if (error) 5242 break; 5243 if (driver[0] == '\0') { 5244 error = EINVAL; 5245 break; 5246 } 5247 if (dev->devclass != NULL && 5248 strcmp(driver, dev->devclass->name) == 0) 5249 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5250 break; 5251 5252 /* 5253 * Scan drivers for this device's bus looking for at 5254 * least one matching driver. 5255 */ 5256 if (dev->parent == NULL) { 5257 error = EINVAL; 5258 break; 5259 } 5260 if (!driver_exists(dev->parent, driver)) { 5261 error = ENOENT; 5262 break; 5263 } 5264 dc = devclass_create(driver); 5265 if (dc == NULL) { 5266 error = ENOMEM; 5267 break; 5268 } 5269 5270 /* Detach device if necessary. */ 5271 if (device_is_attached(dev)) { 5272 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5273 error = device_detach(dev); 5274 else 5275 error = EBUSY; 5276 if (error) 5277 break; 5278 } 5279 5280 /* Clear any previously-fixed device class and unit. */ 5281 if (dev->flags & DF_FIXEDCLASS) 5282 devclass_delete_device(dev->devclass, dev); 5283 dev->flags |= DF_WILDCARD; 5284 dev->unit = -1; 5285 5286 /* Force the new device class. */ 5287 error = devclass_add_device(dc, dev); 5288 if (error) 5289 break; 5290 dev->flags |= DF_FIXEDCLASS; 5291 error = device_probe_and_attach(dev); 5292 break; 5293 } 5294 } 5295 mtx_unlock(&Giant); 5296 return (error); 5297 } 5298 5299 static struct cdevsw devctl2_cdevsw = { 5300 .d_version = D_VERSION, 5301 .d_ioctl = devctl2_ioctl, 5302 .d_name = "devctl2", 5303 }; 5304 5305 static void 5306 devctl2_init(void) 5307 { 5308 5309 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5310 UID_ROOT, GID_WHEEL, 0600, "devctl2"); 5311 } 5312