xref: /freebsd/sys/kern/subr_bus.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/conf.h>
34 #include <sys/filio.h>
35 #include <sys/lock.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/mutex.h>
41 #include <sys/poll.h>
42 #include <sys/proc.h>
43 #include <sys/condvar.h>
44 #include <sys/queue.h>
45 #include <machine/bus.h>
46 #include <sys/rman.h>
47 #include <sys/selinfo.h>
48 #include <sys/signalvar.h>
49 #include <sys/sysctl.h>
50 #include <sys/systm.h>
51 #include <sys/uio.h>
52 #include <sys/bus.h>
53 #include <sys/interrupt.h>
54 
55 #include <machine/stdarg.h>
56 
57 #include <vm/uma.h>
58 
59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
61 
62 /*
63  * Used to attach drivers to devclasses.
64  */
65 typedef struct driverlink *driverlink_t;
66 struct driverlink {
67 	kobj_class_t	driver;
68 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
69 };
70 
71 /*
72  * Forward declarations
73  */
74 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
75 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
76 typedef TAILQ_HEAD(device_list, device) device_list_t;
77 
78 struct devclass {
79 	TAILQ_ENTRY(devclass) link;
80 	devclass_t	parent;		/* parent in devclass hierarchy */
81 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
82 	char		*name;
83 	device_t	*devices;	/* array of devices indexed by unit */
84 	int		maxunit;	/* size of devices array */
85 
86 	struct sysctl_ctx_list sysctl_ctx;
87 	struct sysctl_oid *sysctl_tree;
88 };
89 
90 /**
91  * @brief Implementation of device.
92  */
93 struct device {
94 	/*
95 	 * A device is a kernel object. The first field must be the
96 	 * current ops table for the object.
97 	 */
98 	KOBJ_FIELDS;
99 
100 	/*
101 	 * Device hierarchy.
102 	 */
103 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
104 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
105 	device_t	parent;		/**< parent of this device  */
106 	device_list_t	children;	/**< list of child devices */
107 
108 	/*
109 	 * Details of this device.
110 	 */
111 	driver_t	*driver;	/**< current driver */
112 	devclass_t	devclass;	/**< current device class */
113 	int		unit;		/**< current unit number */
114 	char*		nameunit;	/**< name+unit e.g. foodev0 */
115 	char*		desc;		/**< driver specific description */
116 	int		busy;		/**< count of calls to device_busy() */
117 	device_state_t	state;		/**< current device state  */
118 	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
119 	u_short		flags;		/**< internal device flags  */
120 #define	DF_ENABLED	1		/* device should be probed/attached */
121 #define	DF_FIXEDCLASS	2		/* devclass specified at create time */
122 #define	DF_WILDCARD	4		/* unit was originally wildcard */
123 #define	DF_DESCMALLOCED	8		/* description was malloced */
124 #define	DF_QUIET	16		/* don't print verbose attach message */
125 #define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
126 #define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
127 #define	DF_REBID	128		/* Can rebid after attach */
128 	u_char	order;			/**< order from device_add_child_ordered() */
129 	u_char	pad;
130 	void	*ivars;			/**< instance variables  */
131 	void	*softc;			/**< current driver's variables  */
132 
133 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
134 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
135 };
136 
137 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
138 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
139 
140 #ifdef BUS_DEBUG
141 
142 static int bus_debug = 1;
143 TUNABLE_INT("bus.debug", &bus_debug);
144 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
145     "Debug bus code");
146 
147 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
148 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
149 #define DRIVERNAME(d)	((d)? d->name : "no driver")
150 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
151 
152 /**
153  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
154  * prevent syslog from deleting initial spaces
155  */
156 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
157 
158 static void print_device_short(device_t dev, int indent);
159 static void print_device(device_t dev, int indent);
160 void print_device_tree_short(device_t dev, int indent);
161 void print_device_tree(device_t dev, int indent);
162 static void print_driver_short(driver_t *driver, int indent);
163 static void print_driver(driver_t *driver, int indent);
164 static void print_driver_list(driver_list_t drivers, int indent);
165 static void print_devclass_short(devclass_t dc, int indent);
166 static void print_devclass(devclass_t dc, int indent);
167 void print_devclass_list_short(void);
168 void print_devclass_list(void);
169 
170 #else
171 /* Make the compiler ignore the function calls */
172 #define PDEBUG(a)			/* nop */
173 #define DEVICENAME(d)			/* nop */
174 #define DRIVERNAME(d)			/* nop */
175 #define DEVCLANAME(d)			/* nop */
176 
177 #define print_device_short(d,i)		/* nop */
178 #define print_device(d,i)		/* nop */
179 #define print_device_tree_short(d,i)	/* nop */
180 #define print_device_tree(d,i)		/* nop */
181 #define print_driver_short(d,i)		/* nop */
182 #define print_driver(d,i)		/* nop */
183 #define print_driver_list(d,i)		/* nop */
184 #define print_devclass_short(d,i)	/* nop */
185 #define print_devclass(d,i)		/* nop */
186 #define print_devclass_list_short()	/* nop */
187 #define print_devclass_list()		/* nop */
188 #endif
189 
190 /*
191  * dev sysctl tree
192  */
193 
194 enum {
195 	DEVCLASS_SYSCTL_PARENT,
196 };
197 
198 static int
199 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
200 {
201 	devclass_t dc = (devclass_t)arg1;
202 	const char *value;
203 
204 	switch (arg2) {
205 	case DEVCLASS_SYSCTL_PARENT:
206 		value = dc->parent ? dc->parent->name : "";
207 		break;
208 	default:
209 		return (EINVAL);
210 	}
211 	return (SYSCTL_OUT(req, value, strlen(value)));
212 }
213 
214 static void
215 devclass_sysctl_init(devclass_t dc)
216 {
217 
218 	if (dc->sysctl_tree != NULL)
219 		return;
220 	sysctl_ctx_init(&dc->sysctl_ctx);
221 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
222 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
223 	    CTLFLAG_RD, 0, "");
224 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
225 	    OID_AUTO, "%parent", CTLFLAG_RD,
226 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
227 	    "parent class");
228 }
229 
230 enum {
231 	DEVICE_SYSCTL_DESC,
232 	DEVICE_SYSCTL_DRIVER,
233 	DEVICE_SYSCTL_LOCATION,
234 	DEVICE_SYSCTL_PNPINFO,
235 	DEVICE_SYSCTL_PARENT,
236 };
237 
238 static int
239 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
240 {
241 	device_t dev = (device_t)arg1;
242 	const char *value;
243 	char *buf;
244 	int error;
245 
246 	buf = NULL;
247 	switch (arg2) {
248 	case DEVICE_SYSCTL_DESC:
249 		value = dev->desc ? dev->desc : "";
250 		break;
251 	case DEVICE_SYSCTL_DRIVER:
252 		value = dev->driver ? dev->driver->name : "";
253 		break;
254 	case DEVICE_SYSCTL_LOCATION:
255 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
256 		bus_child_location_str(dev, buf, 1024);
257 		break;
258 	case DEVICE_SYSCTL_PNPINFO:
259 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260 		bus_child_pnpinfo_str(dev, buf, 1024);
261 		break;
262 	case DEVICE_SYSCTL_PARENT:
263 		value = dev->parent ? dev->parent->nameunit : "";
264 		break;
265 	default:
266 		return (EINVAL);
267 	}
268 	error = SYSCTL_OUT(req, value, strlen(value));
269 	if (buf != NULL)
270 		free(buf, M_BUS);
271 	return (error);
272 }
273 
274 static void
275 device_sysctl_init(device_t dev)
276 {
277 	devclass_t dc = dev->devclass;
278 
279 	if (dev->sysctl_tree != NULL)
280 		return;
281 	devclass_sysctl_init(dc);
282 	sysctl_ctx_init(&dev->sysctl_ctx);
283 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
284 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
285 	    dev->nameunit + strlen(dc->name),
286 	    CTLFLAG_RD, 0, "");
287 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
288 	    OID_AUTO, "%desc", CTLFLAG_RD,
289 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
290 	    "device description");
291 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292 	    OID_AUTO, "%driver", CTLFLAG_RD,
293 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
294 	    "device driver name");
295 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296 	    OID_AUTO, "%location", CTLFLAG_RD,
297 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
298 	    "device location relative to parent");
299 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300 	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
301 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
302 	    "device identification");
303 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304 	    OID_AUTO, "%parent", CTLFLAG_RD,
305 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
306 	    "parent device");
307 }
308 
309 static void
310 device_sysctl_update(device_t dev)
311 {
312 	devclass_t dc = dev->devclass;
313 
314 	if (dev->sysctl_tree == NULL)
315 		return;
316 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
317 }
318 
319 static void
320 device_sysctl_fini(device_t dev)
321 {
322 	if (dev->sysctl_tree == NULL)
323 		return;
324 	sysctl_ctx_free(&dev->sysctl_ctx);
325 	dev->sysctl_tree = NULL;
326 }
327 
328 /*
329  * /dev/devctl implementation
330  */
331 
332 /*
333  * This design allows only one reader for /dev/devctl.  This is not desirable
334  * in the long run, but will get a lot of hair out of this implementation.
335  * Maybe we should make this device a clonable device.
336  *
337  * Also note: we specifically do not attach a device to the device_t tree
338  * to avoid potential chicken and egg problems.  One could argue that all
339  * of this belongs to the root node.  One could also further argue that the
340  * sysctl interface that we have not might more properly be an ioctl
341  * interface, but at this stage of the game, I'm not inclined to rock that
342  * boat.
343  *
344  * I'm also not sure that the SIGIO support is done correctly or not, as
345  * I copied it from a driver that had SIGIO support that likely hasn't been
346  * tested since 3.4 or 2.2.8!
347  */
348 
349 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
350 static int devctl_disable = 0;
351 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
352 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
353     sysctl_devctl_disable, "I", "devctl disable");
354 
355 static d_open_t		devopen;
356 static d_close_t	devclose;
357 static d_read_t		devread;
358 static d_ioctl_t	devioctl;
359 static d_poll_t		devpoll;
360 
361 static struct cdevsw dev_cdevsw = {
362 	.d_version =	D_VERSION,
363 	.d_flags =	D_NEEDGIANT,
364 	.d_open =	devopen,
365 	.d_close =	devclose,
366 	.d_read =	devread,
367 	.d_ioctl =	devioctl,
368 	.d_poll =	devpoll,
369 	.d_name =	"devctl",
370 };
371 
372 struct dev_event_info
373 {
374 	char *dei_data;
375 	TAILQ_ENTRY(dev_event_info) dei_link;
376 };
377 
378 TAILQ_HEAD(devq, dev_event_info);
379 
380 static struct dev_softc
381 {
382 	int	inuse;
383 	int	nonblock;
384 	struct mtx mtx;
385 	struct cv cv;
386 	struct selinfo sel;
387 	struct devq devq;
388 	struct proc *async_proc;
389 } devsoftc;
390 
391 static struct cdev *devctl_dev;
392 
393 static void
394 devinit(void)
395 {
396 	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
397 	    "devctl");
398 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
399 	cv_init(&devsoftc.cv, "dev cv");
400 	TAILQ_INIT(&devsoftc.devq);
401 }
402 
403 static int
404 devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td)
405 {
406 	if (devsoftc.inuse)
407 		return (EBUSY);
408 	/* move to init */
409 	devsoftc.inuse = 1;
410 	devsoftc.nonblock = 0;
411 	devsoftc.async_proc = NULL;
412 	return (0);
413 }
414 
415 static int
416 devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td)
417 {
418 	devsoftc.inuse = 0;
419 	mtx_lock(&devsoftc.mtx);
420 	cv_broadcast(&devsoftc.cv);
421 	mtx_unlock(&devsoftc.mtx);
422 
423 	return (0);
424 }
425 
426 /*
427  * The read channel for this device is used to report changes to
428  * userland in realtime.  We are required to free the data as well as
429  * the n1 object because we allocate them separately.  Also note that
430  * we return one record at a time.  If you try to read this device a
431  * character at a time, you will lose the rest of the data.  Listening
432  * programs are expected to cope.
433  */
434 static int
435 devread(struct cdev *dev, struct uio *uio, int ioflag)
436 {
437 	struct dev_event_info *n1;
438 	int rv;
439 
440 	mtx_lock(&devsoftc.mtx);
441 	while (TAILQ_EMPTY(&devsoftc.devq)) {
442 		if (devsoftc.nonblock) {
443 			mtx_unlock(&devsoftc.mtx);
444 			return (EAGAIN);
445 		}
446 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
447 		if (rv) {
448 			/*
449 			 * Need to translate ERESTART to EINTR here? -- jake
450 			 */
451 			mtx_unlock(&devsoftc.mtx);
452 			return (rv);
453 		}
454 	}
455 	n1 = TAILQ_FIRST(&devsoftc.devq);
456 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
457 	mtx_unlock(&devsoftc.mtx);
458 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
459 	free(n1->dei_data, M_BUS);
460 	free(n1, M_BUS);
461 	return (rv);
462 }
463 
464 static	int
465 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td)
466 {
467 	switch (cmd) {
468 
469 	case FIONBIO:
470 		if (*(int*)data)
471 			devsoftc.nonblock = 1;
472 		else
473 			devsoftc.nonblock = 0;
474 		return (0);
475 	case FIOASYNC:
476 		if (*(int*)data)
477 			devsoftc.async_proc = td->td_proc;
478 		else
479 			devsoftc.async_proc = NULL;
480 		return (0);
481 
482 		/* (un)Support for other fcntl() calls. */
483 	case FIOCLEX:
484 	case FIONCLEX:
485 	case FIONREAD:
486 	case FIOSETOWN:
487 	case FIOGETOWN:
488 	default:
489 		break;
490 	}
491 	return (ENOTTY);
492 }
493 
494 static	int
495 devpoll(struct cdev *dev, int events, d_thread_t *td)
496 {
497 	int	revents = 0;
498 
499 	mtx_lock(&devsoftc.mtx);
500 	if (events & (POLLIN | POLLRDNORM)) {
501 		if (!TAILQ_EMPTY(&devsoftc.devq))
502 			revents = events & (POLLIN | POLLRDNORM);
503 		else
504 			selrecord(td, &devsoftc.sel);
505 	}
506 	mtx_unlock(&devsoftc.mtx);
507 
508 	return (revents);
509 }
510 
511 /**
512  * @brief Queue data to be read from the devctl device
513  *
514  * Generic interface to queue data to the devctl device.  It is
515  * assumed that @p data is properly formatted.  It is further assumed
516  * that @p data is allocated using the M_BUS malloc type.
517  */
518 void
519 devctl_queue_data(char *data)
520 {
521 	struct dev_event_info *n1 = NULL;
522 	struct proc *p;
523 
524 	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
525 	if (n1 == NULL)
526 		return;
527 	n1->dei_data = data;
528 	mtx_lock(&devsoftc.mtx);
529 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
530 	cv_broadcast(&devsoftc.cv);
531 	mtx_unlock(&devsoftc.mtx);
532 	selwakeup(&devsoftc.sel);
533 	p = devsoftc.async_proc;
534 	if (p != NULL) {
535 		PROC_LOCK(p);
536 		psignal(p, SIGIO);
537 		PROC_UNLOCK(p);
538 	}
539 }
540 
541 /**
542  * @brief Send a 'notification' to userland, using standard ways
543  */
544 void
545 devctl_notify(const char *system, const char *subsystem, const char *type,
546     const char *data)
547 {
548 	int len = 0;
549 	char *msg;
550 
551 	if (system == NULL)
552 		return;		/* BOGUS!  Must specify system. */
553 	if (subsystem == NULL)
554 		return;		/* BOGUS!  Must specify subsystem. */
555 	if (type == NULL)
556 		return;		/* BOGUS!  Must specify type. */
557 	len += strlen(" system=") + strlen(system);
558 	len += strlen(" subsystem=") + strlen(subsystem);
559 	len += strlen(" type=") + strlen(type);
560 	/* add in the data message plus newline. */
561 	if (data != NULL)
562 		len += strlen(data);
563 	len += 3;	/* '!', '\n', and NUL */
564 	msg = malloc(len, M_BUS, M_NOWAIT);
565 	if (msg == NULL)
566 		return;		/* Drop it on the floor */
567 	if (data != NULL)
568 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
569 		    system, subsystem, type, data);
570 	else
571 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
572 		    system, subsystem, type);
573 	devctl_queue_data(msg);
574 }
575 
576 /*
577  * Common routine that tries to make sending messages as easy as possible.
578  * We allocate memory for the data, copy strings into that, but do not
579  * free it unless there's an error.  The dequeue part of the driver should
580  * free the data.  We don't send data when the device is disabled.  We do
581  * send data, even when we have no listeners, because we wish to avoid
582  * races relating to startup and restart of listening applications.
583  *
584  * devaddq is designed to string together the type of event, with the
585  * object of that event, plus the plug and play info and location info
586  * for that event.  This is likely most useful for devices, but less
587  * useful for other consumers of this interface.  Those should use
588  * the devctl_queue_data() interface instead.
589  */
590 static void
591 devaddq(const char *type, const char *what, device_t dev)
592 {
593 	char *data = NULL;
594 	char *loc = NULL;
595 	char *pnp = NULL;
596 	const char *parstr;
597 
598 	if (devctl_disable)
599 		return;
600 	data = malloc(1024, M_BUS, M_NOWAIT);
601 	if (data == NULL)
602 		goto bad;
603 
604 	/* get the bus specific location of this device */
605 	loc = malloc(1024, M_BUS, M_NOWAIT);
606 	if (loc == NULL)
607 		goto bad;
608 	*loc = '\0';
609 	bus_child_location_str(dev, loc, 1024);
610 
611 	/* Get the bus specific pnp info of this device */
612 	pnp = malloc(1024, M_BUS, M_NOWAIT);
613 	if (pnp == NULL)
614 		goto bad;
615 	*pnp = '\0';
616 	bus_child_pnpinfo_str(dev, pnp, 1024);
617 
618 	/* Get the parent of this device, or / if high enough in the tree. */
619 	if (device_get_parent(dev) == NULL)
620 		parstr = ".";	/* Or '/' ? */
621 	else
622 		parstr = device_get_nameunit(device_get_parent(dev));
623 	/* String it all together. */
624 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
625 	  parstr);
626 	free(loc, M_BUS);
627 	free(pnp, M_BUS);
628 	devctl_queue_data(data);
629 	return;
630 bad:
631 	free(pnp, M_BUS);
632 	free(loc, M_BUS);
633 	free(data, M_BUS);
634 	return;
635 }
636 
637 /*
638  * A device was added to the tree.  We are called just after it successfully
639  * attaches (that is, probe and attach success for this device).  No call
640  * is made if a device is merely parented into the tree.  See devnomatch
641  * if probe fails.  If attach fails, no notification is sent (but maybe
642  * we should have a different message for this).
643  */
644 static void
645 devadded(device_t dev)
646 {
647 	char *pnp = NULL;
648 	char *tmp = NULL;
649 
650 	pnp = malloc(1024, M_BUS, M_NOWAIT);
651 	if (pnp == NULL)
652 		goto fail;
653 	tmp = malloc(1024, M_BUS, M_NOWAIT);
654 	if (tmp == NULL)
655 		goto fail;
656 	*pnp = '\0';
657 	bus_child_pnpinfo_str(dev, pnp, 1024);
658 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
659 	devaddq("+", tmp, dev);
660 fail:
661 	if (pnp != NULL)
662 		free(pnp, M_BUS);
663 	if (tmp != NULL)
664 		free(tmp, M_BUS);
665 	return;
666 }
667 
668 /*
669  * A device was removed from the tree.  We are called just before this
670  * happens.
671  */
672 static void
673 devremoved(device_t dev)
674 {
675 	char *pnp = NULL;
676 	char *tmp = NULL;
677 
678 	pnp = malloc(1024, M_BUS, M_NOWAIT);
679 	if (pnp == NULL)
680 		goto fail;
681 	tmp = malloc(1024, M_BUS, M_NOWAIT);
682 	if (tmp == NULL)
683 		goto fail;
684 	*pnp = '\0';
685 	bus_child_pnpinfo_str(dev, pnp, 1024);
686 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
687 	devaddq("-", tmp, dev);
688 fail:
689 	if (pnp != NULL)
690 		free(pnp, M_BUS);
691 	if (tmp != NULL)
692 		free(tmp, M_BUS);
693 	return;
694 }
695 
696 /*
697  * Called when there's no match for this device.  This is only called
698  * the first time that no match happens, so we don't keep getitng this
699  * message.  Should that prove to be undesirable, we can change it.
700  * This is called when all drivers that can attach to a given bus
701  * decline to accept this device.  Other errrors may not be detected.
702  */
703 static void
704 devnomatch(device_t dev)
705 {
706 	devaddq("?", "", dev);
707 }
708 
709 static int
710 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
711 {
712 	struct dev_event_info *n1;
713 	int dis, error;
714 
715 	dis = devctl_disable;
716 	error = sysctl_handle_int(oidp, &dis, 0, req);
717 	if (error || !req->newptr)
718 		return (error);
719 	mtx_lock(&devsoftc.mtx);
720 	devctl_disable = dis;
721 	if (dis) {
722 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
723 			n1 = TAILQ_FIRST(&devsoftc.devq);
724 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
725 			free(n1->dei_data, M_BUS);
726 			free(n1, M_BUS);
727 		}
728 	}
729 	mtx_unlock(&devsoftc.mtx);
730 	return (0);
731 }
732 
733 /* End of /dev/devctl code */
734 
735 TAILQ_HEAD(,device)	bus_data_devices;
736 static int bus_data_generation = 1;
737 
738 kobj_method_t null_methods[] = {
739 	{ 0, 0 }
740 };
741 
742 DEFINE_CLASS(null, null_methods, 0);
743 
744 /*
745  * Devclass implementation
746  */
747 
748 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
749 
750 
751 /**
752  * @internal
753  * @brief Find or create a device class
754  *
755  * If a device class with the name @p classname exists, return it,
756  * otherwise if @p create is non-zero create and return a new device
757  * class.
758  *
759  * If @p parentname is non-NULL, the parent of the devclass is set to
760  * the devclass of that name.
761  *
762  * @param classname	the devclass name to find or create
763  * @param parentname	the parent devclass name or @c NULL
764  * @param create	non-zero to create a devclass
765  */
766 static devclass_t
767 devclass_find_internal(const char *classname, const char *parentname,
768 		       int create)
769 {
770 	devclass_t dc;
771 
772 	PDEBUG(("looking for %s", classname));
773 	if (!classname)
774 		return (NULL);
775 
776 	TAILQ_FOREACH(dc, &devclasses, link) {
777 		if (!strcmp(dc->name, classname))
778 			break;
779 	}
780 
781 	if (create && !dc) {
782 		PDEBUG(("creating %s", classname));
783 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
784 		    M_BUS, M_NOWAIT|M_ZERO);
785 		if (!dc)
786 			return (NULL);
787 		dc->parent = NULL;
788 		dc->name = (char*) (dc + 1);
789 		strcpy(dc->name, classname);
790 		TAILQ_INIT(&dc->drivers);
791 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
792 
793 		bus_data_generation_update();
794 	}
795 
796 	/*
797 	 * If a parent class is specified, then set that as our parent so
798 	 * that this devclass will support drivers for the parent class as
799 	 * well.  If the parent class has the same name don't do this though
800 	 * as it creates a cycle that can trigger an infinite loop in
801 	 * device_probe_child() if a device exists for which there is no
802 	 * suitable driver.
803 	 */
804 	if (parentname && dc && !dc->parent &&
805 	    strcmp(classname, parentname) != 0) {
806 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
807 	}
808 
809 	return (dc);
810 }
811 
812 /**
813  * @brief Create a device class
814  *
815  * If a device class with the name @p classname exists, return it,
816  * otherwise create and return a new device class.
817  *
818  * @param classname	the devclass name to find or create
819  */
820 devclass_t
821 devclass_create(const char *classname)
822 {
823 	return (devclass_find_internal(classname, NULL, TRUE));
824 }
825 
826 /**
827  * @brief Find a device class
828  *
829  * If a device class with the name @p classname exists, return it,
830  * otherwise return @c NULL.
831  *
832  * @param classname	the devclass name to find
833  */
834 devclass_t
835 devclass_find(const char *classname)
836 {
837 	return (devclass_find_internal(classname, NULL, FALSE));
838 }
839 
840 /**
841  * @brief Add a device driver to a device class
842  *
843  * Add a device driver to a devclass. This is normally called
844  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
845  * all devices in the devclass will be called to allow them to attempt
846  * to re-probe any unmatched children.
847  *
848  * @param dc		the devclass to edit
849  * @param driver	the driver to register
850  */
851 int
852 devclass_add_driver(devclass_t dc, driver_t *driver)
853 {
854 	driverlink_t dl;
855 	int i;
856 
857 	PDEBUG(("%s", DRIVERNAME(driver)));
858 
859 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
860 	if (!dl)
861 		return (ENOMEM);
862 
863 	/*
864 	 * Compile the driver's methods. Also increase the reference count
865 	 * so that the class doesn't get freed when the last instance
866 	 * goes. This means we can safely use static methods and avoids a
867 	 * double-free in devclass_delete_driver.
868 	 */
869 	kobj_class_compile((kobj_class_t) driver);
870 
871 	/*
872 	 * Make sure the devclass which the driver is implementing exists.
873 	 */
874 	devclass_find_internal(driver->name, NULL, TRUE);
875 
876 	dl->driver = driver;
877 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
878 	driver->refs++;		/* XXX: kobj_mtx */
879 
880 	/*
881 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
882 	 */
883 	for (i = 0; i < dc->maxunit; i++)
884 		if (dc->devices[i])
885 			BUS_DRIVER_ADDED(dc->devices[i], driver);
886 
887 	bus_data_generation_update();
888 	return (0);
889 }
890 
891 /**
892  * @brief Delete a device driver from a device class
893  *
894  * Delete a device driver from a devclass. This is normally called
895  * automatically by DRIVER_MODULE().
896  *
897  * If the driver is currently attached to any devices,
898  * devclass_delete_driver() will first attempt to detach from each
899  * device. If one of the detach calls fails, the driver will not be
900  * deleted.
901  *
902  * @param dc		the devclass to edit
903  * @param driver	the driver to unregister
904  */
905 int
906 devclass_delete_driver(devclass_t busclass, driver_t *driver)
907 {
908 	devclass_t dc = devclass_find(driver->name);
909 	driverlink_t dl;
910 	device_t dev;
911 	int i;
912 	int error;
913 
914 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
915 
916 	if (!dc)
917 		return (0);
918 
919 	/*
920 	 * Find the link structure in the bus' list of drivers.
921 	 */
922 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
923 		if (dl->driver == driver)
924 			break;
925 	}
926 
927 	if (!dl) {
928 		PDEBUG(("%s not found in %s list", driver->name,
929 		    busclass->name));
930 		return (ENOENT);
931 	}
932 
933 	/*
934 	 * Disassociate from any devices.  We iterate through all the
935 	 * devices in the devclass of the driver and detach any which are
936 	 * using the driver and which have a parent in the devclass which
937 	 * we are deleting from.
938 	 *
939 	 * Note that since a driver can be in multiple devclasses, we
940 	 * should not detach devices which are not children of devices in
941 	 * the affected devclass.
942 	 */
943 	for (i = 0; i < dc->maxunit; i++) {
944 		if (dc->devices[i]) {
945 			dev = dc->devices[i];
946 			if (dev->driver == driver && dev->parent &&
947 			    dev->parent->devclass == busclass) {
948 				if ((error = device_detach(dev)) != 0)
949 					return (error);
950 				device_set_driver(dev, NULL);
951 			}
952 		}
953 	}
954 
955 	TAILQ_REMOVE(&busclass->drivers, dl, link);
956 	free(dl, M_BUS);
957 
958 	/* XXX: kobj_mtx */
959 	driver->refs--;
960 	if (driver->refs == 0)
961 		kobj_class_free((kobj_class_t) driver);
962 
963 	bus_data_generation_update();
964 	return (0);
965 }
966 
967 /**
968  * @brief Quiesces a set of device drivers from a device class
969  *
970  * Quiesce a device driver from a devclass. This is normally called
971  * automatically by DRIVER_MODULE().
972  *
973  * If the driver is currently attached to any devices,
974  * devclass_quiesece_driver() will first attempt to quiesce each
975  * device.
976  *
977  * @param dc		the devclass to edit
978  * @param driver	the driver to unregister
979  */
980 int
981 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
982 {
983 	devclass_t dc = devclass_find(driver->name);
984 	driverlink_t dl;
985 	device_t dev;
986 	int i;
987 	int error;
988 
989 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
990 
991 	if (!dc)
992 		return (0);
993 
994 	/*
995 	 * Find the link structure in the bus' list of drivers.
996 	 */
997 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
998 		if (dl->driver == driver)
999 			break;
1000 	}
1001 
1002 	if (!dl) {
1003 		PDEBUG(("%s not found in %s list", driver->name,
1004 		    busclass->name));
1005 		return (ENOENT);
1006 	}
1007 
1008 	/*
1009 	 * Quiesce all devices.  We iterate through all the devices in
1010 	 * the devclass of the driver and quiesce any which are using
1011 	 * the driver and which have a parent in the devclass which we
1012 	 * are quiescing.
1013 	 *
1014 	 * Note that since a driver can be in multiple devclasses, we
1015 	 * should not quiesce devices which are not children of
1016 	 * devices in the affected devclass.
1017 	 */
1018 	for (i = 0; i < dc->maxunit; i++) {
1019 		if (dc->devices[i]) {
1020 			dev = dc->devices[i];
1021 			if (dev->driver == driver && dev->parent &&
1022 			    dev->parent->devclass == busclass) {
1023 				if ((error = device_quiesce(dev)) != 0)
1024 					return (error);
1025 			}
1026 		}
1027 	}
1028 
1029 	return (0);
1030 }
1031 
1032 /**
1033  * @internal
1034  */
1035 static driverlink_t
1036 devclass_find_driver_internal(devclass_t dc, const char *classname)
1037 {
1038 	driverlink_t dl;
1039 
1040 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1041 
1042 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1043 		if (!strcmp(dl->driver->name, classname))
1044 			return (dl);
1045 	}
1046 
1047 	PDEBUG(("not found"));
1048 	return (NULL);
1049 }
1050 
1051 /**
1052  * @brief Search a devclass for a driver
1053  *
1054  * This function searches the devclass's list of drivers and returns
1055  * the first driver whose name is @p classname or @c NULL if there is
1056  * no driver of that name.
1057  *
1058  * @param dc		the devclass to search
1059  * @param classname	the driver name to search for
1060  */
1061 kobj_class_t
1062 devclass_find_driver(devclass_t dc, const char *classname)
1063 {
1064 	driverlink_t dl;
1065 
1066 	dl = devclass_find_driver_internal(dc, classname);
1067 	if (dl)
1068 		return (dl->driver);
1069 	return (NULL);
1070 }
1071 
1072 /**
1073  * @brief Return the name of the devclass
1074  */
1075 const char *
1076 devclass_get_name(devclass_t dc)
1077 {
1078 	return (dc->name);
1079 }
1080 
1081 /**
1082  * @brief Find a device given a unit number
1083  *
1084  * @param dc		the devclass to search
1085  * @param unit		the unit number to search for
1086  *
1087  * @returns		the device with the given unit number or @c
1088  *			NULL if there is no such device
1089  */
1090 device_t
1091 devclass_get_device(devclass_t dc, int unit)
1092 {
1093 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1094 		return (NULL);
1095 	return (dc->devices[unit]);
1096 }
1097 
1098 /**
1099  * @brief Find the softc field of a device given a unit number
1100  *
1101  * @param dc		the devclass to search
1102  * @param unit		the unit number to search for
1103  *
1104  * @returns		the softc field of the device with the given
1105  *			unit number or @c NULL if there is no such
1106  *			device
1107  */
1108 void *
1109 devclass_get_softc(devclass_t dc, int unit)
1110 {
1111 	device_t dev;
1112 
1113 	dev = devclass_get_device(dc, unit);
1114 	if (!dev)
1115 		return (NULL);
1116 
1117 	return (device_get_softc(dev));
1118 }
1119 
1120 /**
1121  * @brief Get a list of devices in the devclass
1122  *
1123  * An array containing a list of all the devices in the given devclass
1124  * is allocated and returned in @p *devlistp. The number of devices
1125  * in the array is returned in @p *devcountp. The caller should free
1126  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1127  *
1128  * @param dc		the devclass to examine
1129  * @param devlistp	points at location for array pointer return
1130  *			value
1131  * @param devcountp	points at location for array size return value
1132  *
1133  * @retval 0		success
1134  * @retval ENOMEM	the array allocation failed
1135  */
1136 int
1137 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1138 {
1139 	int count, i;
1140 	device_t *list;
1141 
1142 	count = devclass_get_count(dc);
1143 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1144 	if (!list)
1145 		return (ENOMEM);
1146 
1147 	count = 0;
1148 	for (i = 0; i < dc->maxunit; i++) {
1149 		if (dc->devices[i]) {
1150 			list[count] = dc->devices[i];
1151 			count++;
1152 		}
1153 	}
1154 
1155 	*devlistp = list;
1156 	*devcountp = count;
1157 
1158 	return (0);
1159 }
1160 
1161 /**
1162  * @brief Get a list of drivers in the devclass
1163  *
1164  * An array containing a list of pointers to all the drivers in the
1165  * given devclass is allocated and returned in @p *listp.  The number
1166  * of drivers in the array is returned in @p *countp. The caller should
1167  * free the array using @c free(p, M_TEMP).
1168  *
1169  * @param dc		the devclass to examine
1170  * @param listp		gives location for array pointer return value
1171  * @param countp	gives location for number of array elements
1172  *			return value
1173  *
1174  * @retval 0		success
1175  * @retval ENOMEM	the array allocation failed
1176  */
1177 int
1178 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1179 {
1180 	driverlink_t dl;
1181 	driver_t **list;
1182 	int count;
1183 
1184 	count = 0;
1185 	TAILQ_FOREACH(dl, &dc->drivers, link)
1186 		count++;
1187 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1188 	if (list == NULL)
1189 		return (ENOMEM);
1190 
1191 	count = 0;
1192 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1193 		list[count] = dl->driver;
1194 		count++;
1195 	}
1196 	*listp = list;
1197 	*countp = count;
1198 
1199 	return (0);
1200 }
1201 
1202 /**
1203  * @brief Get the number of devices in a devclass
1204  *
1205  * @param dc		the devclass to examine
1206  */
1207 int
1208 devclass_get_count(devclass_t dc)
1209 {
1210 	int count, i;
1211 
1212 	count = 0;
1213 	for (i = 0; i < dc->maxunit; i++)
1214 		if (dc->devices[i])
1215 			count++;
1216 	return (count);
1217 }
1218 
1219 /**
1220  * @brief Get the maximum unit number used in a devclass
1221  *
1222  * Note that this is one greater than the highest currently-allocated
1223  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1224  * that not even the devclass has been allocated yet.
1225  *
1226  * @param dc		the devclass to examine
1227  */
1228 int
1229 devclass_get_maxunit(devclass_t dc)
1230 {
1231 	if (dc == NULL)
1232 		return (-1);
1233 	return (dc->maxunit);
1234 }
1235 
1236 /**
1237  * @brief Find a free unit number in a devclass
1238  *
1239  * This function searches for the first unused unit number greater
1240  * that or equal to @p unit.
1241  *
1242  * @param dc		the devclass to examine
1243  * @param unit		the first unit number to check
1244  */
1245 int
1246 devclass_find_free_unit(devclass_t dc, int unit)
1247 {
1248 	if (dc == NULL)
1249 		return (unit);
1250 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1251 		unit++;
1252 	return (unit);
1253 }
1254 
1255 /**
1256  * @brief Set the parent of a devclass
1257  *
1258  * The parent class is normally initialised automatically by
1259  * DRIVER_MODULE().
1260  *
1261  * @param dc		the devclass to edit
1262  * @param pdc		the new parent devclass
1263  */
1264 void
1265 devclass_set_parent(devclass_t dc, devclass_t pdc)
1266 {
1267 	dc->parent = pdc;
1268 }
1269 
1270 /**
1271  * @brief Get the parent of a devclass
1272  *
1273  * @param dc		the devclass to examine
1274  */
1275 devclass_t
1276 devclass_get_parent(devclass_t dc)
1277 {
1278 	return (dc->parent);
1279 }
1280 
1281 struct sysctl_ctx_list *
1282 devclass_get_sysctl_ctx(devclass_t dc)
1283 {
1284 	return (&dc->sysctl_ctx);
1285 }
1286 
1287 struct sysctl_oid *
1288 devclass_get_sysctl_tree(devclass_t dc)
1289 {
1290 	return (dc->sysctl_tree);
1291 }
1292 
1293 /**
1294  * @internal
1295  * @brief Allocate a unit number
1296  *
1297  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1298  * will do). The allocated unit number is returned in @p *unitp.
1299 
1300  * @param dc		the devclass to allocate from
1301  * @param unitp		points at the location for the allocated unit
1302  *			number
1303  *
1304  * @retval 0		success
1305  * @retval EEXIST	the requested unit number is already allocated
1306  * @retval ENOMEM	memory allocation failure
1307  */
1308 static int
1309 devclass_alloc_unit(devclass_t dc, int *unitp)
1310 {
1311 	int unit = *unitp;
1312 
1313 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1314 
1315 	/* If we were given a wired unit number, check for existing device */
1316 	/* XXX imp XXX */
1317 	if (unit != -1) {
1318 		if (unit >= 0 && unit < dc->maxunit &&
1319 		    dc->devices[unit] != NULL) {
1320 			if (bootverbose)
1321 				printf("%s: %s%d already exists; skipping it\n",
1322 				    dc->name, dc->name, *unitp);
1323 			return (EEXIST);
1324 		}
1325 	} else {
1326 		/* Unwired device, find the next available slot for it */
1327 		unit = 0;
1328 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1329 			unit++;
1330 	}
1331 
1332 	/*
1333 	 * We've selected a unit beyond the length of the table, so let's
1334 	 * extend the table to make room for all units up to and including
1335 	 * this one.
1336 	 */
1337 	if (unit >= dc->maxunit) {
1338 		device_t *newlist;
1339 		int newsize;
1340 
1341 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1342 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1343 		if (!newlist)
1344 			return (ENOMEM);
1345 		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
1346 		bzero(newlist + dc->maxunit,
1347 		    sizeof(device_t) * (newsize - dc->maxunit));
1348 		if (dc->devices)
1349 			free(dc->devices, M_BUS);
1350 		dc->devices = newlist;
1351 		dc->maxunit = newsize;
1352 	}
1353 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1354 
1355 	*unitp = unit;
1356 	return (0);
1357 }
1358 
1359 /**
1360  * @internal
1361  * @brief Add a device to a devclass
1362  *
1363  * A unit number is allocated for the device (using the device's
1364  * preferred unit number if any) and the device is registered in the
1365  * devclass. This allows the device to be looked up by its unit
1366  * number, e.g. by decoding a dev_t minor number.
1367  *
1368  * @param dc		the devclass to add to
1369  * @param dev		the device to add
1370  *
1371  * @retval 0		success
1372  * @retval EEXIST	the requested unit number is already allocated
1373  * @retval ENOMEM	memory allocation failure
1374  */
1375 static int
1376 devclass_add_device(devclass_t dc, device_t dev)
1377 {
1378 	int buflen, error;
1379 
1380 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1381 
1382 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
1383 	if (buflen < 0)
1384 		return (ENOMEM);
1385 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1386 	if (!dev->nameunit)
1387 		return (ENOMEM);
1388 
1389 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1390 		free(dev->nameunit, M_BUS);
1391 		dev->nameunit = NULL;
1392 		return (error);
1393 	}
1394 	dc->devices[dev->unit] = dev;
1395 	dev->devclass = dc;
1396 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1397 
1398 	return (0);
1399 }
1400 
1401 /**
1402  * @internal
1403  * @brief Delete a device from a devclass
1404  *
1405  * The device is removed from the devclass's device list and its unit
1406  * number is freed.
1407 
1408  * @param dc		the devclass to delete from
1409  * @param dev		the device to delete
1410  *
1411  * @retval 0		success
1412  */
1413 static int
1414 devclass_delete_device(devclass_t dc, device_t dev)
1415 {
1416 	if (!dc || !dev)
1417 		return (0);
1418 
1419 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1420 
1421 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1422 		panic("devclass_delete_device: inconsistent device class");
1423 	dc->devices[dev->unit] = NULL;
1424 	if (dev->flags & DF_WILDCARD)
1425 		dev->unit = -1;
1426 	dev->devclass = NULL;
1427 	free(dev->nameunit, M_BUS);
1428 	dev->nameunit = NULL;
1429 
1430 	return (0);
1431 }
1432 
1433 /**
1434  * @internal
1435  * @brief Make a new device and add it as a child of @p parent
1436  *
1437  * @param parent	the parent of the new device
1438  * @param name		the devclass name of the new device or @c NULL
1439  *			to leave the devclass unspecified
1440  * @parem unit		the unit number of the new device of @c -1 to
1441  *			leave the unit number unspecified
1442  *
1443  * @returns the new device
1444  */
1445 static device_t
1446 make_device(device_t parent, const char *name, int unit)
1447 {
1448 	device_t dev;
1449 	devclass_t dc;
1450 
1451 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1452 
1453 	if (name) {
1454 		dc = devclass_find_internal(name, NULL, TRUE);
1455 		if (!dc) {
1456 			printf("make_device: can't find device class %s\n",
1457 			    name);
1458 			return (NULL);
1459 		}
1460 	} else {
1461 		dc = NULL;
1462 	}
1463 
1464 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1465 	if (!dev)
1466 		return (NULL);
1467 
1468 	dev->parent = parent;
1469 	TAILQ_INIT(&dev->children);
1470 	kobj_init((kobj_t) dev, &null_class);
1471 	dev->driver = NULL;
1472 	dev->devclass = NULL;
1473 	dev->unit = unit;
1474 	dev->nameunit = NULL;
1475 	dev->desc = NULL;
1476 	dev->busy = 0;
1477 	dev->devflags = 0;
1478 	dev->flags = DF_ENABLED;
1479 	dev->order = 0;
1480 	if (unit == -1)
1481 		dev->flags |= DF_WILDCARD;
1482 	if (name) {
1483 		dev->flags |= DF_FIXEDCLASS;
1484 		if (devclass_add_device(dc, dev)) {
1485 			kobj_delete((kobj_t) dev, M_BUS);
1486 			return (NULL);
1487 		}
1488 	}
1489 	dev->ivars = NULL;
1490 	dev->softc = NULL;
1491 
1492 	dev->state = DS_NOTPRESENT;
1493 
1494 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1495 	bus_data_generation_update();
1496 
1497 	return (dev);
1498 }
1499 
1500 /**
1501  * @internal
1502  * @brief Print a description of a device.
1503  */
1504 static int
1505 device_print_child(device_t dev, device_t child)
1506 {
1507 	int retval = 0;
1508 
1509 	if (device_is_alive(child))
1510 		retval += BUS_PRINT_CHILD(dev, child);
1511 	else
1512 		retval += device_printf(child, " not found\n");
1513 
1514 	return (retval);
1515 }
1516 
1517 /**
1518  * @brief Create a new device
1519  *
1520  * This creates a new device and adds it as a child of an existing
1521  * parent device. The new device will be added after the last existing
1522  * child with order zero.
1523  *
1524  * @param dev		the device which will be the parent of the
1525  *			new child device
1526  * @param name		devclass name for new device or @c NULL if not
1527  *			specified
1528  * @param unit		unit number for new device or @c -1 if not
1529  *			specified
1530  *
1531  * @returns		the new device
1532  */
1533 device_t
1534 device_add_child(device_t dev, const char *name, int unit)
1535 {
1536 	return (device_add_child_ordered(dev, 0, name, unit));
1537 }
1538 
1539 /**
1540  * @brief Create a new device
1541  *
1542  * This creates a new device and adds it as a child of an existing
1543  * parent device. The new device will be added after the last existing
1544  * child with the same order.
1545  *
1546  * @param dev		the device which will be the parent of the
1547  *			new child device
1548  * @param order		a value which is used to partially sort the
1549  *			children of @p dev - devices created using
1550  *			lower values of @p order appear first in @p
1551  *			dev's list of children
1552  * @param name		devclass name for new device or @c NULL if not
1553  *			specified
1554  * @param unit		unit number for new device or @c -1 if not
1555  *			specified
1556  *
1557  * @returns		the new device
1558  */
1559 device_t
1560 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1561 {
1562 	device_t child;
1563 	device_t place;
1564 
1565 	PDEBUG(("%s at %s with order %d as unit %d",
1566 	    name, DEVICENAME(dev), order, unit));
1567 
1568 	child = make_device(dev, name, unit);
1569 	if (child == NULL)
1570 		return (child);
1571 	child->order = order;
1572 
1573 	TAILQ_FOREACH(place, &dev->children, link) {
1574 		if (place->order > order)
1575 			break;
1576 	}
1577 
1578 	if (place) {
1579 		/*
1580 		 * The device 'place' is the first device whose order is
1581 		 * greater than the new child.
1582 		 */
1583 		TAILQ_INSERT_BEFORE(place, child, link);
1584 	} else {
1585 		/*
1586 		 * The new child's order is greater or equal to the order of
1587 		 * any existing device. Add the child to the tail of the list.
1588 		 */
1589 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1590 	}
1591 
1592 	bus_data_generation_update();
1593 	return (child);
1594 }
1595 
1596 /**
1597  * @brief Delete a device
1598  *
1599  * This function deletes a device along with all of its children. If
1600  * the device currently has a driver attached to it, the device is
1601  * detached first using device_detach().
1602  *
1603  * @param dev		the parent device
1604  * @param child		the device to delete
1605  *
1606  * @retval 0		success
1607  * @retval non-zero	a unit error code describing the error
1608  */
1609 int
1610 device_delete_child(device_t dev, device_t child)
1611 {
1612 	int error;
1613 	device_t grandchild;
1614 
1615 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1616 
1617 	/* remove children first */
1618 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1619 		error = device_delete_child(child, grandchild);
1620 		if (error)
1621 			return (error);
1622 	}
1623 
1624 	if ((error = device_detach(child)) != 0)
1625 		return (error);
1626 	if (child->devclass)
1627 		devclass_delete_device(child->devclass, child);
1628 	TAILQ_REMOVE(&dev->children, child, link);
1629 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1630 	kobj_delete((kobj_t) child, M_BUS);
1631 
1632 	bus_data_generation_update();
1633 	return (0);
1634 }
1635 
1636 /**
1637  * @brief Find a device given a unit number
1638  *
1639  * This is similar to devclass_get_devices() but only searches for
1640  * devices which have @p dev as a parent.
1641  *
1642  * @param dev		the parent device to search
1643  * @param unit		the unit number to search for.  If the unit is -1,
1644  *			return the first child of @p dev which has name
1645  *			@p classname (that is, the one with the lowest unit.)
1646  *
1647  * @returns		the device with the given unit number or @c
1648  *			NULL if there is no such device
1649  */
1650 device_t
1651 device_find_child(device_t dev, const char *classname, int unit)
1652 {
1653 	devclass_t dc;
1654 	device_t child;
1655 
1656 	dc = devclass_find(classname);
1657 	if (!dc)
1658 		return (NULL);
1659 
1660 	if (unit != -1) {
1661 		child = devclass_get_device(dc, unit);
1662 		if (child && child->parent == dev)
1663 			return (child);
1664 	} else {
1665 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1666 			child = devclass_get_device(dc, unit);
1667 			if (child && child->parent == dev)
1668 				return (child);
1669 		}
1670 	}
1671 	return (NULL);
1672 }
1673 
1674 /**
1675  * @internal
1676  */
1677 static driverlink_t
1678 first_matching_driver(devclass_t dc, device_t dev)
1679 {
1680 	if (dev->devclass)
1681 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1682 	return (TAILQ_FIRST(&dc->drivers));
1683 }
1684 
1685 /**
1686  * @internal
1687  */
1688 static driverlink_t
1689 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1690 {
1691 	if (dev->devclass) {
1692 		driverlink_t dl;
1693 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1694 			if (!strcmp(dev->devclass->name, dl->driver->name))
1695 				return (dl);
1696 		return (NULL);
1697 	}
1698 	return (TAILQ_NEXT(last, link));
1699 }
1700 
1701 /**
1702  * @internal
1703  */
1704 int
1705 device_probe_child(device_t dev, device_t child)
1706 {
1707 	devclass_t dc;
1708 	driverlink_t best = NULL;
1709 	driverlink_t dl;
1710 	int result, pri = 0;
1711 	int hasclass = (child->devclass != 0);
1712 
1713 	GIANT_REQUIRED;
1714 
1715 	dc = dev->devclass;
1716 	if (!dc)
1717 		panic("device_probe_child: parent device has no devclass");
1718 
1719 	/*
1720 	 * If the state is already probed, then return.  However, don't
1721 	 * return if we can rebid this object.
1722 	 */
1723 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1724 		return (0);
1725 
1726 	for (; dc; dc = dc->parent) {
1727 		for (dl = first_matching_driver(dc, child);
1728 		     dl;
1729 		     dl = next_matching_driver(dc, child, dl)) {
1730 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1731 			device_set_driver(child, dl->driver);
1732 			if (!hasclass)
1733 				device_set_devclass(child, dl->driver->name);
1734 
1735 			/* Fetch any flags for the device before probing. */
1736 			resource_int_value(dl->driver->name, child->unit,
1737 			    "flags", &child->devflags);
1738 
1739 			result = DEVICE_PROBE(child);
1740 
1741 			/* Reset flags and devclass before the next probe. */
1742 			child->devflags = 0;
1743 			if (!hasclass)
1744 				device_set_devclass(child, NULL);
1745 
1746 			/*
1747 			 * If the driver returns SUCCESS, there can be
1748 			 * no higher match for this device.
1749 			 */
1750 			if (result == 0) {
1751 				best = dl;
1752 				pri = 0;
1753 				break;
1754 			}
1755 
1756 			/*
1757 			 * The driver returned an error so it
1758 			 * certainly doesn't match.
1759 			 */
1760 			if (result > 0) {
1761 				device_set_driver(child, NULL);
1762 				continue;
1763 			}
1764 
1765 			/*
1766 			 * A priority lower than SUCCESS, remember the
1767 			 * best matching driver. Initialise the value
1768 			 * of pri for the first match.
1769 			 */
1770 			if (best == NULL || result > pri) {
1771 				best = dl;
1772 				pri = result;
1773 				continue;
1774 			}
1775 		}
1776 		/*
1777 		 * If we have an unambiguous match in this devclass,
1778 		 * don't look in the parent.
1779 		 */
1780 		if (best && pri == 0)
1781 			break;
1782 	}
1783 
1784 	/*
1785 	 * If we found a driver, change state and initialise the devclass.
1786 	 */
1787 	/* XXX What happens if we rebid and got no best? */
1788 	if (best) {
1789 		/*
1790 		 * If this device was atached, and we were asked to
1791 		 * rescan, and it is a different driver, then we have
1792 		 * to detach the old driver and reattach this new one.
1793 		 * Note, we don't have to check for DF_REBID here
1794 		 * because if the state is > DS_ALIVE, we know it must
1795 		 * be.
1796 		 *
1797 		 * This assumes that all DF_REBID drivers can have
1798 		 * their probe routine called at any time and that
1799 		 * they are idempotent as well as completely benign in
1800 		 * normal operations.
1801 		 *
1802 		 * We also have to make sure that the detach
1803 		 * succeeded, otherwise we fail the operation (or
1804 		 * maybe it should just fail silently?  I'm torn).
1805 		 */
1806 		if (child->state > DS_ALIVE && best->driver != child->driver)
1807 			if ((result = device_detach(dev)) != 0)
1808 				return (result);
1809 
1810 		/* Set the winning driver, devclass, and flags. */
1811 		if (!child->devclass)
1812 			device_set_devclass(child, best->driver->name);
1813 		device_set_driver(child, best->driver);
1814 		resource_int_value(best->driver->name, child->unit,
1815 		    "flags", &child->devflags);
1816 
1817 		if (pri < 0) {
1818 			/*
1819 			 * A bit bogus. Call the probe method again to make
1820 			 * sure that we have the right description.
1821 			 */
1822 			DEVICE_PROBE(child);
1823 #if 0
1824 			child->flags |= DF_REBID;
1825 #endif
1826 		} else
1827 			child->flags &= ~DF_REBID;
1828 		child->state = DS_ALIVE;
1829 
1830 		bus_data_generation_update();
1831 		return (0);
1832 	}
1833 
1834 	return (ENXIO);
1835 }
1836 
1837 /**
1838  * @brief Return the parent of a device
1839  */
1840 device_t
1841 device_get_parent(device_t dev)
1842 {
1843 	return (dev->parent);
1844 }
1845 
1846 /**
1847  * @brief Get a list of children of a device
1848  *
1849  * An array containing a list of all the children of the given device
1850  * is allocated and returned in @p *devlistp. The number of devices
1851  * in the array is returned in @p *devcountp. The caller should free
1852  * the array using @c free(p, M_TEMP).
1853  *
1854  * @param dev		the device to examine
1855  * @param devlistp	points at location for array pointer return
1856  *			value
1857  * @param devcountp	points at location for array size return value
1858  *
1859  * @retval 0		success
1860  * @retval ENOMEM	the array allocation failed
1861  */
1862 int
1863 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1864 {
1865 	int count;
1866 	device_t child;
1867 	device_t *list;
1868 
1869 	count = 0;
1870 	TAILQ_FOREACH(child, &dev->children, link) {
1871 		count++;
1872 	}
1873 
1874 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1875 	if (!list)
1876 		return (ENOMEM);
1877 
1878 	count = 0;
1879 	TAILQ_FOREACH(child, &dev->children, link) {
1880 		list[count] = child;
1881 		count++;
1882 	}
1883 
1884 	*devlistp = list;
1885 	*devcountp = count;
1886 
1887 	return (0);
1888 }
1889 
1890 /**
1891  * @brief Return the current driver for the device or @c NULL if there
1892  * is no driver currently attached
1893  */
1894 driver_t *
1895 device_get_driver(device_t dev)
1896 {
1897 	return (dev->driver);
1898 }
1899 
1900 /**
1901  * @brief Return the current devclass for the device or @c NULL if
1902  * there is none.
1903  */
1904 devclass_t
1905 device_get_devclass(device_t dev)
1906 {
1907 	return (dev->devclass);
1908 }
1909 
1910 /**
1911  * @brief Return the name of the device's devclass or @c NULL if there
1912  * is none.
1913  */
1914 const char *
1915 device_get_name(device_t dev)
1916 {
1917 	if (dev != NULL && dev->devclass)
1918 		return (devclass_get_name(dev->devclass));
1919 	return (NULL);
1920 }
1921 
1922 /**
1923  * @brief Return a string containing the device's devclass name
1924  * followed by an ascii representation of the device's unit number
1925  * (e.g. @c "foo2").
1926  */
1927 const char *
1928 device_get_nameunit(device_t dev)
1929 {
1930 	return (dev->nameunit);
1931 }
1932 
1933 /**
1934  * @brief Return the device's unit number.
1935  */
1936 int
1937 device_get_unit(device_t dev)
1938 {
1939 	return (dev->unit);
1940 }
1941 
1942 /**
1943  * @brief Return the device's description string
1944  */
1945 const char *
1946 device_get_desc(device_t dev)
1947 {
1948 	return (dev->desc);
1949 }
1950 
1951 /**
1952  * @brief Return the device's flags
1953  */
1954 u_int32_t
1955 device_get_flags(device_t dev)
1956 {
1957 	return (dev->devflags);
1958 }
1959 
1960 struct sysctl_ctx_list *
1961 device_get_sysctl_ctx(device_t dev)
1962 {
1963 	return (&dev->sysctl_ctx);
1964 }
1965 
1966 struct sysctl_oid *
1967 device_get_sysctl_tree(device_t dev)
1968 {
1969 	return (dev->sysctl_tree);
1970 }
1971 
1972 /**
1973  * @brief Print the name of the device followed by a colon and a space
1974  *
1975  * @returns the number of characters printed
1976  */
1977 int
1978 device_print_prettyname(device_t dev)
1979 {
1980 	const char *name = device_get_name(dev);
1981 
1982 	if (name == 0)
1983 		return (printf("unknown: "));
1984 	return (printf("%s%d: ", name, device_get_unit(dev)));
1985 }
1986 
1987 /**
1988  * @brief Print the name of the device followed by a colon, a space
1989  * and the result of calling vprintf() with the value of @p fmt and
1990  * the following arguments.
1991  *
1992  * @returns the number of characters printed
1993  */
1994 int
1995 device_printf(device_t dev, const char * fmt, ...)
1996 {
1997 	va_list ap;
1998 	int retval;
1999 
2000 	retval = device_print_prettyname(dev);
2001 	va_start(ap, fmt);
2002 	retval += vprintf(fmt, ap);
2003 	va_end(ap);
2004 	return (retval);
2005 }
2006 
2007 /**
2008  * @internal
2009  */
2010 static void
2011 device_set_desc_internal(device_t dev, const char* desc, int copy)
2012 {
2013 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2014 		free(dev->desc, M_BUS);
2015 		dev->flags &= ~DF_DESCMALLOCED;
2016 		dev->desc = NULL;
2017 	}
2018 
2019 	if (copy && desc) {
2020 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2021 		if (dev->desc) {
2022 			strcpy(dev->desc, desc);
2023 			dev->flags |= DF_DESCMALLOCED;
2024 		}
2025 	} else {
2026 		/* Avoid a -Wcast-qual warning */
2027 		dev->desc = (char *)(uintptr_t) desc;
2028 	}
2029 
2030 	bus_data_generation_update();
2031 }
2032 
2033 /**
2034  * @brief Set the device's description
2035  *
2036  * The value of @c desc should be a string constant that will not
2037  * change (at least until the description is changed in a subsequent
2038  * call to device_set_desc() or device_set_desc_copy()).
2039  */
2040 void
2041 device_set_desc(device_t dev, const char* desc)
2042 {
2043 	device_set_desc_internal(dev, desc, FALSE);
2044 }
2045 
2046 /**
2047  * @brief Set the device's description
2048  *
2049  * The string pointed to by @c desc is copied. Use this function if
2050  * the device description is generated, (e.g. with sprintf()).
2051  */
2052 void
2053 device_set_desc_copy(device_t dev, const char* desc)
2054 {
2055 	device_set_desc_internal(dev, desc, TRUE);
2056 }
2057 
2058 /**
2059  * @brief Set the device's flags
2060  */
2061 void
2062 device_set_flags(device_t dev, u_int32_t flags)
2063 {
2064 	dev->devflags = flags;
2065 }
2066 
2067 /**
2068  * @brief Return the device's softc field
2069  *
2070  * The softc is allocated and zeroed when a driver is attached, based
2071  * on the size field of the driver.
2072  */
2073 void *
2074 device_get_softc(device_t dev)
2075 {
2076 	return (dev->softc);
2077 }
2078 
2079 /**
2080  * @brief Set the device's softc field
2081  *
2082  * Most drivers do not need to use this since the softc is allocated
2083  * automatically when the driver is attached.
2084  */
2085 void
2086 device_set_softc(device_t dev, void *softc)
2087 {
2088 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2089 		free(dev->softc, M_BUS_SC);
2090 	dev->softc = softc;
2091 	if (dev->softc)
2092 		dev->flags |= DF_EXTERNALSOFTC;
2093 	else
2094 		dev->flags &= ~DF_EXTERNALSOFTC;
2095 }
2096 
2097 /**
2098  * @brief Get the device's ivars field
2099  *
2100  * The ivars field is used by the parent device to store per-device
2101  * state (e.g. the physical location of the device or a list of
2102  * resources).
2103  */
2104 void *
2105 device_get_ivars(device_t dev)
2106 {
2107 
2108 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2109 	return (dev->ivars);
2110 }
2111 
2112 /**
2113  * @brief Set the device's ivars field
2114  */
2115 void
2116 device_set_ivars(device_t dev, void * ivars)
2117 {
2118 
2119 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2120 	dev->ivars = ivars;
2121 }
2122 
2123 /**
2124  * @brief Return the device's state
2125  */
2126 device_state_t
2127 device_get_state(device_t dev)
2128 {
2129 	return (dev->state);
2130 }
2131 
2132 /**
2133  * @brief Set the DF_ENABLED flag for the device
2134  */
2135 void
2136 device_enable(device_t dev)
2137 {
2138 	dev->flags |= DF_ENABLED;
2139 }
2140 
2141 /**
2142  * @brief Clear the DF_ENABLED flag for the device
2143  */
2144 void
2145 device_disable(device_t dev)
2146 {
2147 	dev->flags &= ~DF_ENABLED;
2148 }
2149 
2150 /**
2151  * @brief Increment the busy counter for the device
2152  */
2153 void
2154 device_busy(device_t dev)
2155 {
2156 	if (dev->state < DS_ATTACHED)
2157 		panic("device_busy: called for unattached device");
2158 	if (dev->busy == 0 && dev->parent)
2159 		device_busy(dev->parent);
2160 	dev->busy++;
2161 	dev->state = DS_BUSY;
2162 }
2163 
2164 /**
2165  * @brief Decrement the busy counter for the device
2166  */
2167 void
2168 device_unbusy(device_t dev)
2169 {
2170 	if (dev->state != DS_BUSY)
2171 		panic("device_unbusy: called for non-busy device %s",
2172 		    device_get_nameunit(dev));
2173 	dev->busy--;
2174 	if (dev->busy == 0) {
2175 		if (dev->parent)
2176 			device_unbusy(dev->parent);
2177 		dev->state = DS_ATTACHED;
2178 	}
2179 }
2180 
2181 /**
2182  * @brief Set the DF_QUIET flag for the device
2183  */
2184 void
2185 device_quiet(device_t dev)
2186 {
2187 	dev->flags |= DF_QUIET;
2188 }
2189 
2190 /**
2191  * @brief Clear the DF_QUIET flag for the device
2192  */
2193 void
2194 device_verbose(device_t dev)
2195 {
2196 	dev->flags &= ~DF_QUIET;
2197 }
2198 
2199 /**
2200  * @brief Return non-zero if the DF_QUIET flag is set on the device
2201  */
2202 int
2203 device_is_quiet(device_t dev)
2204 {
2205 	return ((dev->flags & DF_QUIET) != 0);
2206 }
2207 
2208 /**
2209  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2210  */
2211 int
2212 device_is_enabled(device_t dev)
2213 {
2214 	return ((dev->flags & DF_ENABLED) != 0);
2215 }
2216 
2217 /**
2218  * @brief Return non-zero if the device was successfully probed
2219  */
2220 int
2221 device_is_alive(device_t dev)
2222 {
2223 	return (dev->state >= DS_ALIVE);
2224 }
2225 
2226 /**
2227  * @brief Return non-zero if the device currently has a driver
2228  * attached to it
2229  */
2230 int
2231 device_is_attached(device_t dev)
2232 {
2233 	return (dev->state >= DS_ATTACHED);
2234 }
2235 
2236 /**
2237  * @brief Set the devclass of a device
2238  * @see devclass_add_device().
2239  */
2240 int
2241 device_set_devclass(device_t dev, const char *classname)
2242 {
2243 	devclass_t dc;
2244 	int error;
2245 
2246 	if (!classname) {
2247 		if (dev->devclass)
2248 			devclass_delete_device(dev->devclass, dev);
2249 		return (0);
2250 	}
2251 
2252 	if (dev->devclass) {
2253 		printf("device_set_devclass: device class already set\n");
2254 		return (EINVAL);
2255 	}
2256 
2257 	dc = devclass_find_internal(classname, NULL, TRUE);
2258 	if (!dc)
2259 		return (ENOMEM);
2260 
2261 	error = devclass_add_device(dc, dev);
2262 
2263 	bus_data_generation_update();
2264 	return (error);
2265 }
2266 
2267 /**
2268  * @brief Set the driver of a device
2269  *
2270  * @retval 0		success
2271  * @retval EBUSY	the device already has a driver attached
2272  * @retval ENOMEM	a memory allocation failure occurred
2273  */
2274 int
2275 device_set_driver(device_t dev, driver_t *driver)
2276 {
2277 	if (dev->state >= DS_ATTACHED)
2278 		return (EBUSY);
2279 
2280 	if (dev->driver == driver)
2281 		return (0);
2282 
2283 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2284 		free(dev->softc, M_BUS_SC);
2285 		dev->softc = NULL;
2286 	}
2287 	kobj_delete((kobj_t) dev, NULL);
2288 	dev->driver = driver;
2289 	if (driver) {
2290 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2291 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2292 			dev->softc = malloc(driver->size, M_BUS_SC,
2293 			    M_NOWAIT | M_ZERO);
2294 			if (!dev->softc) {
2295 				kobj_delete((kobj_t) dev, NULL);
2296 				kobj_init((kobj_t) dev, &null_class);
2297 				dev->driver = NULL;
2298 				return (ENOMEM);
2299 			}
2300 		}
2301 	} else {
2302 		kobj_init((kobj_t) dev, &null_class);
2303 	}
2304 
2305 	bus_data_generation_update();
2306 	return (0);
2307 }
2308 
2309 /**
2310  * @brief Probe a device and attach a driver if possible
2311  *
2312  * This function is the core of the device autoconfiguration
2313  * system. Its purpose is to select a suitable driver for a device and
2314  * then call that driver to initialise the hardware appropriately. The
2315  * driver is selected by calling the DEVICE_PROBE() method of a set of
2316  * candidate drivers and then choosing the driver which returned the
2317  * best value. This driver is then attached to the device using
2318  * device_attach().
2319  *
2320  * The set of suitable drivers is taken from the list of drivers in
2321  * the parent device's devclass. If the device was originally created
2322  * with a specific class name (see device_add_child()), only drivers
2323  * with that name are probed, otherwise all drivers in the devclass
2324  * are probed. If no drivers return successful probe values in the
2325  * parent devclass, the search continues in the parent of that
2326  * devclass (see devclass_get_parent()) if any.
2327  *
2328  * @param dev		the device to initialise
2329  *
2330  * @retval 0		success
2331  * @retval ENXIO	no driver was found
2332  * @retval ENOMEM	memory allocation failure
2333  * @retval non-zero	some other unix error code
2334  */
2335 int
2336 device_probe_and_attach(device_t dev)
2337 {
2338 	int error;
2339 
2340 	GIANT_REQUIRED;
2341 
2342 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2343 		return (0);
2344 
2345 	if (!(dev->flags & DF_ENABLED)) {
2346 		if (bootverbose && device_get_name(dev) != NULL) {
2347 			device_print_prettyname(dev);
2348 			printf("not probed (disabled)\n");
2349 		}
2350 		return (0);
2351 	}
2352 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2353 		if (!(dev->flags & DF_DONENOMATCH)) {
2354 			BUS_PROBE_NOMATCH(dev->parent, dev);
2355 			devnomatch(dev);
2356 			dev->flags |= DF_DONENOMATCH;
2357 		}
2358 		return (error);
2359 	}
2360 	error = device_attach(dev);
2361 
2362 	return (error);
2363 }
2364 
2365 /**
2366  * @brief Attach a device driver to a device
2367  *
2368  * This function is a wrapper around the DEVICE_ATTACH() driver
2369  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2370  * device's sysctl tree, optionally prints a description of the device
2371  * and queues a notification event for user-based device management
2372  * services.
2373  *
2374  * Normally this function is only called internally from
2375  * device_probe_and_attach().
2376  *
2377  * @param dev		the device to initialise
2378  *
2379  * @retval 0		success
2380  * @retval ENXIO	no driver was found
2381  * @retval ENOMEM	memory allocation failure
2382  * @retval non-zero	some other unix error code
2383  */
2384 int
2385 device_attach(device_t dev)
2386 {
2387 	int error;
2388 
2389 	device_sysctl_init(dev);
2390 	if (!device_is_quiet(dev))
2391 		device_print_child(dev->parent, dev);
2392 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2393 		printf("device_attach: %s%d attach returned %d\n",
2394 		    dev->driver->name, dev->unit, error);
2395 		/* Unset the class; set in device_probe_child */
2396 		if (dev->devclass == NULL)
2397 			device_set_devclass(dev, NULL);
2398 		device_set_driver(dev, NULL);
2399 		device_sysctl_fini(dev);
2400 		dev->state = DS_NOTPRESENT;
2401 		return (error);
2402 	}
2403 	device_sysctl_update(dev);
2404 	dev->state = DS_ATTACHED;
2405 	devadded(dev);
2406 	return (0);
2407 }
2408 
2409 /**
2410  * @brief Detach a driver from a device
2411  *
2412  * This function is a wrapper around the DEVICE_DETACH() driver
2413  * method. If the call to DEVICE_DETACH() succeeds, it calls
2414  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2415  * notification event for user-based device management services and
2416  * cleans up the device's sysctl tree.
2417  *
2418  * @param dev		the device to un-initialise
2419  *
2420  * @retval 0		success
2421  * @retval ENXIO	no driver was found
2422  * @retval ENOMEM	memory allocation failure
2423  * @retval non-zero	some other unix error code
2424  */
2425 int
2426 device_detach(device_t dev)
2427 {
2428 	int error;
2429 
2430 	GIANT_REQUIRED;
2431 
2432 	PDEBUG(("%s", DEVICENAME(dev)));
2433 	if (dev->state == DS_BUSY)
2434 		return (EBUSY);
2435 	if (dev->state != DS_ATTACHED)
2436 		return (0);
2437 
2438 	if ((error = DEVICE_DETACH(dev)) != 0)
2439 		return (error);
2440 	devremoved(dev);
2441 	device_printf(dev, "detached\n");
2442 	if (dev->parent)
2443 		BUS_CHILD_DETACHED(dev->parent, dev);
2444 
2445 	if (!(dev->flags & DF_FIXEDCLASS))
2446 		devclass_delete_device(dev->devclass, dev);
2447 
2448 	dev->state = DS_NOTPRESENT;
2449 	device_set_driver(dev, NULL);
2450 	device_set_desc(dev, NULL);
2451 	device_sysctl_fini(dev);
2452 
2453 	return (0);
2454 }
2455 
2456 /**
2457  * @brief Tells a driver to quiesce itself.
2458  *
2459  * This function is a wrapper around the DEVICE_QUIESCE() driver
2460  * method. If the call to DEVICE_QUIESCE() succeeds.
2461  *
2462  * @param dev		the device to quiesce
2463  *
2464  * @retval 0		success
2465  * @retval ENXIO	no driver was found
2466  * @retval ENOMEM	memory allocation failure
2467  * @retval non-zero	some other unix error code
2468  */
2469 int
2470 device_quiesce(device_t dev)
2471 {
2472 
2473 	PDEBUG(("%s", DEVICENAME(dev)));
2474 	if (dev->state == DS_BUSY)
2475 		return (EBUSY);
2476 	if (dev->state != DS_ATTACHED)
2477 		return (0);
2478 
2479 	return (DEVICE_QUIESCE(dev));
2480 }
2481 
2482 /**
2483  * @brief Notify a device of system shutdown
2484  *
2485  * This function calls the DEVICE_SHUTDOWN() driver method if the
2486  * device currently has an attached driver.
2487  *
2488  * @returns the value returned by DEVICE_SHUTDOWN()
2489  */
2490 int
2491 device_shutdown(device_t dev)
2492 {
2493 	if (dev->state < DS_ATTACHED)
2494 		return (0);
2495 	return (DEVICE_SHUTDOWN(dev));
2496 }
2497 
2498 /**
2499  * @brief Set the unit number of a device
2500  *
2501  * This function can be used to override the unit number used for a
2502  * device (e.g. to wire a device to a pre-configured unit number).
2503  */
2504 int
2505 device_set_unit(device_t dev, int unit)
2506 {
2507 	devclass_t dc;
2508 	int err;
2509 
2510 	dc = device_get_devclass(dev);
2511 	if (unit < dc->maxunit && dc->devices[unit])
2512 		return (EBUSY);
2513 	err = devclass_delete_device(dc, dev);
2514 	if (err)
2515 		return (err);
2516 	dev->unit = unit;
2517 	err = devclass_add_device(dc, dev);
2518 	if (err)
2519 		return (err);
2520 
2521 	bus_data_generation_update();
2522 	return (0);
2523 }
2524 
2525 /*======================================*/
2526 /*
2527  * Some useful method implementations to make life easier for bus drivers.
2528  */
2529 
2530 /**
2531  * @brief Initialise a resource list.
2532  *
2533  * @param rl		the resource list to initialise
2534  */
2535 void
2536 resource_list_init(struct resource_list *rl)
2537 {
2538 	STAILQ_INIT(rl);
2539 }
2540 
2541 /**
2542  * @brief Reclaim memory used by a resource list.
2543  *
2544  * This function frees the memory for all resource entries on the list
2545  * (if any).
2546  *
2547  * @param rl		the resource list to free
2548  */
2549 void
2550 resource_list_free(struct resource_list *rl)
2551 {
2552 	struct resource_list_entry *rle;
2553 
2554 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2555 		if (rle->res)
2556 			panic("resource_list_free: resource entry is busy");
2557 		STAILQ_REMOVE_HEAD(rl, link);
2558 		free(rle, M_BUS);
2559 	}
2560 }
2561 
2562 /**
2563  * @brief Add a resource entry.
2564  *
2565  * This function adds a resource entry using the given @p type, @p
2566  * start, @p end and @p count values. A rid value is chosen by
2567  * searching sequentially for the first unused rid starting at zero.
2568  *
2569  * @param rl		the resource list to edit
2570  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2571  * @param start		the start address of the resource
2572  * @param end		the end address of the resource
2573  * @param count		XXX end-start+1
2574  */
2575 int
2576 resource_list_add_next(struct resource_list *rl, int type, u_long start,
2577     u_long end, u_long count)
2578 {
2579 	int rid;
2580 
2581 	rid = 0;
2582 	while (resource_list_find(rl, type, rid) != NULL)
2583 		rid++;
2584 	resource_list_add(rl, type, rid, start, end, count);
2585 	return (rid);
2586 }
2587 
2588 /**
2589  * @brief Add or modify a resource entry.
2590  *
2591  * If an existing entry exists with the same type and rid, it will be
2592  * modified using the given values of @p start, @p end and @p
2593  * count. If no entry exists, a new one will be created using the
2594  * given values.  The resource list entry that matches is then returned.
2595  *
2596  * @param rl		the resource list to edit
2597  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2598  * @param rid		the resource identifier
2599  * @param start		the start address of the resource
2600  * @param end		the end address of the resource
2601  * @param count		XXX end-start+1
2602  */
2603 struct resource_list_entry *
2604 resource_list_add(struct resource_list *rl, int type, int rid,
2605     u_long start, u_long end, u_long count)
2606 {
2607 	struct resource_list_entry *rle;
2608 
2609 	rle = resource_list_find(rl, type, rid);
2610 	if (!rle) {
2611 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2612 		    M_NOWAIT);
2613 		if (!rle)
2614 			panic("resource_list_add: can't record entry");
2615 		STAILQ_INSERT_TAIL(rl, rle, link);
2616 		rle->type = type;
2617 		rle->rid = rid;
2618 		rle->res = NULL;
2619 	}
2620 
2621 	if (rle->res)
2622 		panic("resource_list_add: resource entry is busy");
2623 
2624 	rle->start = start;
2625 	rle->end = end;
2626 	rle->count = count;
2627 	return (rle);
2628 }
2629 
2630 /**
2631  * @brief Find a resource entry by type and rid.
2632  *
2633  * @param rl		the resource list to search
2634  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2635  * @param rid		the resource identifier
2636  *
2637  * @returns the resource entry pointer or NULL if there is no such
2638  * entry.
2639  */
2640 struct resource_list_entry *
2641 resource_list_find(struct resource_list *rl, int type, int rid)
2642 {
2643 	struct resource_list_entry *rle;
2644 
2645 	STAILQ_FOREACH(rle, rl, link) {
2646 		if (rle->type == type && rle->rid == rid)
2647 			return (rle);
2648 	}
2649 	return (NULL);
2650 }
2651 
2652 /**
2653  * @brief Delete a resource entry.
2654  *
2655  * @param rl		the resource list to edit
2656  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2657  * @param rid		the resource identifier
2658  */
2659 void
2660 resource_list_delete(struct resource_list *rl, int type, int rid)
2661 {
2662 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2663 
2664 	if (rle) {
2665 		if (rle->res != NULL)
2666 			panic("resource_list_delete: resource has not been released");
2667 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2668 		free(rle, M_BUS);
2669 	}
2670 }
2671 
2672 /**
2673  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2674  *
2675  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2676  * and passing the allocation up to the parent of @p bus. This assumes
2677  * that the first entry of @c device_get_ivars(child) is a struct
2678  * resource_list. This also handles 'passthrough' allocations where a
2679  * child is a remote descendant of bus by passing the allocation up to
2680  * the parent of bus.
2681  *
2682  * Typically, a bus driver would store a list of child resources
2683  * somewhere in the child device's ivars (see device_get_ivars()) and
2684  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2685  * then call resource_list_alloc() to perform the allocation.
2686  *
2687  * @param rl		the resource list to allocate from
2688  * @param bus		the parent device of @p child
2689  * @param child		the device which is requesting an allocation
2690  * @param type		the type of resource to allocate
2691  * @param rid		a pointer to the resource identifier
2692  * @param start		hint at the start of the resource range - pass
2693  *			@c 0UL for any start address
2694  * @param end		hint at the end of the resource range - pass
2695  *			@c ~0UL for any end address
2696  * @param count		hint at the size of range required - pass @c 1
2697  *			for any size
2698  * @param flags		any extra flags to control the resource
2699  *			allocation - see @c RF_XXX flags in
2700  *			<sys/rman.h> for details
2701  *
2702  * @returns		the resource which was allocated or @c NULL if no
2703  *			resource could be allocated
2704  */
2705 struct resource *
2706 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2707     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2708 {
2709 	struct resource_list_entry *rle = NULL;
2710 	int passthrough = (device_get_parent(child) != bus);
2711 	int isdefault = (start == 0UL && end == ~0UL);
2712 
2713 	if (passthrough) {
2714 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2715 		    type, rid, start, end, count, flags));
2716 	}
2717 
2718 	rle = resource_list_find(rl, type, *rid);
2719 
2720 	if (!rle)
2721 		return (NULL);		/* no resource of that type/rid */
2722 
2723 	if (rle->res)
2724 		panic("resource_list_alloc: resource entry is busy");
2725 
2726 	if (isdefault) {
2727 		start = rle->start;
2728 		count = ulmax(count, rle->count);
2729 		end = ulmax(rle->end, start + count - 1);
2730 	}
2731 
2732 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2733 	    type, rid, start, end, count, flags);
2734 
2735 	/*
2736 	 * Record the new range.
2737 	 */
2738 	if (rle->res) {
2739 		rle->start = rman_get_start(rle->res);
2740 		rle->end = rman_get_end(rle->res);
2741 		rle->count = count;
2742 	}
2743 
2744 	return (rle->res);
2745 }
2746 
2747 /**
2748  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
2749  *
2750  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
2751  * used with resource_list_alloc().
2752  *
2753  * @param rl		the resource list which was allocated from
2754  * @param bus		the parent device of @p child
2755  * @param child		the device which is requesting a release
2756  * @param type		the type of resource to allocate
2757  * @param rid		the resource identifier
2758  * @param res		the resource to release
2759  *
2760  * @retval 0		success
2761  * @retval non-zero	a standard unix error code indicating what
2762  *			error condition prevented the operation
2763  */
2764 int
2765 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
2766     int type, int rid, struct resource *res)
2767 {
2768 	struct resource_list_entry *rle = NULL;
2769 	int passthrough = (device_get_parent(child) != bus);
2770 	int error;
2771 
2772 	if (passthrough) {
2773 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2774 		    type, rid, res));
2775 	}
2776 
2777 	rle = resource_list_find(rl, type, rid);
2778 
2779 	if (!rle)
2780 		panic("resource_list_release: can't find resource");
2781 	if (!rle->res)
2782 		panic("resource_list_release: resource entry is not busy");
2783 
2784 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2785 	    type, rid, res);
2786 	if (error)
2787 		return (error);
2788 
2789 	rle->res = NULL;
2790 	return (0);
2791 }
2792 
2793 /**
2794  * @brief Print a description of resources in a resource list
2795  *
2796  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
2797  * The name is printed if at least one resource of the given type is available.
2798  * The format is used to print resource start and end.
2799  *
2800  * @param rl		the resource list to print
2801  * @param name		the name of @p type, e.g. @c "memory"
2802  * @param type		type type of resource entry to print
2803  * @param format	printf(9) format string to print resource
2804  *			start and end values
2805  *
2806  * @returns		the number of characters printed
2807  */
2808 int
2809 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2810     const char *format)
2811 {
2812 	struct resource_list_entry *rle;
2813 	int printed, retval;
2814 
2815 	printed = 0;
2816 	retval = 0;
2817 	/* Yes, this is kinda cheating */
2818 	STAILQ_FOREACH(rle, rl, link) {
2819 		if (rle->type == type) {
2820 			if (printed == 0)
2821 				retval += printf(" %s ", name);
2822 			else
2823 				retval += printf(",");
2824 			printed++;
2825 			retval += printf(format, rle->start);
2826 			if (rle->count > 1) {
2827 				retval += printf("-");
2828 				retval += printf(format, rle->start +
2829 						 rle->count - 1);
2830 			}
2831 		}
2832 	}
2833 	return (retval);
2834 }
2835 
2836 /**
2837  * @brief Releases all the resources in a list.
2838  *
2839  * @param rl		The resource list to purge.
2840  *
2841  * @returns		nothing
2842  */
2843 void
2844 resource_list_purge(struct resource_list *rl)
2845 {
2846 	struct resource_list_entry *rle;
2847 
2848 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2849 		if (rle->res)
2850 			bus_release_resource(rman_get_device(rle->res),
2851 			    rle->type, rle->rid, rle->res);
2852 		STAILQ_REMOVE_HEAD(rl, link);
2853 		free(rle, M_BUS);
2854 	}
2855 }
2856 
2857 device_t
2858 bus_generic_add_child(device_t dev, int order, const char *name, int unit)
2859 {
2860 
2861 	return (device_add_child_ordered(dev, order, name, unit));
2862 }
2863 
2864 /**
2865  * @brief Helper function for implementing DEVICE_PROBE()
2866  *
2867  * This function can be used to help implement the DEVICE_PROBE() for
2868  * a bus (i.e. a device which has other devices attached to it). It
2869  * calls the DEVICE_IDENTIFY() method of each driver in the device's
2870  * devclass.
2871  */
2872 int
2873 bus_generic_probe(device_t dev)
2874 {
2875 	devclass_t dc = dev->devclass;
2876 	driverlink_t dl;
2877 
2878 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2879 		DEVICE_IDENTIFY(dl->driver, dev);
2880 	}
2881 
2882 	return (0);
2883 }
2884 
2885 /**
2886  * @brief Helper function for implementing DEVICE_ATTACH()
2887  *
2888  * This function can be used to help implement the DEVICE_ATTACH() for
2889  * a bus. It calls device_probe_and_attach() for each of the device's
2890  * children.
2891  */
2892 int
2893 bus_generic_attach(device_t dev)
2894 {
2895 	device_t child;
2896 
2897 	TAILQ_FOREACH(child, &dev->children, link) {
2898 		device_probe_and_attach(child);
2899 	}
2900 
2901 	return (0);
2902 }
2903 
2904 /**
2905  * @brief Helper function for implementing DEVICE_DETACH()
2906  *
2907  * This function can be used to help implement the DEVICE_DETACH() for
2908  * a bus. It calls device_detach() for each of the device's
2909  * children.
2910  */
2911 int
2912 bus_generic_detach(device_t dev)
2913 {
2914 	device_t child;
2915 	int error;
2916 
2917 	if (dev->state != DS_ATTACHED)
2918 		return (EBUSY);
2919 
2920 	TAILQ_FOREACH(child, &dev->children, link) {
2921 		if ((error = device_detach(child)) != 0)
2922 			return (error);
2923 	}
2924 
2925 	return (0);
2926 }
2927 
2928 /**
2929  * @brief Helper function for implementing DEVICE_SHUTDOWN()
2930  *
2931  * This function can be used to help implement the DEVICE_SHUTDOWN()
2932  * for a bus. It calls device_shutdown() for each of the device's
2933  * children.
2934  */
2935 int
2936 bus_generic_shutdown(device_t dev)
2937 {
2938 	device_t child;
2939 
2940 	TAILQ_FOREACH(child, &dev->children, link) {
2941 		device_shutdown(child);
2942 	}
2943 
2944 	return (0);
2945 }
2946 
2947 /**
2948  * @brief Helper function for implementing DEVICE_SUSPEND()
2949  *
2950  * This function can be used to help implement the DEVICE_SUSPEND()
2951  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
2952  * children. If any call to DEVICE_SUSPEND() fails, the suspend
2953  * operation is aborted and any devices which were suspended are
2954  * resumed immediately by calling their DEVICE_RESUME() methods.
2955  */
2956 int
2957 bus_generic_suspend(device_t dev)
2958 {
2959 	int		error;
2960 	device_t	child, child2;
2961 
2962 	TAILQ_FOREACH(child, &dev->children, link) {
2963 		error = DEVICE_SUSPEND(child);
2964 		if (error) {
2965 			for (child2 = TAILQ_FIRST(&dev->children);
2966 			     child2 && child2 != child;
2967 			     child2 = TAILQ_NEXT(child2, link))
2968 				DEVICE_RESUME(child2);
2969 			return (error);
2970 		}
2971 	}
2972 	return (0);
2973 }
2974 
2975 /**
2976  * @brief Helper function for implementing DEVICE_RESUME()
2977  *
2978  * This function can be used to help implement the DEVICE_RESUME() for
2979  * a bus. It calls DEVICE_RESUME() on each of the device's children.
2980  */
2981 int
2982 bus_generic_resume(device_t dev)
2983 {
2984 	device_t	child;
2985 
2986 	TAILQ_FOREACH(child, &dev->children, link) {
2987 		DEVICE_RESUME(child);
2988 		/* if resume fails, there's nothing we can usefully do... */
2989 	}
2990 	return (0);
2991 }
2992 
2993 /**
2994  * @brief Helper function for implementing BUS_PRINT_CHILD().
2995  *
2996  * This function prints the first part of the ascii representation of
2997  * @p child, including its name, unit and description (if any - see
2998  * device_set_desc()).
2999  *
3000  * @returns the number of characters printed
3001  */
3002 int
3003 bus_print_child_header(device_t dev, device_t child)
3004 {
3005 	int	retval = 0;
3006 
3007 	if (device_get_desc(child)) {
3008 		retval += device_printf(child, "<%s>", device_get_desc(child));
3009 	} else {
3010 		retval += printf("%s", device_get_nameunit(child));
3011 	}
3012 
3013 	return (retval);
3014 }
3015 
3016 /**
3017  * @brief Helper function for implementing BUS_PRINT_CHILD().
3018  *
3019  * This function prints the last part of the ascii representation of
3020  * @p child, which consists of the string @c " on " followed by the
3021  * name and unit of the @p dev.
3022  *
3023  * @returns the number of characters printed
3024  */
3025 int
3026 bus_print_child_footer(device_t dev, device_t child)
3027 {
3028 	return (printf(" on %s\n", device_get_nameunit(dev)));
3029 }
3030 
3031 /**
3032  * @brief Helper function for implementing BUS_PRINT_CHILD().
3033  *
3034  * This function simply calls bus_print_child_header() followed by
3035  * bus_print_child_footer().
3036  *
3037  * @returns the number of characters printed
3038  */
3039 int
3040 bus_generic_print_child(device_t dev, device_t child)
3041 {
3042 	int	retval = 0;
3043 
3044 	retval += bus_print_child_header(dev, child);
3045 	retval += bus_print_child_footer(dev, child);
3046 
3047 	return (retval);
3048 }
3049 
3050 /**
3051  * @brief Stub function for implementing BUS_READ_IVAR().
3052  *
3053  * @returns ENOENT
3054  */
3055 int
3056 bus_generic_read_ivar(device_t dev, device_t child, int index,
3057     uintptr_t * result)
3058 {
3059 	return (ENOENT);
3060 }
3061 
3062 /**
3063  * @brief Stub function for implementing BUS_WRITE_IVAR().
3064  *
3065  * @returns ENOENT
3066  */
3067 int
3068 bus_generic_write_ivar(device_t dev, device_t child, int index,
3069     uintptr_t value)
3070 {
3071 	return (ENOENT);
3072 }
3073 
3074 /**
3075  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3076  *
3077  * @returns NULL
3078  */
3079 struct resource_list *
3080 bus_generic_get_resource_list(device_t dev, device_t child)
3081 {
3082 	return (NULL);
3083 }
3084 
3085 /**
3086  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3087  *
3088  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3089  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3090  * and then calls device_probe_and_attach() for each unattached child.
3091  */
3092 void
3093 bus_generic_driver_added(device_t dev, driver_t *driver)
3094 {
3095 	device_t child;
3096 
3097 	DEVICE_IDENTIFY(driver, dev);
3098 	TAILQ_FOREACH(child, &dev->children, link) {
3099 		if (child->state == DS_NOTPRESENT ||
3100 		    (child->flags & DF_REBID))
3101 			device_probe_and_attach(child);
3102 	}
3103 }
3104 
3105 /**
3106  * @brief Helper function for implementing BUS_SETUP_INTR().
3107  *
3108  * This simple implementation of BUS_SETUP_INTR() simply calls the
3109  * BUS_SETUP_INTR() method of the parent of @p dev.
3110  */
3111 int
3112 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3113     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3114     void **cookiep)
3115 {
3116 	/* Propagate up the bus hierarchy until someone handles it. */
3117 	if (dev->parent)
3118 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3119 		    filter, intr, arg, cookiep));
3120 	return (EINVAL);
3121 }
3122 
3123 /**
3124  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3125  *
3126  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3127  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3128  */
3129 int
3130 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3131     void *cookie)
3132 {
3133 	/* Propagate up the bus hierarchy until someone handles it. */
3134 	if (dev->parent)
3135 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3136 	return (EINVAL);
3137 }
3138 
3139 /**
3140  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3141  *
3142  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3143  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3144  */
3145 struct resource *
3146 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3147     u_long start, u_long end, u_long count, u_int flags)
3148 {
3149 	/* Propagate up the bus hierarchy until someone handles it. */
3150 	if (dev->parent)
3151 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3152 		    start, end, count, flags));
3153 	return (NULL);
3154 }
3155 
3156 /**
3157  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3158  *
3159  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3160  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3161  */
3162 int
3163 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3164     struct resource *r)
3165 {
3166 	/* Propagate up the bus hierarchy until someone handles it. */
3167 	if (dev->parent)
3168 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3169 		    r));
3170 	return (EINVAL);
3171 }
3172 
3173 /**
3174  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3175  *
3176  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3177  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3178  */
3179 int
3180 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3181     struct resource *r)
3182 {
3183 	/* Propagate up the bus hierarchy until someone handles it. */
3184 	if (dev->parent)
3185 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3186 		    r));
3187 	return (EINVAL);
3188 }
3189 
3190 /**
3191  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3192  *
3193  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3194  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3195  */
3196 int
3197 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3198     int rid, struct resource *r)
3199 {
3200 	/* Propagate up the bus hierarchy until someone handles it. */
3201 	if (dev->parent)
3202 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3203 		    r));
3204 	return (EINVAL);
3205 }
3206 
3207 /**
3208  * @brief Helper function for implementing BUS_CONFIG_INTR().
3209  *
3210  * This simple implementation of BUS_CONFIG_INTR() simply calls the
3211  * BUS_CONFIG_INTR() method of the parent of @p dev.
3212  */
3213 int
3214 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3215     enum intr_polarity pol)
3216 {
3217 
3218 	/* Propagate up the bus hierarchy until someone handles it. */
3219 	if (dev->parent)
3220 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3221 	return (EINVAL);
3222 }
3223 
3224 /**
3225  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3226  *
3227  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3228  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3229  */
3230 bus_dma_tag_t
3231 bus_generic_get_dma_tag(device_t dev, device_t child)
3232 {
3233 
3234 	/* Propagate up the bus hierarchy until someone handles it. */
3235 	if (dev->parent != NULL)
3236 		return (BUS_GET_DMA_TAG(dev->parent, child));
3237 	return (NULL);
3238 }
3239 
3240 /**
3241  * @brief Helper function for implementing BUS_GET_RESOURCE().
3242  *
3243  * This implementation of BUS_GET_RESOURCE() uses the
3244  * resource_list_find() function to do most of the work. It calls
3245  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3246  * search.
3247  */
3248 int
3249 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3250     u_long *startp, u_long *countp)
3251 {
3252 	struct resource_list *		rl = NULL;
3253 	struct resource_list_entry *	rle = NULL;
3254 
3255 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3256 	if (!rl)
3257 		return (EINVAL);
3258 
3259 	rle = resource_list_find(rl, type, rid);
3260 	if (!rle)
3261 		return (ENOENT);
3262 
3263 	if (startp)
3264 		*startp = rle->start;
3265 	if (countp)
3266 		*countp = rle->count;
3267 
3268 	return (0);
3269 }
3270 
3271 /**
3272  * @brief Helper function for implementing BUS_SET_RESOURCE().
3273  *
3274  * This implementation of BUS_SET_RESOURCE() uses the
3275  * resource_list_add() function to do most of the work. It calls
3276  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3277  * edit.
3278  */
3279 int
3280 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3281     u_long start, u_long count)
3282 {
3283 	struct resource_list *		rl = NULL;
3284 
3285 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3286 	if (!rl)
3287 		return (EINVAL);
3288 
3289 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3290 
3291 	return (0);
3292 }
3293 
3294 /**
3295  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3296  *
3297  * This implementation of BUS_DELETE_RESOURCE() uses the
3298  * resource_list_delete() function to do most of the work. It calls
3299  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3300  * edit.
3301  */
3302 void
3303 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3304 {
3305 	struct resource_list *		rl = NULL;
3306 
3307 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3308 	if (!rl)
3309 		return;
3310 
3311 	resource_list_delete(rl, type, rid);
3312 
3313 	return;
3314 }
3315 
3316 /**
3317  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3318  *
3319  * This implementation of BUS_RELEASE_RESOURCE() uses the
3320  * resource_list_release() function to do most of the work. It calls
3321  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3322  */
3323 int
3324 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3325     int rid, struct resource *r)
3326 {
3327 	struct resource_list *		rl = NULL;
3328 
3329 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3330 	if (!rl)
3331 		return (EINVAL);
3332 
3333 	return (resource_list_release(rl, dev, child, type, rid, r));
3334 }
3335 
3336 /**
3337  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3338  *
3339  * This implementation of BUS_ALLOC_RESOURCE() uses the
3340  * resource_list_alloc() function to do most of the work. It calls
3341  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3342  */
3343 struct resource *
3344 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3345     int *rid, u_long start, u_long end, u_long count, u_int flags)
3346 {
3347 	struct resource_list *		rl = NULL;
3348 
3349 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3350 	if (!rl)
3351 		return (NULL);
3352 
3353 	return (resource_list_alloc(rl, dev, child, type, rid,
3354 	    start, end, count, flags));
3355 }
3356 
3357 /**
3358  * @brief Helper function for implementing BUS_CHILD_PRESENT().
3359  *
3360  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3361  * BUS_CHILD_PRESENT() method of the parent of @p dev.
3362  */
3363 int
3364 bus_generic_child_present(device_t dev, device_t child)
3365 {
3366 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3367 }
3368 
3369 /*
3370  * Some convenience functions to make it easier for drivers to use the
3371  * resource-management functions.  All these really do is hide the
3372  * indirection through the parent's method table, making for slightly
3373  * less-wordy code.  In the future, it might make sense for this code
3374  * to maintain some sort of a list of resources allocated by each device.
3375  */
3376 
3377 int
3378 bus_alloc_resources(device_t dev, struct resource_spec *rs,
3379     struct resource **res)
3380 {
3381 	int i;
3382 
3383 	for (i = 0; rs[i].type != -1; i++)
3384 		res[i] = NULL;
3385 	for (i = 0; rs[i].type != -1; i++) {
3386 		res[i] = bus_alloc_resource_any(dev,
3387 		    rs[i].type, &rs[i].rid, rs[i].flags);
3388 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3389 			bus_release_resources(dev, rs, res);
3390 			return (ENXIO);
3391 		}
3392 	}
3393 	return (0);
3394 }
3395 
3396 void
3397 bus_release_resources(device_t dev, const struct resource_spec *rs,
3398     struct resource **res)
3399 {
3400 	int i;
3401 
3402 	for (i = 0; rs[i].type != -1; i++)
3403 		if (res[i] != NULL) {
3404 			bus_release_resource(
3405 			    dev, rs[i].type, rs[i].rid, res[i]);
3406 			res[i] = NULL;
3407 		}
3408 }
3409 
3410 /**
3411  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3412  *
3413  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3414  * parent of @p dev.
3415  */
3416 struct resource *
3417 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3418     u_long count, u_int flags)
3419 {
3420 	if (dev->parent == NULL)
3421 		return (NULL);
3422 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3423 	    count, flags));
3424 }
3425 
3426 /**
3427  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3428  *
3429  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3430  * parent of @p dev.
3431  */
3432 int
3433 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3434 {
3435 	if (dev->parent == NULL)
3436 		return (EINVAL);
3437 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3438 }
3439 
3440 /**
3441  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3442  *
3443  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3444  * parent of @p dev.
3445  */
3446 int
3447 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3448 {
3449 	if (dev->parent == NULL)
3450 		return (EINVAL);
3451 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3452 }
3453 
3454 /**
3455  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3456  *
3457  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3458  * parent of @p dev.
3459  */
3460 int
3461 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3462 {
3463 	if (dev->parent == NULL)
3464 		return (EINVAL);
3465 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3466 }
3467 
3468 /**
3469  * @brief Wrapper function for BUS_SETUP_INTR().
3470  *
3471  * This function simply calls the BUS_SETUP_INTR() method of the
3472  * parent of @p dev.
3473  */
3474 int
3475 bus_setup_intr(device_t dev, struct resource *r, int flags,
3476     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
3477 {
3478 	int error;
3479 
3480 	if (dev->parent != NULL) {
3481 		error = BUS_SETUP_INTR(dev->parent, dev, r, flags,
3482 		    filter, handler, arg, cookiep);
3483 		if (error == 0) {
3484 			if (handler != NULL && !(flags & INTR_MPSAFE))
3485 				device_printf(dev, "[GIANT-LOCKED]\n");
3486 			if (bootverbose && (flags & INTR_MPSAFE))
3487 				device_printf(dev, "[MPSAFE]\n");
3488 			if (filter != NULL) {
3489 				if (handler == NULL)
3490 					device_printf(dev, "[FILTER]\n");
3491 				else
3492 					device_printf(dev, "[FILTER+ITHREAD]\n");
3493 			} else
3494 				device_printf(dev, "[ITHREAD]\n");
3495 		}
3496 	} else
3497 		error = EINVAL;
3498 	return (error);
3499 }
3500 
3501 /**
3502  * @brief Wrapper function for BUS_TEARDOWN_INTR().
3503  *
3504  * This function simply calls the BUS_TEARDOWN_INTR() method of the
3505  * parent of @p dev.
3506  */
3507 int
3508 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3509 {
3510 	if (dev->parent == NULL)
3511 		return (EINVAL);
3512 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3513 }
3514 
3515 /**
3516  * @brief Wrapper function for BUS_SET_RESOURCE().
3517  *
3518  * This function simply calls the BUS_SET_RESOURCE() method of the
3519  * parent of @p dev.
3520  */
3521 int
3522 bus_set_resource(device_t dev, int type, int rid,
3523     u_long start, u_long count)
3524 {
3525 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3526 	    start, count));
3527 }
3528 
3529 /**
3530  * @brief Wrapper function for BUS_GET_RESOURCE().
3531  *
3532  * This function simply calls the BUS_GET_RESOURCE() method of the
3533  * parent of @p dev.
3534  */
3535 int
3536 bus_get_resource(device_t dev, int type, int rid,
3537     u_long *startp, u_long *countp)
3538 {
3539 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3540 	    startp, countp));
3541 }
3542 
3543 /**
3544  * @brief Wrapper function for BUS_GET_RESOURCE().
3545  *
3546  * This function simply calls the BUS_GET_RESOURCE() method of the
3547  * parent of @p dev and returns the start value.
3548  */
3549 u_long
3550 bus_get_resource_start(device_t dev, int type, int rid)
3551 {
3552 	u_long start, count;
3553 	int error;
3554 
3555 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3556 	    &start, &count);
3557 	if (error)
3558 		return (0);
3559 	return (start);
3560 }
3561 
3562 /**
3563  * @brief Wrapper function for BUS_GET_RESOURCE().
3564  *
3565  * This function simply calls the BUS_GET_RESOURCE() method of the
3566  * parent of @p dev and returns the count value.
3567  */
3568 u_long
3569 bus_get_resource_count(device_t dev, int type, int rid)
3570 {
3571 	u_long start, count;
3572 	int error;
3573 
3574 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3575 	    &start, &count);
3576 	if (error)
3577 		return (0);
3578 	return (count);
3579 }
3580 
3581 /**
3582  * @brief Wrapper function for BUS_DELETE_RESOURCE().
3583  *
3584  * This function simply calls the BUS_DELETE_RESOURCE() method of the
3585  * parent of @p dev.
3586  */
3587 void
3588 bus_delete_resource(device_t dev, int type, int rid)
3589 {
3590 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3591 }
3592 
3593 /**
3594  * @brief Wrapper function for BUS_CHILD_PRESENT().
3595  *
3596  * This function simply calls the BUS_CHILD_PRESENT() method of the
3597  * parent of @p dev.
3598  */
3599 int
3600 bus_child_present(device_t child)
3601 {
3602 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3603 }
3604 
3605 /**
3606  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
3607  *
3608  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
3609  * parent of @p dev.
3610  */
3611 int
3612 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3613 {
3614 	device_t parent;
3615 
3616 	parent = device_get_parent(child);
3617 	if (parent == NULL) {
3618 		*buf = '\0';
3619 		return (0);
3620 	}
3621 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3622 }
3623 
3624 /**
3625  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
3626  *
3627  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
3628  * parent of @p dev.
3629  */
3630 int
3631 bus_child_location_str(device_t child, char *buf, size_t buflen)
3632 {
3633 	device_t parent;
3634 
3635 	parent = device_get_parent(child);
3636 	if (parent == NULL) {
3637 		*buf = '\0';
3638 		return (0);
3639 	}
3640 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3641 }
3642 
3643 /**
3644  * @brief Wrapper function for BUS_GET_DMA_TAG().
3645  *
3646  * This function simply calls the BUS_GET_DMA_TAG() method of the
3647  * parent of @p dev.
3648  */
3649 bus_dma_tag_t
3650 bus_get_dma_tag(device_t dev)
3651 {
3652 	device_t parent;
3653 
3654 	parent = device_get_parent(dev);
3655 	if (parent == NULL)
3656 		return (NULL);
3657 	return (BUS_GET_DMA_TAG(parent, dev));
3658 }
3659 
3660 /* Resume all devices and then notify userland that we're up again. */
3661 static int
3662 root_resume(device_t dev)
3663 {
3664 	int error;
3665 
3666 	error = bus_generic_resume(dev);
3667 	if (error == 0)
3668 		devctl_notify("kern", "power", "resume", NULL);
3669 	return (error);
3670 }
3671 
3672 static int
3673 root_print_child(device_t dev, device_t child)
3674 {
3675 	int	retval = 0;
3676 
3677 	retval += bus_print_child_header(dev, child);
3678 	retval += printf("\n");
3679 
3680 	return (retval);
3681 }
3682 
3683 static int
3684 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3685     void **cookiep)
3686 {
3687 	/*
3688 	 * If an interrupt mapping gets to here something bad has happened.
3689 	 */
3690 	panic("root_setup_intr");
3691 }
3692 
3693 /*
3694  * If we get here, assume that the device is permanant and really is
3695  * present in the system.  Removable bus drivers are expected to intercept
3696  * this call long before it gets here.  We return -1 so that drivers that
3697  * really care can check vs -1 or some ERRNO returned higher in the food
3698  * chain.
3699  */
3700 static int
3701 root_child_present(device_t dev, device_t child)
3702 {
3703 	return (-1);
3704 }
3705 
3706 static kobj_method_t root_methods[] = {
3707 	/* Device interface */
3708 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3709 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3710 	KOBJMETHOD(device_resume,	root_resume),
3711 
3712 	/* Bus interface */
3713 	KOBJMETHOD(bus_print_child,	root_print_child),
3714 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3715 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3716 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3717 	KOBJMETHOD(bus_child_present,	root_child_present),
3718 
3719 	{ 0, 0 }
3720 };
3721 
3722 static driver_t root_driver = {
3723 	"root",
3724 	root_methods,
3725 	1,			/* no softc */
3726 };
3727 
3728 device_t	root_bus;
3729 devclass_t	root_devclass;
3730 
3731 static int
3732 root_bus_module_handler(module_t mod, int what, void* arg)
3733 {
3734 	switch (what) {
3735 	case MOD_LOAD:
3736 		TAILQ_INIT(&bus_data_devices);
3737 		kobj_class_compile((kobj_class_t) &root_driver);
3738 		root_bus = make_device(NULL, "root", 0);
3739 		root_bus->desc = "System root bus";
3740 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3741 		root_bus->driver = &root_driver;
3742 		root_bus->state = DS_ATTACHED;
3743 		root_devclass = devclass_find_internal("root", NULL, FALSE);
3744 		devinit();
3745 		return (0);
3746 
3747 	case MOD_SHUTDOWN:
3748 		device_shutdown(root_bus);
3749 		return (0);
3750 	default:
3751 		return (EOPNOTSUPP);
3752 	}
3753 
3754 	return (0);
3755 }
3756 
3757 static moduledata_t root_bus_mod = {
3758 	"rootbus",
3759 	root_bus_module_handler,
3760 	0
3761 };
3762 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3763 
3764 /**
3765  * @brief Automatically configure devices
3766  *
3767  * This function begins the autoconfiguration process by calling
3768  * device_probe_and_attach() for each child of the @c root0 device.
3769  */
3770 void
3771 root_bus_configure(void)
3772 {
3773 	device_t dev;
3774 
3775 	PDEBUG(("."));
3776 
3777 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3778 		device_probe_and_attach(dev);
3779 	}
3780 }
3781 
3782 /**
3783  * @brief Module handler for registering device drivers
3784  *
3785  * This module handler is used to automatically register device
3786  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
3787  * devclass_add_driver() for the driver described by the
3788  * driver_module_data structure pointed to by @p arg
3789  */
3790 int
3791 driver_module_handler(module_t mod, int what, void *arg)
3792 {
3793 	int error;
3794 	struct driver_module_data *dmd;
3795 	devclass_t bus_devclass;
3796 	kobj_class_t driver;
3797 
3798 	dmd = (struct driver_module_data *)arg;
3799 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3800 	error = 0;
3801 
3802 	switch (what) {
3803 	case MOD_LOAD:
3804 		if (dmd->dmd_chainevh)
3805 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3806 
3807 		driver = dmd->dmd_driver;
3808 		PDEBUG(("Loading module: driver %s on bus %s",
3809 		    DRIVERNAME(driver), dmd->dmd_busname));
3810 		error = devclass_add_driver(bus_devclass, driver);
3811 		if (error)
3812 			break;
3813 
3814 		/*
3815 		 * If the driver has any base classes, make the
3816 		 * devclass inherit from the devclass of the driver's
3817 		 * first base class. This will allow the system to
3818 		 * search for drivers in both devclasses for children
3819 		 * of a device using this driver.
3820 		 */
3821 		if (driver->baseclasses) {
3822 			const char *parentname;
3823 			parentname = driver->baseclasses[0]->name;
3824 			*dmd->dmd_devclass =
3825 				devclass_find_internal(driver->name,
3826 				    parentname, TRUE);
3827 		} else {
3828 			*dmd->dmd_devclass =
3829 				devclass_find_internal(driver->name, NULL, TRUE);
3830 		}
3831 		break;
3832 
3833 	case MOD_UNLOAD:
3834 		PDEBUG(("Unloading module: driver %s from bus %s",
3835 		    DRIVERNAME(dmd->dmd_driver),
3836 		    dmd->dmd_busname));
3837 		error = devclass_delete_driver(bus_devclass,
3838 		    dmd->dmd_driver);
3839 
3840 		if (!error && dmd->dmd_chainevh)
3841 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3842 		break;
3843 	case MOD_QUIESCE:
3844 		PDEBUG(("Quiesce module: driver %s from bus %s",
3845 		    DRIVERNAME(dmd->dmd_driver),
3846 		    dmd->dmd_busname));
3847 		error = devclass_quiesce_driver(bus_devclass,
3848 		    dmd->dmd_driver);
3849 
3850 		if (!error && dmd->dmd_chainevh)
3851 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3852 		break;
3853 	default:
3854 		error = EOPNOTSUPP;
3855 		break;
3856 	}
3857 
3858 	return (error);
3859 }
3860 
3861 /**
3862  * @brief Enumerate all hinted devices for this bus.
3863  *
3864  * Walks through the hints for this bus and calls the bus_hinted_child
3865  * routine for each one it fines.  It searches first for the specific
3866  * bus that's being probed for hinted children (eg isa0), and then for
3867  * generic children (eg isa).
3868  *
3869  * @param	dev	bus device to enumerate
3870  */
3871 void
3872 bus_enumerate_hinted_children(device_t bus)
3873 {
3874 	int i;
3875 	const char *dname, *busname;
3876 	int dunit;
3877 
3878 	/*
3879 	 * enumerate all devices on the specific bus
3880 	 */
3881 	busname = device_get_nameunit(bus);
3882 	i = 0;
3883 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
3884 		BUS_HINTED_CHILD(bus, dname, dunit);
3885 
3886 	/*
3887 	 * and all the generic ones.
3888 	 */
3889 	busname = device_get_name(bus);
3890 	i = 0;
3891 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
3892 		BUS_HINTED_CHILD(bus, dname, dunit);
3893 }
3894 
3895 #ifdef BUS_DEBUG
3896 
3897 /* the _short versions avoid iteration by not calling anything that prints
3898  * more than oneliners. I love oneliners.
3899  */
3900 
3901 static void
3902 print_device_short(device_t dev, int indent)
3903 {
3904 	if (!dev)
3905 		return;
3906 
3907 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3908 	    dev->unit, dev->desc,
3909 	    (dev->parent? "":"no "),
3910 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
3911 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3912 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3913 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
3914 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3915 	    (dev->flags&DF_REBID? "rebiddable,":""),
3916 	    (dev->ivars? "":"no "),
3917 	    (dev->softc? "":"no "),
3918 	    dev->busy));
3919 }
3920 
3921 static void
3922 print_device(device_t dev, int indent)
3923 {
3924 	if (!dev)
3925 		return;
3926 
3927 	print_device_short(dev, indent);
3928 
3929 	indentprintf(("Parent:\n"));
3930 	print_device_short(dev->parent, indent+1);
3931 	indentprintf(("Driver:\n"));
3932 	print_driver_short(dev->driver, indent+1);
3933 	indentprintf(("Devclass:\n"));
3934 	print_devclass_short(dev->devclass, indent+1);
3935 }
3936 
3937 void
3938 print_device_tree_short(device_t dev, int indent)
3939 /* print the device and all its children (indented) */
3940 {
3941 	device_t child;
3942 
3943 	if (!dev)
3944 		return;
3945 
3946 	print_device_short(dev, indent);
3947 
3948 	TAILQ_FOREACH(child, &dev->children, link) {
3949 		print_device_tree_short(child, indent+1);
3950 	}
3951 }
3952 
3953 void
3954 print_device_tree(device_t dev, int indent)
3955 /* print the device and all its children (indented) */
3956 {
3957 	device_t child;
3958 
3959 	if (!dev)
3960 		return;
3961 
3962 	print_device(dev, indent);
3963 
3964 	TAILQ_FOREACH(child, &dev->children, link) {
3965 		print_device_tree(child, indent+1);
3966 	}
3967 }
3968 
3969 static void
3970 print_driver_short(driver_t *driver, int indent)
3971 {
3972 	if (!driver)
3973 		return;
3974 
3975 	indentprintf(("driver %s: softc size = %zd\n",
3976 	    driver->name, driver->size));
3977 }
3978 
3979 static void
3980 print_driver(driver_t *driver, int indent)
3981 {
3982 	if (!driver)
3983 		return;
3984 
3985 	print_driver_short(driver, indent);
3986 }
3987 
3988 
3989 static void
3990 print_driver_list(driver_list_t drivers, int indent)
3991 {
3992 	driverlink_t driver;
3993 
3994 	TAILQ_FOREACH(driver, &drivers, link) {
3995 		print_driver(driver->driver, indent);
3996 	}
3997 }
3998 
3999 static void
4000 print_devclass_short(devclass_t dc, int indent)
4001 {
4002 	if ( !dc )
4003 		return;
4004 
4005 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4006 }
4007 
4008 static void
4009 print_devclass(devclass_t dc, int indent)
4010 {
4011 	int i;
4012 
4013 	if ( !dc )
4014 		return;
4015 
4016 	print_devclass_short(dc, indent);
4017 	indentprintf(("Drivers:\n"));
4018 	print_driver_list(dc->drivers, indent+1);
4019 
4020 	indentprintf(("Devices:\n"));
4021 	for (i = 0; i < dc->maxunit; i++)
4022 		if (dc->devices[i])
4023 			print_device(dc->devices[i], indent+1);
4024 }
4025 
4026 void
4027 print_devclass_list_short(void)
4028 {
4029 	devclass_t dc;
4030 
4031 	printf("Short listing of devclasses, drivers & devices:\n");
4032 	TAILQ_FOREACH(dc, &devclasses, link) {
4033 		print_devclass_short(dc, 0);
4034 	}
4035 }
4036 
4037 void
4038 print_devclass_list(void)
4039 {
4040 	devclass_t dc;
4041 
4042 	printf("Full listing of devclasses, drivers & devices:\n");
4043 	TAILQ_FOREACH(dc, &devclasses, link) {
4044 		print_devclass(dc, 0);
4045 	}
4046 }
4047 
4048 #endif
4049 
4050 /*
4051  * User-space access to the device tree.
4052  *
4053  * We implement a small set of nodes:
4054  *
4055  * hw.bus			Single integer read method to obtain the
4056  *				current generation count.
4057  * hw.bus.devices		Reads the entire device tree in flat space.
4058  * hw.bus.rman			Resource manager interface
4059  *
4060  * We might like to add the ability to scan devclasses and/or drivers to
4061  * determine what else is currently loaded/available.
4062  */
4063 
4064 static int
4065 sysctl_bus(SYSCTL_HANDLER_ARGS)
4066 {
4067 	struct u_businfo	ubus;
4068 
4069 	ubus.ub_version = BUS_USER_VERSION;
4070 	ubus.ub_generation = bus_data_generation;
4071 
4072 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4073 }
4074 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4075     "bus-related data");
4076 
4077 static int
4078 sysctl_devices(SYSCTL_HANDLER_ARGS)
4079 {
4080 	int			*name = (int *)arg1;
4081 	u_int			namelen = arg2;
4082 	int			index;
4083 	struct device		*dev;
4084 	struct u_device		udev;	/* XXX this is a bit big */
4085 	int			error;
4086 
4087 	if (namelen != 2)
4088 		return (EINVAL);
4089 
4090 	if (bus_data_generation_check(name[0]))
4091 		return (EINVAL);
4092 
4093 	index = name[1];
4094 
4095 	/*
4096 	 * Scan the list of devices, looking for the requested index.
4097 	 */
4098 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4099 		if (index-- == 0)
4100 			break;
4101 	}
4102 	if (dev == NULL)
4103 		return (ENOENT);
4104 
4105 	/*
4106 	 * Populate the return array.
4107 	 */
4108 	bzero(&udev, sizeof(udev));
4109 	udev.dv_handle = (uintptr_t)dev;
4110 	udev.dv_parent = (uintptr_t)dev->parent;
4111 	if (dev->nameunit != NULL)
4112 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4113 	if (dev->desc != NULL)
4114 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4115 	if (dev->driver != NULL && dev->driver->name != NULL)
4116 		strlcpy(udev.dv_drivername, dev->driver->name,
4117 		    sizeof(udev.dv_drivername));
4118 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4119 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4120 	udev.dv_devflags = dev->devflags;
4121 	udev.dv_flags = dev->flags;
4122 	udev.dv_state = dev->state;
4123 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4124 	return (error);
4125 }
4126 
4127 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4128     "system device tree");
4129 
4130 int
4131 bus_data_generation_check(int generation)
4132 {
4133 	if (generation != bus_data_generation)
4134 		return (1);
4135 
4136 	/* XXX generate optimised lists here? */
4137 	return (0);
4138 }
4139 
4140 void
4141 bus_data_generation_update(void)
4142 {
4143 	bus_data_generation++;
4144 }
4145 
4146 int
4147 bus_free_resource(device_t dev, int type, struct resource *r)
4148 {
4149 	if (r == NULL)
4150 		return (0);
4151 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4152 }
4153