xref: /freebsd/sys/kern/subr_bus.c (revision 195ebc7e9e4b129de810833791a19dfb4349d6a9)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/conf.h>
34 #include <sys/filio.h>
35 #include <sys/lock.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/mutex.h>
41 #include <sys/poll.h>
42 #include <sys/proc.h>
43 #include <sys/condvar.h>
44 #include <sys/queue.h>
45 #include <machine/bus.h>
46 #include <sys/rman.h>
47 #include <sys/selinfo.h>
48 #include <sys/signalvar.h>
49 #include <sys/sysctl.h>
50 #include <sys/systm.h>
51 #include <sys/uio.h>
52 #include <sys/bus.h>
53 #include <sys/interrupt.h>
54 
55 #include <machine/stdarg.h>
56 
57 #include <vm/uma.h>
58 
59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
61 
62 /*
63  * Used to attach drivers to devclasses.
64  */
65 typedef struct driverlink *driverlink_t;
66 struct driverlink {
67 	kobj_class_t	driver;
68 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
69 };
70 
71 /*
72  * Forward declarations
73  */
74 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
75 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
76 typedef TAILQ_HEAD(device_list, device) device_list_t;
77 
78 struct devclass {
79 	TAILQ_ENTRY(devclass) link;
80 	devclass_t	parent;		/* parent in devclass hierarchy */
81 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
82 	char		*name;
83 	device_t	*devices;	/* array of devices indexed by unit */
84 	int		maxunit;	/* size of devices array */
85 	int		flags;
86 #define DC_HAS_CHILDREN		1
87 
88 	struct sysctl_ctx_list sysctl_ctx;
89 	struct sysctl_oid *sysctl_tree;
90 };
91 
92 /**
93  * @brief Implementation of device.
94  */
95 struct device {
96 	/*
97 	 * A device is a kernel object. The first field must be the
98 	 * current ops table for the object.
99 	 */
100 	KOBJ_FIELDS;
101 
102 	/*
103 	 * Device hierarchy.
104 	 */
105 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
106 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
107 	device_t	parent;		/**< parent of this device  */
108 	device_list_t	children;	/**< list of child devices */
109 
110 	/*
111 	 * Details of this device.
112 	 */
113 	driver_t	*driver;	/**< current driver */
114 	devclass_t	devclass;	/**< current device class */
115 	int		unit;		/**< current unit number */
116 	char*		nameunit;	/**< name+unit e.g. foodev0 */
117 	char*		desc;		/**< driver specific description */
118 	int		busy;		/**< count of calls to device_busy() */
119 	device_state_t	state;		/**< current device state  */
120 	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
121 	u_short		flags;		/**< internal device flags  */
122 #define	DF_ENABLED	1		/* device should be probed/attached */
123 #define	DF_FIXEDCLASS	2		/* devclass specified at create time */
124 #define	DF_WILDCARD	4		/* unit was originally wildcard */
125 #define	DF_DESCMALLOCED	8		/* description was malloced */
126 #define	DF_QUIET	16		/* don't print verbose attach message */
127 #define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
128 #define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
129 #define	DF_REBID	128		/* Can rebid after attach */
130 	u_char	order;			/**< order from device_add_child_ordered() */
131 	u_char	pad;
132 	void	*ivars;			/**< instance variables  */
133 	void	*softc;			/**< current driver's variables  */
134 
135 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
136 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
137 };
138 
139 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
140 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
141 
142 #ifdef BUS_DEBUG
143 
144 static int bus_debug = 1;
145 TUNABLE_INT("bus.debug", &bus_debug);
146 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
147     "Debug bus code");
148 
149 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
150 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
151 #define DRIVERNAME(d)	((d)? d->name : "no driver")
152 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
153 
154 /**
155  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
156  * prevent syslog from deleting initial spaces
157  */
158 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
159 
160 static void print_device_short(device_t dev, int indent);
161 static void print_device(device_t dev, int indent);
162 void print_device_tree_short(device_t dev, int indent);
163 void print_device_tree(device_t dev, int indent);
164 static void print_driver_short(driver_t *driver, int indent);
165 static void print_driver(driver_t *driver, int indent);
166 static void print_driver_list(driver_list_t drivers, int indent);
167 static void print_devclass_short(devclass_t dc, int indent);
168 static void print_devclass(devclass_t dc, int indent);
169 void print_devclass_list_short(void);
170 void print_devclass_list(void);
171 
172 #else
173 /* Make the compiler ignore the function calls */
174 #define PDEBUG(a)			/* nop */
175 #define DEVICENAME(d)			/* nop */
176 #define DRIVERNAME(d)			/* nop */
177 #define DEVCLANAME(d)			/* nop */
178 
179 #define print_device_short(d,i)		/* nop */
180 #define print_device(d,i)		/* nop */
181 #define print_device_tree_short(d,i)	/* nop */
182 #define print_device_tree(d,i)		/* nop */
183 #define print_driver_short(d,i)		/* nop */
184 #define print_driver(d,i)		/* nop */
185 #define print_driver_list(d,i)		/* nop */
186 #define print_devclass_short(d,i)	/* nop */
187 #define print_devclass(d,i)		/* nop */
188 #define print_devclass_list_short()	/* nop */
189 #define print_devclass_list()		/* nop */
190 #endif
191 
192 /*
193  * dev sysctl tree
194  */
195 
196 enum {
197 	DEVCLASS_SYSCTL_PARENT,
198 };
199 
200 static int
201 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
202 {
203 	devclass_t dc = (devclass_t)arg1;
204 	const char *value;
205 
206 	switch (arg2) {
207 	case DEVCLASS_SYSCTL_PARENT:
208 		value = dc->parent ? dc->parent->name : "";
209 		break;
210 	default:
211 		return (EINVAL);
212 	}
213 	return (SYSCTL_OUT(req, value, strlen(value)));
214 }
215 
216 static void
217 devclass_sysctl_init(devclass_t dc)
218 {
219 
220 	if (dc->sysctl_tree != NULL)
221 		return;
222 	sysctl_ctx_init(&dc->sysctl_ctx);
223 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
224 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
225 	    CTLFLAG_RD, NULL, "");
226 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
227 	    OID_AUTO, "%parent", CTLFLAG_RD,
228 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
229 	    "parent class");
230 }
231 
232 enum {
233 	DEVICE_SYSCTL_DESC,
234 	DEVICE_SYSCTL_DRIVER,
235 	DEVICE_SYSCTL_LOCATION,
236 	DEVICE_SYSCTL_PNPINFO,
237 	DEVICE_SYSCTL_PARENT,
238 };
239 
240 static int
241 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
242 {
243 	device_t dev = (device_t)arg1;
244 	const char *value;
245 	char *buf;
246 	int error;
247 
248 	buf = NULL;
249 	switch (arg2) {
250 	case DEVICE_SYSCTL_DESC:
251 		value = dev->desc ? dev->desc : "";
252 		break;
253 	case DEVICE_SYSCTL_DRIVER:
254 		value = dev->driver ? dev->driver->name : "";
255 		break;
256 	case DEVICE_SYSCTL_LOCATION:
257 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
258 		bus_child_location_str(dev, buf, 1024);
259 		break;
260 	case DEVICE_SYSCTL_PNPINFO:
261 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
262 		bus_child_pnpinfo_str(dev, buf, 1024);
263 		break;
264 	case DEVICE_SYSCTL_PARENT:
265 		value = dev->parent ? dev->parent->nameunit : "";
266 		break;
267 	default:
268 		return (EINVAL);
269 	}
270 	error = SYSCTL_OUT(req, value, strlen(value));
271 	if (buf != NULL)
272 		free(buf, M_BUS);
273 	return (error);
274 }
275 
276 static void
277 device_sysctl_init(device_t dev)
278 {
279 	devclass_t dc = dev->devclass;
280 
281 	if (dev->sysctl_tree != NULL)
282 		return;
283 	devclass_sysctl_init(dc);
284 	sysctl_ctx_init(&dev->sysctl_ctx);
285 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
286 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
287 	    dev->nameunit + strlen(dc->name),
288 	    CTLFLAG_RD, NULL, "");
289 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
290 	    OID_AUTO, "%desc", CTLFLAG_RD,
291 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
292 	    "device description");
293 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
294 	    OID_AUTO, "%driver", CTLFLAG_RD,
295 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
296 	    "device driver name");
297 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
298 	    OID_AUTO, "%location", CTLFLAG_RD,
299 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
300 	    "device location relative to parent");
301 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
302 	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
303 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
304 	    "device identification");
305 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
306 	    OID_AUTO, "%parent", CTLFLAG_RD,
307 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
308 	    "parent device");
309 }
310 
311 static void
312 device_sysctl_update(device_t dev)
313 {
314 	devclass_t dc = dev->devclass;
315 
316 	if (dev->sysctl_tree == NULL)
317 		return;
318 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
319 }
320 
321 static void
322 device_sysctl_fini(device_t dev)
323 {
324 	if (dev->sysctl_tree == NULL)
325 		return;
326 	sysctl_ctx_free(&dev->sysctl_ctx);
327 	dev->sysctl_tree = NULL;
328 }
329 
330 /*
331  * /dev/devctl implementation
332  */
333 
334 /*
335  * This design allows only one reader for /dev/devctl.  This is not desirable
336  * in the long run, but will get a lot of hair out of this implementation.
337  * Maybe we should make this device a clonable device.
338  *
339  * Also note: we specifically do not attach a device to the device_t tree
340  * to avoid potential chicken and egg problems.  One could argue that all
341  * of this belongs to the root node.  One could also further argue that the
342  * sysctl interface that we have not might more properly be an ioctl
343  * interface, but at this stage of the game, I'm not inclined to rock that
344  * boat.
345  *
346  * I'm also not sure that the SIGIO support is done correctly or not, as
347  * I copied it from a driver that had SIGIO support that likely hasn't been
348  * tested since 3.4 or 2.2.8!
349  */
350 
351 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
352 static int devctl_disable = 0;
353 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
354 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
355     0, sysctl_devctl_disable, "I", "devctl disable");
356 
357 static d_open_t		devopen;
358 static d_close_t	devclose;
359 static d_read_t		devread;
360 static d_ioctl_t	devioctl;
361 static d_poll_t		devpoll;
362 
363 static struct cdevsw dev_cdevsw = {
364 	.d_version =	D_VERSION,
365 	.d_flags =	D_NEEDGIANT,
366 	.d_open =	devopen,
367 	.d_close =	devclose,
368 	.d_read =	devread,
369 	.d_ioctl =	devioctl,
370 	.d_poll =	devpoll,
371 	.d_name =	"devctl",
372 };
373 
374 struct dev_event_info
375 {
376 	char *dei_data;
377 	TAILQ_ENTRY(dev_event_info) dei_link;
378 };
379 
380 TAILQ_HEAD(devq, dev_event_info);
381 
382 static struct dev_softc
383 {
384 	int	inuse;
385 	int	nonblock;
386 	struct mtx mtx;
387 	struct cv cv;
388 	struct selinfo sel;
389 	struct devq devq;
390 	struct proc *async_proc;
391 } devsoftc;
392 
393 static struct cdev *devctl_dev;
394 
395 static void
396 devinit(void)
397 {
398 	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
399 	    "devctl");
400 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
401 	cv_init(&devsoftc.cv, "dev cv");
402 	TAILQ_INIT(&devsoftc.devq);
403 }
404 
405 static int
406 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
407 {
408 	if (devsoftc.inuse)
409 		return (EBUSY);
410 	/* move to init */
411 	devsoftc.inuse = 1;
412 	devsoftc.nonblock = 0;
413 	devsoftc.async_proc = NULL;
414 	return (0);
415 }
416 
417 static int
418 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
419 {
420 	devsoftc.inuse = 0;
421 	mtx_lock(&devsoftc.mtx);
422 	cv_broadcast(&devsoftc.cv);
423 	mtx_unlock(&devsoftc.mtx);
424 
425 	return (0);
426 }
427 
428 /*
429  * The read channel for this device is used to report changes to
430  * userland in realtime.  We are required to free the data as well as
431  * the n1 object because we allocate them separately.  Also note that
432  * we return one record at a time.  If you try to read this device a
433  * character at a time, you will lose the rest of the data.  Listening
434  * programs are expected to cope.
435  */
436 static int
437 devread(struct cdev *dev, struct uio *uio, int ioflag)
438 {
439 	struct dev_event_info *n1;
440 	int rv;
441 
442 	mtx_lock(&devsoftc.mtx);
443 	while (TAILQ_EMPTY(&devsoftc.devq)) {
444 		if (devsoftc.nonblock) {
445 			mtx_unlock(&devsoftc.mtx);
446 			return (EAGAIN);
447 		}
448 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
449 		if (rv) {
450 			/*
451 			 * Need to translate ERESTART to EINTR here? -- jake
452 			 */
453 			mtx_unlock(&devsoftc.mtx);
454 			return (rv);
455 		}
456 	}
457 	n1 = TAILQ_FIRST(&devsoftc.devq);
458 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
459 	mtx_unlock(&devsoftc.mtx);
460 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
461 	free(n1->dei_data, M_BUS);
462 	free(n1, M_BUS);
463 	return (rv);
464 }
465 
466 static	int
467 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
468 {
469 	switch (cmd) {
470 
471 	case FIONBIO:
472 		if (*(int*)data)
473 			devsoftc.nonblock = 1;
474 		else
475 			devsoftc.nonblock = 0;
476 		return (0);
477 	case FIOASYNC:
478 		if (*(int*)data)
479 			devsoftc.async_proc = td->td_proc;
480 		else
481 			devsoftc.async_proc = NULL;
482 		return (0);
483 
484 		/* (un)Support for other fcntl() calls. */
485 	case FIOCLEX:
486 	case FIONCLEX:
487 	case FIONREAD:
488 	case FIOSETOWN:
489 	case FIOGETOWN:
490 	default:
491 		break;
492 	}
493 	return (ENOTTY);
494 }
495 
496 static	int
497 devpoll(struct cdev *dev, int events, struct thread *td)
498 {
499 	int	revents = 0;
500 
501 	mtx_lock(&devsoftc.mtx);
502 	if (events & (POLLIN | POLLRDNORM)) {
503 		if (!TAILQ_EMPTY(&devsoftc.devq))
504 			revents = events & (POLLIN | POLLRDNORM);
505 		else
506 			selrecord(td, &devsoftc.sel);
507 	}
508 	mtx_unlock(&devsoftc.mtx);
509 
510 	return (revents);
511 }
512 
513 /**
514  * @brief Return whether the userland process is running
515  */
516 boolean_t
517 devctl_process_running(void)
518 {
519 	return (devsoftc.inuse == 1);
520 }
521 
522 /**
523  * @brief Queue data to be read from the devctl device
524  *
525  * Generic interface to queue data to the devctl device.  It is
526  * assumed that @p data is properly formatted.  It is further assumed
527  * that @p data is allocated using the M_BUS malloc type.
528  */
529 void
530 devctl_queue_data(char *data)
531 {
532 	struct dev_event_info *n1 = NULL;
533 	struct proc *p;
534 
535 	/*
536 	 * Do not allow empty strings to be queued, as they
537 	 * cause devd to exit prematurely.
538 	 */
539 	if (strlen(data) == 0)
540 		return;
541 	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
542 	if (n1 == NULL)
543 		return;
544 	n1->dei_data = data;
545 	mtx_lock(&devsoftc.mtx);
546 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
547 	cv_broadcast(&devsoftc.cv);
548 	mtx_unlock(&devsoftc.mtx);
549 	selwakeup(&devsoftc.sel);
550 	p = devsoftc.async_proc;
551 	if (p != NULL) {
552 		PROC_LOCK(p);
553 		psignal(p, SIGIO);
554 		PROC_UNLOCK(p);
555 	}
556 }
557 
558 /**
559  * @brief Send a 'notification' to userland, using standard ways
560  */
561 void
562 devctl_notify(const char *system, const char *subsystem, const char *type,
563     const char *data)
564 {
565 	int len = 0;
566 	char *msg;
567 
568 	if (system == NULL)
569 		return;		/* BOGUS!  Must specify system. */
570 	if (subsystem == NULL)
571 		return;		/* BOGUS!  Must specify subsystem. */
572 	if (type == NULL)
573 		return;		/* BOGUS!  Must specify type. */
574 	len += strlen(" system=") + strlen(system);
575 	len += strlen(" subsystem=") + strlen(subsystem);
576 	len += strlen(" type=") + strlen(type);
577 	/* add in the data message plus newline. */
578 	if (data != NULL)
579 		len += strlen(data);
580 	len += 3;	/* '!', '\n', and NUL */
581 	msg = malloc(len, M_BUS, M_NOWAIT);
582 	if (msg == NULL)
583 		return;		/* Drop it on the floor */
584 	if (data != NULL)
585 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
586 		    system, subsystem, type, data);
587 	else
588 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
589 		    system, subsystem, type);
590 	devctl_queue_data(msg);
591 }
592 
593 /*
594  * Common routine that tries to make sending messages as easy as possible.
595  * We allocate memory for the data, copy strings into that, but do not
596  * free it unless there's an error.  The dequeue part of the driver should
597  * free the data.  We don't send data when the device is disabled.  We do
598  * send data, even when we have no listeners, because we wish to avoid
599  * races relating to startup and restart of listening applications.
600  *
601  * devaddq is designed to string together the type of event, with the
602  * object of that event, plus the plug and play info and location info
603  * for that event.  This is likely most useful for devices, but less
604  * useful for other consumers of this interface.  Those should use
605  * the devctl_queue_data() interface instead.
606  */
607 static void
608 devaddq(const char *type, const char *what, device_t dev)
609 {
610 	char *data = NULL;
611 	char *loc = NULL;
612 	char *pnp = NULL;
613 	const char *parstr;
614 
615 	if (devctl_disable)
616 		return;
617 	data = malloc(1024, M_BUS, M_NOWAIT);
618 	if (data == NULL)
619 		goto bad;
620 
621 	/* get the bus specific location of this device */
622 	loc = malloc(1024, M_BUS, M_NOWAIT);
623 	if (loc == NULL)
624 		goto bad;
625 	*loc = '\0';
626 	bus_child_location_str(dev, loc, 1024);
627 
628 	/* Get the bus specific pnp info of this device */
629 	pnp = malloc(1024, M_BUS, M_NOWAIT);
630 	if (pnp == NULL)
631 		goto bad;
632 	*pnp = '\0';
633 	bus_child_pnpinfo_str(dev, pnp, 1024);
634 
635 	/* Get the parent of this device, or / if high enough in the tree. */
636 	if (device_get_parent(dev) == NULL)
637 		parstr = ".";	/* Or '/' ? */
638 	else
639 		parstr = device_get_nameunit(device_get_parent(dev));
640 	/* String it all together. */
641 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
642 	  parstr);
643 	free(loc, M_BUS);
644 	free(pnp, M_BUS);
645 	devctl_queue_data(data);
646 	return;
647 bad:
648 	free(pnp, M_BUS);
649 	free(loc, M_BUS);
650 	free(data, M_BUS);
651 	return;
652 }
653 
654 /*
655  * A device was added to the tree.  We are called just after it successfully
656  * attaches (that is, probe and attach success for this device).  No call
657  * is made if a device is merely parented into the tree.  See devnomatch
658  * if probe fails.  If attach fails, no notification is sent (but maybe
659  * we should have a different message for this).
660  */
661 static void
662 devadded(device_t dev)
663 {
664 	char *pnp = NULL;
665 	char *tmp = NULL;
666 
667 	pnp = malloc(1024, M_BUS, M_NOWAIT);
668 	if (pnp == NULL)
669 		goto fail;
670 	tmp = malloc(1024, M_BUS, M_NOWAIT);
671 	if (tmp == NULL)
672 		goto fail;
673 	*pnp = '\0';
674 	bus_child_pnpinfo_str(dev, pnp, 1024);
675 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
676 	devaddq("+", tmp, dev);
677 fail:
678 	if (pnp != NULL)
679 		free(pnp, M_BUS);
680 	if (tmp != NULL)
681 		free(tmp, M_BUS);
682 	return;
683 }
684 
685 /*
686  * A device was removed from the tree.  We are called just before this
687  * happens.
688  */
689 static void
690 devremoved(device_t dev)
691 {
692 	char *pnp = NULL;
693 	char *tmp = NULL;
694 
695 	pnp = malloc(1024, M_BUS, M_NOWAIT);
696 	if (pnp == NULL)
697 		goto fail;
698 	tmp = malloc(1024, M_BUS, M_NOWAIT);
699 	if (tmp == NULL)
700 		goto fail;
701 	*pnp = '\0';
702 	bus_child_pnpinfo_str(dev, pnp, 1024);
703 	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
704 	devaddq("-", tmp, dev);
705 fail:
706 	if (pnp != NULL)
707 		free(pnp, M_BUS);
708 	if (tmp != NULL)
709 		free(tmp, M_BUS);
710 	return;
711 }
712 
713 /*
714  * Called when there's no match for this device.  This is only called
715  * the first time that no match happens, so we don't keep getting this
716  * message.  Should that prove to be undesirable, we can change it.
717  * This is called when all drivers that can attach to a given bus
718  * decline to accept this device.  Other errrors may not be detected.
719  */
720 static void
721 devnomatch(device_t dev)
722 {
723 	devaddq("?", "", dev);
724 }
725 
726 static int
727 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
728 {
729 	struct dev_event_info *n1;
730 	int dis, error;
731 
732 	dis = devctl_disable;
733 	error = sysctl_handle_int(oidp, &dis, 0, req);
734 	if (error || !req->newptr)
735 		return (error);
736 	mtx_lock(&devsoftc.mtx);
737 	devctl_disable = dis;
738 	if (dis) {
739 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
740 			n1 = TAILQ_FIRST(&devsoftc.devq);
741 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
742 			free(n1->dei_data, M_BUS);
743 			free(n1, M_BUS);
744 		}
745 	}
746 	mtx_unlock(&devsoftc.mtx);
747 	return (0);
748 }
749 
750 /* End of /dev/devctl code */
751 
752 static TAILQ_HEAD(,device)	bus_data_devices;
753 static int bus_data_generation = 1;
754 
755 static kobj_method_t null_methods[] = {
756 	KOBJMETHOD_END
757 };
758 
759 DEFINE_CLASS(null, null_methods, 0);
760 
761 /*
762  * Devclass implementation
763  */
764 
765 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
766 
767 
768 /**
769  * @internal
770  * @brief Find or create a device class
771  *
772  * If a device class with the name @p classname exists, return it,
773  * otherwise if @p create is non-zero create and return a new device
774  * class.
775  *
776  * If @p parentname is non-NULL, the parent of the devclass is set to
777  * the devclass of that name.
778  *
779  * @param classname	the devclass name to find or create
780  * @param parentname	the parent devclass name or @c NULL
781  * @param create	non-zero to create a devclass
782  */
783 static devclass_t
784 devclass_find_internal(const char *classname, const char *parentname,
785 		       int create)
786 {
787 	devclass_t dc;
788 
789 	PDEBUG(("looking for %s", classname));
790 	if (!classname)
791 		return (NULL);
792 
793 	TAILQ_FOREACH(dc, &devclasses, link) {
794 		if (!strcmp(dc->name, classname))
795 			break;
796 	}
797 
798 	if (create && !dc) {
799 		PDEBUG(("creating %s", classname));
800 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
801 		    M_BUS, M_NOWAIT|M_ZERO);
802 		if (!dc)
803 			return (NULL);
804 		dc->parent = NULL;
805 		dc->name = (char*) (dc + 1);
806 		strcpy(dc->name, classname);
807 		TAILQ_INIT(&dc->drivers);
808 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
809 
810 		bus_data_generation_update();
811 	}
812 
813 	/*
814 	 * If a parent class is specified, then set that as our parent so
815 	 * that this devclass will support drivers for the parent class as
816 	 * well.  If the parent class has the same name don't do this though
817 	 * as it creates a cycle that can trigger an infinite loop in
818 	 * device_probe_child() if a device exists for which there is no
819 	 * suitable driver.
820 	 */
821 	if (parentname && dc && !dc->parent &&
822 	    strcmp(classname, parentname) != 0) {
823 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
824 		dc->parent->flags |= DC_HAS_CHILDREN;
825 	}
826 
827 	return (dc);
828 }
829 
830 /**
831  * @brief Create a device class
832  *
833  * If a device class with the name @p classname exists, return it,
834  * otherwise create and return a new device class.
835  *
836  * @param classname	the devclass name to find or create
837  */
838 devclass_t
839 devclass_create(const char *classname)
840 {
841 	return (devclass_find_internal(classname, NULL, TRUE));
842 }
843 
844 /**
845  * @brief Find a device class
846  *
847  * If a device class with the name @p classname exists, return it,
848  * otherwise return @c NULL.
849  *
850  * @param classname	the devclass name to find
851  */
852 devclass_t
853 devclass_find(const char *classname)
854 {
855 	return (devclass_find_internal(classname, NULL, FALSE));
856 }
857 
858 /**
859  * @brief Register that a device driver has been added to a devclass
860  *
861  * Register that a device driver has been added to a devclass.  This
862  * is called by devclass_add_driver to accomplish the recursive
863  * notification of all the children classes of dc, as well as dc.
864  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
865  * the devclass.  We do a full search here of the devclass list at
866  * each iteration level to save storing children-lists in the devclass
867  * structure.  If we ever move beyond a few dozen devices doing this,
868  * we may need to reevaluate...
869  *
870  * @param dc		the devclass to edit
871  * @param driver	the driver that was just added
872  */
873 static void
874 devclass_driver_added(devclass_t dc, driver_t *driver)
875 {
876 	devclass_t parent;
877 	int i;
878 
879 	/*
880 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
881 	 */
882 	for (i = 0; i < dc->maxunit; i++)
883 		if (dc->devices[i])
884 			BUS_DRIVER_ADDED(dc->devices[i], driver);
885 
886 	/*
887 	 * Walk through the children classes.  Since we only keep a
888 	 * single parent pointer around, we walk the entire list of
889 	 * devclasses looking for children.  We set the
890 	 * DC_HAS_CHILDREN flag when a child devclass is created on
891 	 * the parent, so we only walk the list for those devclasses
892 	 * that have children.
893 	 */
894 	if (!(dc->flags & DC_HAS_CHILDREN))
895 		return;
896 	parent = dc;
897 	TAILQ_FOREACH(dc, &devclasses, link) {
898 		if (dc->parent == parent)
899 			devclass_driver_added(dc, driver);
900 	}
901 }
902 
903 /**
904  * @brief Add a device driver to a device class
905  *
906  * Add a device driver to a devclass. This is normally called
907  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
908  * all devices in the devclass will be called to allow them to attempt
909  * to re-probe any unmatched children.
910  *
911  * @param dc		the devclass to edit
912  * @param driver	the driver to register
913  */
914 int
915 devclass_add_driver(devclass_t dc, driver_t *driver)
916 {
917 	driverlink_t dl;
918 
919 	PDEBUG(("%s", DRIVERNAME(driver)));
920 
921 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
922 	if (!dl)
923 		return (ENOMEM);
924 
925 	/*
926 	 * Compile the driver's methods. Also increase the reference count
927 	 * so that the class doesn't get freed when the last instance
928 	 * goes. This means we can safely use static methods and avoids a
929 	 * double-free in devclass_delete_driver.
930 	 */
931 	kobj_class_compile((kobj_class_t) driver);
932 
933 	/*
934 	 * Make sure the devclass which the driver is implementing exists.
935 	 */
936 	devclass_find_internal(driver->name, NULL, TRUE);
937 
938 	dl->driver = driver;
939 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
940 	driver->refs++;		/* XXX: kobj_mtx */
941 
942 	devclass_driver_added(dc, driver);
943 	bus_data_generation_update();
944 	return (0);
945 }
946 
947 /**
948  * @brief Delete a device driver from a device class
949  *
950  * Delete a device driver from a devclass. This is normally called
951  * automatically by DRIVER_MODULE().
952  *
953  * If the driver is currently attached to any devices,
954  * devclass_delete_driver() will first attempt to detach from each
955  * device. If one of the detach calls fails, the driver will not be
956  * deleted.
957  *
958  * @param dc		the devclass to edit
959  * @param driver	the driver to unregister
960  */
961 int
962 devclass_delete_driver(devclass_t busclass, driver_t *driver)
963 {
964 	devclass_t dc = devclass_find(driver->name);
965 	driverlink_t dl;
966 	device_t dev;
967 	int i;
968 	int error;
969 
970 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
971 
972 	if (!dc)
973 		return (0);
974 
975 	/*
976 	 * Find the link structure in the bus' list of drivers.
977 	 */
978 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
979 		if (dl->driver == driver)
980 			break;
981 	}
982 
983 	if (!dl) {
984 		PDEBUG(("%s not found in %s list", driver->name,
985 		    busclass->name));
986 		return (ENOENT);
987 	}
988 
989 	/*
990 	 * Disassociate from any devices.  We iterate through all the
991 	 * devices in the devclass of the driver and detach any which are
992 	 * using the driver and which have a parent in the devclass which
993 	 * we are deleting from.
994 	 *
995 	 * Note that since a driver can be in multiple devclasses, we
996 	 * should not detach devices which are not children of devices in
997 	 * the affected devclass.
998 	 */
999 	for (i = 0; i < dc->maxunit; i++) {
1000 		if (dc->devices[i]) {
1001 			dev = dc->devices[i];
1002 			if (dev->driver == driver && dev->parent &&
1003 			    dev->parent->devclass == busclass) {
1004 				if ((error = device_detach(dev)) != 0)
1005 					return (error);
1006 				device_set_driver(dev, NULL);
1007 			}
1008 		}
1009 	}
1010 
1011 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1012 	free(dl, M_BUS);
1013 
1014 	/* XXX: kobj_mtx */
1015 	driver->refs--;
1016 	if (driver->refs == 0)
1017 		kobj_class_free((kobj_class_t) driver);
1018 
1019 	bus_data_generation_update();
1020 	return (0);
1021 }
1022 
1023 /**
1024  * @brief Quiesces a set of device drivers from a device class
1025  *
1026  * Quiesce a device driver from a devclass. This is normally called
1027  * automatically by DRIVER_MODULE().
1028  *
1029  * If the driver is currently attached to any devices,
1030  * devclass_quiesece_driver() will first attempt to quiesce each
1031  * device.
1032  *
1033  * @param dc		the devclass to edit
1034  * @param driver	the driver to unregister
1035  */
1036 int
1037 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1038 {
1039 	devclass_t dc = devclass_find(driver->name);
1040 	driverlink_t dl;
1041 	device_t dev;
1042 	int i;
1043 	int error;
1044 
1045 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1046 
1047 	if (!dc)
1048 		return (0);
1049 
1050 	/*
1051 	 * Find the link structure in the bus' list of drivers.
1052 	 */
1053 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1054 		if (dl->driver == driver)
1055 			break;
1056 	}
1057 
1058 	if (!dl) {
1059 		PDEBUG(("%s not found in %s list", driver->name,
1060 		    busclass->name));
1061 		return (ENOENT);
1062 	}
1063 
1064 	/*
1065 	 * Quiesce all devices.  We iterate through all the devices in
1066 	 * the devclass of the driver and quiesce any which are using
1067 	 * the driver and which have a parent in the devclass which we
1068 	 * are quiescing.
1069 	 *
1070 	 * Note that since a driver can be in multiple devclasses, we
1071 	 * should not quiesce devices which are not children of
1072 	 * devices in the affected devclass.
1073 	 */
1074 	for (i = 0; i < dc->maxunit; i++) {
1075 		if (dc->devices[i]) {
1076 			dev = dc->devices[i];
1077 			if (dev->driver == driver && dev->parent &&
1078 			    dev->parent->devclass == busclass) {
1079 				if ((error = device_quiesce(dev)) != 0)
1080 					return (error);
1081 			}
1082 		}
1083 	}
1084 
1085 	return (0);
1086 }
1087 
1088 /**
1089  * @internal
1090  */
1091 static driverlink_t
1092 devclass_find_driver_internal(devclass_t dc, const char *classname)
1093 {
1094 	driverlink_t dl;
1095 
1096 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1097 
1098 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1099 		if (!strcmp(dl->driver->name, classname))
1100 			return (dl);
1101 	}
1102 
1103 	PDEBUG(("not found"));
1104 	return (NULL);
1105 }
1106 
1107 /**
1108  * @brief Search a devclass for a driver
1109  *
1110  * This function searches the devclass's list of drivers and returns
1111  * the first driver whose name is @p classname or @c NULL if there is
1112  * no driver of that name.
1113  *
1114  * @param dc		the devclass to search
1115  * @param classname	the driver name to search for
1116  */
1117 kobj_class_t
1118 devclass_find_driver(devclass_t dc, const char *classname)
1119 {
1120 	driverlink_t dl;
1121 
1122 	dl = devclass_find_driver_internal(dc, classname);
1123 	if (dl)
1124 		return (dl->driver);
1125 	return (NULL);
1126 }
1127 
1128 /**
1129  * @brief Return the name of the devclass
1130  */
1131 const char *
1132 devclass_get_name(devclass_t dc)
1133 {
1134 	return (dc->name);
1135 }
1136 
1137 /**
1138  * @brief Find a device given a unit number
1139  *
1140  * @param dc		the devclass to search
1141  * @param unit		the unit number to search for
1142  *
1143  * @returns		the device with the given unit number or @c
1144  *			NULL if there is no such device
1145  */
1146 device_t
1147 devclass_get_device(devclass_t dc, int unit)
1148 {
1149 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1150 		return (NULL);
1151 	return (dc->devices[unit]);
1152 }
1153 
1154 /**
1155  * @brief Find the softc field of a device given a unit number
1156  *
1157  * @param dc		the devclass to search
1158  * @param unit		the unit number to search for
1159  *
1160  * @returns		the softc field of the device with the given
1161  *			unit number or @c NULL if there is no such
1162  *			device
1163  */
1164 void *
1165 devclass_get_softc(devclass_t dc, int unit)
1166 {
1167 	device_t dev;
1168 
1169 	dev = devclass_get_device(dc, unit);
1170 	if (!dev)
1171 		return (NULL);
1172 
1173 	return (device_get_softc(dev));
1174 }
1175 
1176 /**
1177  * @brief Get a list of devices in the devclass
1178  *
1179  * An array containing a list of all the devices in the given devclass
1180  * is allocated and returned in @p *devlistp. The number of devices
1181  * in the array is returned in @p *devcountp. The caller should free
1182  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1183  *
1184  * @param dc		the devclass to examine
1185  * @param devlistp	points at location for array pointer return
1186  *			value
1187  * @param devcountp	points at location for array size return value
1188  *
1189  * @retval 0		success
1190  * @retval ENOMEM	the array allocation failed
1191  */
1192 int
1193 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1194 {
1195 	int count, i;
1196 	device_t *list;
1197 
1198 	count = devclass_get_count(dc);
1199 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1200 	if (!list)
1201 		return (ENOMEM);
1202 
1203 	count = 0;
1204 	for (i = 0; i < dc->maxunit; i++) {
1205 		if (dc->devices[i]) {
1206 			list[count] = dc->devices[i];
1207 			count++;
1208 		}
1209 	}
1210 
1211 	*devlistp = list;
1212 	*devcountp = count;
1213 
1214 	return (0);
1215 }
1216 
1217 /**
1218  * @brief Get a list of drivers in the devclass
1219  *
1220  * An array containing a list of pointers to all the drivers in the
1221  * given devclass is allocated and returned in @p *listp.  The number
1222  * of drivers in the array is returned in @p *countp. The caller should
1223  * free the array using @c free(p, M_TEMP).
1224  *
1225  * @param dc		the devclass to examine
1226  * @param listp		gives location for array pointer return value
1227  * @param countp	gives location for number of array elements
1228  *			return value
1229  *
1230  * @retval 0		success
1231  * @retval ENOMEM	the array allocation failed
1232  */
1233 int
1234 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1235 {
1236 	driverlink_t dl;
1237 	driver_t **list;
1238 	int count;
1239 
1240 	count = 0;
1241 	TAILQ_FOREACH(dl, &dc->drivers, link)
1242 		count++;
1243 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1244 	if (list == NULL)
1245 		return (ENOMEM);
1246 
1247 	count = 0;
1248 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1249 		list[count] = dl->driver;
1250 		count++;
1251 	}
1252 	*listp = list;
1253 	*countp = count;
1254 
1255 	return (0);
1256 }
1257 
1258 /**
1259  * @brief Get the number of devices in a devclass
1260  *
1261  * @param dc		the devclass to examine
1262  */
1263 int
1264 devclass_get_count(devclass_t dc)
1265 {
1266 	int count, i;
1267 
1268 	count = 0;
1269 	for (i = 0; i < dc->maxunit; i++)
1270 		if (dc->devices[i])
1271 			count++;
1272 	return (count);
1273 }
1274 
1275 /**
1276  * @brief Get the maximum unit number used in a devclass
1277  *
1278  * Note that this is one greater than the highest currently-allocated
1279  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1280  * that not even the devclass has been allocated yet.
1281  *
1282  * @param dc		the devclass to examine
1283  */
1284 int
1285 devclass_get_maxunit(devclass_t dc)
1286 {
1287 	if (dc == NULL)
1288 		return (-1);
1289 	return (dc->maxunit);
1290 }
1291 
1292 /**
1293  * @brief Find a free unit number in a devclass
1294  *
1295  * This function searches for the first unused unit number greater
1296  * that or equal to @p unit.
1297  *
1298  * @param dc		the devclass to examine
1299  * @param unit		the first unit number to check
1300  */
1301 int
1302 devclass_find_free_unit(devclass_t dc, int unit)
1303 {
1304 	if (dc == NULL)
1305 		return (unit);
1306 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1307 		unit++;
1308 	return (unit);
1309 }
1310 
1311 /**
1312  * @brief Set the parent of a devclass
1313  *
1314  * The parent class is normally initialised automatically by
1315  * DRIVER_MODULE().
1316  *
1317  * @param dc		the devclass to edit
1318  * @param pdc		the new parent devclass
1319  */
1320 void
1321 devclass_set_parent(devclass_t dc, devclass_t pdc)
1322 {
1323 	dc->parent = pdc;
1324 }
1325 
1326 /**
1327  * @brief Get the parent of a devclass
1328  *
1329  * @param dc		the devclass to examine
1330  */
1331 devclass_t
1332 devclass_get_parent(devclass_t dc)
1333 {
1334 	return (dc->parent);
1335 }
1336 
1337 struct sysctl_ctx_list *
1338 devclass_get_sysctl_ctx(devclass_t dc)
1339 {
1340 	return (&dc->sysctl_ctx);
1341 }
1342 
1343 struct sysctl_oid *
1344 devclass_get_sysctl_tree(devclass_t dc)
1345 {
1346 	return (dc->sysctl_tree);
1347 }
1348 
1349 /**
1350  * @internal
1351  * @brief Allocate a unit number
1352  *
1353  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1354  * will do). The allocated unit number is returned in @p *unitp.
1355 
1356  * @param dc		the devclass to allocate from
1357  * @param unitp		points at the location for the allocated unit
1358  *			number
1359  *
1360  * @retval 0		success
1361  * @retval EEXIST	the requested unit number is already allocated
1362  * @retval ENOMEM	memory allocation failure
1363  */
1364 static int
1365 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1366 {
1367 	const char *s;
1368 	int unit = *unitp;
1369 
1370 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1371 
1372 	/* Ask the parent bus if it wants to wire this device. */
1373 	if (unit == -1)
1374 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1375 		    &unit);
1376 
1377 	/* If we were given a wired unit number, check for existing device */
1378 	/* XXX imp XXX */
1379 	if (unit != -1) {
1380 		if (unit >= 0 && unit < dc->maxunit &&
1381 		    dc->devices[unit] != NULL) {
1382 			if (bootverbose)
1383 				printf("%s: %s%d already exists; skipping it\n",
1384 				    dc->name, dc->name, *unitp);
1385 			return (EEXIST);
1386 		}
1387 	} else {
1388 		/* Unwired device, find the next available slot for it */
1389 		unit = 0;
1390 		for (unit = 0;; unit++) {
1391 			/* If there is an "at" hint for a unit then skip it. */
1392 			if (resource_string_value(dc->name, unit, "at", &s) ==
1393 			    0)
1394 				continue;
1395 
1396 			/* If this device slot is already in use, skip it. */
1397 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1398 				continue;
1399 
1400 			break;
1401 		}
1402 	}
1403 
1404 	/*
1405 	 * We've selected a unit beyond the length of the table, so let's
1406 	 * extend the table to make room for all units up to and including
1407 	 * this one.
1408 	 */
1409 	if (unit >= dc->maxunit) {
1410 		device_t *newlist, *oldlist;
1411 		int newsize;
1412 
1413 		oldlist = dc->devices;
1414 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1415 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1416 		if (!newlist)
1417 			return (ENOMEM);
1418 		if (oldlist != NULL)
1419 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1420 		bzero(newlist + dc->maxunit,
1421 		    sizeof(device_t) * (newsize - dc->maxunit));
1422 		dc->devices = newlist;
1423 		dc->maxunit = newsize;
1424 		if (oldlist != NULL)
1425 			free(oldlist, M_BUS);
1426 	}
1427 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1428 
1429 	*unitp = unit;
1430 	return (0);
1431 }
1432 
1433 /**
1434  * @internal
1435  * @brief Add a device to a devclass
1436  *
1437  * A unit number is allocated for the device (using the device's
1438  * preferred unit number if any) and the device is registered in the
1439  * devclass. This allows the device to be looked up by its unit
1440  * number, e.g. by decoding a dev_t minor number.
1441  *
1442  * @param dc		the devclass to add to
1443  * @param dev		the device to add
1444  *
1445  * @retval 0		success
1446  * @retval EEXIST	the requested unit number is already allocated
1447  * @retval ENOMEM	memory allocation failure
1448  */
1449 static int
1450 devclass_add_device(devclass_t dc, device_t dev)
1451 {
1452 	int buflen, error;
1453 
1454 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1455 
1456 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
1457 	if (buflen < 0)
1458 		return (ENOMEM);
1459 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1460 	if (!dev->nameunit)
1461 		return (ENOMEM);
1462 
1463 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1464 		free(dev->nameunit, M_BUS);
1465 		dev->nameunit = NULL;
1466 		return (error);
1467 	}
1468 	dc->devices[dev->unit] = dev;
1469 	dev->devclass = dc;
1470 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1471 
1472 	return (0);
1473 }
1474 
1475 /**
1476  * @internal
1477  * @brief Delete a device from a devclass
1478  *
1479  * The device is removed from the devclass's device list and its unit
1480  * number is freed.
1481 
1482  * @param dc		the devclass to delete from
1483  * @param dev		the device to delete
1484  *
1485  * @retval 0		success
1486  */
1487 static int
1488 devclass_delete_device(devclass_t dc, device_t dev)
1489 {
1490 	if (!dc || !dev)
1491 		return (0);
1492 
1493 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1494 
1495 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1496 		panic("devclass_delete_device: inconsistent device class");
1497 	dc->devices[dev->unit] = NULL;
1498 	if (dev->flags & DF_WILDCARD)
1499 		dev->unit = -1;
1500 	dev->devclass = NULL;
1501 	free(dev->nameunit, M_BUS);
1502 	dev->nameunit = NULL;
1503 
1504 	return (0);
1505 }
1506 
1507 /**
1508  * @internal
1509  * @brief Make a new device and add it as a child of @p parent
1510  *
1511  * @param parent	the parent of the new device
1512  * @param name		the devclass name of the new device or @c NULL
1513  *			to leave the devclass unspecified
1514  * @parem unit		the unit number of the new device of @c -1 to
1515  *			leave the unit number unspecified
1516  *
1517  * @returns the new device
1518  */
1519 static device_t
1520 make_device(device_t parent, const char *name, int unit)
1521 {
1522 	device_t dev;
1523 	devclass_t dc;
1524 
1525 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1526 
1527 	if (name) {
1528 		dc = devclass_find_internal(name, NULL, TRUE);
1529 		if (!dc) {
1530 			printf("make_device: can't find device class %s\n",
1531 			    name);
1532 			return (NULL);
1533 		}
1534 	} else {
1535 		dc = NULL;
1536 	}
1537 
1538 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1539 	if (!dev)
1540 		return (NULL);
1541 
1542 	dev->parent = parent;
1543 	TAILQ_INIT(&dev->children);
1544 	kobj_init((kobj_t) dev, &null_class);
1545 	dev->driver = NULL;
1546 	dev->devclass = NULL;
1547 	dev->unit = unit;
1548 	dev->nameunit = NULL;
1549 	dev->desc = NULL;
1550 	dev->busy = 0;
1551 	dev->devflags = 0;
1552 	dev->flags = DF_ENABLED;
1553 	dev->order = 0;
1554 	if (unit == -1)
1555 		dev->flags |= DF_WILDCARD;
1556 	if (name) {
1557 		dev->flags |= DF_FIXEDCLASS;
1558 		if (devclass_add_device(dc, dev)) {
1559 			kobj_delete((kobj_t) dev, M_BUS);
1560 			return (NULL);
1561 		}
1562 	}
1563 	dev->ivars = NULL;
1564 	dev->softc = NULL;
1565 
1566 	dev->state = DS_NOTPRESENT;
1567 
1568 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1569 	bus_data_generation_update();
1570 
1571 	return (dev);
1572 }
1573 
1574 /**
1575  * @internal
1576  * @brief Print a description of a device.
1577  */
1578 static int
1579 device_print_child(device_t dev, device_t child)
1580 {
1581 	int retval = 0;
1582 
1583 	if (device_is_alive(child))
1584 		retval += BUS_PRINT_CHILD(dev, child);
1585 	else
1586 		retval += device_printf(child, " not found\n");
1587 
1588 	return (retval);
1589 }
1590 
1591 /**
1592  * @brief Create a new device
1593  *
1594  * This creates a new device and adds it as a child of an existing
1595  * parent device. The new device will be added after the last existing
1596  * child with order zero.
1597  *
1598  * @param dev		the device which will be the parent of the
1599  *			new child device
1600  * @param name		devclass name for new device or @c NULL if not
1601  *			specified
1602  * @param unit		unit number for new device or @c -1 if not
1603  *			specified
1604  *
1605  * @returns		the new device
1606  */
1607 device_t
1608 device_add_child(device_t dev, const char *name, int unit)
1609 {
1610 	return (device_add_child_ordered(dev, 0, name, unit));
1611 }
1612 
1613 /**
1614  * @brief Create a new device
1615  *
1616  * This creates a new device and adds it as a child of an existing
1617  * parent device. The new device will be added after the last existing
1618  * child with the same order.
1619  *
1620  * @param dev		the device which will be the parent of the
1621  *			new child device
1622  * @param order		a value which is used to partially sort the
1623  *			children of @p dev - devices created using
1624  *			lower values of @p order appear first in @p
1625  *			dev's list of children
1626  * @param name		devclass name for new device or @c NULL if not
1627  *			specified
1628  * @param unit		unit number for new device or @c -1 if not
1629  *			specified
1630  *
1631  * @returns		the new device
1632  */
1633 device_t
1634 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1635 {
1636 	device_t child;
1637 	device_t place;
1638 
1639 	PDEBUG(("%s at %s with order %d as unit %d",
1640 	    name, DEVICENAME(dev), order, unit));
1641 
1642 	child = make_device(dev, name, unit);
1643 	if (child == NULL)
1644 		return (child);
1645 	child->order = order;
1646 
1647 	TAILQ_FOREACH(place, &dev->children, link) {
1648 		if (place->order > order)
1649 			break;
1650 	}
1651 
1652 	if (place) {
1653 		/*
1654 		 * The device 'place' is the first device whose order is
1655 		 * greater than the new child.
1656 		 */
1657 		TAILQ_INSERT_BEFORE(place, child, link);
1658 	} else {
1659 		/*
1660 		 * The new child's order is greater or equal to the order of
1661 		 * any existing device. Add the child to the tail of the list.
1662 		 */
1663 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1664 	}
1665 
1666 	bus_data_generation_update();
1667 	return (child);
1668 }
1669 
1670 /**
1671  * @brief Delete a device
1672  *
1673  * This function deletes a device along with all of its children. If
1674  * the device currently has a driver attached to it, the device is
1675  * detached first using device_detach().
1676  *
1677  * @param dev		the parent device
1678  * @param child		the device to delete
1679  *
1680  * @retval 0		success
1681  * @retval non-zero	a unit error code describing the error
1682  */
1683 int
1684 device_delete_child(device_t dev, device_t child)
1685 {
1686 	int error;
1687 	device_t grandchild;
1688 
1689 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1690 
1691 	/* remove children first */
1692 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1693 		error = device_delete_child(child, grandchild);
1694 		if (error)
1695 			return (error);
1696 	}
1697 
1698 	if ((error = device_detach(child)) != 0)
1699 		return (error);
1700 	if (child->devclass)
1701 		devclass_delete_device(child->devclass, child);
1702 	TAILQ_REMOVE(&dev->children, child, link);
1703 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1704 	kobj_delete((kobj_t) child, M_BUS);
1705 
1706 	bus_data_generation_update();
1707 	return (0);
1708 }
1709 
1710 /**
1711  * @brief Find a device given a unit number
1712  *
1713  * This is similar to devclass_get_devices() but only searches for
1714  * devices which have @p dev as a parent.
1715  *
1716  * @param dev		the parent device to search
1717  * @param unit		the unit number to search for.  If the unit is -1,
1718  *			return the first child of @p dev which has name
1719  *			@p classname (that is, the one with the lowest unit.)
1720  *
1721  * @returns		the device with the given unit number or @c
1722  *			NULL if there is no such device
1723  */
1724 device_t
1725 device_find_child(device_t dev, const char *classname, int unit)
1726 {
1727 	devclass_t dc;
1728 	device_t child;
1729 
1730 	dc = devclass_find(classname);
1731 	if (!dc)
1732 		return (NULL);
1733 
1734 	if (unit != -1) {
1735 		child = devclass_get_device(dc, unit);
1736 		if (child && child->parent == dev)
1737 			return (child);
1738 	} else {
1739 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1740 			child = devclass_get_device(dc, unit);
1741 			if (child && child->parent == dev)
1742 				return (child);
1743 		}
1744 	}
1745 	return (NULL);
1746 }
1747 
1748 /**
1749  * @internal
1750  */
1751 static driverlink_t
1752 first_matching_driver(devclass_t dc, device_t dev)
1753 {
1754 	if (dev->devclass)
1755 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1756 	return (TAILQ_FIRST(&dc->drivers));
1757 }
1758 
1759 /**
1760  * @internal
1761  */
1762 static driverlink_t
1763 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1764 {
1765 	if (dev->devclass) {
1766 		driverlink_t dl;
1767 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1768 			if (!strcmp(dev->devclass->name, dl->driver->name))
1769 				return (dl);
1770 		return (NULL);
1771 	}
1772 	return (TAILQ_NEXT(last, link));
1773 }
1774 
1775 /**
1776  * @internal
1777  */
1778 int
1779 device_probe_child(device_t dev, device_t child)
1780 {
1781 	devclass_t dc;
1782 	driverlink_t best = NULL;
1783 	driverlink_t dl;
1784 	int result, pri = 0;
1785 	int hasclass = (child->devclass != NULL);
1786 
1787 	GIANT_REQUIRED;
1788 
1789 	dc = dev->devclass;
1790 	if (!dc)
1791 		panic("device_probe_child: parent device has no devclass");
1792 
1793 	/*
1794 	 * If the state is already probed, then return.  However, don't
1795 	 * return if we can rebid this object.
1796 	 */
1797 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1798 		return (0);
1799 
1800 	for (; dc; dc = dc->parent) {
1801 		for (dl = first_matching_driver(dc, child);
1802 		     dl;
1803 		     dl = next_matching_driver(dc, child, dl)) {
1804 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1805 			device_set_driver(child, dl->driver);
1806 			if (!hasclass) {
1807 				if (device_set_devclass(child, dl->driver->name)) {
1808 					printf("driver bug: Unable to set devclass (devname: %s)\n",
1809 					    (child ? device_get_name(child) :
1810 						"no device"));
1811 					device_set_driver(child, NULL);
1812 					continue;
1813 				}
1814 			}
1815 
1816 			/* Fetch any flags for the device before probing. */
1817 			resource_int_value(dl->driver->name, child->unit,
1818 			    "flags", &child->devflags);
1819 
1820 			result = DEVICE_PROBE(child);
1821 
1822 			/* Reset flags and devclass before the next probe. */
1823 			child->devflags = 0;
1824 			if (!hasclass)
1825 				device_set_devclass(child, NULL);
1826 
1827 			/*
1828 			 * If the driver returns SUCCESS, there can be
1829 			 * no higher match for this device.
1830 			 */
1831 			if (result == 0) {
1832 				best = dl;
1833 				pri = 0;
1834 				break;
1835 			}
1836 
1837 			/*
1838 			 * The driver returned an error so it
1839 			 * certainly doesn't match.
1840 			 */
1841 			if (result > 0) {
1842 				device_set_driver(child, NULL);
1843 				continue;
1844 			}
1845 
1846 			/*
1847 			 * A priority lower than SUCCESS, remember the
1848 			 * best matching driver. Initialise the value
1849 			 * of pri for the first match.
1850 			 */
1851 			if (best == NULL || result > pri) {
1852 				/*
1853 				 * Probes that return BUS_PROBE_NOWILDCARD
1854 				 * or lower only match when they are set
1855 				 * in stone by the parent bus.
1856 				 */
1857 				if (result <= BUS_PROBE_NOWILDCARD &&
1858 				    child->flags & DF_WILDCARD)
1859 					continue;
1860 				best = dl;
1861 				pri = result;
1862 				continue;
1863 			}
1864 		}
1865 		/*
1866 		 * If we have an unambiguous match in this devclass,
1867 		 * don't look in the parent.
1868 		 */
1869 		if (best && pri == 0)
1870 			break;
1871 	}
1872 
1873 	/*
1874 	 * If we found a driver, change state and initialise the devclass.
1875 	 */
1876 	/* XXX What happens if we rebid and got no best? */
1877 	if (best) {
1878 		/*
1879 		 * If this device was atached, and we were asked to
1880 		 * rescan, and it is a different driver, then we have
1881 		 * to detach the old driver and reattach this new one.
1882 		 * Note, we don't have to check for DF_REBID here
1883 		 * because if the state is > DS_ALIVE, we know it must
1884 		 * be.
1885 		 *
1886 		 * This assumes that all DF_REBID drivers can have
1887 		 * their probe routine called at any time and that
1888 		 * they are idempotent as well as completely benign in
1889 		 * normal operations.
1890 		 *
1891 		 * We also have to make sure that the detach
1892 		 * succeeded, otherwise we fail the operation (or
1893 		 * maybe it should just fail silently?  I'm torn).
1894 		 */
1895 		if (child->state > DS_ALIVE && best->driver != child->driver)
1896 			if ((result = device_detach(dev)) != 0)
1897 				return (result);
1898 
1899 		/* Set the winning driver, devclass, and flags. */
1900 		if (!child->devclass) {
1901 			result = device_set_devclass(child, best->driver->name);
1902 			if (result != 0)
1903 				return (result);
1904 		}
1905 		device_set_driver(child, best->driver);
1906 		resource_int_value(best->driver->name, child->unit,
1907 		    "flags", &child->devflags);
1908 
1909 		if (pri < 0) {
1910 			/*
1911 			 * A bit bogus. Call the probe method again to make
1912 			 * sure that we have the right description.
1913 			 */
1914 			DEVICE_PROBE(child);
1915 #if 0
1916 			child->flags |= DF_REBID;
1917 #endif
1918 		} else
1919 			child->flags &= ~DF_REBID;
1920 		child->state = DS_ALIVE;
1921 
1922 		bus_data_generation_update();
1923 		return (0);
1924 	}
1925 
1926 	return (ENXIO);
1927 }
1928 
1929 /**
1930  * @brief Return the parent of a device
1931  */
1932 device_t
1933 device_get_parent(device_t dev)
1934 {
1935 	return (dev->parent);
1936 }
1937 
1938 /**
1939  * @brief Get a list of children of a device
1940  *
1941  * An array containing a list of all the children of the given device
1942  * is allocated and returned in @p *devlistp. The number of devices
1943  * in the array is returned in @p *devcountp. The caller should free
1944  * the array using @c free(p, M_TEMP).
1945  *
1946  * @param dev		the device to examine
1947  * @param devlistp	points at location for array pointer return
1948  *			value
1949  * @param devcountp	points at location for array size return value
1950  *
1951  * @retval 0		success
1952  * @retval ENOMEM	the array allocation failed
1953  */
1954 int
1955 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1956 {
1957 	int count;
1958 	device_t child;
1959 	device_t *list;
1960 
1961 	count = 0;
1962 	TAILQ_FOREACH(child, &dev->children, link) {
1963 		count++;
1964 	}
1965 
1966 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1967 	if (!list)
1968 		return (ENOMEM);
1969 
1970 	count = 0;
1971 	TAILQ_FOREACH(child, &dev->children, link) {
1972 		list[count] = child;
1973 		count++;
1974 	}
1975 
1976 	*devlistp = list;
1977 	*devcountp = count;
1978 
1979 	return (0);
1980 }
1981 
1982 /**
1983  * @brief Return the current driver for the device or @c NULL if there
1984  * is no driver currently attached
1985  */
1986 driver_t *
1987 device_get_driver(device_t dev)
1988 {
1989 	return (dev->driver);
1990 }
1991 
1992 /**
1993  * @brief Return the current devclass for the device or @c NULL if
1994  * there is none.
1995  */
1996 devclass_t
1997 device_get_devclass(device_t dev)
1998 {
1999 	return (dev->devclass);
2000 }
2001 
2002 /**
2003  * @brief Return the name of the device's devclass or @c NULL if there
2004  * is none.
2005  */
2006 const char *
2007 device_get_name(device_t dev)
2008 {
2009 	if (dev != NULL && dev->devclass)
2010 		return (devclass_get_name(dev->devclass));
2011 	return (NULL);
2012 }
2013 
2014 /**
2015  * @brief Return a string containing the device's devclass name
2016  * followed by an ascii representation of the device's unit number
2017  * (e.g. @c "foo2").
2018  */
2019 const char *
2020 device_get_nameunit(device_t dev)
2021 {
2022 	return (dev->nameunit);
2023 }
2024 
2025 /**
2026  * @brief Return the device's unit number.
2027  */
2028 int
2029 device_get_unit(device_t dev)
2030 {
2031 	return (dev->unit);
2032 }
2033 
2034 /**
2035  * @brief Return the device's description string
2036  */
2037 const char *
2038 device_get_desc(device_t dev)
2039 {
2040 	return (dev->desc);
2041 }
2042 
2043 /**
2044  * @brief Return the device's flags
2045  */
2046 u_int32_t
2047 device_get_flags(device_t dev)
2048 {
2049 	return (dev->devflags);
2050 }
2051 
2052 struct sysctl_ctx_list *
2053 device_get_sysctl_ctx(device_t dev)
2054 {
2055 	return (&dev->sysctl_ctx);
2056 }
2057 
2058 struct sysctl_oid *
2059 device_get_sysctl_tree(device_t dev)
2060 {
2061 	return (dev->sysctl_tree);
2062 }
2063 
2064 /**
2065  * @brief Print the name of the device followed by a colon and a space
2066  *
2067  * @returns the number of characters printed
2068  */
2069 int
2070 device_print_prettyname(device_t dev)
2071 {
2072 	const char *name = device_get_name(dev);
2073 
2074 	if (name == NULL)
2075 		return (printf("unknown: "));
2076 	return (printf("%s%d: ", name, device_get_unit(dev)));
2077 }
2078 
2079 /**
2080  * @brief Print the name of the device followed by a colon, a space
2081  * and the result of calling vprintf() with the value of @p fmt and
2082  * the following arguments.
2083  *
2084  * @returns the number of characters printed
2085  */
2086 int
2087 device_printf(device_t dev, const char * fmt, ...)
2088 {
2089 	va_list ap;
2090 	int retval;
2091 
2092 	retval = device_print_prettyname(dev);
2093 	va_start(ap, fmt);
2094 	retval += vprintf(fmt, ap);
2095 	va_end(ap);
2096 	return (retval);
2097 }
2098 
2099 /**
2100  * @internal
2101  */
2102 static void
2103 device_set_desc_internal(device_t dev, const char* desc, int copy)
2104 {
2105 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2106 		free(dev->desc, M_BUS);
2107 		dev->flags &= ~DF_DESCMALLOCED;
2108 		dev->desc = NULL;
2109 	}
2110 
2111 	if (copy && desc) {
2112 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2113 		if (dev->desc) {
2114 			strcpy(dev->desc, desc);
2115 			dev->flags |= DF_DESCMALLOCED;
2116 		}
2117 	} else {
2118 		/* Avoid a -Wcast-qual warning */
2119 		dev->desc = (char *)(uintptr_t) desc;
2120 	}
2121 
2122 	bus_data_generation_update();
2123 }
2124 
2125 /**
2126  * @brief Set the device's description
2127  *
2128  * The value of @c desc should be a string constant that will not
2129  * change (at least until the description is changed in a subsequent
2130  * call to device_set_desc() or device_set_desc_copy()).
2131  */
2132 void
2133 device_set_desc(device_t dev, const char* desc)
2134 {
2135 	device_set_desc_internal(dev, desc, FALSE);
2136 }
2137 
2138 /**
2139  * @brief Set the device's description
2140  *
2141  * The string pointed to by @c desc is copied. Use this function if
2142  * the device description is generated, (e.g. with sprintf()).
2143  */
2144 void
2145 device_set_desc_copy(device_t dev, const char* desc)
2146 {
2147 	device_set_desc_internal(dev, desc, TRUE);
2148 }
2149 
2150 /**
2151  * @brief Set the device's flags
2152  */
2153 void
2154 device_set_flags(device_t dev, u_int32_t flags)
2155 {
2156 	dev->devflags = flags;
2157 }
2158 
2159 /**
2160  * @brief Return the device's softc field
2161  *
2162  * The softc is allocated and zeroed when a driver is attached, based
2163  * on the size field of the driver.
2164  */
2165 void *
2166 device_get_softc(device_t dev)
2167 {
2168 	return (dev->softc);
2169 }
2170 
2171 /**
2172  * @brief Set the device's softc field
2173  *
2174  * Most drivers do not need to use this since the softc is allocated
2175  * automatically when the driver is attached.
2176  */
2177 void
2178 device_set_softc(device_t dev, void *softc)
2179 {
2180 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2181 		free(dev->softc, M_BUS_SC);
2182 	dev->softc = softc;
2183 	if (dev->softc)
2184 		dev->flags |= DF_EXTERNALSOFTC;
2185 	else
2186 		dev->flags &= ~DF_EXTERNALSOFTC;
2187 }
2188 
2189 /**
2190  * @brief Get the device's ivars field
2191  *
2192  * The ivars field is used by the parent device to store per-device
2193  * state (e.g. the physical location of the device or a list of
2194  * resources).
2195  */
2196 void *
2197 device_get_ivars(device_t dev)
2198 {
2199 
2200 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2201 	return (dev->ivars);
2202 }
2203 
2204 /**
2205  * @brief Set the device's ivars field
2206  */
2207 void
2208 device_set_ivars(device_t dev, void * ivars)
2209 {
2210 
2211 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2212 	dev->ivars = ivars;
2213 }
2214 
2215 /**
2216  * @brief Return the device's state
2217  */
2218 device_state_t
2219 device_get_state(device_t dev)
2220 {
2221 	return (dev->state);
2222 }
2223 
2224 /**
2225  * @brief Set the DF_ENABLED flag for the device
2226  */
2227 void
2228 device_enable(device_t dev)
2229 {
2230 	dev->flags |= DF_ENABLED;
2231 }
2232 
2233 /**
2234  * @brief Clear the DF_ENABLED flag for the device
2235  */
2236 void
2237 device_disable(device_t dev)
2238 {
2239 	dev->flags &= ~DF_ENABLED;
2240 }
2241 
2242 /**
2243  * @brief Increment the busy counter for the device
2244  */
2245 void
2246 device_busy(device_t dev)
2247 {
2248 	if (dev->state < DS_ATTACHED)
2249 		panic("device_busy: called for unattached device");
2250 	if (dev->busy == 0 && dev->parent)
2251 		device_busy(dev->parent);
2252 	dev->busy++;
2253 	dev->state = DS_BUSY;
2254 }
2255 
2256 /**
2257  * @brief Decrement the busy counter for the device
2258  */
2259 void
2260 device_unbusy(device_t dev)
2261 {
2262 	if (dev->state != DS_BUSY)
2263 		panic("device_unbusy: called for non-busy device %s",
2264 		    device_get_nameunit(dev));
2265 	dev->busy--;
2266 	if (dev->busy == 0) {
2267 		if (dev->parent)
2268 			device_unbusy(dev->parent);
2269 		dev->state = DS_ATTACHED;
2270 	}
2271 }
2272 
2273 /**
2274  * @brief Set the DF_QUIET flag for the device
2275  */
2276 void
2277 device_quiet(device_t dev)
2278 {
2279 	dev->flags |= DF_QUIET;
2280 }
2281 
2282 /**
2283  * @brief Clear the DF_QUIET flag for the device
2284  */
2285 void
2286 device_verbose(device_t dev)
2287 {
2288 	dev->flags &= ~DF_QUIET;
2289 }
2290 
2291 /**
2292  * @brief Return non-zero if the DF_QUIET flag is set on the device
2293  */
2294 int
2295 device_is_quiet(device_t dev)
2296 {
2297 	return ((dev->flags & DF_QUIET) != 0);
2298 }
2299 
2300 /**
2301  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2302  */
2303 int
2304 device_is_enabled(device_t dev)
2305 {
2306 	return ((dev->flags & DF_ENABLED) != 0);
2307 }
2308 
2309 /**
2310  * @brief Return non-zero if the device was successfully probed
2311  */
2312 int
2313 device_is_alive(device_t dev)
2314 {
2315 	return (dev->state >= DS_ALIVE);
2316 }
2317 
2318 /**
2319  * @brief Return non-zero if the device currently has a driver
2320  * attached to it
2321  */
2322 int
2323 device_is_attached(device_t dev)
2324 {
2325 	return (dev->state >= DS_ATTACHED);
2326 }
2327 
2328 /**
2329  * @brief Set the devclass of a device
2330  * @see devclass_add_device().
2331  */
2332 int
2333 device_set_devclass(device_t dev, const char *classname)
2334 {
2335 	devclass_t dc;
2336 	int error;
2337 
2338 	if (!classname) {
2339 		if (dev->devclass)
2340 			devclass_delete_device(dev->devclass, dev);
2341 		return (0);
2342 	}
2343 
2344 	if (dev->devclass) {
2345 		printf("device_set_devclass: device class already set\n");
2346 		return (EINVAL);
2347 	}
2348 
2349 	dc = devclass_find_internal(classname, NULL, TRUE);
2350 	if (!dc)
2351 		return (ENOMEM);
2352 
2353 	error = devclass_add_device(dc, dev);
2354 
2355 	bus_data_generation_update();
2356 	return (error);
2357 }
2358 
2359 /**
2360  * @brief Set the driver of a device
2361  *
2362  * @retval 0		success
2363  * @retval EBUSY	the device already has a driver attached
2364  * @retval ENOMEM	a memory allocation failure occurred
2365  */
2366 int
2367 device_set_driver(device_t dev, driver_t *driver)
2368 {
2369 	if (dev->state >= DS_ATTACHED)
2370 		return (EBUSY);
2371 
2372 	if (dev->driver == driver)
2373 		return (0);
2374 
2375 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2376 		free(dev->softc, M_BUS_SC);
2377 		dev->softc = NULL;
2378 	}
2379 	kobj_delete((kobj_t) dev, NULL);
2380 	dev->driver = driver;
2381 	if (driver) {
2382 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2383 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2384 			dev->softc = malloc(driver->size, M_BUS_SC,
2385 			    M_NOWAIT | M_ZERO);
2386 			if (!dev->softc) {
2387 				kobj_delete((kobj_t) dev, NULL);
2388 				kobj_init((kobj_t) dev, &null_class);
2389 				dev->driver = NULL;
2390 				return (ENOMEM);
2391 			}
2392 		}
2393 	} else {
2394 		kobj_init((kobj_t) dev, &null_class);
2395 	}
2396 
2397 	bus_data_generation_update();
2398 	return (0);
2399 }
2400 
2401 /**
2402  * @brief Probe a device, and return this status.
2403  *
2404  * This function is the core of the device autoconfiguration
2405  * system. Its purpose is to select a suitable driver for a device and
2406  * then call that driver to initialise the hardware appropriately. The
2407  * driver is selected by calling the DEVICE_PROBE() method of a set of
2408  * candidate drivers and then choosing the driver which returned the
2409  * best value. This driver is then attached to the device using
2410  * device_attach().
2411  *
2412  * The set of suitable drivers is taken from the list of drivers in
2413  * the parent device's devclass. If the device was originally created
2414  * with a specific class name (see device_add_child()), only drivers
2415  * with that name are probed, otherwise all drivers in the devclass
2416  * are probed. If no drivers return successful probe values in the
2417  * parent devclass, the search continues in the parent of that
2418  * devclass (see devclass_get_parent()) if any.
2419  *
2420  * @param dev		the device to initialise
2421  *
2422  * @retval 0		success
2423  * @retval ENXIO	no driver was found
2424  * @retval ENOMEM	memory allocation failure
2425  * @retval non-zero	some other unix error code
2426  * @retval -1		Device already attached
2427  */
2428 int
2429 device_probe(device_t dev)
2430 {
2431 	int error;
2432 
2433 	GIANT_REQUIRED;
2434 
2435 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2436 		return (-1);
2437 
2438 	if (!(dev->flags & DF_ENABLED)) {
2439 		if (bootverbose && device_get_name(dev) != NULL) {
2440 			device_print_prettyname(dev);
2441 			printf("not probed (disabled)\n");
2442 		}
2443 		return (-1);
2444 	}
2445 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2446 		if (!(dev->flags & DF_DONENOMATCH)) {
2447 			BUS_PROBE_NOMATCH(dev->parent, dev);
2448 			devnomatch(dev);
2449 			dev->flags |= DF_DONENOMATCH;
2450 		}
2451 		return (error);
2452 	}
2453 	return (0);
2454 }
2455 
2456 /**
2457  * @brief Probe a device and attach a driver if possible
2458  *
2459  * calls device_probe() and attaches if that was successful.
2460  */
2461 int
2462 device_probe_and_attach(device_t dev)
2463 {
2464 	int error;
2465 
2466 	GIANT_REQUIRED;
2467 
2468 	error = device_probe(dev);
2469 	if (error == -1)
2470 		return (0);
2471 	else if (error != 0)
2472 		return (error);
2473 	return (device_attach(dev));
2474 }
2475 
2476 /**
2477  * @brief Attach a device driver to a device
2478  *
2479  * This function is a wrapper around the DEVICE_ATTACH() driver
2480  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2481  * device's sysctl tree, optionally prints a description of the device
2482  * and queues a notification event for user-based device management
2483  * services.
2484  *
2485  * Normally this function is only called internally from
2486  * device_probe_and_attach().
2487  *
2488  * @param dev		the device to initialise
2489  *
2490  * @retval 0		success
2491  * @retval ENXIO	no driver was found
2492  * @retval ENOMEM	memory allocation failure
2493  * @retval non-zero	some other unix error code
2494  */
2495 int
2496 device_attach(device_t dev)
2497 {
2498 	int error;
2499 
2500 	device_sysctl_init(dev);
2501 	if (!device_is_quiet(dev))
2502 		device_print_child(dev->parent, dev);
2503 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2504 		printf("device_attach: %s%d attach returned %d\n",
2505 		    dev->driver->name, dev->unit, error);
2506 		/* Unset the class; set in device_probe_child */
2507 		if (dev->devclass == NULL)
2508 			device_set_devclass(dev, NULL);
2509 		device_set_driver(dev, NULL);
2510 		device_sysctl_fini(dev);
2511 		dev->state = DS_NOTPRESENT;
2512 		return (error);
2513 	}
2514 	device_sysctl_update(dev);
2515 	dev->state = DS_ATTACHED;
2516 	devadded(dev);
2517 	return (0);
2518 }
2519 
2520 /**
2521  * @brief Detach a driver from a device
2522  *
2523  * This function is a wrapper around the DEVICE_DETACH() driver
2524  * method. If the call to DEVICE_DETACH() succeeds, it calls
2525  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2526  * notification event for user-based device management services and
2527  * cleans up the device's sysctl tree.
2528  *
2529  * @param dev		the device to un-initialise
2530  *
2531  * @retval 0		success
2532  * @retval ENXIO	no driver was found
2533  * @retval ENOMEM	memory allocation failure
2534  * @retval non-zero	some other unix error code
2535  */
2536 int
2537 device_detach(device_t dev)
2538 {
2539 	int error;
2540 
2541 	GIANT_REQUIRED;
2542 
2543 	PDEBUG(("%s", DEVICENAME(dev)));
2544 	if (dev->state == DS_BUSY)
2545 		return (EBUSY);
2546 	if (dev->state != DS_ATTACHED)
2547 		return (0);
2548 
2549 	if ((error = DEVICE_DETACH(dev)) != 0)
2550 		return (error);
2551 	devremoved(dev);
2552 	if (!device_is_quiet(dev))
2553 		device_printf(dev, "detached\n");
2554 	if (dev->parent)
2555 		BUS_CHILD_DETACHED(dev->parent, dev);
2556 
2557 	if (!(dev->flags & DF_FIXEDCLASS))
2558 		devclass_delete_device(dev->devclass, dev);
2559 
2560 	dev->state = DS_NOTPRESENT;
2561 	device_set_driver(dev, NULL);
2562 	device_set_desc(dev, NULL);
2563 	device_sysctl_fini(dev);
2564 
2565 	return (0);
2566 }
2567 
2568 /**
2569  * @brief Tells a driver to quiesce itself.
2570  *
2571  * This function is a wrapper around the DEVICE_QUIESCE() driver
2572  * method. If the call to DEVICE_QUIESCE() succeeds.
2573  *
2574  * @param dev		the device to quiesce
2575  *
2576  * @retval 0		success
2577  * @retval ENXIO	no driver was found
2578  * @retval ENOMEM	memory allocation failure
2579  * @retval non-zero	some other unix error code
2580  */
2581 int
2582 device_quiesce(device_t dev)
2583 {
2584 
2585 	PDEBUG(("%s", DEVICENAME(dev)));
2586 	if (dev->state == DS_BUSY)
2587 		return (EBUSY);
2588 	if (dev->state != DS_ATTACHED)
2589 		return (0);
2590 
2591 	return (DEVICE_QUIESCE(dev));
2592 }
2593 
2594 /**
2595  * @brief Notify a device of system shutdown
2596  *
2597  * This function calls the DEVICE_SHUTDOWN() driver method if the
2598  * device currently has an attached driver.
2599  *
2600  * @returns the value returned by DEVICE_SHUTDOWN()
2601  */
2602 int
2603 device_shutdown(device_t dev)
2604 {
2605 	if (dev->state < DS_ATTACHED)
2606 		return (0);
2607 	return (DEVICE_SHUTDOWN(dev));
2608 }
2609 
2610 /**
2611  * @brief Set the unit number of a device
2612  *
2613  * This function can be used to override the unit number used for a
2614  * device (e.g. to wire a device to a pre-configured unit number).
2615  */
2616 int
2617 device_set_unit(device_t dev, int unit)
2618 {
2619 	devclass_t dc;
2620 	int err;
2621 
2622 	dc = device_get_devclass(dev);
2623 	if (unit < dc->maxunit && dc->devices[unit])
2624 		return (EBUSY);
2625 	err = devclass_delete_device(dc, dev);
2626 	if (err)
2627 		return (err);
2628 	dev->unit = unit;
2629 	err = devclass_add_device(dc, dev);
2630 	if (err)
2631 		return (err);
2632 
2633 	bus_data_generation_update();
2634 	return (0);
2635 }
2636 
2637 /*======================================*/
2638 /*
2639  * Some useful method implementations to make life easier for bus drivers.
2640  */
2641 
2642 /**
2643  * @brief Initialise a resource list.
2644  *
2645  * @param rl		the resource list to initialise
2646  */
2647 void
2648 resource_list_init(struct resource_list *rl)
2649 {
2650 	STAILQ_INIT(rl);
2651 }
2652 
2653 /**
2654  * @brief Reclaim memory used by a resource list.
2655  *
2656  * This function frees the memory for all resource entries on the list
2657  * (if any).
2658  *
2659  * @param rl		the resource list to free
2660  */
2661 void
2662 resource_list_free(struct resource_list *rl)
2663 {
2664 	struct resource_list_entry *rle;
2665 
2666 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2667 		if (rle->res)
2668 			panic("resource_list_free: resource entry is busy");
2669 		STAILQ_REMOVE_HEAD(rl, link);
2670 		free(rle, M_BUS);
2671 	}
2672 }
2673 
2674 /**
2675  * @brief Add a resource entry.
2676  *
2677  * This function adds a resource entry using the given @p type, @p
2678  * start, @p end and @p count values. A rid value is chosen by
2679  * searching sequentially for the first unused rid starting at zero.
2680  *
2681  * @param rl		the resource list to edit
2682  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2683  * @param start		the start address of the resource
2684  * @param end		the end address of the resource
2685  * @param count		XXX end-start+1
2686  */
2687 int
2688 resource_list_add_next(struct resource_list *rl, int type, u_long start,
2689     u_long end, u_long count)
2690 {
2691 	int rid;
2692 
2693 	rid = 0;
2694 	while (resource_list_find(rl, type, rid) != NULL)
2695 		rid++;
2696 	resource_list_add(rl, type, rid, start, end, count);
2697 	return (rid);
2698 }
2699 
2700 /**
2701  * @brief Add or modify a resource entry.
2702  *
2703  * If an existing entry exists with the same type and rid, it will be
2704  * modified using the given values of @p start, @p end and @p
2705  * count. If no entry exists, a new one will be created using the
2706  * given values.  The resource list entry that matches is then returned.
2707  *
2708  * @param rl		the resource list to edit
2709  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2710  * @param rid		the resource identifier
2711  * @param start		the start address of the resource
2712  * @param end		the end address of the resource
2713  * @param count		XXX end-start+1
2714  */
2715 struct resource_list_entry *
2716 resource_list_add(struct resource_list *rl, int type, int rid,
2717     u_long start, u_long end, u_long count)
2718 {
2719 	struct resource_list_entry *rle;
2720 
2721 	rle = resource_list_find(rl, type, rid);
2722 	if (!rle) {
2723 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2724 		    M_NOWAIT);
2725 		if (!rle)
2726 			panic("resource_list_add: can't record entry");
2727 		STAILQ_INSERT_TAIL(rl, rle, link);
2728 		rle->type = type;
2729 		rle->rid = rid;
2730 		rle->res = NULL;
2731 	}
2732 
2733 	if (rle->res)
2734 		panic("resource_list_add: resource entry is busy");
2735 
2736 	rle->start = start;
2737 	rle->end = end;
2738 	rle->count = count;
2739 	return (rle);
2740 }
2741 
2742 /**
2743  * @brief Find a resource entry by type and rid.
2744  *
2745  * @param rl		the resource list to search
2746  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2747  * @param rid		the resource identifier
2748  *
2749  * @returns the resource entry pointer or NULL if there is no such
2750  * entry.
2751  */
2752 struct resource_list_entry *
2753 resource_list_find(struct resource_list *rl, int type, int rid)
2754 {
2755 	struct resource_list_entry *rle;
2756 
2757 	STAILQ_FOREACH(rle, rl, link) {
2758 		if (rle->type == type && rle->rid == rid)
2759 			return (rle);
2760 	}
2761 	return (NULL);
2762 }
2763 
2764 /**
2765  * @brief Delete a resource entry.
2766  *
2767  * @param rl		the resource list to edit
2768  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2769  * @param rid		the resource identifier
2770  */
2771 void
2772 resource_list_delete(struct resource_list *rl, int type, int rid)
2773 {
2774 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2775 
2776 	if (rle) {
2777 		if (rle->res != NULL)
2778 			panic("resource_list_delete: resource has not been released");
2779 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2780 		free(rle, M_BUS);
2781 	}
2782 }
2783 
2784 /**
2785  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2786  *
2787  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2788  * and passing the allocation up to the parent of @p bus. This assumes
2789  * that the first entry of @c device_get_ivars(child) is a struct
2790  * resource_list. This also handles 'passthrough' allocations where a
2791  * child is a remote descendant of bus by passing the allocation up to
2792  * the parent of bus.
2793  *
2794  * Typically, a bus driver would store a list of child resources
2795  * somewhere in the child device's ivars (see device_get_ivars()) and
2796  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2797  * then call resource_list_alloc() to perform the allocation.
2798  *
2799  * @param rl		the resource list to allocate from
2800  * @param bus		the parent device of @p child
2801  * @param child		the device which is requesting an allocation
2802  * @param type		the type of resource to allocate
2803  * @param rid		a pointer to the resource identifier
2804  * @param start		hint at the start of the resource range - pass
2805  *			@c 0UL for any start address
2806  * @param end		hint at the end of the resource range - pass
2807  *			@c ~0UL for any end address
2808  * @param count		hint at the size of range required - pass @c 1
2809  *			for any size
2810  * @param flags		any extra flags to control the resource
2811  *			allocation - see @c RF_XXX flags in
2812  *			<sys/rman.h> for details
2813  *
2814  * @returns		the resource which was allocated or @c NULL if no
2815  *			resource could be allocated
2816  */
2817 struct resource *
2818 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2819     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2820 {
2821 	struct resource_list_entry *rle = NULL;
2822 	int passthrough = (device_get_parent(child) != bus);
2823 	int isdefault = (start == 0UL && end == ~0UL);
2824 
2825 	if (passthrough) {
2826 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2827 		    type, rid, start, end, count, flags));
2828 	}
2829 
2830 	rle = resource_list_find(rl, type, *rid);
2831 
2832 	if (!rle)
2833 		return (NULL);		/* no resource of that type/rid */
2834 
2835 	if (rle->res)
2836 		panic("resource_list_alloc: resource entry is busy");
2837 
2838 	if (isdefault) {
2839 		start = rle->start;
2840 		count = ulmax(count, rle->count);
2841 		end = ulmax(rle->end, start + count - 1);
2842 	}
2843 
2844 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2845 	    type, rid, start, end, count, flags);
2846 
2847 	/*
2848 	 * Record the new range.
2849 	 */
2850 	if (rle->res) {
2851 		rle->start = rman_get_start(rle->res);
2852 		rle->end = rman_get_end(rle->res);
2853 		rle->count = count;
2854 	}
2855 
2856 	return (rle->res);
2857 }
2858 
2859 /**
2860  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
2861  *
2862  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
2863  * used with resource_list_alloc().
2864  *
2865  * @param rl		the resource list which was allocated from
2866  * @param bus		the parent device of @p child
2867  * @param child		the device which is requesting a release
2868  * @param type		the type of resource to allocate
2869  * @param rid		the resource identifier
2870  * @param res		the resource to release
2871  *
2872  * @retval 0		success
2873  * @retval non-zero	a standard unix error code indicating what
2874  *			error condition prevented the operation
2875  */
2876 int
2877 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
2878     int type, int rid, struct resource *res)
2879 {
2880 	struct resource_list_entry *rle = NULL;
2881 	int passthrough = (device_get_parent(child) != bus);
2882 	int error;
2883 
2884 	if (passthrough) {
2885 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2886 		    type, rid, res));
2887 	}
2888 
2889 	rle = resource_list_find(rl, type, rid);
2890 
2891 	if (!rle)
2892 		panic("resource_list_release: can't find resource");
2893 	if (!rle->res)
2894 		panic("resource_list_release: resource entry is not busy");
2895 
2896 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2897 	    type, rid, res);
2898 	if (error)
2899 		return (error);
2900 
2901 	rle->res = NULL;
2902 	return (0);
2903 }
2904 
2905 /**
2906  * @brief Print a description of resources in a resource list
2907  *
2908  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
2909  * The name is printed if at least one resource of the given type is available.
2910  * The format is used to print resource start and end.
2911  *
2912  * @param rl		the resource list to print
2913  * @param name		the name of @p type, e.g. @c "memory"
2914  * @param type		type type of resource entry to print
2915  * @param format	printf(9) format string to print resource
2916  *			start and end values
2917  *
2918  * @returns		the number of characters printed
2919  */
2920 int
2921 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2922     const char *format)
2923 {
2924 	struct resource_list_entry *rle;
2925 	int printed, retval;
2926 
2927 	printed = 0;
2928 	retval = 0;
2929 	/* Yes, this is kinda cheating */
2930 	STAILQ_FOREACH(rle, rl, link) {
2931 		if (rle->type == type) {
2932 			if (printed == 0)
2933 				retval += printf(" %s ", name);
2934 			else
2935 				retval += printf(",");
2936 			printed++;
2937 			retval += printf(format, rle->start);
2938 			if (rle->count > 1) {
2939 				retval += printf("-");
2940 				retval += printf(format, rle->start +
2941 						 rle->count - 1);
2942 			}
2943 		}
2944 	}
2945 	return (retval);
2946 }
2947 
2948 /**
2949  * @brief Releases all the resources in a list.
2950  *
2951  * @param rl		The resource list to purge.
2952  *
2953  * @returns		nothing
2954  */
2955 void
2956 resource_list_purge(struct resource_list *rl)
2957 {
2958 	struct resource_list_entry *rle;
2959 
2960 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2961 		if (rle->res)
2962 			bus_release_resource(rman_get_device(rle->res),
2963 			    rle->type, rle->rid, rle->res);
2964 		STAILQ_REMOVE_HEAD(rl, link);
2965 		free(rle, M_BUS);
2966 	}
2967 }
2968 
2969 device_t
2970 bus_generic_add_child(device_t dev, int order, const char *name, int unit)
2971 {
2972 
2973 	return (device_add_child_ordered(dev, order, name, unit));
2974 }
2975 
2976 /**
2977  * @brief Helper function for implementing DEVICE_PROBE()
2978  *
2979  * This function can be used to help implement the DEVICE_PROBE() for
2980  * a bus (i.e. a device which has other devices attached to it). It
2981  * calls the DEVICE_IDENTIFY() method of each driver in the device's
2982  * devclass.
2983  */
2984 int
2985 bus_generic_probe(device_t dev)
2986 {
2987 	devclass_t dc = dev->devclass;
2988 	driverlink_t dl;
2989 
2990 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2991 		DEVICE_IDENTIFY(dl->driver, dev);
2992 	}
2993 
2994 	return (0);
2995 }
2996 
2997 /**
2998  * @brief Helper function for implementing DEVICE_ATTACH()
2999  *
3000  * This function can be used to help implement the DEVICE_ATTACH() for
3001  * a bus. It calls device_probe_and_attach() for each of the device's
3002  * children.
3003  */
3004 int
3005 bus_generic_attach(device_t dev)
3006 {
3007 	device_t child;
3008 
3009 	TAILQ_FOREACH(child, &dev->children, link) {
3010 		device_probe_and_attach(child);
3011 	}
3012 
3013 	return (0);
3014 }
3015 
3016 /**
3017  * @brief Helper function for implementing DEVICE_DETACH()
3018  *
3019  * This function can be used to help implement the DEVICE_DETACH() for
3020  * a bus. It calls device_detach() for each of the device's
3021  * children.
3022  */
3023 int
3024 bus_generic_detach(device_t dev)
3025 {
3026 	device_t child;
3027 	int error;
3028 
3029 	if (dev->state != DS_ATTACHED)
3030 		return (EBUSY);
3031 
3032 	TAILQ_FOREACH(child, &dev->children, link) {
3033 		if ((error = device_detach(child)) != 0)
3034 			return (error);
3035 	}
3036 
3037 	return (0);
3038 }
3039 
3040 /**
3041  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3042  *
3043  * This function can be used to help implement the DEVICE_SHUTDOWN()
3044  * for a bus. It calls device_shutdown() for each of the device's
3045  * children.
3046  */
3047 int
3048 bus_generic_shutdown(device_t dev)
3049 {
3050 	device_t child;
3051 
3052 	TAILQ_FOREACH(child, &dev->children, link) {
3053 		device_shutdown(child);
3054 	}
3055 
3056 	return (0);
3057 }
3058 
3059 /**
3060  * @brief Helper function for implementing DEVICE_SUSPEND()
3061  *
3062  * This function can be used to help implement the DEVICE_SUSPEND()
3063  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3064  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3065  * operation is aborted and any devices which were suspended are
3066  * resumed immediately by calling their DEVICE_RESUME() methods.
3067  */
3068 int
3069 bus_generic_suspend(device_t dev)
3070 {
3071 	int		error;
3072 	device_t	child, child2;
3073 
3074 	TAILQ_FOREACH(child, &dev->children, link) {
3075 		error = DEVICE_SUSPEND(child);
3076 		if (error) {
3077 			for (child2 = TAILQ_FIRST(&dev->children);
3078 			     child2 && child2 != child;
3079 			     child2 = TAILQ_NEXT(child2, link))
3080 				DEVICE_RESUME(child2);
3081 			return (error);
3082 		}
3083 	}
3084 	return (0);
3085 }
3086 
3087 /**
3088  * @brief Helper function for implementing DEVICE_RESUME()
3089  *
3090  * This function can be used to help implement the DEVICE_RESUME() for
3091  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3092  */
3093 int
3094 bus_generic_resume(device_t dev)
3095 {
3096 	device_t	child;
3097 
3098 	TAILQ_FOREACH(child, &dev->children, link) {
3099 		DEVICE_RESUME(child);
3100 		/* if resume fails, there's nothing we can usefully do... */
3101 	}
3102 	return (0);
3103 }
3104 
3105 /**
3106  * @brief Helper function for implementing BUS_PRINT_CHILD().
3107  *
3108  * This function prints the first part of the ascii representation of
3109  * @p child, including its name, unit and description (if any - see
3110  * device_set_desc()).
3111  *
3112  * @returns the number of characters printed
3113  */
3114 int
3115 bus_print_child_header(device_t dev, device_t child)
3116 {
3117 	int	retval = 0;
3118 
3119 	if (device_get_desc(child)) {
3120 		retval += device_printf(child, "<%s>", device_get_desc(child));
3121 	} else {
3122 		retval += printf("%s", device_get_nameunit(child));
3123 	}
3124 
3125 	return (retval);
3126 }
3127 
3128 /**
3129  * @brief Helper function for implementing BUS_PRINT_CHILD().
3130  *
3131  * This function prints the last part of the ascii representation of
3132  * @p child, which consists of the string @c " on " followed by the
3133  * name and unit of the @p dev.
3134  *
3135  * @returns the number of characters printed
3136  */
3137 int
3138 bus_print_child_footer(device_t dev, device_t child)
3139 {
3140 	return (printf(" on %s\n", device_get_nameunit(dev)));
3141 }
3142 
3143 /**
3144  * @brief Helper function for implementing BUS_PRINT_CHILD().
3145  *
3146  * This function simply calls bus_print_child_header() followed by
3147  * bus_print_child_footer().
3148  *
3149  * @returns the number of characters printed
3150  */
3151 int
3152 bus_generic_print_child(device_t dev, device_t child)
3153 {
3154 	int	retval = 0;
3155 
3156 	retval += bus_print_child_header(dev, child);
3157 	retval += bus_print_child_footer(dev, child);
3158 
3159 	return (retval);
3160 }
3161 
3162 /**
3163  * @brief Stub function for implementing BUS_READ_IVAR().
3164  *
3165  * @returns ENOENT
3166  */
3167 int
3168 bus_generic_read_ivar(device_t dev, device_t child, int index,
3169     uintptr_t * result)
3170 {
3171 	return (ENOENT);
3172 }
3173 
3174 /**
3175  * @brief Stub function for implementing BUS_WRITE_IVAR().
3176  *
3177  * @returns ENOENT
3178  */
3179 int
3180 bus_generic_write_ivar(device_t dev, device_t child, int index,
3181     uintptr_t value)
3182 {
3183 	return (ENOENT);
3184 }
3185 
3186 /**
3187  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3188  *
3189  * @returns NULL
3190  */
3191 struct resource_list *
3192 bus_generic_get_resource_list(device_t dev, device_t child)
3193 {
3194 	return (NULL);
3195 }
3196 
3197 /**
3198  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3199  *
3200  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3201  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3202  * and then calls device_probe_and_attach() for each unattached child.
3203  */
3204 void
3205 bus_generic_driver_added(device_t dev, driver_t *driver)
3206 {
3207 	device_t child;
3208 
3209 	DEVICE_IDENTIFY(driver, dev);
3210 	TAILQ_FOREACH(child, &dev->children, link) {
3211 		if (child->state == DS_NOTPRESENT ||
3212 		    (child->flags & DF_REBID))
3213 			device_probe_and_attach(child);
3214 	}
3215 }
3216 
3217 /**
3218  * @brief Helper function for implementing BUS_SETUP_INTR().
3219  *
3220  * This simple implementation of BUS_SETUP_INTR() simply calls the
3221  * BUS_SETUP_INTR() method of the parent of @p dev.
3222  */
3223 int
3224 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3225     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3226     void **cookiep)
3227 {
3228 	/* Propagate up the bus hierarchy until someone handles it. */
3229 	if (dev->parent)
3230 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3231 		    filter, intr, arg, cookiep));
3232 	return (EINVAL);
3233 }
3234 
3235 /**
3236  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3237  *
3238  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3239  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3240  */
3241 int
3242 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3243     void *cookie)
3244 {
3245 	/* Propagate up the bus hierarchy until someone handles it. */
3246 	if (dev->parent)
3247 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3248 	return (EINVAL);
3249 }
3250 
3251 /**
3252  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3253  *
3254  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3255  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3256  */
3257 struct resource *
3258 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3259     u_long start, u_long end, u_long count, u_int flags)
3260 {
3261 	/* Propagate up the bus hierarchy until someone handles it. */
3262 	if (dev->parent)
3263 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3264 		    start, end, count, flags));
3265 	return (NULL);
3266 }
3267 
3268 /**
3269  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3270  *
3271  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3272  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3273  */
3274 int
3275 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3276     struct resource *r)
3277 {
3278 	/* Propagate up the bus hierarchy until someone handles it. */
3279 	if (dev->parent)
3280 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3281 		    r));
3282 	return (EINVAL);
3283 }
3284 
3285 /**
3286  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3287  *
3288  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3289  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3290  */
3291 int
3292 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3293     struct resource *r)
3294 {
3295 	/* Propagate up the bus hierarchy until someone handles it. */
3296 	if (dev->parent)
3297 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3298 		    r));
3299 	return (EINVAL);
3300 }
3301 
3302 /**
3303  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3304  *
3305  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3306  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3307  */
3308 int
3309 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3310     int rid, struct resource *r)
3311 {
3312 	/* Propagate up the bus hierarchy until someone handles it. */
3313 	if (dev->parent)
3314 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3315 		    r));
3316 	return (EINVAL);
3317 }
3318 
3319 /**
3320  * @brief Helper function for implementing BUS_BIND_INTR().
3321  *
3322  * This simple implementation of BUS_BIND_INTR() simply calls the
3323  * BUS_BIND_INTR() method of the parent of @p dev.
3324  */
3325 int
3326 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3327     int cpu)
3328 {
3329 
3330 	/* Propagate up the bus hierarchy until someone handles it. */
3331 	if (dev->parent)
3332 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3333 	return (EINVAL);
3334 }
3335 
3336 /**
3337  * @brief Helper function for implementing BUS_CONFIG_INTR().
3338  *
3339  * This simple implementation of BUS_CONFIG_INTR() simply calls the
3340  * BUS_CONFIG_INTR() method of the parent of @p dev.
3341  */
3342 int
3343 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3344     enum intr_polarity pol)
3345 {
3346 
3347 	/* Propagate up the bus hierarchy until someone handles it. */
3348 	if (dev->parent)
3349 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3350 	return (EINVAL);
3351 }
3352 
3353 /**
3354  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3355  *
3356  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3357  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3358  */
3359 bus_dma_tag_t
3360 bus_generic_get_dma_tag(device_t dev, device_t child)
3361 {
3362 
3363 	/* Propagate up the bus hierarchy until someone handles it. */
3364 	if (dev->parent != NULL)
3365 		return (BUS_GET_DMA_TAG(dev->parent, child));
3366 	return (NULL);
3367 }
3368 
3369 /**
3370  * @brief Helper function for implementing BUS_GET_RESOURCE().
3371  *
3372  * This implementation of BUS_GET_RESOURCE() uses the
3373  * resource_list_find() function to do most of the work. It calls
3374  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3375  * search.
3376  */
3377 int
3378 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3379     u_long *startp, u_long *countp)
3380 {
3381 	struct resource_list *		rl = NULL;
3382 	struct resource_list_entry *	rle = NULL;
3383 
3384 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3385 	if (!rl)
3386 		return (EINVAL);
3387 
3388 	rle = resource_list_find(rl, type, rid);
3389 	if (!rle)
3390 		return (ENOENT);
3391 
3392 	if (startp)
3393 		*startp = rle->start;
3394 	if (countp)
3395 		*countp = rle->count;
3396 
3397 	return (0);
3398 }
3399 
3400 /**
3401  * @brief Helper function for implementing BUS_SET_RESOURCE().
3402  *
3403  * This implementation of BUS_SET_RESOURCE() uses the
3404  * resource_list_add() function to do most of the work. It calls
3405  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3406  * edit.
3407  */
3408 int
3409 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3410     u_long start, u_long count)
3411 {
3412 	struct resource_list *		rl = NULL;
3413 
3414 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3415 	if (!rl)
3416 		return (EINVAL);
3417 
3418 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3419 
3420 	return (0);
3421 }
3422 
3423 /**
3424  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3425  *
3426  * This implementation of BUS_DELETE_RESOURCE() uses the
3427  * resource_list_delete() function to do most of the work. It calls
3428  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3429  * edit.
3430  */
3431 void
3432 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3433 {
3434 	struct resource_list *		rl = NULL;
3435 
3436 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3437 	if (!rl)
3438 		return;
3439 
3440 	resource_list_delete(rl, type, rid);
3441 
3442 	return;
3443 }
3444 
3445 /**
3446  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3447  *
3448  * This implementation of BUS_RELEASE_RESOURCE() uses the
3449  * resource_list_release() function to do most of the work. It calls
3450  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3451  */
3452 int
3453 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3454     int rid, struct resource *r)
3455 {
3456 	struct resource_list *		rl = NULL;
3457 
3458 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3459 	if (!rl)
3460 		return (EINVAL);
3461 
3462 	return (resource_list_release(rl, dev, child, type, rid, r));
3463 }
3464 
3465 /**
3466  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3467  *
3468  * This implementation of BUS_ALLOC_RESOURCE() uses the
3469  * resource_list_alloc() function to do most of the work. It calls
3470  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3471  */
3472 struct resource *
3473 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3474     int *rid, u_long start, u_long end, u_long count, u_int flags)
3475 {
3476 	struct resource_list *		rl = NULL;
3477 
3478 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3479 	if (!rl)
3480 		return (NULL);
3481 
3482 	return (resource_list_alloc(rl, dev, child, type, rid,
3483 	    start, end, count, flags));
3484 }
3485 
3486 /**
3487  * @brief Helper function for implementing BUS_CHILD_PRESENT().
3488  *
3489  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3490  * BUS_CHILD_PRESENT() method of the parent of @p dev.
3491  */
3492 int
3493 bus_generic_child_present(device_t dev, device_t child)
3494 {
3495 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3496 }
3497 
3498 /*
3499  * Some convenience functions to make it easier for drivers to use the
3500  * resource-management functions.  All these really do is hide the
3501  * indirection through the parent's method table, making for slightly
3502  * less-wordy code.  In the future, it might make sense for this code
3503  * to maintain some sort of a list of resources allocated by each device.
3504  */
3505 
3506 int
3507 bus_alloc_resources(device_t dev, struct resource_spec *rs,
3508     struct resource **res)
3509 {
3510 	int i;
3511 
3512 	for (i = 0; rs[i].type != -1; i++)
3513 		res[i] = NULL;
3514 	for (i = 0; rs[i].type != -1; i++) {
3515 		res[i] = bus_alloc_resource_any(dev,
3516 		    rs[i].type, &rs[i].rid, rs[i].flags);
3517 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3518 			bus_release_resources(dev, rs, res);
3519 			return (ENXIO);
3520 		}
3521 	}
3522 	return (0);
3523 }
3524 
3525 void
3526 bus_release_resources(device_t dev, const struct resource_spec *rs,
3527     struct resource **res)
3528 {
3529 	int i;
3530 
3531 	for (i = 0; rs[i].type != -1; i++)
3532 		if (res[i] != NULL) {
3533 			bus_release_resource(
3534 			    dev, rs[i].type, rs[i].rid, res[i]);
3535 			res[i] = NULL;
3536 		}
3537 }
3538 
3539 /**
3540  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3541  *
3542  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3543  * parent of @p dev.
3544  */
3545 struct resource *
3546 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3547     u_long count, u_int flags)
3548 {
3549 	if (dev->parent == NULL)
3550 		return (NULL);
3551 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3552 	    count, flags));
3553 }
3554 
3555 /**
3556  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3557  *
3558  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3559  * parent of @p dev.
3560  */
3561 int
3562 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3563 {
3564 	if (dev->parent == NULL)
3565 		return (EINVAL);
3566 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3567 }
3568 
3569 /**
3570  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3571  *
3572  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3573  * parent of @p dev.
3574  */
3575 int
3576 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3577 {
3578 	if (dev->parent == NULL)
3579 		return (EINVAL);
3580 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3581 }
3582 
3583 /**
3584  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3585  *
3586  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3587  * parent of @p dev.
3588  */
3589 int
3590 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3591 {
3592 	if (dev->parent == NULL)
3593 		return (EINVAL);
3594 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3595 }
3596 
3597 /**
3598  * @brief Wrapper function for BUS_SETUP_INTR().
3599  *
3600  * This function simply calls the BUS_SETUP_INTR() method of the
3601  * parent of @p dev.
3602  */
3603 int
3604 bus_setup_intr(device_t dev, struct resource *r, int flags,
3605     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
3606 {
3607 	int error;
3608 
3609 	if (dev->parent == NULL)
3610 		return (EINVAL);
3611 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
3612 	    arg, cookiep);
3613 	if (error != 0)
3614 		return (error);
3615 	if (handler != NULL && !(flags & INTR_MPSAFE))
3616 		device_printf(dev, "[GIANT-LOCKED]\n");
3617 	if (bootverbose && (flags & INTR_MPSAFE))
3618 		device_printf(dev, "[MPSAFE]\n");
3619 	if (filter != NULL) {
3620 		if (handler == NULL)
3621 			device_printf(dev, "[FILTER]\n");
3622 		else
3623 			device_printf(dev, "[FILTER+ITHREAD]\n");
3624 	} else
3625 		device_printf(dev, "[ITHREAD]\n");
3626 	return (0);
3627 }
3628 
3629 /**
3630  * @brief Wrapper function for BUS_TEARDOWN_INTR().
3631  *
3632  * This function simply calls the BUS_TEARDOWN_INTR() method of the
3633  * parent of @p dev.
3634  */
3635 int
3636 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3637 {
3638 	if (dev->parent == NULL)
3639 		return (EINVAL);
3640 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3641 }
3642 
3643 /**
3644  * @brief Wrapper function for BUS_BIND_INTR().
3645  *
3646  * This function simply calls the BUS_BIND_INTR() method of the
3647  * parent of @p dev.
3648  */
3649 int
3650 bus_bind_intr(device_t dev, struct resource *r, int cpu)
3651 {
3652 	if (dev->parent == NULL)
3653 		return (EINVAL);
3654 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
3655 }
3656 
3657 /**
3658  * @brief Wrapper function for BUS_SET_RESOURCE().
3659  *
3660  * This function simply calls the BUS_SET_RESOURCE() method of the
3661  * parent of @p dev.
3662  */
3663 int
3664 bus_set_resource(device_t dev, int type, int rid,
3665     u_long start, u_long count)
3666 {
3667 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3668 	    start, count));
3669 }
3670 
3671 /**
3672  * @brief Wrapper function for BUS_GET_RESOURCE().
3673  *
3674  * This function simply calls the BUS_GET_RESOURCE() method of the
3675  * parent of @p dev.
3676  */
3677 int
3678 bus_get_resource(device_t dev, int type, int rid,
3679     u_long *startp, u_long *countp)
3680 {
3681 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3682 	    startp, countp));
3683 }
3684 
3685 /**
3686  * @brief Wrapper function for BUS_GET_RESOURCE().
3687  *
3688  * This function simply calls the BUS_GET_RESOURCE() method of the
3689  * parent of @p dev and returns the start value.
3690  */
3691 u_long
3692 bus_get_resource_start(device_t dev, int type, int rid)
3693 {
3694 	u_long start, count;
3695 	int error;
3696 
3697 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3698 	    &start, &count);
3699 	if (error)
3700 		return (0);
3701 	return (start);
3702 }
3703 
3704 /**
3705  * @brief Wrapper function for BUS_GET_RESOURCE().
3706  *
3707  * This function simply calls the BUS_GET_RESOURCE() method of the
3708  * parent of @p dev and returns the count value.
3709  */
3710 u_long
3711 bus_get_resource_count(device_t dev, int type, int rid)
3712 {
3713 	u_long start, count;
3714 	int error;
3715 
3716 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3717 	    &start, &count);
3718 	if (error)
3719 		return (0);
3720 	return (count);
3721 }
3722 
3723 /**
3724  * @brief Wrapper function for BUS_DELETE_RESOURCE().
3725  *
3726  * This function simply calls the BUS_DELETE_RESOURCE() method of the
3727  * parent of @p dev.
3728  */
3729 void
3730 bus_delete_resource(device_t dev, int type, int rid)
3731 {
3732 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3733 }
3734 
3735 /**
3736  * @brief Wrapper function for BUS_CHILD_PRESENT().
3737  *
3738  * This function simply calls the BUS_CHILD_PRESENT() method of the
3739  * parent of @p dev.
3740  */
3741 int
3742 bus_child_present(device_t child)
3743 {
3744 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3745 }
3746 
3747 /**
3748  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
3749  *
3750  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
3751  * parent of @p dev.
3752  */
3753 int
3754 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3755 {
3756 	device_t parent;
3757 
3758 	parent = device_get_parent(child);
3759 	if (parent == NULL) {
3760 		*buf = '\0';
3761 		return (0);
3762 	}
3763 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3764 }
3765 
3766 /**
3767  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
3768  *
3769  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
3770  * parent of @p dev.
3771  */
3772 int
3773 bus_child_location_str(device_t child, char *buf, size_t buflen)
3774 {
3775 	device_t parent;
3776 
3777 	parent = device_get_parent(child);
3778 	if (parent == NULL) {
3779 		*buf = '\0';
3780 		return (0);
3781 	}
3782 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3783 }
3784 
3785 /**
3786  * @brief Wrapper function for BUS_GET_DMA_TAG().
3787  *
3788  * This function simply calls the BUS_GET_DMA_TAG() method of the
3789  * parent of @p dev.
3790  */
3791 bus_dma_tag_t
3792 bus_get_dma_tag(device_t dev)
3793 {
3794 	device_t parent;
3795 
3796 	parent = device_get_parent(dev);
3797 	if (parent == NULL)
3798 		return (NULL);
3799 	return (BUS_GET_DMA_TAG(parent, dev));
3800 }
3801 
3802 /* Resume all devices and then notify userland that we're up again. */
3803 static int
3804 root_resume(device_t dev)
3805 {
3806 	int error;
3807 
3808 	error = bus_generic_resume(dev);
3809 	if (error == 0)
3810 		devctl_notify("kern", "power", "resume", NULL);
3811 	return (error);
3812 }
3813 
3814 static int
3815 root_print_child(device_t dev, device_t child)
3816 {
3817 	int	retval = 0;
3818 
3819 	retval += bus_print_child_header(dev, child);
3820 	retval += printf("\n");
3821 
3822 	return (retval);
3823 }
3824 
3825 static int
3826 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
3827     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
3828 {
3829 	/*
3830 	 * If an interrupt mapping gets to here something bad has happened.
3831 	 */
3832 	panic("root_setup_intr");
3833 }
3834 
3835 /*
3836  * If we get here, assume that the device is permanant and really is
3837  * present in the system.  Removable bus drivers are expected to intercept
3838  * this call long before it gets here.  We return -1 so that drivers that
3839  * really care can check vs -1 or some ERRNO returned higher in the food
3840  * chain.
3841  */
3842 static int
3843 root_child_present(device_t dev, device_t child)
3844 {
3845 	return (-1);
3846 }
3847 
3848 static kobj_method_t root_methods[] = {
3849 	/* Device interface */
3850 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3851 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3852 	KOBJMETHOD(device_resume,	root_resume),
3853 
3854 	/* Bus interface */
3855 	KOBJMETHOD(bus_print_child,	root_print_child),
3856 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3857 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3858 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3859 	KOBJMETHOD(bus_child_present,	root_child_present),
3860 
3861 	KOBJMETHOD_END
3862 };
3863 
3864 static driver_t root_driver = {
3865 	"root",
3866 	root_methods,
3867 	1,			/* no softc */
3868 };
3869 
3870 device_t	root_bus;
3871 devclass_t	root_devclass;
3872 
3873 static int
3874 root_bus_module_handler(module_t mod, int what, void* arg)
3875 {
3876 	switch (what) {
3877 	case MOD_LOAD:
3878 		TAILQ_INIT(&bus_data_devices);
3879 		kobj_class_compile((kobj_class_t) &root_driver);
3880 		root_bus = make_device(NULL, "root", 0);
3881 		root_bus->desc = "System root bus";
3882 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3883 		root_bus->driver = &root_driver;
3884 		root_bus->state = DS_ATTACHED;
3885 		root_devclass = devclass_find_internal("root", NULL, FALSE);
3886 		devinit();
3887 		return (0);
3888 
3889 	case MOD_SHUTDOWN:
3890 		device_shutdown(root_bus);
3891 		return (0);
3892 	default:
3893 		return (EOPNOTSUPP);
3894 	}
3895 
3896 	return (0);
3897 }
3898 
3899 static moduledata_t root_bus_mod = {
3900 	"rootbus",
3901 	root_bus_module_handler,
3902 	NULL
3903 };
3904 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3905 
3906 /**
3907  * @brief Automatically configure devices
3908  *
3909  * This function begins the autoconfiguration process by calling
3910  * device_probe_and_attach() for each child of the @c root0 device.
3911  */
3912 void
3913 root_bus_configure(void)
3914 {
3915 	device_t dev;
3916 
3917 	PDEBUG(("."));
3918 
3919 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3920 		device_probe_and_attach(dev);
3921 	}
3922 }
3923 
3924 /**
3925  * @brief Module handler for registering device drivers
3926  *
3927  * This module handler is used to automatically register device
3928  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
3929  * devclass_add_driver() for the driver described by the
3930  * driver_module_data structure pointed to by @p arg
3931  */
3932 int
3933 driver_module_handler(module_t mod, int what, void *arg)
3934 {
3935 	int error;
3936 	struct driver_module_data *dmd;
3937 	devclass_t bus_devclass;
3938 	kobj_class_t driver;
3939 
3940 	dmd = (struct driver_module_data *)arg;
3941 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3942 	error = 0;
3943 
3944 	switch (what) {
3945 	case MOD_LOAD:
3946 		if (dmd->dmd_chainevh)
3947 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3948 
3949 		driver = dmd->dmd_driver;
3950 		PDEBUG(("Loading module: driver %s on bus %s",
3951 		    DRIVERNAME(driver), dmd->dmd_busname));
3952 		error = devclass_add_driver(bus_devclass, driver);
3953 		if (error)
3954 			break;
3955 
3956 		/*
3957 		 * If the driver has any base classes, make the
3958 		 * devclass inherit from the devclass of the driver's
3959 		 * first base class. This will allow the system to
3960 		 * search for drivers in both devclasses for children
3961 		 * of a device using this driver.
3962 		 */
3963 		if (driver->baseclasses) {
3964 			const char *parentname;
3965 			parentname = driver->baseclasses[0]->name;
3966 			*dmd->dmd_devclass =
3967 				devclass_find_internal(driver->name,
3968 				    parentname, TRUE);
3969 		} else {
3970 			*dmd->dmd_devclass =
3971 				devclass_find_internal(driver->name, NULL, TRUE);
3972 		}
3973 		break;
3974 
3975 	case MOD_UNLOAD:
3976 		PDEBUG(("Unloading module: driver %s from bus %s",
3977 		    DRIVERNAME(dmd->dmd_driver),
3978 		    dmd->dmd_busname));
3979 		error = devclass_delete_driver(bus_devclass,
3980 		    dmd->dmd_driver);
3981 
3982 		if (!error && dmd->dmd_chainevh)
3983 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3984 		break;
3985 	case MOD_QUIESCE:
3986 		PDEBUG(("Quiesce module: driver %s from bus %s",
3987 		    DRIVERNAME(dmd->dmd_driver),
3988 		    dmd->dmd_busname));
3989 		error = devclass_quiesce_driver(bus_devclass,
3990 		    dmd->dmd_driver);
3991 
3992 		if (!error && dmd->dmd_chainevh)
3993 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3994 		break;
3995 	default:
3996 		error = EOPNOTSUPP;
3997 		break;
3998 	}
3999 
4000 	return (error);
4001 }
4002 
4003 /**
4004  * @brief Enumerate all hinted devices for this bus.
4005  *
4006  * Walks through the hints for this bus and calls the bus_hinted_child
4007  * routine for each one it fines.  It searches first for the specific
4008  * bus that's being probed for hinted children (eg isa0), and then for
4009  * generic children (eg isa).
4010  *
4011  * @param	dev	bus device to enumerate
4012  */
4013 void
4014 bus_enumerate_hinted_children(device_t bus)
4015 {
4016 	int i;
4017 	const char *dname, *busname;
4018 	int dunit;
4019 
4020 	/*
4021 	 * enumerate all devices on the specific bus
4022 	 */
4023 	busname = device_get_nameunit(bus);
4024 	i = 0;
4025 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4026 		BUS_HINTED_CHILD(bus, dname, dunit);
4027 
4028 	/*
4029 	 * and all the generic ones.
4030 	 */
4031 	busname = device_get_name(bus);
4032 	i = 0;
4033 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4034 		BUS_HINTED_CHILD(bus, dname, dunit);
4035 }
4036 
4037 #ifdef BUS_DEBUG
4038 
4039 /* the _short versions avoid iteration by not calling anything that prints
4040  * more than oneliners. I love oneliners.
4041  */
4042 
4043 static void
4044 print_device_short(device_t dev, int indent)
4045 {
4046 	if (!dev)
4047 		return;
4048 
4049 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4050 	    dev->unit, dev->desc,
4051 	    (dev->parent? "":"no "),
4052 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4053 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4054 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4055 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4056 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4057 	    (dev->flags&DF_REBID? "rebiddable,":""),
4058 	    (dev->ivars? "":"no "),
4059 	    (dev->softc? "":"no "),
4060 	    dev->busy));
4061 }
4062 
4063 static void
4064 print_device(device_t dev, int indent)
4065 {
4066 	if (!dev)
4067 		return;
4068 
4069 	print_device_short(dev, indent);
4070 
4071 	indentprintf(("Parent:\n"));
4072 	print_device_short(dev->parent, indent+1);
4073 	indentprintf(("Driver:\n"));
4074 	print_driver_short(dev->driver, indent+1);
4075 	indentprintf(("Devclass:\n"));
4076 	print_devclass_short(dev->devclass, indent+1);
4077 }
4078 
4079 void
4080 print_device_tree_short(device_t dev, int indent)
4081 /* print the device and all its children (indented) */
4082 {
4083 	device_t child;
4084 
4085 	if (!dev)
4086 		return;
4087 
4088 	print_device_short(dev, indent);
4089 
4090 	TAILQ_FOREACH(child, &dev->children, link) {
4091 		print_device_tree_short(child, indent+1);
4092 	}
4093 }
4094 
4095 void
4096 print_device_tree(device_t dev, int indent)
4097 /* print the device and all its children (indented) */
4098 {
4099 	device_t child;
4100 
4101 	if (!dev)
4102 		return;
4103 
4104 	print_device(dev, indent);
4105 
4106 	TAILQ_FOREACH(child, &dev->children, link) {
4107 		print_device_tree(child, indent+1);
4108 	}
4109 }
4110 
4111 static void
4112 print_driver_short(driver_t *driver, int indent)
4113 {
4114 	if (!driver)
4115 		return;
4116 
4117 	indentprintf(("driver %s: softc size = %zd\n",
4118 	    driver->name, driver->size));
4119 }
4120 
4121 static void
4122 print_driver(driver_t *driver, int indent)
4123 {
4124 	if (!driver)
4125 		return;
4126 
4127 	print_driver_short(driver, indent);
4128 }
4129 
4130 
4131 static void
4132 print_driver_list(driver_list_t drivers, int indent)
4133 {
4134 	driverlink_t driver;
4135 
4136 	TAILQ_FOREACH(driver, &drivers, link) {
4137 		print_driver(driver->driver, indent);
4138 	}
4139 }
4140 
4141 static void
4142 print_devclass_short(devclass_t dc, int indent)
4143 {
4144 	if ( !dc )
4145 		return;
4146 
4147 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4148 }
4149 
4150 static void
4151 print_devclass(devclass_t dc, int indent)
4152 {
4153 	int i;
4154 
4155 	if ( !dc )
4156 		return;
4157 
4158 	print_devclass_short(dc, indent);
4159 	indentprintf(("Drivers:\n"));
4160 	print_driver_list(dc->drivers, indent+1);
4161 
4162 	indentprintf(("Devices:\n"));
4163 	for (i = 0; i < dc->maxunit; i++)
4164 		if (dc->devices[i])
4165 			print_device(dc->devices[i], indent+1);
4166 }
4167 
4168 void
4169 print_devclass_list_short(void)
4170 {
4171 	devclass_t dc;
4172 
4173 	printf("Short listing of devclasses, drivers & devices:\n");
4174 	TAILQ_FOREACH(dc, &devclasses, link) {
4175 		print_devclass_short(dc, 0);
4176 	}
4177 }
4178 
4179 void
4180 print_devclass_list(void)
4181 {
4182 	devclass_t dc;
4183 
4184 	printf("Full listing of devclasses, drivers & devices:\n");
4185 	TAILQ_FOREACH(dc, &devclasses, link) {
4186 		print_devclass(dc, 0);
4187 	}
4188 }
4189 
4190 #endif
4191 
4192 /*
4193  * User-space access to the device tree.
4194  *
4195  * We implement a small set of nodes:
4196  *
4197  * hw.bus			Single integer read method to obtain the
4198  *				current generation count.
4199  * hw.bus.devices		Reads the entire device tree in flat space.
4200  * hw.bus.rman			Resource manager interface
4201  *
4202  * We might like to add the ability to scan devclasses and/or drivers to
4203  * determine what else is currently loaded/available.
4204  */
4205 
4206 static int
4207 sysctl_bus(SYSCTL_HANDLER_ARGS)
4208 {
4209 	struct u_businfo	ubus;
4210 
4211 	ubus.ub_version = BUS_USER_VERSION;
4212 	ubus.ub_generation = bus_data_generation;
4213 
4214 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4215 }
4216 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4217     "bus-related data");
4218 
4219 static int
4220 sysctl_devices(SYSCTL_HANDLER_ARGS)
4221 {
4222 	int			*name = (int *)arg1;
4223 	u_int			namelen = arg2;
4224 	int			index;
4225 	struct device		*dev;
4226 	struct u_device		udev;	/* XXX this is a bit big */
4227 	int			error;
4228 
4229 	if (namelen != 2)
4230 		return (EINVAL);
4231 
4232 	if (bus_data_generation_check(name[0]))
4233 		return (EINVAL);
4234 
4235 	index = name[1];
4236 
4237 	/*
4238 	 * Scan the list of devices, looking for the requested index.
4239 	 */
4240 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4241 		if (index-- == 0)
4242 			break;
4243 	}
4244 	if (dev == NULL)
4245 		return (ENOENT);
4246 
4247 	/*
4248 	 * Populate the return array.
4249 	 */
4250 	bzero(&udev, sizeof(udev));
4251 	udev.dv_handle = (uintptr_t)dev;
4252 	udev.dv_parent = (uintptr_t)dev->parent;
4253 	if (dev->nameunit != NULL)
4254 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4255 	if (dev->desc != NULL)
4256 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4257 	if (dev->driver != NULL && dev->driver->name != NULL)
4258 		strlcpy(udev.dv_drivername, dev->driver->name,
4259 		    sizeof(udev.dv_drivername));
4260 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4261 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4262 	udev.dv_devflags = dev->devflags;
4263 	udev.dv_flags = dev->flags;
4264 	udev.dv_state = dev->state;
4265 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4266 	return (error);
4267 }
4268 
4269 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4270     "system device tree");
4271 
4272 int
4273 bus_data_generation_check(int generation)
4274 {
4275 	if (generation != bus_data_generation)
4276 		return (1);
4277 
4278 	/* XXX generate optimised lists here? */
4279 	return (0);
4280 }
4281 
4282 void
4283 bus_data_generation_update(void)
4284 {
4285 	bus_data_generation++;
4286 }
4287 
4288 int
4289 bus_free_resource(device_t dev, int type, struct resource *r)
4290 {
4291 	if (r == NULL)
4292 		return (0);
4293 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4294 }
4295