1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_bus.h" 31 #include "opt_ddb.h" 32 #include "opt_iommu.h" 33 34 #include <sys/param.h> 35 #include <sys/conf.h> 36 #include <sys/domainset.h> 37 #include <sys/eventhandler.h> 38 #include <sys/jail.h> 39 #include <sys/lock.h> 40 #include <sys/kernel.h> 41 #include <sys/limits.h> 42 #include <sys/malloc.h> 43 #include <sys/module.h> 44 #include <sys/mutex.h> 45 #include <sys/priv.h> 46 #include <machine/bus.h> 47 #include <sys/random.h> 48 #include <sys/refcount.h> 49 #include <sys/rman.h> 50 #include <sys/sbuf.h> 51 #include <sys/smp.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 #include <sys/bus.h> 55 #include <sys/cpuset.h> 56 #ifdef INTRNG 57 #include <sys/intr.h> 58 #endif 59 60 #include <net/vnet.h> 61 62 #include <machine/cpu.h> 63 #include <machine/stdarg.h> 64 65 #include <vm/uma.h> 66 #include <vm/vm.h> 67 68 #include <dev/iommu/iommu.h> 69 70 #include <ddb/ddb.h> 71 72 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 73 NULL); 74 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 75 NULL); 76 77 static bool disable_failed_devs = false; 78 SYSCTL_BOOL(_hw_bus, OID_AUTO, disable_failed_devices, CTLFLAG_RWTUN, &disable_failed_devs, 79 0, "Do not retry attaching devices that return an error from DEVICE_ATTACH the first time"); 80 81 /* 82 * Used to attach drivers to devclasses. 83 */ 84 typedef struct driverlink *driverlink_t; 85 struct driverlink { 86 kobj_class_t driver; 87 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 88 int pass; 89 int flags; 90 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 91 TAILQ_ENTRY(driverlink) passlink; 92 }; 93 94 /* 95 * Forward declarations 96 */ 97 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 98 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 99 typedef TAILQ_HEAD(device_list, _device) device_list_t; 100 101 struct devclass { 102 TAILQ_ENTRY(devclass) link; 103 devclass_t parent; /* parent in devclass hierarchy */ 104 driver_list_t drivers; /* bus devclasses store drivers for bus */ 105 char *name; 106 device_t *devices; /* array of devices indexed by unit */ 107 int maxunit; /* size of devices array */ 108 int flags; 109 #define DC_HAS_CHILDREN 1 110 111 struct sysctl_ctx_list sysctl_ctx; 112 struct sysctl_oid *sysctl_tree; 113 }; 114 115 struct device_prop_elm { 116 const char *name; 117 void *val; 118 void *dtr_ctx; 119 device_prop_dtr_t dtr; 120 LIST_ENTRY(device_prop_elm) link; 121 }; 122 123 static void device_destroy_props(device_t dev); 124 125 /** 126 * @brief Implementation of _device. 127 * 128 * The structure is named "_device" instead of "device" to avoid type confusion 129 * caused by other subsystems defining a (struct device). 130 */ 131 struct _device { 132 /* 133 * A device is a kernel object. The first field must be the 134 * current ops table for the object. 135 */ 136 KOBJ_FIELDS; 137 138 /* 139 * Device hierarchy. 140 */ 141 TAILQ_ENTRY(_device) link; /**< list of devices in parent */ 142 TAILQ_ENTRY(_device) devlink; /**< global device list membership */ 143 device_t parent; /**< parent of this device */ 144 device_list_t children; /**< list of child devices */ 145 146 /* 147 * Details of this device. 148 */ 149 driver_t *driver; /**< current driver */ 150 devclass_t devclass; /**< current device class */ 151 int unit; /**< current unit number */ 152 char* nameunit; /**< name+unit e.g. foodev0 */ 153 char* desc; /**< driver specific description */ 154 u_int busy; /**< count of calls to device_busy() */ 155 device_state_t state; /**< current device state */ 156 uint32_t devflags; /**< api level flags for device_get_flags() */ 157 u_int flags; /**< internal device flags */ 158 u_int order; /**< order from device_add_child_ordered() */ 159 void *ivars; /**< instance variables */ 160 void *softc; /**< current driver's variables */ 161 LIST_HEAD(, device_prop_elm) props; 162 163 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 164 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 165 }; 166 167 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 168 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 169 170 EVENTHANDLER_LIST_DEFINE(device_attach); 171 EVENTHANDLER_LIST_DEFINE(device_detach); 172 EVENTHANDLER_LIST_DEFINE(device_nomatch); 173 EVENTHANDLER_LIST_DEFINE(dev_lookup); 174 175 static void devctl2_init(void); 176 static bool device_frozen; 177 178 #define DRIVERNAME(d) ((d)? d->name : "no driver") 179 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 180 181 #ifdef BUS_DEBUG 182 183 static int bus_debug = 1; 184 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 185 "Bus debug level"); 186 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 187 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 188 189 /** 190 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 191 * prevent syslog from deleting initial spaces 192 */ 193 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 194 195 static void print_device_short(device_t dev, int indent); 196 static void print_device(device_t dev, int indent); 197 void print_device_tree_short(device_t dev, int indent); 198 void print_device_tree(device_t dev, int indent); 199 static void print_driver_short(driver_t *driver, int indent); 200 static void print_driver(driver_t *driver, int indent); 201 static void print_driver_list(driver_list_t drivers, int indent); 202 static void print_devclass_short(devclass_t dc, int indent); 203 static void print_devclass(devclass_t dc, int indent); 204 void print_devclass_list_short(void); 205 void print_devclass_list(void); 206 207 #else 208 /* Make the compiler ignore the function calls */ 209 #define PDEBUG(a) /* nop */ 210 #define DEVICENAME(d) /* nop */ 211 212 #define print_device_short(d,i) /* nop */ 213 #define print_device(d,i) /* nop */ 214 #define print_device_tree_short(d,i) /* nop */ 215 #define print_device_tree(d,i) /* nop */ 216 #define print_driver_short(d,i) /* nop */ 217 #define print_driver(d,i) /* nop */ 218 #define print_driver_list(d,i) /* nop */ 219 #define print_devclass_short(d,i) /* nop */ 220 #define print_devclass(d,i) /* nop */ 221 #define print_devclass_list_short() /* nop */ 222 #define print_devclass_list() /* nop */ 223 #endif 224 225 /* 226 * dev sysctl tree 227 */ 228 229 enum { 230 DEVCLASS_SYSCTL_PARENT, 231 }; 232 233 static int 234 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 235 { 236 devclass_t dc = (devclass_t)arg1; 237 const char *value; 238 239 switch (arg2) { 240 case DEVCLASS_SYSCTL_PARENT: 241 value = dc->parent ? dc->parent->name : ""; 242 break; 243 default: 244 return (EINVAL); 245 } 246 return (SYSCTL_OUT_STR(req, value)); 247 } 248 249 static void 250 devclass_sysctl_init(devclass_t dc) 251 { 252 if (dc->sysctl_tree != NULL) 253 return; 254 sysctl_ctx_init(&dc->sysctl_ctx); 255 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 256 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 257 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 258 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 259 OID_AUTO, "%parent", 260 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 261 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 262 "parent class"); 263 } 264 265 enum { 266 DEVICE_SYSCTL_DESC, 267 DEVICE_SYSCTL_DRIVER, 268 DEVICE_SYSCTL_LOCATION, 269 DEVICE_SYSCTL_PNPINFO, 270 DEVICE_SYSCTL_PARENT, 271 DEVICE_SYSCTL_IOMMU, 272 }; 273 274 static int 275 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 276 { 277 struct sbuf sb; 278 device_t dev = (device_t)arg1; 279 device_t iommu; 280 int error; 281 uint16_t rid; 282 const char *c; 283 284 sbuf_new_for_sysctl(&sb, NULL, 1024, req); 285 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 286 bus_topo_lock(); 287 switch (arg2) { 288 case DEVICE_SYSCTL_DESC: 289 sbuf_cat(&sb, dev->desc ? dev->desc : ""); 290 break; 291 case DEVICE_SYSCTL_DRIVER: 292 sbuf_cat(&sb, dev->driver ? dev->driver->name : ""); 293 break; 294 case DEVICE_SYSCTL_LOCATION: 295 bus_child_location(dev, &sb); 296 break; 297 case DEVICE_SYSCTL_PNPINFO: 298 bus_child_pnpinfo(dev, &sb); 299 break; 300 case DEVICE_SYSCTL_PARENT: 301 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : ""); 302 break; 303 case DEVICE_SYSCTL_IOMMU: 304 iommu = NULL; 305 error = device_get_prop(dev, DEV_PROP_NAME_IOMMU, 306 (void **)&iommu); 307 c = ""; 308 if (error == 0 && iommu != NULL) { 309 sbuf_printf(&sb, "unit=%s", device_get_nameunit(iommu)); 310 c = " "; 311 } 312 rid = 0; 313 #ifdef IOMMU 314 iommu_get_requester(dev, &rid); 315 #endif 316 if (rid != 0) 317 sbuf_printf(&sb, "%srid=%#x", c, rid); 318 break; 319 default: 320 error = EINVAL; 321 goto out; 322 } 323 error = sbuf_finish(&sb); 324 out: 325 bus_topo_unlock(); 326 sbuf_delete(&sb); 327 return (error); 328 } 329 330 static void 331 device_sysctl_init(device_t dev) 332 { 333 devclass_t dc = dev->devclass; 334 int domain; 335 336 if (dev->sysctl_tree != NULL) 337 return; 338 devclass_sysctl_init(dc); 339 sysctl_ctx_init(&dev->sysctl_ctx); 340 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 341 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 342 dev->nameunit + strlen(dc->name), 343 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); 344 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 345 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 346 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 347 "device description"); 348 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 349 OID_AUTO, "%driver", 350 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 351 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 352 "device driver name"); 353 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 354 OID_AUTO, "%location", 355 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 356 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 357 "device location relative to parent"); 358 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 359 OID_AUTO, "%pnpinfo", 360 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 361 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 362 "device identification"); 363 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 364 OID_AUTO, "%parent", 365 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 366 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 367 "parent device"); 368 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 369 OID_AUTO, "%iommu", 370 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 371 dev, DEVICE_SYSCTL_IOMMU, device_sysctl_handler, "A", 372 "iommu unit handling the device requests"); 373 if (bus_get_domain(dev, &domain) == 0) 374 SYSCTL_ADD_INT(&dev->sysctl_ctx, 375 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 376 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain"); 377 } 378 379 static void 380 device_sysctl_update(device_t dev) 381 { 382 devclass_t dc = dev->devclass; 383 384 if (dev->sysctl_tree == NULL) 385 return; 386 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 387 } 388 389 static void 390 device_sysctl_fini(device_t dev) 391 { 392 if (dev->sysctl_tree == NULL) 393 return; 394 sysctl_ctx_free(&dev->sysctl_ctx); 395 dev->sysctl_tree = NULL; 396 } 397 398 static struct device_list bus_data_devices; 399 static int bus_data_generation = 1; 400 401 static kobj_method_t null_methods[] = { 402 KOBJMETHOD_END 403 }; 404 405 DEFINE_CLASS(null, null_methods, 0); 406 407 void 408 bus_topo_assert(void) 409 { 410 411 GIANT_REQUIRED; 412 } 413 414 struct mtx * 415 bus_topo_mtx(void) 416 { 417 418 return (&Giant); 419 } 420 421 void 422 bus_topo_lock(void) 423 { 424 425 mtx_lock(bus_topo_mtx()); 426 } 427 428 void 429 bus_topo_unlock(void) 430 { 431 432 mtx_unlock(bus_topo_mtx()); 433 } 434 435 /* 436 * Bus pass implementation 437 */ 438 439 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 440 static int bus_current_pass = BUS_PASS_ROOT; 441 442 /** 443 * @internal 444 * @brief Register the pass level of a new driver attachment 445 * 446 * Register a new driver attachment's pass level. If no driver 447 * attachment with the same pass level has been added, then @p new 448 * will be added to the global passes list. 449 * 450 * @param new the new driver attachment 451 */ 452 static void 453 driver_register_pass(struct driverlink *new) 454 { 455 struct driverlink *dl; 456 457 /* We only consider pass numbers during boot. */ 458 if (bus_current_pass == BUS_PASS_DEFAULT) 459 return; 460 461 /* 462 * Walk the passes list. If we already know about this pass 463 * then there is nothing to do. If we don't, then insert this 464 * driver link into the list. 465 */ 466 TAILQ_FOREACH(dl, &passes, passlink) { 467 if (dl->pass < new->pass) 468 continue; 469 if (dl->pass == new->pass) 470 return; 471 TAILQ_INSERT_BEFORE(dl, new, passlink); 472 return; 473 } 474 TAILQ_INSERT_TAIL(&passes, new, passlink); 475 } 476 477 /** 478 * @brief Retrieve the current bus pass 479 * 480 * Retrieves the current bus pass level. Call the BUS_NEW_PASS() 481 * method on the root bus to kick off a new device tree scan for each 482 * new pass level that has at least one driver. 483 */ 484 int 485 bus_get_pass(void) 486 { 487 488 return (bus_current_pass); 489 } 490 491 /** 492 * @brief Raise the current bus pass 493 * 494 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 495 * method on the root bus to kick off a new device tree scan for each 496 * new pass level that has at least one driver. 497 */ 498 static void 499 bus_set_pass(int pass) 500 { 501 struct driverlink *dl; 502 503 if (bus_current_pass > pass) 504 panic("Attempt to lower bus pass level"); 505 506 TAILQ_FOREACH(dl, &passes, passlink) { 507 /* Skip pass values below the current pass level. */ 508 if (dl->pass <= bus_current_pass) 509 continue; 510 511 /* 512 * Bail once we hit a driver with a pass level that is 513 * too high. 514 */ 515 if (dl->pass > pass) 516 break; 517 518 /* 519 * Raise the pass level to the next level and rescan 520 * the tree. 521 */ 522 bus_current_pass = dl->pass; 523 BUS_NEW_PASS(root_bus); 524 } 525 526 /* 527 * If there isn't a driver registered for the requested pass, 528 * then bus_current_pass might still be less than 'pass'. Set 529 * it to 'pass' in that case. 530 */ 531 if (bus_current_pass < pass) 532 bus_current_pass = pass; 533 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 534 } 535 536 /* 537 * Devclass implementation 538 */ 539 540 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 541 542 /** 543 * @internal 544 * @brief Find or create a device class 545 * 546 * If a device class with the name @p classname exists, return it, 547 * otherwise if @p create is non-zero create and return a new device 548 * class. 549 * 550 * If @p parentname is non-NULL, the parent of the devclass is set to 551 * the devclass of that name. 552 * 553 * @param classname the devclass name to find or create 554 * @param parentname the parent devclass name or @c NULL 555 * @param create non-zero to create a devclass 556 */ 557 static devclass_t 558 devclass_find_internal(const char *classname, const char *parentname, 559 int create) 560 { 561 devclass_t dc; 562 563 PDEBUG(("looking for %s", classname)); 564 if (!classname) 565 return (NULL); 566 567 TAILQ_FOREACH(dc, &devclasses, link) { 568 if (!strcmp(dc->name, classname)) 569 break; 570 } 571 572 if (create && !dc) { 573 PDEBUG(("creating %s", classname)); 574 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 575 M_BUS, M_NOWAIT | M_ZERO); 576 if (!dc) 577 return (NULL); 578 dc->parent = NULL; 579 dc->name = (char*) (dc + 1); 580 strcpy(dc->name, classname); 581 TAILQ_INIT(&dc->drivers); 582 TAILQ_INSERT_TAIL(&devclasses, dc, link); 583 584 bus_data_generation_update(); 585 } 586 587 /* 588 * If a parent class is specified, then set that as our parent so 589 * that this devclass will support drivers for the parent class as 590 * well. If the parent class has the same name don't do this though 591 * as it creates a cycle that can trigger an infinite loop in 592 * device_probe_child() if a device exists for which there is no 593 * suitable driver. 594 */ 595 if (parentname && dc && !dc->parent && 596 strcmp(classname, parentname) != 0) { 597 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 598 dc->parent->flags |= DC_HAS_CHILDREN; 599 } 600 601 return (dc); 602 } 603 604 /** 605 * @brief Create a device class 606 * 607 * If a device class with the name @p classname exists, return it, 608 * otherwise create and return a new device class. 609 * 610 * @param classname the devclass name to find or create 611 */ 612 devclass_t 613 devclass_create(const char *classname) 614 { 615 return (devclass_find_internal(classname, NULL, TRUE)); 616 } 617 618 /** 619 * @brief Find a device class 620 * 621 * If a device class with the name @p classname exists, return it, 622 * otherwise return @c NULL. 623 * 624 * @param classname the devclass name to find 625 */ 626 devclass_t 627 devclass_find(const char *classname) 628 { 629 return (devclass_find_internal(classname, NULL, FALSE)); 630 } 631 632 /** 633 * @brief Register that a device driver has been added to a devclass 634 * 635 * Register that a device driver has been added to a devclass. This 636 * is called by devclass_add_driver to accomplish the recursive 637 * notification of all the children classes of dc, as well as dc. 638 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 639 * the devclass. 640 * 641 * We do a full search here of the devclass list at each iteration 642 * level to save storing children-lists in the devclass structure. If 643 * we ever move beyond a few dozen devices doing this, we may need to 644 * reevaluate... 645 * 646 * @param dc the devclass to edit 647 * @param driver the driver that was just added 648 */ 649 static void 650 devclass_driver_added(devclass_t dc, driver_t *driver) 651 { 652 devclass_t parent; 653 int i; 654 655 /* 656 * Call BUS_DRIVER_ADDED for any existing buses in this class. 657 */ 658 for (i = 0; i < dc->maxunit; i++) 659 if (dc->devices[i] && device_is_attached(dc->devices[i])) 660 BUS_DRIVER_ADDED(dc->devices[i], driver); 661 662 /* 663 * Walk through the children classes. Since we only keep a 664 * single parent pointer around, we walk the entire list of 665 * devclasses looking for children. We set the 666 * DC_HAS_CHILDREN flag when a child devclass is created on 667 * the parent, so we only walk the list for those devclasses 668 * that have children. 669 */ 670 if (!(dc->flags & DC_HAS_CHILDREN)) 671 return; 672 parent = dc; 673 TAILQ_FOREACH(dc, &devclasses, link) { 674 if (dc->parent == parent) 675 devclass_driver_added(dc, driver); 676 } 677 } 678 679 static void 680 device_handle_nomatch(device_t dev) 681 { 682 BUS_PROBE_NOMATCH(dev->parent, dev); 683 EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev); 684 dev->flags |= DF_DONENOMATCH; 685 } 686 687 /** 688 * @brief Add a device driver to a device class 689 * 690 * Add a device driver to a devclass. This is normally called 691 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 692 * all devices in the devclass will be called to allow them to attempt 693 * to re-probe any unmatched children. 694 * 695 * @param dc the devclass to edit 696 * @param driver the driver to register 697 */ 698 int 699 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 700 { 701 driverlink_t dl; 702 devclass_t child_dc; 703 const char *parentname; 704 705 PDEBUG(("%s", DRIVERNAME(driver))); 706 707 /* Don't allow invalid pass values. */ 708 if (pass <= BUS_PASS_ROOT) 709 return (EINVAL); 710 711 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 712 if (!dl) 713 return (ENOMEM); 714 715 /* 716 * Compile the driver's methods. Also increase the reference count 717 * so that the class doesn't get freed when the last instance 718 * goes. This means we can safely use static methods and avoids a 719 * double-free in devclass_delete_driver. 720 */ 721 kobj_class_compile((kobj_class_t) driver); 722 723 /* 724 * If the driver has any base classes, make the 725 * devclass inherit from the devclass of the driver's 726 * first base class. This will allow the system to 727 * search for drivers in both devclasses for children 728 * of a device using this driver. 729 */ 730 if (driver->baseclasses) 731 parentname = driver->baseclasses[0]->name; 732 else 733 parentname = NULL; 734 child_dc = devclass_find_internal(driver->name, parentname, TRUE); 735 if (dcp != NULL) 736 *dcp = child_dc; 737 738 dl->driver = driver; 739 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 740 driver->refs++; /* XXX: kobj_mtx */ 741 dl->pass = pass; 742 driver_register_pass(dl); 743 744 if (device_frozen) { 745 dl->flags |= DL_DEFERRED_PROBE; 746 } else { 747 devclass_driver_added(dc, driver); 748 } 749 bus_data_generation_update(); 750 return (0); 751 } 752 753 /** 754 * @brief Register that a device driver has been deleted from a devclass 755 * 756 * Register that a device driver has been removed from a devclass. 757 * This is called by devclass_delete_driver to accomplish the 758 * recursive notification of all the children classes of busclass, as 759 * well as busclass. Each layer will attempt to detach the driver 760 * from any devices that are children of the bus's devclass. The function 761 * will return an error if a device fails to detach. 762 * 763 * We do a full search here of the devclass list at each iteration 764 * level to save storing children-lists in the devclass structure. If 765 * we ever move beyond a few dozen devices doing this, we may need to 766 * reevaluate... 767 * 768 * @param busclass the devclass of the parent bus 769 * @param dc the devclass of the driver being deleted 770 * @param driver the driver being deleted 771 */ 772 static int 773 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 774 { 775 devclass_t parent; 776 device_t dev; 777 int error, i; 778 779 /* 780 * Disassociate from any devices. We iterate through all the 781 * devices in the devclass of the driver and detach any which are 782 * using the driver and which have a parent in the devclass which 783 * we are deleting from. 784 * 785 * Note that since a driver can be in multiple devclasses, we 786 * should not detach devices which are not children of devices in 787 * the affected devclass. 788 * 789 * If we're frozen, we don't generate NOMATCH events. Mark to 790 * generate later. 791 */ 792 for (i = 0; i < dc->maxunit; i++) { 793 if (dc->devices[i]) { 794 dev = dc->devices[i]; 795 if (dev->driver == driver && dev->parent && 796 dev->parent->devclass == busclass) { 797 if ((error = device_detach(dev)) != 0) 798 return (error); 799 if (device_frozen) { 800 dev->flags &= ~DF_DONENOMATCH; 801 dev->flags |= DF_NEEDNOMATCH; 802 } else { 803 device_handle_nomatch(dev); 804 } 805 } 806 } 807 } 808 809 /* 810 * Walk through the children classes. Since we only keep a 811 * single parent pointer around, we walk the entire list of 812 * devclasses looking for children. We set the 813 * DC_HAS_CHILDREN flag when a child devclass is created on 814 * the parent, so we only walk the list for those devclasses 815 * that have children. 816 */ 817 if (!(busclass->flags & DC_HAS_CHILDREN)) 818 return (0); 819 parent = busclass; 820 TAILQ_FOREACH(busclass, &devclasses, link) { 821 if (busclass->parent == parent) { 822 error = devclass_driver_deleted(busclass, dc, driver); 823 if (error) 824 return (error); 825 } 826 } 827 return (0); 828 } 829 830 /** 831 * @brief Delete a device driver from a device class 832 * 833 * Delete a device driver from a devclass. This is normally called 834 * automatically by DRIVER_MODULE(). 835 * 836 * If the driver is currently attached to any devices, 837 * devclass_delete_driver() will first attempt to detach from each 838 * device. If one of the detach calls fails, the driver will not be 839 * deleted. 840 * 841 * @param dc the devclass to edit 842 * @param driver the driver to unregister 843 */ 844 int 845 devclass_delete_driver(devclass_t busclass, driver_t *driver) 846 { 847 devclass_t dc = devclass_find(driver->name); 848 driverlink_t dl; 849 int error; 850 851 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 852 853 if (!dc) 854 return (0); 855 856 /* 857 * Find the link structure in the bus' list of drivers. 858 */ 859 TAILQ_FOREACH(dl, &busclass->drivers, link) { 860 if (dl->driver == driver) 861 break; 862 } 863 864 if (!dl) { 865 PDEBUG(("%s not found in %s list", driver->name, 866 busclass->name)); 867 return (ENOENT); 868 } 869 870 error = devclass_driver_deleted(busclass, dc, driver); 871 if (error != 0) 872 return (error); 873 874 TAILQ_REMOVE(&busclass->drivers, dl, link); 875 free(dl, M_BUS); 876 877 /* XXX: kobj_mtx */ 878 driver->refs--; 879 if (driver->refs == 0) 880 kobj_class_free((kobj_class_t) driver); 881 882 bus_data_generation_update(); 883 return (0); 884 } 885 886 /** 887 * @brief Quiesces a set of device drivers from a device class 888 * 889 * Quiesce a device driver from a devclass. This is normally called 890 * automatically by DRIVER_MODULE(). 891 * 892 * If the driver is currently attached to any devices, 893 * devclass_quiesece_driver() will first attempt to quiesce each 894 * device. 895 * 896 * @param dc the devclass to edit 897 * @param driver the driver to unregister 898 */ 899 static int 900 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 901 { 902 devclass_t dc = devclass_find(driver->name); 903 driverlink_t dl; 904 device_t dev; 905 int i; 906 int error; 907 908 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 909 910 if (!dc) 911 return (0); 912 913 /* 914 * Find the link structure in the bus' list of drivers. 915 */ 916 TAILQ_FOREACH(dl, &busclass->drivers, link) { 917 if (dl->driver == driver) 918 break; 919 } 920 921 if (!dl) { 922 PDEBUG(("%s not found in %s list", driver->name, 923 busclass->name)); 924 return (ENOENT); 925 } 926 927 /* 928 * Quiesce all devices. We iterate through all the devices in 929 * the devclass of the driver and quiesce any which are using 930 * the driver and which have a parent in the devclass which we 931 * are quiescing. 932 * 933 * Note that since a driver can be in multiple devclasses, we 934 * should not quiesce devices which are not children of 935 * devices in the affected devclass. 936 */ 937 for (i = 0; i < dc->maxunit; i++) { 938 if (dc->devices[i]) { 939 dev = dc->devices[i]; 940 if (dev->driver == driver && dev->parent && 941 dev->parent->devclass == busclass) { 942 if ((error = device_quiesce(dev)) != 0) 943 return (error); 944 } 945 } 946 } 947 948 return (0); 949 } 950 951 /** 952 * @internal 953 */ 954 static driverlink_t 955 devclass_find_driver_internal(devclass_t dc, const char *classname) 956 { 957 driverlink_t dl; 958 959 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 960 961 TAILQ_FOREACH(dl, &dc->drivers, link) { 962 if (!strcmp(dl->driver->name, classname)) 963 return (dl); 964 } 965 966 PDEBUG(("not found")); 967 return (NULL); 968 } 969 970 /** 971 * @brief Return the name of the devclass 972 */ 973 const char * 974 devclass_get_name(devclass_t dc) 975 { 976 return (dc->name); 977 } 978 979 /** 980 * @brief Find a device given a unit number 981 * 982 * @param dc the devclass to search 983 * @param unit the unit number to search for 984 * 985 * @returns the device with the given unit number or @c 986 * NULL if there is no such device 987 */ 988 device_t 989 devclass_get_device(devclass_t dc, int unit) 990 { 991 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 992 return (NULL); 993 return (dc->devices[unit]); 994 } 995 996 /** 997 * @brief Find the softc field of a device given a unit number 998 * 999 * @param dc the devclass to search 1000 * @param unit the unit number to search for 1001 * 1002 * @returns the softc field of the device with the given 1003 * unit number or @c NULL if there is no such 1004 * device 1005 */ 1006 void * 1007 devclass_get_softc(devclass_t dc, int unit) 1008 { 1009 device_t dev; 1010 1011 dev = devclass_get_device(dc, unit); 1012 if (!dev) 1013 return (NULL); 1014 1015 return (device_get_softc(dev)); 1016 } 1017 1018 /** 1019 * @brief Get a list of devices in the devclass 1020 * 1021 * An array containing a list of all the devices in the given devclass 1022 * is allocated and returned in @p *devlistp. The number of devices 1023 * in the array is returned in @p *devcountp. The caller should free 1024 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1025 * 1026 * @param dc the devclass to examine 1027 * @param devlistp points at location for array pointer return 1028 * value 1029 * @param devcountp points at location for array size return value 1030 * 1031 * @retval 0 success 1032 * @retval ENOMEM the array allocation failed 1033 */ 1034 int 1035 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1036 { 1037 int count, i; 1038 device_t *list; 1039 1040 count = devclass_get_count(dc); 1041 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1042 if (!list) 1043 return (ENOMEM); 1044 1045 count = 0; 1046 for (i = 0; i < dc->maxunit; i++) { 1047 if (dc->devices[i]) { 1048 list[count] = dc->devices[i]; 1049 count++; 1050 } 1051 } 1052 1053 *devlistp = list; 1054 *devcountp = count; 1055 1056 return (0); 1057 } 1058 1059 /** 1060 * @brief Get a list of drivers in the devclass 1061 * 1062 * An array containing a list of pointers to all the drivers in the 1063 * given devclass is allocated and returned in @p *listp. The number 1064 * of drivers in the array is returned in @p *countp. The caller should 1065 * free the array using @c free(p, M_TEMP). 1066 * 1067 * @param dc the devclass to examine 1068 * @param listp gives location for array pointer return value 1069 * @param countp gives location for number of array elements 1070 * return value 1071 * 1072 * @retval 0 success 1073 * @retval ENOMEM the array allocation failed 1074 */ 1075 int 1076 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1077 { 1078 driverlink_t dl; 1079 driver_t **list; 1080 int count; 1081 1082 count = 0; 1083 TAILQ_FOREACH(dl, &dc->drivers, link) 1084 count++; 1085 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1086 if (list == NULL) 1087 return (ENOMEM); 1088 1089 count = 0; 1090 TAILQ_FOREACH(dl, &dc->drivers, link) { 1091 list[count] = dl->driver; 1092 count++; 1093 } 1094 *listp = list; 1095 *countp = count; 1096 1097 return (0); 1098 } 1099 1100 /** 1101 * @brief Get the number of devices in a devclass 1102 * 1103 * @param dc the devclass to examine 1104 */ 1105 int 1106 devclass_get_count(devclass_t dc) 1107 { 1108 int count, i; 1109 1110 count = 0; 1111 for (i = 0; i < dc->maxunit; i++) 1112 if (dc->devices[i]) 1113 count++; 1114 return (count); 1115 } 1116 1117 /** 1118 * @brief Get the maximum unit number used in a devclass 1119 * 1120 * Note that this is one greater than the highest currently-allocated unit. If 1121 * @p dc is NULL, @c -1 is returned to indicate that not even the devclass has 1122 * been allocated yet. 1123 * 1124 * @param dc the devclass to examine 1125 */ 1126 int 1127 devclass_get_maxunit(devclass_t dc) 1128 { 1129 if (dc == NULL) 1130 return (-1); 1131 return (dc->maxunit); 1132 } 1133 1134 /** 1135 * @brief Find a free unit number in a devclass 1136 * 1137 * This function searches for the first unused unit number greater 1138 * that or equal to @p unit. Note: This can return INT_MAX which 1139 * may be rejected elsewhere. 1140 * 1141 * @param dc the devclass to examine 1142 * @param unit the first unit number to check 1143 */ 1144 int 1145 devclass_find_free_unit(devclass_t dc, int unit) 1146 { 1147 if (dc == NULL) 1148 return (unit); 1149 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1150 unit++; 1151 return (unit); 1152 } 1153 1154 /** 1155 * @brief Set the parent of a devclass 1156 * 1157 * The parent class is normally initialised automatically by 1158 * DRIVER_MODULE(). 1159 * 1160 * @param dc the devclass to edit 1161 * @param pdc the new parent devclass 1162 */ 1163 void 1164 devclass_set_parent(devclass_t dc, devclass_t pdc) 1165 { 1166 dc->parent = pdc; 1167 } 1168 1169 /** 1170 * @brief Get the parent of a devclass 1171 * 1172 * @param dc the devclass to examine 1173 */ 1174 devclass_t 1175 devclass_get_parent(devclass_t dc) 1176 { 1177 return (dc->parent); 1178 } 1179 1180 struct sysctl_ctx_list * 1181 devclass_get_sysctl_ctx(devclass_t dc) 1182 { 1183 return (&dc->sysctl_ctx); 1184 } 1185 1186 struct sysctl_oid * 1187 devclass_get_sysctl_tree(devclass_t dc) 1188 { 1189 return (dc->sysctl_tree); 1190 } 1191 1192 /** 1193 * @internal 1194 * @brief Allocate a unit number 1195 * 1196 * On entry, @p *unitp is the desired unit number (or @c DEVICE_UNIT_ANY if any 1197 * will do). The allocated unit number is returned in @p *unitp. 1198 * 1199 * @param dc the devclass to allocate from 1200 * @param unitp points at the location for the allocated unit 1201 * number 1202 * 1203 * @retval 0 success 1204 * @retval EEXIST the requested unit number is already allocated 1205 * @retval ENOMEM memory allocation failure 1206 * @retval EINVAL unit is negative or we've run out of units 1207 */ 1208 static int 1209 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1210 { 1211 const char *s; 1212 int unit = *unitp; 1213 1214 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1215 1216 /* Ask the parent bus if it wants to wire this device. */ 1217 if (unit == DEVICE_UNIT_ANY) 1218 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1219 &unit); 1220 1221 /* Unit numbers are either DEVICE_UNIT_ANY or in [0,INT_MAX) */ 1222 if ((unit < 0 && unit != DEVICE_UNIT_ANY) || unit == INT_MAX) 1223 return (EINVAL); 1224 1225 /* If we were given a wired unit number, check for existing device */ 1226 if (unit != DEVICE_UNIT_ANY) { 1227 if (unit < dc->maxunit && dc->devices[unit] != NULL) { 1228 if (bootverbose) 1229 printf("%s: %s%d already exists; skipping it\n", 1230 dc->name, dc->name, *unitp); 1231 return (EEXIST); 1232 } 1233 } else { 1234 /* Unwired device, find the next available slot for it */ 1235 unit = 0; 1236 for (unit = 0; unit < INT_MAX; unit++) { 1237 /* If this device slot is already in use, skip it. */ 1238 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1239 continue; 1240 1241 /* If there is an "at" hint for a unit then skip it. */ 1242 if (resource_string_value(dc->name, unit, "at", &s) == 1243 0) 1244 continue; 1245 1246 break; 1247 } 1248 } 1249 1250 /* 1251 * Unit numbers must be in the range [0, INT_MAX), so exclude INT_MAX as 1252 * too large. We constrain maxunit below to be <= INT_MAX. This means we 1253 * can treat unit and maxunit as normal integers with normal math 1254 * everywhere and we only have to flag INT_MAX as invalid. 1255 */ 1256 if (unit == INT_MAX) 1257 return (EINVAL); 1258 1259 /* 1260 * We've selected a unit beyond the length of the table, so let's extend 1261 * the table to make room for all units up to and including this one. 1262 */ 1263 if (unit >= dc->maxunit) { 1264 int newsize; 1265 1266 newsize = unit + 1; 1267 dc->devices = reallocf(dc->devices, 1268 newsize * sizeof(*dc->devices), M_BUS, M_WAITOK); 1269 memset(dc->devices + dc->maxunit, 0, 1270 sizeof(device_t) * (newsize - dc->maxunit)); 1271 dc->maxunit = newsize; 1272 } 1273 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1274 1275 *unitp = unit; 1276 return (0); 1277 } 1278 1279 /** 1280 * @internal 1281 * @brief Add a device to a devclass 1282 * 1283 * A unit number is allocated for the device (using the device's 1284 * preferred unit number if any) and the device is registered in the 1285 * devclass. This allows the device to be looked up by its unit 1286 * number, e.g. by decoding a dev_t minor number. 1287 * 1288 * @param dc the devclass to add to 1289 * @param dev the device to add 1290 * 1291 * @retval 0 success 1292 * @retval EEXIST the requested unit number is already allocated 1293 * @retval ENOMEM memory allocation failure 1294 * @retval EINVAL Unit number invalid or too many units 1295 */ 1296 static int 1297 devclass_add_device(devclass_t dc, device_t dev) 1298 { 1299 int buflen, error; 1300 1301 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1302 1303 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1304 if (buflen < 0) 1305 return (ENOMEM); 1306 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1307 if (!dev->nameunit) 1308 return (ENOMEM); 1309 1310 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1311 free(dev->nameunit, M_BUS); 1312 dev->nameunit = NULL; 1313 return (error); 1314 } 1315 dc->devices[dev->unit] = dev; 1316 dev->devclass = dc; 1317 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1318 1319 return (0); 1320 } 1321 1322 /** 1323 * @internal 1324 * @brief Delete a device from a devclass 1325 * 1326 * The device is removed from the devclass's device list and its unit 1327 * number is freed. 1328 1329 * @param dc the devclass to delete from 1330 * @param dev the device to delete 1331 * 1332 * @retval 0 success 1333 */ 1334 static int 1335 devclass_delete_device(devclass_t dc, device_t dev) 1336 { 1337 if (!dc || !dev) 1338 return (0); 1339 1340 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1341 1342 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1343 panic("devclass_delete_device: inconsistent device class"); 1344 dc->devices[dev->unit] = NULL; 1345 if (dev->flags & DF_WILDCARD) 1346 dev->unit = DEVICE_UNIT_ANY; 1347 dev->devclass = NULL; 1348 free(dev->nameunit, M_BUS); 1349 dev->nameunit = NULL; 1350 1351 return (0); 1352 } 1353 1354 /** 1355 * @internal 1356 * @brief Make a new device and add it as a child of @p parent 1357 * 1358 * @param parent the parent of the new device 1359 * @param name the devclass name of the new device or @c NULL 1360 * to leave the devclass unspecified 1361 * @parem unit the unit number of the new device of @c DEVICE_UNIT_ANY 1362 * to leave the unit number unspecified 1363 * 1364 * @returns the new device 1365 */ 1366 static device_t 1367 make_device(device_t parent, const char *name, int unit) 1368 { 1369 device_t dev; 1370 devclass_t dc; 1371 1372 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1373 1374 if (name) { 1375 dc = devclass_find_internal(name, NULL, TRUE); 1376 if (!dc) { 1377 printf("make_device: can't find device class %s\n", 1378 name); 1379 return (NULL); 1380 } 1381 } else { 1382 dc = NULL; 1383 } 1384 1385 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1386 if (!dev) 1387 return (NULL); 1388 1389 dev->parent = parent; 1390 TAILQ_INIT(&dev->children); 1391 kobj_init((kobj_t) dev, &null_class); 1392 dev->driver = NULL; 1393 dev->devclass = NULL; 1394 dev->unit = unit; 1395 dev->nameunit = NULL; 1396 dev->desc = NULL; 1397 dev->busy = 0; 1398 dev->devflags = 0; 1399 dev->flags = DF_ENABLED; 1400 dev->order = 0; 1401 if (unit == DEVICE_UNIT_ANY) 1402 dev->flags |= DF_WILDCARD; 1403 if (name) { 1404 dev->flags |= DF_FIXEDCLASS; 1405 if (devclass_add_device(dc, dev)) { 1406 kobj_delete((kobj_t) dev, M_BUS); 1407 return (NULL); 1408 } 1409 } 1410 if (parent != NULL && device_has_quiet_children(parent)) 1411 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1412 dev->ivars = NULL; 1413 dev->softc = NULL; 1414 LIST_INIT(&dev->props); 1415 1416 dev->state = DS_NOTPRESENT; 1417 1418 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1419 bus_data_generation_update(); 1420 1421 return (dev); 1422 } 1423 1424 /** 1425 * @internal 1426 * @brief Print a description of a device. 1427 */ 1428 static int 1429 device_print_child(device_t dev, device_t child) 1430 { 1431 int retval = 0; 1432 1433 if (device_is_alive(child)) 1434 retval += BUS_PRINT_CHILD(dev, child); 1435 else 1436 retval += device_printf(child, " not found\n"); 1437 1438 return (retval); 1439 } 1440 1441 /** 1442 * @brief Create a new device 1443 * 1444 * This creates a new device and adds it as a child of an existing 1445 * parent device. The new device will be added after the last existing 1446 * child with order zero. 1447 * 1448 * @param dev the device which will be the parent of the 1449 * new child device 1450 * @param name devclass name for new device or @c NULL if not 1451 * specified 1452 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not 1453 * specified 1454 * 1455 * @returns the new device 1456 */ 1457 device_t 1458 device_add_child(device_t dev, const char *name, int unit) 1459 { 1460 return (device_add_child_ordered(dev, 0, name, unit)); 1461 } 1462 1463 /** 1464 * @brief Create a new device 1465 * 1466 * This creates a new device and adds it as a child of an existing 1467 * parent device. The new device will be added after the last existing 1468 * child with the same order. 1469 * 1470 * @param dev the device which will be the parent of the 1471 * new child device 1472 * @param order a value which is used to partially sort the 1473 * children of @p dev - devices created using 1474 * lower values of @p order appear first in @p 1475 * dev's list of children 1476 * @param name devclass name for new device or @c NULL if not 1477 * specified 1478 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not 1479 * specified 1480 * 1481 * @returns the new device 1482 */ 1483 device_t 1484 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1485 { 1486 device_t child; 1487 device_t place; 1488 1489 PDEBUG(("%s at %s with order %u as unit %d", 1490 name, DEVICENAME(dev), order, unit)); 1491 KASSERT(name != NULL || unit == DEVICE_UNIT_ANY, 1492 ("child device with wildcard name and specific unit number")); 1493 1494 child = make_device(dev, name, unit); 1495 if (child == NULL) 1496 return (child); 1497 child->order = order; 1498 1499 TAILQ_FOREACH(place, &dev->children, link) { 1500 if (place->order > order) 1501 break; 1502 } 1503 1504 if (place) { 1505 /* 1506 * The device 'place' is the first device whose order is 1507 * greater than the new child. 1508 */ 1509 TAILQ_INSERT_BEFORE(place, child, link); 1510 } else { 1511 /* 1512 * The new child's order is greater or equal to the order of 1513 * any existing device. Add the child to the tail of the list. 1514 */ 1515 TAILQ_INSERT_TAIL(&dev->children, child, link); 1516 } 1517 1518 bus_data_generation_update(); 1519 return (child); 1520 } 1521 1522 /** 1523 * @brief Delete a device 1524 * 1525 * This function deletes a device along with all of its children. If 1526 * the device currently has a driver attached to it, the device is 1527 * detached first using device_detach(). 1528 * 1529 * @param dev the parent device 1530 * @param child the device to delete 1531 * 1532 * @retval 0 success 1533 * @retval non-zero a unit error code describing the error 1534 */ 1535 int 1536 device_delete_child(device_t dev, device_t child) 1537 { 1538 int error; 1539 device_t grandchild; 1540 1541 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1542 1543 /* 1544 * Detach child. Ideally this cleans up any grandchild 1545 * devices. 1546 */ 1547 if ((error = device_detach(child)) != 0) 1548 return (error); 1549 1550 /* Delete any grandchildren left after detach. */ 1551 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1552 error = device_delete_child(child, grandchild); 1553 if (error) 1554 return (error); 1555 } 1556 1557 device_destroy_props(dev); 1558 if (child->devclass) 1559 devclass_delete_device(child->devclass, child); 1560 if (child->parent) 1561 BUS_CHILD_DELETED(dev, child); 1562 TAILQ_REMOVE(&dev->children, child, link); 1563 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1564 kobj_delete((kobj_t) child, M_BUS); 1565 1566 bus_data_generation_update(); 1567 return (0); 1568 } 1569 1570 /** 1571 * @brief Delete all children devices of the given device, if any. 1572 * 1573 * This function deletes all children devices of the given device, if 1574 * any, using the device_delete_child() function for each device it 1575 * finds. If a child device cannot be deleted, this function will 1576 * return an error code. 1577 * 1578 * @param dev the parent device 1579 * 1580 * @retval 0 success 1581 * @retval non-zero a device would not detach 1582 */ 1583 int 1584 device_delete_children(device_t dev) 1585 { 1586 device_t child; 1587 int error; 1588 1589 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 1590 1591 error = 0; 1592 1593 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 1594 error = device_delete_child(dev, child); 1595 if (error) { 1596 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 1597 break; 1598 } 1599 } 1600 return (error); 1601 } 1602 1603 /** 1604 * @brief Find a device given a unit number 1605 * 1606 * This is similar to devclass_get_devices() but only searches for 1607 * devices which have @p dev as a parent. 1608 * 1609 * @param dev the parent device to search 1610 * @param unit the unit number to search for. If the unit is 1611 * @c DEVICE_UNIT_ANY, return the first child of @p dev 1612 * which has name @p classname (that is, the one with the 1613 * lowest unit.) 1614 * 1615 * @returns the device with the given unit number or @c 1616 * NULL if there is no such device 1617 */ 1618 device_t 1619 device_find_child(device_t dev, const char *classname, int unit) 1620 { 1621 devclass_t dc; 1622 device_t child; 1623 1624 dc = devclass_find(classname); 1625 if (!dc) 1626 return (NULL); 1627 1628 if (unit != DEVICE_UNIT_ANY) { 1629 child = devclass_get_device(dc, unit); 1630 if (child && child->parent == dev) 1631 return (child); 1632 } else { 1633 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1634 child = devclass_get_device(dc, unit); 1635 if (child && child->parent == dev) 1636 return (child); 1637 } 1638 } 1639 return (NULL); 1640 } 1641 1642 /** 1643 * @internal 1644 */ 1645 static driverlink_t 1646 first_matching_driver(devclass_t dc, device_t dev) 1647 { 1648 if (dev->devclass) 1649 return (devclass_find_driver_internal(dc, dev->devclass->name)); 1650 return (TAILQ_FIRST(&dc->drivers)); 1651 } 1652 1653 /** 1654 * @internal 1655 */ 1656 static driverlink_t 1657 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1658 { 1659 if (dev->devclass) { 1660 driverlink_t dl; 1661 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1662 if (!strcmp(dev->devclass->name, dl->driver->name)) 1663 return (dl); 1664 return (NULL); 1665 } 1666 return (TAILQ_NEXT(last, link)); 1667 } 1668 1669 /** 1670 * @internal 1671 */ 1672 int 1673 device_probe_child(device_t dev, device_t child) 1674 { 1675 devclass_t dc; 1676 driverlink_t best = NULL; 1677 driverlink_t dl; 1678 int result, pri = 0; 1679 /* We should preserve the devclass (or lack of) set by the bus. */ 1680 int hasclass = (child->devclass != NULL); 1681 1682 bus_topo_assert(); 1683 1684 dc = dev->devclass; 1685 if (!dc) 1686 panic("device_probe_child: parent device has no devclass"); 1687 1688 /* 1689 * If the state is already probed, then return. 1690 */ 1691 if (child->state == DS_ALIVE) 1692 return (0); 1693 1694 for (; dc; dc = dc->parent) { 1695 for (dl = first_matching_driver(dc, child); 1696 dl; 1697 dl = next_matching_driver(dc, child, dl)) { 1698 /* If this driver's pass is too high, then ignore it. */ 1699 if (dl->pass > bus_current_pass) 1700 continue; 1701 1702 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1703 result = device_set_driver(child, dl->driver); 1704 if (result == ENOMEM) 1705 return (result); 1706 else if (result != 0) 1707 continue; 1708 if (!hasclass) { 1709 if (device_set_devclass(child, 1710 dl->driver->name) != 0) { 1711 char const * devname = 1712 device_get_name(child); 1713 if (devname == NULL) 1714 devname = "(unknown)"; 1715 printf("driver bug: Unable to set " 1716 "devclass (class: %s " 1717 "devname: %s)\n", 1718 dl->driver->name, 1719 devname); 1720 (void)device_set_driver(child, NULL); 1721 continue; 1722 } 1723 } 1724 1725 /* Fetch any flags for the device before probing. */ 1726 resource_int_value(dl->driver->name, child->unit, 1727 "flags", &child->devflags); 1728 1729 result = DEVICE_PROBE(child); 1730 1731 /* 1732 * If probe returns 0, this is the driver that wins this 1733 * device. 1734 */ 1735 if (result == 0) { 1736 best = dl; 1737 pri = 0; 1738 goto exact_match; /* C doesn't have break 2 */ 1739 } 1740 1741 /* Reset flags and devclass before the next probe. */ 1742 child->devflags = 0; 1743 if (!hasclass) 1744 (void)device_set_devclass(child, NULL); 1745 1746 /* 1747 * Reset DF_QUIET in case this driver doesn't 1748 * end up as the best driver. 1749 */ 1750 device_verbose(child); 1751 1752 /* 1753 * Probes that return BUS_PROBE_NOWILDCARD or lower 1754 * only match on devices whose driver was explicitly 1755 * specified. 1756 */ 1757 if (result <= BUS_PROBE_NOWILDCARD && 1758 !(child->flags & DF_FIXEDCLASS)) { 1759 result = ENXIO; 1760 } 1761 1762 /* 1763 * The driver returned an error so it 1764 * certainly doesn't match. 1765 */ 1766 if (result > 0) { 1767 (void)device_set_driver(child, NULL); 1768 continue; 1769 } 1770 1771 /* 1772 * A priority lower than SUCCESS, remember the 1773 * best matching driver. Initialise the value 1774 * of pri for the first match. 1775 */ 1776 if (best == NULL || result > pri) { 1777 best = dl; 1778 pri = result; 1779 continue; 1780 } 1781 } 1782 } 1783 1784 if (best == NULL) 1785 return (ENXIO); 1786 1787 /* 1788 * If we found a driver, change state and initialise the devclass. 1789 * Set the winning driver, devclass, and flags. 1790 */ 1791 result = device_set_driver(child, best->driver); 1792 if (result != 0) 1793 return (result); 1794 if (!child->devclass) { 1795 result = device_set_devclass(child, best->driver->name); 1796 if (result != 0) { 1797 (void)device_set_driver(child, NULL); 1798 return (result); 1799 } 1800 } 1801 resource_int_value(best->driver->name, child->unit, 1802 "flags", &child->devflags); 1803 1804 /* 1805 * A bit bogus. Call the probe method again to make sure that we have 1806 * the right description for the device. 1807 */ 1808 result = DEVICE_PROBE(child); 1809 if (result > 0) { 1810 if (!hasclass) 1811 (void)device_set_devclass(child, NULL); 1812 (void)device_set_driver(child, NULL); 1813 return (result); 1814 } 1815 1816 exact_match: 1817 child->state = DS_ALIVE; 1818 bus_data_generation_update(); 1819 return (0); 1820 } 1821 1822 /** 1823 * @brief Return the parent of a device 1824 */ 1825 device_t 1826 device_get_parent(device_t dev) 1827 { 1828 return (dev->parent); 1829 } 1830 1831 /** 1832 * @brief Get a list of children of a device 1833 * 1834 * An array containing a list of all the children of the given device 1835 * is allocated and returned in @p *devlistp. The number of devices 1836 * in the array is returned in @p *devcountp. The caller should free 1837 * the array using @c free(p, M_TEMP). 1838 * 1839 * @param dev the device to examine 1840 * @param devlistp points at location for array pointer return 1841 * value 1842 * @param devcountp points at location for array size return value 1843 * 1844 * @retval 0 success 1845 * @retval ENOMEM the array allocation failed 1846 */ 1847 int 1848 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1849 { 1850 int count; 1851 device_t child; 1852 device_t *list; 1853 1854 count = 0; 1855 TAILQ_FOREACH(child, &dev->children, link) { 1856 count++; 1857 } 1858 if (count == 0) { 1859 *devlistp = NULL; 1860 *devcountp = 0; 1861 return (0); 1862 } 1863 1864 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1865 if (!list) 1866 return (ENOMEM); 1867 1868 count = 0; 1869 TAILQ_FOREACH(child, &dev->children, link) { 1870 list[count] = child; 1871 count++; 1872 } 1873 1874 *devlistp = list; 1875 *devcountp = count; 1876 1877 return (0); 1878 } 1879 1880 /** 1881 * @brief Return the current driver for the device or @c NULL if there 1882 * is no driver currently attached 1883 */ 1884 driver_t * 1885 device_get_driver(device_t dev) 1886 { 1887 return (dev->driver); 1888 } 1889 1890 /** 1891 * @brief Return the current devclass for the device or @c NULL if 1892 * there is none. 1893 */ 1894 devclass_t 1895 device_get_devclass(device_t dev) 1896 { 1897 return (dev->devclass); 1898 } 1899 1900 /** 1901 * @brief Return the name of the device's devclass or @c NULL if there 1902 * is none. 1903 */ 1904 const char * 1905 device_get_name(device_t dev) 1906 { 1907 if (dev != NULL && dev->devclass) 1908 return (devclass_get_name(dev->devclass)); 1909 return (NULL); 1910 } 1911 1912 /** 1913 * @brief Return a string containing the device's devclass name 1914 * followed by an ascii representation of the device's unit number 1915 * (e.g. @c "foo2"). 1916 */ 1917 const char * 1918 device_get_nameunit(device_t dev) 1919 { 1920 return (dev->nameunit); 1921 } 1922 1923 /** 1924 * @brief Return the device's unit number. 1925 */ 1926 int 1927 device_get_unit(device_t dev) 1928 { 1929 return (dev->unit); 1930 } 1931 1932 /** 1933 * @brief Return the device's description string 1934 */ 1935 const char * 1936 device_get_desc(device_t dev) 1937 { 1938 return (dev->desc); 1939 } 1940 1941 /** 1942 * @brief Return the device's flags 1943 */ 1944 uint32_t 1945 device_get_flags(device_t dev) 1946 { 1947 return (dev->devflags); 1948 } 1949 1950 struct sysctl_ctx_list * 1951 device_get_sysctl_ctx(device_t dev) 1952 { 1953 return (&dev->sysctl_ctx); 1954 } 1955 1956 struct sysctl_oid * 1957 device_get_sysctl_tree(device_t dev) 1958 { 1959 return (dev->sysctl_tree); 1960 } 1961 1962 /** 1963 * @brief Print the name of the device followed by a colon and a space 1964 * 1965 * @returns the number of characters printed 1966 */ 1967 int 1968 device_print_prettyname(device_t dev) 1969 { 1970 const char *name = device_get_name(dev); 1971 1972 if (name == NULL) 1973 return (printf("unknown: ")); 1974 return (printf("%s%d: ", name, device_get_unit(dev))); 1975 } 1976 1977 /** 1978 * @brief Print the name of the device followed by a colon, a space 1979 * and the result of calling vprintf() with the value of @p fmt and 1980 * the following arguments. 1981 * 1982 * @returns the number of characters printed 1983 */ 1984 int 1985 device_printf(device_t dev, const char * fmt, ...) 1986 { 1987 char buf[128]; 1988 struct sbuf sb; 1989 const char *name; 1990 va_list ap; 1991 size_t retval; 1992 1993 retval = 0; 1994 1995 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1996 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 1997 1998 name = device_get_name(dev); 1999 2000 if (name == NULL) 2001 sbuf_cat(&sb, "unknown: "); 2002 else 2003 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2004 2005 va_start(ap, fmt); 2006 sbuf_vprintf(&sb, fmt, ap); 2007 va_end(ap); 2008 2009 sbuf_finish(&sb); 2010 sbuf_delete(&sb); 2011 2012 return (retval); 2013 } 2014 2015 /** 2016 * @brief Print the name of the device followed by a colon, a space 2017 * and the result of calling log() with the value of @p fmt and 2018 * the following arguments. 2019 * 2020 * @returns the number of characters printed 2021 */ 2022 int 2023 device_log(device_t dev, int pri, const char * fmt, ...) 2024 { 2025 char buf[128]; 2026 struct sbuf sb; 2027 const char *name; 2028 va_list ap; 2029 size_t retval; 2030 2031 retval = 0; 2032 2033 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2034 2035 name = device_get_name(dev); 2036 2037 if (name == NULL) 2038 sbuf_cat(&sb, "unknown: "); 2039 else 2040 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2041 2042 va_start(ap, fmt); 2043 sbuf_vprintf(&sb, fmt, ap); 2044 va_end(ap); 2045 2046 sbuf_finish(&sb); 2047 2048 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb)); 2049 retval = sbuf_len(&sb); 2050 2051 sbuf_delete(&sb); 2052 2053 return (retval); 2054 } 2055 2056 /** 2057 * @internal 2058 */ 2059 static void 2060 device_set_desc_internal(device_t dev, const char *desc, bool allocated) 2061 { 2062 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2063 free(dev->desc, M_BUS); 2064 dev->flags &= ~DF_DESCMALLOCED; 2065 dev->desc = NULL; 2066 } 2067 2068 if (allocated && desc) 2069 dev->flags |= DF_DESCMALLOCED; 2070 dev->desc = __DECONST(char *, desc); 2071 2072 bus_data_generation_update(); 2073 } 2074 2075 /** 2076 * @brief Set the device's description 2077 * 2078 * The value of @c desc should be a string constant that will not 2079 * change (at least until the description is changed in a subsequent 2080 * call to device_set_desc() or device_set_desc_copy()). 2081 */ 2082 void 2083 device_set_desc(device_t dev, const char *desc) 2084 { 2085 device_set_desc_internal(dev, desc, false); 2086 } 2087 2088 /** 2089 * @brief Set the device's description 2090 * 2091 * A printf-like version of device_set_desc(). 2092 */ 2093 void 2094 device_set_descf(device_t dev, const char *fmt, ...) 2095 { 2096 va_list ap; 2097 char *buf = NULL; 2098 2099 va_start(ap, fmt); 2100 vasprintf(&buf, M_BUS, fmt, ap); 2101 va_end(ap); 2102 device_set_desc_internal(dev, buf, true); 2103 } 2104 2105 /** 2106 * @brief Set the device's description 2107 * 2108 * The string pointed to by @c desc is copied. Use this function if 2109 * the device description is generated, (e.g. with sprintf()). 2110 */ 2111 void 2112 device_set_desc_copy(device_t dev, const char *desc) 2113 { 2114 char *buf; 2115 2116 buf = strdup_flags(desc, M_BUS, M_NOWAIT); 2117 device_set_desc_internal(dev, buf, true); 2118 } 2119 2120 /** 2121 * @brief Set the device's flags 2122 */ 2123 void 2124 device_set_flags(device_t dev, uint32_t flags) 2125 { 2126 dev->devflags = flags; 2127 } 2128 2129 /** 2130 * @brief Return the device's softc field 2131 * 2132 * The softc is allocated and zeroed when a driver is attached, based 2133 * on the size field of the driver. 2134 */ 2135 void * 2136 device_get_softc(device_t dev) 2137 { 2138 return (dev->softc); 2139 } 2140 2141 /** 2142 * @brief Set the device's softc field 2143 * 2144 * Most drivers do not need to use this since the softc is allocated 2145 * automatically when the driver is attached. 2146 */ 2147 void 2148 device_set_softc(device_t dev, void *softc) 2149 { 2150 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2151 free(dev->softc, M_BUS_SC); 2152 dev->softc = softc; 2153 if (dev->softc) 2154 dev->flags |= DF_EXTERNALSOFTC; 2155 else 2156 dev->flags &= ~DF_EXTERNALSOFTC; 2157 } 2158 2159 /** 2160 * @brief Free claimed softc 2161 * 2162 * Most drivers do not need to use this since the softc is freed 2163 * automatically when the driver is detached. 2164 */ 2165 void 2166 device_free_softc(void *softc) 2167 { 2168 free(softc, M_BUS_SC); 2169 } 2170 2171 /** 2172 * @brief Claim softc 2173 * 2174 * This function can be used to let the driver free the automatically 2175 * allocated softc using "device_free_softc()". This function is 2176 * useful when the driver is refcounting the softc and the softc 2177 * cannot be freed when the "device_detach" method is called. 2178 */ 2179 void 2180 device_claim_softc(device_t dev) 2181 { 2182 if (dev->softc) 2183 dev->flags |= DF_EXTERNALSOFTC; 2184 else 2185 dev->flags &= ~DF_EXTERNALSOFTC; 2186 } 2187 2188 /** 2189 * @brief Get the device's ivars field 2190 * 2191 * The ivars field is used by the parent device to store per-device 2192 * state (e.g. the physical location of the device or a list of 2193 * resources). 2194 */ 2195 void * 2196 device_get_ivars(device_t dev) 2197 { 2198 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2199 return (dev->ivars); 2200 } 2201 2202 /** 2203 * @brief Set the device's ivars field 2204 */ 2205 void 2206 device_set_ivars(device_t dev, void * ivars) 2207 { 2208 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2209 dev->ivars = ivars; 2210 } 2211 2212 /** 2213 * @brief Return the device's state 2214 */ 2215 device_state_t 2216 device_get_state(device_t dev) 2217 { 2218 return (dev->state); 2219 } 2220 2221 /** 2222 * @brief Set the DF_ENABLED flag for the device 2223 */ 2224 void 2225 device_enable(device_t dev) 2226 { 2227 dev->flags |= DF_ENABLED; 2228 } 2229 2230 /** 2231 * @brief Clear the DF_ENABLED flag for the device 2232 */ 2233 void 2234 device_disable(device_t dev) 2235 { 2236 dev->flags &= ~DF_ENABLED; 2237 } 2238 2239 /** 2240 * @brief Increment the busy counter for the device 2241 */ 2242 void 2243 device_busy(device_t dev) 2244 { 2245 2246 /* 2247 * Mark the device as busy, recursively up the tree if this busy count 2248 * goes 0->1. 2249 */ 2250 if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL) 2251 device_busy(dev->parent); 2252 } 2253 2254 /** 2255 * @brief Decrement the busy counter for the device 2256 */ 2257 void 2258 device_unbusy(device_t dev) 2259 { 2260 2261 /* 2262 * Mark the device as unbsy, recursively if this is the last busy count. 2263 */ 2264 if (refcount_release(&dev->busy) && dev->parent != NULL) 2265 device_unbusy(dev->parent); 2266 } 2267 2268 /** 2269 * @brief Set the DF_QUIET flag for the device 2270 */ 2271 void 2272 device_quiet(device_t dev) 2273 { 2274 dev->flags |= DF_QUIET; 2275 } 2276 2277 /** 2278 * @brief Set the DF_QUIET_CHILDREN flag for the device 2279 */ 2280 void 2281 device_quiet_children(device_t dev) 2282 { 2283 dev->flags |= DF_QUIET_CHILDREN; 2284 } 2285 2286 /** 2287 * @brief Clear the DF_QUIET flag for the device 2288 */ 2289 void 2290 device_verbose(device_t dev) 2291 { 2292 dev->flags &= ~DF_QUIET; 2293 } 2294 2295 ssize_t 2296 device_get_property(device_t dev, const char *prop, void *val, size_t sz, 2297 device_property_type_t type) 2298 { 2299 device_t bus = device_get_parent(dev); 2300 2301 switch (type) { 2302 case DEVICE_PROP_ANY: 2303 case DEVICE_PROP_BUFFER: 2304 case DEVICE_PROP_HANDLE: /* Size checks done in implementation. */ 2305 break; 2306 case DEVICE_PROP_UINT32: 2307 if (sz % 4 != 0) 2308 return (-1); 2309 break; 2310 case DEVICE_PROP_UINT64: 2311 if (sz % 8 != 0) 2312 return (-1); 2313 break; 2314 default: 2315 return (-1); 2316 } 2317 2318 return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type)); 2319 } 2320 2321 bool 2322 device_has_property(device_t dev, const char *prop) 2323 { 2324 return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0); 2325 } 2326 2327 /** 2328 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2329 */ 2330 int 2331 device_has_quiet_children(device_t dev) 2332 { 2333 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2334 } 2335 2336 /** 2337 * @brief Return non-zero if the DF_QUIET flag is set on the device 2338 */ 2339 int 2340 device_is_quiet(device_t dev) 2341 { 2342 return ((dev->flags & DF_QUIET) != 0); 2343 } 2344 2345 /** 2346 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2347 */ 2348 int 2349 device_is_enabled(device_t dev) 2350 { 2351 return ((dev->flags & DF_ENABLED) != 0); 2352 } 2353 2354 /** 2355 * @brief Return non-zero if the device was successfully probed 2356 */ 2357 int 2358 device_is_alive(device_t dev) 2359 { 2360 return (dev->state >= DS_ALIVE); 2361 } 2362 2363 /** 2364 * @brief Return non-zero if the device currently has a driver 2365 * attached to it 2366 */ 2367 int 2368 device_is_attached(device_t dev) 2369 { 2370 return (dev->state >= DS_ATTACHED); 2371 } 2372 2373 /** 2374 * @brief Return non-zero if the device is currently suspended. 2375 */ 2376 int 2377 device_is_suspended(device_t dev) 2378 { 2379 return ((dev->flags & DF_SUSPENDED) != 0); 2380 } 2381 2382 /** 2383 * @brief Set the devclass of a device 2384 * @see devclass_add_device(). 2385 */ 2386 int 2387 device_set_devclass(device_t dev, const char *classname) 2388 { 2389 devclass_t dc; 2390 int error; 2391 2392 if (!classname) { 2393 if (dev->devclass) 2394 devclass_delete_device(dev->devclass, dev); 2395 return (0); 2396 } 2397 2398 if (dev->devclass) { 2399 printf("device_set_devclass: device class already set\n"); 2400 return (EINVAL); 2401 } 2402 2403 dc = devclass_find_internal(classname, NULL, TRUE); 2404 if (!dc) 2405 return (ENOMEM); 2406 2407 error = devclass_add_device(dc, dev); 2408 2409 bus_data_generation_update(); 2410 return (error); 2411 } 2412 2413 /** 2414 * @brief Set the devclass of a device and mark the devclass fixed. 2415 * @see device_set_devclass() 2416 */ 2417 int 2418 device_set_devclass_fixed(device_t dev, const char *classname) 2419 { 2420 int error; 2421 2422 if (classname == NULL) 2423 return (EINVAL); 2424 2425 error = device_set_devclass(dev, classname); 2426 if (error) 2427 return (error); 2428 dev->flags |= DF_FIXEDCLASS; 2429 return (0); 2430 } 2431 2432 /** 2433 * @brief Query the device to determine if it's of a fixed devclass 2434 * @see device_set_devclass_fixed() 2435 */ 2436 bool 2437 device_is_devclass_fixed(device_t dev) 2438 { 2439 return ((dev->flags & DF_FIXEDCLASS) != 0); 2440 } 2441 2442 /** 2443 * @brief Set the driver of a device 2444 * 2445 * @retval 0 success 2446 * @retval EBUSY the device already has a driver attached 2447 * @retval ENOMEM a memory allocation failure occurred 2448 */ 2449 int 2450 device_set_driver(device_t dev, driver_t *driver) 2451 { 2452 int domain; 2453 struct domainset *policy; 2454 2455 if (dev->state >= DS_ATTACHED) 2456 return (EBUSY); 2457 2458 if (dev->driver == driver) 2459 return (0); 2460 2461 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2462 free(dev->softc, M_BUS_SC); 2463 dev->softc = NULL; 2464 } 2465 device_set_desc(dev, NULL); 2466 kobj_delete((kobj_t) dev, NULL); 2467 dev->driver = driver; 2468 if (driver) { 2469 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2470 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2471 if (bus_get_domain(dev, &domain) == 0) 2472 policy = DOMAINSET_PREF(domain); 2473 else 2474 policy = DOMAINSET_RR(); 2475 dev->softc = malloc_domainset(driver->size, M_BUS_SC, 2476 policy, M_NOWAIT | M_ZERO); 2477 if (!dev->softc) { 2478 kobj_delete((kobj_t) dev, NULL); 2479 kobj_init((kobj_t) dev, &null_class); 2480 dev->driver = NULL; 2481 return (ENOMEM); 2482 } 2483 } 2484 } else { 2485 kobj_init((kobj_t) dev, &null_class); 2486 } 2487 2488 bus_data_generation_update(); 2489 return (0); 2490 } 2491 2492 /** 2493 * @brief Probe a device, and return this status. 2494 * 2495 * This function is the core of the device autoconfiguration 2496 * system. Its purpose is to select a suitable driver for a device and 2497 * then call that driver to initialise the hardware appropriately. The 2498 * driver is selected by calling the DEVICE_PROBE() method of a set of 2499 * candidate drivers and then choosing the driver which returned the 2500 * best value. This driver is then attached to the device using 2501 * device_attach(). 2502 * 2503 * The set of suitable drivers is taken from the list of drivers in 2504 * the parent device's devclass. If the device was originally created 2505 * with a specific class name (see device_add_child()), only drivers 2506 * with that name are probed, otherwise all drivers in the devclass 2507 * are probed. If no drivers return successful probe values in the 2508 * parent devclass, the search continues in the parent of that 2509 * devclass (see devclass_get_parent()) if any. 2510 * 2511 * @param dev the device to initialise 2512 * 2513 * @retval 0 success 2514 * @retval ENXIO no driver was found 2515 * @retval ENOMEM memory allocation failure 2516 * @retval non-zero some other unix error code 2517 * @retval -1 Device already attached 2518 */ 2519 int 2520 device_probe(device_t dev) 2521 { 2522 int error; 2523 2524 bus_topo_assert(); 2525 2526 if (dev->state >= DS_ALIVE) 2527 return (-1); 2528 2529 if (!(dev->flags & DF_ENABLED)) { 2530 if (bootverbose && device_get_name(dev) != NULL) { 2531 device_print_prettyname(dev); 2532 printf("not probed (disabled)\n"); 2533 } 2534 return (-1); 2535 } 2536 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2537 if (bus_current_pass == BUS_PASS_DEFAULT && 2538 !(dev->flags & DF_DONENOMATCH)) { 2539 device_handle_nomatch(dev); 2540 } 2541 return (error); 2542 } 2543 return (0); 2544 } 2545 2546 /** 2547 * @brief Probe a device and attach a driver if possible 2548 * 2549 * calls device_probe() and attaches if that was successful. 2550 */ 2551 int 2552 device_probe_and_attach(device_t dev) 2553 { 2554 int error; 2555 2556 bus_topo_assert(); 2557 2558 error = device_probe(dev); 2559 if (error == -1) 2560 return (0); 2561 else if (error != 0) 2562 return (error); 2563 2564 return (device_attach(dev)); 2565 } 2566 2567 /** 2568 * @brief Attach a device driver to a device 2569 * 2570 * This function is a wrapper around the DEVICE_ATTACH() driver 2571 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2572 * device's sysctl tree, optionally prints a description of the device 2573 * and queues a notification event for user-based device management 2574 * services. 2575 * 2576 * Normally this function is only called internally from 2577 * device_probe_and_attach(). 2578 * 2579 * @param dev the device to initialise 2580 * 2581 * @retval 0 success 2582 * @retval ENXIO no driver was found 2583 * @retval ENOMEM memory allocation failure 2584 * @retval non-zero some other unix error code 2585 */ 2586 int 2587 device_attach(device_t dev) 2588 { 2589 uint64_t attachtime; 2590 uint16_t attachentropy; 2591 int error; 2592 2593 if (resource_disabled(dev->driver->name, dev->unit)) { 2594 /* 2595 * Mostly detach the device, but leave it attached to 2596 * the devclass to reserve the name and unit. 2597 */ 2598 device_disable(dev); 2599 (void)device_set_driver(dev, NULL); 2600 dev->state = DS_NOTPRESENT; 2601 if (bootverbose) 2602 device_printf(dev, "disabled via hints entry\n"); 2603 return (ENXIO); 2604 } 2605 2606 KASSERT(IS_DEFAULT_VNET(TD_TO_VNET(curthread)), 2607 ("device_attach: curthread is not in default vnet")); 2608 CURVNET_SET_QUIET(TD_TO_VNET(curthread)); 2609 2610 device_sysctl_init(dev); 2611 if (!device_is_quiet(dev)) 2612 device_print_child(dev->parent, dev); 2613 attachtime = get_cyclecount(); 2614 dev->state = DS_ATTACHING; 2615 if ((error = DEVICE_ATTACH(dev)) != 0) { 2616 printf("device_attach: %s%d attach returned %d\n", 2617 dev->driver->name, dev->unit, error); 2618 BUS_CHILD_DETACHED(dev->parent, dev); 2619 if (disable_failed_devs) { 2620 /* 2621 * When the user has asked to disable failed devices, we 2622 * directly disable the device, but leave it in the 2623 * attaching state. It will not try to probe/attach the 2624 * device further. This leaves the device numbering 2625 * intact for other similar devices in the system. It 2626 * can be removed from this state with devctl. 2627 */ 2628 device_disable(dev); 2629 } else { 2630 /* 2631 * Otherwise, when attach fails, tear down the state 2632 * around that so we can retry when, for example, new 2633 * drivers are loaded. 2634 */ 2635 if (!(dev->flags & DF_FIXEDCLASS)) 2636 devclass_delete_device(dev->devclass, dev); 2637 (void)device_set_driver(dev, NULL); 2638 device_sysctl_fini(dev); 2639 KASSERT(dev->busy == 0, ("attach failed but busy")); 2640 dev->state = DS_NOTPRESENT; 2641 } 2642 CURVNET_RESTORE(); 2643 return (error); 2644 } 2645 CURVNET_RESTORE(); 2646 dev->flags |= DF_ATTACHED_ONCE; 2647 /* 2648 * We only need the low bits of this time, but ranges from tens to thousands 2649 * have been seen, so keep 2 bytes' worth. 2650 */ 2651 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 2652 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 2653 device_sysctl_update(dev); 2654 dev->state = DS_ATTACHED; 2655 dev->flags &= ~DF_DONENOMATCH; 2656 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 2657 return (0); 2658 } 2659 2660 /** 2661 * @brief Detach a driver from a device 2662 * 2663 * This function is a wrapper around the DEVICE_DETACH() driver 2664 * method. If the call to DEVICE_DETACH() succeeds, it calls 2665 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2666 * notification event for user-based device management services and 2667 * cleans up the device's sysctl tree. 2668 * 2669 * @param dev the device to un-initialise 2670 * 2671 * @retval 0 success 2672 * @retval ENXIO no driver was found 2673 * @retval ENOMEM memory allocation failure 2674 * @retval non-zero some other unix error code 2675 */ 2676 int 2677 device_detach(device_t dev) 2678 { 2679 int error; 2680 2681 bus_topo_assert(); 2682 2683 PDEBUG(("%s", DEVICENAME(dev))); 2684 if (dev->busy > 0) 2685 return (EBUSY); 2686 if (dev->state == DS_ATTACHING) { 2687 device_printf(dev, "device in attaching state! Deferring detach.\n"); 2688 return (EBUSY); 2689 } 2690 if (dev->state != DS_ATTACHED) 2691 return (0); 2692 2693 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 2694 if ((error = DEVICE_DETACH(dev)) != 0) { 2695 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2696 EVHDEV_DETACH_FAILED); 2697 return (error); 2698 } else { 2699 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2700 EVHDEV_DETACH_COMPLETE); 2701 } 2702 if (!device_is_quiet(dev)) 2703 device_printf(dev, "detached\n"); 2704 if (dev->parent) 2705 BUS_CHILD_DETACHED(dev->parent, dev); 2706 2707 if (!(dev->flags & DF_FIXEDCLASS)) 2708 devclass_delete_device(dev->devclass, dev); 2709 2710 device_verbose(dev); 2711 dev->state = DS_NOTPRESENT; 2712 (void)device_set_driver(dev, NULL); 2713 device_sysctl_fini(dev); 2714 2715 return (0); 2716 } 2717 2718 /** 2719 * @brief Tells a driver to quiesce itself. 2720 * 2721 * This function is a wrapper around the DEVICE_QUIESCE() driver 2722 * method. If the call to DEVICE_QUIESCE() succeeds. 2723 * 2724 * @param dev the device to quiesce 2725 * 2726 * @retval 0 success 2727 * @retval ENXIO no driver was found 2728 * @retval ENOMEM memory allocation failure 2729 * @retval non-zero some other unix error code 2730 */ 2731 int 2732 device_quiesce(device_t dev) 2733 { 2734 PDEBUG(("%s", DEVICENAME(dev))); 2735 if (dev->busy > 0) 2736 return (EBUSY); 2737 if (dev->state != DS_ATTACHED) 2738 return (0); 2739 2740 return (DEVICE_QUIESCE(dev)); 2741 } 2742 2743 /** 2744 * @brief Notify a device of system shutdown 2745 * 2746 * This function calls the DEVICE_SHUTDOWN() driver method if the 2747 * device currently has an attached driver. 2748 * 2749 * @returns the value returned by DEVICE_SHUTDOWN() 2750 */ 2751 int 2752 device_shutdown(device_t dev) 2753 { 2754 if (dev->state < DS_ATTACHED) 2755 return (0); 2756 return (DEVICE_SHUTDOWN(dev)); 2757 } 2758 2759 /** 2760 * @brief Set the unit number of a device 2761 * 2762 * This function can be used to override the unit number used for a 2763 * device (e.g. to wire a device to a pre-configured unit number). 2764 */ 2765 int 2766 device_set_unit(device_t dev, int unit) 2767 { 2768 devclass_t dc; 2769 int err; 2770 2771 if (unit == dev->unit) 2772 return (0); 2773 dc = device_get_devclass(dev); 2774 if (unit < dc->maxunit && dc->devices[unit]) 2775 return (EBUSY); 2776 err = devclass_delete_device(dc, dev); 2777 if (err) 2778 return (err); 2779 dev->unit = unit; 2780 err = devclass_add_device(dc, dev); 2781 if (err) 2782 return (err); 2783 2784 bus_data_generation_update(); 2785 return (0); 2786 } 2787 2788 /*======================================*/ 2789 /* 2790 * Some useful method implementations to make life easier for bus drivers. 2791 */ 2792 2793 /** 2794 * @brief Initialize a resource mapping request 2795 * 2796 * This is the internal implementation of the public API 2797 * resource_init_map_request. Callers may be using a different layout 2798 * of struct resource_map_request than the kernel, so callers pass in 2799 * the size of the structure they are using to identify the structure 2800 * layout. 2801 */ 2802 void 2803 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 2804 { 2805 bzero(args, sz); 2806 args->size = sz; 2807 args->memattr = VM_MEMATTR_DEVICE; 2808 } 2809 2810 /** 2811 * @brief Validate a resource mapping request 2812 * 2813 * Translate a device driver's mapping request (@p in) to a struct 2814 * resource_map_request using the current structure layout (@p out). 2815 * In addition, validate the offset and length from the mapping 2816 * request against the bounds of the resource @p r. If the offset or 2817 * length are invalid, fail with EINVAL. If the offset and length are 2818 * valid, the absolute starting address of the requested mapping is 2819 * returned in @p startp and the length of the requested mapping is 2820 * returned in @p lengthp. 2821 */ 2822 int 2823 resource_validate_map_request(struct resource *r, 2824 struct resource_map_request *in, struct resource_map_request *out, 2825 rman_res_t *startp, rman_res_t *lengthp) 2826 { 2827 rman_res_t end, length, start; 2828 2829 /* 2830 * This assumes that any callers of this function are compiled 2831 * into the kernel and use the same version of the structure 2832 * as this file. 2833 */ 2834 MPASS(out->size == sizeof(struct resource_map_request)); 2835 2836 if (in != NULL) 2837 bcopy(in, out, imin(in->size, out->size)); 2838 start = rman_get_start(r) + out->offset; 2839 if (out->length == 0) 2840 length = rman_get_size(r); 2841 else 2842 length = out->length; 2843 end = start + length - 1; 2844 if (start > rman_get_end(r) || start < rman_get_start(r)) 2845 return (EINVAL); 2846 if (end > rman_get_end(r) || end < start) 2847 return (EINVAL); 2848 *lengthp = length; 2849 *startp = start; 2850 return (0); 2851 } 2852 2853 /** 2854 * @brief Initialise a resource list. 2855 * 2856 * @param rl the resource list to initialise 2857 */ 2858 void 2859 resource_list_init(struct resource_list *rl) 2860 { 2861 STAILQ_INIT(rl); 2862 } 2863 2864 /** 2865 * @brief Reclaim memory used by a resource list. 2866 * 2867 * This function frees the memory for all resource entries on the list 2868 * (if any). 2869 * 2870 * @param rl the resource list to free 2871 */ 2872 void 2873 resource_list_free(struct resource_list *rl) 2874 { 2875 struct resource_list_entry *rle; 2876 2877 while ((rle = STAILQ_FIRST(rl)) != NULL) { 2878 if (rle->res) 2879 panic("resource_list_free: resource entry is busy"); 2880 STAILQ_REMOVE_HEAD(rl, link); 2881 free(rle, M_BUS); 2882 } 2883 } 2884 2885 /** 2886 * @brief Add a resource entry. 2887 * 2888 * This function adds a resource entry using the given @p type, @p 2889 * start, @p end and @p count values. A rid value is chosen by 2890 * searching sequentially for the first unused rid starting at zero. 2891 * 2892 * @param rl the resource list to edit 2893 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2894 * @param start the start address of the resource 2895 * @param end the end address of the resource 2896 * @param count XXX end-start+1 2897 */ 2898 int 2899 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 2900 rman_res_t end, rman_res_t count) 2901 { 2902 int rid; 2903 2904 rid = 0; 2905 while (resource_list_find(rl, type, rid) != NULL) 2906 rid++; 2907 resource_list_add(rl, type, rid, start, end, count); 2908 return (rid); 2909 } 2910 2911 /** 2912 * @brief Add or modify a resource entry. 2913 * 2914 * If an existing entry exists with the same type and rid, it will be 2915 * modified using the given values of @p start, @p end and @p 2916 * count. If no entry exists, a new one will be created using the 2917 * given values. The resource list entry that matches is then returned. 2918 * 2919 * @param rl the resource list to edit 2920 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2921 * @param rid the resource identifier 2922 * @param start the start address of the resource 2923 * @param end the end address of the resource 2924 * @param count XXX end-start+1 2925 */ 2926 struct resource_list_entry * 2927 resource_list_add(struct resource_list *rl, int type, int rid, 2928 rman_res_t start, rman_res_t end, rman_res_t count) 2929 { 2930 struct resource_list_entry *rle; 2931 2932 rle = resource_list_find(rl, type, rid); 2933 if (!rle) { 2934 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 2935 M_NOWAIT); 2936 if (!rle) 2937 panic("resource_list_add: can't record entry"); 2938 STAILQ_INSERT_TAIL(rl, rle, link); 2939 rle->type = type; 2940 rle->rid = rid; 2941 rle->res = NULL; 2942 rle->flags = 0; 2943 } 2944 2945 if (rle->res) 2946 panic("resource_list_add: resource entry is busy"); 2947 2948 rle->start = start; 2949 rle->end = end; 2950 rle->count = count; 2951 return (rle); 2952 } 2953 2954 /** 2955 * @brief Determine if a resource entry is busy. 2956 * 2957 * Returns true if a resource entry is busy meaning that it has an 2958 * associated resource that is not an unallocated "reserved" resource. 2959 * 2960 * @param rl the resource list to search 2961 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2962 * @param rid the resource identifier 2963 * 2964 * @returns Non-zero if the entry is busy, zero otherwise. 2965 */ 2966 int 2967 resource_list_busy(struct resource_list *rl, int type, int rid) 2968 { 2969 struct resource_list_entry *rle; 2970 2971 rle = resource_list_find(rl, type, rid); 2972 if (rle == NULL || rle->res == NULL) 2973 return (0); 2974 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 2975 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 2976 ("reserved resource is active")); 2977 return (0); 2978 } 2979 return (1); 2980 } 2981 2982 /** 2983 * @brief Determine if a resource entry is reserved. 2984 * 2985 * Returns true if a resource entry is reserved meaning that it has an 2986 * associated "reserved" resource. The resource can either be 2987 * allocated or unallocated. 2988 * 2989 * @param rl the resource list to search 2990 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 2991 * @param rid the resource identifier 2992 * 2993 * @returns Non-zero if the entry is reserved, zero otherwise. 2994 */ 2995 int 2996 resource_list_reserved(struct resource_list *rl, int type, int rid) 2997 { 2998 struct resource_list_entry *rle; 2999 3000 rle = resource_list_find(rl, type, rid); 3001 if (rle != NULL && rle->flags & RLE_RESERVED) 3002 return (1); 3003 return (0); 3004 } 3005 3006 /** 3007 * @brief Find a resource entry by type and rid. 3008 * 3009 * @param rl the resource list to search 3010 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3011 * @param rid the resource identifier 3012 * 3013 * @returns the resource entry pointer or NULL if there is no such 3014 * entry. 3015 */ 3016 struct resource_list_entry * 3017 resource_list_find(struct resource_list *rl, int type, int rid) 3018 { 3019 struct resource_list_entry *rle; 3020 3021 STAILQ_FOREACH(rle, rl, link) { 3022 if (rle->type == type && rle->rid == rid) 3023 return (rle); 3024 } 3025 return (NULL); 3026 } 3027 3028 /** 3029 * @brief Delete a resource entry. 3030 * 3031 * @param rl the resource list to edit 3032 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3033 * @param rid the resource identifier 3034 */ 3035 void 3036 resource_list_delete(struct resource_list *rl, int type, int rid) 3037 { 3038 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3039 3040 if (rle) { 3041 if (rle->res != NULL) 3042 panic("resource_list_delete: resource has not been released"); 3043 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3044 free(rle, M_BUS); 3045 } 3046 } 3047 3048 /** 3049 * @brief Allocate a reserved resource 3050 * 3051 * This can be used by buses to force the allocation of resources 3052 * that are always active in the system even if they are not allocated 3053 * by a driver (e.g. PCI BARs). This function is usually called when 3054 * adding a new child to the bus. The resource is allocated from the 3055 * parent bus when it is reserved. The resource list entry is marked 3056 * with RLE_RESERVED to note that it is a reserved resource. 3057 * 3058 * Subsequent attempts to allocate the resource with 3059 * resource_list_alloc() will succeed the first time and will set 3060 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3061 * resource that has been allocated is released with 3062 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3063 * the actual resource remains allocated. The resource can be released to 3064 * the parent bus by calling resource_list_unreserve(). 3065 * 3066 * @param rl the resource list to allocate from 3067 * @param bus the parent device of @p child 3068 * @param child the device for which the resource is being reserved 3069 * @param type the type of resource to allocate 3070 * @param rid a pointer to the resource identifier 3071 * @param start hint at the start of the resource range - pass 3072 * @c 0 for any start address 3073 * @param end hint at the end of the resource range - pass 3074 * @c ~0 for any end address 3075 * @param count hint at the size of range required - pass @c 1 3076 * for any size 3077 * @param flags any extra flags to control the resource 3078 * allocation - see @c RF_XXX flags in 3079 * <sys/rman.h> for details 3080 * 3081 * @returns the resource which was allocated or @c NULL if no 3082 * resource could be allocated 3083 */ 3084 struct resource * 3085 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3086 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3087 { 3088 struct resource_list_entry *rle = NULL; 3089 int passthrough = (device_get_parent(child) != bus); 3090 struct resource *r; 3091 3092 if (passthrough) 3093 panic( 3094 "resource_list_reserve() should only be called for direct children"); 3095 if (flags & RF_ACTIVE) 3096 panic( 3097 "resource_list_reserve() should only reserve inactive resources"); 3098 3099 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3100 flags); 3101 if (r != NULL) { 3102 rle = resource_list_find(rl, type, *rid); 3103 rle->flags |= RLE_RESERVED; 3104 } 3105 return (r); 3106 } 3107 3108 /** 3109 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3110 * 3111 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3112 * and passing the allocation up to the parent of @p bus. This assumes 3113 * that the first entry of @c device_get_ivars(child) is a struct 3114 * resource_list. This also handles 'passthrough' allocations where a 3115 * child is a remote descendant of bus by passing the allocation up to 3116 * the parent of bus. 3117 * 3118 * Typically, a bus driver would store a list of child resources 3119 * somewhere in the child device's ivars (see device_get_ivars()) and 3120 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3121 * then call resource_list_alloc() to perform the allocation. 3122 * 3123 * @param rl the resource list to allocate from 3124 * @param bus the parent device of @p child 3125 * @param child the device which is requesting an allocation 3126 * @param type the type of resource to allocate 3127 * @param rid a pointer to the resource identifier 3128 * @param start hint at the start of the resource range - pass 3129 * @c 0 for any start address 3130 * @param end hint at the end of the resource range - pass 3131 * @c ~0 for any end address 3132 * @param count hint at the size of range required - pass @c 1 3133 * for any size 3134 * @param flags any extra flags to control the resource 3135 * allocation - see @c RF_XXX flags in 3136 * <sys/rman.h> for details 3137 * 3138 * @returns the resource which was allocated or @c NULL if no 3139 * resource could be allocated 3140 */ 3141 struct resource * 3142 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3143 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3144 { 3145 struct resource_list_entry *rle = NULL; 3146 int passthrough = (device_get_parent(child) != bus); 3147 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3148 3149 if (passthrough) { 3150 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3151 type, rid, start, end, count, flags)); 3152 } 3153 3154 rle = resource_list_find(rl, type, *rid); 3155 3156 if (!rle) 3157 return (NULL); /* no resource of that type/rid */ 3158 3159 if (rle->res) { 3160 if (rle->flags & RLE_RESERVED) { 3161 if (rle->flags & RLE_ALLOCATED) 3162 return (NULL); 3163 if ((flags & RF_ACTIVE) && 3164 bus_activate_resource(child, type, *rid, 3165 rle->res) != 0) 3166 return (NULL); 3167 rle->flags |= RLE_ALLOCATED; 3168 return (rle->res); 3169 } 3170 device_printf(bus, 3171 "resource entry %#x type %d for child %s is busy\n", *rid, 3172 type, device_get_nameunit(child)); 3173 return (NULL); 3174 } 3175 3176 if (isdefault) { 3177 start = rle->start; 3178 count = ulmax(count, rle->count); 3179 end = ulmax(rle->end, start + count - 1); 3180 } 3181 3182 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3183 type, rid, start, end, count, flags); 3184 3185 /* 3186 * Record the new range. 3187 */ 3188 if (rle->res) { 3189 rle->start = rman_get_start(rle->res); 3190 rle->end = rman_get_end(rle->res); 3191 rle->count = count; 3192 } 3193 3194 return (rle->res); 3195 } 3196 3197 /** 3198 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3199 * 3200 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3201 * used with resource_list_alloc(). 3202 * 3203 * @param rl the resource list which was allocated from 3204 * @param bus the parent device of @p child 3205 * @param child the device which is requesting a release 3206 * @param res the resource to release 3207 * 3208 * @retval 0 success 3209 * @retval non-zero a standard unix error code indicating what 3210 * error condition prevented the operation 3211 */ 3212 int 3213 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3214 struct resource *res) 3215 { 3216 struct resource_list_entry *rle = NULL; 3217 int passthrough = (device_get_parent(child) != bus); 3218 int error; 3219 3220 if (passthrough) { 3221 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3222 res)); 3223 } 3224 3225 rle = resource_list_find(rl, rman_get_type(res), rman_get_rid(res)); 3226 3227 if (!rle) 3228 panic("resource_list_release: can't find resource"); 3229 if (!rle->res) 3230 panic("resource_list_release: resource entry is not busy"); 3231 if (rle->flags & RLE_RESERVED) { 3232 if (rle->flags & RLE_ALLOCATED) { 3233 if (rman_get_flags(res) & RF_ACTIVE) { 3234 error = bus_deactivate_resource(child, res); 3235 if (error) 3236 return (error); 3237 } 3238 rle->flags &= ~RLE_ALLOCATED; 3239 return (0); 3240 } 3241 return (EINVAL); 3242 } 3243 3244 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, res); 3245 if (error) 3246 return (error); 3247 3248 rle->res = NULL; 3249 return (0); 3250 } 3251 3252 /** 3253 * @brief Release all active resources of a given type 3254 * 3255 * Release all active resources of a specified type. This is intended 3256 * to be used to cleanup resources leaked by a driver after detach or 3257 * a failed attach. 3258 * 3259 * @param rl the resource list which was allocated from 3260 * @param bus the parent device of @p child 3261 * @param child the device whose active resources are being released 3262 * @param type the type of resources to release 3263 * 3264 * @retval 0 success 3265 * @retval EBUSY at least one resource was active 3266 */ 3267 int 3268 resource_list_release_active(struct resource_list *rl, device_t bus, 3269 device_t child, int type) 3270 { 3271 struct resource_list_entry *rle; 3272 int error, retval; 3273 3274 retval = 0; 3275 STAILQ_FOREACH(rle, rl, link) { 3276 if (rle->type != type) 3277 continue; 3278 if (rle->res == NULL) 3279 continue; 3280 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3281 RLE_RESERVED) 3282 continue; 3283 retval = EBUSY; 3284 error = resource_list_release(rl, bus, child, rle->res); 3285 if (error != 0) 3286 device_printf(bus, 3287 "Failed to release active resource: %d\n", error); 3288 } 3289 return (retval); 3290 } 3291 3292 /** 3293 * @brief Fully release a reserved resource 3294 * 3295 * Fully releases a resource reserved via resource_list_reserve(). 3296 * 3297 * @param rl the resource list which was allocated from 3298 * @param bus the parent device of @p child 3299 * @param child the device whose reserved resource is being released 3300 * @param type the type of resource to release 3301 * @param rid the resource identifier 3302 * @param res the resource to release 3303 * 3304 * @retval 0 success 3305 * @retval non-zero a standard unix error code indicating what 3306 * error condition prevented the operation 3307 */ 3308 int 3309 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3310 int type, int rid) 3311 { 3312 struct resource_list_entry *rle = NULL; 3313 int passthrough = (device_get_parent(child) != bus); 3314 3315 if (passthrough) 3316 panic( 3317 "resource_list_unreserve() should only be called for direct children"); 3318 3319 rle = resource_list_find(rl, type, rid); 3320 3321 if (!rle) 3322 panic("resource_list_unreserve: can't find resource"); 3323 if (!(rle->flags & RLE_RESERVED)) 3324 return (EINVAL); 3325 if (rle->flags & RLE_ALLOCATED) 3326 return (EBUSY); 3327 rle->flags &= ~RLE_RESERVED; 3328 return (resource_list_release(rl, bus, child, rle->res)); 3329 } 3330 3331 /** 3332 * @brief Print a description of resources in a resource list 3333 * 3334 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3335 * The name is printed if at least one resource of the given type is available. 3336 * The format is used to print resource start and end. 3337 * 3338 * @param rl the resource list to print 3339 * @param name the name of @p type, e.g. @c "memory" 3340 * @param type type type of resource entry to print 3341 * @param format printf(9) format string to print resource 3342 * start and end values 3343 * 3344 * @returns the number of characters printed 3345 */ 3346 int 3347 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3348 const char *format) 3349 { 3350 struct resource_list_entry *rle; 3351 int printed, retval; 3352 3353 printed = 0; 3354 retval = 0; 3355 /* Yes, this is kinda cheating */ 3356 STAILQ_FOREACH(rle, rl, link) { 3357 if (rle->type == type) { 3358 if (printed == 0) 3359 retval += printf(" %s ", name); 3360 else 3361 retval += printf(","); 3362 printed++; 3363 retval += printf(format, rle->start); 3364 if (rle->count > 1) { 3365 retval += printf("-"); 3366 retval += printf(format, rle->start + 3367 rle->count - 1); 3368 } 3369 } 3370 } 3371 return (retval); 3372 } 3373 3374 /** 3375 * @brief Releases all the resources in a list. 3376 * 3377 * @param rl The resource list to purge. 3378 * 3379 * @returns nothing 3380 */ 3381 void 3382 resource_list_purge(struct resource_list *rl) 3383 { 3384 struct resource_list_entry *rle; 3385 3386 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3387 if (rle->res) 3388 bus_release_resource(rman_get_device(rle->res), 3389 rle->type, rle->rid, rle->res); 3390 STAILQ_REMOVE_HEAD(rl, link); 3391 free(rle, M_BUS); 3392 } 3393 } 3394 3395 device_t 3396 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3397 { 3398 return (device_add_child_ordered(dev, order, name, unit)); 3399 } 3400 3401 /** 3402 * @brief Helper function for implementing DEVICE_PROBE() 3403 * 3404 * This function can be used to help implement the DEVICE_PROBE() for 3405 * a bus (i.e. a device which has other devices attached to it). It 3406 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3407 * devclass. 3408 */ 3409 int 3410 bus_generic_probe(device_t dev) 3411 { 3412 bus_identify_children(dev); 3413 return (0); 3414 } 3415 3416 /** 3417 * @brief Ask drivers to add child devices of the given device. 3418 * 3419 * This function allows drivers for child devices of a bus to identify 3420 * child devices and add them as children of the given device. NB: 3421 * The driver for @param dev must implement the BUS_ADD_CHILD method. 3422 * 3423 * @param dev the parent device 3424 */ 3425 void 3426 bus_identify_children(device_t dev) 3427 { 3428 devclass_t dc = dev->devclass; 3429 driverlink_t dl; 3430 3431 TAILQ_FOREACH(dl, &dc->drivers, link) { 3432 /* 3433 * If this driver's pass is too high, then ignore it. 3434 * For most drivers in the default pass, this will 3435 * never be true. For early-pass drivers they will 3436 * only call the identify routines of eligible drivers 3437 * when this routine is called. Drivers for later 3438 * passes should have their identify routines called 3439 * on early-pass buses during BUS_NEW_PASS(). 3440 */ 3441 if (dl->pass > bus_current_pass) 3442 continue; 3443 DEVICE_IDENTIFY(dl->driver, dev); 3444 } 3445 } 3446 3447 /** 3448 * @brief Helper function for implementing DEVICE_ATTACH() 3449 * 3450 * This function can be used to help implement the DEVICE_ATTACH() for 3451 * a bus. It calls device_probe_and_attach() for each of the device's 3452 * children. 3453 */ 3454 int 3455 bus_generic_attach(device_t dev) 3456 { 3457 bus_attach_children(dev); 3458 return (0); 3459 } 3460 3461 /** 3462 * @brief Probe and attach all children of the given device 3463 * 3464 * This function attempts to attach a device driver to each unattached 3465 * child of the given device using device_probe_and_attach(). If an 3466 * individual child fails to attach this function continues attaching 3467 * other children. 3468 * 3469 * @param dev the parent device 3470 */ 3471 void 3472 bus_attach_children(device_t dev) 3473 { 3474 device_t child; 3475 3476 TAILQ_FOREACH(child, &dev->children, link) { 3477 device_probe_and_attach(child); 3478 } 3479 } 3480 3481 /** 3482 * @brief Helper function for delaying attaching children 3483 * 3484 * Many buses can't run transactions on the bus which children need to probe and 3485 * attach until after interrupts and/or timers are running. This function 3486 * delays their attach until interrupts and timers are enabled. 3487 */ 3488 int 3489 bus_delayed_attach_children(device_t dev) 3490 { 3491 /* Probe and attach the bus children when interrupts are available */ 3492 config_intrhook_oneshot((ich_func_t)bus_attach_children, dev); 3493 3494 return (0); 3495 } 3496 3497 /** 3498 * @brief Helper function for implementing DEVICE_DETACH() 3499 * 3500 * This function can be used to help implement the DEVICE_DETACH() for 3501 * a bus. It calls device_detach() for each of the device's 3502 * children. 3503 */ 3504 int 3505 bus_generic_detach(device_t dev) 3506 { 3507 int error; 3508 3509 error = bus_detach_children(dev); 3510 if (error != 0) 3511 return (error); 3512 3513 return (0); 3514 } 3515 3516 /** 3517 * @brief Detach drivers from all children of a device 3518 * 3519 * This function attempts to detach a device driver from each attached 3520 * child of the given device using device_detach(). If an individual 3521 * child fails to detach this function stops and returns an error. 3522 * NB: Children that were successfully detached are not re-attached if 3523 * an error occurs. 3524 * 3525 * @param dev the parent device 3526 * 3527 * @retval 0 success 3528 * @retval non-zero a device would not detach 3529 */ 3530 int 3531 bus_detach_children(device_t dev) 3532 { 3533 device_t child; 3534 int error; 3535 3536 /* 3537 * Detach children in the reverse order. 3538 * See bus_generic_suspend for details. 3539 */ 3540 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3541 if ((error = device_detach(child)) != 0) 3542 return (error); 3543 } 3544 3545 return (0); 3546 } 3547 3548 /** 3549 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3550 * 3551 * This function can be used to help implement the DEVICE_SHUTDOWN() 3552 * for a bus. It calls device_shutdown() for each of the device's 3553 * children. 3554 */ 3555 int 3556 bus_generic_shutdown(device_t dev) 3557 { 3558 device_t child; 3559 3560 /* 3561 * Shut down children in the reverse order. 3562 * See bus_generic_suspend for details. 3563 */ 3564 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3565 device_shutdown(child); 3566 } 3567 3568 return (0); 3569 } 3570 3571 /** 3572 * @brief Default function for suspending a child device. 3573 * 3574 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3575 */ 3576 int 3577 bus_generic_suspend_child(device_t dev, device_t child) 3578 { 3579 int error; 3580 3581 error = DEVICE_SUSPEND(child); 3582 3583 if (error == 0) { 3584 child->flags |= DF_SUSPENDED; 3585 } else { 3586 printf("DEVICE_SUSPEND(%s) failed: %d\n", 3587 device_get_nameunit(child), error); 3588 } 3589 3590 return (error); 3591 } 3592 3593 /** 3594 * @brief Default function for resuming a child device. 3595 * 3596 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3597 */ 3598 int 3599 bus_generic_resume_child(device_t dev, device_t child) 3600 { 3601 DEVICE_RESUME(child); 3602 child->flags &= ~DF_SUSPENDED; 3603 3604 return (0); 3605 } 3606 3607 /** 3608 * @brief Helper function for implementing DEVICE_SUSPEND() 3609 * 3610 * This function can be used to help implement the DEVICE_SUSPEND() 3611 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3612 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3613 * operation is aborted and any devices which were suspended are 3614 * resumed immediately by calling their DEVICE_RESUME() methods. 3615 */ 3616 int 3617 bus_generic_suspend(device_t dev) 3618 { 3619 int error; 3620 device_t child; 3621 3622 /* 3623 * Suspend children in the reverse order. 3624 * For most buses all children are equal, so the order does not matter. 3625 * Other buses, such as acpi, carefully order their child devices to 3626 * express implicit dependencies between them. For such buses it is 3627 * safer to bring down devices in the reverse order. 3628 */ 3629 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3630 error = BUS_SUSPEND_CHILD(dev, child); 3631 if (error != 0) { 3632 child = TAILQ_NEXT(child, link); 3633 if (child != NULL) { 3634 TAILQ_FOREACH_FROM(child, &dev->children, link) 3635 BUS_RESUME_CHILD(dev, child); 3636 } 3637 return (error); 3638 } 3639 } 3640 return (0); 3641 } 3642 3643 /** 3644 * @brief Helper function for implementing DEVICE_RESUME() 3645 * 3646 * This function can be used to help implement the DEVICE_RESUME() for 3647 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3648 */ 3649 int 3650 bus_generic_resume(device_t dev) 3651 { 3652 device_t child; 3653 3654 TAILQ_FOREACH(child, &dev->children, link) { 3655 BUS_RESUME_CHILD(dev, child); 3656 /* if resume fails, there's nothing we can usefully do... */ 3657 } 3658 return (0); 3659 } 3660 3661 /** 3662 * @brief Helper function for implementing BUS_RESET_POST 3663 * 3664 * Bus can use this function to implement common operations of 3665 * re-attaching or resuming the children after the bus itself was 3666 * reset, and after restoring bus-unique state of children. 3667 * 3668 * @param dev The bus 3669 * #param flags DEVF_RESET_* 3670 */ 3671 int 3672 bus_helper_reset_post(device_t dev, int flags) 3673 { 3674 device_t child; 3675 int error, error1; 3676 3677 error = 0; 3678 TAILQ_FOREACH(child, &dev->children,link) { 3679 BUS_RESET_POST(dev, child); 3680 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3681 device_probe_and_attach(child) : 3682 BUS_RESUME_CHILD(dev, child); 3683 if (error == 0 && error1 != 0) 3684 error = error1; 3685 } 3686 return (error); 3687 } 3688 3689 static void 3690 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3691 { 3692 child = TAILQ_NEXT(child, link); 3693 if (child == NULL) 3694 return; 3695 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3696 BUS_RESET_POST(dev, child); 3697 if ((flags & DEVF_RESET_DETACH) != 0) 3698 device_probe_and_attach(child); 3699 else 3700 BUS_RESUME_CHILD(dev, child); 3701 } 3702 } 3703 3704 /** 3705 * @brief Helper function for implementing BUS_RESET_PREPARE 3706 * 3707 * Bus can use this function to implement common operations of 3708 * detaching or suspending the children before the bus itself is 3709 * reset, and then save bus-unique state of children that must 3710 * persists around reset. 3711 * 3712 * @param dev The bus 3713 * #param flags DEVF_RESET_* 3714 */ 3715 int 3716 bus_helper_reset_prepare(device_t dev, int flags) 3717 { 3718 device_t child; 3719 int error; 3720 3721 if (dev->state != DS_ATTACHED) 3722 return (EBUSY); 3723 3724 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3725 if ((flags & DEVF_RESET_DETACH) != 0) { 3726 error = device_get_state(child) == DS_ATTACHED ? 3727 device_detach(child) : 0; 3728 } else { 3729 error = BUS_SUSPEND_CHILD(dev, child); 3730 } 3731 if (error == 0) { 3732 error = BUS_RESET_PREPARE(dev, child); 3733 if (error != 0) { 3734 if ((flags & DEVF_RESET_DETACH) != 0) 3735 device_probe_and_attach(child); 3736 else 3737 BUS_RESUME_CHILD(dev, child); 3738 } 3739 } 3740 if (error != 0) { 3741 bus_helper_reset_prepare_rollback(dev, child, flags); 3742 return (error); 3743 } 3744 } 3745 return (0); 3746 } 3747 3748 /** 3749 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3750 * 3751 * This function prints the first part of the ascii representation of 3752 * @p child, including its name, unit and description (if any - see 3753 * device_set_desc()). 3754 * 3755 * @returns the number of characters printed 3756 */ 3757 int 3758 bus_print_child_header(device_t dev, device_t child) 3759 { 3760 int retval = 0; 3761 3762 if (device_get_desc(child)) { 3763 retval += device_printf(child, "<%s>", device_get_desc(child)); 3764 } else { 3765 retval += printf("%s", device_get_nameunit(child)); 3766 } 3767 3768 return (retval); 3769 } 3770 3771 /** 3772 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3773 * 3774 * This function prints the last part of the ascii representation of 3775 * @p child, which consists of the string @c " on " followed by the 3776 * name and unit of the @p dev. 3777 * 3778 * @returns the number of characters printed 3779 */ 3780 int 3781 bus_print_child_footer(device_t dev, device_t child) 3782 { 3783 return (printf(" on %s\n", device_get_nameunit(dev))); 3784 } 3785 3786 /** 3787 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3788 * 3789 * This function prints out the VM domain for the given device. 3790 * 3791 * @returns the number of characters printed 3792 */ 3793 int 3794 bus_print_child_domain(device_t dev, device_t child) 3795 { 3796 int domain; 3797 3798 /* No domain? Don't print anything */ 3799 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3800 return (0); 3801 3802 return (printf(" numa-domain %d", domain)); 3803 } 3804 3805 /** 3806 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3807 * 3808 * This function simply calls bus_print_child_header() followed by 3809 * bus_print_child_footer(). 3810 * 3811 * @returns the number of characters printed 3812 */ 3813 int 3814 bus_generic_print_child(device_t dev, device_t child) 3815 { 3816 int retval = 0; 3817 3818 retval += bus_print_child_header(dev, child); 3819 retval += bus_print_child_domain(dev, child); 3820 retval += bus_print_child_footer(dev, child); 3821 3822 return (retval); 3823 } 3824 3825 /** 3826 * @brief Stub function for implementing BUS_READ_IVAR(). 3827 * 3828 * @returns ENOENT 3829 */ 3830 int 3831 bus_generic_read_ivar(device_t dev, device_t child, int index, 3832 uintptr_t * result) 3833 { 3834 return (ENOENT); 3835 } 3836 3837 /** 3838 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3839 * 3840 * @returns ENOENT 3841 */ 3842 int 3843 bus_generic_write_ivar(device_t dev, device_t child, int index, 3844 uintptr_t value) 3845 { 3846 return (ENOENT); 3847 } 3848 3849 /** 3850 * @brief Helper function for implementing BUS_GET_PROPERTY(). 3851 * 3852 * This simply calls the BUS_GET_PROPERTY of the parent of dev, 3853 * until a non-default implementation is found. 3854 */ 3855 ssize_t 3856 bus_generic_get_property(device_t dev, device_t child, const char *propname, 3857 void *propvalue, size_t size, device_property_type_t type) 3858 { 3859 if (device_get_parent(dev) != NULL) 3860 return (BUS_GET_PROPERTY(device_get_parent(dev), child, 3861 propname, propvalue, size, type)); 3862 3863 return (-1); 3864 } 3865 3866 /** 3867 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3868 * 3869 * @returns NULL 3870 */ 3871 struct resource_list * 3872 bus_generic_get_resource_list(device_t dev, device_t child) 3873 { 3874 return (NULL); 3875 } 3876 3877 /** 3878 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3879 * 3880 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3881 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3882 * and then calls device_probe_and_attach() for each unattached child. 3883 */ 3884 void 3885 bus_generic_driver_added(device_t dev, driver_t *driver) 3886 { 3887 device_t child; 3888 3889 DEVICE_IDENTIFY(driver, dev); 3890 TAILQ_FOREACH(child, &dev->children, link) { 3891 if (child->state == DS_NOTPRESENT) 3892 device_probe_and_attach(child); 3893 } 3894 } 3895 3896 /** 3897 * @brief Helper function for implementing BUS_NEW_PASS(). 3898 * 3899 * This implementing of BUS_NEW_PASS() first calls the identify 3900 * routines for any drivers that probe at the current pass. Then it 3901 * walks the list of devices for this bus. If a device is already 3902 * attached, then it calls BUS_NEW_PASS() on that device. If the 3903 * device is not already attached, it attempts to attach a driver to 3904 * it. 3905 */ 3906 void 3907 bus_generic_new_pass(device_t dev) 3908 { 3909 driverlink_t dl; 3910 devclass_t dc; 3911 device_t child; 3912 3913 dc = dev->devclass; 3914 TAILQ_FOREACH(dl, &dc->drivers, link) { 3915 if (dl->pass == bus_current_pass) 3916 DEVICE_IDENTIFY(dl->driver, dev); 3917 } 3918 TAILQ_FOREACH(child, &dev->children, link) { 3919 if (child->state >= DS_ATTACHED) 3920 BUS_NEW_PASS(child); 3921 else if (child->state == DS_NOTPRESENT) 3922 device_probe_and_attach(child); 3923 } 3924 } 3925 3926 /** 3927 * @brief Helper function for implementing BUS_SETUP_INTR(). 3928 * 3929 * This simple implementation of BUS_SETUP_INTR() simply calls the 3930 * BUS_SETUP_INTR() method of the parent of @p dev. 3931 */ 3932 int 3933 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3934 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3935 void **cookiep) 3936 { 3937 /* Propagate up the bus hierarchy until someone handles it. */ 3938 if (dev->parent) 3939 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3940 filter, intr, arg, cookiep)); 3941 return (EINVAL); 3942 } 3943 3944 /** 3945 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3946 * 3947 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 3948 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 3949 */ 3950 int 3951 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 3952 void *cookie) 3953 { 3954 /* Propagate up the bus hierarchy until someone handles it. */ 3955 if (dev->parent) 3956 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 3957 return (EINVAL); 3958 } 3959 3960 /** 3961 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 3962 * 3963 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 3964 * BUS_SUSPEND_INTR() method of the parent of @p dev. 3965 */ 3966 int 3967 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 3968 { 3969 /* Propagate up the bus hierarchy until someone handles it. */ 3970 if (dev->parent) 3971 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 3972 return (EINVAL); 3973 } 3974 3975 /** 3976 * @brief Helper function for implementing BUS_RESUME_INTR(). 3977 * 3978 * This simple implementation of BUS_RESUME_INTR() simply calls the 3979 * BUS_RESUME_INTR() method of the parent of @p dev. 3980 */ 3981 int 3982 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 3983 { 3984 /* Propagate up the bus hierarchy until someone handles it. */ 3985 if (dev->parent) 3986 return (BUS_RESUME_INTR(dev->parent, child, irq)); 3987 return (EINVAL); 3988 } 3989 3990 /** 3991 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 3992 * 3993 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 3994 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 3995 */ 3996 int 3997 bus_generic_adjust_resource(device_t dev, device_t child, struct resource *r, 3998 rman_res_t start, rman_res_t end) 3999 { 4000 /* Propagate up the bus hierarchy until someone handles it. */ 4001 if (dev->parent) 4002 return (BUS_ADJUST_RESOURCE(dev->parent, child, r, start, end)); 4003 return (EINVAL); 4004 } 4005 4006 /* 4007 * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE(). 4008 * 4009 * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the 4010 * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev. If there is no 4011 * parent, no translation happens. 4012 */ 4013 int 4014 bus_generic_translate_resource(device_t dev, int type, rman_res_t start, 4015 rman_res_t *newstart) 4016 { 4017 if (dev->parent) 4018 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, 4019 newstart)); 4020 *newstart = start; 4021 return (0); 4022 } 4023 4024 /** 4025 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4026 * 4027 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 4028 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 4029 */ 4030 struct resource * 4031 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4032 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4033 { 4034 /* Propagate up the bus hierarchy until someone handles it. */ 4035 if (dev->parent) 4036 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4037 start, end, count, flags)); 4038 return (NULL); 4039 } 4040 4041 /** 4042 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4043 * 4044 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4045 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4046 */ 4047 int 4048 bus_generic_release_resource(device_t dev, device_t child, struct resource *r) 4049 { 4050 /* Propagate up the bus hierarchy until someone handles it. */ 4051 if (dev->parent) 4052 return (BUS_RELEASE_RESOURCE(dev->parent, child, r)); 4053 return (EINVAL); 4054 } 4055 4056 /** 4057 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4058 * 4059 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4060 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4061 */ 4062 int 4063 bus_generic_activate_resource(device_t dev, device_t child, struct resource *r) 4064 { 4065 /* Propagate up the bus hierarchy until someone handles it. */ 4066 if (dev->parent) 4067 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, r)); 4068 return (EINVAL); 4069 } 4070 4071 /** 4072 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4073 * 4074 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4075 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4076 */ 4077 int 4078 bus_generic_deactivate_resource(device_t dev, device_t child, 4079 struct resource *r) 4080 { 4081 /* Propagate up the bus hierarchy until someone handles it. */ 4082 if (dev->parent) 4083 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, r)); 4084 return (EINVAL); 4085 } 4086 4087 /** 4088 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4089 * 4090 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4091 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4092 */ 4093 int 4094 bus_generic_map_resource(device_t dev, device_t child, struct resource *r, 4095 struct resource_map_request *args, struct resource_map *map) 4096 { 4097 /* Propagate up the bus hierarchy until someone handles it. */ 4098 if (dev->parent) 4099 return (BUS_MAP_RESOURCE(dev->parent, child, r, args, map)); 4100 return (EINVAL); 4101 } 4102 4103 /** 4104 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4105 * 4106 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4107 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4108 */ 4109 int 4110 bus_generic_unmap_resource(device_t dev, device_t child, struct resource *r, 4111 struct resource_map *map) 4112 { 4113 /* Propagate up the bus hierarchy until someone handles it. */ 4114 if (dev->parent) 4115 return (BUS_UNMAP_RESOURCE(dev->parent, child, r, map)); 4116 return (EINVAL); 4117 } 4118 4119 /** 4120 * @brief Helper function for implementing BUS_BIND_INTR(). 4121 * 4122 * This simple implementation of BUS_BIND_INTR() simply calls the 4123 * BUS_BIND_INTR() method of the parent of @p dev. 4124 */ 4125 int 4126 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4127 int cpu) 4128 { 4129 /* Propagate up the bus hierarchy until someone handles it. */ 4130 if (dev->parent) 4131 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4132 return (EINVAL); 4133 } 4134 4135 /** 4136 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4137 * 4138 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4139 * BUS_CONFIG_INTR() method of the parent of @p dev. 4140 */ 4141 int 4142 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4143 enum intr_polarity pol) 4144 { 4145 /* Propagate up the bus hierarchy until someone handles it. */ 4146 if (dev->parent) 4147 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4148 return (EINVAL); 4149 } 4150 4151 /** 4152 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4153 * 4154 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4155 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4156 */ 4157 int 4158 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4159 void *cookie, const char *descr) 4160 { 4161 /* Propagate up the bus hierarchy until someone handles it. */ 4162 if (dev->parent) 4163 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4164 descr)); 4165 return (EINVAL); 4166 } 4167 4168 /** 4169 * @brief Helper function for implementing BUS_GET_CPUS(). 4170 * 4171 * This simple implementation of BUS_GET_CPUS() simply calls the 4172 * BUS_GET_CPUS() method of the parent of @p dev. 4173 */ 4174 int 4175 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4176 size_t setsize, cpuset_t *cpuset) 4177 { 4178 /* Propagate up the bus hierarchy until someone handles it. */ 4179 if (dev->parent != NULL) 4180 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4181 return (EINVAL); 4182 } 4183 4184 /** 4185 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4186 * 4187 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4188 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4189 */ 4190 bus_dma_tag_t 4191 bus_generic_get_dma_tag(device_t dev, device_t child) 4192 { 4193 /* Propagate up the bus hierarchy until someone handles it. */ 4194 if (dev->parent != NULL) 4195 return (BUS_GET_DMA_TAG(dev->parent, child)); 4196 return (NULL); 4197 } 4198 4199 /** 4200 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4201 * 4202 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4203 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4204 */ 4205 bus_space_tag_t 4206 bus_generic_get_bus_tag(device_t dev, device_t child) 4207 { 4208 /* Propagate up the bus hierarchy until someone handles it. */ 4209 if (dev->parent != NULL) 4210 return (BUS_GET_BUS_TAG(dev->parent, child)); 4211 return ((bus_space_tag_t)0); 4212 } 4213 4214 /** 4215 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4216 * 4217 * This implementation of BUS_GET_RESOURCE() uses the 4218 * resource_list_find() function to do most of the work. It calls 4219 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4220 * search. 4221 */ 4222 int 4223 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4224 rman_res_t *startp, rman_res_t *countp) 4225 { 4226 struct resource_list * rl = NULL; 4227 struct resource_list_entry * rle = NULL; 4228 4229 rl = BUS_GET_RESOURCE_LIST(dev, child); 4230 if (!rl) 4231 return (EINVAL); 4232 4233 rle = resource_list_find(rl, type, rid); 4234 if (!rle) 4235 return (ENOENT); 4236 4237 if (startp) 4238 *startp = rle->start; 4239 if (countp) 4240 *countp = rle->count; 4241 4242 return (0); 4243 } 4244 4245 /** 4246 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4247 * 4248 * This implementation of BUS_SET_RESOURCE() uses the 4249 * resource_list_add() function to do most of the work. It calls 4250 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4251 * edit. 4252 */ 4253 int 4254 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4255 rman_res_t start, rman_res_t count) 4256 { 4257 struct resource_list * rl = NULL; 4258 4259 rl = BUS_GET_RESOURCE_LIST(dev, child); 4260 if (!rl) 4261 return (EINVAL); 4262 4263 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4264 4265 return (0); 4266 } 4267 4268 /** 4269 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4270 * 4271 * This implementation of BUS_DELETE_RESOURCE() uses the 4272 * resource_list_delete() function to do most of the work. It calls 4273 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4274 * edit. 4275 */ 4276 void 4277 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4278 { 4279 struct resource_list * rl = NULL; 4280 4281 rl = BUS_GET_RESOURCE_LIST(dev, child); 4282 if (!rl) 4283 return; 4284 4285 resource_list_delete(rl, type, rid); 4286 4287 return; 4288 } 4289 4290 /** 4291 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4292 * 4293 * This implementation of BUS_RELEASE_RESOURCE() uses the 4294 * resource_list_release() function to do most of the work. It calls 4295 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4296 */ 4297 int 4298 bus_generic_rl_release_resource(device_t dev, device_t child, 4299 struct resource *r) 4300 { 4301 struct resource_list * rl = NULL; 4302 4303 if (device_get_parent(child) != dev) 4304 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, r)); 4305 4306 rl = BUS_GET_RESOURCE_LIST(dev, child); 4307 if (!rl) 4308 return (EINVAL); 4309 4310 return (resource_list_release(rl, dev, child, r)); 4311 } 4312 4313 /** 4314 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4315 * 4316 * This implementation of BUS_ALLOC_RESOURCE() uses the 4317 * resource_list_alloc() function to do most of the work. It calls 4318 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4319 */ 4320 struct resource * 4321 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4322 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4323 { 4324 struct resource_list * rl = NULL; 4325 4326 if (device_get_parent(child) != dev) 4327 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4328 type, rid, start, end, count, flags)); 4329 4330 rl = BUS_GET_RESOURCE_LIST(dev, child); 4331 if (!rl) 4332 return (NULL); 4333 4334 return (resource_list_alloc(rl, dev, child, type, rid, 4335 start, end, count, flags)); 4336 } 4337 4338 /** 4339 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4340 * 4341 * This implementation of BUS_ALLOC_RESOURCE() allocates a 4342 * resource from a resource manager. It uses BUS_GET_RMAN() 4343 * to obtain the resource manager. 4344 */ 4345 struct resource * 4346 bus_generic_rman_alloc_resource(device_t dev, device_t child, int type, 4347 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4348 { 4349 struct resource *r; 4350 struct rman *rm; 4351 4352 rm = BUS_GET_RMAN(dev, type, flags); 4353 if (rm == NULL) 4354 return (NULL); 4355 4356 r = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 4357 child); 4358 if (r == NULL) 4359 return (NULL); 4360 rman_set_rid(r, *rid); 4361 rman_set_type(r, type); 4362 4363 if (flags & RF_ACTIVE) { 4364 if (bus_activate_resource(child, type, *rid, r) != 0) { 4365 rman_release_resource(r); 4366 return (NULL); 4367 } 4368 } 4369 4370 return (r); 4371 } 4372 4373 /** 4374 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4375 * 4376 * This implementation of BUS_ADJUST_RESOURCE() adjusts resources only 4377 * if they were allocated from the resource manager returned by 4378 * BUS_GET_RMAN(). 4379 */ 4380 int 4381 bus_generic_rman_adjust_resource(device_t dev, device_t child, 4382 struct resource *r, rman_res_t start, rman_res_t end) 4383 { 4384 struct rman *rm; 4385 4386 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r)); 4387 if (rm == NULL) 4388 return (ENXIO); 4389 if (!rman_is_region_manager(r, rm)) 4390 return (EINVAL); 4391 return (rman_adjust_resource(r, start, end)); 4392 } 4393 4394 /** 4395 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4396 * 4397 * This implementation of BUS_RELEASE_RESOURCE() releases resources 4398 * allocated by bus_generic_rman_alloc_resource. 4399 */ 4400 int 4401 bus_generic_rman_release_resource(device_t dev, device_t child, 4402 struct resource *r) 4403 { 4404 #ifdef INVARIANTS 4405 struct rman *rm; 4406 #endif 4407 int error; 4408 4409 #ifdef INVARIANTS 4410 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r)); 4411 KASSERT(rman_is_region_manager(r, rm), 4412 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4413 #endif 4414 4415 if (rman_get_flags(r) & RF_ACTIVE) { 4416 error = bus_deactivate_resource(child, r); 4417 if (error != 0) 4418 return (error); 4419 } 4420 return (rman_release_resource(r)); 4421 } 4422 4423 /** 4424 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4425 * 4426 * This implementation of BUS_ACTIVATE_RESOURCE() activates resources 4427 * allocated by bus_generic_rman_alloc_resource. 4428 */ 4429 int 4430 bus_generic_rman_activate_resource(device_t dev, device_t child, 4431 struct resource *r) 4432 { 4433 struct resource_map map; 4434 #ifdef INVARIANTS 4435 struct rman *rm; 4436 #endif 4437 int error, type; 4438 4439 type = rman_get_type(r); 4440 #ifdef INVARIANTS 4441 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r)); 4442 KASSERT(rman_is_region_manager(r, rm), 4443 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4444 #endif 4445 4446 error = rman_activate_resource(r); 4447 if (error != 0) 4448 return (error); 4449 4450 switch (type) { 4451 case SYS_RES_IOPORT: 4452 case SYS_RES_MEMORY: 4453 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) { 4454 error = BUS_MAP_RESOURCE(dev, child, r, NULL, &map); 4455 if (error != 0) 4456 break; 4457 4458 rman_set_mapping(r, &map); 4459 } 4460 break; 4461 #ifdef INTRNG 4462 case SYS_RES_IRQ: 4463 error = intr_activate_irq(child, r); 4464 break; 4465 #endif 4466 } 4467 if (error != 0) 4468 rman_deactivate_resource(r); 4469 return (error); 4470 } 4471 4472 /** 4473 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4474 * 4475 * This implementation of BUS_DEACTIVATE_RESOURCE() deactivates 4476 * resources allocated by bus_generic_rman_alloc_resource. 4477 */ 4478 int 4479 bus_generic_rman_deactivate_resource(device_t dev, device_t child, 4480 struct resource *r) 4481 { 4482 struct resource_map map; 4483 #ifdef INVARIANTS 4484 struct rman *rm; 4485 #endif 4486 int error, type; 4487 4488 type = rman_get_type(r); 4489 #ifdef INVARIANTS 4490 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r)); 4491 KASSERT(rman_is_region_manager(r, rm), 4492 ("%s: rman %p doesn't match for resource %p", __func__, rm, r)); 4493 #endif 4494 4495 error = rman_deactivate_resource(r); 4496 if (error != 0) 4497 return (error); 4498 4499 switch (type) { 4500 case SYS_RES_IOPORT: 4501 case SYS_RES_MEMORY: 4502 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) { 4503 rman_get_mapping(r, &map); 4504 BUS_UNMAP_RESOURCE(dev, child, r, &map); 4505 } 4506 break; 4507 #ifdef INTRNG 4508 case SYS_RES_IRQ: 4509 intr_deactivate_irq(child, r); 4510 break; 4511 #endif 4512 } 4513 return (0); 4514 } 4515 4516 /** 4517 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4518 * 4519 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4520 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4521 */ 4522 int 4523 bus_generic_child_present(device_t dev, device_t child) 4524 { 4525 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4526 } 4527 4528 /** 4529 * @brief Helper function for implementing BUS_GET_DOMAIN(). 4530 * 4531 * This simple implementation of BUS_GET_DOMAIN() calls the 4532 * BUS_GET_DOMAIN() method of the parent of @p dev. If @p dev 4533 * does not have a parent, the function fails with ENOENT. 4534 */ 4535 int 4536 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4537 { 4538 if (dev->parent) 4539 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4540 4541 return (ENOENT); 4542 } 4543 4544 /** 4545 * @brief Helper function to implement normal BUS_GET_DEVICE_PATH() 4546 * 4547 * This function knows how to (a) pass the request up the tree if there's 4548 * a parent and (b) Knows how to supply a FreeBSD locator. 4549 * 4550 * @param bus bus in the walk up the tree 4551 * @param child leaf node to print information about 4552 * @param locator BUS_LOCATOR_xxx string for locator 4553 * @param sb Buffer to print information into 4554 */ 4555 int 4556 bus_generic_get_device_path(device_t bus, device_t child, const char *locator, 4557 struct sbuf *sb) 4558 { 4559 int rv = 0; 4560 device_t parent; 4561 4562 /* 4563 * We don't recurse on ACPI since either we know the handle for the 4564 * device or we don't. And if we're in the generic routine, we don't 4565 * have a ACPI override. All other locators build up a path by having 4566 * their parents create a path and then adding the path element for this 4567 * node. That's why we recurse with parent, bus rather than the typical 4568 * parent, child: each spot in the tree is independent of what our child 4569 * will do with this path. 4570 */ 4571 parent = device_get_parent(bus); 4572 if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) { 4573 rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb); 4574 } 4575 if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) { 4576 if (rv == 0) { 4577 sbuf_printf(sb, "/%s", device_get_nameunit(child)); 4578 } 4579 return (rv); 4580 } 4581 /* 4582 * Don't know what to do. So assume we do nothing. Not sure that's 4583 * the right thing, but keeps us from having a big list here. 4584 */ 4585 return (0); 4586 } 4587 4588 4589 /** 4590 * @brief Helper function for implementing BUS_RESCAN(). 4591 * 4592 * This null implementation of BUS_RESCAN() always fails to indicate 4593 * the bus does not support rescanning. 4594 */ 4595 int 4596 bus_null_rescan(device_t dev) 4597 { 4598 return (ENODEV); 4599 } 4600 4601 /* 4602 * Some convenience functions to make it easier for drivers to use the 4603 * resource-management functions. All these really do is hide the 4604 * indirection through the parent's method table, making for slightly 4605 * less-wordy code. In the future, it might make sense for this code 4606 * to maintain some sort of a list of resources allocated by each device. 4607 */ 4608 4609 int 4610 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4611 struct resource **res) 4612 { 4613 int i; 4614 4615 for (i = 0; rs[i].type != -1; i++) 4616 res[i] = NULL; 4617 for (i = 0; rs[i].type != -1; i++) { 4618 res[i] = bus_alloc_resource_any(dev, 4619 rs[i].type, &rs[i].rid, rs[i].flags); 4620 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4621 bus_release_resources(dev, rs, res); 4622 return (ENXIO); 4623 } 4624 } 4625 return (0); 4626 } 4627 4628 void 4629 bus_release_resources(device_t dev, const struct resource_spec *rs, 4630 struct resource **res) 4631 { 4632 int i; 4633 4634 for (i = 0; rs[i].type != -1; i++) 4635 if (res[i] != NULL) { 4636 bus_release_resource( 4637 dev, rs[i].type, rs[i].rid, res[i]); 4638 res[i] = NULL; 4639 } 4640 } 4641 4642 /** 4643 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4644 * 4645 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4646 * parent of @p dev. 4647 */ 4648 struct resource * 4649 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4650 rman_res_t end, rman_res_t count, u_int flags) 4651 { 4652 struct resource *res; 4653 4654 if (dev->parent == NULL) 4655 return (NULL); 4656 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4657 count, flags); 4658 return (res); 4659 } 4660 4661 /** 4662 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4663 * 4664 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4665 * parent of @p dev. 4666 */ 4667 int 4668 bus_adjust_resource(device_t dev, struct resource *r, rman_res_t start, 4669 rman_res_t end) 4670 { 4671 if (dev->parent == NULL) 4672 return (EINVAL); 4673 return (BUS_ADJUST_RESOURCE(dev->parent, dev, r, start, end)); 4674 } 4675 4676 int 4677 bus_adjust_resource_old(device_t dev, int type __unused, struct resource *r, 4678 rman_res_t start, rman_res_t end) 4679 { 4680 return (bus_adjust_resource(dev, r, start, end)); 4681 } 4682 4683 /** 4684 * @brief Wrapper function for BUS_TRANSLATE_RESOURCE(). 4685 * 4686 * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the 4687 * parent of @p dev. 4688 */ 4689 int 4690 bus_translate_resource(device_t dev, int type, rman_res_t start, 4691 rman_res_t *newstart) 4692 { 4693 if (dev->parent == NULL) 4694 return (EINVAL); 4695 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart)); 4696 } 4697 4698 /** 4699 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4700 * 4701 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4702 * parent of @p dev. 4703 */ 4704 int 4705 bus_activate_resource(device_t dev, struct resource *r) 4706 { 4707 if (dev->parent == NULL) 4708 return (EINVAL); 4709 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, r)); 4710 } 4711 4712 int 4713 bus_activate_resource_old(device_t dev, int type, int rid, struct resource *r) 4714 { 4715 return (bus_activate_resource(dev, r)); 4716 } 4717 4718 /** 4719 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4720 * 4721 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4722 * parent of @p dev. 4723 */ 4724 int 4725 bus_deactivate_resource(device_t dev, struct resource *r) 4726 { 4727 if (dev->parent == NULL) 4728 return (EINVAL); 4729 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, r)); 4730 } 4731 4732 int 4733 bus_deactivate_resource_old(device_t dev, int type, int rid, struct resource *r) 4734 { 4735 return (bus_deactivate_resource(dev, r)); 4736 } 4737 4738 /** 4739 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4740 * 4741 * This function simply calls the BUS_MAP_RESOURCE() method of the 4742 * parent of @p dev. 4743 */ 4744 int 4745 bus_map_resource(device_t dev, struct resource *r, 4746 struct resource_map_request *args, struct resource_map *map) 4747 { 4748 if (dev->parent == NULL) 4749 return (EINVAL); 4750 return (BUS_MAP_RESOURCE(dev->parent, dev, r, args, map)); 4751 } 4752 4753 int 4754 bus_map_resource_old(device_t dev, int type, struct resource *r, 4755 struct resource_map_request *args, struct resource_map *map) 4756 { 4757 return (bus_map_resource(dev, r, args, map)); 4758 } 4759 4760 /** 4761 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4762 * 4763 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4764 * parent of @p dev. 4765 */ 4766 int 4767 bus_unmap_resource(device_t dev, struct resource *r, struct resource_map *map) 4768 { 4769 if (dev->parent == NULL) 4770 return (EINVAL); 4771 return (BUS_UNMAP_RESOURCE(dev->parent, dev, r, map)); 4772 } 4773 4774 int 4775 bus_unmap_resource_old(device_t dev, int type, struct resource *r, 4776 struct resource_map *map) 4777 { 4778 return (bus_unmap_resource(dev, r, map)); 4779 } 4780 4781 /** 4782 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4783 * 4784 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4785 * parent of @p dev. 4786 */ 4787 int 4788 bus_release_resource(device_t dev, struct resource *r) 4789 { 4790 int rv; 4791 4792 if (dev->parent == NULL) 4793 return (EINVAL); 4794 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, r); 4795 return (rv); 4796 } 4797 4798 int 4799 bus_release_resource_old(device_t dev, int type, int rid, struct resource *r) 4800 { 4801 return (bus_release_resource(dev, r)); 4802 } 4803 4804 /** 4805 * @brief Wrapper function for BUS_SETUP_INTR(). 4806 * 4807 * This function simply calls the BUS_SETUP_INTR() method of the 4808 * parent of @p dev. 4809 */ 4810 int 4811 bus_setup_intr(device_t dev, struct resource *r, int flags, 4812 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4813 { 4814 int error; 4815 4816 if (dev->parent == NULL) 4817 return (EINVAL); 4818 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4819 arg, cookiep); 4820 if (error != 0) 4821 return (error); 4822 if (handler != NULL && !(flags & INTR_MPSAFE)) 4823 device_printf(dev, "[GIANT-LOCKED]\n"); 4824 return (0); 4825 } 4826 4827 /** 4828 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4829 * 4830 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4831 * parent of @p dev. 4832 */ 4833 int 4834 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4835 { 4836 if (dev->parent == NULL) 4837 return (EINVAL); 4838 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4839 } 4840 4841 /** 4842 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4843 * 4844 * This function simply calls the BUS_SUSPEND_INTR() method of the 4845 * parent of @p dev. 4846 */ 4847 int 4848 bus_suspend_intr(device_t dev, struct resource *r) 4849 { 4850 if (dev->parent == NULL) 4851 return (EINVAL); 4852 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4853 } 4854 4855 /** 4856 * @brief Wrapper function for BUS_RESUME_INTR(). 4857 * 4858 * This function simply calls the BUS_RESUME_INTR() method of the 4859 * parent of @p dev. 4860 */ 4861 int 4862 bus_resume_intr(device_t dev, struct resource *r) 4863 { 4864 if (dev->parent == NULL) 4865 return (EINVAL); 4866 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4867 } 4868 4869 /** 4870 * @brief Wrapper function for BUS_BIND_INTR(). 4871 * 4872 * This function simply calls the BUS_BIND_INTR() method of the 4873 * parent of @p dev. 4874 */ 4875 int 4876 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4877 { 4878 if (dev->parent == NULL) 4879 return (EINVAL); 4880 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4881 } 4882 4883 /** 4884 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4885 * 4886 * This function first formats the requested description into a 4887 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4888 * the parent of @p dev. 4889 */ 4890 int 4891 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4892 const char *fmt, ...) 4893 { 4894 va_list ap; 4895 char descr[MAXCOMLEN + 1]; 4896 4897 if (dev->parent == NULL) 4898 return (EINVAL); 4899 va_start(ap, fmt); 4900 vsnprintf(descr, sizeof(descr), fmt, ap); 4901 va_end(ap); 4902 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4903 } 4904 4905 /** 4906 * @brief Wrapper function for BUS_SET_RESOURCE(). 4907 * 4908 * This function simply calls the BUS_SET_RESOURCE() method of the 4909 * parent of @p dev. 4910 */ 4911 int 4912 bus_set_resource(device_t dev, int type, int rid, 4913 rman_res_t start, rman_res_t count) 4914 { 4915 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4916 start, count)); 4917 } 4918 4919 /** 4920 * @brief Wrapper function for BUS_GET_RESOURCE(). 4921 * 4922 * This function simply calls the BUS_GET_RESOURCE() method of the 4923 * parent of @p dev. 4924 */ 4925 int 4926 bus_get_resource(device_t dev, int type, int rid, 4927 rman_res_t *startp, rman_res_t *countp) 4928 { 4929 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4930 startp, countp)); 4931 } 4932 4933 /** 4934 * @brief Wrapper function for BUS_GET_RESOURCE(). 4935 * 4936 * This function simply calls the BUS_GET_RESOURCE() method of the 4937 * parent of @p dev and returns the start value. 4938 */ 4939 rman_res_t 4940 bus_get_resource_start(device_t dev, int type, int rid) 4941 { 4942 rman_res_t start; 4943 rman_res_t count; 4944 int error; 4945 4946 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4947 &start, &count); 4948 if (error) 4949 return (0); 4950 return (start); 4951 } 4952 4953 /** 4954 * @brief Wrapper function for BUS_GET_RESOURCE(). 4955 * 4956 * This function simply calls the BUS_GET_RESOURCE() method of the 4957 * parent of @p dev and returns the count value. 4958 */ 4959 rman_res_t 4960 bus_get_resource_count(device_t dev, int type, int rid) 4961 { 4962 rman_res_t start; 4963 rman_res_t count; 4964 int error; 4965 4966 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4967 &start, &count); 4968 if (error) 4969 return (0); 4970 return (count); 4971 } 4972 4973 /** 4974 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4975 * 4976 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4977 * parent of @p dev. 4978 */ 4979 void 4980 bus_delete_resource(device_t dev, int type, int rid) 4981 { 4982 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4983 } 4984 4985 /** 4986 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4987 * 4988 * This function simply calls the BUS_CHILD_PRESENT() method of the 4989 * parent of @p dev. 4990 */ 4991 int 4992 bus_child_present(device_t child) 4993 { 4994 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4995 } 4996 4997 /** 4998 * @brief Wrapper function for BUS_CHILD_PNPINFO(). 4999 * 5000 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p 5001 * dev. 5002 */ 5003 int 5004 bus_child_pnpinfo(device_t child, struct sbuf *sb) 5005 { 5006 device_t parent; 5007 5008 parent = device_get_parent(child); 5009 if (parent == NULL) 5010 return (0); 5011 return (BUS_CHILD_PNPINFO(parent, child, sb)); 5012 } 5013 5014 /** 5015 * @brief Generic implementation that does nothing for bus_child_pnpinfo 5016 * 5017 * This function has the right signature and returns 0 since the sbuf is passed 5018 * to us to append to. 5019 */ 5020 int 5021 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb) 5022 { 5023 return (0); 5024 } 5025 5026 /** 5027 * @brief Wrapper function for BUS_CHILD_LOCATION(). 5028 * 5029 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of 5030 * @p dev. 5031 */ 5032 int 5033 bus_child_location(device_t child, struct sbuf *sb) 5034 { 5035 device_t parent; 5036 5037 parent = device_get_parent(child); 5038 if (parent == NULL) 5039 return (0); 5040 return (BUS_CHILD_LOCATION(parent, child, sb)); 5041 } 5042 5043 /** 5044 * @brief Generic implementation that does nothing for bus_child_location 5045 * 5046 * This function has the right signature and returns 0 since the sbuf is passed 5047 * to us to append to. 5048 */ 5049 int 5050 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb) 5051 { 5052 return (0); 5053 } 5054 5055 /** 5056 * @brief Wrapper function for BUS_GET_CPUS(). 5057 * 5058 * This function simply calls the BUS_GET_CPUS() method of the 5059 * parent of @p dev. 5060 */ 5061 int 5062 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 5063 { 5064 device_t parent; 5065 5066 parent = device_get_parent(dev); 5067 if (parent == NULL) 5068 return (EINVAL); 5069 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 5070 } 5071 5072 /** 5073 * @brief Wrapper function for BUS_GET_DMA_TAG(). 5074 * 5075 * This function simply calls the BUS_GET_DMA_TAG() method of the 5076 * parent of @p dev. 5077 */ 5078 bus_dma_tag_t 5079 bus_get_dma_tag(device_t dev) 5080 { 5081 device_t parent; 5082 5083 parent = device_get_parent(dev); 5084 if (parent == NULL) 5085 return (NULL); 5086 return (BUS_GET_DMA_TAG(parent, dev)); 5087 } 5088 5089 /** 5090 * @brief Wrapper function for BUS_GET_BUS_TAG(). 5091 * 5092 * This function simply calls the BUS_GET_BUS_TAG() method of the 5093 * parent of @p dev. 5094 */ 5095 bus_space_tag_t 5096 bus_get_bus_tag(device_t dev) 5097 { 5098 device_t parent; 5099 5100 parent = device_get_parent(dev); 5101 if (parent == NULL) 5102 return ((bus_space_tag_t)0); 5103 return (BUS_GET_BUS_TAG(parent, dev)); 5104 } 5105 5106 /** 5107 * @brief Wrapper function for BUS_GET_DOMAIN(). 5108 * 5109 * This function simply calls the BUS_GET_DOMAIN() method of the 5110 * parent of @p dev. 5111 */ 5112 int 5113 bus_get_domain(device_t dev, int *domain) 5114 { 5115 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 5116 } 5117 5118 /* Resume all devices and then notify userland that we're up again. */ 5119 static int 5120 root_resume(device_t dev) 5121 { 5122 int error; 5123 5124 error = bus_generic_resume(dev); 5125 if (error == 0) { 5126 devctl_notify("kernel", "power", "resume", NULL); 5127 } 5128 return (error); 5129 } 5130 5131 static int 5132 root_print_child(device_t dev, device_t child) 5133 { 5134 int retval = 0; 5135 5136 retval += bus_print_child_header(dev, child); 5137 retval += printf("\n"); 5138 5139 return (retval); 5140 } 5141 5142 static int 5143 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 5144 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 5145 { 5146 /* 5147 * If an interrupt mapping gets to here something bad has happened. 5148 */ 5149 panic("root_setup_intr"); 5150 } 5151 5152 /* 5153 * If we get here, assume that the device is permanent and really is 5154 * present in the system. Removable bus drivers are expected to intercept 5155 * this call long before it gets here. We return -1 so that drivers that 5156 * really care can check vs -1 or some ERRNO returned higher in the food 5157 * chain. 5158 */ 5159 static int 5160 root_child_present(device_t dev, device_t child) 5161 { 5162 return (-1); 5163 } 5164 5165 static int 5166 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 5167 cpuset_t *cpuset) 5168 { 5169 switch (op) { 5170 case INTR_CPUS: 5171 /* Default to returning the set of all CPUs. */ 5172 if (setsize != sizeof(cpuset_t)) 5173 return (EINVAL); 5174 *cpuset = all_cpus; 5175 return (0); 5176 default: 5177 return (EINVAL); 5178 } 5179 } 5180 5181 static kobj_method_t root_methods[] = { 5182 /* Device interface */ 5183 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 5184 KOBJMETHOD(device_suspend, bus_generic_suspend), 5185 KOBJMETHOD(device_resume, root_resume), 5186 5187 /* Bus interface */ 5188 KOBJMETHOD(bus_print_child, root_print_child), 5189 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 5190 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 5191 KOBJMETHOD(bus_setup_intr, root_setup_intr), 5192 KOBJMETHOD(bus_child_present, root_child_present), 5193 KOBJMETHOD(bus_get_cpus, root_get_cpus), 5194 5195 KOBJMETHOD_END 5196 }; 5197 5198 static driver_t root_driver = { 5199 "root", 5200 root_methods, 5201 1, /* no softc */ 5202 }; 5203 5204 device_t root_bus; 5205 devclass_t root_devclass; 5206 5207 static int 5208 root_bus_module_handler(module_t mod, int what, void* arg) 5209 { 5210 switch (what) { 5211 case MOD_LOAD: 5212 TAILQ_INIT(&bus_data_devices); 5213 kobj_class_compile((kobj_class_t) &root_driver); 5214 root_bus = make_device(NULL, "root", 0); 5215 root_bus->desc = "System root bus"; 5216 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 5217 root_bus->driver = &root_driver; 5218 root_bus->state = DS_ATTACHED; 5219 root_devclass = devclass_find_internal("root", NULL, FALSE); 5220 devctl2_init(); 5221 return (0); 5222 5223 case MOD_SHUTDOWN: 5224 device_shutdown(root_bus); 5225 return (0); 5226 default: 5227 return (EOPNOTSUPP); 5228 } 5229 5230 return (0); 5231 } 5232 5233 static moduledata_t root_bus_mod = { 5234 "rootbus", 5235 root_bus_module_handler, 5236 NULL 5237 }; 5238 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 5239 5240 /** 5241 * @brief Automatically configure devices 5242 * 5243 * This function begins the autoconfiguration process by calling 5244 * device_probe_and_attach() for each child of the @c root0 device. 5245 */ 5246 void 5247 root_bus_configure(void) 5248 { 5249 PDEBUG((".")); 5250 5251 /* Eventually this will be split up, but this is sufficient for now. */ 5252 bus_set_pass(BUS_PASS_DEFAULT); 5253 } 5254 5255 /** 5256 * @brief Module handler for registering device drivers 5257 * 5258 * This module handler is used to automatically register device 5259 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 5260 * devclass_add_driver() for the driver described by the 5261 * driver_module_data structure pointed to by @p arg 5262 */ 5263 int 5264 driver_module_handler(module_t mod, int what, void *arg) 5265 { 5266 struct driver_module_data *dmd; 5267 devclass_t bus_devclass; 5268 kobj_class_t driver; 5269 int error, pass; 5270 5271 dmd = (struct driver_module_data *)arg; 5272 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 5273 error = 0; 5274 5275 switch (what) { 5276 case MOD_LOAD: 5277 if (dmd->dmd_chainevh) 5278 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5279 5280 pass = dmd->dmd_pass; 5281 driver = dmd->dmd_driver; 5282 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 5283 DRIVERNAME(driver), dmd->dmd_busname, pass)); 5284 error = devclass_add_driver(bus_devclass, driver, pass, 5285 dmd->dmd_devclass); 5286 break; 5287 5288 case MOD_UNLOAD: 5289 PDEBUG(("Unloading module: driver %s from bus %s", 5290 DRIVERNAME(dmd->dmd_driver), 5291 dmd->dmd_busname)); 5292 error = devclass_delete_driver(bus_devclass, 5293 dmd->dmd_driver); 5294 5295 if (!error && dmd->dmd_chainevh) 5296 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5297 break; 5298 case MOD_QUIESCE: 5299 PDEBUG(("Quiesce module: driver %s from bus %s", 5300 DRIVERNAME(dmd->dmd_driver), 5301 dmd->dmd_busname)); 5302 error = devclass_quiesce_driver(bus_devclass, 5303 dmd->dmd_driver); 5304 5305 if (!error && dmd->dmd_chainevh) 5306 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5307 break; 5308 default: 5309 error = EOPNOTSUPP; 5310 break; 5311 } 5312 5313 return (error); 5314 } 5315 5316 /** 5317 * @brief Enumerate all hinted devices for this bus. 5318 * 5319 * Walks through the hints for this bus and calls the bus_hinted_child 5320 * routine for each one it fines. It searches first for the specific 5321 * bus that's being probed for hinted children (eg isa0), and then for 5322 * generic children (eg isa). 5323 * 5324 * @param dev bus device to enumerate 5325 */ 5326 void 5327 bus_enumerate_hinted_children(device_t bus) 5328 { 5329 int i; 5330 const char *dname, *busname; 5331 int dunit; 5332 5333 /* 5334 * enumerate all devices on the specific bus 5335 */ 5336 busname = device_get_nameunit(bus); 5337 i = 0; 5338 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5339 BUS_HINTED_CHILD(bus, dname, dunit); 5340 5341 /* 5342 * and all the generic ones. 5343 */ 5344 busname = device_get_name(bus); 5345 i = 0; 5346 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5347 BUS_HINTED_CHILD(bus, dname, dunit); 5348 } 5349 5350 #ifdef BUS_DEBUG 5351 5352 /* the _short versions avoid iteration by not calling anything that prints 5353 * more than oneliners. I love oneliners. 5354 */ 5355 5356 static void 5357 print_device_short(device_t dev, int indent) 5358 { 5359 if (!dev) 5360 return; 5361 5362 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5363 dev->unit, dev->desc, 5364 (dev->parent? "":"no "), 5365 (TAILQ_EMPTY(&dev->children)? "no ":""), 5366 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5367 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5368 (dev->flags&DF_WILDCARD? "wildcard,":""), 5369 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5370 (dev->flags&DF_SUSPENDED? "suspended,":""), 5371 (dev->ivars? "":"no "), 5372 (dev->softc? "":"no "), 5373 dev->busy)); 5374 } 5375 5376 static void 5377 print_device(device_t dev, int indent) 5378 { 5379 if (!dev) 5380 return; 5381 5382 print_device_short(dev, indent); 5383 5384 indentprintf(("Parent:\n")); 5385 print_device_short(dev->parent, indent+1); 5386 indentprintf(("Driver:\n")); 5387 print_driver_short(dev->driver, indent+1); 5388 indentprintf(("Devclass:\n")); 5389 print_devclass_short(dev->devclass, indent+1); 5390 } 5391 5392 void 5393 print_device_tree_short(device_t dev, int indent) 5394 /* print the device and all its children (indented) */ 5395 { 5396 device_t child; 5397 5398 if (!dev) 5399 return; 5400 5401 print_device_short(dev, indent); 5402 5403 TAILQ_FOREACH(child, &dev->children, link) { 5404 print_device_tree_short(child, indent+1); 5405 } 5406 } 5407 5408 void 5409 print_device_tree(device_t dev, int indent) 5410 /* print the device and all its children (indented) */ 5411 { 5412 device_t child; 5413 5414 if (!dev) 5415 return; 5416 5417 print_device(dev, indent); 5418 5419 TAILQ_FOREACH(child, &dev->children, link) { 5420 print_device_tree(child, indent+1); 5421 } 5422 } 5423 5424 static void 5425 print_driver_short(driver_t *driver, int indent) 5426 { 5427 if (!driver) 5428 return; 5429 5430 indentprintf(("driver %s: softc size = %zd\n", 5431 driver->name, driver->size)); 5432 } 5433 5434 static void 5435 print_driver(driver_t *driver, int indent) 5436 { 5437 if (!driver) 5438 return; 5439 5440 print_driver_short(driver, indent); 5441 } 5442 5443 static void 5444 print_driver_list(driver_list_t drivers, int indent) 5445 { 5446 driverlink_t driver; 5447 5448 TAILQ_FOREACH(driver, &drivers, link) { 5449 print_driver(driver->driver, indent); 5450 } 5451 } 5452 5453 static void 5454 print_devclass_short(devclass_t dc, int indent) 5455 { 5456 if ( !dc ) 5457 return; 5458 5459 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5460 } 5461 5462 static void 5463 print_devclass(devclass_t dc, int indent) 5464 { 5465 int i; 5466 5467 if ( !dc ) 5468 return; 5469 5470 print_devclass_short(dc, indent); 5471 indentprintf(("Drivers:\n")); 5472 print_driver_list(dc->drivers, indent+1); 5473 5474 indentprintf(("Devices:\n")); 5475 for (i = 0; i < dc->maxunit; i++) 5476 if (dc->devices[i]) 5477 print_device(dc->devices[i], indent+1); 5478 } 5479 5480 void 5481 print_devclass_list_short(void) 5482 { 5483 devclass_t dc; 5484 5485 printf("Short listing of devclasses, drivers & devices:\n"); 5486 TAILQ_FOREACH(dc, &devclasses, link) { 5487 print_devclass_short(dc, 0); 5488 } 5489 } 5490 5491 void 5492 print_devclass_list(void) 5493 { 5494 devclass_t dc; 5495 5496 printf("Full listing of devclasses, drivers & devices:\n"); 5497 TAILQ_FOREACH(dc, &devclasses, link) { 5498 print_devclass(dc, 0); 5499 } 5500 } 5501 5502 #endif 5503 5504 /* 5505 * User-space access to the device tree. 5506 * 5507 * We implement a small set of nodes: 5508 * 5509 * hw.bus Single integer read method to obtain the 5510 * current generation count. 5511 * hw.bus.devices Reads the entire device tree in flat space. 5512 * hw.bus.rman Resource manager interface 5513 * 5514 * We might like to add the ability to scan devclasses and/or drivers to 5515 * determine what else is currently loaded/available. 5516 */ 5517 5518 static int 5519 sysctl_bus_info(SYSCTL_HANDLER_ARGS) 5520 { 5521 struct u_businfo ubus; 5522 5523 ubus.ub_version = BUS_USER_VERSION; 5524 ubus.ub_generation = bus_data_generation; 5525 5526 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5527 } 5528 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | 5529 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", 5530 "bus-related data"); 5531 5532 static int 5533 sysctl_devices(SYSCTL_HANDLER_ARGS) 5534 { 5535 struct sbuf sb; 5536 int *name = (int *)arg1; 5537 u_int namelen = arg2; 5538 int index; 5539 device_t dev; 5540 struct u_device *udev; 5541 int error; 5542 5543 if (namelen != 2) 5544 return (EINVAL); 5545 5546 if (bus_data_generation_check(name[0])) 5547 return (EINVAL); 5548 5549 index = name[1]; 5550 5551 /* 5552 * Scan the list of devices, looking for the requested index. 5553 */ 5554 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5555 if (index-- == 0) 5556 break; 5557 } 5558 if (dev == NULL) 5559 return (ENOENT); 5560 5561 /* 5562 * Populate the return item, careful not to overflow the buffer. 5563 */ 5564 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5565 udev->dv_handle = (uintptr_t)dev; 5566 udev->dv_parent = (uintptr_t)dev->parent; 5567 udev->dv_devflags = dev->devflags; 5568 udev->dv_flags = dev->flags; 5569 udev->dv_state = dev->state; 5570 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN); 5571 if (dev->nameunit != NULL) 5572 sbuf_cat(&sb, dev->nameunit); 5573 sbuf_putc(&sb, '\0'); 5574 if (dev->desc != NULL) 5575 sbuf_cat(&sb, dev->desc); 5576 sbuf_putc(&sb, '\0'); 5577 if (dev->driver != NULL) 5578 sbuf_cat(&sb, dev->driver->name); 5579 sbuf_putc(&sb, '\0'); 5580 bus_child_pnpinfo(dev, &sb); 5581 sbuf_putc(&sb, '\0'); 5582 bus_child_location(dev, &sb); 5583 sbuf_putc(&sb, '\0'); 5584 error = sbuf_finish(&sb); 5585 if (error == 0) 5586 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5587 sbuf_delete(&sb); 5588 free(udev, M_BUS); 5589 return (error); 5590 } 5591 5592 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, 5593 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, 5594 "system device tree"); 5595 5596 int 5597 bus_data_generation_check(int generation) 5598 { 5599 if (generation != bus_data_generation) 5600 return (1); 5601 5602 /* XXX generate optimised lists here? */ 5603 return (0); 5604 } 5605 5606 void 5607 bus_data_generation_update(void) 5608 { 5609 atomic_add_int(&bus_data_generation, 1); 5610 } 5611 5612 int 5613 bus_free_resource(device_t dev, int type, struct resource *r) 5614 { 5615 if (r == NULL) 5616 return (0); 5617 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5618 } 5619 5620 device_t 5621 device_lookup_by_name(const char *name) 5622 { 5623 device_t dev; 5624 5625 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5626 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5627 return (dev); 5628 } 5629 return (NULL); 5630 } 5631 5632 /* 5633 * /dev/devctl2 implementation. The existing /dev/devctl device has 5634 * implicit semantics on open, so it could not be reused for this. 5635 * Another option would be to call this /dev/bus? 5636 */ 5637 static int 5638 find_device(struct devreq *req, device_t *devp) 5639 { 5640 device_t dev; 5641 5642 /* 5643 * First, ensure that the name is nul terminated. 5644 */ 5645 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5646 return (EINVAL); 5647 5648 /* 5649 * Second, try to find an attached device whose name matches 5650 * 'name'. 5651 */ 5652 dev = device_lookup_by_name(req->dr_name); 5653 if (dev != NULL) { 5654 *devp = dev; 5655 return (0); 5656 } 5657 5658 /* Finally, give device enumerators a chance. */ 5659 dev = NULL; 5660 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5661 if (dev == NULL) 5662 return (ENOENT); 5663 *devp = dev; 5664 return (0); 5665 } 5666 5667 static bool 5668 driver_exists(device_t bus, const char *driver) 5669 { 5670 devclass_t dc; 5671 5672 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5673 if (devclass_find_driver_internal(dc, driver) != NULL) 5674 return (true); 5675 } 5676 return (false); 5677 } 5678 5679 static void 5680 device_gen_nomatch(device_t dev) 5681 { 5682 device_t child; 5683 5684 if (dev->flags & DF_NEEDNOMATCH && 5685 dev->state == DS_NOTPRESENT) { 5686 device_handle_nomatch(dev); 5687 } 5688 dev->flags &= ~DF_NEEDNOMATCH; 5689 TAILQ_FOREACH(child, &dev->children, link) { 5690 device_gen_nomatch(child); 5691 } 5692 } 5693 5694 static void 5695 device_do_deferred_actions(void) 5696 { 5697 devclass_t dc; 5698 driverlink_t dl; 5699 5700 /* 5701 * Walk through the devclasses to find all the drivers we've tagged as 5702 * deferred during the freeze and call the driver added routines. They 5703 * have already been added to the lists in the background, so the driver 5704 * added routines that trigger a probe will have all the right bidders 5705 * for the probe auction. 5706 */ 5707 TAILQ_FOREACH(dc, &devclasses, link) { 5708 TAILQ_FOREACH(dl, &dc->drivers, link) { 5709 if (dl->flags & DL_DEFERRED_PROBE) { 5710 devclass_driver_added(dc, dl->driver); 5711 dl->flags &= ~DL_DEFERRED_PROBE; 5712 } 5713 } 5714 } 5715 5716 /* 5717 * We also defer no-match events during a freeze. Walk the tree and 5718 * generate all the pent-up events that are still relevant. 5719 */ 5720 device_gen_nomatch(root_bus); 5721 bus_data_generation_update(); 5722 } 5723 5724 static int 5725 device_get_path(device_t dev, const char *locator, struct sbuf *sb) 5726 { 5727 device_t parent; 5728 int error; 5729 5730 KASSERT(sb != NULL, ("sb is NULL")); 5731 parent = device_get_parent(dev); 5732 if (parent == NULL) { 5733 error = sbuf_putc(sb, '/'); 5734 } else { 5735 error = BUS_GET_DEVICE_PATH(parent, dev, locator, sb); 5736 if (error == 0) { 5737 error = sbuf_error(sb); 5738 if (error == 0 && sbuf_len(sb) <= 1) 5739 error = EIO; 5740 } 5741 } 5742 sbuf_finish(sb); 5743 return (error); 5744 } 5745 5746 static int 5747 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5748 struct thread *td) 5749 { 5750 struct devreq *req; 5751 device_t dev; 5752 int error, old; 5753 5754 /* Locate the device to control. */ 5755 bus_topo_lock(); 5756 req = (struct devreq *)data; 5757 switch (cmd) { 5758 case DEV_ATTACH: 5759 case DEV_DETACH: 5760 case DEV_ENABLE: 5761 case DEV_DISABLE: 5762 case DEV_SUSPEND: 5763 case DEV_RESUME: 5764 case DEV_SET_DRIVER: 5765 case DEV_CLEAR_DRIVER: 5766 case DEV_RESCAN: 5767 case DEV_DELETE: 5768 case DEV_RESET: 5769 error = priv_check(td, PRIV_DRIVER); 5770 if (error == 0) 5771 error = find_device(req, &dev); 5772 break; 5773 case DEV_FREEZE: 5774 case DEV_THAW: 5775 error = priv_check(td, PRIV_DRIVER); 5776 break; 5777 case DEV_GET_PATH: 5778 error = find_device(req, &dev); 5779 break; 5780 default: 5781 error = ENOTTY; 5782 break; 5783 } 5784 if (error) { 5785 bus_topo_unlock(); 5786 return (error); 5787 } 5788 5789 /* Perform the requested operation. */ 5790 switch (cmd) { 5791 case DEV_ATTACH: 5792 if (device_is_attached(dev)) 5793 error = EBUSY; 5794 else if (!device_is_enabled(dev)) 5795 error = ENXIO; 5796 else 5797 error = device_probe_and_attach(dev); 5798 break; 5799 case DEV_DETACH: 5800 if (!device_is_attached(dev)) { 5801 error = ENXIO; 5802 break; 5803 } 5804 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5805 error = device_quiesce(dev); 5806 if (error) 5807 break; 5808 } 5809 error = device_detach(dev); 5810 break; 5811 case DEV_ENABLE: 5812 if (device_is_enabled(dev)) { 5813 error = EBUSY; 5814 break; 5815 } 5816 5817 /* 5818 * If the device has been probed but not attached (e.g. 5819 * when it has been disabled by a loader hint), just 5820 * attach the device rather than doing a full probe. 5821 */ 5822 device_enable(dev); 5823 if (dev->devclass != NULL) { 5824 /* 5825 * If the device was disabled via a hint, clear 5826 * the hint. 5827 */ 5828 if (resource_disabled(dev->devclass->name, dev->unit)) 5829 resource_unset_value(dev->devclass->name, 5830 dev->unit, "disabled"); 5831 5832 /* Allow any drivers to rebid. */ 5833 if (!(dev->flags & DF_FIXEDCLASS)) 5834 devclass_delete_device(dev->devclass, dev); 5835 } 5836 error = device_probe_and_attach(dev); 5837 break; 5838 case DEV_DISABLE: 5839 if (!device_is_enabled(dev)) { 5840 error = ENXIO; 5841 break; 5842 } 5843 5844 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5845 error = device_quiesce(dev); 5846 if (error) 5847 break; 5848 } 5849 5850 /* 5851 * Force DF_FIXEDCLASS on around detach to preserve 5852 * the existing name. 5853 */ 5854 old = dev->flags; 5855 dev->flags |= DF_FIXEDCLASS; 5856 error = device_detach(dev); 5857 if (!(old & DF_FIXEDCLASS)) 5858 dev->flags &= ~DF_FIXEDCLASS; 5859 if (error == 0) 5860 device_disable(dev); 5861 break; 5862 case DEV_SUSPEND: 5863 if (device_is_suspended(dev)) { 5864 error = EBUSY; 5865 break; 5866 } 5867 if (device_get_parent(dev) == NULL) { 5868 error = EINVAL; 5869 break; 5870 } 5871 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5872 break; 5873 case DEV_RESUME: 5874 if (!device_is_suspended(dev)) { 5875 error = EINVAL; 5876 break; 5877 } 5878 if (device_get_parent(dev) == NULL) { 5879 error = EINVAL; 5880 break; 5881 } 5882 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5883 break; 5884 case DEV_SET_DRIVER: { 5885 devclass_t dc; 5886 char driver[128]; 5887 5888 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5889 if (error) 5890 break; 5891 if (driver[0] == '\0') { 5892 error = EINVAL; 5893 break; 5894 } 5895 if (dev->devclass != NULL && 5896 strcmp(driver, dev->devclass->name) == 0) 5897 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5898 break; 5899 5900 /* 5901 * Scan drivers for this device's bus looking for at 5902 * least one matching driver. 5903 */ 5904 if (dev->parent == NULL) { 5905 error = EINVAL; 5906 break; 5907 } 5908 if (!driver_exists(dev->parent, driver)) { 5909 error = ENOENT; 5910 break; 5911 } 5912 dc = devclass_create(driver); 5913 if (dc == NULL) { 5914 error = ENOMEM; 5915 break; 5916 } 5917 5918 /* Detach device if necessary. */ 5919 if (device_is_attached(dev)) { 5920 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5921 error = device_detach(dev); 5922 else 5923 error = EBUSY; 5924 if (error) 5925 break; 5926 } 5927 5928 /* Clear any previously-fixed device class and unit. */ 5929 if (dev->flags & DF_FIXEDCLASS) 5930 devclass_delete_device(dev->devclass, dev); 5931 dev->flags |= DF_WILDCARD; 5932 dev->unit = DEVICE_UNIT_ANY; 5933 5934 /* Force the new device class. */ 5935 error = devclass_add_device(dc, dev); 5936 if (error) 5937 break; 5938 dev->flags |= DF_FIXEDCLASS; 5939 error = device_probe_and_attach(dev); 5940 break; 5941 } 5942 case DEV_CLEAR_DRIVER: 5943 if (!(dev->flags & DF_FIXEDCLASS)) { 5944 error = 0; 5945 break; 5946 } 5947 if (device_is_attached(dev)) { 5948 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5949 error = device_detach(dev); 5950 else 5951 error = EBUSY; 5952 if (error) 5953 break; 5954 } 5955 5956 dev->flags &= ~DF_FIXEDCLASS; 5957 dev->flags |= DF_WILDCARD; 5958 devclass_delete_device(dev->devclass, dev); 5959 error = device_probe_and_attach(dev); 5960 break; 5961 case DEV_RESCAN: 5962 if (!device_is_attached(dev)) { 5963 error = ENXIO; 5964 break; 5965 } 5966 error = BUS_RESCAN(dev); 5967 break; 5968 case DEV_DELETE: { 5969 device_t parent; 5970 5971 parent = device_get_parent(dev); 5972 if (parent == NULL) { 5973 error = EINVAL; 5974 break; 5975 } 5976 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5977 if (bus_child_present(dev) != 0) { 5978 error = EBUSY; 5979 break; 5980 } 5981 } 5982 5983 error = device_delete_child(parent, dev); 5984 break; 5985 } 5986 case DEV_FREEZE: 5987 if (device_frozen) 5988 error = EBUSY; 5989 else 5990 device_frozen = true; 5991 break; 5992 case DEV_THAW: 5993 if (!device_frozen) 5994 error = EBUSY; 5995 else { 5996 device_do_deferred_actions(); 5997 device_frozen = false; 5998 } 5999 break; 6000 case DEV_RESET: 6001 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 6002 error = EINVAL; 6003 break; 6004 } 6005 if (device_get_parent(dev) == NULL) { 6006 error = EINVAL; 6007 break; 6008 } 6009 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 6010 req->dr_flags); 6011 break; 6012 case DEV_GET_PATH: { 6013 struct sbuf *sb; 6014 char locator[64]; 6015 ssize_t len; 6016 6017 error = copyinstr(req->dr_buffer.buffer, locator, 6018 sizeof(locator), NULL); 6019 if (error != 0) 6020 break; 6021 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | 6022 SBUF_INCLUDENUL /* | SBUF_WAITOK */); 6023 error = device_get_path(dev, locator, sb); 6024 if (error == 0) { 6025 len = sbuf_len(sb); 6026 if (req->dr_buffer.length < len) { 6027 error = ENAMETOOLONG; 6028 } else { 6029 error = copyout(sbuf_data(sb), 6030 req->dr_buffer.buffer, len); 6031 } 6032 req->dr_buffer.length = len; 6033 } 6034 sbuf_delete(sb); 6035 break; 6036 } 6037 } 6038 bus_topo_unlock(); 6039 return (error); 6040 } 6041 6042 static struct cdevsw devctl2_cdevsw = { 6043 .d_version = D_VERSION, 6044 .d_ioctl = devctl2_ioctl, 6045 .d_name = "devctl2", 6046 }; 6047 6048 static void 6049 devctl2_init(void) 6050 { 6051 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 6052 UID_ROOT, GID_WHEEL, 0644, "devctl2"); 6053 } 6054 6055 /* 6056 * For maintaining device 'at' location info to avoid recomputing it 6057 */ 6058 struct device_location_node { 6059 const char *dln_locator; 6060 const char *dln_path; 6061 TAILQ_ENTRY(device_location_node) dln_link; 6062 }; 6063 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t; 6064 6065 struct device_location_cache { 6066 device_location_list_t dlc_list; 6067 }; 6068 6069 6070 /* 6071 * Location cache for wired devices. 6072 */ 6073 device_location_cache_t * 6074 dev_wired_cache_init(void) 6075 { 6076 device_location_cache_t *dcp; 6077 6078 dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO); 6079 TAILQ_INIT(&dcp->dlc_list); 6080 6081 return (dcp); 6082 } 6083 6084 void 6085 dev_wired_cache_fini(device_location_cache_t *dcp) 6086 { 6087 struct device_location_node *dln, *tdln; 6088 6089 TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) { 6090 free(dln, M_BUS); 6091 } 6092 free(dcp, M_BUS); 6093 } 6094 6095 static struct device_location_node * 6096 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator) 6097 { 6098 struct device_location_node *dln; 6099 6100 TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) { 6101 if (strcmp(locator, dln->dln_locator) == 0) 6102 return (dln); 6103 } 6104 6105 return (NULL); 6106 } 6107 6108 static struct device_location_node * 6109 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path) 6110 { 6111 struct device_location_node *dln; 6112 size_t loclen, pathlen; 6113 6114 loclen = strlen(locator) + 1; 6115 pathlen = strlen(path) + 1; 6116 dln = malloc(sizeof(*dln) + loclen + pathlen, M_BUS, M_WAITOK | M_ZERO); 6117 dln->dln_locator = (char *)(dln + 1); 6118 memcpy(__DECONST(char *, dln->dln_locator), locator, loclen); 6119 dln->dln_path = dln->dln_locator + loclen; 6120 memcpy(__DECONST(char *, dln->dln_path), path, pathlen); 6121 TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link); 6122 6123 return (dln); 6124 } 6125 6126 bool 6127 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev, 6128 const char *at) 6129 { 6130 struct sbuf *sb; 6131 const char *cp; 6132 char locator[32]; 6133 int error, len; 6134 struct device_location_node *res; 6135 6136 cp = strchr(at, ':'); 6137 if (cp == NULL) 6138 return (false); 6139 len = cp - at; 6140 if (len > sizeof(locator) - 1) /* Skip too long locator */ 6141 return (false); 6142 memcpy(locator, at, len); 6143 locator[len] = '\0'; 6144 cp++; 6145 6146 error = 0; 6147 /* maybe cache this inside device_t and look that up, but not yet */ 6148 res = dev_wired_cache_lookup(dcp, locator); 6149 if (res == NULL) { 6150 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | 6151 SBUF_INCLUDENUL | SBUF_NOWAIT); 6152 if (sb != NULL) { 6153 error = device_get_path(dev, locator, sb); 6154 if (error == 0) { 6155 res = dev_wired_cache_add(dcp, locator, 6156 sbuf_data(sb)); 6157 } 6158 sbuf_delete(sb); 6159 } 6160 } 6161 if (error != 0 || res == NULL || res->dln_path == NULL) 6162 return (false); 6163 6164 return (strcmp(res->dln_path, cp) == 0); 6165 } 6166 6167 static struct device_prop_elm * 6168 device_prop_find(device_t dev, const char *name) 6169 { 6170 struct device_prop_elm *e; 6171 6172 bus_topo_assert(); 6173 6174 LIST_FOREACH(e, &dev->props, link) { 6175 if (strcmp(name, e->name) == 0) 6176 return (e); 6177 } 6178 return (NULL); 6179 } 6180 6181 int 6182 device_set_prop(device_t dev, const char *name, void *val, 6183 device_prop_dtr_t dtr, void *dtr_ctx) 6184 { 6185 struct device_prop_elm *e, *e1; 6186 6187 bus_topo_assert(); 6188 6189 e = device_prop_find(dev, name); 6190 if (e != NULL) 6191 goto found; 6192 6193 e1 = malloc(sizeof(*e), M_BUS, M_WAITOK); 6194 e = device_prop_find(dev, name); 6195 if (e != NULL) { 6196 free(e1, M_BUS); 6197 goto found; 6198 } 6199 6200 e1->name = name; 6201 e1->val = val; 6202 e1->dtr = dtr; 6203 e1->dtr_ctx = dtr_ctx; 6204 LIST_INSERT_HEAD(&dev->props, e1, link); 6205 return (0); 6206 6207 found: 6208 LIST_REMOVE(e, link); 6209 if (e->dtr != NULL) 6210 e->dtr(dev, name, e->val, e->dtr_ctx); 6211 e->val = val; 6212 e->dtr = dtr; 6213 e->dtr_ctx = dtr_ctx; 6214 LIST_INSERT_HEAD(&dev->props, e, link); 6215 return (EEXIST); 6216 } 6217 6218 int 6219 device_get_prop(device_t dev, const char *name, void **valp) 6220 { 6221 struct device_prop_elm *e; 6222 6223 bus_topo_assert(); 6224 6225 e = device_prop_find(dev, name); 6226 if (e == NULL) 6227 return (ENOENT); 6228 *valp = e->val; 6229 return (0); 6230 } 6231 6232 int 6233 device_clear_prop(device_t dev, const char *name) 6234 { 6235 struct device_prop_elm *e; 6236 6237 bus_topo_assert(); 6238 6239 e = device_prop_find(dev, name); 6240 if (e == NULL) 6241 return (ENOENT); 6242 LIST_REMOVE(e, link); 6243 if (e->dtr != NULL) 6244 e->dtr(dev, e->name, e->val, e->dtr_ctx); 6245 free(e, M_BUS); 6246 return (0); 6247 } 6248 6249 static void 6250 device_destroy_props(device_t dev) 6251 { 6252 struct device_prop_elm *e; 6253 6254 bus_topo_assert(); 6255 6256 while ((e = LIST_FIRST(&dev->props)) != NULL) { 6257 LIST_REMOVE_HEAD(&dev->props, link); 6258 if (e->dtr != NULL) 6259 e->dtr(dev, e->name, e->val, e->dtr_ctx); 6260 free(e, M_BUS); 6261 } 6262 } 6263 6264 void 6265 device_clear_prop_alldev(const char *name) 6266 { 6267 device_t dev; 6268 6269 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 6270 device_clear_prop(dev, name); 6271 } 6272 } 6273 6274 /* 6275 * APIs to manage deprecation and obsolescence. 6276 */ 6277 static int obsolete_panic = 0; 6278 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 6279 "Panic when obsolete features are used (0 = never, 1 = if obsolete, " 6280 "2 = if deprecated)"); 6281 6282 static void 6283 gone_panic(int major, int running, const char *msg) 6284 { 6285 switch (obsolete_panic) 6286 { 6287 case 0: 6288 return; 6289 case 1: 6290 if (running < major) 6291 return; 6292 /* FALLTHROUGH */ 6293 default: 6294 panic("%s", msg); 6295 } 6296 } 6297 6298 void 6299 _gone_in(int major, const char *msg) 6300 { 6301 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 6302 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 6303 printf("Obsolete code will be removed soon: %s\n", msg); 6304 else 6305 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 6306 major, msg); 6307 } 6308 6309 void 6310 _gone_in_dev(device_t dev, int major, const char *msg) 6311 { 6312 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 6313 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 6314 device_printf(dev, 6315 "Obsolete code will be removed soon: %s\n", msg); 6316 else 6317 device_printf(dev, 6318 "Deprecated code (to be removed in FreeBSD %d): %s\n", 6319 major, msg); 6320 } 6321 6322 #ifdef DDB 6323 DB_SHOW_COMMAND(device, db_show_device) 6324 { 6325 device_t dev; 6326 6327 if (!have_addr) 6328 return; 6329 6330 dev = (device_t)addr; 6331 6332 db_printf("name: %s\n", device_get_nameunit(dev)); 6333 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 6334 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 6335 db_printf(" addr: %p\n", dev); 6336 db_printf(" parent: %p\n", dev->parent); 6337 db_printf(" softc: %p\n", dev->softc); 6338 db_printf(" ivars: %p\n", dev->ivars); 6339 } 6340 6341 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 6342 { 6343 device_t dev; 6344 6345 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 6346 db_show_device((db_expr_t)dev, true, count, modif); 6347 } 6348 } 6349 #endif 6350