xref: /freebsd/sys/kern/subr_bus.c (revision 157e93e0e8138fbaa6ab5d5b20b0c23f903667a6)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1997,1998,2003 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_bus.h"
31 #include "opt_ddb.h"
32 
33 #include <sys/param.h>
34 #include <sys/conf.h>
35 #include <sys/domainset.h>
36 #include <sys/eventhandler.h>
37 #include <sys/lock.h>
38 #include <sys/kernel.h>
39 #include <sys/limits.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/priv.h>
44 #include <machine/bus.h>
45 #include <sys/random.h>
46 #include <sys/refcount.h>
47 #include <sys/rman.h>
48 #include <sys/sbuf.h>
49 #include <sys/smp.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/bus.h>
53 #include <sys/cpuset.h>
54 
55 #include <net/vnet.h>
56 
57 #include <machine/cpu.h>
58 #include <machine/stdarg.h>
59 
60 #include <vm/uma.h>
61 #include <vm/vm.h>
62 
63 #include <ddb/ddb.h>
64 
65 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
66     NULL);
67 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
68     NULL);
69 
70 static bool disable_failed_devs = false;
71 SYSCTL_BOOL(_hw_bus, OID_AUTO, disable_failed_devices, CTLFLAG_RWTUN, &disable_failed_devs,
72     0, "Do not retry attaching devices that return an error from DEVICE_ATTACH the first time");
73 
74 /*
75  * Used to attach drivers to devclasses.
76  */
77 typedef struct driverlink *driverlink_t;
78 struct driverlink {
79 	kobj_class_t	driver;
80 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
81 	int		pass;
82 	int		flags;
83 #define DL_DEFERRED_PROBE	1	/* Probe deferred on this */
84 	TAILQ_ENTRY(driverlink) passlink;
85 };
86 
87 /*
88  * Forward declarations
89  */
90 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
91 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
92 typedef TAILQ_HEAD(device_list, _device) device_list_t;
93 
94 struct devclass {
95 	TAILQ_ENTRY(devclass) link;
96 	devclass_t	parent;		/* parent in devclass hierarchy */
97 	driver_list_t	drivers;	/* bus devclasses store drivers for bus */
98 	char		*name;
99 	device_t	*devices;	/* array of devices indexed by unit */
100 	int		maxunit;	/* size of devices array */
101 	int		flags;
102 #define DC_HAS_CHILDREN		1
103 
104 	struct sysctl_ctx_list sysctl_ctx;
105 	struct sysctl_oid *sysctl_tree;
106 };
107 
108 /**
109  * @brief Implementation of _device.
110  *
111  * The structure is named "_device" instead of "device" to avoid type confusion
112  * caused by other subsystems defining a (struct device).
113  */
114 struct _device {
115 	/*
116 	 * A device is a kernel object. The first field must be the
117 	 * current ops table for the object.
118 	 */
119 	KOBJ_FIELDS;
120 
121 	/*
122 	 * Device hierarchy.
123 	 */
124 	TAILQ_ENTRY(_device)	link;	/**< list of devices in parent */
125 	TAILQ_ENTRY(_device)	devlink; /**< global device list membership */
126 	device_t	parent;		/**< parent of this device  */
127 	device_list_t	children;	/**< list of child devices */
128 
129 	/*
130 	 * Details of this device.
131 	 */
132 	driver_t	*driver;	/**< current driver */
133 	devclass_t	devclass;	/**< current device class */
134 	int		unit;		/**< current unit number */
135 	char*		nameunit;	/**< name+unit e.g. foodev0 */
136 	char*		desc;		/**< driver specific description */
137 	u_int		busy;		/**< count of calls to device_busy() */
138 	device_state_t	state;		/**< current device state  */
139 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
140 	u_int		flags;		/**< internal device flags  */
141 	u_int	order;			/**< order from device_add_child_ordered() */
142 	void	*ivars;			/**< instance variables  */
143 	void	*softc;			/**< current driver's variables  */
144 
145 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
146 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
147 };
148 
149 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
150 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
151 
152 EVENTHANDLER_LIST_DEFINE(device_attach);
153 EVENTHANDLER_LIST_DEFINE(device_detach);
154 EVENTHANDLER_LIST_DEFINE(device_nomatch);
155 EVENTHANDLER_LIST_DEFINE(dev_lookup);
156 
157 static void devctl2_init(void);
158 static bool device_frozen;
159 
160 #define DRIVERNAME(d)	((d)? d->name : "no driver")
161 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
162 
163 #ifdef BUS_DEBUG
164 
165 static int bus_debug = 1;
166 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
167     "Bus debug level");
168 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
169 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
170 
171 /**
172  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
173  * prevent syslog from deleting initial spaces
174  */
175 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
176 
177 static void print_device_short(device_t dev, int indent);
178 static void print_device(device_t dev, int indent);
179 void print_device_tree_short(device_t dev, int indent);
180 void print_device_tree(device_t dev, int indent);
181 static void print_driver_short(driver_t *driver, int indent);
182 static void print_driver(driver_t *driver, int indent);
183 static void print_driver_list(driver_list_t drivers, int indent);
184 static void print_devclass_short(devclass_t dc, int indent);
185 static void print_devclass(devclass_t dc, int indent);
186 void print_devclass_list_short(void);
187 void print_devclass_list(void);
188 
189 #else
190 /* Make the compiler ignore the function calls */
191 #define PDEBUG(a)			/* nop */
192 #define DEVICENAME(d)			/* nop */
193 
194 #define print_device_short(d,i)		/* nop */
195 #define print_device(d,i)		/* nop */
196 #define print_device_tree_short(d,i)	/* nop */
197 #define print_device_tree(d,i)		/* nop */
198 #define print_driver_short(d,i)		/* nop */
199 #define print_driver(d,i)		/* nop */
200 #define print_driver_list(d,i)		/* nop */
201 #define print_devclass_short(d,i)	/* nop */
202 #define print_devclass(d,i)		/* nop */
203 #define print_devclass_list_short()	/* nop */
204 #define print_devclass_list()		/* nop */
205 #endif
206 
207 /*
208  * dev sysctl tree
209  */
210 
211 enum {
212 	DEVCLASS_SYSCTL_PARENT,
213 };
214 
215 static int
216 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
217 {
218 	devclass_t dc = (devclass_t)arg1;
219 	const char *value;
220 
221 	switch (arg2) {
222 	case DEVCLASS_SYSCTL_PARENT:
223 		value = dc->parent ? dc->parent->name : "";
224 		break;
225 	default:
226 		return (EINVAL);
227 	}
228 	return (SYSCTL_OUT_STR(req, value));
229 }
230 
231 static void
232 devclass_sysctl_init(devclass_t dc)
233 {
234 	if (dc->sysctl_tree != NULL)
235 		return;
236 	sysctl_ctx_init(&dc->sysctl_ctx);
237 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
238 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
239 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
240 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
241 	    OID_AUTO, "%parent",
242 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
243 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
244 	    "parent class");
245 }
246 
247 enum {
248 	DEVICE_SYSCTL_DESC,
249 	DEVICE_SYSCTL_DRIVER,
250 	DEVICE_SYSCTL_LOCATION,
251 	DEVICE_SYSCTL_PNPINFO,
252 	DEVICE_SYSCTL_PARENT,
253 };
254 
255 static int
256 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
257 {
258 	struct sbuf sb;
259 	device_t dev = (device_t)arg1;
260 	int error;
261 
262 	sbuf_new_for_sysctl(&sb, NULL, 1024, req);
263 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
264 	bus_topo_lock();
265 	switch (arg2) {
266 	case DEVICE_SYSCTL_DESC:
267 		sbuf_cat(&sb, dev->desc ? dev->desc : "");
268 		break;
269 	case DEVICE_SYSCTL_DRIVER:
270 		sbuf_cat(&sb, dev->driver ? dev->driver->name : "");
271 		break;
272 	case DEVICE_SYSCTL_LOCATION:
273 		bus_child_location(dev, &sb);
274 		break;
275 	case DEVICE_SYSCTL_PNPINFO:
276 		bus_child_pnpinfo(dev, &sb);
277 		break;
278 	case DEVICE_SYSCTL_PARENT:
279 		sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : "");
280 		break;
281 	default:
282 		error = EINVAL;
283 		goto out;
284 	}
285 	error = sbuf_finish(&sb);
286 out:
287 	bus_topo_unlock();
288 	sbuf_delete(&sb);
289 	return (error);
290 }
291 
292 static void
293 device_sysctl_init(device_t dev)
294 {
295 	devclass_t dc = dev->devclass;
296 	int domain;
297 
298 	if (dev->sysctl_tree != NULL)
299 		return;
300 	devclass_sysctl_init(dc);
301 	sysctl_ctx_init(&dev->sysctl_ctx);
302 	dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
303 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
304 	    dev->nameunit + strlen(dc->name),
305 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index");
306 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
307 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
308 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
309 	    "device description");
310 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
311 	    OID_AUTO, "%driver",
312 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
313 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
314 	    "device driver name");
315 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
316 	    OID_AUTO, "%location",
317 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
318 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
319 	    "device location relative to parent");
320 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
321 	    OID_AUTO, "%pnpinfo",
322 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
323 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
324 	    "device identification");
325 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
326 	    OID_AUTO, "%parent",
327 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
328 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
329 	    "parent device");
330 	if (bus_get_domain(dev, &domain) == 0)
331 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
332 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
333 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain");
334 }
335 
336 static void
337 device_sysctl_update(device_t dev)
338 {
339 	devclass_t dc = dev->devclass;
340 
341 	if (dev->sysctl_tree == NULL)
342 		return;
343 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
344 }
345 
346 static void
347 device_sysctl_fini(device_t dev)
348 {
349 	if (dev->sysctl_tree == NULL)
350 		return;
351 	sysctl_ctx_free(&dev->sysctl_ctx);
352 	dev->sysctl_tree = NULL;
353 }
354 
355 static struct device_list bus_data_devices;
356 static int bus_data_generation = 1;
357 
358 static kobj_method_t null_methods[] = {
359 	KOBJMETHOD_END
360 };
361 
362 DEFINE_CLASS(null, null_methods, 0);
363 
364 void
365 bus_topo_assert(void)
366 {
367 
368 	GIANT_REQUIRED;
369 }
370 
371 struct mtx *
372 bus_topo_mtx(void)
373 {
374 
375 	return (&Giant);
376 }
377 
378 void
379 bus_topo_lock(void)
380 {
381 
382 	mtx_lock(bus_topo_mtx());
383 }
384 
385 void
386 bus_topo_unlock(void)
387 {
388 
389 	mtx_unlock(bus_topo_mtx());
390 }
391 
392 /*
393  * Bus pass implementation
394  */
395 
396 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
397 int bus_current_pass = BUS_PASS_ROOT;
398 
399 /**
400  * @internal
401  * @brief Register the pass level of a new driver attachment
402  *
403  * Register a new driver attachment's pass level.  If no driver
404  * attachment with the same pass level has been added, then @p new
405  * will be added to the global passes list.
406  *
407  * @param new		the new driver attachment
408  */
409 static void
410 driver_register_pass(struct driverlink *new)
411 {
412 	struct driverlink *dl;
413 
414 	/* We only consider pass numbers during boot. */
415 	if (bus_current_pass == BUS_PASS_DEFAULT)
416 		return;
417 
418 	/*
419 	 * Walk the passes list.  If we already know about this pass
420 	 * then there is nothing to do.  If we don't, then insert this
421 	 * driver link into the list.
422 	 */
423 	TAILQ_FOREACH(dl, &passes, passlink) {
424 		if (dl->pass < new->pass)
425 			continue;
426 		if (dl->pass == new->pass)
427 			return;
428 		TAILQ_INSERT_BEFORE(dl, new, passlink);
429 		return;
430 	}
431 	TAILQ_INSERT_TAIL(&passes, new, passlink);
432 }
433 
434 /**
435  * @brief Raise the current bus pass
436  *
437  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
438  * method on the root bus to kick off a new device tree scan for each
439  * new pass level that has at least one driver.
440  */
441 void
442 bus_set_pass(int pass)
443 {
444 	struct driverlink *dl;
445 
446 	if (bus_current_pass > pass)
447 		panic("Attempt to lower bus pass level");
448 
449 	TAILQ_FOREACH(dl, &passes, passlink) {
450 		/* Skip pass values below the current pass level. */
451 		if (dl->pass <= bus_current_pass)
452 			continue;
453 
454 		/*
455 		 * Bail once we hit a driver with a pass level that is
456 		 * too high.
457 		 */
458 		if (dl->pass > pass)
459 			break;
460 
461 		/*
462 		 * Raise the pass level to the next level and rescan
463 		 * the tree.
464 		 */
465 		bus_current_pass = dl->pass;
466 		BUS_NEW_PASS(root_bus);
467 	}
468 
469 	/*
470 	 * If there isn't a driver registered for the requested pass,
471 	 * then bus_current_pass might still be less than 'pass'.  Set
472 	 * it to 'pass' in that case.
473 	 */
474 	if (bus_current_pass < pass)
475 		bus_current_pass = pass;
476 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
477 }
478 
479 /*
480  * Devclass implementation
481  */
482 
483 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
484 
485 /**
486  * @internal
487  * @brief Find or create a device class
488  *
489  * If a device class with the name @p classname exists, return it,
490  * otherwise if @p create is non-zero create and return a new device
491  * class.
492  *
493  * If @p parentname is non-NULL, the parent of the devclass is set to
494  * the devclass of that name.
495  *
496  * @param classname	the devclass name to find or create
497  * @param parentname	the parent devclass name or @c NULL
498  * @param create	non-zero to create a devclass
499  */
500 static devclass_t
501 devclass_find_internal(const char *classname, const char *parentname,
502 		       int create)
503 {
504 	devclass_t dc;
505 
506 	PDEBUG(("looking for %s", classname));
507 	if (!classname)
508 		return (NULL);
509 
510 	TAILQ_FOREACH(dc, &devclasses, link) {
511 		if (!strcmp(dc->name, classname))
512 			break;
513 	}
514 
515 	if (create && !dc) {
516 		PDEBUG(("creating %s", classname));
517 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
518 		    M_BUS, M_NOWAIT | M_ZERO);
519 		if (!dc)
520 			return (NULL);
521 		dc->parent = NULL;
522 		dc->name = (char*) (dc + 1);
523 		strcpy(dc->name, classname);
524 		TAILQ_INIT(&dc->drivers);
525 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
526 
527 		bus_data_generation_update();
528 	}
529 
530 	/*
531 	 * If a parent class is specified, then set that as our parent so
532 	 * that this devclass will support drivers for the parent class as
533 	 * well.  If the parent class has the same name don't do this though
534 	 * as it creates a cycle that can trigger an infinite loop in
535 	 * device_probe_child() if a device exists for which there is no
536 	 * suitable driver.
537 	 */
538 	if (parentname && dc && !dc->parent &&
539 	    strcmp(classname, parentname) != 0) {
540 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
541 		dc->parent->flags |= DC_HAS_CHILDREN;
542 	}
543 
544 	return (dc);
545 }
546 
547 /**
548  * @brief Create a device class
549  *
550  * If a device class with the name @p classname exists, return it,
551  * otherwise create and return a new device class.
552  *
553  * @param classname	the devclass name to find or create
554  */
555 devclass_t
556 devclass_create(const char *classname)
557 {
558 	return (devclass_find_internal(classname, NULL, TRUE));
559 }
560 
561 /**
562  * @brief Find a device class
563  *
564  * If a device class with the name @p classname exists, return it,
565  * otherwise return @c NULL.
566  *
567  * @param classname	the devclass name to find
568  */
569 devclass_t
570 devclass_find(const char *classname)
571 {
572 	return (devclass_find_internal(classname, NULL, FALSE));
573 }
574 
575 /**
576  * @brief Register that a device driver has been added to a devclass
577  *
578  * Register that a device driver has been added to a devclass.  This
579  * is called by devclass_add_driver to accomplish the recursive
580  * notification of all the children classes of dc, as well as dc.
581  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
582  * the devclass.
583  *
584  * We do a full search here of the devclass list at each iteration
585  * level to save storing children-lists in the devclass structure.  If
586  * we ever move beyond a few dozen devices doing this, we may need to
587  * reevaluate...
588  *
589  * @param dc		the devclass to edit
590  * @param driver	the driver that was just added
591  */
592 static void
593 devclass_driver_added(devclass_t dc, driver_t *driver)
594 {
595 	devclass_t parent;
596 	int i;
597 
598 	/*
599 	 * Call BUS_DRIVER_ADDED for any existing buses in this class.
600 	 */
601 	for (i = 0; i < dc->maxunit; i++)
602 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
603 			BUS_DRIVER_ADDED(dc->devices[i], driver);
604 
605 	/*
606 	 * Walk through the children classes.  Since we only keep a
607 	 * single parent pointer around, we walk the entire list of
608 	 * devclasses looking for children.  We set the
609 	 * DC_HAS_CHILDREN flag when a child devclass is created on
610 	 * the parent, so we only walk the list for those devclasses
611 	 * that have children.
612 	 */
613 	if (!(dc->flags & DC_HAS_CHILDREN))
614 		return;
615 	parent = dc;
616 	TAILQ_FOREACH(dc, &devclasses, link) {
617 		if (dc->parent == parent)
618 			devclass_driver_added(dc, driver);
619 	}
620 }
621 
622 static void
623 device_handle_nomatch(device_t dev)
624 {
625 	BUS_PROBE_NOMATCH(dev->parent, dev);
626 	EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev);
627 	dev->flags |= DF_DONENOMATCH;
628 }
629 
630 /**
631  * @brief Add a device driver to a device class
632  *
633  * Add a device driver to a devclass. This is normally called
634  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
635  * all devices in the devclass will be called to allow them to attempt
636  * to re-probe any unmatched children.
637  *
638  * @param dc		the devclass to edit
639  * @param driver	the driver to register
640  */
641 int
642 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
643 {
644 	driverlink_t dl;
645 	devclass_t child_dc;
646 	const char *parentname;
647 
648 	PDEBUG(("%s", DRIVERNAME(driver)));
649 
650 	/* Don't allow invalid pass values. */
651 	if (pass <= BUS_PASS_ROOT)
652 		return (EINVAL);
653 
654 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
655 	if (!dl)
656 		return (ENOMEM);
657 
658 	/*
659 	 * Compile the driver's methods. Also increase the reference count
660 	 * so that the class doesn't get freed when the last instance
661 	 * goes. This means we can safely use static methods and avoids a
662 	 * double-free in devclass_delete_driver.
663 	 */
664 	kobj_class_compile((kobj_class_t) driver);
665 
666 	/*
667 	 * If the driver has any base classes, make the
668 	 * devclass inherit from the devclass of the driver's
669 	 * first base class. This will allow the system to
670 	 * search for drivers in both devclasses for children
671 	 * of a device using this driver.
672 	 */
673 	if (driver->baseclasses)
674 		parentname = driver->baseclasses[0]->name;
675 	else
676 		parentname = NULL;
677 	child_dc = devclass_find_internal(driver->name, parentname, TRUE);
678 	if (dcp != NULL)
679 		*dcp = child_dc;
680 
681 	dl->driver = driver;
682 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
683 	driver->refs++;		/* XXX: kobj_mtx */
684 	dl->pass = pass;
685 	driver_register_pass(dl);
686 
687 	if (device_frozen) {
688 		dl->flags |= DL_DEFERRED_PROBE;
689 	} else {
690 		devclass_driver_added(dc, driver);
691 	}
692 	bus_data_generation_update();
693 	return (0);
694 }
695 
696 /**
697  * @brief Register that a device driver has been deleted from a devclass
698  *
699  * Register that a device driver has been removed from a devclass.
700  * This is called by devclass_delete_driver to accomplish the
701  * recursive notification of all the children classes of busclass, as
702  * well as busclass.  Each layer will attempt to detach the driver
703  * from any devices that are children of the bus's devclass.  The function
704  * will return an error if a device fails to detach.
705  *
706  * We do a full search here of the devclass list at each iteration
707  * level to save storing children-lists in the devclass structure.  If
708  * we ever move beyond a few dozen devices doing this, we may need to
709  * reevaluate...
710  *
711  * @param busclass	the devclass of the parent bus
712  * @param dc		the devclass of the driver being deleted
713  * @param driver	the driver being deleted
714  */
715 static int
716 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
717 {
718 	devclass_t parent;
719 	device_t dev;
720 	int error, i;
721 
722 	/*
723 	 * Disassociate from any devices.  We iterate through all the
724 	 * devices in the devclass of the driver and detach any which are
725 	 * using the driver and which have a parent in the devclass which
726 	 * we are deleting from.
727 	 *
728 	 * Note that since a driver can be in multiple devclasses, we
729 	 * should not detach devices which are not children of devices in
730 	 * the affected devclass.
731 	 *
732 	 * If we're frozen, we don't generate NOMATCH events. Mark to
733 	 * generate later.
734 	 */
735 	for (i = 0; i < dc->maxunit; i++) {
736 		if (dc->devices[i]) {
737 			dev = dc->devices[i];
738 			if (dev->driver == driver && dev->parent &&
739 			    dev->parent->devclass == busclass) {
740 				if ((error = device_detach(dev)) != 0)
741 					return (error);
742 				if (device_frozen) {
743 					dev->flags &= ~DF_DONENOMATCH;
744 					dev->flags |= DF_NEEDNOMATCH;
745 				} else {
746 					device_handle_nomatch(dev);
747 				}
748 			}
749 		}
750 	}
751 
752 	/*
753 	 * Walk through the children classes.  Since we only keep a
754 	 * single parent pointer around, we walk the entire list of
755 	 * devclasses looking for children.  We set the
756 	 * DC_HAS_CHILDREN flag when a child devclass is created on
757 	 * the parent, so we only walk the list for those devclasses
758 	 * that have children.
759 	 */
760 	if (!(busclass->flags & DC_HAS_CHILDREN))
761 		return (0);
762 	parent = busclass;
763 	TAILQ_FOREACH(busclass, &devclasses, link) {
764 		if (busclass->parent == parent) {
765 			error = devclass_driver_deleted(busclass, dc, driver);
766 			if (error)
767 				return (error);
768 		}
769 	}
770 	return (0);
771 }
772 
773 /**
774  * @brief Delete a device driver from a device class
775  *
776  * Delete a device driver from a devclass. This is normally called
777  * automatically by DRIVER_MODULE().
778  *
779  * If the driver is currently attached to any devices,
780  * devclass_delete_driver() will first attempt to detach from each
781  * device. If one of the detach calls fails, the driver will not be
782  * deleted.
783  *
784  * @param dc		the devclass to edit
785  * @param driver	the driver to unregister
786  */
787 int
788 devclass_delete_driver(devclass_t busclass, driver_t *driver)
789 {
790 	devclass_t dc = devclass_find(driver->name);
791 	driverlink_t dl;
792 	int error;
793 
794 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
795 
796 	if (!dc)
797 		return (0);
798 
799 	/*
800 	 * Find the link structure in the bus' list of drivers.
801 	 */
802 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
803 		if (dl->driver == driver)
804 			break;
805 	}
806 
807 	if (!dl) {
808 		PDEBUG(("%s not found in %s list", driver->name,
809 		    busclass->name));
810 		return (ENOENT);
811 	}
812 
813 	error = devclass_driver_deleted(busclass, dc, driver);
814 	if (error != 0)
815 		return (error);
816 
817 	TAILQ_REMOVE(&busclass->drivers, dl, link);
818 	free(dl, M_BUS);
819 
820 	/* XXX: kobj_mtx */
821 	driver->refs--;
822 	if (driver->refs == 0)
823 		kobj_class_free((kobj_class_t) driver);
824 
825 	bus_data_generation_update();
826 	return (0);
827 }
828 
829 /**
830  * @brief Quiesces a set of device drivers from a device class
831  *
832  * Quiesce a device driver from a devclass. This is normally called
833  * automatically by DRIVER_MODULE().
834  *
835  * If the driver is currently attached to any devices,
836  * devclass_quiesece_driver() will first attempt to quiesce each
837  * device.
838  *
839  * @param dc		the devclass to edit
840  * @param driver	the driver to unregister
841  */
842 static int
843 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
844 {
845 	devclass_t dc = devclass_find(driver->name);
846 	driverlink_t dl;
847 	device_t dev;
848 	int i;
849 	int error;
850 
851 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
852 
853 	if (!dc)
854 		return (0);
855 
856 	/*
857 	 * Find the link structure in the bus' list of drivers.
858 	 */
859 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
860 		if (dl->driver == driver)
861 			break;
862 	}
863 
864 	if (!dl) {
865 		PDEBUG(("%s not found in %s list", driver->name,
866 		    busclass->name));
867 		return (ENOENT);
868 	}
869 
870 	/*
871 	 * Quiesce all devices.  We iterate through all the devices in
872 	 * the devclass of the driver and quiesce any which are using
873 	 * the driver and which have a parent in the devclass which we
874 	 * are quiescing.
875 	 *
876 	 * Note that since a driver can be in multiple devclasses, we
877 	 * should not quiesce devices which are not children of
878 	 * devices in the affected devclass.
879 	 */
880 	for (i = 0; i < dc->maxunit; i++) {
881 		if (dc->devices[i]) {
882 			dev = dc->devices[i];
883 			if (dev->driver == driver && dev->parent &&
884 			    dev->parent->devclass == busclass) {
885 				if ((error = device_quiesce(dev)) != 0)
886 					return (error);
887 			}
888 		}
889 	}
890 
891 	return (0);
892 }
893 
894 /**
895  * @internal
896  */
897 static driverlink_t
898 devclass_find_driver_internal(devclass_t dc, const char *classname)
899 {
900 	driverlink_t dl;
901 
902 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
903 
904 	TAILQ_FOREACH(dl, &dc->drivers, link) {
905 		if (!strcmp(dl->driver->name, classname))
906 			return (dl);
907 	}
908 
909 	PDEBUG(("not found"));
910 	return (NULL);
911 }
912 
913 /**
914  * @brief Return the name of the devclass
915  */
916 const char *
917 devclass_get_name(devclass_t dc)
918 {
919 	return (dc->name);
920 }
921 
922 /**
923  * @brief Find a device given a unit number
924  *
925  * @param dc		the devclass to search
926  * @param unit		the unit number to search for
927  *
928  * @returns		the device with the given unit number or @c
929  *			NULL if there is no such device
930  */
931 device_t
932 devclass_get_device(devclass_t dc, int unit)
933 {
934 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
935 		return (NULL);
936 	return (dc->devices[unit]);
937 }
938 
939 /**
940  * @brief Find the softc field of a device given a unit number
941  *
942  * @param dc		the devclass to search
943  * @param unit		the unit number to search for
944  *
945  * @returns		the softc field of the device with the given
946  *			unit number or @c NULL if there is no such
947  *			device
948  */
949 void *
950 devclass_get_softc(devclass_t dc, int unit)
951 {
952 	device_t dev;
953 
954 	dev = devclass_get_device(dc, unit);
955 	if (!dev)
956 		return (NULL);
957 
958 	return (device_get_softc(dev));
959 }
960 
961 /**
962  * @brief Get a list of devices in the devclass
963  *
964  * An array containing a list of all the devices in the given devclass
965  * is allocated and returned in @p *devlistp. The number of devices
966  * in the array is returned in @p *devcountp. The caller should free
967  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
968  *
969  * @param dc		the devclass to examine
970  * @param devlistp	points at location for array pointer return
971  *			value
972  * @param devcountp	points at location for array size return value
973  *
974  * @retval 0		success
975  * @retval ENOMEM	the array allocation failed
976  */
977 int
978 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
979 {
980 	int count, i;
981 	device_t *list;
982 
983 	count = devclass_get_count(dc);
984 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
985 	if (!list)
986 		return (ENOMEM);
987 
988 	count = 0;
989 	for (i = 0; i < dc->maxunit; i++) {
990 		if (dc->devices[i]) {
991 			list[count] = dc->devices[i];
992 			count++;
993 		}
994 	}
995 
996 	*devlistp = list;
997 	*devcountp = count;
998 
999 	return (0);
1000 }
1001 
1002 /**
1003  * @brief Get a list of drivers in the devclass
1004  *
1005  * An array containing a list of pointers to all the drivers in the
1006  * given devclass is allocated and returned in @p *listp.  The number
1007  * of drivers in the array is returned in @p *countp. The caller should
1008  * free the array using @c free(p, M_TEMP).
1009  *
1010  * @param dc		the devclass to examine
1011  * @param listp		gives location for array pointer return value
1012  * @param countp	gives location for number of array elements
1013  *			return value
1014  *
1015  * @retval 0		success
1016  * @retval ENOMEM	the array allocation failed
1017  */
1018 int
1019 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1020 {
1021 	driverlink_t dl;
1022 	driver_t **list;
1023 	int count;
1024 
1025 	count = 0;
1026 	TAILQ_FOREACH(dl, &dc->drivers, link)
1027 		count++;
1028 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1029 	if (list == NULL)
1030 		return (ENOMEM);
1031 
1032 	count = 0;
1033 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1034 		list[count] = dl->driver;
1035 		count++;
1036 	}
1037 	*listp = list;
1038 	*countp = count;
1039 
1040 	return (0);
1041 }
1042 
1043 /**
1044  * @brief Get the number of devices in a devclass
1045  *
1046  * @param dc		the devclass to examine
1047  */
1048 int
1049 devclass_get_count(devclass_t dc)
1050 {
1051 	int count, i;
1052 
1053 	count = 0;
1054 	for (i = 0; i < dc->maxunit; i++)
1055 		if (dc->devices[i])
1056 			count++;
1057 	return (count);
1058 }
1059 
1060 /**
1061  * @brief Get the maximum unit number used in a devclass
1062  *
1063  * Note that this is one greater than the highest currently-allocated unit.  If
1064  * @p dc is NULL, @c -1 is returned to indicate that not even the devclass has
1065  * been allocated yet.
1066  *
1067  * @param dc		the devclass to examine
1068  */
1069 int
1070 devclass_get_maxunit(devclass_t dc)
1071 {
1072 	if (dc == NULL)
1073 		return (-1);
1074 	return (dc->maxunit);
1075 }
1076 
1077 /**
1078  * @brief Find a free unit number in a devclass
1079  *
1080  * This function searches for the first unused unit number greater
1081  * that or equal to @p unit.
1082  *
1083  * @param dc		the devclass to examine
1084  * @param unit		the first unit number to check
1085  */
1086 int
1087 devclass_find_free_unit(devclass_t dc, int unit)
1088 {
1089 	if (dc == NULL)
1090 		return (unit);
1091 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1092 		unit++;
1093 	return (unit);
1094 }
1095 
1096 /**
1097  * @brief Set the parent of a devclass
1098  *
1099  * The parent class is normally initialised automatically by
1100  * DRIVER_MODULE().
1101  *
1102  * @param dc		the devclass to edit
1103  * @param pdc		the new parent devclass
1104  */
1105 void
1106 devclass_set_parent(devclass_t dc, devclass_t pdc)
1107 {
1108 	dc->parent = pdc;
1109 }
1110 
1111 /**
1112  * @brief Get the parent of a devclass
1113  *
1114  * @param dc		the devclass to examine
1115  */
1116 devclass_t
1117 devclass_get_parent(devclass_t dc)
1118 {
1119 	return (dc->parent);
1120 }
1121 
1122 struct sysctl_ctx_list *
1123 devclass_get_sysctl_ctx(devclass_t dc)
1124 {
1125 	return (&dc->sysctl_ctx);
1126 }
1127 
1128 struct sysctl_oid *
1129 devclass_get_sysctl_tree(devclass_t dc)
1130 {
1131 	return (dc->sysctl_tree);
1132 }
1133 
1134 /**
1135  * @internal
1136  * @brief Allocate a unit number
1137  *
1138  * On entry, @p *unitp is the desired unit number (or @c DEVICE_UNIT_ANY if any
1139  * will do). The allocated unit number is returned in @p *unitp.
1140  *
1141  * @param dc		the devclass to allocate from
1142  * @param unitp		points at the location for the allocated unit
1143  *			number
1144  *
1145  * @retval 0		success
1146  * @retval EEXIST	the requested unit number is already allocated
1147  * @retval ENOMEM	memory allocation failure
1148  */
1149 static int
1150 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1151 {
1152 	const char *s;
1153 	int unit = *unitp;
1154 
1155 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1156 
1157 	/* Ask the parent bus if it wants to wire this device. */
1158 	if (unit == DEVICE_UNIT_ANY)
1159 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1160 		    &unit);
1161 
1162 	/* If we were given a wired unit number, check for existing device */
1163 	if (unit != DEVICE_UNIT_ANY) {
1164 		if (unit >= 0 && unit < dc->maxunit &&
1165 		    dc->devices[unit] != NULL) {
1166 			if (bootverbose)
1167 				printf("%s: %s%d already exists; skipping it\n",
1168 				    dc->name, dc->name, *unitp);
1169 			return (EEXIST);
1170 		}
1171 	} else {
1172 		/* Unwired device, find the next available slot for it */
1173 		unit = 0;
1174 		for (unit = 0;; unit++) {
1175 			/* If this device slot is already in use, skip it. */
1176 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1177 				continue;
1178 
1179 			/* If there is an "at" hint for a unit then skip it. */
1180 			if (resource_string_value(dc->name, unit, "at", &s) ==
1181 			    0)
1182 				continue;
1183 
1184 			break;
1185 		}
1186 	}
1187 
1188 	/*
1189 	 * We've selected a unit beyond the length of the table, so let's
1190 	 * extend the table to make room for all units up to and including
1191 	 * this one.
1192 	 */
1193 	if (unit >= dc->maxunit) {
1194 		device_t *newlist, *oldlist;
1195 		int newsize;
1196 
1197 		oldlist = dc->devices;
1198 		newsize = roundup((unit + 1),
1199 		    MAX(1, MINALLOCSIZE / sizeof(device_t)));
1200 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1201 		if (!newlist)
1202 			return (ENOMEM);
1203 		if (oldlist != NULL)
1204 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1205 		bzero(newlist + dc->maxunit,
1206 		    sizeof(device_t) * (newsize - dc->maxunit));
1207 		dc->devices = newlist;
1208 		dc->maxunit = newsize;
1209 		if (oldlist != NULL)
1210 			free(oldlist, M_BUS);
1211 	}
1212 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1213 
1214 	*unitp = unit;
1215 	return (0);
1216 }
1217 
1218 /**
1219  * @internal
1220  * @brief Add a device to a devclass
1221  *
1222  * A unit number is allocated for the device (using the device's
1223  * preferred unit number if any) and the device is registered in the
1224  * devclass. This allows the device to be looked up by its unit
1225  * number, e.g. by decoding a dev_t minor number.
1226  *
1227  * @param dc		the devclass to add to
1228  * @param dev		the device to add
1229  *
1230  * @retval 0		success
1231  * @retval EEXIST	the requested unit number is already allocated
1232  * @retval ENOMEM	memory allocation failure
1233  */
1234 static int
1235 devclass_add_device(devclass_t dc, device_t dev)
1236 {
1237 	int buflen, error;
1238 
1239 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1240 
1241 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1242 	if (buflen < 0)
1243 		return (ENOMEM);
1244 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1245 	if (!dev->nameunit)
1246 		return (ENOMEM);
1247 
1248 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1249 		free(dev->nameunit, M_BUS);
1250 		dev->nameunit = NULL;
1251 		return (error);
1252 	}
1253 	dc->devices[dev->unit] = dev;
1254 	dev->devclass = dc;
1255 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1256 
1257 	return (0);
1258 }
1259 
1260 /**
1261  * @internal
1262  * @brief Delete a device from a devclass
1263  *
1264  * The device is removed from the devclass's device list and its unit
1265  * number is freed.
1266 
1267  * @param dc		the devclass to delete from
1268  * @param dev		the device to delete
1269  *
1270  * @retval 0		success
1271  */
1272 static int
1273 devclass_delete_device(devclass_t dc, device_t dev)
1274 {
1275 	if (!dc || !dev)
1276 		return (0);
1277 
1278 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1279 
1280 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1281 		panic("devclass_delete_device: inconsistent device class");
1282 	dc->devices[dev->unit] = NULL;
1283 	if (dev->flags & DF_WILDCARD)
1284 		dev->unit = DEVICE_UNIT_ANY;
1285 	dev->devclass = NULL;
1286 	free(dev->nameunit, M_BUS);
1287 	dev->nameunit = NULL;
1288 
1289 	return (0);
1290 }
1291 
1292 /**
1293  * @internal
1294  * @brief Make a new device and add it as a child of @p parent
1295  *
1296  * @param parent	the parent of the new device
1297  * @param name		the devclass name of the new device or @c NULL
1298  *			to leave the devclass unspecified
1299  * @parem unit		the unit number of the new device of @c DEVICE_UNIT_ANY
1300  *			to leave the unit number unspecified
1301  *
1302  * @returns the new device
1303  */
1304 static device_t
1305 make_device(device_t parent, const char *name, int unit)
1306 {
1307 	device_t dev;
1308 	devclass_t dc;
1309 
1310 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1311 
1312 	if (name) {
1313 		dc = devclass_find_internal(name, NULL, TRUE);
1314 		if (!dc) {
1315 			printf("make_device: can't find device class %s\n",
1316 			    name);
1317 			return (NULL);
1318 		}
1319 	} else {
1320 		dc = NULL;
1321 	}
1322 
1323 	dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1324 	if (!dev)
1325 		return (NULL);
1326 
1327 	dev->parent = parent;
1328 	TAILQ_INIT(&dev->children);
1329 	kobj_init((kobj_t) dev, &null_class);
1330 	dev->driver = NULL;
1331 	dev->devclass = NULL;
1332 	dev->unit = unit;
1333 	dev->nameunit = NULL;
1334 	dev->desc = NULL;
1335 	dev->busy = 0;
1336 	dev->devflags = 0;
1337 	dev->flags = DF_ENABLED;
1338 	dev->order = 0;
1339 	if (unit == DEVICE_UNIT_ANY)
1340 		dev->flags |= DF_WILDCARD;
1341 	if (name) {
1342 		dev->flags |= DF_FIXEDCLASS;
1343 		if (devclass_add_device(dc, dev)) {
1344 			kobj_delete((kobj_t) dev, M_BUS);
1345 			return (NULL);
1346 		}
1347 	}
1348 	if (parent != NULL && device_has_quiet_children(parent))
1349 		dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1350 	dev->ivars = NULL;
1351 	dev->softc = NULL;
1352 
1353 	dev->state = DS_NOTPRESENT;
1354 
1355 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1356 	bus_data_generation_update();
1357 
1358 	return (dev);
1359 }
1360 
1361 /**
1362  * @internal
1363  * @brief Print a description of a device.
1364  */
1365 static int
1366 device_print_child(device_t dev, device_t child)
1367 {
1368 	int retval = 0;
1369 
1370 	if (device_is_alive(child))
1371 		retval += BUS_PRINT_CHILD(dev, child);
1372 	else
1373 		retval += device_printf(child, " not found\n");
1374 
1375 	return (retval);
1376 }
1377 
1378 /**
1379  * @brief Create a new device
1380  *
1381  * This creates a new device and adds it as a child of an existing
1382  * parent device. The new device will be added after the last existing
1383  * child with order zero.
1384  *
1385  * @param dev		the device which will be the parent of the
1386  *			new child device
1387  * @param name		devclass name for new device or @c NULL if not
1388  *			specified
1389  * @param unit		unit number for new device or @c DEVICE_UNIT_ANY if not
1390  *			specified
1391  *
1392  * @returns		the new device
1393  */
1394 device_t
1395 device_add_child(device_t dev, const char *name, int unit)
1396 {
1397 	return (device_add_child_ordered(dev, 0, name, unit));
1398 }
1399 
1400 /**
1401  * @brief Create a new device
1402  *
1403  * This creates a new device and adds it as a child of an existing
1404  * parent device. The new device will be added after the last existing
1405  * child with the same order.
1406  *
1407  * @param dev		the device which will be the parent of the
1408  *			new child device
1409  * @param order		a value which is used to partially sort the
1410  *			children of @p dev - devices created using
1411  *			lower values of @p order appear first in @p
1412  *			dev's list of children
1413  * @param name		devclass name for new device or @c NULL if not
1414  *			specified
1415  * @param unit		unit number for new device or @c DEVICE_UNIT_ANY if not
1416  *			specified
1417  *
1418  * @returns		the new device
1419  */
1420 device_t
1421 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1422 {
1423 	device_t child;
1424 	device_t place;
1425 
1426 	PDEBUG(("%s at %s with order %u as unit %d",
1427 	    name, DEVICENAME(dev), order, unit));
1428 	KASSERT(name != NULL || unit == DEVICE_UNIT_ANY,
1429 	    ("child device with wildcard name and specific unit number"));
1430 
1431 	child = make_device(dev, name, unit);
1432 	if (child == NULL)
1433 		return (child);
1434 	child->order = order;
1435 
1436 	TAILQ_FOREACH(place, &dev->children, link) {
1437 		if (place->order > order)
1438 			break;
1439 	}
1440 
1441 	if (place) {
1442 		/*
1443 		 * The device 'place' is the first device whose order is
1444 		 * greater than the new child.
1445 		 */
1446 		TAILQ_INSERT_BEFORE(place, child, link);
1447 	} else {
1448 		/*
1449 		 * The new child's order is greater or equal to the order of
1450 		 * any existing device. Add the child to the tail of the list.
1451 		 */
1452 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1453 	}
1454 
1455 	bus_data_generation_update();
1456 	return (child);
1457 }
1458 
1459 /**
1460  * @brief Delete a device
1461  *
1462  * This function deletes a device along with all of its children. If
1463  * the device currently has a driver attached to it, the device is
1464  * detached first using device_detach().
1465  *
1466  * @param dev		the parent device
1467  * @param child		the device to delete
1468  *
1469  * @retval 0		success
1470  * @retval non-zero	a unit error code describing the error
1471  */
1472 int
1473 device_delete_child(device_t dev, device_t child)
1474 {
1475 	int error;
1476 	device_t grandchild;
1477 
1478 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1479 
1480 	/*
1481 	 * Detach child.  Ideally this cleans up any grandchild
1482 	 * devices.
1483 	 */
1484 	if ((error = device_detach(child)) != 0)
1485 		return (error);
1486 
1487 	/* Delete any grandchildren left after detach. */
1488 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1489 		error = device_delete_child(child, grandchild);
1490 		if (error)
1491 			return (error);
1492 	}
1493 
1494 	if (child->devclass)
1495 		devclass_delete_device(child->devclass, child);
1496 	if (child->parent)
1497 		BUS_CHILD_DELETED(dev, child);
1498 	TAILQ_REMOVE(&dev->children, child, link);
1499 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1500 	kobj_delete((kobj_t) child, M_BUS);
1501 
1502 	bus_data_generation_update();
1503 	return (0);
1504 }
1505 
1506 /**
1507  * @brief Delete all children devices of the given device, if any.
1508  *
1509  * This function deletes all children devices of the given device, if
1510  * any, using the device_delete_child() function for each device it
1511  * finds. If a child device cannot be deleted, this function will
1512  * return an error code.
1513  *
1514  * @param dev		the parent device
1515  *
1516  * @retval 0		success
1517  * @retval non-zero	a device would not detach
1518  */
1519 int
1520 device_delete_children(device_t dev)
1521 {
1522 	device_t child;
1523 	int error;
1524 
1525 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1526 
1527 	error = 0;
1528 
1529 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1530 		error = device_delete_child(dev, child);
1531 		if (error) {
1532 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1533 			break;
1534 		}
1535 	}
1536 	return (error);
1537 }
1538 
1539 /**
1540  * @brief Find a device given a unit number
1541  *
1542  * This is similar to devclass_get_devices() but only searches for
1543  * devices which have @p dev as a parent.
1544  *
1545  * @param dev		the parent device to search
1546  * @param unit		the unit number to search for.  If the unit is
1547  *			@c DEVICE_UNIT_ANY, return the first child of @p dev
1548  *			which has name @p classname (that is, the one with the
1549  *			lowest unit.)
1550  *
1551  * @returns		the device with the given unit number or @c
1552  *			NULL if there is no such device
1553  */
1554 device_t
1555 device_find_child(device_t dev, const char *classname, int unit)
1556 {
1557 	devclass_t dc;
1558 	device_t child;
1559 
1560 	dc = devclass_find(classname);
1561 	if (!dc)
1562 		return (NULL);
1563 
1564 	if (unit != DEVICE_UNIT_ANY) {
1565 		child = devclass_get_device(dc, unit);
1566 		if (child && child->parent == dev)
1567 			return (child);
1568 	} else {
1569 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1570 			child = devclass_get_device(dc, unit);
1571 			if (child && child->parent == dev)
1572 				return (child);
1573 		}
1574 	}
1575 	return (NULL);
1576 }
1577 
1578 /**
1579  * @internal
1580  */
1581 static driverlink_t
1582 first_matching_driver(devclass_t dc, device_t dev)
1583 {
1584 	if (dev->devclass)
1585 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1586 	return (TAILQ_FIRST(&dc->drivers));
1587 }
1588 
1589 /**
1590  * @internal
1591  */
1592 static driverlink_t
1593 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1594 {
1595 	if (dev->devclass) {
1596 		driverlink_t dl;
1597 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1598 			if (!strcmp(dev->devclass->name, dl->driver->name))
1599 				return (dl);
1600 		return (NULL);
1601 	}
1602 	return (TAILQ_NEXT(last, link));
1603 }
1604 
1605 /**
1606  * @internal
1607  */
1608 int
1609 device_probe_child(device_t dev, device_t child)
1610 {
1611 	devclass_t dc;
1612 	driverlink_t best = NULL;
1613 	driverlink_t dl;
1614 	int result, pri = 0;
1615 	/* We should preserve the devclass (or lack of) set by the bus. */
1616 	int hasclass = (child->devclass != NULL);
1617 
1618 	bus_topo_assert();
1619 
1620 	dc = dev->devclass;
1621 	if (!dc)
1622 		panic("device_probe_child: parent device has no devclass");
1623 
1624 	/*
1625 	 * If the state is already probed, then return.
1626 	 */
1627 	if (child->state == DS_ALIVE)
1628 		return (0);
1629 
1630 	for (; dc; dc = dc->parent) {
1631 		for (dl = first_matching_driver(dc, child);
1632 		     dl;
1633 		     dl = next_matching_driver(dc, child, dl)) {
1634 			/* If this driver's pass is too high, then ignore it. */
1635 			if (dl->pass > bus_current_pass)
1636 				continue;
1637 
1638 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1639 			result = device_set_driver(child, dl->driver);
1640 			if (result == ENOMEM)
1641 				return (result);
1642 			else if (result != 0)
1643 				continue;
1644 			if (!hasclass) {
1645 				if (device_set_devclass(child,
1646 				    dl->driver->name) != 0) {
1647 					char const * devname =
1648 					    device_get_name(child);
1649 					if (devname == NULL)
1650 						devname = "(unknown)";
1651 					printf("driver bug: Unable to set "
1652 					    "devclass (class: %s "
1653 					    "devname: %s)\n",
1654 					    dl->driver->name,
1655 					    devname);
1656 					(void)device_set_driver(child, NULL);
1657 					continue;
1658 				}
1659 			}
1660 
1661 			/* Fetch any flags for the device before probing. */
1662 			resource_int_value(dl->driver->name, child->unit,
1663 			    "flags", &child->devflags);
1664 
1665 			result = DEVICE_PROBE(child);
1666 
1667 			/*
1668 			 * If probe returns 0, this is the driver that wins this
1669 			 * device.
1670 			 */
1671 			if (result == 0) {
1672 				best = dl;
1673 				pri = 0;
1674 				goto exact_match;	/* C doesn't have break 2 */
1675 			}
1676 
1677 			/* Reset flags and devclass before the next probe. */
1678 			child->devflags = 0;
1679 			if (!hasclass)
1680 				(void)device_set_devclass(child, NULL);
1681 
1682 			/*
1683 			 * Reset DF_QUIET in case this driver doesn't
1684 			 * end up as the best driver.
1685 			 */
1686 			device_verbose(child);
1687 
1688 			/*
1689 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
1690 			 * only match on devices whose driver was explicitly
1691 			 * specified.
1692 			 */
1693 			if (result <= BUS_PROBE_NOWILDCARD &&
1694 			    !(child->flags & DF_FIXEDCLASS)) {
1695 				result = ENXIO;
1696 			}
1697 
1698 			/*
1699 			 * The driver returned an error so it
1700 			 * certainly doesn't match.
1701 			 */
1702 			if (result > 0) {
1703 				(void)device_set_driver(child, NULL);
1704 				continue;
1705 			}
1706 
1707 			/*
1708 			 * A priority lower than SUCCESS, remember the
1709 			 * best matching driver. Initialise the value
1710 			 * of pri for the first match.
1711 			 */
1712 			if (best == NULL || result > pri) {
1713 				best = dl;
1714 				pri = result;
1715 				continue;
1716 			}
1717 		}
1718 	}
1719 
1720 	if (best == NULL)
1721 		return (ENXIO);
1722 
1723 	/*
1724 	 * If we found a driver, change state and initialise the devclass.
1725 	 * Set the winning driver, devclass, and flags.
1726 	 */
1727 	result = device_set_driver(child, best->driver);
1728 	if (result != 0)
1729 		return (result);
1730 	if (!child->devclass) {
1731 		result = device_set_devclass(child, best->driver->name);
1732 		if (result != 0) {
1733 			(void)device_set_driver(child, NULL);
1734 			return (result);
1735 		}
1736 	}
1737 	resource_int_value(best->driver->name, child->unit,
1738 	    "flags", &child->devflags);
1739 
1740 	/*
1741 	 * A bit bogus. Call the probe method again to make sure that we have
1742 	 * the right description for the device.
1743 	 */
1744 	result = DEVICE_PROBE(child);
1745 	if (result > 0) {
1746 		if (!hasclass)
1747 			(void)device_set_devclass(child, NULL);
1748 		(void)device_set_driver(child, NULL);
1749 		return (result);
1750 	}
1751 
1752 exact_match:
1753 	child->state = DS_ALIVE;
1754 	bus_data_generation_update();
1755 	return (0);
1756 }
1757 
1758 /**
1759  * @brief Return the parent of a device
1760  */
1761 device_t
1762 device_get_parent(device_t dev)
1763 {
1764 	return (dev->parent);
1765 }
1766 
1767 /**
1768  * @brief Get a list of children of a device
1769  *
1770  * An array containing a list of all the children of the given device
1771  * is allocated and returned in @p *devlistp. The number of devices
1772  * in the array is returned in @p *devcountp. The caller should free
1773  * the array using @c free(p, M_TEMP).
1774  *
1775  * @param dev		the device to examine
1776  * @param devlistp	points at location for array pointer return
1777  *			value
1778  * @param devcountp	points at location for array size return value
1779  *
1780  * @retval 0		success
1781  * @retval ENOMEM	the array allocation failed
1782  */
1783 int
1784 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1785 {
1786 	int count;
1787 	device_t child;
1788 	device_t *list;
1789 
1790 	count = 0;
1791 	TAILQ_FOREACH(child, &dev->children, link) {
1792 		count++;
1793 	}
1794 	if (count == 0) {
1795 		*devlistp = NULL;
1796 		*devcountp = 0;
1797 		return (0);
1798 	}
1799 
1800 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1801 	if (!list)
1802 		return (ENOMEM);
1803 
1804 	count = 0;
1805 	TAILQ_FOREACH(child, &dev->children, link) {
1806 		list[count] = child;
1807 		count++;
1808 	}
1809 
1810 	*devlistp = list;
1811 	*devcountp = count;
1812 
1813 	return (0);
1814 }
1815 
1816 /**
1817  * @brief Return the current driver for the device or @c NULL if there
1818  * is no driver currently attached
1819  */
1820 driver_t *
1821 device_get_driver(device_t dev)
1822 {
1823 	return (dev->driver);
1824 }
1825 
1826 /**
1827  * @brief Return the current devclass for the device or @c NULL if
1828  * there is none.
1829  */
1830 devclass_t
1831 device_get_devclass(device_t dev)
1832 {
1833 	return (dev->devclass);
1834 }
1835 
1836 /**
1837  * @brief Return the name of the device's devclass or @c NULL if there
1838  * is none.
1839  */
1840 const char *
1841 device_get_name(device_t dev)
1842 {
1843 	if (dev != NULL && dev->devclass)
1844 		return (devclass_get_name(dev->devclass));
1845 	return (NULL);
1846 }
1847 
1848 /**
1849  * @brief Return a string containing the device's devclass name
1850  * followed by an ascii representation of the device's unit number
1851  * (e.g. @c "foo2").
1852  */
1853 const char *
1854 device_get_nameunit(device_t dev)
1855 {
1856 	return (dev->nameunit);
1857 }
1858 
1859 /**
1860  * @brief Return the device's unit number.
1861  */
1862 int
1863 device_get_unit(device_t dev)
1864 {
1865 	return (dev->unit);
1866 }
1867 
1868 /**
1869  * @brief Return the device's description string
1870  */
1871 const char *
1872 device_get_desc(device_t dev)
1873 {
1874 	return (dev->desc);
1875 }
1876 
1877 /**
1878  * @brief Return the device's flags
1879  */
1880 uint32_t
1881 device_get_flags(device_t dev)
1882 {
1883 	return (dev->devflags);
1884 }
1885 
1886 struct sysctl_ctx_list *
1887 device_get_sysctl_ctx(device_t dev)
1888 {
1889 	return (&dev->sysctl_ctx);
1890 }
1891 
1892 struct sysctl_oid *
1893 device_get_sysctl_tree(device_t dev)
1894 {
1895 	return (dev->sysctl_tree);
1896 }
1897 
1898 /**
1899  * @brief Print the name of the device followed by a colon and a space
1900  *
1901  * @returns the number of characters printed
1902  */
1903 int
1904 device_print_prettyname(device_t dev)
1905 {
1906 	const char *name = device_get_name(dev);
1907 
1908 	if (name == NULL)
1909 		return (printf("unknown: "));
1910 	return (printf("%s%d: ", name, device_get_unit(dev)));
1911 }
1912 
1913 /**
1914  * @brief Print the name of the device followed by a colon, a space
1915  * and the result of calling vprintf() with the value of @p fmt and
1916  * the following arguments.
1917  *
1918  * @returns the number of characters printed
1919  */
1920 int
1921 device_printf(device_t dev, const char * fmt, ...)
1922 {
1923 	char buf[128];
1924 	struct sbuf sb;
1925 	const char *name;
1926 	va_list ap;
1927 	size_t retval;
1928 
1929 	retval = 0;
1930 
1931 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1932 	sbuf_set_drain(&sb, sbuf_printf_drain, &retval);
1933 
1934 	name = device_get_name(dev);
1935 
1936 	if (name == NULL)
1937 		sbuf_cat(&sb, "unknown: ");
1938 	else
1939 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
1940 
1941 	va_start(ap, fmt);
1942 	sbuf_vprintf(&sb, fmt, ap);
1943 	va_end(ap);
1944 
1945 	sbuf_finish(&sb);
1946 	sbuf_delete(&sb);
1947 
1948 	return (retval);
1949 }
1950 
1951 /**
1952  * @brief Print the name of the device followed by a colon, a space
1953  * and the result of calling log() with the value of @p fmt and
1954  * the following arguments.
1955  *
1956  * @returns the number of characters printed
1957  */
1958 int
1959 device_log(device_t dev, int pri, const char * fmt, ...)
1960 {
1961 	char buf[128];
1962 	struct sbuf sb;
1963 	const char *name;
1964 	va_list ap;
1965 	size_t retval;
1966 
1967 	retval = 0;
1968 
1969 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1970 
1971 	name = device_get_name(dev);
1972 
1973 	if (name == NULL)
1974 		sbuf_cat(&sb, "unknown: ");
1975 	else
1976 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
1977 
1978 	va_start(ap, fmt);
1979 	sbuf_vprintf(&sb, fmt, ap);
1980 	va_end(ap);
1981 
1982 	sbuf_finish(&sb);
1983 
1984 	log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb));
1985 	retval = sbuf_len(&sb);
1986 
1987 	sbuf_delete(&sb);
1988 
1989 	return (retval);
1990 }
1991 
1992 /**
1993  * @internal
1994  */
1995 static void
1996 device_set_desc_internal(device_t dev, const char *desc, bool allocated)
1997 {
1998 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1999 		free(dev->desc, M_BUS);
2000 		dev->flags &= ~DF_DESCMALLOCED;
2001 		dev->desc = NULL;
2002 	}
2003 
2004 	if (allocated && desc)
2005 		dev->flags |= DF_DESCMALLOCED;
2006 	dev->desc = __DECONST(char *, desc);
2007 
2008 	bus_data_generation_update();
2009 }
2010 
2011 /**
2012  * @brief Set the device's description
2013  *
2014  * The value of @c desc should be a string constant that will not
2015  * change (at least until the description is changed in a subsequent
2016  * call to device_set_desc() or device_set_desc_copy()).
2017  */
2018 void
2019 device_set_desc(device_t dev, const char *desc)
2020 {
2021 	device_set_desc_internal(dev, desc, false);
2022 }
2023 
2024 /**
2025  * @brief Set the device's description
2026  *
2027  * A printf-like version of device_set_desc().
2028  */
2029 void
2030 device_set_descf(device_t dev, const char *fmt, ...)
2031 {
2032 	va_list ap;
2033 	char *buf = NULL;
2034 
2035 	va_start(ap, fmt);
2036 	vasprintf(&buf, M_BUS, fmt, ap);
2037 	va_end(ap);
2038 	device_set_desc_internal(dev, buf, true);
2039 }
2040 
2041 /**
2042  * @brief Set the device's description
2043  *
2044  * The string pointed to by @c desc is copied. Use this function if
2045  * the device description is generated, (e.g. with sprintf()).
2046  */
2047 void
2048 device_set_desc_copy(device_t dev, const char *desc)
2049 {
2050 	char *buf;
2051 
2052 	buf = strdup_flags(desc, M_BUS, M_NOWAIT);
2053 	device_set_desc_internal(dev, buf, true);
2054 }
2055 
2056 /**
2057  * @brief Set the device's flags
2058  */
2059 void
2060 device_set_flags(device_t dev, uint32_t flags)
2061 {
2062 	dev->devflags = flags;
2063 }
2064 
2065 /**
2066  * @brief Return the device's softc field
2067  *
2068  * The softc is allocated and zeroed when a driver is attached, based
2069  * on the size field of the driver.
2070  */
2071 void *
2072 device_get_softc(device_t dev)
2073 {
2074 	return (dev->softc);
2075 }
2076 
2077 /**
2078  * @brief Set the device's softc field
2079  *
2080  * Most drivers do not need to use this since the softc is allocated
2081  * automatically when the driver is attached.
2082  */
2083 void
2084 device_set_softc(device_t dev, void *softc)
2085 {
2086 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2087 		free(dev->softc, M_BUS_SC);
2088 	dev->softc = softc;
2089 	if (dev->softc)
2090 		dev->flags |= DF_EXTERNALSOFTC;
2091 	else
2092 		dev->flags &= ~DF_EXTERNALSOFTC;
2093 }
2094 
2095 /**
2096  * @brief Free claimed softc
2097  *
2098  * Most drivers do not need to use this since the softc is freed
2099  * automatically when the driver is detached.
2100  */
2101 void
2102 device_free_softc(void *softc)
2103 {
2104 	free(softc, M_BUS_SC);
2105 }
2106 
2107 /**
2108  * @brief Claim softc
2109  *
2110  * This function can be used to let the driver free the automatically
2111  * allocated softc using "device_free_softc()". This function is
2112  * useful when the driver is refcounting the softc and the softc
2113  * cannot be freed when the "device_detach" method is called.
2114  */
2115 void
2116 device_claim_softc(device_t dev)
2117 {
2118 	if (dev->softc)
2119 		dev->flags |= DF_EXTERNALSOFTC;
2120 	else
2121 		dev->flags &= ~DF_EXTERNALSOFTC;
2122 }
2123 
2124 /**
2125  * @brief Get the device's ivars field
2126  *
2127  * The ivars field is used by the parent device to store per-device
2128  * state (e.g. the physical location of the device or a list of
2129  * resources).
2130  */
2131 void *
2132 device_get_ivars(device_t dev)
2133 {
2134 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2135 	return (dev->ivars);
2136 }
2137 
2138 /**
2139  * @brief Set the device's ivars field
2140  */
2141 void
2142 device_set_ivars(device_t dev, void * ivars)
2143 {
2144 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2145 	dev->ivars = ivars;
2146 }
2147 
2148 /**
2149  * @brief Return the device's state
2150  */
2151 device_state_t
2152 device_get_state(device_t dev)
2153 {
2154 	return (dev->state);
2155 }
2156 
2157 /**
2158  * @brief Set the DF_ENABLED flag for the device
2159  */
2160 void
2161 device_enable(device_t dev)
2162 {
2163 	dev->flags |= DF_ENABLED;
2164 }
2165 
2166 /**
2167  * @brief Clear the DF_ENABLED flag for the device
2168  */
2169 void
2170 device_disable(device_t dev)
2171 {
2172 	dev->flags &= ~DF_ENABLED;
2173 }
2174 
2175 /**
2176  * @brief Increment the busy counter for the device
2177  */
2178 void
2179 device_busy(device_t dev)
2180 {
2181 
2182 	/*
2183 	 * Mark the device as busy, recursively up the tree if this busy count
2184 	 * goes 0->1.
2185 	 */
2186 	if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL)
2187 		device_busy(dev->parent);
2188 }
2189 
2190 /**
2191  * @brief Decrement the busy counter for the device
2192  */
2193 void
2194 device_unbusy(device_t dev)
2195 {
2196 
2197 	/*
2198 	 * Mark the device as unbsy, recursively if this is the last busy count.
2199 	 */
2200 	if (refcount_release(&dev->busy) && dev->parent != NULL)
2201 		device_unbusy(dev->parent);
2202 }
2203 
2204 /**
2205  * @brief Set the DF_QUIET flag for the device
2206  */
2207 void
2208 device_quiet(device_t dev)
2209 {
2210 	dev->flags |= DF_QUIET;
2211 }
2212 
2213 /**
2214  * @brief Set the DF_QUIET_CHILDREN flag for the device
2215  */
2216 void
2217 device_quiet_children(device_t dev)
2218 {
2219 	dev->flags |= DF_QUIET_CHILDREN;
2220 }
2221 
2222 /**
2223  * @brief Clear the DF_QUIET flag for the device
2224  */
2225 void
2226 device_verbose(device_t dev)
2227 {
2228 	dev->flags &= ~DF_QUIET;
2229 }
2230 
2231 ssize_t
2232 device_get_property(device_t dev, const char *prop, void *val, size_t sz,
2233     device_property_type_t type)
2234 {
2235 	device_t bus = device_get_parent(dev);
2236 
2237 	switch (type) {
2238 	case DEVICE_PROP_ANY:
2239 	case DEVICE_PROP_BUFFER:
2240 	case DEVICE_PROP_HANDLE:	/* Size checks done in implementation. */
2241 		break;
2242 	case DEVICE_PROP_UINT32:
2243 		if (sz % 4 != 0)
2244 			return (-1);
2245 		break;
2246 	case DEVICE_PROP_UINT64:
2247 		if (sz % 8 != 0)
2248 			return (-1);
2249 		break;
2250 	default:
2251 		return (-1);
2252 	}
2253 
2254 	return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type));
2255 }
2256 
2257 bool
2258 device_has_property(device_t dev, const char *prop)
2259 {
2260 	return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0);
2261 }
2262 
2263 /**
2264  * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2265  */
2266 int
2267 device_has_quiet_children(device_t dev)
2268 {
2269 	return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2270 }
2271 
2272 /**
2273  * @brief Return non-zero if the DF_QUIET flag is set on the device
2274  */
2275 int
2276 device_is_quiet(device_t dev)
2277 {
2278 	return ((dev->flags & DF_QUIET) != 0);
2279 }
2280 
2281 /**
2282  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2283  */
2284 int
2285 device_is_enabled(device_t dev)
2286 {
2287 	return ((dev->flags & DF_ENABLED) != 0);
2288 }
2289 
2290 /**
2291  * @brief Return non-zero if the device was successfully probed
2292  */
2293 int
2294 device_is_alive(device_t dev)
2295 {
2296 	return (dev->state >= DS_ALIVE);
2297 }
2298 
2299 /**
2300  * @brief Return non-zero if the device currently has a driver
2301  * attached to it
2302  */
2303 int
2304 device_is_attached(device_t dev)
2305 {
2306 	return (dev->state >= DS_ATTACHED);
2307 }
2308 
2309 /**
2310  * @brief Return non-zero if the device is currently suspended.
2311  */
2312 int
2313 device_is_suspended(device_t dev)
2314 {
2315 	return ((dev->flags & DF_SUSPENDED) != 0);
2316 }
2317 
2318 /**
2319  * @brief Set the devclass of a device
2320  * @see devclass_add_device().
2321  */
2322 int
2323 device_set_devclass(device_t dev, const char *classname)
2324 {
2325 	devclass_t dc;
2326 	int error;
2327 
2328 	if (!classname) {
2329 		if (dev->devclass)
2330 			devclass_delete_device(dev->devclass, dev);
2331 		return (0);
2332 	}
2333 
2334 	if (dev->devclass) {
2335 		printf("device_set_devclass: device class already set\n");
2336 		return (EINVAL);
2337 	}
2338 
2339 	dc = devclass_find_internal(classname, NULL, TRUE);
2340 	if (!dc)
2341 		return (ENOMEM);
2342 
2343 	error = devclass_add_device(dc, dev);
2344 
2345 	bus_data_generation_update();
2346 	return (error);
2347 }
2348 
2349 /**
2350  * @brief Set the devclass of a device and mark the devclass fixed.
2351  * @see device_set_devclass()
2352  */
2353 int
2354 device_set_devclass_fixed(device_t dev, const char *classname)
2355 {
2356 	int error;
2357 
2358 	if (classname == NULL)
2359 		return (EINVAL);
2360 
2361 	error = device_set_devclass(dev, classname);
2362 	if (error)
2363 		return (error);
2364 	dev->flags |= DF_FIXEDCLASS;
2365 	return (0);
2366 }
2367 
2368 /**
2369  * @brief Query the device to determine if it's of a fixed devclass
2370  * @see device_set_devclass_fixed()
2371  */
2372 bool
2373 device_is_devclass_fixed(device_t dev)
2374 {
2375 	return ((dev->flags & DF_FIXEDCLASS) != 0);
2376 }
2377 
2378 /**
2379  * @brief Set the driver of a device
2380  *
2381  * @retval 0		success
2382  * @retval EBUSY	the device already has a driver attached
2383  * @retval ENOMEM	a memory allocation failure occurred
2384  */
2385 int
2386 device_set_driver(device_t dev, driver_t *driver)
2387 {
2388 	int domain;
2389 	struct domainset *policy;
2390 
2391 	if (dev->state >= DS_ATTACHED)
2392 		return (EBUSY);
2393 
2394 	if (dev->driver == driver)
2395 		return (0);
2396 
2397 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2398 		free(dev->softc, M_BUS_SC);
2399 		dev->softc = NULL;
2400 	}
2401 	device_set_desc(dev, NULL);
2402 	kobj_delete((kobj_t) dev, NULL);
2403 	dev->driver = driver;
2404 	if (driver) {
2405 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2406 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2407 			if (bus_get_domain(dev, &domain) == 0)
2408 				policy = DOMAINSET_PREF(domain);
2409 			else
2410 				policy = DOMAINSET_RR();
2411 			dev->softc = malloc_domainset(driver->size, M_BUS_SC,
2412 			    policy, M_NOWAIT | M_ZERO);
2413 			if (!dev->softc) {
2414 				kobj_delete((kobj_t) dev, NULL);
2415 				kobj_init((kobj_t) dev, &null_class);
2416 				dev->driver = NULL;
2417 				return (ENOMEM);
2418 			}
2419 		}
2420 	} else {
2421 		kobj_init((kobj_t) dev, &null_class);
2422 	}
2423 
2424 	bus_data_generation_update();
2425 	return (0);
2426 }
2427 
2428 /**
2429  * @brief Probe a device, and return this status.
2430  *
2431  * This function is the core of the device autoconfiguration
2432  * system. Its purpose is to select a suitable driver for a device and
2433  * then call that driver to initialise the hardware appropriately. The
2434  * driver is selected by calling the DEVICE_PROBE() method of a set of
2435  * candidate drivers and then choosing the driver which returned the
2436  * best value. This driver is then attached to the device using
2437  * device_attach().
2438  *
2439  * The set of suitable drivers is taken from the list of drivers in
2440  * the parent device's devclass. If the device was originally created
2441  * with a specific class name (see device_add_child()), only drivers
2442  * with that name are probed, otherwise all drivers in the devclass
2443  * are probed. If no drivers return successful probe values in the
2444  * parent devclass, the search continues in the parent of that
2445  * devclass (see devclass_get_parent()) if any.
2446  *
2447  * @param dev		the device to initialise
2448  *
2449  * @retval 0		success
2450  * @retval ENXIO	no driver was found
2451  * @retval ENOMEM	memory allocation failure
2452  * @retval non-zero	some other unix error code
2453  * @retval -1		Device already attached
2454  */
2455 int
2456 device_probe(device_t dev)
2457 {
2458 	int error;
2459 
2460 	bus_topo_assert();
2461 
2462 	if (dev->state >= DS_ALIVE)
2463 		return (-1);
2464 
2465 	if (!(dev->flags & DF_ENABLED)) {
2466 		if (bootverbose && device_get_name(dev) != NULL) {
2467 			device_print_prettyname(dev);
2468 			printf("not probed (disabled)\n");
2469 		}
2470 		return (-1);
2471 	}
2472 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2473 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2474 		    !(dev->flags & DF_DONENOMATCH)) {
2475 			device_handle_nomatch(dev);
2476 		}
2477 		return (error);
2478 	}
2479 	return (0);
2480 }
2481 
2482 /**
2483  * @brief Probe a device and attach a driver if possible
2484  *
2485  * calls device_probe() and attaches if that was successful.
2486  */
2487 int
2488 device_probe_and_attach(device_t dev)
2489 {
2490 	int error;
2491 
2492 	bus_topo_assert();
2493 
2494 	error = device_probe(dev);
2495 	if (error == -1)
2496 		return (0);
2497 	else if (error != 0)
2498 		return (error);
2499 
2500 	CURVNET_SET_QUIET(vnet0);
2501 	error = device_attach(dev);
2502 	CURVNET_RESTORE();
2503 	return error;
2504 }
2505 
2506 /**
2507  * @brief Attach a device driver to a device
2508  *
2509  * This function is a wrapper around the DEVICE_ATTACH() driver
2510  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2511  * device's sysctl tree, optionally prints a description of the device
2512  * and queues a notification event for user-based device management
2513  * services.
2514  *
2515  * Normally this function is only called internally from
2516  * device_probe_and_attach().
2517  *
2518  * @param dev		the device to initialise
2519  *
2520  * @retval 0		success
2521  * @retval ENXIO	no driver was found
2522  * @retval ENOMEM	memory allocation failure
2523  * @retval non-zero	some other unix error code
2524  */
2525 int
2526 device_attach(device_t dev)
2527 {
2528 	uint64_t attachtime;
2529 	uint16_t attachentropy;
2530 	int error;
2531 
2532 	if (resource_disabled(dev->driver->name, dev->unit)) {
2533 		device_disable(dev);
2534 		if (bootverbose)
2535 			 device_printf(dev, "disabled via hints entry\n");
2536 		return (ENXIO);
2537 	}
2538 
2539 	device_sysctl_init(dev);
2540 	if (!device_is_quiet(dev))
2541 		device_print_child(dev->parent, dev);
2542 	attachtime = get_cyclecount();
2543 	dev->state = DS_ATTACHING;
2544 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2545 		printf("device_attach: %s%d attach returned %d\n",
2546 		    dev->driver->name, dev->unit, error);
2547 		BUS_CHILD_DETACHED(dev->parent, dev);
2548 		if (disable_failed_devs) {
2549 			/*
2550 			 * When the user has asked to disable failed devices, we
2551 			 * directly disable the device, but leave it in the
2552 			 * attaching state. It will not try to probe/attach the
2553 			 * device further. This leaves the device numbering
2554 			 * intact for other similar devices in the system. It
2555 			 * can be removed from this state with devctl.
2556 			 */
2557 			device_disable(dev);
2558 		} else {
2559 			/*
2560 			 * Otherwise, when attach fails, tear down the state
2561 			 * around that so we can retry when, for example, new
2562 			 * drivers are loaded.
2563 			 */
2564 			if (!(dev->flags & DF_FIXEDCLASS))
2565 				devclass_delete_device(dev->devclass, dev);
2566 			(void)device_set_driver(dev, NULL);
2567 			device_sysctl_fini(dev);
2568 			KASSERT(dev->busy == 0, ("attach failed but busy"));
2569 			dev->state = DS_NOTPRESENT;
2570 		}
2571 		return (error);
2572 	}
2573 	dev->flags |= DF_ATTACHED_ONCE;
2574 	/*
2575 	 * We only need the low bits of this time, but ranges from tens to thousands
2576 	 * have been seen, so keep 2 bytes' worth.
2577 	 */
2578 	attachentropy = (uint16_t)(get_cyclecount() - attachtime);
2579 	random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
2580 	device_sysctl_update(dev);
2581 	dev->state = DS_ATTACHED;
2582 	dev->flags &= ~DF_DONENOMATCH;
2583 	EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
2584 	return (0);
2585 }
2586 
2587 /**
2588  * @brief Detach a driver from a device
2589  *
2590  * This function is a wrapper around the DEVICE_DETACH() driver
2591  * method. If the call to DEVICE_DETACH() succeeds, it calls
2592  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2593  * notification event for user-based device management services and
2594  * cleans up the device's sysctl tree.
2595  *
2596  * @param dev		the device to un-initialise
2597  *
2598  * @retval 0		success
2599  * @retval ENXIO	no driver was found
2600  * @retval ENOMEM	memory allocation failure
2601  * @retval non-zero	some other unix error code
2602  */
2603 int
2604 device_detach(device_t dev)
2605 {
2606 	int error;
2607 
2608 	bus_topo_assert();
2609 
2610 	PDEBUG(("%s", DEVICENAME(dev)));
2611 	if (dev->busy > 0)
2612 		return (EBUSY);
2613 	if (dev->state == DS_ATTACHING) {
2614 		device_printf(dev, "device in attaching state! Deferring detach.\n");
2615 		return (EBUSY);
2616 	}
2617 	if (dev->state != DS_ATTACHED)
2618 		return (0);
2619 
2620 	EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
2621 	if ((error = DEVICE_DETACH(dev)) != 0) {
2622 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2623 		    EVHDEV_DETACH_FAILED);
2624 		return (error);
2625 	} else {
2626 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2627 		    EVHDEV_DETACH_COMPLETE);
2628 	}
2629 	if (!device_is_quiet(dev))
2630 		device_printf(dev, "detached\n");
2631 	if (dev->parent)
2632 		BUS_CHILD_DETACHED(dev->parent, dev);
2633 
2634 	if (!(dev->flags & DF_FIXEDCLASS))
2635 		devclass_delete_device(dev->devclass, dev);
2636 
2637 	device_verbose(dev);
2638 	dev->state = DS_NOTPRESENT;
2639 	(void)device_set_driver(dev, NULL);
2640 	device_sysctl_fini(dev);
2641 
2642 	return (0);
2643 }
2644 
2645 /**
2646  * @brief Tells a driver to quiesce itself.
2647  *
2648  * This function is a wrapper around the DEVICE_QUIESCE() driver
2649  * method. If the call to DEVICE_QUIESCE() succeeds.
2650  *
2651  * @param dev		the device to quiesce
2652  *
2653  * @retval 0		success
2654  * @retval ENXIO	no driver was found
2655  * @retval ENOMEM	memory allocation failure
2656  * @retval non-zero	some other unix error code
2657  */
2658 int
2659 device_quiesce(device_t dev)
2660 {
2661 	PDEBUG(("%s", DEVICENAME(dev)));
2662 	if (dev->busy > 0)
2663 		return (EBUSY);
2664 	if (dev->state != DS_ATTACHED)
2665 		return (0);
2666 
2667 	return (DEVICE_QUIESCE(dev));
2668 }
2669 
2670 /**
2671  * @brief Notify a device of system shutdown
2672  *
2673  * This function calls the DEVICE_SHUTDOWN() driver method if the
2674  * device currently has an attached driver.
2675  *
2676  * @returns the value returned by DEVICE_SHUTDOWN()
2677  */
2678 int
2679 device_shutdown(device_t dev)
2680 {
2681 	if (dev->state < DS_ATTACHED)
2682 		return (0);
2683 	return (DEVICE_SHUTDOWN(dev));
2684 }
2685 
2686 /**
2687  * @brief Set the unit number of a device
2688  *
2689  * This function can be used to override the unit number used for a
2690  * device (e.g. to wire a device to a pre-configured unit number).
2691  */
2692 int
2693 device_set_unit(device_t dev, int unit)
2694 {
2695 	devclass_t dc;
2696 	int err;
2697 
2698 	if (unit == dev->unit)
2699 		return (0);
2700 	dc = device_get_devclass(dev);
2701 	if (unit < dc->maxunit && dc->devices[unit])
2702 		return (EBUSY);
2703 	err = devclass_delete_device(dc, dev);
2704 	if (err)
2705 		return (err);
2706 	dev->unit = unit;
2707 	err = devclass_add_device(dc, dev);
2708 	if (err)
2709 		return (err);
2710 
2711 	bus_data_generation_update();
2712 	return (0);
2713 }
2714 
2715 /*======================================*/
2716 /*
2717  * Some useful method implementations to make life easier for bus drivers.
2718  */
2719 
2720 /**
2721  * @brief Initialize a resource mapping request
2722  *
2723  * This is the internal implementation of the public API
2724  * resource_init_map_request.  Callers may be using a different layout
2725  * of struct resource_map_request than the kernel, so callers pass in
2726  * the size of the structure they are using to identify the structure
2727  * layout.
2728  */
2729 void
2730 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
2731 {
2732 	bzero(args, sz);
2733 	args->size = sz;
2734 	args->memattr = VM_MEMATTR_DEVICE;
2735 }
2736 
2737 /**
2738  * @brief Validate a resource mapping request
2739  *
2740  * Translate a device driver's mapping request (@p in) to a struct
2741  * resource_map_request using the current structure layout (@p out).
2742  * In addition, validate the offset and length from the mapping
2743  * request against the bounds of the resource @p r.  If the offset or
2744  * length are invalid, fail with EINVAL.  If the offset and length are
2745  * valid, the absolute starting address of the requested mapping is
2746  * returned in @p startp and the length of the requested mapping is
2747  * returned in @p lengthp.
2748  */
2749 int
2750 resource_validate_map_request(struct resource *r,
2751     struct resource_map_request *in, struct resource_map_request *out,
2752     rman_res_t *startp, rman_res_t *lengthp)
2753 {
2754 	rman_res_t end, length, start;
2755 
2756 	/*
2757 	 * This assumes that any callers of this function are compiled
2758 	 * into the kernel and use the same version of the structure
2759 	 * as this file.
2760 	 */
2761 	MPASS(out->size == sizeof(struct resource_map_request));
2762 
2763 	if (in != NULL)
2764 		bcopy(in, out, imin(in->size, out->size));
2765 	start = rman_get_start(r) + out->offset;
2766 	if (out->length == 0)
2767 		length = rman_get_size(r);
2768 	else
2769 		length = out->length;
2770 	end = start + length - 1;
2771 	if (start > rman_get_end(r) || start < rman_get_start(r))
2772 		return (EINVAL);
2773 	if (end > rman_get_end(r) || end < start)
2774 		return (EINVAL);
2775 	*lengthp = length;
2776 	*startp = start;
2777 	return (0);
2778 }
2779 
2780 /**
2781  * @brief Initialise a resource list.
2782  *
2783  * @param rl		the resource list to initialise
2784  */
2785 void
2786 resource_list_init(struct resource_list *rl)
2787 {
2788 	STAILQ_INIT(rl);
2789 }
2790 
2791 /**
2792  * @brief Reclaim memory used by a resource list.
2793  *
2794  * This function frees the memory for all resource entries on the list
2795  * (if any).
2796  *
2797  * @param rl		the resource list to free
2798  */
2799 void
2800 resource_list_free(struct resource_list *rl)
2801 {
2802 	struct resource_list_entry *rle;
2803 
2804 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2805 		if (rle->res)
2806 			panic("resource_list_free: resource entry is busy");
2807 		STAILQ_REMOVE_HEAD(rl, link);
2808 		free(rle, M_BUS);
2809 	}
2810 }
2811 
2812 /**
2813  * @brief Add a resource entry.
2814  *
2815  * This function adds a resource entry using the given @p type, @p
2816  * start, @p end and @p count values. A rid value is chosen by
2817  * searching sequentially for the first unused rid starting at zero.
2818  *
2819  * @param rl		the resource list to edit
2820  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2821  * @param start		the start address of the resource
2822  * @param end		the end address of the resource
2823  * @param count		XXX end-start+1
2824  */
2825 int
2826 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
2827     rman_res_t end, rman_res_t count)
2828 {
2829 	int rid;
2830 
2831 	rid = 0;
2832 	while (resource_list_find(rl, type, rid) != NULL)
2833 		rid++;
2834 	resource_list_add(rl, type, rid, start, end, count);
2835 	return (rid);
2836 }
2837 
2838 /**
2839  * @brief Add or modify a resource entry.
2840  *
2841  * If an existing entry exists with the same type and rid, it will be
2842  * modified using the given values of @p start, @p end and @p
2843  * count. If no entry exists, a new one will be created using the
2844  * given values.  The resource list entry that matches is then returned.
2845  *
2846  * @param rl		the resource list to edit
2847  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2848  * @param rid		the resource identifier
2849  * @param start		the start address of the resource
2850  * @param end		the end address of the resource
2851  * @param count		XXX end-start+1
2852  */
2853 struct resource_list_entry *
2854 resource_list_add(struct resource_list *rl, int type, int rid,
2855     rman_res_t start, rman_res_t end, rman_res_t count)
2856 {
2857 	struct resource_list_entry *rle;
2858 
2859 	rle = resource_list_find(rl, type, rid);
2860 	if (!rle) {
2861 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2862 		    M_NOWAIT);
2863 		if (!rle)
2864 			panic("resource_list_add: can't record entry");
2865 		STAILQ_INSERT_TAIL(rl, rle, link);
2866 		rle->type = type;
2867 		rle->rid = rid;
2868 		rle->res = NULL;
2869 		rle->flags = 0;
2870 	}
2871 
2872 	if (rle->res)
2873 		panic("resource_list_add: resource entry is busy");
2874 
2875 	rle->start = start;
2876 	rle->end = end;
2877 	rle->count = count;
2878 	return (rle);
2879 }
2880 
2881 /**
2882  * @brief Determine if a resource entry is busy.
2883  *
2884  * Returns true if a resource entry is busy meaning that it has an
2885  * associated resource that is not an unallocated "reserved" resource.
2886  *
2887  * @param rl		the resource list to search
2888  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2889  * @param rid		the resource identifier
2890  *
2891  * @returns Non-zero if the entry is busy, zero otherwise.
2892  */
2893 int
2894 resource_list_busy(struct resource_list *rl, int type, int rid)
2895 {
2896 	struct resource_list_entry *rle;
2897 
2898 	rle = resource_list_find(rl, type, rid);
2899 	if (rle == NULL || rle->res == NULL)
2900 		return (0);
2901 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2902 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2903 		    ("reserved resource is active"));
2904 		return (0);
2905 	}
2906 	return (1);
2907 }
2908 
2909 /**
2910  * @brief Determine if a resource entry is reserved.
2911  *
2912  * Returns true if a resource entry is reserved meaning that it has an
2913  * associated "reserved" resource.  The resource can either be
2914  * allocated or unallocated.
2915  *
2916  * @param rl		the resource list to search
2917  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2918  * @param rid		the resource identifier
2919  *
2920  * @returns Non-zero if the entry is reserved, zero otherwise.
2921  */
2922 int
2923 resource_list_reserved(struct resource_list *rl, int type, int rid)
2924 {
2925 	struct resource_list_entry *rle;
2926 
2927 	rle = resource_list_find(rl, type, rid);
2928 	if (rle != NULL && rle->flags & RLE_RESERVED)
2929 		return (1);
2930 	return (0);
2931 }
2932 
2933 /**
2934  * @brief Find a resource entry by type and rid.
2935  *
2936  * @param rl		the resource list to search
2937  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2938  * @param rid		the resource identifier
2939  *
2940  * @returns the resource entry pointer or NULL if there is no such
2941  * entry.
2942  */
2943 struct resource_list_entry *
2944 resource_list_find(struct resource_list *rl, int type, int rid)
2945 {
2946 	struct resource_list_entry *rle;
2947 
2948 	STAILQ_FOREACH(rle, rl, link) {
2949 		if (rle->type == type && rle->rid == rid)
2950 			return (rle);
2951 	}
2952 	return (NULL);
2953 }
2954 
2955 /**
2956  * @brief Delete a resource entry.
2957  *
2958  * @param rl		the resource list to edit
2959  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2960  * @param rid		the resource identifier
2961  */
2962 void
2963 resource_list_delete(struct resource_list *rl, int type, int rid)
2964 {
2965 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2966 
2967 	if (rle) {
2968 		if (rle->res != NULL)
2969 			panic("resource_list_delete: resource has not been released");
2970 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2971 		free(rle, M_BUS);
2972 	}
2973 }
2974 
2975 /**
2976  * @brief Allocate a reserved resource
2977  *
2978  * This can be used by buses to force the allocation of resources
2979  * that are always active in the system even if they are not allocated
2980  * by a driver (e.g. PCI BARs).  This function is usually called when
2981  * adding a new child to the bus.  The resource is allocated from the
2982  * parent bus when it is reserved.  The resource list entry is marked
2983  * with RLE_RESERVED to note that it is a reserved resource.
2984  *
2985  * Subsequent attempts to allocate the resource with
2986  * resource_list_alloc() will succeed the first time and will set
2987  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
2988  * resource that has been allocated is released with
2989  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
2990  * the actual resource remains allocated.  The resource can be released to
2991  * the parent bus by calling resource_list_unreserve().
2992  *
2993  * @param rl		the resource list to allocate from
2994  * @param bus		the parent device of @p child
2995  * @param child		the device for which the resource is being reserved
2996  * @param type		the type of resource to allocate
2997  * @param rid		a pointer to the resource identifier
2998  * @param start		hint at the start of the resource range - pass
2999  *			@c 0 for any start address
3000  * @param end		hint at the end of the resource range - pass
3001  *			@c ~0 for any end address
3002  * @param count		hint at the size of range required - pass @c 1
3003  *			for any size
3004  * @param flags		any extra flags to control the resource
3005  *			allocation - see @c RF_XXX flags in
3006  *			<sys/rman.h> for details
3007  *
3008  * @returns		the resource which was allocated or @c NULL if no
3009  *			resource could be allocated
3010  */
3011 struct resource *
3012 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3013     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3014 {
3015 	struct resource_list_entry *rle = NULL;
3016 	int passthrough = (device_get_parent(child) != bus);
3017 	struct resource *r;
3018 
3019 	if (passthrough)
3020 		panic(
3021     "resource_list_reserve() should only be called for direct children");
3022 	if (flags & RF_ACTIVE)
3023 		panic(
3024     "resource_list_reserve() should only reserve inactive resources");
3025 
3026 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3027 	    flags);
3028 	if (r != NULL) {
3029 		rle = resource_list_find(rl, type, *rid);
3030 		rle->flags |= RLE_RESERVED;
3031 	}
3032 	return (r);
3033 }
3034 
3035 /**
3036  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3037  *
3038  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3039  * and passing the allocation up to the parent of @p bus. This assumes
3040  * that the first entry of @c device_get_ivars(child) is a struct
3041  * resource_list. This also handles 'passthrough' allocations where a
3042  * child is a remote descendant of bus by passing the allocation up to
3043  * the parent of bus.
3044  *
3045  * Typically, a bus driver would store a list of child resources
3046  * somewhere in the child device's ivars (see device_get_ivars()) and
3047  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3048  * then call resource_list_alloc() to perform the allocation.
3049  *
3050  * @param rl		the resource list to allocate from
3051  * @param bus		the parent device of @p child
3052  * @param child		the device which is requesting an allocation
3053  * @param type		the type of resource to allocate
3054  * @param rid		a pointer to the resource identifier
3055  * @param start		hint at the start of the resource range - pass
3056  *			@c 0 for any start address
3057  * @param end		hint at the end of the resource range - pass
3058  *			@c ~0 for any end address
3059  * @param count		hint at the size of range required - pass @c 1
3060  *			for any size
3061  * @param flags		any extra flags to control the resource
3062  *			allocation - see @c RF_XXX flags in
3063  *			<sys/rman.h> for details
3064  *
3065  * @returns		the resource which was allocated or @c NULL if no
3066  *			resource could be allocated
3067  */
3068 struct resource *
3069 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3070     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3071 {
3072 	struct resource_list_entry *rle = NULL;
3073 	int passthrough = (device_get_parent(child) != bus);
3074 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3075 
3076 	if (passthrough) {
3077 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3078 		    type, rid, start, end, count, flags));
3079 	}
3080 
3081 	rle = resource_list_find(rl, type, *rid);
3082 
3083 	if (!rle)
3084 		return (NULL);		/* no resource of that type/rid */
3085 
3086 	if (rle->res) {
3087 		if (rle->flags & RLE_RESERVED) {
3088 			if (rle->flags & RLE_ALLOCATED)
3089 				return (NULL);
3090 			if ((flags & RF_ACTIVE) &&
3091 			    bus_activate_resource(child, type, *rid,
3092 			    rle->res) != 0)
3093 				return (NULL);
3094 			rle->flags |= RLE_ALLOCATED;
3095 			return (rle->res);
3096 		}
3097 		device_printf(bus,
3098 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3099 		    type, device_get_nameunit(child));
3100 		return (NULL);
3101 	}
3102 
3103 	if (isdefault) {
3104 		start = rle->start;
3105 		count = ulmax(count, rle->count);
3106 		end = ulmax(rle->end, start + count - 1);
3107 	}
3108 
3109 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3110 	    type, rid, start, end, count, flags);
3111 
3112 	/*
3113 	 * Record the new range.
3114 	 */
3115 	if (rle->res) {
3116 		rle->start = rman_get_start(rle->res);
3117 		rle->end = rman_get_end(rle->res);
3118 		rle->count = count;
3119 	}
3120 
3121 	return (rle->res);
3122 }
3123 
3124 /**
3125  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3126  *
3127  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3128  * used with resource_list_alloc().
3129  *
3130  * @param rl		the resource list which was allocated from
3131  * @param bus		the parent device of @p child
3132  * @param child		the device which is requesting a release
3133  * @param res		the resource to release
3134  *
3135  * @retval 0		success
3136  * @retval non-zero	a standard unix error code indicating what
3137  *			error condition prevented the operation
3138  */
3139 int
3140 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3141     struct resource *res)
3142 {
3143 	struct resource_list_entry *rle = NULL;
3144 	int passthrough = (device_get_parent(child) != bus);
3145 	int error;
3146 
3147 	if (passthrough) {
3148 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3149 		    res));
3150 	}
3151 
3152 	rle = resource_list_find(rl, rman_get_type(res), rman_get_rid(res));
3153 
3154 	if (!rle)
3155 		panic("resource_list_release: can't find resource");
3156 	if (!rle->res)
3157 		panic("resource_list_release: resource entry is not busy");
3158 	if (rle->flags & RLE_RESERVED) {
3159 		if (rle->flags & RLE_ALLOCATED) {
3160 			if (rman_get_flags(res) & RF_ACTIVE) {
3161 				error = bus_deactivate_resource(child, res);
3162 				if (error)
3163 					return (error);
3164 			}
3165 			rle->flags &= ~RLE_ALLOCATED;
3166 			return (0);
3167 		}
3168 		return (EINVAL);
3169 	}
3170 
3171 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, res);
3172 	if (error)
3173 		return (error);
3174 
3175 	rle->res = NULL;
3176 	return (0);
3177 }
3178 
3179 /**
3180  * @brief Release all active resources of a given type
3181  *
3182  * Release all active resources of a specified type.  This is intended
3183  * to be used to cleanup resources leaked by a driver after detach or
3184  * a failed attach.
3185  *
3186  * @param rl		the resource list which was allocated from
3187  * @param bus		the parent device of @p child
3188  * @param child		the device whose active resources are being released
3189  * @param type		the type of resources to release
3190  *
3191  * @retval 0		success
3192  * @retval EBUSY	at least one resource was active
3193  */
3194 int
3195 resource_list_release_active(struct resource_list *rl, device_t bus,
3196     device_t child, int type)
3197 {
3198 	struct resource_list_entry *rle;
3199 	int error, retval;
3200 
3201 	retval = 0;
3202 	STAILQ_FOREACH(rle, rl, link) {
3203 		if (rle->type != type)
3204 			continue;
3205 		if (rle->res == NULL)
3206 			continue;
3207 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3208 		    RLE_RESERVED)
3209 			continue;
3210 		retval = EBUSY;
3211 		error = resource_list_release(rl, bus, child, rle->res);
3212 		if (error != 0)
3213 			device_printf(bus,
3214 			    "Failed to release active resource: %d\n", error);
3215 	}
3216 	return (retval);
3217 }
3218 
3219 /**
3220  * @brief Fully release a reserved resource
3221  *
3222  * Fully releases a resource reserved via resource_list_reserve().
3223  *
3224  * @param rl		the resource list which was allocated from
3225  * @param bus		the parent device of @p child
3226  * @param child		the device whose reserved resource is being released
3227  * @param type		the type of resource to release
3228  * @param rid		the resource identifier
3229  * @param res		the resource to release
3230  *
3231  * @retval 0		success
3232  * @retval non-zero	a standard unix error code indicating what
3233  *			error condition prevented the operation
3234  */
3235 int
3236 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3237     int type, int rid)
3238 {
3239 	struct resource_list_entry *rle = NULL;
3240 	int passthrough = (device_get_parent(child) != bus);
3241 
3242 	if (passthrough)
3243 		panic(
3244     "resource_list_unreserve() should only be called for direct children");
3245 
3246 	rle = resource_list_find(rl, type, rid);
3247 
3248 	if (!rle)
3249 		panic("resource_list_unreserve: can't find resource");
3250 	if (!(rle->flags & RLE_RESERVED))
3251 		return (EINVAL);
3252 	if (rle->flags & RLE_ALLOCATED)
3253 		return (EBUSY);
3254 	rle->flags &= ~RLE_RESERVED;
3255 	return (resource_list_release(rl, bus, child, rle->res));
3256 }
3257 
3258 /**
3259  * @brief Print a description of resources in a resource list
3260  *
3261  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3262  * The name is printed if at least one resource of the given type is available.
3263  * The format is used to print resource start and end.
3264  *
3265  * @param rl		the resource list to print
3266  * @param name		the name of @p type, e.g. @c "memory"
3267  * @param type		type type of resource entry to print
3268  * @param format	printf(9) format string to print resource
3269  *			start and end values
3270  *
3271  * @returns		the number of characters printed
3272  */
3273 int
3274 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3275     const char *format)
3276 {
3277 	struct resource_list_entry *rle;
3278 	int printed, retval;
3279 
3280 	printed = 0;
3281 	retval = 0;
3282 	/* Yes, this is kinda cheating */
3283 	STAILQ_FOREACH(rle, rl, link) {
3284 		if (rle->type == type) {
3285 			if (printed == 0)
3286 				retval += printf(" %s ", name);
3287 			else
3288 				retval += printf(",");
3289 			printed++;
3290 			retval += printf(format, rle->start);
3291 			if (rle->count > 1) {
3292 				retval += printf("-");
3293 				retval += printf(format, rle->start +
3294 						 rle->count - 1);
3295 			}
3296 		}
3297 	}
3298 	return (retval);
3299 }
3300 
3301 /**
3302  * @brief Releases all the resources in a list.
3303  *
3304  * @param rl		The resource list to purge.
3305  *
3306  * @returns		nothing
3307  */
3308 void
3309 resource_list_purge(struct resource_list *rl)
3310 {
3311 	struct resource_list_entry *rle;
3312 
3313 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3314 		if (rle->res)
3315 			bus_release_resource(rman_get_device(rle->res),
3316 			    rle->type, rle->rid, rle->res);
3317 		STAILQ_REMOVE_HEAD(rl, link);
3318 		free(rle, M_BUS);
3319 	}
3320 }
3321 
3322 device_t
3323 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3324 {
3325 	return (device_add_child_ordered(dev, order, name, unit));
3326 }
3327 
3328 /**
3329  * @brief Helper function for implementing DEVICE_PROBE()
3330  *
3331  * This function can be used to help implement the DEVICE_PROBE() for
3332  * a bus (i.e. a device which has other devices attached to it). It
3333  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3334  * devclass.
3335  */
3336 int
3337 bus_generic_probe(device_t dev)
3338 {
3339 	devclass_t dc = dev->devclass;
3340 	driverlink_t dl;
3341 
3342 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3343 		/*
3344 		 * If this driver's pass is too high, then ignore it.
3345 		 * For most drivers in the default pass, this will
3346 		 * never be true.  For early-pass drivers they will
3347 		 * only call the identify routines of eligible drivers
3348 		 * when this routine is called.  Drivers for later
3349 		 * passes should have their identify routines called
3350 		 * on early-pass buses during BUS_NEW_PASS().
3351 		 */
3352 		if (dl->pass > bus_current_pass)
3353 			continue;
3354 		DEVICE_IDENTIFY(dl->driver, dev);
3355 	}
3356 
3357 	return (0);
3358 }
3359 
3360 /**
3361  * @brief Helper function for implementing DEVICE_ATTACH()
3362  *
3363  * This function can be used to help implement the DEVICE_ATTACH() for
3364  * a bus. It calls device_probe_and_attach() for each of the device's
3365  * children.
3366  */
3367 int
3368 bus_generic_attach(device_t dev)
3369 {
3370 	device_t child;
3371 
3372 	TAILQ_FOREACH(child, &dev->children, link) {
3373 		device_probe_and_attach(child);
3374 	}
3375 
3376 	return (0);
3377 }
3378 
3379 /**
3380  * @brief Helper function for delaying attaching children
3381  *
3382  * Many buses can't run transactions on the bus which children need to probe and
3383  * attach until after interrupts and/or timers are running.  This function
3384  * delays their attach until interrupts and timers are enabled.
3385  */
3386 int
3387 bus_delayed_attach_children(device_t dev)
3388 {
3389 	/* Probe and attach the bus children when interrupts are available */
3390 	config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev);
3391 
3392 	return (0);
3393 }
3394 
3395 /**
3396  * @brief Helper function for implementing DEVICE_DETACH()
3397  *
3398  * This function can be used to help implement the DEVICE_DETACH() for
3399  * a bus. It calls device_detach() for each of the device's
3400  * children.
3401  */
3402 int
3403 bus_generic_detach(device_t dev)
3404 {
3405 	device_t child;
3406 	int error;
3407 
3408 	/*
3409 	 * Detach children in the reverse order.
3410 	 * See bus_generic_suspend for details.
3411 	 */
3412 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3413 		if ((error = device_detach(child)) != 0)
3414 			return (error);
3415 	}
3416 
3417 	return (0);
3418 }
3419 
3420 /**
3421  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3422  *
3423  * This function can be used to help implement the DEVICE_SHUTDOWN()
3424  * for a bus. It calls device_shutdown() for each of the device's
3425  * children.
3426  */
3427 int
3428 bus_generic_shutdown(device_t dev)
3429 {
3430 	device_t child;
3431 
3432 	/*
3433 	 * Shut down children in the reverse order.
3434 	 * See bus_generic_suspend for details.
3435 	 */
3436 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3437 		device_shutdown(child);
3438 	}
3439 
3440 	return (0);
3441 }
3442 
3443 /**
3444  * @brief Default function for suspending a child device.
3445  *
3446  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3447  */
3448 int
3449 bus_generic_suspend_child(device_t dev, device_t child)
3450 {
3451 	int	error;
3452 
3453 	error = DEVICE_SUSPEND(child);
3454 
3455 	if (error == 0) {
3456 		child->flags |= DF_SUSPENDED;
3457 	} else {
3458 		printf("DEVICE_SUSPEND(%s) failed: %d\n",
3459 		    device_get_nameunit(child), error);
3460 	}
3461 
3462 	return (error);
3463 }
3464 
3465 /**
3466  * @brief Default function for resuming a child device.
3467  *
3468  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3469  */
3470 int
3471 bus_generic_resume_child(device_t dev, device_t child)
3472 {
3473 	DEVICE_RESUME(child);
3474 	child->flags &= ~DF_SUSPENDED;
3475 
3476 	return (0);
3477 }
3478 
3479 /**
3480  * @brief Helper function for implementing DEVICE_SUSPEND()
3481  *
3482  * This function can be used to help implement the DEVICE_SUSPEND()
3483  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3484  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3485  * operation is aborted and any devices which were suspended are
3486  * resumed immediately by calling their DEVICE_RESUME() methods.
3487  */
3488 int
3489 bus_generic_suspend(device_t dev)
3490 {
3491 	int		error;
3492 	device_t	child;
3493 
3494 	/*
3495 	 * Suspend children in the reverse order.
3496 	 * For most buses all children are equal, so the order does not matter.
3497 	 * Other buses, such as acpi, carefully order their child devices to
3498 	 * express implicit dependencies between them.  For such buses it is
3499 	 * safer to bring down devices in the reverse order.
3500 	 */
3501 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3502 		error = BUS_SUSPEND_CHILD(dev, child);
3503 		if (error != 0) {
3504 			child = TAILQ_NEXT(child, link);
3505 			if (child != NULL) {
3506 				TAILQ_FOREACH_FROM(child, &dev->children, link)
3507 					BUS_RESUME_CHILD(dev, child);
3508 			}
3509 			return (error);
3510 		}
3511 	}
3512 	return (0);
3513 }
3514 
3515 /**
3516  * @brief Helper function for implementing DEVICE_RESUME()
3517  *
3518  * This function can be used to help implement the DEVICE_RESUME() for
3519  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3520  */
3521 int
3522 bus_generic_resume(device_t dev)
3523 {
3524 	device_t	child;
3525 
3526 	TAILQ_FOREACH(child, &dev->children, link) {
3527 		BUS_RESUME_CHILD(dev, child);
3528 		/* if resume fails, there's nothing we can usefully do... */
3529 	}
3530 	return (0);
3531 }
3532 
3533 /**
3534  * @brief Helper function for implementing BUS_RESET_POST
3535  *
3536  * Bus can use this function to implement common operations of
3537  * re-attaching or resuming the children after the bus itself was
3538  * reset, and after restoring bus-unique state of children.
3539  *
3540  * @param dev	The bus
3541  * #param flags	DEVF_RESET_*
3542  */
3543 int
3544 bus_helper_reset_post(device_t dev, int flags)
3545 {
3546 	device_t child;
3547 	int error, error1;
3548 
3549 	error = 0;
3550 	TAILQ_FOREACH(child, &dev->children,link) {
3551 		BUS_RESET_POST(dev, child);
3552 		error1 = (flags & DEVF_RESET_DETACH) != 0 ?
3553 		    device_probe_and_attach(child) :
3554 		    BUS_RESUME_CHILD(dev, child);
3555 		if (error == 0 && error1 != 0)
3556 			error = error1;
3557 	}
3558 	return (error);
3559 }
3560 
3561 static void
3562 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
3563 {
3564 	child = TAILQ_NEXT(child, link);
3565 	if (child == NULL)
3566 		return;
3567 	TAILQ_FOREACH_FROM(child, &dev->children,link) {
3568 		BUS_RESET_POST(dev, child);
3569 		if ((flags & DEVF_RESET_DETACH) != 0)
3570 			device_probe_and_attach(child);
3571 		else
3572 			BUS_RESUME_CHILD(dev, child);
3573 	}
3574 }
3575 
3576 /**
3577  * @brief Helper function for implementing BUS_RESET_PREPARE
3578  *
3579  * Bus can use this function to implement common operations of
3580  * detaching or suspending the children before the bus itself is
3581  * reset, and then save bus-unique state of children that must
3582  * persists around reset.
3583  *
3584  * @param dev	The bus
3585  * #param flags	DEVF_RESET_*
3586  */
3587 int
3588 bus_helper_reset_prepare(device_t dev, int flags)
3589 {
3590 	device_t child;
3591 	int error;
3592 
3593 	if (dev->state != DS_ATTACHED)
3594 		return (EBUSY);
3595 
3596 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3597 		if ((flags & DEVF_RESET_DETACH) != 0) {
3598 			error = device_get_state(child) == DS_ATTACHED ?
3599 			    device_detach(child) : 0;
3600 		} else {
3601 			error = BUS_SUSPEND_CHILD(dev, child);
3602 		}
3603 		if (error == 0) {
3604 			error = BUS_RESET_PREPARE(dev, child);
3605 			if (error != 0) {
3606 				if ((flags & DEVF_RESET_DETACH) != 0)
3607 					device_probe_and_attach(child);
3608 				else
3609 					BUS_RESUME_CHILD(dev, child);
3610 			}
3611 		}
3612 		if (error != 0) {
3613 			bus_helper_reset_prepare_rollback(dev, child, flags);
3614 			return (error);
3615 		}
3616 	}
3617 	return (0);
3618 }
3619 
3620 /**
3621  * @brief Helper function for implementing BUS_PRINT_CHILD().
3622  *
3623  * This function prints the first part of the ascii representation of
3624  * @p child, including its name, unit and description (if any - see
3625  * device_set_desc()).
3626  *
3627  * @returns the number of characters printed
3628  */
3629 int
3630 bus_print_child_header(device_t dev, device_t child)
3631 {
3632 	int	retval = 0;
3633 
3634 	if (device_get_desc(child)) {
3635 		retval += device_printf(child, "<%s>", device_get_desc(child));
3636 	} else {
3637 		retval += printf("%s", device_get_nameunit(child));
3638 	}
3639 
3640 	return (retval);
3641 }
3642 
3643 /**
3644  * @brief Helper function for implementing BUS_PRINT_CHILD().
3645  *
3646  * This function prints the last part of the ascii representation of
3647  * @p child, which consists of the string @c " on " followed by the
3648  * name and unit of the @p dev.
3649  *
3650  * @returns the number of characters printed
3651  */
3652 int
3653 bus_print_child_footer(device_t dev, device_t child)
3654 {
3655 	return (printf(" on %s\n", device_get_nameunit(dev)));
3656 }
3657 
3658 /**
3659  * @brief Helper function for implementing BUS_PRINT_CHILD().
3660  *
3661  * This function prints out the VM domain for the given device.
3662  *
3663  * @returns the number of characters printed
3664  */
3665 int
3666 bus_print_child_domain(device_t dev, device_t child)
3667 {
3668 	int domain;
3669 
3670 	/* No domain? Don't print anything */
3671 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3672 		return (0);
3673 
3674 	return (printf(" numa-domain %d", domain));
3675 }
3676 
3677 /**
3678  * @brief Helper function for implementing BUS_PRINT_CHILD().
3679  *
3680  * This function simply calls bus_print_child_header() followed by
3681  * bus_print_child_footer().
3682  *
3683  * @returns the number of characters printed
3684  */
3685 int
3686 bus_generic_print_child(device_t dev, device_t child)
3687 {
3688 	int	retval = 0;
3689 
3690 	retval += bus_print_child_header(dev, child);
3691 	retval += bus_print_child_domain(dev, child);
3692 	retval += bus_print_child_footer(dev, child);
3693 
3694 	return (retval);
3695 }
3696 
3697 /**
3698  * @brief Stub function for implementing BUS_READ_IVAR().
3699  *
3700  * @returns ENOENT
3701  */
3702 int
3703 bus_generic_read_ivar(device_t dev, device_t child, int index,
3704     uintptr_t * result)
3705 {
3706 	return (ENOENT);
3707 }
3708 
3709 /**
3710  * @brief Stub function for implementing BUS_WRITE_IVAR().
3711  *
3712  * @returns ENOENT
3713  */
3714 int
3715 bus_generic_write_ivar(device_t dev, device_t child, int index,
3716     uintptr_t value)
3717 {
3718 	return (ENOENT);
3719 }
3720 
3721 /**
3722  * @brief Helper function for implementing BUS_GET_PROPERTY().
3723  *
3724  * This simply calls the BUS_GET_PROPERTY of the parent of dev,
3725  * until a non-default implementation is found.
3726  */
3727 ssize_t
3728 bus_generic_get_property(device_t dev, device_t child, const char *propname,
3729     void *propvalue, size_t size, device_property_type_t type)
3730 {
3731 	if (device_get_parent(dev) != NULL)
3732 		return (BUS_GET_PROPERTY(device_get_parent(dev), child,
3733 		    propname, propvalue, size, type));
3734 
3735 	return (-1);
3736 }
3737 
3738 /**
3739  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3740  *
3741  * @returns NULL
3742  */
3743 struct resource_list *
3744 bus_generic_get_resource_list(device_t dev, device_t child)
3745 {
3746 	return (NULL);
3747 }
3748 
3749 /**
3750  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3751  *
3752  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3753  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3754  * and then calls device_probe_and_attach() for each unattached child.
3755  */
3756 void
3757 bus_generic_driver_added(device_t dev, driver_t *driver)
3758 {
3759 	device_t child;
3760 
3761 	DEVICE_IDENTIFY(driver, dev);
3762 	TAILQ_FOREACH(child, &dev->children, link) {
3763 		if (child->state == DS_NOTPRESENT)
3764 			device_probe_and_attach(child);
3765 	}
3766 }
3767 
3768 /**
3769  * @brief Helper function for implementing BUS_NEW_PASS().
3770  *
3771  * This implementing of BUS_NEW_PASS() first calls the identify
3772  * routines for any drivers that probe at the current pass.  Then it
3773  * walks the list of devices for this bus.  If a device is already
3774  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3775  * device is not already attached, it attempts to attach a driver to
3776  * it.
3777  */
3778 void
3779 bus_generic_new_pass(device_t dev)
3780 {
3781 	driverlink_t dl;
3782 	devclass_t dc;
3783 	device_t child;
3784 
3785 	dc = dev->devclass;
3786 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3787 		if (dl->pass == bus_current_pass)
3788 			DEVICE_IDENTIFY(dl->driver, dev);
3789 	}
3790 	TAILQ_FOREACH(child, &dev->children, link) {
3791 		if (child->state >= DS_ATTACHED)
3792 			BUS_NEW_PASS(child);
3793 		else if (child->state == DS_NOTPRESENT)
3794 			device_probe_and_attach(child);
3795 	}
3796 }
3797 
3798 /**
3799  * @brief Helper function for implementing BUS_SETUP_INTR().
3800  *
3801  * This simple implementation of BUS_SETUP_INTR() simply calls the
3802  * BUS_SETUP_INTR() method of the parent of @p dev.
3803  */
3804 int
3805 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3806     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3807     void **cookiep)
3808 {
3809 	/* Propagate up the bus hierarchy until someone handles it. */
3810 	if (dev->parent)
3811 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3812 		    filter, intr, arg, cookiep));
3813 	return (EINVAL);
3814 }
3815 
3816 /**
3817  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3818  *
3819  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3820  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3821  */
3822 int
3823 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3824     void *cookie)
3825 {
3826 	/* Propagate up the bus hierarchy until someone handles it. */
3827 	if (dev->parent)
3828 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3829 	return (EINVAL);
3830 }
3831 
3832 /**
3833  * @brief Helper function for implementing BUS_SUSPEND_INTR().
3834  *
3835  * This simple implementation of BUS_SUSPEND_INTR() simply calls the
3836  * BUS_SUSPEND_INTR() method of the parent of @p dev.
3837  */
3838 int
3839 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
3840 {
3841 	/* Propagate up the bus hierarchy until someone handles it. */
3842 	if (dev->parent)
3843 		return (BUS_SUSPEND_INTR(dev->parent, child, irq));
3844 	return (EINVAL);
3845 }
3846 
3847 /**
3848  * @brief Helper function for implementing BUS_RESUME_INTR().
3849  *
3850  * This simple implementation of BUS_RESUME_INTR() simply calls the
3851  * BUS_RESUME_INTR() method of the parent of @p dev.
3852  */
3853 int
3854 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
3855 {
3856 	/* Propagate up the bus hierarchy until someone handles it. */
3857 	if (dev->parent)
3858 		return (BUS_RESUME_INTR(dev->parent, child, irq));
3859 	return (EINVAL);
3860 }
3861 
3862 /**
3863  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3864  *
3865  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3866  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3867  */
3868 int
3869 bus_generic_adjust_resource(device_t dev, device_t child, struct resource *r,
3870     rman_res_t start, rman_res_t end)
3871 {
3872 	/* Propagate up the bus hierarchy until someone handles it. */
3873 	if (dev->parent)
3874 		return (BUS_ADJUST_RESOURCE(dev->parent, child, r, start, end));
3875 	return (EINVAL);
3876 }
3877 
3878 /*
3879  * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE().
3880  *
3881  * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the
3882  * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev.  If there is no
3883  * parent, no translation happens.
3884  */
3885 int
3886 bus_generic_translate_resource(device_t dev, int type, rman_res_t start,
3887     rman_res_t *newstart)
3888 {
3889 	if (dev->parent)
3890 		return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start,
3891 		    newstart));
3892 	*newstart = start;
3893 	return (0);
3894 }
3895 
3896 /**
3897  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3898  *
3899  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3900  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3901  */
3902 struct resource *
3903 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3904     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3905 {
3906 	/* Propagate up the bus hierarchy until someone handles it. */
3907 	if (dev->parent)
3908 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3909 		    start, end, count, flags));
3910 	return (NULL);
3911 }
3912 
3913 /**
3914  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3915  *
3916  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3917  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3918  */
3919 int
3920 bus_generic_release_resource(device_t dev, device_t child, struct resource *r)
3921 {
3922 	/* Propagate up the bus hierarchy until someone handles it. */
3923 	if (dev->parent)
3924 		return (BUS_RELEASE_RESOURCE(dev->parent, child, r));
3925 	return (EINVAL);
3926 }
3927 
3928 /**
3929  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3930  *
3931  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3932  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3933  */
3934 int
3935 bus_generic_activate_resource(device_t dev, device_t child, struct resource *r)
3936 {
3937 	/* Propagate up the bus hierarchy until someone handles it. */
3938 	if (dev->parent)
3939 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, r));
3940 	return (EINVAL);
3941 }
3942 
3943 /**
3944  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3945  *
3946  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3947  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3948  */
3949 int
3950 bus_generic_deactivate_resource(device_t dev, device_t child,
3951     struct resource *r)
3952 {
3953 	/* Propagate up the bus hierarchy until someone handles it. */
3954 	if (dev->parent)
3955 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, r));
3956 	return (EINVAL);
3957 }
3958 
3959 /**
3960  * @brief Helper function for implementing BUS_MAP_RESOURCE().
3961  *
3962  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
3963  * BUS_MAP_RESOURCE() method of the parent of @p dev.
3964  */
3965 int
3966 bus_generic_map_resource(device_t dev, device_t child, struct resource *r,
3967     struct resource_map_request *args, struct resource_map *map)
3968 {
3969 	/* Propagate up the bus hierarchy until someone handles it. */
3970 	if (dev->parent)
3971 		return (BUS_MAP_RESOURCE(dev->parent, child, r, args, map));
3972 	return (EINVAL);
3973 }
3974 
3975 /**
3976  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
3977  *
3978  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
3979  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
3980  */
3981 int
3982 bus_generic_unmap_resource(device_t dev, device_t child, struct resource *r,
3983     struct resource_map *map)
3984 {
3985 	/* Propagate up the bus hierarchy until someone handles it. */
3986 	if (dev->parent)
3987 		return (BUS_UNMAP_RESOURCE(dev->parent, child, r, map));
3988 	return (EINVAL);
3989 }
3990 
3991 /**
3992  * @brief Helper function for implementing BUS_BIND_INTR().
3993  *
3994  * This simple implementation of BUS_BIND_INTR() simply calls the
3995  * BUS_BIND_INTR() method of the parent of @p dev.
3996  */
3997 int
3998 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3999     int cpu)
4000 {
4001 	/* Propagate up the bus hierarchy until someone handles it. */
4002 	if (dev->parent)
4003 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4004 	return (EINVAL);
4005 }
4006 
4007 /**
4008  * @brief Helper function for implementing BUS_CONFIG_INTR().
4009  *
4010  * This simple implementation of BUS_CONFIG_INTR() simply calls the
4011  * BUS_CONFIG_INTR() method of the parent of @p dev.
4012  */
4013 int
4014 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4015     enum intr_polarity pol)
4016 {
4017 	/* Propagate up the bus hierarchy until someone handles it. */
4018 	if (dev->parent)
4019 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4020 	return (EINVAL);
4021 }
4022 
4023 /**
4024  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4025  *
4026  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4027  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4028  */
4029 int
4030 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4031     void *cookie, const char *descr)
4032 {
4033 	/* Propagate up the bus hierarchy until someone handles it. */
4034 	if (dev->parent)
4035 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4036 		    descr));
4037 	return (EINVAL);
4038 }
4039 
4040 /**
4041  * @brief Helper function for implementing BUS_GET_CPUS().
4042  *
4043  * This simple implementation of BUS_GET_CPUS() simply calls the
4044  * BUS_GET_CPUS() method of the parent of @p dev.
4045  */
4046 int
4047 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4048     size_t setsize, cpuset_t *cpuset)
4049 {
4050 	/* Propagate up the bus hierarchy until someone handles it. */
4051 	if (dev->parent != NULL)
4052 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4053 	return (EINVAL);
4054 }
4055 
4056 /**
4057  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4058  *
4059  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4060  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4061  */
4062 bus_dma_tag_t
4063 bus_generic_get_dma_tag(device_t dev, device_t child)
4064 {
4065 	/* Propagate up the bus hierarchy until someone handles it. */
4066 	if (dev->parent != NULL)
4067 		return (BUS_GET_DMA_TAG(dev->parent, child));
4068 	return (NULL);
4069 }
4070 
4071 /**
4072  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4073  *
4074  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4075  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4076  */
4077 bus_space_tag_t
4078 bus_generic_get_bus_tag(device_t dev, device_t child)
4079 {
4080 	/* Propagate up the bus hierarchy until someone handles it. */
4081 	if (dev->parent != NULL)
4082 		return (BUS_GET_BUS_TAG(dev->parent, child));
4083 	return ((bus_space_tag_t)0);
4084 }
4085 
4086 /**
4087  * @brief Helper function for implementing BUS_GET_RESOURCE().
4088  *
4089  * This implementation of BUS_GET_RESOURCE() uses the
4090  * resource_list_find() function to do most of the work. It calls
4091  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4092  * search.
4093  */
4094 int
4095 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4096     rman_res_t *startp, rman_res_t *countp)
4097 {
4098 	struct resource_list *		rl = NULL;
4099 	struct resource_list_entry *	rle = NULL;
4100 
4101 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4102 	if (!rl)
4103 		return (EINVAL);
4104 
4105 	rle = resource_list_find(rl, type, rid);
4106 	if (!rle)
4107 		return (ENOENT);
4108 
4109 	if (startp)
4110 		*startp = rle->start;
4111 	if (countp)
4112 		*countp = rle->count;
4113 
4114 	return (0);
4115 }
4116 
4117 /**
4118  * @brief Helper function for implementing BUS_SET_RESOURCE().
4119  *
4120  * This implementation of BUS_SET_RESOURCE() uses the
4121  * resource_list_add() function to do most of the work. It calls
4122  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4123  * edit.
4124  */
4125 int
4126 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4127     rman_res_t start, rman_res_t count)
4128 {
4129 	struct resource_list *		rl = NULL;
4130 
4131 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4132 	if (!rl)
4133 		return (EINVAL);
4134 
4135 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4136 
4137 	return (0);
4138 }
4139 
4140 /**
4141  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4142  *
4143  * This implementation of BUS_DELETE_RESOURCE() uses the
4144  * resource_list_delete() function to do most of the work. It calls
4145  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4146  * edit.
4147  */
4148 void
4149 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4150 {
4151 	struct resource_list *		rl = NULL;
4152 
4153 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4154 	if (!rl)
4155 		return;
4156 
4157 	resource_list_delete(rl, type, rid);
4158 
4159 	return;
4160 }
4161 
4162 /**
4163  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4164  *
4165  * This implementation of BUS_RELEASE_RESOURCE() uses the
4166  * resource_list_release() function to do most of the work. It calls
4167  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4168  */
4169 int
4170 bus_generic_rl_release_resource(device_t dev, device_t child,
4171     struct resource *r)
4172 {
4173 	struct resource_list *		rl = NULL;
4174 
4175 	if (device_get_parent(child) != dev)
4176 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, r));
4177 
4178 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4179 	if (!rl)
4180 		return (EINVAL);
4181 
4182 	return (resource_list_release(rl, dev, child, r));
4183 }
4184 
4185 /**
4186  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4187  *
4188  * This implementation of BUS_ALLOC_RESOURCE() uses the
4189  * resource_list_alloc() function to do most of the work. It calls
4190  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4191  */
4192 struct resource *
4193 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4194     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4195 {
4196 	struct resource_list *		rl = NULL;
4197 
4198 	if (device_get_parent(child) != dev)
4199 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4200 		    type, rid, start, end, count, flags));
4201 
4202 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4203 	if (!rl)
4204 		return (NULL);
4205 
4206 	return (resource_list_alloc(rl, dev, child, type, rid,
4207 	    start, end, count, flags));
4208 }
4209 
4210 /**
4211  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4212  *
4213  * This implementation of BUS_ALLOC_RESOURCE() allocates a
4214  * resource from a resource manager.  It uses BUS_GET_RMAN()
4215  * to obtain the resource manager.
4216  */
4217 struct resource *
4218 bus_generic_rman_alloc_resource(device_t dev, device_t child, int type,
4219     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4220 {
4221 	struct resource *r;
4222 	struct rman *rm;
4223 
4224 	rm = BUS_GET_RMAN(dev, type, flags);
4225 	if (rm == NULL)
4226 		return (NULL);
4227 
4228 	r = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE,
4229 	    child);
4230 	if (r == NULL)
4231 		return (NULL);
4232 	rman_set_rid(r, *rid);
4233 	rman_set_type(r, type);
4234 
4235 	if (flags & RF_ACTIVE) {
4236 		if (bus_activate_resource(child, type, *rid, r) != 0) {
4237 			rman_release_resource(r);
4238 			return (NULL);
4239 		}
4240 	}
4241 
4242 	return (r);
4243 }
4244 
4245 /**
4246  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4247  *
4248  * This implementation of BUS_ADJUST_RESOURCE() adjusts resources only
4249  * if they were allocated from the resource manager returned by
4250  * BUS_GET_RMAN().
4251  */
4252 int
4253 bus_generic_rman_adjust_resource(device_t dev, device_t child,
4254     struct resource *r, rman_res_t start, rman_res_t end)
4255 {
4256 	struct rman *rm;
4257 
4258 	rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r));
4259 	if (rm == NULL)
4260 		return (ENXIO);
4261 	if (!rman_is_region_manager(r, rm))
4262 		return (EINVAL);
4263 	return (rman_adjust_resource(r, start, end));
4264 }
4265 
4266 /**
4267  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4268  *
4269  * This implementation of BUS_RELEASE_RESOURCE() releases resources
4270  * allocated by bus_generic_rman_alloc_resource.
4271  */
4272 int
4273 bus_generic_rman_release_resource(device_t dev, device_t child,
4274     struct resource *r)
4275 {
4276 #ifdef INVARIANTS
4277 	struct rman *rm;
4278 #endif
4279 	int error;
4280 
4281 #ifdef INVARIANTS
4282 	rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r));
4283 	KASSERT(rman_is_region_manager(r, rm),
4284 	    ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4285 #endif
4286 
4287 	if (rman_get_flags(r) & RF_ACTIVE) {
4288 		error = bus_deactivate_resource(child, r);
4289 		if (error != 0)
4290 			return (error);
4291 	}
4292 	return (rman_release_resource(r));
4293 }
4294 
4295 /**
4296  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4297  *
4298  * This implementation of BUS_ACTIVATE_RESOURCE() activates resources
4299  * allocated by bus_generic_rman_alloc_resource.
4300  */
4301 int
4302 bus_generic_rman_activate_resource(device_t dev, device_t child,
4303     struct resource *r)
4304 {
4305 	struct resource_map map;
4306 #ifdef INVARIANTS
4307 	struct rman *rm;
4308 #endif
4309 	int error, type;
4310 
4311 	type = rman_get_type(r);
4312 #ifdef INVARIANTS
4313 	rm = BUS_GET_RMAN(dev, type, rman_get_flags(r));
4314 	KASSERT(rman_is_region_manager(r, rm),
4315 	    ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4316 #endif
4317 
4318 	error = rman_activate_resource(r);
4319 	if (error != 0)
4320 		return (error);
4321 
4322 	if ((rman_get_flags(r) & RF_UNMAPPED) == 0 &&
4323 	    (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT)) {
4324 		error = BUS_MAP_RESOURCE(dev, child, r, NULL, &map);
4325 		if (error != 0) {
4326 			rman_deactivate_resource(r);
4327 			return (error);
4328 		}
4329 
4330 		rman_set_mapping(r, &map);
4331 	}
4332 	return (0);
4333 }
4334 
4335 /**
4336  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4337  *
4338  * This implementation of BUS_DEACTIVATE_RESOURCE() deactivates
4339  * resources allocated by bus_generic_rman_alloc_resource.
4340  */
4341 int
4342 bus_generic_rman_deactivate_resource(device_t dev, device_t child,
4343     struct resource *r)
4344 {
4345 	struct resource_map map;
4346 #ifdef INVARIANTS
4347 	struct rman *rm;
4348 #endif
4349 	int error, type;
4350 
4351 	type = rman_get_type(r);
4352 #ifdef INVARIANTS
4353 	rm = BUS_GET_RMAN(dev, type, rman_get_flags(r));
4354 	KASSERT(rman_is_region_manager(r, rm),
4355 	    ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4356 #endif
4357 
4358 	error = rman_deactivate_resource(r);
4359 	if (error != 0)
4360 		return (error);
4361 
4362 	if ((rman_get_flags(r) & RF_UNMAPPED) == 0 &&
4363 	    (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT)) {
4364 		rman_get_mapping(r, &map);
4365 		BUS_UNMAP_RESOURCE(dev, child, r, &map);
4366 	}
4367 	return (0);
4368 }
4369 
4370 /**
4371  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4372  *
4373  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4374  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4375  */
4376 int
4377 bus_generic_child_present(device_t dev, device_t child)
4378 {
4379 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4380 }
4381 
4382 /**
4383  * @brief Helper function for implementing BUS_GET_DOMAIN().
4384  *
4385  * This simple implementation of BUS_GET_DOMAIN() calls the
4386  * BUS_GET_DOMAIN() method of the parent of @p dev.  If @p dev
4387  * does not have a parent, the function fails with ENOENT.
4388  */
4389 int
4390 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4391 {
4392 	if (dev->parent)
4393 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4394 
4395 	return (ENOENT);
4396 }
4397 
4398 /**
4399  * @brief Helper function to implement normal BUS_GET_DEVICE_PATH()
4400  *
4401  * This function knows how to (a) pass the request up the tree if there's
4402  * a parent and (b) Knows how to supply a FreeBSD locator.
4403  *
4404  * @param bus		bus in the walk up the tree
4405  * @param child		leaf node to print information about
4406  * @param locator	BUS_LOCATOR_xxx string for locator
4407  * @param sb		Buffer to print information into
4408  */
4409 int
4410 bus_generic_get_device_path(device_t bus, device_t child, const char *locator,
4411     struct sbuf *sb)
4412 {
4413 	int rv = 0;
4414 	device_t parent;
4415 
4416 	/*
4417 	 * We don't recurse on ACPI since either we know the handle for the
4418 	 * device or we don't. And if we're in the generic routine, we don't
4419 	 * have a ACPI override. All other locators build up a path by having
4420 	 * their parents create a path and then adding the path element for this
4421 	 * node. That's why we recurse with parent, bus rather than the typical
4422 	 * parent, child: each spot in the tree is independent of what our child
4423 	 * will do with this path.
4424 	 */
4425 	parent = device_get_parent(bus);
4426 	if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) {
4427 		rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb);
4428 	}
4429 	if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) {
4430 		if (rv == 0) {
4431 			sbuf_printf(sb, "/%s", device_get_nameunit(child));
4432 		}
4433 		return (rv);
4434 	}
4435 	/*
4436 	 * Don't know what to do. So assume we do nothing. Not sure that's
4437 	 * the right thing, but keeps us from having a big list here.
4438 	 */
4439 	return (0);
4440 }
4441 
4442 
4443 /**
4444  * @brief Helper function for implementing BUS_RESCAN().
4445  *
4446  * This null implementation of BUS_RESCAN() always fails to indicate
4447  * the bus does not support rescanning.
4448  */
4449 int
4450 bus_null_rescan(device_t dev)
4451 {
4452 	return (ENODEV);
4453 }
4454 
4455 /*
4456  * Some convenience functions to make it easier for drivers to use the
4457  * resource-management functions.  All these really do is hide the
4458  * indirection through the parent's method table, making for slightly
4459  * less-wordy code.  In the future, it might make sense for this code
4460  * to maintain some sort of a list of resources allocated by each device.
4461  */
4462 
4463 int
4464 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4465     struct resource **res)
4466 {
4467 	int i;
4468 
4469 	for (i = 0; rs[i].type != -1; i++)
4470 		res[i] = NULL;
4471 	for (i = 0; rs[i].type != -1; i++) {
4472 		res[i] = bus_alloc_resource_any(dev,
4473 		    rs[i].type, &rs[i].rid, rs[i].flags);
4474 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4475 			bus_release_resources(dev, rs, res);
4476 			return (ENXIO);
4477 		}
4478 	}
4479 	return (0);
4480 }
4481 
4482 void
4483 bus_release_resources(device_t dev, const struct resource_spec *rs,
4484     struct resource **res)
4485 {
4486 	int i;
4487 
4488 	for (i = 0; rs[i].type != -1; i++)
4489 		if (res[i] != NULL) {
4490 			bus_release_resource(
4491 			    dev, rs[i].type, rs[i].rid, res[i]);
4492 			res[i] = NULL;
4493 		}
4494 }
4495 
4496 /**
4497  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4498  *
4499  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4500  * parent of @p dev.
4501  */
4502 struct resource *
4503 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4504     rman_res_t end, rman_res_t count, u_int flags)
4505 {
4506 	struct resource *res;
4507 
4508 	if (dev->parent == NULL)
4509 		return (NULL);
4510 	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4511 	    count, flags);
4512 	return (res);
4513 }
4514 
4515 /**
4516  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4517  *
4518  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4519  * parent of @p dev.
4520  */
4521 int
4522 bus_adjust_resource(device_t dev, struct resource *r, rman_res_t start,
4523     rman_res_t end)
4524 {
4525 	if (dev->parent == NULL)
4526 		return (EINVAL);
4527 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, r, start, end));
4528 }
4529 
4530 int
4531 bus_adjust_resource_old(device_t dev, int type __unused, struct resource *r,
4532     rman_res_t start, rman_res_t end)
4533 {
4534 	return (bus_adjust_resource(dev, r, start, end));
4535 }
4536 
4537 /**
4538  * @brief Wrapper function for BUS_TRANSLATE_RESOURCE().
4539  *
4540  * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the
4541  * parent of @p dev.
4542  */
4543 int
4544 bus_translate_resource(device_t dev, int type, rman_res_t start,
4545     rman_res_t *newstart)
4546 {
4547 	if (dev->parent == NULL)
4548 		return (EINVAL);
4549 	return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart));
4550 }
4551 
4552 /**
4553  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4554  *
4555  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4556  * parent of @p dev.
4557  */
4558 int
4559 bus_activate_resource(device_t dev, struct resource *r)
4560 {
4561 	if (dev->parent == NULL)
4562 		return (EINVAL);
4563 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, r));
4564 }
4565 
4566 int
4567 bus_activate_resource_old(device_t dev, int type, int rid, struct resource *r)
4568 {
4569 	return (bus_activate_resource(dev, r));
4570 }
4571 
4572 /**
4573  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4574  *
4575  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4576  * parent of @p dev.
4577  */
4578 int
4579 bus_deactivate_resource(device_t dev, struct resource *r)
4580 {
4581 	if (dev->parent == NULL)
4582 		return (EINVAL);
4583 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, r));
4584 }
4585 
4586 int
4587 bus_deactivate_resource_old(device_t dev, int type, int rid, struct resource *r)
4588 {
4589 	return (bus_deactivate_resource(dev, r));
4590 }
4591 
4592 /**
4593  * @brief Wrapper function for BUS_MAP_RESOURCE().
4594  *
4595  * This function simply calls the BUS_MAP_RESOURCE() method of the
4596  * parent of @p dev.
4597  */
4598 int
4599 bus_map_resource(device_t dev, struct resource *r,
4600     struct resource_map_request *args, struct resource_map *map)
4601 {
4602 	if (dev->parent == NULL)
4603 		return (EINVAL);
4604 	return (BUS_MAP_RESOURCE(dev->parent, dev, r, args, map));
4605 }
4606 
4607 int
4608 bus_map_resource_old(device_t dev, int type, struct resource *r,
4609     struct resource_map_request *args, struct resource_map *map)
4610 {
4611 	return (bus_map_resource(dev, r, args, map));
4612 }
4613 
4614 /**
4615  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4616  *
4617  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4618  * parent of @p dev.
4619  */
4620 int
4621 bus_unmap_resource(device_t dev, struct resource *r, struct resource_map *map)
4622 {
4623 	if (dev->parent == NULL)
4624 		return (EINVAL);
4625 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, r, map));
4626 }
4627 
4628 int
4629 bus_unmap_resource_old(device_t dev, int type, struct resource *r,
4630     struct resource_map *map)
4631 {
4632 	return (bus_unmap_resource(dev, r, map));
4633 }
4634 
4635 /**
4636  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4637  *
4638  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4639  * parent of @p dev.
4640  */
4641 int
4642 bus_release_resource(device_t dev, struct resource *r)
4643 {
4644 	int rv;
4645 
4646 	if (dev->parent == NULL)
4647 		return (EINVAL);
4648 	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, r);
4649 	return (rv);
4650 }
4651 
4652 int
4653 bus_release_resource_old(device_t dev, int type, int rid, struct resource *r)
4654 {
4655 	return (bus_release_resource(dev, r));
4656 }
4657 
4658 /**
4659  * @brief Wrapper function for BUS_SETUP_INTR().
4660  *
4661  * This function simply calls the BUS_SETUP_INTR() method of the
4662  * parent of @p dev.
4663  */
4664 int
4665 bus_setup_intr(device_t dev, struct resource *r, int flags,
4666     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4667 {
4668 	int error;
4669 
4670 	if (dev->parent == NULL)
4671 		return (EINVAL);
4672 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4673 	    arg, cookiep);
4674 	if (error != 0)
4675 		return (error);
4676 	if (handler != NULL && !(flags & INTR_MPSAFE))
4677 		device_printf(dev, "[GIANT-LOCKED]\n");
4678 	return (0);
4679 }
4680 
4681 /**
4682  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4683  *
4684  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4685  * parent of @p dev.
4686  */
4687 int
4688 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4689 {
4690 	if (dev->parent == NULL)
4691 		return (EINVAL);
4692 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4693 }
4694 
4695 /**
4696  * @brief Wrapper function for BUS_SUSPEND_INTR().
4697  *
4698  * This function simply calls the BUS_SUSPEND_INTR() method of the
4699  * parent of @p dev.
4700  */
4701 int
4702 bus_suspend_intr(device_t dev, struct resource *r)
4703 {
4704 	if (dev->parent == NULL)
4705 		return (EINVAL);
4706 	return (BUS_SUSPEND_INTR(dev->parent, dev, r));
4707 }
4708 
4709 /**
4710  * @brief Wrapper function for BUS_RESUME_INTR().
4711  *
4712  * This function simply calls the BUS_RESUME_INTR() method of the
4713  * parent of @p dev.
4714  */
4715 int
4716 bus_resume_intr(device_t dev, struct resource *r)
4717 {
4718 	if (dev->parent == NULL)
4719 		return (EINVAL);
4720 	return (BUS_RESUME_INTR(dev->parent, dev, r));
4721 }
4722 
4723 /**
4724  * @brief Wrapper function for BUS_BIND_INTR().
4725  *
4726  * This function simply calls the BUS_BIND_INTR() method of the
4727  * parent of @p dev.
4728  */
4729 int
4730 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4731 {
4732 	if (dev->parent == NULL)
4733 		return (EINVAL);
4734 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4735 }
4736 
4737 /**
4738  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4739  *
4740  * This function first formats the requested description into a
4741  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4742  * the parent of @p dev.
4743  */
4744 int
4745 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4746     const char *fmt, ...)
4747 {
4748 	va_list ap;
4749 	char descr[MAXCOMLEN + 1];
4750 
4751 	if (dev->parent == NULL)
4752 		return (EINVAL);
4753 	va_start(ap, fmt);
4754 	vsnprintf(descr, sizeof(descr), fmt, ap);
4755 	va_end(ap);
4756 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4757 }
4758 
4759 /**
4760  * @brief Wrapper function for BUS_SET_RESOURCE().
4761  *
4762  * This function simply calls the BUS_SET_RESOURCE() method of the
4763  * parent of @p dev.
4764  */
4765 int
4766 bus_set_resource(device_t dev, int type, int rid,
4767     rman_res_t start, rman_res_t count)
4768 {
4769 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4770 	    start, count));
4771 }
4772 
4773 /**
4774  * @brief Wrapper function for BUS_GET_RESOURCE().
4775  *
4776  * This function simply calls the BUS_GET_RESOURCE() method of the
4777  * parent of @p dev.
4778  */
4779 int
4780 bus_get_resource(device_t dev, int type, int rid,
4781     rman_res_t *startp, rman_res_t *countp)
4782 {
4783 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4784 	    startp, countp));
4785 }
4786 
4787 /**
4788  * @brief Wrapper function for BUS_GET_RESOURCE().
4789  *
4790  * This function simply calls the BUS_GET_RESOURCE() method of the
4791  * parent of @p dev and returns the start value.
4792  */
4793 rman_res_t
4794 bus_get_resource_start(device_t dev, int type, int rid)
4795 {
4796 	rman_res_t start;
4797 	rman_res_t count;
4798 	int error;
4799 
4800 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4801 	    &start, &count);
4802 	if (error)
4803 		return (0);
4804 	return (start);
4805 }
4806 
4807 /**
4808  * @brief Wrapper function for BUS_GET_RESOURCE().
4809  *
4810  * This function simply calls the BUS_GET_RESOURCE() method of the
4811  * parent of @p dev and returns the count value.
4812  */
4813 rman_res_t
4814 bus_get_resource_count(device_t dev, int type, int rid)
4815 {
4816 	rman_res_t start;
4817 	rman_res_t count;
4818 	int error;
4819 
4820 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4821 	    &start, &count);
4822 	if (error)
4823 		return (0);
4824 	return (count);
4825 }
4826 
4827 /**
4828  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4829  *
4830  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4831  * parent of @p dev.
4832  */
4833 void
4834 bus_delete_resource(device_t dev, int type, int rid)
4835 {
4836 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4837 }
4838 
4839 /**
4840  * @brief Wrapper function for BUS_CHILD_PRESENT().
4841  *
4842  * This function simply calls the BUS_CHILD_PRESENT() method of the
4843  * parent of @p dev.
4844  */
4845 int
4846 bus_child_present(device_t child)
4847 {
4848 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4849 }
4850 
4851 /**
4852  * @brief Wrapper function for BUS_CHILD_PNPINFO().
4853  *
4854  * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p
4855  * dev.
4856  */
4857 int
4858 bus_child_pnpinfo(device_t child, struct sbuf *sb)
4859 {
4860 	device_t parent;
4861 
4862 	parent = device_get_parent(child);
4863 	if (parent == NULL)
4864 		return (0);
4865 	return (BUS_CHILD_PNPINFO(parent, child, sb));
4866 }
4867 
4868 /**
4869  * @brief Generic implementation that does nothing for bus_child_pnpinfo
4870  *
4871  * This function has the right signature and returns 0 since the sbuf is passed
4872  * to us to append to.
4873  */
4874 int
4875 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb)
4876 {
4877 	return (0);
4878 }
4879 
4880 /**
4881  * @brief Wrapper function for BUS_CHILD_LOCATION().
4882  *
4883  * This function simply calls the BUS_CHILD_LOCATION() method of the parent of
4884  * @p dev.
4885  */
4886 int
4887 bus_child_location(device_t child, struct sbuf *sb)
4888 {
4889 	device_t parent;
4890 
4891 	parent = device_get_parent(child);
4892 	if (parent == NULL)
4893 		return (0);
4894 	return (BUS_CHILD_LOCATION(parent, child, sb));
4895 }
4896 
4897 /**
4898  * @brief Generic implementation that does nothing for bus_child_location
4899  *
4900  * This function has the right signature and returns 0 since the sbuf is passed
4901  * to us to append to.
4902  */
4903 int
4904 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb)
4905 {
4906 	return (0);
4907 }
4908 
4909 /**
4910  * @brief Wrapper function for BUS_GET_CPUS().
4911  *
4912  * This function simply calls the BUS_GET_CPUS() method of the
4913  * parent of @p dev.
4914  */
4915 int
4916 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4917 {
4918 	device_t parent;
4919 
4920 	parent = device_get_parent(dev);
4921 	if (parent == NULL)
4922 		return (EINVAL);
4923 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4924 }
4925 
4926 /**
4927  * @brief Wrapper function for BUS_GET_DMA_TAG().
4928  *
4929  * This function simply calls the BUS_GET_DMA_TAG() method of the
4930  * parent of @p dev.
4931  */
4932 bus_dma_tag_t
4933 bus_get_dma_tag(device_t dev)
4934 {
4935 	device_t parent;
4936 
4937 	parent = device_get_parent(dev);
4938 	if (parent == NULL)
4939 		return (NULL);
4940 	return (BUS_GET_DMA_TAG(parent, dev));
4941 }
4942 
4943 /**
4944  * @brief Wrapper function for BUS_GET_BUS_TAG().
4945  *
4946  * This function simply calls the BUS_GET_BUS_TAG() method of the
4947  * parent of @p dev.
4948  */
4949 bus_space_tag_t
4950 bus_get_bus_tag(device_t dev)
4951 {
4952 	device_t parent;
4953 
4954 	parent = device_get_parent(dev);
4955 	if (parent == NULL)
4956 		return ((bus_space_tag_t)0);
4957 	return (BUS_GET_BUS_TAG(parent, dev));
4958 }
4959 
4960 /**
4961  * @brief Wrapper function for BUS_GET_DOMAIN().
4962  *
4963  * This function simply calls the BUS_GET_DOMAIN() method of the
4964  * parent of @p dev.
4965  */
4966 int
4967 bus_get_domain(device_t dev, int *domain)
4968 {
4969 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4970 }
4971 
4972 /* Resume all devices and then notify userland that we're up again. */
4973 static int
4974 root_resume(device_t dev)
4975 {
4976 	int error;
4977 
4978 	error = bus_generic_resume(dev);
4979 	if (error == 0) {
4980 		devctl_notify("kernel", "power", "resume", NULL);
4981 	}
4982 	return (error);
4983 }
4984 
4985 static int
4986 root_print_child(device_t dev, device_t child)
4987 {
4988 	int	retval = 0;
4989 
4990 	retval += bus_print_child_header(dev, child);
4991 	retval += printf("\n");
4992 
4993 	return (retval);
4994 }
4995 
4996 static int
4997 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4998     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4999 {
5000 	/*
5001 	 * If an interrupt mapping gets to here something bad has happened.
5002 	 */
5003 	panic("root_setup_intr");
5004 }
5005 
5006 /*
5007  * If we get here, assume that the device is permanent and really is
5008  * present in the system.  Removable bus drivers are expected to intercept
5009  * this call long before it gets here.  We return -1 so that drivers that
5010  * really care can check vs -1 or some ERRNO returned higher in the food
5011  * chain.
5012  */
5013 static int
5014 root_child_present(device_t dev, device_t child)
5015 {
5016 	return (-1);
5017 }
5018 
5019 static int
5020 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
5021     cpuset_t *cpuset)
5022 {
5023 	switch (op) {
5024 	case INTR_CPUS:
5025 		/* Default to returning the set of all CPUs. */
5026 		if (setsize != sizeof(cpuset_t))
5027 			return (EINVAL);
5028 		*cpuset = all_cpus;
5029 		return (0);
5030 	default:
5031 		return (EINVAL);
5032 	}
5033 }
5034 
5035 static kobj_method_t root_methods[] = {
5036 	/* Device interface */
5037 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
5038 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
5039 	KOBJMETHOD(device_resume,	root_resume),
5040 
5041 	/* Bus interface */
5042 	KOBJMETHOD(bus_print_child,	root_print_child),
5043 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
5044 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
5045 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
5046 	KOBJMETHOD(bus_child_present,	root_child_present),
5047 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
5048 
5049 	KOBJMETHOD_END
5050 };
5051 
5052 static driver_t root_driver = {
5053 	"root",
5054 	root_methods,
5055 	1,			/* no softc */
5056 };
5057 
5058 device_t	root_bus;
5059 devclass_t	root_devclass;
5060 
5061 static int
5062 root_bus_module_handler(module_t mod, int what, void* arg)
5063 {
5064 	switch (what) {
5065 	case MOD_LOAD:
5066 		TAILQ_INIT(&bus_data_devices);
5067 		kobj_class_compile((kobj_class_t) &root_driver);
5068 		root_bus = make_device(NULL, "root", 0);
5069 		root_bus->desc = "System root bus";
5070 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
5071 		root_bus->driver = &root_driver;
5072 		root_bus->state = DS_ATTACHED;
5073 		root_devclass = devclass_find_internal("root", NULL, FALSE);
5074 		devctl2_init();
5075 		return (0);
5076 
5077 	case MOD_SHUTDOWN:
5078 		device_shutdown(root_bus);
5079 		return (0);
5080 	default:
5081 		return (EOPNOTSUPP);
5082 	}
5083 
5084 	return (0);
5085 }
5086 
5087 static moduledata_t root_bus_mod = {
5088 	"rootbus",
5089 	root_bus_module_handler,
5090 	NULL
5091 };
5092 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5093 
5094 /**
5095  * @brief Automatically configure devices
5096  *
5097  * This function begins the autoconfiguration process by calling
5098  * device_probe_and_attach() for each child of the @c root0 device.
5099  */
5100 void
5101 root_bus_configure(void)
5102 {
5103 	PDEBUG(("."));
5104 
5105 	/* Eventually this will be split up, but this is sufficient for now. */
5106 	bus_set_pass(BUS_PASS_DEFAULT);
5107 }
5108 
5109 /**
5110  * @brief Module handler for registering device drivers
5111  *
5112  * This module handler is used to automatically register device
5113  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
5114  * devclass_add_driver() for the driver described by the
5115  * driver_module_data structure pointed to by @p arg
5116  */
5117 int
5118 driver_module_handler(module_t mod, int what, void *arg)
5119 {
5120 	struct driver_module_data *dmd;
5121 	devclass_t bus_devclass;
5122 	kobj_class_t driver;
5123 	int error, pass;
5124 
5125 	dmd = (struct driver_module_data *)arg;
5126 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
5127 	error = 0;
5128 
5129 	switch (what) {
5130 	case MOD_LOAD:
5131 		if (dmd->dmd_chainevh)
5132 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5133 
5134 		pass = dmd->dmd_pass;
5135 		driver = dmd->dmd_driver;
5136 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5137 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
5138 		error = devclass_add_driver(bus_devclass, driver, pass,
5139 		    dmd->dmd_devclass);
5140 		break;
5141 
5142 	case MOD_UNLOAD:
5143 		PDEBUG(("Unloading module: driver %s from bus %s",
5144 		    DRIVERNAME(dmd->dmd_driver),
5145 		    dmd->dmd_busname));
5146 		error = devclass_delete_driver(bus_devclass,
5147 		    dmd->dmd_driver);
5148 
5149 		if (!error && dmd->dmd_chainevh)
5150 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5151 		break;
5152 	case MOD_QUIESCE:
5153 		PDEBUG(("Quiesce module: driver %s from bus %s",
5154 		    DRIVERNAME(dmd->dmd_driver),
5155 		    dmd->dmd_busname));
5156 		error = devclass_quiesce_driver(bus_devclass,
5157 		    dmd->dmd_driver);
5158 
5159 		if (!error && dmd->dmd_chainevh)
5160 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5161 		break;
5162 	default:
5163 		error = EOPNOTSUPP;
5164 		break;
5165 	}
5166 
5167 	return (error);
5168 }
5169 
5170 /**
5171  * @brief Enumerate all hinted devices for this bus.
5172  *
5173  * Walks through the hints for this bus and calls the bus_hinted_child
5174  * routine for each one it fines.  It searches first for the specific
5175  * bus that's being probed for hinted children (eg isa0), and then for
5176  * generic children (eg isa).
5177  *
5178  * @param	dev	bus device to enumerate
5179  */
5180 void
5181 bus_enumerate_hinted_children(device_t bus)
5182 {
5183 	int i;
5184 	const char *dname, *busname;
5185 	int dunit;
5186 
5187 	/*
5188 	 * enumerate all devices on the specific bus
5189 	 */
5190 	busname = device_get_nameunit(bus);
5191 	i = 0;
5192 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5193 		BUS_HINTED_CHILD(bus, dname, dunit);
5194 
5195 	/*
5196 	 * and all the generic ones.
5197 	 */
5198 	busname = device_get_name(bus);
5199 	i = 0;
5200 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5201 		BUS_HINTED_CHILD(bus, dname, dunit);
5202 }
5203 
5204 #ifdef BUS_DEBUG
5205 
5206 /* the _short versions avoid iteration by not calling anything that prints
5207  * more than oneliners. I love oneliners.
5208  */
5209 
5210 static void
5211 print_device_short(device_t dev, int indent)
5212 {
5213 	if (!dev)
5214 		return;
5215 
5216 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5217 	    dev->unit, dev->desc,
5218 	    (dev->parent? "":"no "),
5219 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5220 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5221 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5222 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5223 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5224 	    (dev->flags&DF_SUSPENDED? "suspended,":""),
5225 	    (dev->ivars? "":"no "),
5226 	    (dev->softc? "":"no "),
5227 	    dev->busy));
5228 }
5229 
5230 static void
5231 print_device(device_t dev, int indent)
5232 {
5233 	if (!dev)
5234 		return;
5235 
5236 	print_device_short(dev, indent);
5237 
5238 	indentprintf(("Parent:\n"));
5239 	print_device_short(dev->parent, indent+1);
5240 	indentprintf(("Driver:\n"));
5241 	print_driver_short(dev->driver, indent+1);
5242 	indentprintf(("Devclass:\n"));
5243 	print_devclass_short(dev->devclass, indent+1);
5244 }
5245 
5246 void
5247 print_device_tree_short(device_t dev, int indent)
5248 /* print the device and all its children (indented) */
5249 {
5250 	device_t child;
5251 
5252 	if (!dev)
5253 		return;
5254 
5255 	print_device_short(dev, indent);
5256 
5257 	TAILQ_FOREACH(child, &dev->children, link) {
5258 		print_device_tree_short(child, indent+1);
5259 	}
5260 }
5261 
5262 void
5263 print_device_tree(device_t dev, int indent)
5264 /* print the device and all its children (indented) */
5265 {
5266 	device_t child;
5267 
5268 	if (!dev)
5269 		return;
5270 
5271 	print_device(dev, indent);
5272 
5273 	TAILQ_FOREACH(child, &dev->children, link) {
5274 		print_device_tree(child, indent+1);
5275 	}
5276 }
5277 
5278 static void
5279 print_driver_short(driver_t *driver, int indent)
5280 {
5281 	if (!driver)
5282 		return;
5283 
5284 	indentprintf(("driver %s: softc size = %zd\n",
5285 	    driver->name, driver->size));
5286 }
5287 
5288 static void
5289 print_driver(driver_t *driver, int indent)
5290 {
5291 	if (!driver)
5292 		return;
5293 
5294 	print_driver_short(driver, indent);
5295 }
5296 
5297 static void
5298 print_driver_list(driver_list_t drivers, int indent)
5299 {
5300 	driverlink_t driver;
5301 
5302 	TAILQ_FOREACH(driver, &drivers, link) {
5303 		print_driver(driver->driver, indent);
5304 	}
5305 }
5306 
5307 static void
5308 print_devclass_short(devclass_t dc, int indent)
5309 {
5310 	if ( !dc )
5311 		return;
5312 
5313 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5314 }
5315 
5316 static void
5317 print_devclass(devclass_t dc, int indent)
5318 {
5319 	int i;
5320 
5321 	if ( !dc )
5322 		return;
5323 
5324 	print_devclass_short(dc, indent);
5325 	indentprintf(("Drivers:\n"));
5326 	print_driver_list(dc->drivers, indent+1);
5327 
5328 	indentprintf(("Devices:\n"));
5329 	for (i = 0; i < dc->maxunit; i++)
5330 		if (dc->devices[i])
5331 			print_device(dc->devices[i], indent+1);
5332 }
5333 
5334 void
5335 print_devclass_list_short(void)
5336 {
5337 	devclass_t dc;
5338 
5339 	printf("Short listing of devclasses, drivers & devices:\n");
5340 	TAILQ_FOREACH(dc, &devclasses, link) {
5341 		print_devclass_short(dc, 0);
5342 	}
5343 }
5344 
5345 void
5346 print_devclass_list(void)
5347 {
5348 	devclass_t dc;
5349 
5350 	printf("Full listing of devclasses, drivers & devices:\n");
5351 	TAILQ_FOREACH(dc, &devclasses, link) {
5352 		print_devclass(dc, 0);
5353 	}
5354 }
5355 
5356 #endif
5357 
5358 /*
5359  * User-space access to the device tree.
5360  *
5361  * We implement a small set of nodes:
5362  *
5363  * hw.bus			Single integer read method to obtain the
5364  *				current generation count.
5365  * hw.bus.devices		Reads the entire device tree in flat space.
5366  * hw.bus.rman			Resource manager interface
5367  *
5368  * We might like to add the ability to scan devclasses and/or drivers to
5369  * determine what else is currently loaded/available.
5370  */
5371 
5372 static int
5373 sysctl_bus_info(SYSCTL_HANDLER_ARGS)
5374 {
5375 	struct u_businfo	ubus;
5376 
5377 	ubus.ub_version = BUS_USER_VERSION;
5378 	ubus.ub_generation = bus_data_generation;
5379 
5380 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5381 }
5382 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD |
5383     CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo",
5384     "bus-related data");
5385 
5386 static int
5387 sysctl_devices(SYSCTL_HANDLER_ARGS)
5388 {
5389 	struct sbuf		sb;
5390 	int			*name = (int *)arg1;
5391 	u_int			namelen = arg2;
5392 	int			index;
5393 	device_t		dev;
5394 	struct u_device		*udev;
5395 	int			error;
5396 
5397 	if (namelen != 2)
5398 		return (EINVAL);
5399 
5400 	if (bus_data_generation_check(name[0]))
5401 		return (EINVAL);
5402 
5403 	index = name[1];
5404 
5405 	/*
5406 	 * Scan the list of devices, looking for the requested index.
5407 	 */
5408 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5409 		if (index-- == 0)
5410 			break;
5411 	}
5412 	if (dev == NULL)
5413 		return (ENOENT);
5414 
5415 	/*
5416 	 * Populate the return item, careful not to overflow the buffer.
5417 	 */
5418 	udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5419 	udev->dv_handle = (uintptr_t)dev;
5420 	udev->dv_parent = (uintptr_t)dev->parent;
5421 	udev->dv_devflags = dev->devflags;
5422 	udev->dv_flags = dev->flags;
5423 	udev->dv_state = dev->state;
5424 	sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN);
5425 	if (dev->nameunit != NULL)
5426 		sbuf_cat(&sb, dev->nameunit);
5427 	sbuf_putc(&sb, '\0');
5428 	if (dev->desc != NULL)
5429 		sbuf_cat(&sb, dev->desc);
5430 	sbuf_putc(&sb, '\0');
5431 	if (dev->driver != NULL)
5432 		sbuf_cat(&sb, dev->driver->name);
5433 	sbuf_putc(&sb, '\0');
5434 	bus_child_pnpinfo(dev, &sb);
5435 	sbuf_putc(&sb, '\0');
5436 	bus_child_location(dev, &sb);
5437 	sbuf_putc(&sb, '\0');
5438 	error = sbuf_finish(&sb);
5439 	if (error == 0)
5440 		error = SYSCTL_OUT(req, udev, sizeof(*udev));
5441 	sbuf_delete(&sb);
5442 	free(udev, M_BUS);
5443 	return (error);
5444 }
5445 
5446 SYSCTL_NODE(_hw_bus, OID_AUTO, devices,
5447     CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices,
5448     "system device tree");
5449 
5450 int
5451 bus_data_generation_check(int generation)
5452 {
5453 	if (generation != bus_data_generation)
5454 		return (1);
5455 
5456 	/* XXX generate optimised lists here? */
5457 	return (0);
5458 }
5459 
5460 void
5461 bus_data_generation_update(void)
5462 {
5463 	atomic_add_int(&bus_data_generation, 1);
5464 }
5465 
5466 int
5467 bus_free_resource(device_t dev, int type, struct resource *r)
5468 {
5469 	if (r == NULL)
5470 		return (0);
5471 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5472 }
5473 
5474 device_t
5475 device_lookup_by_name(const char *name)
5476 {
5477 	device_t dev;
5478 
5479 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5480 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5481 			return (dev);
5482 	}
5483 	return (NULL);
5484 }
5485 
5486 /*
5487  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5488  * implicit semantics on open, so it could not be reused for this.
5489  * Another option would be to call this /dev/bus?
5490  */
5491 static int
5492 find_device(struct devreq *req, device_t *devp)
5493 {
5494 	device_t dev;
5495 
5496 	/*
5497 	 * First, ensure that the name is nul terminated.
5498 	 */
5499 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5500 		return (EINVAL);
5501 
5502 	/*
5503 	 * Second, try to find an attached device whose name matches
5504 	 * 'name'.
5505 	 */
5506 	dev = device_lookup_by_name(req->dr_name);
5507 	if (dev != NULL) {
5508 		*devp = dev;
5509 		return (0);
5510 	}
5511 
5512 	/* Finally, give device enumerators a chance. */
5513 	dev = NULL;
5514 	EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5515 	if (dev == NULL)
5516 		return (ENOENT);
5517 	*devp = dev;
5518 	return (0);
5519 }
5520 
5521 static bool
5522 driver_exists(device_t bus, const char *driver)
5523 {
5524 	devclass_t dc;
5525 
5526 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5527 		if (devclass_find_driver_internal(dc, driver) != NULL)
5528 			return (true);
5529 	}
5530 	return (false);
5531 }
5532 
5533 static void
5534 device_gen_nomatch(device_t dev)
5535 {
5536 	device_t child;
5537 
5538 	if (dev->flags & DF_NEEDNOMATCH &&
5539 	    dev->state == DS_NOTPRESENT) {
5540 		device_handle_nomatch(dev);
5541 	}
5542 	dev->flags &= ~DF_NEEDNOMATCH;
5543 	TAILQ_FOREACH(child, &dev->children, link) {
5544 		device_gen_nomatch(child);
5545 	}
5546 }
5547 
5548 static void
5549 device_do_deferred_actions(void)
5550 {
5551 	devclass_t dc;
5552 	driverlink_t dl;
5553 
5554 	/*
5555 	 * Walk through the devclasses to find all the drivers we've tagged as
5556 	 * deferred during the freeze and call the driver added routines. They
5557 	 * have already been added to the lists in the background, so the driver
5558 	 * added routines that trigger a probe will have all the right bidders
5559 	 * for the probe auction.
5560 	 */
5561 	TAILQ_FOREACH(dc, &devclasses, link) {
5562 		TAILQ_FOREACH(dl, &dc->drivers, link) {
5563 			if (dl->flags & DL_DEFERRED_PROBE) {
5564 				devclass_driver_added(dc, dl->driver);
5565 				dl->flags &= ~DL_DEFERRED_PROBE;
5566 			}
5567 		}
5568 	}
5569 
5570 	/*
5571 	 * We also defer no-match events during a freeze. Walk the tree and
5572 	 * generate all the pent-up events that are still relevant.
5573 	 */
5574 	device_gen_nomatch(root_bus);
5575 	bus_data_generation_update();
5576 }
5577 
5578 static int
5579 device_get_path(device_t dev, const char *locator, struct sbuf *sb)
5580 {
5581 	device_t parent;
5582 	int error;
5583 
5584 	KASSERT(sb != NULL, ("sb is NULL"));
5585 	parent = device_get_parent(dev);
5586 	if (parent == NULL) {
5587 		error = sbuf_putc(sb, '/');
5588 	} else {
5589 		error = BUS_GET_DEVICE_PATH(parent, dev, locator, sb);
5590 		if (error == 0) {
5591 			error = sbuf_error(sb);
5592 			if (error == 0 && sbuf_len(sb) <= 1)
5593 				error = EIO;
5594 		}
5595 	}
5596 	sbuf_finish(sb);
5597 	return (error);
5598 }
5599 
5600 static int
5601 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5602     struct thread *td)
5603 {
5604 	struct devreq *req;
5605 	device_t dev;
5606 	int error, old;
5607 
5608 	/* Locate the device to control. */
5609 	bus_topo_lock();
5610 	req = (struct devreq *)data;
5611 	switch (cmd) {
5612 	case DEV_ATTACH:
5613 	case DEV_DETACH:
5614 	case DEV_ENABLE:
5615 	case DEV_DISABLE:
5616 	case DEV_SUSPEND:
5617 	case DEV_RESUME:
5618 	case DEV_SET_DRIVER:
5619 	case DEV_CLEAR_DRIVER:
5620 	case DEV_RESCAN:
5621 	case DEV_DELETE:
5622 	case DEV_RESET:
5623 		error = priv_check(td, PRIV_DRIVER);
5624 		if (error == 0)
5625 			error = find_device(req, &dev);
5626 		break;
5627 	case DEV_FREEZE:
5628 	case DEV_THAW:
5629 		error = priv_check(td, PRIV_DRIVER);
5630 		break;
5631 	case DEV_GET_PATH:
5632 		error = find_device(req, &dev);
5633 		break;
5634 	default:
5635 		error = ENOTTY;
5636 		break;
5637 	}
5638 	if (error) {
5639 		bus_topo_unlock();
5640 		return (error);
5641 	}
5642 
5643 	/* Perform the requested operation. */
5644 	switch (cmd) {
5645 	case DEV_ATTACH:
5646 		if (device_is_attached(dev))
5647 			error = EBUSY;
5648 		else if (!device_is_enabled(dev))
5649 			error = ENXIO;
5650 		else
5651 			error = device_probe_and_attach(dev);
5652 		break;
5653 	case DEV_DETACH:
5654 		if (!device_is_attached(dev)) {
5655 			error = ENXIO;
5656 			break;
5657 		}
5658 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5659 			error = device_quiesce(dev);
5660 			if (error)
5661 				break;
5662 		}
5663 		error = device_detach(dev);
5664 		break;
5665 	case DEV_ENABLE:
5666 		if (device_is_enabled(dev)) {
5667 			error = EBUSY;
5668 			break;
5669 		}
5670 
5671 		/*
5672 		 * If the device has been probed but not attached (e.g.
5673 		 * when it has been disabled by a loader hint), just
5674 		 * attach the device rather than doing a full probe.
5675 		 */
5676 		device_enable(dev);
5677 		if (device_is_alive(dev)) {
5678 			/*
5679 			 * If the device was disabled via a hint, clear
5680 			 * the hint.
5681 			 */
5682 			if (resource_disabled(dev->driver->name, dev->unit))
5683 				resource_unset_value(dev->driver->name,
5684 				    dev->unit, "disabled");
5685 			error = device_attach(dev);
5686 		} else
5687 			error = device_probe_and_attach(dev);
5688 		break;
5689 	case DEV_DISABLE:
5690 		if (!device_is_enabled(dev)) {
5691 			error = ENXIO;
5692 			break;
5693 		}
5694 
5695 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5696 			error = device_quiesce(dev);
5697 			if (error)
5698 				break;
5699 		}
5700 
5701 		/*
5702 		 * Force DF_FIXEDCLASS on around detach to preserve
5703 		 * the existing name.
5704 		 */
5705 		old = dev->flags;
5706 		dev->flags |= DF_FIXEDCLASS;
5707 		error = device_detach(dev);
5708 		if (!(old & DF_FIXEDCLASS))
5709 			dev->flags &= ~DF_FIXEDCLASS;
5710 		if (error == 0)
5711 			device_disable(dev);
5712 		break;
5713 	case DEV_SUSPEND:
5714 		if (device_is_suspended(dev)) {
5715 			error = EBUSY;
5716 			break;
5717 		}
5718 		if (device_get_parent(dev) == NULL) {
5719 			error = EINVAL;
5720 			break;
5721 		}
5722 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5723 		break;
5724 	case DEV_RESUME:
5725 		if (!device_is_suspended(dev)) {
5726 			error = EINVAL;
5727 			break;
5728 		}
5729 		if (device_get_parent(dev) == NULL) {
5730 			error = EINVAL;
5731 			break;
5732 		}
5733 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5734 		break;
5735 	case DEV_SET_DRIVER: {
5736 		devclass_t dc;
5737 		char driver[128];
5738 
5739 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5740 		if (error)
5741 			break;
5742 		if (driver[0] == '\0') {
5743 			error = EINVAL;
5744 			break;
5745 		}
5746 		if (dev->devclass != NULL &&
5747 		    strcmp(driver, dev->devclass->name) == 0)
5748 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5749 			break;
5750 
5751 		/*
5752 		 * Scan drivers for this device's bus looking for at
5753 		 * least one matching driver.
5754 		 */
5755 		if (dev->parent == NULL) {
5756 			error = EINVAL;
5757 			break;
5758 		}
5759 		if (!driver_exists(dev->parent, driver)) {
5760 			error = ENOENT;
5761 			break;
5762 		}
5763 		dc = devclass_create(driver);
5764 		if (dc == NULL) {
5765 			error = ENOMEM;
5766 			break;
5767 		}
5768 
5769 		/* Detach device if necessary. */
5770 		if (device_is_attached(dev)) {
5771 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5772 				error = device_detach(dev);
5773 			else
5774 				error = EBUSY;
5775 			if (error)
5776 				break;
5777 		}
5778 
5779 		/* Clear any previously-fixed device class and unit. */
5780 		if (dev->flags & DF_FIXEDCLASS)
5781 			devclass_delete_device(dev->devclass, dev);
5782 		dev->flags |= DF_WILDCARD;
5783 		dev->unit = DEVICE_UNIT_ANY;
5784 
5785 		/* Force the new device class. */
5786 		error = devclass_add_device(dc, dev);
5787 		if (error)
5788 			break;
5789 		dev->flags |= DF_FIXEDCLASS;
5790 		error = device_probe_and_attach(dev);
5791 		break;
5792 	}
5793 	case DEV_CLEAR_DRIVER:
5794 		if (!(dev->flags & DF_FIXEDCLASS)) {
5795 			error = 0;
5796 			break;
5797 		}
5798 		if (device_is_attached(dev)) {
5799 			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5800 				error = device_detach(dev);
5801 			else
5802 				error = EBUSY;
5803 			if (error)
5804 				break;
5805 		}
5806 
5807 		dev->flags &= ~DF_FIXEDCLASS;
5808 		dev->flags |= DF_WILDCARD;
5809 		devclass_delete_device(dev->devclass, dev);
5810 		error = device_probe_and_attach(dev);
5811 		break;
5812 	case DEV_RESCAN:
5813 		if (!device_is_attached(dev)) {
5814 			error = ENXIO;
5815 			break;
5816 		}
5817 		error = BUS_RESCAN(dev);
5818 		break;
5819 	case DEV_DELETE: {
5820 		device_t parent;
5821 
5822 		parent = device_get_parent(dev);
5823 		if (parent == NULL) {
5824 			error = EINVAL;
5825 			break;
5826 		}
5827 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5828 			if (bus_child_present(dev) != 0) {
5829 				error = EBUSY;
5830 				break;
5831 			}
5832 		}
5833 
5834 		error = device_delete_child(parent, dev);
5835 		break;
5836 	}
5837 	case DEV_FREEZE:
5838 		if (device_frozen)
5839 			error = EBUSY;
5840 		else
5841 			device_frozen = true;
5842 		break;
5843 	case DEV_THAW:
5844 		if (!device_frozen)
5845 			error = EBUSY;
5846 		else {
5847 			device_do_deferred_actions();
5848 			device_frozen = false;
5849 		}
5850 		break;
5851 	case DEV_RESET:
5852 		if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
5853 			error = EINVAL;
5854 			break;
5855 		}
5856 		if (device_get_parent(dev) == NULL) {
5857 			error = EINVAL;
5858 			break;
5859 		}
5860 		error = BUS_RESET_CHILD(device_get_parent(dev), dev,
5861 		    req->dr_flags);
5862 		break;
5863 	case DEV_GET_PATH: {
5864 		struct sbuf *sb;
5865 		char locator[64];
5866 		ssize_t len;
5867 
5868 		error = copyinstr(req->dr_buffer.buffer, locator,
5869 		    sizeof(locator), NULL);
5870 		if (error != 0)
5871 			break;
5872 		sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
5873 		    SBUF_INCLUDENUL /* | SBUF_WAITOK */);
5874 		error = device_get_path(dev, locator, sb);
5875 		if (error == 0) {
5876 			len = sbuf_len(sb);
5877 			if (req->dr_buffer.length < len) {
5878 				error = ENAMETOOLONG;
5879 			} else {
5880 				error = copyout(sbuf_data(sb),
5881 				    req->dr_buffer.buffer, len);
5882 			}
5883 			req->dr_buffer.length = len;
5884 		}
5885 		sbuf_delete(sb);
5886 		break;
5887 	}
5888 	}
5889 	bus_topo_unlock();
5890 	return (error);
5891 }
5892 
5893 static struct cdevsw devctl2_cdevsw = {
5894 	.d_version =	D_VERSION,
5895 	.d_ioctl =	devctl2_ioctl,
5896 	.d_name =	"devctl2",
5897 };
5898 
5899 static void
5900 devctl2_init(void)
5901 {
5902 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5903 	    UID_ROOT, GID_WHEEL, 0644, "devctl2");
5904 }
5905 
5906 /*
5907  * For maintaining device 'at' location info to avoid recomputing it
5908  */
5909 struct device_location_node {
5910 	const char *dln_locator;
5911 	const char *dln_path;
5912 	TAILQ_ENTRY(device_location_node) dln_link;
5913 };
5914 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t;
5915 
5916 struct device_location_cache {
5917 	device_location_list_t dlc_list;
5918 };
5919 
5920 
5921 /*
5922  * Location cache for wired devices.
5923  */
5924 device_location_cache_t *
5925 dev_wired_cache_init(void)
5926 {
5927 	device_location_cache_t *dcp;
5928 
5929 	dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO);
5930 	TAILQ_INIT(&dcp->dlc_list);
5931 
5932 	return (dcp);
5933 }
5934 
5935 void
5936 dev_wired_cache_fini(device_location_cache_t *dcp)
5937 {
5938 	struct device_location_node *dln, *tdln;
5939 
5940 	TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) {
5941 		free(dln, M_BUS);
5942 	}
5943 	free(dcp, M_BUS);
5944 }
5945 
5946 static struct device_location_node *
5947 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator)
5948 {
5949 	struct device_location_node *dln;
5950 
5951 	TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) {
5952 		if (strcmp(locator, dln->dln_locator) == 0)
5953 			return (dln);
5954 	}
5955 
5956 	return (NULL);
5957 }
5958 
5959 static struct device_location_node *
5960 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path)
5961 {
5962 	struct device_location_node *dln;
5963 	size_t loclen, pathlen;
5964 
5965 	loclen = strlen(locator) + 1;
5966 	pathlen = strlen(path) + 1;
5967 	dln = malloc(sizeof(*dln) + loclen + pathlen, M_BUS, M_WAITOK | M_ZERO);
5968 	dln->dln_locator = (char *)(dln + 1);
5969 	memcpy(__DECONST(char *, dln->dln_locator), locator, loclen);
5970 	dln->dln_path = dln->dln_locator + loclen;
5971 	memcpy(__DECONST(char *, dln->dln_path), path, pathlen);
5972 	TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link);
5973 
5974 	return (dln);
5975 }
5976 
5977 bool
5978 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev,
5979     const char *at)
5980 {
5981 	struct sbuf *sb;
5982 	const char *cp;
5983 	char locator[32];
5984 	int error, len;
5985 	struct device_location_node *res;
5986 
5987 	cp = strchr(at, ':');
5988 	if (cp == NULL)
5989 		return (false);
5990 	len = cp - at;
5991 	if (len > sizeof(locator) - 1)	/* Skip too long locator */
5992 		return (false);
5993 	memcpy(locator, at, len);
5994 	locator[len] = '\0';
5995 	cp++;
5996 
5997 	error = 0;
5998 	/* maybe cache this inside device_t and look that up, but not yet */
5999 	res = dev_wired_cache_lookup(dcp, locator);
6000 	if (res == NULL) {
6001 		sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
6002 		    SBUF_INCLUDENUL | SBUF_NOWAIT);
6003 		if (sb != NULL) {
6004 			error = device_get_path(dev, locator, sb);
6005 			if (error == 0) {
6006 				res = dev_wired_cache_add(dcp, locator,
6007 				    sbuf_data(sb));
6008 			}
6009 			sbuf_delete(sb);
6010 		}
6011 	}
6012 	if (error != 0 || res == NULL || res->dln_path == NULL)
6013 		return (false);
6014 
6015 	return (strcmp(res->dln_path, cp) == 0);
6016 }
6017 
6018 /*
6019  * APIs to manage deprecation and obsolescence.
6020  */
6021 static int obsolete_panic = 0;
6022 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
6023     "Panic when obsolete features are used (0 = never, 1 = if obsolete, "
6024     "2 = if deprecated)");
6025 
6026 static void
6027 gone_panic(int major, int running, const char *msg)
6028 {
6029 	switch (obsolete_panic)
6030 	{
6031 	case 0:
6032 		return;
6033 	case 1:
6034 		if (running < major)
6035 			return;
6036 		/* FALLTHROUGH */
6037 	default:
6038 		panic("%s", msg);
6039 	}
6040 }
6041 
6042 void
6043 _gone_in(int major, const char *msg)
6044 {
6045 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
6046 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
6047 		printf("Obsolete code will be removed soon: %s\n", msg);
6048 	else
6049 		printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
6050 		    major, msg);
6051 }
6052 
6053 void
6054 _gone_in_dev(device_t dev, int major, const char *msg)
6055 {
6056 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
6057 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
6058 		device_printf(dev,
6059 		    "Obsolete code will be removed soon: %s\n", msg);
6060 	else
6061 		device_printf(dev,
6062 		    "Deprecated code (to be removed in FreeBSD %d): %s\n",
6063 		    major, msg);
6064 }
6065 
6066 #ifdef DDB
6067 DB_SHOW_COMMAND(device, db_show_device)
6068 {
6069 	device_t dev;
6070 
6071 	if (!have_addr)
6072 		return;
6073 
6074 	dev = (device_t)addr;
6075 
6076 	db_printf("name:    %s\n", device_get_nameunit(dev));
6077 	db_printf("  driver:  %s\n", DRIVERNAME(dev->driver));
6078 	db_printf("  class:   %s\n", DEVCLANAME(dev->devclass));
6079 	db_printf("  addr:    %p\n", dev);
6080 	db_printf("  parent:  %p\n", dev->parent);
6081 	db_printf("  softc:   %p\n", dev->softc);
6082 	db_printf("  ivars:   %p\n", dev->ivars);
6083 }
6084 
6085 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
6086 {
6087 	device_t dev;
6088 
6089 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6090 		db_show_device((db_expr_t)dev, true, count, modif);
6091 	}
6092 }
6093 #endif
6094