1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bus.h" 33 #include "opt_ddb.h" 34 35 #include <sys/param.h> 36 #include <sys/conf.h> 37 #include <sys/eventhandler.h> 38 #include <sys/filio.h> 39 #include <sys/lock.h> 40 #include <sys/kernel.h> 41 #include <sys/kobj.h> 42 #include <sys/limits.h> 43 #include <sys/malloc.h> 44 #include <sys/module.h> 45 #include <sys/mutex.h> 46 #include <sys/poll.h> 47 #include <sys/priv.h> 48 #include <sys/proc.h> 49 #include <sys/condvar.h> 50 #include <sys/queue.h> 51 #include <machine/bus.h> 52 #include <sys/random.h> 53 #include <sys/rman.h> 54 #include <sys/selinfo.h> 55 #include <sys/signalvar.h> 56 #include <sys/smp.h> 57 #include <sys/sysctl.h> 58 #include <sys/systm.h> 59 #include <sys/uio.h> 60 #include <sys/bus.h> 61 #include <sys/interrupt.h> 62 #include <sys/cpuset.h> 63 64 #include <net/vnet.h> 65 66 #include <machine/cpu.h> 67 #include <machine/stdarg.h> 68 69 #include <vm/uma.h> 70 #include <vm/vm.h> 71 72 #include <ddb/ddb.h> 73 74 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 75 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 76 77 /* 78 * Used to attach drivers to devclasses. 79 */ 80 typedef struct driverlink *driverlink_t; 81 struct driverlink { 82 kobj_class_t driver; 83 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 84 int pass; 85 TAILQ_ENTRY(driverlink) passlink; 86 }; 87 88 /* 89 * Forward declarations 90 */ 91 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 92 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 93 typedef TAILQ_HEAD(device_list, device) device_list_t; 94 95 struct devclass { 96 TAILQ_ENTRY(devclass) link; 97 devclass_t parent; /* parent in devclass hierarchy */ 98 driver_list_t drivers; /* bus devclasses store drivers for bus */ 99 char *name; 100 device_t *devices; /* array of devices indexed by unit */ 101 int maxunit; /* size of devices array */ 102 int flags; 103 #define DC_HAS_CHILDREN 1 104 105 struct sysctl_ctx_list sysctl_ctx; 106 struct sysctl_oid *sysctl_tree; 107 }; 108 109 /** 110 * @brief Implementation of device. 111 */ 112 struct device { 113 /* 114 * A device is a kernel object. The first field must be the 115 * current ops table for the object. 116 */ 117 KOBJ_FIELDS; 118 119 /* 120 * Device hierarchy. 121 */ 122 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 123 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 124 device_t parent; /**< parent of this device */ 125 device_list_t children; /**< list of child devices */ 126 127 /* 128 * Details of this device. 129 */ 130 driver_t *driver; /**< current driver */ 131 devclass_t devclass; /**< current device class */ 132 int unit; /**< current unit number */ 133 char* nameunit; /**< name+unit e.g. foodev0 */ 134 char* desc; /**< driver specific description */ 135 int busy; /**< count of calls to device_busy() */ 136 device_state_t state; /**< current device state */ 137 uint32_t devflags; /**< api level flags for device_get_flags() */ 138 u_int flags; /**< internal device flags */ 139 u_int order; /**< order from device_add_child_ordered() */ 140 void *ivars; /**< instance variables */ 141 void *softc; /**< current driver's variables */ 142 143 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 144 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 145 }; 146 147 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 148 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 149 150 EVENTHANDLER_LIST_DEFINE(device_attach); 151 EVENTHANDLER_LIST_DEFINE(device_detach); 152 EVENTHANDLER_LIST_DEFINE(dev_lookup); 153 154 static void devctl2_init(void); 155 156 #define DRIVERNAME(d) ((d)? d->name : "no driver") 157 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 158 159 #ifdef BUS_DEBUG 160 161 static int bus_debug = 1; 162 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 163 "Bus debug level"); 164 165 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 166 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 167 168 /** 169 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 170 * prevent syslog from deleting initial spaces 171 */ 172 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 173 174 static void print_device_short(device_t dev, int indent); 175 static void print_device(device_t dev, int indent); 176 void print_device_tree_short(device_t dev, int indent); 177 void print_device_tree(device_t dev, int indent); 178 static void print_driver_short(driver_t *driver, int indent); 179 static void print_driver(driver_t *driver, int indent); 180 static void print_driver_list(driver_list_t drivers, int indent); 181 static void print_devclass_short(devclass_t dc, int indent); 182 static void print_devclass(devclass_t dc, int indent); 183 void print_devclass_list_short(void); 184 void print_devclass_list(void); 185 186 #else 187 /* Make the compiler ignore the function calls */ 188 #define PDEBUG(a) /* nop */ 189 #define DEVICENAME(d) /* nop */ 190 191 #define print_device_short(d,i) /* nop */ 192 #define print_device(d,i) /* nop */ 193 #define print_device_tree_short(d,i) /* nop */ 194 #define print_device_tree(d,i) /* nop */ 195 #define print_driver_short(d,i) /* nop */ 196 #define print_driver(d,i) /* nop */ 197 #define print_driver_list(d,i) /* nop */ 198 #define print_devclass_short(d,i) /* nop */ 199 #define print_devclass(d,i) /* nop */ 200 #define print_devclass_list_short() /* nop */ 201 #define print_devclass_list() /* nop */ 202 #endif 203 204 /* 205 * dev sysctl tree 206 */ 207 208 enum { 209 DEVCLASS_SYSCTL_PARENT, 210 }; 211 212 static int 213 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 214 { 215 devclass_t dc = (devclass_t)arg1; 216 const char *value; 217 218 switch (arg2) { 219 case DEVCLASS_SYSCTL_PARENT: 220 value = dc->parent ? dc->parent->name : ""; 221 break; 222 default: 223 return (EINVAL); 224 } 225 return (SYSCTL_OUT_STR(req, value)); 226 } 227 228 static void 229 devclass_sysctl_init(devclass_t dc) 230 { 231 232 if (dc->sysctl_tree != NULL) 233 return; 234 sysctl_ctx_init(&dc->sysctl_ctx); 235 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 236 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 237 CTLFLAG_RD, NULL, ""); 238 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 239 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 240 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 241 "parent class"); 242 } 243 244 enum { 245 DEVICE_SYSCTL_DESC, 246 DEVICE_SYSCTL_DRIVER, 247 DEVICE_SYSCTL_LOCATION, 248 DEVICE_SYSCTL_PNPINFO, 249 DEVICE_SYSCTL_PARENT, 250 }; 251 252 static int 253 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 254 { 255 device_t dev = (device_t)arg1; 256 const char *value; 257 char *buf; 258 int error; 259 260 buf = NULL; 261 switch (arg2) { 262 case DEVICE_SYSCTL_DESC: 263 value = dev->desc ? dev->desc : ""; 264 break; 265 case DEVICE_SYSCTL_DRIVER: 266 value = dev->driver ? dev->driver->name : ""; 267 break; 268 case DEVICE_SYSCTL_LOCATION: 269 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 270 bus_child_location_str(dev, buf, 1024); 271 break; 272 case DEVICE_SYSCTL_PNPINFO: 273 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 274 bus_child_pnpinfo_str(dev, buf, 1024); 275 break; 276 case DEVICE_SYSCTL_PARENT: 277 value = dev->parent ? dev->parent->nameunit : ""; 278 break; 279 default: 280 return (EINVAL); 281 } 282 error = SYSCTL_OUT_STR(req, value); 283 if (buf != NULL) 284 free(buf, M_BUS); 285 return (error); 286 } 287 288 static void 289 device_sysctl_init(device_t dev) 290 { 291 devclass_t dc = dev->devclass; 292 int domain; 293 294 if (dev->sysctl_tree != NULL) 295 return; 296 devclass_sysctl_init(dc); 297 sysctl_ctx_init(&dev->sysctl_ctx); 298 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 299 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 300 dev->nameunit + strlen(dc->name), 301 CTLFLAG_RD, NULL, "", "device_index"); 302 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 303 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 304 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 305 "device description"); 306 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 307 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 308 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 309 "device driver name"); 310 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 311 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 312 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 313 "device location relative to parent"); 314 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 315 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 316 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 317 "device identification"); 318 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 319 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 320 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 321 "parent device"); 322 if (bus_get_domain(dev, &domain) == 0) 323 SYSCTL_ADD_INT(&dev->sysctl_ctx, 324 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 325 CTLFLAG_RD, NULL, domain, "NUMA domain"); 326 } 327 328 static void 329 device_sysctl_update(device_t dev) 330 { 331 devclass_t dc = dev->devclass; 332 333 if (dev->sysctl_tree == NULL) 334 return; 335 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 336 } 337 338 static void 339 device_sysctl_fini(device_t dev) 340 { 341 if (dev->sysctl_tree == NULL) 342 return; 343 sysctl_ctx_free(&dev->sysctl_ctx); 344 dev->sysctl_tree = NULL; 345 } 346 347 /* 348 * /dev/devctl implementation 349 */ 350 351 /* 352 * This design allows only one reader for /dev/devctl. This is not desirable 353 * in the long run, but will get a lot of hair out of this implementation. 354 * Maybe we should make this device a clonable device. 355 * 356 * Also note: we specifically do not attach a device to the device_t tree 357 * to avoid potential chicken and egg problems. One could argue that all 358 * of this belongs to the root node. One could also further argue that the 359 * sysctl interface that we have not might more properly be an ioctl 360 * interface, but at this stage of the game, I'm not inclined to rock that 361 * boat. 362 * 363 * I'm also not sure that the SIGIO support is done correctly or not, as 364 * I copied it from a driver that had SIGIO support that likely hasn't been 365 * tested since 3.4 or 2.2.8! 366 */ 367 368 /* Deprecated way to adjust queue length */ 369 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 370 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN | 371 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I", 372 "devctl disable -- deprecated"); 373 374 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 375 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 376 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 377 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 378 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 379 380 static d_open_t devopen; 381 static d_close_t devclose; 382 static d_read_t devread; 383 static d_ioctl_t devioctl; 384 static d_poll_t devpoll; 385 static d_kqfilter_t devkqfilter; 386 387 static struct cdevsw dev_cdevsw = { 388 .d_version = D_VERSION, 389 .d_open = devopen, 390 .d_close = devclose, 391 .d_read = devread, 392 .d_ioctl = devioctl, 393 .d_poll = devpoll, 394 .d_kqfilter = devkqfilter, 395 .d_name = "devctl", 396 }; 397 398 struct dev_event_info 399 { 400 char *dei_data; 401 TAILQ_ENTRY(dev_event_info) dei_link; 402 }; 403 404 TAILQ_HEAD(devq, dev_event_info); 405 406 static struct dev_softc 407 { 408 int inuse; 409 int nonblock; 410 int queued; 411 int async; 412 struct mtx mtx; 413 struct cv cv; 414 struct selinfo sel; 415 struct devq devq; 416 struct sigio *sigio; 417 } devsoftc; 418 419 static void filt_devctl_detach(struct knote *kn); 420 static int filt_devctl_read(struct knote *kn, long hint); 421 422 struct filterops devctl_rfiltops = { 423 .f_isfd = 1, 424 .f_detach = filt_devctl_detach, 425 .f_event = filt_devctl_read, 426 }; 427 428 static struct cdev *devctl_dev; 429 430 static void 431 devinit(void) 432 { 433 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 434 UID_ROOT, GID_WHEEL, 0600, "devctl"); 435 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 436 cv_init(&devsoftc.cv, "dev cv"); 437 TAILQ_INIT(&devsoftc.devq); 438 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 439 devctl2_init(); 440 } 441 442 static int 443 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 444 { 445 446 mtx_lock(&devsoftc.mtx); 447 if (devsoftc.inuse) { 448 mtx_unlock(&devsoftc.mtx); 449 return (EBUSY); 450 } 451 /* move to init */ 452 devsoftc.inuse = 1; 453 mtx_unlock(&devsoftc.mtx); 454 return (0); 455 } 456 457 static int 458 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 459 { 460 461 mtx_lock(&devsoftc.mtx); 462 devsoftc.inuse = 0; 463 devsoftc.nonblock = 0; 464 devsoftc.async = 0; 465 cv_broadcast(&devsoftc.cv); 466 funsetown(&devsoftc.sigio); 467 mtx_unlock(&devsoftc.mtx); 468 return (0); 469 } 470 471 /* 472 * The read channel for this device is used to report changes to 473 * userland in realtime. We are required to free the data as well as 474 * the n1 object because we allocate them separately. Also note that 475 * we return one record at a time. If you try to read this device a 476 * character at a time, you will lose the rest of the data. Listening 477 * programs are expected to cope. 478 */ 479 static int 480 devread(struct cdev *dev, struct uio *uio, int ioflag) 481 { 482 struct dev_event_info *n1; 483 int rv; 484 485 mtx_lock(&devsoftc.mtx); 486 while (TAILQ_EMPTY(&devsoftc.devq)) { 487 if (devsoftc.nonblock) { 488 mtx_unlock(&devsoftc.mtx); 489 return (EAGAIN); 490 } 491 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 492 if (rv) { 493 /* 494 * Need to translate ERESTART to EINTR here? -- jake 495 */ 496 mtx_unlock(&devsoftc.mtx); 497 return (rv); 498 } 499 } 500 n1 = TAILQ_FIRST(&devsoftc.devq); 501 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 502 devsoftc.queued--; 503 mtx_unlock(&devsoftc.mtx); 504 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 505 free(n1->dei_data, M_BUS); 506 free(n1, M_BUS); 507 return (rv); 508 } 509 510 static int 511 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 512 { 513 switch (cmd) { 514 515 case FIONBIO: 516 if (*(int*)data) 517 devsoftc.nonblock = 1; 518 else 519 devsoftc.nonblock = 0; 520 return (0); 521 case FIOASYNC: 522 if (*(int*)data) 523 devsoftc.async = 1; 524 else 525 devsoftc.async = 0; 526 return (0); 527 case FIOSETOWN: 528 return fsetown(*(int *)data, &devsoftc.sigio); 529 case FIOGETOWN: 530 *(int *)data = fgetown(&devsoftc.sigio); 531 return (0); 532 533 /* (un)Support for other fcntl() calls. */ 534 case FIOCLEX: 535 case FIONCLEX: 536 case FIONREAD: 537 default: 538 break; 539 } 540 return (ENOTTY); 541 } 542 543 static int 544 devpoll(struct cdev *dev, int events, struct thread *td) 545 { 546 int revents = 0; 547 548 mtx_lock(&devsoftc.mtx); 549 if (events & (POLLIN | POLLRDNORM)) { 550 if (!TAILQ_EMPTY(&devsoftc.devq)) 551 revents = events & (POLLIN | POLLRDNORM); 552 else 553 selrecord(td, &devsoftc.sel); 554 } 555 mtx_unlock(&devsoftc.mtx); 556 557 return (revents); 558 } 559 560 static int 561 devkqfilter(struct cdev *dev, struct knote *kn) 562 { 563 int error; 564 565 if (kn->kn_filter == EVFILT_READ) { 566 kn->kn_fop = &devctl_rfiltops; 567 knlist_add(&devsoftc.sel.si_note, kn, 0); 568 error = 0; 569 } else 570 error = EINVAL; 571 return (error); 572 } 573 574 static void 575 filt_devctl_detach(struct knote *kn) 576 { 577 578 knlist_remove(&devsoftc.sel.si_note, kn, 0); 579 } 580 581 static int 582 filt_devctl_read(struct knote *kn, long hint) 583 { 584 kn->kn_data = devsoftc.queued; 585 return (kn->kn_data != 0); 586 } 587 588 /** 589 * @brief Return whether the userland process is running 590 */ 591 boolean_t 592 devctl_process_running(void) 593 { 594 return (devsoftc.inuse == 1); 595 } 596 597 /** 598 * @brief Queue data to be read from the devctl device 599 * 600 * Generic interface to queue data to the devctl device. It is 601 * assumed that @p data is properly formatted. It is further assumed 602 * that @p data is allocated using the M_BUS malloc type. 603 */ 604 void 605 devctl_queue_data_f(char *data, int flags) 606 { 607 struct dev_event_info *n1 = NULL, *n2 = NULL; 608 609 if (strlen(data) == 0) 610 goto out; 611 if (devctl_queue_length == 0) 612 goto out; 613 n1 = malloc(sizeof(*n1), M_BUS, flags); 614 if (n1 == NULL) 615 goto out; 616 n1->dei_data = data; 617 mtx_lock(&devsoftc.mtx); 618 if (devctl_queue_length == 0) { 619 mtx_unlock(&devsoftc.mtx); 620 free(n1->dei_data, M_BUS); 621 free(n1, M_BUS); 622 return; 623 } 624 /* Leave at least one spot in the queue... */ 625 while (devsoftc.queued > devctl_queue_length - 1) { 626 n2 = TAILQ_FIRST(&devsoftc.devq); 627 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 628 free(n2->dei_data, M_BUS); 629 free(n2, M_BUS); 630 devsoftc.queued--; 631 } 632 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 633 devsoftc.queued++; 634 cv_broadcast(&devsoftc.cv); 635 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 636 mtx_unlock(&devsoftc.mtx); 637 selwakeup(&devsoftc.sel); 638 if (devsoftc.async && devsoftc.sigio != NULL) 639 pgsigio(&devsoftc.sigio, SIGIO, 0); 640 return; 641 out: 642 /* 643 * We have to free data on all error paths since the caller 644 * assumes it will be free'd when this item is dequeued. 645 */ 646 free(data, M_BUS); 647 return; 648 } 649 650 void 651 devctl_queue_data(char *data) 652 { 653 654 devctl_queue_data_f(data, M_NOWAIT); 655 } 656 657 /** 658 * @brief Send a 'notification' to userland, using standard ways 659 */ 660 void 661 devctl_notify_f(const char *system, const char *subsystem, const char *type, 662 const char *data, int flags) 663 { 664 int len = 0; 665 char *msg; 666 667 if (system == NULL) 668 return; /* BOGUS! Must specify system. */ 669 if (subsystem == NULL) 670 return; /* BOGUS! Must specify subsystem. */ 671 if (type == NULL) 672 return; /* BOGUS! Must specify type. */ 673 len += strlen(" system=") + strlen(system); 674 len += strlen(" subsystem=") + strlen(subsystem); 675 len += strlen(" type=") + strlen(type); 676 /* add in the data message plus newline. */ 677 if (data != NULL) 678 len += strlen(data); 679 len += 3; /* '!', '\n', and NUL */ 680 msg = malloc(len, M_BUS, flags); 681 if (msg == NULL) 682 return; /* Drop it on the floor */ 683 if (data != NULL) 684 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 685 system, subsystem, type, data); 686 else 687 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 688 system, subsystem, type); 689 devctl_queue_data_f(msg, flags); 690 } 691 692 void 693 devctl_notify(const char *system, const char *subsystem, const char *type, 694 const char *data) 695 { 696 697 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 698 } 699 700 /* 701 * Common routine that tries to make sending messages as easy as possible. 702 * We allocate memory for the data, copy strings into that, but do not 703 * free it unless there's an error. The dequeue part of the driver should 704 * free the data. We don't send data when the device is disabled. We do 705 * send data, even when we have no listeners, because we wish to avoid 706 * races relating to startup and restart of listening applications. 707 * 708 * devaddq is designed to string together the type of event, with the 709 * object of that event, plus the plug and play info and location info 710 * for that event. This is likely most useful for devices, but less 711 * useful for other consumers of this interface. Those should use 712 * the devctl_queue_data() interface instead. 713 */ 714 static void 715 devaddq(const char *type, const char *what, device_t dev) 716 { 717 char *data = NULL; 718 char *loc = NULL; 719 char *pnp = NULL; 720 const char *parstr; 721 722 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 723 return; 724 data = malloc(1024, M_BUS, M_NOWAIT); 725 if (data == NULL) 726 goto bad; 727 728 /* get the bus specific location of this device */ 729 loc = malloc(1024, M_BUS, M_NOWAIT); 730 if (loc == NULL) 731 goto bad; 732 *loc = '\0'; 733 bus_child_location_str(dev, loc, 1024); 734 735 /* Get the bus specific pnp info of this device */ 736 pnp = malloc(1024, M_BUS, M_NOWAIT); 737 if (pnp == NULL) 738 goto bad; 739 *pnp = '\0'; 740 bus_child_pnpinfo_str(dev, pnp, 1024); 741 742 /* Get the parent of this device, or / if high enough in the tree. */ 743 if (device_get_parent(dev) == NULL) 744 parstr = "."; /* Or '/' ? */ 745 else 746 parstr = device_get_nameunit(device_get_parent(dev)); 747 /* String it all together. */ 748 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 749 parstr); 750 free(loc, M_BUS); 751 free(pnp, M_BUS); 752 devctl_queue_data(data); 753 return; 754 bad: 755 free(pnp, M_BUS); 756 free(loc, M_BUS); 757 free(data, M_BUS); 758 return; 759 } 760 761 /* 762 * A device was added to the tree. We are called just after it successfully 763 * attaches (that is, probe and attach success for this device). No call 764 * is made if a device is merely parented into the tree. See devnomatch 765 * if probe fails. If attach fails, no notification is sent (but maybe 766 * we should have a different message for this). 767 */ 768 static void 769 devadded(device_t dev) 770 { 771 devaddq("+", device_get_nameunit(dev), dev); 772 } 773 774 /* 775 * A device was removed from the tree. We are called just before this 776 * happens. 777 */ 778 static void 779 devremoved(device_t dev) 780 { 781 devaddq("-", device_get_nameunit(dev), dev); 782 } 783 784 /* 785 * Called when there's no match for this device. This is only called 786 * the first time that no match happens, so we don't keep getting this 787 * message. Should that prove to be undesirable, we can change it. 788 * This is called when all drivers that can attach to a given bus 789 * decline to accept this device. Other errors may not be detected. 790 */ 791 static void 792 devnomatch(device_t dev) 793 { 794 devaddq("?", "", dev); 795 } 796 797 static int 798 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 799 { 800 struct dev_event_info *n1; 801 int dis, error; 802 803 dis = (devctl_queue_length == 0); 804 error = sysctl_handle_int(oidp, &dis, 0, req); 805 if (error || !req->newptr) 806 return (error); 807 if (mtx_initialized(&devsoftc.mtx)) 808 mtx_lock(&devsoftc.mtx); 809 if (dis) { 810 while (!TAILQ_EMPTY(&devsoftc.devq)) { 811 n1 = TAILQ_FIRST(&devsoftc.devq); 812 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 813 free(n1->dei_data, M_BUS); 814 free(n1, M_BUS); 815 } 816 devsoftc.queued = 0; 817 devctl_queue_length = 0; 818 } else { 819 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 820 } 821 if (mtx_initialized(&devsoftc.mtx)) 822 mtx_unlock(&devsoftc.mtx); 823 return (0); 824 } 825 826 static int 827 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 828 { 829 struct dev_event_info *n1; 830 int q, error; 831 832 q = devctl_queue_length; 833 error = sysctl_handle_int(oidp, &q, 0, req); 834 if (error || !req->newptr) 835 return (error); 836 if (q < 0) 837 return (EINVAL); 838 if (mtx_initialized(&devsoftc.mtx)) 839 mtx_lock(&devsoftc.mtx); 840 devctl_queue_length = q; 841 while (devsoftc.queued > devctl_queue_length) { 842 n1 = TAILQ_FIRST(&devsoftc.devq); 843 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 844 free(n1->dei_data, M_BUS); 845 free(n1, M_BUS); 846 devsoftc.queued--; 847 } 848 if (mtx_initialized(&devsoftc.mtx)) 849 mtx_unlock(&devsoftc.mtx); 850 return (0); 851 } 852 853 /** 854 * @brief safely quotes strings that might have double quotes in them. 855 * 856 * The devctl protocol relies on quoted strings having matching quotes. 857 * This routine quotes any internal quotes so the resulting string 858 * is safe to pass to snprintf to construct, for example pnp info strings. 859 * Strings are always terminated with a NUL, but may be truncated if longer 860 * than @p len bytes after quotes. 861 * 862 * @param dst Buffer to hold the string. Must be at least @p len bytes long 863 * @param src Original buffer. 864 * @param len Length of buffer pointed to by @dst, including trailing NUL 865 */ 866 void 867 devctl_safe_quote(char *dst, const char *src, size_t len) 868 { 869 char *walker = dst, *ep = dst + len - 1; 870 871 if (len == 0) 872 return; 873 while (src != NULL && walker < ep) 874 { 875 if (*src == '"' || *src == '\\') { 876 if (ep - walker < 2) 877 break; 878 *walker++ = '\\'; 879 } 880 *walker++ = *src++; 881 } 882 *walker = '\0'; 883 } 884 885 /* End of /dev/devctl code */ 886 887 static TAILQ_HEAD(,device) bus_data_devices; 888 static int bus_data_generation = 1; 889 890 static kobj_method_t null_methods[] = { 891 KOBJMETHOD_END 892 }; 893 894 DEFINE_CLASS(null, null_methods, 0); 895 896 /* 897 * Bus pass implementation 898 */ 899 900 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 901 int bus_current_pass = BUS_PASS_ROOT; 902 903 /** 904 * @internal 905 * @brief Register the pass level of a new driver attachment 906 * 907 * Register a new driver attachment's pass level. If no driver 908 * attachment with the same pass level has been added, then @p new 909 * will be added to the global passes list. 910 * 911 * @param new the new driver attachment 912 */ 913 static void 914 driver_register_pass(struct driverlink *new) 915 { 916 struct driverlink *dl; 917 918 /* We only consider pass numbers during boot. */ 919 if (bus_current_pass == BUS_PASS_DEFAULT) 920 return; 921 922 /* 923 * Walk the passes list. If we already know about this pass 924 * then there is nothing to do. If we don't, then insert this 925 * driver link into the list. 926 */ 927 TAILQ_FOREACH(dl, &passes, passlink) { 928 if (dl->pass < new->pass) 929 continue; 930 if (dl->pass == new->pass) 931 return; 932 TAILQ_INSERT_BEFORE(dl, new, passlink); 933 return; 934 } 935 TAILQ_INSERT_TAIL(&passes, new, passlink); 936 } 937 938 /** 939 * @brief Raise the current bus pass 940 * 941 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 942 * method on the root bus to kick off a new device tree scan for each 943 * new pass level that has at least one driver. 944 */ 945 void 946 bus_set_pass(int pass) 947 { 948 struct driverlink *dl; 949 950 if (bus_current_pass > pass) 951 panic("Attempt to lower bus pass level"); 952 953 TAILQ_FOREACH(dl, &passes, passlink) { 954 /* Skip pass values below the current pass level. */ 955 if (dl->pass <= bus_current_pass) 956 continue; 957 958 /* 959 * Bail once we hit a driver with a pass level that is 960 * too high. 961 */ 962 if (dl->pass > pass) 963 break; 964 965 /* 966 * Raise the pass level to the next level and rescan 967 * the tree. 968 */ 969 bus_current_pass = dl->pass; 970 BUS_NEW_PASS(root_bus); 971 } 972 973 /* 974 * If there isn't a driver registered for the requested pass, 975 * then bus_current_pass might still be less than 'pass'. Set 976 * it to 'pass' in that case. 977 */ 978 if (bus_current_pass < pass) 979 bus_current_pass = pass; 980 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 981 } 982 983 /* 984 * Devclass implementation 985 */ 986 987 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 988 989 /** 990 * @internal 991 * @brief Find or create a device class 992 * 993 * If a device class with the name @p classname exists, return it, 994 * otherwise if @p create is non-zero create and return a new device 995 * class. 996 * 997 * If @p parentname is non-NULL, the parent of the devclass is set to 998 * the devclass of that name. 999 * 1000 * @param classname the devclass name to find or create 1001 * @param parentname the parent devclass name or @c NULL 1002 * @param create non-zero to create a devclass 1003 */ 1004 static devclass_t 1005 devclass_find_internal(const char *classname, const char *parentname, 1006 int create) 1007 { 1008 devclass_t dc; 1009 1010 PDEBUG(("looking for %s", classname)); 1011 if (!classname) 1012 return (NULL); 1013 1014 TAILQ_FOREACH(dc, &devclasses, link) { 1015 if (!strcmp(dc->name, classname)) 1016 break; 1017 } 1018 1019 if (create && !dc) { 1020 PDEBUG(("creating %s", classname)); 1021 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 1022 M_BUS, M_NOWAIT | M_ZERO); 1023 if (!dc) 1024 return (NULL); 1025 dc->parent = NULL; 1026 dc->name = (char*) (dc + 1); 1027 strcpy(dc->name, classname); 1028 TAILQ_INIT(&dc->drivers); 1029 TAILQ_INSERT_TAIL(&devclasses, dc, link); 1030 1031 bus_data_generation_update(); 1032 } 1033 1034 /* 1035 * If a parent class is specified, then set that as our parent so 1036 * that this devclass will support drivers for the parent class as 1037 * well. If the parent class has the same name don't do this though 1038 * as it creates a cycle that can trigger an infinite loop in 1039 * device_probe_child() if a device exists for which there is no 1040 * suitable driver. 1041 */ 1042 if (parentname && dc && !dc->parent && 1043 strcmp(classname, parentname) != 0) { 1044 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1045 dc->parent->flags |= DC_HAS_CHILDREN; 1046 } 1047 1048 return (dc); 1049 } 1050 1051 /** 1052 * @brief Create a device class 1053 * 1054 * If a device class with the name @p classname exists, return it, 1055 * otherwise create and return a new device class. 1056 * 1057 * @param classname the devclass name to find or create 1058 */ 1059 devclass_t 1060 devclass_create(const char *classname) 1061 { 1062 return (devclass_find_internal(classname, NULL, TRUE)); 1063 } 1064 1065 /** 1066 * @brief Find a device class 1067 * 1068 * If a device class with the name @p classname exists, return it, 1069 * otherwise return @c NULL. 1070 * 1071 * @param classname the devclass name to find 1072 */ 1073 devclass_t 1074 devclass_find(const char *classname) 1075 { 1076 return (devclass_find_internal(classname, NULL, FALSE)); 1077 } 1078 1079 /** 1080 * @brief Register that a device driver has been added to a devclass 1081 * 1082 * Register that a device driver has been added to a devclass. This 1083 * is called by devclass_add_driver to accomplish the recursive 1084 * notification of all the children classes of dc, as well as dc. 1085 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1086 * the devclass. 1087 * 1088 * We do a full search here of the devclass list at each iteration 1089 * level to save storing children-lists in the devclass structure. If 1090 * we ever move beyond a few dozen devices doing this, we may need to 1091 * reevaluate... 1092 * 1093 * @param dc the devclass to edit 1094 * @param driver the driver that was just added 1095 */ 1096 static void 1097 devclass_driver_added(devclass_t dc, driver_t *driver) 1098 { 1099 devclass_t parent; 1100 int i; 1101 1102 /* 1103 * Call BUS_DRIVER_ADDED for any existing buses in this class. 1104 */ 1105 for (i = 0; i < dc->maxunit; i++) 1106 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1107 BUS_DRIVER_ADDED(dc->devices[i], driver); 1108 1109 /* 1110 * Walk through the children classes. Since we only keep a 1111 * single parent pointer around, we walk the entire list of 1112 * devclasses looking for children. We set the 1113 * DC_HAS_CHILDREN flag when a child devclass is created on 1114 * the parent, so we only walk the list for those devclasses 1115 * that have children. 1116 */ 1117 if (!(dc->flags & DC_HAS_CHILDREN)) 1118 return; 1119 parent = dc; 1120 TAILQ_FOREACH(dc, &devclasses, link) { 1121 if (dc->parent == parent) 1122 devclass_driver_added(dc, driver); 1123 } 1124 } 1125 1126 /** 1127 * @brief Add a device driver to a device class 1128 * 1129 * Add a device driver to a devclass. This is normally called 1130 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1131 * all devices in the devclass will be called to allow them to attempt 1132 * to re-probe any unmatched children. 1133 * 1134 * @param dc the devclass to edit 1135 * @param driver the driver to register 1136 */ 1137 int 1138 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1139 { 1140 driverlink_t dl; 1141 const char *parentname; 1142 1143 PDEBUG(("%s", DRIVERNAME(driver))); 1144 1145 /* Don't allow invalid pass values. */ 1146 if (pass <= BUS_PASS_ROOT) 1147 return (EINVAL); 1148 1149 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1150 if (!dl) 1151 return (ENOMEM); 1152 1153 /* 1154 * Compile the driver's methods. Also increase the reference count 1155 * so that the class doesn't get freed when the last instance 1156 * goes. This means we can safely use static methods and avoids a 1157 * double-free in devclass_delete_driver. 1158 */ 1159 kobj_class_compile((kobj_class_t) driver); 1160 1161 /* 1162 * If the driver has any base classes, make the 1163 * devclass inherit from the devclass of the driver's 1164 * first base class. This will allow the system to 1165 * search for drivers in both devclasses for children 1166 * of a device using this driver. 1167 */ 1168 if (driver->baseclasses) 1169 parentname = driver->baseclasses[0]->name; 1170 else 1171 parentname = NULL; 1172 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1173 1174 dl->driver = driver; 1175 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1176 driver->refs++; /* XXX: kobj_mtx */ 1177 dl->pass = pass; 1178 driver_register_pass(dl); 1179 1180 devclass_driver_added(dc, driver); 1181 bus_data_generation_update(); 1182 return (0); 1183 } 1184 1185 /** 1186 * @brief Register that a device driver has been deleted from a devclass 1187 * 1188 * Register that a device driver has been removed from a devclass. 1189 * This is called by devclass_delete_driver to accomplish the 1190 * recursive notification of all the children classes of busclass, as 1191 * well as busclass. Each layer will attempt to detach the driver 1192 * from any devices that are children of the bus's devclass. The function 1193 * will return an error if a device fails to detach. 1194 * 1195 * We do a full search here of the devclass list at each iteration 1196 * level to save storing children-lists in the devclass structure. If 1197 * we ever move beyond a few dozen devices doing this, we may need to 1198 * reevaluate... 1199 * 1200 * @param busclass the devclass of the parent bus 1201 * @param dc the devclass of the driver being deleted 1202 * @param driver the driver being deleted 1203 */ 1204 static int 1205 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1206 { 1207 devclass_t parent; 1208 device_t dev; 1209 int error, i; 1210 1211 /* 1212 * Disassociate from any devices. We iterate through all the 1213 * devices in the devclass of the driver and detach any which are 1214 * using the driver and which have a parent in the devclass which 1215 * we are deleting from. 1216 * 1217 * Note that since a driver can be in multiple devclasses, we 1218 * should not detach devices which are not children of devices in 1219 * the affected devclass. 1220 */ 1221 for (i = 0; i < dc->maxunit; i++) { 1222 if (dc->devices[i]) { 1223 dev = dc->devices[i]; 1224 if (dev->driver == driver && dev->parent && 1225 dev->parent->devclass == busclass) { 1226 if ((error = device_detach(dev)) != 0) 1227 return (error); 1228 BUS_PROBE_NOMATCH(dev->parent, dev); 1229 devnomatch(dev); 1230 dev->flags |= DF_DONENOMATCH; 1231 } 1232 } 1233 } 1234 1235 /* 1236 * Walk through the children classes. Since we only keep a 1237 * single parent pointer around, we walk the entire list of 1238 * devclasses looking for children. We set the 1239 * DC_HAS_CHILDREN flag when a child devclass is created on 1240 * the parent, so we only walk the list for those devclasses 1241 * that have children. 1242 */ 1243 if (!(busclass->flags & DC_HAS_CHILDREN)) 1244 return (0); 1245 parent = busclass; 1246 TAILQ_FOREACH(busclass, &devclasses, link) { 1247 if (busclass->parent == parent) { 1248 error = devclass_driver_deleted(busclass, dc, driver); 1249 if (error) 1250 return (error); 1251 } 1252 } 1253 return (0); 1254 } 1255 1256 /** 1257 * @brief Delete a device driver from a device class 1258 * 1259 * Delete a device driver from a devclass. This is normally called 1260 * automatically by DRIVER_MODULE(). 1261 * 1262 * If the driver is currently attached to any devices, 1263 * devclass_delete_driver() will first attempt to detach from each 1264 * device. If one of the detach calls fails, the driver will not be 1265 * deleted. 1266 * 1267 * @param dc the devclass to edit 1268 * @param driver the driver to unregister 1269 */ 1270 int 1271 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1272 { 1273 devclass_t dc = devclass_find(driver->name); 1274 driverlink_t dl; 1275 int error; 1276 1277 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1278 1279 if (!dc) 1280 return (0); 1281 1282 /* 1283 * Find the link structure in the bus' list of drivers. 1284 */ 1285 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1286 if (dl->driver == driver) 1287 break; 1288 } 1289 1290 if (!dl) { 1291 PDEBUG(("%s not found in %s list", driver->name, 1292 busclass->name)); 1293 return (ENOENT); 1294 } 1295 1296 error = devclass_driver_deleted(busclass, dc, driver); 1297 if (error != 0) 1298 return (error); 1299 1300 TAILQ_REMOVE(&busclass->drivers, dl, link); 1301 free(dl, M_BUS); 1302 1303 /* XXX: kobj_mtx */ 1304 driver->refs--; 1305 if (driver->refs == 0) 1306 kobj_class_free((kobj_class_t) driver); 1307 1308 bus_data_generation_update(); 1309 return (0); 1310 } 1311 1312 /** 1313 * @brief Quiesces a set of device drivers from a device class 1314 * 1315 * Quiesce a device driver from a devclass. This is normally called 1316 * automatically by DRIVER_MODULE(). 1317 * 1318 * If the driver is currently attached to any devices, 1319 * devclass_quiesece_driver() will first attempt to quiesce each 1320 * device. 1321 * 1322 * @param dc the devclass to edit 1323 * @param driver the driver to unregister 1324 */ 1325 static int 1326 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1327 { 1328 devclass_t dc = devclass_find(driver->name); 1329 driverlink_t dl; 1330 device_t dev; 1331 int i; 1332 int error; 1333 1334 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1335 1336 if (!dc) 1337 return (0); 1338 1339 /* 1340 * Find the link structure in the bus' list of drivers. 1341 */ 1342 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1343 if (dl->driver == driver) 1344 break; 1345 } 1346 1347 if (!dl) { 1348 PDEBUG(("%s not found in %s list", driver->name, 1349 busclass->name)); 1350 return (ENOENT); 1351 } 1352 1353 /* 1354 * Quiesce all devices. We iterate through all the devices in 1355 * the devclass of the driver and quiesce any which are using 1356 * the driver and which have a parent in the devclass which we 1357 * are quiescing. 1358 * 1359 * Note that since a driver can be in multiple devclasses, we 1360 * should not quiesce devices which are not children of 1361 * devices in the affected devclass. 1362 */ 1363 for (i = 0; i < dc->maxunit; i++) { 1364 if (dc->devices[i]) { 1365 dev = dc->devices[i]; 1366 if (dev->driver == driver && dev->parent && 1367 dev->parent->devclass == busclass) { 1368 if ((error = device_quiesce(dev)) != 0) 1369 return (error); 1370 } 1371 } 1372 } 1373 1374 return (0); 1375 } 1376 1377 /** 1378 * @internal 1379 */ 1380 static driverlink_t 1381 devclass_find_driver_internal(devclass_t dc, const char *classname) 1382 { 1383 driverlink_t dl; 1384 1385 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1386 1387 TAILQ_FOREACH(dl, &dc->drivers, link) { 1388 if (!strcmp(dl->driver->name, classname)) 1389 return (dl); 1390 } 1391 1392 PDEBUG(("not found")); 1393 return (NULL); 1394 } 1395 1396 /** 1397 * @brief Return the name of the devclass 1398 */ 1399 const char * 1400 devclass_get_name(devclass_t dc) 1401 { 1402 return (dc->name); 1403 } 1404 1405 /** 1406 * @brief Find a device given a unit number 1407 * 1408 * @param dc the devclass to search 1409 * @param unit the unit number to search for 1410 * 1411 * @returns the device with the given unit number or @c 1412 * NULL if there is no such device 1413 */ 1414 device_t 1415 devclass_get_device(devclass_t dc, int unit) 1416 { 1417 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1418 return (NULL); 1419 return (dc->devices[unit]); 1420 } 1421 1422 /** 1423 * @brief Find the softc field of a device given a unit number 1424 * 1425 * @param dc the devclass to search 1426 * @param unit the unit number to search for 1427 * 1428 * @returns the softc field of the device with the given 1429 * unit number or @c NULL if there is no such 1430 * device 1431 */ 1432 void * 1433 devclass_get_softc(devclass_t dc, int unit) 1434 { 1435 device_t dev; 1436 1437 dev = devclass_get_device(dc, unit); 1438 if (!dev) 1439 return (NULL); 1440 1441 return (device_get_softc(dev)); 1442 } 1443 1444 /** 1445 * @brief Get a list of devices in the devclass 1446 * 1447 * An array containing a list of all the devices in the given devclass 1448 * is allocated and returned in @p *devlistp. The number of devices 1449 * in the array is returned in @p *devcountp. The caller should free 1450 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1451 * 1452 * @param dc the devclass to examine 1453 * @param devlistp points at location for array pointer return 1454 * value 1455 * @param devcountp points at location for array size return value 1456 * 1457 * @retval 0 success 1458 * @retval ENOMEM the array allocation failed 1459 */ 1460 int 1461 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1462 { 1463 int count, i; 1464 device_t *list; 1465 1466 count = devclass_get_count(dc); 1467 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1468 if (!list) 1469 return (ENOMEM); 1470 1471 count = 0; 1472 for (i = 0; i < dc->maxunit; i++) { 1473 if (dc->devices[i]) { 1474 list[count] = dc->devices[i]; 1475 count++; 1476 } 1477 } 1478 1479 *devlistp = list; 1480 *devcountp = count; 1481 1482 return (0); 1483 } 1484 1485 /** 1486 * @brief Get a list of drivers in the devclass 1487 * 1488 * An array containing a list of pointers to all the drivers in the 1489 * given devclass is allocated and returned in @p *listp. The number 1490 * of drivers in the array is returned in @p *countp. The caller should 1491 * free the array using @c free(p, M_TEMP). 1492 * 1493 * @param dc the devclass to examine 1494 * @param listp gives location for array pointer return value 1495 * @param countp gives location for number of array elements 1496 * return value 1497 * 1498 * @retval 0 success 1499 * @retval ENOMEM the array allocation failed 1500 */ 1501 int 1502 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1503 { 1504 driverlink_t dl; 1505 driver_t **list; 1506 int count; 1507 1508 count = 0; 1509 TAILQ_FOREACH(dl, &dc->drivers, link) 1510 count++; 1511 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1512 if (list == NULL) 1513 return (ENOMEM); 1514 1515 count = 0; 1516 TAILQ_FOREACH(dl, &dc->drivers, link) { 1517 list[count] = dl->driver; 1518 count++; 1519 } 1520 *listp = list; 1521 *countp = count; 1522 1523 return (0); 1524 } 1525 1526 /** 1527 * @brief Get the number of devices in a devclass 1528 * 1529 * @param dc the devclass to examine 1530 */ 1531 int 1532 devclass_get_count(devclass_t dc) 1533 { 1534 int count, i; 1535 1536 count = 0; 1537 for (i = 0; i < dc->maxunit; i++) 1538 if (dc->devices[i]) 1539 count++; 1540 return (count); 1541 } 1542 1543 /** 1544 * @brief Get the maximum unit number used in a devclass 1545 * 1546 * Note that this is one greater than the highest currently-allocated 1547 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1548 * that not even the devclass has been allocated yet. 1549 * 1550 * @param dc the devclass to examine 1551 */ 1552 int 1553 devclass_get_maxunit(devclass_t dc) 1554 { 1555 if (dc == NULL) 1556 return (-1); 1557 return (dc->maxunit); 1558 } 1559 1560 /** 1561 * @brief Find a free unit number in a devclass 1562 * 1563 * This function searches for the first unused unit number greater 1564 * that or equal to @p unit. 1565 * 1566 * @param dc the devclass to examine 1567 * @param unit the first unit number to check 1568 */ 1569 int 1570 devclass_find_free_unit(devclass_t dc, int unit) 1571 { 1572 if (dc == NULL) 1573 return (unit); 1574 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1575 unit++; 1576 return (unit); 1577 } 1578 1579 /** 1580 * @brief Set the parent of a devclass 1581 * 1582 * The parent class is normally initialised automatically by 1583 * DRIVER_MODULE(). 1584 * 1585 * @param dc the devclass to edit 1586 * @param pdc the new parent devclass 1587 */ 1588 void 1589 devclass_set_parent(devclass_t dc, devclass_t pdc) 1590 { 1591 dc->parent = pdc; 1592 } 1593 1594 /** 1595 * @brief Get the parent of a devclass 1596 * 1597 * @param dc the devclass to examine 1598 */ 1599 devclass_t 1600 devclass_get_parent(devclass_t dc) 1601 { 1602 return (dc->parent); 1603 } 1604 1605 struct sysctl_ctx_list * 1606 devclass_get_sysctl_ctx(devclass_t dc) 1607 { 1608 return (&dc->sysctl_ctx); 1609 } 1610 1611 struct sysctl_oid * 1612 devclass_get_sysctl_tree(devclass_t dc) 1613 { 1614 return (dc->sysctl_tree); 1615 } 1616 1617 /** 1618 * @internal 1619 * @brief Allocate a unit number 1620 * 1621 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1622 * will do). The allocated unit number is returned in @p *unitp. 1623 1624 * @param dc the devclass to allocate from 1625 * @param unitp points at the location for the allocated unit 1626 * number 1627 * 1628 * @retval 0 success 1629 * @retval EEXIST the requested unit number is already allocated 1630 * @retval ENOMEM memory allocation failure 1631 */ 1632 static int 1633 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1634 { 1635 const char *s; 1636 int unit = *unitp; 1637 1638 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1639 1640 /* Ask the parent bus if it wants to wire this device. */ 1641 if (unit == -1) 1642 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1643 &unit); 1644 1645 /* If we were given a wired unit number, check for existing device */ 1646 /* XXX imp XXX */ 1647 if (unit != -1) { 1648 if (unit >= 0 && unit < dc->maxunit && 1649 dc->devices[unit] != NULL) { 1650 if (bootverbose) 1651 printf("%s: %s%d already exists; skipping it\n", 1652 dc->name, dc->name, *unitp); 1653 return (EEXIST); 1654 } 1655 } else { 1656 /* Unwired device, find the next available slot for it */ 1657 unit = 0; 1658 for (unit = 0;; unit++) { 1659 /* If there is an "at" hint for a unit then skip it. */ 1660 if (resource_string_value(dc->name, unit, "at", &s) == 1661 0) 1662 continue; 1663 1664 /* If this device slot is already in use, skip it. */ 1665 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1666 continue; 1667 1668 break; 1669 } 1670 } 1671 1672 /* 1673 * We've selected a unit beyond the length of the table, so let's 1674 * extend the table to make room for all units up to and including 1675 * this one. 1676 */ 1677 if (unit >= dc->maxunit) { 1678 device_t *newlist, *oldlist; 1679 int newsize; 1680 1681 oldlist = dc->devices; 1682 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1683 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1684 if (!newlist) 1685 return (ENOMEM); 1686 if (oldlist != NULL) 1687 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1688 bzero(newlist + dc->maxunit, 1689 sizeof(device_t) * (newsize - dc->maxunit)); 1690 dc->devices = newlist; 1691 dc->maxunit = newsize; 1692 if (oldlist != NULL) 1693 free(oldlist, M_BUS); 1694 } 1695 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1696 1697 *unitp = unit; 1698 return (0); 1699 } 1700 1701 /** 1702 * @internal 1703 * @brief Add a device to a devclass 1704 * 1705 * A unit number is allocated for the device (using the device's 1706 * preferred unit number if any) and the device is registered in the 1707 * devclass. This allows the device to be looked up by its unit 1708 * number, e.g. by decoding a dev_t minor number. 1709 * 1710 * @param dc the devclass to add to 1711 * @param dev the device to add 1712 * 1713 * @retval 0 success 1714 * @retval EEXIST the requested unit number is already allocated 1715 * @retval ENOMEM memory allocation failure 1716 */ 1717 static int 1718 devclass_add_device(devclass_t dc, device_t dev) 1719 { 1720 int buflen, error; 1721 1722 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1723 1724 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1725 if (buflen < 0) 1726 return (ENOMEM); 1727 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1728 if (!dev->nameunit) 1729 return (ENOMEM); 1730 1731 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1732 free(dev->nameunit, M_BUS); 1733 dev->nameunit = NULL; 1734 return (error); 1735 } 1736 dc->devices[dev->unit] = dev; 1737 dev->devclass = dc; 1738 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1739 1740 return (0); 1741 } 1742 1743 /** 1744 * @internal 1745 * @brief Delete a device from a devclass 1746 * 1747 * The device is removed from the devclass's device list and its unit 1748 * number is freed. 1749 1750 * @param dc the devclass to delete from 1751 * @param dev the device to delete 1752 * 1753 * @retval 0 success 1754 */ 1755 static int 1756 devclass_delete_device(devclass_t dc, device_t dev) 1757 { 1758 if (!dc || !dev) 1759 return (0); 1760 1761 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1762 1763 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1764 panic("devclass_delete_device: inconsistent device class"); 1765 dc->devices[dev->unit] = NULL; 1766 if (dev->flags & DF_WILDCARD) 1767 dev->unit = -1; 1768 dev->devclass = NULL; 1769 free(dev->nameunit, M_BUS); 1770 dev->nameunit = NULL; 1771 1772 return (0); 1773 } 1774 1775 /** 1776 * @internal 1777 * @brief Make a new device and add it as a child of @p parent 1778 * 1779 * @param parent the parent of the new device 1780 * @param name the devclass name of the new device or @c NULL 1781 * to leave the devclass unspecified 1782 * @parem unit the unit number of the new device of @c -1 to 1783 * leave the unit number unspecified 1784 * 1785 * @returns the new device 1786 */ 1787 static device_t 1788 make_device(device_t parent, const char *name, int unit) 1789 { 1790 device_t dev; 1791 devclass_t dc; 1792 1793 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1794 1795 if (name) { 1796 dc = devclass_find_internal(name, NULL, TRUE); 1797 if (!dc) { 1798 printf("make_device: can't find device class %s\n", 1799 name); 1800 return (NULL); 1801 } 1802 } else { 1803 dc = NULL; 1804 } 1805 1806 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1807 if (!dev) 1808 return (NULL); 1809 1810 dev->parent = parent; 1811 TAILQ_INIT(&dev->children); 1812 kobj_init((kobj_t) dev, &null_class); 1813 dev->driver = NULL; 1814 dev->devclass = NULL; 1815 dev->unit = unit; 1816 dev->nameunit = NULL; 1817 dev->desc = NULL; 1818 dev->busy = 0; 1819 dev->devflags = 0; 1820 dev->flags = DF_ENABLED; 1821 dev->order = 0; 1822 if (unit == -1) 1823 dev->flags |= DF_WILDCARD; 1824 if (name) { 1825 dev->flags |= DF_FIXEDCLASS; 1826 if (devclass_add_device(dc, dev)) { 1827 kobj_delete((kobj_t) dev, M_BUS); 1828 return (NULL); 1829 } 1830 } 1831 dev->ivars = NULL; 1832 dev->softc = NULL; 1833 1834 dev->state = DS_NOTPRESENT; 1835 1836 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1837 bus_data_generation_update(); 1838 1839 return (dev); 1840 } 1841 1842 /** 1843 * @internal 1844 * @brief Print a description of a device. 1845 */ 1846 static int 1847 device_print_child(device_t dev, device_t child) 1848 { 1849 int retval = 0; 1850 1851 if (device_is_alive(child)) 1852 retval += BUS_PRINT_CHILD(dev, child); 1853 else 1854 retval += device_printf(child, " not found\n"); 1855 1856 return (retval); 1857 } 1858 1859 /** 1860 * @brief Create a new device 1861 * 1862 * This creates a new device and adds it as a child of an existing 1863 * parent device. The new device will be added after the last existing 1864 * child with order zero. 1865 * 1866 * @param dev the device which will be the parent of the 1867 * new child device 1868 * @param name devclass name for new device or @c NULL if not 1869 * specified 1870 * @param unit unit number for new device or @c -1 if not 1871 * specified 1872 * 1873 * @returns the new device 1874 */ 1875 device_t 1876 device_add_child(device_t dev, const char *name, int unit) 1877 { 1878 return (device_add_child_ordered(dev, 0, name, unit)); 1879 } 1880 1881 /** 1882 * @brief Create a new device 1883 * 1884 * This creates a new device and adds it as a child of an existing 1885 * parent device. The new device will be added after the last existing 1886 * child with the same order. 1887 * 1888 * @param dev the device which will be the parent of the 1889 * new child device 1890 * @param order a value which is used to partially sort the 1891 * children of @p dev - devices created using 1892 * lower values of @p order appear first in @p 1893 * dev's list of children 1894 * @param name devclass name for new device or @c NULL if not 1895 * specified 1896 * @param unit unit number for new device or @c -1 if not 1897 * specified 1898 * 1899 * @returns the new device 1900 */ 1901 device_t 1902 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1903 { 1904 device_t child; 1905 device_t place; 1906 1907 PDEBUG(("%s at %s with order %u as unit %d", 1908 name, DEVICENAME(dev), order, unit)); 1909 KASSERT(name != NULL || unit == -1, 1910 ("child device with wildcard name and specific unit number")); 1911 1912 child = make_device(dev, name, unit); 1913 if (child == NULL) 1914 return (child); 1915 child->order = order; 1916 1917 TAILQ_FOREACH(place, &dev->children, link) { 1918 if (place->order > order) 1919 break; 1920 } 1921 1922 if (place) { 1923 /* 1924 * The device 'place' is the first device whose order is 1925 * greater than the new child. 1926 */ 1927 TAILQ_INSERT_BEFORE(place, child, link); 1928 } else { 1929 /* 1930 * The new child's order is greater or equal to the order of 1931 * any existing device. Add the child to the tail of the list. 1932 */ 1933 TAILQ_INSERT_TAIL(&dev->children, child, link); 1934 } 1935 1936 bus_data_generation_update(); 1937 return (child); 1938 } 1939 1940 /** 1941 * @brief Delete a device 1942 * 1943 * This function deletes a device along with all of its children. If 1944 * the device currently has a driver attached to it, the device is 1945 * detached first using device_detach(). 1946 * 1947 * @param dev the parent device 1948 * @param child the device to delete 1949 * 1950 * @retval 0 success 1951 * @retval non-zero a unit error code describing the error 1952 */ 1953 int 1954 device_delete_child(device_t dev, device_t child) 1955 { 1956 int error; 1957 device_t grandchild; 1958 1959 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1960 1961 /* detach parent before deleting children, if any */ 1962 if ((error = device_detach(child)) != 0) 1963 return (error); 1964 1965 /* remove children second */ 1966 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1967 error = device_delete_child(child, grandchild); 1968 if (error) 1969 return (error); 1970 } 1971 1972 if (child->devclass) 1973 devclass_delete_device(child->devclass, child); 1974 if (child->parent) 1975 BUS_CHILD_DELETED(dev, child); 1976 TAILQ_REMOVE(&dev->children, child, link); 1977 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1978 kobj_delete((kobj_t) child, M_BUS); 1979 1980 bus_data_generation_update(); 1981 return (0); 1982 } 1983 1984 /** 1985 * @brief Delete all children devices of the given device, if any. 1986 * 1987 * This function deletes all children devices of the given device, if 1988 * any, using the device_delete_child() function for each device it 1989 * finds. If a child device cannot be deleted, this function will 1990 * return an error code. 1991 * 1992 * @param dev the parent device 1993 * 1994 * @retval 0 success 1995 * @retval non-zero a device would not detach 1996 */ 1997 int 1998 device_delete_children(device_t dev) 1999 { 2000 device_t child; 2001 int error; 2002 2003 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 2004 2005 error = 0; 2006 2007 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 2008 error = device_delete_child(dev, child); 2009 if (error) { 2010 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 2011 break; 2012 } 2013 } 2014 return (error); 2015 } 2016 2017 /** 2018 * @brief Find a device given a unit number 2019 * 2020 * This is similar to devclass_get_devices() but only searches for 2021 * devices which have @p dev as a parent. 2022 * 2023 * @param dev the parent device to search 2024 * @param unit the unit number to search for. If the unit is -1, 2025 * return the first child of @p dev which has name 2026 * @p classname (that is, the one with the lowest unit.) 2027 * 2028 * @returns the device with the given unit number or @c 2029 * NULL if there is no such device 2030 */ 2031 device_t 2032 device_find_child(device_t dev, const char *classname, int unit) 2033 { 2034 devclass_t dc; 2035 device_t child; 2036 2037 dc = devclass_find(classname); 2038 if (!dc) 2039 return (NULL); 2040 2041 if (unit != -1) { 2042 child = devclass_get_device(dc, unit); 2043 if (child && child->parent == dev) 2044 return (child); 2045 } else { 2046 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2047 child = devclass_get_device(dc, unit); 2048 if (child && child->parent == dev) 2049 return (child); 2050 } 2051 } 2052 return (NULL); 2053 } 2054 2055 /** 2056 * @internal 2057 */ 2058 static driverlink_t 2059 first_matching_driver(devclass_t dc, device_t dev) 2060 { 2061 if (dev->devclass) 2062 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2063 return (TAILQ_FIRST(&dc->drivers)); 2064 } 2065 2066 /** 2067 * @internal 2068 */ 2069 static driverlink_t 2070 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2071 { 2072 if (dev->devclass) { 2073 driverlink_t dl; 2074 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2075 if (!strcmp(dev->devclass->name, dl->driver->name)) 2076 return (dl); 2077 return (NULL); 2078 } 2079 return (TAILQ_NEXT(last, link)); 2080 } 2081 2082 /** 2083 * @internal 2084 */ 2085 int 2086 device_probe_child(device_t dev, device_t child) 2087 { 2088 devclass_t dc; 2089 driverlink_t best = NULL; 2090 driverlink_t dl; 2091 int result, pri = 0; 2092 int hasclass = (child->devclass != NULL); 2093 2094 GIANT_REQUIRED; 2095 2096 dc = dev->devclass; 2097 if (!dc) 2098 panic("device_probe_child: parent device has no devclass"); 2099 2100 /* 2101 * If the state is already probed, then return. However, don't 2102 * return if we can rebid this object. 2103 */ 2104 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2105 return (0); 2106 2107 for (; dc; dc = dc->parent) { 2108 for (dl = first_matching_driver(dc, child); 2109 dl; 2110 dl = next_matching_driver(dc, child, dl)) { 2111 /* If this driver's pass is too high, then ignore it. */ 2112 if (dl->pass > bus_current_pass) 2113 continue; 2114 2115 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2116 result = device_set_driver(child, dl->driver); 2117 if (result == ENOMEM) 2118 return (result); 2119 else if (result != 0) 2120 continue; 2121 if (!hasclass) { 2122 if (device_set_devclass(child, 2123 dl->driver->name) != 0) { 2124 char const * devname = 2125 device_get_name(child); 2126 if (devname == NULL) 2127 devname = "(unknown)"; 2128 printf("driver bug: Unable to set " 2129 "devclass (class: %s " 2130 "devname: %s)\n", 2131 dl->driver->name, 2132 devname); 2133 (void)device_set_driver(child, NULL); 2134 continue; 2135 } 2136 } 2137 2138 /* Fetch any flags for the device before probing. */ 2139 resource_int_value(dl->driver->name, child->unit, 2140 "flags", &child->devflags); 2141 2142 result = DEVICE_PROBE(child); 2143 2144 /* Reset flags and devclass before the next probe. */ 2145 child->devflags = 0; 2146 if (!hasclass) 2147 (void)device_set_devclass(child, NULL); 2148 2149 /* 2150 * If the driver returns SUCCESS, there can be 2151 * no higher match for this device. 2152 */ 2153 if (result == 0) { 2154 best = dl; 2155 pri = 0; 2156 break; 2157 } 2158 2159 /* 2160 * Reset DF_QUIET in case this driver doesn't 2161 * end up as the best driver. 2162 */ 2163 device_verbose(child); 2164 2165 /* 2166 * Probes that return BUS_PROBE_NOWILDCARD or lower 2167 * only match on devices whose driver was explicitly 2168 * specified. 2169 */ 2170 if (result <= BUS_PROBE_NOWILDCARD && 2171 !(child->flags & DF_FIXEDCLASS)) { 2172 result = ENXIO; 2173 } 2174 2175 /* 2176 * The driver returned an error so it 2177 * certainly doesn't match. 2178 */ 2179 if (result > 0) { 2180 (void)device_set_driver(child, NULL); 2181 continue; 2182 } 2183 2184 /* 2185 * A priority lower than SUCCESS, remember the 2186 * best matching driver. Initialise the value 2187 * of pri for the first match. 2188 */ 2189 if (best == NULL || result > pri) { 2190 best = dl; 2191 pri = result; 2192 continue; 2193 } 2194 } 2195 /* 2196 * If we have an unambiguous match in this devclass, 2197 * don't look in the parent. 2198 */ 2199 if (best && pri == 0) 2200 break; 2201 } 2202 2203 /* 2204 * If we found a driver, change state and initialise the devclass. 2205 */ 2206 /* XXX What happens if we rebid and got no best? */ 2207 if (best) { 2208 /* 2209 * If this device was attached, and we were asked to 2210 * rescan, and it is a different driver, then we have 2211 * to detach the old driver and reattach this new one. 2212 * Note, we don't have to check for DF_REBID here 2213 * because if the state is > DS_ALIVE, we know it must 2214 * be. 2215 * 2216 * This assumes that all DF_REBID drivers can have 2217 * their probe routine called at any time and that 2218 * they are idempotent as well as completely benign in 2219 * normal operations. 2220 * 2221 * We also have to make sure that the detach 2222 * succeeded, otherwise we fail the operation (or 2223 * maybe it should just fail silently? I'm torn). 2224 */ 2225 if (child->state > DS_ALIVE && best->driver != child->driver) 2226 if ((result = device_detach(dev)) != 0) 2227 return (result); 2228 2229 /* Set the winning driver, devclass, and flags. */ 2230 if (!child->devclass) { 2231 result = device_set_devclass(child, best->driver->name); 2232 if (result != 0) 2233 return (result); 2234 } 2235 result = device_set_driver(child, best->driver); 2236 if (result != 0) 2237 return (result); 2238 resource_int_value(best->driver->name, child->unit, 2239 "flags", &child->devflags); 2240 2241 if (pri < 0) { 2242 /* 2243 * A bit bogus. Call the probe method again to make 2244 * sure that we have the right description. 2245 */ 2246 DEVICE_PROBE(child); 2247 #if 0 2248 child->flags |= DF_REBID; 2249 #endif 2250 } else 2251 child->flags &= ~DF_REBID; 2252 child->state = DS_ALIVE; 2253 2254 bus_data_generation_update(); 2255 return (0); 2256 } 2257 2258 return (ENXIO); 2259 } 2260 2261 /** 2262 * @brief Return the parent of a device 2263 */ 2264 device_t 2265 device_get_parent(device_t dev) 2266 { 2267 return (dev->parent); 2268 } 2269 2270 /** 2271 * @brief Get a list of children of a device 2272 * 2273 * An array containing a list of all the children of the given device 2274 * is allocated and returned in @p *devlistp. The number of devices 2275 * in the array is returned in @p *devcountp. The caller should free 2276 * the array using @c free(p, M_TEMP). 2277 * 2278 * @param dev the device to examine 2279 * @param devlistp points at location for array pointer return 2280 * value 2281 * @param devcountp points at location for array size return value 2282 * 2283 * @retval 0 success 2284 * @retval ENOMEM the array allocation failed 2285 */ 2286 int 2287 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2288 { 2289 int count; 2290 device_t child; 2291 device_t *list; 2292 2293 count = 0; 2294 TAILQ_FOREACH(child, &dev->children, link) { 2295 count++; 2296 } 2297 if (count == 0) { 2298 *devlistp = NULL; 2299 *devcountp = 0; 2300 return (0); 2301 } 2302 2303 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2304 if (!list) 2305 return (ENOMEM); 2306 2307 count = 0; 2308 TAILQ_FOREACH(child, &dev->children, link) { 2309 list[count] = child; 2310 count++; 2311 } 2312 2313 *devlistp = list; 2314 *devcountp = count; 2315 2316 return (0); 2317 } 2318 2319 /** 2320 * @brief Return the current driver for the device or @c NULL if there 2321 * is no driver currently attached 2322 */ 2323 driver_t * 2324 device_get_driver(device_t dev) 2325 { 2326 return (dev->driver); 2327 } 2328 2329 /** 2330 * @brief Return the current devclass for the device or @c NULL if 2331 * there is none. 2332 */ 2333 devclass_t 2334 device_get_devclass(device_t dev) 2335 { 2336 return (dev->devclass); 2337 } 2338 2339 /** 2340 * @brief Return the name of the device's devclass or @c NULL if there 2341 * is none. 2342 */ 2343 const char * 2344 device_get_name(device_t dev) 2345 { 2346 if (dev != NULL && dev->devclass) 2347 return (devclass_get_name(dev->devclass)); 2348 return (NULL); 2349 } 2350 2351 /** 2352 * @brief Return a string containing the device's devclass name 2353 * followed by an ascii representation of the device's unit number 2354 * (e.g. @c "foo2"). 2355 */ 2356 const char * 2357 device_get_nameunit(device_t dev) 2358 { 2359 return (dev->nameunit); 2360 } 2361 2362 /** 2363 * @brief Return the device's unit number. 2364 */ 2365 int 2366 device_get_unit(device_t dev) 2367 { 2368 return (dev->unit); 2369 } 2370 2371 /** 2372 * @brief Return the device's description string 2373 */ 2374 const char * 2375 device_get_desc(device_t dev) 2376 { 2377 return (dev->desc); 2378 } 2379 2380 /** 2381 * @brief Return the device's flags 2382 */ 2383 uint32_t 2384 device_get_flags(device_t dev) 2385 { 2386 return (dev->devflags); 2387 } 2388 2389 struct sysctl_ctx_list * 2390 device_get_sysctl_ctx(device_t dev) 2391 { 2392 return (&dev->sysctl_ctx); 2393 } 2394 2395 struct sysctl_oid * 2396 device_get_sysctl_tree(device_t dev) 2397 { 2398 return (dev->sysctl_tree); 2399 } 2400 2401 /** 2402 * @brief Print the name of the device followed by a colon and a space 2403 * 2404 * @returns the number of characters printed 2405 */ 2406 int 2407 device_print_prettyname(device_t dev) 2408 { 2409 const char *name = device_get_name(dev); 2410 2411 if (name == NULL) 2412 return (printf("unknown: ")); 2413 return (printf("%s%d: ", name, device_get_unit(dev))); 2414 } 2415 2416 /** 2417 * @brief Print the name of the device followed by a colon, a space 2418 * and the result of calling vprintf() with the value of @p fmt and 2419 * the following arguments. 2420 * 2421 * @returns the number of characters printed 2422 */ 2423 int 2424 device_printf(device_t dev, const char * fmt, ...) 2425 { 2426 va_list ap; 2427 int retval; 2428 2429 retval = device_print_prettyname(dev); 2430 va_start(ap, fmt); 2431 retval += vprintf(fmt, ap); 2432 va_end(ap); 2433 return (retval); 2434 } 2435 2436 /** 2437 * @internal 2438 */ 2439 static void 2440 device_set_desc_internal(device_t dev, const char* desc, int copy) 2441 { 2442 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2443 free(dev->desc, M_BUS); 2444 dev->flags &= ~DF_DESCMALLOCED; 2445 dev->desc = NULL; 2446 } 2447 2448 if (copy && desc) { 2449 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2450 if (dev->desc) { 2451 strcpy(dev->desc, desc); 2452 dev->flags |= DF_DESCMALLOCED; 2453 } 2454 } else { 2455 /* Avoid a -Wcast-qual warning */ 2456 dev->desc = (char *)(uintptr_t) desc; 2457 } 2458 2459 bus_data_generation_update(); 2460 } 2461 2462 /** 2463 * @brief Set the device's description 2464 * 2465 * The value of @c desc should be a string constant that will not 2466 * change (at least until the description is changed in a subsequent 2467 * call to device_set_desc() or device_set_desc_copy()). 2468 */ 2469 void 2470 device_set_desc(device_t dev, const char* desc) 2471 { 2472 device_set_desc_internal(dev, desc, FALSE); 2473 } 2474 2475 /** 2476 * @brief Set the device's description 2477 * 2478 * The string pointed to by @c desc is copied. Use this function if 2479 * the device description is generated, (e.g. with sprintf()). 2480 */ 2481 void 2482 device_set_desc_copy(device_t dev, const char* desc) 2483 { 2484 device_set_desc_internal(dev, desc, TRUE); 2485 } 2486 2487 /** 2488 * @brief Set the device's flags 2489 */ 2490 void 2491 device_set_flags(device_t dev, uint32_t flags) 2492 { 2493 dev->devflags = flags; 2494 } 2495 2496 /** 2497 * @brief Return the device's softc field 2498 * 2499 * The softc is allocated and zeroed when a driver is attached, based 2500 * on the size field of the driver. 2501 */ 2502 void * 2503 device_get_softc(device_t dev) 2504 { 2505 return (dev->softc); 2506 } 2507 2508 /** 2509 * @brief Set the device's softc field 2510 * 2511 * Most drivers do not need to use this since the softc is allocated 2512 * automatically when the driver is attached. 2513 */ 2514 void 2515 device_set_softc(device_t dev, void *softc) 2516 { 2517 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2518 free(dev->softc, M_BUS_SC); 2519 dev->softc = softc; 2520 if (dev->softc) 2521 dev->flags |= DF_EXTERNALSOFTC; 2522 else 2523 dev->flags &= ~DF_EXTERNALSOFTC; 2524 } 2525 2526 /** 2527 * @brief Free claimed softc 2528 * 2529 * Most drivers do not need to use this since the softc is freed 2530 * automatically when the driver is detached. 2531 */ 2532 void 2533 device_free_softc(void *softc) 2534 { 2535 free(softc, M_BUS_SC); 2536 } 2537 2538 /** 2539 * @brief Claim softc 2540 * 2541 * This function can be used to let the driver free the automatically 2542 * allocated softc using "device_free_softc()". This function is 2543 * useful when the driver is refcounting the softc and the softc 2544 * cannot be freed when the "device_detach" method is called. 2545 */ 2546 void 2547 device_claim_softc(device_t dev) 2548 { 2549 if (dev->softc) 2550 dev->flags |= DF_EXTERNALSOFTC; 2551 else 2552 dev->flags &= ~DF_EXTERNALSOFTC; 2553 } 2554 2555 /** 2556 * @brief Get the device's ivars field 2557 * 2558 * The ivars field is used by the parent device to store per-device 2559 * state (e.g. the physical location of the device or a list of 2560 * resources). 2561 */ 2562 void * 2563 device_get_ivars(device_t dev) 2564 { 2565 2566 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2567 return (dev->ivars); 2568 } 2569 2570 /** 2571 * @brief Set the device's ivars field 2572 */ 2573 void 2574 device_set_ivars(device_t dev, void * ivars) 2575 { 2576 2577 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2578 dev->ivars = ivars; 2579 } 2580 2581 /** 2582 * @brief Return the device's state 2583 */ 2584 device_state_t 2585 device_get_state(device_t dev) 2586 { 2587 return (dev->state); 2588 } 2589 2590 /** 2591 * @brief Set the DF_ENABLED flag for the device 2592 */ 2593 void 2594 device_enable(device_t dev) 2595 { 2596 dev->flags |= DF_ENABLED; 2597 } 2598 2599 /** 2600 * @brief Clear the DF_ENABLED flag for the device 2601 */ 2602 void 2603 device_disable(device_t dev) 2604 { 2605 dev->flags &= ~DF_ENABLED; 2606 } 2607 2608 /** 2609 * @brief Increment the busy counter for the device 2610 */ 2611 void 2612 device_busy(device_t dev) 2613 { 2614 if (dev->state < DS_ATTACHING) 2615 panic("device_busy: called for unattached device"); 2616 if (dev->busy == 0 && dev->parent) 2617 device_busy(dev->parent); 2618 dev->busy++; 2619 if (dev->state == DS_ATTACHED) 2620 dev->state = DS_BUSY; 2621 } 2622 2623 /** 2624 * @brief Decrement the busy counter for the device 2625 */ 2626 void 2627 device_unbusy(device_t dev) 2628 { 2629 if (dev->busy != 0 && dev->state != DS_BUSY && 2630 dev->state != DS_ATTACHING) 2631 panic("device_unbusy: called for non-busy device %s", 2632 device_get_nameunit(dev)); 2633 dev->busy--; 2634 if (dev->busy == 0) { 2635 if (dev->parent) 2636 device_unbusy(dev->parent); 2637 if (dev->state == DS_BUSY) 2638 dev->state = DS_ATTACHED; 2639 } 2640 } 2641 2642 /** 2643 * @brief Set the DF_QUIET flag for the device 2644 */ 2645 void 2646 device_quiet(device_t dev) 2647 { 2648 dev->flags |= DF_QUIET; 2649 } 2650 2651 /** 2652 * @brief Clear the DF_QUIET flag for the device 2653 */ 2654 void 2655 device_verbose(device_t dev) 2656 { 2657 dev->flags &= ~DF_QUIET; 2658 } 2659 2660 /** 2661 * @brief Return non-zero if the DF_QUIET flag is set on the device 2662 */ 2663 int 2664 device_is_quiet(device_t dev) 2665 { 2666 return ((dev->flags & DF_QUIET) != 0); 2667 } 2668 2669 /** 2670 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2671 */ 2672 int 2673 device_is_enabled(device_t dev) 2674 { 2675 return ((dev->flags & DF_ENABLED) != 0); 2676 } 2677 2678 /** 2679 * @brief Return non-zero if the device was successfully probed 2680 */ 2681 int 2682 device_is_alive(device_t dev) 2683 { 2684 return (dev->state >= DS_ALIVE); 2685 } 2686 2687 /** 2688 * @brief Return non-zero if the device currently has a driver 2689 * attached to it 2690 */ 2691 int 2692 device_is_attached(device_t dev) 2693 { 2694 return (dev->state >= DS_ATTACHED); 2695 } 2696 2697 /** 2698 * @brief Return non-zero if the device is currently suspended. 2699 */ 2700 int 2701 device_is_suspended(device_t dev) 2702 { 2703 return ((dev->flags & DF_SUSPENDED) != 0); 2704 } 2705 2706 /** 2707 * @brief Set the devclass of a device 2708 * @see devclass_add_device(). 2709 */ 2710 int 2711 device_set_devclass(device_t dev, const char *classname) 2712 { 2713 devclass_t dc; 2714 int error; 2715 2716 if (!classname) { 2717 if (dev->devclass) 2718 devclass_delete_device(dev->devclass, dev); 2719 return (0); 2720 } 2721 2722 if (dev->devclass) { 2723 printf("device_set_devclass: device class already set\n"); 2724 return (EINVAL); 2725 } 2726 2727 dc = devclass_find_internal(classname, NULL, TRUE); 2728 if (!dc) 2729 return (ENOMEM); 2730 2731 error = devclass_add_device(dc, dev); 2732 2733 bus_data_generation_update(); 2734 return (error); 2735 } 2736 2737 /** 2738 * @brief Set the devclass of a device and mark the devclass fixed. 2739 * @see device_set_devclass() 2740 */ 2741 int 2742 device_set_devclass_fixed(device_t dev, const char *classname) 2743 { 2744 int error; 2745 2746 if (classname == NULL) 2747 return (EINVAL); 2748 2749 error = device_set_devclass(dev, classname); 2750 if (error) 2751 return (error); 2752 dev->flags |= DF_FIXEDCLASS; 2753 return (0); 2754 } 2755 2756 /** 2757 * @brief Set the driver of a device 2758 * 2759 * @retval 0 success 2760 * @retval EBUSY the device already has a driver attached 2761 * @retval ENOMEM a memory allocation failure occurred 2762 */ 2763 int 2764 device_set_driver(device_t dev, driver_t *driver) 2765 { 2766 if (dev->state >= DS_ATTACHED) 2767 return (EBUSY); 2768 2769 if (dev->driver == driver) 2770 return (0); 2771 2772 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2773 free(dev->softc, M_BUS_SC); 2774 dev->softc = NULL; 2775 } 2776 device_set_desc(dev, NULL); 2777 kobj_delete((kobj_t) dev, NULL); 2778 dev->driver = driver; 2779 if (driver) { 2780 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2781 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2782 dev->softc = malloc(driver->size, M_BUS_SC, 2783 M_NOWAIT | M_ZERO); 2784 if (!dev->softc) { 2785 kobj_delete((kobj_t) dev, NULL); 2786 kobj_init((kobj_t) dev, &null_class); 2787 dev->driver = NULL; 2788 return (ENOMEM); 2789 } 2790 } 2791 } else { 2792 kobj_init((kobj_t) dev, &null_class); 2793 } 2794 2795 bus_data_generation_update(); 2796 return (0); 2797 } 2798 2799 /** 2800 * @brief Probe a device, and return this status. 2801 * 2802 * This function is the core of the device autoconfiguration 2803 * system. Its purpose is to select a suitable driver for a device and 2804 * then call that driver to initialise the hardware appropriately. The 2805 * driver is selected by calling the DEVICE_PROBE() method of a set of 2806 * candidate drivers and then choosing the driver which returned the 2807 * best value. This driver is then attached to the device using 2808 * device_attach(). 2809 * 2810 * The set of suitable drivers is taken from the list of drivers in 2811 * the parent device's devclass. If the device was originally created 2812 * with a specific class name (see device_add_child()), only drivers 2813 * with that name are probed, otherwise all drivers in the devclass 2814 * are probed. If no drivers return successful probe values in the 2815 * parent devclass, the search continues in the parent of that 2816 * devclass (see devclass_get_parent()) if any. 2817 * 2818 * @param dev the device to initialise 2819 * 2820 * @retval 0 success 2821 * @retval ENXIO no driver was found 2822 * @retval ENOMEM memory allocation failure 2823 * @retval non-zero some other unix error code 2824 * @retval -1 Device already attached 2825 */ 2826 int 2827 device_probe(device_t dev) 2828 { 2829 int error; 2830 2831 GIANT_REQUIRED; 2832 2833 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2834 return (-1); 2835 2836 if (!(dev->flags & DF_ENABLED)) { 2837 if (bootverbose && device_get_name(dev) != NULL) { 2838 device_print_prettyname(dev); 2839 printf("not probed (disabled)\n"); 2840 } 2841 return (-1); 2842 } 2843 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2844 if (bus_current_pass == BUS_PASS_DEFAULT && 2845 !(dev->flags & DF_DONENOMATCH)) { 2846 BUS_PROBE_NOMATCH(dev->parent, dev); 2847 devnomatch(dev); 2848 dev->flags |= DF_DONENOMATCH; 2849 } 2850 return (error); 2851 } 2852 return (0); 2853 } 2854 2855 /** 2856 * @brief Probe a device and attach a driver if possible 2857 * 2858 * calls device_probe() and attaches if that was successful. 2859 */ 2860 int 2861 device_probe_and_attach(device_t dev) 2862 { 2863 int error; 2864 2865 GIANT_REQUIRED; 2866 2867 error = device_probe(dev); 2868 if (error == -1) 2869 return (0); 2870 else if (error != 0) 2871 return (error); 2872 2873 CURVNET_SET_QUIET(vnet0); 2874 error = device_attach(dev); 2875 CURVNET_RESTORE(); 2876 return error; 2877 } 2878 2879 /** 2880 * @brief Attach a device driver to a device 2881 * 2882 * This function is a wrapper around the DEVICE_ATTACH() driver 2883 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2884 * device's sysctl tree, optionally prints a description of the device 2885 * and queues a notification event for user-based device management 2886 * services. 2887 * 2888 * Normally this function is only called internally from 2889 * device_probe_and_attach(). 2890 * 2891 * @param dev the device to initialise 2892 * 2893 * @retval 0 success 2894 * @retval ENXIO no driver was found 2895 * @retval ENOMEM memory allocation failure 2896 * @retval non-zero some other unix error code 2897 */ 2898 int 2899 device_attach(device_t dev) 2900 { 2901 uint64_t attachtime; 2902 int error; 2903 2904 if (resource_disabled(dev->driver->name, dev->unit)) { 2905 device_disable(dev); 2906 if (bootverbose) 2907 device_printf(dev, "disabled via hints entry\n"); 2908 return (ENXIO); 2909 } 2910 2911 device_sysctl_init(dev); 2912 if (!device_is_quiet(dev)) 2913 device_print_child(dev->parent, dev); 2914 attachtime = get_cyclecount(); 2915 dev->state = DS_ATTACHING; 2916 if ((error = DEVICE_ATTACH(dev)) != 0) { 2917 printf("device_attach: %s%d attach returned %d\n", 2918 dev->driver->name, dev->unit, error); 2919 if (!(dev->flags & DF_FIXEDCLASS)) 2920 devclass_delete_device(dev->devclass, dev); 2921 (void)device_set_driver(dev, NULL); 2922 device_sysctl_fini(dev); 2923 KASSERT(dev->busy == 0, ("attach failed but busy")); 2924 dev->state = DS_NOTPRESENT; 2925 return (error); 2926 } 2927 attachtime = get_cyclecount() - attachtime; 2928 /* 2929 * 4 bits per device is a reasonable value for desktop and server 2930 * hardware with good get_cyclecount() implementations, but WILL 2931 * need to be adjusted on other platforms. 2932 */ 2933 #define RANDOM_PROBE_BIT_GUESS 4 2934 if (bootverbose) 2935 printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n", 2936 sizeof(attachtime), RANDOM_PROBE_BIT_GUESS, 2937 dev->driver->name, dev->unit); 2938 random_harvest_direct(&attachtime, sizeof(attachtime), 2939 RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH); 2940 device_sysctl_update(dev); 2941 if (dev->busy) 2942 dev->state = DS_BUSY; 2943 else 2944 dev->state = DS_ATTACHED; 2945 dev->flags &= ~DF_DONENOMATCH; 2946 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 2947 devadded(dev); 2948 return (0); 2949 } 2950 2951 /** 2952 * @brief Detach a driver from a device 2953 * 2954 * This function is a wrapper around the DEVICE_DETACH() driver 2955 * method. If the call to DEVICE_DETACH() succeeds, it calls 2956 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 2957 * notification event for user-based device management services and 2958 * cleans up the device's sysctl tree. 2959 * 2960 * @param dev the device to un-initialise 2961 * 2962 * @retval 0 success 2963 * @retval ENXIO no driver was found 2964 * @retval ENOMEM memory allocation failure 2965 * @retval non-zero some other unix error code 2966 */ 2967 int 2968 device_detach(device_t dev) 2969 { 2970 int error; 2971 2972 GIANT_REQUIRED; 2973 2974 PDEBUG(("%s", DEVICENAME(dev))); 2975 if (dev->state == DS_BUSY) 2976 return (EBUSY); 2977 if (dev->state != DS_ATTACHED) 2978 return (0); 2979 2980 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 2981 if ((error = DEVICE_DETACH(dev)) != 0) { 2982 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2983 EVHDEV_DETACH_FAILED); 2984 return (error); 2985 } else { 2986 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 2987 EVHDEV_DETACH_COMPLETE); 2988 } 2989 devremoved(dev); 2990 if (!device_is_quiet(dev)) 2991 device_printf(dev, "detached\n"); 2992 if (dev->parent) 2993 BUS_CHILD_DETACHED(dev->parent, dev); 2994 2995 if (!(dev->flags & DF_FIXEDCLASS)) 2996 devclass_delete_device(dev->devclass, dev); 2997 2998 device_verbose(dev); 2999 dev->state = DS_NOTPRESENT; 3000 (void)device_set_driver(dev, NULL); 3001 device_sysctl_fini(dev); 3002 3003 return (0); 3004 } 3005 3006 /** 3007 * @brief Tells a driver to quiesce itself. 3008 * 3009 * This function is a wrapper around the DEVICE_QUIESCE() driver 3010 * method. If the call to DEVICE_QUIESCE() succeeds. 3011 * 3012 * @param dev the device to quiesce 3013 * 3014 * @retval 0 success 3015 * @retval ENXIO no driver was found 3016 * @retval ENOMEM memory allocation failure 3017 * @retval non-zero some other unix error code 3018 */ 3019 int 3020 device_quiesce(device_t dev) 3021 { 3022 3023 PDEBUG(("%s", DEVICENAME(dev))); 3024 if (dev->state == DS_BUSY) 3025 return (EBUSY); 3026 if (dev->state != DS_ATTACHED) 3027 return (0); 3028 3029 return (DEVICE_QUIESCE(dev)); 3030 } 3031 3032 /** 3033 * @brief Notify a device of system shutdown 3034 * 3035 * This function calls the DEVICE_SHUTDOWN() driver method if the 3036 * device currently has an attached driver. 3037 * 3038 * @returns the value returned by DEVICE_SHUTDOWN() 3039 */ 3040 int 3041 device_shutdown(device_t dev) 3042 { 3043 if (dev->state < DS_ATTACHED) 3044 return (0); 3045 return (DEVICE_SHUTDOWN(dev)); 3046 } 3047 3048 /** 3049 * @brief Set the unit number of a device 3050 * 3051 * This function can be used to override the unit number used for a 3052 * device (e.g. to wire a device to a pre-configured unit number). 3053 */ 3054 int 3055 device_set_unit(device_t dev, int unit) 3056 { 3057 devclass_t dc; 3058 int err; 3059 3060 dc = device_get_devclass(dev); 3061 if (unit < dc->maxunit && dc->devices[unit]) 3062 return (EBUSY); 3063 err = devclass_delete_device(dc, dev); 3064 if (err) 3065 return (err); 3066 dev->unit = unit; 3067 err = devclass_add_device(dc, dev); 3068 if (err) 3069 return (err); 3070 3071 bus_data_generation_update(); 3072 return (0); 3073 } 3074 3075 /*======================================*/ 3076 /* 3077 * Some useful method implementations to make life easier for bus drivers. 3078 */ 3079 3080 void 3081 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 3082 { 3083 3084 bzero(args, sz); 3085 args->size = sz; 3086 args->memattr = VM_MEMATTR_UNCACHEABLE; 3087 } 3088 3089 /** 3090 * @brief Initialise a resource list. 3091 * 3092 * @param rl the resource list to initialise 3093 */ 3094 void 3095 resource_list_init(struct resource_list *rl) 3096 { 3097 STAILQ_INIT(rl); 3098 } 3099 3100 /** 3101 * @brief Reclaim memory used by a resource list. 3102 * 3103 * This function frees the memory for all resource entries on the list 3104 * (if any). 3105 * 3106 * @param rl the resource list to free 3107 */ 3108 void 3109 resource_list_free(struct resource_list *rl) 3110 { 3111 struct resource_list_entry *rle; 3112 3113 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3114 if (rle->res) 3115 panic("resource_list_free: resource entry is busy"); 3116 STAILQ_REMOVE_HEAD(rl, link); 3117 free(rle, M_BUS); 3118 } 3119 } 3120 3121 /** 3122 * @brief Add a resource entry. 3123 * 3124 * This function adds a resource entry using the given @p type, @p 3125 * start, @p end and @p count values. A rid value is chosen by 3126 * searching sequentially for the first unused rid starting at zero. 3127 * 3128 * @param rl the resource list to edit 3129 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3130 * @param start the start address of the resource 3131 * @param end the end address of the resource 3132 * @param count XXX end-start+1 3133 */ 3134 int 3135 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 3136 rman_res_t end, rman_res_t count) 3137 { 3138 int rid; 3139 3140 rid = 0; 3141 while (resource_list_find(rl, type, rid) != NULL) 3142 rid++; 3143 resource_list_add(rl, type, rid, start, end, count); 3144 return (rid); 3145 } 3146 3147 /** 3148 * @brief Add or modify a resource entry. 3149 * 3150 * If an existing entry exists with the same type and rid, it will be 3151 * modified using the given values of @p start, @p end and @p 3152 * count. If no entry exists, a new one will be created using the 3153 * given values. The resource list entry that matches is then returned. 3154 * 3155 * @param rl the resource list to edit 3156 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3157 * @param rid the resource identifier 3158 * @param start the start address of the resource 3159 * @param end the end address of the resource 3160 * @param count XXX end-start+1 3161 */ 3162 struct resource_list_entry * 3163 resource_list_add(struct resource_list *rl, int type, int rid, 3164 rman_res_t start, rman_res_t end, rman_res_t count) 3165 { 3166 struct resource_list_entry *rle; 3167 3168 rle = resource_list_find(rl, type, rid); 3169 if (!rle) { 3170 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3171 M_NOWAIT); 3172 if (!rle) 3173 panic("resource_list_add: can't record entry"); 3174 STAILQ_INSERT_TAIL(rl, rle, link); 3175 rle->type = type; 3176 rle->rid = rid; 3177 rle->res = NULL; 3178 rle->flags = 0; 3179 } 3180 3181 if (rle->res) 3182 panic("resource_list_add: resource entry is busy"); 3183 3184 rle->start = start; 3185 rle->end = end; 3186 rle->count = count; 3187 return (rle); 3188 } 3189 3190 /** 3191 * @brief Determine if a resource entry is busy. 3192 * 3193 * Returns true if a resource entry is busy meaning that it has an 3194 * associated resource that is not an unallocated "reserved" resource. 3195 * 3196 * @param rl the resource list to search 3197 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3198 * @param rid the resource identifier 3199 * 3200 * @returns Non-zero if the entry is busy, zero otherwise. 3201 */ 3202 int 3203 resource_list_busy(struct resource_list *rl, int type, int rid) 3204 { 3205 struct resource_list_entry *rle; 3206 3207 rle = resource_list_find(rl, type, rid); 3208 if (rle == NULL || rle->res == NULL) 3209 return (0); 3210 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3211 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3212 ("reserved resource is active")); 3213 return (0); 3214 } 3215 return (1); 3216 } 3217 3218 /** 3219 * @brief Determine if a resource entry is reserved. 3220 * 3221 * Returns true if a resource entry is reserved meaning that it has an 3222 * associated "reserved" resource. The resource can either be 3223 * allocated or unallocated. 3224 * 3225 * @param rl the resource list to search 3226 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3227 * @param rid the resource identifier 3228 * 3229 * @returns Non-zero if the entry is reserved, zero otherwise. 3230 */ 3231 int 3232 resource_list_reserved(struct resource_list *rl, int type, int rid) 3233 { 3234 struct resource_list_entry *rle; 3235 3236 rle = resource_list_find(rl, type, rid); 3237 if (rle != NULL && rle->flags & RLE_RESERVED) 3238 return (1); 3239 return (0); 3240 } 3241 3242 /** 3243 * @brief Find a resource entry by type and rid. 3244 * 3245 * @param rl the resource list to search 3246 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3247 * @param rid the resource identifier 3248 * 3249 * @returns the resource entry pointer or NULL if there is no such 3250 * entry. 3251 */ 3252 struct resource_list_entry * 3253 resource_list_find(struct resource_list *rl, int type, int rid) 3254 { 3255 struct resource_list_entry *rle; 3256 3257 STAILQ_FOREACH(rle, rl, link) { 3258 if (rle->type == type && rle->rid == rid) 3259 return (rle); 3260 } 3261 return (NULL); 3262 } 3263 3264 /** 3265 * @brief Delete a resource entry. 3266 * 3267 * @param rl the resource list to edit 3268 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3269 * @param rid the resource identifier 3270 */ 3271 void 3272 resource_list_delete(struct resource_list *rl, int type, int rid) 3273 { 3274 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3275 3276 if (rle) { 3277 if (rle->res != NULL) 3278 panic("resource_list_delete: resource has not been released"); 3279 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3280 free(rle, M_BUS); 3281 } 3282 } 3283 3284 /** 3285 * @brief Allocate a reserved resource 3286 * 3287 * This can be used by buses to force the allocation of resources 3288 * that are always active in the system even if they are not allocated 3289 * by a driver (e.g. PCI BARs). This function is usually called when 3290 * adding a new child to the bus. The resource is allocated from the 3291 * parent bus when it is reserved. The resource list entry is marked 3292 * with RLE_RESERVED to note that it is a reserved resource. 3293 * 3294 * Subsequent attempts to allocate the resource with 3295 * resource_list_alloc() will succeed the first time and will set 3296 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3297 * resource that has been allocated is released with 3298 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3299 * the actual resource remains allocated. The resource can be released to 3300 * the parent bus by calling resource_list_unreserve(). 3301 * 3302 * @param rl the resource list to allocate from 3303 * @param bus the parent device of @p child 3304 * @param child the device for which the resource is being reserved 3305 * @param type the type of resource to allocate 3306 * @param rid a pointer to the resource identifier 3307 * @param start hint at the start of the resource range - pass 3308 * @c 0 for any start address 3309 * @param end hint at the end of the resource range - pass 3310 * @c ~0 for any end address 3311 * @param count hint at the size of range required - pass @c 1 3312 * for any size 3313 * @param flags any extra flags to control the resource 3314 * allocation - see @c RF_XXX flags in 3315 * <sys/rman.h> for details 3316 * 3317 * @returns the resource which was allocated or @c NULL if no 3318 * resource could be allocated 3319 */ 3320 struct resource * 3321 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3322 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3323 { 3324 struct resource_list_entry *rle = NULL; 3325 int passthrough = (device_get_parent(child) != bus); 3326 struct resource *r; 3327 3328 if (passthrough) 3329 panic( 3330 "resource_list_reserve() should only be called for direct children"); 3331 if (flags & RF_ACTIVE) 3332 panic( 3333 "resource_list_reserve() should only reserve inactive resources"); 3334 3335 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3336 flags); 3337 if (r != NULL) { 3338 rle = resource_list_find(rl, type, *rid); 3339 rle->flags |= RLE_RESERVED; 3340 } 3341 return (r); 3342 } 3343 3344 /** 3345 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3346 * 3347 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3348 * and passing the allocation up to the parent of @p bus. This assumes 3349 * that the first entry of @c device_get_ivars(child) is a struct 3350 * resource_list. This also handles 'passthrough' allocations where a 3351 * child is a remote descendant of bus by passing the allocation up to 3352 * the parent of bus. 3353 * 3354 * Typically, a bus driver would store a list of child resources 3355 * somewhere in the child device's ivars (see device_get_ivars()) and 3356 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3357 * then call resource_list_alloc() to perform the allocation. 3358 * 3359 * @param rl the resource list to allocate from 3360 * @param bus the parent device of @p child 3361 * @param child the device which is requesting an allocation 3362 * @param type the type of resource to allocate 3363 * @param rid a pointer to the resource identifier 3364 * @param start hint at the start of the resource range - pass 3365 * @c 0 for any start address 3366 * @param end hint at the end of the resource range - pass 3367 * @c ~0 for any end address 3368 * @param count hint at the size of range required - pass @c 1 3369 * for any size 3370 * @param flags any extra flags to control the resource 3371 * allocation - see @c RF_XXX flags in 3372 * <sys/rman.h> for details 3373 * 3374 * @returns the resource which was allocated or @c NULL if no 3375 * resource could be allocated 3376 */ 3377 struct resource * 3378 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3379 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3380 { 3381 struct resource_list_entry *rle = NULL; 3382 int passthrough = (device_get_parent(child) != bus); 3383 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3384 3385 if (passthrough) { 3386 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3387 type, rid, start, end, count, flags)); 3388 } 3389 3390 rle = resource_list_find(rl, type, *rid); 3391 3392 if (!rle) 3393 return (NULL); /* no resource of that type/rid */ 3394 3395 if (rle->res) { 3396 if (rle->flags & RLE_RESERVED) { 3397 if (rle->flags & RLE_ALLOCATED) 3398 return (NULL); 3399 if ((flags & RF_ACTIVE) && 3400 bus_activate_resource(child, type, *rid, 3401 rle->res) != 0) 3402 return (NULL); 3403 rle->flags |= RLE_ALLOCATED; 3404 return (rle->res); 3405 } 3406 device_printf(bus, 3407 "resource entry %#x type %d for child %s is busy\n", *rid, 3408 type, device_get_nameunit(child)); 3409 return (NULL); 3410 } 3411 3412 if (isdefault) { 3413 start = rle->start; 3414 count = ulmax(count, rle->count); 3415 end = ulmax(rle->end, start + count - 1); 3416 } 3417 3418 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3419 type, rid, start, end, count, flags); 3420 3421 /* 3422 * Record the new range. 3423 */ 3424 if (rle->res) { 3425 rle->start = rman_get_start(rle->res); 3426 rle->end = rman_get_end(rle->res); 3427 rle->count = count; 3428 } 3429 3430 return (rle->res); 3431 } 3432 3433 /** 3434 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3435 * 3436 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3437 * used with resource_list_alloc(). 3438 * 3439 * @param rl the resource list which was allocated from 3440 * @param bus the parent device of @p child 3441 * @param child the device which is requesting a release 3442 * @param type the type of resource to release 3443 * @param rid the resource identifier 3444 * @param res the resource to release 3445 * 3446 * @retval 0 success 3447 * @retval non-zero a standard unix error code indicating what 3448 * error condition prevented the operation 3449 */ 3450 int 3451 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3452 int type, int rid, struct resource *res) 3453 { 3454 struct resource_list_entry *rle = NULL; 3455 int passthrough = (device_get_parent(child) != bus); 3456 int error; 3457 3458 if (passthrough) { 3459 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3460 type, rid, res)); 3461 } 3462 3463 rle = resource_list_find(rl, type, rid); 3464 3465 if (!rle) 3466 panic("resource_list_release: can't find resource"); 3467 if (!rle->res) 3468 panic("resource_list_release: resource entry is not busy"); 3469 if (rle->flags & RLE_RESERVED) { 3470 if (rle->flags & RLE_ALLOCATED) { 3471 if (rman_get_flags(res) & RF_ACTIVE) { 3472 error = bus_deactivate_resource(child, type, 3473 rid, res); 3474 if (error) 3475 return (error); 3476 } 3477 rle->flags &= ~RLE_ALLOCATED; 3478 return (0); 3479 } 3480 return (EINVAL); 3481 } 3482 3483 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3484 type, rid, res); 3485 if (error) 3486 return (error); 3487 3488 rle->res = NULL; 3489 return (0); 3490 } 3491 3492 /** 3493 * @brief Release all active resources of a given type 3494 * 3495 * Release all active resources of a specified type. This is intended 3496 * to be used to cleanup resources leaked by a driver after detach or 3497 * a failed attach. 3498 * 3499 * @param rl the resource list which was allocated from 3500 * @param bus the parent device of @p child 3501 * @param child the device whose active resources are being released 3502 * @param type the type of resources to release 3503 * 3504 * @retval 0 success 3505 * @retval EBUSY at least one resource was active 3506 */ 3507 int 3508 resource_list_release_active(struct resource_list *rl, device_t bus, 3509 device_t child, int type) 3510 { 3511 struct resource_list_entry *rle; 3512 int error, retval; 3513 3514 retval = 0; 3515 STAILQ_FOREACH(rle, rl, link) { 3516 if (rle->type != type) 3517 continue; 3518 if (rle->res == NULL) 3519 continue; 3520 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3521 RLE_RESERVED) 3522 continue; 3523 retval = EBUSY; 3524 error = resource_list_release(rl, bus, child, type, 3525 rman_get_rid(rle->res), rle->res); 3526 if (error != 0) 3527 device_printf(bus, 3528 "Failed to release active resource: %d\n", error); 3529 } 3530 return (retval); 3531 } 3532 3533 3534 /** 3535 * @brief Fully release a reserved resource 3536 * 3537 * Fully releases a resource reserved via resource_list_reserve(). 3538 * 3539 * @param rl the resource list which was allocated from 3540 * @param bus the parent device of @p child 3541 * @param child the device whose reserved resource is being released 3542 * @param type the type of resource to release 3543 * @param rid the resource identifier 3544 * @param res the resource to release 3545 * 3546 * @retval 0 success 3547 * @retval non-zero a standard unix error code indicating what 3548 * error condition prevented the operation 3549 */ 3550 int 3551 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3552 int type, int rid) 3553 { 3554 struct resource_list_entry *rle = NULL; 3555 int passthrough = (device_get_parent(child) != bus); 3556 3557 if (passthrough) 3558 panic( 3559 "resource_list_unreserve() should only be called for direct children"); 3560 3561 rle = resource_list_find(rl, type, rid); 3562 3563 if (!rle) 3564 panic("resource_list_unreserve: can't find resource"); 3565 if (!(rle->flags & RLE_RESERVED)) 3566 return (EINVAL); 3567 if (rle->flags & RLE_ALLOCATED) 3568 return (EBUSY); 3569 rle->flags &= ~RLE_RESERVED; 3570 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3571 } 3572 3573 /** 3574 * @brief Print a description of resources in a resource list 3575 * 3576 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3577 * The name is printed if at least one resource of the given type is available. 3578 * The format is used to print resource start and end. 3579 * 3580 * @param rl the resource list to print 3581 * @param name the name of @p type, e.g. @c "memory" 3582 * @param type type type of resource entry to print 3583 * @param format printf(9) format string to print resource 3584 * start and end values 3585 * 3586 * @returns the number of characters printed 3587 */ 3588 int 3589 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3590 const char *format) 3591 { 3592 struct resource_list_entry *rle; 3593 int printed, retval; 3594 3595 printed = 0; 3596 retval = 0; 3597 /* Yes, this is kinda cheating */ 3598 STAILQ_FOREACH(rle, rl, link) { 3599 if (rle->type == type) { 3600 if (printed == 0) 3601 retval += printf(" %s ", name); 3602 else 3603 retval += printf(","); 3604 printed++; 3605 retval += printf(format, rle->start); 3606 if (rle->count > 1) { 3607 retval += printf("-"); 3608 retval += printf(format, rle->start + 3609 rle->count - 1); 3610 } 3611 } 3612 } 3613 return (retval); 3614 } 3615 3616 /** 3617 * @brief Releases all the resources in a list. 3618 * 3619 * @param rl The resource list to purge. 3620 * 3621 * @returns nothing 3622 */ 3623 void 3624 resource_list_purge(struct resource_list *rl) 3625 { 3626 struct resource_list_entry *rle; 3627 3628 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3629 if (rle->res) 3630 bus_release_resource(rman_get_device(rle->res), 3631 rle->type, rle->rid, rle->res); 3632 STAILQ_REMOVE_HEAD(rl, link); 3633 free(rle, M_BUS); 3634 } 3635 } 3636 3637 device_t 3638 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3639 { 3640 3641 return (device_add_child_ordered(dev, order, name, unit)); 3642 } 3643 3644 /** 3645 * @brief Helper function for implementing DEVICE_PROBE() 3646 * 3647 * This function can be used to help implement the DEVICE_PROBE() for 3648 * a bus (i.e. a device which has other devices attached to it). It 3649 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3650 * devclass. 3651 */ 3652 int 3653 bus_generic_probe(device_t dev) 3654 { 3655 devclass_t dc = dev->devclass; 3656 driverlink_t dl; 3657 3658 TAILQ_FOREACH(dl, &dc->drivers, link) { 3659 /* 3660 * If this driver's pass is too high, then ignore it. 3661 * For most drivers in the default pass, this will 3662 * never be true. For early-pass drivers they will 3663 * only call the identify routines of eligible drivers 3664 * when this routine is called. Drivers for later 3665 * passes should have their identify routines called 3666 * on early-pass buses during BUS_NEW_PASS(). 3667 */ 3668 if (dl->pass > bus_current_pass) 3669 continue; 3670 DEVICE_IDENTIFY(dl->driver, dev); 3671 } 3672 3673 return (0); 3674 } 3675 3676 /** 3677 * @brief Helper function for implementing DEVICE_ATTACH() 3678 * 3679 * This function can be used to help implement the DEVICE_ATTACH() for 3680 * a bus. It calls device_probe_and_attach() for each of the device's 3681 * children. 3682 */ 3683 int 3684 bus_generic_attach(device_t dev) 3685 { 3686 device_t child; 3687 3688 TAILQ_FOREACH(child, &dev->children, link) { 3689 device_probe_and_attach(child); 3690 } 3691 3692 return (0); 3693 } 3694 3695 /** 3696 * @brief Helper function for implementing DEVICE_DETACH() 3697 * 3698 * This function can be used to help implement the DEVICE_DETACH() for 3699 * a bus. It calls device_detach() for each of the device's 3700 * children. 3701 */ 3702 int 3703 bus_generic_detach(device_t dev) 3704 { 3705 device_t child; 3706 int error; 3707 3708 if (dev->state != DS_ATTACHED) 3709 return (EBUSY); 3710 3711 TAILQ_FOREACH(child, &dev->children, link) { 3712 if ((error = device_detach(child)) != 0) 3713 return (error); 3714 } 3715 3716 return (0); 3717 } 3718 3719 /** 3720 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3721 * 3722 * This function can be used to help implement the DEVICE_SHUTDOWN() 3723 * for a bus. It calls device_shutdown() for each of the device's 3724 * children. 3725 */ 3726 int 3727 bus_generic_shutdown(device_t dev) 3728 { 3729 device_t child; 3730 3731 TAILQ_FOREACH(child, &dev->children, link) { 3732 device_shutdown(child); 3733 } 3734 3735 return (0); 3736 } 3737 3738 /** 3739 * @brief Default function for suspending a child device. 3740 * 3741 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3742 */ 3743 int 3744 bus_generic_suspend_child(device_t dev, device_t child) 3745 { 3746 int error; 3747 3748 error = DEVICE_SUSPEND(child); 3749 3750 if (error == 0) 3751 child->flags |= DF_SUSPENDED; 3752 3753 return (error); 3754 } 3755 3756 /** 3757 * @brief Default function for resuming a child device. 3758 * 3759 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3760 */ 3761 int 3762 bus_generic_resume_child(device_t dev, device_t child) 3763 { 3764 3765 DEVICE_RESUME(child); 3766 child->flags &= ~DF_SUSPENDED; 3767 3768 return (0); 3769 } 3770 3771 /** 3772 * @brief Helper function for implementing DEVICE_SUSPEND() 3773 * 3774 * This function can be used to help implement the DEVICE_SUSPEND() 3775 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3776 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3777 * operation is aborted and any devices which were suspended are 3778 * resumed immediately by calling their DEVICE_RESUME() methods. 3779 */ 3780 int 3781 bus_generic_suspend(device_t dev) 3782 { 3783 int error; 3784 device_t child, child2; 3785 3786 TAILQ_FOREACH(child, &dev->children, link) { 3787 error = BUS_SUSPEND_CHILD(dev, child); 3788 if (error) { 3789 for (child2 = TAILQ_FIRST(&dev->children); 3790 child2 && child2 != child; 3791 child2 = TAILQ_NEXT(child2, link)) 3792 BUS_RESUME_CHILD(dev, child2); 3793 return (error); 3794 } 3795 } 3796 return (0); 3797 } 3798 3799 /** 3800 * @brief Helper function for implementing DEVICE_RESUME() 3801 * 3802 * This function can be used to help implement the DEVICE_RESUME() for 3803 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3804 */ 3805 int 3806 bus_generic_resume(device_t dev) 3807 { 3808 device_t child; 3809 3810 TAILQ_FOREACH(child, &dev->children, link) { 3811 BUS_RESUME_CHILD(dev, child); 3812 /* if resume fails, there's nothing we can usefully do... */ 3813 } 3814 return (0); 3815 } 3816 3817 /** 3818 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3819 * 3820 * This function prints the first part of the ascii representation of 3821 * @p child, including its name, unit and description (if any - see 3822 * device_set_desc()). 3823 * 3824 * @returns the number of characters printed 3825 */ 3826 int 3827 bus_print_child_header(device_t dev, device_t child) 3828 { 3829 int retval = 0; 3830 3831 if (device_get_desc(child)) { 3832 retval += device_printf(child, "<%s>", device_get_desc(child)); 3833 } else { 3834 retval += printf("%s", device_get_nameunit(child)); 3835 } 3836 3837 return (retval); 3838 } 3839 3840 /** 3841 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3842 * 3843 * This function prints the last part of the ascii representation of 3844 * @p child, which consists of the string @c " on " followed by the 3845 * name and unit of the @p dev. 3846 * 3847 * @returns the number of characters printed 3848 */ 3849 int 3850 bus_print_child_footer(device_t dev, device_t child) 3851 { 3852 return (printf(" on %s\n", device_get_nameunit(dev))); 3853 } 3854 3855 /** 3856 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3857 * 3858 * This function prints out the VM domain for the given device. 3859 * 3860 * @returns the number of characters printed 3861 */ 3862 int 3863 bus_print_child_domain(device_t dev, device_t child) 3864 { 3865 int domain; 3866 3867 /* No domain? Don't print anything */ 3868 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 3869 return (0); 3870 3871 return (printf(" numa-domain %d", domain)); 3872 } 3873 3874 /** 3875 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3876 * 3877 * This function simply calls bus_print_child_header() followed by 3878 * bus_print_child_footer(). 3879 * 3880 * @returns the number of characters printed 3881 */ 3882 int 3883 bus_generic_print_child(device_t dev, device_t child) 3884 { 3885 int retval = 0; 3886 3887 retval += bus_print_child_header(dev, child); 3888 retval += bus_print_child_domain(dev, child); 3889 retval += bus_print_child_footer(dev, child); 3890 3891 return (retval); 3892 } 3893 3894 /** 3895 * @brief Stub function for implementing BUS_READ_IVAR(). 3896 * 3897 * @returns ENOENT 3898 */ 3899 int 3900 bus_generic_read_ivar(device_t dev, device_t child, int index, 3901 uintptr_t * result) 3902 { 3903 return (ENOENT); 3904 } 3905 3906 /** 3907 * @brief Stub function for implementing BUS_WRITE_IVAR(). 3908 * 3909 * @returns ENOENT 3910 */ 3911 int 3912 bus_generic_write_ivar(device_t dev, device_t child, int index, 3913 uintptr_t value) 3914 { 3915 return (ENOENT); 3916 } 3917 3918 /** 3919 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 3920 * 3921 * @returns NULL 3922 */ 3923 struct resource_list * 3924 bus_generic_get_resource_list(device_t dev, device_t child) 3925 { 3926 return (NULL); 3927 } 3928 3929 /** 3930 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 3931 * 3932 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 3933 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 3934 * and then calls device_probe_and_attach() for each unattached child. 3935 */ 3936 void 3937 bus_generic_driver_added(device_t dev, driver_t *driver) 3938 { 3939 device_t child; 3940 3941 DEVICE_IDENTIFY(driver, dev); 3942 TAILQ_FOREACH(child, &dev->children, link) { 3943 if (child->state == DS_NOTPRESENT || 3944 (child->flags & DF_REBID)) 3945 device_probe_and_attach(child); 3946 } 3947 } 3948 3949 /** 3950 * @brief Helper function for implementing BUS_NEW_PASS(). 3951 * 3952 * This implementing of BUS_NEW_PASS() first calls the identify 3953 * routines for any drivers that probe at the current pass. Then it 3954 * walks the list of devices for this bus. If a device is already 3955 * attached, then it calls BUS_NEW_PASS() on that device. If the 3956 * device is not already attached, it attempts to attach a driver to 3957 * it. 3958 */ 3959 void 3960 bus_generic_new_pass(device_t dev) 3961 { 3962 driverlink_t dl; 3963 devclass_t dc; 3964 device_t child; 3965 3966 dc = dev->devclass; 3967 TAILQ_FOREACH(dl, &dc->drivers, link) { 3968 if (dl->pass == bus_current_pass) 3969 DEVICE_IDENTIFY(dl->driver, dev); 3970 } 3971 TAILQ_FOREACH(child, &dev->children, link) { 3972 if (child->state >= DS_ATTACHED) 3973 BUS_NEW_PASS(child); 3974 else if (child->state == DS_NOTPRESENT) 3975 device_probe_and_attach(child); 3976 } 3977 } 3978 3979 /** 3980 * @brief Helper function for implementing BUS_SETUP_INTR(). 3981 * 3982 * This simple implementation of BUS_SETUP_INTR() simply calls the 3983 * BUS_SETUP_INTR() method of the parent of @p dev. 3984 */ 3985 int 3986 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 3987 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 3988 void **cookiep) 3989 { 3990 /* Propagate up the bus hierarchy until someone handles it. */ 3991 if (dev->parent) 3992 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 3993 filter, intr, arg, cookiep)); 3994 return (EINVAL); 3995 } 3996 3997 /** 3998 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 3999 * 4000 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 4001 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 4002 */ 4003 int 4004 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 4005 void *cookie) 4006 { 4007 /* Propagate up the bus hierarchy until someone handles it. */ 4008 if (dev->parent) 4009 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 4010 return (EINVAL); 4011 } 4012 4013 /** 4014 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4015 * 4016 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 4017 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 4018 */ 4019 int 4020 bus_generic_adjust_resource(device_t dev, device_t child, int type, 4021 struct resource *r, rman_res_t start, rman_res_t end) 4022 { 4023 /* Propagate up the bus hierarchy until someone handles it. */ 4024 if (dev->parent) 4025 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 4026 end)); 4027 return (EINVAL); 4028 } 4029 4030 /** 4031 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4032 * 4033 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 4034 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 4035 */ 4036 struct resource * 4037 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4038 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4039 { 4040 /* Propagate up the bus hierarchy until someone handles it. */ 4041 if (dev->parent) 4042 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4043 start, end, count, flags)); 4044 return (NULL); 4045 } 4046 4047 /** 4048 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4049 * 4050 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4051 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4052 */ 4053 int 4054 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 4055 struct resource *r) 4056 { 4057 /* Propagate up the bus hierarchy until someone handles it. */ 4058 if (dev->parent) 4059 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 4060 r)); 4061 return (EINVAL); 4062 } 4063 4064 /** 4065 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4066 * 4067 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4068 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4069 */ 4070 int 4071 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 4072 struct resource *r) 4073 { 4074 /* Propagate up the bus hierarchy until someone handles it. */ 4075 if (dev->parent) 4076 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 4077 r)); 4078 return (EINVAL); 4079 } 4080 4081 /** 4082 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4083 * 4084 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4085 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4086 */ 4087 int 4088 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 4089 int rid, struct resource *r) 4090 { 4091 /* Propagate up the bus hierarchy until someone handles it. */ 4092 if (dev->parent) 4093 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4094 r)); 4095 return (EINVAL); 4096 } 4097 4098 /** 4099 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4100 * 4101 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4102 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4103 */ 4104 int 4105 bus_generic_map_resource(device_t dev, device_t child, int type, 4106 struct resource *r, struct resource_map_request *args, 4107 struct resource_map *map) 4108 { 4109 /* Propagate up the bus hierarchy until someone handles it. */ 4110 if (dev->parent) 4111 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 4112 map)); 4113 return (EINVAL); 4114 } 4115 4116 /** 4117 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4118 * 4119 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4120 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4121 */ 4122 int 4123 bus_generic_unmap_resource(device_t dev, device_t child, int type, 4124 struct resource *r, struct resource_map *map) 4125 { 4126 /* Propagate up the bus hierarchy until someone handles it. */ 4127 if (dev->parent) 4128 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 4129 return (EINVAL); 4130 } 4131 4132 /** 4133 * @brief Helper function for implementing BUS_BIND_INTR(). 4134 * 4135 * This simple implementation of BUS_BIND_INTR() simply calls the 4136 * BUS_BIND_INTR() method of the parent of @p dev. 4137 */ 4138 int 4139 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4140 int cpu) 4141 { 4142 4143 /* Propagate up the bus hierarchy until someone handles it. */ 4144 if (dev->parent) 4145 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4146 return (EINVAL); 4147 } 4148 4149 /** 4150 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4151 * 4152 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4153 * BUS_CONFIG_INTR() method of the parent of @p dev. 4154 */ 4155 int 4156 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4157 enum intr_polarity pol) 4158 { 4159 4160 /* Propagate up the bus hierarchy until someone handles it. */ 4161 if (dev->parent) 4162 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4163 return (EINVAL); 4164 } 4165 4166 /** 4167 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4168 * 4169 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4170 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4171 */ 4172 int 4173 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4174 void *cookie, const char *descr) 4175 { 4176 4177 /* Propagate up the bus hierarchy until someone handles it. */ 4178 if (dev->parent) 4179 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4180 descr)); 4181 return (EINVAL); 4182 } 4183 4184 /** 4185 * @brief Helper function for implementing BUS_GET_CPUS(). 4186 * 4187 * This simple implementation of BUS_GET_CPUS() simply calls the 4188 * BUS_GET_CPUS() method of the parent of @p dev. 4189 */ 4190 int 4191 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4192 size_t setsize, cpuset_t *cpuset) 4193 { 4194 4195 /* Propagate up the bus hierarchy until someone handles it. */ 4196 if (dev->parent != NULL) 4197 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4198 return (EINVAL); 4199 } 4200 4201 /** 4202 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4203 * 4204 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4205 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4206 */ 4207 bus_dma_tag_t 4208 bus_generic_get_dma_tag(device_t dev, device_t child) 4209 { 4210 4211 /* Propagate up the bus hierarchy until someone handles it. */ 4212 if (dev->parent != NULL) 4213 return (BUS_GET_DMA_TAG(dev->parent, child)); 4214 return (NULL); 4215 } 4216 4217 /** 4218 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4219 * 4220 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4221 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4222 */ 4223 bus_space_tag_t 4224 bus_generic_get_bus_tag(device_t dev, device_t child) 4225 { 4226 4227 /* Propagate up the bus hierarchy until someone handles it. */ 4228 if (dev->parent != NULL) 4229 return (BUS_GET_BUS_TAG(dev->parent, child)); 4230 return ((bus_space_tag_t)0); 4231 } 4232 4233 /** 4234 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4235 * 4236 * This implementation of BUS_GET_RESOURCE() uses the 4237 * resource_list_find() function to do most of the work. It calls 4238 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4239 * search. 4240 */ 4241 int 4242 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4243 rman_res_t *startp, rman_res_t *countp) 4244 { 4245 struct resource_list * rl = NULL; 4246 struct resource_list_entry * rle = NULL; 4247 4248 rl = BUS_GET_RESOURCE_LIST(dev, child); 4249 if (!rl) 4250 return (EINVAL); 4251 4252 rle = resource_list_find(rl, type, rid); 4253 if (!rle) 4254 return (ENOENT); 4255 4256 if (startp) 4257 *startp = rle->start; 4258 if (countp) 4259 *countp = rle->count; 4260 4261 return (0); 4262 } 4263 4264 /** 4265 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4266 * 4267 * This implementation of BUS_SET_RESOURCE() uses the 4268 * resource_list_add() function to do most of the work. It calls 4269 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4270 * edit. 4271 */ 4272 int 4273 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4274 rman_res_t start, rman_res_t count) 4275 { 4276 struct resource_list * rl = NULL; 4277 4278 rl = BUS_GET_RESOURCE_LIST(dev, child); 4279 if (!rl) 4280 return (EINVAL); 4281 4282 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4283 4284 return (0); 4285 } 4286 4287 /** 4288 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4289 * 4290 * This implementation of BUS_DELETE_RESOURCE() uses the 4291 * resource_list_delete() function to do most of the work. It calls 4292 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4293 * edit. 4294 */ 4295 void 4296 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4297 { 4298 struct resource_list * rl = NULL; 4299 4300 rl = BUS_GET_RESOURCE_LIST(dev, child); 4301 if (!rl) 4302 return; 4303 4304 resource_list_delete(rl, type, rid); 4305 4306 return; 4307 } 4308 4309 /** 4310 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4311 * 4312 * This implementation of BUS_RELEASE_RESOURCE() uses the 4313 * resource_list_release() function to do most of the work. It calls 4314 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4315 */ 4316 int 4317 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4318 int rid, struct resource *r) 4319 { 4320 struct resource_list * rl = NULL; 4321 4322 if (device_get_parent(child) != dev) 4323 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4324 type, rid, r)); 4325 4326 rl = BUS_GET_RESOURCE_LIST(dev, child); 4327 if (!rl) 4328 return (EINVAL); 4329 4330 return (resource_list_release(rl, dev, child, type, rid, r)); 4331 } 4332 4333 /** 4334 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4335 * 4336 * This implementation of BUS_ALLOC_RESOURCE() uses the 4337 * resource_list_alloc() function to do most of the work. It calls 4338 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4339 */ 4340 struct resource * 4341 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4342 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4343 { 4344 struct resource_list * rl = NULL; 4345 4346 if (device_get_parent(child) != dev) 4347 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4348 type, rid, start, end, count, flags)); 4349 4350 rl = BUS_GET_RESOURCE_LIST(dev, child); 4351 if (!rl) 4352 return (NULL); 4353 4354 return (resource_list_alloc(rl, dev, child, type, rid, 4355 start, end, count, flags)); 4356 } 4357 4358 /** 4359 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4360 * 4361 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4362 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4363 */ 4364 int 4365 bus_generic_child_present(device_t dev, device_t child) 4366 { 4367 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4368 } 4369 4370 int 4371 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4372 { 4373 4374 if (dev->parent) 4375 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4376 4377 return (ENOENT); 4378 } 4379 4380 /** 4381 * @brief Helper function for implementing BUS_RESCAN(). 4382 * 4383 * This null implementation of BUS_RESCAN() always fails to indicate 4384 * the bus does not support rescanning. 4385 */ 4386 int 4387 bus_null_rescan(device_t dev) 4388 { 4389 4390 return (ENXIO); 4391 } 4392 4393 /* 4394 * Some convenience functions to make it easier for drivers to use the 4395 * resource-management functions. All these really do is hide the 4396 * indirection through the parent's method table, making for slightly 4397 * less-wordy code. In the future, it might make sense for this code 4398 * to maintain some sort of a list of resources allocated by each device. 4399 */ 4400 4401 int 4402 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4403 struct resource **res) 4404 { 4405 int i; 4406 4407 for (i = 0; rs[i].type != -1; i++) 4408 res[i] = NULL; 4409 for (i = 0; rs[i].type != -1; i++) { 4410 res[i] = bus_alloc_resource_any(dev, 4411 rs[i].type, &rs[i].rid, rs[i].flags); 4412 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4413 bus_release_resources(dev, rs, res); 4414 return (ENXIO); 4415 } 4416 } 4417 return (0); 4418 } 4419 4420 void 4421 bus_release_resources(device_t dev, const struct resource_spec *rs, 4422 struct resource **res) 4423 { 4424 int i; 4425 4426 for (i = 0; rs[i].type != -1; i++) 4427 if (res[i] != NULL) { 4428 bus_release_resource( 4429 dev, rs[i].type, rs[i].rid, res[i]); 4430 res[i] = NULL; 4431 } 4432 } 4433 4434 /** 4435 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4436 * 4437 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4438 * parent of @p dev. 4439 */ 4440 struct resource * 4441 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4442 rman_res_t end, rman_res_t count, u_int flags) 4443 { 4444 struct resource *res; 4445 4446 if (dev->parent == NULL) 4447 return (NULL); 4448 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4449 count, flags); 4450 return (res); 4451 } 4452 4453 /** 4454 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4455 * 4456 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4457 * parent of @p dev. 4458 */ 4459 int 4460 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4461 rman_res_t end) 4462 { 4463 if (dev->parent == NULL) 4464 return (EINVAL); 4465 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4466 } 4467 4468 /** 4469 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4470 * 4471 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4472 * parent of @p dev. 4473 */ 4474 int 4475 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4476 { 4477 if (dev->parent == NULL) 4478 return (EINVAL); 4479 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4480 } 4481 4482 /** 4483 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4484 * 4485 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4486 * parent of @p dev. 4487 */ 4488 int 4489 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4490 { 4491 if (dev->parent == NULL) 4492 return (EINVAL); 4493 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4494 } 4495 4496 /** 4497 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4498 * 4499 * This function simply calls the BUS_MAP_RESOURCE() method of the 4500 * parent of @p dev. 4501 */ 4502 int 4503 bus_map_resource(device_t dev, int type, struct resource *r, 4504 struct resource_map_request *args, struct resource_map *map) 4505 { 4506 if (dev->parent == NULL) 4507 return (EINVAL); 4508 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4509 } 4510 4511 /** 4512 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4513 * 4514 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4515 * parent of @p dev. 4516 */ 4517 int 4518 bus_unmap_resource(device_t dev, int type, struct resource *r, 4519 struct resource_map *map) 4520 { 4521 if (dev->parent == NULL) 4522 return (EINVAL); 4523 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4524 } 4525 4526 /** 4527 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4528 * 4529 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4530 * parent of @p dev. 4531 */ 4532 int 4533 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4534 { 4535 int rv; 4536 4537 if (dev->parent == NULL) 4538 return (EINVAL); 4539 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4540 return (rv); 4541 } 4542 4543 /** 4544 * @brief Wrapper function for BUS_SETUP_INTR(). 4545 * 4546 * This function simply calls the BUS_SETUP_INTR() method of the 4547 * parent of @p dev. 4548 */ 4549 int 4550 bus_setup_intr(device_t dev, struct resource *r, int flags, 4551 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4552 { 4553 int error; 4554 4555 if (dev->parent == NULL) 4556 return (EINVAL); 4557 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4558 arg, cookiep); 4559 if (error != 0) 4560 return (error); 4561 if (handler != NULL && !(flags & INTR_MPSAFE)) 4562 device_printf(dev, "[GIANT-LOCKED]\n"); 4563 return (0); 4564 } 4565 4566 /** 4567 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4568 * 4569 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4570 * parent of @p dev. 4571 */ 4572 int 4573 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4574 { 4575 if (dev->parent == NULL) 4576 return (EINVAL); 4577 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4578 } 4579 4580 /** 4581 * @brief Wrapper function for BUS_BIND_INTR(). 4582 * 4583 * This function simply calls the BUS_BIND_INTR() method of the 4584 * parent of @p dev. 4585 */ 4586 int 4587 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4588 { 4589 if (dev->parent == NULL) 4590 return (EINVAL); 4591 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4592 } 4593 4594 /** 4595 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4596 * 4597 * This function first formats the requested description into a 4598 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4599 * the parent of @p dev. 4600 */ 4601 int 4602 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4603 const char *fmt, ...) 4604 { 4605 va_list ap; 4606 char descr[MAXCOMLEN + 1]; 4607 4608 if (dev->parent == NULL) 4609 return (EINVAL); 4610 va_start(ap, fmt); 4611 vsnprintf(descr, sizeof(descr), fmt, ap); 4612 va_end(ap); 4613 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4614 } 4615 4616 /** 4617 * @brief Wrapper function for BUS_SET_RESOURCE(). 4618 * 4619 * This function simply calls the BUS_SET_RESOURCE() method of the 4620 * parent of @p dev. 4621 */ 4622 int 4623 bus_set_resource(device_t dev, int type, int rid, 4624 rman_res_t start, rman_res_t count) 4625 { 4626 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4627 start, count)); 4628 } 4629 4630 /** 4631 * @brief Wrapper function for BUS_GET_RESOURCE(). 4632 * 4633 * This function simply calls the BUS_GET_RESOURCE() method of the 4634 * parent of @p dev. 4635 */ 4636 int 4637 bus_get_resource(device_t dev, int type, int rid, 4638 rman_res_t *startp, rman_res_t *countp) 4639 { 4640 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4641 startp, countp)); 4642 } 4643 4644 /** 4645 * @brief Wrapper function for BUS_GET_RESOURCE(). 4646 * 4647 * This function simply calls the BUS_GET_RESOURCE() method of the 4648 * parent of @p dev and returns the start value. 4649 */ 4650 rman_res_t 4651 bus_get_resource_start(device_t dev, int type, int rid) 4652 { 4653 rman_res_t start; 4654 rman_res_t count; 4655 int error; 4656 4657 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4658 &start, &count); 4659 if (error) 4660 return (0); 4661 return (start); 4662 } 4663 4664 /** 4665 * @brief Wrapper function for BUS_GET_RESOURCE(). 4666 * 4667 * This function simply calls the BUS_GET_RESOURCE() method of the 4668 * parent of @p dev and returns the count value. 4669 */ 4670 rman_res_t 4671 bus_get_resource_count(device_t dev, int type, int rid) 4672 { 4673 rman_res_t start; 4674 rman_res_t count; 4675 int error; 4676 4677 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4678 &start, &count); 4679 if (error) 4680 return (0); 4681 return (count); 4682 } 4683 4684 /** 4685 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4686 * 4687 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4688 * parent of @p dev. 4689 */ 4690 void 4691 bus_delete_resource(device_t dev, int type, int rid) 4692 { 4693 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4694 } 4695 4696 /** 4697 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4698 * 4699 * This function simply calls the BUS_CHILD_PRESENT() method of the 4700 * parent of @p dev. 4701 */ 4702 int 4703 bus_child_present(device_t child) 4704 { 4705 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4706 } 4707 4708 /** 4709 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4710 * 4711 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4712 * parent of @p dev. 4713 */ 4714 int 4715 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4716 { 4717 device_t parent; 4718 4719 parent = device_get_parent(child); 4720 if (parent == NULL) { 4721 *buf = '\0'; 4722 return (0); 4723 } 4724 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4725 } 4726 4727 /** 4728 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4729 * 4730 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4731 * parent of @p dev. 4732 */ 4733 int 4734 bus_child_location_str(device_t child, char *buf, size_t buflen) 4735 { 4736 device_t parent; 4737 4738 parent = device_get_parent(child); 4739 if (parent == NULL) { 4740 *buf = '\0'; 4741 return (0); 4742 } 4743 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4744 } 4745 4746 /** 4747 * @brief Wrapper function for BUS_GET_CPUS(). 4748 * 4749 * This function simply calls the BUS_GET_CPUS() method of the 4750 * parent of @p dev. 4751 */ 4752 int 4753 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 4754 { 4755 device_t parent; 4756 4757 parent = device_get_parent(dev); 4758 if (parent == NULL) 4759 return (EINVAL); 4760 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 4761 } 4762 4763 /** 4764 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4765 * 4766 * This function simply calls the BUS_GET_DMA_TAG() method of the 4767 * parent of @p dev. 4768 */ 4769 bus_dma_tag_t 4770 bus_get_dma_tag(device_t dev) 4771 { 4772 device_t parent; 4773 4774 parent = device_get_parent(dev); 4775 if (parent == NULL) 4776 return (NULL); 4777 return (BUS_GET_DMA_TAG(parent, dev)); 4778 } 4779 4780 /** 4781 * @brief Wrapper function for BUS_GET_BUS_TAG(). 4782 * 4783 * This function simply calls the BUS_GET_BUS_TAG() method of the 4784 * parent of @p dev. 4785 */ 4786 bus_space_tag_t 4787 bus_get_bus_tag(device_t dev) 4788 { 4789 device_t parent; 4790 4791 parent = device_get_parent(dev); 4792 if (parent == NULL) 4793 return ((bus_space_tag_t)0); 4794 return (BUS_GET_BUS_TAG(parent, dev)); 4795 } 4796 4797 /** 4798 * @brief Wrapper function for BUS_GET_DOMAIN(). 4799 * 4800 * This function simply calls the BUS_GET_DOMAIN() method of the 4801 * parent of @p dev. 4802 */ 4803 int 4804 bus_get_domain(device_t dev, int *domain) 4805 { 4806 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 4807 } 4808 4809 /* Resume all devices and then notify userland that we're up again. */ 4810 static int 4811 root_resume(device_t dev) 4812 { 4813 int error; 4814 4815 error = bus_generic_resume(dev); 4816 if (error == 0) 4817 devctl_notify("kern", "power", "resume", NULL); 4818 return (error); 4819 } 4820 4821 static int 4822 root_print_child(device_t dev, device_t child) 4823 { 4824 int retval = 0; 4825 4826 retval += bus_print_child_header(dev, child); 4827 retval += printf("\n"); 4828 4829 return (retval); 4830 } 4831 4832 static int 4833 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4834 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4835 { 4836 /* 4837 * If an interrupt mapping gets to here something bad has happened. 4838 */ 4839 panic("root_setup_intr"); 4840 } 4841 4842 /* 4843 * If we get here, assume that the device is permanent and really is 4844 * present in the system. Removable bus drivers are expected to intercept 4845 * this call long before it gets here. We return -1 so that drivers that 4846 * really care can check vs -1 or some ERRNO returned higher in the food 4847 * chain. 4848 */ 4849 static int 4850 root_child_present(device_t dev, device_t child) 4851 { 4852 return (-1); 4853 } 4854 4855 static int 4856 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 4857 cpuset_t *cpuset) 4858 { 4859 4860 switch (op) { 4861 case INTR_CPUS: 4862 /* Default to returning the set of all CPUs. */ 4863 if (setsize != sizeof(cpuset_t)) 4864 return (EINVAL); 4865 *cpuset = all_cpus; 4866 return (0); 4867 default: 4868 return (EINVAL); 4869 } 4870 } 4871 4872 static kobj_method_t root_methods[] = { 4873 /* Device interface */ 4874 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 4875 KOBJMETHOD(device_suspend, bus_generic_suspend), 4876 KOBJMETHOD(device_resume, root_resume), 4877 4878 /* Bus interface */ 4879 KOBJMETHOD(bus_print_child, root_print_child), 4880 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 4881 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 4882 KOBJMETHOD(bus_setup_intr, root_setup_intr), 4883 KOBJMETHOD(bus_child_present, root_child_present), 4884 KOBJMETHOD(bus_get_cpus, root_get_cpus), 4885 4886 KOBJMETHOD_END 4887 }; 4888 4889 static driver_t root_driver = { 4890 "root", 4891 root_methods, 4892 1, /* no softc */ 4893 }; 4894 4895 device_t root_bus; 4896 devclass_t root_devclass; 4897 4898 static int 4899 root_bus_module_handler(module_t mod, int what, void* arg) 4900 { 4901 switch (what) { 4902 case MOD_LOAD: 4903 TAILQ_INIT(&bus_data_devices); 4904 kobj_class_compile((kobj_class_t) &root_driver); 4905 root_bus = make_device(NULL, "root", 0); 4906 root_bus->desc = "System root bus"; 4907 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 4908 root_bus->driver = &root_driver; 4909 root_bus->state = DS_ATTACHED; 4910 root_devclass = devclass_find_internal("root", NULL, FALSE); 4911 devinit(); 4912 return (0); 4913 4914 case MOD_SHUTDOWN: 4915 device_shutdown(root_bus); 4916 return (0); 4917 default: 4918 return (EOPNOTSUPP); 4919 } 4920 4921 return (0); 4922 } 4923 4924 static moduledata_t root_bus_mod = { 4925 "rootbus", 4926 root_bus_module_handler, 4927 NULL 4928 }; 4929 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 4930 4931 /** 4932 * @brief Automatically configure devices 4933 * 4934 * This function begins the autoconfiguration process by calling 4935 * device_probe_and_attach() for each child of the @c root0 device. 4936 */ 4937 void 4938 root_bus_configure(void) 4939 { 4940 4941 PDEBUG((".")); 4942 4943 /* Eventually this will be split up, but this is sufficient for now. */ 4944 bus_set_pass(BUS_PASS_DEFAULT); 4945 } 4946 4947 /** 4948 * @brief Module handler for registering device drivers 4949 * 4950 * This module handler is used to automatically register device 4951 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 4952 * devclass_add_driver() for the driver described by the 4953 * driver_module_data structure pointed to by @p arg 4954 */ 4955 int 4956 driver_module_handler(module_t mod, int what, void *arg) 4957 { 4958 struct driver_module_data *dmd; 4959 devclass_t bus_devclass; 4960 kobj_class_t driver; 4961 int error, pass; 4962 4963 dmd = (struct driver_module_data *)arg; 4964 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 4965 error = 0; 4966 4967 switch (what) { 4968 case MOD_LOAD: 4969 if (dmd->dmd_chainevh) 4970 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4971 4972 pass = dmd->dmd_pass; 4973 driver = dmd->dmd_driver; 4974 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 4975 DRIVERNAME(driver), dmd->dmd_busname, pass)); 4976 error = devclass_add_driver(bus_devclass, driver, pass, 4977 dmd->dmd_devclass); 4978 break; 4979 4980 case MOD_UNLOAD: 4981 PDEBUG(("Unloading module: driver %s from bus %s", 4982 DRIVERNAME(dmd->dmd_driver), 4983 dmd->dmd_busname)); 4984 error = devclass_delete_driver(bus_devclass, 4985 dmd->dmd_driver); 4986 4987 if (!error && dmd->dmd_chainevh) 4988 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4989 break; 4990 case MOD_QUIESCE: 4991 PDEBUG(("Quiesce module: driver %s from bus %s", 4992 DRIVERNAME(dmd->dmd_driver), 4993 dmd->dmd_busname)); 4994 error = devclass_quiesce_driver(bus_devclass, 4995 dmd->dmd_driver); 4996 4997 if (!error && dmd->dmd_chainevh) 4998 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 4999 break; 5000 default: 5001 error = EOPNOTSUPP; 5002 break; 5003 } 5004 5005 return (error); 5006 } 5007 5008 /** 5009 * @brief Enumerate all hinted devices for this bus. 5010 * 5011 * Walks through the hints for this bus and calls the bus_hinted_child 5012 * routine for each one it fines. It searches first for the specific 5013 * bus that's being probed for hinted children (eg isa0), and then for 5014 * generic children (eg isa). 5015 * 5016 * @param dev bus device to enumerate 5017 */ 5018 void 5019 bus_enumerate_hinted_children(device_t bus) 5020 { 5021 int i; 5022 const char *dname, *busname; 5023 int dunit; 5024 5025 /* 5026 * enumerate all devices on the specific bus 5027 */ 5028 busname = device_get_nameunit(bus); 5029 i = 0; 5030 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5031 BUS_HINTED_CHILD(bus, dname, dunit); 5032 5033 /* 5034 * and all the generic ones. 5035 */ 5036 busname = device_get_name(bus); 5037 i = 0; 5038 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5039 BUS_HINTED_CHILD(bus, dname, dunit); 5040 } 5041 5042 #ifdef BUS_DEBUG 5043 5044 /* the _short versions avoid iteration by not calling anything that prints 5045 * more than oneliners. I love oneliners. 5046 */ 5047 5048 static void 5049 print_device_short(device_t dev, int indent) 5050 { 5051 if (!dev) 5052 return; 5053 5054 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5055 dev->unit, dev->desc, 5056 (dev->parent? "":"no "), 5057 (TAILQ_EMPTY(&dev->children)? "no ":""), 5058 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5059 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5060 (dev->flags&DF_WILDCARD? "wildcard,":""), 5061 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5062 (dev->flags&DF_REBID? "rebiddable,":""), 5063 (dev->ivars? "":"no "), 5064 (dev->softc? "":"no "), 5065 dev->busy)); 5066 } 5067 5068 static void 5069 print_device(device_t dev, int indent) 5070 { 5071 if (!dev) 5072 return; 5073 5074 print_device_short(dev, indent); 5075 5076 indentprintf(("Parent:\n")); 5077 print_device_short(dev->parent, indent+1); 5078 indentprintf(("Driver:\n")); 5079 print_driver_short(dev->driver, indent+1); 5080 indentprintf(("Devclass:\n")); 5081 print_devclass_short(dev->devclass, indent+1); 5082 } 5083 5084 void 5085 print_device_tree_short(device_t dev, int indent) 5086 /* print the device and all its children (indented) */ 5087 { 5088 device_t child; 5089 5090 if (!dev) 5091 return; 5092 5093 print_device_short(dev, indent); 5094 5095 TAILQ_FOREACH(child, &dev->children, link) { 5096 print_device_tree_short(child, indent+1); 5097 } 5098 } 5099 5100 void 5101 print_device_tree(device_t dev, int indent) 5102 /* print the device and all its children (indented) */ 5103 { 5104 device_t child; 5105 5106 if (!dev) 5107 return; 5108 5109 print_device(dev, indent); 5110 5111 TAILQ_FOREACH(child, &dev->children, link) { 5112 print_device_tree(child, indent+1); 5113 } 5114 } 5115 5116 static void 5117 print_driver_short(driver_t *driver, int indent) 5118 { 5119 if (!driver) 5120 return; 5121 5122 indentprintf(("driver %s: softc size = %zd\n", 5123 driver->name, driver->size)); 5124 } 5125 5126 static void 5127 print_driver(driver_t *driver, int indent) 5128 { 5129 if (!driver) 5130 return; 5131 5132 print_driver_short(driver, indent); 5133 } 5134 5135 static void 5136 print_driver_list(driver_list_t drivers, int indent) 5137 { 5138 driverlink_t driver; 5139 5140 TAILQ_FOREACH(driver, &drivers, link) { 5141 print_driver(driver->driver, indent); 5142 } 5143 } 5144 5145 static void 5146 print_devclass_short(devclass_t dc, int indent) 5147 { 5148 if ( !dc ) 5149 return; 5150 5151 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5152 } 5153 5154 static void 5155 print_devclass(devclass_t dc, int indent) 5156 { 5157 int i; 5158 5159 if ( !dc ) 5160 return; 5161 5162 print_devclass_short(dc, indent); 5163 indentprintf(("Drivers:\n")); 5164 print_driver_list(dc->drivers, indent+1); 5165 5166 indentprintf(("Devices:\n")); 5167 for (i = 0; i < dc->maxunit; i++) 5168 if (dc->devices[i]) 5169 print_device(dc->devices[i], indent+1); 5170 } 5171 5172 void 5173 print_devclass_list_short(void) 5174 { 5175 devclass_t dc; 5176 5177 printf("Short listing of devclasses, drivers & devices:\n"); 5178 TAILQ_FOREACH(dc, &devclasses, link) { 5179 print_devclass_short(dc, 0); 5180 } 5181 } 5182 5183 void 5184 print_devclass_list(void) 5185 { 5186 devclass_t dc; 5187 5188 printf("Full listing of devclasses, drivers & devices:\n"); 5189 TAILQ_FOREACH(dc, &devclasses, link) { 5190 print_devclass(dc, 0); 5191 } 5192 } 5193 5194 #endif 5195 5196 /* 5197 * User-space access to the device tree. 5198 * 5199 * We implement a small set of nodes: 5200 * 5201 * hw.bus Single integer read method to obtain the 5202 * current generation count. 5203 * hw.bus.devices Reads the entire device tree in flat space. 5204 * hw.bus.rman Resource manager interface 5205 * 5206 * We might like to add the ability to scan devclasses and/or drivers to 5207 * determine what else is currently loaded/available. 5208 */ 5209 5210 static int 5211 sysctl_bus(SYSCTL_HANDLER_ARGS) 5212 { 5213 struct u_businfo ubus; 5214 5215 ubus.ub_version = BUS_USER_VERSION; 5216 ubus.ub_generation = bus_data_generation; 5217 5218 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5219 } 5220 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 5221 "bus-related data"); 5222 5223 static int 5224 sysctl_devices(SYSCTL_HANDLER_ARGS) 5225 { 5226 int *name = (int *)arg1; 5227 u_int namelen = arg2; 5228 int index; 5229 device_t dev; 5230 struct u_device udev; /* XXX this is a bit big */ 5231 int error; 5232 5233 if (namelen != 2) 5234 return (EINVAL); 5235 5236 if (bus_data_generation_check(name[0])) 5237 return (EINVAL); 5238 5239 index = name[1]; 5240 5241 /* 5242 * Scan the list of devices, looking for the requested index. 5243 */ 5244 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5245 if (index-- == 0) 5246 break; 5247 } 5248 if (dev == NULL) 5249 return (ENOENT); 5250 5251 /* 5252 * Populate the return array. 5253 */ 5254 bzero(&udev, sizeof(udev)); 5255 udev.dv_handle = (uintptr_t)dev; 5256 udev.dv_parent = (uintptr_t)dev->parent; 5257 if (dev->nameunit != NULL) 5258 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 5259 if (dev->desc != NULL) 5260 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 5261 if (dev->driver != NULL && dev->driver->name != NULL) 5262 strlcpy(udev.dv_drivername, dev->driver->name, 5263 sizeof(udev.dv_drivername)); 5264 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 5265 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 5266 udev.dv_devflags = dev->devflags; 5267 udev.dv_flags = dev->flags; 5268 udev.dv_state = dev->state; 5269 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 5270 return (error); 5271 } 5272 5273 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 5274 "system device tree"); 5275 5276 int 5277 bus_data_generation_check(int generation) 5278 { 5279 if (generation != bus_data_generation) 5280 return (1); 5281 5282 /* XXX generate optimised lists here? */ 5283 return (0); 5284 } 5285 5286 void 5287 bus_data_generation_update(void) 5288 { 5289 bus_data_generation++; 5290 } 5291 5292 int 5293 bus_free_resource(device_t dev, int type, struct resource *r) 5294 { 5295 if (r == NULL) 5296 return (0); 5297 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5298 } 5299 5300 device_t 5301 device_lookup_by_name(const char *name) 5302 { 5303 device_t dev; 5304 5305 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5306 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5307 return (dev); 5308 } 5309 return (NULL); 5310 } 5311 5312 /* 5313 * /dev/devctl2 implementation. The existing /dev/devctl device has 5314 * implicit semantics on open, so it could not be reused for this. 5315 * Another option would be to call this /dev/bus? 5316 */ 5317 static int 5318 find_device(struct devreq *req, device_t *devp) 5319 { 5320 device_t dev; 5321 5322 /* 5323 * First, ensure that the name is nul terminated. 5324 */ 5325 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5326 return (EINVAL); 5327 5328 /* 5329 * Second, try to find an attached device whose name matches 5330 * 'name'. 5331 */ 5332 dev = device_lookup_by_name(req->dr_name); 5333 if (dev != NULL) { 5334 *devp = dev; 5335 return (0); 5336 } 5337 5338 /* Finally, give device enumerators a chance. */ 5339 dev = NULL; 5340 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5341 if (dev == NULL) 5342 return (ENOENT); 5343 *devp = dev; 5344 return (0); 5345 } 5346 5347 static bool 5348 driver_exists(device_t bus, const char *driver) 5349 { 5350 devclass_t dc; 5351 5352 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5353 if (devclass_find_driver_internal(dc, driver) != NULL) 5354 return (true); 5355 } 5356 return (false); 5357 } 5358 5359 static int 5360 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5361 struct thread *td) 5362 { 5363 struct devreq *req; 5364 device_t dev; 5365 int error, old; 5366 5367 /* Locate the device to control. */ 5368 mtx_lock(&Giant); 5369 req = (struct devreq *)data; 5370 switch (cmd) { 5371 case DEV_ATTACH: 5372 case DEV_DETACH: 5373 case DEV_ENABLE: 5374 case DEV_DISABLE: 5375 case DEV_SUSPEND: 5376 case DEV_RESUME: 5377 case DEV_SET_DRIVER: 5378 case DEV_CLEAR_DRIVER: 5379 case DEV_RESCAN: 5380 case DEV_DELETE: 5381 error = priv_check(td, PRIV_DRIVER); 5382 if (error == 0) 5383 error = find_device(req, &dev); 5384 break; 5385 default: 5386 error = ENOTTY; 5387 break; 5388 } 5389 if (error) { 5390 mtx_unlock(&Giant); 5391 return (error); 5392 } 5393 5394 /* Perform the requested operation. */ 5395 switch (cmd) { 5396 case DEV_ATTACH: 5397 if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0) 5398 error = EBUSY; 5399 else if (!device_is_enabled(dev)) 5400 error = ENXIO; 5401 else 5402 error = device_probe_and_attach(dev); 5403 break; 5404 case DEV_DETACH: 5405 if (!device_is_attached(dev)) { 5406 error = ENXIO; 5407 break; 5408 } 5409 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5410 error = device_quiesce(dev); 5411 if (error) 5412 break; 5413 } 5414 error = device_detach(dev); 5415 break; 5416 case DEV_ENABLE: 5417 if (device_is_enabled(dev)) { 5418 error = EBUSY; 5419 break; 5420 } 5421 5422 /* 5423 * If the device has been probed but not attached (e.g. 5424 * when it has been disabled by a loader hint), just 5425 * attach the device rather than doing a full probe. 5426 */ 5427 device_enable(dev); 5428 if (device_is_alive(dev)) { 5429 /* 5430 * If the device was disabled via a hint, clear 5431 * the hint. 5432 */ 5433 if (resource_disabled(dev->driver->name, dev->unit)) 5434 resource_unset_value(dev->driver->name, 5435 dev->unit, "disabled"); 5436 error = device_attach(dev); 5437 } else 5438 error = device_probe_and_attach(dev); 5439 break; 5440 case DEV_DISABLE: 5441 if (!device_is_enabled(dev)) { 5442 error = ENXIO; 5443 break; 5444 } 5445 5446 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5447 error = device_quiesce(dev); 5448 if (error) 5449 break; 5450 } 5451 5452 /* 5453 * Force DF_FIXEDCLASS on around detach to preserve 5454 * the existing name. 5455 */ 5456 old = dev->flags; 5457 dev->flags |= DF_FIXEDCLASS; 5458 error = device_detach(dev); 5459 if (!(old & DF_FIXEDCLASS)) 5460 dev->flags &= ~DF_FIXEDCLASS; 5461 if (error == 0) 5462 device_disable(dev); 5463 break; 5464 case DEV_SUSPEND: 5465 if (device_is_suspended(dev)) { 5466 error = EBUSY; 5467 break; 5468 } 5469 if (device_get_parent(dev) == NULL) { 5470 error = EINVAL; 5471 break; 5472 } 5473 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5474 break; 5475 case DEV_RESUME: 5476 if (!device_is_suspended(dev)) { 5477 error = EINVAL; 5478 break; 5479 } 5480 if (device_get_parent(dev) == NULL) { 5481 error = EINVAL; 5482 break; 5483 } 5484 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5485 break; 5486 case DEV_SET_DRIVER: { 5487 devclass_t dc; 5488 char driver[128]; 5489 5490 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5491 if (error) 5492 break; 5493 if (driver[0] == '\0') { 5494 error = EINVAL; 5495 break; 5496 } 5497 if (dev->devclass != NULL && 5498 strcmp(driver, dev->devclass->name) == 0) 5499 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5500 break; 5501 5502 /* 5503 * Scan drivers for this device's bus looking for at 5504 * least one matching driver. 5505 */ 5506 if (dev->parent == NULL) { 5507 error = EINVAL; 5508 break; 5509 } 5510 if (!driver_exists(dev->parent, driver)) { 5511 error = ENOENT; 5512 break; 5513 } 5514 dc = devclass_create(driver); 5515 if (dc == NULL) { 5516 error = ENOMEM; 5517 break; 5518 } 5519 5520 /* Detach device if necessary. */ 5521 if (device_is_attached(dev)) { 5522 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5523 error = device_detach(dev); 5524 else 5525 error = EBUSY; 5526 if (error) 5527 break; 5528 } 5529 5530 /* Clear any previously-fixed device class and unit. */ 5531 if (dev->flags & DF_FIXEDCLASS) 5532 devclass_delete_device(dev->devclass, dev); 5533 dev->flags |= DF_WILDCARD; 5534 dev->unit = -1; 5535 5536 /* Force the new device class. */ 5537 error = devclass_add_device(dc, dev); 5538 if (error) 5539 break; 5540 dev->flags |= DF_FIXEDCLASS; 5541 error = device_probe_and_attach(dev); 5542 break; 5543 } 5544 case DEV_CLEAR_DRIVER: 5545 if (!(dev->flags & DF_FIXEDCLASS)) { 5546 error = 0; 5547 break; 5548 } 5549 if (device_is_attached(dev)) { 5550 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5551 error = device_detach(dev); 5552 else 5553 error = EBUSY; 5554 if (error) 5555 break; 5556 } 5557 5558 dev->flags &= ~DF_FIXEDCLASS; 5559 dev->flags |= DF_WILDCARD; 5560 devclass_delete_device(dev->devclass, dev); 5561 error = device_probe_and_attach(dev); 5562 break; 5563 case DEV_RESCAN: 5564 if (!device_is_attached(dev)) { 5565 error = ENXIO; 5566 break; 5567 } 5568 error = BUS_RESCAN(dev); 5569 break; 5570 case DEV_DELETE: { 5571 device_t parent; 5572 5573 parent = device_get_parent(dev); 5574 if (parent == NULL) { 5575 error = EINVAL; 5576 break; 5577 } 5578 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5579 if (bus_child_present(dev) != 0) { 5580 error = EBUSY; 5581 break; 5582 } 5583 } 5584 5585 error = device_delete_child(parent, dev); 5586 break; 5587 } 5588 } 5589 mtx_unlock(&Giant); 5590 return (error); 5591 } 5592 5593 static struct cdevsw devctl2_cdevsw = { 5594 .d_version = D_VERSION, 5595 .d_ioctl = devctl2_ioctl, 5596 .d_name = "devctl2", 5597 }; 5598 5599 static void 5600 devctl2_init(void) 5601 { 5602 5603 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5604 UID_ROOT, GID_WHEEL, 0600, "devctl2"); 5605 } 5606 5607 #ifdef DDB 5608 DB_SHOW_COMMAND(device, db_show_device) 5609 { 5610 device_t dev; 5611 5612 if (!have_addr) 5613 return; 5614 5615 dev = (device_t)addr; 5616 5617 db_printf("name: %s\n", device_get_nameunit(dev)); 5618 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 5619 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 5620 db_printf(" addr: %p\n", dev); 5621 db_printf(" parent: %p\n", dev->parent); 5622 db_printf(" softc: %p\n", dev->softc); 5623 db_printf(" ivars: %p\n", dev->ivars); 5624 } 5625 5626 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 5627 { 5628 device_t dev; 5629 5630 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5631 db_show_device((db_expr_t)dev, true, count, modif); 5632 } 5633 } 5634 #endif 5635