1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bus.h" 33 #include "opt_ddb.h" 34 35 #include <sys/param.h> 36 #include <sys/conf.h> 37 #include <sys/domainset.h> 38 #include <sys/eventhandler.h> 39 #include <sys/filio.h> 40 #include <sys/lock.h> 41 #include <sys/kernel.h> 42 #include <sys/kobj.h> 43 #include <sys/limits.h> 44 #include <sys/malloc.h> 45 #include <sys/module.h> 46 #include <sys/mutex.h> 47 #include <sys/poll.h> 48 #include <sys/priv.h> 49 #include <sys/proc.h> 50 #include <sys/condvar.h> 51 #include <sys/queue.h> 52 #include <machine/bus.h> 53 #include <sys/random.h> 54 #include <sys/refcount.h> 55 #include <sys/rman.h> 56 #include <sys/sbuf.h> 57 #include <sys/selinfo.h> 58 #include <sys/signalvar.h> 59 #include <sys/smp.h> 60 #include <sys/sysctl.h> 61 #include <sys/systm.h> 62 #include <sys/uio.h> 63 #include <sys/bus.h> 64 #include <sys/cpuset.h> 65 66 #include <net/vnet.h> 67 68 #include <machine/cpu.h> 69 #include <machine/stdarg.h> 70 71 #include <vm/uma.h> 72 #include <vm/vm.h> 73 74 #include <ddb/ddb.h> 75 76 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 77 NULL); 78 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 79 NULL); 80 81 /* 82 * Used to attach drivers to devclasses. 83 */ 84 typedef struct driverlink *driverlink_t; 85 struct driverlink { 86 kobj_class_t driver; 87 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 88 int pass; 89 int flags; 90 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 91 TAILQ_ENTRY(driverlink) passlink; 92 }; 93 94 /* 95 * Forward declarations 96 */ 97 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 98 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 99 typedef TAILQ_HEAD(device_list, _device) device_list_t; 100 101 struct devclass { 102 TAILQ_ENTRY(devclass) link; 103 devclass_t parent; /* parent in devclass hierarchy */ 104 driver_list_t drivers; /* bus devclasses store drivers for bus */ 105 char *name; 106 device_t *devices; /* array of devices indexed by unit */ 107 int maxunit; /* size of devices array */ 108 int flags; 109 #define DC_HAS_CHILDREN 1 110 111 struct sysctl_ctx_list sysctl_ctx; 112 struct sysctl_oid *sysctl_tree; 113 }; 114 115 /** 116 * @brief Implementation of _device. 117 * 118 * The structure is named "_device" instead of "device" to avoid type confusion 119 * caused by other subsystems defining a (struct device). 120 */ 121 struct _device { 122 /* 123 * A device is a kernel object. The first field must be the 124 * current ops table for the object. 125 */ 126 KOBJ_FIELDS; 127 128 /* 129 * Device hierarchy. 130 */ 131 TAILQ_ENTRY(_device) link; /**< list of devices in parent */ 132 TAILQ_ENTRY(_device) devlink; /**< global device list membership */ 133 device_t parent; /**< parent of this device */ 134 device_list_t children; /**< list of child devices */ 135 136 /* 137 * Details of this device. 138 */ 139 driver_t *driver; /**< current driver */ 140 devclass_t devclass; /**< current device class */ 141 int unit; /**< current unit number */ 142 char* nameunit; /**< name+unit e.g. foodev0 */ 143 char* desc; /**< driver specific description */ 144 u_int busy; /**< count of calls to device_busy() */ 145 device_state_t state; /**< current device state */ 146 uint32_t devflags; /**< api level flags for device_get_flags() */ 147 u_int flags; /**< internal device flags */ 148 u_int order; /**< order from device_add_child_ordered() */ 149 void *ivars; /**< instance variables */ 150 void *softc; /**< current driver's variables */ 151 152 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 153 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 154 }; 155 156 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 157 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 158 159 EVENTHANDLER_LIST_DEFINE(device_attach); 160 EVENTHANDLER_LIST_DEFINE(device_detach); 161 EVENTHANDLER_LIST_DEFINE(dev_lookup); 162 163 static void devctl2_init(void); 164 static bool device_frozen; 165 166 #define DRIVERNAME(d) ((d)? d->name : "no driver") 167 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 168 169 #ifdef BUS_DEBUG 170 171 static int bus_debug = 1; 172 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 173 "Bus debug level"); 174 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 175 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 176 177 /** 178 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 179 * prevent syslog from deleting initial spaces 180 */ 181 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 182 183 static void print_device_short(device_t dev, int indent); 184 static void print_device(device_t dev, int indent); 185 void print_device_tree_short(device_t dev, int indent); 186 void print_device_tree(device_t dev, int indent); 187 static void print_driver_short(driver_t *driver, int indent); 188 static void print_driver(driver_t *driver, int indent); 189 static void print_driver_list(driver_list_t drivers, int indent); 190 static void print_devclass_short(devclass_t dc, int indent); 191 static void print_devclass(devclass_t dc, int indent); 192 void print_devclass_list_short(void); 193 void print_devclass_list(void); 194 195 #else 196 /* Make the compiler ignore the function calls */ 197 #define PDEBUG(a) /* nop */ 198 #define DEVICENAME(d) /* nop */ 199 200 #define print_device_short(d,i) /* nop */ 201 #define print_device(d,i) /* nop */ 202 #define print_device_tree_short(d,i) /* nop */ 203 #define print_device_tree(d,i) /* nop */ 204 #define print_driver_short(d,i) /* nop */ 205 #define print_driver(d,i) /* nop */ 206 #define print_driver_list(d,i) /* nop */ 207 #define print_devclass_short(d,i) /* nop */ 208 #define print_devclass(d,i) /* nop */ 209 #define print_devclass_list_short() /* nop */ 210 #define print_devclass_list() /* nop */ 211 #endif 212 213 /* 214 * dev sysctl tree 215 */ 216 217 enum { 218 DEVCLASS_SYSCTL_PARENT, 219 }; 220 221 static int 222 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 223 { 224 devclass_t dc = (devclass_t)arg1; 225 const char *value; 226 227 switch (arg2) { 228 case DEVCLASS_SYSCTL_PARENT: 229 value = dc->parent ? dc->parent->name : ""; 230 break; 231 default: 232 return (EINVAL); 233 } 234 return (SYSCTL_OUT_STR(req, value)); 235 } 236 237 static void 238 devclass_sysctl_init(devclass_t dc) 239 { 240 if (dc->sysctl_tree != NULL) 241 return; 242 sysctl_ctx_init(&dc->sysctl_ctx); 243 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 244 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 245 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 246 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 247 OID_AUTO, "%parent", 248 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 249 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 250 "parent class"); 251 } 252 253 enum { 254 DEVICE_SYSCTL_DESC, 255 DEVICE_SYSCTL_DRIVER, 256 DEVICE_SYSCTL_LOCATION, 257 DEVICE_SYSCTL_PNPINFO, 258 DEVICE_SYSCTL_PARENT, 259 }; 260 261 static int 262 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 263 { 264 struct sbuf sb; 265 device_t dev = (device_t)arg1; 266 int error; 267 268 sbuf_new_for_sysctl(&sb, NULL, 1024, req); 269 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 270 bus_topo_lock(); 271 switch (arg2) { 272 case DEVICE_SYSCTL_DESC: 273 sbuf_cat(&sb, dev->desc ? dev->desc : ""); 274 break; 275 case DEVICE_SYSCTL_DRIVER: 276 sbuf_cat(&sb, dev->driver ? dev->driver->name : ""); 277 break; 278 case DEVICE_SYSCTL_LOCATION: 279 bus_child_location(dev, &sb); 280 break; 281 case DEVICE_SYSCTL_PNPINFO: 282 bus_child_pnpinfo(dev, &sb); 283 break; 284 case DEVICE_SYSCTL_PARENT: 285 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : ""); 286 break; 287 default: 288 error = EINVAL; 289 goto out; 290 } 291 error = sbuf_finish(&sb); 292 out: 293 bus_topo_unlock(); 294 sbuf_delete(&sb); 295 return (error); 296 } 297 298 static void 299 device_sysctl_init(device_t dev) 300 { 301 devclass_t dc = dev->devclass; 302 int domain; 303 304 if (dev->sysctl_tree != NULL) 305 return; 306 devclass_sysctl_init(dc); 307 sysctl_ctx_init(&dev->sysctl_ctx); 308 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 309 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 310 dev->nameunit + strlen(dc->name), 311 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); 312 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 313 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 314 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 315 "device description"); 316 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 317 OID_AUTO, "%driver", 318 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 319 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 320 "device driver name"); 321 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 322 OID_AUTO, "%location", 323 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 324 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 325 "device location relative to parent"); 326 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 327 OID_AUTO, "%pnpinfo", 328 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 329 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 330 "device identification"); 331 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 332 OID_AUTO, "%parent", 333 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 334 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 335 "parent device"); 336 if (bus_get_domain(dev, &domain) == 0) 337 SYSCTL_ADD_INT(&dev->sysctl_ctx, 338 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 339 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain"); 340 } 341 342 static void 343 device_sysctl_update(device_t dev) 344 { 345 devclass_t dc = dev->devclass; 346 347 if (dev->sysctl_tree == NULL) 348 return; 349 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 350 } 351 352 static void 353 device_sysctl_fini(device_t dev) 354 { 355 if (dev->sysctl_tree == NULL) 356 return; 357 sysctl_ctx_free(&dev->sysctl_ctx); 358 dev->sysctl_tree = NULL; 359 } 360 361 /* 362 * /dev/devctl implementation 363 */ 364 365 /* 366 * This design allows only one reader for /dev/devctl. This is not desirable 367 * in the long run, but will get a lot of hair out of this implementation. 368 * Maybe we should make this device a clonable device. 369 * 370 * Also note: we specifically do not attach a device to the device_t tree 371 * to avoid potential chicken and egg problems. One could argue that all 372 * of this belongs to the root node. 373 */ 374 375 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 376 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 377 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 378 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 379 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 380 381 static d_open_t devopen; 382 static d_close_t devclose; 383 static d_read_t devread; 384 static d_ioctl_t devioctl; 385 static d_poll_t devpoll; 386 static d_kqfilter_t devkqfilter; 387 388 static struct cdevsw dev_cdevsw = { 389 .d_version = D_VERSION, 390 .d_open = devopen, 391 .d_close = devclose, 392 .d_read = devread, 393 .d_ioctl = devioctl, 394 .d_poll = devpoll, 395 .d_kqfilter = devkqfilter, 396 .d_name = "devctl", 397 }; 398 399 #define DEVCTL_BUFFER (1024 - sizeof(void *)) 400 struct dev_event_info { 401 STAILQ_ENTRY(dev_event_info) dei_link; 402 char dei_data[DEVCTL_BUFFER]; 403 }; 404 405 STAILQ_HEAD(devq, dev_event_info); 406 407 static struct dev_softc { 408 int inuse; 409 int nonblock; 410 int queued; 411 int async; 412 struct mtx mtx; 413 struct cv cv; 414 struct selinfo sel; 415 struct devq devq; 416 struct sigio *sigio; 417 uma_zone_t zone; 418 } devsoftc; 419 420 static void filt_devctl_detach(struct knote *kn); 421 static int filt_devctl_read(struct knote *kn, long hint); 422 423 struct filterops devctl_rfiltops = { 424 .f_isfd = 1, 425 .f_detach = filt_devctl_detach, 426 .f_event = filt_devctl_read, 427 }; 428 429 static struct cdev *devctl_dev; 430 431 static void 432 devinit(void) 433 { 434 int reserve; 435 uma_zone_t z; 436 437 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 438 UID_ROOT, GID_WHEEL, 0600, "devctl"); 439 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 440 cv_init(&devsoftc.cv, "dev cv"); 441 STAILQ_INIT(&devsoftc.devq); 442 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 443 if (devctl_queue_length > 0) { 444 /* 445 * Allocate a zone for the messages. Preallocate 2% of these for 446 * a reserve. Allow only devctl_queue_length slabs to cap memory 447 * usage. The reserve usually allows coverage of surges of 448 * events during memory shortages. Normally we won't have to 449 * re-use events from the queue, but will in extreme shortages. 450 */ 451 z = devsoftc.zone = uma_zcreate("DEVCTL", 452 sizeof(struct dev_event_info), NULL, NULL, NULL, NULL, 453 UMA_ALIGN_PTR, 0); 454 reserve = max(devctl_queue_length / 50, 100); /* 2% reserve */ 455 uma_zone_set_max(z, devctl_queue_length); 456 uma_zone_set_maxcache(z, 0); 457 uma_zone_reserve(z, reserve); 458 uma_prealloc(z, reserve); 459 } 460 devctl2_init(); 461 } 462 463 static int 464 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 465 { 466 mtx_lock(&devsoftc.mtx); 467 if (devsoftc.inuse) { 468 mtx_unlock(&devsoftc.mtx); 469 return (EBUSY); 470 } 471 /* move to init */ 472 devsoftc.inuse = 1; 473 mtx_unlock(&devsoftc.mtx); 474 return (0); 475 } 476 477 static int 478 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 479 { 480 mtx_lock(&devsoftc.mtx); 481 devsoftc.inuse = 0; 482 devsoftc.nonblock = 0; 483 devsoftc.async = 0; 484 cv_broadcast(&devsoftc.cv); 485 funsetown(&devsoftc.sigio); 486 mtx_unlock(&devsoftc.mtx); 487 return (0); 488 } 489 490 /* 491 * The read channel for this device is used to report changes to 492 * userland in realtime. We are required to free the data as well as 493 * the n1 object because we allocate them separately. Also note that 494 * we return one record at a time. If you try to read this device a 495 * character at a time, you will lose the rest of the data. Listening 496 * programs are expected to cope. 497 */ 498 static int 499 devread(struct cdev *dev, struct uio *uio, int ioflag) 500 { 501 struct dev_event_info *n1; 502 int rv; 503 504 mtx_lock(&devsoftc.mtx); 505 while (STAILQ_EMPTY(&devsoftc.devq)) { 506 if (devsoftc.nonblock) { 507 mtx_unlock(&devsoftc.mtx); 508 return (EAGAIN); 509 } 510 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 511 if (rv) { 512 /* 513 * Need to translate ERESTART to EINTR here? -- jake 514 */ 515 mtx_unlock(&devsoftc.mtx); 516 return (rv); 517 } 518 } 519 n1 = STAILQ_FIRST(&devsoftc.devq); 520 STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); 521 devsoftc.queued--; 522 mtx_unlock(&devsoftc.mtx); 523 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 524 uma_zfree(devsoftc.zone, n1); 525 return (rv); 526 } 527 528 static int 529 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 530 { 531 switch (cmd) { 532 case FIONBIO: 533 if (*(int*)data) 534 devsoftc.nonblock = 1; 535 else 536 devsoftc.nonblock = 0; 537 return (0); 538 case FIOASYNC: 539 if (*(int*)data) 540 devsoftc.async = 1; 541 else 542 devsoftc.async = 0; 543 return (0); 544 case FIOSETOWN: 545 return fsetown(*(int *)data, &devsoftc.sigio); 546 case FIOGETOWN: 547 *(int *)data = fgetown(&devsoftc.sigio); 548 return (0); 549 550 /* (un)Support for other fcntl() calls. */ 551 case FIOCLEX: 552 case FIONCLEX: 553 case FIONREAD: 554 default: 555 break; 556 } 557 return (ENOTTY); 558 } 559 560 static int 561 devpoll(struct cdev *dev, int events, struct thread *td) 562 { 563 int revents = 0; 564 565 mtx_lock(&devsoftc.mtx); 566 if (events & (POLLIN | POLLRDNORM)) { 567 if (!STAILQ_EMPTY(&devsoftc.devq)) 568 revents = events & (POLLIN | POLLRDNORM); 569 else 570 selrecord(td, &devsoftc.sel); 571 } 572 mtx_unlock(&devsoftc.mtx); 573 574 return (revents); 575 } 576 577 static int 578 devkqfilter(struct cdev *dev, struct knote *kn) 579 { 580 int error; 581 582 if (kn->kn_filter == EVFILT_READ) { 583 kn->kn_fop = &devctl_rfiltops; 584 knlist_add(&devsoftc.sel.si_note, kn, 0); 585 error = 0; 586 } else 587 error = EINVAL; 588 return (error); 589 } 590 591 static void 592 filt_devctl_detach(struct knote *kn) 593 { 594 knlist_remove(&devsoftc.sel.si_note, kn, 0); 595 } 596 597 static int 598 filt_devctl_read(struct knote *kn, long hint) 599 { 600 kn->kn_data = devsoftc.queued; 601 return (kn->kn_data != 0); 602 } 603 604 /** 605 * @brief Return whether the userland process is running 606 */ 607 bool 608 devctl_process_running(void) 609 { 610 return (devsoftc.inuse == 1); 611 } 612 613 static struct dev_event_info * 614 devctl_alloc_dei(void) 615 { 616 struct dev_event_info *dei = NULL; 617 618 mtx_lock(&devsoftc.mtx); 619 if (devctl_queue_length == 0) 620 goto out; 621 dei = uma_zalloc(devsoftc.zone, M_NOWAIT); 622 if (dei == NULL) 623 dei = uma_zalloc(devsoftc.zone, M_NOWAIT | M_USE_RESERVE); 624 if (dei == NULL) { 625 /* 626 * Guard against no items in the queue. Normally, this won't 627 * happen, but if lots of events happen all at once and there's 628 * a chance we're out of allocated space but none have yet been 629 * queued when we get here, leaving nothing to steal. This can 630 * also happen with error injection. Fail safe by returning 631 * NULL in that case.. 632 */ 633 if (devsoftc.queued == 0) 634 goto out; 635 dei = STAILQ_FIRST(&devsoftc.devq); 636 STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); 637 devsoftc.queued--; 638 } 639 MPASS(dei != NULL); 640 *dei->dei_data = '\0'; 641 out: 642 mtx_unlock(&devsoftc.mtx); 643 return (dei); 644 } 645 646 static struct dev_event_info * 647 devctl_alloc_dei_sb(struct sbuf *sb) 648 { 649 struct dev_event_info *dei; 650 651 dei = devctl_alloc_dei(); 652 if (dei != NULL) 653 sbuf_new(sb, dei->dei_data, sizeof(dei->dei_data), SBUF_FIXEDLEN); 654 return (dei); 655 } 656 657 static void 658 devctl_free_dei(struct dev_event_info *dei) 659 { 660 uma_zfree(devsoftc.zone, dei); 661 } 662 663 static void 664 devctl_queue(struct dev_event_info *dei) 665 { 666 mtx_lock(&devsoftc.mtx); 667 STAILQ_INSERT_TAIL(&devsoftc.devq, dei, dei_link); 668 devsoftc.queued++; 669 cv_broadcast(&devsoftc.cv); 670 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 671 mtx_unlock(&devsoftc.mtx); 672 selwakeup(&devsoftc.sel); 673 if (devsoftc.async && devsoftc.sigio != NULL) 674 pgsigio(&devsoftc.sigio, SIGIO, 0); 675 } 676 677 /** 678 * @brief Send a 'notification' to userland, using standard ways 679 */ 680 void 681 devctl_notify(const char *system, const char *subsystem, const char *type, 682 const char *data) 683 { 684 struct dev_event_info *dei; 685 struct sbuf sb; 686 687 if (system == NULL || subsystem == NULL || type == NULL) 688 return; 689 dei = devctl_alloc_dei_sb(&sb); 690 if (dei == NULL) 691 return; 692 sbuf_cpy(&sb, "!system="); 693 sbuf_cat(&sb, system); 694 sbuf_cat(&sb, " subsystem="); 695 sbuf_cat(&sb, subsystem); 696 sbuf_cat(&sb, " type="); 697 sbuf_cat(&sb, type); 698 if (data != NULL) { 699 sbuf_putc(&sb, ' '); 700 sbuf_cat(&sb, data); 701 } 702 sbuf_putc(&sb, '\n'); 703 if (sbuf_finish(&sb) != 0) 704 devctl_free_dei(dei); /* overflow -> drop it */ 705 else 706 devctl_queue(dei); 707 } 708 709 /* 710 * Common routine that tries to make sending messages as easy as possible. 711 * We allocate memory for the data, copy strings into that, but do not 712 * free it unless there's an error. The dequeue part of the driver should 713 * free the data. We don't send data when the device is disabled. We do 714 * send data, even when we have no listeners, because we wish to avoid 715 * races relating to startup and restart of listening applications. 716 * 717 * devaddq is designed to string together the type of event, with the 718 * object of that event, plus the plug and play info and location info 719 * for that event. This is likely most useful for devices, but less 720 * useful for other consumers of this interface. Those should use 721 * the devctl_notify() interface instead. 722 * 723 * Output: 724 * ${type}${what} at $(location dev) $(pnp-info dev) on $(parent dev) 725 */ 726 static void 727 devaddq(const char *type, const char *what, device_t dev) 728 { 729 struct dev_event_info *dei; 730 const char *parstr; 731 struct sbuf sb; 732 733 dei = devctl_alloc_dei_sb(&sb); 734 if (dei == NULL) 735 return; 736 sbuf_cpy(&sb, type); 737 sbuf_cat(&sb, what); 738 sbuf_cat(&sb, " at "); 739 740 /* Add in the location */ 741 bus_child_location(dev, &sb); 742 sbuf_putc(&sb, ' '); 743 744 /* Add in pnpinfo */ 745 bus_child_pnpinfo(dev, &sb); 746 747 /* Get the parent of this device, or / if high enough in the tree. */ 748 if (device_get_parent(dev) == NULL) 749 parstr = "."; /* Or '/' ? */ 750 else 751 parstr = device_get_nameunit(device_get_parent(dev)); 752 sbuf_cat(&sb, " on "); 753 sbuf_cat(&sb, parstr); 754 sbuf_putc(&sb, '\n'); 755 if (sbuf_finish(&sb) != 0) 756 goto bad; 757 devctl_queue(dei); 758 return; 759 bad: 760 devctl_free_dei(dei); 761 } 762 763 /* 764 * A device was added to the tree. We are called just after it successfully 765 * attaches (that is, probe and attach success for this device). No call 766 * is made if a device is merely parented into the tree. See devnomatch 767 * if probe fails. If attach fails, no notification is sent (but maybe 768 * we should have a different message for this). 769 */ 770 static void 771 devadded(device_t dev) 772 { 773 devaddq("+", device_get_nameunit(dev), dev); 774 } 775 776 /* 777 * A device was removed from the tree. We are called just before this 778 * happens. 779 */ 780 static void 781 devremoved(device_t dev) 782 { 783 devaddq("-", device_get_nameunit(dev), dev); 784 } 785 786 /* 787 * Called when there's no match for this device. This is only called 788 * the first time that no match happens, so we don't keep getting this 789 * message. Should that prove to be undesirable, we can change it. 790 * This is called when all drivers that can attach to a given bus 791 * decline to accept this device. Other errors may not be detected. 792 */ 793 static void 794 devnomatch(device_t dev) 795 { 796 devaddq("?", "", dev); 797 } 798 799 static int 800 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 801 { 802 int q, error; 803 804 q = devctl_queue_length; 805 error = sysctl_handle_int(oidp, &q, 0, req); 806 if (error || !req->newptr) 807 return (error); 808 if (q < 0) 809 return (EINVAL); 810 811 /* 812 * When set as a tunable, we've not yet initialized the mutex. 813 * It is safe to just assign to devctl_queue_length and return 814 * as we're racing no one. We'll use whatever value set in 815 * devinit. 816 */ 817 if (!mtx_initialized(&devsoftc.mtx)) { 818 devctl_queue_length = q; 819 return (0); 820 } 821 822 /* 823 * XXX It's hard to grow or shrink the UMA zone. Only allow 824 * disabling the queue size for the moment until underlying 825 * UMA issues can be sorted out. 826 */ 827 if (q != 0) 828 return (EINVAL); 829 if (q == devctl_queue_length) 830 return (0); 831 mtx_lock(&devsoftc.mtx); 832 devctl_queue_length = 0; 833 uma_zdestroy(devsoftc.zone); 834 devsoftc.zone = 0; 835 mtx_unlock(&devsoftc.mtx); 836 return (0); 837 } 838 839 /** 840 * @brief safely quotes strings that might have double quotes in them. 841 * 842 * The devctl protocol relies on quoted strings having matching quotes. 843 * This routine quotes any internal quotes so the resulting string 844 * is safe to pass to snprintf to construct, for example pnp info strings. 845 * 846 * @param sb sbuf to place the characters into 847 * @param src Original buffer. 848 */ 849 void 850 devctl_safe_quote_sb(struct sbuf *sb, const char *src) 851 { 852 while (*src != '\0') { 853 if (*src == '"' || *src == '\\') 854 sbuf_putc(sb, '\\'); 855 sbuf_putc(sb, *src++); 856 } 857 } 858 859 /* End of /dev/devctl code */ 860 861 static struct device_list bus_data_devices; 862 static int bus_data_generation = 1; 863 864 static kobj_method_t null_methods[] = { 865 KOBJMETHOD_END 866 }; 867 868 DEFINE_CLASS(null, null_methods, 0); 869 870 void 871 bus_topo_assert(void) 872 { 873 874 GIANT_REQUIRED; 875 } 876 877 struct mtx * 878 bus_topo_mtx(void) 879 { 880 881 return (&Giant); 882 } 883 884 void 885 bus_topo_lock(void) 886 { 887 888 mtx_lock(bus_topo_mtx()); 889 } 890 891 void 892 bus_topo_unlock(void) 893 { 894 895 mtx_unlock(bus_topo_mtx()); 896 } 897 898 /* 899 * Bus pass implementation 900 */ 901 902 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 903 int bus_current_pass = BUS_PASS_ROOT; 904 905 /** 906 * @internal 907 * @brief Register the pass level of a new driver attachment 908 * 909 * Register a new driver attachment's pass level. If no driver 910 * attachment with the same pass level has been added, then @p new 911 * will be added to the global passes list. 912 * 913 * @param new the new driver attachment 914 */ 915 static void 916 driver_register_pass(struct driverlink *new) 917 { 918 struct driverlink *dl; 919 920 /* We only consider pass numbers during boot. */ 921 if (bus_current_pass == BUS_PASS_DEFAULT) 922 return; 923 924 /* 925 * Walk the passes list. If we already know about this pass 926 * then there is nothing to do. If we don't, then insert this 927 * driver link into the list. 928 */ 929 TAILQ_FOREACH(dl, &passes, passlink) { 930 if (dl->pass < new->pass) 931 continue; 932 if (dl->pass == new->pass) 933 return; 934 TAILQ_INSERT_BEFORE(dl, new, passlink); 935 return; 936 } 937 TAILQ_INSERT_TAIL(&passes, new, passlink); 938 } 939 940 /** 941 * @brief Raise the current bus pass 942 * 943 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 944 * method on the root bus to kick off a new device tree scan for each 945 * new pass level that has at least one driver. 946 */ 947 void 948 bus_set_pass(int pass) 949 { 950 struct driverlink *dl; 951 952 if (bus_current_pass > pass) 953 panic("Attempt to lower bus pass level"); 954 955 TAILQ_FOREACH(dl, &passes, passlink) { 956 /* Skip pass values below the current pass level. */ 957 if (dl->pass <= bus_current_pass) 958 continue; 959 960 /* 961 * Bail once we hit a driver with a pass level that is 962 * too high. 963 */ 964 if (dl->pass > pass) 965 break; 966 967 /* 968 * Raise the pass level to the next level and rescan 969 * the tree. 970 */ 971 bus_current_pass = dl->pass; 972 BUS_NEW_PASS(root_bus); 973 } 974 975 /* 976 * If there isn't a driver registered for the requested pass, 977 * then bus_current_pass might still be less than 'pass'. Set 978 * it to 'pass' in that case. 979 */ 980 if (bus_current_pass < pass) 981 bus_current_pass = pass; 982 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 983 } 984 985 /* 986 * Devclass implementation 987 */ 988 989 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 990 991 /** 992 * @internal 993 * @brief Find or create a device class 994 * 995 * If a device class with the name @p classname exists, return it, 996 * otherwise if @p create is non-zero create and return a new device 997 * class. 998 * 999 * If @p parentname is non-NULL, the parent of the devclass is set to 1000 * the devclass of that name. 1001 * 1002 * @param classname the devclass name to find or create 1003 * @param parentname the parent devclass name or @c NULL 1004 * @param create non-zero to create a devclass 1005 */ 1006 static devclass_t 1007 devclass_find_internal(const char *classname, const char *parentname, 1008 int create) 1009 { 1010 devclass_t dc; 1011 1012 PDEBUG(("looking for %s", classname)); 1013 if (!classname) 1014 return (NULL); 1015 1016 TAILQ_FOREACH(dc, &devclasses, link) { 1017 if (!strcmp(dc->name, classname)) 1018 break; 1019 } 1020 1021 if (create && !dc) { 1022 PDEBUG(("creating %s", classname)); 1023 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 1024 M_BUS, M_NOWAIT | M_ZERO); 1025 if (!dc) 1026 return (NULL); 1027 dc->parent = NULL; 1028 dc->name = (char*) (dc + 1); 1029 strcpy(dc->name, classname); 1030 TAILQ_INIT(&dc->drivers); 1031 TAILQ_INSERT_TAIL(&devclasses, dc, link); 1032 1033 bus_data_generation_update(); 1034 } 1035 1036 /* 1037 * If a parent class is specified, then set that as our parent so 1038 * that this devclass will support drivers for the parent class as 1039 * well. If the parent class has the same name don't do this though 1040 * as it creates a cycle that can trigger an infinite loop in 1041 * device_probe_child() if a device exists for which there is no 1042 * suitable driver. 1043 */ 1044 if (parentname && dc && !dc->parent && 1045 strcmp(classname, parentname) != 0) { 1046 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1047 dc->parent->flags |= DC_HAS_CHILDREN; 1048 } 1049 1050 return (dc); 1051 } 1052 1053 /** 1054 * @brief Create a device class 1055 * 1056 * If a device class with the name @p classname exists, return it, 1057 * otherwise create and return a new device class. 1058 * 1059 * @param classname the devclass name to find or create 1060 */ 1061 devclass_t 1062 devclass_create(const char *classname) 1063 { 1064 return (devclass_find_internal(classname, NULL, TRUE)); 1065 } 1066 1067 /** 1068 * @brief Find a device class 1069 * 1070 * If a device class with the name @p classname exists, return it, 1071 * otherwise return @c NULL. 1072 * 1073 * @param classname the devclass name to find 1074 */ 1075 devclass_t 1076 devclass_find(const char *classname) 1077 { 1078 return (devclass_find_internal(classname, NULL, FALSE)); 1079 } 1080 1081 /** 1082 * @brief Register that a device driver has been added to a devclass 1083 * 1084 * Register that a device driver has been added to a devclass. This 1085 * is called by devclass_add_driver to accomplish the recursive 1086 * notification of all the children classes of dc, as well as dc. 1087 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1088 * the devclass. 1089 * 1090 * We do a full search here of the devclass list at each iteration 1091 * level to save storing children-lists in the devclass structure. If 1092 * we ever move beyond a few dozen devices doing this, we may need to 1093 * reevaluate... 1094 * 1095 * @param dc the devclass to edit 1096 * @param driver the driver that was just added 1097 */ 1098 static void 1099 devclass_driver_added(devclass_t dc, driver_t *driver) 1100 { 1101 devclass_t parent; 1102 int i; 1103 1104 /* 1105 * Call BUS_DRIVER_ADDED for any existing buses in this class. 1106 */ 1107 for (i = 0; i < dc->maxunit; i++) 1108 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1109 BUS_DRIVER_ADDED(dc->devices[i], driver); 1110 1111 /* 1112 * Walk through the children classes. Since we only keep a 1113 * single parent pointer around, we walk the entire list of 1114 * devclasses looking for children. We set the 1115 * DC_HAS_CHILDREN flag when a child devclass is created on 1116 * the parent, so we only walk the list for those devclasses 1117 * that have children. 1118 */ 1119 if (!(dc->flags & DC_HAS_CHILDREN)) 1120 return; 1121 parent = dc; 1122 TAILQ_FOREACH(dc, &devclasses, link) { 1123 if (dc->parent == parent) 1124 devclass_driver_added(dc, driver); 1125 } 1126 } 1127 1128 /** 1129 * @brief Add a device driver to a device class 1130 * 1131 * Add a device driver to a devclass. This is normally called 1132 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1133 * all devices in the devclass will be called to allow them to attempt 1134 * to re-probe any unmatched children. 1135 * 1136 * @param dc the devclass to edit 1137 * @param driver the driver to register 1138 */ 1139 int 1140 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1141 { 1142 driverlink_t dl; 1143 devclass_t child_dc; 1144 const char *parentname; 1145 1146 PDEBUG(("%s", DRIVERNAME(driver))); 1147 1148 /* Don't allow invalid pass values. */ 1149 if (pass <= BUS_PASS_ROOT) 1150 return (EINVAL); 1151 1152 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1153 if (!dl) 1154 return (ENOMEM); 1155 1156 /* 1157 * Compile the driver's methods. Also increase the reference count 1158 * so that the class doesn't get freed when the last instance 1159 * goes. This means we can safely use static methods and avoids a 1160 * double-free in devclass_delete_driver. 1161 */ 1162 kobj_class_compile((kobj_class_t) driver); 1163 1164 /* 1165 * If the driver has any base classes, make the 1166 * devclass inherit from the devclass of the driver's 1167 * first base class. This will allow the system to 1168 * search for drivers in both devclasses for children 1169 * of a device using this driver. 1170 */ 1171 if (driver->baseclasses) 1172 parentname = driver->baseclasses[0]->name; 1173 else 1174 parentname = NULL; 1175 child_dc = devclass_find_internal(driver->name, parentname, TRUE); 1176 if (dcp != NULL) 1177 *dcp = child_dc; 1178 1179 dl->driver = driver; 1180 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1181 driver->refs++; /* XXX: kobj_mtx */ 1182 dl->pass = pass; 1183 driver_register_pass(dl); 1184 1185 if (device_frozen) { 1186 dl->flags |= DL_DEFERRED_PROBE; 1187 } else { 1188 devclass_driver_added(dc, driver); 1189 } 1190 bus_data_generation_update(); 1191 return (0); 1192 } 1193 1194 /** 1195 * @brief Register that a device driver has been deleted from a devclass 1196 * 1197 * Register that a device driver has been removed from a devclass. 1198 * This is called by devclass_delete_driver to accomplish the 1199 * recursive notification of all the children classes of busclass, as 1200 * well as busclass. Each layer will attempt to detach the driver 1201 * from any devices that are children of the bus's devclass. The function 1202 * will return an error if a device fails to detach. 1203 * 1204 * We do a full search here of the devclass list at each iteration 1205 * level to save storing children-lists in the devclass structure. If 1206 * we ever move beyond a few dozen devices doing this, we may need to 1207 * reevaluate... 1208 * 1209 * @param busclass the devclass of the parent bus 1210 * @param dc the devclass of the driver being deleted 1211 * @param driver the driver being deleted 1212 */ 1213 static int 1214 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1215 { 1216 devclass_t parent; 1217 device_t dev; 1218 int error, i; 1219 1220 /* 1221 * Disassociate from any devices. We iterate through all the 1222 * devices in the devclass of the driver and detach any which are 1223 * using the driver and which have a parent in the devclass which 1224 * we are deleting from. 1225 * 1226 * Note that since a driver can be in multiple devclasses, we 1227 * should not detach devices which are not children of devices in 1228 * the affected devclass. 1229 * 1230 * If we're frozen, we don't generate NOMATCH events. Mark to 1231 * generate later. 1232 */ 1233 for (i = 0; i < dc->maxunit; i++) { 1234 if (dc->devices[i]) { 1235 dev = dc->devices[i]; 1236 if (dev->driver == driver && dev->parent && 1237 dev->parent->devclass == busclass) { 1238 if ((error = device_detach(dev)) != 0) 1239 return (error); 1240 if (device_frozen) { 1241 dev->flags &= ~DF_DONENOMATCH; 1242 dev->flags |= DF_NEEDNOMATCH; 1243 } else { 1244 BUS_PROBE_NOMATCH(dev->parent, dev); 1245 devnomatch(dev); 1246 dev->flags |= DF_DONENOMATCH; 1247 } 1248 } 1249 } 1250 } 1251 1252 /* 1253 * Walk through the children classes. Since we only keep a 1254 * single parent pointer around, we walk the entire list of 1255 * devclasses looking for children. We set the 1256 * DC_HAS_CHILDREN flag when a child devclass is created on 1257 * the parent, so we only walk the list for those devclasses 1258 * that have children. 1259 */ 1260 if (!(busclass->flags & DC_HAS_CHILDREN)) 1261 return (0); 1262 parent = busclass; 1263 TAILQ_FOREACH(busclass, &devclasses, link) { 1264 if (busclass->parent == parent) { 1265 error = devclass_driver_deleted(busclass, dc, driver); 1266 if (error) 1267 return (error); 1268 } 1269 } 1270 return (0); 1271 } 1272 1273 /** 1274 * @brief Delete a device driver from a device class 1275 * 1276 * Delete a device driver from a devclass. This is normally called 1277 * automatically by DRIVER_MODULE(). 1278 * 1279 * If the driver is currently attached to any devices, 1280 * devclass_delete_driver() will first attempt to detach from each 1281 * device. If one of the detach calls fails, the driver will not be 1282 * deleted. 1283 * 1284 * @param dc the devclass to edit 1285 * @param driver the driver to unregister 1286 */ 1287 int 1288 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1289 { 1290 devclass_t dc = devclass_find(driver->name); 1291 driverlink_t dl; 1292 int error; 1293 1294 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1295 1296 if (!dc) 1297 return (0); 1298 1299 /* 1300 * Find the link structure in the bus' list of drivers. 1301 */ 1302 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1303 if (dl->driver == driver) 1304 break; 1305 } 1306 1307 if (!dl) { 1308 PDEBUG(("%s not found in %s list", driver->name, 1309 busclass->name)); 1310 return (ENOENT); 1311 } 1312 1313 error = devclass_driver_deleted(busclass, dc, driver); 1314 if (error != 0) 1315 return (error); 1316 1317 TAILQ_REMOVE(&busclass->drivers, dl, link); 1318 free(dl, M_BUS); 1319 1320 /* XXX: kobj_mtx */ 1321 driver->refs--; 1322 if (driver->refs == 0) 1323 kobj_class_free((kobj_class_t) driver); 1324 1325 bus_data_generation_update(); 1326 return (0); 1327 } 1328 1329 /** 1330 * @brief Quiesces a set of device drivers from a device class 1331 * 1332 * Quiesce a device driver from a devclass. This is normally called 1333 * automatically by DRIVER_MODULE(). 1334 * 1335 * If the driver is currently attached to any devices, 1336 * devclass_quiesece_driver() will first attempt to quiesce each 1337 * device. 1338 * 1339 * @param dc the devclass to edit 1340 * @param driver the driver to unregister 1341 */ 1342 static int 1343 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1344 { 1345 devclass_t dc = devclass_find(driver->name); 1346 driverlink_t dl; 1347 device_t dev; 1348 int i; 1349 int error; 1350 1351 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1352 1353 if (!dc) 1354 return (0); 1355 1356 /* 1357 * Find the link structure in the bus' list of drivers. 1358 */ 1359 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1360 if (dl->driver == driver) 1361 break; 1362 } 1363 1364 if (!dl) { 1365 PDEBUG(("%s not found in %s list", driver->name, 1366 busclass->name)); 1367 return (ENOENT); 1368 } 1369 1370 /* 1371 * Quiesce all devices. We iterate through all the devices in 1372 * the devclass of the driver and quiesce any which are using 1373 * the driver and which have a parent in the devclass which we 1374 * are quiescing. 1375 * 1376 * Note that since a driver can be in multiple devclasses, we 1377 * should not quiesce devices which are not children of 1378 * devices in the affected devclass. 1379 */ 1380 for (i = 0; i < dc->maxunit; i++) { 1381 if (dc->devices[i]) { 1382 dev = dc->devices[i]; 1383 if (dev->driver == driver && dev->parent && 1384 dev->parent->devclass == busclass) { 1385 if ((error = device_quiesce(dev)) != 0) 1386 return (error); 1387 } 1388 } 1389 } 1390 1391 return (0); 1392 } 1393 1394 /** 1395 * @internal 1396 */ 1397 static driverlink_t 1398 devclass_find_driver_internal(devclass_t dc, const char *classname) 1399 { 1400 driverlink_t dl; 1401 1402 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1403 1404 TAILQ_FOREACH(dl, &dc->drivers, link) { 1405 if (!strcmp(dl->driver->name, classname)) 1406 return (dl); 1407 } 1408 1409 PDEBUG(("not found")); 1410 return (NULL); 1411 } 1412 1413 /** 1414 * @brief Return the name of the devclass 1415 */ 1416 const char * 1417 devclass_get_name(devclass_t dc) 1418 { 1419 return (dc->name); 1420 } 1421 1422 /** 1423 * @brief Find a device given a unit number 1424 * 1425 * @param dc the devclass to search 1426 * @param unit the unit number to search for 1427 * 1428 * @returns the device with the given unit number or @c 1429 * NULL if there is no such device 1430 */ 1431 device_t 1432 devclass_get_device(devclass_t dc, int unit) 1433 { 1434 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1435 return (NULL); 1436 return (dc->devices[unit]); 1437 } 1438 1439 /** 1440 * @brief Find the softc field of a device given a unit number 1441 * 1442 * @param dc the devclass to search 1443 * @param unit the unit number to search for 1444 * 1445 * @returns the softc field of the device with the given 1446 * unit number or @c NULL if there is no such 1447 * device 1448 */ 1449 void * 1450 devclass_get_softc(devclass_t dc, int unit) 1451 { 1452 device_t dev; 1453 1454 dev = devclass_get_device(dc, unit); 1455 if (!dev) 1456 return (NULL); 1457 1458 return (device_get_softc(dev)); 1459 } 1460 1461 /** 1462 * @brief Get a list of devices in the devclass 1463 * 1464 * An array containing a list of all the devices in the given devclass 1465 * is allocated and returned in @p *devlistp. The number of devices 1466 * in the array is returned in @p *devcountp. The caller should free 1467 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1468 * 1469 * @param dc the devclass to examine 1470 * @param devlistp points at location for array pointer return 1471 * value 1472 * @param devcountp points at location for array size return value 1473 * 1474 * @retval 0 success 1475 * @retval ENOMEM the array allocation failed 1476 */ 1477 int 1478 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1479 { 1480 int count, i; 1481 device_t *list; 1482 1483 count = devclass_get_count(dc); 1484 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1485 if (!list) 1486 return (ENOMEM); 1487 1488 count = 0; 1489 for (i = 0; i < dc->maxunit; i++) { 1490 if (dc->devices[i]) { 1491 list[count] = dc->devices[i]; 1492 count++; 1493 } 1494 } 1495 1496 *devlistp = list; 1497 *devcountp = count; 1498 1499 return (0); 1500 } 1501 1502 /** 1503 * @brief Get a list of drivers in the devclass 1504 * 1505 * An array containing a list of pointers to all the drivers in the 1506 * given devclass is allocated and returned in @p *listp. The number 1507 * of drivers in the array is returned in @p *countp. The caller should 1508 * free the array using @c free(p, M_TEMP). 1509 * 1510 * @param dc the devclass to examine 1511 * @param listp gives location for array pointer return value 1512 * @param countp gives location for number of array elements 1513 * return value 1514 * 1515 * @retval 0 success 1516 * @retval ENOMEM the array allocation failed 1517 */ 1518 int 1519 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1520 { 1521 driverlink_t dl; 1522 driver_t **list; 1523 int count; 1524 1525 count = 0; 1526 TAILQ_FOREACH(dl, &dc->drivers, link) 1527 count++; 1528 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1529 if (list == NULL) 1530 return (ENOMEM); 1531 1532 count = 0; 1533 TAILQ_FOREACH(dl, &dc->drivers, link) { 1534 list[count] = dl->driver; 1535 count++; 1536 } 1537 *listp = list; 1538 *countp = count; 1539 1540 return (0); 1541 } 1542 1543 /** 1544 * @brief Get the number of devices in a devclass 1545 * 1546 * @param dc the devclass to examine 1547 */ 1548 int 1549 devclass_get_count(devclass_t dc) 1550 { 1551 int count, i; 1552 1553 count = 0; 1554 for (i = 0; i < dc->maxunit; i++) 1555 if (dc->devices[i]) 1556 count++; 1557 return (count); 1558 } 1559 1560 /** 1561 * @brief Get the maximum unit number used in a devclass 1562 * 1563 * Note that this is one greater than the highest currently-allocated 1564 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1565 * that not even the devclass has been allocated yet. 1566 * 1567 * @param dc the devclass to examine 1568 */ 1569 int 1570 devclass_get_maxunit(devclass_t dc) 1571 { 1572 if (dc == NULL) 1573 return (-1); 1574 return (dc->maxunit); 1575 } 1576 1577 /** 1578 * @brief Find a free unit number in a devclass 1579 * 1580 * This function searches for the first unused unit number greater 1581 * that or equal to @p unit. 1582 * 1583 * @param dc the devclass to examine 1584 * @param unit the first unit number to check 1585 */ 1586 int 1587 devclass_find_free_unit(devclass_t dc, int unit) 1588 { 1589 if (dc == NULL) 1590 return (unit); 1591 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1592 unit++; 1593 return (unit); 1594 } 1595 1596 /** 1597 * @brief Set the parent of a devclass 1598 * 1599 * The parent class is normally initialised automatically by 1600 * DRIVER_MODULE(). 1601 * 1602 * @param dc the devclass to edit 1603 * @param pdc the new parent devclass 1604 */ 1605 void 1606 devclass_set_parent(devclass_t dc, devclass_t pdc) 1607 { 1608 dc->parent = pdc; 1609 } 1610 1611 /** 1612 * @brief Get the parent of a devclass 1613 * 1614 * @param dc the devclass to examine 1615 */ 1616 devclass_t 1617 devclass_get_parent(devclass_t dc) 1618 { 1619 return (dc->parent); 1620 } 1621 1622 struct sysctl_ctx_list * 1623 devclass_get_sysctl_ctx(devclass_t dc) 1624 { 1625 return (&dc->sysctl_ctx); 1626 } 1627 1628 struct sysctl_oid * 1629 devclass_get_sysctl_tree(devclass_t dc) 1630 { 1631 return (dc->sysctl_tree); 1632 } 1633 1634 /** 1635 * @internal 1636 * @brief Allocate a unit number 1637 * 1638 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1639 * will do). The allocated unit number is returned in @p *unitp. 1640 1641 * @param dc the devclass to allocate from 1642 * @param unitp points at the location for the allocated unit 1643 * number 1644 * 1645 * @retval 0 success 1646 * @retval EEXIST the requested unit number is already allocated 1647 * @retval ENOMEM memory allocation failure 1648 */ 1649 static int 1650 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1651 { 1652 const char *s; 1653 int unit = *unitp; 1654 1655 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1656 1657 /* Ask the parent bus if it wants to wire this device. */ 1658 if (unit == -1) 1659 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1660 &unit); 1661 1662 /* If we were given a wired unit number, check for existing device */ 1663 /* XXX imp XXX */ 1664 if (unit != -1) { 1665 if (unit >= 0 && unit < dc->maxunit && 1666 dc->devices[unit] != NULL) { 1667 if (bootverbose) 1668 printf("%s: %s%d already exists; skipping it\n", 1669 dc->name, dc->name, *unitp); 1670 return (EEXIST); 1671 } 1672 } else { 1673 /* Unwired device, find the next available slot for it */ 1674 unit = 0; 1675 for (unit = 0;; unit++) { 1676 /* If this device slot is already in use, skip it. */ 1677 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1678 continue; 1679 1680 /* If there is an "at" hint for a unit then skip it. */ 1681 if (resource_string_value(dc->name, unit, "at", &s) == 1682 0) 1683 continue; 1684 1685 break; 1686 } 1687 } 1688 1689 /* 1690 * We've selected a unit beyond the length of the table, so let's 1691 * extend the table to make room for all units up to and including 1692 * this one. 1693 */ 1694 if (unit >= dc->maxunit) { 1695 device_t *newlist, *oldlist; 1696 int newsize; 1697 1698 oldlist = dc->devices; 1699 newsize = roundup((unit + 1), 1700 MAX(1, MINALLOCSIZE / sizeof(device_t))); 1701 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1702 if (!newlist) 1703 return (ENOMEM); 1704 if (oldlist != NULL) 1705 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1706 bzero(newlist + dc->maxunit, 1707 sizeof(device_t) * (newsize - dc->maxunit)); 1708 dc->devices = newlist; 1709 dc->maxunit = newsize; 1710 if (oldlist != NULL) 1711 free(oldlist, M_BUS); 1712 } 1713 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1714 1715 *unitp = unit; 1716 return (0); 1717 } 1718 1719 /** 1720 * @internal 1721 * @brief Add a device to a devclass 1722 * 1723 * A unit number is allocated for the device (using the device's 1724 * preferred unit number if any) and the device is registered in the 1725 * devclass. This allows the device to be looked up by its unit 1726 * number, e.g. by decoding a dev_t minor number. 1727 * 1728 * @param dc the devclass to add to 1729 * @param dev the device to add 1730 * 1731 * @retval 0 success 1732 * @retval EEXIST the requested unit number is already allocated 1733 * @retval ENOMEM memory allocation failure 1734 */ 1735 static int 1736 devclass_add_device(devclass_t dc, device_t dev) 1737 { 1738 int buflen, error; 1739 1740 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1741 1742 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1743 if (buflen < 0) 1744 return (ENOMEM); 1745 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1746 if (!dev->nameunit) 1747 return (ENOMEM); 1748 1749 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1750 free(dev->nameunit, M_BUS); 1751 dev->nameunit = NULL; 1752 return (error); 1753 } 1754 dc->devices[dev->unit] = dev; 1755 dev->devclass = dc; 1756 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1757 1758 return (0); 1759 } 1760 1761 /** 1762 * @internal 1763 * @brief Delete a device from a devclass 1764 * 1765 * The device is removed from the devclass's device list and its unit 1766 * number is freed. 1767 1768 * @param dc the devclass to delete from 1769 * @param dev the device to delete 1770 * 1771 * @retval 0 success 1772 */ 1773 static int 1774 devclass_delete_device(devclass_t dc, device_t dev) 1775 { 1776 if (!dc || !dev) 1777 return (0); 1778 1779 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1780 1781 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1782 panic("devclass_delete_device: inconsistent device class"); 1783 dc->devices[dev->unit] = NULL; 1784 if (dev->flags & DF_WILDCARD) 1785 dev->unit = -1; 1786 dev->devclass = NULL; 1787 free(dev->nameunit, M_BUS); 1788 dev->nameunit = NULL; 1789 1790 return (0); 1791 } 1792 1793 /** 1794 * @internal 1795 * @brief Make a new device and add it as a child of @p parent 1796 * 1797 * @param parent the parent of the new device 1798 * @param name the devclass name of the new device or @c NULL 1799 * to leave the devclass unspecified 1800 * @parem unit the unit number of the new device of @c -1 to 1801 * leave the unit number unspecified 1802 * 1803 * @returns the new device 1804 */ 1805 static device_t 1806 make_device(device_t parent, const char *name, int unit) 1807 { 1808 device_t dev; 1809 devclass_t dc; 1810 1811 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1812 1813 if (name) { 1814 dc = devclass_find_internal(name, NULL, TRUE); 1815 if (!dc) { 1816 printf("make_device: can't find device class %s\n", 1817 name); 1818 return (NULL); 1819 } 1820 } else { 1821 dc = NULL; 1822 } 1823 1824 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1825 if (!dev) 1826 return (NULL); 1827 1828 dev->parent = parent; 1829 TAILQ_INIT(&dev->children); 1830 kobj_init((kobj_t) dev, &null_class); 1831 dev->driver = NULL; 1832 dev->devclass = NULL; 1833 dev->unit = unit; 1834 dev->nameunit = NULL; 1835 dev->desc = NULL; 1836 dev->busy = 0; 1837 dev->devflags = 0; 1838 dev->flags = DF_ENABLED; 1839 dev->order = 0; 1840 if (unit == -1) 1841 dev->flags |= DF_WILDCARD; 1842 if (name) { 1843 dev->flags |= DF_FIXEDCLASS; 1844 if (devclass_add_device(dc, dev)) { 1845 kobj_delete((kobj_t) dev, M_BUS); 1846 return (NULL); 1847 } 1848 } 1849 if (parent != NULL && device_has_quiet_children(parent)) 1850 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1851 dev->ivars = NULL; 1852 dev->softc = NULL; 1853 1854 dev->state = DS_NOTPRESENT; 1855 1856 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1857 bus_data_generation_update(); 1858 1859 return (dev); 1860 } 1861 1862 /** 1863 * @internal 1864 * @brief Print a description of a device. 1865 */ 1866 static int 1867 device_print_child(device_t dev, device_t child) 1868 { 1869 int retval = 0; 1870 1871 if (device_is_alive(child)) 1872 retval += BUS_PRINT_CHILD(dev, child); 1873 else 1874 retval += device_printf(child, " not found\n"); 1875 1876 return (retval); 1877 } 1878 1879 /** 1880 * @brief Create a new device 1881 * 1882 * This creates a new device and adds it as a child of an existing 1883 * parent device. The new device will be added after the last existing 1884 * child with order zero. 1885 * 1886 * @param dev the device which will be the parent of the 1887 * new child device 1888 * @param name devclass name for new device or @c NULL if not 1889 * specified 1890 * @param unit unit number for new device or @c -1 if not 1891 * specified 1892 * 1893 * @returns the new device 1894 */ 1895 device_t 1896 device_add_child(device_t dev, const char *name, int unit) 1897 { 1898 return (device_add_child_ordered(dev, 0, name, unit)); 1899 } 1900 1901 /** 1902 * @brief Create a new device 1903 * 1904 * This creates a new device and adds it as a child of an existing 1905 * parent device. The new device will be added after the last existing 1906 * child with the same order. 1907 * 1908 * @param dev the device which will be the parent of the 1909 * new child device 1910 * @param order a value which is used to partially sort the 1911 * children of @p dev - devices created using 1912 * lower values of @p order appear first in @p 1913 * dev's list of children 1914 * @param name devclass name for new device or @c NULL if not 1915 * specified 1916 * @param unit unit number for new device or @c -1 if not 1917 * specified 1918 * 1919 * @returns the new device 1920 */ 1921 device_t 1922 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1923 { 1924 device_t child; 1925 device_t place; 1926 1927 PDEBUG(("%s at %s with order %u as unit %d", 1928 name, DEVICENAME(dev), order, unit)); 1929 KASSERT(name != NULL || unit == -1, 1930 ("child device with wildcard name and specific unit number")); 1931 1932 child = make_device(dev, name, unit); 1933 if (child == NULL) 1934 return (child); 1935 child->order = order; 1936 1937 TAILQ_FOREACH(place, &dev->children, link) { 1938 if (place->order > order) 1939 break; 1940 } 1941 1942 if (place) { 1943 /* 1944 * The device 'place' is the first device whose order is 1945 * greater than the new child. 1946 */ 1947 TAILQ_INSERT_BEFORE(place, child, link); 1948 } else { 1949 /* 1950 * The new child's order is greater or equal to the order of 1951 * any existing device. Add the child to the tail of the list. 1952 */ 1953 TAILQ_INSERT_TAIL(&dev->children, child, link); 1954 } 1955 1956 bus_data_generation_update(); 1957 return (child); 1958 } 1959 1960 /** 1961 * @brief Delete a device 1962 * 1963 * This function deletes a device along with all of its children. If 1964 * the device currently has a driver attached to it, the device is 1965 * detached first using device_detach(). 1966 * 1967 * @param dev the parent device 1968 * @param child the device to delete 1969 * 1970 * @retval 0 success 1971 * @retval non-zero a unit error code describing the error 1972 */ 1973 int 1974 device_delete_child(device_t dev, device_t child) 1975 { 1976 int error; 1977 device_t grandchild; 1978 1979 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1980 1981 /* detach parent before deleting children, if any */ 1982 if ((error = device_detach(child)) != 0) 1983 return (error); 1984 1985 /* remove children second */ 1986 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1987 error = device_delete_child(child, grandchild); 1988 if (error) 1989 return (error); 1990 } 1991 1992 if (child->devclass) 1993 devclass_delete_device(child->devclass, child); 1994 if (child->parent) 1995 BUS_CHILD_DELETED(dev, child); 1996 TAILQ_REMOVE(&dev->children, child, link); 1997 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1998 kobj_delete((kobj_t) child, M_BUS); 1999 2000 bus_data_generation_update(); 2001 return (0); 2002 } 2003 2004 /** 2005 * @brief Delete all children devices of the given device, if any. 2006 * 2007 * This function deletes all children devices of the given device, if 2008 * any, using the device_delete_child() function for each device it 2009 * finds. If a child device cannot be deleted, this function will 2010 * return an error code. 2011 * 2012 * @param dev the parent device 2013 * 2014 * @retval 0 success 2015 * @retval non-zero a device would not detach 2016 */ 2017 int 2018 device_delete_children(device_t dev) 2019 { 2020 device_t child; 2021 int error; 2022 2023 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 2024 2025 error = 0; 2026 2027 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 2028 error = device_delete_child(dev, child); 2029 if (error) { 2030 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 2031 break; 2032 } 2033 } 2034 return (error); 2035 } 2036 2037 /** 2038 * @brief Find a device given a unit number 2039 * 2040 * This is similar to devclass_get_devices() but only searches for 2041 * devices which have @p dev as a parent. 2042 * 2043 * @param dev the parent device to search 2044 * @param unit the unit number to search for. If the unit is -1, 2045 * return the first child of @p dev which has name 2046 * @p classname (that is, the one with the lowest unit.) 2047 * 2048 * @returns the device with the given unit number or @c 2049 * NULL if there is no such device 2050 */ 2051 device_t 2052 device_find_child(device_t dev, const char *classname, int unit) 2053 { 2054 devclass_t dc; 2055 device_t child; 2056 2057 dc = devclass_find(classname); 2058 if (!dc) 2059 return (NULL); 2060 2061 if (unit != -1) { 2062 child = devclass_get_device(dc, unit); 2063 if (child && child->parent == dev) 2064 return (child); 2065 } else { 2066 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2067 child = devclass_get_device(dc, unit); 2068 if (child && child->parent == dev) 2069 return (child); 2070 } 2071 } 2072 return (NULL); 2073 } 2074 2075 /** 2076 * @internal 2077 */ 2078 static driverlink_t 2079 first_matching_driver(devclass_t dc, device_t dev) 2080 { 2081 if (dev->devclass) 2082 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2083 return (TAILQ_FIRST(&dc->drivers)); 2084 } 2085 2086 /** 2087 * @internal 2088 */ 2089 static driverlink_t 2090 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2091 { 2092 if (dev->devclass) { 2093 driverlink_t dl; 2094 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2095 if (!strcmp(dev->devclass->name, dl->driver->name)) 2096 return (dl); 2097 return (NULL); 2098 } 2099 return (TAILQ_NEXT(last, link)); 2100 } 2101 2102 /** 2103 * @internal 2104 */ 2105 int 2106 device_probe_child(device_t dev, device_t child) 2107 { 2108 devclass_t dc; 2109 driverlink_t best = NULL; 2110 driverlink_t dl; 2111 int result, pri = 0; 2112 /* We should preserve the devclass (or lack of) set by the bus. */ 2113 int hasclass = (child->devclass != NULL); 2114 2115 bus_topo_assert(); 2116 2117 dc = dev->devclass; 2118 if (!dc) 2119 panic("device_probe_child: parent device has no devclass"); 2120 2121 /* 2122 * If the state is already probed, then return. 2123 */ 2124 if (child->state == DS_ALIVE) 2125 return (0); 2126 2127 for (; dc; dc = dc->parent) { 2128 for (dl = first_matching_driver(dc, child); 2129 dl; 2130 dl = next_matching_driver(dc, child, dl)) { 2131 /* If this driver's pass is too high, then ignore it. */ 2132 if (dl->pass > bus_current_pass) 2133 continue; 2134 2135 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2136 result = device_set_driver(child, dl->driver); 2137 if (result == ENOMEM) 2138 return (result); 2139 else if (result != 0) 2140 continue; 2141 if (!hasclass) { 2142 if (device_set_devclass(child, 2143 dl->driver->name) != 0) { 2144 char const * devname = 2145 device_get_name(child); 2146 if (devname == NULL) 2147 devname = "(unknown)"; 2148 printf("driver bug: Unable to set " 2149 "devclass (class: %s " 2150 "devname: %s)\n", 2151 dl->driver->name, 2152 devname); 2153 (void)device_set_driver(child, NULL); 2154 continue; 2155 } 2156 } 2157 2158 /* Fetch any flags for the device before probing. */ 2159 resource_int_value(dl->driver->name, child->unit, 2160 "flags", &child->devflags); 2161 2162 result = DEVICE_PROBE(child); 2163 2164 /* 2165 * If the driver returns SUCCESS, there can be 2166 * no higher match for this device. 2167 */ 2168 if (result == 0) { 2169 best = dl; 2170 pri = 0; 2171 break; 2172 } 2173 2174 /* Reset flags and devclass before the next probe. */ 2175 child->devflags = 0; 2176 if (!hasclass) 2177 (void)device_set_devclass(child, NULL); 2178 2179 /* 2180 * Reset DF_QUIET in case this driver doesn't 2181 * end up as the best driver. 2182 */ 2183 device_verbose(child); 2184 2185 /* 2186 * Probes that return BUS_PROBE_NOWILDCARD or lower 2187 * only match on devices whose driver was explicitly 2188 * specified. 2189 */ 2190 if (result <= BUS_PROBE_NOWILDCARD && 2191 !(child->flags & DF_FIXEDCLASS)) { 2192 result = ENXIO; 2193 } 2194 2195 /* 2196 * The driver returned an error so it 2197 * certainly doesn't match. 2198 */ 2199 if (result > 0) { 2200 (void)device_set_driver(child, NULL); 2201 continue; 2202 } 2203 2204 /* 2205 * A priority lower than SUCCESS, remember the 2206 * best matching driver. Initialise the value 2207 * of pri for the first match. 2208 */ 2209 if (best == NULL || result > pri) { 2210 best = dl; 2211 pri = result; 2212 continue; 2213 } 2214 } 2215 /* 2216 * If we have an unambiguous match in this devclass, 2217 * don't look in the parent. 2218 */ 2219 if (best && pri == 0) 2220 break; 2221 } 2222 2223 if (best == NULL) 2224 return (ENXIO); 2225 2226 /* 2227 * If we found a driver, change state and initialise the devclass. 2228 */ 2229 if (pri < 0) { 2230 /* Set the winning driver, devclass, and flags. */ 2231 result = device_set_driver(child, best->driver); 2232 if (result != 0) 2233 return (result); 2234 if (!child->devclass) { 2235 result = device_set_devclass(child, best->driver->name); 2236 if (result != 0) { 2237 (void)device_set_driver(child, NULL); 2238 return (result); 2239 } 2240 } 2241 resource_int_value(best->driver->name, child->unit, 2242 "flags", &child->devflags); 2243 2244 /* 2245 * A bit bogus. Call the probe method again to make sure 2246 * that we have the right description. 2247 */ 2248 result = DEVICE_PROBE(child); 2249 if (result > 0) { 2250 if (!hasclass) 2251 (void)device_set_devclass(child, NULL); 2252 (void)device_set_driver(child, NULL); 2253 return (result); 2254 } 2255 } 2256 2257 child->state = DS_ALIVE; 2258 bus_data_generation_update(); 2259 return (0); 2260 } 2261 2262 /** 2263 * @brief Return the parent of a device 2264 */ 2265 device_t 2266 device_get_parent(device_t dev) 2267 { 2268 return (dev->parent); 2269 } 2270 2271 /** 2272 * @brief Get a list of children of a device 2273 * 2274 * An array containing a list of all the children of the given device 2275 * is allocated and returned in @p *devlistp. The number of devices 2276 * in the array is returned in @p *devcountp. The caller should free 2277 * the array using @c free(p, M_TEMP). 2278 * 2279 * @param dev the device to examine 2280 * @param devlistp points at location for array pointer return 2281 * value 2282 * @param devcountp points at location for array size return value 2283 * 2284 * @retval 0 success 2285 * @retval ENOMEM the array allocation failed 2286 */ 2287 int 2288 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2289 { 2290 int count; 2291 device_t child; 2292 device_t *list; 2293 2294 count = 0; 2295 TAILQ_FOREACH(child, &dev->children, link) { 2296 count++; 2297 } 2298 if (count == 0) { 2299 *devlistp = NULL; 2300 *devcountp = 0; 2301 return (0); 2302 } 2303 2304 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2305 if (!list) 2306 return (ENOMEM); 2307 2308 count = 0; 2309 TAILQ_FOREACH(child, &dev->children, link) { 2310 list[count] = child; 2311 count++; 2312 } 2313 2314 *devlistp = list; 2315 *devcountp = count; 2316 2317 return (0); 2318 } 2319 2320 /** 2321 * @brief Return the current driver for the device or @c NULL if there 2322 * is no driver currently attached 2323 */ 2324 driver_t * 2325 device_get_driver(device_t dev) 2326 { 2327 return (dev->driver); 2328 } 2329 2330 /** 2331 * @brief Return the current devclass for the device or @c NULL if 2332 * there is none. 2333 */ 2334 devclass_t 2335 device_get_devclass(device_t dev) 2336 { 2337 return (dev->devclass); 2338 } 2339 2340 /** 2341 * @brief Return the name of the device's devclass or @c NULL if there 2342 * is none. 2343 */ 2344 const char * 2345 device_get_name(device_t dev) 2346 { 2347 if (dev != NULL && dev->devclass) 2348 return (devclass_get_name(dev->devclass)); 2349 return (NULL); 2350 } 2351 2352 /** 2353 * @brief Return a string containing the device's devclass name 2354 * followed by an ascii representation of the device's unit number 2355 * (e.g. @c "foo2"). 2356 */ 2357 const char * 2358 device_get_nameunit(device_t dev) 2359 { 2360 return (dev->nameunit); 2361 } 2362 2363 /** 2364 * @brief Return the device's unit number. 2365 */ 2366 int 2367 device_get_unit(device_t dev) 2368 { 2369 return (dev->unit); 2370 } 2371 2372 /** 2373 * @brief Return the device's description string 2374 */ 2375 const char * 2376 device_get_desc(device_t dev) 2377 { 2378 return (dev->desc); 2379 } 2380 2381 /** 2382 * @brief Return the device's flags 2383 */ 2384 uint32_t 2385 device_get_flags(device_t dev) 2386 { 2387 return (dev->devflags); 2388 } 2389 2390 struct sysctl_ctx_list * 2391 device_get_sysctl_ctx(device_t dev) 2392 { 2393 return (&dev->sysctl_ctx); 2394 } 2395 2396 struct sysctl_oid * 2397 device_get_sysctl_tree(device_t dev) 2398 { 2399 return (dev->sysctl_tree); 2400 } 2401 2402 /** 2403 * @brief Print the name of the device followed by a colon and a space 2404 * 2405 * @returns the number of characters printed 2406 */ 2407 int 2408 device_print_prettyname(device_t dev) 2409 { 2410 const char *name = device_get_name(dev); 2411 2412 if (name == NULL) 2413 return (printf("unknown: ")); 2414 return (printf("%s%d: ", name, device_get_unit(dev))); 2415 } 2416 2417 /** 2418 * @brief Print the name of the device followed by a colon, a space 2419 * and the result of calling vprintf() with the value of @p fmt and 2420 * the following arguments. 2421 * 2422 * @returns the number of characters printed 2423 */ 2424 int 2425 device_printf(device_t dev, const char * fmt, ...) 2426 { 2427 char buf[128]; 2428 struct sbuf sb; 2429 const char *name; 2430 va_list ap; 2431 size_t retval; 2432 2433 retval = 0; 2434 2435 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2436 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 2437 2438 name = device_get_name(dev); 2439 2440 if (name == NULL) 2441 sbuf_cat(&sb, "unknown: "); 2442 else 2443 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2444 2445 va_start(ap, fmt); 2446 sbuf_vprintf(&sb, fmt, ap); 2447 va_end(ap); 2448 2449 sbuf_finish(&sb); 2450 sbuf_delete(&sb); 2451 2452 return (retval); 2453 } 2454 2455 /** 2456 * @brief Print the name of the device followed by a colon, a space 2457 * and the result of calling log() with the value of @p fmt and 2458 * the following arguments. 2459 * 2460 * @returns the number of characters printed 2461 */ 2462 int 2463 device_log(device_t dev, int pri, const char * fmt, ...) 2464 { 2465 char buf[128]; 2466 struct sbuf sb; 2467 const char *name; 2468 va_list ap; 2469 size_t retval; 2470 2471 retval = 0; 2472 2473 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2474 2475 name = device_get_name(dev); 2476 2477 if (name == NULL) 2478 sbuf_cat(&sb, "unknown: "); 2479 else 2480 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2481 2482 va_start(ap, fmt); 2483 sbuf_vprintf(&sb, fmt, ap); 2484 va_end(ap); 2485 2486 sbuf_finish(&sb); 2487 2488 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb)); 2489 retval = sbuf_len(&sb); 2490 2491 sbuf_delete(&sb); 2492 2493 return (retval); 2494 } 2495 2496 /** 2497 * @internal 2498 */ 2499 static void 2500 device_set_desc_internal(device_t dev, const char* desc, int copy) 2501 { 2502 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2503 free(dev->desc, M_BUS); 2504 dev->flags &= ~DF_DESCMALLOCED; 2505 dev->desc = NULL; 2506 } 2507 2508 if (copy && desc) { 2509 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2510 if (dev->desc) { 2511 strcpy(dev->desc, desc); 2512 dev->flags |= DF_DESCMALLOCED; 2513 } 2514 } else { 2515 /* Avoid a -Wcast-qual warning */ 2516 dev->desc = (char *)(uintptr_t) desc; 2517 } 2518 2519 bus_data_generation_update(); 2520 } 2521 2522 /** 2523 * @brief Set the device's description 2524 * 2525 * The value of @c desc should be a string constant that will not 2526 * change (at least until the description is changed in a subsequent 2527 * call to device_set_desc() or device_set_desc_copy()). 2528 */ 2529 void 2530 device_set_desc(device_t dev, const char* desc) 2531 { 2532 device_set_desc_internal(dev, desc, FALSE); 2533 } 2534 2535 /** 2536 * @brief Set the device's description 2537 * 2538 * The string pointed to by @c desc is copied. Use this function if 2539 * the device description is generated, (e.g. with sprintf()). 2540 */ 2541 void 2542 device_set_desc_copy(device_t dev, const char* desc) 2543 { 2544 device_set_desc_internal(dev, desc, TRUE); 2545 } 2546 2547 /** 2548 * @brief Set the device's flags 2549 */ 2550 void 2551 device_set_flags(device_t dev, uint32_t flags) 2552 { 2553 dev->devflags = flags; 2554 } 2555 2556 /** 2557 * @brief Return the device's softc field 2558 * 2559 * The softc is allocated and zeroed when a driver is attached, based 2560 * on the size field of the driver. 2561 */ 2562 void * 2563 device_get_softc(device_t dev) 2564 { 2565 return (dev->softc); 2566 } 2567 2568 /** 2569 * @brief Set the device's softc field 2570 * 2571 * Most drivers do not need to use this since the softc is allocated 2572 * automatically when the driver is attached. 2573 */ 2574 void 2575 device_set_softc(device_t dev, void *softc) 2576 { 2577 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2578 free(dev->softc, M_BUS_SC); 2579 dev->softc = softc; 2580 if (dev->softc) 2581 dev->flags |= DF_EXTERNALSOFTC; 2582 else 2583 dev->flags &= ~DF_EXTERNALSOFTC; 2584 } 2585 2586 /** 2587 * @brief Free claimed softc 2588 * 2589 * Most drivers do not need to use this since the softc is freed 2590 * automatically when the driver is detached. 2591 */ 2592 void 2593 device_free_softc(void *softc) 2594 { 2595 free(softc, M_BUS_SC); 2596 } 2597 2598 /** 2599 * @brief Claim softc 2600 * 2601 * This function can be used to let the driver free the automatically 2602 * allocated softc using "device_free_softc()". This function is 2603 * useful when the driver is refcounting the softc and the softc 2604 * cannot be freed when the "device_detach" method is called. 2605 */ 2606 void 2607 device_claim_softc(device_t dev) 2608 { 2609 if (dev->softc) 2610 dev->flags |= DF_EXTERNALSOFTC; 2611 else 2612 dev->flags &= ~DF_EXTERNALSOFTC; 2613 } 2614 2615 /** 2616 * @brief Get the device's ivars field 2617 * 2618 * The ivars field is used by the parent device to store per-device 2619 * state (e.g. the physical location of the device or a list of 2620 * resources). 2621 */ 2622 void * 2623 device_get_ivars(device_t dev) 2624 { 2625 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2626 return (dev->ivars); 2627 } 2628 2629 /** 2630 * @brief Set the device's ivars field 2631 */ 2632 void 2633 device_set_ivars(device_t dev, void * ivars) 2634 { 2635 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2636 dev->ivars = ivars; 2637 } 2638 2639 /** 2640 * @brief Return the device's state 2641 */ 2642 device_state_t 2643 device_get_state(device_t dev) 2644 { 2645 return (dev->state); 2646 } 2647 2648 /** 2649 * @brief Set the DF_ENABLED flag for the device 2650 */ 2651 void 2652 device_enable(device_t dev) 2653 { 2654 dev->flags |= DF_ENABLED; 2655 } 2656 2657 /** 2658 * @brief Clear the DF_ENABLED flag for the device 2659 */ 2660 void 2661 device_disable(device_t dev) 2662 { 2663 dev->flags &= ~DF_ENABLED; 2664 } 2665 2666 /** 2667 * @brief Increment the busy counter for the device 2668 */ 2669 void 2670 device_busy(device_t dev) 2671 { 2672 2673 /* 2674 * Mark the device as busy, recursively up the tree if this busy count 2675 * goes 0->1. 2676 */ 2677 if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL) 2678 device_busy(dev->parent); 2679 } 2680 2681 /** 2682 * @brief Decrement the busy counter for the device 2683 */ 2684 void 2685 device_unbusy(device_t dev) 2686 { 2687 2688 /* 2689 * Mark the device as unbsy, recursively if this is the last busy count. 2690 */ 2691 if (refcount_release(&dev->busy) && dev->parent != NULL) 2692 device_unbusy(dev->parent); 2693 } 2694 2695 /** 2696 * @brief Set the DF_QUIET flag for the device 2697 */ 2698 void 2699 device_quiet(device_t dev) 2700 { 2701 dev->flags |= DF_QUIET; 2702 } 2703 2704 /** 2705 * @brief Set the DF_QUIET_CHILDREN flag for the device 2706 */ 2707 void 2708 device_quiet_children(device_t dev) 2709 { 2710 dev->flags |= DF_QUIET_CHILDREN; 2711 } 2712 2713 /** 2714 * @brief Clear the DF_QUIET flag for the device 2715 */ 2716 void 2717 device_verbose(device_t dev) 2718 { 2719 dev->flags &= ~DF_QUIET; 2720 } 2721 2722 ssize_t 2723 device_get_property(device_t dev, const char *prop, void *val, size_t sz, 2724 device_property_type_t type) 2725 { 2726 device_t bus = device_get_parent(dev); 2727 2728 switch (type) { 2729 case DEVICE_PROP_ANY: 2730 case DEVICE_PROP_BUFFER: 2731 break; 2732 case DEVICE_PROP_UINT32: 2733 if (sz % 4 != 0) 2734 return (-1); 2735 break; 2736 case DEVICE_PROP_UINT64: 2737 if (sz % 8 != 0) 2738 return (-1); 2739 break; 2740 default: 2741 return (-1); 2742 } 2743 2744 return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type)); 2745 } 2746 2747 bool 2748 device_has_property(device_t dev, const char *prop) 2749 { 2750 return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0); 2751 } 2752 2753 /** 2754 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2755 */ 2756 int 2757 device_has_quiet_children(device_t dev) 2758 { 2759 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2760 } 2761 2762 /** 2763 * @brief Return non-zero if the DF_QUIET flag is set on the device 2764 */ 2765 int 2766 device_is_quiet(device_t dev) 2767 { 2768 return ((dev->flags & DF_QUIET) != 0); 2769 } 2770 2771 /** 2772 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2773 */ 2774 int 2775 device_is_enabled(device_t dev) 2776 { 2777 return ((dev->flags & DF_ENABLED) != 0); 2778 } 2779 2780 /** 2781 * @brief Return non-zero if the device was successfully probed 2782 */ 2783 int 2784 device_is_alive(device_t dev) 2785 { 2786 return (dev->state >= DS_ALIVE); 2787 } 2788 2789 /** 2790 * @brief Return non-zero if the device currently has a driver 2791 * attached to it 2792 */ 2793 int 2794 device_is_attached(device_t dev) 2795 { 2796 return (dev->state >= DS_ATTACHED); 2797 } 2798 2799 /** 2800 * @brief Return non-zero if the device is currently suspended. 2801 */ 2802 int 2803 device_is_suspended(device_t dev) 2804 { 2805 return ((dev->flags & DF_SUSPENDED) != 0); 2806 } 2807 2808 /** 2809 * @brief Set the devclass of a device 2810 * @see devclass_add_device(). 2811 */ 2812 int 2813 device_set_devclass(device_t dev, const char *classname) 2814 { 2815 devclass_t dc; 2816 int error; 2817 2818 if (!classname) { 2819 if (dev->devclass) 2820 devclass_delete_device(dev->devclass, dev); 2821 return (0); 2822 } 2823 2824 if (dev->devclass) { 2825 printf("device_set_devclass: device class already set\n"); 2826 return (EINVAL); 2827 } 2828 2829 dc = devclass_find_internal(classname, NULL, TRUE); 2830 if (!dc) 2831 return (ENOMEM); 2832 2833 error = devclass_add_device(dc, dev); 2834 2835 bus_data_generation_update(); 2836 return (error); 2837 } 2838 2839 /** 2840 * @brief Set the devclass of a device and mark the devclass fixed. 2841 * @see device_set_devclass() 2842 */ 2843 int 2844 device_set_devclass_fixed(device_t dev, const char *classname) 2845 { 2846 int error; 2847 2848 if (classname == NULL) 2849 return (EINVAL); 2850 2851 error = device_set_devclass(dev, classname); 2852 if (error) 2853 return (error); 2854 dev->flags |= DF_FIXEDCLASS; 2855 return (0); 2856 } 2857 2858 /** 2859 * @brief Query the device to determine if it's of a fixed devclass 2860 * @see device_set_devclass_fixed() 2861 */ 2862 bool 2863 device_is_devclass_fixed(device_t dev) 2864 { 2865 return ((dev->flags & DF_FIXEDCLASS) != 0); 2866 } 2867 2868 /** 2869 * @brief Set the driver of a device 2870 * 2871 * @retval 0 success 2872 * @retval EBUSY the device already has a driver attached 2873 * @retval ENOMEM a memory allocation failure occurred 2874 */ 2875 int 2876 device_set_driver(device_t dev, driver_t *driver) 2877 { 2878 int domain; 2879 struct domainset *policy; 2880 2881 if (dev->state >= DS_ATTACHED) 2882 return (EBUSY); 2883 2884 if (dev->driver == driver) 2885 return (0); 2886 2887 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2888 free(dev->softc, M_BUS_SC); 2889 dev->softc = NULL; 2890 } 2891 device_set_desc(dev, NULL); 2892 kobj_delete((kobj_t) dev, NULL); 2893 dev->driver = driver; 2894 if (driver) { 2895 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2896 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2897 if (bus_get_domain(dev, &domain) == 0) 2898 policy = DOMAINSET_PREF(domain); 2899 else 2900 policy = DOMAINSET_RR(); 2901 dev->softc = malloc_domainset(driver->size, M_BUS_SC, 2902 policy, M_NOWAIT | M_ZERO); 2903 if (!dev->softc) { 2904 kobj_delete((kobj_t) dev, NULL); 2905 kobj_init((kobj_t) dev, &null_class); 2906 dev->driver = NULL; 2907 return (ENOMEM); 2908 } 2909 } 2910 } else { 2911 kobj_init((kobj_t) dev, &null_class); 2912 } 2913 2914 bus_data_generation_update(); 2915 return (0); 2916 } 2917 2918 /** 2919 * @brief Probe a device, and return this status. 2920 * 2921 * This function is the core of the device autoconfiguration 2922 * system. Its purpose is to select a suitable driver for a device and 2923 * then call that driver to initialise the hardware appropriately. The 2924 * driver is selected by calling the DEVICE_PROBE() method of a set of 2925 * candidate drivers and then choosing the driver which returned the 2926 * best value. This driver is then attached to the device using 2927 * device_attach(). 2928 * 2929 * The set of suitable drivers is taken from the list of drivers in 2930 * the parent device's devclass. If the device was originally created 2931 * with a specific class name (see device_add_child()), only drivers 2932 * with that name are probed, otherwise all drivers in the devclass 2933 * are probed. If no drivers return successful probe values in the 2934 * parent devclass, the search continues in the parent of that 2935 * devclass (see devclass_get_parent()) if any. 2936 * 2937 * @param dev the device to initialise 2938 * 2939 * @retval 0 success 2940 * @retval ENXIO no driver was found 2941 * @retval ENOMEM memory allocation failure 2942 * @retval non-zero some other unix error code 2943 * @retval -1 Device already attached 2944 */ 2945 int 2946 device_probe(device_t dev) 2947 { 2948 int error; 2949 2950 bus_topo_assert(); 2951 2952 if (dev->state >= DS_ALIVE) 2953 return (-1); 2954 2955 if (!(dev->flags & DF_ENABLED)) { 2956 if (bootverbose && device_get_name(dev) != NULL) { 2957 device_print_prettyname(dev); 2958 printf("not probed (disabled)\n"); 2959 } 2960 return (-1); 2961 } 2962 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2963 if (bus_current_pass == BUS_PASS_DEFAULT && 2964 !(dev->flags & DF_DONENOMATCH)) { 2965 BUS_PROBE_NOMATCH(dev->parent, dev); 2966 devnomatch(dev); 2967 dev->flags |= DF_DONENOMATCH; 2968 } 2969 return (error); 2970 } 2971 return (0); 2972 } 2973 2974 /** 2975 * @brief Probe a device and attach a driver if possible 2976 * 2977 * calls device_probe() and attaches if that was successful. 2978 */ 2979 int 2980 device_probe_and_attach(device_t dev) 2981 { 2982 int error; 2983 2984 bus_topo_assert(); 2985 2986 error = device_probe(dev); 2987 if (error == -1) 2988 return (0); 2989 else if (error != 0) 2990 return (error); 2991 2992 CURVNET_SET_QUIET(vnet0); 2993 error = device_attach(dev); 2994 CURVNET_RESTORE(); 2995 return error; 2996 } 2997 2998 /** 2999 * @brief Attach a device driver to a device 3000 * 3001 * This function is a wrapper around the DEVICE_ATTACH() driver 3002 * method. In addition to calling DEVICE_ATTACH(), it initialises the 3003 * device's sysctl tree, optionally prints a description of the device 3004 * and queues a notification event for user-based device management 3005 * services. 3006 * 3007 * Normally this function is only called internally from 3008 * device_probe_and_attach(). 3009 * 3010 * @param dev the device to initialise 3011 * 3012 * @retval 0 success 3013 * @retval ENXIO no driver was found 3014 * @retval ENOMEM memory allocation failure 3015 * @retval non-zero some other unix error code 3016 */ 3017 int 3018 device_attach(device_t dev) 3019 { 3020 uint64_t attachtime; 3021 uint16_t attachentropy; 3022 int error; 3023 3024 if (resource_disabled(dev->driver->name, dev->unit)) { 3025 device_disable(dev); 3026 if (bootverbose) 3027 device_printf(dev, "disabled via hints entry\n"); 3028 return (ENXIO); 3029 } 3030 3031 device_sysctl_init(dev); 3032 if (!device_is_quiet(dev)) 3033 device_print_child(dev->parent, dev); 3034 attachtime = get_cyclecount(); 3035 dev->state = DS_ATTACHING; 3036 if ((error = DEVICE_ATTACH(dev)) != 0) { 3037 printf("device_attach: %s%d attach returned %d\n", 3038 dev->driver->name, dev->unit, error); 3039 if (!(dev->flags & DF_FIXEDCLASS)) 3040 devclass_delete_device(dev->devclass, dev); 3041 (void)device_set_driver(dev, NULL); 3042 device_sysctl_fini(dev); 3043 KASSERT(dev->busy == 0, ("attach failed but busy")); 3044 dev->state = DS_NOTPRESENT; 3045 return (error); 3046 } 3047 dev->flags |= DF_ATTACHED_ONCE; 3048 /* We only need the low bits of this time, but ranges from tens to thousands 3049 * have been seen, so keep 2 bytes' worth. 3050 */ 3051 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 3052 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 3053 device_sysctl_update(dev); 3054 dev->state = DS_ATTACHED; 3055 dev->flags &= ~DF_DONENOMATCH; 3056 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 3057 devadded(dev); 3058 return (0); 3059 } 3060 3061 /** 3062 * @brief Detach a driver from a device 3063 * 3064 * This function is a wrapper around the DEVICE_DETACH() driver 3065 * method. If the call to DEVICE_DETACH() succeeds, it calls 3066 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 3067 * notification event for user-based device management services and 3068 * cleans up the device's sysctl tree. 3069 * 3070 * @param dev the device to un-initialise 3071 * 3072 * @retval 0 success 3073 * @retval ENXIO no driver was found 3074 * @retval ENOMEM memory allocation failure 3075 * @retval non-zero some other unix error code 3076 */ 3077 int 3078 device_detach(device_t dev) 3079 { 3080 int error; 3081 3082 bus_topo_assert(); 3083 3084 PDEBUG(("%s", DEVICENAME(dev))); 3085 if (dev->busy > 0) 3086 return (EBUSY); 3087 if (dev->state == DS_ATTACHING) { 3088 device_printf(dev, "device in attaching state! Deferring detach.\n"); 3089 return (EBUSY); 3090 } 3091 if (dev->state != DS_ATTACHED) 3092 return (0); 3093 3094 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 3095 if ((error = DEVICE_DETACH(dev)) != 0) { 3096 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3097 EVHDEV_DETACH_FAILED); 3098 return (error); 3099 } else { 3100 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3101 EVHDEV_DETACH_COMPLETE); 3102 } 3103 devremoved(dev); 3104 if (!device_is_quiet(dev)) 3105 device_printf(dev, "detached\n"); 3106 if (dev->parent) 3107 BUS_CHILD_DETACHED(dev->parent, dev); 3108 3109 if (!(dev->flags & DF_FIXEDCLASS)) 3110 devclass_delete_device(dev->devclass, dev); 3111 3112 device_verbose(dev); 3113 dev->state = DS_NOTPRESENT; 3114 (void)device_set_driver(dev, NULL); 3115 device_sysctl_fini(dev); 3116 3117 return (0); 3118 } 3119 3120 /** 3121 * @brief Tells a driver to quiesce itself. 3122 * 3123 * This function is a wrapper around the DEVICE_QUIESCE() driver 3124 * method. If the call to DEVICE_QUIESCE() succeeds. 3125 * 3126 * @param dev the device to quiesce 3127 * 3128 * @retval 0 success 3129 * @retval ENXIO no driver was found 3130 * @retval ENOMEM memory allocation failure 3131 * @retval non-zero some other unix error code 3132 */ 3133 int 3134 device_quiesce(device_t dev) 3135 { 3136 PDEBUG(("%s", DEVICENAME(dev))); 3137 if (dev->busy > 0) 3138 return (EBUSY); 3139 if (dev->state != DS_ATTACHED) 3140 return (0); 3141 3142 return (DEVICE_QUIESCE(dev)); 3143 } 3144 3145 /** 3146 * @brief Notify a device of system shutdown 3147 * 3148 * This function calls the DEVICE_SHUTDOWN() driver method if the 3149 * device currently has an attached driver. 3150 * 3151 * @returns the value returned by DEVICE_SHUTDOWN() 3152 */ 3153 int 3154 device_shutdown(device_t dev) 3155 { 3156 if (dev->state < DS_ATTACHED) 3157 return (0); 3158 return (DEVICE_SHUTDOWN(dev)); 3159 } 3160 3161 /** 3162 * @brief Set the unit number of a device 3163 * 3164 * This function can be used to override the unit number used for a 3165 * device (e.g. to wire a device to a pre-configured unit number). 3166 */ 3167 int 3168 device_set_unit(device_t dev, int unit) 3169 { 3170 devclass_t dc; 3171 int err; 3172 3173 if (unit == dev->unit) 3174 return (0); 3175 dc = device_get_devclass(dev); 3176 if (unit < dc->maxunit && dc->devices[unit]) 3177 return (EBUSY); 3178 err = devclass_delete_device(dc, dev); 3179 if (err) 3180 return (err); 3181 dev->unit = unit; 3182 err = devclass_add_device(dc, dev); 3183 if (err) 3184 return (err); 3185 3186 bus_data_generation_update(); 3187 return (0); 3188 } 3189 3190 /*======================================*/ 3191 /* 3192 * Some useful method implementations to make life easier for bus drivers. 3193 */ 3194 3195 void 3196 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 3197 { 3198 bzero(args, sz); 3199 args->size = sz; 3200 args->memattr = VM_MEMATTR_DEVICE; 3201 } 3202 3203 /** 3204 * @brief Initialise a resource list. 3205 * 3206 * @param rl the resource list to initialise 3207 */ 3208 void 3209 resource_list_init(struct resource_list *rl) 3210 { 3211 STAILQ_INIT(rl); 3212 } 3213 3214 /** 3215 * @brief Reclaim memory used by a resource list. 3216 * 3217 * This function frees the memory for all resource entries on the list 3218 * (if any). 3219 * 3220 * @param rl the resource list to free 3221 */ 3222 void 3223 resource_list_free(struct resource_list *rl) 3224 { 3225 struct resource_list_entry *rle; 3226 3227 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3228 if (rle->res) 3229 panic("resource_list_free: resource entry is busy"); 3230 STAILQ_REMOVE_HEAD(rl, link); 3231 free(rle, M_BUS); 3232 } 3233 } 3234 3235 /** 3236 * @brief Add a resource entry. 3237 * 3238 * This function adds a resource entry using the given @p type, @p 3239 * start, @p end and @p count values. A rid value is chosen by 3240 * searching sequentially for the first unused rid starting at zero. 3241 * 3242 * @param rl the resource list to edit 3243 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3244 * @param start the start address of the resource 3245 * @param end the end address of the resource 3246 * @param count XXX end-start+1 3247 */ 3248 int 3249 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 3250 rman_res_t end, rman_res_t count) 3251 { 3252 int rid; 3253 3254 rid = 0; 3255 while (resource_list_find(rl, type, rid) != NULL) 3256 rid++; 3257 resource_list_add(rl, type, rid, start, end, count); 3258 return (rid); 3259 } 3260 3261 /** 3262 * @brief Add or modify a resource entry. 3263 * 3264 * If an existing entry exists with the same type and rid, it will be 3265 * modified using the given values of @p start, @p end and @p 3266 * count. If no entry exists, a new one will be created using the 3267 * given values. The resource list entry that matches is then returned. 3268 * 3269 * @param rl the resource list to edit 3270 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3271 * @param rid the resource identifier 3272 * @param start the start address of the resource 3273 * @param end the end address of the resource 3274 * @param count XXX end-start+1 3275 */ 3276 struct resource_list_entry * 3277 resource_list_add(struct resource_list *rl, int type, int rid, 3278 rman_res_t start, rman_res_t end, rman_res_t count) 3279 { 3280 struct resource_list_entry *rle; 3281 3282 rle = resource_list_find(rl, type, rid); 3283 if (!rle) { 3284 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3285 M_NOWAIT); 3286 if (!rle) 3287 panic("resource_list_add: can't record entry"); 3288 STAILQ_INSERT_TAIL(rl, rle, link); 3289 rle->type = type; 3290 rle->rid = rid; 3291 rle->res = NULL; 3292 rle->flags = 0; 3293 } 3294 3295 if (rle->res) 3296 panic("resource_list_add: resource entry is busy"); 3297 3298 rle->start = start; 3299 rle->end = end; 3300 rle->count = count; 3301 return (rle); 3302 } 3303 3304 /** 3305 * @brief Determine if a resource entry is busy. 3306 * 3307 * Returns true if a resource entry is busy meaning that it has an 3308 * associated resource that is not an unallocated "reserved" resource. 3309 * 3310 * @param rl the resource list to search 3311 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3312 * @param rid the resource identifier 3313 * 3314 * @returns Non-zero if the entry is busy, zero otherwise. 3315 */ 3316 int 3317 resource_list_busy(struct resource_list *rl, int type, int rid) 3318 { 3319 struct resource_list_entry *rle; 3320 3321 rle = resource_list_find(rl, type, rid); 3322 if (rle == NULL || rle->res == NULL) 3323 return (0); 3324 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3325 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3326 ("reserved resource is active")); 3327 return (0); 3328 } 3329 return (1); 3330 } 3331 3332 /** 3333 * @brief Determine if a resource entry is reserved. 3334 * 3335 * Returns true if a resource entry is reserved meaning that it has an 3336 * associated "reserved" resource. The resource can either be 3337 * allocated or unallocated. 3338 * 3339 * @param rl the resource list to search 3340 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3341 * @param rid the resource identifier 3342 * 3343 * @returns Non-zero if the entry is reserved, zero otherwise. 3344 */ 3345 int 3346 resource_list_reserved(struct resource_list *rl, int type, int rid) 3347 { 3348 struct resource_list_entry *rle; 3349 3350 rle = resource_list_find(rl, type, rid); 3351 if (rle != NULL && rle->flags & RLE_RESERVED) 3352 return (1); 3353 return (0); 3354 } 3355 3356 /** 3357 * @brief Find a resource entry by type and rid. 3358 * 3359 * @param rl the resource list to search 3360 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3361 * @param rid the resource identifier 3362 * 3363 * @returns the resource entry pointer or NULL if there is no such 3364 * entry. 3365 */ 3366 struct resource_list_entry * 3367 resource_list_find(struct resource_list *rl, int type, int rid) 3368 { 3369 struct resource_list_entry *rle; 3370 3371 STAILQ_FOREACH(rle, rl, link) { 3372 if (rle->type == type && rle->rid == rid) 3373 return (rle); 3374 } 3375 return (NULL); 3376 } 3377 3378 /** 3379 * @brief Delete a resource entry. 3380 * 3381 * @param rl the resource list to edit 3382 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3383 * @param rid the resource identifier 3384 */ 3385 void 3386 resource_list_delete(struct resource_list *rl, int type, int rid) 3387 { 3388 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3389 3390 if (rle) { 3391 if (rle->res != NULL) 3392 panic("resource_list_delete: resource has not been released"); 3393 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3394 free(rle, M_BUS); 3395 } 3396 } 3397 3398 /** 3399 * @brief Allocate a reserved resource 3400 * 3401 * This can be used by buses to force the allocation of resources 3402 * that are always active in the system even if they are not allocated 3403 * by a driver (e.g. PCI BARs). This function is usually called when 3404 * adding a new child to the bus. The resource is allocated from the 3405 * parent bus when it is reserved. The resource list entry is marked 3406 * with RLE_RESERVED to note that it is a reserved resource. 3407 * 3408 * Subsequent attempts to allocate the resource with 3409 * resource_list_alloc() will succeed the first time and will set 3410 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3411 * resource that has been allocated is released with 3412 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3413 * the actual resource remains allocated. The resource can be released to 3414 * the parent bus by calling resource_list_unreserve(). 3415 * 3416 * @param rl the resource list to allocate from 3417 * @param bus the parent device of @p child 3418 * @param child the device for which the resource is being reserved 3419 * @param type the type of resource to allocate 3420 * @param rid a pointer to the resource identifier 3421 * @param start hint at the start of the resource range - pass 3422 * @c 0 for any start address 3423 * @param end hint at the end of the resource range - pass 3424 * @c ~0 for any end address 3425 * @param count hint at the size of range required - pass @c 1 3426 * for any size 3427 * @param flags any extra flags to control the resource 3428 * allocation - see @c RF_XXX flags in 3429 * <sys/rman.h> for details 3430 * 3431 * @returns the resource which was allocated or @c NULL if no 3432 * resource could be allocated 3433 */ 3434 struct resource * 3435 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3436 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3437 { 3438 struct resource_list_entry *rle = NULL; 3439 int passthrough = (device_get_parent(child) != bus); 3440 struct resource *r; 3441 3442 if (passthrough) 3443 panic( 3444 "resource_list_reserve() should only be called for direct children"); 3445 if (flags & RF_ACTIVE) 3446 panic( 3447 "resource_list_reserve() should only reserve inactive resources"); 3448 3449 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3450 flags); 3451 if (r != NULL) { 3452 rle = resource_list_find(rl, type, *rid); 3453 rle->flags |= RLE_RESERVED; 3454 } 3455 return (r); 3456 } 3457 3458 /** 3459 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3460 * 3461 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3462 * and passing the allocation up to the parent of @p bus. This assumes 3463 * that the first entry of @c device_get_ivars(child) is a struct 3464 * resource_list. This also handles 'passthrough' allocations where a 3465 * child is a remote descendant of bus by passing the allocation up to 3466 * the parent of bus. 3467 * 3468 * Typically, a bus driver would store a list of child resources 3469 * somewhere in the child device's ivars (see device_get_ivars()) and 3470 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3471 * then call resource_list_alloc() to perform the allocation. 3472 * 3473 * @param rl the resource list to allocate from 3474 * @param bus the parent device of @p child 3475 * @param child the device which is requesting an allocation 3476 * @param type the type of resource to allocate 3477 * @param rid a pointer to the resource identifier 3478 * @param start hint at the start of the resource range - pass 3479 * @c 0 for any start address 3480 * @param end hint at the end of the resource range - pass 3481 * @c ~0 for any end address 3482 * @param count hint at the size of range required - pass @c 1 3483 * for any size 3484 * @param flags any extra flags to control the resource 3485 * allocation - see @c RF_XXX flags in 3486 * <sys/rman.h> for details 3487 * 3488 * @returns the resource which was allocated or @c NULL if no 3489 * resource could be allocated 3490 */ 3491 struct resource * 3492 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3493 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3494 { 3495 struct resource_list_entry *rle = NULL; 3496 int passthrough = (device_get_parent(child) != bus); 3497 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3498 3499 if (passthrough) { 3500 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3501 type, rid, start, end, count, flags)); 3502 } 3503 3504 rle = resource_list_find(rl, type, *rid); 3505 3506 if (!rle) 3507 return (NULL); /* no resource of that type/rid */ 3508 3509 if (rle->res) { 3510 if (rle->flags & RLE_RESERVED) { 3511 if (rle->flags & RLE_ALLOCATED) 3512 return (NULL); 3513 if ((flags & RF_ACTIVE) && 3514 bus_activate_resource(child, type, *rid, 3515 rle->res) != 0) 3516 return (NULL); 3517 rle->flags |= RLE_ALLOCATED; 3518 return (rle->res); 3519 } 3520 device_printf(bus, 3521 "resource entry %#x type %d for child %s is busy\n", *rid, 3522 type, device_get_nameunit(child)); 3523 return (NULL); 3524 } 3525 3526 if (isdefault) { 3527 start = rle->start; 3528 count = ulmax(count, rle->count); 3529 end = ulmax(rle->end, start + count - 1); 3530 } 3531 3532 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3533 type, rid, start, end, count, flags); 3534 3535 /* 3536 * Record the new range. 3537 */ 3538 if (rle->res) { 3539 rle->start = rman_get_start(rle->res); 3540 rle->end = rman_get_end(rle->res); 3541 rle->count = count; 3542 } 3543 3544 return (rle->res); 3545 } 3546 3547 /** 3548 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3549 * 3550 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3551 * used with resource_list_alloc(). 3552 * 3553 * @param rl the resource list which was allocated from 3554 * @param bus the parent device of @p child 3555 * @param child the device which is requesting a release 3556 * @param type the type of resource to release 3557 * @param rid the resource identifier 3558 * @param res the resource to release 3559 * 3560 * @retval 0 success 3561 * @retval non-zero a standard unix error code indicating what 3562 * error condition prevented the operation 3563 */ 3564 int 3565 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3566 int type, int rid, struct resource *res) 3567 { 3568 struct resource_list_entry *rle = NULL; 3569 int passthrough = (device_get_parent(child) != bus); 3570 int error; 3571 3572 if (passthrough) { 3573 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3574 type, rid, res)); 3575 } 3576 3577 rle = resource_list_find(rl, type, rid); 3578 3579 if (!rle) 3580 panic("resource_list_release: can't find resource"); 3581 if (!rle->res) 3582 panic("resource_list_release: resource entry is not busy"); 3583 if (rle->flags & RLE_RESERVED) { 3584 if (rle->flags & RLE_ALLOCATED) { 3585 if (rman_get_flags(res) & RF_ACTIVE) { 3586 error = bus_deactivate_resource(child, type, 3587 rid, res); 3588 if (error) 3589 return (error); 3590 } 3591 rle->flags &= ~RLE_ALLOCATED; 3592 return (0); 3593 } 3594 return (EINVAL); 3595 } 3596 3597 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3598 type, rid, res); 3599 if (error) 3600 return (error); 3601 3602 rle->res = NULL; 3603 return (0); 3604 } 3605 3606 /** 3607 * @brief Release all active resources of a given type 3608 * 3609 * Release all active resources of a specified type. This is intended 3610 * to be used to cleanup resources leaked by a driver after detach or 3611 * a failed attach. 3612 * 3613 * @param rl the resource list which was allocated from 3614 * @param bus the parent device of @p child 3615 * @param child the device whose active resources are being released 3616 * @param type the type of resources to release 3617 * 3618 * @retval 0 success 3619 * @retval EBUSY at least one resource was active 3620 */ 3621 int 3622 resource_list_release_active(struct resource_list *rl, device_t bus, 3623 device_t child, int type) 3624 { 3625 struct resource_list_entry *rle; 3626 int error, retval; 3627 3628 retval = 0; 3629 STAILQ_FOREACH(rle, rl, link) { 3630 if (rle->type != type) 3631 continue; 3632 if (rle->res == NULL) 3633 continue; 3634 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3635 RLE_RESERVED) 3636 continue; 3637 retval = EBUSY; 3638 error = resource_list_release(rl, bus, child, type, 3639 rman_get_rid(rle->res), rle->res); 3640 if (error != 0) 3641 device_printf(bus, 3642 "Failed to release active resource: %d\n", error); 3643 } 3644 return (retval); 3645 } 3646 3647 /** 3648 * @brief Fully release a reserved resource 3649 * 3650 * Fully releases a resource reserved via resource_list_reserve(). 3651 * 3652 * @param rl the resource list which was allocated from 3653 * @param bus the parent device of @p child 3654 * @param child the device whose reserved resource is being released 3655 * @param type the type of resource to release 3656 * @param rid the resource identifier 3657 * @param res the resource to release 3658 * 3659 * @retval 0 success 3660 * @retval non-zero a standard unix error code indicating what 3661 * error condition prevented the operation 3662 */ 3663 int 3664 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3665 int type, int rid) 3666 { 3667 struct resource_list_entry *rle = NULL; 3668 int passthrough = (device_get_parent(child) != bus); 3669 3670 if (passthrough) 3671 panic( 3672 "resource_list_unreserve() should only be called for direct children"); 3673 3674 rle = resource_list_find(rl, type, rid); 3675 3676 if (!rle) 3677 panic("resource_list_unreserve: can't find resource"); 3678 if (!(rle->flags & RLE_RESERVED)) 3679 return (EINVAL); 3680 if (rle->flags & RLE_ALLOCATED) 3681 return (EBUSY); 3682 rle->flags &= ~RLE_RESERVED; 3683 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3684 } 3685 3686 /** 3687 * @brief Print a description of resources in a resource list 3688 * 3689 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3690 * The name is printed if at least one resource of the given type is available. 3691 * The format is used to print resource start and end. 3692 * 3693 * @param rl the resource list to print 3694 * @param name the name of @p type, e.g. @c "memory" 3695 * @param type type type of resource entry to print 3696 * @param format printf(9) format string to print resource 3697 * start and end values 3698 * 3699 * @returns the number of characters printed 3700 */ 3701 int 3702 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3703 const char *format) 3704 { 3705 struct resource_list_entry *rle; 3706 int printed, retval; 3707 3708 printed = 0; 3709 retval = 0; 3710 /* Yes, this is kinda cheating */ 3711 STAILQ_FOREACH(rle, rl, link) { 3712 if (rle->type == type) { 3713 if (printed == 0) 3714 retval += printf(" %s ", name); 3715 else 3716 retval += printf(","); 3717 printed++; 3718 retval += printf(format, rle->start); 3719 if (rle->count > 1) { 3720 retval += printf("-"); 3721 retval += printf(format, rle->start + 3722 rle->count - 1); 3723 } 3724 } 3725 } 3726 return (retval); 3727 } 3728 3729 /** 3730 * @brief Releases all the resources in a list. 3731 * 3732 * @param rl The resource list to purge. 3733 * 3734 * @returns nothing 3735 */ 3736 void 3737 resource_list_purge(struct resource_list *rl) 3738 { 3739 struct resource_list_entry *rle; 3740 3741 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3742 if (rle->res) 3743 bus_release_resource(rman_get_device(rle->res), 3744 rle->type, rle->rid, rle->res); 3745 STAILQ_REMOVE_HEAD(rl, link); 3746 free(rle, M_BUS); 3747 } 3748 } 3749 3750 device_t 3751 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3752 { 3753 return (device_add_child_ordered(dev, order, name, unit)); 3754 } 3755 3756 /** 3757 * @brief Helper function for implementing DEVICE_PROBE() 3758 * 3759 * This function can be used to help implement the DEVICE_PROBE() for 3760 * a bus (i.e. a device which has other devices attached to it). It 3761 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3762 * devclass. 3763 */ 3764 int 3765 bus_generic_probe(device_t dev) 3766 { 3767 devclass_t dc = dev->devclass; 3768 driverlink_t dl; 3769 3770 TAILQ_FOREACH(dl, &dc->drivers, link) { 3771 /* 3772 * If this driver's pass is too high, then ignore it. 3773 * For most drivers in the default pass, this will 3774 * never be true. For early-pass drivers they will 3775 * only call the identify routines of eligible drivers 3776 * when this routine is called. Drivers for later 3777 * passes should have their identify routines called 3778 * on early-pass buses during BUS_NEW_PASS(). 3779 */ 3780 if (dl->pass > bus_current_pass) 3781 continue; 3782 DEVICE_IDENTIFY(dl->driver, dev); 3783 } 3784 3785 return (0); 3786 } 3787 3788 /** 3789 * @brief Helper function for implementing DEVICE_ATTACH() 3790 * 3791 * This function can be used to help implement the DEVICE_ATTACH() for 3792 * a bus. It calls device_probe_and_attach() for each of the device's 3793 * children. 3794 */ 3795 int 3796 bus_generic_attach(device_t dev) 3797 { 3798 device_t child; 3799 3800 TAILQ_FOREACH(child, &dev->children, link) { 3801 device_probe_and_attach(child); 3802 } 3803 3804 return (0); 3805 } 3806 3807 /** 3808 * @brief Helper function for delaying attaching children 3809 * 3810 * Many buses can't run transactions on the bus which children need to probe and 3811 * attach until after interrupts and/or timers are running. This function 3812 * delays their attach until interrupts and timers are enabled. 3813 */ 3814 int 3815 bus_delayed_attach_children(device_t dev) 3816 { 3817 /* Probe and attach the bus children when interrupts are available */ 3818 config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev); 3819 3820 return (0); 3821 } 3822 3823 /** 3824 * @brief Helper function for implementing DEVICE_DETACH() 3825 * 3826 * This function can be used to help implement the DEVICE_DETACH() for 3827 * a bus. It calls device_detach() for each of the device's 3828 * children. 3829 */ 3830 int 3831 bus_generic_detach(device_t dev) 3832 { 3833 device_t child; 3834 int error; 3835 3836 if (dev->state != DS_ATTACHED) 3837 return (EBUSY); 3838 3839 /* 3840 * Detach children in the reverse order. 3841 * See bus_generic_suspend for details. 3842 */ 3843 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3844 if ((error = device_detach(child)) != 0) 3845 return (error); 3846 } 3847 3848 return (0); 3849 } 3850 3851 /** 3852 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3853 * 3854 * This function can be used to help implement the DEVICE_SHUTDOWN() 3855 * for a bus. It calls device_shutdown() for each of the device's 3856 * children. 3857 */ 3858 int 3859 bus_generic_shutdown(device_t dev) 3860 { 3861 device_t child; 3862 3863 /* 3864 * Shut down children in the reverse order. 3865 * See bus_generic_suspend for details. 3866 */ 3867 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3868 device_shutdown(child); 3869 } 3870 3871 return (0); 3872 } 3873 3874 /** 3875 * @brief Default function for suspending a child device. 3876 * 3877 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3878 */ 3879 int 3880 bus_generic_suspend_child(device_t dev, device_t child) 3881 { 3882 int error; 3883 3884 error = DEVICE_SUSPEND(child); 3885 3886 if (error == 0) 3887 child->flags |= DF_SUSPENDED; 3888 3889 return (error); 3890 } 3891 3892 /** 3893 * @brief Default function for resuming a child device. 3894 * 3895 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3896 */ 3897 int 3898 bus_generic_resume_child(device_t dev, device_t child) 3899 { 3900 DEVICE_RESUME(child); 3901 child->flags &= ~DF_SUSPENDED; 3902 3903 return (0); 3904 } 3905 3906 /** 3907 * @brief Helper function for implementing DEVICE_SUSPEND() 3908 * 3909 * This function can be used to help implement the DEVICE_SUSPEND() 3910 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3911 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3912 * operation is aborted and any devices which were suspended are 3913 * resumed immediately by calling their DEVICE_RESUME() methods. 3914 */ 3915 int 3916 bus_generic_suspend(device_t dev) 3917 { 3918 int error; 3919 device_t child; 3920 3921 /* 3922 * Suspend children in the reverse order. 3923 * For most buses all children are equal, so the order does not matter. 3924 * Other buses, such as acpi, carefully order their child devices to 3925 * express implicit dependencies between them. For such buses it is 3926 * safer to bring down devices in the reverse order. 3927 */ 3928 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3929 error = BUS_SUSPEND_CHILD(dev, child); 3930 if (error != 0) { 3931 child = TAILQ_NEXT(child, link); 3932 if (child != NULL) { 3933 TAILQ_FOREACH_FROM(child, &dev->children, link) 3934 BUS_RESUME_CHILD(dev, child); 3935 } 3936 return (error); 3937 } 3938 } 3939 return (0); 3940 } 3941 3942 /** 3943 * @brief Helper function for implementing DEVICE_RESUME() 3944 * 3945 * This function can be used to help implement the DEVICE_RESUME() for 3946 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3947 */ 3948 int 3949 bus_generic_resume(device_t dev) 3950 { 3951 device_t child; 3952 3953 TAILQ_FOREACH(child, &dev->children, link) { 3954 BUS_RESUME_CHILD(dev, child); 3955 /* if resume fails, there's nothing we can usefully do... */ 3956 } 3957 return (0); 3958 } 3959 3960 /** 3961 * @brief Helper function for implementing BUS_RESET_POST 3962 * 3963 * Bus can use this function to implement common operations of 3964 * re-attaching or resuming the children after the bus itself was 3965 * reset, and after restoring bus-unique state of children. 3966 * 3967 * @param dev The bus 3968 * #param flags DEVF_RESET_* 3969 */ 3970 int 3971 bus_helper_reset_post(device_t dev, int flags) 3972 { 3973 device_t child; 3974 int error, error1; 3975 3976 error = 0; 3977 TAILQ_FOREACH(child, &dev->children,link) { 3978 BUS_RESET_POST(dev, child); 3979 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3980 device_probe_and_attach(child) : 3981 BUS_RESUME_CHILD(dev, child); 3982 if (error == 0 && error1 != 0) 3983 error = error1; 3984 } 3985 return (error); 3986 } 3987 3988 static void 3989 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3990 { 3991 child = TAILQ_NEXT(child, link); 3992 if (child == NULL) 3993 return; 3994 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3995 BUS_RESET_POST(dev, child); 3996 if ((flags & DEVF_RESET_DETACH) != 0) 3997 device_probe_and_attach(child); 3998 else 3999 BUS_RESUME_CHILD(dev, child); 4000 } 4001 } 4002 4003 /** 4004 * @brief Helper function for implementing BUS_RESET_PREPARE 4005 * 4006 * Bus can use this function to implement common operations of 4007 * detaching or suspending the children before the bus itself is 4008 * reset, and then save bus-unique state of children that must 4009 * persists around reset. 4010 * 4011 * @param dev The bus 4012 * #param flags DEVF_RESET_* 4013 */ 4014 int 4015 bus_helper_reset_prepare(device_t dev, int flags) 4016 { 4017 device_t child; 4018 int error; 4019 4020 if (dev->state != DS_ATTACHED) 4021 return (EBUSY); 4022 4023 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 4024 if ((flags & DEVF_RESET_DETACH) != 0) { 4025 error = device_get_state(child) == DS_ATTACHED ? 4026 device_detach(child) : 0; 4027 } else { 4028 error = BUS_SUSPEND_CHILD(dev, child); 4029 } 4030 if (error == 0) { 4031 error = BUS_RESET_PREPARE(dev, child); 4032 if (error != 0) { 4033 if ((flags & DEVF_RESET_DETACH) != 0) 4034 device_probe_and_attach(child); 4035 else 4036 BUS_RESUME_CHILD(dev, child); 4037 } 4038 } 4039 if (error != 0) { 4040 bus_helper_reset_prepare_rollback(dev, child, flags); 4041 return (error); 4042 } 4043 } 4044 return (0); 4045 } 4046 4047 /** 4048 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4049 * 4050 * This function prints the first part of the ascii representation of 4051 * @p child, including its name, unit and description (if any - see 4052 * device_set_desc()). 4053 * 4054 * @returns the number of characters printed 4055 */ 4056 int 4057 bus_print_child_header(device_t dev, device_t child) 4058 { 4059 int retval = 0; 4060 4061 if (device_get_desc(child)) { 4062 retval += device_printf(child, "<%s>", device_get_desc(child)); 4063 } else { 4064 retval += printf("%s", device_get_nameunit(child)); 4065 } 4066 4067 return (retval); 4068 } 4069 4070 /** 4071 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4072 * 4073 * This function prints the last part of the ascii representation of 4074 * @p child, which consists of the string @c " on " followed by the 4075 * name and unit of the @p dev. 4076 * 4077 * @returns the number of characters printed 4078 */ 4079 int 4080 bus_print_child_footer(device_t dev, device_t child) 4081 { 4082 return (printf(" on %s\n", device_get_nameunit(dev))); 4083 } 4084 4085 /** 4086 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4087 * 4088 * This function prints out the VM domain for the given device. 4089 * 4090 * @returns the number of characters printed 4091 */ 4092 int 4093 bus_print_child_domain(device_t dev, device_t child) 4094 { 4095 int domain; 4096 4097 /* No domain? Don't print anything */ 4098 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 4099 return (0); 4100 4101 return (printf(" numa-domain %d", domain)); 4102 } 4103 4104 /** 4105 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4106 * 4107 * This function simply calls bus_print_child_header() followed by 4108 * bus_print_child_footer(). 4109 * 4110 * @returns the number of characters printed 4111 */ 4112 int 4113 bus_generic_print_child(device_t dev, device_t child) 4114 { 4115 int retval = 0; 4116 4117 retval += bus_print_child_header(dev, child); 4118 retval += bus_print_child_domain(dev, child); 4119 retval += bus_print_child_footer(dev, child); 4120 4121 return (retval); 4122 } 4123 4124 /** 4125 * @brief Stub function for implementing BUS_READ_IVAR(). 4126 * 4127 * @returns ENOENT 4128 */ 4129 int 4130 bus_generic_read_ivar(device_t dev, device_t child, int index, 4131 uintptr_t * result) 4132 { 4133 return (ENOENT); 4134 } 4135 4136 /** 4137 * @brief Stub function for implementing BUS_WRITE_IVAR(). 4138 * 4139 * @returns ENOENT 4140 */ 4141 int 4142 bus_generic_write_ivar(device_t dev, device_t child, int index, 4143 uintptr_t value) 4144 { 4145 return (ENOENT); 4146 } 4147 4148 /** 4149 * @brief Helper function for implementing BUS_GET_PROPERTY(). 4150 * 4151 * This simply calls the BUS_GET_PROPERTY of the parent of dev, 4152 * until a non-default implementation is found. 4153 */ 4154 ssize_t 4155 bus_generic_get_property(device_t dev, device_t child, const char *propname, 4156 void *propvalue, size_t size, device_property_type_t type) 4157 { 4158 if (device_get_parent(dev) != NULL) 4159 return (BUS_GET_PROPERTY(device_get_parent(dev), child, 4160 propname, propvalue, size, type)); 4161 4162 return (-1); 4163 } 4164 4165 /** 4166 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 4167 * 4168 * @returns NULL 4169 */ 4170 struct resource_list * 4171 bus_generic_get_resource_list(device_t dev, device_t child) 4172 { 4173 return (NULL); 4174 } 4175 4176 /** 4177 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 4178 * 4179 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 4180 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 4181 * and then calls device_probe_and_attach() for each unattached child. 4182 */ 4183 void 4184 bus_generic_driver_added(device_t dev, driver_t *driver) 4185 { 4186 device_t child; 4187 4188 DEVICE_IDENTIFY(driver, dev); 4189 TAILQ_FOREACH(child, &dev->children, link) { 4190 if (child->state == DS_NOTPRESENT) 4191 device_probe_and_attach(child); 4192 } 4193 } 4194 4195 /** 4196 * @brief Helper function for implementing BUS_NEW_PASS(). 4197 * 4198 * This implementing of BUS_NEW_PASS() first calls the identify 4199 * routines for any drivers that probe at the current pass. Then it 4200 * walks the list of devices for this bus. If a device is already 4201 * attached, then it calls BUS_NEW_PASS() on that device. If the 4202 * device is not already attached, it attempts to attach a driver to 4203 * it. 4204 */ 4205 void 4206 bus_generic_new_pass(device_t dev) 4207 { 4208 driverlink_t dl; 4209 devclass_t dc; 4210 device_t child; 4211 4212 dc = dev->devclass; 4213 TAILQ_FOREACH(dl, &dc->drivers, link) { 4214 if (dl->pass == bus_current_pass) 4215 DEVICE_IDENTIFY(dl->driver, dev); 4216 } 4217 TAILQ_FOREACH(child, &dev->children, link) { 4218 if (child->state >= DS_ATTACHED) 4219 BUS_NEW_PASS(child); 4220 else if (child->state == DS_NOTPRESENT) 4221 device_probe_and_attach(child); 4222 } 4223 } 4224 4225 /** 4226 * @brief Helper function for implementing BUS_SETUP_INTR(). 4227 * 4228 * This simple implementation of BUS_SETUP_INTR() simply calls the 4229 * BUS_SETUP_INTR() method of the parent of @p dev. 4230 */ 4231 int 4232 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 4233 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 4234 void **cookiep) 4235 { 4236 /* Propagate up the bus hierarchy until someone handles it. */ 4237 if (dev->parent) 4238 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 4239 filter, intr, arg, cookiep)); 4240 return (EINVAL); 4241 } 4242 4243 /** 4244 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 4245 * 4246 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 4247 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 4248 */ 4249 int 4250 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 4251 void *cookie) 4252 { 4253 /* Propagate up the bus hierarchy until someone handles it. */ 4254 if (dev->parent) 4255 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 4256 return (EINVAL); 4257 } 4258 4259 /** 4260 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 4261 * 4262 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 4263 * BUS_SUSPEND_INTR() method of the parent of @p dev. 4264 */ 4265 int 4266 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 4267 { 4268 /* Propagate up the bus hierarchy until someone handles it. */ 4269 if (dev->parent) 4270 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 4271 return (EINVAL); 4272 } 4273 4274 /** 4275 * @brief Helper function for implementing BUS_RESUME_INTR(). 4276 * 4277 * This simple implementation of BUS_RESUME_INTR() simply calls the 4278 * BUS_RESUME_INTR() method of the parent of @p dev. 4279 */ 4280 int 4281 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 4282 { 4283 /* Propagate up the bus hierarchy until someone handles it. */ 4284 if (dev->parent) 4285 return (BUS_RESUME_INTR(dev->parent, child, irq)); 4286 return (EINVAL); 4287 } 4288 4289 /** 4290 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4291 * 4292 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 4293 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 4294 */ 4295 int 4296 bus_generic_adjust_resource(device_t dev, device_t child, int type, 4297 struct resource *r, rman_res_t start, rman_res_t end) 4298 { 4299 /* Propagate up the bus hierarchy until someone handles it. */ 4300 if (dev->parent) 4301 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 4302 end)); 4303 return (EINVAL); 4304 } 4305 4306 /* 4307 * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE(). 4308 * 4309 * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the 4310 * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev. If there is no 4311 * parent, no translation happens. 4312 */ 4313 int 4314 bus_generic_translate_resource(device_t dev, int type, rman_res_t start, 4315 rman_res_t *newstart) 4316 { 4317 if (dev->parent) 4318 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, 4319 newstart)); 4320 *newstart = start; 4321 return (0); 4322 } 4323 4324 /** 4325 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4326 * 4327 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 4328 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 4329 */ 4330 struct resource * 4331 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4332 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4333 { 4334 /* Propagate up the bus hierarchy until someone handles it. */ 4335 if (dev->parent) 4336 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4337 start, end, count, flags)); 4338 return (NULL); 4339 } 4340 4341 /** 4342 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4343 * 4344 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4345 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4346 */ 4347 int 4348 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 4349 struct resource *r) 4350 { 4351 /* Propagate up the bus hierarchy until someone handles it. */ 4352 if (dev->parent) 4353 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 4354 r)); 4355 return (EINVAL); 4356 } 4357 4358 /** 4359 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4360 * 4361 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4362 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4363 */ 4364 int 4365 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 4366 struct resource *r) 4367 { 4368 /* Propagate up the bus hierarchy until someone handles it. */ 4369 if (dev->parent) 4370 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 4371 r)); 4372 return (EINVAL); 4373 } 4374 4375 /** 4376 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4377 * 4378 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4379 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4380 */ 4381 int 4382 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 4383 int rid, struct resource *r) 4384 { 4385 /* Propagate up the bus hierarchy until someone handles it. */ 4386 if (dev->parent) 4387 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4388 r)); 4389 return (EINVAL); 4390 } 4391 4392 /** 4393 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4394 * 4395 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4396 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4397 */ 4398 int 4399 bus_generic_map_resource(device_t dev, device_t child, int type, 4400 struct resource *r, struct resource_map_request *args, 4401 struct resource_map *map) 4402 { 4403 /* Propagate up the bus hierarchy until someone handles it. */ 4404 if (dev->parent) 4405 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 4406 map)); 4407 return (EINVAL); 4408 } 4409 4410 /** 4411 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4412 * 4413 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4414 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4415 */ 4416 int 4417 bus_generic_unmap_resource(device_t dev, device_t child, int type, 4418 struct resource *r, struct resource_map *map) 4419 { 4420 /* Propagate up the bus hierarchy until someone handles it. */ 4421 if (dev->parent) 4422 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 4423 return (EINVAL); 4424 } 4425 4426 /** 4427 * @brief Helper function for implementing BUS_BIND_INTR(). 4428 * 4429 * This simple implementation of BUS_BIND_INTR() simply calls the 4430 * BUS_BIND_INTR() method of the parent of @p dev. 4431 */ 4432 int 4433 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4434 int cpu) 4435 { 4436 /* Propagate up the bus hierarchy until someone handles it. */ 4437 if (dev->parent) 4438 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4439 return (EINVAL); 4440 } 4441 4442 /** 4443 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4444 * 4445 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4446 * BUS_CONFIG_INTR() method of the parent of @p dev. 4447 */ 4448 int 4449 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4450 enum intr_polarity pol) 4451 { 4452 /* Propagate up the bus hierarchy until someone handles it. */ 4453 if (dev->parent) 4454 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4455 return (EINVAL); 4456 } 4457 4458 /** 4459 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4460 * 4461 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4462 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4463 */ 4464 int 4465 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4466 void *cookie, const char *descr) 4467 { 4468 /* Propagate up the bus hierarchy until someone handles it. */ 4469 if (dev->parent) 4470 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4471 descr)); 4472 return (EINVAL); 4473 } 4474 4475 /** 4476 * @brief Helper function for implementing BUS_GET_CPUS(). 4477 * 4478 * This simple implementation of BUS_GET_CPUS() simply calls the 4479 * BUS_GET_CPUS() method of the parent of @p dev. 4480 */ 4481 int 4482 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4483 size_t setsize, cpuset_t *cpuset) 4484 { 4485 /* Propagate up the bus hierarchy until someone handles it. */ 4486 if (dev->parent != NULL) 4487 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4488 return (EINVAL); 4489 } 4490 4491 /** 4492 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4493 * 4494 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4495 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4496 */ 4497 bus_dma_tag_t 4498 bus_generic_get_dma_tag(device_t dev, device_t child) 4499 { 4500 /* Propagate up the bus hierarchy until someone handles it. */ 4501 if (dev->parent != NULL) 4502 return (BUS_GET_DMA_TAG(dev->parent, child)); 4503 return (NULL); 4504 } 4505 4506 /** 4507 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4508 * 4509 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4510 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4511 */ 4512 bus_space_tag_t 4513 bus_generic_get_bus_tag(device_t dev, device_t child) 4514 { 4515 /* Propagate up the bus hierarchy until someone handles it. */ 4516 if (dev->parent != NULL) 4517 return (BUS_GET_BUS_TAG(dev->parent, child)); 4518 return ((bus_space_tag_t)0); 4519 } 4520 4521 /** 4522 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4523 * 4524 * This implementation of BUS_GET_RESOURCE() uses the 4525 * resource_list_find() function to do most of the work. It calls 4526 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4527 * search. 4528 */ 4529 int 4530 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4531 rman_res_t *startp, rman_res_t *countp) 4532 { 4533 struct resource_list * rl = NULL; 4534 struct resource_list_entry * rle = NULL; 4535 4536 rl = BUS_GET_RESOURCE_LIST(dev, child); 4537 if (!rl) 4538 return (EINVAL); 4539 4540 rle = resource_list_find(rl, type, rid); 4541 if (!rle) 4542 return (ENOENT); 4543 4544 if (startp) 4545 *startp = rle->start; 4546 if (countp) 4547 *countp = rle->count; 4548 4549 return (0); 4550 } 4551 4552 /** 4553 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4554 * 4555 * This implementation of BUS_SET_RESOURCE() uses the 4556 * resource_list_add() function to do most of the work. It calls 4557 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4558 * edit. 4559 */ 4560 int 4561 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4562 rman_res_t start, rman_res_t count) 4563 { 4564 struct resource_list * rl = NULL; 4565 4566 rl = BUS_GET_RESOURCE_LIST(dev, child); 4567 if (!rl) 4568 return (EINVAL); 4569 4570 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4571 4572 return (0); 4573 } 4574 4575 /** 4576 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4577 * 4578 * This implementation of BUS_DELETE_RESOURCE() uses the 4579 * resource_list_delete() function to do most of the work. It calls 4580 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4581 * edit. 4582 */ 4583 void 4584 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4585 { 4586 struct resource_list * rl = NULL; 4587 4588 rl = BUS_GET_RESOURCE_LIST(dev, child); 4589 if (!rl) 4590 return; 4591 4592 resource_list_delete(rl, type, rid); 4593 4594 return; 4595 } 4596 4597 /** 4598 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4599 * 4600 * This implementation of BUS_RELEASE_RESOURCE() uses the 4601 * resource_list_release() function to do most of the work. It calls 4602 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4603 */ 4604 int 4605 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4606 int rid, struct resource *r) 4607 { 4608 struct resource_list * rl = NULL; 4609 4610 if (device_get_parent(child) != dev) 4611 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4612 type, rid, r)); 4613 4614 rl = BUS_GET_RESOURCE_LIST(dev, child); 4615 if (!rl) 4616 return (EINVAL); 4617 4618 return (resource_list_release(rl, dev, child, type, rid, r)); 4619 } 4620 4621 /** 4622 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4623 * 4624 * This implementation of BUS_ALLOC_RESOURCE() uses the 4625 * resource_list_alloc() function to do most of the work. It calls 4626 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4627 */ 4628 struct resource * 4629 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4630 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4631 { 4632 struct resource_list * rl = NULL; 4633 4634 if (device_get_parent(child) != dev) 4635 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4636 type, rid, start, end, count, flags)); 4637 4638 rl = BUS_GET_RESOURCE_LIST(dev, child); 4639 if (!rl) 4640 return (NULL); 4641 4642 return (resource_list_alloc(rl, dev, child, type, rid, 4643 start, end, count, flags)); 4644 } 4645 4646 /** 4647 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4648 * 4649 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4650 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4651 */ 4652 int 4653 bus_generic_child_present(device_t dev, device_t child) 4654 { 4655 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4656 } 4657 4658 int 4659 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4660 { 4661 if (dev->parent) 4662 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4663 4664 return (ENOENT); 4665 } 4666 4667 /** 4668 * @brief Helper function to implement normal BUS_GET_DEVICE_PATH() 4669 * 4670 * This function knows how to (a) pass the request up the tree if there's 4671 * a parent and (b) Knows how to supply a FreeBSD locator. 4672 * 4673 * @param bus bus in the walk up the tree 4674 * @param child leaf node to print information about 4675 * @param locator BUS_LOCATOR_xxx string for locator 4676 * @param sb Buffer to print information into 4677 */ 4678 int 4679 bus_generic_get_device_path(device_t bus, device_t child, const char *locator, 4680 struct sbuf *sb) 4681 { 4682 int rv = 0; 4683 device_t parent; 4684 4685 /* 4686 * We don't recurse on ACPI since either we know the handle for the 4687 * device or we don't. And if we're in the generic routine, we don't 4688 * have a ACPI override. All other locators build up a path by having 4689 * their parents create a path and then adding the path element for this 4690 * node. That's why we recurse with parent, bus rather than the typical 4691 * parent, child: each spot in the tree is independent of what our child 4692 * will do with this path. 4693 */ 4694 parent = device_get_parent(bus); 4695 if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) { 4696 rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb); 4697 } 4698 if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) { 4699 if (rv == 0) { 4700 sbuf_printf(sb, "/%s", device_get_nameunit(child)); 4701 } 4702 return (rv); 4703 } 4704 /* 4705 * Don't know what to do. So assume we do nothing. Not sure that's 4706 * the right thing, but keeps us from having a big list here. 4707 */ 4708 return (0); 4709 } 4710 4711 4712 /** 4713 * @brief Helper function for implementing BUS_RESCAN(). 4714 * 4715 * This null implementation of BUS_RESCAN() always fails to indicate 4716 * the bus does not support rescanning. 4717 */ 4718 int 4719 bus_null_rescan(device_t dev) 4720 { 4721 return (ENODEV); 4722 } 4723 4724 /* 4725 * Some convenience functions to make it easier for drivers to use the 4726 * resource-management functions. All these really do is hide the 4727 * indirection through the parent's method table, making for slightly 4728 * less-wordy code. In the future, it might make sense for this code 4729 * to maintain some sort of a list of resources allocated by each device. 4730 */ 4731 4732 int 4733 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4734 struct resource **res) 4735 { 4736 int i; 4737 4738 for (i = 0; rs[i].type != -1; i++) 4739 res[i] = NULL; 4740 for (i = 0; rs[i].type != -1; i++) { 4741 res[i] = bus_alloc_resource_any(dev, 4742 rs[i].type, &rs[i].rid, rs[i].flags); 4743 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4744 bus_release_resources(dev, rs, res); 4745 return (ENXIO); 4746 } 4747 } 4748 return (0); 4749 } 4750 4751 void 4752 bus_release_resources(device_t dev, const struct resource_spec *rs, 4753 struct resource **res) 4754 { 4755 int i; 4756 4757 for (i = 0; rs[i].type != -1; i++) 4758 if (res[i] != NULL) { 4759 bus_release_resource( 4760 dev, rs[i].type, rs[i].rid, res[i]); 4761 res[i] = NULL; 4762 } 4763 } 4764 4765 /** 4766 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4767 * 4768 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4769 * parent of @p dev. 4770 */ 4771 struct resource * 4772 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4773 rman_res_t end, rman_res_t count, u_int flags) 4774 { 4775 struct resource *res; 4776 4777 if (dev->parent == NULL) 4778 return (NULL); 4779 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4780 count, flags); 4781 return (res); 4782 } 4783 4784 /** 4785 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4786 * 4787 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4788 * parent of @p dev. 4789 */ 4790 int 4791 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4792 rman_res_t end) 4793 { 4794 if (dev->parent == NULL) 4795 return (EINVAL); 4796 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4797 } 4798 4799 /** 4800 * @brief Wrapper function for BUS_TRANSLATE_RESOURCE(). 4801 * 4802 * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the 4803 * parent of @p dev. 4804 */ 4805 int 4806 bus_translate_resource(device_t dev, int type, rman_res_t start, 4807 rman_res_t *newstart) 4808 { 4809 if (dev->parent == NULL) 4810 return (EINVAL); 4811 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart)); 4812 } 4813 4814 /** 4815 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4816 * 4817 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4818 * parent of @p dev. 4819 */ 4820 int 4821 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4822 { 4823 if (dev->parent == NULL) 4824 return (EINVAL); 4825 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4826 } 4827 4828 /** 4829 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4830 * 4831 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4832 * parent of @p dev. 4833 */ 4834 int 4835 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4836 { 4837 if (dev->parent == NULL) 4838 return (EINVAL); 4839 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4840 } 4841 4842 /** 4843 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4844 * 4845 * This function simply calls the BUS_MAP_RESOURCE() method of the 4846 * parent of @p dev. 4847 */ 4848 int 4849 bus_map_resource(device_t dev, int type, struct resource *r, 4850 struct resource_map_request *args, struct resource_map *map) 4851 { 4852 if (dev->parent == NULL) 4853 return (EINVAL); 4854 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4855 } 4856 4857 /** 4858 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4859 * 4860 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4861 * parent of @p dev. 4862 */ 4863 int 4864 bus_unmap_resource(device_t dev, int type, struct resource *r, 4865 struct resource_map *map) 4866 { 4867 if (dev->parent == NULL) 4868 return (EINVAL); 4869 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4870 } 4871 4872 /** 4873 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4874 * 4875 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4876 * parent of @p dev. 4877 */ 4878 int 4879 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4880 { 4881 int rv; 4882 4883 if (dev->parent == NULL) 4884 return (EINVAL); 4885 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4886 return (rv); 4887 } 4888 4889 /** 4890 * @brief Wrapper function for BUS_SETUP_INTR(). 4891 * 4892 * This function simply calls the BUS_SETUP_INTR() method of the 4893 * parent of @p dev. 4894 */ 4895 int 4896 bus_setup_intr(device_t dev, struct resource *r, int flags, 4897 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4898 { 4899 int error; 4900 4901 if (dev->parent == NULL) 4902 return (EINVAL); 4903 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4904 arg, cookiep); 4905 if (error != 0) 4906 return (error); 4907 if (handler != NULL && !(flags & INTR_MPSAFE)) 4908 device_printf(dev, "[GIANT-LOCKED]\n"); 4909 return (0); 4910 } 4911 4912 /** 4913 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4914 * 4915 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4916 * parent of @p dev. 4917 */ 4918 int 4919 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4920 { 4921 if (dev->parent == NULL) 4922 return (EINVAL); 4923 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4924 } 4925 4926 /** 4927 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4928 * 4929 * This function simply calls the BUS_SUSPEND_INTR() method of the 4930 * parent of @p dev. 4931 */ 4932 int 4933 bus_suspend_intr(device_t dev, struct resource *r) 4934 { 4935 if (dev->parent == NULL) 4936 return (EINVAL); 4937 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4938 } 4939 4940 /** 4941 * @brief Wrapper function for BUS_RESUME_INTR(). 4942 * 4943 * This function simply calls the BUS_RESUME_INTR() method of the 4944 * parent of @p dev. 4945 */ 4946 int 4947 bus_resume_intr(device_t dev, struct resource *r) 4948 { 4949 if (dev->parent == NULL) 4950 return (EINVAL); 4951 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4952 } 4953 4954 /** 4955 * @brief Wrapper function for BUS_BIND_INTR(). 4956 * 4957 * This function simply calls the BUS_BIND_INTR() method of the 4958 * parent of @p dev. 4959 */ 4960 int 4961 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4962 { 4963 if (dev->parent == NULL) 4964 return (EINVAL); 4965 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4966 } 4967 4968 /** 4969 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4970 * 4971 * This function first formats the requested description into a 4972 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4973 * the parent of @p dev. 4974 */ 4975 int 4976 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4977 const char *fmt, ...) 4978 { 4979 va_list ap; 4980 char descr[MAXCOMLEN + 1]; 4981 4982 if (dev->parent == NULL) 4983 return (EINVAL); 4984 va_start(ap, fmt); 4985 vsnprintf(descr, sizeof(descr), fmt, ap); 4986 va_end(ap); 4987 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4988 } 4989 4990 /** 4991 * @brief Wrapper function for BUS_SET_RESOURCE(). 4992 * 4993 * This function simply calls the BUS_SET_RESOURCE() method of the 4994 * parent of @p dev. 4995 */ 4996 int 4997 bus_set_resource(device_t dev, int type, int rid, 4998 rman_res_t start, rman_res_t count) 4999 { 5000 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 5001 start, count)); 5002 } 5003 5004 /** 5005 * @brief Wrapper function for BUS_GET_RESOURCE(). 5006 * 5007 * This function simply calls the BUS_GET_RESOURCE() method of the 5008 * parent of @p dev. 5009 */ 5010 int 5011 bus_get_resource(device_t dev, int type, int rid, 5012 rman_res_t *startp, rman_res_t *countp) 5013 { 5014 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 5015 startp, countp)); 5016 } 5017 5018 /** 5019 * @brief Wrapper function for BUS_GET_RESOURCE(). 5020 * 5021 * This function simply calls the BUS_GET_RESOURCE() method of the 5022 * parent of @p dev and returns the start value. 5023 */ 5024 rman_res_t 5025 bus_get_resource_start(device_t dev, int type, int rid) 5026 { 5027 rman_res_t start; 5028 rman_res_t count; 5029 int error; 5030 5031 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 5032 &start, &count); 5033 if (error) 5034 return (0); 5035 return (start); 5036 } 5037 5038 /** 5039 * @brief Wrapper function for BUS_GET_RESOURCE(). 5040 * 5041 * This function simply calls the BUS_GET_RESOURCE() method of the 5042 * parent of @p dev and returns the count value. 5043 */ 5044 rman_res_t 5045 bus_get_resource_count(device_t dev, int type, int rid) 5046 { 5047 rman_res_t start; 5048 rman_res_t count; 5049 int error; 5050 5051 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 5052 &start, &count); 5053 if (error) 5054 return (0); 5055 return (count); 5056 } 5057 5058 /** 5059 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 5060 * 5061 * This function simply calls the BUS_DELETE_RESOURCE() method of the 5062 * parent of @p dev. 5063 */ 5064 void 5065 bus_delete_resource(device_t dev, int type, int rid) 5066 { 5067 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 5068 } 5069 5070 /** 5071 * @brief Wrapper function for BUS_CHILD_PRESENT(). 5072 * 5073 * This function simply calls the BUS_CHILD_PRESENT() method of the 5074 * parent of @p dev. 5075 */ 5076 int 5077 bus_child_present(device_t child) 5078 { 5079 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 5080 } 5081 5082 /** 5083 * @brief Wrapper function for BUS_CHILD_PNPINFO(). 5084 * 5085 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p 5086 * dev. 5087 */ 5088 int 5089 bus_child_pnpinfo(device_t child, struct sbuf *sb) 5090 { 5091 device_t parent; 5092 5093 parent = device_get_parent(child); 5094 if (parent == NULL) 5095 return (0); 5096 return (BUS_CHILD_PNPINFO(parent, child, sb)); 5097 } 5098 5099 /** 5100 * @brief Generic implementation that does nothing for bus_child_pnpinfo 5101 * 5102 * This function has the right signature and returns 0 since the sbuf is passed 5103 * to us to append to. 5104 */ 5105 int 5106 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb) 5107 { 5108 return (0); 5109 } 5110 5111 /** 5112 * @brief Wrapper function for BUS_CHILD_LOCATION(). 5113 * 5114 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of 5115 * @p dev. 5116 */ 5117 int 5118 bus_child_location(device_t child, struct sbuf *sb) 5119 { 5120 device_t parent; 5121 5122 parent = device_get_parent(child); 5123 if (parent == NULL) 5124 return (0); 5125 return (BUS_CHILD_LOCATION(parent, child, sb)); 5126 } 5127 5128 /** 5129 * @brief Generic implementation that does nothing for bus_child_location 5130 * 5131 * This function has the right signature and returns 0 since the sbuf is passed 5132 * to us to append to. 5133 */ 5134 int 5135 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb) 5136 { 5137 return (0); 5138 } 5139 5140 /** 5141 * @brief Wrapper function for BUS_GET_CPUS(). 5142 * 5143 * This function simply calls the BUS_GET_CPUS() method of the 5144 * parent of @p dev. 5145 */ 5146 int 5147 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 5148 { 5149 device_t parent; 5150 5151 parent = device_get_parent(dev); 5152 if (parent == NULL) 5153 return (EINVAL); 5154 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 5155 } 5156 5157 /** 5158 * @brief Wrapper function for BUS_GET_DMA_TAG(). 5159 * 5160 * This function simply calls the BUS_GET_DMA_TAG() method of the 5161 * parent of @p dev. 5162 */ 5163 bus_dma_tag_t 5164 bus_get_dma_tag(device_t dev) 5165 { 5166 device_t parent; 5167 5168 parent = device_get_parent(dev); 5169 if (parent == NULL) 5170 return (NULL); 5171 return (BUS_GET_DMA_TAG(parent, dev)); 5172 } 5173 5174 /** 5175 * @brief Wrapper function for BUS_GET_BUS_TAG(). 5176 * 5177 * This function simply calls the BUS_GET_BUS_TAG() method of the 5178 * parent of @p dev. 5179 */ 5180 bus_space_tag_t 5181 bus_get_bus_tag(device_t dev) 5182 { 5183 device_t parent; 5184 5185 parent = device_get_parent(dev); 5186 if (parent == NULL) 5187 return ((bus_space_tag_t)0); 5188 return (BUS_GET_BUS_TAG(parent, dev)); 5189 } 5190 5191 /** 5192 * @brief Wrapper function for BUS_GET_DOMAIN(). 5193 * 5194 * This function simply calls the BUS_GET_DOMAIN() method of the 5195 * parent of @p dev. 5196 */ 5197 int 5198 bus_get_domain(device_t dev, int *domain) 5199 { 5200 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 5201 } 5202 5203 /* Resume all devices and then notify userland that we're up again. */ 5204 static int 5205 root_resume(device_t dev) 5206 { 5207 int error; 5208 5209 error = bus_generic_resume(dev); 5210 if (error == 0) { 5211 devctl_notify("kern", "power", "resume", NULL); /* Deprecated gone in 14 */ 5212 devctl_notify("kernel", "power", "resume", NULL); 5213 } 5214 return (error); 5215 } 5216 5217 static int 5218 root_print_child(device_t dev, device_t child) 5219 { 5220 int retval = 0; 5221 5222 retval += bus_print_child_header(dev, child); 5223 retval += printf("\n"); 5224 5225 return (retval); 5226 } 5227 5228 static int 5229 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 5230 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 5231 { 5232 /* 5233 * If an interrupt mapping gets to here something bad has happened. 5234 */ 5235 panic("root_setup_intr"); 5236 } 5237 5238 /* 5239 * If we get here, assume that the device is permanent and really is 5240 * present in the system. Removable bus drivers are expected to intercept 5241 * this call long before it gets here. We return -1 so that drivers that 5242 * really care can check vs -1 or some ERRNO returned higher in the food 5243 * chain. 5244 */ 5245 static int 5246 root_child_present(device_t dev, device_t child) 5247 { 5248 return (-1); 5249 } 5250 5251 static int 5252 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 5253 cpuset_t *cpuset) 5254 { 5255 switch (op) { 5256 case INTR_CPUS: 5257 /* Default to returning the set of all CPUs. */ 5258 if (setsize != sizeof(cpuset_t)) 5259 return (EINVAL); 5260 *cpuset = all_cpus; 5261 return (0); 5262 default: 5263 return (EINVAL); 5264 } 5265 } 5266 5267 static kobj_method_t root_methods[] = { 5268 /* Device interface */ 5269 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 5270 KOBJMETHOD(device_suspend, bus_generic_suspend), 5271 KOBJMETHOD(device_resume, root_resume), 5272 5273 /* Bus interface */ 5274 KOBJMETHOD(bus_print_child, root_print_child), 5275 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 5276 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 5277 KOBJMETHOD(bus_setup_intr, root_setup_intr), 5278 KOBJMETHOD(bus_child_present, root_child_present), 5279 KOBJMETHOD(bus_get_cpus, root_get_cpus), 5280 5281 KOBJMETHOD_END 5282 }; 5283 5284 static driver_t root_driver = { 5285 "root", 5286 root_methods, 5287 1, /* no softc */ 5288 }; 5289 5290 device_t root_bus; 5291 devclass_t root_devclass; 5292 5293 static int 5294 root_bus_module_handler(module_t mod, int what, void* arg) 5295 { 5296 switch (what) { 5297 case MOD_LOAD: 5298 TAILQ_INIT(&bus_data_devices); 5299 kobj_class_compile((kobj_class_t) &root_driver); 5300 root_bus = make_device(NULL, "root", 0); 5301 root_bus->desc = "System root bus"; 5302 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 5303 root_bus->driver = &root_driver; 5304 root_bus->state = DS_ATTACHED; 5305 root_devclass = devclass_find_internal("root", NULL, FALSE); 5306 devinit(); 5307 return (0); 5308 5309 case MOD_SHUTDOWN: 5310 device_shutdown(root_bus); 5311 return (0); 5312 default: 5313 return (EOPNOTSUPP); 5314 } 5315 5316 return (0); 5317 } 5318 5319 static moduledata_t root_bus_mod = { 5320 "rootbus", 5321 root_bus_module_handler, 5322 NULL 5323 }; 5324 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 5325 5326 /** 5327 * @brief Automatically configure devices 5328 * 5329 * This function begins the autoconfiguration process by calling 5330 * device_probe_and_attach() for each child of the @c root0 device. 5331 */ 5332 void 5333 root_bus_configure(void) 5334 { 5335 PDEBUG((".")); 5336 5337 /* Eventually this will be split up, but this is sufficient for now. */ 5338 bus_set_pass(BUS_PASS_DEFAULT); 5339 } 5340 5341 /** 5342 * @brief Module handler for registering device drivers 5343 * 5344 * This module handler is used to automatically register device 5345 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 5346 * devclass_add_driver() for the driver described by the 5347 * driver_module_data structure pointed to by @p arg 5348 */ 5349 int 5350 driver_module_handler(module_t mod, int what, void *arg) 5351 { 5352 struct driver_module_data *dmd; 5353 devclass_t bus_devclass; 5354 kobj_class_t driver; 5355 int error, pass; 5356 5357 dmd = (struct driver_module_data *)arg; 5358 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 5359 error = 0; 5360 5361 switch (what) { 5362 case MOD_LOAD: 5363 if (dmd->dmd_chainevh) 5364 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5365 5366 pass = dmd->dmd_pass; 5367 driver = dmd->dmd_driver; 5368 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 5369 DRIVERNAME(driver), dmd->dmd_busname, pass)); 5370 error = devclass_add_driver(bus_devclass, driver, pass, 5371 dmd->dmd_devclass); 5372 break; 5373 5374 case MOD_UNLOAD: 5375 PDEBUG(("Unloading module: driver %s from bus %s", 5376 DRIVERNAME(dmd->dmd_driver), 5377 dmd->dmd_busname)); 5378 error = devclass_delete_driver(bus_devclass, 5379 dmd->dmd_driver); 5380 5381 if (!error && dmd->dmd_chainevh) 5382 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5383 break; 5384 case MOD_QUIESCE: 5385 PDEBUG(("Quiesce module: driver %s from bus %s", 5386 DRIVERNAME(dmd->dmd_driver), 5387 dmd->dmd_busname)); 5388 error = devclass_quiesce_driver(bus_devclass, 5389 dmd->dmd_driver); 5390 5391 if (!error && dmd->dmd_chainevh) 5392 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5393 break; 5394 default: 5395 error = EOPNOTSUPP; 5396 break; 5397 } 5398 5399 return (error); 5400 } 5401 5402 /** 5403 * @brief Enumerate all hinted devices for this bus. 5404 * 5405 * Walks through the hints for this bus and calls the bus_hinted_child 5406 * routine for each one it fines. It searches first for the specific 5407 * bus that's being probed for hinted children (eg isa0), and then for 5408 * generic children (eg isa). 5409 * 5410 * @param dev bus device to enumerate 5411 */ 5412 void 5413 bus_enumerate_hinted_children(device_t bus) 5414 { 5415 int i; 5416 const char *dname, *busname; 5417 int dunit; 5418 5419 /* 5420 * enumerate all devices on the specific bus 5421 */ 5422 busname = device_get_nameunit(bus); 5423 i = 0; 5424 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5425 BUS_HINTED_CHILD(bus, dname, dunit); 5426 5427 /* 5428 * and all the generic ones. 5429 */ 5430 busname = device_get_name(bus); 5431 i = 0; 5432 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5433 BUS_HINTED_CHILD(bus, dname, dunit); 5434 } 5435 5436 #ifdef BUS_DEBUG 5437 5438 /* the _short versions avoid iteration by not calling anything that prints 5439 * more than oneliners. I love oneliners. 5440 */ 5441 5442 static void 5443 print_device_short(device_t dev, int indent) 5444 { 5445 if (!dev) 5446 return; 5447 5448 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5449 dev->unit, dev->desc, 5450 (dev->parent? "":"no "), 5451 (TAILQ_EMPTY(&dev->children)? "no ":""), 5452 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5453 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5454 (dev->flags&DF_WILDCARD? "wildcard,":""), 5455 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5456 (dev->flags&DF_SUSPENDED? "suspended,":""), 5457 (dev->ivars? "":"no "), 5458 (dev->softc? "":"no "), 5459 dev->busy)); 5460 } 5461 5462 static void 5463 print_device(device_t dev, int indent) 5464 { 5465 if (!dev) 5466 return; 5467 5468 print_device_short(dev, indent); 5469 5470 indentprintf(("Parent:\n")); 5471 print_device_short(dev->parent, indent+1); 5472 indentprintf(("Driver:\n")); 5473 print_driver_short(dev->driver, indent+1); 5474 indentprintf(("Devclass:\n")); 5475 print_devclass_short(dev->devclass, indent+1); 5476 } 5477 5478 void 5479 print_device_tree_short(device_t dev, int indent) 5480 /* print the device and all its children (indented) */ 5481 { 5482 device_t child; 5483 5484 if (!dev) 5485 return; 5486 5487 print_device_short(dev, indent); 5488 5489 TAILQ_FOREACH(child, &dev->children, link) { 5490 print_device_tree_short(child, indent+1); 5491 } 5492 } 5493 5494 void 5495 print_device_tree(device_t dev, int indent) 5496 /* print the device and all its children (indented) */ 5497 { 5498 device_t child; 5499 5500 if (!dev) 5501 return; 5502 5503 print_device(dev, indent); 5504 5505 TAILQ_FOREACH(child, &dev->children, link) { 5506 print_device_tree(child, indent+1); 5507 } 5508 } 5509 5510 static void 5511 print_driver_short(driver_t *driver, int indent) 5512 { 5513 if (!driver) 5514 return; 5515 5516 indentprintf(("driver %s: softc size = %zd\n", 5517 driver->name, driver->size)); 5518 } 5519 5520 static void 5521 print_driver(driver_t *driver, int indent) 5522 { 5523 if (!driver) 5524 return; 5525 5526 print_driver_short(driver, indent); 5527 } 5528 5529 static void 5530 print_driver_list(driver_list_t drivers, int indent) 5531 { 5532 driverlink_t driver; 5533 5534 TAILQ_FOREACH(driver, &drivers, link) { 5535 print_driver(driver->driver, indent); 5536 } 5537 } 5538 5539 static void 5540 print_devclass_short(devclass_t dc, int indent) 5541 { 5542 if ( !dc ) 5543 return; 5544 5545 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5546 } 5547 5548 static void 5549 print_devclass(devclass_t dc, int indent) 5550 { 5551 int i; 5552 5553 if ( !dc ) 5554 return; 5555 5556 print_devclass_short(dc, indent); 5557 indentprintf(("Drivers:\n")); 5558 print_driver_list(dc->drivers, indent+1); 5559 5560 indentprintf(("Devices:\n")); 5561 for (i = 0; i < dc->maxunit; i++) 5562 if (dc->devices[i]) 5563 print_device(dc->devices[i], indent+1); 5564 } 5565 5566 void 5567 print_devclass_list_short(void) 5568 { 5569 devclass_t dc; 5570 5571 printf("Short listing of devclasses, drivers & devices:\n"); 5572 TAILQ_FOREACH(dc, &devclasses, link) { 5573 print_devclass_short(dc, 0); 5574 } 5575 } 5576 5577 void 5578 print_devclass_list(void) 5579 { 5580 devclass_t dc; 5581 5582 printf("Full listing of devclasses, drivers & devices:\n"); 5583 TAILQ_FOREACH(dc, &devclasses, link) { 5584 print_devclass(dc, 0); 5585 } 5586 } 5587 5588 #endif 5589 5590 /* 5591 * User-space access to the device tree. 5592 * 5593 * We implement a small set of nodes: 5594 * 5595 * hw.bus Single integer read method to obtain the 5596 * current generation count. 5597 * hw.bus.devices Reads the entire device tree in flat space. 5598 * hw.bus.rman Resource manager interface 5599 * 5600 * We might like to add the ability to scan devclasses and/or drivers to 5601 * determine what else is currently loaded/available. 5602 */ 5603 5604 static int 5605 sysctl_bus_info(SYSCTL_HANDLER_ARGS) 5606 { 5607 struct u_businfo ubus; 5608 5609 ubus.ub_version = BUS_USER_VERSION; 5610 ubus.ub_generation = bus_data_generation; 5611 5612 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5613 } 5614 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | 5615 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", 5616 "bus-related data"); 5617 5618 static int 5619 sysctl_devices(SYSCTL_HANDLER_ARGS) 5620 { 5621 struct sbuf sb; 5622 int *name = (int *)arg1; 5623 u_int namelen = arg2; 5624 int index; 5625 device_t dev; 5626 struct u_device *udev; 5627 int error; 5628 5629 if (namelen != 2) 5630 return (EINVAL); 5631 5632 if (bus_data_generation_check(name[0])) 5633 return (EINVAL); 5634 5635 index = name[1]; 5636 5637 /* 5638 * Scan the list of devices, looking for the requested index. 5639 */ 5640 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5641 if (index-- == 0) 5642 break; 5643 } 5644 if (dev == NULL) 5645 return (ENOENT); 5646 5647 /* 5648 * Populate the return item, careful not to overflow the buffer. 5649 */ 5650 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5651 if (udev == NULL) 5652 return (ENOMEM); 5653 udev->dv_handle = (uintptr_t)dev; 5654 udev->dv_parent = (uintptr_t)dev->parent; 5655 udev->dv_devflags = dev->devflags; 5656 udev->dv_flags = dev->flags; 5657 udev->dv_state = dev->state; 5658 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN); 5659 if (dev->nameunit != NULL) 5660 sbuf_cat(&sb, dev->nameunit); 5661 sbuf_putc(&sb, '\0'); 5662 if (dev->desc != NULL) 5663 sbuf_cat(&sb, dev->desc); 5664 sbuf_putc(&sb, '\0'); 5665 if (dev->driver != NULL) 5666 sbuf_cat(&sb, dev->driver->name); 5667 sbuf_putc(&sb, '\0'); 5668 bus_child_pnpinfo(dev, &sb); 5669 sbuf_putc(&sb, '\0'); 5670 bus_child_location(dev, &sb); 5671 sbuf_putc(&sb, '\0'); 5672 error = sbuf_finish(&sb); 5673 if (error == 0) 5674 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5675 sbuf_delete(&sb); 5676 free(udev, M_BUS); 5677 return (error); 5678 } 5679 5680 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, 5681 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, 5682 "system device tree"); 5683 5684 int 5685 bus_data_generation_check(int generation) 5686 { 5687 if (generation != bus_data_generation) 5688 return (1); 5689 5690 /* XXX generate optimised lists here? */ 5691 return (0); 5692 } 5693 5694 void 5695 bus_data_generation_update(void) 5696 { 5697 atomic_add_int(&bus_data_generation, 1); 5698 } 5699 5700 int 5701 bus_free_resource(device_t dev, int type, struct resource *r) 5702 { 5703 if (r == NULL) 5704 return (0); 5705 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5706 } 5707 5708 device_t 5709 device_lookup_by_name(const char *name) 5710 { 5711 device_t dev; 5712 5713 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5714 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5715 return (dev); 5716 } 5717 return (NULL); 5718 } 5719 5720 /* 5721 * /dev/devctl2 implementation. The existing /dev/devctl device has 5722 * implicit semantics on open, so it could not be reused for this. 5723 * Another option would be to call this /dev/bus? 5724 */ 5725 static int 5726 find_device(struct devreq *req, device_t *devp) 5727 { 5728 device_t dev; 5729 5730 /* 5731 * First, ensure that the name is nul terminated. 5732 */ 5733 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5734 return (EINVAL); 5735 5736 /* 5737 * Second, try to find an attached device whose name matches 5738 * 'name'. 5739 */ 5740 dev = device_lookup_by_name(req->dr_name); 5741 if (dev != NULL) { 5742 *devp = dev; 5743 return (0); 5744 } 5745 5746 /* Finally, give device enumerators a chance. */ 5747 dev = NULL; 5748 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5749 if (dev == NULL) 5750 return (ENOENT); 5751 *devp = dev; 5752 return (0); 5753 } 5754 5755 static bool 5756 driver_exists(device_t bus, const char *driver) 5757 { 5758 devclass_t dc; 5759 5760 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5761 if (devclass_find_driver_internal(dc, driver) != NULL) 5762 return (true); 5763 } 5764 return (false); 5765 } 5766 5767 static void 5768 device_gen_nomatch(device_t dev) 5769 { 5770 device_t child; 5771 5772 if (dev->flags & DF_NEEDNOMATCH && 5773 dev->state == DS_NOTPRESENT) { 5774 BUS_PROBE_NOMATCH(dev->parent, dev); 5775 devnomatch(dev); 5776 dev->flags |= DF_DONENOMATCH; 5777 } 5778 dev->flags &= ~DF_NEEDNOMATCH; 5779 TAILQ_FOREACH(child, &dev->children, link) { 5780 device_gen_nomatch(child); 5781 } 5782 } 5783 5784 static void 5785 device_do_deferred_actions(void) 5786 { 5787 devclass_t dc; 5788 driverlink_t dl; 5789 5790 /* 5791 * Walk through the devclasses to find all the drivers we've tagged as 5792 * deferred during the freeze and call the driver added routines. They 5793 * have already been added to the lists in the background, so the driver 5794 * added routines that trigger a probe will have all the right bidders 5795 * for the probe auction. 5796 */ 5797 TAILQ_FOREACH(dc, &devclasses, link) { 5798 TAILQ_FOREACH(dl, &dc->drivers, link) { 5799 if (dl->flags & DL_DEFERRED_PROBE) { 5800 devclass_driver_added(dc, dl->driver); 5801 dl->flags &= ~DL_DEFERRED_PROBE; 5802 } 5803 } 5804 } 5805 5806 /* 5807 * We also defer no-match events during a freeze. Walk the tree and 5808 * generate all the pent-up events that are still relevant. 5809 */ 5810 device_gen_nomatch(root_bus); 5811 bus_data_generation_update(); 5812 } 5813 5814 static char * 5815 device_get_path(device_t dev, const char *locator) 5816 { 5817 struct sbuf *sb; 5818 ssize_t len; 5819 char *rv = NULL; 5820 int error; 5821 5822 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | SBUF_INCLUDENUL); 5823 error = BUS_GET_DEVICE_PATH(device_get_parent(dev), dev, locator, sb); 5824 sbuf_finish(sb); /* Note: errors checked with sbuf_len() below */ 5825 if (error != 0) 5826 goto out; 5827 len = sbuf_len(sb); 5828 if (len <= 1) 5829 goto out; 5830 rv = malloc(len, M_BUS, M_NOWAIT); 5831 memcpy(rv, sbuf_data(sb), len); 5832 out: 5833 sbuf_delete(sb); 5834 return (rv); 5835 } 5836 5837 static int 5838 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5839 struct thread *td) 5840 { 5841 struct devreq *req; 5842 device_t dev; 5843 int error, old; 5844 5845 /* Locate the device to control. */ 5846 bus_topo_lock(); 5847 req = (struct devreq *)data; 5848 switch (cmd) { 5849 case DEV_ATTACH: 5850 case DEV_DETACH: 5851 case DEV_ENABLE: 5852 case DEV_DISABLE: 5853 case DEV_SUSPEND: 5854 case DEV_RESUME: 5855 case DEV_SET_DRIVER: 5856 case DEV_CLEAR_DRIVER: 5857 case DEV_RESCAN: 5858 case DEV_DELETE: 5859 case DEV_RESET: 5860 error = priv_check(td, PRIV_DRIVER); 5861 if (error == 0) 5862 error = find_device(req, &dev); 5863 break; 5864 case DEV_FREEZE: 5865 case DEV_THAW: 5866 error = priv_check(td, PRIV_DRIVER); 5867 break; 5868 case DEV_GET_PATH: 5869 error = find_device(req, &dev); 5870 break; 5871 default: 5872 error = ENOTTY; 5873 break; 5874 } 5875 if (error) { 5876 bus_topo_unlock(); 5877 return (error); 5878 } 5879 5880 /* Perform the requested operation. */ 5881 switch (cmd) { 5882 case DEV_ATTACH: 5883 if (device_is_attached(dev)) 5884 error = EBUSY; 5885 else if (!device_is_enabled(dev)) 5886 error = ENXIO; 5887 else 5888 error = device_probe_and_attach(dev); 5889 break; 5890 case DEV_DETACH: 5891 if (!device_is_attached(dev)) { 5892 error = ENXIO; 5893 break; 5894 } 5895 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5896 error = device_quiesce(dev); 5897 if (error) 5898 break; 5899 } 5900 error = device_detach(dev); 5901 break; 5902 case DEV_ENABLE: 5903 if (device_is_enabled(dev)) { 5904 error = EBUSY; 5905 break; 5906 } 5907 5908 /* 5909 * If the device has been probed but not attached (e.g. 5910 * when it has been disabled by a loader hint), just 5911 * attach the device rather than doing a full probe. 5912 */ 5913 device_enable(dev); 5914 if (device_is_alive(dev)) { 5915 /* 5916 * If the device was disabled via a hint, clear 5917 * the hint. 5918 */ 5919 if (resource_disabled(dev->driver->name, dev->unit)) 5920 resource_unset_value(dev->driver->name, 5921 dev->unit, "disabled"); 5922 error = device_attach(dev); 5923 } else 5924 error = device_probe_and_attach(dev); 5925 break; 5926 case DEV_DISABLE: 5927 if (!device_is_enabled(dev)) { 5928 error = ENXIO; 5929 break; 5930 } 5931 5932 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5933 error = device_quiesce(dev); 5934 if (error) 5935 break; 5936 } 5937 5938 /* 5939 * Force DF_FIXEDCLASS on around detach to preserve 5940 * the existing name. 5941 */ 5942 old = dev->flags; 5943 dev->flags |= DF_FIXEDCLASS; 5944 error = device_detach(dev); 5945 if (!(old & DF_FIXEDCLASS)) 5946 dev->flags &= ~DF_FIXEDCLASS; 5947 if (error == 0) 5948 device_disable(dev); 5949 break; 5950 case DEV_SUSPEND: 5951 if (device_is_suspended(dev)) { 5952 error = EBUSY; 5953 break; 5954 } 5955 if (device_get_parent(dev) == NULL) { 5956 error = EINVAL; 5957 break; 5958 } 5959 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5960 break; 5961 case DEV_RESUME: 5962 if (!device_is_suspended(dev)) { 5963 error = EINVAL; 5964 break; 5965 } 5966 if (device_get_parent(dev) == NULL) { 5967 error = EINVAL; 5968 break; 5969 } 5970 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5971 break; 5972 case DEV_SET_DRIVER: { 5973 devclass_t dc; 5974 char driver[128]; 5975 5976 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5977 if (error) 5978 break; 5979 if (driver[0] == '\0') { 5980 error = EINVAL; 5981 break; 5982 } 5983 if (dev->devclass != NULL && 5984 strcmp(driver, dev->devclass->name) == 0) 5985 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5986 break; 5987 5988 /* 5989 * Scan drivers for this device's bus looking for at 5990 * least one matching driver. 5991 */ 5992 if (dev->parent == NULL) { 5993 error = EINVAL; 5994 break; 5995 } 5996 if (!driver_exists(dev->parent, driver)) { 5997 error = ENOENT; 5998 break; 5999 } 6000 dc = devclass_create(driver); 6001 if (dc == NULL) { 6002 error = ENOMEM; 6003 break; 6004 } 6005 6006 /* Detach device if necessary. */ 6007 if (device_is_attached(dev)) { 6008 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 6009 error = device_detach(dev); 6010 else 6011 error = EBUSY; 6012 if (error) 6013 break; 6014 } 6015 6016 /* Clear any previously-fixed device class and unit. */ 6017 if (dev->flags & DF_FIXEDCLASS) 6018 devclass_delete_device(dev->devclass, dev); 6019 dev->flags |= DF_WILDCARD; 6020 dev->unit = -1; 6021 6022 /* Force the new device class. */ 6023 error = devclass_add_device(dc, dev); 6024 if (error) 6025 break; 6026 dev->flags |= DF_FIXEDCLASS; 6027 error = device_probe_and_attach(dev); 6028 break; 6029 } 6030 case DEV_CLEAR_DRIVER: 6031 if (!(dev->flags & DF_FIXEDCLASS)) { 6032 error = 0; 6033 break; 6034 } 6035 if (device_is_attached(dev)) { 6036 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 6037 error = device_detach(dev); 6038 else 6039 error = EBUSY; 6040 if (error) 6041 break; 6042 } 6043 6044 dev->flags &= ~DF_FIXEDCLASS; 6045 dev->flags |= DF_WILDCARD; 6046 devclass_delete_device(dev->devclass, dev); 6047 error = device_probe_and_attach(dev); 6048 break; 6049 case DEV_RESCAN: 6050 if (!device_is_attached(dev)) { 6051 error = ENXIO; 6052 break; 6053 } 6054 error = BUS_RESCAN(dev); 6055 break; 6056 case DEV_DELETE: { 6057 device_t parent; 6058 6059 parent = device_get_parent(dev); 6060 if (parent == NULL) { 6061 error = EINVAL; 6062 break; 6063 } 6064 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 6065 if (bus_child_present(dev) != 0) { 6066 error = EBUSY; 6067 break; 6068 } 6069 } 6070 6071 error = device_delete_child(parent, dev); 6072 break; 6073 } 6074 case DEV_FREEZE: 6075 if (device_frozen) 6076 error = EBUSY; 6077 else 6078 device_frozen = true; 6079 break; 6080 case DEV_THAW: 6081 if (!device_frozen) 6082 error = EBUSY; 6083 else { 6084 device_do_deferred_actions(); 6085 device_frozen = false; 6086 } 6087 break; 6088 case DEV_RESET: 6089 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 6090 error = EINVAL; 6091 break; 6092 } 6093 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 6094 req->dr_flags); 6095 break; 6096 case DEV_GET_PATH: { 6097 char locator[64]; 6098 char *path; 6099 ssize_t len; 6100 6101 error = copyinstr(req->dr_buffer.buffer, locator, sizeof(locator), NULL); 6102 if (error) 6103 break; 6104 path = device_get_path(dev, locator); 6105 if (path == NULL) { 6106 error = ENOMEM; 6107 break; 6108 } 6109 len = strlen(path) + 1; 6110 if (req->dr_buffer.length < len) { 6111 error = ENAMETOOLONG; 6112 } else { 6113 error = copyout(path, req->dr_buffer.buffer, len); 6114 } 6115 req->dr_buffer.length = len; 6116 free(path, M_BUS); 6117 break; 6118 } 6119 } 6120 bus_topo_unlock(); 6121 return (error); 6122 } 6123 6124 static struct cdevsw devctl2_cdevsw = { 6125 .d_version = D_VERSION, 6126 .d_ioctl = devctl2_ioctl, 6127 .d_name = "devctl2", 6128 }; 6129 6130 static void 6131 devctl2_init(void) 6132 { 6133 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 6134 UID_ROOT, GID_WHEEL, 0644, "devctl2"); 6135 } 6136 6137 /* 6138 * For maintaining device 'at' location info to avoid recomputing it 6139 */ 6140 struct device_location_node { 6141 const char *dln_locator; 6142 const char *dln_path; 6143 TAILQ_ENTRY(device_location_node) dln_link; 6144 }; 6145 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t; 6146 6147 struct device_location_cache { 6148 device_location_list_t dlc_list; 6149 }; 6150 6151 6152 /* 6153 * Location cache for wired devices. 6154 */ 6155 device_location_cache_t * 6156 dev_wired_cache_init(void) 6157 { 6158 device_location_cache_t *dcp; 6159 6160 dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO); 6161 TAILQ_INIT(&dcp->dlc_list); 6162 6163 return (dcp); 6164 } 6165 6166 void 6167 dev_wired_cache_fini(device_location_cache_t *dcp) 6168 { 6169 struct device_location_node *dln, *tdln; 6170 6171 TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) { 6172 /* Note: one allocation for both node and locator, but not path */ 6173 free(__DECONST(void *, dln->dln_path), M_BUS); 6174 free(dln, M_BUS); 6175 } 6176 free(dcp, M_BUS); 6177 } 6178 6179 static struct device_location_node * 6180 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator) 6181 { 6182 struct device_location_node *dln; 6183 6184 TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) { 6185 if (strcmp(locator, dln->dln_locator) == 0) 6186 return (dln); 6187 } 6188 6189 return (NULL); 6190 } 6191 6192 static struct device_location_node * 6193 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path) 6194 { 6195 struct device_location_node *dln; 6196 char *l; 6197 6198 dln = malloc(sizeof(*dln) + strlen(locator) + 1, M_BUS, M_WAITOK | M_ZERO); 6199 dln->dln_locator = l = (char *)(dln + 1); 6200 memcpy(l, locator, strlen(locator) + 1); 6201 dln->dln_path = path; 6202 TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link); 6203 6204 return (dln); 6205 } 6206 6207 bool 6208 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev, const char *at) 6209 { 6210 const char *cp, *path; 6211 char locator[32]; 6212 int len; 6213 struct device_location_node *res; 6214 6215 cp = strchr(at, ':'); 6216 if (cp == NULL) 6217 return (false); 6218 len = cp - at; 6219 if (len > sizeof(locator) - 1) /* Skip too long locator */ 6220 return (false); 6221 memcpy(locator, at, len); 6222 locator[len] = '\0'; 6223 cp++; 6224 6225 /* maybe cache this inside device_t and look that up, but not yet */ 6226 res = dev_wired_cache_lookup(dcp, locator); 6227 if (res == NULL) { 6228 path = device_get_path(dev, locator); 6229 res = dev_wired_cache_add(dcp, locator, path); 6230 } 6231 if (res == NULL || res->dln_path == NULL) 6232 return (false); 6233 6234 return (strcmp(res->dln_path, cp) == 0); 6235 } 6236 6237 /* 6238 * APIs to manage deprecation and obsolescence. 6239 */ 6240 static int obsolete_panic = 0; 6241 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 6242 "Panic when obsolete features are used (0 = never, 1 = if obsolete, " 6243 "2 = if deprecated)"); 6244 6245 static void 6246 gone_panic(int major, int running, const char *msg) 6247 { 6248 switch (obsolete_panic) 6249 { 6250 case 0: 6251 return; 6252 case 1: 6253 if (running < major) 6254 return; 6255 /* FALLTHROUGH */ 6256 default: 6257 panic("%s", msg); 6258 } 6259 } 6260 6261 void 6262 _gone_in(int major, const char *msg) 6263 { 6264 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 6265 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 6266 printf("Obsolete code will be removed soon: %s\n", msg); 6267 else 6268 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 6269 major, msg); 6270 } 6271 6272 void 6273 _gone_in_dev(device_t dev, int major, const char *msg) 6274 { 6275 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 6276 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 6277 device_printf(dev, 6278 "Obsolete code will be removed soon: %s\n", msg); 6279 else 6280 device_printf(dev, 6281 "Deprecated code (to be removed in FreeBSD %d): %s\n", 6282 major, msg); 6283 } 6284 6285 #ifdef DDB 6286 DB_SHOW_COMMAND(device, db_show_device) 6287 { 6288 device_t dev; 6289 6290 if (!have_addr) 6291 return; 6292 6293 dev = (device_t)addr; 6294 6295 db_printf("name: %s\n", device_get_nameunit(dev)); 6296 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 6297 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 6298 db_printf(" addr: %p\n", dev); 6299 db_printf(" parent: %p\n", dev->parent); 6300 db_printf(" softc: %p\n", dev->softc); 6301 db_printf(" ivars: %p\n", dev->ivars); 6302 } 6303 6304 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 6305 { 6306 device_t dev; 6307 6308 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 6309 db_show_device((db_expr_t)dev, true, count, modif); 6310 } 6311 } 6312 #endif 6313