1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997,1998,2003 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bus.h" 33 #include "opt_ddb.h" 34 35 #include <sys/param.h> 36 #include <sys/conf.h> 37 #include <sys/eventhandler.h> 38 #include <sys/filio.h> 39 #include <sys/lock.h> 40 #include <sys/kernel.h> 41 #include <sys/kobj.h> 42 #include <sys/limits.h> 43 #include <sys/malloc.h> 44 #include <sys/module.h> 45 #include <sys/mutex.h> 46 #include <sys/poll.h> 47 #include <sys/priv.h> 48 #include <sys/proc.h> 49 #include <sys/condvar.h> 50 #include <sys/queue.h> 51 #include <machine/bus.h> 52 #include <sys/random.h> 53 #include <sys/rman.h> 54 #include <sys/sbuf.h> 55 #include <sys/selinfo.h> 56 #include <sys/signalvar.h> 57 #include <sys/smp.h> 58 #include <sys/sysctl.h> 59 #include <sys/systm.h> 60 #include <sys/uio.h> 61 #include <sys/bus.h> 62 #include <sys/cpuset.h> 63 64 #include <net/vnet.h> 65 66 #include <machine/cpu.h> 67 #include <machine/stdarg.h> 68 69 #include <vm/uma.h> 70 #include <vm/vm.h> 71 72 #include <ddb/ddb.h> 73 74 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 75 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL); 76 77 /* 78 * Used to attach drivers to devclasses. 79 */ 80 typedef struct driverlink *driverlink_t; 81 struct driverlink { 82 kobj_class_t driver; 83 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ 84 int pass; 85 int flags; 86 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ 87 TAILQ_ENTRY(driverlink) passlink; 88 }; 89 90 /* 91 * Forward declarations 92 */ 93 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; 94 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; 95 typedef TAILQ_HEAD(device_list, device) device_list_t; 96 97 struct devclass { 98 TAILQ_ENTRY(devclass) link; 99 devclass_t parent; /* parent in devclass hierarchy */ 100 driver_list_t drivers; /* bus devclasses store drivers for bus */ 101 char *name; 102 device_t *devices; /* array of devices indexed by unit */ 103 int maxunit; /* size of devices array */ 104 int flags; 105 #define DC_HAS_CHILDREN 1 106 107 struct sysctl_ctx_list sysctl_ctx; 108 struct sysctl_oid *sysctl_tree; 109 }; 110 111 /** 112 * @brief Implementation of device. 113 */ 114 struct device { 115 /* 116 * A device is a kernel object. The first field must be the 117 * current ops table for the object. 118 */ 119 KOBJ_FIELDS; 120 121 /* 122 * Device hierarchy. 123 */ 124 TAILQ_ENTRY(device) link; /**< list of devices in parent */ 125 TAILQ_ENTRY(device) devlink; /**< global device list membership */ 126 device_t parent; /**< parent of this device */ 127 device_list_t children; /**< list of child devices */ 128 129 /* 130 * Details of this device. 131 */ 132 driver_t *driver; /**< current driver */ 133 devclass_t devclass; /**< current device class */ 134 int unit; /**< current unit number */ 135 char* nameunit; /**< name+unit e.g. foodev0 */ 136 char* desc; /**< driver specific description */ 137 int busy; /**< count of calls to device_busy() */ 138 device_state_t state; /**< current device state */ 139 uint32_t devflags; /**< api level flags for device_get_flags() */ 140 u_int flags; /**< internal device flags */ 141 u_int order; /**< order from device_add_child_ordered() */ 142 void *ivars; /**< instance variables */ 143 void *softc; /**< current driver's variables */ 144 145 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ 146 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ 147 }; 148 149 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 150 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); 151 152 EVENTHANDLER_LIST_DEFINE(device_attach); 153 EVENTHANDLER_LIST_DEFINE(device_detach); 154 EVENTHANDLER_LIST_DEFINE(dev_lookup); 155 156 static void devctl2_init(void); 157 static bool device_frozen; 158 159 #define DRIVERNAME(d) ((d)? d->name : "no driver") 160 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 161 162 #ifdef BUS_DEBUG 163 164 static int bus_debug = 1; 165 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, 166 "Bus debug level"); 167 168 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} 169 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 170 171 /** 172 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to 173 * prevent syslog from deleting initial spaces 174 */ 175 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0) 176 177 static void print_device_short(device_t dev, int indent); 178 static void print_device(device_t dev, int indent); 179 void print_device_tree_short(device_t dev, int indent); 180 void print_device_tree(device_t dev, int indent); 181 static void print_driver_short(driver_t *driver, int indent); 182 static void print_driver(driver_t *driver, int indent); 183 static void print_driver_list(driver_list_t drivers, int indent); 184 static void print_devclass_short(devclass_t dc, int indent); 185 static void print_devclass(devclass_t dc, int indent); 186 void print_devclass_list_short(void); 187 void print_devclass_list(void); 188 189 #else 190 /* Make the compiler ignore the function calls */ 191 #define PDEBUG(a) /* nop */ 192 #define DEVICENAME(d) /* nop */ 193 194 #define print_device_short(d,i) /* nop */ 195 #define print_device(d,i) /* nop */ 196 #define print_device_tree_short(d,i) /* nop */ 197 #define print_device_tree(d,i) /* nop */ 198 #define print_driver_short(d,i) /* nop */ 199 #define print_driver(d,i) /* nop */ 200 #define print_driver_list(d,i) /* nop */ 201 #define print_devclass_short(d,i) /* nop */ 202 #define print_devclass(d,i) /* nop */ 203 #define print_devclass_list_short() /* nop */ 204 #define print_devclass_list() /* nop */ 205 #endif 206 207 /* 208 * dev sysctl tree 209 */ 210 211 enum { 212 DEVCLASS_SYSCTL_PARENT, 213 }; 214 215 static int 216 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS) 217 { 218 devclass_t dc = (devclass_t)arg1; 219 const char *value; 220 221 switch (arg2) { 222 case DEVCLASS_SYSCTL_PARENT: 223 value = dc->parent ? dc->parent->name : ""; 224 break; 225 default: 226 return (EINVAL); 227 } 228 return (SYSCTL_OUT_STR(req, value)); 229 } 230 231 static void 232 devclass_sysctl_init(devclass_t dc) 233 { 234 235 if (dc->sysctl_tree != NULL) 236 return; 237 sysctl_ctx_init(&dc->sysctl_ctx); 238 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, 239 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, 240 CTLFLAG_RD, NULL, ""); 241 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), 242 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 243 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", 244 "parent class"); 245 } 246 247 enum { 248 DEVICE_SYSCTL_DESC, 249 DEVICE_SYSCTL_DRIVER, 250 DEVICE_SYSCTL_LOCATION, 251 DEVICE_SYSCTL_PNPINFO, 252 DEVICE_SYSCTL_PARENT, 253 }; 254 255 static int 256 device_sysctl_handler(SYSCTL_HANDLER_ARGS) 257 { 258 device_t dev = (device_t)arg1; 259 const char *value; 260 char *buf; 261 int error; 262 263 buf = NULL; 264 switch (arg2) { 265 case DEVICE_SYSCTL_DESC: 266 value = dev->desc ? dev->desc : ""; 267 break; 268 case DEVICE_SYSCTL_DRIVER: 269 value = dev->driver ? dev->driver->name : ""; 270 break; 271 case DEVICE_SYSCTL_LOCATION: 272 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 273 bus_child_location_str(dev, buf, 1024); 274 break; 275 case DEVICE_SYSCTL_PNPINFO: 276 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO); 277 bus_child_pnpinfo_str(dev, buf, 1024); 278 break; 279 case DEVICE_SYSCTL_PARENT: 280 value = dev->parent ? dev->parent->nameunit : ""; 281 break; 282 default: 283 return (EINVAL); 284 } 285 error = SYSCTL_OUT_STR(req, value); 286 if (buf != NULL) 287 free(buf, M_BUS); 288 return (error); 289 } 290 291 static void 292 device_sysctl_init(device_t dev) 293 { 294 devclass_t dc = dev->devclass; 295 int domain; 296 297 if (dev->sysctl_tree != NULL) 298 return; 299 devclass_sysctl_init(dc); 300 sysctl_ctx_init(&dev->sysctl_ctx); 301 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, 302 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, 303 dev->nameunit + strlen(dc->name), 304 CTLFLAG_RD, NULL, "", "device_index"); 305 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 306 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD, 307 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", 308 "device description"); 309 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 310 OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD, 311 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", 312 "device driver name"); 313 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 314 OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD, 315 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", 316 "device location relative to parent"); 317 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 318 OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD, 319 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", 320 "device identification"); 321 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), 322 OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD, 323 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", 324 "parent device"); 325 if (bus_get_domain(dev, &domain) == 0) 326 SYSCTL_ADD_INT(&dev->sysctl_ctx, 327 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", 328 CTLFLAG_RD, NULL, domain, "NUMA domain"); 329 } 330 331 static void 332 device_sysctl_update(device_t dev) 333 { 334 devclass_t dc = dev->devclass; 335 336 if (dev->sysctl_tree == NULL) 337 return; 338 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); 339 } 340 341 static void 342 device_sysctl_fini(device_t dev) 343 { 344 if (dev->sysctl_tree == NULL) 345 return; 346 sysctl_ctx_free(&dev->sysctl_ctx); 347 dev->sysctl_tree = NULL; 348 } 349 350 /* 351 * /dev/devctl implementation 352 */ 353 354 /* 355 * This design allows only one reader for /dev/devctl. This is not desirable 356 * in the long run, but will get a lot of hair out of this implementation. 357 * Maybe we should make this device a clonable device. 358 * 359 * Also note: we specifically do not attach a device to the device_t tree 360 * to avoid potential chicken and egg problems. One could argue that all 361 * of this belongs to the root node. One could also further argue that the 362 * sysctl interface that we have not might more properly be an ioctl 363 * interface, but at this stage of the game, I'm not inclined to rock that 364 * boat. 365 * 366 * I'm also not sure that the SIGIO support is done correctly or not, as 367 * I copied it from a driver that had SIGIO support that likely hasn't been 368 * tested since 3.4 or 2.2.8! 369 */ 370 371 /* Deprecated way to adjust queue length */ 372 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 373 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN | 374 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I", 375 "devctl disable -- deprecated"); 376 377 #define DEVCTL_DEFAULT_QUEUE_LEN 1000 378 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); 379 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 380 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | 381 CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); 382 383 static d_open_t devopen; 384 static d_close_t devclose; 385 static d_read_t devread; 386 static d_ioctl_t devioctl; 387 static d_poll_t devpoll; 388 static d_kqfilter_t devkqfilter; 389 390 static struct cdevsw dev_cdevsw = { 391 .d_version = D_VERSION, 392 .d_open = devopen, 393 .d_close = devclose, 394 .d_read = devread, 395 .d_ioctl = devioctl, 396 .d_poll = devpoll, 397 .d_kqfilter = devkqfilter, 398 .d_name = "devctl", 399 }; 400 401 struct dev_event_info 402 { 403 char *dei_data; 404 TAILQ_ENTRY(dev_event_info) dei_link; 405 }; 406 407 TAILQ_HEAD(devq, dev_event_info); 408 409 static struct dev_softc 410 { 411 int inuse; 412 int nonblock; 413 int queued; 414 int async; 415 struct mtx mtx; 416 struct cv cv; 417 struct selinfo sel; 418 struct devq devq; 419 struct sigio *sigio; 420 } devsoftc; 421 422 static void filt_devctl_detach(struct knote *kn); 423 static int filt_devctl_read(struct knote *kn, long hint); 424 425 struct filterops devctl_rfiltops = { 426 .f_isfd = 1, 427 .f_detach = filt_devctl_detach, 428 .f_event = filt_devctl_read, 429 }; 430 431 static struct cdev *devctl_dev; 432 433 static void 434 devinit(void) 435 { 436 devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, 437 UID_ROOT, GID_WHEEL, 0600, "devctl"); 438 mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); 439 cv_init(&devsoftc.cv, "dev cv"); 440 TAILQ_INIT(&devsoftc.devq); 441 knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); 442 devctl2_init(); 443 } 444 445 static int 446 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) 447 { 448 449 mtx_lock(&devsoftc.mtx); 450 if (devsoftc.inuse) { 451 mtx_unlock(&devsoftc.mtx); 452 return (EBUSY); 453 } 454 /* move to init */ 455 devsoftc.inuse = 1; 456 mtx_unlock(&devsoftc.mtx); 457 return (0); 458 } 459 460 static int 461 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) 462 { 463 464 mtx_lock(&devsoftc.mtx); 465 devsoftc.inuse = 0; 466 devsoftc.nonblock = 0; 467 devsoftc.async = 0; 468 cv_broadcast(&devsoftc.cv); 469 funsetown(&devsoftc.sigio); 470 mtx_unlock(&devsoftc.mtx); 471 return (0); 472 } 473 474 /* 475 * The read channel for this device is used to report changes to 476 * userland in realtime. We are required to free the data as well as 477 * the n1 object because we allocate them separately. Also note that 478 * we return one record at a time. If you try to read this device a 479 * character at a time, you will lose the rest of the data. Listening 480 * programs are expected to cope. 481 */ 482 static int 483 devread(struct cdev *dev, struct uio *uio, int ioflag) 484 { 485 struct dev_event_info *n1; 486 int rv; 487 488 mtx_lock(&devsoftc.mtx); 489 while (TAILQ_EMPTY(&devsoftc.devq)) { 490 if (devsoftc.nonblock) { 491 mtx_unlock(&devsoftc.mtx); 492 return (EAGAIN); 493 } 494 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); 495 if (rv) { 496 /* 497 * Need to translate ERESTART to EINTR here? -- jake 498 */ 499 mtx_unlock(&devsoftc.mtx); 500 return (rv); 501 } 502 } 503 n1 = TAILQ_FIRST(&devsoftc.devq); 504 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 505 devsoftc.queued--; 506 mtx_unlock(&devsoftc.mtx); 507 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 508 free(n1->dei_data, M_BUS); 509 free(n1, M_BUS); 510 return (rv); 511 } 512 513 static int 514 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) 515 { 516 switch (cmd) { 517 518 case FIONBIO: 519 if (*(int*)data) 520 devsoftc.nonblock = 1; 521 else 522 devsoftc.nonblock = 0; 523 return (0); 524 case FIOASYNC: 525 if (*(int*)data) 526 devsoftc.async = 1; 527 else 528 devsoftc.async = 0; 529 return (0); 530 case FIOSETOWN: 531 return fsetown(*(int *)data, &devsoftc.sigio); 532 case FIOGETOWN: 533 *(int *)data = fgetown(&devsoftc.sigio); 534 return (0); 535 536 /* (un)Support for other fcntl() calls. */ 537 case FIOCLEX: 538 case FIONCLEX: 539 case FIONREAD: 540 default: 541 break; 542 } 543 return (ENOTTY); 544 } 545 546 static int 547 devpoll(struct cdev *dev, int events, struct thread *td) 548 { 549 int revents = 0; 550 551 mtx_lock(&devsoftc.mtx); 552 if (events & (POLLIN | POLLRDNORM)) { 553 if (!TAILQ_EMPTY(&devsoftc.devq)) 554 revents = events & (POLLIN | POLLRDNORM); 555 else 556 selrecord(td, &devsoftc.sel); 557 } 558 mtx_unlock(&devsoftc.mtx); 559 560 return (revents); 561 } 562 563 static int 564 devkqfilter(struct cdev *dev, struct knote *kn) 565 { 566 int error; 567 568 if (kn->kn_filter == EVFILT_READ) { 569 kn->kn_fop = &devctl_rfiltops; 570 knlist_add(&devsoftc.sel.si_note, kn, 0); 571 error = 0; 572 } else 573 error = EINVAL; 574 return (error); 575 } 576 577 static void 578 filt_devctl_detach(struct knote *kn) 579 { 580 581 knlist_remove(&devsoftc.sel.si_note, kn, 0); 582 } 583 584 static int 585 filt_devctl_read(struct knote *kn, long hint) 586 { 587 kn->kn_data = devsoftc.queued; 588 return (kn->kn_data != 0); 589 } 590 591 /** 592 * @brief Return whether the userland process is running 593 */ 594 boolean_t 595 devctl_process_running(void) 596 { 597 return (devsoftc.inuse == 1); 598 } 599 600 /** 601 * @brief Queue data to be read from the devctl device 602 * 603 * Generic interface to queue data to the devctl device. It is 604 * assumed that @p data is properly formatted. It is further assumed 605 * that @p data is allocated using the M_BUS malloc type. 606 */ 607 void 608 devctl_queue_data_f(char *data, int flags) 609 { 610 struct dev_event_info *n1 = NULL, *n2 = NULL; 611 612 if (strlen(data) == 0) 613 goto out; 614 if (devctl_queue_length == 0) 615 goto out; 616 n1 = malloc(sizeof(*n1), M_BUS, flags); 617 if (n1 == NULL) 618 goto out; 619 n1->dei_data = data; 620 mtx_lock(&devsoftc.mtx); 621 if (devctl_queue_length == 0) { 622 mtx_unlock(&devsoftc.mtx); 623 free(n1->dei_data, M_BUS); 624 free(n1, M_BUS); 625 return; 626 } 627 /* Leave at least one spot in the queue... */ 628 while (devsoftc.queued > devctl_queue_length - 1) { 629 n2 = TAILQ_FIRST(&devsoftc.devq); 630 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link); 631 free(n2->dei_data, M_BUS); 632 free(n2, M_BUS); 633 devsoftc.queued--; 634 } 635 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 636 devsoftc.queued++; 637 cv_broadcast(&devsoftc.cv); 638 KNOTE_LOCKED(&devsoftc.sel.si_note, 0); 639 mtx_unlock(&devsoftc.mtx); 640 selwakeup(&devsoftc.sel); 641 if (devsoftc.async && devsoftc.sigio != NULL) 642 pgsigio(&devsoftc.sigio, SIGIO, 0); 643 return; 644 out: 645 /* 646 * We have to free data on all error paths since the caller 647 * assumes it will be free'd when this item is dequeued. 648 */ 649 free(data, M_BUS); 650 return; 651 } 652 653 void 654 devctl_queue_data(char *data) 655 { 656 657 devctl_queue_data_f(data, M_NOWAIT); 658 } 659 660 /** 661 * @brief Send a 'notification' to userland, using standard ways 662 */ 663 void 664 devctl_notify_f(const char *system, const char *subsystem, const char *type, 665 const char *data, int flags) 666 { 667 int len = 0; 668 char *msg; 669 670 if (system == NULL) 671 return; /* BOGUS! Must specify system. */ 672 if (subsystem == NULL) 673 return; /* BOGUS! Must specify subsystem. */ 674 if (type == NULL) 675 return; /* BOGUS! Must specify type. */ 676 len += strlen(" system=") + strlen(system); 677 len += strlen(" subsystem=") + strlen(subsystem); 678 len += strlen(" type=") + strlen(type); 679 /* add in the data message plus newline. */ 680 if (data != NULL) 681 len += strlen(data); 682 len += 3; /* '!', '\n', and NUL */ 683 msg = malloc(len, M_BUS, flags); 684 if (msg == NULL) 685 return; /* Drop it on the floor */ 686 if (data != NULL) 687 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 688 system, subsystem, type, data); 689 else 690 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 691 system, subsystem, type); 692 devctl_queue_data_f(msg, flags); 693 } 694 695 void 696 devctl_notify(const char *system, const char *subsystem, const char *type, 697 const char *data) 698 { 699 700 devctl_notify_f(system, subsystem, type, data, M_NOWAIT); 701 } 702 703 /* 704 * Common routine that tries to make sending messages as easy as possible. 705 * We allocate memory for the data, copy strings into that, but do not 706 * free it unless there's an error. The dequeue part of the driver should 707 * free the data. We don't send data when the device is disabled. We do 708 * send data, even when we have no listeners, because we wish to avoid 709 * races relating to startup and restart of listening applications. 710 * 711 * devaddq is designed to string together the type of event, with the 712 * object of that event, plus the plug and play info and location info 713 * for that event. This is likely most useful for devices, but less 714 * useful for other consumers of this interface. Those should use 715 * the devctl_queue_data() interface instead. 716 */ 717 static void 718 devaddq(const char *type, const char *what, device_t dev) 719 { 720 char *data = NULL; 721 char *loc = NULL; 722 char *pnp = NULL; 723 const char *parstr; 724 725 if (!devctl_queue_length)/* Rare race, but lost races safely discard */ 726 return; 727 data = malloc(1024, M_BUS, M_NOWAIT); 728 if (data == NULL) 729 goto bad; 730 731 /* get the bus specific location of this device */ 732 loc = malloc(1024, M_BUS, M_NOWAIT); 733 if (loc == NULL) 734 goto bad; 735 *loc = '\0'; 736 bus_child_location_str(dev, loc, 1024); 737 738 /* Get the bus specific pnp info of this device */ 739 pnp = malloc(1024, M_BUS, M_NOWAIT); 740 if (pnp == NULL) 741 goto bad; 742 *pnp = '\0'; 743 bus_child_pnpinfo_str(dev, pnp, 1024); 744 745 /* Get the parent of this device, or / if high enough in the tree. */ 746 if (device_get_parent(dev) == NULL) 747 parstr = "."; /* Or '/' ? */ 748 else 749 parstr = device_get_nameunit(device_get_parent(dev)); 750 /* String it all together. */ 751 snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 752 parstr); 753 free(loc, M_BUS); 754 free(pnp, M_BUS); 755 devctl_queue_data(data); 756 return; 757 bad: 758 free(pnp, M_BUS); 759 free(loc, M_BUS); 760 free(data, M_BUS); 761 return; 762 } 763 764 /* 765 * A device was added to the tree. We are called just after it successfully 766 * attaches (that is, probe and attach success for this device). No call 767 * is made if a device is merely parented into the tree. See devnomatch 768 * if probe fails. If attach fails, no notification is sent (but maybe 769 * we should have a different message for this). 770 */ 771 static void 772 devadded(device_t dev) 773 { 774 devaddq("+", device_get_nameunit(dev), dev); 775 } 776 777 /* 778 * A device was removed from the tree. We are called just before this 779 * happens. 780 */ 781 static void 782 devremoved(device_t dev) 783 { 784 devaddq("-", device_get_nameunit(dev), dev); 785 } 786 787 /* 788 * Called when there's no match for this device. This is only called 789 * the first time that no match happens, so we don't keep getting this 790 * message. Should that prove to be undesirable, we can change it. 791 * This is called when all drivers that can attach to a given bus 792 * decline to accept this device. Other errors may not be detected. 793 */ 794 static void 795 devnomatch(device_t dev) 796 { 797 devaddq("?", "", dev); 798 } 799 800 static int 801 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 802 { 803 struct dev_event_info *n1; 804 int dis, error; 805 806 dis = (devctl_queue_length == 0); 807 error = sysctl_handle_int(oidp, &dis, 0, req); 808 if (error || !req->newptr) 809 return (error); 810 if (mtx_initialized(&devsoftc.mtx)) 811 mtx_lock(&devsoftc.mtx); 812 if (dis) { 813 while (!TAILQ_EMPTY(&devsoftc.devq)) { 814 n1 = TAILQ_FIRST(&devsoftc.devq); 815 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 816 free(n1->dei_data, M_BUS); 817 free(n1, M_BUS); 818 } 819 devsoftc.queued = 0; 820 devctl_queue_length = 0; 821 } else { 822 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; 823 } 824 if (mtx_initialized(&devsoftc.mtx)) 825 mtx_unlock(&devsoftc.mtx); 826 return (0); 827 } 828 829 static int 830 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) 831 { 832 struct dev_event_info *n1; 833 int q, error; 834 835 q = devctl_queue_length; 836 error = sysctl_handle_int(oidp, &q, 0, req); 837 if (error || !req->newptr) 838 return (error); 839 if (q < 0) 840 return (EINVAL); 841 if (mtx_initialized(&devsoftc.mtx)) 842 mtx_lock(&devsoftc.mtx); 843 devctl_queue_length = q; 844 while (devsoftc.queued > devctl_queue_length) { 845 n1 = TAILQ_FIRST(&devsoftc.devq); 846 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 847 free(n1->dei_data, M_BUS); 848 free(n1, M_BUS); 849 devsoftc.queued--; 850 } 851 if (mtx_initialized(&devsoftc.mtx)) 852 mtx_unlock(&devsoftc.mtx); 853 return (0); 854 } 855 856 /** 857 * @brief safely quotes strings that might have double quotes in them. 858 * 859 * The devctl protocol relies on quoted strings having matching quotes. 860 * This routine quotes any internal quotes so the resulting string 861 * is safe to pass to snprintf to construct, for example pnp info strings. 862 * Strings are always terminated with a NUL, but may be truncated if longer 863 * than @p len bytes after quotes. 864 * 865 * @param sb sbuf to place the characters into 866 * @param src Original buffer. 867 */ 868 void 869 devctl_safe_quote_sb(struct sbuf *sb, const char *src) 870 { 871 872 while (*src != '\0') { 873 if (*src == '"' || *src == '\\') 874 sbuf_putc(sb, '\\'); 875 sbuf_putc(sb, *src++); 876 } 877 } 878 879 /* End of /dev/devctl code */ 880 881 static TAILQ_HEAD(,device) bus_data_devices; 882 static int bus_data_generation = 1; 883 884 static kobj_method_t null_methods[] = { 885 KOBJMETHOD_END 886 }; 887 888 DEFINE_CLASS(null, null_methods, 0); 889 890 /* 891 * Bus pass implementation 892 */ 893 894 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); 895 int bus_current_pass = BUS_PASS_ROOT; 896 897 /** 898 * @internal 899 * @brief Register the pass level of a new driver attachment 900 * 901 * Register a new driver attachment's pass level. If no driver 902 * attachment with the same pass level has been added, then @p new 903 * will be added to the global passes list. 904 * 905 * @param new the new driver attachment 906 */ 907 static void 908 driver_register_pass(struct driverlink *new) 909 { 910 struct driverlink *dl; 911 912 /* We only consider pass numbers during boot. */ 913 if (bus_current_pass == BUS_PASS_DEFAULT) 914 return; 915 916 /* 917 * Walk the passes list. If we already know about this pass 918 * then there is nothing to do. If we don't, then insert this 919 * driver link into the list. 920 */ 921 TAILQ_FOREACH(dl, &passes, passlink) { 922 if (dl->pass < new->pass) 923 continue; 924 if (dl->pass == new->pass) 925 return; 926 TAILQ_INSERT_BEFORE(dl, new, passlink); 927 return; 928 } 929 TAILQ_INSERT_TAIL(&passes, new, passlink); 930 } 931 932 /** 933 * @brief Raise the current bus pass 934 * 935 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() 936 * method on the root bus to kick off a new device tree scan for each 937 * new pass level that has at least one driver. 938 */ 939 void 940 bus_set_pass(int pass) 941 { 942 struct driverlink *dl; 943 944 if (bus_current_pass > pass) 945 panic("Attempt to lower bus pass level"); 946 947 TAILQ_FOREACH(dl, &passes, passlink) { 948 /* Skip pass values below the current pass level. */ 949 if (dl->pass <= bus_current_pass) 950 continue; 951 952 /* 953 * Bail once we hit a driver with a pass level that is 954 * too high. 955 */ 956 if (dl->pass > pass) 957 break; 958 959 /* 960 * Raise the pass level to the next level and rescan 961 * the tree. 962 */ 963 bus_current_pass = dl->pass; 964 BUS_NEW_PASS(root_bus); 965 } 966 967 /* 968 * If there isn't a driver registered for the requested pass, 969 * then bus_current_pass might still be less than 'pass'. Set 970 * it to 'pass' in that case. 971 */ 972 if (bus_current_pass < pass) 973 bus_current_pass = pass; 974 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); 975 } 976 977 /* 978 * Devclass implementation 979 */ 980 981 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 982 983 /** 984 * @internal 985 * @brief Find or create a device class 986 * 987 * If a device class with the name @p classname exists, return it, 988 * otherwise if @p create is non-zero create and return a new device 989 * class. 990 * 991 * If @p parentname is non-NULL, the parent of the devclass is set to 992 * the devclass of that name. 993 * 994 * @param classname the devclass name to find or create 995 * @param parentname the parent devclass name or @c NULL 996 * @param create non-zero to create a devclass 997 */ 998 static devclass_t 999 devclass_find_internal(const char *classname, const char *parentname, 1000 int create) 1001 { 1002 devclass_t dc; 1003 1004 PDEBUG(("looking for %s", classname)); 1005 if (!classname) 1006 return (NULL); 1007 1008 TAILQ_FOREACH(dc, &devclasses, link) { 1009 if (!strcmp(dc->name, classname)) 1010 break; 1011 } 1012 1013 if (create && !dc) { 1014 PDEBUG(("creating %s", classname)); 1015 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, 1016 M_BUS, M_NOWAIT | M_ZERO); 1017 if (!dc) 1018 return (NULL); 1019 dc->parent = NULL; 1020 dc->name = (char*) (dc + 1); 1021 strcpy(dc->name, classname); 1022 TAILQ_INIT(&dc->drivers); 1023 TAILQ_INSERT_TAIL(&devclasses, dc, link); 1024 1025 bus_data_generation_update(); 1026 } 1027 1028 /* 1029 * If a parent class is specified, then set that as our parent so 1030 * that this devclass will support drivers for the parent class as 1031 * well. If the parent class has the same name don't do this though 1032 * as it creates a cycle that can trigger an infinite loop in 1033 * device_probe_child() if a device exists for which there is no 1034 * suitable driver. 1035 */ 1036 if (parentname && dc && !dc->parent && 1037 strcmp(classname, parentname) != 0) { 1038 dc->parent = devclass_find_internal(parentname, NULL, TRUE); 1039 dc->parent->flags |= DC_HAS_CHILDREN; 1040 } 1041 1042 return (dc); 1043 } 1044 1045 /** 1046 * @brief Create a device class 1047 * 1048 * If a device class with the name @p classname exists, return it, 1049 * otherwise create and return a new device class. 1050 * 1051 * @param classname the devclass name to find or create 1052 */ 1053 devclass_t 1054 devclass_create(const char *classname) 1055 { 1056 return (devclass_find_internal(classname, NULL, TRUE)); 1057 } 1058 1059 /** 1060 * @brief Find a device class 1061 * 1062 * If a device class with the name @p classname exists, return it, 1063 * otherwise return @c NULL. 1064 * 1065 * @param classname the devclass name to find 1066 */ 1067 devclass_t 1068 devclass_find(const char *classname) 1069 { 1070 return (devclass_find_internal(classname, NULL, FALSE)); 1071 } 1072 1073 /** 1074 * @brief Register that a device driver has been added to a devclass 1075 * 1076 * Register that a device driver has been added to a devclass. This 1077 * is called by devclass_add_driver to accomplish the recursive 1078 * notification of all the children classes of dc, as well as dc. 1079 * Each layer will have BUS_DRIVER_ADDED() called for all instances of 1080 * the devclass. 1081 * 1082 * We do a full search here of the devclass list at each iteration 1083 * level to save storing children-lists in the devclass structure. If 1084 * we ever move beyond a few dozen devices doing this, we may need to 1085 * reevaluate... 1086 * 1087 * @param dc the devclass to edit 1088 * @param driver the driver that was just added 1089 */ 1090 static void 1091 devclass_driver_added(devclass_t dc, driver_t *driver) 1092 { 1093 devclass_t parent; 1094 int i; 1095 1096 /* 1097 * Call BUS_DRIVER_ADDED for any existing buses in this class. 1098 */ 1099 for (i = 0; i < dc->maxunit; i++) 1100 if (dc->devices[i] && device_is_attached(dc->devices[i])) 1101 BUS_DRIVER_ADDED(dc->devices[i], driver); 1102 1103 /* 1104 * Walk through the children classes. Since we only keep a 1105 * single parent pointer around, we walk the entire list of 1106 * devclasses looking for children. We set the 1107 * DC_HAS_CHILDREN flag when a child devclass is created on 1108 * the parent, so we only walk the list for those devclasses 1109 * that have children. 1110 */ 1111 if (!(dc->flags & DC_HAS_CHILDREN)) 1112 return; 1113 parent = dc; 1114 TAILQ_FOREACH(dc, &devclasses, link) { 1115 if (dc->parent == parent) 1116 devclass_driver_added(dc, driver); 1117 } 1118 } 1119 1120 /** 1121 * @brief Add a device driver to a device class 1122 * 1123 * Add a device driver to a devclass. This is normally called 1124 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of 1125 * all devices in the devclass will be called to allow them to attempt 1126 * to re-probe any unmatched children. 1127 * 1128 * @param dc the devclass to edit 1129 * @param driver the driver to register 1130 */ 1131 int 1132 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) 1133 { 1134 driverlink_t dl; 1135 const char *parentname; 1136 1137 PDEBUG(("%s", DRIVERNAME(driver))); 1138 1139 /* Don't allow invalid pass values. */ 1140 if (pass <= BUS_PASS_ROOT) 1141 return (EINVAL); 1142 1143 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); 1144 if (!dl) 1145 return (ENOMEM); 1146 1147 /* 1148 * Compile the driver's methods. Also increase the reference count 1149 * so that the class doesn't get freed when the last instance 1150 * goes. This means we can safely use static methods and avoids a 1151 * double-free in devclass_delete_driver. 1152 */ 1153 kobj_class_compile((kobj_class_t) driver); 1154 1155 /* 1156 * If the driver has any base classes, make the 1157 * devclass inherit from the devclass of the driver's 1158 * first base class. This will allow the system to 1159 * search for drivers in both devclasses for children 1160 * of a device using this driver. 1161 */ 1162 if (driver->baseclasses) 1163 parentname = driver->baseclasses[0]->name; 1164 else 1165 parentname = NULL; 1166 *dcp = devclass_find_internal(driver->name, parentname, TRUE); 1167 1168 dl->driver = driver; 1169 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 1170 driver->refs++; /* XXX: kobj_mtx */ 1171 dl->pass = pass; 1172 driver_register_pass(dl); 1173 1174 if (device_frozen) { 1175 dl->flags |= DL_DEFERRED_PROBE; 1176 } else { 1177 devclass_driver_added(dc, driver); 1178 } 1179 bus_data_generation_update(); 1180 return (0); 1181 } 1182 1183 /** 1184 * @brief Register that a device driver has been deleted from a devclass 1185 * 1186 * Register that a device driver has been removed from a devclass. 1187 * This is called by devclass_delete_driver to accomplish the 1188 * recursive notification of all the children classes of busclass, as 1189 * well as busclass. Each layer will attempt to detach the driver 1190 * from any devices that are children of the bus's devclass. The function 1191 * will return an error if a device fails to detach. 1192 * 1193 * We do a full search here of the devclass list at each iteration 1194 * level to save storing children-lists in the devclass structure. If 1195 * we ever move beyond a few dozen devices doing this, we may need to 1196 * reevaluate... 1197 * 1198 * @param busclass the devclass of the parent bus 1199 * @param dc the devclass of the driver being deleted 1200 * @param driver the driver being deleted 1201 */ 1202 static int 1203 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) 1204 { 1205 devclass_t parent; 1206 device_t dev; 1207 int error, i; 1208 1209 /* 1210 * Disassociate from any devices. We iterate through all the 1211 * devices in the devclass of the driver and detach any which are 1212 * using the driver and which have a parent in the devclass which 1213 * we are deleting from. 1214 * 1215 * Note that since a driver can be in multiple devclasses, we 1216 * should not detach devices which are not children of devices in 1217 * the affected devclass. 1218 * 1219 * If we're frozen, we don't generate NOMATCH events. Mark to 1220 * generate later. 1221 */ 1222 for (i = 0; i < dc->maxunit; i++) { 1223 if (dc->devices[i]) { 1224 dev = dc->devices[i]; 1225 if (dev->driver == driver && dev->parent && 1226 dev->parent->devclass == busclass) { 1227 if ((error = device_detach(dev)) != 0) 1228 return (error); 1229 if (device_frozen) { 1230 dev->flags &= ~DF_DONENOMATCH; 1231 dev->flags |= DF_NEEDNOMATCH; 1232 } else { 1233 BUS_PROBE_NOMATCH(dev->parent, dev); 1234 devnomatch(dev); 1235 dev->flags |= DF_DONENOMATCH; 1236 } 1237 } 1238 } 1239 } 1240 1241 /* 1242 * Walk through the children classes. Since we only keep a 1243 * single parent pointer around, we walk the entire list of 1244 * devclasses looking for children. We set the 1245 * DC_HAS_CHILDREN flag when a child devclass is created on 1246 * the parent, so we only walk the list for those devclasses 1247 * that have children. 1248 */ 1249 if (!(busclass->flags & DC_HAS_CHILDREN)) 1250 return (0); 1251 parent = busclass; 1252 TAILQ_FOREACH(busclass, &devclasses, link) { 1253 if (busclass->parent == parent) { 1254 error = devclass_driver_deleted(busclass, dc, driver); 1255 if (error) 1256 return (error); 1257 } 1258 } 1259 return (0); 1260 } 1261 1262 /** 1263 * @brief Delete a device driver from a device class 1264 * 1265 * Delete a device driver from a devclass. This is normally called 1266 * automatically by DRIVER_MODULE(). 1267 * 1268 * If the driver is currently attached to any devices, 1269 * devclass_delete_driver() will first attempt to detach from each 1270 * device. If one of the detach calls fails, the driver will not be 1271 * deleted. 1272 * 1273 * @param dc the devclass to edit 1274 * @param driver the driver to unregister 1275 */ 1276 int 1277 devclass_delete_driver(devclass_t busclass, driver_t *driver) 1278 { 1279 devclass_t dc = devclass_find(driver->name); 1280 driverlink_t dl; 1281 int error; 1282 1283 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1284 1285 if (!dc) 1286 return (0); 1287 1288 /* 1289 * Find the link structure in the bus' list of drivers. 1290 */ 1291 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1292 if (dl->driver == driver) 1293 break; 1294 } 1295 1296 if (!dl) { 1297 PDEBUG(("%s not found in %s list", driver->name, 1298 busclass->name)); 1299 return (ENOENT); 1300 } 1301 1302 error = devclass_driver_deleted(busclass, dc, driver); 1303 if (error != 0) 1304 return (error); 1305 1306 TAILQ_REMOVE(&busclass->drivers, dl, link); 1307 free(dl, M_BUS); 1308 1309 /* XXX: kobj_mtx */ 1310 driver->refs--; 1311 if (driver->refs == 0) 1312 kobj_class_free((kobj_class_t) driver); 1313 1314 bus_data_generation_update(); 1315 return (0); 1316 } 1317 1318 /** 1319 * @brief Quiesces a set of device drivers from a device class 1320 * 1321 * Quiesce a device driver from a devclass. This is normally called 1322 * automatically by DRIVER_MODULE(). 1323 * 1324 * If the driver is currently attached to any devices, 1325 * devclass_quiesece_driver() will first attempt to quiesce each 1326 * device. 1327 * 1328 * @param dc the devclass to edit 1329 * @param driver the driver to unregister 1330 */ 1331 static int 1332 devclass_quiesce_driver(devclass_t busclass, driver_t *driver) 1333 { 1334 devclass_t dc = devclass_find(driver->name); 1335 driverlink_t dl; 1336 device_t dev; 1337 int i; 1338 int error; 1339 1340 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 1341 1342 if (!dc) 1343 return (0); 1344 1345 /* 1346 * Find the link structure in the bus' list of drivers. 1347 */ 1348 TAILQ_FOREACH(dl, &busclass->drivers, link) { 1349 if (dl->driver == driver) 1350 break; 1351 } 1352 1353 if (!dl) { 1354 PDEBUG(("%s not found in %s list", driver->name, 1355 busclass->name)); 1356 return (ENOENT); 1357 } 1358 1359 /* 1360 * Quiesce all devices. We iterate through all the devices in 1361 * the devclass of the driver and quiesce any which are using 1362 * the driver and which have a parent in the devclass which we 1363 * are quiescing. 1364 * 1365 * Note that since a driver can be in multiple devclasses, we 1366 * should not quiesce devices which are not children of 1367 * devices in the affected devclass. 1368 */ 1369 for (i = 0; i < dc->maxunit; i++) { 1370 if (dc->devices[i]) { 1371 dev = dc->devices[i]; 1372 if (dev->driver == driver && dev->parent && 1373 dev->parent->devclass == busclass) { 1374 if ((error = device_quiesce(dev)) != 0) 1375 return (error); 1376 } 1377 } 1378 } 1379 1380 return (0); 1381 } 1382 1383 /** 1384 * @internal 1385 */ 1386 static driverlink_t 1387 devclass_find_driver_internal(devclass_t dc, const char *classname) 1388 { 1389 driverlink_t dl; 1390 1391 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 1392 1393 TAILQ_FOREACH(dl, &dc->drivers, link) { 1394 if (!strcmp(dl->driver->name, classname)) 1395 return (dl); 1396 } 1397 1398 PDEBUG(("not found")); 1399 return (NULL); 1400 } 1401 1402 /** 1403 * @brief Return the name of the devclass 1404 */ 1405 const char * 1406 devclass_get_name(devclass_t dc) 1407 { 1408 return (dc->name); 1409 } 1410 1411 /** 1412 * @brief Find a device given a unit number 1413 * 1414 * @param dc the devclass to search 1415 * @param unit the unit number to search for 1416 * 1417 * @returns the device with the given unit number or @c 1418 * NULL if there is no such device 1419 */ 1420 device_t 1421 devclass_get_device(devclass_t dc, int unit) 1422 { 1423 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 1424 return (NULL); 1425 return (dc->devices[unit]); 1426 } 1427 1428 /** 1429 * @brief Find the softc field of a device given a unit number 1430 * 1431 * @param dc the devclass to search 1432 * @param unit the unit number to search for 1433 * 1434 * @returns the softc field of the device with the given 1435 * unit number or @c NULL if there is no such 1436 * device 1437 */ 1438 void * 1439 devclass_get_softc(devclass_t dc, int unit) 1440 { 1441 device_t dev; 1442 1443 dev = devclass_get_device(dc, unit); 1444 if (!dev) 1445 return (NULL); 1446 1447 return (device_get_softc(dev)); 1448 } 1449 1450 /** 1451 * @brief Get a list of devices in the devclass 1452 * 1453 * An array containing a list of all the devices in the given devclass 1454 * is allocated and returned in @p *devlistp. The number of devices 1455 * in the array is returned in @p *devcountp. The caller should free 1456 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. 1457 * 1458 * @param dc the devclass to examine 1459 * @param devlistp points at location for array pointer return 1460 * value 1461 * @param devcountp points at location for array size return value 1462 * 1463 * @retval 0 success 1464 * @retval ENOMEM the array allocation failed 1465 */ 1466 int 1467 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 1468 { 1469 int count, i; 1470 device_t *list; 1471 1472 count = devclass_get_count(dc); 1473 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 1474 if (!list) 1475 return (ENOMEM); 1476 1477 count = 0; 1478 for (i = 0; i < dc->maxunit; i++) { 1479 if (dc->devices[i]) { 1480 list[count] = dc->devices[i]; 1481 count++; 1482 } 1483 } 1484 1485 *devlistp = list; 1486 *devcountp = count; 1487 1488 return (0); 1489 } 1490 1491 /** 1492 * @brief Get a list of drivers in the devclass 1493 * 1494 * An array containing a list of pointers to all the drivers in the 1495 * given devclass is allocated and returned in @p *listp. The number 1496 * of drivers in the array is returned in @p *countp. The caller should 1497 * free the array using @c free(p, M_TEMP). 1498 * 1499 * @param dc the devclass to examine 1500 * @param listp gives location for array pointer return value 1501 * @param countp gives location for number of array elements 1502 * return value 1503 * 1504 * @retval 0 success 1505 * @retval ENOMEM the array allocation failed 1506 */ 1507 int 1508 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 1509 { 1510 driverlink_t dl; 1511 driver_t **list; 1512 int count; 1513 1514 count = 0; 1515 TAILQ_FOREACH(dl, &dc->drivers, link) 1516 count++; 1517 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 1518 if (list == NULL) 1519 return (ENOMEM); 1520 1521 count = 0; 1522 TAILQ_FOREACH(dl, &dc->drivers, link) { 1523 list[count] = dl->driver; 1524 count++; 1525 } 1526 *listp = list; 1527 *countp = count; 1528 1529 return (0); 1530 } 1531 1532 /** 1533 * @brief Get the number of devices in a devclass 1534 * 1535 * @param dc the devclass to examine 1536 */ 1537 int 1538 devclass_get_count(devclass_t dc) 1539 { 1540 int count, i; 1541 1542 count = 0; 1543 for (i = 0; i < dc->maxunit; i++) 1544 if (dc->devices[i]) 1545 count++; 1546 return (count); 1547 } 1548 1549 /** 1550 * @brief Get the maximum unit number used in a devclass 1551 * 1552 * Note that this is one greater than the highest currently-allocated 1553 * unit. If a null devclass_t is passed in, -1 is returned to indicate 1554 * that not even the devclass has been allocated yet. 1555 * 1556 * @param dc the devclass to examine 1557 */ 1558 int 1559 devclass_get_maxunit(devclass_t dc) 1560 { 1561 if (dc == NULL) 1562 return (-1); 1563 return (dc->maxunit); 1564 } 1565 1566 /** 1567 * @brief Find a free unit number in a devclass 1568 * 1569 * This function searches for the first unused unit number greater 1570 * that or equal to @p unit. 1571 * 1572 * @param dc the devclass to examine 1573 * @param unit the first unit number to check 1574 */ 1575 int 1576 devclass_find_free_unit(devclass_t dc, int unit) 1577 { 1578 if (dc == NULL) 1579 return (unit); 1580 while (unit < dc->maxunit && dc->devices[unit] != NULL) 1581 unit++; 1582 return (unit); 1583 } 1584 1585 /** 1586 * @brief Set the parent of a devclass 1587 * 1588 * The parent class is normally initialised automatically by 1589 * DRIVER_MODULE(). 1590 * 1591 * @param dc the devclass to edit 1592 * @param pdc the new parent devclass 1593 */ 1594 void 1595 devclass_set_parent(devclass_t dc, devclass_t pdc) 1596 { 1597 dc->parent = pdc; 1598 } 1599 1600 /** 1601 * @brief Get the parent of a devclass 1602 * 1603 * @param dc the devclass to examine 1604 */ 1605 devclass_t 1606 devclass_get_parent(devclass_t dc) 1607 { 1608 return (dc->parent); 1609 } 1610 1611 struct sysctl_ctx_list * 1612 devclass_get_sysctl_ctx(devclass_t dc) 1613 { 1614 return (&dc->sysctl_ctx); 1615 } 1616 1617 struct sysctl_oid * 1618 devclass_get_sysctl_tree(devclass_t dc) 1619 { 1620 return (dc->sysctl_tree); 1621 } 1622 1623 /** 1624 * @internal 1625 * @brief Allocate a unit number 1626 * 1627 * On entry, @p *unitp is the desired unit number (or @c -1 if any 1628 * will do). The allocated unit number is returned in @p *unitp. 1629 1630 * @param dc the devclass to allocate from 1631 * @param unitp points at the location for the allocated unit 1632 * number 1633 * 1634 * @retval 0 success 1635 * @retval EEXIST the requested unit number is already allocated 1636 * @retval ENOMEM memory allocation failure 1637 */ 1638 static int 1639 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) 1640 { 1641 const char *s; 1642 int unit = *unitp; 1643 1644 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 1645 1646 /* Ask the parent bus if it wants to wire this device. */ 1647 if (unit == -1) 1648 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, 1649 &unit); 1650 1651 /* If we were given a wired unit number, check for existing device */ 1652 /* XXX imp XXX */ 1653 if (unit != -1) { 1654 if (unit >= 0 && unit < dc->maxunit && 1655 dc->devices[unit] != NULL) { 1656 if (bootverbose) 1657 printf("%s: %s%d already exists; skipping it\n", 1658 dc->name, dc->name, *unitp); 1659 return (EEXIST); 1660 } 1661 } else { 1662 /* Unwired device, find the next available slot for it */ 1663 unit = 0; 1664 for (unit = 0;; unit++) { 1665 /* If there is an "at" hint for a unit then skip it. */ 1666 if (resource_string_value(dc->name, unit, "at", &s) == 1667 0) 1668 continue; 1669 1670 /* If this device slot is already in use, skip it. */ 1671 if (unit < dc->maxunit && dc->devices[unit] != NULL) 1672 continue; 1673 1674 break; 1675 } 1676 } 1677 1678 /* 1679 * We've selected a unit beyond the length of the table, so let's 1680 * extend the table to make room for all units up to and including 1681 * this one. 1682 */ 1683 if (unit >= dc->maxunit) { 1684 device_t *newlist, *oldlist; 1685 int newsize; 1686 1687 oldlist = dc->devices; 1688 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 1689 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); 1690 if (!newlist) 1691 return (ENOMEM); 1692 if (oldlist != NULL) 1693 bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); 1694 bzero(newlist + dc->maxunit, 1695 sizeof(device_t) * (newsize - dc->maxunit)); 1696 dc->devices = newlist; 1697 dc->maxunit = newsize; 1698 if (oldlist != NULL) 1699 free(oldlist, M_BUS); 1700 } 1701 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 1702 1703 *unitp = unit; 1704 return (0); 1705 } 1706 1707 /** 1708 * @internal 1709 * @brief Add a device to a devclass 1710 * 1711 * A unit number is allocated for the device (using the device's 1712 * preferred unit number if any) and the device is registered in the 1713 * devclass. This allows the device to be looked up by its unit 1714 * number, e.g. by decoding a dev_t minor number. 1715 * 1716 * @param dc the devclass to add to 1717 * @param dev the device to add 1718 * 1719 * @retval 0 success 1720 * @retval EEXIST the requested unit number is already allocated 1721 * @retval ENOMEM memory allocation failure 1722 */ 1723 static int 1724 devclass_add_device(devclass_t dc, device_t dev) 1725 { 1726 int buflen, error; 1727 1728 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1729 1730 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); 1731 if (buflen < 0) 1732 return (ENOMEM); 1733 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); 1734 if (!dev->nameunit) 1735 return (ENOMEM); 1736 1737 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { 1738 free(dev->nameunit, M_BUS); 1739 dev->nameunit = NULL; 1740 return (error); 1741 } 1742 dc->devices[dev->unit] = dev; 1743 dev->devclass = dc; 1744 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1745 1746 return (0); 1747 } 1748 1749 /** 1750 * @internal 1751 * @brief Delete a device from a devclass 1752 * 1753 * The device is removed from the devclass's device list and its unit 1754 * number is freed. 1755 1756 * @param dc the devclass to delete from 1757 * @param dev the device to delete 1758 * 1759 * @retval 0 success 1760 */ 1761 static int 1762 devclass_delete_device(devclass_t dc, device_t dev) 1763 { 1764 if (!dc || !dev) 1765 return (0); 1766 1767 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1768 1769 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1770 panic("devclass_delete_device: inconsistent device class"); 1771 dc->devices[dev->unit] = NULL; 1772 if (dev->flags & DF_WILDCARD) 1773 dev->unit = -1; 1774 dev->devclass = NULL; 1775 free(dev->nameunit, M_BUS); 1776 dev->nameunit = NULL; 1777 1778 return (0); 1779 } 1780 1781 /** 1782 * @internal 1783 * @brief Make a new device and add it as a child of @p parent 1784 * 1785 * @param parent the parent of the new device 1786 * @param name the devclass name of the new device or @c NULL 1787 * to leave the devclass unspecified 1788 * @parem unit the unit number of the new device of @c -1 to 1789 * leave the unit number unspecified 1790 * 1791 * @returns the new device 1792 */ 1793 static device_t 1794 make_device(device_t parent, const char *name, int unit) 1795 { 1796 device_t dev; 1797 devclass_t dc; 1798 1799 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1800 1801 if (name) { 1802 dc = devclass_find_internal(name, NULL, TRUE); 1803 if (!dc) { 1804 printf("make_device: can't find device class %s\n", 1805 name); 1806 return (NULL); 1807 } 1808 } else { 1809 dc = NULL; 1810 } 1811 1812 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); 1813 if (!dev) 1814 return (NULL); 1815 1816 dev->parent = parent; 1817 TAILQ_INIT(&dev->children); 1818 kobj_init((kobj_t) dev, &null_class); 1819 dev->driver = NULL; 1820 dev->devclass = NULL; 1821 dev->unit = unit; 1822 dev->nameunit = NULL; 1823 dev->desc = NULL; 1824 dev->busy = 0; 1825 dev->devflags = 0; 1826 dev->flags = DF_ENABLED; 1827 dev->order = 0; 1828 if (unit == -1) 1829 dev->flags |= DF_WILDCARD; 1830 if (name) { 1831 dev->flags |= DF_FIXEDCLASS; 1832 if (devclass_add_device(dc, dev)) { 1833 kobj_delete((kobj_t) dev, M_BUS); 1834 return (NULL); 1835 } 1836 } 1837 if (parent != NULL && device_has_quiet_children(parent)) 1838 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; 1839 dev->ivars = NULL; 1840 dev->softc = NULL; 1841 1842 dev->state = DS_NOTPRESENT; 1843 1844 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1845 bus_data_generation_update(); 1846 1847 return (dev); 1848 } 1849 1850 /** 1851 * @internal 1852 * @brief Print a description of a device. 1853 */ 1854 static int 1855 device_print_child(device_t dev, device_t child) 1856 { 1857 int retval = 0; 1858 1859 if (device_is_alive(child)) 1860 retval += BUS_PRINT_CHILD(dev, child); 1861 else 1862 retval += device_printf(child, " not found\n"); 1863 1864 return (retval); 1865 } 1866 1867 /** 1868 * @brief Create a new device 1869 * 1870 * This creates a new device and adds it as a child of an existing 1871 * parent device. The new device will be added after the last existing 1872 * child with order zero. 1873 * 1874 * @param dev the device which will be the parent of the 1875 * new child device 1876 * @param name devclass name for new device or @c NULL if not 1877 * specified 1878 * @param unit unit number for new device or @c -1 if not 1879 * specified 1880 * 1881 * @returns the new device 1882 */ 1883 device_t 1884 device_add_child(device_t dev, const char *name, int unit) 1885 { 1886 return (device_add_child_ordered(dev, 0, name, unit)); 1887 } 1888 1889 /** 1890 * @brief Create a new device 1891 * 1892 * This creates a new device and adds it as a child of an existing 1893 * parent device. The new device will be added after the last existing 1894 * child with the same order. 1895 * 1896 * @param dev the device which will be the parent of the 1897 * new child device 1898 * @param order a value which is used to partially sort the 1899 * children of @p dev - devices created using 1900 * lower values of @p order appear first in @p 1901 * dev's list of children 1902 * @param name devclass name for new device or @c NULL if not 1903 * specified 1904 * @param unit unit number for new device or @c -1 if not 1905 * specified 1906 * 1907 * @returns the new device 1908 */ 1909 device_t 1910 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) 1911 { 1912 device_t child; 1913 device_t place; 1914 1915 PDEBUG(("%s at %s with order %u as unit %d", 1916 name, DEVICENAME(dev), order, unit)); 1917 KASSERT(name != NULL || unit == -1, 1918 ("child device with wildcard name and specific unit number")); 1919 1920 child = make_device(dev, name, unit); 1921 if (child == NULL) 1922 return (child); 1923 child->order = order; 1924 1925 TAILQ_FOREACH(place, &dev->children, link) { 1926 if (place->order > order) 1927 break; 1928 } 1929 1930 if (place) { 1931 /* 1932 * The device 'place' is the first device whose order is 1933 * greater than the new child. 1934 */ 1935 TAILQ_INSERT_BEFORE(place, child, link); 1936 } else { 1937 /* 1938 * The new child's order is greater or equal to the order of 1939 * any existing device. Add the child to the tail of the list. 1940 */ 1941 TAILQ_INSERT_TAIL(&dev->children, child, link); 1942 } 1943 1944 bus_data_generation_update(); 1945 return (child); 1946 } 1947 1948 /** 1949 * @brief Delete a device 1950 * 1951 * This function deletes a device along with all of its children. If 1952 * the device currently has a driver attached to it, the device is 1953 * detached first using device_detach(). 1954 * 1955 * @param dev the parent device 1956 * @param child the device to delete 1957 * 1958 * @retval 0 success 1959 * @retval non-zero a unit error code describing the error 1960 */ 1961 int 1962 device_delete_child(device_t dev, device_t child) 1963 { 1964 int error; 1965 device_t grandchild; 1966 1967 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1968 1969 /* detach parent before deleting children, if any */ 1970 if ((error = device_detach(child)) != 0) 1971 return (error); 1972 1973 /* remove children second */ 1974 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { 1975 error = device_delete_child(child, grandchild); 1976 if (error) 1977 return (error); 1978 } 1979 1980 if (child->devclass) 1981 devclass_delete_device(child->devclass, child); 1982 if (child->parent) 1983 BUS_CHILD_DELETED(dev, child); 1984 TAILQ_REMOVE(&dev->children, child, link); 1985 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1986 kobj_delete((kobj_t) child, M_BUS); 1987 1988 bus_data_generation_update(); 1989 return (0); 1990 } 1991 1992 /** 1993 * @brief Delete all children devices of the given device, if any. 1994 * 1995 * This function deletes all children devices of the given device, if 1996 * any, using the device_delete_child() function for each device it 1997 * finds. If a child device cannot be deleted, this function will 1998 * return an error code. 1999 * 2000 * @param dev the parent device 2001 * 2002 * @retval 0 success 2003 * @retval non-zero a device would not detach 2004 */ 2005 int 2006 device_delete_children(device_t dev) 2007 { 2008 device_t child; 2009 int error; 2010 2011 PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); 2012 2013 error = 0; 2014 2015 while ((child = TAILQ_FIRST(&dev->children)) != NULL) { 2016 error = device_delete_child(dev, child); 2017 if (error) { 2018 PDEBUG(("Failed deleting %s", DEVICENAME(child))); 2019 break; 2020 } 2021 } 2022 return (error); 2023 } 2024 2025 /** 2026 * @brief Find a device given a unit number 2027 * 2028 * This is similar to devclass_get_devices() but only searches for 2029 * devices which have @p dev as a parent. 2030 * 2031 * @param dev the parent device to search 2032 * @param unit the unit number to search for. If the unit is -1, 2033 * return the first child of @p dev which has name 2034 * @p classname (that is, the one with the lowest unit.) 2035 * 2036 * @returns the device with the given unit number or @c 2037 * NULL if there is no such device 2038 */ 2039 device_t 2040 device_find_child(device_t dev, const char *classname, int unit) 2041 { 2042 devclass_t dc; 2043 device_t child; 2044 2045 dc = devclass_find(classname); 2046 if (!dc) 2047 return (NULL); 2048 2049 if (unit != -1) { 2050 child = devclass_get_device(dc, unit); 2051 if (child && child->parent == dev) 2052 return (child); 2053 } else { 2054 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 2055 child = devclass_get_device(dc, unit); 2056 if (child && child->parent == dev) 2057 return (child); 2058 } 2059 } 2060 return (NULL); 2061 } 2062 2063 /** 2064 * @internal 2065 */ 2066 static driverlink_t 2067 first_matching_driver(devclass_t dc, device_t dev) 2068 { 2069 if (dev->devclass) 2070 return (devclass_find_driver_internal(dc, dev->devclass->name)); 2071 return (TAILQ_FIRST(&dc->drivers)); 2072 } 2073 2074 /** 2075 * @internal 2076 */ 2077 static driverlink_t 2078 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 2079 { 2080 if (dev->devclass) { 2081 driverlink_t dl; 2082 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 2083 if (!strcmp(dev->devclass->name, dl->driver->name)) 2084 return (dl); 2085 return (NULL); 2086 } 2087 return (TAILQ_NEXT(last, link)); 2088 } 2089 2090 /** 2091 * @internal 2092 */ 2093 int 2094 device_probe_child(device_t dev, device_t child) 2095 { 2096 devclass_t dc; 2097 driverlink_t best = NULL; 2098 driverlink_t dl; 2099 int result, pri = 0; 2100 int hasclass = (child->devclass != NULL); 2101 2102 GIANT_REQUIRED; 2103 2104 dc = dev->devclass; 2105 if (!dc) 2106 panic("device_probe_child: parent device has no devclass"); 2107 2108 /* 2109 * If the state is already probed, then return. However, don't 2110 * return if we can rebid this object. 2111 */ 2112 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0) 2113 return (0); 2114 2115 for (; dc; dc = dc->parent) { 2116 for (dl = first_matching_driver(dc, child); 2117 dl; 2118 dl = next_matching_driver(dc, child, dl)) { 2119 /* If this driver's pass is too high, then ignore it. */ 2120 if (dl->pass > bus_current_pass) 2121 continue; 2122 2123 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 2124 result = device_set_driver(child, dl->driver); 2125 if (result == ENOMEM) 2126 return (result); 2127 else if (result != 0) 2128 continue; 2129 if (!hasclass) { 2130 if (device_set_devclass(child, 2131 dl->driver->name) != 0) { 2132 char const * devname = 2133 device_get_name(child); 2134 if (devname == NULL) 2135 devname = "(unknown)"; 2136 printf("driver bug: Unable to set " 2137 "devclass (class: %s " 2138 "devname: %s)\n", 2139 dl->driver->name, 2140 devname); 2141 (void)device_set_driver(child, NULL); 2142 continue; 2143 } 2144 } 2145 2146 /* Fetch any flags for the device before probing. */ 2147 resource_int_value(dl->driver->name, child->unit, 2148 "flags", &child->devflags); 2149 2150 result = DEVICE_PROBE(child); 2151 2152 /* Reset flags and devclass before the next probe. */ 2153 child->devflags = 0; 2154 if (!hasclass) 2155 (void)device_set_devclass(child, NULL); 2156 2157 /* 2158 * If the driver returns SUCCESS, there can be 2159 * no higher match for this device. 2160 */ 2161 if (result == 0) { 2162 best = dl; 2163 pri = 0; 2164 break; 2165 } 2166 2167 /* 2168 * Reset DF_QUIET in case this driver doesn't 2169 * end up as the best driver. 2170 */ 2171 device_verbose(child); 2172 2173 /* 2174 * Probes that return BUS_PROBE_NOWILDCARD or lower 2175 * only match on devices whose driver was explicitly 2176 * specified. 2177 */ 2178 if (result <= BUS_PROBE_NOWILDCARD && 2179 !(child->flags & DF_FIXEDCLASS)) { 2180 result = ENXIO; 2181 } 2182 2183 /* 2184 * The driver returned an error so it 2185 * certainly doesn't match. 2186 */ 2187 if (result > 0) { 2188 (void)device_set_driver(child, NULL); 2189 continue; 2190 } 2191 2192 /* 2193 * A priority lower than SUCCESS, remember the 2194 * best matching driver. Initialise the value 2195 * of pri for the first match. 2196 */ 2197 if (best == NULL || result > pri) { 2198 best = dl; 2199 pri = result; 2200 continue; 2201 } 2202 } 2203 /* 2204 * If we have an unambiguous match in this devclass, 2205 * don't look in the parent. 2206 */ 2207 if (best && pri == 0) 2208 break; 2209 } 2210 2211 /* 2212 * If we found a driver, change state and initialise the devclass. 2213 */ 2214 /* XXX What happens if we rebid and got no best? */ 2215 if (best) { 2216 /* 2217 * If this device was attached, and we were asked to 2218 * rescan, and it is a different driver, then we have 2219 * to detach the old driver and reattach this new one. 2220 * Note, we don't have to check for DF_REBID here 2221 * because if the state is > DS_ALIVE, we know it must 2222 * be. 2223 * 2224 * This assumes that all DF_REBID drivers can have 2225 * their probe routine called at any time and that 2226 * they are idempotent as well as completely benign in 2227 * normal operations. 2228 * 2229 * We also have to make sure that the detach 2230 * succeeded, otherwise we fail the operation (or 2231 * maybe it should just fail silently? I'm torn). 2232 */ 2233 if (child->state > DS_ALIVE && best->driver != child->driver) 2234 if ((result = device_detach(dev)) != 0) 2235 return (result); 2236 2237 /* Set the winning driver, devclass, and flags. */ 2238 if (!child->devclass) { 2239 result = device_set_devclass(child, best->driver->name); 2240 if (result != 0) 2241 return (result); 2242 } 2243 result = device_set_driver(child, best->driver); 2244 if (result != 0) 2245 return (result); 2246 resource_int_value(best->driver->name, child->unit, 2247 "flags", &child->devflags); 2248 2249 if (pri < 0) { 2250 /* 2251 * A bit bogus. Call the probe method again to make 2252 * sure that we have the right description. 2253 */ 2254 DEVICE_PROBE(child); 2255 #if 0 2256 child->flags |= DF_REBID; 2257 #endif 2258 } else 2259 child->flags &= ~DF_REBID; 2260 child->state = DS_ALIVE; 2261 2262 bus_data_generation_update(); 2263 return (0); 2264 } 2265 2266 return (ENXIO); 2267 } 2268 2269 /** 2270 * @brief Return the parent of a device 2271 */ 2272 device_t 2273 device_get_parent(device_t dev) 2274 { 2275 return (dev->parent); 2276 } 2277 2278 /** 2279 * @brief Get a list of children of a device 2280 * 2281 * An array containing a list of all the children of the given device 2282 * is allocated and returned in @p *devlistp. The number of devices 2283 * in the array is returned in @p *devcountp. The caller should free 2284 * the array using @c free(p, M_TEMP). 2285 * 2286 * @param dev the device to examine 2287 * @param devlistp points at location for array pointer return 2288 * value 2289 * @param devcountp points at location for array size return value 2290 * 2291 * @retval 0 success 2292 * @retval ENOMEM the array allocation failed 2293 */ 2294 int 2295 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 2296 { 2297 int count; 2298 device_t child; 2299 device_t *list; 2300 2301 count = 0; 2302 TAILQ_FOREACH(child, &dev->children, link) { 2303 count++; 2304 } 2305 if (count == 0) { 2306 *devlistp = NULL; 2307 *devcountp = 0; 2308 return (0); 2309 } 2310 2311 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); 2312 if (!list) 2313 return (ENOMEM); 2314 2315 count = 0; 2316 TAILQ_FOREACH(child, &dev->children, link) { 2317 list[count] = child; 2318 count++; 2319 } 2320 2321 *devlistp = list; 2322 *devcountp = count; 2323 2324 return (0); 2325 } 2326 2327 /** 2328 * @brief Return the current driver for the device or @c NULL if there 2329 * is no driver currently attached 2330 */ 2331 driver_t * 2332 device_get_driver(device_t dev) 2333 { 2334 return (dev->driver); 2335 } 2336 2337 /** 2338 * @brief Return the current devclass for the device or @c NULL if 2339 * there is none. 2340 */ 2341 devclass_t 2342 device_get_devclass(device_t dev) 2343 { 2344 return (dev->devclass); 2345 } 2346 2347 /** 2348 * @brief Return the name of the device's devclass or @c NULL if there 2349 * is none. 2350 */ 2351 const char * 2352 device_get_name(device_t dev) 2353 { 2354 if (dev != NULL && dev->devclass) 2355 return (devclass_get_name(dev->devclass)); 2356 return (NULL); 2357 } 2358 2359 /** 2360 * @brief Return a string containing the device's devclass name 2361 * followed by an ascii representation of the device's unit number 2362 * (e.g. @c "foo2"). 2363 */ 2364 const char * 2365 device_get_nameunit(device_t dev) 2366 { 2367 return (dev->nameunit); 2368 } 2369 2370 /** 2371 * @brief Return the device's unit number. 2372 */ 2373 int 2374 device_get_unit(device_t dev) 2375 { 2376 return (dev->unit); 2377 } 2378 2379 /** 2380 * @brief Return the device's description string 2381 */ 2382 const char * 2383 device_get_desc(device_t dev) 2384 { 2385 return (dev->desc); 2386 } 2387 2388 /** 2389 * @brief Return the device's flags 2390 */ 2391 uint32_t 2392 device_get_flags(device_t dev) 2393 { 2394 return (dev->devflags); 2395 } 2396 2397 struct sysctl_ctx_list * 2398 device_get_sysctl_ctx(device_t dev) 2399 { 2400 return (&dev->sysctl_ctx); 2401 } 2402 2403 struct sysctl_oid * 2404 device_get_sysctl_tree(device_t dev) 2405 { 2406 return (dev->sysctl_tree); 2407 } 2408 2409 /** 2410 * @brief Print the name of the device followed by a colon and a space 2411 * 2412 * @returns the number of characters printed 2413 */ 2414 int 2415 device_print_prettyname(device_t dev) 2416 { 2417 const char *name = device_get_name(dev); 2418 2419 if (name == NULL) 2420 return (printf("unknown: ")); 2421 return (printf("%s%d: ", name, device_get_unit(dev))); 2422 } 2423 2424 /** 2425 * @brief Print the name of the device followed by a colon, a space 2426 * and the result of calling vprintf() with the value of @p fmt and 2427 * the following arguments. 2428 * 2429 * @returns the number of characters printed 2430 */ 2431 int 2432 device_printf(device_t dev, const char * fmt, ...) 2433 { 2434 char buf[128]; 2435 struct sbuf sb; 2436 const char *name; 2437 va_list ap; 2438 size_t retval; 2439 2440 retval = 0; 2441 2442 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 2443 sbuf_set_drain(&sb, sbuf_printf_drain, &retval); 2444 2445 name = device_get_name(dev); 2446 2447 if (name == NULL) 2448 sbuf_cat(&sb, "unknown: "); 2449 else 2450 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); 2451 2452 va_start(ap, fmt); 2453 sbuf_vprintf(&sb, fmt, ap); 2454 va_end(ap); 2455 2456 sbuf_finish(&sb); 2457 sbuf_delete(&sb); 2458 2459 return (retval); 2460 } 2461 2462 /** 2463 * @internal 2464 */ 2465 static void 2466 device_set_desc_internal(device_t dev, const char* desc, int copy) 2467 { 2468 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 2469 free(dev->desc, M_BUS); 2470 dev->flags &= ~DF_DESCMALLOCED; 2471 dev->desc = NULL; 2472 } 2473 2474 if (copy && desc) { 2475 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); 2476 if (dev->desc) { 2477 strcpy(dev->desc, desc); 2478 dev->flags |= DF_DESCMALLOCED; 2479 } 2480 } else { 2481 /* Avoid a -Wcast-qual warning */ 2482 dev->desc = (char *)(uintptr_t) desc; 2483 } 2484 2485 bus_data_generation_update(); 2486 } 2487 2488 /** 2489 * @brief Set the device's description 2490 * 2491 * The value of @c desc should be a string constant that will not 2492 * change (at least until the description is changed in a subsequent 2493 * call to device_set_desc() or device_set_desc_copy()). 2494 */ 2495 void 2496 device_set_desc(device_t dev, const char* desc) 2497 { 2498 device_set_desc_internal(dev, desc, FALSE); 2499 } 2500 2501 /** 2502 * @brief Set the device's description 2503 * 2504 * The string pointed to by @c desc is copied. Use this function if 2505 * the device description is generated, (e.g. with sprintf()). 2506 */ 2507 void 2508 device_set_desc_copy(device_t dev, const char* desc) 2509 { 2510 device_set_desc_internal(dev, desc, TRUE); 2511 } 2512 2513 /** 2514 * @brief Set the device's flags 2515 */ 2516 void 2517 device_set_flags(device_t dev, uint32_t flags) 2518 { 2519 dev->devflags = flags; 2520 } 2521 2522 /** 2523 * @brief Return the device's softc field 2524 * 2525 * The softc is allocated and zeroed when a driver is attached, based 2526 * on the size field of the driver. 2527 */ 2528 void * 2529 device_get_softc(device_t dev) 2530 { 2531 return (dev->softc); 2532 } 2533 2534 /** 2535 * @brief Set the device's softc field 2536 * 2537 * Most drivers do not need to use this since the softc is allocated 2538 * automatically when the driver is attached. 2539 */ 2540 void 2541 device_set_softc(device_t dev, void *softc) 2542 { 2543 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 2544 free(dev->softc, M_BUS_SC); 2545 dev->softc = softc; 2546 if (dev->softc) 2547 dev->flags |= DF_EXTERNALSOFTC; 2548 else 2549 dev->flags &= ~DF_EXTERNALSOFTC; 2550 } 2551 2552 /** 2553 * @brief Free claimed softc 2554 * 2555 * Most drivers do not need to use this since the softc is freed 2556 * automatically when the driver is detached. 2557 */ 2558 void 2559 device_free_softc(void *softc) 2560 { 2561 free(softc, M_BUS_SC); 2562 } 2563 2564 /** 2565 * @brief Claim softc 2566 * 2567 * This function can be used to let the driver free the automatically 2568 * allocated softc using "device_free_softc()". This function is 2569 * useful when the driver is refcounting the softc and the softc 2570 * cannot be freed when the "device_detach" method is called. 2571 */ 2572 void 2573 device_claim_softc(device_t dev) 2574 { 2575 if (dev->softc) 2576 dev->flags |= DF_EXTERNALSOFTC; 2577 else 2578 dev->flags &= ~DF_EXTERNALSOFTC; 2579 } 2580 2581 /** 2582 * @brief Get the device's ivars field 2583 * 2584 * The ivars field is used by the parent device to store per-device 2585 * state (e.g. the physical location of the device or a list of 2586 * resources). 2587 */ 2588 void * 2589 device_get_ivars(device_t dev) 2590 { 2591 2592 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); 2593 return (dev->ivars); 2594 } 2595 2596 /** 2597 * @brief Set the device's ivars field 2598 */ 2599 void 2600 device_set_ivars(device_t dev, void * ivars) 2601 { 2602 2603 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); 2604 dev->ivars = ivars; 2605 } 2606 2607 /** 2608 * @brief Return the device's state 2609 */ 2610 device_state_t 2611 device_get_state(device_t dev) 2612 { 2613 return (dev->state); 2614 } 2615 2616 /** 2617 * @brief Set the DF_ENABLED flag for the device 2618 */ 2619 void 2620 device_enable(device_t dev) 2621 { 2622 dev->flags |= DF_ENABLED; 2623 } 2624 2625 /** 2626 * @brief Clear the DF_ENABLED flag for the device 2627 */ 2628 void 2629 device_disable(device_t dev) 2630 { 2631 dev->flags &= ~DF_ENABLED; 2632 } 2633 2634 /** 2635 * @brief Increment the busy counter for the device 2636 */ 2637 void 2638 device_busy(device_t dev) 2639 { 2640 if (dev->state < DS_ATTACHING) 2641 panic("device_busy: called for unattached device"); 2642 if (dev->busy == 0 && dev->parent) 2643 device_busy(dev->parent); 2644 dev->busy++; 2645 if (dev->state == DS_ATTACHED) 2646 dev->state = DS_BUSY; 2647 } 2648 2649 /** 2650 * @brief Decrement the busy counter for the device 2651 */ 2652 void 2653 device_unbusy(device_t dev) 2654 { 2655 if (dev->busy != 0 && dev->state != DS_BUSY && 2656 dev->state != DS_ATTACHING) 2657 panic("device_unbusy: called for non-busy device %s", 2658 device_get_nameunit(dev)); 2659 dev->busy--; 2660 if (dev->busy == 0) { 2661 if (dev->parent) 2662 device_unbusy(dev->parent); 2663 if (dev->state == DS_BUSY) 2664 dev->state = DS_ATTACHED; 2665 } 2666 } 2667 2668 /** 2669 * @brief Set the DF_QUIET flag for the device 2670 */ 2671 void 2672 device_quiet(device_t dev) 2673 { 2674 dev->flags |= DF_QUIET; 2675 } 2676 2677 /** 2678 * @brief Set the DF_QUIET_CHILDREN flag for the device 2679 */ 2680 void 2681 device_quiet_children(device_t dev) 2682 { 2683 dev->flags |= DF_QUIET_CHILDREN; 2684 } 2685 2686 /** 2687 * @brief Clear the DF_QUIET flag for the device 2688 */ 2689 void 2690 device_verbose(device_t dev) 2691 { 2692 dev->flags &= ~DF_QUIET; 2693 } 2694 2695 /** 2696 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device 2697 */ 2698 int 2699 device_has_quiet_children(device_t dev) 2700 { 2701 return ((dev->flags & DF_QUIET_CHILDREN) != 0); 2702 } 2703 2704 /** 2705 * @brief Return non-zero if the DF_QUIET flag is set on the device 2706 */ 2707 int 2708 device_is_quiet(device_t dev) 2709 { 2710 return ((dev->flags & DF_QUIET) != 0); 2711 } 2712 2713 /** 2714 * @brief Return non-zero if the DF_ENABLED flag is set on the device 2715 */ 2716 int 2717 device_is_enabled(device_t dev) 2718 { 2719 return ((dev->flags & DF_ENABLED) != 0); 2720 } 2721 2722 /** 2723 * @brief Return non-zero if the device was successfully probed 2724 */ 2725 int 2726 device_is_alive(device_t dev) 2727 { 2728 return (dev->state >= DS_ALIVE); 2729 } 2730 2731 /** 2732 * @brief Return non-zero if the device currently has a driver 2733 * attached to it 2734 */ 2735 int 2736 device_is_attached(device_t dev) 2737 { 2738 return (dev->state >= DS_ATTACHED); 2739 } 2740 2741 /** 2742 * @brief Return non-zero if the device is currently suspended. 2743 */ 2744 int 2745 device_is_suspended(device_t dev) 2746 { 2747 return ((dev->flags & DF_SUSPENDED) != 0); 2748 } 2749 2750 /** 2751 * @brief Set the devclass of a device 2752 * @see devclass_add_device(). 2753 */ 2754 int 2755 device_set_devclass(device_t dev, const char *classname) 2756 { 2757 devclass_t dc; 2758 int error; 2759 2760 if (!classname) { 2761 if (dev->devclass) 2762 devclass_delete_device(dev->devclass, dev); 2763 return (0); 2764 } 2765 2766 if (dev->devclass) { 2767 printf("device_set_devclass: device class already set\n"); 2768 return (EINVAL); 2769 } 2770 2771 dc = devclass_find_internal(classname, NULL, TRUE); 2772 if (!dc) 2773 return (ENOMEM); 2774 2775 error = devclass_add_device(dc, dev); 2776 2777 bus_data_generation_update(); 2778 return (error); 2779 } 2780 2781 /** 2782 * @brief Set the devclass of a device and mark the devclass fixed. 2783 * @see device_set_devclass() 2784 */ 2785 int 2786 device_set_devclass_fixed(device_t dev, const char *classname) 2787 { 2788 int error; 2789 2790 if (classname == NULL) 2791 return (EINVAL); 2792 2793 error = device_set_devclass(dev, classname); 2794 if (error) 2795 return (error); 2796 dev->flags |= DF_FIXEDCLASS; 2797 return (0); 2798 } 2799 2800 /** 2801 * @brief Query the device to determine if it's of a fixed devclass 2802 * @see device_set_devclass_fixed() 2803 */ 2804 bool 2805 device_is_devclass_fixed(device_t dev) 2806 { 2807 return ((dev->flags & DF_FIXEDCLASS) != 0); 2808 } 2809 2810 /** 2811 * @brief Set the driver of a device 2812 * 2813 * @retval 0 success 2814 * @retval EBUSY the device already has a driver attached 2815 * @retval ENOMEM a memory allocation failure occurred 2816 */ 2817 int 2818 device_set_driver(device_t dev, driver_t *driver) 2819 { 2820 if (dev->state >= DS_ATTACHED) 2821 return (EBUSY); 2822 2823 if (dev->driver == driver) 2824 return (0); 2825 2826 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 2827 free(dev->softc, M_BUS_SC); 2828 dev->softc = NULL; 2829 } 2830 device_set_desc(dev, NULL); 2831 kobj_delete((kobj_t) dev, NULL); 2832 dev->driver = driver; 2833 if (driver) { 2834 kobj_init((kobj_t) dev, (kobj_class_t) driver); 2835 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { 2836 dev->softc = malloc(driver->size, M_BUS_SC, 2837 M_NOWAIT | M_ZERO); 2838 if (!dev->softc) { 2839 kobj_delete((kobj_t) dev, NULL); 2840 kobj_init((kobj_t) dev, &null_class); 2841 dev->driver = NULL; 2842 return (ENOMEM); 2843 } 2844 } 2845 } else { 2846 kobj_init((kobj_t) dev, &null_class); 2847 } 2848 2849 bus_data_generation_update(); 2850 return (0); 2851 } 2852 2853 /** 2854 * @brief Probe a device, and return this status. 2855 * 2856 * This function is the core of the device autoconfiguration 2857 * system. Its purpose is to select a suitable driver for a device and 2858 * then call that driver to initialise the hardware appropriately. The 2859 * driver is selected by calling the DEVICE_PROBE() method of a set of 2860 * candidate drivers and then choosing the driver which returned the 2861 * best value. This driver is then attached to the device using 2862 * device_attach(). 2863 * 2864 * The set of suitable drivers is taken from the list of drivers in 2865 * the parent device's devclass. If the device was originally created 2866 * with a specific class name (see device_add_child()), only drivers 2867 * with that name are probed, otherwise all drivers in the devclass 2868 * are probed. If no drivers return successful probe values in the 2869 * parent devclass, the search continues in the parent of that 2870 * devclass (see devclass_get_parent()) if any. 2871 * 2872 * @param dev the device to initialise 2873 * 2874 * @retval 0 success 2875 * @retval ENXIO no driver was found 2876 * @retval ENOMEM memory allocation failure 2877 * @retval non-zero some other unix error code 2878 * @retval -1 Device already attached 2879 */ 2880 int 2881 device_probe(device_t dev) 2882 { 2883 int error; 2884 2885 GIANT_REQUIRED; 2886 2887 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0) 2888 return (-1); 2889 2890 if (!(dev->flags & DF_ENABLED)) { 2891 if (bootverbose && device_get_name(dev) != NULL) { 2892 device_print_prettyname(dev); 2893 printf("not probed (disabled)\n"); 2894 } 2895 return (-1); 2896 } 2897 if ((error = device_probe_child(dev->parent, dev)) != 0) { 2898 if (bus_current_pass == BUS_PASS_DEFAULT && 2899 !(dev->flags & DF_DONENOMATCH)) { 2900 BUS_PROBE_NOMATCH(dev->parent, dev); 2901 devnomatch(dev); 2902 dev->flags |= DF_DONENOMATCH; 2903 } 2904 return (error); 2905 } 2906 return (0); 2907 } 2908 2909 /** 2910 * @brief Probe a device and attach a driver if possible 2911 * 2912 * calls device_probe() and attaches if that was successful. 2913 */ 2914 int 2915 device_probe_and_attach(device_t dev) 2916 { 2917 int error; 2918 2919 GIANT_REQUIRED; 2920 2921 error = device_probe(dev); 2922 if (error == -1) 2923 return (0); 2924 else if (error != 0) 2925 return (error); 2926 2927 CURVNET_SET_QUIET(vnet0); 2928 error = device_attach(dev); 2929 CURVNET_RESTORE(); 2930 return error; 2931 } 2932 2933 /** 2934 * @brief Attach a device driver to a device 2935 * 2936 * This function is a wrapper around the DEVICE_ATTACH() driver 2937 * method. In addition to calling DEVICE_ATTACH(), it initialises the 2938 * device's sysctl tree, optionally prints a description of the device 2939 * and queues a notification event for user-based device management 2940 * services. 2941 * 2942 * Normally this function is only called internally from 2943 * device_probe_and_attach(). 2944 * 2945 * @param dev the device to initialise 2946 * 2947 * @retval 0 success 2948 * @retval ENXIO no driver was found 2949 * @retval ENOMEM memory allocation failure 2950 * @retval non-zero some other unix error code 2951 */ 2952 int 2953 device_attach(device_t dev) 2954 { 2955 uint64_t attachtime; 2956 uint16_t attachentropy; 2957 int error; 2958 2959 if (resource_disabled(dev->driver->name, dev->unit)) { 2960 device_disable(dev); 2961 if (bootverbose) 2962 device_printf(dev, "disabled via hints entry\n"); 2963 return (ENXIO); 2964 } 2965 2966 device_sysctl_init(dev); 2967 if (!device_is_quiet(dev)) 2968 device_print_child(dev->parent, dev); 2969 attachtime = get_cyclecount(); 2970 dev->state = DS_ATTACHING; 2971 if ((error = DEVICE_ATTACH(dev)) != 0) { 2972 printf("device_attach: %s%d attach returned %d\n", 2973 dev->driver->name, dev->unit, error); 2974 if (!(dev->flags & DF_FIXEDCLASS)) 2975 devclass_delete_device(dev->devclass, dev); 2976 (void)device_set_driver(dev, NULL); 2977 device_sysctl_fini(dev); 2978 KASSERT(dev->busy == 0, ("attach failed but busy")); 2979 dev->state = DS_NOTPRESENT; 2980 return (error); 2981 } 2982 dev->flags |= DF_ATTACHED_ONCE; 2983 /* We only need the low bits of this time, but ranges from tens to thousands 2984 * have been seen, so keep 2 bytes' worth. 2985 */ 2986 attachentropy = (uint16_t)(get_cyclecount() - attachtime); 2987 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); 2988 device_sysctl_update(dev); 2989 if (dev->busy) 2990 dev->state = DS_BUSY; 2991 else 2992 dev->state = DS_ATTACHED; 2993 dev->flags &= ~DF_DONENOMATCH; 2994 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); 2995 devadded(dev); 2996 return (0); 2997 } 2998 2999 /** 3000 * @brief Detach a driver from a device 3001 * 3002 * This function is a wrapper around the DEVICE_DETACH() driver 3003 * method. If the call to DEVICE_DETACH() succeeds, it calls 3004 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a 3005 * notification event for user-based device management services and 3006 * cleans up the device's sysctl tree. 3007 * 3008 * @param dev the device to un-initialise 3009 * 3010 * @retval 0 success 3011 * @retval ENXIO no driver was found 3012 * @retval ENOMEM memory allocation failure 3013 * @retval non-zero some other unix error code 3014 */ 3015 int 3016 device_detach(device_t dev) 3017 { 3018 int error; 3019 3020 GIANT_REQUIRED; 3021 3022 PDEBUG(("%s", DEVICENAME(dev))); 3023 if (dev->state == DS_BUSY) 3024 return (EBUSY); 3025 if (dev->state == DS_ATTACHING) { 3026 device_printf(dev, "device in attaching state! Deferring detach.\n"); 3027 return (EBUSY); 3028 } 3029 if (dev->state != DS_ATTACHED) 3030 return (0); 3031 3032 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); 3033 if ((error = DEVICE_DETACH(dev)) != 0) { 3034 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3035 EVHDEV_DETACH_FAILED); 3036 return (error); 3037 } else { 3038 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, 3039 EVHDEV_DETACH_COMPLETE); 3040 } 3041 devremoved(dev); 3042 if (!device_is_quiet(dev)) 3043 device_printf(dev, "detached\n"); 3044 if (dev->parent) 3045 BUS_CHILD_DETACHED(dev->parent, dev); 3046 3047 if (!(dev->flags & DF_FIXEDCLASS)) 3048 devclass_delete_device(dev->devclass, dev); 3049 3050 device_verbose(dev); 3051 dev->state = DS_NOTPRESENT; 3052 (void)device_set_driver(dev, NULL); 3053 device_sysctl_fini(dev); 3054 3055 return (0); 3056 } 3057 3058 /** 3059 * @brief Tells a driver to quiesce itself. 3060 * 3061 * This function is a wrapper around the DEVICE_QUIESCE() driver 3062 * method. If the call to DEVICE_QUIESCE() succeeds. 3063 * 3064 * @param dev the device to quiesce 3065 * 3066 * @retval 0 success 3067 * @retval ENXIO no driver was found 3068 * @retval ENOMEM memory allocation failure 3069 * @retval non-zero some other unix error code 3070 */ 3071 int 3072 device_quiesce(device_t dev) 3073 { 3074 3075 PDEBUG(("%s", DEVICENAME(dev))); 3076 if (dev->state == DS_BUSY) 3077 return (EBUSY); 3078 if (dev->state != DS_ATTACHED) 3079 return (0); 3080 3081 return (DEVICE_QUIESCE(dev)); 3082 } 3083 3084 /** 3085 * @brief Notify a device of system shutdown 3086 * 3087 * This function calls the DEVICE_SHUTDOWN() driver method if the 3088 * device currently has an attached driver. 3089 * 3090 * @returns the value returned by DEVICE_SHUTDOWN() 3091 */ 3092 int 3093 device_shutdown(device_t dev) 3094 { 3095 if (dev->state < DS_ATTACHED) 3096 return (0); 3097 return (DEVICE_SHUTDOWN(dev)); 3098 } 3099 3100 /** 3101 * @brief Set the unit number of a device 3102 * 3103 * This function can be used to override the unit number used for a 3104 * device (e.g. to wire a device to a pre-configured unit number). 3105 */ 3106 int 3107 device_set_unit(device_t dev, int unit) 3108 { 3109 devclass_t dc; 3110 int err; 3111 3112 dc = device_get_devclass(dev); 3113 if (unit < dc->maxunit && dc->devices[unit]) 3114 return (EBUSY); 3115 err = devclass_delete_device(dc, dev); 3116 if (err) 3117 return (err); 3118 dev->unit = unit; 3119 err = devclass_add_device(dc, dev); 3120 if (err) 3121 return (err); 3122 3123 bus_data_generation_update(); 3124 return (0); 3125 } 3126 3127 /*======================================*/ 3128 /* 3129 * Some useful method implementations to make life easier for bus drivers. 3130 */ 3131 3132 void 3133 resource_init_map_request_impl(struct resource_map_request *args, size_t sz) 3134 { 3135 3136 bzero(args, sz); 3137 args->size = sz; 3138 args->memattr = VM_MEMATTR_UNCACHEABLE; 3139 } 3140 3141 /** 3142 * @brief Initialise a resource list. 3143 * 3144 * @param rl the resource list to initialise 3145 */ 3146 void 3147 resource_list_init(struct resource_list *rl) 3148 { 3149 STAILQ_INIT(rl); 3150 } 3151 3152 /** 3153 * @brief Reclaim memory used by a resource list. 3154 * 3155 * This function frees the memory for all resource entries on the list 3156 * (if any). 3157 * 3158 * @param rl the resource list to free 3159 */ 3160 void 3161 resource_list_free(struct resource_list *rl) 3162 { 3163 struct resource_list_entry *rle; 3164 3165 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3166 if (rle->res) 3167 panic("resource_list_free: resource entry is busy"); 3168 STAILQ_REMOVE_HEAD(rl, link); 3169 free(rle, M_BUS); 3170 } 3171 } 3172 3173 /** 3174 * @brief Add a resource entry. 3175 * 3176 * This function adds a resource entry using the given @p type, @p 3177 * start, @p end and @p count values. A rid value is chosen by 3178 * searching sequentially for the first unused rid starting at zero. 3179 * 3180 * @param rl the resource list to edit 3181 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3182 * @param start the start address of the resource 3183 * @param end the end address of the resource 3184 * @param count XXX end-start+1 3185 */ 3186 int 3187 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, 3188 rman_res_t end, rman_res_t count) 3189 { 3190 int rid; 3191 3192 rid = 0; 3193 while (resource_list_find(rl, type, rid) != NULL) 3194 rid++; 3195 resource_list_add(rl, type, rid, start, end, count); 3196 return (rid); 3197 } 3198 3199 /** 3200 * @brief Add or modify a resource entry. 3201 * 3202 * If an existing entry exists with the same type and rid, it will be 3203 * modified using the given values of @p start, @p end and @p 3204 * count. If no entry exists, a new one will be created using the 3205 * given values. The resource list entry that matches is then returned. 3206 * 3207 * @param rl the resource list to edit 3208 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3209 * @param rid the resource identifier 3210 * @param start the start address of the resource 3211 * @param end the end address of the resource 3212 * @param count XXX end-start+1 3213 */ 3214 struct resource_list_entry * 3215 resource_list_add(struct resource_list *rl, int type, int rid, 3216 rman_res_t start, rman_res_t end, rman_res_t count) 3217 { 3218 struct resource_list_entry *rle; 3219 3220 rle = resource_list_find(rl, type, rid); 3221 if (!rle) { 3222 rle = malloc(sizeof(struct resource_list_entry), M_BUS, 3223 M_NOWAIT); 3224 if (!rle) 3225 panic("resource_list_add: can't record entry"); 3226 STAILQ_INSERT_TAIL(rl, rle, link); 3227 rle->type = type; 3228 rle->rid = rid; 3229 rle->res = NULL; 3230 rle->flags = 0; 3231 } 3232 3233 if (rle->res) 3234 panic("resource_list_add: resource entry is busy"); 3235 3236 rle->start = start; 3237 rle->end = end; 3238 rle->count = count; 3239 return (rle); 3240 } 3241 3242 /** 3243 * @brief Determine if a resource entry is busy. 3244 * 3245 * Returns true if a resource entry is busy meaning that it has an 3246 * associated resource that is not an unallocated "reserved" resource. 3247 * 3248 * @param rl the resource list to search 3249 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3250 * @param rid the resource identifier 3251 * 3252 * @returns Non-zero if the entry is busy, zero otherwise. 3253 */ 3254 int 3255 resource_list_busy(struct resource_list *rl, int type, int rid) 3256 { 3257 struct resource_list_entry *rle; 3258 3259 rle = resource_list_find(rl, type, rid); 3260 if (rle == NULL || rle->res == NULL) 3261 return (0); 3262 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { 3263 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), 3264 ("reserved resource is active")); 3265 return (0); 3266 } 3267 return (1); 3268 } 3269 3270 /** 3271 * @brief Determine if a resource entry is reserved. 3272 * 3273 * Returns true if a resource entry is reserved meaning that it has an 3274 * associated "reserved" resource. The resource can either be 3275 * allocated or unallocated. 3276 * 3277 * @param rl the resource list to search 3278 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3279 * @param rid the resource identifier 3280 * 3281 * @returns Non-zero if the entry is reserved, zero otherwise. 3282 */ 3283 int 3284 resource_list_reserved(struct resource_list *rl, int type, int rid) 3285 { 3286 struct resource_list_entry *rle; 3287 3288 rle = resource_list_find(rl, type, rid); 3289 if (rle != NULL && rle->flags & RLE_RESERVED) 3290 return (1); 3291 return (0); 3292 } 3293 3294 /** 3295 * @brief Find a resource entry by type and rid. 3296 * 3297 * @param rl the resource list to search 3298 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3299 * @param rid the resource identifier 3300 * 3301 * @returns the resource entry pointer or NULL if there is no such 3302 * entry. 3303 */ 3304 struct resource_list_entry * 3305 resource_list_find(struct resource_list *rl, int type, int rid) 3306 { 3307 struct resource_list_entry *rle; 3308 3309 STAILQ_FOREACH(rle, rl, link) { 3310 if (rle->type == type && rle->rid == rid) 3311 return (rle); 3312 } 3313 return (NULL); 3314 } 3315 3316 /** 3317 * @brief Delete a resource entry. 3318 * 3319 * @param rl the resource list to edit 3320 * @param type the resource entry type (e.g. SYS_RES_MEMORY) 3321 * @param rid the resource identifier 3322 */ 3323 void 3324 resource_list_delete(struct resource_list *rl, int type, int rid) 3325 { 3326 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 3327 3328 if (rle) { 3329 if (rle->res != NULL) 3330 panic("resource_list_delete: resource has not been released"); 3331 STAILQ_REMOVE(rl, rle, resource_list_entry, link); 3332 free(rle, M_BUS); 3333 } 3334 } 3335 3336 /** 3337 * @brief Allocate a reserved resource 3338 * 3339 * This can be used by buses to force the allocation of resources 3340 * that are always active in the system even if they are not allocated 3341 * by a driver (e.g. PCI BARs). This function is usually called when 3342 * adding a new child to the bus. The resource is allocated from the 3343 * parent bus when it is reserved. The resource list entry is marked 3344 * with RLE_RESERVED to note that it is a reserved resource. 3345 * 3346 * Subsequent attempts to allocate the resource with 3347 * resource_list_alloc() will succeed the first time and will set 3348 * RLE_ALLOCATED to note that it has been allocated. When a reserved 3349 * resource that has been allocated is released with 3350 * resource_list_release() the resource RLE_ALLOCATED is cleared, but 3351 * the actual resource remains allocated. The resource can be released to 3352 * the parent bus by calling resource_list_unreserve(). 3353 * 3354 * @param rl the resource list to allocate from 3355 * @param bus the parent device of @p child 3356 * @param child the device for which the resource is being reserved 3357 * @param type the type of resource to allocate 3358 * @param rid a pointer to the resource identifier 3359 * @param start hint at the start of the resource range - pass 3360 * @c 0 for any start address 3361 * @param end hint at the end of the resource range - pass 3362 * @c ~0 for any end address 3363 * @param count hint at the size of range required - pass @c 1 3364 * for any size 3365 * @param flags any extra flags to control the resource 3366 * allocation - see @c RF_XXX flags in 3367 * <sys/rman.h> for details 3368 * 3369 * @returns the resource which was allocated or @c NULL if no 3370 * resource could be allocated 3371 */ 3372 struct resource * 3373 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, 3374 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3375 { 3376 struct resource_list_entry *rle = NULL; 3377 int passthrough = (device_get_parent(child) != bus); 3378 struct resource *r; 3379 3380 if (passthrough) 3381 panic( 3382 "resource_list_reserve() should only be called for direct children"); 3383 if (flags & RF_ACTIVE) 3384 panic( 3385 "resource_list_reserve() should only reserve inactive resources"); 3386 3387 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 3388 flags); 3389 if (r != NULL) { 3390 rle = resource_list_find(rl, type, *rid); 3391 rle->flags |= RLE_RESERVED; 3392 } 3393 return (r); 3394 } 3395 3396 /** 3397 * @brief Helper function for implementing BUS_ALLOC_RESOURCE() 3398 * 3399 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list 3400 * and passing the allocation up to the parent of @p bus. This assumes 3401 * that the first entry of @c device_get_ivars(child) is a struct 3402 * resource_list. This also handles 'passthrough' allocations where a 3403 * child is a remote descendant of bus by passing the allocation up to 3404 * the parent of bus. 3405 * 3406 * Typically, a bus driver would store a list of child resources 3407 * somewhere in the child device's ivars (see device_get_ivars()) and 3408 * its implementation of BUS_ALLOC_RESOURCE() would find that list and 3409 * then call resource_list_alloc() to perform the allocation. 3410 * 3411 * @param rl the resource list to allocate from 3412 * @param bus the parent device of @p child 3413 * @param child the device which is requesting an allocation 3414 * @param type the type of resource to allocate 3415 * @param rid a pointer to the resource identifier 3416 * @param start hint at the start of the resource range - pass 3417 * @c 0 for any start address 3418 * @param end hint at the end of the resource range - pass 3419 * @c ~0 for any end address 3420 * @param count hint at the size of range required - pass @c 1 3421 * for any size 3422 * @param flags any extra flags to control the resource 3423 * allocation - see @c RF_XXX flags in 3424 * <sys/rman.h> for details 3425 * 3426 * @returns the resource which was allocated or @c NULL if no 3427 * resource could be allocated 3428 */ 3429 struct resource * 3430 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, 3431 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 3432 { 3433 struct resource_list_entry *rle = NULL; 3434 int passthrough = (device_get_parent(child) != bus); 3435 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 3436 3437 if (passthrough) { 3438 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3439 type, rid, start, end, count, flags)); 3440 } 3441 3442 rle = resource_list_find(rl, type, *rid); 3443 3444 if (!rle) 3445 return (NULL); /* no resource of that type/rid */ 3446 3447 if (rle->res) { 3448 if (rle->flags & RLE_RESERVED) { 3449 if (rle->flags & RLE_ALLOCATED) 3450 return (NULL); 3451 if ((flags & RF_ACTIVE) && 3452 bus_activate_resource(child, type, *rid, 3453 rle->res) != 0) 3454 return (NULL); 3455 rle->flags |= RLE_ALLOCATED; 3456 return (rle->res); 3457 } 3458 device_printf(bus, 3459 "resource entry %#x type %d for child %s is busy\n", *rid, 3460 type, device_get_nameunit(child)); 3461 return (NULL); 3462 } 3463 3464 if (isdefault) { 3465 start = rle->start; 3466 count = ulmax(count, rle->count); 3467 end = ulmax(rle->end, start + count - 1); 3468 } 3469 3470 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 3471 type, rid, start, end, count, flags); 3472 3473 /* 3474 * Record the new range. 3475 */ 3476 if (rle->res) { 3477 rle->start = rman_get_start(rle->res); 3478 rle->end = rman_get_end(rle->res); 3479 rle->count = count; 3480 } 3481 3482 return (rle->res); 3483 } 3484 3485 /** 3486 * @brief Helper function for implementing BUS_RELEASE_RESOURCE() 3487 * 3488 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally 3489 * used with resource_list_alloc(). 3490 * 3491 * @param rl the resource list which was allocated from 3492 * @param bus the parent device of @p child 3493 * @param child the device which is requesting a release 3494 * @param type the type of resource to release 3495 * @param rid the resource identifier 3496 * @param res the resource to release 3497 * 3498 * @retval 0 success 3499 * @retval non-zero a standard unix error code indicating what 3500 * error condition prevented the operation 3501 */ 3502 int 3503 resource_list_release(struct resource_list *rl, device_t bus, device_t child, 3504 int type, int rid, struct resource *res) 3505 { 3506 struct resource_list_entry *rle = NULL; 3507 int passthrough = (device_get_parent(child) != bus); 3508 int error; 3509 3510 if (passthrough) { 3511 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3512 type, rid, res)); 3513 } 3514 3515 rle = resource_list_find(rl, type, rid); 3516 3517 if (!rle) 3518 panic("resource_list_release: can't find resource"); 3519 if (!rle->res) 3520 panic("resource_list_release: resource entry is not busy"); 3521 if (rle->flags & RLE_RESERVED) { 3522 if (rle->flags & RLE_ALLOCATED) { 3523 if (rman_get_flags(res) & RF_ACTIVE) { 3524 error = bus_deactivate_resource(child, type, 3525 rid, res); 3526 if (error) 3527 return (error); 3528 } 3529 rle->flags &= ~RLE_ALLOCATED; 3530 return (0); 3531 } 3532 return (EINVAL); 3533 } 3534 3535 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 3536 type, rid, res); 3537 if (error) 3538 return (error); 3539 3540 rle->res = NULL; 3541 return (0); 3542 } 3543 3544 /** 3545 * @brief Release all active resources of a given type 3546 * 3547 * Release all active resources of a specified type. This is intended 3548 * to be used to cleanup resources leaked by a driver after detach or 3549 * a failed attach. 3550 * 3551 * @param rl the resource list which was allocated from 3552 * @param bus the parent device of @p child 3553 * @param child the device whose active resources are being released 3554 * @param type the type of resources to release 3555 * 3556 * @retval 0 success 3557 * @retval EBUSY at least one resource was active 3558 */ 3559 int 3560 resource_list_release_active(struct resource_list *rl, device_t bus, 3561 device_t child, int type) 3562 { 3563 struct resource_list_entry *rle; 3564 int error, retval; 3565 3566 retval = 0; 3567 STAILQ_FOREACH(rle, rl, link) { 3568 if (rle->type != type) 3569 continue; 3570 if (rle->res == NULL) 3571 continue; 3572 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == 3573 RLE_RESERVED) 3574 continue; 3575 retval = EBUSY; 3576 error = resource_list_release(rl, bus, child, type, 3577 rman_get_rid(rle->res), rle->res); 3578 if (error != 0) 3579 device_printf(bus, 3580 "Failed to release active resource: %d\n", error); 3581 } 3582 return (retval); 3583 } 3584 3585 3586 /** 3587 * @brief Fully release a reserved resource 3588 * 3589 * Fully releases a resource reserved via resource_list_reserve(). 3590 * 3591 * @param rl the resource list which was allocated from 3592 * @param bus the parent device of @p child 3593 * @param child the device whose reserved resource is being released 3594 * @param type the type of resource to release 3595 * @param rid the resource identifier 3596 * @param res the resource to release 3597 * 3598 * @retval 0 success 3599 * @retval non-zero a standard unix error code indicating what 3600 * error condition prevented the operation 3601 */ 3602 int 3603 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, 3604 int type, int rid) 3605 { 3606 struct resource_list_entry *rle = NULL; 3607 int passthrough = (device_get_parent(child) != bus); 3608 3609 if (passthrough) 3610 panic( 3611 "resource_list_unreserve() should only be called for direct children"); 3612 3613 rle = resource_list_find(rl, type, rid); 3614 3615 if (!rle) 3616 panic("resource_list_unreserve: can't find resource"); 3617 if (!(rle->flags & RLE_RESERVED)) 3618 return (EINVAL); 3619 if (rle->flags & RLE_ALLOCATED) 3620 return (EBUSY); 3621 rle->flags &= ~RLE_RESERVED; 3622 return (resource_list_release(rl, bus, child, type, rid, rle->res)); 3623 } 3624 3625 /** 3626 * @brief Print a description of resources in a resource list 3627 * 3628 * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). 3629 * The name is printed if at least one resource of the given type is available. 3630 * The format is used to print resource start and end. 3631 * 3632 * @param rl the resource list to print 3633 * @param name the name of @p type, e.g. @c "memory" 3634 * @param type type type of resource entry to print 3635 * @param format printf(9) format string to print resource 3636 * start and end values 3637 * 3638 * @returns the number of characters printed 3639 */ 3640 int 3641 resource_list_print_type(struct resource_list *rl, const char *name, int type, 3642 const char *format) 3643 { 3644 struct resource_list_entry *rle; 3645 int printed, retval; 3646 3647 printed = 0; 3648 retval = 0; 3649 /* Yes, this is kinda cheating */ 3650 STAILQ_FOREACH(rle, rl, link) { 3651 if (rle->type == type) { 3652 if (printed == 0) 3653 retval += printf(" %s ", name); 3654 else 3655 retval += printf(","); 3656 printed++; 3657 retval += printf(format, rle->start); 3658 if (rle->count > 1) { 3659 retval += printf("-"); 3660 retval += printf(format, rle->start + 3661 rle->count - 1); 3662 } 3663 } 3664 } 3665 return (retval); 3666 } 3667 3668 /** 3669 * @brief Releases all the resources in a list. 3670 * 3671 * @param rl The resource list to purge. 3672 * 3673 * @returns nothing 3674 */ 3675 void 3676 resource_list_purge(struct resource_list *rl) 3677 { 3678 struct resource_list_entry *rle; 3679 3680 while ((rle = STAILQ_FIRST(rl)) != NULL) { 3681 if (rle->res) 3682 bus_release_resource(rman_get_device(rle->res), 3683 rle->type, rle->rid, rle->res); 3684 STAILQ_REMOVE_HEAD(rl, link); 3685 free(rle, M_BUS); 3686 } 3687 } 3688 3689 device_t 3690 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) 3691 { 3692 3693 return (device_add_child_ordered(dev, order, name, unit)); 3694 } 3695 3696 /** 3697 * @brief Helper function for implementing DEVICE_PROBE() 3698 * 3699 * This function can be used to help implement the DEVICE_PROBE() for 3700 * a bus (i.e. a device which has other devices attached to it). It 3701 * calls the DEVICE_IDENTIFY() method of each driver in the device's 3702 * devclass. 3703 */ 3704 int 3705 bus_generic_probe(device_t dev) 3706 { 3707 devclass_t dc = dev->devclass; 3708 driverlink_t dl; 3709 3710 TAILQ_FOREACH(dl, &dc->drivers, link) { 3711 /* 3712 * If this driver's pass is too high, then ignore it. 3713 * For most drivers in the default pass, this will 3714 * never be true. For early-pass drivers they will 3715 * only call the identify routines of eligible drivers 3716 * when this routine is called. Drivers for later 3717 * passes should have their identify routines called 3718 * on early-pass buses during BUS_NEW_PASS(). 3719 */ 3720 if (dl->pass > bus_current_pass) 3721 continue; 3722 DEVICE_IDENTIFY(dl->driver, dev); 3723 } 3724 3725 return (0); 3726 } 3727 3728 /** 3729 * @brief Helper function for implementing DEVICE_ATTACH() 3730 * 3731 * This function can be used to help implement the DEVICE_ATTACH() for 3732 * a bus. It calls device_probe_and_attach() for each of the device's 3733 * children. 3734 */ 3735 int 3736 bus_generic_attach(device_t dev) 3737 { 3738 device_t child; 3739 3740 TAILQ_FOREACH(child, &dev->children, link) { 3741 device_probe_and_attach(child); 3742 } 3743 3744 return (0); 3745 } 3746 3747 /** 3748 * @brief Helper function for implementing DEVICE_DETACH() 3749 * 3750 * This function can be used to help implement the DEVICE_DETACH() for 3751 * a bus. It calls device_detach() for each of the device's 3752 * children. 3753 */ 3754 int 3755 bus_generic_detach(device_t dev) 3756 { 3757 device_t child; 3758 int error; 3759 3760 if (dev->state != DS_ATTACHED) 3761 return (EBUSY); 3762 3763 /* 3764 * Detach children in the reverse order. 3765 * See bus_generic_suspend for details. 3766 */ 3767 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3768 if ((error = device_detach(child)) != 0) 3769 return (error); 3770 } 3771 3772 return (0); 3773 } 3774 3775 /** 3776 * @brief Helper function for implementing DEVICE_SHUTDOWN() 3777 * 3778 * This function can be used to help implement the DEVICE_SHUTDOWN() 3779 * for a bus. It calls device_shutdown() for each of the device's 3780 * children. 3781 */ 3782 int 3783 bus_generic_shutdown(device_t dev) 3784 { 3785 device_t child; 3786 3787 /* 3788 * Shut down children in the reverse order. 3789 * See bus_generic_suspend for details. 3790 */ 3791 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3792 device_shutdown(child); 3793 } 3794 3795 return (0); 3796 } 3797 3798 /** 3799 * @brief Default function for suspending a child device. 3800 * 3801 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). 3802 */ 3803 int 3804 bus_generic_suspend_child(device_t dev, device_t child) 3805 { 3806 int error; 3807 3808 error = DEVICE_SUSPEND(child); 3809 3810 if (error == 0) 3811 child->flags |= DF_SUSPENDED; 3812 3813 return (error); 3814 } 3815 3816 /** 3817 * @brief Default function for resuming a child device. 3818 * 3819 * This function is to be used by a bus's DEVICE_RESUME_CHILD(). 3820 */ 3821 int 3822 bus_generic_resume_child(device_t dev, device_t child) 3823 { 3824 3825 DEVICE_RESUME(child); 3826 child->flags &= ~DF_SUSPENDED; 3827 3828 return (0); 3829 } 3830 3831 /** 3832 * @brief Helper function for implementing DEVICE_SUSPEND() 3833 * 3834 * This function can be used to help implement the DEVICE_SUSPEND() 3835 * for a bus. It calls DEVICE_SUSPEND() for each of the device's 3836 * children. If any call to DEVICE_SUSPEND() fails, the suspend 3837 * operation is aborted and any devices which were suspended are 3838 * resumed immediately by calling their DEVICE_RESUME() methods. 3839 */ 3840 int 3841 bus_generic_suspend(device_t dev) 3842 { 3843 int error; 3844 device_t child; 3845 3846 /* 3847 * Suspend children in the reverse order. 3848 * For most buses all children are equal, so the order does not matter. 3849 * Other buses, such as acpi, carefully order their child devices to 3850 * express implicit dependencies between them. For such buses it is 3851 * safer to bring down devices in the reverse order. 3852 */ 3853 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3854 error = BUS_SUSPEND_CHILD(dev, child); 3855 if (error != 0) { 3856 child = TAILQ_NEXT(child, link); 3857 if (child != NULL) { 3858 TAILQ_FOREACH_FROM(child, &dev->children, link) 3859 BUS_RESUME_CHILD(dev, child); 3860 } 3861 return (error); 3862 } 3863 } 3864 return (0); 3865 } 3866 3867 /** 3868 * @brief Helper function for implementing DEVICE_RESUME() 3869 * 3870 * This function can be used to help implement the DEVICE_RESUME() for 3871 * a bus. It calls DEVICE_RESUME() on each of the device's children. 3872 */ 3873 int 3874 bus_generic_resume(device_t dev) 3875 { 3876 device_t child; 3877 3878 TAILQ_FOREACH(child, &dev->children, link) { 3879 BUS_RESUME_CHILD(dev, child); 3880 /* if resume fails, there's nothing we can usefully do... */ 3881 } 3882 return (0); 3883 } 3884 3885 3886 /** 3887 * @brief Helper function for implementing BUS_RESET_POST 3888 * 3889 * Bus can use this function to implement common operations of 3890 * re-attaching or resuming the children after the bus itself was 3891 * reset, and after restoring bus-unique state of children. 3892 * 3893 * @param dev The bus 3894 * #param flags DEVF_RESET_* 3895 */ 3896 int 3897 bus_helper_reset_post(device_t dev, int flags) 3898 { 3899 device_t child; 3900 int error, error1; 3901 3902 error = 0; 3903 TAILQ_FOREACH(child, &dev->children,link) { 3904 BUS_RESET_POST(dev, child); 3905 error1 = (flags & DEVF_RESET_DETACH) != 0 ? 3906 device_probe_and_attach(child) : 3907 BUS_RESUME_CHILD(dev, child); 3908 if (error == 0 && error1 != 0) 3909 error = error1; 3910 } 3911 return (error); 3912 } 3913 3914 static void 3915 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) 3916 { 3917 3918 child = TAILQ_NEXT(child, link); 3919 if (child == NULL) 3920 return; 3921 TAILQ_FOREACH_FROM(child, &dev->children,link) { 3922 BUS_RESET_POST(dev, child); 3923 if ((flags & DEVF_RESET_DETACH) != 0) 3924 device_probe_and_attach(child); 3925 else 3926 BUS_RESUME_CHILD(dev, child); 3927 } 3928 } 3929 3930 /** 3931 * @brief Helper function for implementing BUS_RESET_PREPARE 3932 * 3933 * Bus can use this function to implement common operations of 3934 * detaching or suspending the children before the bus itself is 3935 * reset, and then save bus-unique state of children that must 3936 * persists around reset. 3937 * 3938 * @param dev The bus 3939 * #param flags DEVF_RESET_* 3940 */ 3941 int 3942 bus_helper_reset_prepare(device_t dev, int flags) 3943 { 3944 device_t child; 3945 int error; 3946 3947 if (dev->state != DS_ATTACHED) 3948 return (EBUSY); 3949 3950 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { 3951 if ((flags & DEVF_RESET_DETACH) != 0) { 3952 error = device_get_state(child) == DS_ATTACHED ? 3953 device_detach(child) : 0; 3954 } else { 3955 error = BUS_SUSPEND_CHILD(dev, child); 3956 } 3957 if (error == 0) { 3958 error = BUS_RESET_PREPARE(dev, child); 3959 if (error != 0) { 3960 if ((flags & DEVF_RESET_DETACH) != 0) 3961 device_probe_and_attach(child); 3962 else 3963 BUS_RESUME_CHILD(dev, child); 3964 } 3965 } 3966 if (error != 0) { 3967 bus_helper_reset_prepare_rollback(dev, child, flags); 3968 return (error); 3969 } 3970 } 3971 return (0); 3972 } 3973 3974 /** 3975 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3976 * 3977 * This function prints the first part of the ascii representation of 3978 * @p child, including its name, unit and description (if any - see 3979 * device_set_desc()). 3980 * 3981 * @returns the number of characters printed 3982 */ 3983 int 3984 bus_print_child_header(device_t dev, device_t child) 3985 { 3986 int retval = 0; 3987 3988 if (device_get_desc(child)) { 3989 retval += device_printf(child, "<%s>", device_get_desc(child)); 3990 } else { 3991 retval += printf("%s", device_get_nameunit(child)); 3992 } 3993 3994 return (retval); 3995 } 3996 3997 /** 3998 * @brief Helper function for implementing BUS_PRINT_CHILD(). 3999 * 4000 * This function prints the last part of the ascii representation of 4001 * @p child, which consists of the string @c " on " followed by the 4002 * name and unit of the @p dev. 4003 * 4004 * @returns the number of characters printed 4005 */ 4006 int 4007 bus_print_child_footer(device_t dev, device_t child) 4008 { 4009 return (printf(" on %s\n", device_get_nameunit(dev))); 4010 } 4011 4012 /** 4013 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4014 * 4015 * This function prints out the VM domain for the given device. 4016 * 4017 * @returns the number of characters printed 4018 */ 4019 int 4020 bus_print_child_domain(device_t dev, device_t child) 4021 { 4022 int domain; 4023 4024 /* No domain? Don't print anything */ 4025 if (BUS_GET_DOMAIN(dev, child, &domain) != 0) 4026 return (0); 4027 4028 return (printf(" numa-domain %d", domain)); 4029 } 4030 4031 /** 4032 * @brief Helper function for implementing BUS_PRINT_CHILD(). 4033 * 4034 * This function simply calls bus_print_child_header() followed by 4035 * bus_print_child_footer(). 4036 * 4037 * @returns the number of characters printed 4038 */ 4039 int 4040 bus_generic_print_child(device_t dev, device_t child) 4041 { 4042 int retval = 0; 4043 4044 retval += bus_print_child_header(dev, child); 4045 retval += bus_print_child_domain(dev, child); 4046 retval += bus_print_child_footer(dev, child); 4047 4048 return (retval); 4049 } 4050 4051 /** 4052 * @brief Stub function for implementing BUS_READ_IVAR(). 4053 * 4054 * @returns ENOENT 4055 */ 4056 int 4057 bus_generic_read_ivar(device_t dev, device_t child, int index, 4058 uintptr_t * result) 4059 { 4060 return (ENOENT); 4061 } 4062 4063 /** 4064 * @brief Stub function for implementing BUS_WRITE_IVAR(). 4065 * 4066 * @returns ENOENT 4067 */ 4068 int 4069 bus_generic_write_ivar(device_t dev, device_t child, int index, 4070 uintptr_t value) 4071 { 4072 return (ENOENT); 4073 } 4074 4075 /** 4076 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). 4077 * 4078 * @returns NULL 4079 */ 4080 struct resource_list * 4081 bus_generic_get_resource_list(device_t dev, device_t child) 4082 { 4083 return (NULL); 4084 } 4085 4086 /** 4087 * @brief Helper function for implementing BUS_DRIVER_ADDED(). 4088 * 4089 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's 4090 * DEVICE_IDENTIFY() method to allow it to add new children to the bus 4091 * and then calls device_probe_and_attach() for each unattached child. 4092 */ 4093 void 4094 bus_generic_driver_added(device_t dev, driver_t *driver) 4095 { 4096 device_t child; 4097 4098 DEVICE_IDENTIFY(driver, dev); 4099 TAILQ_FOREACH(child, &dev->children, link) { 4100 if (child->state == DS_NOTPRESENT || 4101 (child->flags & DF_REBID)) 4102 device_probe_and_attach(child); 4103 } 4104 } 4105 4106 /** 4107 * @brief Helper function for implementing BUS_NEW_PASS(). 4108 * 4109 * This implementing of BUS_NEW_PASS() first calls the identify 4110 * routines for any drivers that probe at the current pass. Then it 4111 * walks the list of devices for this bus. If a device is already 4112 * attached, then it calls BUS_NEW_PASS() on that device. If the 4113 * device is not already attached, it attempts to attach a driver to 4114 * it. 4115 */ 4116 void 4117 bus_generic_new_pass(device_t dev) 4118 { 4119 driverlink_t dl; 4120 devclass_t dc; 4121 device_t child; 4122 4123 dc = dev->devclass; 4124 TAILQ_FOREACH(dl, &dc->drivers, link) { 4125 if (dl->pass == bus_current_pass) 4126 DEVICE_IDENTIFY(dl->driver, dev); 4127 } 4128 TAILQ_FOREACH(child, &dev->children, link) { 4129 if (child->state >= DS_ATTACHED) 4130 BUS_NEW_PASS(child); 4131 else if (child->state == DS_NOTPRESENT) 4132 device_probe_and_attach(child); 4133 } 4134 } 4135 4136 /** 4137 * @brief Helper function for implementing BUS_SETUP_INTR(). 4138 * 4139 * This simple implementation of BUS_SETUP_INTR() simply calls the 4140 * BUS_SETUP_INTR() method of the parent of @p dev. 4141 */ 4142 int 4143 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 4144 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 4145 void **cookiep) 4146 { 4147 /* Propagate up the bus hierarchy until someone handles it. */ 4148 if (dev->parent) 4149 return (BUS_SETUP_INTR(dev->parent, child, irq, flags, 4150 filter, intr, arg, cookiep)); 4151 return (EINVAL); 4152 } 4153 4154 /** 4155 * @brief Helper function for implementing BUS_TEARDOWN_INTR(). 4156 * 4157 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the 4158 * BUS_TEARDOWN_INTR() method of the parent of @p dev. 4159 */ 4160 int 4161 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 4162 void *cookie) 4163 { 4164 /* Propagate up the bus hierarchy until someone handles it. */ 4165 if (dev->parent) 4166 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 4167 return (EINVAL); 4168 } 4169 4170 /** 4171 * @brief Helper function for implementing BUS_SUSPEND_INTR(). 4172 * 4173 * This simple implementation of BUS_SUSPEND_INTR() simply calls the 4174 * BUS_SUSPEND_INTR() method of the parent of @p dev. 4175 */ 4176 int 4177 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) 4178 { 4179 /* Propagate up the bus hierarchy until someone handles it. */ 4180 if (dev->parent) 4181 return (BUS_SUSPEND_INTR(dev->parent, child, irq)); 4182 return (EINVAL); 4183 } 4184 4185 /** 4186 * @brief Helper function for implementing BUS_RESUME_INTR(). 4187 * 4188 * This simple implementation of BUS_RESUME_INTR() simply calls the 4189 * BUS_RESUME_INTR() method of the parent of @p dev. 4190 */ 4191 int 4192 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) 4193 { 4194 /* Propagate up the bus hierarchy until someone handles it. */ 4195 if (dev->parent) 4196 return (BUS_RESUME_INTR(dev->parent, child, irq)); 4197 return (EINVAL); 4198 } 4199 4200 /** 4201 * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). 4202 * 4203 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the 4204 * BUS_ADJUST_RESOURCE() method of the parent of @p dev. 4205 */ 4206 int 4207 bus_generic_adjust_resource(device_t dev, device_t child, int type, 4208 struct resource *r, rman_res_t start, rman_res_t end) 4209 { 4210 /* Propagate up the bus hierarchy until someone handles it. */ 4211 if (dev->parent) 4212 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, 4213 end)); 4214 return (EINVAL); 4215 } 4216 4217 /** 4218 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4219 * 4220 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the 4221 * BUS_ALLOC_RESOURCE() method of the parent of @p dev. 4222 */ 4223 struct resource * 4224 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 4225 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4226 { 4227 /* Propagate up the bus hierarchy until someone handles it. */ 4228 if (dev->parent) 4229 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 4230 start, end, count, flags)); 4231 return (NULL); 4232 } 4233 4234 /** 4235 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4236 * 4237 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the 4238 * BUS_RELEASE_RESOURCE() method of the parent of @p dev. 4239 */ 4240 int 4241 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 4242 struct resource *r) 4243 { 4244 /* Propagate up the bus hierarchy until someone handles it. */ 4245 if (dev->parent) 4246 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, 4247 r)); 4248 return (EINVAL); 4249 } 4250 4251 /** 4252 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). 4253 * 4254 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the 4255 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. 4256 */ 4257 int 4258 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 4259 struct resource *r) 4260 { 4261 /* Propagate up the bus hierarchy until someone handles it. */ 4262 if (dev->parent) 4263 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, 4264 r)); 4265 return (EINVAL); 4266 } 4267 4268 /** 4269 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). 4270 * 4271 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the 4272 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. 4273 */ 4274 int 4275 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 4276 int rid, struct resource *r) 4277 { 4278 /* Propagate up the bus hierarchy until someone handles it. */ 4279 if (dev->parent) 4280 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 4281 r)); 4282 return (EINVAL); 4283 } 4284 4285 /** 4286 * @brief Helper function for implementing BUS_MAP_RESOURCE(). 4287 * 4288 * This simple implementation of BUS_MAP_RESOURCE() simply calls the 4289 * BUS_MAP_RESOURCE() method of the parent of @p dev. 4290 */ 4291 int 4292 bus_generic_map_resource(device_t dev, device_t child, int type, 4293 struct resource *r, struct resource_map_request *args, 4294 struct resource_map *map) 4295 { 4296 /* Propagate up the bus hierarchy until someone handles it. */ 4297 if (dev->parent) 4298 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, 4299 map)); 4300 return (EINVAL); 4301 } 4302 4303 /** 4304 * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). 4305 * 4306 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the 4307 * BUS_UNMAP_RESOURCE() method of the parent of @p dev. 4308 */ 4309 int 4310 bus_generic_unmap_resource(device_t dev, device_t child, int type, 4311 struct resource *r, struct resource_map *map) 4312 { 4313 /* Propagate up the bus hierarchy until someone handles it. */ 4314 if (dev->parent) 4315 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); 4316 return (EINVAL); 4317 } 4318 4319 /** 4320 * @brief Helper function for implementing BUS_BIND_INTR(). 4321 * 4322 * This simple implementation of BUS_BIND_INTR() simply calls the 4323 * BUS_BIND_INTR() method of the parent of @p dev. 4324 */ 4325 int 4326 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, 4327 int cpu) 4328 { 4329 4330 /* Propagate up the bus hierarchy until someone handles it. */ 4331 if (dev->parent) 4332 return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); 4333 return (EINVAL); 4334 } 4335 4336 /** 4337 * @brief Helper function for implementing BUS_CONFIG_INTR(). 4338 * 4339 * This simple implementation of BUS_CONFIG_INTR() simply calls the 4340 * BUS_CONFIG_INTR() method of the parent of @p dev. 4341 */ 4342 int 4343 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 4344 enum intr_polarity pol) 4345 { 4346 4347 /* Propagate up the bus hierarchy until someone handles it. */ 4348 if (dev->parent) 4349 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 4350 return (EINVAL); 4351 } 4352 4353 /** 4354 * @brief Helper function for implementing BUS_DESCRIBE_INTR(). 4355 * 4356 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the 4357 * BUS_DESCRIBE_INTR() method of the parent of @p dev. 4358 */ 4359 int 4360 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, 4361 void *cookie, const char *descr) 4362 { 4363 4364 /* Propagate up the bus hierarchy until someone handles it. */ 4365 if (dev->parent) 4366 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, 4367 descr)); 4368 return (EINVAL); 4369 } 4370 4371 /** 4372 * @brief Helper function for implementing BUS_GET_CPUS(). 4373 * 4374 * This simple implementation of BUS_GET_CPUS() simply calls the 4375 * BUS_GET_CPUS() method of the parent of @p dev. 4376 */ 4377 int 4378 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, 4379 size_t setsize, cpuset_t *cpuset) 4380 { 4381 4382 /* Propagate up the bus hierarchy until someone handles it. */ 4383 if (dev->parent != NULL) 4384 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); 4385 return (EINVAL); 4386 } 4387 4388 /** 4389 * @brief Helper function for implementing BUS_GET_DMA_TAG(). 4390 * 4391 * This simple implementation of BUS_GET_DMA_TAG() simply calls the 4392 * BUS_GET_DMA_TAG() method of the parent of @p dev. 4393 */ 4394 bus_dma_tag_t 4395 bus_generic_get_dma_tag(device_t dev, device_t child) 4396 { 4397 4398 /* Propagate up the bus hierarchy until someone handles it. */ 4399 if (dev->parent != NULL) 4400 return (BUS_GET_DMA_TAG(dev->parent, child)); 4401 return (NULL); 4402 } 4403 4404 /** 4405 * @brief Helper function for implementing BUS_GET_BUS_TAG(). 4406 * 4407 * This simple implementation of BUS_GET_BUS_TAG() simply calls the 4408 * BUS_GET_BUS_TAG() method of the parent of @p dev. 4409 */ 4410 bus_space_tag_t 4411 bus_generic_get_bus_tag(device_t dev, device_t child) 4412 { 4413 4414 /* Propagate up the bus hierarchy until someone handles it. */ 4415 if (dev->parent != NULL) 4416 return (BUS_GET_BUS_TAG(dev->parent, child)); 4417 return ((bus_space_tag_t)0); 4418 } 4419 4420 /** 4421 * @brief Helper function for implementing BUS_GET_RESOURCE(). 4422 * 4423 * This implementation of BUS_GET_RESOURCE() uses the 4424 * resource_list_find() function to do most of the work. It calls 4425 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4426 * search. 4427 */ 4428 int 4429 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 4430 rman_res_t *startp, rman_res_t *countp) 4431 { 4432 struct resource_list * rl = NULL; 4433 struct resource_list_entry * rle = NULL; 4434 4435 rl = BUS_GET_RESOURCE_LIST(dev, child); 4436 if (!rl) 4437 return (EINVAL); 4438 4439 rle = resource_list_find(rl, type, rid); 4440 if (!rle) 4441 return (ENOENT); 4442 4443 if (startp) 4444 *startp = rle->start; 4445 if (countp) 4446 *countp = rle->count; 4447 4448 return (0); 4449 } 4450 4451 /** 4452 * @brief Helper function for implementing BUS_SET_RESOURCE(). 4453 * 4454 * This implementation of BUS_SET_RESOURCE() uses the 4455 * resource_list_add() function to do most of the work. It calls 4456 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4457 * edit. 4458 */ 4459 int 4460 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 4461 rman_res_t start, rman_res_t count) 4462 { 4463 struct resource_list * rl = NULL; 4464 4465 rl = BUS_GET_RESOURCE_LIST(dev, child); 4466 if (!rl) 4467 return (EINVAL); 4468 4469 resource_list_add(rl, type, rid, start, (start + count - 1), count); 4470 4471 return (0); 4472 } 4473 4474 /** 4475 * @brief Helper function for implementing BUS_DELETE_RESOURCE(). 4476 * 4477 * This implementation of BUS_DELETE_RESOURCE() uses the 4478 * resource_list_delete() function to do most of the work. It calls 4479 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to 4480 * edit. 4481 */ 4482 void 4483 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 4484 { 4485 struct resource_list * rl = NULL; 4486 4487 rl = BUS_GET_RESOURCE_LIST(dev, child); 4488 if (!rl) 4489 return; 4490 4491 resource_list_delete(rl, type, rid); 4492 4493 return; 4494 } 4495 4496 /** 4497 * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). 4498 * 4499 * This implementation of BUS_RELEASE_RESOURCE() uses the 4500 * resource_list_release() function to do most of the work. It calls 4501 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4502 */ 4503 int 4504 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 4505 int rid, struct resource *r) 4506 { 4507 struct resource_list * rl = NULL; 4508 4509 if (device_get_parent(child) != dev) 4510 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 4511 type, rid, r)); 4512 4513 rl = BUS_GET_RESOURCE_LIST(dev, child); 4514 if (!rl) 4515 return (EINVAL); 4516 4517 return (resource_list_release(rl, dev, child, type, rid, r)); 4518 } 4519 4520 /** 4521 * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). 4522 * 4523 * This implementation of BUS_ALLOC_RESOURCE() uses the 4524 * resource_list_alloc() function to do most of the work. It calls 4525 * BUS_GET_RESOURCE_LIST() to find a suitable resource list. 4526 */ 4527 struct resource * 4528 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 4529 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 4530 { 4531 struct resource_list * rl = NULL; 4532 4533 if (device_get_parent(child) != dev) 4534 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 4535 type, rid, start, end, count, flags)); 4536 4537 rl = BUS_GET_RESOURCE_LIST(dev, child); 4538 if (!rl) 4539 return (NULL); 4540 4541 return (resource_list_alloc(rl, dev, child, type, rid, 4542 start, end, count, flags)); 4543 } 4544 4545 /** 4546 * @brief Helper function for implementing BUS_CHILD_PRESENT(). 4547 * 4548 * This simple implementation of BUS_CHILD_PRESENT() simply calls the 4549 * BUS_CHILD_PRESENT() method of the parent of @p dev. 4550 */ 4551 int 4552 bus_generic_child_present(device_t dev, device_t child) 4553 { 4554 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); 4555 } 4556 4557 int 4558 bus_generic_get_domain(device_t dev, device_t child, int *domain) 4559 { 4560 4561 if (dev->parent) 4562 return (BUS_GET_DOMAIN(dev->parent, dev, domain)); 4563 4564 return (ENOENT); 4565 } 4566 4567 /** 4568 * @brief Helper function for implementing BUS_RESCAN(). 4569 * 4570 * This null implementation of BUS_RESCAN() always fails to indicate 4571 * the bus does not support rescanning. 4572 */ 4573 int 4574 bus_null_rescan(device_t dev) 4575 { 4576 4577 return (ENXIO); 4578 } 4579 4580 /* 4581 * Some convenience functions to make it easier for drivers to use the 4582 * resource-management functions. All these really do is hide the 4583 * indirection through the parent's method table, making for slightly 4584 * less-wordy code. In the future, it might make sense for this code 4585 * to maintain some sort of a list of resources allocated by each device. 4586 */ 4587 4588 int 4589 bus_alloc_resources(device_t dev, struct resource_spec *rs, 4590 struct resource **res) 4591 { 4592 int i; 4593 4594 for (i = 0; rs[i].type != -1; i++) 4595 res[i] = NULL; 4596 for (i = 0; rs[i].type != -1; i++) { 4597 res[i] = bus_alloc_resource_any(dev, 4598 rs[i].type, &rs[i].rid, rs[i].flags); 4599 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { 4600 bus_release_resources(dev, rs, res); 4601 return (ENXIO); 4602 } 4603 } 4604 return (0); 4605 } 4606 4607 void 4608 bus_release_resources(device_t dev, const struct resource_spec *rs, 4609 struct resource **res) 4610 { 4611 int i; 4612 4613 for (i = 0; rs[i].type != -1; i++) 4614 if (res[i] != NULL) { 4615 bus_release_resource( 4616 dev, rs[i].type, rs[i].rid, res[i]); 4617 res[i] = NULL; 4618 } 4619 } 4620 4621 /** 4622 * @brief Wrapper function for BUS_ALLOC_RESOURCE(). 4623 * 4624 * This function simply calls the BUS_ALLOC_RESOURCE() method of the 4625 * parent of @p dev. 4626 */ 4627 struct resource * 4628 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, 4629 rman_res_t end, rman_res_t count, u_int flags) 4630 { 4631 struct resource *res; 4632 4633 if (dev->parent == NULL) 4634 return (NULL); 4635 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 4636 count, flags); 4637 return (res); 4638 } 4639 4640 /** 4641 * @brief Wrapper function for BUS_ADJUST_RESOURCE(). 4642 * 4643 * This function simply calls the BUS_ADJUST_RESOURCE() method of the 4644 * parent of @p dev. 4645 */ 4646 int 4647 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, 4648 rman_res_t end) 4649 { 4650 if (dev->parent == NULL) 4651 return (EINVAL); 4652 return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); 4653 } 4654 4655 /** 4656 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). 4657 * 4658 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the 4659 * parent of @p dev. 4660 */ 4661 int 4662 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 4663 { 4664 if (dev->parent == NULL) 4665 return (EINVAL); 4666 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4667 } 4668 4669 /** 4670 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). 4671 * 4672 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the 4673 * parent of @p dev. 4674 */ 4675 int 4676 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 4677 { 4678 if (dev->parent == NULL) 4679 return (EINVAL); 4680 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 4681 } 4682 4683 /** 4684 * @brief Wrapper function for BUS_MAP_RESOURCE(). 4685 * 4686 * This function simply calls the BUS_MAP_RESOURCE() method of the 4687 * parent of @p dev. 4688 */ 4689 int 4690 bus_map_resource(device_t dev, int type, struct resource *r, 4691 struct resource_map_request *args, struct resource_map *map) 4692 { 4693 if (dev->parent == NULL) 4694 return (EINVAL); 4695 return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); 4696 } 4697 4698 /** 4699 * @brief Wrapper function for BUS_UNMAP_RESOURCE(). 4700 * 4701 * This function simply calls the BUS_UNMAP_RESOURCE() method of the 4702 * parent of @p dev. 4703 */ 4704 int 4705 bus_unmap_resource(device_t dev, int type, struct resource *r, 4706 struct resource_map *map) 4707 { 4708 if (dev->parent == NULL) 4709 return (EINVAL); 4710 return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); 4711 } 4712 4713 /** 4714 * @brief Wrapper function for BUS_RELEASE_RESOURCE(). 4715 * 4716 * This function simply calls the BUS_RELEASE_RESOURCE() method of the 4717 * parent of @p dev. 4718 */ 4719 int 4720 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 4721 { 4722 int rv; 4723 4724 if (dev->parent == NULL) 4725 return (EINVAL); 4726 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); 4727 return (rv); 4728 } 4729 4730 /** 4731 * @brief Wrapper function for BUS_SETUP_INTR(). 4732 * 4733 * This function simply calls the BUS_SETUP_INTR() method of the 4734 * parent of @p dev. 4735 */ 4736 int 4737 bus_setup_intr(device_t dev, struct resource *r, int flags, 4738 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) 4739 { 4740 int error; 4741 4742 if (dev->parent == NULL) 4743 return (EINVAL); 4744 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, 4745 arg, cookiep); 4746 if (error != 0) 4747 return (error); 4748 if (handler != NULL && !(flags & INTR_MPSAFE)) 4749 device_printf(dev, "[GIANT-LOCKED]\n"); 4750 return (0); 4751 } 4752 4753 /** 4754 * @brief Wrapper function for BUS_TEARDOWN_INTR(). 4755 * 4756 * This function simply calls the BUS_TEARDOWN_INTR() method of the 4757 * parent of @p dev. 4758 */ 4759 int 4760 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 4761 { 4762 if (dev->parent == NULL) 4763 return (EINVAL); 4764 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 4765 } 4766 4767 /** 4768 * @brief Wrapper function for BUS_SUSPEND_INTR(). 4769 * 4770 * This function simply calls the BUS_SUSPEND_INTR() method of the 4771 * parent of @p dev. 4772 */ 4773 int 4774 bus_suspend_intr(device_t dev, struct resource *r) 4775 { 4776 if (dev->parent == NULL) 4777 return (EINVAL); 4778 return (BUS_SUSPEND_INTR(dev->parent, dev, r)); 4779 } 4780 4781 /** 4782 * @brief Wrapper function for BUS_RESUME_INTR(). 4783 * 4784 * This function simply calls the BUS_RESUME_INTR() method of the 4785 * parent of @p dev. 4786 */ 4787 int 4788 bus_resume_intr(device_t dev, struct resource *r) 4789 { 4790 if (dev->parent == NULL) 4791 return (EINVAL); 4792 return (BUS_RESUME_INTR(dev->parent, dev, r)); 4793 } 4794 4795 /** 4796 * @brief Wrapper function for BUS_BIND_INTR(). 4797 * 4798 * This function simply calls the BUS_BIND_INTR() method of the 4799 * parent of @p dev. 4800 */ 4801 int 4802 bus_bind_intr(device_t dev, struct resource *r, int cpu) 4803 { 4804 if (dev->parent == NULL) 4805 return (EINVAL); 4806 return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); 4807 } 4808 4809 /** 4810 * @brief Wrapper function for BUS_DESCRIBE_INTR(). 4811 * 4812 * This function first formats the requested description into a 4813 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of 4814 * the parent of @p dev. 4815 */ 4816 int 4817 bus_describe_intr(device_t dev, struct resource *irq, void *cookie, 4818 const char *fmt, ...) 4819 { 4820 va_list ap; 4821 char descr[MAXCOMLEN + 1]; 4822 4823 if (dev->parent == NULL) 4824 return (EINVAL); 4825 va_start(ap, fmt); 4826 vsnprintf(descr, sizeof(descr), fmt, ap); 4827 va_end(ap); 4828 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); 4829 } 4830 4831 /** 4832 * @brief Wrapper function for BUS_SET_RESOURCE(). 4833 * 4834 * This function simply calls the BUS_SET_RESOURCE() method of the 4835 * parent of @p dev. 4836 */ 4837 int 4838 bus_set_resource(device_t dev, int type, int rid, 4839 rman_res_t start, rman_res_t count) 4840 { 4841 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 4842 start, count)); 4843 } 4844 4845 /** 4846 * @brief Wrapper function for BUS_GET_RESOURCE(). 4847 * 4848 * This function simply calls the BUS_GET_RESOURCE() method of the 4849 * parent of @p dev. 4850 */ 4851 int 4852 bus_get_resource(device_t dev, int type, int rid, 4853 rman_res_t *startp, rman_res_t *countp) 4854 { 4855 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4856 startp, countp)); 4857 } 4858 4859 /** 4860 * @brief Wrapper function for BUS_GET_RESOURCE(). 4861 * 4862 * This function simply calls the BUS_GET_RESOURCE() method of the 4863 * parent of @p dev and returns the start value. 4864 */ 4865 rman_res_t 4866 bus_get_resource_start(device_t dev, int type, int rid) 4867 { 4868 rman_res_t start; 4869 rman_res_t count; 4870 int error; 4871 4872 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4873 &start, &count); 4874 if (error) 4875 return (0); 4876 return (start); 4877 } 4878 4879 /** 4880 * @brief Wrapper function for BUS_GET_RESOURCE(). 4881 * 4882 * This function simply calls the BUS_GET_RESOURCE() method of the 4883 * parent of @p dev and returns the count value. 4884 */ 4885 rman_res_t 4886 bus_get_resource_count(device_t dev, int type, int rid) 4887 { 4888 rman_res_t start; 4889 rman_res_t count; 4890 int error; 4891 4892 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 4893 &start, &count); 4894 if (error) 4895 return (0); 4896 return (count); 4897 } 4898 4899 /** 4900 * @brief Wrapper function for BUS_DELETE_RESOURCE(). 4901 * 4902 * This function simply calls the BUS_DELETE_RESOURCE() method of the 4903 * parent of @p dev. 4904 */ 4905 void 4906 bus_delete_resource(device_t dev, int type, int rid) 4907 { 4908 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 4909 } 4910 4911 /** 4912 * @brief Wrapper function for BUS_CHILD_PRESENT(). 4913 * 4914 * This function simply calls the BUS_CHILD_PRESENT() method of the 4915 * parent of @p dev. 4916 */ 4917 int 4918 bus_child_present(device_t child) 4919 { 4920 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 4921 } 4922 4923 /** 4924 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR(). 4925 * 4926 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the 4927 * parent of @p dev. 4928 */ 4929 int 4930 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 4931 { 4932 device_t parent; 4933 4934 parent = device_get_parent(child); 4935 if (parent == NULL) { 4936 *buf = '\0'; 4937 return (0); 4938 } 4939 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 4940 } 4941 4942 /** 4943 * @brief Wrapper function for BUS_CHILD_LOCATION_STR(). 4944 * 4945 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the 4946 * parent of @p dev. 4947 */ 4948 int 4949 bus_child_location_str(device_t child, char *buf, size_t buflen) 4950 { 4951 device_t parent; 4952 4953 parent = device_get_parent(child); 4954 if (parent == NULL) { 4955 *buf = '\0'; 4956 return (0); 4957 } 4958 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 4959 } 4960 4961 /** 4962 * @brief Wrapper function for BUS_GET_CPUS(). 4963 * 4964 * This function simply calls the BUS_GET_CPUS() method of the 4965 * parent of @p dev. 4966 */ 4967 int 4968 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) 4969 { 4970 device_t parent; 4971 4972 parent = device_get_parent(dev); 4973 if (parent == NULL) 4974 return (EINVAL); 4975 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); 4976 } 4977 4978 /** 4979 * @brief Wrapper function for BUS_GET_DMA_TAG(). 4980 * 4981 * This function simply calls the BUS_GET_DMA_TAG() method of the 4982 * parent of @p dev. 4983 */ 4984 bus_dma_tag_t 4985 bus_get_dma_tag(device_t dev) 4986 { 4987 device_t parent; 4988 4989 parent = device_get_parent(dev); 4990 if (parent == NULL) 4991 return (NULL); 4992 return (BUS_GET_DMA_TAG(parent, dev)); 4993 } 4994 4995 /** 4996 * @brief Wrapper function for BUS_GET_BUS_TAG(). 4997 * 4998 * This function simply calls the BUS_GET_BUS_TAG() method of the 4999 * parent of @p dev. 5000 */ 5001 bus_space_tag_t 5002 bus_get_bus_tag(device_t dev) 5003 { 5004 device_t parent; 5005 5006 parent = device_get_parent(dev); 5007 if (parent == NULL) 5008 return ((bus_space_tag_t)0); 5009 return (BUS_GET_BUS_TAG(parent, dev)); 5010 } 5011 5012 /** 5013 * @brief Wrapper function for BUS_GET_DOMAIN(). 5014 * 5015 * This function simply calls the BUS_GET_DOMAIN() method of the 5016 * parent of @p dev. 5017 */ 5018 int 5019 bus_get_domain(device_t dev, int *domain) 5020 { 5021 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); 5022 } 5023 5024 /* Resume all devices and then notify userland that we're up again. */ 5025 static int 5026 root_resume(device_t dev) 5027 { 5028 int error; 5029 5030 error = bus_generic_resume(dev); 5031 if (error == 0) 5032 devctl_notify("kern", "power", "resume", NULL); 5033 return (error); 5034 } 5035 5036 static int 5037 root_print_child(device_t dev, device_t child) 5038 { 5039 int retval = 0; 5040 5041 retval += bus_print_child_header(dev, child); 5042 retval += printf("\n"); 5043 5044 return (retval); 5045 } 5046 5047 static int 5048 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 5049 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 5050 { 5051 /* 5052 * If an interrupt mapping gets to here something bad has happened. 5053 */ 5054 panic("root_setup_intr"); 5055 } 5056 5057 /* 5058 * If we get here, assume that the device is permanent and really is 5059 * present in the system. Removable bus drivers are expected to intercept 5060 * this call long before it gets here. We return -1 so that drivers that 5061 * really care can check vs -1 or some ERRNO returned higher in the food 5062 * chain. 5063 */ 5064 static int 5065 root_child_present(device_t dev, device_t child) 5066 { 5067 return (-1); 5068 } 5069 5070 static int 5071 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 5072 cpuset_t *cpuset) 5073 { 5074 5075 switch (op) { 5076 case INTR_CPUS: 5077 /* Default to returning the set of all CPUs. */ 5078 if (setsize != sizeof(cpuset_t)) 5079 return (EINVAL); 5080 *cpuset = all_cpus; 5081 return (0); 5082 default: 5083 return (EINVAL); 5084 } 5085 } 5086 5087 static kobj_method_t root_methods[] = { 5088 /* Device interface */ 5089 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 5090 KOBJMETHOD(device_suspend, bus_generic_suspend), 5091 KOBJMETHOD(device_resume, root_resume), 5092 5093 /* Bus interface */ 5094 KOBJMETHOD(bus_print_child, root_print_child), 5095 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 5096 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 5097 KOBJMETHOD(bus_setup_intr, root_setup_intr), 5098 KOBJMETHOD(bus_child_present, root_child_present), 5099 KOBJMETHOD(bus_get_cpus, root_get_cpus), 5100 5101 KOBJMETHOD_END 5102 }; 5103 5104 static driver_t root_driver = { 5105 "root", 5106 root_methods, 5107 1, /* no softc */ 5108 }; 5109 5110 device_t root_bus; 5111 devclass_t root_devclass; 5112 5113 static int 5114 root_bus_module_handler(module_t mod, int what, void* arg) 5115 { 5116 switch (what) { 5117 case MOD_LOAD: 5118 TAILQ_INIT(&bus_data_devices); 5119 kobj_class_compile((kobj_class_t) &root_driver); 5120 root_bus = make_device(NULL, "root", 0); 5121 root_bus->desc = "System root bus"; 5122 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 5123 root_bus->driver = &root_driver; 5124 root_bus->state = DS_ATTACHED; 5125 root_devclass = devclass_find_internal("root", NULL, FALSE); 5126 devinit(); 5127 return (0); 5128 5129 case MOD_SHUTDOWN: 5130 device_shutdown(root_bus); 5131 return (0); 5132 default: 5133 return (EOPNOTSUPP); 5134 } 5135 5136 return (0); 5137 } 5138 5139 static moduledata_t root_bus_mod = { 5140 "rootbus", 5141 root_bus_module_handler, 5142 NULL 5143 }; 5144 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 5145 5146 /** 5147 * @brief Automatically configure devices 5148 * 5149 * This function begins the autoconfiguration process by calling 5150 * device_probe_and_attach() for each child of the @c root0 device. 5151 */ 5152 void 5153 root_bus_configure(void) 5154 { 5155 5156 PDEBUG((".")); 5157 5158 /* Eventually this will be split up, but this is sufficient for now. */ 5159 bus_set_pass(BUS_PASS_DEFAULT); 5160 } 5161 5162 /** 5163 * @brief Module handler for registering device drivers 5164 * 5165 * This module handler is used to automatically register device 5166 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls 5167 * devclass_add_driver() for the driver described by the 5168 * driver_module_data structure pointed to by @p arg 5169 */ 5170 int 5171 driver_module_handler(module_t mod, int what, void *arg) 5172 { 5173 struct driver_module_data *dmd; 5174 devclass_t bus_devclass; 5175 kobj_class_t driver; 5176 int error, pass; 5177 5178 dmd = (struct driver_module_data *)arg; 5179 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 5180 error = 0; 5181 5182 switch (what) { 5183 case MOD_LOAD: 5184 if (dmd->dmd_chainevh) 5185 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5186 5187 pass = dmd->dmd_pass; 5188 driver = dmd->dmd_driver; 5189 PDEBUG(("Loading module: driver %s on bus %s (pass %d)", 5190 DRIVERNAME(driver), dmd->dmd_busname, pass)); 5191 error = devclass_add_driver(bus_devclass, driver, pass, 5192 dmd->dmd_devclass); 5193 break; 5194 5195 case MOD_UNLOAD: 5196 PDEBUG(("Unloading module: driver %s from bus %s", 5197 DRIVERNAME(dmd->dmd_driver), 5198 dmd->dmd_busname)); 5199 error = devclass_delete_driver(bus_devclass, 5200 dmd->dmd_driver); 5201 5202 if (!error && dmd->dmd_chainevh) 5203 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5204 break; 5205 case MOD_QUIESCE: 5206 PDEBUG(("Quiesce module: driver %s from bus %s", 5207 DRIVERNAME(dmd->dmd_driver), 5208 dmd->dmd_busname)); 5209 error = devclass_quiesce_driver(bus_devclass, 5210 dmd->dmd_driver); 5211 5212 if (!error && dmd->dmd_chainevh) 5213 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 5214 break; 5215 default: 5216 error = EOPNOTSUPP; 5217 break; 5218 } 5219 5220 return (error); 5221 } 5222 5223 /** 5224 * @brief Enumerate all hinted devices for this bus. 5225 * 5226 * Walks through the hints for this bus and calls the bus_hinted_child 5227 * routine for each one it fines. It searches first for the specific 5228 * bus that's being probed for hinted children (eg isa0), and then for 5229 * generic children (eg isa). 5230 * 5231 * @param dev bus device to enumerate 5232 */ 5233 void 5234 bus_enumerate_hinted_children(device_t bus) 5235 { 5236 int i; 5237 const char *dname, *busname; 5238 int dunit; 5239 5240 /* 5241 * enumerate all devices on the specific bus 5242 */ 5243 busname = device_get_nameunit(bus); 5244 i = 0; 5245 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5246 BUS_HINTED_CHILD(bus, dname, dunit); 5247 5248 /* 5249 * and all the generic ones. 5250 */ 5251 busname = device_get_name(bus); 5252 i = 0; 5253 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) 5254 BUS_HINTED_CHILD(bus, dname, dunit); 5255 } 5256 5257 #ifdef BUS_DEBUG 5258 5259 /* the _short versions avoid iteration by not calling anything that prints 5260 * more than oneliners. I love oneliners. 5261 */ 5262 5263 static void 5264 print_device_short(device_t dev, int indent) 5265 { 5266 if (!dev) 5267 return; 5268 5269 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 5270 dev->unit, dev->desc, 5271 (dev->parent? "":"no "), 5272 (TAILQ_EMPTY(&dev->children)? "no ":""), 5273 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 5274 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 5275 (dev->flags&DF_WILDCARD? "wildcard,":""), 5276 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 5277 (dev->flags&DF_REBID? "rebiddable,":""), 5278 (dev->flags&DF_SUSPENDED? "suspended,":""), 5279 (dev->ivars? "":"no "), 5280 (dev->softc? "":"no "), 5281 dev->busy)); 5282 } 5283 5284 static void 5285 print_device(device_t dev, int indent) 5286 { 5287 if (!dev) 5288 return; 5289 5290 print_device_short(dev, indent); 5291 5292 indentprintf(("Parent:\n")); 5293 print_device_short(dev->parent, indent+1); 5294 indentprintf(("Driver:\n")); 5295 print_driver_short(dev->driver, indent+1); 5296 indentprintf(("Devclass:\n")); 5297 print_devclass_short(dev->devclass, indent+1); 5298 } 5299 5300 void 5301 print_device_tree_short(device_t dev, int indent) 5302 /* print the device and all its children (indented) */ 5303 { 5304 device_t child; 5305 5306 if (!dev) 5307 return; 5308 5309 print_device_short(dev, indent); 5310 5311 TAILQ_FOREACH(child, &dev->children, link) { 5312 print_device_tree_short(child, indent+1); 5313 } 5314 } 5315 5316 void 5317 print_device_tree(device_t dev, int indent) 5318 /* print the device and all its children (indented) */ 5319 { 5320 device_t child; 5321 5322 if (!dev) 5323 return; 5324 5325 print_device(dev, indent); 5326 5327 TAILQ_FOREACH(child, &dev->children, link) { 5328 print_device_tree(child, indent+1); 5329 } 5330 } 5331 5332 static void 5333 print_driver_short(driver_t *driver, int indent) 5334 { 5335 if (!driver) 5336 return; 5337 5338 indentprintf(("driver %s: softc size = %zd\n", 5339 driver->name, driver->size)); 5340 } 5341 5342 static void 5343 print_driver(driver_t *driver, int indent) 5344 { 5345 if (!driver) 5346 return; 5347 5348 print_driver_short(driver, indent); 5349 } 5350 5351 static void 5352 print_driver_list(driver_list_t drivers, int indent) 5353 { 5354 driverlink_t driver; 5355 5356 TAILQ_FOREACH(driver, &drivers, link) { 5357 print_driver(driver->driver, indent); 5358 } 5359 } 5360 5361 static void 5362 print_devclass_short(devclass_t dc, int indent) 5363 { 5364 if ( !dc ) 5365 return; 5366 5367 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 5368 } 5369 5370 static void 5371 print_devclass(devclass_t dc, int indent) 5372 { 5373 int i; 5374 5375 if ( !dc ) 5376 return; 5377 5378 print_devclass_short(dc, indent); 5379 indentprintf(("Drivers:\n")); 5380 print_driver_list(dc->drivers, indent+1); 5381 5382 indentprintf(("Devices:\n")); 5383 for (i = 0; i < dc->maxunit; i++) 5384 if (dc->devices[i]) 5385 print_device(dc->devices[i], indent+1); 5386 } 5387 5388 void 5389 print_devclass_list_short(void) 5390 { 5391 devclass_t dc; 5392 5393 printf("Short listing of devclasses, drivers & devices:\n"); 5394 TAILQ_FOREACH(dc, &devclasses, link) { 5395 print_devclass_short(dc, 0); 5396 } 5397 } 5398 5399 void 5400 print_devclass_list(void) 5401 { 5402 devclass_t dc; 5403 5404 printf("Full listing of devclasses, drivers & devices:\n"); 5405 TAILQ_FOREACH(dc, &devclasses, link) { 5406 print_devclass(dc, 0); 5407 } 5408 } 5409 5410 #endif 5411 5412 /* 5413 * User-space access to the device tree. 5414 * 5415 * We implement a small set of nodes: 5416 * 5417 * hw.bus Single integer read method to obtain the 5418 * current generation count. 5419 * hw.bus.devices Reads the entire device tree in flat space. 5420 * hw.bus.rman Resource manager interface 5421 * 5422 * We might like to add the ability to scan devclasses and/or drivers to 5423 * determine what else is currently loaded/available. 5424 */ 5425 5426 static int 5427 sysctl_bus(SYSCTL_HANDLER_ARGS) 5428 { 5429 struct u_businfo ubus; 5430 5431 ubus.ub_version = BUS_USER_VERSION; 5432 ubus.ub_generation = bus_data_generation; 5433 5434 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 5435 } 5436 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 5437 "bus-related data"); 5438 5439 static int 5440 sysctl_devices(SYSCTL_HANDLER_ARGS) 5441 { 5442 int *name = (int *)arg1; 5443 u_int namelen = arg2; 5444 int index; 5445 device_t dev; 5446 struct u_device *udev; 5447 int error; 5448 char *walker, *ep; 5449 5450 if (namelen != 2) 5451 return (EINVAL); 5452 5453 if (bus_data_generation_check(name[0])) 5454 return (EINVAL); 5455 5456 index = name[1]; 5457 5458 /* 5459 * Scan the list of devices, looking for the requested index. 5460 */ 5461 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5462 if (index-- == 0) 5463 break; 5464 } 5465 if (dev == NULL) 5466 return (ENOENT); 5467 5468 /* 5469 * Populate the return item, careful not to overflow the buffer. 5470 */ 5471 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); 5472 if (udev == NULL) 5473 return (ENOMEM); 5474 udev->dv_handle = (uintptr_t)dev; 5475 udev->dv_parent = (uintptr_t)dev->parent; 5476 udev->dv_devflags = dev->devflags; 5477 udev->dv_flags = dev->flags; 5478 udev->dv_state = dev->state; 5479 walker = udev->dv_fields; 5480 ep = walker + sizeof(udev->dv_fields); 5481 #define CP(src) \ 5482 if ((src) == NULL) \ 5483 *walker++ = '\0'; \ 5484 else { \ 5485 strlcpy(walker, (src), ep - walker); \ 5486 walker += strlen(walker) + 1; \ 5487 } \ 5488 if (walker >= ep) \ 5489 break; 5490 5491 do { 5492 CP(dev->nameunit); 5493 CP(dev->desc); 5494 CP(dev->driver != NULL ? dev->driver->name : NULL); 5495 bus_child_pnpinfo_str(dev, walker, ep - walker); 5496 walker += strlen(walker) + 1; 5497 if (walker >= ep) 5498 break; 5499 bus_child_location_str(dev, walker, ep - walker); 5500 walker += strlen(walker) + 1; 5501 if (walker >= ep) 5502 break; 5503 *walker++ = '\0'; 5504 } while (0); 5505 #undef CP 5506 error = SYSCTL_OUT(req, udev, sizeof(*udev)); 5507 free(udev, M_BUS); 5508 return (error); 5509 } 5510 5511 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 5512 "system device tree"); 5513 5514 int 5515 bus_data_generation_check(int generation) 5516 { 5517 if (generation != bus_data_generation) 5518 return (1); 5519 5520 /* XXX generate optimised lists here? */ 5521 return (0); 5522 } 5523 5524 void 5525 bus_data_generation_update(void) 5526 { 5527 bus_data_generation++; 5528 } 5529 5530 int 5531 bus_free_resource(device_t dev, int type, struct resource *r) 5532 { 5533 if (r == NULL) 5534 return (0); 5535 return (bus_release_resource(dev, type, rman_get_rid(r), r)); 5536 } 5537 5538 device_t 5539 device_lookup_by_name(const char *name) 5540 { 5541 device_t dev; 5542 5543 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5544 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) 5545 return (dev); 5546 } 5547 return (NULL); 5548 } 5549 5550 /* 5551 * /dev/devctl2 implementation. The existing /dev/devctl device has 5552 * implicit semantics on open, so it could not be reused for this. 5553 * Another option would be to call this /dev/bus? 5554 */ 5555 static int 5556 find_device(struct devreq *req, device_t *devp) 5557 { 5558 device_t dev; 5559 5560 /* 5561 * First, ensure that the name is nul terminated. 5562 */ 5563 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) 5564 return (EINVAL); 5565 5566 /* 5567 * Second, try to find an attached device whose name matches 5568 * 'name'. 5569 */ 5570 dev = device_lookup_by_name(req->dr_name); 5571 if (dev != NULL) { 5572 *devp = dev; 5573 return (0); 5574 } 5575 5576 /* Finally, give device enumerators a chance. */ 5577 dev = NULL; 5578 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); 5579 if (dev == NULL) 5580 return (ENOENT); 5581 *devp = dev; 5582 return (0); 5583 } 5584 5585 static bool 5586 driver_exists(device_t bus, const char *driver) 5587 { 5588 devclass_t dc; 5589 5590 for (dc = bus->devclass; dc != NULL; dc = dc->parent) { 5591 if (devclass_find_driver_internal(dc, driver) != NULL) 5592 return (true); 5593 } 5594 return (false); 5595 } 5596 5597 static void 5598 device_gen_nomatch(device_t dev) 5599 { 5600 device_t child; 5601 5602 if (dev->flags & DF_NEEDNOMATCH && 5603 dev->state == DS_NOTPRESENT) { 5604 BUS_PROBE_NOMATCH(dev->parent, dev); 5605 devnomatch(dev); 5606 dev->flags |= DF_DONENOMATCH; 5607 } 5608 dev->flags &= ~DF_NEEDNOMATCH; 5609 TAILQ_FOREACH(child, &dev->children, link) { 5610 device_gen_nomatch(child); 5611 } 5612 } 5613 5614 static void 5615 device_do_deferred_actions(void) 5616 { 5617 devclass_t dc; 5618 driverlink_t dl; 5619 5620 /* 5621 * Walk through the devclasses to find all the drivers we've tagged as 5622 * deferred during the freeze and call the driver added routines. They 5623 * have already been added to the lists in the background, so the driver 5624 * added routines that trigger a probe will have all the right bidders 5625 * for the probe auction. 5626 */ 5627 TAILQ_FOREACH(dc, &devclasses, link) { 5628 TAILQ_FOREACH(dl, &dc->drivers, link) { 5629 if (dl->flags & DL_DEFERRED_PROBE) { 5630 devclass_driver_added(dc, dl->driver); 5631 dl->flags &= ~DL_DEFERRED_PROBE; 5632 } 5633 } 5634 } 5635 5636 /* 5637 * We also defer no-match events during a freeze. Walk the tree and 5638 * generate all the pent-up events that are still relevant. 5639 */ 5640 device_gen_nomatch(root_bus); 5641 bus_data_generation_update(); 5642 } 5643 5644 static int 5645 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, 5646 struct thread *td) 5647 { 5648 struct devreq *req; 5649 device_t dev; 5650 int error, old; 5651 5652 /* Locate the device to control. */ 5653 mtx_lock(&Giant); 5654 req = (struct devreq *)data; 5655 switch (cmd) { 5656 case DEV_ATTACH: 5657 case DEV_DETACH: 5658 case DEV_ENABLE: 5659 case DEV_DISABLE: 5660 case DEV_SUSPEND: 5661 case DEV_RESUME: 5662 case DEV_SET_DRIVER: 5663 case DEV_CLEAR_DRIVER: 5664 case DEV_RESCAN: 5665 case DEV_DELETE: 5666 case DEV_RESET: 5667 error = priv_check(td, PRIV_DRIVER); 5668 if (error == 0) 5669 error = find_device(req, &dev); 5670 break; 5671 case DEV_FREEZE: 5672 case DEV_THAW: 5673 error = priv_check(td, PRIV_DRIVER); 5674 break; 5675 default: 5676 error = ENOTTY; 5677 break; 5678 } 5679 if (error) { 5680 mtx_unlock(&Giant); 5681 return (error); 5682 } 5683 5684 /* Perform the requested operation. */ 5685 switch (cmd) { 5686 case DEV_ATTACH: 5687 if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0) 5688 error = EBUSY; 5689 else if (!device_is_enabled(dev)) 5690 error = ENXIO; 5691 else 5692 error = device_probe_and_attach(dev); 5693 break; 5694 case DEV_DETACH: 5695 if (!device_is_attached(dev)) { 5696 error = ENXIO; 5697 break; 5698 } 5699 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5700 error = device_quiesce(dev); 5701 if (error) 5702 break; 5703 } 5704 error = device_detach(dev); 5705 break; 5706 case DEV_ENABLE: 5707 if (device_is_enabled(dev)) { 5708 error = EBUSY; 5709 break; 5710 } 5711 5712 /* 5713 * If the device has been probed but not attached (e.g. 5714 * when it has been disabled by a loader hint), just 5715 * attach the device rather than doing a full probe. 5716 */ 5717 device_enable(dev); 5718 if (device_is_alive(dev)) { 5719 /* 5720 * If the device was disabled via a hint, clear 5721 * the hint. 5722 */ 5723 if (resource_disabled(dev->driver->name, dev->unit)) 5724 resource_unset_value(dev->driver->name, 5725 dev->unit, "disabled"); 5726 error = device_attach(dev); 5727 } else 5728 error = device_probe_and_attach(dev); 5729 break; 5730 case DEV_DISABLE: 5731 if (!device_is_enabled(dev)) { 5732 error = ENXIO; 5733 break; 5734 } 5735 5736 if (!(req->dr_flags & DEVF_FORCE_DETACH)) { 5737 error = device_quiesce(dev); 5738 if (error) 5739 break; 5740 } 5741 5742 /* 5743 * Force DF_FIXEDCLASS on around detach to preserve 5744 * the existing name. 5745 */ 5746 old = dev->flags; 5747 dev->flags |= DF_FIXEDCLASS; 5748 error = device_detach(dev); 5749 if (!(old & DF_FIXEDCLASS)) 5750 dev->flags &= ~DF_FIXEDCLASS; 5751 if (error == 0) 5752 device_disable(dev); 5753 break; 5754 case DEV_SUSPEND: 5755 if (device_is_suspended(dev)) { 5756 error = EBUSY; 5757 break; 5758 } 5759 if (device_get_parent(dev) == NULL) { 5760 error = EINVAL; 5761 break; 5762 } 5763 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); 5764 break; 5765 case DEV_RESUME: 5766 if (!device_is_suspended(dev)) { 5767 error = EINVAL; 5768 break; 5769 } 5770 if (device_get_parent(dev) == NULL) { 5771 error = EINVAL; 5772 break; 5773 } 5774 error = BUS_RESUME_CHILD(device_get_parent(dev), dev); 5775 break; 5776 case DEV_SET_DRIVER: { 5777 devclass_t dc; 5778 char driver[128]; 5779 5780 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); 5781 if (error) 5782 break; 5783 if (driver[0] == '\0') { 5784 error = EINVAL; 5785 break; 5786 } 5787 if (dev->devclass != NULL && 5788 strcmp(driver, dev->devclass->name) == 0) 5789 /* XXX: Could possibly force DF_FIXEDCLASS on? */ 5790 break; 5791 5792 /* 5793 * Scan drivers for this device's bus looking for at 5794 * least one matching driver. 5795 */ 5796 if (dev->parent == NULL) { 5797 error = EINVAL; 5798 break; 5799 } 5800 if (!driver_exists(dev->parent, driver)) { 5801 error = ENOENT; 5802 break; 5803 } 5804 dc = devclass_create(driver); 5805 if (dc == NULL) { 5806 error = ENOMEM; 5807 break; 5808 } 5809 5810 /* Detach device if necessary. */ 5811 if (device_is_attached(dev)) { 5812 if (req->dr_flags & DEVF_SET_DRIVER_DETACH) 5813 error = device_detach(dev); 5814 else 5815 error = EBUSY; 5816 if (error) 5817 break; 5818 } 5819 5820 /* Clear any previously-fixed device class and unit. */ 5821 if (dev->flags & DF_FIXEDCLASS) 5822 devclass_delete_device(dev->devclass, dev); 5823 dev->flags |= DF_WILDCARD; 5824 dev->unit = -1; 5825 5826 /* Force the new device class. */ 5827 error = devclass_add_device(dc, dev); 5828 if (error) 5829 break; 5830 dev->flags |= DF_FIXEDCLASS; 5831 error = device_probe_and_attach(dev); 5832 break; 5833 } 5834 case DEV_CLEAR_DRIVER: 5835 if (!(dev->flags & DF_FIXEDCLASS)) { 5836 error = 0; 5837 break; 5838 } 5839 if (device_is_attached(dev)) { 5840 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) 5841 error = device_detach(dev); 5842 else 5843 error = EBUSY; 5844 if (error) 5845 break; 5846 } 5847 5848 dev->flags &= ~DF_FIXEDCLASS; 5849 dev->flags |= DF_WILDCARD; 5850 devclass_delete_device(dev->devclass, dev); 5851 error = device_probe_and_attach(dev); 5852 break; 5853 case DEV_RESCAN: 5854 if (!device_is_attached(dev)) { 5855 error = ENXIO; 5856 break; 5857 } 5858 error = BUS_RESCAN(dev); 5859 break; 5860 case DEV_DELETE: { 5861 device_t parent; 5862 5863 parent = device_get_parent(dev); 5864 if (parent == NULL) { 5865 error = EINVAL; 5866 break; 5867 } 5868 if (!(req->dr_flags & DEVF_FORCE_DELETE)) { 5869 if (bus_child_present(dev) != 0) { 5870 error = EBUSY; 5871 break; 5872 } 5873 } 5874 5875 error = device_delete_child(parent, dev); 5876 break; 5877 } 5878 case DEV_FREEZE: 5879 if (device_frozen) 5880 error = EBUSY; 5881 else 5882 device_frozen = true; 5883 break; 5884 case DEV_THAW: 5885 if (!device_frozen) 5886 error = EBUSY; 5887 else { 5888 device_do_deferred_actions(); 5889 device_frozen = false; 5890 } 5891 break; 5892 case DEV_RESET: 5893 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { 5894 error = EINVAL; 5895 break; 5896 } 5897 error = BUS_RESET_CHILD(device_get_parent(dev), dev, 5898 req->dr_flags); 5899 break; 5900 } 5901 mtx_unlock(&Giant); 5902 return (error); 5903 } 5904 5905 static struct cdevsw devctl2_cdevsw = { 5906 .d_version = D_VERSION, 5907 .d_ioctl = devctl2_ioctl, 5908 .d_name = "devctl2", 5909 }; 5910 5911 static void 5912 devctl2_init(void) 5913 { 5914 5915 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, 5916 UID_ROOT, GID_WHEEL, 0600, "devctl2"); 5917 } 5918 5919 /* 5920 * APIs to manage deprecation and obsolescence. 5921 */ 5922 static int obsolete_panic = 0; 5923 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, 5924 "Panic when obsolete features are used (0 = never, 1 = if osbolete, " 5925 "2 = if deprecated)"); 5926 5927 static void 5928 gone_panic(int major, int running, const char *msg) 5929 { 5930 5931 switch (obsolete_panic) 5932 { 5933 case 0: 5934 return; 5935 case 1: 5936 if (running < major) 5937 return; 5938 /* FALLTHROUGH */ 5939 default: 5940 panic("%s", msg); 5941 } 5942 } 5943 5944 void 5945 _gone_in(int major, const char *msg) 5946 { 5947 5948 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5949 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5950 printf("Obsolete code will removed soon: %s\n", msg); 5951 else 5952 printf("Deprecated code (to be removed in FreeBSD %d): %s\n", 5953 major, msg); 5954 } 5955 5956 void 5957 _gone_in_dev(device_t dev, int major, const char *msg) 5958 { 5959 5960 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); 5961 if (P_OSREL_MAJOR(__FreeBSD_version) >= major) 5962 device_printf(dev, 5963 "Obsolete code will removed soon: %s\n", msg); 5964 else 5965 device_printf(dev, 5966 "Deprecated code (to be removed in FreeBSD %d): %s\n", 5967 major, msg); 5968 } 5969 5970 #ifdef DDB 5971 DB_SHOW_COMMAND(device, db_show_device) 5972 { 5973 device_t dev; 5974 5975 if (!have_addr) 5976 return; 5977 5978 dev = (device_t)addr; 5979 5980 db_printf("name: %s\n", device_get_nameunit(dev)); 5981 db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); 5982 db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); 5983 db_printf(" addr: %p\n", dev); 5984 db_printf(" parent: %p\n", dev->parent); 5985 db_printf(" softc: %p\n", dev->softc); 5986 db_printf(" ivars: %p\n", dev->ivars); 5987 } 5988 5989 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) 5990 { 5991 device_t dev; 5992 5993 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 5994 db_show_device((db_expr_t)dev, true, count, modif); 5995 } 5996 } 5997 #endif 5998