xref: /freebsd/sys/kern/subr_bus.c (revision 0aa4a9fc859fd43343e2d7b5094a50d1ca0948eb)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1997,1998,2003 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_bus.h"
31 #include "opt_ddb.h"
32 
33 #include <sys/param.h>
34 #include <sys/conf.h>
35 #include <sys/domainset.h>
36 #include <sys/eventhandler.h>
37 #include <sys/lock.h>
38 #include <sys/kernel.h>
39 #include <sys/limits.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/priv.h>
44 #include <machine/bus.h>
45 #include <sys/random.h>
46 #include <sys/refcount.h>
47 #include <sys/rman.h>
48 #include <sys/sbuf.h>
49 #include <sys/smp.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/bus.h>
53 #include <sys/cpuset.h>
54 
55 #include <net/vnet.h>
56 
57 #include <machine/cpu.h>
58 #include <machine/stdarg.h>
59 
60 #include <vm/uma.h>
61 #include <vm/vm.h>
62 
63 #include <ddb/ddb.h>
64 
65 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
66     NULL);
67 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
68     NULL);
69 
70 static bool disable_failed_devs = false;
71 SYSCTL_BOOL(_hw_bus, OID_AUTO, disable_failed_devices, CTLFLAG_RWTUN, &disable_failed_devs,
72     0, "Do not retry attaching devices that return an error from DEVICE_ATTACH the first time");
73 
74 /*
75  * Used to attach drivers to devclasses.
76  */
77 typedef struct driverlink *driverlink_t;
78 struct driverlink {
79 	kobj_class_t	driver;
80 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
81 	int		pass;
82 	int		flags;
83 #define DL_DEFERRED_PROBE	1	/* Probe deferred on this */
84 	TAILQ_ENTRY(driverlink) passlink;
85 };
86 
87 /*
88  * Forward declarations
89  */
90 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
91 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
92 typedef TAILQ_HEAD(device_list, _device) device_list_t;
93 
94 struct devclass {
95 	TAILQ_ENTRY(devclass) link;
96 	devclass_t	parent;		/* parent in devclass hierarchy */
97 	driver_list_t	drivers;	/* bus devclasses store drivers for bus */
98 	char		*name;
99 	device_t	*devices;	/* array of devices indexed by unit */
100 	int		maxunit;	/* size of devices array */
101 	int		flags;
102 #define DC_HAS_CHILDREN		1
103 
104 	struct sysctl_ctx_list sysctl_ctx;
105 	struct sysctl_oid *sysctl_tree;
106 };
107 
108 /**
109  * @brief Implementation of _device.
110  *
111  * The structure is named "_device" instead of "device" to avoid type confusion
112  * caused by other subsystems defining a (struct device).
113  */
114 struct _device {
115 	/*
116 	 * A device is a kernel object. The first field must be the
117 	 * current ops table for the object.
118 	 */
119 	KOBJ_FIELDS;
120 
121 	/*
122 	 * Device hierarchy.
123 	 */
124 	TAILQ_ENTRY(_device)	link;	/**< list of devices in parent */
125 	TAILQ_ENTRY(_device)	devlink; /**< global device list membership */
126 	device_t	parent;		/**< parent of this device  */
127 	device_list_t	children;	/**< list of child devices */
128 
129 	/*
130 	 * Details of this device.
131 	 */
132 	driver_t	*driver;	/**< current driver */
133 	devclass_t	devclass;	/**< current device class */
134 	int		unit;		/**< current unit number */
135 	char*		nameunit;	/**< name+unit e.g. foodev0 */
136 	char*		desc;		/**< driver specific description */
137 	u_int		busy;		/**< count of calls to device_busy() */
138 	device_state_t	state;		/**< current device state  */
139 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
140 	u_int		flags;		/**< internal device flags  */
141 	u_int	order;			/**< order from device_add_child_ordered() */
142 	void	*ivars;			/**< instance variables  */
143 	void	*softc;			/**< current driver's variables  */
144 
145 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
146 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
147 };
148 
149 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
150 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
151 
152 EVENTHANDLER_LIST_DEFINE(device_attach);
153 EVENTHANDLER_LIST_DEFINE(device_detach);
154 EVENTHANDLER_LIST_DEFINE(device_nomatch);
155 EVENTHANDLER_LIST_DEFINE(dev_lookup);
156 
157 static void devctl2_init(void);
158 static bool device_frozen;
159 
160 #define DRIVERNAME(d)	((d)? d->name : "no driver")
161 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
162 
163 #ifdef BUS_DEBUG
164 
165 static int bus_debug = 1;
166 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
167     "Bus debug level");
168 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
169 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
170 
171 /**
172  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
173  * prevent syslog from deleting initial spaces
174  */
175 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
176 
177 static void print_device_short(device_t dev, int indent);
178 static void print_device(device_t dev, int indent);
179 void print_device_tree_short(device_t dev, int indent);
180 void print_device_tree(device_t dev, int indent);
181 static void print_driver_short(driver_t *driver, int indent);
182 static void print_driver(driver_t *driver, int indent);
183 static void print_driver_list(driver_list_t drivers, int indent);
184 static void print_devclass_short(devclass_t dc, int indent);
185 static void print_devclass(devclass_t dc, int indent);
186 void print_devclass_list_short(void);
187 void print_devclass_list(void);
188 
189 #else
190 /* Make the compiler ignore the function calls */
191 #define PDEBUG(a)			/* nop */
192 #define DEVICENAME(d)			/* nop */
193 
194 #define print_device_short(d,i)		/* nop */
195 #define print_device(d,i)		/* nop */
196 #define print_device_tree_short(d,i)	/* nop */
197 #define print_device_tree(d,i)		/* nop */
198 #define print_driver_short(d,i)		/* nop */
199 #define print_driver(d,i)		/* nop */
200 #define print_driver_list(d,i)		/* nop */
201 #define print_devclass_short(d,i)	/* nop */
202 #define print_devclass(d,i)		/* nop */
203 #define print_devclass_list_short()	/* nop */
204 #define print_devclass_list()		/* nop */
205 #endif
206 
207 /*
208  * dev sysctl tree
209  */
210 
211 enum {
212 	DEVCLASS_SYSCTL_PARENT,
213 };
214 
215 static int
216 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
217 {
218 	devclass_t dc = (devclass_t)arg1;
219 	const char *value;
220 
221 	switch (arg2) {
222 	case DEVCLASS_SYSCTL_PARENT:
223 		value = dc->parent ? dc->parent->name : "";
224 		break;
225 	default:
226 		return (EINVAL);
227 	}
228 	return (SYSCTL_OUT_STR(req, value));
229 }
230 
231 static void
232 devclass_sysctl_init(devclass_t dc)
233 {
234 	if (dc->sysctl_tree != NULL)
235 		return;
236 	sysctl_ctx_init(&dc->sysctl_ctx);
237 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
238 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
239 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
240 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
241 	    OID_AUTO, "%parent",
242 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
243 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
244 	    "parent class");
245 }
246 
247 enum {
248 	DEVICE_SYSCTL_DESC,
249 	DEVICE_SYSCTL_DRIVER,
250 	DEVICE_SYSCTL_LOCATION,
251 	DEVICE_SYSCTL_PNPINFO,
252 	DEVICE_SYSCTL_PARENT,
253 };
254 
255 static int
256 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
257 {
258 	struct sbuf sb;
259 	device_t dev = (device_t)arg1;
260 	int error;
261 
262 	sbuf_new_for_sysctl(&sb, NULL, 1024, req);
263 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
264 	bus_topo_lock();
265 	switch (arg2) {
266 	case DEVICE_SYSCTL_DESC:
267 		sbuf_cat(&sb, dev->desc ? dev->desc : "");
268 		break;
269 	case DEVICE_SYSCTL_DRIVER:
270 		sbuf_cat(&sb, dev->driver ? dev->driver->name : "");
271 		break;
272 	case DEVICE_SYSCTL_LOCATION:
273 		bus_child_location(dev, &sb);
274 		break;
275 	case DEVICE_SYSCTL_PNPINFO:
276 		bus_child_pnpinfo(dev, &sb);
277 		break;
278 	case DEVICE_SYSCTL_PARENT:
279 		sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : "");
280 		break;
281 	default:
282 		error = EINVAL;
283 		goto out;
284 	}
285 	error = sbuf_finish(&sb);
286 out:
287 	bus_topo_unlock();
288 	sbuf_delete(&sb);
289 	return (error);
290 }
291 
292 static void
293 device_sysctl_init(device_t dev)
294 {
295 	devclass_t dc = dev->devclass;
296 	int domain;
297 
298 	if (dev->sysctl_tree != NULL)
299 		return;
300 	devclass_sysctl_init(dc);
301 	sysctl_ctx_init(&dev->sysctl_ctx);
302 	dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
303 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
304 	    dev->nameunit + strlen(dc->name),
305 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index");
306 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
307 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
308 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
309 	    "device description");
310 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
311 	    OID_AUTO, "%driver",
312 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
313 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
314 	    "device driver name");
315 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
316 	    OID_AUTO, "%location",
317 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
318 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
319 	    "device location relative to parent");
320 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
321 	    OID_AUTO, "%pnpinfo",
322 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
323 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
324 	    "device identification");
325 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
326 	    OID_AUTO, "%parent",
327 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
328 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
329 	    "parent device");
330 	if (bus_get_domain(dev, &domain) == 0)
331 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
332 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
333 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain");
334 }
335 
336 static void
337 device_sysctl_update(device_t dev)
338 {
339 	devclass_t dc = dev->devclass;
340 
341 	if (dev->sysctl_tree == NULL)
342 		return;
343 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
344 }
345 
346 static void
347 device_sysctl_fini(device_t dev)
348 {
349 	if (dev->sysctl_tree == NULL)
350 		return;
351 	sysctl_ctx_free(&dev->sysctl_ctx);
352 	dev->sysctl_tree = NULL;
353 }
354 
355 static struct device_list bus_data_devices;
356 static int bus_data_generation = 1;
357 
358 static kobj_method_t null_methods[] = {
359 	KOBJMETHOD_END
360 };
361 
362 DEFINE_CLASS(null, null_methods, 0);
363 
364 void
365 bus_topo_assert(void)
366 {
367 
368 	GIANT_REQUIRED;
369 }
370 
371 struct mtx *
372 bus_topo_mtx(void)
373 {
374 
375 	return (&Giant);
376 }
377 
378 void
379 bus_topo_lock(void)
380 {
381 
382 	mtx_lock(bus_topo_mtx());
383 }
384 
385 void
386 bus_topo_unlock(void)
387 {
388 
389 	mtx_unlock(bus_topo_mtx());
390 }
391 
392 /*
393  * Bus pass implementation
394  */
395 
396 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
397 int bus_current_pass = BUS_PASS_ROOT;
398 
399 /**
400  * @internal
401  * @brief Register the pass level of a new driver attachment
402  *
403  * Register a new driver attachment's pass level.  If no driver
404  * attachment with the same pass level has been added, then @p new
405  * will be added to the global passes list.
406  *
407  * @param new		the new driver attachment
408  */
409 static void
410 driver_register_pass(struct driverlink *new)
411 {
412 	struct driverlink *dl;
413 
414 	/* We only consider pass numbers during boot. */
415 	if (bus_current_pass == BUS_PASS_DEFAULT)
416 		return;
417 
418 	/*
419 	 * Walk the passes list.  If we already know about this pass
420 	 * then there is nothing to do.  If we don't, then insert this
421 	 * driver link into the list.
422 	 */
423 	TAILQ_FOREACH(dl, &passes, passlink) {
424 		if (dl->pass < new->pass)
425 			continue;
426 		if (dl->pass == new->pass)
427 			return;
428 		TAILQ_INSERT_BEFORE(dl, new, passlink);
429 		return;
430 	}
431 	TAILQ_INSERT_TAIL(&passes, new, passlink);
432 }
433 
434 /**
435  * @brief Raise the current bus pass
436  *
437  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
438  * method on the root bus to kick off a new device tree scan for each
439  * new pass level that has at least one driver.
440  */
441 void
442 bus_set_pass(int pass)
443 {
444 	struct driverlink *dl;
445 
446 	if (bus_current_pass > pass)
447 		panic("Attempt to lower bus pass level");
448 
449 	TAILQ_FOREACH(dl, &passes, passlink) {
450 		/* Skip pass values below the current pass level. */
451 		if (dl->pass <= bus_current_pass)
452 			continue;
453 
454 		/*
455 		 * Bail once we hit a driver with a pass level that is
456 		 * too high.
457 		 */
458 		if (dl->pass > pass)
459 			break;
460 
461 		/*
462 		 * Raise the pass level to the next level and rescan
463 		 * the tree.
464 		 */
465 		bus_current_pass = dl->pass;
466 		BUS_NEW_PASS(root_bus);
467 	}
468 
469 	/*
470 	 * If there isn't a driver registered for the requested pass,
471 	 * then bus_current_pass might still be less than 'pass'.  Set
472 	 * it to 'pass' in that case.
473 	 */
474 	if (bus_current_pass < pass)
475 		bus_current_pass = pass;
476 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
477 }
478 
479 /*
480  * Devclass implementation
481  */
482 
483 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
484 
485 /**
486  * @internal
487  * @brief Find or create a device class
488  *
489  * If a device class with the name @p classname exists, return it,
490  * otherwise if @p create is non-zero create and return a new device
491  * class.
492  *
493  * If @p parentname is non-NULL, the parent of the devclass is set to
494  * the devclass of that name.
495  *
496  * @param classname	the devclass name to find or create
497  * @param parentname	the parent devclass name or @c NULL
498  * @param create	non-zero to create a devclass
499  */
500 static devclass_t
501 devclass_find_internal(const char *classname, const char *parentname,
502 		       int create)
503 {
504 	devclass_t dc;
505 
506 	PDEBUG(("looking for %s", classname));
507 	if (!classname)
508 		return (NULL);
509 
510 	TAILQ_FOREACH(dc, &devclasses, link) {
511 		if (!strcmp(dc->name, classname))
512 			break;
513 	}
514 
515 	if (create && !dc) {
516 		PDEBUG(("creating %s", classname));
517 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
518 		    M_BUS, M_NOWAIT | M_ZERO);
519 		if (!dc)
520 			return (NULL);
521 		dc->parent = NULL;
522 		dc->name = (char*) (dc + 1);
523 		strcpy(dc->name, classname);
524 		TAILQ_INIT(&dc->drivers);
525 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
526 
527 		bus_data_generation_update();
528 	}
529 
530 	/*
531 	 * If a parent class is specified, then set that as our parent so
532 	 * that this devclass will support drivers for the parent class as
533 	 * well.  If the parent class has the same name don't do this though
534 	 * as it creates a cycle that can trigger an infinite loop in
535 	 * device_probe_child() if a device exists for which there is no
536 	 * suitable driver.
537 	 */
538 	if (parentname && dc && !dc->parent &&
539 	    strcmp(classname, parentname) != 0) {
540 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
541 		dc->parent->flags |= DC_HAS_CHILDREN;
542 	}
543 
544 	return (dc);
545 }
546 
547 /**
548  * @brief Create a device class
549  *
550  * If a device class with the name @p classname exists, return it,
551  * otherwise create and return a new device class.
552  *
553  * @param classname	the devclass name to find or create
554  */
555 devclass_t
556 devclass_create(const char *classname)
557 {
558 	return (devclass_find_internal(classname, NULL, TRUE));
559 }
560 
561 /**
562  * @brief Find a device class
563  *
564  * If a device class with the name @p classname exists, return it,
565  * otherwise return @c NULL.
566  *
567  * @param classname	the devclass name to find
568  */
569 devclass_t
570 devclass_find(const char *classname)
571 {
572 	return (devclass_find_internal(classname, NULL, FALSE));
573 }
574 
575 /**
576  * @brief Register that a device driver has been added to a devclass
577  *
578  * Register that a device driver has been added to a devclass.  This
579  * is called by devclass_add_driver to accomplish the recursive
580  * notification of all the children classes of dc, as well as dc.
581  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
582  * the devclass.
583  *
584  * We do a full search here of the devclass list at each iteration
585  * level to save storing children-lists in the devclass structure.  If
586  * we ever move beyond a few dozen devices doing this, we may need to
587  * reevaluate...
588  *
589  * @param dc		the devclass to edit
590  * @param driver	the driver that was just added
591  */
592 static void
593 devclass_driver_added(devclass_t dc, driver_t *driver)
594 {
595 	devclass_t parent;
596 	int i;
597 
598 	/*
599 	 * Call BUS_DRIVER_ADDED for any existing buses in this class.
600 	 */
601 	for (i = 0; i < dc->maxunit; i++)
602 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
603 			BUS_DRIVER_ADDED(dc->devices[i], driver);
604 
605 	/*
606 	 * Walk through the children classes.  Since we only keep a
607 	 * single parent pointer around, we walk the entire list of
608 	 * devclasses looking for children.  We set the
609 	 * DC_HAS_CHILDREN flag when a child devclass is created on
610 	 * the parent, so we only walk the list for those devclasses
611 	 * that have children.
612 	 */
613 	if (!(dc->flags & DC_HAS_CHILDREN))
614 		return;
615 	parent = dc;
616 	TAILQ_FOREACH(dc, &devclasses, link) {
617 		if (dc->parent == parent)
618 			devclass_driver_added(dc, driver);
619 	}
620 }
621 
622 static void
623 device_handle_nomatch(device_t dev)
624 {
625 	BUS_PROBE_NOMATCH(dev->parent, dev);
626 	EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev);
627 	dev->flags |= DF_DONENOMATCH;
628 }
629 
630 /**
631  * @brief Add a device driver to a device class
632  *
633  * Add a device driver to a devclass. This is normally called
634  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
635  * all devices in the devclass will be called to allow them to attempt
636  * to re-probe any unmatched children.
637  *
638  * @param dc		the devclass to edit
639  * @param driver	the driver to register
640  */
641 int
642 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
643 {
644 	driverlink_t dl;
645 	devclass_t child_dc;
646 	const char *parentname;
647 
648 	PDEBUG(("%s", DRIVERNAME(driver)));
649 
650 	/* Don't allow invalid pass values. */
651 	if (pass <= BUS_PASS_ROOT)
652 		return (EINVAL);
653 
654 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
655 	if (!dl)
656 		return (ENOMEM);
657 
658 	/*
659 	 * Compile the driver's methods. Also increase the reference count
660 	 * so that the class doesn't get freed when the last instance
661 	 * goes. This means we can safely use static methods and avoids a
662 	 * double-free in devclass_delete_driver.
663 	 */
664 	kobj_class_compile((kobj_class_t) driver);
665 
666 	/*
667 	 * If the driver has any base classes, make the
668 	 * devclass inherit from the devclass of the driver's
669 	 * first base class. This will allow the system to
670 	 * search for drivers in both devclasses for children
671 	 * of a device using this driver.
672 	 */
673 	if (driver->baseclasses)
674 		parentname = driver->baseclasses[0]->name;
675 	else
676 		parentname = NULL;
677 	child_dc = devclass_find_internal(driver->name, parentname, TRUE);
678 	if (dcp != NULL)
679 		*dcp = child_dc;
680 
681 	dl->driver = driver;
682 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
683 	driver->refs++;		/* XXX: kobj_mtx */
684 	dl->pass = pass;
685 	driver_register_pass(dl);
686 
687 	if (device_frozen) {
688 		dl->flags |= DL_DEFERRED_PROBE;
689 	} else {
690 		devclass_driver_added(dc, driver);
691 	}
692 	bus_data_generation_update();
693 	return (0);
694 }
695 
696 /**
697  * @brief Register that a device driver has been deleted from a devclass
698  *
699  * Register that a device driver has been removed from a devclass.
700  * This is called by devclass_delete_driver to accomplish the
701  * recursive notification of all the children classes of busclass, as
702  * well as busclass.  Each layer will attempt to detach the driver
703  * from any devices that are children of the bus's devclass.  The function
704  * will return an error if a device fails to detach.
705  *
706  * We do a full search here of the devclass list at each iteration
707  * level to save storing children-lists in the devclass structure.  If
708  * we ever move beyond a few dozen devices doing this, we may need to
709  * reevaluate...
710  *
711  * @param busclass	the devclass of the parent bus
712  * @param dc		the devclass of the driver being deleted
713  * @param driver	the driver being deleted
714  */
715 static int
716 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
717 {
718 	devclass_t parent;
719 	device_t dev;
720 	int error, i;
721 
722 	/*
723 	 * Disassociate from any devices.  We iterate through all the
724 	 * devices in the devclass of the driver and detach any which are
725 	 * using the driver and which have a parent in the devclass which
726 	 * we are deleting from.
727 	 *
728 	 * Note that since a driver can be in multiple devclasses, we
729 	 * should not detach devices which are not children of devices in
730 	 * the affected devclass.
731 	 *
732 	 * If we're frozen, we don't generate NOMATCH events. Mark to
733 	 * generate later.
734 	 */
735 	for (i = 0; i < dc->maxunit; i++) {
736 		if (dc->devices[i]) {
737 			dev = dc->devices[i];
738 			if (dev->driver == driver && dev->parent &&
739 			    dev->parent->devclass == busclass) {
740 				if ((error = device_detach(dev)) != 0)
741 					return (error);
742 				if (device_frozen) {
743 					dev->flags &= ~DF_DONENOMATCH;
744 					dev->flags |= DF_NEEDNOMATCH;
745 				} else {
746 					device_handle_nomatch(dev);
747 				}
748 			}
749 		}
750 	}
751 
752 	/*
753 	 * Walk through the children classes.  Since we only keep a
754 	 * single parent pointer around, we walk the entire list of
755 	 * devclasses looking for children.  We set the
756 	 * DC_HAS_CHILDREN flag when a child devclass is created on
757 	 * the parent, so we only walk the list for those devclasses
758 	 * that have children.
759 	 */
760 	if (!(busclass->flags & DC_HAS_CHILDREN))
761 		return (0);
762 	parent = busclass;
763 	TAILQ_FOREACH(busclass, &devclasses, link) {
764 		if (busclass->parent == parent) {
765 			error = devclass_driver_deleted(busclass, dc, driver);
766 			if (error)
767 				return (error);
768 		}
769 	}
770 	return (0);
771 }
772 
773 /**
774  * @brief Delete a device driver from a device class
775  *
776  * Delete a device driver from a devclass. This is normally called
777  * automatically by DRIVER_MODULE().
778  *
779  * If the driver is currently attached to any devices,
780  * devclass_delete_driver() will first attempt to detach from each
781  * device. If one of the detach calls fails, the driver will not be
782  * deleted.
783  *
784  * @param dc		the devclass to edit
785  * @param driver	the driver to unregister
786  */
787 int
788 devclass_delete_driver(devclass_t busclass, driver_t *driver)
789 {
790 	devclass_t dc = devclass_find(driver->name);
791 	driverlink_t dl;
792 	int error;
793 
794 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
795 
796 	if (!dc)
797 		return (0);
798 
799 	/*
800 	 * Find the link structure in the bus' list of drivers.
801 	 */
802 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
803 		if (dl->driver == driver)
804 			break;
805 	}
806 
807 	if (!dl) {
808 		PDEBUG(("%s not found in %s list", driver->name,
809 		    busclass->name));
810 		return (ENOENT);
811 	}
812 
813 	error = devclass_driver_deleted(busclass, dc, driver);
814 	if (error != 0)
815 		return (error);
816 
817 	TAILQ_REMOVE(&busclass->drivers, dl, link);
818 	free(dl, M_BUS);
819 
820 	/* XXX: kobj_mtx */
821 	driver->refs--;
822 	if (driver->refs == 0)
823 		kobj_class_free((kobj_class_t) driver);
824 
825 	bus_data_generation_update();
826 	return (0);
827 }
828 
829 /**
830  * @brief Quiesces a set of device drivers from a device class
831  *
832  * Quiesce a device driver from a devclass. This is normally called
833  * automatically by DRIVER_MODULE().
834  *
835  * If the driver is currently attached to any devices,
836  * devclass_quiesece_driver() will first attempt to quiesce each
837  * device.
838  *
839  * @param dc		the devclass to edit
840  * @param driver	the driver to unregister
841  */
842 static int
843 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
844 {
845 	devclass_t dc = devclass_find(driver->name);
846 	driverlink_t dl;
847 	device_t dev;
848 	int i;
849 	int error;
850 
851 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
852 
853 	if (!dc)
854 		return (0);
855 
856 	/*
857 	 * Find the link structure in the bus' list of drivers.
858 	 */
859 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
860 		if (dl->driver == driver)
861 			break;
862 	}
863 
864 	if (!dl) {
865 		PDEBUG(("%s not found in %s list", driver->name,
866 		    busclass->name));
867 		return (ENOENT);
868 	}
869 
870 	/*
871 	 * Quiesce all devices.  We iterate through all the devices in
872 	 * the devclass of the driver and quiesce any which are using
873 	 * the driver and which have a parent in the devclass which we
874 	 * are quiescing.
875 	 *
876 	 * Note that since a driver can be in multiple devclasses, we
877 	 * should not quiesce devices which are not children of
878 	 * devices in the affected devclass.
879 	 */
880 	for (i = 0; i < dc->maxunit; i++) {
881 		if (dc->devices[i]) {
882 			dev = dc->devices[i];
883 			if (dev->driver == driver && dev->parent &&
884 			    dev->parent->devclass == busclass) {
885 				if ((error = device_quiesce(dev)) != 0)
886 					return (error);
887 			}
888 		}
889 	}
890 
891 	return (0);
892 }
893 
894 /**
895  * @internal
896  */
897 static driverlink_t
898 devclass_find_driver_internal(devclass_t dc, const char *classname)
899 {
900 	driverlink_t dl;
901 
902 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
903 
904 	TAILQ_FOREACH(dl, &dc->drivers, link) {
905 		if (!strcmp(dl->driver->name, classname))
906 			return (dl);
907 	}
908 
909 	PDEBUG(("not found"));
910 	return (NULL);
911 }
912 
913 /**
914  * @brief Return the name of the devclass
915  */
916 const char *
917 devclass_get_name(devclass_t dc)
918 {
919 	return (dc->name);
920 }
921 
922 /**
923  * @brief Find a device given a unit number
924  *
925  * @param dc		the devclass to search
926  * @param unit		the unit number to search for
927  *
928  * @returns		the device with the given unit number or @c
929  *			NULL if there is no such device
930  */
931 device_t
932 devclass_get_device(devclass_t dc, int unit)
933 {
934 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
935 		return (NULL);
936 	return (dc->devices[unit]);
937 }
938 
939 /**
940  * @brief Find the softc field of a device given a unit number
941  *
942  * @param dc		the devclass to search
943  * @param unit		the unit number to search for
944  *
945  * @returns		the softc field of the device with the given
946  *			unit number or @c NULL if there is no such
947  *			device
948  */
949 void *
950 devclass_get_softc(devclass_t dc, int unit)
951 {
952 	device_t dev;
953 
954 	dev = devclass_get_device(dc, unit);
955 	if (!dev)
956 		return (NULL);
957 
958 	return (device_get_softc(dev));
959 }
960 
961 /**
962  * @brief Get a list of devices in the devclass
963  *
964  * An array containing a list of all the devices in the given devclass
965  * is allocated and returned in @p *devlistp. The number of devices
966  * in the array is returned in @p *devcountp. The caller should free
967  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
968  *
969  * @param dc		the devclass to examine
970  * @param devlistp	points at location for array pointer return
971  *			value
972  * @param devcountp	points at location for array size return value
973  *
974  * @retval 0		success
975  * @retval ENOMEM	the array allocation failed
976  */
977 int
978 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
979 {
980 	int count, i;
981 	device_t *list;
982 
983 	count = devclass_get_count(dc);
984 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
985 	if (!list)
986 		return (ENOMEM);
987 
988 	count = 0;
989 	for (i = 0; i < dc->maxunit; i++) {
990 		if (dc->devices[i]) {
991 			list[count] = dc->devices[i];
992 			count++;
993 		}
994 	}
995 
996 	*devlistp = list;
997 	*devcountp = count;
998 
999 	return (0);
1000 }
1001 
1002 /**
1003  * @brief Get a list of drivers in the devclass
1004  *
1005  * An array containing a list of pointers to all the drivers in the
1006  * given devclass is allocated and returned in @p *listp.  The number
1007  * of drivers in the array is returned in @p *countp. The caller should
1008  * free the array using @c free(p, M_TEMP).
1009  *
1010  * @param dc		the devclass to examine
1011  * @param listp		gives location for array pointer return value
1012  * @param countp	gives location for number of array elements
1013  *			return value
1014  *
1015  * @retval 0		success
1016  * @retval ENOMEM	the array allocation failed
1017  */
1018 int
1019 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1020 {
1021 	driverlink_t dl;
1022 	driver_t **list;
1023 	int count;
1024 
1025 	count = 0;
1026 	TAILQ_FOREACH(dl, &dc->drivers, link)
1027 		count++;
1028 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1029 	if (list == NULL)
1030 		return (ENOMEM);
1031 
1032 	count = 0;
1033 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1034 		list[count] = dl->driver;
1035 		count++;
1036 	}
1037 	*listp = list;
1038 	*countp = count;
1039 
1040 	return (0);
1041 }
1042 
1043 /**
1044  * @brief Get the number of devices in a devclass
1045  *
1046  * @param dc		the devclass to examine
1047  */
1048 int
1049 devclass_get_count(devclass_t dc)
1050 {
1051 	int count, i;
1052 
1053 	count = 0;
1054 	for (i = 0; i < dc->maxunit; i++)
1055 		if (dc->devices[i])
1056 			count++;
1057 	return (count);
1058 }
1059 
1060 /**
1061  * @brief Get the maximum unit number used in a devclass
1062  *
1063  * Note that this is one greater than the highest currently-allocated unit.  If
1064  * @p dc is NULL, @c -1 is returned to indicate that not even the devclass has
1065  * been allocated yet.
1066  *
1067  * @param dc		the devclass to examine
1068  */
1069 int
1070 devclass_get_maxunit(devclass_t dc)
1071 {
1072 	if (dc == NULL)
1073 		return (-1);
1074 	return (dc->maxunit);
1075 }
1076 
1077 /**
1078  * @brief Find a free unit number in a devclass
1079  *
1080  * This function searches for the first unused unit number greater
1081  * that or equal to @p unit.
1082  *
1083  * @param dc		the devclass to examine
1084  * @param unit		the first unit number to check
1085  */
1086 int
1087 devclass_find_free_unit(devclass_t dc, int unit)
1088 {
1089 	if (dc == NULL)
1090 		return (unit);
1091 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1092 		unit++;
1093 	return (unit);
1094 }
1095 
1096 /**
1097  * @brief Set the parent of a devclass
1098  *
1099  * The parent class is normally initialised automatically by
1100  * DRIVER_MODULE().
1101  *
1102  * @param dc		the devclass to edit
1103  * @param pdc		the new parent devclass
1104  */
1105 void
1106 devclass_set_parent(devclass_t dc, devclass_t pdc)
1107 {
1108 	dc->parent = pdc;
1109 }
1110 
1111 /**
1112  * @brief Get the parent of a devclass
1113  *
1114  * @param dc		the devclass to examine
1115  */
1116 devclass_t
1117 devclass_get_parent(devclass_t dc)
1118 {
1119 	return (dc->parent);
1120 }
1121 
1122 struct sysctl_ctx_list *
1123 devclass_get_sysctl_ctx(devclass_t dc)
1124 {
1125 	return (&dc->sysctl_ctx);
1126 }
1127 
1128 struct sysctl_oid *
1129 devclass_get_sysctl_tree(devclass_t dc)
1130 {
1131 	return (dc->sysctl_tree);
1132 }
1133 
1134 /**
1135  * @internal
1136  * @brief Allocate a unit number
1137  *
1138  * On entry, @p *unitp is the desired unit number (or @c DEVICE_UNIT_ANY if any
1139  * will do). The allocated unit number is returned in @p *unitp.
1140  *
1141  * @param dc		the devclass to allocate from
1142  * @param unitp		points at the location for the allocated unit
1143  *			number
1144  *
1145  * @retval 0		success
1146  * @retval EEXIST	the requested unit number is already allocated
1147  * @retval ENOMEM	memory allocation failure
1148  */
1149 static int
1150 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1151 {
1152 	const char *s;
1153 	int unit = *unitp;
1154 
1155 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1156 
1157 	/* Ask the parent bus if it wants to wire this device. */
1158 	if (unit == DEVICE_UNIT_ANY)
1159 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1160 		    &unit);
1161 
1162 	/* If we were given a wired unit number, check for existing device */
1163 	if (unit != DEVICE_UNIT_ANY) {
1164 		if (unit >= 0 && unit < dc->maxunit &&
1165 		    dc->devices[unit] != NULL) {
1166 			if (bootverbose)
1167 				printf("%s: %s%d already exists; skipping it\n",
1168 				    dc->name, dc->name, *unitp);
1169 			return (EEXIST);
1170 		}
1171 	} else {
1172 		/* Unwired device, find the next available slot for it */
1173 		unit = 0;
1174 		for (unit = 0;; unit++) {
1175 			/* If this device slot is already in use, skip it. */
1176 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1177 				continue;
1178 
1179 			/* If there is an "at" hint for a unit then skip it. */
1180 			if (resource_string_value(dc->name, unit, "at", &s) ==
1181 			    0)
1182 				continue;
1183 
1184 			break;
1185 		}
1186 	}
1187 
1188 	/*
1189 	 * We've selected a unit beyond the length of the table, so let's
1190 	 * extend the table to make room for all units up to and including
1191 	 * this one.
1192 	 */
1193 	if (unit >= dc->maxunit) {
1194 		device_t *newlist, *oldlist;
1195 		int newsize;
1196 
1197 		oldlist = dc->devices;
1198 		newsize = roundup((unit + 1),
1199 		    MAX(1, MINALLOCSIZE / sizeof(device_t)));
1200 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1201 		if (!newlist)
1202 			return (ENOMEM);
1203 		if (oldlist != NULL)
1204 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1205 		bzero(newlist + dc->maxunit,
1206 		    sizeof(device_t) * (newsize - dc->maxunit));
1207 		dc->devices = newlist;
1208 		dc->maxunit = newsize;
1209 		if (oldlist != NULL)
1210 			free(oldlist, M_BUS);
1211 	}
1212 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1213 
1214 	*unitp = unit;
1215 	return (0);
1216 }
1217 
1218 /**
1219  * @internal
1220  * @brief Add a device to a devclass
1221  *
1222  * A unit number is allocated for the device (using the device's
1223  * preferred unit number if any) and the device is registered in the
1224  * devclass. This allows the device to be looked up by its unit
1225  * number, e.g. by decoding a dev_t minor number.
1226  *
1227  * @param dc		the devclass to add to
1228  * @param dev		the device to add
1229  *
1230  * @retval 0		success
1231  * @retval EEXIST	the requested unit number is already allocated
1232  * @retval ENOMEM	memory allocation failure
1233  */
1234 static int
1235 devclass_add_device(devclass_t dc, device_t dev)
1236 {
1237 	int buflen, error;
1238 
1239 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1240 
1241 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1242 	if (buflen < 0)
1243 		return (ENOMEM);
1244 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1245 	if (!dev->nameunit)
1246 		return (ENOMEM);
1247 
1248 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1249 		free(dev->nameunit, M_BUS);
1250 		dev->nameunit = NULL;
1251 		return (error);
1252 	}
1253 	dc->devices[dev->unit] = dev;
1254 	dev->devclass = dc;
1255 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1256 
1257 	return (0);
1258 }
1259 
1260 /**
1261  * @internal
1262  * @brief Delete a device from a devclass
1263  *
1264  * The device is removed from the devclass's device list and its unit
1265  * number is freed.
1266 
1267  * @param dc		the devclass to delete from
1268  * @param dev		the device to delete
1269  *
1270  * @retval 0		success
1271  */
1272 static int
1273 devclass_delete_device(devclass_t dc, device_t dev)
1274 {
1275 	if (!dc || !dev)
1276 		return (0);
1277 
1278 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1279 
1280 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1281 		panic("devclass_delete_device: inconsistent device class");
1282 	dc->devices[dev->unit] = NULL;
1283 	if (dev->flags & DF_WILDCARD)
1284 		dev->unit = DEVICE_UNIT_ANY;
1285 	dev->devclass = NULL;
1286 	free(dev->nameunit, M_BUS);
1287 	dev->nameunit = NULL;
1288 
1289 	return (0);
1290 }
1291 
1292 /**
1293  * @internal
1294  * @brief Make a new device and add it as a child of @p parent
1295  *
1296  * @param parent	the parent of the new device
1297  * @param name		the devclass name of the new device or @c NULL
1298  *			to leave the devclass unspecified
1299  * @parem unit		the unit number of the new device of @c DEVICE_UNIT_ANY
1300  *			to leave the unit number unspecified
1301  *
1302  * @returns the new device
1303  */
1304 static device_t
1305 make_device(device_t parent, const char *name, int unit)
1306 {
1307 	device_t dev;
1308 	devclass_t dc;
1309 
1310 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1311 
1312 	if (name) {
1313 		dc = devclass_find_internal(name, NULL, TRUE);
1314 		if (!dc) {
1315 			printf("make_device: can't find device class %s\n",
1316 			    name);
1317 			return (NULL);
1318 		}
1319 	} else {
1320 		dc = NULL;
1321 	}
1322 
1323 	dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1324 	if (!dev)
1325 		return (NULL);
1326 
1327 	dev->parent = parent;
1328 	TAILQ_INIT(&dev->children);
1329 	kobj_init((kobj_t) dev, &null_class);
1330 	dev->driver = NULL;
1331 	dev->devclass = NULL;
1332 	dev->unit = unit;
1333 	dev->nameunit = NULL;
1334 	dev->desc = NULL;
1335 	dev->busy = 0;
1336 	dev->devflags = 0;
1337 	dev->flags = DF_ENABLED;
1338 	dev->order = 0;
1339 	if (unit == DEVICE_UNIT_ANY)
1340 		dev->flags |= DF_WILDCARD;
1341 	if (name) {
1342 		dev->flags |= DF_FIXEDCLASS;
1343 		if (devclass_add_device(dc, dev)) {
1344 			kobj_delete((kobj_t) dev, M_BUS);
1345 			return (NULL);
1346 		}
1347 	}
1348 	if (parent != NULL && device_has_quiet_children(parent))
1349 		dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1350 	dev->ivars = NULL;
1351 	dev->softc = NULL;
1352 
1353 	dev->state = DS_NOTPRESENT;
1354 
1355 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1356 	bus_data_generation_update();
1357 
1358 	return (dev);
1359 }
1360 
1361 /**
1362  * @internal
1363  * @brief Print a description of a device.
1364  */
1365 static int
1366 device_print_child(device_t dev, device_t child)
1367 {
1368 	int retval = 0;
1369 
1370 	if (device_is_alive(child))
1371 		retval += BUS_PRINT_CHILD(dev, child);
1372 	else
1373 		retval += device_printf(child, " not found\n");
1374 
1375 	return (retval);
1376 }
1377 
1378 /**
1379  * @brief Create a new device
1380  *
1381  * This creates a new device and adds it as a child of an existing
1382  * parent device. The new device will be added after the last existing
1383  * child with order zero.
1384  *
1385  * @param dev		the device which will be the parent of the
1386  *			new child device
1387  * @param name		devclass name for new device or @c NULL if not
1388  *			specified
1389  * @param unit		unit number for new device or @c DEVICE_UNIT_ANY if not
1390  *			specified
1391  *
1392  * @returns		the new device
1393  */
1394 device_t
1395 device_add_child(device_t dev, const char *name, int unit)
1396 {
1397 	return (device_add_child_ordered(dev, 0, name, unit));
1398 }
1399 
1400 /**
1401  * @brief Create a new device
1402  *
1403  * This creates a new device and adds it as a child of an existing
1404  * parent device. The new device will be added after the last existing
1405  * child with the same order.
1406  *
1407  * @param dev		the device which will be the parent of the
1408  *			new child device
1409  * @param order		a value which is used to partially sort the
1410  *			children of @p dev - devices created using
1411  *			lower values of @p order appear first in @p
1412  *			dev's list of children
1413  * @param name		devclass name for new device or @c NULL if not
1414  *			specified
1415  * @param unit		unit number for new device or @c DEVICE_UNIT_ANY if not
1416  *			specified
1417  *
1418  * @returns		the new device
1419  */
1420 device_t
1421 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1422 {
1423 	device_t child;
1424 	device_t place;
1425 
1426 	PDEBUG(("%s at %s with order %u as unit %d",
1427 	    name, DEVICENAME(dev), order, unit));
1428 	KASSERT(name != NULL || unit == DEVICE_UNIT_ANY,
1429 	    ("child device with wildcard name and specific unit number"));
1430 
1431 	child = make_device(dev, name, unit);
1432 	if (child == NULL)
1433 		return (child);
1434 	child->order = order;
1435 
1436 	TAILQ_FOREACH(place, &dev->children, link) {
1437 		if (place->order > order)
1438 			break;
1439 	}
1440 
1441 	if (place) {
1442 		/*
1443 		 * The device 'place' is the first device whose order is
1444 		 * greater than the new child.
1445 		 */
1446 		TAILQ_INSERT_BEFORE(place, child, link);
1447 	} else {
1448 		/*
1449 		 * The new child's order is greater or equal to the order of
1450 		 * any existing device. Add the child to the tail of the list.
1451 		 */
1452 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1453 	}
1454 
1455 	bus_data_generation_update();
1456 	return (child);
1457 }
1458 
1459 /**
1460  * @brief Delete a device
1461  *
1462  * This function deletes a device along with all of its children. If
1463  * the device currently has a driver attached to it, the device is
1464  * detached first using device_detach().
1465  *
1466  * @param dev		the parent device
1467  * @param child		the device to delete
1468  *
1469  * @retval 0		success
1470  * @retval non-zero	a unit error code describing the error
1471  */
1472 int
1473 device_delete_child(device_t dev, device_t child)
1474 {
1475 	int error;
1476 	device_t grandchild;
1477 
1478 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1479 
1480 	/* detach parent before deleting children, if any */
1481 	if ((error = device_detach(child)) != 0)
1482 		return (error);
1483 
1484 	/* remove children second */
1485 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1486 		error = device_delete_child(child, grandchild);
1487 		if (error)
1488 			return (error);
1489 	}
1490 
1491 	if (child->devclass)
1492 		devclass_delete_device(child->devclass, child);
1493 	if (child->parent)
1494 		BUS_CHILD_DELETED(dev, child);
1495 	TAILQ_REMOVE(&dev->children, child, link);
1496 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1497 	kobj_delete((kobj_t) child, M_BUS);
1498 
1499 	bus_data_generation_update();
1500 	return (0);
1501 }
1502 
1503 /**
1504  * @brief Delete all children devices of the given device, if any.
1505  *
1506  * This function deletes all children devices of the given device, if
1507  * any, using the device_delete_child() function for each device it
1508  * finds. If a child device cannot be deleted, this function will
1509  * return an error code.
1510  *
1511  * @param dev		the parent device
1512  *
1513  * @retval 0		success
1514  * @retval non-zero	a device would not detach
1515  */
1516 int
1517 device_delete_children(device_t dev)
1518 {
1519 	device_t child;
1520 	int error;
1521 
1522 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1523 
1524 	error = 0;
1525 
1526 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1527 		error = device_delete_child(dev, child);
1528 		if (error) {
1529 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1530 			break;
1531 		}
1532 	}
1533 	return (error);
1534 }
1535 
1536 /**
1537  * @brief Find a device given a unit number
1538  *
1539  * This is similar to devclass_get_devices() but only searches for
1540  * devices which have @p dev as a parent.
1541  *
1542  * @param dev		the parent device to search
1543  * @param unit		the unit number to search for.  If the unit is
1544  *			@c DEVICE_UNIT_ANY, return the first child of @p dev
1545  *			which has name @p classname (that is, the one with the
1546  *			lowest unit.)
1547  *
1548  * @returns		the device with the given unit number or @c
1549  *			NULL if there is no such device
1550  */
1551 device_t
1552 device_find_child(device_t dev, const char *classname, int unit)
1553 {
1554 	devclass_t dc;
1555 	device_t child;
1556 
1557 	dc = devclass_find(classname);
1558 	if (!dc)
1559 		return (NULL);
1560 
1561 	if (unit != DEVICE_UNIT_ANY) {
1562 		child = devclass_get_device(dc, unit);
1563 		if (child && child->parent == dev)
1564 			return (child);
1565 	} else {
1566 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1567 			child = devclass_get_device(dc, unit);
1568 			if (child && child->parent == dev)
1569 				return (child);
1570 		}
1571 	}
1572 	return (NULL);
1573 }
1574 
1575 /**
1576  * @internal
1577  */
1578 static driverlink_t
1579 first_matching_driver(devclass_t dc, device_t dev)
1580 {
1581 	if (dev->devclass)
1582 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1583 	return (TAILQ_FIRST(&dc->drivers));
1584 }
1585 
1586 /**
1587  * @internal
1588  */
1589 static driverlink_t
1590 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1591 {
1592 	if (dev->devclass) {
1593 		driverlink_t dl;
1594 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1595 			if (!strcmp(dev->devclass->name, dl->driver->name))
1596 				return (dl);
1597 		return (NULL);
1598 	}
1599 	return (TAILQ_NEXT(last, link));
1600 }
1601 
1602 /**
1603  * @internal
1604  */
1605 int
1606 device_probe_child(device_t dev, device_t child)
1607 {
1608 	devclass_t dc;
1609 	driverlink_t best = NULL;
1610 	driverlink_t dl;
1611 	int result, pri = 0;
1612 	/* We should preserve the devclass (or lack of) set by the bus. */
1613 	int hasclass = (child->devclass != NULL);
1614 
1615 	bus_topo_assert();
1616 
1617 	dc = dev->devclass;
1618 	if (!dc)
1619 		panic("device_probe_child: parent device has no devclass");
1620 
1621 	/*
1622 	 * If the state is already probed, then return.
1623 	 */
1624 	if (child->state == DS_ALIVE)
1625 		return (0);
1626 
1627 	for (; dc; dc = dc->parent) {
1628 		for (dl = first_matching_driver(dc, child);
1629 		     dl;
1630 		     dl = next_matching_driver(dc, child, dl)) {
1631 			/* If this driver's pass is too high, then ignore it. */
1632 			if (dl->pass > bus_current_pass)
1633 				continue;
1634 
1635 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1636 			result = device_set_driver(child, dl->driver);
1637 			if (result == ENOMEM)
1638 				return (result);
1639 			else if (result != 0)
1640 				continue;
1641 			if (!hasclass) {
1642 				if (device_set_devclass(child,
1643 				    dl->driver->name) != 0) {
1644 					char const * devname =
1645 					    device_get_name(child);
1646 					if (devname == NULL)
1647 						devname = "(unknown)";
1648 					printf("driver bug: Unable to set "
1649 					    "devclass (class: %s "
1650 					    "devname: %s)\n",
1651 					    dl->driver->name,
1652 					    devname);
1653 					(void)device_set_driver(child, NULL);
1654 					continue;
1655 				}
1656 			}
1657 
1658 			/* Fetch any flags for the device before probing. */
1659 			resource_int_value(dl->driver->name, child->unit,
1660 			    "flags", &child->devflags);
1661 
1662 			result = DEVICE_PROBE(child);
1663 
1664 			/*
1665 			 * If probe returns 0, this is the driver that wins this
1666 			 * device.
1667 			 */
1668 			if (result == 0) {
1669 				best = dl;
1670 				pri = 0;
1671 				goto exact_match;	/* C doesn't have break 2 */
1672 			}
1673 
1674 			/* Reset flags and devclass before the next probe. */
1675 			child->devflags = 0;
1676 			if (!hasclass)
1677 				(void)device_set_devclass(child, NULL);
1678 
1679 			/*
1680 			 * Reset DF_QUIET in case this driver doesn't
1681 			 * end up as the best driver.
1682 			 */
1683 			device_verbose(child);
1684 
1685 			/*
1686 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
1687 			 * only match on devices whose driver was explicitly
1688 			 * specified.
1689 			 */
1690 			if (result <= BUS_PROBE_NOWILDCARD &&
1691 			    !(child->flags & DF_FIXEDCLASS)) {
1692 				result = ENXIO;
1693 			}
1694 
1695 			/*
1696 			 * The driver returned an error so it
1697 			 * certainly doesn't match.
1698 			 */
1699 			if (result > 0) {
1700 				(void)device_set_driver(child, NULL);
1701 				continue;
1702 			}
1703 
1704 			/*
1705 			 * A priority lower than SUCCESS, remember the
1706 			 * best matching driver. Initialise the value
1707 			 * of pri for the first match.
1708 			 */
1709 			if (best == NULL || result > pri) {
1710 				best = dl;
1711 				pri = result;
1712 				continue;
1713 			}
1714 		}
1715 	}
1716 
1717 	if (best == NULL)
1718 		return (ENXIO);
1719 
1720 	/*
1721 	 * If we found a driver, change state and initialise the devclass.
1722 	 * Set the winning driver, devclass, and flags.
1723 	 */
1724 	result = device_set_driver(child, best->driver);
1725 	if (result != 0)
1726 		return (result);
1727 	if (!child->devclass) {
1728 		result = device_set_devclass(child, best->driver->name);
1729 		if (result != 0) {
1730 			(void)device_set_driver(child, NULL);
1731 			return (result);
1732 		}
1733 	}
1734 	resource_int_value(best->driver->name, child->unit,
1735 	    "flags", &child->devflags);
1736 
1737 	/*
1738 	 * A bit bogus. Call the probe method again to make sure that we have
1739 	 * the right description for the device.
1740 	 */
1741 	result = DEVICE_PROBE(child);
1742 	if (result > 0) {
1743 		if (!hasclass)
1744 			(void)device_set_devclass(child, NULL);
1745 		(void)device_set_driver(child, NULL);
1746 		return (result);
1747 	}
1748 
1749 exact_match:
1750 	child->state = DS_ALIVE;
1751 	bus_data_generation_update();
1752 	return (0);
1753 }
1754 
1755 /**
1756  * @brief Return the parent of a device
1757  */
1758 device_t
1759 device_get_parent(device_t dev)
1760 {
1761 	return (dev->parent);
1762 }
1763 
1764 /**
1765  * @brief Get a list of children of a device
1766  *
1767  * An array containing a list of all the children of the given device
1768  * is allocated and returned in @p *devlistp. The number of devices
1769  * in the array is returned in @p *devcountp. The caller should free
1770  * the array using @c free(p, M_TEMP).
1771  *
1772  * @param dev		the device to examine
1773  * @param devlistp	points at location for array pointer return
1774  *			value
1775  * @param devcountp	points at location for array size return value
1776  *
1777  * @retval 0		success
1778  * @retval ENOMEM	the array allocation failed
1779  */
1780 int
1781 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1782 {
1783 	int count;
1784 	device_t child;
1785 	device_t *list;
1786 
1787 	count = 0;
1788 	TAILQ_FOREACH(child, &dev->children, link) {
1789 		count++;
1790 	}
1791 	if (count == 0) {
1792 		*devlistp = NULL;
1793 		*devcountp = 0;
1794 		return (0);
1795 	}
1796 
1797 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1798 	if (!list)
1799 		return (ENOMEM);
1800 
1801 	count = 0;
1802 	TAILQ_FOREACH(child, &dev->children, link) {
1803 		list[count] = child;
1804 		count++;
1805 	}
1806 
1807 	*devlistp = list;
1808 	*devcountp = count;
1809 
1810 	return (0);
1811 }
1812 
1813 /**
1814  * @brief Return the current driver for the device or @c NULL if there
1815  * is no driver currently attached
1816  */
1817 driver_t *
1818 device_get_driver(device_t dev)
1819 {
1820 	return (dev->driver);
1821 }
1822 
1823 /**
1824  * @brief Return the current devclass for the device or @c NULL if
1825  * there is none.
1826  */
1827 devclass_t
1828 device_get_devclass(device_t dev)
1829 {
1830 	return (dev->devclass);
1831 }
1832 
1833 /**
1834  * @brief Return the name of the device's devclass or @c NULL if there
1835  * is none.
1836  */
1837 const char *
1838 device_get_name(device_t dev)
1839 {
1840 	if (dev != NULL && dev->devclass)
1841 		return (devclass_get_name(dev->devclass));
1842 	return (NULL);
1843 }
1844 
1845 /**
1846  * @brief Return a string containing the device's devclass name
1847  * followed by an ascii representation of the device's unit number
1848  * (e.g. @c "foo2").
1849  */
1850 const char *
1851 device_get_nameunit(device_t dev)
1852 {
1853 	return (dev->nameunit);
1854 }
1855 
1856 /**
1857  * @brief Return the device's unit number.
1858  */
1859 int
1860 device_get_unit(device_t dev)
1861 {
1862 	return (dev->unit);
1863 }
1864 
1865 /**
1866  * @brief Return the device's description string
1867  */
1868 const char *
1869 device_get_desc(device_t dev)
1870 {
1871 	return (dev->desc);
1872 }
1873 
1874 /**
1875  * @brief Return the device's flags
1876  */
1877 uint32_t
1878 device_get_flags(device_t dev)
1879 {
1880 	return (dev->devflags);
1881 }
1882 
1883 struct sysctl_ctx_list *
1884 device_get_sysctl_ctx(device_t dev)
1885 {
1886 	return (&dev->sysctl_ctx);
1887 }
1888 
1889 struct sysctl_oid *
1890 device_get_sysctl_tree(device_t dev)
1891 {
1892 	return (dev->sysctl_tree);
1893 }
1894 
1895 /**
1896  * @brief Print the name of the device followed by a colon and a space
1897  *
1898  * @returns the number of characters printed
1899  */
1900 int
1901 device_print_prettyname(device_t dev)
1902 {
1903 	const char *name = device_get_name(dev);
1904 
1905 	if (name == NULL)
1906 		return (printf("unknown: "));
1907 	return (printf("%s%d: ", name, device_get_unit(dev)));
1908 }
1909 
1910 /**
1911  * @brief Print the name of the device followed by a colon, a space
1912  * and the result of calling vprintf() with the value of @p fmt and
1913  * the following arguments.
1914  *
1915  * @returns the number of characters printed
1916  */
1917 int
1918 device_printf(device_t dev, const char * fmt, ...)
1919 {
1920 	char buf[128];
1921 	struct sbuf sb;
1922 	const char *name;
1923 	va_list ap;
1924 	size_t retval;
1925 
1926 	retval = 0;
1927 
1928 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1929 	sbuf_set_drain(&sb, sbuf_printf_drain, &retval);
1930 
1931 	name = device_get_name(dev);
1932 
1933 	if (name == NULL)
1934 		sbuf_cat(&sb, "unknown: ");
1935 	else
1936 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
1937 
1938 	va_start(ap, fmt);
1939 	sbuf_vprintf(&sb, fmt, ap);
1940 	va_end(ap);
1941 
1942 	sbuf_finish(&sb);
1943 	sbuf_delete(&sb);
1944 
1945 	return (retval);
1946 }
1947 
1948 /**
1949  * @brief Print the name of the device followed by a colon, a space
1950  * and the result of calling log() with the value of @p fmt and
1951  * the following arguments.
1952  *
1953  * @returns the number of characters printed
1954  */
1955 int
1956 device_log(device_t dev, int pri, const char * fmt, ...)
1957 {
1958 	char buf[128];
1959 	struct sbuf sb;
1960 	const char *name;
1961 	va_list ap;
1962 	size_t retval;
1963 
1964 	retval = 0;
1965 
1966 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1967 
1968 	name = device_get_name(dev);
1969 
1970 	if (name == NULL)
1971 		sbuf_cat(&sb, "unknown: ");
1972 	else
1973 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
1974 
1975 	va_start(ap, fmt);
1976 	sbuf_vprintf(&sb, fmt, ap);
1977 	va_end(ap);
1978 
1979 	sbuf_finish(&sb);
1980 
1981 	log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb));
1982 	retval = sbuf_len(&sb);
1983 
1984 	sbuf_delete(&sb);
1985 
1986 	return (retval);
1987 }
1988 
1989 /**
1990  * @internal
1991  */
1992 static void
1993 device_set_desc_internal(device_t dev, const char *desc, bool allocated)
1994 {
1995 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1996 		free(dev->desc, M_BUS);
1997 		dev->flags &= ~DF_DESCMALLOCED;
1998 		dev->desc = NULL;
1999 	}
2000 
2001 	if (allocated && desc)
2002 		dev->flags |= DF_DESCMALLOCED;
2003 	dev->desc = __DECONST(char *, desc);
2004 
2005 	bus_data_generation_update();
2006 }
2007 
2008 /**
2009  * @brief Set the device's description
2010  *
2011  * The value of @c desc should be a string constant that will not
2012  * change (at least until the description is changed in a subsequent
2013  * call to device_set_desc() or device_set_desc_copy()).
2014  */
2015 void
2016 device_set_desc(device_t dev, const char *desc)
2017 {
2018 	device_set_desc_internal(dev, desc, false);
2019 }
2020 
2021 /**
2022  * @brief Set the device's description
2023  *
2024  * A printf-like version of device_set_desc().
2025  */
2026 void
2027 device_set_descf(device_t dev, const char *fmt, ...)
2028 {
2029 	va_list ap;
2030 	char *buf = NULL;
2031 
2032 	va_start(ap, fmt);
2033 	vasprintf(&buf, M_BUS, fmt, ap);
2034 	va_end(ap);
2035 	device_set_desc_internal(dev, buf, true);
2036 }
2037 
2038 /**
2039  * @brief Set the device's description
2040  *
2041  * The string pointed to by @c desc is copied. Use this function if
2042  * the device description is generated, (e.g. with sprintf()).
2043  */
2044 void
2045 device_set_desc_copy(device_t dev, const char *desc)
2046 {
2047 	char *buf;
2048 
2049 	buf = strdup_flags(desc, M_BUS, M_NOWAIT);
2050 	device_set_desc_internal(dev, buf, true);
2051 }
2052 
2053 /**
2054  * @brief Set the device's flags
2055  */
2056 void
2057 device_set_flags(device_t dev, uint32_t flags)
2058 {
2059 	dev->devflags = flags;
2060 }
2061 
2062 /**
2063  * @brief Return the device's softc field
2064  *
2065  * The softc is allocated and zeroed when a driver is attached, based
2066  * on the size field of the driver.
2067  */
2068 void *
2069 device_get_softc(device_t dev)
2070 {
2071 	return (dev->softc);
2072 }
2073 
2074 /**
2075  * @brief Set the device's softc field
2076  *
2077  * Most drivers do not need to use this since the softc is allocated
2078  * automatically when the driver is attached.
2079  */
2080 void
2081 device_set_softc(device_t dev, void *softc)
2082 {
2083 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2084 		free(dev->softc, M_BUS_SC);
2085 	dev->softc = softc;
2086 	if (dev->softc)
2087 		dev->flags |= DF_EXTERNALSOFTC;
2088 	else
2089 		dev->flags &= ~DF_EXTERNALSOFTC;
2090 }
2091 
2092 /**
2093  * @brief Free claimed softc
2094  *
2095  * Most drivers do not need to use this since the softc is freed
2096  * automatically when the driver is detached.
2097  */
2098 void
2099 device_free_softc(void *softc)
2100 {
2101 	free(softc, M_BUS_SC);
2102 }
2103 
2104 /**
2105  * @brief Claim softc
2106  *
2107  * This function can be used to let the driver free the automatically
2108  * allocated softc using "device_free_softc()". This function is
2109  * useful when the driver is refcounting the softc and the softc
2110  * cannot be freed when the "device_detach" method is called.
2111  */
2112 void
2113 device_claim_softc(device_t dev)
2114 {
2115 	if (dev->softc)
2116 		dev->flags |= DF_EXTERNALSOFTC;
2117 	else
2118 		dev->flags &= ~DF_EXTERNALSOFTC;
2119 }
2120 
2121 /**
2122  * @brief Get the device's ivars field
2123  *
2124  * The ivars field is used by the parent device to store per-device
2125  * state (e.g. the physical location of the device or a list of
2126  * resources).
2127  */
2128 void *
2129 device_get_ivars(device_t dev)
2130 {
2131 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2132 	return (dev->ivars);
2133 }
2134 
2135 /**
2136  * @brief Set the device's ivars field
2137  */
2138 void
2139 device_set_ivars(device_t dev, void * ivars)
2140 {
2141 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2142 	dev->ivars = ivars;
2143 }
2144 
2145 /**
2146  * @brief Return the device's state
2147  */
2148 device_state_t
2149 device_get_state(device_t dev)
2150 {
2151 	return (dev->state);
2152 }
2153 
2154 /**
2155  * @brief Set the DF_ENABLED flag for the device
2156  */
2157 void
2158 device_enable(device_t dev)
2159 {
2160 	dev->flags |= DF_ENABLED;
2161 }
2162 
2163 /**
2164  * @brief Clear the DF_ENABLED flag for the device
2165  */
2166 void
2167 device_disable(device_t dev)
2168 {
2169 	dev->flags &= ~DF_ENABLED;
2170 }
2171 
2172 /**
2173  * @brief Increment the busy counter for the device
2174  */
2175 void
2176 device_busy(device_t dev)
2177 {
2178 
2179 	/*
2180 	 * Mark the device as busy, recursively up the tree if this busy count
2181 	 * goes 0->1.
2182 	 */
2183 	if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL)
2184 		device_busy(dev->parent);
2185 }
2186 
2187 /**
2188  * @brief Decrement the busy counter for the device
2189  */
2190 void
2191 device_unbusy(device_t dev)
2192 {
2193 
2194 	/*
2195 	 * Mark the device as unbsy, recursively if this is the last busy count.
2196 	 */
2197 	if (refcount_release(&dev->busy) && dev->parent != NULL)
2198 		device_unbusy(dev->parent);
2199 }
2200 
2201 /**
2202  * @brief Set the DF_QUIET flag for the device
2203  */
2204 void
2205 device_quiet(device_t dev)
2206 {
2207 	dev->flags |= DF_QUIET;
2208 }
2209 
2210 /**
2211  * @brief Set the DF_QUIET_CHILDREN flag for the device
2212  */
2213 void
2214 device_quiet_children(device_t dev)
2215 {
2216 	dev->flags |= DF_QUIET_CHILDREN;
2217 }
2218 
2219 /**
2220  * @brief Clear the DF_QUIET flag for the device
2221  */
2222 void
2223 device_verbose(device_t dev)
2224 {
2225 	dev->flags &= ~DF_QUIET;
2226 }
2227 
2228 ssize_t
2229 device_get_property(device_t dev, const char *prop, void *val, size_t sz,
2230     device_property_type_t type)
2231 {
2232 	device_t bus = device_get_parent(dev);
2233 
2234 	switch (type) {
2235 	case DEVICE_PROP_ANY:
2236 	case DEVICE_PROP_BUFFER:
2237 	case DEVICE_PROP_HANDLE:	/* Size checks done in implementation. */
2238 		break;
2239 	case DEVICE_PROP_UINT32:
2240 		if (sz % 4 != 0)
2241 			return (-1);
2242 		break;
2243 	case DEVICE_PROP_UINT64:
2244 		if (sz % 8 != 0)
2245 			return (-1);
2246 		break;
2247 	default:
2248 		return (-1);
2249 	}
2250 
2251 	return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type));
2252 }
2253 
2254 bool
2255 device_has_property(device_t dev, const char *prop)
2256 {
2257 	return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0);
2258 }
2259 
2260 /**
2261  * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2262  */
2263 int
2264 device_has_quiet_children(device_t dev)
2265 {
2266 	return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2267 }
2268 
2269 /**
2270  * @brief Return non-zero if the DF_QUIET flag is set on the device
2271  */
2272 int
2273 device_is_quiet(device_t dev)
2274 {
2275 	return ((dev->flags & DF_QUIET) != 0);
2276 }
2277 
2278 /**
2279  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2280  */
2281 int
2282 device_is_enabled(device_t dev)
2283 {
2284 	return ((dev->flags & DF_ENABLED) != 0);
2285 }
2286 
2287 /**
2288  * @brief Return non-zero if the device was successfully probed
2289  */
2290 int
2291 device_is_alive(device_t dev)
2292 {
2293 	return (dev->state >= DS_ALIVE);
2294 }
2295 
2296 /**
2297  * @brief Return non-zero if the device currently has a driver
2298  * attached to it
2299  */
2300 int
2301 device_is_attached(device_t dev)
2302 {
2303 	return (dev->state >= DS_ATTACHED);
2304 }
2305 
2306 /**
2307  * @brief Return non-zero if the device is currently suspended.
2308  */
2309 int
2310 device_is_suspended(device_t dev)
2311 {
2312 	return ((dev->flags & DF_SUSPENDED) != 0);
2313 }
2314 
2315 /**
2316  * @brief Set the devclass of a device
2317  * @see devclass_add_device().
2318  */
2319 int
2320 device_set_devclass(device_t dev, const char *classname)
2321 {
2322 	devclass_t dc;
2323 	int error;
2324 
2325 	if (!classname) {
2326 		if (dev->devclass)
2327 			devclass_delete_device(dev->devclass, dev);
2328 		return (0);
2329 	}
2330 
2331 	if (dev->devclass) {
2332 		printf("device_set_devclass: device class already set\n");
2333 		return (EINVAL);
2334 	}
2335 
2336 	dc = devclass_find_internal(classname, NULL, TRUE);
2337 	if (!dc)
2338 		return (ENOMEM);
2339 
2340 	error = devclass_add_device(dc, dev);
2341 
2342 	bus_data_generation_update();
2343 	return (error);
2344 }
2345 
2346 /**
2347  * @brief Set the devclass of a device and mark the devclass fixed.
2348  * @see device_set_devclass()
2349  */
2350 int
2351 device_set_devclass_fixed(device_t dev, const char *classname)
2352 {
2353 	int error;
2354 
2355 	if (classname == NULL)
2356 		return (EINVAL);
2357 
2358 	error = device_set_devclass(dev, classname);
2359 	if (error)
2360 		return (error);
2361 	dev->flags |= DF_FIXEDCLASS;
2362 	return (0);
2363 }
2364 
2365 /**
2366  * @brief Query the device to determine if it's of a fixed devclass
2367  * @see device_set_devclass_fixed()
2368  */
2369 bool
2370 device_is_devclass_fixed(device_t dev)
2371 {
2372 	return ((dev->flags & DF_FIXEDCLASS) != 0);
2373 }
2374 
2375 /**
2376  * @brief Set the driver of a device
2377  *
2378  * @retval 0		success
2379  * @retval EBUSY	the device already has a driver attached
2380  * @retval ENOMEM	a memory allocation failure occurred
2381  */
2382 int
2383 device_set_driver(device_t dev, driver_t *driver)
2384 {
2385 	int domain;
2386 	struct domainset *policy;
2387 
2388 	if (dev->state >= DS_ATTACHED)
2389 		return (EBUSY);
2390 
2391 	if (dev->driver == driver)
2392 		return (0);
2393 
2394 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2395 		free(dev->softc, M_BUS_SC);
2396 		dev->softc = NULL;
2397 	}
2398 	device_set_desc(dev, NULL);
2399 	kobj_delete((kobj_t) dev, NULL);
2400 	dev->driver = driver;
2401 	if (driver) {
2402 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2403 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2404 			if (bus_get_domain(dev, &domain) == 0)
2405 				policy = DOMAINSET_PREF(domain);
2406 			else
2407 				policy = DOMAINSET_RR();
2408 			dev->softc = malloc_domainset(driver->size, M_BUS_SC,
2409 			    policy, M_NOWAIT | M_ZERO);
2410 			if (!dev->softc) {
2411 				kobj_delete((kobj_t) dev, NULL);
2412 				kobj_init((kobj_t) dev, &null_class);
2413 				dev->driver = NULL;
2414 				return (ENOMEM);
2415 			}
2416 		}
2417 	} else {
2418 		kobj_init((kobj_t) dev, &null_class);
2419 	}
2420 
2421 	bus_data_generation_update();
2422 	return (0);
2423 }
2424 
2425 /**
2426  * @brief Probe a device, and return this status.
2427  *
2428  * This function is the core of the device autoconfiguration
2429  * system. Its purpose is to select a suitable driver for a device and
2430  * then call that driver to initialise the hardware appropriately. The
2431  * driver is selected by calling the DEVICE_PROBE() method of a set of
2432  * candidate drivers and then choosing the driver which returned the
2433  * best value. This driver is then attached to the device using
2434  * device_attach().
2435  *
2436  * The set of suitable drivers is taken from the list of drivers in
2437  * the parent device's devclass. If the device was originally created
2438  * with a specific class name (see device_add_child()), only drivers
2439  * with that name are probed, otherwise all drivers in the devclass
2440  * are probed. If no drivers return successful probe values in the
2441  * parent devclass, the search continues in the parent of that
2442  * devclass (see devclass_get_parent()) if any.
2443  *
2444  * @param dev		the device to initialise
2445  *
2446  * @retval 0		success
2447  * @retval ENXIO	no driver was found
2448  * @retval ENOMEM	memory allocation failure
2449  * @retval non-zero	some other unix error code
2450  * @retval -1		Device already attached
2451  */
2452 int
2453 device_probe(device_t dev)
2454 {
2455 	int error;
2456 
2457 	bus_topo_assert();
2458 
2459 	if (dev->state >= DS_ALIVE)
2460 		return (-1);
2461 
2462 	if (!(dev->flags & DF_ENABLED)) {
2463 		if (bootverbose && device_get_name(dev) != NULL) {
2464 			device_print_prettyname(dev);
2465 			printf("not probed (disabled)\n");
2466 		}
2467 		return (-1);
2468 	}
2469 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2470 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2471 		    !(dev->flags & DF_DONENOMATCH)) {
2472 			device_handle_nomatch(dev);
2473 		}
2474 		return (error);
2475 	}
2476 	return (0);
2477 }
2478 
2479 /**
2480  * @brief Probe a device and attach a driver if possible
2481  *
2482  * calls device_probe() and attaches if that was successful.
2483  */
2484 int
2485 device_probe_and_attach(device_t dev)
2486 {
2487 	int error;
2488 
2489 	bus_topo_assert();
2490 
2491 	error = device_probe(dev);
2492 	if (error == -1)
2493 		return (0);
2494 	else if (error != 0)
2495 		return (error);
2496 
2497 	CURVNET_SET_QUIET(vnet0);
2498 	error = device_attach(dev);
2499 	CURVNET_RESTORE();
2500 	return error;
2501 }
2502 
2503 /**
2504  * @brief Attach a device driver to a device
2505  *
2506  * This function is a wrapper around the DEVICE_ATTACH() driver
2507  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2508  * device's sysctl tree, optionally prints a description of the device
2509  * and queues a notification event for user-based device management
2510  * services.
2511  *
2512  * Normally this function is only called internally from
2513  * device_probe_and_attach().
2514  *
2515  * @param dev		the device to initialise
2516  *
2517  * @retval 0		success
2518  * @retval ENXIO	no driver was found
2519  * @retval ENOMEM	memory allocation failure
2520  * @retval non-zero	some other unix error code
2521  */
2522 int
2523 device_attach(device_t dev)
2524 {
2525 	uint64_t attachtime;
2526 	uint16_t attachentropy;
2527 	int error;
2528 
2529 	if (resource_disabled(dev->driver->name, dev->unit)) {
2530 		device_disable(dev);
2531 		if (bootverbose)
2532 			 device_printf(dev, "disabled via hints entry\n");
2533 		return (ENXIO);
2534 	}
2535 
2536 	device_sysctl_init(dev);
2537 	if (!device_is_quiet(dev))
2538 		device_print_child(dev->parent, dev);
2539 	attachtime = get_cyclecount();
2540 	dev->state = DS_ATTACHING;
2541 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2542 		printf("device_attach: %s%d attach returned %d\n",
2543 		    dev->driver->name, dev->unit, error);
2544 		if (disable_failed_devs) {
2545 			/*
2546 			 * When the user has asked to disable failed devices, we
2547 			 * directly disable the device, but leave it in the
2548 			 * attaching state. It will not try to probe/attach the
2549 			 * device further. This leaves the device numbering
2550 			 * intact for other similar devices in the system. It
2551 			 * can be removed from this state with devctl.
2552 			 */
2553 			device_disable(dev);
2554 		} else {
2555 			/*
2556 			 * Otherwise, when attach fails, tear down the state
2557 			 * around that so we can retry when, for example, new
2558 			 * drivers are loaded.
2559 			 */
2560 			if (!(dev->flags & DF_FIXEDCLASS))
2561 				devclass_delete_device(dev->devclass, dev);
2562 			(void)device_set_driver(dev, NULL);
2563 			device_sysctl_fini(dev);
2564 			KASSERT(dev->busy == 0, ("attach failed but busy"));
2565 			dev->state = DS_NOTPRESENT;
2566 		}
2567 		return (error);
2568 	}
2569 	dev->flags |= DF_ATTACHED_ONCE;
2570 	/*
2571 	 * We only need the low bits of this time, but ranges from tens to thousands
2572 	 * have been seen, so keep 2 bytes' worth.
2573 	 */
2574 	attachentropy = (uint16_t)(get_cyclecount() - attachtime);
2575 	random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
2576 	device_sysctl_update(dev);
2577 	dev->state = DS_ATTACHED;
2578 	dev->flags &= ~DF_DONENOMATCH;
2579 	EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
2580 	return (0);
2581 }
2582 
2583 /**
2584  * @brief Detach a driver from a device
2585  *
2586  * This function is a wrapper around the DEVICE_DETACH() driver
2587  * method. If the call to DEVICE_DETACH() succeeds, it calls
2588  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2589  * notification event for user-based device management services and
2590  * cleans up the device's sysctl tree.
2591  *
2592  * @param dev		the device to un-initialise
2593  *
2594  * @retval 0		success
2595  * @retval ENXIO	no driver was found
2596  * @retval ENOMEM	memory allocation failure
2597  * @retval non-zero	some other unix error code
2598  */
2599 int
2600 device_detach(device_t dev)
2601 {
2602 	int error;
2603 
2604 	bus_topo_assert();
2605 
2606 	PDEBUG(("%s", DEVICENAME(dev)));
2607 	if (dev->busy > 0)
2608 		return (EBUSY);
2609 	if (dev->state == DS_ATTACHING) {
2610 		device_printf(dev, "device in attaching state! Deferring detach.\n");
2611 		return (EBUSY);
2612 	}
2613 	if (dev->state != DS_ATTACHED)
2614 		return (0);
2615 
2616 	EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
2617 	if ((error = DEVICE_DETACH(dev)) != 0) {
2618 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2619 		    EVHDEV_DETACH_FAILED);
2620 		return (error);
2621 	} else {
2622 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2623 		    EVHDEV_DETACH_COMPLETE);
2624 	}
2625 	if (!device_is_quiet(dev))
2626 		device_printf(dev, "detached\n");
2627 	if (dev->parent)
2628 		BUS_CHILD_DETACHED(dev->parent, dev);
2629 
2630 	if (!(dev->flags & DF_FIXEDCLASS))
2631 		devclass_delete_device(dev->devclass, dev);
2632 
2633 	device_verbose(dev);
2634 	dev->state = DS_NOTPRESENT;
2635 	(void)device_set_driver(dev, NULL);
2636 	device_sysctl_fini(dev);
2637 
2638 	return (0);
2639 }
2640 
2641 /**
2642  * @brief Tells a driver to quiesce itself.
2643  *
2644  * This function is a wrapper around the DEVICE_QUIESCE() driver
2645  * method. If the call to DEVICE_QUIESCE() succeeds.
2646  *
2647  * @param dev		the device to quiesce
2648  *
2649  * @retval 0		success
2650  * @retval ENXIO	no driver was found
2651  * @retval ENOMEM	memory allocation failure
2652  * @retval non-zero	some other unix error code
2653  */
2654 int
2655 device_quiesce(device_t dev)
2656 {
2657 	PDEBUG(("%s", DEVICENAME(dev)));
2658 	if (dev->busy > 0)
2659 		return (EBUSY);
2660 	if (dev->state != DS_ATTACHED)
2661 		return (0);
2662 
2663 	return (DEVICE_QUIESCE(dev));
2664 }
2665 
2666 /**
2667  * @brief Notify a device of system shutdown
2668  *
2669  * This function calls the DEVICE_SHUTDOWN() driver method if the
2670  * device currently has an attached driver.
2671  *
2672  * @returns the value returned by DEVICE_SHUTDOWN()
2673  */
2674 int
2675 device_shutdown(device_t dev)
2676 {
2677 	if (dev->state < DS_ATTACHED)
2678 		return (0);
2679 	return (DEVICE_SHUTDOWN(dev));
2680 }
2681 
2682 /**
2683  * @brief Set the unit number of a device
2684  *
2685  * This function can be used to override the unit number used for a
2686  * device (e.g. to wire a device to a pre-configured unit number).
2687  */
2688 int
2689 device_set_unit(device_t dev, int unit)
2690 {
2691 	devclass_t dc;
2692 	int err;
2693 
2694 	if (unit == dev->unit)
2695 		return (0);
2696 	dc = device_get_devclass(dev);
2697 	if (unit < dc->maxunit && dc->devices[unit])
2698 		return (EBUSY);
2699 	err = devclass_delete_device(dc, dev);
2700 	if (err)
2701 		return (err);
2702 	dev->unit = unit;
2703 	err = devclass_add_device(dc, dev);
2704 	if (err)
2705 		return (err);
2706 
2707 	bus_data_generation_update();
2708 	return (0);
2709 }
2710 
2711 /*======================================*/
2712 /*
2713  * Some useful method implementations to make life easier for bus drivers.
2714  */
2715 
2716 /**
2717  * @brief Initialize a resource mapping request
2718  *
2719  * This is the internal implementation of the public API
2720  * resource_init_map_request.  Callers may be using a different layout
2721  * of struct resource_map_request than the kernel, so callers pass in
2722  * the size of the structure they are using to identify the structure
2723  * layout.
2724  */
2725 void
2726 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
2727 {
2728 	bzero(args, sz);
2729 	args->size = sz;
2730 	args->memattr = VM_MEMATTR_DEVICE;
2731 }
2732 
2733 /**
2734  * @brief Validate a resource mapping request
2735  *
2736  * Translate a device driver's mapping request (@p in) to a struct
2737  * resource_map_request using the current structure layout (@p out).
2738  * In addition, validate the offset and length from the mapping
2739  * request against the bounds of the resource @p r.  If the offset or
2740  * length are invalid, fail with EINVAL.  If the offset and length are
2741  * valid, the absolute starting address of the requested mapping is
2742  * returned in @p startp and the length of the requested mapping is
2743  * returned in @p lengthp.
2744  */
2745 int
2746 resource_validate_map_request(struct resource *r,
2747     struct resource_map_request *in, struct resource_map_request *out,
2748     rman_res_t *startp, rman_res_t *lengthp)
2749 {
2750 	rman_res_t end, length, start;
2751 
2752 	/*
2753 	 * This assumes that any callers of this function are compiled
2754 	 * into the kernel and use the same version of the structure
2755 	 * as this file.
2756 	 */
2757 	MPASS(out->size == sizeof(struct resource_map_request));
2758 
2759 	if (in != NULL)
2760 		bcopy(in, out, imin(in->size, out->size));
2761 	start = rman_get_start(r) + out->offset;
2762 	if (out->length == 0)
2763 		length = rman_get_size(r);
2764 	else
2765 		length = out->length;
2766 	end = start + length - 1;
2767 	if (start > rman_get_end(r) || start < rman_get_start(r))
2768 		return (EINVAL);
2769 	if (end > rman_get_end(r) || end < start)
2770 		return (EINVAL);
2771 	*lengthp = length;
2772 	*startp = start;
2773 	return (0);
2774 }
2775 
2776 /**
2777  * @brief Initialise a resource list.
2778  *
2779  * @param rl		the resource list to initialise
2780  */
2781 void
2782 resource_list_init(struct resource_list *rl)
2783 {
2784 	STAILQ_INIT(rl);
2785 }
2786 
2787 /**
2788  * @brief Reclaim memory used by a resource list.
2789  *
2790  * This function frees the memory for all resource entries on the list
2791  * (if any).
2792  *
2793  * @param rl		the resource list to free
2794  */
2795 void
2796 resource_list_free(struct resource_list *rl)
2797 {
2798 	struct resource_list_entry *rle;
2799 
2800 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2801 		if (rle->res)
2802 			panic("resource_list_free: resource entry is busy");
2803 		STAILQ_REMOVE_HEAD(rl, link);
2804 		free(rle, M_BUS);
2805 	}
2806 }
2807 
2808 /**
2809  * @brief Add a resource entry.
2810  *
2811  * This function adds a resource entry using the given @p type, @p
2812  * start, @p end and @p count values. A rid value is chosen by
2813  * searching sequentially for the first unused rid starting at zero.
2814  *
2815  * @param rl		the resource list to edit
2816  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2817  * @param start		the start address of the resource
2818  * @param end		the end address of the resource
2819  * @param count		XXX end-start+1
2820  */
2821 int
2822 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
2823     rman_res_t end, rman_res_t count)
2824 {
2825 	int rid;
2826 
2827 	rid = 0;
2828 	while (resource_list_find(rl, type, rid) != NULL)
2829 		rid++;
2830 	resource_list_add(rl, type, rid, start, end, count);
2831 	return (rid);
2832 }
2833 
2834 /**
2835  * @brief Add or modify a resource entry.
2836  *
2837  * If an existing entry exists with the same type and rid, it will be
2838  * modified using the given values of @p start, @p end and @p
2839  * count. If no entry exists, a new one will be created using the
2840  * given values.  The resource list entry that matches is then returned.
2841  *
2842  * @param rl		the resource list to edit
2843  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2844  * @param rid		the resource identifier
2845  * @param start		the start address of the resource
2846  * @param end		the end address of the resource
2847  * @param count		XXX end-start+1
2848  */
2849 struct resource_list_entry *
2850 resource_list_add(struct resource_list *rl, int type, int rid,
2851     rman_res_t start, rman_res_t end, rman_res_t count)
2852 {
2853 	struct resource_list_entry *rle;
2854 
2855 	rle = resource_list_find(rl, type, rid);
2856 	if (!rle) {
2857 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2858 		    M_NOWAIT);
2859 		if (!rle)
2860 			panic("resource_list_add: can't record entry");
2861 		STAILQ_INSERT_TAIL(rl, rle, link);
2862 		rle->type = type;
2863 		rle->rid = rid;
2864 		rle->res = NULL;
2865 		rle->flags = 0;
2866 	}
2867 
2868 	if (rle->res)
2869 		panic("resource_list_add: resource entry is busy");
2870 
2871 	rle->start = start;
2872 	rle->end = end;
2873 	rle->count = count;
2874 	return (rle);
2875 }
2876 
2877 /**
2878  * @brief Determine if a resource entry is busy.
2879  *
2880  * Returns true if a resource entry is busy meaning that it has an
2881  * associated resource that is not an unallocated "reserved" resource.
2882  *
2883  * @param rl		the resource list to search
2884  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2885  * @param rid		the resource identifier
2886  *
2887  * @returns Non-zero if the entry is busy, zero otherwise.
2888  */
2889 int
2890 resource_list_busy(struct resource_list *rl, int type, int rid)
2891 {
2892 	struct resource_list_entry *rle;
2893 
2894 	rle = resource_list_find(rl, type, rid);
2895 	if (rle == NULL || rle->res == NULL)
2896 		return (0);
2897 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2898 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2899 		    ("reserved resource is active"));
2900 		return (0);
2901 	}
2902 	return (1);
2903 }
2904 
2905 /**
2906  * @brief Determine if a resource entry is reserved.
2907  *
2908  * Returns true if a resource entry is reserved meaning that it has an
2909  * associated "reserved" resource.  The resource can either be
2910  * allocated or unallocated.
2911  *
2912  * @param rl		the resource list to search
2913  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2914  * @param rid		the resource identifier
2915  *
2916  * @returns Non-zero if the entry is reserved, zero otherwise.
2917  */
2918 int
2919 resource_list_reserved(struct resource_list *rl, int type, int rid)
2920 {
2921 	struct resource_list_entry *rle;
2922 
2923 	rle = resource_list_find(rl, type, rid);
2924 	if (rle != NULL && rle->flags & RLE_RESERVED)
2925 		return (1);
2926 	return (0);
2927 }
2928 
2929 /**
2930  * @brief Find a resource entry by type and rid.
2931  *
2932  * @param rl		the resource list to search
2933  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2934  * @param rid		the resource identifier
2935  *
2936  * @returns the resource entry pointer or NULL if there is no such
2937  * entry.
2938  */
2939 struct resource_list_entry *
2940 resource_list_find(struct resource_list *rl, int type, int rid)
2941 {
2942 	struct resource_list_entry *rle;
2943 
2944 	STAILQ_FOREACH(rle, rl, link) {
2945 		if (rle->type == type && rle->rid == rid)
2946 			return (rle);
2947 	}
2948 	return (NULL);
2949 }
2950 
2951 /**
2952  * @brief Delete a resource entry.
2953  *
2954  * @param rl		the resource list to edit
2955  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2956  * @param rid		the resource identifier
2957  */
2958 void
2959 resource_list_delete(struct resource_list *rl, int type, int rid)
2960 {
2961 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2962 
2963 	if (rle) {
2964 		if (rle->res != NULL)
2965 			panic("resource_list_delete: resource has not been released");
2966 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2967 		free(rle, M_BUS);
2968 	}
2969 }
2970 
2971 /**
2972  * @brief Allocate a reserved resource
2973  *
2974  * This can be used by buses to force the allocation of resources
2975  * that are always active in the system even if they are not allocated
2976  * by a driver (e.g. PCI BARs).  This function is usually called when
2977  * adding a new child to the bus.  The resource is allocated from the
2978  * parent bus when it is reserved.  The resource list entry is marked
2979  * with RLE_RESERVED to note that it is a reserved resource.
2980  *
2981  * Subsequent attempts to allocate the resource with
2982  * resource_list_alloc() will succeed the first time and will set
2983  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
2984  * resource that has been allocated is released with
2985  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
2986  * the actual resource remains allocated.  The resource can be released to
2987  * the parent bus by calling resource_list_unreserve().
2988  *
2989  * @param rl		the resource list to allocate from
2990  * @param bus		the parent device of @p child
2991  * @param child		the device for which the resource is being reserved
2992  * @param type		the type of resource to allocate
2993  * @param rid		a pointer to the resource identifier
2994  * @param start		hint at the start of the resource range - pass
2995  *			@c 0 for any start address
2996  * @param end		hint at the end of the resource range - pass
2997  *			@c ~0 for any end address
2998  * @param count		hint at the size of range required - pass @c 1
2999  *			for any size
3000  * @param flags		any extra flags to control the resource
3001  *			allocation - see @c RF_XXX flags in
3002  *			<sys/rman.h> for details
3003  *
3004  * @returns		the resource which was allocated or @c NULL if no
3005  *			resource could be allocated
3006  */
3007 struct resource *
3008 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3009     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3010 {
3011 	struct resource_list_entry *rle = NULL;
3012 	int passthrough = (device_get_parent(child) != bus);
3013 	struct resource *r;
3014 
3015 	if (passthrough)
3016 		panic(
3017     "resource_list_reserve() should only be called for direct children");
3018 	if (flags & RF_ACTIVE)
3019 		panic(
3020     "resource_list_reserve() should only reserve inactive resources");
3021 
3022 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3023 	    flags);
3024 	if (r != NULL) {
3025 		rle = resource_list_find(rl, type, *rid);
3026 		rle->flags |= RLE_RESERVED;
3027 	}
3028 	return (r);
3029 }
3030 
3031 /**
3032  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3033  *
3034  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3035  * and passing the allocation up to the parent of @p bus. This assumes
3036  * that the first entry of @c device_get_ivars(child) is a struct
3037  * resource_list. This also handles 'passthrough' allocations where a
3038  * child is a remote descendant of bus by passing the allocation up to
3039  * the parent of bus.
3040  *
3041  * Typically, a bus driver would store a list of child resources
3042  * somewhere in the child device's ivars (see device_get_ivars()) and
3043  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3044  * then call resource_list_alloc() to perform the allocation.
3045  *
3046  * @param rl		the resource list to allocate from
3047  * @param bus		the parent device of @p child
3048  * @param child		the device which is requesting an allocation
3049  * @param type		the type of resource to allocate
3050  * @param rid		a pointer to the resource identifier
3051  * @param start		hint at the start of the resource range - pass
3052  *			@c 0 for any start address
3053  * @param end		hint at the end of the resource range - pass
3054  *			@c ~0 for any end address
3055  * @param count		hint at the size of range required - pass @c 1
3056  *			for any size
3057  * @param flags		any extra flags to control the resource
3058  *			allocation - see @c RF_XXX flags in
3059  *			<sys/rman.h> for details
3060  *
3061  * @returns		the resource which was allocated or @c NULL if no
3062  *			resource could be allocated
3063  */
3064 struct resource *
3065 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3066     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3067 {
3068 	struct resource_list_entry *rle = NULL;
3069 	int passthrough = (device_get_parent(child) != bus);
3070 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3071 
3072 	if (passthrough) {
3073 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3074 		    type, rid, start, end, count, flags));
3075 	}
3076 
3077 	rle = resource_list_find(rl, type, *rid);
3078 
3079 	if (!rle)
3080 		return (NULL);		/* no resource of that type/rid */
3081 
3082 	if (rle->res) {
3083 		if (rle->flags & RLE_RESERVED) {
3084 			if (rle->flags & RLE_ALLOCATED)
3085 				return (NULL);
3086 			if ((flags & RF_ACTIVE) &&
3087 			    bus_activate_resource(child, type, *rid,
3088 			    rle->res) != 0)
3089 				return (NULL);
3090 			rle->flags |= RLE_ALLOCATED;
3091 			return (rle->res);
3092 		}
3093 		device_printf(bus,
3094 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3095 		    type, device_get_nameunit(child));
3096 		return (NULL);
3097 	}
3098 
3099 	if (isdefault) {
3100 		start = rle->start;
3101 		count = ulmax(count, rle->count);
3102 		end = ulmax(rle->end, start + count - 1);
3103 	}
3104 
3105 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3106 	    type, rid, start, end, count, flags);
3107 
3108 	/*
3109 	 * Record the new range.
3110 	 */
3111 	if (rle->res) {
3112 		rle->start = rman_get_start(rle->res);
3113 		rle->end = rman_get_end(rle->res);
3114 		rle->count = count;
3115 	}
3116 
3117 	return (rle->res);
3118 }
3119 
3120 /**
3121  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3122  *
3123  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3124  * used with resource_list_alloc().
3125  *
3126  * @param rl		the resource list which was allocated from
3127  * @param bus		the parent device of @p child
3128  * @param child		the device which is requesting a release
3129  * @param res		the resource to release
3130  *
3131  * @retval 0		success
3132  * @retval non-zero	a standard unix error code indicating what
3133  *			error condition prevented the operation
3134  */
3135 int
3136 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3137     struct resource *res)
3138 {
3139 	struct resource_list_entry *rle = NULL;
3140 	int passthrough = (device_get_parent(child) != bus);
3141 	int error;
3142 
3143 	if (passthrough) {
3144 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3145 		    res));
3146 	}
3147 
3148 	rle = resource_list_find(rl, rman_get_type(res), rman_get_rid(res));
3149 
3150 	if (!rle)
3151 		panic("resource_list_release: can't find resource");
3152 	if (!rle->res)
3153 		panic("resource_list_release: resource entry is not busy");
3154 	if (rle->flags & RLE_RESERVED) {
3155 		if (rle->flags & RLE_ALLOCATED) {
3156 			if (rman_get_flags(res) & RF_ACTIVE) {
3157 				error = bus_deactivate_resource(child, res);
3158 				if (error)
3159 					return (error);
3160 			}
3161 			rle->flags &= ~RLE_ALLOCATED;
3162 			return (0);
3163 		}
3164 		return (EINVAL);
3165 	}
3166 
3167 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, res);
3168 	if (error)
3169 		return (error);
3170 
3171 	rle->res = NULL;
3172 	return (0);
3173 }
3174 
3175 /**
3176  * @brief Release all active resources of a given type
3177  *
3178  * Release all active resources of a specified type.  This is intended
3179  * to be used to cleanup resources leaked by a driver after detach or
3180  * a failed attach.
3181  *
3182  * @param rl		the resource list which was allocated from
3183  * @param bus		the parent device of @p child
3184  * @param child		the device whose active resources are being released
3185  * @param type		the type of resources to release
3186  *
3187  * @retval 0		success
3188  * @retval EBUSY	at least one resource was active
3189  */
3190 int
3191 resource_list_release_active(struct resource_list *rl, device_t bus,
3192     device_t child, int type)
3193 {
3194 	struct resource_list_entry *rle;
3195 	int error, retval;
3196 
3197 	retval = 0;
3198 	STAILQ_FOREACH(rle, rl, link) {
3199 		if (rle->type != type)
3200 			continue;
3201 		if (rle->res == NULL)
3202 			continue;
3203 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3204 		    RLE_RESERVED)
3205 			continue;
3206 		retval = EBUSY;
3207 		error = resource_list_release(rl, bus, child, rle->res);
3208 		if (error != 0)
3209 			device_printf(bus,
3210 			    "Failed to release active resource: %d\n", error);
3211 	}
3212 	return (retval);
3213 }
3214 
3215 /**
3216  * @brief Fully release a reserved resource
3217  *
3218  * Fully releases a resource reserved via resource_list_reserve().
3219  *
3220  * @param rl		the resource list which was allocated from
3221  * @param bus		the parent device of @p child
3222  * @param child		the device whose reserved resource is being released
3223  * @param type		the type of resource to release
3224  * @param rid		the resource identifier
3225  * @param res		the resource to release
3226  *
3227  * @retval 0		success
3228  * @retval non-zero	a standard unix error code indicating what
3229  *			error condition prevented the operation
3230  */
3231 int
3232 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3233     int type, int rid)
3234 {
3235 	struct resource_list_entry *rle = NULL;
3236 	int passthrough = (device_get_parent(child) != bus);
3237 
3238 	if (passthrough)
3239 		panic(
3240     "resource_list_unreserve() should only be called for direct children");
3241 
3242 	rle = resource_list_find(rl, type, rid);
3243 
3244 	if (!rle)
3245 		panic("resource_list_unreserve: can't find resource");
3246 	if (!(rle->flags & RLE_RESERVED))
3247 		return (EINVAL);
3248 	if (rle->flags & RLE_ALLOCATED)
3249 		return (EBUSY);
3250 	rle->flags &= ~RLE_RESERVED;
3251 	return (resource_list_release(rl, bus, child, rle->res));
3252 }
3253 
3254 /**
3255  * @brief Print a description of resources in a resource list
3256  *
3257  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3258  * The name is printed if at least one resource of the given type is available.
3259  * The format is used to print resource start and end.
3260  *
3261  * @param rl		the resource list to print
3262  * @param name		the name of @p type, e.g. @c "memory"
3263  * @param type		type type of resource entry to print
3264  * @param format	printf(9) format string to print resource
3265  *			start and end values
3266  *
3267  * @returns		the number of characters printed
3268  */
3269 int
3270 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3271     const char *format)
3272 {
3273 	struct resource_list_entry *rle;
3274 	int printed, retval;
3275 
3276 	printed = 0;
3277 	retval = 0;
3278 	/* Yes, this is kinda cheating */
3279 	STAILQ_FOREACH(rle, rl, link) {
3280 		if (rle->type == type) {
3281 			if (printed == 0)
3282 				retval += printf(" %s ", name);
3283 			else
3284 				retval += printf(",");
3285 			printed++;
3286 			retval += printf(format, rle->start);
3287 			if (rle->count > 1) {
3288 				retval += printf("-");
3289 				retval += printf(format, rle->start +
3290 						 rle->count - 1);
3291 			}
3292 		}
3293 	}
3294 	return (retval);
3295 }
3296 
3297 /**
3298  * @brief Releases all the resources in a list.
3299  *
3300  * @param rl		The resource list to purge.
3301  *
3302  * @returns		nothing
3303  */
3304 void
3305 resource_list_purge(struct resource_list *rl)
3306 {
3307 	struct resource_list_entry *rle;
3308 
3309 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3310 		if (rle->res)
3311 			bus_release_resource(rman_get_device(rle->res),
3312 			    rle->type, rle->rid, rle->res);
3313 		STAILQ_REMOVE_HEAD(rl, link);
3314 		free(rle, M_BUS);
3315 	}
3316 }
3317 
3318 device_t
3319 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3320 {
3321 	return (device_add_child_ordered(dev, order, name, unit));
3322 }
3323 
3324 /**
3325  * @brief Helper function for implementing DEVICE_PROBE()
3326  *
3327  * This function can be used to help implement the DEVICE_PROBE() for
3328  * a bus (i.e. a device which has other devices attached to it). It
3329  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3330  * devclass.
3331  */
3332 int
3333 bus_generic_probe(device_t dev)
3334 {
3335 	devclass_t dc = dev->devclass;
3336 	driverlink_t dl;
3337 
3338 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3339 		/*
3340 		 * If this driver's pass is too high, then ignore it.
3341 		 * For most drivers in the default pass, this will
3342 		 * never be true.  For early-pass drivers they will
3343 		 * only call the identify routines of eligible drivers
3344 		 * when this routine is called.  Drivers for later
3345 		 * passes should have their identify routines called
3346 		 * on early-pass buses during BUS_NEW_PASS().
3347 		 */
3348 		if (dl->pass > bus_current_pass)
3349 			continue;
3350 		DEVICE_IDENTIFY(dl->driver, dev);
3351 	}
3352 
3353 	return (0);
3354 }
3355 
3356 /**
3357  * @brief Helper function for implementing DEVICE_ATTACH()
3358  *
3359  * This function can be used to help implement the DEVICE_ATTACH() for
3360  * a bus. It calls device_probe_and_attach() for each of the device's
3361  * children.
3362  */
3363 int
3364 bus_generic_attach(device_t dev)
3365 {
3366 	device_t child;
3367 
3368 	TAILQ_FOREACH(child, &dev->children, link) {
3369 		device_probe_and_attach(child);
3370 	}
3371 
3372 	return (0);
3373 }
3374 
3375 /**
3376  * @brief Helper function for delaying attaching children
3377  *
3378  * Many buses can't run transactions on the bus which children need to probe and
3379  * attach until after interrupts and/or timers are running.  This function
3380  * delays their attach until interrupts and timers are enabled.
3381  */
3382 int
3383 bus_delayed_attach_children(device_t dev)
3384 {
3385 	/* Probe and attach the bus children when interrupts are available */
3386 	config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev);
3387 
3388 	return (0);
3389 }
3390 
3391 /**
3392  * @brief Helper function for implementing DEVICE_DETACH()
3393  *
3394  * This function can be used to help implement the DEVICE_DETACH() for
3395  * a bus. It calls device_detach() for each of the device's
3396  * children.
3397  */
3398 int
3399 bus_generic_detach(device_t dev)
3400 {
3401 	device_t child;
3402 	int error;
3403 
3404 	if (dev->state != DS_ATTACHED)
3405 		return (EBUSY);
3406 
3407 	/*
3408 	 * Detach children in the reverse order.
3409 	 * See bus_generic_suspend for details.
3410 	 */
3411 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3412 		if ((error = device_detach(child)) != 0)
3413 			return (error);
3414 	}
3415 
3416 	return (0);
3417 }
3418 
3419 /**
3420  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3421  *
3422  * This function can be used to help implement the DEVICE_SHUTDOWN()
3423  * for a bus. It calls device_shutdown() for each of the device's
3424  * children.
3425  */
3426 int
3427 bus_generic_shutdown(device_t dev)
3428 {
3429 	device_t child;
3430 
3431 	/*
3432 	 * Shut down children in the reverse order.
3433 	 * See bus_generic_suspend for details.
3434 	 */
3435 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3436 		device_shutdown(child);
3437 	}
3438 
3439 	return (0);
3440 }
3441 
3442 /**
3443  * @brief Default function for suspending a child device.
3444  *
3445  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3446  */
3447 int
3448 bus_generic_suspend_child(device_t dev, device_t child)
3449 {
3450 	int	error;
3451 
3452 	error = DEVICE_SUSPEND(child);
3453 
3454 	if (error == 0) {
3455 		child->flags |= DF_SUSPENDED;
3456 	} else {
3457 		printf("DEVICE_SUSPEND(%s) failed: %d\n",
3458 		    device_get_nameunit(child), error);
3459 	}
3460 
3461 	return (error);
3462 }
3463 
3464 /**
3465  * @brief Default function for resuming a child device.
3466  *
3467  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3468  */
3469 int
3470 bus_generic_resume_child(device_t dev, device_t child)
3471 {
3472 	DEVICE_RESUME(child);
3473 	child->flags &= ~DF_SUSPENDED;
3474 
3475 	return (0);
3476 }
3477 
3478 /**
3479  * @brief Helper function for implementing DEVICE_SUSPEND()
3480  *
3481  * This function can be used to help implement the DEVICE_SUSPEND()
3482  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3483  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3484  * operation is aborted and any devices which were suspended are
3485  * resumed immediately by calling their DEVICE_RESUME() methods.
3486  */
3487 int
3488 bus_generic_suspend(device_t dev)
3489 {
3490 	int		error;
3491 	device_t	child;
3492 
3493 	/*
3494 	 * Suspend children in the reverse order.
3495 	 * For most buses all children are equal, so the order does not matter.
3496 	 * Other buses, such as acpi, carefully order their child devices to
3497 	 * express implicit dependencies between them.  For such buses it is
3498 	 * safer to bring down devices in the reverse order.
3499 	 */
3500 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3501 		error = BUS_SUSPEND_CHILD(dev, child);
3502 		if (error != 0) {
3503 			child = TAILQ_NEXT(child, link);
3504 			if (child != NULL) {
3505 				TAILQ_FOREACH_FROM(child, &dev->children, link)
3506 					BUS_RESUME_CHILD(dev, child);
3507 			}
3508 			return (error);
3509 		}
3510 	}
3511 	return (0);
3512 }
3513 
3514 /**
3515  * @brief Helper function for implementing DEVICE_RESUME()
3516  *
3517  * This function can be used to help implement the DEVICE_RESUME() for
3518  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3519  */
3520 int
3521 bus_generic_resume(device_t dev)
3522 {
3523 	device_t	child;
3524 
3525 	TAILQ_FOREACH(child, &dev->children, link) {
3526 		BUS_RESUME_CHILD(dev, child);
3527 		/* if resume fails, there's nothing we can usefully do... */
3528 	}
3529 	return (0);
3530 }
3531 
3532 /**
3533  * @brief Helper function for implementing BUS_RESET_POST
3534  *
3535  * Bus can use this function to implement common operations of
3536  * re-attaching or resuming the children after the bus itself was
3537  * reset, and after restoring bus-unique state of children.
3538  *
3539  * @param dev	The bus
3540  * #param flags	DEVF_RESET_*
3541  */
3542 int
3543 bus_helper_reset_post(device_t dev, int flags)
3544 {
3545 	device_t child;
3546 	int error, error1;
3547 
3548 	error = 0;
3549 	TAILQ_FOREACH(child, &dev->children,link) {
3550 		BUS_RESET_POST(dev, child);
3551 		error1 = (flags & DEVF_RESET_DETACH) != 0 ?
3552 		    device_probe_and_attach(child) :
3553 		    BUS_RESUME_CHILD(dev, child);
3554 		if (error == 0 && error1 != 0)
3555 			error = error1;
3556 	}
3557 	return (error);
3558 }
3559 
3560 static void
3561 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
3562 {
3563 	child = TAILQ_NEXT(child, link);
3564 	if (child == NULL)
3565 		return;
3566 	TAILQ_FOREACH_FROM(child, &dev->children,link) {
3567 		BUS_RESET_POST(dev, child);
3568 		if ((flags & DEVF_RESET_DETACH) != 0)
3569 			device_probe_and_attach(child);
3570 		else
3571 			BUS_RESUME_CHILD(dev, child);
3572 	}
3573 }
3574 
3575 /**
3576  * @brief Helper function for implementing BUS_RESET_PREPARE
3577  *
3578  * Bus can use this function to implement common operations of
3579  * detaching or suspending the children before the bus itself is
3580  * reset, and then save bus-unique state of children that must
3581  * persists around reset.
3582  *
3583  * @param dev	The bus
3584  * #param flags	DEVF_RESET_*
3585  */
3586 int
3587 bus_helper_reset_prepare(device_t dev, int flags)
3588 {
3589 	device_t child;
3590 	int error;
3591 
3592 	if (dev->state != DS_ATTACHED)
3593 		return (EBUSY);
3594 
3595 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3596 		if ((flags & DEVF_RESET_DETACH) != 0) {
3597 			error = device_get_state(child) == DS_ATTACHED ?
3598 			    device_detach(child) : 0;
3599 		} else {
3600 			error = BUS_SUSPEND_CHILD(dev, child);
3601 		}
3602 		if (error == 0) {
3603 			error = BUS_RESET_PREPARE(dev, child);
3604 			if (error != 0) {
3605 				if ((flags & DEVF_RESET_DETACH) != 0)
3606 					device_probe_and_attach(child);
3607 				else
3608 					BUS_RESUME_CHILD(dev, child);
3609 			}
3610 		}
3611 		if (error != 0) {
3612 			bus_helper_reset_prepare_rollback(dev, child, flags);
3613 			return (error);
3614 		}
3615 	}
3616 	return (0);
3617 }
3618 
3619 /**
3620  * @brief Helper function for implementing BUS_PRINT_CHILD().
3621  *
3622  * This function prints the first part of the ascii representation of
3623  * @p child, including its name, unit and description (if any - see
3624  * device_set_desc()).
3625  *
3626  * @returns the number of characters printed
3627  */
3628 int
3629 bus_print_child_header(device_t dev, device_t child)
3630 {
3631 	int	retval = 0;
3632 
3633 	if (device_get_desc(child)) {
3634 		retval += device_printf(child, "<%s>", device_get_desc(child));
3635 	} else {
3636 		retval += printf("%s", device_get_nameunit(child));
3637 	}
3638 
3639 	return (retval);
3640 }
3641 
3642 /**
3643  * @brief Helper function for implementing BUS_PRINT_CHILD().
3644  *
3645  * This function prints the last part of the ascii representation of
3646  * @p child, which consists of the string @c " on " followed by the
3647  * name and unit of the @p dev.
3648  *
3649  * @returns the number of characters printed
3650  */
3651 int
3652 bus_print_child_footer(device_t dev, device_t child)
3653 {
3654 	return (printf(" on %s\n", device_get_nameunit(dev)));
3655 }
3656 
3657 /**
3658  * @brief Helper function for implementing BUS_PRINT_CHILD().
3659  *
3660  * This function prints out the VM domain for the given device.
3661  *
3662  * @returns the number of characters printed
3663  */
3664 int
3665 bus_print_child_domain(device_t dev, device_t child)
3666 {
3667 	int domain;
3668 
3669 	/* No domain? Don't print anything */
3670 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3671 		return (0);
3672 
3673 	return (printf(" numa-domain %d", domain));
3674 }
3675 
3676 /**
3677  * @brief Helper function for implementing BUS_PRINT_CHILD().
3678  *
3679  * This function simply calls bus_print_child_header() followed by
3680  * bus_print_child_footer().
3681  *
3682  * @returns the number of characters printed
3683  */
3684 int
3685 bus_generic_print_child(device_t dev, device_t child)
3686 {
3687 	int	retval = 0;
3688 
3689 	retval += bus_print_child_header(dev, child);
3690 	retval += bus_print_child_domain(dev, child);
3691 	retval += bus_print_child_footer(dev, child);
3692 
3693 	return (retval);
3694 }
3695 
3696 /**
3697  * @brief Stub function for implementing BUS_READ_IVAR().
3698  *
3699  * @returns ENOENT
3700  */
3701 int
3702 bus_generic_read_ivar(device_t dev, device_t child, int index,
3703     uintptr_t * result)
3704 {
3705 	return (ENOENT);
3706 }
3707 
3708 /**
3709  * @brief Stub function for implementing BUS_WRITE_IVAR().
3710  *
3711  * @returns ENOENT
3712  */
3713 int
3714 bus_generic_write_ivar(device_t dev, device_t child, int index,
3715     uintptr_t value)
3716 {
3717 	return (ENOENT);
3718 }
3719 
3720 /**
3721  * @brief Helper function for implementing BUS_GET_PROPERTY().
3722  *
3723  * This simply calls the BUS_GET_PROPERTY of the parent of dev,
3724  * until a non-default implementation is found.
3725  */
3726 ssize_t
3727 bus_generic_get_property(device_t dev, device_t child, const char *propname,
3728     void *propvalue, size_t size, device_property_type_t type)
3729 {
3730 	if (device_get_parent(dev) != NULL)
3731 		return (BUS_GET_PROPERTY(device_get_parent(dev), child,
3732 		    propname, propvalue, size, type));
3733 
3734 	return (-1);
3735 }
3736 
3737 /**
3738  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3739  *
3740  * @returns NULL
3741  */
3742 struct resource_list *
3743 bus_generic_get_resource_list(device_t dev, device_t child)
3744 {
3745 	return (NULL);
3746 }
3747 
3748 /**
3749  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3750  *
3751  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3752  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3753  * and then calls device_probe_and_attach() for each unattached child.
3754  */
3755 void
3756 bus_generic_driver_added(device_t dev, driver_t *driver)
3757 {
3758 	device_t child;
3759 
3760 	DEVICE_IDENTIFY(driver, dev);
3761 	TAILQ_FOREACH(child, &dev->children, link) {
3762 		if (child->state == DS_NOTPRESENT)
3763 			device_probe_and_attach(child);
3764 	}
3765 }
3766 
3767 /**
3768  * @brief Helper function for implementing BUS_NEW_PASS().
3769  *
3770  * This implementing of BUS_NEW_PASS() first calls the identify
3771  * routines for any drivers that probe at the current pass.  Then it
3772  * walks the list of devices for this bus.  If a device is already
3773  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3774  * device is not already attached, it attempts to attach a driver to
3775  * it.
3776  */
3777 void
3778 bus_generic_new_pass(device_t dev)
3779 {
3780 	driverlink_t dl;
3781 	devclass_t dc;
3782 	device_t child;
3783 
3784 	dc = dev->devclass;
3785 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3786 		if (dl->pass == bus_current_pass)
3787 			DEVICE_IDENTIFY(dl->driver, dev);
3788 	}
3789 	TAILQ_FOREACH(child, &dev->children, link) {
3790 		if (child->state >= DS_ATTACHED)
3791 			BUS_NEW_PASS(child);
3792 		else if (child->state == DS_NOTPRESENT)
3793 			device_probe_and_attach(child);
3794 	}
3795 }
3796 
3797 /**
3798  * @brief Helper function for implementing BUS_SETUP_INTR().
3799  *
3800  * This simple implementation of BUS_SETUP_INTR() simply calls the
3801  * BUS_SETUP_INTR() method of the parent of @p dev.
3802  */
3803 int
3804 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3805     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3806     void **cookiep)
3807 {
3808 	/* Propagate up the bus hierarchy until someone handles it. */
3809 	if (dev->parent)
3810 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3811 		    filter, intr, arg, cookiep));
3812 	return (EINVAL);
3813 }
3814 
3815 /**
3816  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3817  *
3818  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3819  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3820  */
3821 int
3822 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3823     void *cookie)
3824 {
3825 	/* Propagate up the bus hierarchy until someone handles it. */
3826 	if (dev->parent)
3827 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3828 	return (EINVAL);
3829 }
3830 
3831 /**
3832  * @brief Helper function for implementing BUS_SUSPEND_INTR().
3833  *
3834  * This simple implementation of BUS_SUSPEND_INTR() simply calls the
3835  * BUS_SUSPEND_INTR() method of the parent of @p dev.
3836  */
3837 int
3838 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
3839 {
3840 	/* Propagate up the bus hierarchy until someone handles it. */
3841 	if (dev->parent)
3842 		return (BUS_SUSPEND_INTR(dev->parent, child, irq));
3843 	return (EINVAL);
3844 }
3845 
3846 /**
3847  * @brief Helper function for implementing BUS_RESUME_INTR().
3848  *
3849  * This simple implementation of BUS_RESUME_INTR() simply calls the
3850  * BUS_RESUME_INTR() method of the parent of @p dev.
3851  */
3852 int
3853 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
3854 {
3855 	/* Propagate up the bus hierarchy until someone handles it. */
3856 	if (dev->parent)
3857 		return (BUS_RESUME_INTR(dev->parent, child, irq));
3858 	return (EINVAL);
3859 }
3860 
3861 /**
3862  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3863  *
3864  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3865  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3866  */
3867 int
3868 bus_generic_adjust_resource(device_t dev, device_t child, struct resource *r,
3869     rman_res_t start, rman_res_t end)
3870 {
3871 	/* Propagate up the bus hierarchy until someone handles it. */
3872 	if (dev->parent)
3873 		return (BUS_ADJUST_RESOURCE(dev->parent, child, r, start, end));
3874 	return (EINVAL);
3875 }
3876 
3877 /*
3878  * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE().
3879  *
3880  * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the
3881  * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev.  If there is no
3882  * parent, no translation happens.
3883  */
3884 int
3885 bus_generic_translate_resource(device_t dev, int type, rman_res_t start,
3886     rman_res_t *newstart)
3887 {
3888 	if (dev->parent)
3889 		return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start,
3890 		    newstart));
3891 	*newstart = start;
3892 	return (0);
3893 }
3894 
3895 /**
3896  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3897  *
3898  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3899  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3900  */
3901 struct resource *
3902 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3903     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3904 {
3905 	/* Propagate up the bus hierarchy until someone handles it. */
3906 	if (dev->parent)
3907 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3908 		    start, end, count, flags));
3909 	return (NULL);
3910 }
3911 
3912 /**
3913  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3914  *
3915  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3916  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3917  */
3918 int
3919 bus_generic_release_resource(device_t dev, device_t child, struct resource *r)
3920 {
3921 	/* Propagate up the bus hierarchy until someone handles it. */
3922 	if (dev->parent)
3923 		return (BUS_RELEASE_RESOURCE(dev->parent, child, r));
3924 	return (EINVAL);
3925 }
3926 
3927 /**
3928  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3929  *
3930  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3931  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3932  */
3933 int
3934 bus_generic_activate_resource(device_t dev, device_t child, struct resource *r)
3935 {
3936 	/* Propagate up the bus hierarchy until someone handles it. */
3937 	if (dev->parent)
3938 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, r));
3939 	return (EINVAL);
3940 }
3941 
3942 /**
3943  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3944  *
3945  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3946  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3947  */
3948 int
3949 bus_generic_deactivate_resource(device_t dev, device_t child,
3950     struct resource *r)
3951 {
3952 	/* Propagate up the bus hierarchy until someone handles it. */
3953 	if (dev->parent)
3954 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, r));
3955 	return (EINVAL);
3956 }
3957 
3958 /**
3959  * @brief Helper function for implementing BUS_MAP_RESOURCE().
3960  *
3961  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
3962  * BUS_MAP_RESOURCE() method of the parent of @p dev.
3963  */
3964 int
3965 bus_generic_map_resource(device_t dev, device_t child, struct resource *r,
3966     struct resource_map_request *args, struct resource_map *map)
3967 {
3968 	/* Propagate up the bus hierarchy until someone handles it. */
3969 	if (dev->parent)
3970 		return (BUS_MAP_RESOURCE(dev->parent, child, r, args, map));
3971 	return (EINVAL);
3972 }
3973 
3974 /**
3975  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
3976  *
3977  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
3978  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
3979  */
3980 int
3981 bus_generic_unmap_resource(device_t dev, device_t child, struct resource *r,
3982     struct resource_map *map)
3983 {
3984 	/* Propagate up the bus hierarchy until someone handles it. */
3985 	if (dev->parent)
3986 		return (BUS_UNMAP_RESOURCE(dev->parent, child, r, map));
3987 	return (EINVAL);
3988 }
3989 
3990 /**
3991  * @brief Helper function for implementing BUS_BIND_INTR().
3992  *
3993  * This simple implementation of BUS_BIND_INTR() simply calls the
3994  * BUS_BIND_INTR() method of the parent of @p dev.
3995  */
3996 int
3997 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3998     int cpu)
3999 {
4000 	/* Propagate up the bus hierarchy until someone handles it. */
4001 	if (dev->parent)
4002 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4003 	return (EINVAL);
4004 }
4005 
4006 /**
4007  * @brief Helper function for implementing BUS_CONFIG_INTR().
4008  *
4009  * This simple implementation of BUS_CONFIG_INTR() simply calls the
4010  * BUS_CONFIG_INTR() method of the parent of @p dev.
4011  */
4012 int
4013 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4014     enum intr_polarity pol)
4015 {
4016 	/* Propagate up the bus hierarchy until someone handles it. */
4017 	if (dev->parent)
4018 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4019 	return (EINVAL);
4020 }
4021 
4022 /**
4023  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4024  *
4025  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4026  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4027  */
4028 int
4029 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4030     void *cookie, const char *descr)
4031 {
4032 	/* Propagate up the bus hierarchy until someone handles it. */
4033 	if (dev->parent)
4034 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4035 		    descr));
4036 	return (EINVAL);
4037 }
4038 
4039 /**
4040  * @brief Helper function for implementing BUS_GET_CPUS().
4041  *
4042  * This simple implementation of BUS_GET_CPUS() simply calls the
4043  * BUS_GET_CPUS() method of the parent of @p dev.
4044  */
4045 int
4046 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4047     size_t setsize, cpuset_t *cpuset)
4048 {
4049 	/* Propagate up the bus hierarchy until someone handles it. */
4050 	if (dev->parent != NULL)
4051 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4052 	return (EINVAL);
4053 }
4054 
4055 /**
4056  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4057  *
4058  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4059  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4060  */
4061 bus_dma_tag_t
4062 bus_generic_get_dma_tag(device_t dev, device_t child)
4063 {
4064 	/* Propagate up the bus hierarchy until someone handles it. */
4065 	if (dev->parent != NULL)
4066 		return (BUS_GET_DMA_TAG(dev->parent, child));
4067 	return (NULL);
4068 }
4069 
4070 /**
4071  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4072  *
4073  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4074  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4075  */
4076 bus_space_tag_t
4077 bus_generic_get_bus_tag(device_t dev, device_t child)
4078 {
4079 	/* Propagate up the bus hierarchy until someone handles it. */
4080 	if (dev->parent != NULL)
4081 		return (BUS_GET_BUS_TAG(dev->parent, child));
4082 	return ((bus_space_tag_t)0);
4083 }
4084 
4085 /**
4086  * @brief Helper function for implementing BUS_GET_RESOURCE().
4087  *
4088  * This implementation of BUS_GET_RESOURCE() uses the
4089  * resource_list_find() function to do most of the work. It calls
4090  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4091  * search.
4092  */
4093 int
4094 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4095     rman_res_t *startp, rman_res_t *countp)
4096 {
4097 	struct resource_list *		rl = NULL;
4098 	struct resource_list_entry *	rle = NULL;
4099 
4100 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4101 	if (!rl)
4102 		return (EINVAL);
4103 
4104 	rle = resource_list_find(rl, type, rid);
4105 	if (!rle)
4106 		return (ENOENT);
4107 
4108 	if (startp)
4109 		*startp = rle->start;
4110 	if (countp)
4111 		*countp = rle->count;
4112 
4113 	return (0);
4114 }
4115 
4116 /**
4117  * @brief Helper function for implementing BUS_SET_RESOURCE().
4118  *
4119  * This implementation of BUS_SET_RESOURCE() uses the
4120  * resource_list_add() function to do most of the work. It calls
4121  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4122  * edit.
4123  */
4124 int
4125 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4126     rman_res_t start, rman_res_t count)
4127 {
4128 	struct resource_list *		rl = NULL;
4129 
4130 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4131 	if (!rl)
4132 		return (EINVAL);
4133 
4134 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4135 
4136 	return (0);
4137 }
4138 
4139 /**
4140  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4141  *
4142  * This implementation of BUS_DELETE_RESOURCE() uses the
4143  * resource_list_delete() function to do most of the work. It calls
4144  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4145  * edit.
4146  */
4147 void
4148 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4149 {
4150 	struct resource_list *		rl = NULL;
4151 
4152 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4153 	if (!rl)
4154 		return;
4155 
4156 	resource_list_delete(rl, type, rid);
4157 
4158 	return;
4159 }
4160 
4161 /**
4162  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4163  *
4164  * This implementation of BUS_RELEASE_RESOURCE() uses the
4165  * resource_list_release() function to do most of the work. It calls
4166  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4167  */
4168 int
4169 bus_generic_rl_release_resource(device_t dev, device_t child,
4170     struct resource *r)
4171 {
4172 	struct resource_list *		rl = NULL;
4173 
4174 	if (device_get_parent(child) != dev)
4175 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, r));
4176 
4177 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4178 	if (!rl)
4179 		return (EINVAL);
4180 
4181 	return (resource_list_release(rl, dev, child, r));
4182 }
4183 
4184 /**
4185  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4186  *
4187  * This implementation of BUS_ALLOC_RESOURCE() uses the
4188  * resource_list_alloc() function to do most of the work. It calls
4189  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4190  */
4191 struct resource *
4192 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4193     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4194 {
4195 	struct resource_list *		rl = NULL;
4196 
4197 	if (device_get_parent(child) != dev)
4198 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4199 		    type, rid, start, end, count, flags));
4200 
4201 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4202 	if (!rl)
4203 		return (NULL);
4204 
4205 	return (resource_list_alloc(rl, dev, child, type, rid,
4206 	    start, end, count, flags));
4207 }
4208 
4209 /**
4210  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4211  *
4212  * This implementation of BUS_ALLOC_RESOURCE() allocates a
4213  * resource from a resource manager.  It uses BUS_GET_RMAN()
4214  * to obtain the resource manager.
4215  */
4216 struct resource *
4217 bus_generic_rman_alloc_resource(device_t dev, device_t child, int type,
4218     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4219 {
4220 	struct resource *r;
4221 	struct rman *rm;
4222 
4223 	rm = BUS_GET_RMAN(dev, type, flags);
4224 	if (rm == NULL)
4225 		return (NULL);
4226 
4227 	r = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE,
4228 	    child);
4229 	if (r == NULL)
4230 		return (NULL);
4231 	rman_set_rid(r, *rid);
4232 	rman_set_type(r, type);
4233 
4234 	if (flags & RF_ACTIVE) {
4235 		if (bus_activate_resource(child, type, *rid, r) != 0) {
4236 			rman_release_resource(r);
4237 			return (NULL);
4238 		}
4239 	}
4240 
4241 	return (r);
4242 }
4243 
4244 /**
4245  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4246  *
4247  * This implementation of BUS_ADJUST_RESOURCE() adjusts resources only
4248  * if they were allocated from the resource manager returned by
4249  * BUS_GET_RMAN().
4250  */
4251 int
4252 bus_generic_rman_adjust_resource(device_t dev, device_t child,
4253     struct resource *r, rman_res_t start, rman_res_t end)
4254 {
4255 	struct rman *rm;
4256 
4257 	rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r));
4258 	if (rm == NULL)
4259 		return (ENXIO);
4260 	if (!rman_is_region_manager(r, rm))
4261 		return (EINVAL);
4262 	return (rman_adjust_resource(r, start, end));
4263 }
4264 
4265 /**
4266  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4267  *
4268  * This implementation of BUS_RELEASE_RESOURCE() releases resources
4269  * allocated by bus_generic_rman_alloc_resource.
4270  */
4271 int
4272 bus_generic_rman_release_resource(device_t dev, device_t child,
4273     struct resource *r)
4274 {
4275 #ifdef INVARIANTS
4276 	struct rman *rm;
4277 #endif
4278 	int error;
4279 
4280 #ifdef INVARIANTS
4281 	rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r));
4282 	KASSERT(rman_is_region_manager(r, rm),
4283 	    ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4284 #endif
4285 
4286 	if (rman_get_flags(r) & RF_ACTIVE) {
4287 		error = bus_deactivate_resource(child, r);
4288 		if (error != 0)
4289 			return (error);
4290 	}
4291 	return (rman_release_resource(r));
4292 }
4293 
4294 /**
4295  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4296  *
4297  * This implementation of BUS_ACTIVATE_RESOURCE() activates resources
4298  * allocated by bus_generic_rman_alloc_resource.
4299  */
4300 int
4301 bus_generic_rman_activate_resource(device_t dev, device_t child,
4302     struct resource *r)
4303 {
4304 	struct resource_map map;
4305 #ifdef INVARIANTS
4306 	struct rman *rm;
4307 #endif
4308 	int error, type;
4309 
4310 	type = rman_get_type(r);
4311 #ifdef INVARIANTS
4312 	rm = BUS_GET_RMAN(dev, type, rman_get_flags(r));
4313 	KASSERT(rman_is_region_manager(r, rm),
4314 	    ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4315 #endif
4316 
4317 	error = rman_activate_resource(r);
4318 	if (error != 0)
4319 		return (error);
4320 
4321 	if ((rman_get_flags(r) & RF_UNMAPPED) == 0 &&
4322 	    (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT)) {
4323 		error = BUS_MAP_RESOURCE(dev, child, r, NULL, &map);
4324 		if (error != 0) {
4325 			rman_deactivate_resource(r);
4326 			return (error);
4327 		}
4328 
4329 		rman_set_mapping(r, &map);
4330 	}
4331 	return (0);
4332 }
4333 
4334 /**
4335  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4336  *
4337  * This implementation of BUS_DEACTIVATE_RESOURCE() deactivates
4338  * resources allocated by bus_generic_rman_alloc_resource.
4339  */
4340 int
4341 bus_generic_rman_deactivate_resource(device_t dev, device_t child,
4342     struct resource *r)
4343 {
4344 	struct resource_map map;
4345 #ifdef INVARIANTS
4346 	struct rman *rm;
4347 #endif
4348 	int error, type;
4349 
4350 	type = rman_get_type(r);
4351 #ifdef INVARIANTS
4352 	rm = BUS_GET_RMAN(dev, type, rman_get_flags(r));
4353 	KASSERT(rman_is_region_manager(r, rm),
4354 	    ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4355 #endif
4356 
4357 	error = rman_deactivate_resource(r);
4358 	if (error != 0)
4359 		return (error);
4360 
4361 	if ((rman_get_flags(r) & RF_UNMAPPED) == 0 &&
4362 	    (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT)) {
4363 		rman_get_mapping(r, &map);
4364 		BUS_UNMAP_RESOURCE(dev, child, r, &map);
4365 	}
4366 	return (0);
4367 }
4368 
4369 /**
4370  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4371  *
4372  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4373  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4374  */
4375 int
4376 bus_generic_child_present(device_t dev, device_t child)
4377 {
4378 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4379 }
4380 
4381 /**
4382  * @brief Helper function for implementing BUS_GET_DOMAIN().
4383  *
4384  * This simple implementation of BUS_GET_DOMAIN() calls the
4385  * BUS_GET_DOMAIN() method of the parent of @p dev.  If @p dev
4386  * does not have a parent, the function fails with ENOENT.
4387  */
4388 int
4389 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4390 {
4391 	if (dev->parent)
4392 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4393 
4394 	return (ENOENT);
4395 }
4396 
4397 /**
4398  * @brief Helper function to implement normal BUS_GET_DEVICE_PATH()
4399  *
4400  * This function knows how to (a) pass the request up the tree if there's
4401  * a parent and (b) Knows how to supply a FreeBSD locator.
4402  *
4403  * @param bus		bus in the walk up the tree
4404  * @param child		leaf node to print information about
4405  * @param locator	BUS_LOCATOR_xxx string for locator
4406  * @param sb		Buffer to print information into
4407  */
4408 int
4409 bus_generic_get_device_path(device_t bus, device_t child, const char *locator,
4410     struct sbuf *sb)
4411 {
4412 	int rv = 0;
4413 	device_t parent;
4414 
4415 	/*
4416 	 * We don't recurse on ACPI since either we know the handle for the
4417 	 * device or we don't. And if we're in the generic routine, we don't
4418 	 * have a ACPI override. All other locators build up a path by having
4419 	 * their parents create a path and then adding the path element for this
4420 	 * node. That's why we recurse with parent, bus rather than the typical
4421 	 * parent, child: each spot in the tree is independent of what our child
4422 	 * will do with this path.
4423 	 */
4424 	parent = device_get_parent(bus);
4425 	if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) {
4426 		rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb);
4427 	}
4428 	if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) {
4429 		if (rv == 0) {
4430 			sbuf_printf(sb, "/%s", device_get_nameunit(child));
4431 		}
4432 		return (rv);
4433 	}
4434 	/*
4435 	 * Don't know what to do. So assume we do nothing. Not sure that's
4436 	 * the right thing, but keeps us from having a big list here.
4437 	 */
4438 	return (0);
4439 }
4440 
4441 
4442 /**
4443  * @brief Helper function for implementing BUS_RESCAN().
4444  *
4445  * This null implementation of BUS_RESCAN() always fails to indicate
4446  * the bus does not support rescanning.
4447  */
4448 int
4449 bus_null_rescan(device_t dev)
4450 {
4451 	return (ENODEV);
4452 }
4453 
4454 /*
4455  * Some convenience functions to make it easier for drivers to use the
4456  * resource-management functions.  All these really do is hide the
4457  * indirection through the parent's method table, making for slightly
4458  * less-wordy code.  In the future, it might make sense for this code
4459  * to maintain some sort of a list of resources allocated by each device.
4460  */
4461 
4462 int
4463 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4464     struct resource **res)
4465 {
4466 	int i;
4467 
4468 	for (i = 0; rs[i].type != -1; i++)
4469 		res[i] = NULL;
4470 	for (i = 0; rs[i].type != -1; i++) {
4471 		res[i] = bus_alloc_resource_any(dev,
4472 		    rs[i].type, &rs[i].rid, rs[i].flags);
4473 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4474 			bus_release_resources(dev, rs, res);
4475 			return (ENXIO);
4476 		}
4477 	}
4478 	return (0);
4479 }
4480 
4481 void
4482 bus_release_resources(device_t dev, const struct resource_spec *rs,
4483     struct resource **res)
4484 {
4485 	int i;
4486 
4487 	for (i = 0; rs[i].type != -1; i++)
4488 		if (res[i] != NULL) {
4489 			bus_release_resource(
4490 			    dev, rs[i].type, rs[i].rid, res[i]);
4491 			res[i] = NULL;
4492 		}
4493 }
4494 
4495 /**
4496  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4497  *
4498  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4499  * parent of @p dev.
4500  */
4501 struct resource *
4502 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4503     rman_res_t end, rman_res_t count, u_int flags)
4504 {
4505 	struct resource *res;
4506 
4507 	if (dev->parent == NULL)
4508 		return (NULL);
4509 	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4510 	    count, flags);
4511 	return (res);
4512 }
4513 
4514 /**
4515  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4516  *
4517  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4518  * parent of @p dev.
4519  */
4520 int
4521 bus_adjust_resource(device_t dev, struct resource *r, rman_res_t start,
4522     rman_res_t end)
4523 {
4524 	if (dev->parent == NULL)
4525 		return (EINVAL);
4526 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, r, start, end));
4527 }
4528 
4529 int
4530 bus_adjust_resource_old(device_t dev, int type __unused, struct resource *r,
4531     rman_res_t start, rman_res_t end)
4532 {
4533 	return (bus_adjust_resource(dev, r, start, end));
4534 }
4535 
4536 /**
4537  * @brief Wrapper function for BUS_TRANSLATE_RESOURCE().
4538  *
4539  * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the
4540  * parent of @p dev.
4541  */
4542 int
4543 bus_translate_resource(device_t dev, int type, rman_res_t start,
4544     rman_res_t *newstart)
4545 {
4546 	if (dev->parent == NULL)
4547 		return (EINVAL);
4548 	return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart));
4549 }
4550 
4551 /**
4552  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4553  *
4554  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4555  * parent of @p dev.
4556  */
4557 int
4558 bus_activate_resource(device_t dev, struct resource *r)
4559 {
4560 	if (dev->parent == NULL)
4561 		return (EINVAL);
4562 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, r));
4563 }
4564 
4565 int
4566 bus_activate_resource_old(device_t dev, int type, int rid, struct resource *r)
4567 {
4568 	return (bus_activate_resource(dev, r));
4569 }
4570 
4571 /**
4572  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4573  *
4574  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4575  * parent of @p dev.
4576  */
4577 int
4578 bus_deactivate_resource(device_t dev, struct resource *r)
4579 {
4580 	if (dev->parent == NULL)
4581 		return (EINVAL);
4582 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, r));
4583 }
4584 
4585 int
4586 bus_deactivate_resource_old(device_t dev, int type, int rid, struct resource *r)
4587 {
4588 	return (bus_deactivate_resource(dev, r));
4589 }
4590 
4591 /**
4592  * @brief Wrapper function for BUS_MAP_RESOURCE().
4593  *
4594  * This function simply calls the BUS_MAP_RESOURCE() method of the
4595  * parent of @p dev.
4596  */
4597 int
4598 bus_map_resource(device_t dev, struct resource *r,
4599     struct resource_map_request *args, struct resource_map *map)
4600 {
4601 	if (dev->parent == NULL)
4602 		return (EINVAL);
4603 	return (BUS_MAP_RESOURCE(dev->parent, dev, r, args, map));
4604 }
4605 
4606 int
4607 bus_map_resource_old(device_t dev, int type, struct resource *r,
4608     struct resource_map_request *args, struct resource_map *map)
4609 {
4610 	return (bus_map_resource(dev, r, args, map));
4611 }
4612 
4613 /**
4614  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4615  *
4616  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4617  * parent of @p dev.
4618  */
4619 int
4620 bus_unmap_resource(device_t dev, struct resource *r, struct resource_map *map)
4621 {
4622 	if (dev->parent == NULL)
4623 		return (EINVAL);
4624 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, r, map));
4625 }
4626 
4627 int
4628 bus_unmap_resource_old(device_t dev, int type, struct resource *r,
4629     struct resource_map *map)
4630 {
4631 	return (bus_unmap_resource(dev, r, map));
4632 }
4633 
4634 /**
4635  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4636  *
4637  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4638  * parent of @p dev.
4639  */
4640 int
4641 bus_release_resource(device_t dev, struct resource *r)
4642 {
4643 	int rv;
4644 
4645 	if (dev->parent == NULL)
4646 		return (EINVAL);
4647 	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, r);
4648 	return (rv);
4649 }
4650 
4651 int
4652 bus_release_resource_old(device_t dev, int type, int rid, struct resource *r)
4653 {
4654 	return (bus_release_resource(dev, r));
4655 }
4656 
4657 /**
4658  * @brief Wrapper function for BUS_SETUP_INTR().
4659  *
4660  * This function simply calls the BUS_SETUP_INTR() method of the
4661  * parent of @p dev.
4662  */
4663 int
4664 bus_setup_intr(device_t dev, struct resource *r, int flags,
4665     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4666 {
4667 	int error;
4668 
4669 	if (dev->parent == NULL)
4670 		return (EINVAL);
4671 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4672 	    arg, cookiep);
4673 	if (error != 0)
4674 		return (error);
4675 	if (handler != NULL && !(flags & INTR_MPSAFE))
4676 		device_printf(dev, "[GIANT-LOCKED]\n");
4677 	return (0);
4678 }
4679 
4680 /**
4681  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4682  *
4683  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4684  * parent of @p dev.
4685  */
4686 int
4687 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4688 {
4689 	if (dev->parent == NULL)
4690 		return (EINVAL);
4691 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4692 }
4693 
4694 /**
4695  * @brief Wrapper function for BUS_SUSPEND_INTR().
4696  *
4697  * This function simply calls the BUS_SUSPEND_INTR() method of the
4698  * parent of @p dev.
4699  */
4700 int
4701 bus_suspend_intr(device_t dev, struct resource *r)
4702 {
4703 	if (dev->parent == NULL)
4704 		return (EINVAL);
4705 	return (BUS_SUSPEND_INTR(dev->parent, dev, r));
4706 }
4707 
4708 /**
4709  * @brief Wrapper function for BUS_RESUME_INTR().
4710  *
4711  * This function simply calls the BUS_RESUME_INTR() method of the
4712  * parent of @p dev.
4713  */
4714 int
4715 bus_resume_intr(device_t dev, struct resource *r)
4716 {
4717 	if (dev->parent == NULL)
4718 		return (EINVAL);
4719 	return (BUS_RESUME_INTR(dev->parent, dev, r));
4720 }
4721 
4722 /**
4723  * @brief Wrapper function for BUS_BIND_INTR().
4724  *
4725  * This function simply calls the BUS_BIND_INTR() method of the
4726  * parent of @p dev.
4727  */
4728 int
4729 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4730 {
4731 	if (dev->parent == NULL)
4732 		return (EINVAL);
4733 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4734 }
4735 
4736 /**
4737  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4738  *
4739  * This function first formats the requested description into a
4740  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4741  * the parent of @p dev.
4742  */
4743 int
4744 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4745     const char *fmt, ...)
4746 {
4747 	va_list ap;
4748 	char descr[MAXCOMLEN + 1];
4749 
4750 	if (dev->parent == NULL)
4751 		return (EINVAL);
4752 	va_start(ap, fmt);
4753 	vsnprintf(descr, sizeof(descr), fmt, ap);
4754 	va_end(ap);
4755 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4756 }
4757 
4758 /**
4759  * @brief Wrapper function for BUS_SET_RESOURCE().
4760  *
4761  * This function simply calls the BUS_SET_RESOURCE() method of the
4762  * parent of @p dev.
4763  */
4764 int
4765 bus_set_resource(device_t dev, int type, int rid,
4766     rman_res_t start, rman_res_t count)
4767 {
4768 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4769 	    start, count));
4770 }
4771 
4772 /**
4773  * @brief Wrapper function for BUS_GET_RESOURCE().
4774  *
4775  * This function simply calls the BUS_GET_RESOURCE() method of the
4776  * parent of @p dev.
4777  */
4778 int
4779 bus_get_resource(device_t dev, int type, int rid,
4780     rman_res_t *startp, rman_res_t *countp)
4781 {
4782 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4783 	    startp, countp));
4784 }
4785 
4786 /**
4787  * @brief Wrapper function for BUS_GET_RESOURCE().
4788  *
4789  * This function simply calls the BUS_GET_RESOURCE() method of the
4790  * parent of @p dev and returns the start value.
4791  */
4792 rman_res_t
4793 bus_get_resource_start(device_t dev, int type, int rid)
4794 {
4795 	rman_res_t start;
4796 	rman_res_t count;
4797 	int error;
4798 
4799 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4800 	    &start, &count);
4801 	if (error)
4802 		return (0);
4803 	return (start);
4804 }
4805 
4806 /**
4807  * @brief Wrapper function for BUS_GET_RESOURCE().
4808  *
4809  * This function simply calls the BUS_GET_RESOURCE() method of the
4810  * parent of @p dev and returns the count value.
4811  */
4812 rman_res_t
4813 bus_get_resource_count(device_t dev, int type, int rid)
4814 {
4815 	rman_res_t start;
4816 	rman_res_t count;
4817 	int error;
4818 
4819 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4820 	    &start, &count);
4821 	if (error)
4822 		return (0);
4823 	return (count);
4824 }
4825 
4826 /**
4827  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4828  *
4829  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4830  * parent of @p dev.
4831  */
4832 void
4833 bus_delete_resource(device_t dev, int type, int rid)
4834 {
4835 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4836 }
4837 
4838 /**
4839  * @brief Wrapper function for BUS_CHILD_PRESENT().
4840  *
4841  * This function simply calls the BUS_CHILD_PRESENT() method of the
4842  * parent of @p dev.
4843  */
4844 int
4845 bus_child_present(device_t child)
4846 {
4847 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4848 }
4849 
4850 /**
4851  * @brief Wrapper function for BUS_CHILD_PNPINFO().
4852  *
4853  * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p
4854  * dev.
4855  */
4856 int
4857 bus_child_pnpinfo(device_t child, struct sbuf *sb)
4858 {
4859 	device_t parent;
4860 
4861 	parent = device_get_parent(child);
4862 	if (parent == NULL)
4863 		return (0);
4864 	return (BUS_CHILD_PNPINFO(parent, child, sb));
4865 }
4866 
4867 /**
4868  * @brief Generic implementation that does nothing for bus_child_pnpinfo
4869  *
4870  * This function has the right signature and returns 0 since the sbuf is passed
4871  * to us to append to.
4872  */
4873 int
4874 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb)
4875 {
4876 	return (0);
4877 }
4878 
4879 /**
4880  * @brief Wrapper function for BUS_CHILD_LOCATION().
4881  *
4882  * This function simply calls the BUS_CHILD_LOCATION() method of the parent of
4883  * @p dev.
4884  */
4885 int
4886 bus_child_location(device_t child, struct sbuf *sb)
4887 {
4888 	device_t parent;
4889 
4890 	parent = device_get_parent(child);
4891 	if (parent == NULL)
4892 		return (0);
4893 	return (BUS_CHILD_LOCATION(parent, child, sb));
4894 }
4895 
4896 /**
4897  * @brief Generic implementation that does nothing for bus_child_location
4898  *
4899  * This function has the right signature and returns 0 since the sbuf is passed
4900  * to us to append to.
4901  */
4902 int
4903 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb)
4904 {
4905 	return (0);
4906 }
4907 
4908 /**
4909  * @brief Wrapper function for BUS_GET_CPUS().
4910  *
4911  * This function simply calls the BUS_GET_CPUS() method of the
4912  * parent of @p dev.
4913  */
4914 int
4915 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4916 {
4917 	device_t parent;
4918 
4919 	parent = device_get_parent(dev);
4920 	if (parent == NULL)
4921 		return (EINVAL);
4922 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4923 }
4924 
4925 /**
4926  * @brief Wrapper function for BUS_GET_DMA_TAG().
4927  *
4928  * This function simply calls the BUS_GET_DMA_TAG() method of the
4929  * parent of @p dev.
4930  */
4931 bus_dma_tag_t
4932 bus_get_dma_tag(device_t dev)
4933 {
4934 	device_t parent;
4935 
4936 	parent = device_get_parent(dev);
4937 	if (parent == NULL)
4938 		return (NULL);
4939 	return (BUS_GET_DMA_TAG(parent, dev));
4940 }
4941 
4942 /**
4943  * @brief Wrapper function for BUS_GET_BUS_TAG().
4944  *
4945  * This function simply calls the BUS_GET_BUS_TAG() method of the
4946  * parent of @p dev.
4947  */
4948 bus_space_tag_t
4949 bus_get_bus_tag(device_t dev)
4950 {
4951 	device_t parent;
4952 
4953 	parent = device_get_parent(dev);
4954 	if (parent == NULL)
4955 		return ((bus_space_tag_t)0);
4956 	return (BUS_GET_BUS_TAG(parent, dev));
4957 }
4958 
4959 /**
4960  * @brief Wrapper function for BUS_GET_DOMAIN().
4961  *
4962  * This function simply calls the BUS_GET_DOMAIN() method of the
4963  * parent of @p dev.
4964  */
4965 int
4966 bus_get_domain(device_t dev, int *domain)
4967 {
4968 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4969 }
4970 
4971 /* Resume all devices and then notify userland that we're up again. */
4972 static int
4973 root_resume(device_t dev)
4974 {
4975 	int error;
4976 
4977 	error = bus_generic_resume(dev);
4978 	if (error == 0) {
4979 		devctl_notify("kernel", "power", "resume", NULL);
4980 	}
4981 	return (error);
4982 }
4983 
4984 static int
4985 root_print_child(device_t dev, device_t child)
4986 {
4987 	int	retval = 0;
4988 
4989 	retval += bus_print_child_header(dev, child);
4990 	retval += printf("\n");
4991 
4992 	return (retval);
4993 }
4994 
4995 static int
4996 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4997     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4998 {
4999 	/*
5000 	 * If an interrupt mapping gets to here something bad has happened.
5001 	 */
5002 	panic("root_setup_intr");
5003 }
5004 
5005 /*
5006  * If we get here, assume that the device is permanent and really is
5007  * present in the system.  Removable bus drivers are expected to intercept
5008  * this call long before it gets here.  We return -1 so that drivers that
5009  * really care can check vs -1 or some ERRNO returned higher in the food
5010  * chain.
5011  */
5012 static int
5013 root_child_present(device_t dev, device_t child)
5014 {
5015 	return (-1);
5016 }
5017 
5018 static int
5019 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
5020     cpuset_t *cpuset)
5021 {
5022 	switch (op) {
5023 	case INTR_CPUS:
5024 		/* Default to returning the set of all CPUs. */
5025 		if (setsize != sizeof(cpuset_t))
5026 			return (EINVAL);
5027 		*cpuset = all_cpus;
5028 		return (0);
5029 	default:
5030 		return (EINVAL);
5031 	}
5032 }
5033 
5034 static kobj_method_t root_methods[] = {
5035 	/* Device interface */
5036 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
5037 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
5038 	KOBJMETHOD(device_resume,	root_resume),
5039 
5040 	/* Bus interface */
5041 	KOBJMETHOD(bus_print_child,	root_print_child),
5042 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
5043 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
5044 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
5045 	KOBJMETHOD(bus_child_present,	root_child_present),
5046 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
5047 
5048 	KOBJMETHOD_END
5049 };
5050 
5051 static driver_t root_driver = {
5052 	"root",
5053 	root_methods,
5054 	1,			/* no softc */
5055 };
5056 
5057 device_t	root_bus;
5058 devclass_t	root_devclass;
5059 
5060 static int
5061 root_bus_module_handler(module_t mod, int what, void* arg)
5062 {
5063 	switch (what) {
5064 	case MOD_LOAD:
5065 		TAILQ_INIT(&bus_data_devices);
5066 		kobj_class_compile((kobj_class_t) &root_driver);
5067 		root_bus = make_device(NULL, "root", 0);
5068 		root_bus->desc = "System root bus";
5069 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
5070 		root_bus->driver = &root_driver;
5071 		root_bus->state = DS_ATTACHED;
5072 		root_devclass = devclass_find_internal("root", NULL, FALSE);
5073 		devctl2_init();
5074 		return (0);
5075 
5076 	case MOD_SHUTDOWN:
5077 		device_shutdown(root_bus);
5078 		return (0);
5079 	default:
5080 		return (EOPNOTSUPP);
5081 	}
5082 
5083 	return (0);
5084 }
5085 
5086 static moduledata_t root_bus_mod = {
5087 	"rootbus",
5088 	root_bus_module_handler,
5089 	NULL
5090 };
5091 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5092 
5093 /**
5094  * @brief Automatically configure devices
5095  *
5096  * This function begins the autoconfiguration process by calling
5097  * device_probe_and_attach() for each child of the @c root0 device.
5098  */
5099 void
5100 root_bus_configure(void)
5101 {
5102 	PDEBUG(("."));
5103 
5104 	/* Eventually this will be split up, but this is sufficient for now. */
5105 	bus_set_pass(BUS_PASS_DEFAULT);
5106 }
5107 
5108 /**
5109  * @brief Module handler for registering device drivers
5110  *
5111  * This module handler is used to automatically register device
5112  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
5113  * devclass_add_driver() for the driver described by the
5114  * driver_module_data structure pointed to by @p arg
5115  */
5116 int
5117 driver_module_handler(module_t mod, int what, void *arg)
5118 {
5119 	struct driver_module_data *dmd;
5120 	devclass_t bus_devclass;
5121 	kobj_class_t driver;
5122 	int error, pass;
5123 
5124 	dmd = (struct driver_module_data *)arg;
5125 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
5126 	error = 0;
5127 
5128 	switch (what) {
5129 	case MOD_LOAD:
5130 		if (dmd->dmd_chainevh)
5131 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5132 
5133 		pass = dmd->dmd_pass;
5134 		driver = dmd->dmd_driver;
5135 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5136 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
5137 		error = devclass_add_driver(bus_devclass, driver, pass,
5138 		    dmd->dmd_devclass);
5139 		break;
5140 
5141 	case MOD_UNLOAD:
5142 		PDEBUG(("Unloading module: driver %s from bus %s",
5143 		    DRIVERNAME(dmd->dmd_driver),
5144 		    dmd->dmd_busname));
5145 		error = devclass_delete_driver(bus_devclass,
5146 		    dmd->dmd_driver);
5147 
5148 		if (!error && dmd->dmd_chainevh)
5149 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5150 		break;
5151 	case MOD_QUIESCE:
5152 		PDEBUG(("Quiesce module: driver %s from bus %s",
5153 		    DRIVERNAME(dmd->dmd_driver),
5154 		    dmd->dmd_busname));
5155 		error = devclass_quiesce_driver(bus_devclass,
5156 		    dmd->dmd_driver);
5157 
5158 		if (!error && dmd->dmd_chainevh)
5159 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5160 		break;
5161 	default:
5162 		error = EOPNOTSUPP;
5163 		break;
5164 	}
5165 
5166 	return (error);
5167 }
5168 
5169 /**
5170  * @brief Enumerate all hinted devices for this bus.
5171  *
5172  * Walks through the hints for this bus and calls the bus_hinted_child
5173  * routine for each one it fines.  It searches first for the specific
5174  * bus that's being probed for hinted children (eg isa0), and then for
5175  * generic children (eg isa).
5176  *
5177  * @param	dev	bus device to enumerate
5178  */
5179 void
5180 bus_enumerate_hinted_children(device_t bus)
5181 {
5182 	int i;
5183 	const char *dname, *busname;
5184 	int dunit;
5185 
5186 	/*
5187 	 * enumerate all devices on the specific bus
5188 	 */
5189 	busname = device_get_nameunit(bus);
5190 	i = 0;
5191 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5192 		BUS_HINTED_CHILD(bus, dname, dunit);
5193 
5194 	/*
5195 	 * and all the generic ones.
5196 	 */
5197 	busname = device_get_name(bus);
5198 	i = 0;
5199 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5200 		BUS_HINTED_CHILD(bus, dname, dunit);
5201 }
5202 
5203 #ifdef BUS_DEBUG
5204 
5205 /* the _short versions avoid iteration by not calling anything that prints
5206  * more than oneliners. I love oneliners.
5207  */
5208 
5209 static void
5210 print_device_short(device_t dev, int indent)
5211 {
5212 	if (!dev)
5213 		return;
5214 
5215 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5216 	    dev->unit, dev->desc,
5217 	    (dev->parent? "":"no "),
5218 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5219 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5220 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5221 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5222 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5223 	    (dev->flags&DF_SUSPENDED? "suspended,":""),
5224 	    (dev->ivars? "":"no "),
5225 	    (dev->softc? "":"no "),
5226 	    dev->busy));
5227 }
5228 
5229 static void
5230 print_device(device_t dev, int indent)
5231 {
5232 	if (!dev)
5233 		return;
5234 
5235 	print_device_short(dev, indent);
5236 
5237 	indentprintf(("Parent:\n"));
5238 	print_device_short(dev->parent, indent+1);
5239 	indentprintf(("Driver:\n"));
5240 	print_driver_short(dev->driver, indent+1);
5241 	indentprintf(("Devclass:\n"));
5242 	print_devclass_short(dev->devclass, indent+1);
5243 }
5244 
5245 void
5246 print_device_tree_short(device_t dev, int indent)
5247 /* print the device and all its children (indented) */
5248 {
5249 	device_t child;
5250 
5251 	if (!dev)
5252 		return;
5253 
5254 	print_device_short(dev, indent);
5255 
5256 	TAILQ_FOREACH(child, &dev->children, link) {
5257 		print_device_tree_short(child, indent+1);
5258 	}
5259 }
5260 
5261 void
5262 print_device_tree(device_t dev, int indent)
5263 /* print the device and all its children (indented) */
5264 {
5265 	device_t child;
5266 
5267 	if (!dev)
5268 		return;
5269 
5270 	print_device(dev, indent);
5271 
5272 	TAILQ_FOREACH(child, &dev->children, link) {
5273 		print_device_tree(child, indent+1);
5274 	}
5275 }
5276 
5277 static void
5278 print_driver_short(driver_t *driver, int indent)
5279 {
5280 	if (!driver)
5281 		return;
5282 
5283 	indentprintf(("driver %s: softc size = %zd\n",
5284 	    driver->name, driver->size));
5285 }
5286 
5287 static void
5288 print_driver(driver_t *driver, int indent)
5289 {
5290 	if (!driver)
5291 		return;
5292 
5293 	print_driver_short(driver, indent);
5294 }
5295 
5296 static void
5297 print_driver_list(driver_list_t drivers, int indent)
5298 {
5299 	driverlink_t driver;
5300 
5301 	TAILQ_FOREACH(driver, &drivers, link) {
5302 		print_driver(driver->driver, indent);
5303 	}
5304 }
5305 
5306 static void
5307 print_devclass_short(devclass_t dc, int indent)
5308 {
5309 	if ( !dc )
5310 		return;
5311 
5312 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5313 }
5314 
5315 static void
5316 print_devclass(devclass_t dc, int indent)
5317 {
5318 	int i;
5319 
5320 	if ( !dc )
5321 		return;
5322 
5323 	print_devclass_short(dc, indent);
5324 	indentprintf(("Drivers:\n"));
5325 	print_driver_list(dc->drivers, indent+1);
5326 
5327 	indentprintf(("Devices:\n"));
5328 	for (i = 0; i < dc->maxunit; i++)
5329 		if (dc->devices[i])
5330 			print_device(dc->devices[i], indent+1);
5331 }
5332 
5333 void
5334 print_devclass_list_short(void)
5335 {
5336 	devclass_t dc;
5337 
5338 	printf("Short listing of devclasses, drivers & devices:\n");
5339 	TAILQ_FOREACH(dc, &devclasses, link) {
5340 		print_devclass_short(dc, 0);
5341 	}
5342 }
5343 
5344 void
5345 print_devclass_list(void)
5346 {
5347 	devclass_t dc;
5348 
5349 	printf("Full listing of devclasses, drivers & devices:\n");
5350 	TAILQ_FOREACH(dc, &devclasses, link) {
5351 		print_devclass(dc, 0);
5352 	}
5353 }
5354 
5355 #endif
5356 
5357 /*
5358  * User-space access to the device tree.
5359  *
5360  * We implement a small set of nodes:
5361  *
5362  * hw.bus			Single integer read method to obtain the
5363  *				current generation count.
5364  * hw.bus.devices		Reads the entire device tree in flat space.
5365  * hw.bus.rman			Resource manager interface
5366  *
5367  * We might like to add the ability to scan devclasses and/or drivers to
5368  * determine what else is currently loaded/available.
5369  */
5370 
5371 static int
5372 sysctl_bus_info(SYSCTL_HANDLER_ARGS)
5373 {
5374 	struct u_businfo	ubus;
5375 
5376 	ubus.ub_version = BUS_USER_VERSION;
5377 	ubus.ub_generation = bus_data_generation;
5378 
5379 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5380 }
5381 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD |
5382     CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo",
5383     "bus-related data");
5384 
5385 static int
5386 sysctl_devices(SYSCTL_HANDLER_ARGS)
5387 {
5388 	struct sbuf		sb;
5389 	int			*name = (int *)arg1;
5390 	u_int			namelen = arg2;
5391 	int			index;
5392 	device_t		dev;
5393 	struct u_device		*udev;
5394 	int			error;
5395 
5396 	if (namelen != 2)
5397 		return (EINVAL);
5398 
5399 	if (bus_data_generation_check(name[0]))
5400 		return (EINVAL);
5401 
5402 	index = name[1];
5403 
5404 	/*
5405 	 * Scan the list of devices, looking for the requested index.
5406 	 */
5407 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5408 		if (index-- == 0)
5409 			break;
5410 	}
5411 	if (dev == NULL)
5412 		return (ENOENT);
5413 
5414 	/*
5415 	 * Populate the return item, careful not to overflow the buffer.
5416 	 */
5417 	udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5418 	udev->dv_handle = (uintptr_t)dev;
5419 	udev->dv_parent = (uintptr_t)dev->parent;
5420 	udev->dv_devflags = dev->devflags;
5421 	udev->dv_flags = dev->flags;
5422 	udev->dv_state = dev->state;
5423 	sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN);
5424 	if (dev->nameunit != NULL)
5425 		sbuf_cat(&sb, dev->nameunit);
5426 	sbuf_putc(&sb, '\0');
5427 	if (dev->desc != NULL)
5428 		sbuf_cat(&sb, dev->desc);
5429 	sbuf_putc(&sb, '\0');
5430 	if (dev->driver != NULL)
5431 		sbuf_cat(&sb, dev->driver->name);
5432 	sbuf_putc(&sb, '\0');
5433 	bus_child_pnpinfo(dev, &sb);
5434 	sbuf_putc(&sb, '\0');
5435 	bus_child_location(dev, &sb);
5436 	sbuf_putc(&sb, '\0');
5437 	error = sbuf_finish(&sb);
5438 	if (error == 0)
5439 		error = SYSCTL_OUT(req, udev, sizeof(*udev));
5440 	sbuf_delete(&sb);
5441 	free(udev, M_BUS);
5442 	return (error);
5443 }
5444 
5445 SYSCTL_NODE(_hw_bus, OID_AUTO, devices,
5446     CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices,
5447     "system device tree");
5448 
5449 int
5450 bus_data_generation_check(int generation)
5451 {
5452 	if (generation != bus_data_generation)
5453 		return (1);
5454 
5455 	/* XXX generate optimised lists here? */
5456 	return (0);
5457 }
5458 
5459 void
5460 bus_data_generation_update(void)
5461 {
5462 	atomic_add_int(&bus_data_generation, 1);
5463 }
5464 
5465 int
5466 bus_free_resource(device_t dev, int type, struct resource *r)
5467 {
5468 	if (r == NULL)
5469 		return (0);
5470 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5471 }
5472 
5473 device_t
5474 device_lookup_by_name(const char *name)
5475 {
5476 	device_t dev;
5477 
5478 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5479 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5480 			return (dev);
5481 	}
5482 	return (NULL);
5483 }
5484 
5485 /*
5486  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5487  * implicit semantics on open, so it could not be reused for this.
5488  * Another option would be to call this /dev/bus?
5489  */
5490 static int
5491 find_device(struct devreq *req, device_t *devp)
5492 {
5493 	device_t dev;
5494 
5495 	/*
5496 	 * First, ensure that the name is nul terminated.
5497 	 */
5498 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5499 		return (EINVAL);
5500 
5501 	/*
5502 	 * Second, try to find an attached device whose name matches
5503 	 * 'name'.
5504 	 */
5505 	dev = device_lookup_by_name(req->dr_name);
5506 	if (dev != NULL) {
5507 		*devp = dev;
5508 		return (0);
5509 	}
5510 
5511 	/* Finally, give device enumerators a chance. */
5512 	dev = NULL;
5513 	EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5514 	if (dev == NULL)
5515 		return (ENOENT);
5516 	*devp = dev;
5517 	return (0);
5518 }
5519 
5520 static bool
5521 driver_exists(device_t bus, const char *driver)
5522 {
5523 	devclass_t dc;
5524 
5525 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5526 		if (devclass_find_driver_internal(dc, driver) != NULL)
5527 			return (true);
5528 	}
5529 	return (false);
5530 }
5531 
5532 static void
5533 device_gen_nomatch(device_t dev)
5534 {
5535 	device_t child;
5536 
5537 	if (dev->flags & DF_NEEDNOMATCH &&
5538 	    dev->state == DS_NOTPRESENT) {
5539 		device_handle_nomatch(dev);
5540 	}
5541 	dev->flags &= ~DF_NEEDNOMATCH;
5542 	TAILQ_FOREACH(child, &dev->children, link) {
5543 		device_gen_nomatch(child);
5544 	}
5545 }
5546 
5547 static void
5548 device_do_deferred_actions(void)
5549 {
5550 	devclass_t dc;
5551 	driverlink_t dl;
5552 
5553 	/*
5554 	 * Walk through the devclasses to find all the drivers we've tagged as
5555 	 * deferred during the freeze and call the driver added routines. They
5556 	 * have already been added to the lists in the background, so the driver
5557 	 * added routines that trigger a probe will have all the right bidders
5558 	 * for the probe auction.
5559 	 */
5560 	TAILQ_FOREACH(dc, &devclasses, link) {
5561 		TAILQ_FOREACH(dl, &dc->drivers, link) {
5562 			if (dl->flags & DL_DEFERRED_PROBE) {
5563 				devclass_driver_added(dc, dl->driver);
5564 				dl->flags &= ~DL_DEFERRED_PROBE;
5565 			}
5566 		}
5567 	}
5568 
5569 	/*
5570 	 * We also defer no-match events during a freeze. Walk the tree and
5571 	 * generate all the pent-up events that are still relevant.
5572 	 */
5573 	device_gen_nomatch(root_bus);
5574 	bus_data_generation_update();
5575 }
5576 
5577 static int
5578 device_get_path(device_t dev, const char *locator, struct sbuf *sb)
5579 {
5580 	device_t parent;
5581 	int error;
5582 
5583 	KASSERT(sb != NULL, ("sb is NULL"));
5584 	parent = device_get_parent(dev);
5585 	if (parent == NULL) {
5586 		error = sbuf_putc(sb, '/');
5587 	} else {
5588 		error = BUS_GET_DEVICE_PATH(parent, dev, locator, sb);
5589 		if (error == 0) {
5590 			error = sbuf_error(sb);
5591 			if (error == 0 && sbuf_len(sb) <= 1)
5592 				error = EIO;
5593 		}
5594 	}
5595 	sbuf_finish(sb);
5596 	return (error);
5597 }
5598 
5599 static int
5600 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5601     struct thread *td)
5602 {
5603 	struct devreq *req;
5604 	device_t dev;
5605 	int error, old;
5606 
5607 	/* Locate the device to control. */
5608 	bus_topo_lock();
5609 	req = (struct devreq *)data;
5610 	switch (cmd) {
5611 	case DEV_ATTACH:
5612 	case DEV_DETACH:
5613 	case DEV_ENABLE:
5614 	case DEV_DISABLE:
5615 	case DEV_SUSPEND:
5616 	case DEV_RESUME:
5617 	case DEV_SET_DRIVER:
5618 	case DEV_CLEAR_DRIVER:
5619 	case DEV_RESCAN:
5620 	case DEV_DELETE:
5621 	case DEV_RESET:
5622 		error = priv_check(td, PRIV_DRIVER);
5623 		if (error == 0)
5624 			error = find_device(req, &dev);
5625 		break;
5626 	case DEV_FREEZE:
5627 	case DEV_THAW:
5628 		error = priv_check(td, PRIV_DRIVER);
5629 		break;
5630 	case DEV_GET_PATH:
5631 		error = find_device(req, &dev);
5632 		break;
5633 	default:
5634 		error = ENOTTY;
5635 		break;
5636 	}
5637 	if (error) {
5638 		bus_topo_unlock();
5639 		return (error);
5640 	}
5641 
5642 	/* Perform the requested operation. */
5643 	switch (cmd) {
5644 	case DEV_ATTACH:
5645 		if (device_is_attached(dev))
5646 			error = EBUSY;
5647 		else if (!device_is_enabled(dev))
5648 			error = ENXIO;
5649 		else
5650 			error = device_probe_and_attach(dev);
5651 		break;
5652 	case DEV_DETACH:
5653 		if (!device_is_attached(dev)) {
5654 			error = ENXIO;
5655 			break;
5656 		}
5657 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5658 			error = device_quiesce(dev);
5659 			if (error)
5660 				break;
5661 		}
5662 		error = device_detach(dev);
5663 		break;
5664 	case DEV_ENABLE:
5665 		if (device_is_enabled(dev)) {
5666 			error = EBUSY;
5667 			break;
5668 		}
5669 
5670 		/*
5671 		 * If the device has been probed but not attached (e.g.
5672 		 * when it has been disabled by a loader hint), just
5673 		 * attach the device rather than doing a full probe.
5674 		 */
5675 		device_enable(dev);
5676 		if (device_is_alive(dev)) {
5677 			/*
5678 			 * If the device was disabled via a hint, clear
5679 			 * the hint.
5680 			 */
5681 			if (resource_disabled(dev->driver->name, dev->unit))
5682 				resource_unset_value(dev->driver->name,
5683 				    dev->unit, "disabled");
5684 			error = device_attach(dev);
5685 		} else
5686 			error = device_probe_and_attach(dev);
5687 		break;
5688 	case DEV_DISABLE:
5689 		if (!device_is_enabled(dev)) {
5690 			error = ENXIO;
5691 			break;
5692 		}
5693 
5694 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5695 			error = device_quiesce(dev);
5696 			if (error)
5697 				break;
5698 		}
5699 
5700 		/*
5701 		 * Force DF_FIXEDCLASS on around detach to preserve
5702 		 * the existing name.
5703 		 */
5704 		old = dev->flags;
5705 		dev->flags |= DF_FIXEDCLASS;
5706 		error = device_detach(dev);
5707 		if (!(old & DF_FIXEDCLASS))
5708 			dev->flags &= ~DF_FIXEDCLASS;
5709 		if (error == 0)
5710 			device_disable(dev);
5711 		break;
5712 	case DEV_SUSPEND:
5713 		if (device_is_suspended(dev)) {
5714 			error = EBUSY;
5715 			break;
5716 		}
5717 		if (device_get_parent(dev) == NULL) {
5718 			error = EINVAL;
5719 			break;
5720 		}
5721 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5722 		break;
5723 	case DEV_RESUME:
5724 		if (!device_is_suspended(dev)) {
5725 			error = EINVAL;
5726 			break;
5727 		}
5728 		if (device_get_parent(dev) == NULL) {
5729 			error = EINVAL;
5730 			break;
5731 		}
5732 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5733 		break;
5734 	case DEV_SET_DRIVER: {
5735 		devclass_t dc;
5736 		char driver[128];
5737 
5738 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5739 		if (error)
5740 			break;
5741 		if (driver[0] == '\0') {
5742 			error = EINVAL;
5743 			break;
5744 		}
5745 		if (dev->devclass != NULL &&
5746 		    strcmp(driver, dev->devclass->name) == 0)
5747 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5748 			break;
5749 
5750 		/*
5751 		 * Scan drivers for this device's bus looking for at
5752 		 * least one matching driver.
5753 		 */
5754 		if (dev->parent == NULL) {
5755 			error = EINVAL;
5756 			break;
5757 		}
5758 		if (!driver_exists(dev->parent, driver)) {
5759 			error = ENOENT;
5760 			break;
5761 		}
5762 		dc = devclass_create(driver);
5763 		if (dc == NULL) {
5764 			error = ENOMEM;
5765 			break;
5766 		}
5767 
5768 		/* Detach device if necessary. */
5769 		if (device_is_attached(dev)) {
5770 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5771 				error = device_detach(dev);
5772 			else
5773 				error = EBUSY;
5774 			if (error)
5775 				break;
5776 		}
5777 
5778 		/* Clear any previously-fixed device class and unit. */
5779 		if (dev->flags & DF_FIXEDCLASS)
5780 			devclass_delete_device(dev->devclass, dev);
5781 		dev->flags |= DF_WILDCARD;
5782 		dev->unit = DEVICE_UNIT_ANY;
5783 
5784 		/* Force the new device class. */
5785 		error = devclass_add_device(dc, dev);
5786 		if (error)
5787 			break;
5788 		dev->flags |= DF_FIXEDCLASS;
5789 		error = device_probe_and_attach(dev);
5790 		break;
5791 	}
5792 	case DEV_CLEAR_DRIVER:
5793 		if (!(dev->flags & DF_FIXEDCLASS)) {
5794 			error = 0;
5795 			break;
5796 		}
5797 		if (device_is_attached(dev)) {
5798 			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5799 				error = device_detach(dev);
5800 			else
5801 				error = EBUSY;
5802 			if (error)
5803 				break;
5804 		}
5805 
5806 		dev->flags &= ~DF_FIXEDCLASS;
5807 		dev->flags |= DF_WILDCARD;
5808 		devclass_delete_device(dev->devclass, dev);
5809 		error = device_probe_and_attach(dev);
5810 		break;
5811 	case DEV_RESCAN:
5812 		if (!device_is_attached(dev)) {
5813 			error = ENXIO;
5814 			break;
5815 		}
5816 		error = BUS_RESCAN(dev);
5817 		break;
5818 	case DEV_DELETE: {
5819 		device_t parent;
5820 
5821 		parent = device_get_parent(dev);
5822 		if (parent == NULL) {
5823 			error = EINVAL;
5824 			break;
5825 		}
5826 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5827 			if (bus_child_present(dev) != 0) {
5828 				error = EBUSY;
5829 				break;
5830 			}
5831 		}
5832 
5833 		error = device_delete_child(parent, dev);
5834 		break;
5835 	}
5836 	case DEV_FREEZE:
5837 		if (device_frozen)
5838 			error = EBUSY;
5839 		else
5840 			device_frozen = true;
5841 		break;
5842 	case DEV_THAW:
5843 		if (!device_frozen)
5844 			error = EBUSY;
5845 		else {
5846 			device_do_deferred_actions();
5847 			device_frozen = false;
5848 		}
5849 		break;
5850 	case DEV_RESET:
5851 		if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
5852 			error = EINVAL;
5853 			break;
5854 		}
5855 		if (device_get_parent(dev) == NULL) {
5856 			error = EINVAL;
5857 			break;
5858 		}
5859 		error = BUS_RESET_CHILD(device_get_parent(dev), dev,
5860 		    req->dr_flags);
5861 		break;
5862 	case DEV_GET_PATH: {
5863 		struct sbuf *sb;
5864 		char locator[64];
5865 		ssize_t len;
5866 
5867 		error = copyinstr(req->dr_buffer.buffer, locator,
5868 		    sizeof(locator), NULL);
5869 		if (error != 0)
5870 			break;
5871 		sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
5872 		    SBUF_INCLUDENUL /* | SBUF_WAITOK */);
5873 		error = device_get_path(dev, locator, sb);
5874 		if (error == 0) {
5875 			len = sbuf_len(sb);
5876 			if (req->dr_buffer.length < len) {
5877 				error = ENAMETOOLONG;
5878 			} else {
5879 				error = copyout(sbuf_data(sb),
5880 				    req->dr_buffer.buffer, len);
5881 			}
5882 			req->dr_buffer.length = len;
5883 		}
5884 		sbuf_delete(sb);
5885 		break;
5886 	}
5887 	}
5888 	bus_topo_unlock();
5889 	return (error);
5890 }
5891 
5892 static struct cdevsw devctl2_cdevsw = {
5893 	.d_version =	D_VERSION,
5894 	.d_ioctl =	devctl2_ioctl,
5895 	.d_name =	"devctl2",
5896 };
5897 
5898 static void
5899 devctl2_init(void)
5900 {
5901 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5902 	    UID_ROOT, GID_WHEEL, 0644, "devctl2");
5903 }
5904 
5905 /*
5906  * For maintaining device 'at' location info to avoid recomputing it
5907  */
5908 struct device_location_node {
5909 	const char *dln_locator;
5910 	const char *dln_path;
5911 	TAILQ_ENTRY(device_location_node) dln_link;
5912 };
5913 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t;
5914 
5915 struct device_location_cache {
5916 	device_location_list_t dlc_list;
5917 };
5918 
5919 
5920 /*
5921  * Location cache for wired devices.
5922  */
5923 device_location_cache_t *
5924 dev_wired_cache_init(void)
5925 {
5926 	device_location_cache_t *dcp;
5927 
5928 	dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO);
5929 	TAILQ_INIT(&dcp->dlc_list);
5930 
5931 	return (dcp);
5932 }
5933 
5934 void
5935 dev_wired_cache_fini(device_location_cache_t *dcp)
5936 {
5937 	struct device_location_node *dln, *tdln;
5938 
5939 	TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) {
5940 		free(dln, M_BUS);
5941 	}
5942 	free(dcp, M_BUS);
5943 }
5944 
5945 static struct device_location_node *
5946 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator)
5947 {
5948 	struct device_location_node *dln;
5949 
5950 	TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) {
5951 		if (strcmp(locator, dln->dln_locator) == 0)
5952 			return (dln);
5953 	}
5954 
5955 	return (NULL);
5956 }
5957 
5958 static struct device_location_node *
5959 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path)
5960 {
5961 	struct device_location_node *dln;
5962 	size_t loclen, pathlen;
5963 
5964 	loclen = strlen(locator) + 1;
5965 	pathlen = strlen(path) + 1;
5966 	dln = malloc(sizeof(*dln) + loclen + pathlen, M_BUS, M_WAITOK | M_ZERO);
5967 	dln->dln_locator = (char *)(dln + 1);
5968 	memcpy(__DECONST(char *, dln->dln_locator), locator, loclen);
5969 	dln->dln_path = dln->dln_locator + loclen;
5970 	memcpy(__DECONST(char *, dln->dln_path), path, pathlen);
5971 	TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link);
5972 
5973 	return (dln);
5974 }
5975 
5976 bool
5977 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev,
5978     const char *at)
5979 {
5980 	struct sbuf *sb;
5981 	const char *cp;
5982 	char locator[32];
5983 	int error, len;
5984 	struct device_location_node *res;
5985 
5986 	cp = strchr(at, ':');
5987 	if (cp == NULL)
5988 		return (false);
5989 	len = cp - at;
5990 	if (len > sizeof(locator) - 1)	/* Skip too long locator */
5991 		return (false);
5992 	memcpy(locator, at, len);
5993 	locator[len] = '\0';
5994 	cp++;
5995 
5996 	error = 0;
5997 	/* maybe cache this inside device_t and look that up, but not yet */
5998 	res = dev_wired_cache_lookup(dcp, locator);
5999 	if (res == NULL) {
6000 		sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
6001 		    SBUF_INCLUDENUL | SBUF_NOWAIT);
6002 		if (sb != NULL) {
6003 			error = device_get_path(dev, locator, sb);
6004 			if (error == 0) {
6005 				res = dev_wired_cache_add(dcp, locator,
6006 				    sbuf_data(sb));
6007 			}
6008 			sbuf_delete(sb);
6009 		}
6010 	}
6011 	if (error != 0 || res == NULL || res->dln_path == NULL)
6012 		return (false);
6013 
6014 	return (strcmp(res->dln_path, cp) == 0);
6015 }
6016 
6017 /*
6018  * APIs to manage deprecation and obsolescence.
6019  */
6020 static int obsolete_panic = 0;
6021 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
6022     "Panic when obsolete features are used (0 = never, 1 = if obsolete, "
6023     "2 = if deprecated)");
6024 
6025 static void
6026 gone_panic(int major, int running, const char *msg)
6027 {
6028 	switch (obsolete_panic)
6029 	{
6030 	case 0:
6031 		return;
6032 	case 1:
6033 		if (running < major)
6034 			return;
6035 		/* FALLTHROUGH */
6036 	default:
6037 		panic("%s", msg);
6038 	}
6039 }
6040 
6041 void
6042 _gone_in(int major, const char *msg)
6043 {
6044 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
6045 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
6046 		printf("Obsolete code will be removed soon: %s\n", msg);
6047 	else
6048 		printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
6049 		    major, msg);
6050 }
6051 
6052 void
6053 _gone_in_dev(device_t dev, int major, const char *msg)
6054 {
6055 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
6056 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
6057 		device_printf(dev,
6058 		    "Obsolete code will be removed soon: %s\n", msg);
6059 	else
6060 		device_printf(dev,
6061 		    "Deprecated code (to be removed in FreeBSD %d): %s\n",
6062 		    major, msg);
6063 }
6064 
6065 #ifdef DDB
6066 DB_SHOW_COMMAND(device, db_show_device)
6067 {
6068 	device_t dev;
6069 
6070 	if (!have_addr)
6071 		return;
6072 
6073 	dev = (device_t)addr;
6074 
6075 	db_printf("name:    %s\n", device_get_nameunit(dev));
6076 	db_printf("  driver:  %s\n", DRIVERNAME(dev->driver));
6077 	db_printf("  class:   %s\n", DEVCLANAME(dev->devclass));
6078 	db_printf("  addr:    %p\n", dev);
6079 	db_printf("  parent:  %p\n", dev->parent);
6080 	db_printf("  softc:   %p\n", dev->softc);
6081 	db_printf("  ivars:   %p\n", dev->ivars);
6082 }
6083 
6084 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
6085 {
6086 	device_t dev;
6087 
6088 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6089 		db_show_device((db_expr_t)dev, true, count, modif);
6090 	}
6091 }
6092 #endif
6093