xref: /freebsd/sys/kern/subr_bus.c (revision 050570efa79efcc9cf5adeb545f1a679c8dc377b)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/conf.h>
34 #include <sys/filio.h>
35 #include <sys/lock.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/poll.h>
43 #include <sys/proc.h>
44 #include <sys/condvar.h>
45 #include <sys/queue.h>
46 #include <machine/bus.h>
47 #include <sys/rman.h>
48 #include <sys/selinfo.h>
49 #include <sys/signalvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/uio.h>
53 #include <sys/bus.h>
54 #include <sys/interrupt.h>
55 
56 #include <machine/stdarg.h>
57 
58 #include <vm/uma.h>
59 
60 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
61 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
62 
63 /*
64  * Used to attach drivers to devclasses.
65  */
66 typedef struct driverlink *driverlink_t;
67 struct driverlink {
68 	kobj_class_t	driver;
69 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
70 	int		pass;
71 	TAILQ_ENTRY(driverlink) passlink;
72 };
73 
74 /*
75  * Forward declarations
76  */
77 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
78 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
79 typedef TAILQ_HEAD(device_list, device) device_list_t;
80 
81 struct devclass {
82 	TAILQ_ENTRY(devclass) link;
83 	devclass_t	parent;		/* parent in devclass hierarchy */
84 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
85 	char		*name;
86 	device_t	*devices;	/* array of devices indexed by unit */
87 	int		maxunit;	/* size of devices array */
88 	int		flags;
89 #define DC_HAS_CHILDREN		1
90 
91 	struct sysctl_ctx_list sysctl_ctx;
92 	struct sysctl_oid *sysctl_tree;
93 };
94 
95 /**
96  * @brief Implementation of device.
97  */
98 struct device {
99 	/*
100 	 * A device is a kernel object. The first field must be the
101 	 * current ops table for the object.
102 	 */
103 	KOBJ_FIELDS;
104 
105 	/*
106 	 * Device hierarchy.
107 	 */
108 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
109 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
110 	device_t	parent;		/**< parent of this device  */
111 	device_list_t	children;	/**< list of child devices */
112 
113 	/*
114 	 * Details of this device.
115 	 */
116 	driver_t	*driver;	/**< current driver */
117 	devclass_t	devclass;	/**< current device class */
118 	int		unit;		/**< current unit number */
119 	char*		nameunit;	/**< name+unit e.g. foodev0 */
120 	char*		desc;		/**< driver specific description */
121 	int		busy;		/**< count of calls to device_busy() */
122 	device_state_t	state;		/**< current device state  */
123 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
124 	u_int		flags;		/**< internal device flags  */
125 #define	DF_ENABLED	0x01		/* device should be probed/attached */
126 #define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
127 #define	DF_WILDCARD	0x04		/* unit was originally wildcard */
128 #define	DF_DESCMALLOCED	0x08		/* description was malloced */
129 #define	DF_QUIET	0x10		/* don't print verbose attach message */
130 #define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
131 #define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
132 #define	DF_REBID	0x80		/* Can rebid after attach */
133 	u_int	order;			/**< order from device_add_child_ordered() */
134 	void	*ivars;			/**< instance variables  */
135 	void	*softc;			/**< current driver's variables  */
136 
137 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139 };
140 
141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143 
144 #ifdef BUS_DEBUG
145 
146 static int bus_debug = 1;
147 TUNABLE_INT("bus.debug", &bus_debug);
148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
149     "Debug bus code");
150 
151 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
152 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
153 #define DRIVERNAME(d)	((d)? d->name : "no driver")
154 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
155 
156 /**
157  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
158  * prevent syslog from deleting initial spaces
159  */
160 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
161 
162 static void print_device_short(device_t dev, int indent);
163 static void print_device(device_t dev, int indent);
164 void print_device_tree_short(device_t dev, int indent);
165 void print_device_tree(device_t dev, int indent);
166 static void print_driver_short(driver_t *driver, int indent);
167 static void print_driver(driver_t *driver, int indent);
168 static void print_driver_list(driver_list_t drivers, int indent);
169 static void print_devclass_short(devclass_t dc, int indent);
170 static void print_devclass(devclass_t dc, int indent);
171 void print_devclass_list_short(void);
172 void print_devclass_list(void);
173 
174 #else
175 /* Make the compiler ignore the function calls */
176 #define PDEBUG(a)			/* nop */
177 #define DEVICENAME(d)			/* nop */
178 #define DRIVERNAME(d)			/* nop */
179 #define DEVCLANAME(d)			/* nop */
180 
181 #define print_device_short(d,i)		/* nop */
182 #define print_device(d,i)		/* nop */
183 #define print_device_tree_short(d,i)	/* nop */
184 #define print_device_tree(d,i)		/* nop */
185 #define print_driver_short(d,i)		/* nop */
186 #define print_driver(d,i)		/* nop */
187 #define print_driver_list(d,i)		/* nop */
188 #define print_devclass_short(d,i)	/* nop */
189 #define print_devclass(d,i)		/* nop */
190 #define print_devclass_list_short()	/* nop */
191 #define print_devclass_list()		/* nop */
192 #endif
193 
194 /*
195  * dev sysctl tree
196  */
197 
198 enum {
199 	DEVCLASS_SYSCTL_PARENT,
200 };
201 
202 static int
203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
204 {
205 	devclass_t dc = (devclass_t)arg1;
206 	const char *value;
207 
208 	switch (arg2) {
209 	case DEVCLASS_SYSCTL_PARENT:
210 		value = dc->parent ? dc->parent->name : "";
211 		break;
212 	default:
213 		return (EINVAL);
214 	}
215 	return (SYSCTL_OUT(req, value, strlen(value)));
216 }
217 
218 static void
219 devclass_sysctl_init(devclass_t dc)
220 {
221 
222 	if (dc->sysctl_tree != NULL)
223 		return;
224 	sysctl_ctx_init(&dc->sysctl_ctx);
225 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
226 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
227 	    CTLFLAG_RD, NULL, "");
228 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
229 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
230 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
231 	    "parent class");
232 }
233 
234 enum {
235 	DEVICE_SYSCTL_DESC,
236 	DEVICE_SYSCTL_DRIVER,
237 	DEVICE_SYSCTL_LOCATION,
238 	DEVICE_SYSCTL_PNPINFO,
239 	DEVICE_SYSCTL_PARENT,
240 };
241 
242 static int
243 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
244 {
245 	device_t dev = (device_t)arg1;
246 	const char *value;
247 	char *buf;
248 	int error;
249 
250 	buf = NULL;
251 	switch (arg2) {
252 	case DEVICE_SYSCTL_DESC:
253 		value = dev->desc ? dev->desc : "";
254 		break;
255 	case DEVICE_SYSCTL_DRIVER:
256 		value = dev->driver ? dev->driver->name : "";
257 		break;
258 	case DEVICE_SYSCTL_LOCATION:
259 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260 		bus_child_location_str(dev, buf, 1024);
261 		break;
262 	case DEVICE_SYSCTL_PNPINFO:
263 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
264 		bus_child_pnpinfo_str(dev, buf, 1024);
265 		break;
266 	case DEVICE_SYSCTL_PARENT:
267 		value = dev->parent ? dev->parent->nameunit : "";
268 		break;
269 	default:
270 		return (EINVAL);
271 	}
272 	error = SYSCTL_OUT(req, value, strlen(value));
273 	if (buf != NULL)
274 		free(buf, M_BUS);
275 	return (error);
276 }
277 
278 static void
279 device_sysctl_init(device_t dev)
280 {
281 	devclass_t dc = dev->devclass;
282 
283 	if (dev->sysctl_tree != NULL)
284 		return;
285 	devclass_sysctl_init(dc);
286 	sysctl_ctx_init(&dev->sysctl_ctx);
287 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
288 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
289 	    dev->nameunit + strlen(dc->name),
290 	    CTLFLAG_RD, NULL, "");
291 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
293 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
294 	    "device description");
295 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
297 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
298 	    "device driver name");
299 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
301 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
302 	    "device location relative to parent");
303 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
305 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
306 	    "device identification");
307 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
308 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
309 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
310 	    "parent device");
311 }
312 
313 static void
314 device_sysctl_update(device_t dev)
315 {
316 	devclass_t dc = dev->devclass;
317 
318 	if (dev->sysctl_tree == NULL)
319 		return;
320 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
321 }
322 
323 static void
324 device_sysctl_fini(device_t dev)
325 {
326 	if (dev->sysctl_tree == NULL)
327 		return;
328 	sysctl_ctx_free(&dev->sysctl_ctx);
329 	dev->sysctl_tree = NULL;
330 }
331 
332 /*
333  * /dev/devctl implementation
334  */
335 
336 /*
337  * This design allows only one reader for /dev/devctl.  This is not desirable
338  * in the long run, but will get a lot of hair out of this implementation.
339  * Maybe we should make this device a clonable device.
340  *
341  * Also note: we specifically do not attach a device to the device_t tree
342  * to avoid potential chicken and egg problems.  One could argue that all
343  * of this belongs to the root node.  One could also further argue that the
344  * sysctl interface that we have not might more properly be an ioctl
345  * interface, but at this stage of the game, I'm not inclined to rock that
346  * boat.
347  *
348  * I'm also not sure that the SIGIO support is done correctly or not, as
349  * I copied it from a driver that had SIGIO support that likely hasn't been
350  * tested since 3.4 or 2.2.8!
351  */
352 
353 /* Deprecated way to adjust queue length */
354 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
355 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */
356 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
357     0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
358 
359 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
360 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
361 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
362 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
364     0, sysctl_devctl_queue, "I", "devctl queue length");
365 
366 static d_open_t		devopen;
367 static d_close_t	devclose;
368 static d_read_t		devread;
369 static d_ioctl_t	devioctl;
370 static d_poll_t		devpoll;
371 
372 static struct cdevsw dev_cdevsw = {
373 	.d_version =	D_VERSION,
374 	.d_flags =	D_NEEDGIANT,
375 	.d_open =	devopen,
376 	.d_close =	devclose,
377 	.d_read =	devread,
378 	.d_ioctl =	devioctl,
379 	.d_poll =	devpoll,
380 	.d_name =	"devctl",
381 };
382 
383 struct dev_event_info
384 {
385 	char *dei_data;
386 	TAILQ_ENTRY(dev_event_info) dei_link;
387 };
388 
389 TAILQ_HEAD(devq, dev_event_info);
390 
391 static struct dev_softc
392 {
393 	int	inuse;
394 	int	nonblock;
395 	int	queued;
396 	struct mtx mtx;
397 	struct cv cv;
398 	struct selinfo sel;
399 	struct devq devq;
400 	struct proc *async_proc;
401 } devsoftc;
402 
403 static struct cdev *devctl_dev;
404 
405 static void
406 devinit(void)
407 {
408 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
409 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
410 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
411 	cv_init(&devsoftc.cv, "dev cv");
412 	TAILQ_INIT(&devsoftc.devq);
413 }
414 
415 static int
416 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
417 {
418 	if (devsoftc.inuse)
419 		return (EBUSY);
420 	/* move to init */
421 	devsoftc.inuse = 1;
422 	devsoftc.nonblock = 0;
423 	devsoftc.async_proc = NULL;
424 	return (0);
425 }
426 
427 static int
428 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
429 {
430 	devsoftc.inuse = 0;
431 	mtx_lock(&devsoftc.mtx);
432 	cv_broadcast(&devsoftc.cv);
433 	mtx_unlock(&devsoftc.mtx);
434 	devsoftc.async_proc = NULL;
435 	return (0);
436 }
437 
438 /*
439  * The read channel for this device is used to report changes to
440  * userland in realtime.  We are required to free the data as well as
441  * the n1 object because we allocate them separately.  Also note that
442  * we return one record at a time.  If you try to read this device a
443  * character at a time, you will lose the rest of the data.  Listening
444  * programs are expected to cope.
445  */
446 static int
447 devread(struct cdev *dev, struct uio *uio, int ioflag)
448 {
449 	struct dev_event_info *n1;
450 	int rv;
451 
452 	mtx_lock(&devsoftc.mtx);
453 	while (TAILQ_EMPTY(&devsoftc.devq)) {
454 		if (devsoftc.nonblock) {
455 			mtx_unlock(&devsoftc.mtx);
456 			return (EAGAIN);
457 		}
458 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
459 		if (rv) {
460 			/*
461 			 * Need to translate ERESTART to EINTR here? -- jake
462 			 */
463 			mtx_unlock(&devsoftc.mtx);
464 			return (rv);
465 		}
466 	}
467 	n1 = TAILQ_FIRST(&devsoftc.devq);
468 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
469 	devsoftc.queued--;
470 	mtx_unlock(&devsoftc.mtx);
471 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
472 	free(n1->dei_data, M_BUS);
473 	free(n1, M_BUS);
474 	return (rv);
475 }
476 
477 static	int
478 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
479 {
480 	switch (cmd) {
481 
482 	case FIONBIO:
483 		if (*(int*)data)
484 			devsoftc.nonblock = 1;
485 		else
486 			devsoftc.nonblock = 0;
487 		return (0);
488 	case FIOASYNC:
489 		if (*(int*)data)
490 			devsoftc.async_proc = td->td_proc;
491 		else
492 			devsoftc.async_proc = NULL;
493 		return (0);
494 
495 		/* (un)Support for other fcntl() calls. */
496 	case FIOCLEX:
497 	case FIONCLEX:
498 	case FIONREAD:
499 	case FIOSETOWN:
500 	case FIOGETOWN:
501 	default:
502 		break;
503 	}
504 	return (ENOTTY);
505 }
506 
507 static	int
508 devpoll(struct cdev *dev, int events, struct thread *td)
509 {
510 	int	revents = 0;
511 
512 	mtx_lock(&devsoftc.mtx);
513 	if (events & (POLLIN | POLLRDNORM)) {
514 		if (!TAILQ_EMPTY(&devsoftc.devq))
515 			revents = events & (POLLIN | POLLRDNORM);
516 		else
517 			selrecord(td, &devsoftc.sel);
518 	}
519 	mtx_unlock(&devsoftc.mtx);
520 
521 	return (revents);
522 }
523 
524 /**
525  * @brief Return whether the userland process is running
526  */
527 boolean_t
528 devctl_process_running(void)
529 {
530 	return (devsoftc.inuse == 1);
531 }
532 
533 /**
534  * @brief Queue data to be read from the devctl device
535  *
536  * Generic interface to queue data to the devctl device.  It is
537  * assumed that @p data is properly formatted.  It is further assumed
538  * that @p data is allocated using the M_BUS malloc type.
539  */
540 void
541 devctl_queue_data_f(char *data, int flags)
542 {
543 	struct dev_event_info *n1 = NULL, *n2 = NULL;
544 	struct proc *p;
545 
546 	if (strlen(data) == 0)
547 		goto out;
548 	if (devctl_queue_length == 0)
549 		goto out;
550 	n1 = malloc(sizeof(*n1), M_BUS, flags);
551 	if (n1 == NULL)
552 		goto out;
553 	n1->dei_data = data;
554 	mtx_lock(&devsoftc.mtx);
555 	if (devctl_queue_length == 0) {
556 		mtx_unlock(&devsoftc.mtx);
557 		free(n1->dei_data, M_BUS);
558 		free(n1, M_BUS);
559 		return;
560 	}
561 	/* Leave at least one spot in the queue... */
562 	while (devsoftc.queued > devctl_queue_length - 1) {
563 		n2 = TAILQ_FIRST(&devsoftc.devq);
564 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
565 		free(n2->dei_data, M_BUS);
566 		free(n2, M_BUS);
567 		devsoftc.queued--;
568 	}
569 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
570 	devsoftc.queued++;
571 	cv_broadcast(&devsoftc.cv);
572 	mtx_unlock(&devsoftc.mtx);
573 	selwakeup(&devsoftc.sel);
574 	p = devsoftc.async_proc;
575 	if (p != NULL) {
576 		PROC_LOCK(p);
577 		psignal(p, SIGIO);
578 		PROC_UNLOCK(p);
579 	}
580 	return;
581 out:
582 	/*
583 	 * We have to free data on all error paths since the caller
584 	 * assumes it will be free'd when this item is dequeued.
585 	 */
586 	free(data, M_BUS);
587 	return;
588 }
589 
590 void
591 devctl_queue_data(char *data)
592 {
593 
594 	devctl_queue_data_f(data, M_NOWAIT);
595 }
596 
597 /**
598  * @brief Send a 'notification' to userland, using standard ways
599  */
600 void
601 devctl_notify_f(const char *system, const char *subsystem, const char *type,
602     const char *data, int flags)
603 {
604 	int len = 0;
605 	char *msg;
606 
607 	if (system == NULL)
608 		return;		/* BOGUS!  Must specify system. */
609 	if (subsystem == NULL)
610 		return;		/* BOGUS!  Must specify subsystem. */
611 	if (type == NULL)
612 		return;		/* BOGUS!  Must specify type. */
613 	len += strlen(" system=") + strlen(system);
614 	len += strlen(" subsystem=") + strlen(subsystem);
615 	len += strlen(" type=") + strlen(type);
616 	/* add in the data message plus newline. */
617 	if (data != NULL)
618 		len += strlen(data);
619 	len += 3;	/* '!', '\n', and NUL */
620 	msg = malloc(len, M_BUS, flags);
621 	if (msg == NULL)
622 		return;		/* Drop it on the floor */
623 	if (data != NULL)
624 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
625 		    system, subsystem, type, data);
626 	else
627 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
628 		    system, subsystem, type);
629 	devctl_queue_data_f(msg, flags);
630 }
631 
632 void
633 devctl_notify(const char *system, const char *subsystem, const char *type,
634     const char *data)
635 {
636 
637 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
638 }
639 
640 /*
641  * Common routine that tries to make sending messages as easy as possible.
642  * We allocate memory for the data, copy strings into that, but do not
643  * free it unless there's an error.  The dequeue part of the driver should
644  * free the data.  We don't send data when the device is disabled.  We do
645  * send data, even when we have no listeners, because we wish to avoid
646  * races relating to startup and restart of listening applications.
647  *
648  * devaddq is designed to string together the type of event, with the
649  * object of that event, plus the plug and play info and location info
650  * for that event.  This is likely most useful for devices, but less
651  * useful for other consumers of this interface.  Those should use
652  * the devctl_queue_data() interface instead.
653  */
654 static void
655 devaddq(const char *type, const char *what, device_t dev)
656 {
657 	char *data = NULL;
658 	char *loc = NULL;
659 	char *pnp = NULL;
660 	const char *parstr;
661 
662 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
663 		return;
664 	data = malloc(1024, M_BUS, M_NOWAIT);
665 	if (data == NULL)
666 		goto bad;
667 
668 	/* get the bus specific location of this device */
669 	loc = malloc(1024, M_BUS, M_NOWAIT);
670 	if (loc == NULL)
671 		goto bad;
672 	*loc = '\0';
673 	bus_child_location_str(dev, loc, 1024);
674 
675 	/* Get the bus specific pnp info of this device */
676 	pnp = malloc(1024, M_BUS, M_NOWAIT);
677 	if (pnp == NULL)
678 		goto bad;
679 	*pnp = '\0';
680 	bus_child_pnpinfo_str(dev, pnp, 1024);
681 
682 	/* Get the parent of this device, or / if high enough in the tree. */
683 	if (device_get_parent(dev) == NULL)
684 		parstr = ".";	/* Or '/' ? */
685 	else
686 		parstr = device_get_nameunit(device_get_parent(dev));
687 	/* String it all together. */
688 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
689 	  parstr);
690 	free(loc, M_BUS);
691 	free(pnp, M_BUS);
692 	devctl_queue_data(data);
693 	return;
694 bad:
695 	free(pnp, M_BUS);
696 	free(loc, M_BUS);
697 	free(data, M_BUS);
698 	return;
699 }
700 
701 /*
702  * A device was added to the tree.  We are called just after it successfully
703  * attaches (that is, probe and attach success for this device).  No call
704  * is made if a device is merely parented into the tree.  See devnomatch
705  * if probe fails.  If attach fails, no notification is sent (but maybe
706  * we should have a different message for this).
707  */
708 static void
709 devadded(device_t dev)
710 {
711 	devaddq("+", device_get_nameunit(dev), dev);
712 }
713 
714 /*
715  * A device was removed from the tree.  We are called just before this
716  * happens.
717  */
718 static void
719 devremoved(device_t dev)
720 {
721 	devaddq("-", device_get_nameunit(dev), dev);
722 }
723 
724 /*
725  * Called when there's no match for this device.  This is only called
726  * the first time that no match happens, so we don't keep getting this
727  * message.  Should that prove to be undesirable, we can change it.
728  * This is called when all drivers that can attach to a given bus
729  * decline to accept this device.  Other errors may not be detected.
730  */
731 static void
732 devnomatch(device_t dev)
733 {
734 	devaddq("?", "", dev);
735 }
736 
737 static int
738 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
739 {
740 	struct dev_event_info *n1;
741 	int dis, error;
742 
743 	dis = devctl_queue_length == 0;
744 	error = sysctl_handle_int(oidp, &dis, 0, req);
745 	if (error || !req->newptr)
746 		return (error);
747 	mtx_lock(&devsoftc.mtx);
748 	if (dis) {
749 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
750 			n1 = TAILQ_FIRST(&devsoftc.devq);
751 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
752 			free(n1->dei_data, M_BUS);
753 			free(n1, M_BUS);
754 		}
755 		devsoftc.queued = 0;
756 		devctl_queue_length = 0;
757 	} else {
758 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
759 	}
760 	mtx_unlock(&devsoftc.mtx);
761 	return (0);
762 }
763 
764 static int
765 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
766 {
767 	struct dev_event_info *n1;
768 	int q, error;
769 
770 	q = devctl_queue_length;
771 	error = sysctl_handle_int(oidp, &q, 0, req);
772 	if (error || !req->newptr)
773 		return (error);
774 	if (q < 0)
775 		return (EINVAL);
776 	mtx_lock(&devsoftc.mtx);
777 	devctl_queue_length = q;
778 	while (devsoftc.queued > devctl_queue_length) {
779 		n1 = TAILQ_FIRST(&devsoftc.devq);
780 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
781 		free(n1->dei_data, M_BUS);
782 		free(n1, M_BUS);
783 		devsoftc.queued--;
784 	}
785 	mtx_unlock(&devsoftc.mtx);
786 	return (0);
787 }
788 
789 /* End of /dev/devctl code */
790 
791 static TAILQ_HEAD(,device)	bus_data_devices;
792 static int bus_data_generation = 1;
793 
794 static kobj_method_t null_methods[] = {
795 	KOBJMETHOD_END
796 };
797 
798 DEFINE_CLASS(null, null_methods, 0);
799 
800 /*
801  * Bus pass implementation
802  */
803 
804 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
805 int bus_current_pass = BUS_PASS_ROOT;
806 
807 /**
808  * @internal
809  * @brief Register the pass level of a new driver attachment
810  *
811  * Register a new driver attachment's pass level.  If no driver
812  * attachment with the same pass level has been added, then @p new
813  * will be added to the global passes list.
814  *
815  * @param new		the new driver attachment
816  */
817 static void
818 driver_register_pass(struct driverlink *new)
819 {
820 	struct driverlink *dl;
821 
822 	/* We only consider pass numbers during boot. */
823 	if (bus_current_pass == BUS_PASS_DEFAULT)
824 		return;
825 
826 	/*
827 	 * Walk the passes list.  If we already know about this pass
828 	 * then there is nothing to do.  If we don't, then insert this
829 	 * driver link into the list.
830 	 */
831 	TAILQ_FOREACH(dl, &passes, passlink) {
832 		if (dl->pass < new->pass)
833 			continue;
834 		if (dl->pass == new->pass)
835 			return;
836 		TAILQ_INSERT_BEFORE(dl, new, passlink);
837 		return;
838 	}
839 	TAILQ_INSERT_TAIL(&passes, new, passlink);
840 }
841 
842 /**
843  * @brief Raise the current bus pass
844  *
845  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
846  * method on the root bus to kick off a new device tree scan for each
847  * new pass level that has at least one driver.
848  */
849 void
850 bus_set_pass(int pass)
851 {
852 	struct driverlink *dl;
853 
854 	if (bus_current_pass > pass)
855 		panic("Attempt to lower bus pass level");
856 
857 	TAILQ_FOREACH(dl, &passes, passlink) {
858 		/* Skip pass values below the current pass level. */
859 		if (dl->pass <= bus_current_pass)
860 			continue;
861 
862 		/*
863 		 * Bail once we hit a driver with a pass level that is
864 		 * too high.
865 		 */
866 		if (dl->pass > pass)
867 			break;
868 
869 		/*
870 		 * Raise the pass level to the next level and rescan
871 		 * the tree.
872 		 */
873 		bus_current_pass = dl->pass;
874 		BUS_NEW_PASS(root_bus);
875 	}
876 
877 	/*
878 	 * If there isn't a driver registered for the requested pass,
879 	 * then bus_current_pass might still be less than 'pass'.  Set
880 	 * it to 'pass' in that case.
881 	 */
882 	if (bus_current_pass < pass)
883 		bus_current_pass = pass;
884 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
885 }
886 
887 /*
888  * Devclass implementation
889  */
890 
891 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
892 
893 /**
894  * @internal
895  * @brief Find or create a device class
896  *
897  * If a device class with the name @p classname exists, return it,
898  * otherwise if @p create is non-zero create and return a new device
899  * class.
900  *
901  * If @p parentname is non-NULL, the parent of the devclass is set to
902  * the devclass of that name.
903  *
904  * @param classname	the devclass name to find or create
905  * @param parentname	the parent devclass name or @c NULL
906  * @param create	non-zero to create a devclass
907  */
908 static devclass_t
909 devclass_find_internal(const char *classname, const char *parentname,
910 		       int create)
911 {
912 	devclass_t dc;
913 
914 	PDEBUG(("looking for %s", classname));
915 	if (!classname)
916 		return (NULL);
917 
918 	TAILQ_FOREACH(dc, &devclasses, link) {
919 		if (!strcmp(dc->name, classname))
920 			break;
921 	}
922 
923 	if (create && !dc) {
924 		PDEBUG(("creating %s", classname));
925 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
926 		    M_BUS, M_NOWAIT | M_ZERO);
927 		if (!dc)
928 			return (NULL);
929 		dc->parent = NULL;
930 		dc->name = (char*) (dc + 1);
931 		strcpy(dc->name, classname);
932 		TAILQ_INIT(&dc->drivers);
933 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
934 
935 		bus_data_generation_update();
936 	}
937 
938 	/*
939 	 * If a parent class is specified, then set that as our parent so
940 	 * that this devclass will support drivers for the parent class as
941 	 * well.  If the parent class has the same name don't do this though
942 	 * as it creates a cycle that can trigger an infinite loop in
943 	 * device_probe_child() if a device exists for which there is no
944 	 * suitable driver.
945 	 */
946 	if (parentname && dc && !dc->parent &&
947 	    strcmp(classname, parentname) != 0) {
948 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
949 		dc->parent->flags |= DC_HAS_CHILDREN;
950 	}
951 
952 	return (dc);
953 }
954 
955 /**
956  * @brief Create a device class
957  *
958  * If a device class with the name @p classname exists, return it,
959  * otherwise create and return a new device class.
960  *
961  * @param classname	the devclass name to find or create
962  */
963 devclass_t
964 devclass_create(const char *classname)
965 {
966 	return (devclass_find_internal(classname, NULL, TRUE));
967 }
968 
969 /**
970  * @brief Find a device class
971  *
972  * If a device class with the name @p classname exists, return it,
973  * otherwise return @c NULL.
974  *
975  * @param classname	the devclass name to find
976  */
977 devclass_t
978 devclass_find(const char *classname)
979 {
980 	return (devclass_find_internal(classname, NULL, FALSE));
981 }
982 
983 /**
984  * @brief Register that a device driver has been added to a devclass
985  *
986  * Register that a device driver has been added to a devclass.  This
987  * is called by devclass_add_driver to accomplish the recursive
988  * notification of all the children classes of dc, as well as dc.
989  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
990  * the devclass.  We do a full search here of the devclass list at
991  * each iteration level to save storing children-lists in the devclass
992  * structure.  If we ever move beyond a few dozen devices doing this,
993  * we may need to reevaluate...
994  *
995  * @param dc		the devclass to edit
996  * @param driver	the driver that was just added
997  */
998 static void
999 devclass_driver_added(devclass_t dc, driver_t *driver)
1000 {
1001 	devclass_t parent;
1002 	int i;
1003 
1004 	/*
1005 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1006 	 */
1007 	for (i = 0; i < dc->maxunit; i++)
1008 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1009 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1010 
1011 	/*
1012 	 * Walk through the children classes.  Since we only keep a
1013 	 * single parent pointer around, we walk the entire list of
1014 	 * devclasses looking for children.  We set the
1015 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1016 	 * the parent, so we only walk the list for those devclasses
1017 	 * that have children.
1018 	 */
1019 	if (!(dc->flags & DC_HAS_CHILDREN))
1020 		return;
1021 	parent = dc;
1022 	TAILQ_FOREACH(dc, &devclasses, link) {
1023 		if (dc->parent == parent)
1024 			devclass_driver_added(dc, driver);
1025 	}
1026 }
1027 
1028 /**
1029  * @brief Add a device driver to a device class
1030  *
1031  * Add a device driver to a devclass. This is normally called
1032  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1033  * all devices in the devclass will be called to allow them to attempt
1034  * to re-probe any unmatched children.
1035  *
1036  * @param dc		the devclass to edit
1037  * @param driver	the driver to register
1038  */
1039 static int
1040 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1041 {
1042 	driverlink_t dl;
1043 	const char *parentname;
1044 
1045 	PDEBUG(("%s", DRIVERNAME(driver)));
1046 
1047 	/* Don't allow invalid pass values. */
1048 	if (pass <= BUS_PASS_ROOT)
1049 		return (EINVAL);
1050 
1051 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1052 	if (!dl)
1053 		return (ENOMEM);
1054 
1055 	/*
1056 	 * Compile the driver's methods. Also increase the reference count
1057 	 * so that the class doesn't get freed when the last instance
1058 	 * goes. This means we can safely use static methods and avoids a
1059 	 * double-free in devclass_delete_driver.
1060 	 */
1061 	kobj_class_compile((kobj_class_t) driver);
1062 
1063 	/*
1064 	 * If the driver has any base classes, make the
1065 	 * devclass inherit from the devclass of the driver's
1066 	 * first base class. This will allow the system to
1067 	 * search for drivers in both devclasses for children
1068 	 * of a device using this driver.
1069 	 */
1070 	if (driver->baseclasses)
1071 		parentname = driver->baseclasses[0]->name;
1072 	else
1073 		parentname = NULL;
1074 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1075 
1076 	dl->driver = driver;
1077 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1078 	driver->refs++;		/* XXX: kobj_mtx */
1079 	dl->pass = pass;
1080 	driver_register_pass(dl);
1081 
1082 	devclass_driver_added(dc, driver);
1083 	bus_data_generation_update();
1084 	return (0);
1085 }
1086 
1087 /**
1088  * @brief Delete a device driver from a device class
1089  *
1090  * Delete a device driver from a devclass. This is normally called
1091  * automatically by DRIVER_MODULE().
1092  *
1093  * If the driver is currently attached to any devices,
1094  * devclass_delete_driver() will first attempt to detach from each
1095  * device. If one of the detach calls fails, the driver will not be
1096  * deleted.
1097  *
1098  * @param dc		the devclass to edit
1099  * @param driver	the driver to unregister
1100  */
1101 static int
1102 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1103 {
1104 	devclass_t dc = devclass_find(driver->name);
1105 	driverlink_t dl;
1106 	device_t dev;
1107 	int i;
1108 	int error;
1109 
1110 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1111 
1112 	if (!dc)
1113 		return (0);
1114 
1115 	/*
1116 	 * Find the link structure in the bus' list of drivers.
1117 	 */
1118 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1119 		if (dl->driver == driver)
1120 			break;
1121 	}
1122 
1123 	if (!dl) {
1124 		PDEBUG(("%s not found in %s list", driver->name,
1125 		    busclass->name));
1126 		return (ENOENT);
1127 	}
1128 
1129 	/*
1130 	 * Disassociate from any devices.  We iterate through all the
1131 	 * devices in the devclass of the driver and detach any which are
1132 	 * using the driver and which have a parent in the devclass which
1133 	 * we are deleting from.
1134 	 *
1135 	 * Note that since a driver can be in multiple devclasses, we
1136 	 * should not detach devices which are not children of devices in
1137 	 * the affected devclass.
1138 	 */
1139 	for (i = 0; i < dc->maxunit; i++) {
1140 		if (dc->devices[i]) {
1141 			dev = dc->devices[i];
1142 			if (dev->driver == driver && dev->parent &&
1143 			    dev->parent->devclass == busclass) {
1144 				if ((error = device_detach(dev)) != 0)
1145 					return (error);
1146 				device_set_driver(dev, NULL);
1147 				BUS_PROBE_NOMATCH(dev->parent, dev);
1148 				devnomatch(dev);
1149 				dev->flags |= DF_DONENOMATCH;
1150 			}
1151 		}
1152 	}
1153 
1154 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1155 	free(dl, M_BUS);
1156 
1157 	/* XXX: kobj_mtx */
1158 	driver->refs--;
1159 	if (driver->refs == 0)
1160 		kobj_class_free((kobj_class_t) driver);
1161 
1162 	bus_data_generation_update();
1163 	return (0);
1164 }
1165 
1166 /**
1167  * @brief Quiesces a set of device drivers from a device class
1168  *
1169  * Quiesce a device driver from a devclass. This is normally called
1170  * automatically by DRIVER_MODULE().
1171  *
1172  * If the driver is currently attached to any devices,
1173  * devclass_quiesece_driver() will first attempt to quiesce each
1174  * device.
1175  *
1176  * @param dc		the devclass to edit
1177  * @param driver	the driver to unregister
1178  */
1179 static int
1180 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1181 {
1182 	devclass_t dc = devclass_find(driver->name);
1183 	driverlink_t dl;
1184 	device_t dev;
1185 	int i;
1186 	int error;
1187 
1188 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1189 
1190 	if (!dc)
1191 		return (0);
1192 
1193 	/*
1194 	 * Find the link structure in the bus' list of drivers.
1195 	 */
1196 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1197 		if (dl->driver == driver)
1198 			break;
1199 	}
1200 
1201 	if (!dl) {
1202 		PDEBUG(("%s not found in %s list", driver->name,
1203 		    busclass->name));
1204 		return (ENOENT);
1205 	}
1206 
1207 	/*
1208 	 * Quiesce all devices.  We iterate through all the devices in
1209 	 * the devclass of the driver and quiesce any which are using
1210 	 * the driver and which have a parent in the devclass which we
1211 	 * are quiescing.
1212 	 *
1213 	 * Note that since a driver can be in multiple devclasses, we
1214 	 * should not quiesce devices which are not children of
1215 	 * devices in the affected devclass.
1216 	 */
1217 	for (i = 0; i < dc->maxunit; i++) {
1218 		if (dc->devices[i]) {
1219 			dev = dc->devices[i];
1220 			if (dev->driver == driver && dev->parent &&
1221 			    dev->parent->devclass == busclass) {
1222 				if ((error = device_quiesce(dev)) != 0)
1223 					return (error);
1224 			}
1225 		}
1226 	}
1227 
1228 	return (0);
1229 }
1230 
1231 /**
1232  * @internal
1233  */
1234 static driverlink_t
1235 devclass_find_driver_internal(devclass_t dc, const char *classname)
1236 {
1237 	driverlink_t dl;
1238 
1239 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1240 
1241 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1242 		if (!strcmp(dl->driver->name, classname))
1243 			return (dl);
1244 	}
1245 
1246 	PDEBUG(("not found"));
1247 	return (NULL);
1248 }
1249 
1250 /**
1251  * @brief Return the name of the devclass
1252  */
1253 const char *
1254 devclass_get_name(devclass_t dc)
1255 {
1256 	return (dc->name);
1257 }
1258 
1259 /**
1260  * @brief Find a device given a unit number
1261  *
1262  * @param dc		the devclass to search
1263  * @param unit		the unit number to search for
1264  *
1265  * @returns		the device with the given unit number or @c
1266  *			NULL if there is no such device
1267  */
1268 device_t
1269 devclass_get_device(devclass_t dc, int unit)
1270 {
1271 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1272 		return (NULL);
1273 	return (dc->devices[unit]);
1274 }
1275 
1276 /**
1277  * @brief Find the softc field of a device given a unit number
1278  *
1279  * @param dc		the devclass to search
1280  * @param unit		the unit number to search for
1281  *
1282  * @returns		the softc field of the device with the given
1283  *			unit number or @c NULL if there is no such
1284  *			device
1285  */
1286 void *
1287 devclass_get_softc(devclass_t dc, int unit)
1288 {
1289 	device_t dev;
1290 
1291 	dev = devclass_get_device(dc, unit);
1292 	if (!dev)
1293 		return (NULL);
1294 
1295 	return (device_get_softc(dev));
1296 }
1297 
1298 /**
1299  * @brief Get a list of devices in the devclass
1300  *
1301  * An array containing a list of all the devices in the given devclass
1302  * is allocated and returned in @p *devlistp. The number of devices
1303  * in the array is returned in @p *devcountp. The caller should free
1304  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1305  *
1306  * @param dc		the devclass to examine
1307  * @param devlistp	points at location for array pointer return
1308  *			value
1309  * @param devcountp	points at location for array size return value
1310  *
1311  * @retval 0		success
1312  * @retval ENOMEM	the array allocation failed
1313  */
1314 int
1315 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1316 {
1317 	int count, i;
1318 	device_t *list;
1319 
1320 	count = devclass_get_count(dc);
1321 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1322 	if (!list)
1323 		return (ENOMEM);
1324 
1325 	count = 0;
1326 	for (i = 0; i < dc->maxunit; i++) {
1327 		if (dc->devices[i]) {
1328 			list[count] = dc->devices[i];
1329 			count++;
1330 		}
1331 	}
1332 
1333 	*devlistp = list;
1334 	*devcountp = count;
1335 
1336 	return (0);
1337 }
1338 
1339 /**
1340  * @brief Get a list of drivers in the devclass
1341  *
1342  * An array containing a list of pointers to all the drivers in the
1343  * given devclass is allocated and returned in @p *listp.  The number
1344  * of drivers in the array is returned in @p *countp. The caller should
1345  * free the array using @c free(p, M_TEMP).
1346  *
1347  * @param dc		the devclass to examine
1348  * @param listp		gives location for array pointer return value
1349  * @param countp	gives location for number of array elements
1350  *			return value
1351  *
1352  * @retval 0		success
1353  * @retval ENOMEM	the array allocation failed
1354  */
1355 int
1356 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1357 {
1358 	driverlink_t dl;
1359 	driver_t **list;
1360 	int count;
1361 
1362 	count = 0;
1363 	TAILQ_FOREACH(dl, &dc->drivers, link)
1364 		count++;
1365 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1366 	if (list == NULL)
1367 		return (ENOMEM);
1368 
1369 	count = 0;
1370 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1371 		list[count] = dl->driver;
1372 		count++;
1373 	}
1374 	*listp = list;
1375 	*countp = count;
1376 
1377 	return (0);
1378 }
1379 
1380 /**
1381  * @brief Get the number of devices in a devclass
1382  *
1383  * @param dc		the devclass to examine
1384  */
1385 int
1386 devclass_get_count(devclass_t dc)
1387 {
1388 	int count, i;
1389 
1390 	count = 0;
1391 	for (i = 0; i < dc->maxunit; i++)
1392 		if (dc->devices[i])
1393 			count++;
1394 	return (count);
1395 }
1396 
1397 /**
1398  * @brief Get the maximum unit number used in a devclass
1399  *
1400  * Note that this is one greater than the highest currently-allocated
1401  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1402  * that not even the devclass has been allocated yet.
1403  *
1404  * @param dc		the devclass to examine
1405  */
1406 int
1407 devclass_get_maxunit(devclass_t dc)
1408 {
1409 	if (dc == NULL)
1410 		return (-1);
1411 	return (dc->maxunit);
1412 }
1413 
1414 /**
1415  * @brief Find a free unit number in a devclass
1416  *
1417  * This function searches for the first unused unit number greater
1418  * that or equal to @p unit.
1419  *
1420  * @param dc		the devclass to examine
1421  * @param unit		the first unit number to check
1422  */
1423 int
1424 devclass_find_free_unit(devclass_t dc, int unit)
1425 {
1426 	if (dc == NULL)
1427 		return (unit);
1428 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1429 		unit++;
1430 	return (unit);
1431 }
1432 
1433 /**
1434  * @brief Set the parent of a devclass
1435  *
1436  * The parent class is normally initialised automatically by
1437  * DRIVER_MODULE().
1438  *
1439  * @param dc		the devclass to edit
1440  * @param pdc		the new parent devclass
1441  */
1442 void
1443 devclass_set_parent(devclass_t dc, devclass_t pdc)
1444 {
1445 	dc->parent = pdc;
1446 }
1447 
1448 /**
1449  * @brief Get the parent of a devclass
1450  *
1451  * @param dc		the devclass to examine
1452  */
1453 devclass_t
1454 devclass_get_parent(devclass_t dc)
1455 {
1456 	return (dc->parent);
1457 }
1458 
1459 struct sysctl_ctx_list *
1460 devclass_get_sysctl_ctx(devclass_t dc)
1461 {
1462 	return (&dc->sysctl_ctx);
1463 }
1464 
1465 struct sysctl_oid *
1466 devclass_get_sysctl_tree(devclass_t dc)
1467 {
1468 	return (dc->sysctl_tree);
1469 }
1470 
1471 /**
1472  * @internal
1473  * @brief Allocate a unit number
1474  *
1475  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1476  * will do). The allocated unit number is returned in @p *unitp.
1477 
1478  * @param dc		the devclass to allocate from
1479  * @param unitp		points at the location for the allocated unit
1480  *			number
1481  *
1482  * @retval 0		success
1483  * @retval EEXIST	the requested unit number is already allocated
1484  * @retval ENOMEM	memory allocation failure
1485  */
1486 static int
1487 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1488 {
1489 	const char *s;
1490 	int unit = *unitp;
1491 
1492 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1493 
1494 	/* Ask the parent bus if it wants to wire this device. */
1495 	if (unit == -1)
1496 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1497 		    &unit);
1498 
1499 	/* If we were given a wired unit number, check for existing device */
1500 	/* XXX imp XXX */
1501 	if (unit != -1) {
1502 		if (unit >= 0 && unit < dc->maxunit &&
1503 		    dc->devices[unit] != NULL) {
1504 			if (bootverbose)
1505 				printf("%s: %s%d already exists; skipping it\n",
1506 				    dc->name, dc->name, *unitp);
1507 			return (EEXIST);
1508 		}
1509 	} else {
1510 		/* Unwired device, find the next available slot for it */
1511 		unit = 0;
1512 		for (unit = 0;; unit++) {
1513 			/* If there is an "at" hint for a unit then skip it. */
1514 			if (resource_string_value(dc->name, unit, "at", &s) ==
1515 			    0)
1516 				continue;
1517 
1518 			/* If this device slot is already in use, skip it. */
1519 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1520 				continue;
1521 
1522 			break;
1523 		}
1524 	}
1525 
1526 	/*
1527 	 * We've selected a unit beyond the length of the table, so let's
1528 	 * extend the table to make room for all units up to and including
1529 	 * this one.
1530 	 */
1531 	if (unit >= dc->maxunit) {
1532 		device_t *newlist, *oldlist;
1533 		int newsize;
1534 
1535 		oldlist = dc->devices;
1536 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1537 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1538 		if (!newlist)
1539 			return (ENOMEM);
1540 		if (oldlist != NULL)
1541 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1542 		bzero(newlist + dc->maxunit,
1543 		    sizeof(device_t) * (newsize - dc->maxunit));
1544 		dc->devices = newlist;
1545 		dc->maxunit = newsize;
1546 		if (oldlist != NULL)
1547 			free(oldlist, M_BUS);
1548 	}
1549 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1550 
1551 	*unitp = unit;
1552 	return (0);
1553 }
1554 
1555 /**
1556  * @internal
1557  * @brief Add a device to a devclass
1558  *
1559  * A unit number is allocated for the device (using the device's
1560  * preferred unit number if any) and the device is registered in the
1561  * devclass. This allows the device to be looked up by its unit
1562  * number, e.g. by decoding a dev_t minor number.
1563  *
1564  * @param dc		the devclass to add to
1565  * @param dev		the device to add
1566  *
1567  * @retval 0		success
1568  * @retval EEXIST	the requested unit number is already allocated
1569  * @retval ENOMEM	memory allocation failure
1570  */
1571 static int
1572 devclass_add_device(devclass_t dc, device_t dev)
1573 {
1574 	int buflen, error;
1575 
1576 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1577 
1578 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1579 	if (buflen < 0)
1580 		return (ENOMEM);
1581 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1582 	if (!dev->nameunit)
1583 		return (ENOMEM);
1584 
1585 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1586 		free(dev->nameunit, M_BUS);
1587 		dev->nameunit = NULL;
1588 		return (error);
1589 	}
1590 	dc->devices[dev->unit] = dev;
1591 	dev->devclass = dc;
1592 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1593 
1594 	return (0);
1595 }
1596 
1597 /**
1598  * @internal
1599  * @brief Delete a device from a devclass
1600  *
1601  * The device is removed from the devclass's device list and its unit
1602  * number is freed.
1603 
1604  * @param dc		the devclass to delete from
1605  * @param dev		the device to delete
1606  *
1607  * @retval 0		success
1608  */
1609 static int
1610 devclass_delete_device(devclass_t dc, device_t dev)
1611 {
1612 	if (!dc || !dev)
1613 		return (0);
1614 
1615 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1616 
1617 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1618 		panic("devclass_delete_device: inconsistent device class");
1619 	dc->devices[dev->unit] = NULL;
1620 	if (dev->flags & DF_WILDCARD)
1621 		dev->unit = -1;
1622 	dev->devclass = NULL;
1623 	free(dev->nameunit, M_BUS);
1624 	dev->nameunit = NULL;
1625 
1626 	return (0);
1627 }
1628 
1629 /**
1630  * @internal
1631  * @brief Make a new device and add it as a child of @p parent
1632  *
1633  * @param parent	the parent of the new device
1634  * @param name		the devclass name of the new device or @c NULL
1635  *			to leave the devclass unspecified
1636  * @parem unit		the unit number of the new device of @c -1 to
1637  *			leave the unit number unspecified
1638  *
1639  * @returns the new device
1640  */
1641 static device_t
1642 make_device(device_t parent, const char *name, int unit)
1643 {
1644 	device_t dev;
1645 	devclass_t dc;
1646 
1647 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1648 
1649 	if (name) {
1650 		dc = devclass_find_internal(name, NULL, TRUE);
1651 		if (!dc) {
1652 			printf("make_device: can't find device class %s\n",
1653 			    name);
1654 			return (NULL);
1655 		}
1656 	} else {
1657 		dc = NULL;
1658 	}
1659 
1660 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1661 	if (!dev)
1662 		return (NULL);
1663 
1664 	dev->parent = parent;
1665 	TAILQ_INIT(&dev->children);
1666 	kobj_init((kobj_t) dev, &null_class);
1667 	dev->driver = NULL;
1668 	dev->devclass = NULL;
1669 	dev->unit = unit;
1670 	dev->nameunit = NULL;
1671 	dev->desc = NULL;
1672 	dev->busy = 0;
1673 	dev->devflags = 0;
1674 	dev->flags = DF_ENABLED;
1675 	dev->order = 0;
1676 	if (unit == -1)
1677 		dev->flags |= DF_WILDCARD;
1678 	if (name) {
1679 		dev->flags |= DF_FIXEDCLASS;
1680 		if (devclass_add_device(dc, dev)) {
1681 			kobj_delete((kobj_t) dev, M_BUS);
1682 			return (NULL);
1683 		}
1684 	}
1685 	dev->ivars = NULL;
1686 	dev->softc = NULL;
1687 
1688 	dev->state = DS_NOTPRESENT;
1689 
1690 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1691 	bus_data_generation_update();
1692 
1693 	return (dev);
1694 }
1695 
1696 /**
1697  * @internal
1698  * @brief Print a description of a device.
1699  */
1700 static int
1701 device_print_child(device_t dev, device_t child)
1702 {
1703 	int retval = 0;
1704 
1705 	if (device_is_alive(child))
1706 		retval += BUS_PRINT_CHILD(dev, child);
1707 	else
1708 		retval += device_printf(child, " not found\n");
1709 
1710 	return (retval);
1711 }
1712 
1713 /**
1714  * @brief Create a new device
1715  *
1716  * This creates a new device and adds it as a child of an existing
1717  * parent device. The new device will be added after the last existing
1718  * child with order zero.
1719  *
1720  * @param dev		the device which will be the parent of the
1721  *			new child device
1722  * @param name		devclass name for new device or @c NULL if not
1723  *			specified
1724  * @param unit		unit number for new device or @c -1 if not
1725  *			specified
1726  *
1727  * @returns		the new device
1728  */
1729 device_t
1730 device_add_child(device_t dev, const char *name, int unit)
1731 {
1732 	return (device_add_child_ordered(dev, 0, name, unit));
1733 }
1734 
1735 /**
1736  * @brief Create a new device
1737  *
1738  * This creates a new device and adds it as a child of an existing
1739  * parent device. The new device will be added after the last existing
1740  * child with the same order.
1741  *
1742  * @param dev		the device which will be the parent of the
1743  *			new child device
1744  * @param order		a value which is used to partially sort the
1745  *			children of @p dev - devices created using
1746  *			lower values of @p order appear first in @p
1747  *			dev's list of children
1748  * @param name		devclass name for new device or @c NULL if not
1749  *			specified
1750  * @param unit		unit number for new device or @c -1 if not
1751  *			specified
1752  *
1753  * @returns		the new device
1754  */
1755 device_t
1756 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1757 {
1758 	device_t child;
1759 	device_t place;
1760 
1761 	PDEBUG(("%s at %s with order %u as unit %d",
1762 	    name, DEVICENAME(dev), order, unit));
1763 
1764 	child = make_device(dev, name, unit);
1765 	if (child == NULL)
1766 		return (child);
1767 	child->order = order;
1768 
1769 	TAILQ_FOREACH(place, &dev->children, link) {
1770 		if (place->order > order)
1771 			break;
1772 	}
1773 
1774 	if (place) {
1775 		/*
1776 		 * The device 'place' is the first device whose order is
1777 		 * greater than the new child.
1778 		 */
1779 		TAILQ_INSERT_BEFORE(place, child, link);
1780 	} else {
1781 		/*
1782 		 * The new child's order is greater or equal to the order of
1783 		 * any existing device. Add the child to the tail of the list.
1784 		 */
1785 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1786 	}
1787 
1788 	bus_data_generation_update();
1789 	return (child);
1790 }
1791 
1792 /**
1793  * @brief Delete a device
1794  *
1795  * This function deletes a device along with all of its children. If
1796  * the device currently has a driver attached to it, the device is
1797  * detached first using device_detach().
1798  *
1799  * @param dev		the parent device
1800  * @param child		the device to delete
1801  *
1802  * @retval 0		success
1803  * @retval non-zero	a unit error code describing the error
1804  */
1805 int
1806 device_delete_child(device_t dev, device_t child)
1807 {
1808 	int error;
1809 	device_t grandchild;
1810 
1811 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1812 
1813 	/* remove children first */
1814 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1815 		error = device_delete_child(child, grandchild);
1816 		if (error)
1817 			return (error);
1818 	}
1819 
1820 	if ((error = device_detach(child)) != 0)
1821 		return (error);
1822 	if (child->devclass)
1823 		devclass_delete_device(child->devclass, child);
1824 	TAILQ_REMOVE(&dev->children, child, link);
1825 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1826 	kobj_delete((kobj_t) child, M_BUS);
1827 
1828 	bus_data_generation_update();
1829 	return (0);
1830 }
1831 
1832 /**
1833  * @brief Find a device given a unit number
1834  *
1835  * This is similar to devclass_get_devices() but only searches for
1836  * devices which have @p dev as a parent.
1837  *
1838  * @param dev		the parent device to search
1839  * @param unit		the unit number to search for.  If the unit is -1,
1840  *			return the first child of @p dev which has name
1841  *			@p classname (that is, the one with the lowest unit.)
1842  *
1843  * @returns		the device with the given unit number or @c
1844  *			NULL if there is no such device
1845  */
1846 device_t
1847 device_find_child(device_t dev, const char *classname, int unit)
1848 {
1849 	devclass_t dc;
1850 	device_t child;
1851 
1852 	dc = devclass_find(classname);
1853 	if (!dc)
1854 		return (NULL);
1855 
1856 	if (unit != -1) {
1857 		child = devclass_get_device(dc, unit);
1858 		if (child && child->parent == dev)
1859 			return (child);
1860 	} else {
1861 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1862 			child = devclass_get_device(dc, unit);
1863 			if (child && child->parent == dev)
1864 				return (child);
1865 		}
1866 	}
1867 	return (NULL);
1868 }
1869 
1870 /**
1871  * @internal
1872  */
1873 static driverlink_t
1874 first_matching_driver(devclass_t dc, device_t dev)
1875 {
1876 	if (dev->devclass)
1877 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1878 	return (TAILQ_FIRST(&dc->drivers));
1879 }
1880 
1881 /**
1882  * @internal
1883  */
1884 static driverlink_t
1885 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1886 {
1887 	if (dev->devclass) {
1888 		driverlink_t dl;
1889 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1890 			if (!strcmp(dev->devclass->name, dl->driver->name))
1891 				return (dl);
1892 		return (NULL);
1893 	}
1894 	return (TAILQ_NEXT(last, link));
1895 }
1896 
1897 /**
1898  * @internal
1899  */
1900 int
1901 device_probe_child(device_t dev, device_t child)
1902 {
1903 	devclass_t dc;
1904 	driverlink_t best = NULL;
1905 	driverlink_t dl;
1906 	int result, pri = 0;
1907 	int hasclass = (child->devclass != NULL);
1908 
1909 	GIANT_REQUIRED;
1910 
1911 	dc = dev->devclass;
1912 	if (!dc)
1913 		panic("device_probe_child: parent device has no devclass");
1914 
1915 	/*
1916 	 * If the state is already probed, then return.  However, don't
1917 	 * return if we can rebid this object.
1918 	 */
1919 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1920 		return (0);
1921 
1922 	for (; dc; dc = dc->parent) {
1923 		for (dl = first_matching_driver(dc, child);
1924 		     dl;
1925 		     dl = next_matching_driver(dc, child, dl)) {
1926 
1927 			/* If this driver's pass is too high, then ignore it. */
1928 			if (dl->pass > bus_current_pass)
1929 				continue;
1930 
1931 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1932 			device_set_driver(child, dl->driver);
1933 			if (!hasclass) {
1934 				if (device_set_devclass(child, dl->driver->name)) {
1935 					printf("driver bug: Unable to set devclass (devname: %s)\n",
1936 					    (child ? device_get_name(child) :
1937 						"no device"));
1938 					device_set_driver(child, NULL);
1939 					continue;
1940 				}
1941 			}
1942 
1943 			/* Fetch any flags for the device before probing. */
1944 			resource_int_value(dl->driver->name, child->unit,
1945 			    "flags", &child->devflags);
1946 
1947 			result = DEVICE_PROBE(child);
1948 
1949 			/* Reset flags and devclass before the next probe. */
1950 			child->devflags = 0;
1951 			if (!hasclass)
1952 				device_set_devclass(child, NULL);
1953 
1954 			/*
1955 			 * If the driver returns SUCCESS, there can be
1956 			 * no higher match for this device.
1957 			 */
1958 			if (result == 0) {
1959 				best = dl;
1960 				pri = 0;
1961 				break;
1962 			}
1963 
1964 			/*
1965 			 * The driver returned an error so it
1966 			 * certainly doesn't match.
1967 			 */
1968 			if (result > 0) {
1969 				device_set_driver(child, NULL);
1970 				continue;
1971 			}
1972 
1973 			/*
1974 			 * A priority lower than SUCCESS, remember the
1975 			 * best matching driver. Initialise the value
1976 			 * of pri for the first match.
1977 			 */
1978 			if (best == NULL || result > pri) {
1979 				/*
1980 				 * Probes that return BUS_PROBE_NOWILDCARD
1981 				 * or lower only match when they are set
1982 				 * in stone by the parent bus.
1983 				 */
1984 				if (result <= BUS_PROBE_NOWILDCARD &&
1985 				    child->flags & DF_WILDCARD)
1986 					continue;
1987 				best = dl;
1988 				pri = result;
1989 				continue;
1990 			}
1991 		}
1992 		/*
1993 		 * If we have an unambiguous match in this devclass,
1994 		 * don't look in the parent.
1995 		 */
1996 		if (best && pri == 0)
1997 			break;
1998 	}
1999 
2000 	/*
2001 	 * If we found a driver, change state and initialise the devclass.
2002 	 */
2003 	/* XXX What happens if we rebid and got no best? */
2004 	if (best) {
2005 		/*
2006 		 * If this device was atached, and we were asked to
2007 		 * rescan, and it is a different driver, then we have
2008 		 * to detach the old driver and reattach this new one.
2009 		 * Note, we don't have to check for DF_REBID here
2010 		 * because if the state is > DS_ALIVE, we know it must
2011 		 * be.
2012 		 *
2013 		 * This assumes that all DF_REBID drivers can have
2014 		 * their probe routine called at any time and that
2015 		 * they are idempotent as well as completely benign in
2016 		 * normal operations.
2017 		 *
2018 		 * We also have to make sure that the detach
2019 		 * succeeded, otherwise we fail the operation (or
2020 		 * maybe it should just fail silently?  I'm torn).
2021 		 */
2022 		if (child->state > DS_ALIVE && best->driver != child->driver)
2023 			if ((result = device_detach(dev)) != 0)
2024 				return (result);
2025 
2026 		/* Set the winning driver, devclass, and flags. */
2027 		if (!child->devclass) {
2028 			result = device_set_devclass(child, best->driver->name);
2029 			if (result != 0)
2030 				return (result);
2031 		}
2032 		device_set_driver(child, best->driver);
2033 		resource_int_value(best->driver->name, child->unit,
2034 		    "flags", &child->devflags);
2035 
2036 		if (pri < 0) {
2037 			/*
2038 			 * A bit bogus. Call the probe method again to make
2039 			 * sure that we have the right description.
2040 			 */
2041 			DEVICE_PROBE(child);
2042 #if 0
2043 			child->flags |= DF_REBID;
2044 #endif
2045 		} else
2046 			child->flags &= ~DF_REBID;
2047 		child->state = DS_ALIVE;
2048 
2049 		bus_data_generation_update();
2050 		return (0);
2051 	}
2052 
2053 	return (ENXIO);
2054 }
2055 
2056 /**
2057  * @brief Return the parent of a device
2058  */
2059 device_t
2060 device_get_parent(device_t dev)
2061 {
2062 	return (dev->parent);
2063 }
2064 
2065 /**
2066  * @brief Get a list of children of a device
2067  *
2068  * An array containing a list of all the children of the given device
2069  * is allocated and returned in @p *devlistp. The number of devices
2070  * in the array is returned in @p *devcountp. The caller should free
2071  * the array using @c free(p, M_TEMP).
2072  *
2073  * @param dev		the device to examine
2074  * @param devlistp	points at location for array pointer return
2075  *			value
2076  * @param devcountp	points at location for array size return value
2077  *
2078  * @retval 0		success
2079  * @retval ENOMEM	the array allocation failed
2080  */
2081 int
2082 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2083 {
2084 	int count;
2085 	device_t child;
2086 	device_t *list;
2087 
2088 	count = 0;
2089 	TAILQ_FOREACH(child, &dev->children, link) {
2090 		count++;
2091 	}
2092 
2093 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2094 	if (!list)
2095 		return (ENOMEM);
2096 
2097 	count = 0;
2098 	TAILQ_FOREACH(child, &dev->children, link) {
2099 		list[count] = child;
2100 		count++;
2101 	}
2102 
2103 	*devlistp = list;
2104 	*devcountp = count;
2105 
2106 	return (0);
2107 }
2108 
2109 /**
2110  * @brief Return the current driver for the device or @c NULL if there
2111  * is no driver currently attached
2112  */
2113 driver_t *
2114 device_get_driver(device_t dev)
2115 {
2116 	return (dev->driver);
2117 }
2118 
2119 /**
2120  * @brief Return the current devclass for the device or @c NULL if
2121  * there is none.
2122  */
2123 devclass_t
2124 device_get_devclass(device_t dev)
2125 {
2126 	return (dev->devclass);
2127 }
2128 
2129 /**
2130  * @brief Return the name of the device's devclass or @c NULL if there
2131  * is none.
2132  */
2133 const char *
2134 device_get_name(device_t dev)
2135 {
2136 	if (dev != NULL && dev->devclass)
2137 		return (devclass_get_name(dev->devclass));
2138 	return (NULL);
2139 }
2140 
2141 /**
2142  * @brief Return a string containing the device's devclass name
2143  * followed by an ascii representation of the device's unit number
2144  * (e.g. @c "foo2").
2145  */
2146 const char *
2147 device_get_nameunit(device_t dev)
2148 {
2149 	return (dev->nameunit);
2150 }
2151 
2152 /**
2153  * @brief Return the device's unit number.
2154  */
2155 int
2156 device_get_unit(device_t dev)
2157 {
2158 	return (dev->unit);
2159 }
2160 
2161 /**
2162  * @brief Return the device's description string
2163  */
2164 const char *
2165 device_get_desc(device_t dev)
2166 {
2167 	return (dev->desc);
2168 }
2169 
2170 /**
2171  * @brief Return the device's flags
2172  */
2173 uint32_t
2174 device_get_flags(device_t dev)
2175 {
2176 	return (dev->devflags);
2177 }
2178 
2179 struct sysctl_ctx_list *
2180 device_get_sysctl_ctx(device_t dev)
2181 {
2182 	return (&dev->sysctl_ctx);
2183 }
2184 
2185 struct sysctl_oid *
2186 device_get_sysctl_tree(device_t dev)
2187 {
2188 	return (dev->sysctl_tree);
2189 }
2190 
2191 /**
2192  * @brief Print the name of the device followed by a colon and a space
2193  *
2194  * @returns the number of characters printed
2195  */
2196 int
2197 device_print_prettyname(device_t dev)
2198 {
2199 	const char *name = device_get_name(dev);
2200 
2201 	if (name == NULL)
2202 		return (printf("unknown: "));
2203 	return (printf("%s%d: ", name, device_get_unit(dev)));
2204 }
2205 
2206 /**
2207  * @brief Print the name of the device followed by a colon, a space
2208  * and the result of calling vprintf() with the value of @p fmt and
2209  * the following arguments.
2210  *
2211  * @returns the number of characters printed
2212  */
2213 int
2214 device_printf(device_t dev, const char * fmt, ...)
2215 {
2216 	va_list ap;
2217 	int retval;
2218 
2219 	retval = device_print_prettyname(dev);
2220 	va_start(ap, fmt);
2221 	retval += vprintf(fmt, ap);
2222 	va_end(ap);
2223 	return (retval);
2224 }
2225 
2226 /**
2227  * @internal
2228  */
2229 static void
2230 device_set_desc_internal(device_t dev, const char* desc, int copy)
2231 {
2232 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2233 		free(dev->desc, M_BUS);
2234 		dev->flags &= ~DF_DESCMALLOCED;
2235 		dev->desc = NULL;
2236 	}
2237 
2238 	if (copy && desc) {
2239 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2240 		if (dev->desc) {
2241 			strcpy(dev->desc, desc);
2242 			dev->flags |= DF_DESCMALLOCED;
2243 		}
2244 	} else {
2245 		/* Avoid a -Wcast-qual warning */
2246 		dev->desc = (char *)(uintptr_t) desc;
2247 	}
2248 
2249 	bus_data_generation_update();
2250 }
2251 
2252 /**
2253  * @brief Set the device's description
2254  *
2255  * The value of @c desc should be a string constant that will not
2256  * change (at least until the description is changed in a subsequent
2257  * call to device_set_desc() or device_set_desc_copy()).
2258  */
2259 void
2260 device_set_desc(device_t dev, const char* desc)
2261 {
2262 	device_set_desc_internal(dev, desc, FALSE);
2263 }
2264 
2265 /**
2266  * @brief Set the device's description
2267  *
2268  * The string pointed to by @c desc is copied. Use this function if
2269  * the device description is generated, (e.g. with sprintf()).
2270  */
2271 void
2272 device_set_desc_copy(device_t dev, const char* desc)
2273 {
2274 	device_set_desc_internal(dev, desc, TRUE);
2275 }
2276 
2277 /**
2278  * @brief Set the device's flags
2279  */
2280 void
2281 device_set_flags(device_t dev, uint32_t flags)
2282 {
2283 	dev->devflags = flags;
2284 }
2285 
2286 /**
2287  * @brief Return the device's softc field
2288  *
2289  * The softc is allocated and zeroed when a driver is attached, based
2290  * on the size field of the driver.
2291  */
2292 void *
2293 device_get_softc(device_t dev)
2294 {
2295 	return (dev->softc);
2296 }
2297 
2298 /**
2299  * @brief Set the device's softc field
2300  *
2301  * Most drivers do not need to use this since the softc is allocated
2302  * automatically when the driver is attached.
2303  */
2304 void
2305 device_set_softc(device_t dev, void *softc)
2306 {
2307 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2308 		free(dev->softc, M_BUS_SC);
2309 	dev->softc = softc;
2310 	if (dev->softc)
2311 		dev->flags |= DF_EXTERNALSOFTC;
2312 	else
2313 		dev->flags &= ~DF_EXTERNALSOFTC;
2314 }
2315 
2316 /**
2317  * @brief Get the device's ivars field
2318  *
2319  * The ivars field is used by the parent device to store per-device
2320  * state (e.g. the physical location of the device or a list of
2321  * resources).
2322  */
2323 void *
2324 device_get_ivars(device_t dev)
2325 {
2326 
2327 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2328 	return (dev->ivars);
2329 }
2330 
2331 /**
2332  * @brief Set the device's ivars field
2333  */
2334 void
2335 device_set_ivars(device_t dev, void * ivars)
2336 {
2337 
2338 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2339 	dev->ivars = ivars;
2340 }
2341 
2342 /**
2343  * @brief Return the device's state
2344  */
2345 device_state_t
2346 device_get_state(device_t dev)
2347 {
2348 	return (dev->state);
2349 }
2350 
2351 /**
2352  * @brief Set the DF_ENABLED flag for the device
2353  */
2354 void
2355 device_enable(device_t dev)
2356 {
2357 	dev->flags |= DF_ENABLED;
2358 }
2359 
2360 /**
2361  * @brief Clear the DF_ENABLED flag for the device
2362  */
2363 void
2364 device_disable(device_t dev)
2365 {
2366 	dev->flags &= ~DF_ENABLED;
2367 }
2368 
2369 /**
2370  * @brief Increment the busy counter for the device
2371  */
2372 void
2373 device_busy(device_t dev)
2374 {
2375 	if (dev->state < DS_ATTACHED)
2376 		panic("device_busy: called for unattached device");
2377 	if (dev->busy == 0 && dev->parent)
2378 		device_busy(dev->parent);
2379 	dev->busy++;
2380 	dev->state = DS_BUSY;
2381 }
2382 
2383 /**
2384  * @brief Decrement the busy counter for the device
2385  */
2386 void
2387 device_unbusy(device_t dev)
2388 {
2389 	if (dev->state != DS_BUSY)
2390 		panic("device_unbusy: called for non-busy device %s",
2391 		    device_get_nameunit(dev));
2392 	dev->busy--;
2393 	if (dev->busy == 0) {
2394 		if (dev->parent)
2395 			device_unbusy(dev->parent);
2396 		dev->state = DS_ATTACHED;
2397 	}
2398 }
2399 
2400 /**
2401  * @brief Set the DF_QUIET flag for the device
2402  */
2403 void
2404 device_quiet(device_t dev)
2405 {
2406 	dev->flags |= DF_QUIET;
2407 }
2408 
2409 /**
2410  * @brief Clear the DF_QUIET flag for the device
2411  */
2412 void
2413 device_verbose(device_t dev)
2414 {
2415 	dev->flags &= ~DF_QUIET;
2416 }
2417 
2418 /**
2419  * @brief Return non-zero if the DF_QUIET flag is set on the device
2420  */
2421 int
2422 device_is_quiet(device_t dev)
2423 {
2424 	return ((dev->flags & DF_QUIET) != 0);
2425 }
2426 
2427 /**
2428  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2429  */
2430 int
2431 device_is_enabled(device_t dev)
2432 {
2433 	return ((dev->flags & DF_ENABLED) != 0);
2434 }
2435 
2436 /**
2437  * @brief Return non-zero if the device was successfully probed
2438  */
2439 int
2440 device_is_alive(device_t dev)
2441 {
2442 	return (dev->state >= DS_ALIVE);
2443 }
2444 
2445 /**
2446  * @brief Return non-zero if the device currently has a driver
2447  * attached to it
2448  */
2449 int
2450 device_is_attached(device_t dev)
2451 {
2452 	return (dev->state >= DS_ATTACHED);
2453 }
2454 
2455 /**
2456  * @brief Set the devclass of a device
2457  * @see devclass_add_device().
2458  */
2459 int
2460 device_set_devclass(device_t dev, const char *classname)
2461 {
2462 	devclass_t dc;
2463 	int error;
2464 
2465 	if (!classname) {
2466 		if (dev->devclass)
2467 			devclass_delete_device(dev->devclass, dev);
2468 		return (0);
2469 	}
2470 
2471 	if (dev->devclass) {
2472 		printf("device_set_devclass: device class already set\n");
2473 		return (EINVAL);
2474 	}
2475 
2476 	dc = devclass_find_internal(classname, NULL, TRUE);
2477 	if (!dc)
2478 		return (ENOMEM);
2479 
2480 	error = devclass_add_device(dc, dev);
2481 
2482 	bus_data_generation_update();
2483 	return (error);
2484 }
2485 
2486 /**
2487  * @brief Set the driver of a device
2488  *
2489  * @retval 0		success
2490  * @retval EBUSY	the device already has a driver attached
2491  * @retval ENOMEM	a memory allocation failure occurred
2492  */
2493 int
2494 device_set_driver(device_t dev, driver_t *driver)
2495 {
2496 	if (dev->state >= DS_ATTACHED)
2497 		return (EBUSY);
2498 
2499 	if (dev->driver == driver)
2500 		return (0);
2501 
2502 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2503 		free(dev->softc, M_BUS_SC);
2504 		dev->softc = NULL;
2505 	}
2506 	kobj_delete((kobj_t) dev, NULL);
2507 	dev->driver = driver;
2508 	if (driver) {
2509 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2510 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2511 			dev->softc = malloc(driver->size, M_BUS_SC,
2512 			    M_NOWAIT | M_ZERO);
2513 			if (!dev->softc) {
2514 				kobj_delete((kobj_t) dev, NULL);
2515 				kobj_init((kobj_t) dev, &null_class);
2516 				dev->driver = NULL;
2517 				return (ENOMEM);
2518 			}
2519 		}
2520 	} else {
2521 		kobj_init((kobj_t) dev, &null_class);
2522 	}
2523 
2524 	bus_data_generation_update();
2525 	return (0);
2526 }
2527 
2528 /**
2529  * @brief Probe a device, and return this status.
2530  *
2531  * This function is the core of the device autoconfiguration
2532  * system. Its purpose is to select a suitable driver for a device and
2533  * then call that driver to initialise the hardware appropriately. The
2534  * driver is selected by calling the DEVICE_PROBE() method of a set of
2535  * candidate drivers and then choosing the driver which returned the
2536  * best value. This driver is then attached to the device using
2537  * device_attach().
2538  *
2539  * The set of suitable drivers is taken from the list of drivers in
2540  * the parent device's devclass. If the device was originally created
2541  * with a specific class name (see device_add_child()), only drivers
2542  * with that name are probed, otherwise all drivers in the devclass
2543  * are probed. If no drivers return successful probe values in the
2544  * parent devclass, the search continues in the parent of that
2545  * devclass (see devclass_get_parent()) if any.
2546  *
2547  * @param dev		the device to initialise
2548  *
2549  * @retval 0		success
2550  * @retval ENXIO	no driver was found
2551  * @retval ENOMEM	memory allocation failure
2552  * @retval non-zero	some other unix error code
2553  * @retval -1		Device already attached
2554  */
2555 int
2556 device_probe(device_t dev)
2557 {
2558 	int error;
2559 
2560 	GIANT_REQUIRED;
2561 
2562 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2563 		return (-1);
2564 
2565 	if (!(dev->flags & DF_ENABLED)) {
2566 		if (bootverbose && device_get_name(dev) != NULL) {
2567 			device_print_prettyname(dev);
2568 			printf("not probed (disabled)\n");
2569 		}
2570 		return (-1);
2571 	}
2572 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2573 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2574 		    !(dev->flags & DF_DONENOMATCH)) {
2575 			BUS_PROBE_NOMATCH(dev->parent, dev);
2576 			devnomatch(dev);
2577 			dev->flags |= DF_DONENOMATCH;
2578 		}
2579 		return (error);
2580 	}
2581 	return (0);
2582 }
2583 
2584 /**
2585  * @brief Probe a device and attach a driver if possible
2586  *
2587  * calls device_probe() and attaches if that was successful.
2588  */
2589 int
2590 device_probe_and_attach(device_t dev)
2591 {
2592 	int error;
2593 
2594 	GIANT_REQUIRED;
2595 
2596 	error = device_probe(dev);
2597 	if (error == -1)
2598 		return (0);
2599 	else if (error != 0)
2600 		return (error);
2601 	return (device_attach(dev));
2602 }
2603 
2604 /**
2605  * @brief Attach a device driver to a device
2606  *
2607  * This function is a wrapper around the DEVICE_ATTACH() driver
2608  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2609  * device's sysctl tree, optionally prints a description of the device
2610  * and queues a notification event for user-based device management
2611  * services.
2612  *
2613  * Normally this function is only called internally from
2614  * device_probe_and_attach().
2615  *
2616  * @param dev		the device to initialise
2617  *
2618  * @retval 0		success
2619  * @retval ENXIO	no driver was found
2620  * @retval ENOMEM	memory allocation failure
2621  * @retval non-zero	some other unix error code
2622  */
2623 int
2624 device_attach(device_t dev)
2625 {
2626 	int error;
2627 
2628 	device_sysctl_init(dev);
2629 	if (!device_is_quiet(dev))
2630 		device_print_child(dev->parent, dev);
2631 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2632 		printf("device_attach: %s%d attach returned %d\n",
2633 		    dev->driver->name, dev->unit, error);
2634 		/* Unset the class; set in device_probe_child */
2635 		if (dev->devclass == NULL)
2636 			device_set_devclass(dev, NULL);
2637 		device_set_driver(dev, NULL);
2638 		device_sysctl_fini(dev);
2639 		dev->state = DS_NOTPRESENT;
2640 		return (error);
2641 	}
2642 	device_sysctl_update(dev);
2643 	dev->state = DS_ATTACHED;
2644 	dev->flags &= ~DF_DONENOMATCH;
2645 	devadded(dev);
2646 	return (0);
2647 }
2648 
2649 /**
2650  * @brief Detach a driver from a device
2651  *
2652  * This function is a wrapper around the DEVICE_DETACH() driver
2653  * method. If the call to DEVICE_DETACH() succeeds, it calls
2654  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2655  * notification event for user-based device management services and
2656  * cleans up the device's sysctl tree.
2657  *
2658  * @param dev		the device to un-initialise
2659  *
2660  * @retval 0		success
2661  * @retval ENXIO	no driver was found
2662  * @retval ENOMEM	memory allocation failure
2663  * @retval non-zero	some other unix error code
2664  */
2665 int
2666 device_detach(device_t dev)
2667 {
2668 	int error;
2669 
2670 	GIANT_REQUIRED;
2671 
2672 	PDEBUG(("%s", DEVICENAME(dev)));
2673 	if (dev->state == DS_BUSY)
2674 		return (EBUSY);
2675 	if (dev->state != DS_ATTACHED)
2676 		return (0);
2677 
2678 	if ((error = DEVICE_DETACH(dev)) != 0)
2679 		return (error);
2680 	devremoved(dev);
2681 	if (!device_is_quiet(dev))
2682 		device_printf(dev, "detached\n");
2683 	if (dev->parent)
2684 		BUS_CHILD_DETACHED(dev->parent, dev);
2685 
2686 	if (!(dev->flags & DF_FIXEDCLASS))
2687 		devclass_delete_device(dev->devclass, dev);
2688 
2689 	dev->state = DS_NOTPRESENT;
2690 	device_set_driver(dev, NULL);
2691 	device_set_desc(dev, NULL);
2692 	device_sysctl_fini(dev);
2693 
2694 	return (0);
2695 }
2696 
2697 /**
2698  * @brief Tells a driver to quiesce itself.
2699  *
2700  * This function is a wrapper around the DEVICE_QUIESCE() driver
2701  * method. If the call to DEVICE_QUIESCE() succeeds.
2702  *
2703  * @param dev		the device to quiesce
2704  *
2705  * @retval 0		success
2706  * @retval ENXIO	no driver was found
2707  * @retval ENOMEM	memory allocation failure
2708  * @retval non-zero	some other unix error code
2709  */
2710 int
2711 device_quiesce(device_t dev)
2712 {
2713 
2714 	PDEBUG(("%s", DEVICENAME(dev)));
2715 	if (dev->state == DS_BUSY)
2716 		return (EBUSY);
2717 	if (dev->state != DS_ATTACHED)
2718 		return (0);
2719 
2720 	return (DEVICE_QUIESCE(dev));
2721 }
2722 
2723 /**
2724  * @brief Notify a device of system shutdown
2725  *
2726  * This function calls the DEVICE_SHUTDOWN() driver method if the
2727  * device currently has an attached driver.
2728  *
2729  * @returns the value returned by DEVICE_SHUTDOWN()
2730  */
2731 int
2732 device_shutdown(device_t dev)
2733 {
2734 	if (dev->state < DS_ATTACHED)
2735 		return (0);
2736 	return (DEVICE_SHUTDOWN(dev));
2737 }
2738 
2739 /**
2740  * @brief Set the unit number of a device
2741  *
2742  * This function can be used to override the unit number used for a
2743  * device (e.g. to wire a device to a pre-configured unit number).
2744  */
2745 int
2746 device_set_unit(device_t dev, int unit)
2747 {
2748 	devclass_t dc;
2749 	int err;
2750 
2751 	dc = device_get_devclass(dev);
2752 	if (unit < dc->maxunit && dc->devices[unit])
2753 		return (EBUSY);
2754 	err = devclass_delete_device(dc, dev);
2755 	if (err)
2756 		return (err);
2757 	dev->unit = unit;
2758 	err = devclass_add_device(dc, dev);
2759 	if (err)
2760 		return (err);
2761 
2762 	bus_data_generation_update();
2763 	return (0);
2764 }
2765 
2766 /*======================================*/
2767 /*
2768  * Some useful method implementations to make life easier for bus drivers.
2769  */
2770 
2771 /**
2772  * @brief Initialise a resource list.
2773  *
2774  * @param rl		the resource list to initialise
2775  */
2776 void
2777 resource_list_init(struct resource_list *rl)
2778 {
2779 	STAILQ_INIT(rl);
2780 }
2781 
2782 /**
2783  * @brief Reclaim memory used by a resource list.
2784  *
2785  * This function frees the memory for all resource entries on the list
2786  * (if any).
2787  *
2788  * @param rl		the resource list to free
2789  */
2790 void
2791 resource_list_free(struct resource_list *rl)
2792 {
2793 	struct resource_list_entry *rle;
2794 
2795 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2796 		if (rle->res)
2797 			panic("resource_list_free: resource entry is busy");
2798 		STAILQ_REMOVE_HEAD(rl, link);
2799 		free(rle, M_BUS);
2800 	}
2801 }
2802 
2803 /**
2804  * @brief Add a resource entry.
2805  *
2806  * This function adds a resource entry using the given @p type, @p
2807  * start, @p end and @p count values. A rid value is chosen by
2808  * searching sequentially for the first unused rid starting at zero.
2809  *
2810  * @param rl		the resource list to edit
2811  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2812  * @param start		the start address of the resource
2813  * @param end		the end address of the resource
2814  * @param count		XXX end-start+1
2815  */
2816 int
2817 resource_list_add_next(struct resource_list *rl, int type, u_long start,
2818     u_long end, u_long count)
2819 {
2820 	int rid;
2821 
2822 	rid = 0;
2823 	while (resource_list_find(rl, type, rid) != NULL)
2824 		rid++;
2825 	resource_list_add(rl, type, rid, start, end, count);
2826 	return (rid);
2827 }
2828 
2829 /**
2830  * @brief Add or modify a resource entry.
2831  *
2832  * If an existing entry exists with the same type and rid, it will be
2833  * modified using the given values of @p start, @p end and @p
2834  * count. If no entry exists, a new one will be created using the
2835  * given values.  The resource list entry that matches is then returned.
2836  *
2837  * @param rl		the resource list to edit
2838  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2839  * @param rid		the resource identifier
2840  * @param start		the start address of the resource
2841  * @param end		the end address of the resource
2842  * @param count		XXX end-start+1
2843  */
2844 struct resource_list_entry *
2845 resource_list_add(struct resource_list *rl, int type, int rid,
2846     u_long start, u_long end, u_long count)
2847 {
2848 	struct resource_list_entry *rle;
2849 
2850 	rle = resource_list_find(rl, type, rid);
2851 	if (!rle) {
2852 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2853 		    M_NOWAIT);
2854 		if (!rle)
2855 			panic("resource_list_add: can't record entry");
2856 		STAILQ_INSERT_TAIL(rl, rle, link);
2857 		rle->type = type;
2858 		rle->rid = rid;
2859 		rle->res = NULL;
2860 		rle->flags = 0;
2861 	}
2862 
2863 	if (rle->res)
2864 		panic("resource_list_add: resource entry is busy");
2865 
2866 	rle->start = start;
2867 	rle->end = end;
2868 	rle->count = count;
2869 	return (rle);
2870 }
2871 
2872 /**
2873  * @brief Determine if a resource entry is busy.
2874  *
2875  * Returns true if a resource entry is busy meaning that it has an
2876  * associated resource that is not an unallocated "reserved" resource.
2877  *
2878  * @param rl		the resource list to search
2879  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2880  * @param rid		the resource identifier
2881  *
2882  * @returns Non-zero if the entry is busy, zero otherwise.
2883  */
2884 int
2885 resource_list_busy(struct resource_list *rl, int type, int rid)
2886 {
2887 	struct resource_list_entry *rle;
2888 
2889 	rle = resource_list_find(rl, type, rid);
2890 	if (rle == NULL || rle->res == NULL)
2891 		return (0);
2892 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2893 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2894 		    ("reserved resource is active"));
2895 		return (0);
2896 	}
2897 	return (1);
2898 }
2899 
2900 /**
2901  * @brief Determine if a resource entry is reserved.
2902  *
2903  * Returns true if a resource entry is reserved meaning that it has an
2904  * associated "reserved" resource.  The resource can either be
2905  * allocated or unallocated.
2906  *
2907  * @param rl		the resource list to search
2908  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2909  * @param rid		the resource identifier
2910  *
2911  * @returns Non-zero if the entry is reserved, zero otherwise.
2912  */
2913 int
2914 resource_list_reserved(struct resource_list *rl, int type, int rid)
2915 {
2916 	struct resource_list_entry *rle;
2917 
2918 	rle = resource_list_find(rl, type, rid);
2919 	if (rle != NULL && rle->flags & RLE_RESERVED)
2920 		return (1);
2921 	return (0);
2922 }
2923 
2924 /**
2925  * @brief Find a resource entry by type and rid.
2926  *
2927  * @param rl		the resource list to search
2928  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2929  * @param rid		the resource identifier
2930  *
2931  * @returns the resource entry pointer or NULL if there is no such
2932  * entry.
2933  */
2934 struct resource_list_entry *
2935 resource_list_find(struct resource_list *rl, int type, int rid)
2936 {
2937 	struct resource_list_entry *rle;
2938 
2939 	STAILQ_FOREACH(rle, rl, link) {
2940 		if (rle->type == type && rle->rid == rid)
2941 			return (rle);
2942 	}
2943 	return (NULL);
2944 }
2945 
2946 /**
2947  * @brief Delete a resource entry.
2948  *
2949  * @param rl		the resource list to edit
2950  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2951  * @param rid		the resource identifier
2952  */
2953 void
2954 resource_list_delete(struct resource_list *rl, int type, int rid)
2955 {
2956 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2957 
2958 	if (rle) {
2959 		if (rle->res != NULL)
2960 			panic("resource_list_delete: resource has not been released");
2961 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2962 		free(rle, M_BUS);
2963 	}
2964 }
2965 
2966 /**
2967  * @brief Allocate a reserved resource
2968  *
2969  * This can be used by busses to force the allocation of resources
2970  * that are always active in the system even if they are not allocated
2971  * by a driver (e.g. PCI BARs).  This function is usually called when
2972  * adding a new child to the bus.  The resource is allocated from the
2973  * parent bus when it is reserved.  The resource list entry is marked
2974  * with RLE_RESERVED to note that it is a reserved resource.
2975  *
2976  * Subsequent attempts to allocate the resource with
2977  * resource_list_alloc() will succeed the first time and will set
2978  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
2979  * resource that has been allocated is released with
2980  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
2981  * the actual resource remains allocated.  The resource can be released to
2982  * the parent bus by calling resource_list_unreserve().
2983  *
2984  * @param rl		the resource list to allocate from
2985  * @param bus		the parent device of @p child
2986  * @param child		the device for which the resource is being reserved
2987  * @param type		the type of resource to allocate
2988  * @param rid		a pointer to the resource identifier
2989  * @param start		hint at the start of the resource range - pass
2990  *			@c 0UL for any start address
2991  * @param end		hint at the end of the resource range - pass
2992  *			@c ~0UL for any end address
2993  * @param count		hint at the size of range required - pass @c 1
2994  *			for any size
2995  * @param flags		any extra flags to control the resource
2996  *			allocation - see @c RF_XXX flags in
2997  *			<sys/rman.h> for details
2998  *
2999  * @returns		the resource which was allocated or @c NULL if no
3000  *			resource could be allocated
3001  */
3002 struct resource *
3003 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3004     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3005 {
3006 	struct resource_list_entry *rle = NULL;
3007 	int passthrough = (device_get_parent(child) != bus);
3008 	struct resource *r;
3009 
3010 	if (passthrough)
3011 		panic(
3012     "resource_list_reserve() should only be called for direct children");
3013 	if (flags & RF_ACTIVE)
3014 		panic(
3015     "resource_list_reserve() should only reserve inactive resources");
3016 
3017 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3018 	    flags);
3019 	if (r != NULL) {
3020 		rle = resource_list_find(rl, type, *rid);
3021 		rle->flags |= RLE_RESERVED;
3022 	}
3023 	return (r);
3024 }
3025 
3026 /**
3027  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3028  *
3029  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3030  * and passing the allocation up to the parent of @p bus. This assumes
3031  * that the first entry of @c device_get_ivars(child) is a struct
3032  * resource_list. This also handles 'passthrough' allocations where a
3033  * child is a remote descendant of bus by passing the allocation up to
3034  * the parent of bus.
3035  *
3036  * Typically, a bus driver would store a list of child resources
3037  * somewhere in the child device's ivars (see device_get_ivars()) and
3038  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3039  * then call resource_list_alloc() to perform the allocation.
3040  *
3041  * @param rl		the resource list to allocate from
3042  * @param bus		the parent device of @p child
3043  * @param child		the device which is requesting an allocation
3044  * @param type		the type of resource to allocate
3045  * @param rid		a pointer to the resource identifier
3046  * @param start		hint at the start of the resource range - pass
3047  *			@c 0UL for any start address
3048  * @param end		hint at the end of the resource range - pass
3049  *			@c ~0UL for any end address
3050  * @param count		hint at the size of range required - pass @c 1
3051  *			for any size
3052  * @param flags		any extra flags to control the resource
3053  *			allocation - see @c RF_XXX flags in
3054  *			<sys/rman.h> for details
3055  *
3056  * @returns		the resource which was allocated or @c NULL if no
3057  *			resource could be allocated
3058  */
3059 struct resource *
3060 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3061     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3062 {
3063 	struct resource_list_entry *rle = NULL;
3064 	int passthrough = (device_get_parent(child) != bus);
3065 	int isdefault = (start == 0UL && end == ~0UL);
3066 
3067 	if (passthrough) {
3068 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3069 		    type, rid, start, end, count, flags));
3070 	}
3071 
3072 	rle = resource_list_find(rl, type, *rid);
3073 
3074 	if (!rle)
3075 		return (NULL);		/* no resource of that type/rid */
3076 
3077 	if (rle->res) {
3078 		if (rle->flags & RLE_RESERVED) {
3079 			if (rle->flags & RLE_ALLOCATED)
3080 				return (NULL);
3081 			if ((flags & RF_ACTIVE) &&
3082 			    bus_activate_resource(child, type, *rid,
3083 			    rle->res) != 0)
3084 				return (NULL);
3085 			rle->flags |= RLE_ALLOCATED;
3086 			return (rle->res);
3087 		}
3088 		panic("resource_list_alloc: resource entry is busy");
3089 	}
3090 
3091 	if (isdefault) {
3092 		start = rle->start;
3093 		count = ulmax(count, rle->count);
3094 		end = ulmax(rle->end, start + count - 1);
3095 	}
3096 
3097 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3098 	    type, rid, start, end, count, flags);
3099 
3100 	/*
3101 	 * Record the new range.
3102 	 */
3103 	if (rle->res) {
3104 		rle->start = rman_get_start(rle->res);
3105 		rle->end = rman_get_end(rle->res);
3106 		rle->count = count;
3107 	}
3108 
3109 	return (rle->res);
3110 }
3111 
3112 /**
3113  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3114  *
3115  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3116  * used with resource_list_alloc().
3117  *
3118  * @param rl		the resource list which was allocated from
3119  * @param bus		the parent device of @p child
3120  * @param child		the device which is requesting a release
3121  * @param type		the type of resource to release
3122  * @param rid		the resource identifier
3123  * @param res		the resource to release
3124  *
3125  * @retval 0		success
3126  * @retval non-zero	a standard unix error code indicating what
3127  *			error condition prevented the operation
3128  */
3129 int
3130 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3131     int type, int rid, struct resource *res)
3132 {
3133 	struct resource_list_entry *rle = NULL;
3134 	int passthrough = (device_get_parent(child) != bus);
3135 	int error;
3136 
3137 	if (passthrough) {
3138 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3139 		    type, rid, res));
3140 	}
3141 
3142 	rle = resource_list_find(rl, type, rid);
3143 
3144 	if (!rle)
3145 		panic("resource_list_release: can't find resource");
3146 	if (!rle->res)
3147 		panic("resource_list_release: resource entry is not busy");
3148 	if (rle->flags & RLE_RESERVED) {
3149 		if (rle->flags & RLE_ALLOCATED) {
3150 			if (rman_get_flags(res) & RF_ACTIVE) {
3151 				error = bus_deactivate_resource(child, type,
3152 				    rid, res);
3153 				if (error)
3154 					return (error);
3155 			}
3156 			rle->flags &= ~RLE_ALLOCATED;
3157 			return (0);
3158 		}
3159 		return (EINVAL);
3160 	}
3161 
3162 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3163 	    type, rid, res);
3164 	if (error)
3165 		return (error);
3166 
3167 	rle->res = NULL;
3168 	return (0);
3169 }
3170 
3171 /**
3172  * @brief Fully release a reserved resource
3173  *
3174  * Fully releases a resouce reserved via resource_list_reserve().
3175  *
3176  * @param rl		the resource list which was allocated from
3177  * @param bus		the parent device of @p child
3178  * @param child		the device whose reserved resource is being released
3179  * @param type		the type of resource to release
3180  * @param rid		the resource identifier
3181  * @param res		the resource to release
3182  *
3183  * @retval 0		success
3184  * @retval non-zero	a standard unix error code indicating what
3185  *			error condition prevented the operation
3186  */
3187 int
3188 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3189     int type, int rid)
3190 {
3191 	struct resource_list_entry *rle = NULL;
3192 	int passthrough = (device_get_parent(child) != bus);
3193 
3194 	if (passthrough)
3195 		panic(
3196     "resource_list_unreserve() should only be called for direct children");
3197 
3198 	rle = resource_list_find(rl, type, rid);
3199 
3200 	if (!rle)
3201 		panic("resource_list_unreserve: can't find resource");
3202 	if (!(rle->flags & RLE_RESERVED))
3203 		return (EINVAL);
3204 	if (rle->flags & RLE_ALLOCATED)
3205 		return (EBUSY);
3206 	rle->flags &= ~RLE_RESERVED;
3207 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3208 }
3209 
3210 /**
3211  * @brief Print a description of resources in a resource list
3212  *
3213  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3214  * The name is printed if at least one resource of the given type is available.
3215  * The format is used to print resource start and end.
3216  *
3217  * @param rl		the resource list to print
3218  * @param name		the name of @p type, e.g. @c "memory"
3219  * @param type		type type of resource entry to print
3220  * @param format	printf(9) format string to print resource
3221  *			start and end values
3222  *
3223  * @returns		the number of characters printed
3224  */
3225 int
3226 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3227     const char *format)
3228 {
3229 	struct resource_list_entry *rle;
3230 	int printed, retval;
3231 
3232 	printed = 0;
3233 	retval = 0;
3234 	/* Yes, this is kinda cheating */
3235 	STAILQ_FOREACH(rle, rl, link) {
3236 		if (rle->type == type) {
3237 			if (printed == 0)
3238 				retval += printf(" %s ", name);
3239 			else
3240 				retval += printf(",");
3241 			printed++;
3242 			retval += printf(format, rle->start);
3243 			if (rle->count > 1) {
3244 				retval += printf("-");
3245 				retval += printf(format, rle->start +
3246 						 rle->count - 1);
3247 			}
3248 		}
3249 	}
3250 	return (retval);
3251 }
3252 
3253 /**
3254  * @brief Releases all the resources in a list.
3255  *
3256  * @param rl		The resource list to purge.
3257  *
3258  * @returns		nothing
3259  */
3260 void
3261 resource_list_purge(struct resource_list *rl)
3262 {
3263 	struct resource_list_entry *rle;
3264 
3265 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3266 		if (rle->res)
3267 			bus_release_resource(rman_get_device(rle->res),
3268 			    rle->type, rle->rid, rle->res);
3269 		STAILQ_REMOVE_HEAD(rl, link);
3270 		free(rle, M_BUS);
3271 	}
3272 }
3273 
3274 device_t
3275 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3276 {
3277 
3278 	return (device_add_child_ordered(dev, order, name, unit));
3279 }
3280 
3281 /**
3282  * @brief Helper function for implementing DEVICE_PROBE()
3283  *
3284  * This function can be used to help implement the DEVICE_PROBE() for
3285  * a bus (i.e. a device which has other devices attached to it). It
3286  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3287  * devclass.
3288  */
3289 int
3290 bus_generic_probe(device_t dev)
3291 {
3292 	devclass_t dc = dev->devclass;
3293 	driverlink_t dl;
3294 
3295 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3296 		/*
3297 		 * If this driver's pass is too high, then ignore it.
3298 		 * For most drivers in the default pass, this will
3299 		 * never be true.  For early-pass drivers they will
3300 		 * only call the identify routines of eligible drivers
3301 		 * when this routine is called.  Drivers for later
3302 		 * passes should have their identify routines called
3303 		 * on early-pass busses during BUS_NEW_PASS().
3304 		 */
3305 		if (dl->pass > bus_current_pass)
3306 			continue;
3307 		DEVICE_IDENTIFY(dl->driver, dev);
3308 	}
3309 
3310 	return (0);
3311 }
3312 
3313 /**
3314  * @brief Helper function for implementing DEVICE_ATTACH()
3315  *
3316  * This function can be used to help implement the DEVICE_ATTACH() for
3317  * a bus. It calls device_probe_and_attach() for each of the device's
3318  * children.
3319  */
3320 int
3321 bus_generic_attach(device_t dev)
3322 {
3323 	device_t child;
3324 
3325 	TAILQ_FOREACH(child, &dev->children, link) {
3326 		device_probe_and_attach(child);
3327 	}
3328 
3329 	return (0);
3330 }
3331 
3332 /**
3333  * @brief Helper function for implementing DEVICE_DETACH()
3334  *
3335  * This function can be used to help implement the DEVICE_DETACH() for
3336  * a bus. It calls device_detach() for each of the device's
3337  * children.
3338  */
3339 int
3340 bus_generic_detach(device_t dev)
3341 {
3342 	device_t child;
3343 	int error;
3344 
3345 	if (dev->state != DS_ATTACHED)
3346 		return (EBUSY);
3347 
3348 	TAILQ_FOREACH(child, &dev->children, link) {
3349 		if ((error = device_detach(child)) != 0)
3350 			return (error);
3351 	}
3352 
3353 	return (0);
3354 }
3355 
3356 /**
3357  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3358  *
3359  * This function can be used to help implement the DEVICE_SHUTDOWN()
3360  * for a bus. It calls device_shutdown() for each of the device's
3361  * children.
3362  */
3363 int
3364 bus_generic_shutdown(device_t dev)
3365 {
3366 	device_t child;
3367 
3368 	TAILQ_FOREACH(child, &dev->children, link) {
3369 		device_shutdown(child);
3370 	}
3371 
3372 	return (0);
3373 }
3374 
3375 /**
3376  * @brief Helper function for implementing DEVICE_SUSPEND()
3377  *
3378  * This function can be used to help implement the DEVICE_SUSPEND()
3379  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3380  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3381  * operation is aborted and any devices which were suspended are
3382  * resumed immediately by calling their DEVICE_RESUME() methods.
3383  */
3384 int
3385 bus_generic_suspend(device_t dev)
3386 {
3387 	int		error;
3388 	device_t	child, child2;
3389 
3390 	TAILQ_FOREACH(child, &dev->children, link) {
3391 		error = DEVICE_SUSPEND(child);
3392 		if (error) {
3393 			for (child2 = TAILQ_FIRST(&dev->children);
3394 			     child2 && child2 != child;
3395 			     child2 = TAILQ_NEXT(child2, link))
3396 				DEVICE_RESUME(child2);
3397 			return (error);
3398 		}
3399 	}
3400 	return (0);
3401 }
3402 
3403 /**
3404  * @brief Helper function for implementing DEVICE_RESUME()
3405  *
3406  * This function can be used to help implement the DEVICE_RESUME() for
3407  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3408  */
3409 int
3410 bus_generic_resume(device_t dev)
3411 {
3412 	device_t	child;
3413 
3414 	TAILQ_FOREACH(child, &dev->children, link) {
3415 		DEVICE_RESUME(child);
3416 		/* if resume fails, there's nothing we can usefully do... */
3417 	}
3418 	return (0);
3419 }
3420 
3421 /**
3422  * @brief Helper function for implementing BUS_PRINT_CHILD().
3423  *
3424  * This function prints the first part of the ascii representation of
3425  * @p child, including its name, unit and description (if any - see
3426  * device_set_desc()).
3427  *
3428  * @returns the number of characters printed
3429  */
3430 int
3431 bus_print_child_header(device_t dev, device_t child)
3432 {
3433 	int	retval = 0;
3434 
3435 	if (device_get_desc(child)) {
3436 		retval += device_printf(child, "<%s>", device_get_desc(child));
3437 	} else {
3438 		retval += printf("%s", device_get_nameunit(child));
3439 	}
3440 
3441 	return (retval);
3442 }
3443 
3444 /**
3445  * @brief Helper function for implementing BUS_PRINT_CHILD().
3446  *
3447  * This function prints the last part of the ascii representation of
3448  * @p child, which consists of the string @c " on " followed by the
3449  * name and unit of the @p dev.
3450  *
3451  * @returns the number of characters printed
3452  */
3453 int
3454 bus_print_child_footer(device_t dev, device_t child)
3455 {
3456 	return (printf(" on %s\n", device_get_nameunit(dev)));
3457 }
3458 
3459 /**
3460  * @brief Helper function for implementing BUS_PRINT_CHILD().
3461  *
3462  * This function simply calls bus_print_child_header() followed by
3463  * bus_print_child_footer().
3464  *
3465  * @returns the number of characters printed
3466  */
3467 int
3468 bus_generic_print_child(device_t dev, device_t child)
3469 {
3470 	int	retval = 0;
3471 
3472 	retval += bus_print_child_header(dev, child);
3473 	retval += bus_print_child_footer(dev, child);
3474 
3475 	return (retval);
3476 }
3477 
3478 /**
3479  * @brief Stub function for implementing BUS_READ_IVAR().
3480  *
3481  * @returns ENOENT
3482  */
3483 int
3484 bus_generic_read_ivar(device_t dev, device_t child, int index,
3485     uintptr_t * result)
3486 {
3487 	return (ENOENT);
3488 }
3489 
3490 /**
3491  * @brief Stub function for implementing BUS_WRITE_IVAR().
3492  *
3493  * @returns ENOENT
3494  */
3495 int
3496 bus_generic_write_ivar(device_t dev, device_t child, int index,
3497     uintptr_t value)
3498 {
3499 	return (ENOENT);
3500 }
3501 
3502 /**
3503  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3504  *
3505  * @returns NULL
3506  */
3507 struct resource_list *
3508 bus_generic_get_resource_list(device_t dev, device_t child)
3509 {
3510 	return (NULL);
3511 }
3512 
3513 /**
3514  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3515  *
3516  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3517  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3518  * and then calls device_probe_and_attach() for each unattached child.
3519  */
3520 void
3521 bus_generic_driver_added(device_t dev, driver_t *driver)
3522 {
3523 	device_t child;
3524 
3525 	DEVICE_IDENTIFY(driver, dev);
3526 	TAILQ_FOREACH(child, &dev->children, link) {
3527 		if (child->state == DS_NOTPRESENT ||
3528 		    (child->flags & DF_REBID))
3529 			device_probe_and_attach(child);
3530 	}
3531 }
3532 
3533 /**
3534  * @brief Helper function for implementing BUS_NEW_PASS().
3535  *
3536  * This implementing of BUS_NEW_PASS() first calls the identify
3537  * routines for any drivers that probe at the current pass.  Then it
3538  * walks the list of devices for this bus.  If a device is already
3539  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3540  * device is not already attached, it attempts to attach a driver to
3541  * it.
3542  */
3543 void
3544 bus_generic_new_pass(device_t dev)
3545 {
3546 	driverlink_t dl;
3547 	devclass_t dc;
3548 	device_t child;
3549 
3550 	dc = dev->devclass;
3551 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3552 		if (dl->pass == bus_current_pass)
3553 			DEVICE_IDENTIFY(dl->driver, dev);
3554 	}
3555 	TAILQ_FOREACH(child, &dev->children, link) {
3556 		if (child->state >= DS_ATTACHED)
3557 			BUS_NEW_PASS(child);
3558 		else if (child->state == DS_NOTPRESENT)
3559 			device_probe_and_attach(child);
3560 	}
3561 }
3562 
3563 /**
3564  * @brief Helper function for implementing BUS_SETUP_INTR().
3565  *
3566  * This simple implementation of BUS_SETUP_INTR() simply calls the
3567  * BUS_SETUP_INTR() method of the parent of @p dev.
3568  */
3569 int
3570 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3571     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3572     void **cookiep)
3573 {
3574 	/* Propagate up the bus hierarchy until someone handles it. */
3575 	if (dev->parent)
3576 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3577 		    filter, intr, arg, cookiep));
3578 	return (EINVAL);
3579 }
3580 
3581 /**
3582  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3583  *
3584  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3585  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3586  */
3587 int
3588 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3589     void *cookie)
3590 {
3591 	/* Propagate up the bus hierarchy until someone handles it. */
3592 	if (dev->parent)
3593 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3594 	return (EINVAL);
3595 }
3596 
3597 /**
3598  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3599  *
3600  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3601  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3602  */
3603 struct resource *
3604 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3605     u_long start, u_long end, u_long count, u_int flags)
3606 {
3607 	/* Propagate up the bus hierarchy until someone handles it. */
3608 	if (dev->parent)
3609 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3610 		    start, end, count, flags));
3611 	return (NULL);
3612 }
3613 
3614 /**
3615  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3616  *
3617  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3618  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3619  */
3620 int
3621 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3622     struct resource *r)
3623 {
3624 	/* Propagate up the bus hierarchy until someone handles it. */
3625 	if (dev->parent)
3626 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3627 		    r));
3628 	return (EINVAL);
3629 }
3630 
3631 /**
3632  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3633  *
3634  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3635  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3636  */
3637 int
3638 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3639     struct resource *r)
3640 {
3641 	/* Propagate up the bus hierarchy until someone handles it. */
3642 	if (dev->parent)
3643 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3644 		    r));
3645 	return (EINVAL);
3646 }
3647 
3648 /**
3649  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3650  *
3651  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3652  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3653  */
3654 int
3655 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3656     int rid, struct resource *r)
3657 {
3658 	/* Propagate up the bus hierarchy until someone handles it. */
3659 	if (dev->parent)
3660 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3661 		    r));
3662 	return (EINVAL);
3663 }
3664 
3665 /**
3666  * @brief Helper function for implementing BUS_BIND_INTR().
3667  *
3668  * This simple implementation of BUS_BIND_INTR() simply calls the
3669  * BUS_BIND_INTR() method of the parent of @p dev.
3670  */
3671 int
3672 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3673     int cpu)
3674 {
3675 
3676 	/* Propagate up the bus hierarchy until someone handles it. */
3677 	if (dev->parent)
3678 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3679 	return (EINVAL);
3680 }
3681 
3682 /**
3683  * @brief Helper function for implementing BUS_CONFIG_INTR().
3684  *
3685  * This simple implementation of BUS_CONFIG_INTR() simply calls the
3686  * BUS_CONFIG_INTR() method of the parent of @p dev.
3687  */
3688 int
3689 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3690     enum intr_polarity pol)
3691 {
3692 
3693 	/* Propagate up the bus hierarchy until someone handles it. */
3694 	if (dev->parent)
3695 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3696 	return (EINVAL);
3697 }
3698 
3699 /**
3700  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3701  *
3702  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3703  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3704  */
3705 int
3706 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3707     void *cookie, const char *descr)
3708 {
3709 
3710 	/* Propagate up the bus hierarchy until someone handles it. */
3711 	if (dev->parent)
3712 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3713 		    descr));
3714 	return (EINVAL);
3715 }
3716 
3717 /**
3718  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3719  *
3720  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3721  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3722  */
3723 bus_dma_tag_t
3724 bus_generic_get_dma_tag(device_t dev, device_t child)
3725 {
3726 
3727 	/* Propagate up the bus hierarchy until someone handles it. */
3728 	if (dev->parent != NULL)
3729 		return (BUS_GET_DMA_TAG(dev->parent, child));
3730 	return (NULL);
3731 }
3732 
3733 /**
3734  * @brief Helper function for implementing BUS_GET_RESOURCE().
3735  *
3736  * This implementation of BUS_GET_RESOURCE() uses the
3737  * resource_list_find() function to do most of the work. It calls
3738  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3739  * search.
3740  */
3741 int
3742 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3743     u_long *startp, u_long *countp)
3744 {
3745 	struct resource_list *		rl = NULL;
3746 	struct resource_list_entry *	rle = NULL;
3747 
3748 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3749 	if (!rl)
3750 		return (EINVAL);
3751 
3752 	rle = resource_list_find(rl, type, rid);
3753 	if (!rle)
3754 		return (ENOENT);
3755 
3756 	if (startp)
3757 		*startp = rle->start;
3758 	if (countp)
3759 		*countp = rle->count;
3760 
3761 	return (0);
3762 }
3763 
3764 /**
3765  * @brief Helper function for implementing BUS_SET_RESOURCE().
3766  *
3767  * This implementation of BUS_SET_RESOURCE() uses the
3768  * resource_list_add() function to do most of the work. It calls
3769  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3770  * edit.
3771  */
3772 int
3773 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3774     u_long start, u_long count)
3775 {
3776 	struct resource_list *		rl = NULL;
3777 
3778 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3779 	if (!rl)
3780 		return (EINVAL);
3781 
3782 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3783 
3784 	return (0);
3785 }
3786 
3787 /**
3788  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3789  *
3790  * This implementation of BUS_DELETE_RESOURCE() uses the
3791  * resource_list_delete() function to do most of the work. It calls
3792  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3793  * edit.
3794  */
3795 void
3796 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3797 {
3798 	struct resource_list *		rl = NULL;
3799 
3800 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3801 	if (!rl)
3802 		return;
3803 
3804 	resource_list_delete(rl, type, rid);
3805 
3806 	return;
3807 }
3808 
3809 /**
3810  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3811  *
3812  * This implementation of BUS_RELEASE_RESOURCE() uses the
3813  * resource_list_release() function to do most of the work. It calls
3814  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3815  */
3816 int
3817 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3818     int rid, struct resource *r)
3819 {
3820 	struct resource_list *		rl = NULL;
3821 
3822 	if (device_get_parent(child) != dev)
3823 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
3824 		    type, rid, r));
3825 
3826 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3827 	if (!rl)
3828 		return (EINVAL);
3829 
3830 	return (resource_list_release(rl, dev, child, type, rid, r));
3831 }
3832 
3833 /**
3834  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3835  *
3836  * This implementation of BUS_ALLOC_RESOURCE() uses the
3837  * resource_list_alloc() function to do most of the work. It calls
3838  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3839  */
3840 struct resource *
3841 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3842     int *rid, u_long start, u_long end, u_long count, u_int flags)
3843 {
3844 	struct resource_list *		rl = NULL;
3845 
3846 	if (device_get_parent(child) != dev)
3847 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
3848 		    type, rid, start, end, count, flags));
3849 
3850 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3851 	if (!rl)
3852 		return (NULL);
3853 
3854 	return (resource_list_alloc(rl, dev, child, type, rid,
3855 	    start, end, count, flags));
3856 }
3857 
3858 /**
3859  * @brief Helper function for implementing BUS_CHILD_PRESENT().
3860  *
3861  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3862  * BUS_CHILD_PRESENT() method of the parent of @p dev.
3863  */
3864 int
3865 bus_generic_child_present(device_t dev, device_t child)
3866 {
3867 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3868 }
3869 
3870 /*
3871  * Some convenience functions to make it easier for drivers to use the
3872  * resource-management functions.  All these really do is hide the
3873  * indirection through the parent's method table, making for slightly
3874  * less-wordy code.  In the future, it might make sense for this code
3875  * to maintain some sort of a list of resources allocated by each device.
3876  */
3877 
3878 int
3879 bus_alloc_resources(device_t dev, struct resource_spec *rs,
3880     struct resource **res)
3881 {
3882 	int i;
3883 
3884 	for (i = 0; rs[i].type != -1; i++)
3885 		res[i] = NULL;
3886 	for (i = 0; rs[i].type != -1; i++) {
3887 		res[i] = bus_alloc_resource_any(dev,
3888 		    rs[i].type, &rs[i].rid, rs[i].flags);
3889 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3890 			bus_release_resources(dev, rs, res);
3891 			return (ENXIO);
3892 		}
3893 	}
3894 	return (0);
3895 }
3896 
3897 void
3898 bus_release_resources(device_t dev, const struct resource_spec *rs,
3899     struct resource **res)
3900 {
3901 	int i;
3902 
3903 	for (i = 0; rs[i].type != -1; i++)
3904 		if (res[i] != NULL) {
3905 			bus_release_resource(
3906 			    dev, rs[i].type, rs[i].rid, res[i]);
3907 			res[i] = NULL;
3908 		}
3909 }
3910 
3911 /**
3912  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3913  *
3914  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3915  * parent of @p dev.
3916  */
3917 struct resource *
3918 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3919     u_long count, u_int flags)
3920 {
3921 	if (dev->parent == NULL)
3922 		return (NULL);
3923 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3924 	    count, flags));
3925 }
3926 
3927 /**
3928  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3929  *
3930  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3931  * parent of @p dev.
3932  */
3933 int
3934 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3935 {
3936 	if (dev->parent == NULL)
3937 		return (EINVAL);
3938 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3939 }
3940 
3941 /**
3942  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3943  *
3944  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3945  * parent of @p dev.
3946  */
3947 int
3948 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3949 {
3950 	if (dev->parent == NULL)
3951 		return (EINVAL);
3952 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3953 }
3954 
3955 /**
3956  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3957  *
3958  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3959  * parent of @p dev.
3960  */
3961 int
3962 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3963 {
3964 	if (dev->parent == NULL)
3965 		return (EINVAL);
3966 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3967 }
3968 
3969 /**
3970  * @brief Wrapper function for BUS_SETUP_INTR().
3971  *
3972  * This function simply calls the BUS_SETUP_INTR() method of the
3973  * parent of @p dev.
3974  */
3975 int
3976 bus_setup_intr(device_t dev, struct resource *r, int flags,
3977     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
3978 {
3979 	int error;
3980 
3981 	if (dev->parent == NULL)
3982 		return (EINVAL);
3983 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
3984 	    arg, cookiep);
3985 	if (error != 0)
3986 		return (error);
3987 	if (handler != NULL && !(flags & INTR_MPSAFE))
3988 		device_printf(dev, "[GIANT-LOCKED]\n");
3989 	return (0);
3990 }
3991 
3992 /**
3993  * @brief Wrapper function for BUS_TEARDOWN_INTR().
3994  *
3995  * This function simply calls the BUS_TEARDOWN_INTR() method of the
3996  * parent of @p dev.
3997  */
3998 int
3999 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4000 {
4001 	if (dev->parent == NULL)
4002 		return (EINVAL);
4003 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4004 }
4005 
4006 /**
4007  * @brief Wrapper function for BUS_BIND_INTR().
4008  *
4009  * This function simply calls the BUS_BIND_INTR() method of the
4010  * parent of @p dev.
4011  */
4012 int
4013 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4014 {
4015 	if (dev->parent == NULL)
4016 		return (EINVAL);
4017 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4018 }
4019 
4020 /**
4021  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4022  *
4023  * This function first formats the requested description into a
4024  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4025  * the parent of @p dev.
4026  */
4027 int
4028 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4029     const char *fmt, ...)
4030 {
4031 	va_list ap;
4032 	char descr[MAXCOMLEN + 1];
4033 
4034 	if (dev->parent == NULL)
4035 		return (EINVAL);
4036 	va_start(ap, fmt);
4037 	vsnprintf(descr, sizeof(descr), fmt, ap);
4038 	va_end(ap);
4039 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4040 }
4041 
4042 /**
4043  * @brief Wrapper function for BUS_SET_RESOURCE().
4044  *
4045  * This function simply calls the BUS_SET_RESOURCE() method of the
4046  * parent of @p dev.
4047  */
4048 int
4049 bus_set_resource(device_t dev, int type, int rid,
4050     u_long start, u_long count)
4051 {
4052 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4053 	    start, count));
4054 }
4055 
4056 /**
4057  * @brief Wrapper function for BUS_GET_RESOURCE().
4058  *
4059  * This function simply calls the BUS_GET_RESOURCE() method of the
4060  * parent of @p dev.
4061  */
4062 int
4063 bus_get_resource(device_t dev, int type, int rid,
4064     u_long *startp, u_long *countp)
4065 {
4066 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4067 	    startp, countp));
4068 }
4069 
4070 /**
4071  * @brief Wrapper function for BUS_GET_RESOURCE().
4072  *
4073  * This function simply calls the BUS_GET_RESOURCE() method of the
4074  * parent of @p dev and returns the start value.
4075  */
4076 u_long
4077 bus_get_resource_start(device_t dev, int type, int rid)
4078 {
4079 	u_long start, count;
4080 	int error;
4081 
4082 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4083 	    &start, &count);
4084 	if (error)
4085 		return (0);
4086 	return (start);
4087 }
4088 
4089 /**
4090  * @brief Wrapper function for BUS_GET_RESOURCE().
4091  *
4092  * This function simply calls the BUS_GET_RESOURCE() method of the
4093  * parent of @p dev and returns the count value.
4094  */
4095 u_long
4096 bus_get_resource_count(device_t dev, int type, int rid)
4097 {
4098 	u_long start, count;
4099 	int error;
4100 
4101 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4102 	    &start, &count);
4103 	if (error)
4104 		return (0);
4105 	return (count);
4106 }
4107 
4108 /**
4109  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4110  *
4111  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4112  * parent of @p dev.
4113  */
4114 void
4115 bus_delete_resource(device_t dev, int type, int rid)
4116 {
4117 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4118 }
4119 
4120 /**
4121  * @brief Wrapper function for BUS_CHILD_PRESENT().
4122  *
4123  * This function simply calls the BUS_CHILD_PRESENT() method of the
4124  * parent of @p dev.
4125  */
4126 int
4127 bus_child_present(device_t child)
4128 {
4129 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4130 }
4131 
4132 /**
4133  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4134  *
4135  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4136  * parent of @p dev.
4137  */
4138 int
4139 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4140 {
4141 	device_t parent;
4142 
4143 	parent = device_get_parent(child);
4144 	if (parent == NULL) {
4145 		*buf = '\0';
4146 		return (0);
4147 	}
4148 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4149 }
4150 
4151 /**
4152  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4153  *
4154  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4155  * parent of @p dev.
4156  */
4157 int
4158 bus_child_location_str(device_t child, char *buf, size_t buflen)
4159 {
4160 	device_t parent;
4161 
4162 	parent = device_get_parent(child);
4163 	if (parent == NULL) {
4164 		*buf = '\0';
4165 		return (0);
4166 	}
4167 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4168 }
4169 
4170 /**
4171  * @brief Wrapper function for BUS_GET_DMA_TAG().
4172  *
4173  * This function simply calls the BUS_GET_DMA_TAG() method of the
4174  * parent of @p dev.
4175  */
4176 bus_dma_tag_t
4177 bus_get_dma_tag(device_t dev)
4178 {
4179 	device_t parent;
4180 
4181 	parent = device_get_parent(dev);
4182 	if (parent == NULL)
4183 		return (NULL);
4184 	return (BUS_GET_DMA_TAG(parent, dev));
4185 }
4186 
4187 /* Resume all devices and then notify userland that we're up again. */
4188 static int
4189 root_resume(device_t dev)
4190 {
4191 	int error;
4192 
4193 	error = bus_generic_resume(dev);
4194 	if (error == 0)
4195 		devctl_notify("kern", "power", "resume", NULL);
4196 	return (error);
4197 }
4198 
4199 static int
4200 root_print_child(device_t dev, device_t child)
4201 {
4202 	int	retval = 0;
4203 
4204 	retval += bus_print_child_header(dev, child);
4205 	retval += printf("\n");
4206 
4207 	return (retval);
4208 }
4209 
4210 static int
4211 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4212     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4213 {
4214 	/*
4215 	 * If an interrupt mapping gets to here something bad has happened.
4216 	 */
4217 	panic("root_setup_intr");
4218 }
4219 
4220 /*
4221  * If we get here, assume that the device is permanant and really is
4222  * present in the system.  Removable bus drivers are expected to intercept
4223  * this call long before it gets here.  We return -1 so that drivers that
4224  * really care can check vs -1 or some ERRNO returned higher in the food
4225  * chain.
4226  */
4227 static int
4228 root_child_present(device_t dev, device_t child)
4229 {
4230 	return (-1);
4231 }
4232 
4233 static kobj_method_t root_methods[] = {
4234 	/* Device interface */
4235 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4236 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4237 	KOBJMETHOD(device_resume,	root_resume),
4238 
4239 	/* Bus interface */
4240 	KOBJMETHOD(bus_print_child,	root_print_child),
4241 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4242 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4243 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4244 	KOBJMETHOD(bus_child_present,	root_child_present),
4245 
4246 	KOBJMETHOD_END
4247 };
4248 
4249 static driver_t root_driver = {
4250 	"root",
4251 	root_methods,
4252 	1,			/* no softc */
4253 };
4254 
4255 device_t	root_bus;
4256 devclass_t	root_devclass;
4257 
4258 static int
4259 root_bus_module_handler(module_t mod, int what, void* arg)
4260 {
4261 	switch (what) {
4262 	case MOD_LOAD:
4263 		TAILQ_INIT(&bus_data_devices);
4264 		kobj_class_compile((kobj_class_t) &root_driver);
4265 		root_bus = make_device(NULL, "root", 0);
4266 		root_bus->desc = "System root bus";
4267 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4268 		root_bus->driver = &root_driver;
4269 		root_bus->state = DS_ATTACHED;
4270 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4271 		devinit();
4272 		return (0);
4273 
4274 	case MOD_SHUTDOWN:
4275 		device_shutdown(root_bus);
4276 		return (0);
4277 	default:
4278 		return (EOPNOTSUPP);
4279 	}
4280 
4281 	return (0);
4282 }
4283 
4284 static moduledata_t root_bus_mod = {
4285 	"rootbus",
4286 	root_bus_module_handler,
4287 	NULL
4288 };
4289 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4290 
4291 /**
4292  * @brief Automatically configure devices
4293  *
4294  * This function begins the autoconfiguration process by calling
4295  * device_probe_and_attach() for each child of the @c root0 device.
4296  */
4297 void
4298 root_bus_configure(void)
4299 {
4300 
4301 	PDEBUG(("."));
4302 
4303 	/* Eventually this will be split up, but this is sufficient for now. */
4304 	bus_set_pass(BUS_PASS_DEFAULT);
4305 }
4306 
4307 /**
4308  * @brief Module handler for registering device drivers
4309  *
4310  * This module handler is used to automatically register device
4311  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4312  * devclass_add_driver() for the driver described by the
4313  * driver_module_data structure pointed to by @p arg
4314  */
4315 int
4316 driver_module_handler(module_t mod, int what, void *arg)
4317 {
4318 	struct driver_module_data *dmd;
4319 	devclass_t bus_devclass;
4320 	kobj_class_t driver;
4321 	int error, pass;
4322 
4323 	dmd = (struct driver_module_data *)arg;
4324 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4325 	error = 0;
4326 
4327 	switch (what) {
4328 	case MOD_LOAD:
4329 		if (dmd->dmd_chainevh)
4330 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4331 
4332 		pass = dmd->dmd_pass;
4333 		driver = dmd->dmd_driver;
4334 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4335 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4336 		error = devclass_add_driver(bus_devclass, driver, pass,
4337 		    dmd->dmd_devclass);
4338 		break;
4339 
4340 	case MOD_UNLOAD:
4341 		PDEBUG(("Unloading module: driver %s from bus %s",
4342 		    DRIVERNAME(dmd->dmd_driver),
4343 		    dmd->dmd_busname));
4344 		error = devclass_delete_driver(bus_devclass,
4345 		    dmd->dmd_driver);
4346 
4347 		if (!error && dmd->dmd_chainevh)
4348 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4349 		break;
4350 	case MOD_QUIESCE:
4351 		PDEBUG(("Quiesce module: driver %s from bus %s",
4352 		    DRIVERNAME(dmd->dmd_driver),
4353 		    dmd->dmd_busname));
4354 		error = devclass_quiesce_driver(bus_devclass,
4355 		    dmd->dmd_driver);
4356 
4357 		if (!error && dmd->dmd_chainevh)
4358 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4359 		break;
4360 	default:
4361 		error = EOPNOTSUPP;
4362 		break;
4363 	}
4364 
4365 	return (error);
4366 }
4367 
4368 /**
4369  * @brief Enumerate all hinted devices for this bus.
4370  *
4371  * Walks through the hints for this bus and calls the bus_hinted_child
4372  * routine for each one it fines.  It searches first for the specific
4373  * bus that's being probed for hinted children (eg isa0), and then for
4374  * generic children (eg isa).
4375  *
4376  * @param	dev	bus device to enumerate
4377  */
4378 void
4379 bus_enumerate_hinted_children(device_t bus)
4380 {
4381 	int i;
4382 	const char *dname, *busname;
4383 	int dunit;
4384 
4385 	/*
4386 	 * enumerate all devices on the specific bus
4387 	 */
4388 	busname = device_get_nameunit(bus);
4389 	i = 0;
4390 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4391 		BUS_HINTED_CHILD(bus, dname, dunit);
4392 
4393 	/*
4394 	 * and all the generic ones.
4395 	 */
4396 	busname = device_get_name(bus);
4397 	i = 0;
4398 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4399 		BUS_HINTED_CHILD(bus, dname, dunit);
4400 }
4401 
4402 #ifdef BUS_DEBUG
4403 
4404 /* the _short versions avoid iteration by not calling anything that prints
4405  * more than oneliners. I love oneliners.
4406  */
4407 
4408 static void
4409 print_device_short(device_t dev, int indent)
4410 {
4411 	if (!dev)
4412 		return;
4413 
4414 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4415 	    dev->unit, dev->desc,
4416 	    (dev->parent? "":"no "),
4417 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4418 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4419 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4420 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4421 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4422 	    (dev->flags&DF_REBID? "rebiddable,":""),
4423 	    (dev->ivars? "":"no "),
4424 	    (dev->softc? "":"no "),
4425 	    dev->busy));
4426 }
4427 
4428 static void
4429 print_device(device_t dev, int indent)
4430 {
4431 	if (!dev)
4432 		return;
4433 
4434 	print_device_short(dev, indent);
4435 
4436 	indentprintf(("Parent:\n"));
4437 	print_device_short(dev->parent, indent+1);
4438 	indentprintf(("Driver:\n"));
4439 	print_driver_short(dev->driver, indent+1);
4440 	indentprintf(("Devclass:\n"));
4441 	print_devclass_short(dev->devclass, indent+1);
4442 }
4443 
4444 void
4445 print_device_tree_short(device_t dev, int indent)
4446 /* print the device and all its children (indented) */
4447 {
4448 	device_t child;
4449 
4450 	if (!dev)
4451 		return;
4452 
4453 	print_device_short(dev, indent);
4454 
4455 	TAILQ_FOREACH(child, &dev->children, link) {
4456 		print_device_tree_short(child, indent+1);
4457 	}
4458 }
4459 
4460 void
4461 print_device_tree(device_t dev, int indent)
4462 /* print the device and all its children (indented) */
4463 {
4464 	device_t child;
4465 
4466 	if (!dev)
4467 		return;
4468 
4469 	print_device(dev, indent);
4470 
4471 	TAILQ_FOREACH(child, &dev->children, link) {
4472 		print_device_tree(child, indent+1);
4473 	}
4474 }
4475 
4476 static void
4477 print_driver_short(driver_t *driver, int indent)
4478 {
4479 	if (!driver)
4480 		return;
4481 
4482 	indentprintf(("driver %s: softc size = %zd\n",
4483 	    driver->name, driver->size));
4484 }
4485 
4486 static void
4487 print_driver(driver_t *driver, int indent)
4488 {
4489 	if (!driver)
4490 		return;
4491 
4492 	print_driver_short(driver, indent);
4493 }
4494 
4495 
4496 static void
4497 print_driver_list(driver_list_t drivers, int indent)
4498 {
4499 	driverlink_t driver;
4500 
4501 	TAILQ_FOREACH(driver, &drivers, link) {
4502 		print_driver(driver->driver, indent);
4503 	}
4504 }
4505 
4506 static void
4507 print_devclass_short(devclass_t dc, int indent)
4508 {
4509 	if ( !dc )
4510 		return;
4511 
4512 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4513 }
4514 
4515 static void
4516 print_devclass(devclass_t dc, int indent)
4517 {
4518 	int i;
4519 
4520 	if ( !dc )
4521 		return;
4522 
4523 	print_devclass_short(dc, indent);
4524 	indentprintf(("Drivers:\n"));
4525 	print_driver_list(dc->drivers, indent+1);
4526 
4527 	indentprintf(("Devices:\n"));
4528 	for (i = 0; i < dc->maxunit; i++)
4529 		if (dc->devices[i])
4530 			print_device(dc->devices[i], indent+1);
4531 }
4532 
4533 void
4534 print_devclass_list_short(void)
4535 {
4536 	devclass_t dc;
4537 
4538 	printf("Short listing of devclasses, drivers & devices:\n");
4539 	TAILQ_FOREACH(dc, &devclasses, link) {
4540 		print_devclass_short(dc, 0);
4541 	}
4542 }
4543 
4544 void
4545 print_devclass_list(void)
4546 {
4547 	devclass_t dc;
4548 
4549 	printf("Full listing of devclasses, drivers & devices:\n");
4550 	TAILQ_FOREACH(dc, &devclasses, link) {
4551 		print_devclass(dc, 0);
4552 	}
4553 }
4554 
4555 #endif
4556 
4557 /*
4558  * User-space access to the device tree.
4559  *
4560  * We implement a small set of nodes:
4561  *
4562  * hw.bus			Single integer read method to obtain the
4563  *				current generation count.
4564  * hw.bus.devices		Reads the entire device tree in flat space.
4565  * hw.bus.rman			Resource manager interface
4566  *
4567  * We might like to add the ability to scan devclasses and/or drivers to
4568  * determine what else is currently loaded/available.
4569  */
4570 
4571 static int
4572 sysctl_bus(SYSCTL_HANDLER_ARGS)
4573 {
4574 	struct u_businfo	ubus;
4575 
4576 	ubus.ub_version = BUS_USER_VERSION;
4577 	ubus.ub_generation = bus_data_generation;
4578 
4579 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4580 }
4581 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4582     "bus-related data");
4583 
4584 static int
4585 sysctl_devices(SYSCTL_HANDLER_ARGS)
4586 {
4587 	int			*name = (int *)arg1;
4588 	u_int			namelen = arg2;
4589 	int			index;
4590 	struct device		*dev;
4591 	struct u_device		udev;	/* XXX this is a bit big */
4592 	int			error;
4593 
4594 	if (namelen != 2)
4595 		return (EINVAL);
4596 
4597 	if (bus_data_generation_check(name[0]))
4598 		return (EINVAL);
4599 
4600 	index = name[1];
4601 
4602 	/*
4603 	 * Scan the list of devices, looking for the requested index.
4604 	 */
4605 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4606 		if (index-- == 0)
4607 			break;
4608 	}
4609 	if (dev == NULL)
4610 		return (ENOENT);
4611 
4612 	/*
4613 	 * Populate the return array.
4614 	 */
4615 	bzero(&udev, sizeof(udev));
4616 	udev.dv_handle = (uintptr_t)dev;
4617 	udev.dv_parent = (uintptr_t)dev->parent;
4618 	if (dev->nameunit != NULL)
4619 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4620 	if (dev->desc != NULL)
4621 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4622 	if (dev->driver != NULL && dev->driver->name != NULL)
4623 		strlcpy(udev.dv_drivername, dev->driver->name,
4624 		    sizeof(udev.dv_drivername));
4625 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4626 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4627 	udev.dv_devflags = dev->devflags;
4628 	udev.dv_flags = dev->flags;
4629 	udev.dv_state = dev->state;
4630 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4631 	return (error);
4632 }
4633 
4634 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4635     "system device tree");
4636 
4637 int
4638 bus_data_generation_check(int generation)
4639 {
4640 	if (generation != bus_data_generation)
4641 		return (1);
4642 
4643 	/* XXX generate optimised lists here? */
4644 	return (0);
4645 }
4646 
4647 void
4648 bus_data_generation_update(void)
4649 {
4650 	bus_data_generation++;
4651 }
4652 
4653 int
4654 bus_free_resource(device_t dev, int type, struct resource *r)
4655 {
4656 	if (r == NULL)
4657 		return (0);
4658 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4659 }
4660