xref: /freebsd/sys/kern/subr_blist.c (revision 8657387683946d0c03e09fe77029edfe309eeb20)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions
5  * are met:
6  * 1. Redistributions of source code must retain the above copyright
7  *    notice, this list of conditions and the following disclaimer.
8  * 2. Redistributions in binary form must reproduce the above copyright
9  *    notice, this list of conditions and the following disclaimer in the
10  *    documentation and/or other materials provided with the distribution.
11  * 3. Neither the name of the University nor the names of its contributors
12  *    may be used to endorse or promote products derived from this software
13  *    without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
19  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
21  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
24  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 /*
28  * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
29  *
30  *	This module implements a general bitmap allocator/deallocator.  The
31  *	allocator eats around 2 bits per 'block'.  The module does not
32  *	try to interpret the meaning of a 'block' other than to return
33  *	SWAPBLK_NONE on an allocation failure.
34  *
35  *	A radix tree is used to maintain the bitmap.  Two radix constants are
36  *	involved:  One for the bitmaps contained in the leaf nodes (typically
37  *	64), and one for the meta nodes (typically 16).  Both meta and leaf
38  *	nodes have a hint field.  This field gives us a hint as to the largest
39  *	free contiguous range of blocks under the node.  It may contain a
40  *	value that is too high, but will never contain a value that is too
41  *	low.  When the radix tree is searched, allocation failures in subtrees
42  *	update the hint.
43  *
44  *	The radix tree also implements two collapsed states for meta nodes:
45  *	the ALL-ALLOCATED state and the ALL-FREE state.  If a meta node is
46  *	in either of these two states, all information contained underneath
47  *	the node is considered stale.  These states are used to optimize
48  *	allocation and freeing operations.
49  *
50  * 	The hinting greatly increases code efficiency for allocations while
51  *	the general radix structure optimizes both allocations and frees.  The
52  *	radix tree should be able to operate well no matter how much
53  *	fragmentation there is and no matter how large a bitmap is used.
54  *
55  *	The blist code wires all necessary memory at creation time.  Neither
56  *	allocations nor frees require interaction with the memory subsystem.
57  *	The non-blocking features of the blist code are used in the swap code
58  *	(vm/swap_pager.c).
59  *
60  *	LAYOUT: The radix tree is laid out recursively using a
61  *	linear array.  Each meta node is immediately followed (laid out
62  *	sequentially in memory) by BLIST_META_RADIX lower level nodes.  This
63  *	is a recursive structure but one that can be easily scanned through
64  *	a very simple 'skip' calculation.  In order to support large radixes,
65  *	portions of the tree may reside outside our memory allocation.  We
66  *	handle this with an early-termination optimization (when bighint is
67  *	set to -1) on the scan.  The memory allocation is only large enough
68  *	to cover the number of blocks requested at creation time even if it
69  *	must be encompassed in larger root-node radix.
70  *
71  *	NOTE: the allocator cannot currently allocate more than
72  *	BLIST_BMAP_RADIX blocks per call.  It will panic with 'allocation too
73  *	large' if you try.  This is an area that could use improvement.  The
74  *	radix is large enough that this restriction does not effect the swap
75  *	system, though.  Currently only the allocation code is affected by
76  *	this algorithmic unfeature.  The freeing code can handle arbitrary
77  *	ranges.
78  *
79  *	This code can be compiled stand-alone for debugging.
80  */
81 
82 #include <sys/cdefs.h>
83 __FBSDID("$FreeBSD$");
84 
85 #ifdef _KERNEL
86 
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/lock.h>
90 #include <sys/kernel.h>
91 #include <sys/blist.h>
92 #include <sys/malloc.h>
93 #include <sys/proc.h>
94 #include <sys/mutex.h>
95 
96 #else
97 
98 #ifndef BLIST_NO_DEBUG
99 #define BLIST_DEBUG
100 #endif
101 
102 #include <sys/types.h>
103 #include <sys/malloc.h>
104 #include <stdio.h>
105 #include <string.h>
106 #include <stdlib.h>
107 #include <stdarg.h>
108 #include <stdbool.h>
109 
110 #define	bitcount64(x)	__bitcount64((uint64_t)(x))
111 #define malloc(a,b,c)	calloc(a, 1)
112 #define free(a,b)	free(a)
113 #define CTASSERT(expr)
114 
115 #include <sys/blist.h>
116 
117 void panic(const char *ctl, ...);
118 
119 #endif
120 
121 /*
122  * static support functions
123  */
124 static daddr_t	blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count,
125 		    daddr_t cursor);
126 static daddr_t	blst_meta_alloc(blmeta_t *scan, daddr_t cursor, daddr_t count,
127 		    u_daddr_t radix);
128 static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count);
129 static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count,
130 		    u_daddr_t radix);
131 static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
132 		    blist_t dest, daddr_t count);
133 static daddr_t blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count);
134 static daddr_t blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count,
135 		    u_daddr_t radix);
136 static daddr_t	blst_radix_init(blmeta_t *scan, daddr_t radix, daddr_t count);
137 #ifndef _KERNEL
138 static void	blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix,
139 		    int tab);
140 #endif
141 
142 #ifdef _KERNEL
143 static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
144 #endif
145 
146 CTASSERT(BLIST_BMAP_RADIX % BLIST_META_RADIX == 0);
147 
148 /*
149  * For a subtree that can represent the state of up to 'radix' blocks, the
150  * number of leaf nodes of the subtree is L=radix/BLIST_BMAP_RADIX.  If 'm'
151  * is short for BLIST_META_RADIX, then for a tree of height h with L=m**h
152  * leaf nodes, the total number of tree nodes is 1 + m + m**2 + ... + m**h,
153  * or, equivalently, (m**(h+1)-1)/(m-1).  This quantity is called 'skip'
154  * in the 'meta' functions that process subtrees.  Since integer division
155  * discards remainders, we can express this computation as
156  * skip = (m * m**h) / (m - 1)
157  * skip = (m * (radix / BLIST_BMAP_RADIX)) / (m - 1)
158  * and since m divides BLIST_BMAP_RADIX, we can simplify further to
159  * skip = (radix / (BLIST_BMAP_RADIX / m)) / (m - 1)
160  * skip = radix / ((BLIST_BMAP_RADIX / m) * (m - 1))
161  * so that simple integer division by a constant can safely be used for the
162  * calculation.
163  */
164 static inline daddr_t
165 radix_to_skip(daddr_t radix)
166 {
167 
168 	return (radix /
169 	    ((BLIST_BMAP_RADIX / BLIST_META_RADIX) * (BLIST_META_RADIX - 1)));
170 }
171 
172 /*
173  * blist_create() - create a blist capable of handling up to the specified
174  *		    number of blocks
175  *
176  *	blocks - must be greater than 0
177  * 	flags  - malloc flags
178  *
179  *	The smallest blist consists of a single leaf node capable of
180  *	managing BLIST_BMAP_RADIX blocks.
181  */
182 blist_t
183 blist_create(daddr_t blocks, int flags)
184 {
185 	blist_t bl;
186 	daddr_t nodes, radix;
187 
188 	/*
189 	 * Calculate the radix field used for scanning.
190 	 */
191 	radix = BLIST_BMAP_RADIX;
192 	while (radix < blocks) {
193 		radix *= BLIST_META_RADIX;
194 	}
195 	nodes = 1 + blst_radix_init(NULL, radix, blocks);
196 
197 	bl = malloc(sizeof(struct blist), M_SWAP, flags);
198 	if (bl == NULL)
199 		return (NULL);
200 
201 	bl->bl_blocks = blocks;
202 	bl->bl_radix = radix;
203 	bl->bl_cursor = 0;
204 	bl->bl_root = malloc(nodes * sizeof(blmeta_t), M_SWAP, flags);
205 	if (bl->bl_root == NULL) {
206 		free(bl, M_SWAP);
207 		return (NULL);
208 	}
209 	blst_radix_init(bl->bl_root, radix, blocks);
210 
211 #if defined(BLIST_DEBUG)
212 	printf(
213 		"BLIST representing %lld blocks (%lld MB of swap)"
214 		", requiring %lldK of ram\n",
215 		(long long)bl->bl_blocks,
216 		(long long)bl->bl_blocks * 4 / 1024,
217 		(long long)(nodes * sizeof(blmeta_t) + 1023) / 1024
218 	);
219 	printf("BLIST raw radix tree contains %lld records\n",
220 	    (long long)nodes);
221 #endif
222 
223 	return (bl);
224 }
225 
226 void
227 blist_destroy(blist_t bl)
228 {
229 	free(bl->bl_root, M_SWAP);
230 	free(bl, M_SWAP);
231 }
232 
233 /*
234  * blist_alloc() -   reserve space in the block bitmap.  Return the base
235  *		     of a contiguous region or SWAPBLK_NONE if space could
236  *		     not be allocated.
237  */
238 daddr_t
239 blist_alloc(blist_t bl, daddr_t count)
240 {
241 	daddr_t blk;
242 
243 	/*
244 	 * This loop iterates at most twice.  An allocation failure in the
245 	 * first iteration leads to a second iteration only if the cursor was
246 	 * non-zero.  When the cursor is zero, an allocation failure will
247 	 * reduce the hint, stopping further iterations.
248 	 */
249 	while (count <= bl->bl_root->bm_bighint) {
250 		blk = blst_meta_alloc(bl->bl_root, bl->bl_cursor, count,
251 		    bl->bl_radix);
252 		if (blk != SWAPBLK_NONE) {
253 			bl->bl_cursor = blk + count;
254 			if (bl->bl_cursor == bl->bl_blocks)
255 				bl->bl_cursor = 0;
256 			return (blk);
257 		} else if (bl->bl_cursor != 0)
258 			bl->bl_cursor = 0;
259 	}
260 	return (SWAPBLK_NONE);
261 }
262 
263 /*
264  * blist_avail() -	return the number of free blocks.
265  */
266 daddr_t
267 blist_avail(blist_t bl)
268 {
269 
270 	if (bl->bl_radix == BLIST_BMAP_RADIX)
271 		return (bitcount64(bl->bl_root->u.bmu_bitmap));
272 	else
273 		return (bl->bl_root->u.bmu_avail);
274 }
275 
276 /*
277  * blist_free() -	free up space in the block bitmap.  Return the base
278  *		     	of a contiguous region.  Panic if an inconsistancy is
279  *			found.
280  */
281 void
282 blist_free(blist_t bl, daddr_t blkno, daddr_t count)
283 {
284 
285 	blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix);
286 }
287 
288 /*
289  * blist_fill() -	mark a region in the block bitmap as off-limits
290  *			to the allocator (i.e. allocate it), ignoring any
291  *			existing allocations.  Return the number of blocks
292  *			actually filled that were free before the call.
293  */
294 daddr_t
295 blist_fill(blist_t bl, daddr_t blkno, daddr_t count)
296 {
297 
298 	return (blst_meta_fill(bl->bl_root, blkno, count, bl->bl_radix));
299 }
300 
301 /*
302  * blist_resize() -	resize an existing radix tree to handle the
303  *			specified number of blocks.  This will reallocate
304  *			the tree and transfer the previous bitmap to the new
305  *			one.  When extending the tree you can specify whether
306  *			the new blocks are to left allocated or freed.
307  */
308 void
309 blist_resize(blist_t *pbl, daddr_t count, int freenew, int flags)
310 {
311     blist_t newbl = blist_create(count, flags);
312     blist_t save = *pbl;
313 
314     *pbl = newbl;
315     if (count > save->bl_blocks)
316 	    count = save->bl_blocks;
317     blst_copy(save->bl_root, 0, save->bl_radix, newbl, count);
318 
319     /*
320      * If resizing upwards, should we free the new space or not?
321      */
322     if (freenew && count < newbl->bl_blocks) {
323 	    blist_free(newbl, count, newbl->bl_blocks - count);
324     }
325     blist_destroy(save);
326 }
327 
328 #ifdef BLIST_DEBUG
329 
330 /*
331  * blist_print()    - dump radix tree
332  */
333 void
334 blist_print(blist_t bl)
335 {
336 	printf("BLIST cursor = %08jx {\n", (uintmax_t)bl->bl_cursor);
337 	blst_radix_print(bl->bl_root, 0, bl->bl_radix, 4);
338 	printf("}\n");
339 }
340 
341 #endif
342 
343 /************************************************************************
344  *			  ALLOCATION SUPPORT FUNCTIONS			*
345  ************************************************************************
346  *
347  *	These support functions do all the actual work.  They may seem
348  *	rather longish, but that's because I've commented them up.  The
349  *	actual code is straight forward.
350  *
351  */
352 
353 /*
354  * blist_leaf_alloc() -	allocate at a leaf in the radix tree (a bitmap).
355  *
356  *	This is the core of the allocator and is optimized for the
357  *	BLIST_BMAP_RADIX block allocation case.  Otherwise, execution
358  *	time is proportional to log2(count) + log2(BLIST_BMAP_RADIX).
359  */
360 static daddr_t
361 blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count, daddr_t cursor)
362 {
363 	u_daddr_t mask;
364 	int count1, hi, lo, mid, num_shifts, range1, range_ext;
365 
366 	if (count == BLIST_BMAP_RADIX) {
367 		/*
368 		 * Optimize allocation of BLIST_BMAP_RADIX bits.  If this wasn't
369 		 * a special case, then forming the final value of 'mask' below
370 		 * would require special handling to avoid an invalid left shift
371 		 * when count equals the number of bits in mask.
372 		 */
373 		if (~scan->u.bmu_bitmap != 0) {
374 			scan->bm_bighint = BLIST_BMAP_RADIX - 1;
375 			return (SWAPBLK_NONE);
376 		}
377 		if (cursor != blk)
378 			return (SWAPBLK_NONE);
379 		scan->u.bmu_bitmap = 0;
380 		scan->bm_bighint = 0;
381 		return (blk);
382 	}
383 	range1 = 0;
384 	count1 = count - 1;
385 	num_shifts = fls(count1);
386 	mask = scan->u.bmu_bitmap;
387 	while (mask != 0 && num_shifts > 0) {
388 		/*
389 		 * If bit i is set in mask, then bits in [i, i+range1] are set
390 		 * in scan->u.bmu_bitmap.  The value of range1 is equal to
391 		 * count1 >> num_shifts.  Grow range and reduce num_shifts to 0,
392 		 * while preserving these invariants.  The updates to mask leave
393 		 * fewer bits set, but each bit that remains set represents a
394 		 * longer string of consecutive bits set in scan->u.bmu_bitmap.
395 		 */
396 		num_shifts--;
397 		range_ext = range1 + ((count1 >> num_shifts) & 1);
398 		mask &= mask >> range_ext;
399 		range1 += range_ext;
400 	}
401 	if (mask == 0) {
402 		/*
403 		 * Update bighint.  There is no allocation bigger than range1
404 		 * available in this leaf.
405 		 */
406 		scan->bm_bighint = range1;
407 		return (SWAPBLK_NONE);
408 	}
409 
410 	/*
411 	 * Discard any candidates that appear before the cursor.
412 	 */
413 	lo = cursor - blk;
414 	mask &= ~(u_daddr_t)0 << lo;
415 
416 	if (mask == 0)
417 		return (SWAPBLK_NONE);
418 
419 	/*
420 	 * The least significant set bit in mask marks the start of the first
421 	 * available range of sufficient size.  Clear all the bits but that one,
422 	 * and then perform a binary search to find its position.
423 	 */
424 	mask &= -mask;
425 	hi = BLIST_BMAP_RADIX - count1;
426 	while (lo + 1 < hi) {
427 		mid = (lo + hi) >> 1;
428 		if ((mask >> mid) != 0)
429 			lo = mid;
430 		else
431 			hi = mid;
432 	}
433 
434 	/*
435 	 * Set in mask exactly the bits being allocated, and clear them from
436 	 * the set of available bits.
437 	 */
438 	mask = (mask << count) - mask;
439 	scan->u.bmu_bitmap &= ~mask;
440 	return (blk + lo);
441 }
442 
443 /*
444  * blist_meta_alloc() -	allocate at a meta in the radix tree.
445  *
446  *	Attempt to allocate at a meta node.  If we can't, we update
447  *	bighint and return a failure.  Updating bighint optimize future
448  *	calls that hit this node.  We have to check for our collapse cases
449  *	and we have a few optimizations strewn in as well.
450  */
451 static daddr_t
452 blst_meta_alloc(blmeta_t *scan, daddr_t cursor, daddr_t count, u_daddr_t radix)
453 {
454 	daddr_t blk, i, next_skip, r, skip;
455 	int child;
456 	bool scan_from_start;
457 
458 	blk = cursor & -radix;
459 	if (radix == BLIST_BMAP_RADIX)
460 		return (blst_leaf_alloc(scan, blk, count, cursor));
461 	if (scan->u.bmu_avail < count) {
462 		/*
463 		 * The meta node's hint must be too large if the allocation
464 		 * exceeds the number of free blocks.  Reduce the hint, and
465 		 * return failure.
466 		 */
467 		scan->bm_bighint = scan->u.bmu_avail;
468 		return (SWAPBLK_NONE);
469 	}
470 	skip = radix_to_skip(radix);
471 	next_skip = skip / BLIST_META_RADIX;
472 
473 	/*
474 	 * An ALL-FREE meta node requires special handling before allocating
475 	 * any of its blocks.
476 	 */
477 	if (scan->u.bmu_avail == radix) {
478 		radix /= BLIST_META_RADIX;
479 
480 		/*
481 		 * Reinitialize each of the meta node's children.  An ALL-FREE
482 		 * meta node cannot have a terminator in any subtree.
483 		 */
484 		for (i = 1; i < skip; i += next_skip) {
485 			if (next_skip == 1)
486 				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
487 			else
488 				scan[i].u.bmu_avail = radix;
489 			scan[i].bm_bighint = radix;
490 		}
491 	} else {
492 		radix /= BLIST_META_RADIX;
493 	}
494 
495 	if (count > radix) {
496 		/*
497 		 * The allocation exceeds the number of blocks that are
498 		 * managed by a subtree of this meta node.
499 		 */
500 		panic("allocation too large");
501 	}
502 	scan_from_start = cursor == blk;
503 	child = (cursor - blk) / radix;
504 	blk += child * radix;
505 	for (i = 1 + child * next_skip; i < skip; i += next_skip) {
506 		if (count <= scan[i].bm_bighint) {
507 			/*
508 			 * The allocation might fit in the i'th subtree.
509 			 */
510 			r = blst_meta_alloc(&scan[i],
511 			    cursor > blk ? cursor : blk, count, radix);
512 			if (r != SWAPBLK_NONE) {
513 				scan->u.bmu_avail -= count;
514 				return (r);
515 			}
516 		} else if (scan[i].bm_bighint == (daddr_t)-1) {
517 			/*
518 			 * Terminator
519 			 */
520 			break;
521 		}
522 		blk += radix;
523 	}
524 
525 	/*
526 	 * We couldn't allocate count in this subtree, update bighint.
527 	 */
528 	if (scan_from_start && scan->bm_bighint >= count)
529 		scan->bm_bighint = count - 1;
530 
531 	return (SWAPBLK_NONE);
532 }
533 
534 /*
535  * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
536  *
537  */
538 static void
539 blst_leaf_free(blmeta_t *scan, daddr_t blk, int count)
540 {
541 	/*
542 	 * free some data in this bitmap
543 	 *
544 	 * e.g.
545 	 *	0000111111111110000
546 	 *          \_________/\__/
547 	 *		v        n
548 	 */
549 	int n = blk & (BLIST_BMAP_RADIX - 1);
550 	u_daddr_t mask;
551 
552 	mask = ((u_daddr_t)-1 << n) &
553 	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
554 
555 	if (scan->u.bmu_bitmap & mask)
556 		panic("blst_radix_free: freeing free block");
557 	scan->u.bmu_bitmap |= mask;
558 
559 	/*
560 	 * We could probably do a better job here.  We are required to make
561 	 * bighint at least as large as the biggest contiguous block of
562 	 * data.  If we just shoehorn it, a little extra overhead will
563 	 * be incured on the next allocation (but only that one typically).
564 	 */
565 	scan->bm_bighint = BLIST_BMAP_RADIX;
566 }
567 
568 /*
569  * BLST_META_FREE() - free allocated blocks from radix tree meta info
570  *
571  *	This support routine frees a range of blocks from the bitmap.
572  *	The range must be entirely enclosed by this radix node.  If a
573  *	meta node, we break the range down recursively to free blocks
574  *	in subnodes (which means that this code can free an arbitrary
575  *	range whereas the allocation code cannot allocate an arbitrary
576  *	range).
577  */
578 static void
579 blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count, u_daddr_t radix)
580 {
581 	daddr_t blk, i, next_skip, skip, v;
582 	int child;
583 
584 	if (scan->bm_bighint == (daddr_t)-1)
585 		panic("freeing invalid range");
586 	if (radix == BLIST_BMAP_RADIX)
587 		return (blst_leaf_free(scan, freeBlk, count));
588 	skip = radix_to_skip(radix);
589 	next_skip = skip / BLIST_META_RADIX;
590 
591 	if (scan->u.bmu_avail == 0) {
592 		/*
593 		 * ALL-ALLOCATED special case, with possible
594 		 * shortcut to ALL-FREE special case.
595 		 */
596 		scan->u.bmu_avail = count;
597 		scan->bm_bighint = count;
598 
599 		if (count != radix)  {
600 			for (i = 1; i < skip; i += next_skip) {
601 				if (scan[i].bm_bighint == (daddr_t)-1)
602 					break;
603 				scan[i].bm_bighint = 0;
604 				if (next_skip == 1) {
605 					scan[i].u.bmu_bitmap = 0;
606 				} else {
607 					scan[i].u.bmu_avail = 0;
608 				}
609 			}
610 			/* fall through */
611 		}
612 	} else {
613 		scan->u.bmu_avail += count;
614 		/* scan->bm_bighint = radix; */
615 	}
616 
617 	/*
618 	 * ALL-FREE special case.
619 	 */
620 
621 	if (scan->u.bmu_avail == radix)
622 		return;
623 	if (scan->u.bmu_avail > radix)
624 		panic("blst_meta_free: freeing already free blocks (%lld) %lld/%lld",
625 		    (long long)count, (long long)scan->u.bmu_avail,
626 		    (long long)radix);
627 
628 	/*
629 	 * Break the free down into its components
630 	 */
631 
632 	blk = freeBlk & -radix;
633 	radix /= BLIST_META_RADIX;
634 
635 	child = (freeBlk - blk) / radix;
636 	blk += child * radix;
637 	i = 1 + child * next_skip;
638 	while (i < skip && blk < freeBlk + count) {
639 		v = blk + radix - freeBlk;
640 		if (v > count)
641 			v = count;
642 		blst_meta_free(&scan[i], freeBlk, v, radix);
643 		if (scan->bm_bighint < scan[i].bm_bighint)
644 			scan->bm_bighint = scan[i].bm_bighint;
645 		count -= v;
646 		freeBlk += v;
647 		blk += radix;
648 		i += next_skip;
649 	}
650 }
651 
652 /*
653  * BLIST_RADIX_COPY() - copy one radix tree to another
654  *
655  *	Locates free space in the source tree and frees it in the destination
656  *	tree.  The space may not already be free in the destination.
657  */
658 static void
659 blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix, blist_t dest,
660     daddr_t count)
661 {
662 	daddr_t i, next_skip, skip;
663 
664 	/*
665 	 * Leaf node
666 	 */
667 
668 	if (radix == BLIST_BMAP_RADIX) {
669 		u_daddr_t v = scan->u.bmu_bitmap;
670 
671 		if (v == (u_daddr_t)-1) {
672 			blist_free(dest, blk, count);
673 		} else if (v != 0) {
674 			int i;
675 
676 			for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
677 				if (v & ((u_daddr_t)1 << i))
678 					blist_free(dest, blk + i, 1);
679 			}
680 		}
681 		return;
682 	}
683 
684 	/*
685 	 * Meta node
686 	 */
687 
688 	if (scan->u.bmu_avail == 0) {
689 		/*
690 		 * Source all allocated, leave dest allocated
691 		 */
692 		return;
693 	}
694 	if (scan->u.bmu_avail == radix) {
695 		/*
696 		 * Source all free, free entire dest
697 		 */
698 		if (count < radix)
699 			blist_free(dest, blk, count);
700 		else
701 			blist_free(dest, blk, radix);
702 		return;
703 	}
704 
705 
706 	skip = radix_to_skip(radix);
707 	next_skip = skip / BLIST_META_RADIX;
708 	radix /= BLIST_META_RADIX;
709 
710 	for (i = 1; count && i < skip; i += next_skip) {
711 		if (scan[i].bm_bighint == (daddr_t)-1)
712 			break;
713 
714 		if (count >= radix) {
715 			blst_copy(&scan[i], blk, radix, dest, radix);
716 			count -= radix;
717 		} else {
718 			if (count) {
719 				blst_copy(&scan[i], blk, radix, dest, count);
720 			}
721 			count = 0;
722 		}
723 		blk += radix;
724 	}
725 }
726 
727 /*
728  * BLST_LEAF_FILL() -	allocate specific blocks in leaf bitmap
729  *
730  *	This routine allocates all blocks in the specified range
731  *	regardless of any existing allocations in that range.  Returns
732  *	the number of blocks allocated by the call.
733  */
734 static daddr_t
735 blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count)
736 {
737 	int n = blk & (BLIST_BMAP_RADIX - 1);
738 	daddr_t nblks;
739 	u_daddr_t mask;
740 
741 	mask = ((u_daddr_t)-1 << n) &
742 	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
743 
744 	/* Count the number of blocks that we are allocating. */
745 	nblks = bitcount64(scan->u.bmu_bitmap & mask);
746 
747 	scan->u.bmu_bitmap &= ~mask;
748 	return (nblks);
749 }
750 
751 /*
752  * BLIST_META_FILL() -	allocate specific blocks at a meta node
753  *
754  *	This routine allocates the specified range of blocks,
755  *	regardless of any existing allocations in the range.  The
756  *	range must be within the extent of this node.  Returns the
757  *	number of blocks allocated by the call.
758  */
759 static daddr_t
760 blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count, u_daddr_t radix)
761 {
762 	daddr_t blk, i, nblks, next_skip, skip, v;
763 	int child;
764 
765 	if (scan->bm_bighint == (daddr_t)-1)
766 		panic("filling invalid range");
767 	if (count > radix) {
768 		/*
769 		 * The allocation exceeds the number of blocks that are
770 		 * managed by this node.
771 		 */
772 		panic("fill too large");
773 	}
774 	if (radix == BLIST_BMAP_RADIX)
775 		return (blst_leaf_fill(scan, allocBlk, count));
776 	if (count == radix || scan->u.bmu_avail == 0)  {
777 		/*
778 		 * ALL-ALLOCATED special case
779 		 */
780 		nblks = scan->u.bmu_avail;
781 		scan->u.bmu_avail = 0;
782 		scan->bm_bighint = 0;
783 		return (nblks);
784 	}
785 	skip = radix_to_skip(radix);
786 	next_skip = skip / BLIST_META_RADIX;
787 	blk = allocBlk & -radix;
788 
789 	/*
790 	 * An ALL-FREE meta node requires special handling before allocating
791 	 * any of its blocks.
792 	 */
793 	if (scan->u.bmu_avail == radix) {
794 		radix /= BLIST_META_RADIX;
795 
796 		/*
797 		 * Reinitialize each of the meta node's children.  An ALL-FREE
798 		 * meta node cannot have a terminator in any subtree.
799 		 */
800 		for (i = 1; i < skip; i += next_skip) {
801 			if (next_skip == 1)
802 				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
803 			else
804 				scan[i].u.bmu_avail = radix;
805 			scan[i].bm_bighint = radix;
806 		}
807 	} else {
808 		radix /= BLIST_META_RADIX;
809 	}
810 
811 	nblks = 0;
812 	child = (allocBlk - blk) / radix;
813 	blk += child * radix;
814 	i = 1 + child * next_skip;
815 	while (i < skip && blk < allocBlk + count) {
816 		v = blk + radix - allocBlk;
817 		if (v > count)
818 			v = count;
819 		nblks += blst_meta_fill(&scan[i], allocBlk, v, radix);
820 		count -= v;
821 		allocBlk += v;
822 		blk += radix;
823 		i += next_skip;
824 	}
825 	scan->u.bmu_avail -= nblks;
826 	return (nblks);
827 }
828 
829 /*
830  * BLST_RADIX_INIT() - initialize radix tree
831  *
832  *	Initialize our meta structures and bitmaps and calculate the exact
833  *	amount of space required to manage 'count' blocks - this space may
834  *	be considerably less than the calculated radix due to the large
835  *	RADIX values we use.
836  */
837 static daddr_t
838 blst_radix_init(blmeta_t *scan, daddr_t radix, daddr_t count)
839 {
840 	daddr_t i, memindex, next_skip, skip;
841 
842 	memindex = 0;
843 
844 	/*
845 	 * Leaf node
846 	 */
847 
848 	if (radix == BLIST_BMAP_RADIX) {
849 		if (scan) {
850 			scan->bm_bighint = 0;
851 			scan->u.bmu_bitmap = 0;
852 		}
853 		return (memindex);
854 	}
855 
856 	/*
857 	 * Meta node.  If allocating the entire object we can special
858 	 * case it.  However, we need to figure out how much memory
859 	 * is required to manage 'count' blocks, so we continue on anyway.
860 	 */
861 
862 	if (scan) {
863 		scan->bm_bighint = 0;
864 		scan->u.bmu_avail = 0;
865 	}
866 
867 	skip = radix_to_skip(radix);
868 	next_skip = skip / BLIST_META_RADIX;
869 	radix /= BLIST_META_RADIX;
870 
871 	for (i = 1; i < skip; i += next_skip) {
872 		if (count >= radix) {
873 			/*
874 			 * Allocate the entire object
875 			 */
876 			memindex = i +
877 			    blst_radix_init(((scan) ? &scan[i] : NULL), radix,
878 			    radix);
879 			count -= radix;
880 		} else if (count > 0) {
881 			/*
882 			 * Allocate a partial object
883 			 */
884 			memindex = i +
885 			    blst_radix_init(((scan) ? &scan[i] : NULL), radix,
886 			    count);
887 			count = 0;
888 		} else {
889 			/*
890 			 * Add terminator and break out
891 			 */
892 			if (scan)
893 				scan[i].bm_bighint = (daddr_t)-1;
894 			break;
895 		}
896 	}
897 	if (memindex < i)
898 		memindex = i;
899 	return (memindex);
900 }
901 
902 #ifdef BLIST_DEBUG
903 
904 static void
905 blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int tab)
906 {
907 	daddr_t i, next_skip, skip;
908 
909 	if (radix == BLIST_BMAP_RADIX) {
910 		printf(
911 		    "%*.*s(%08llx,%lld): bitmap %016llx big=%lld\n",
912 		    tab, tab, "",
913 		    (long long)blk, (long long)radix,
914 		    (long long)scan->u.bmu_bitmap,
915 		    (long long)scan->bm_bighint
916 		);
917 		return;
918 	}
919 
920 	if (scan->u.bmu_avail == 0) {
921 		printf(
922 		    "%*.*s(%08llx,%lld) ALL ALLOCATED\n",
923 		    tab, tab, "",
924 		    (long long)blk,
925 		    (long long)radix
926 		);
927 		return;
928 	}
929 	if (scan->u.bmu_avail == radix) {
930 		printf(
931 		    "%*.*s(%08llx,%lld) ALL FREE\n",
932 		    tab, tab, "",
933 		    (long long)blk,
934 		    (long long)radix
935 		);
936 		return;
937 	}
938 
939 	printf(
940 	    "%*.*s(%08llx,%lld): subtree (%lld/%lld) big=%lld {\n",
941 	    tab, tab, "",
942 	    (long long)blk, (long long)radix,
943 	    (long long)scan->u.bmu_avail,
944 	    (long long)radix,
945 	    (long long)scan->bm_bighint
946 	);
947 
948 	skip = radix_to_skip(radix);
949 	next_skip = skip / BLIST_META_RADIX;
950 	radix /= BLIST_META_RADIX;
951 	tab += 4;
952 
953 	for (i = 1; i < skip; i += next_skip) {
954 		if (scan[i].bm_bighint == (daddr_t)-1) {
955 			printf(
956 			    "%*.*s(%08llx,%lld): Terminator\n",
957 			    tab, tab, "",
958 			    (long long)blk, (long long)radix
959 			);
960 			break;
961 		}
962 		blst_radix_print(&scan[i], blk, radix, tab);
963 		blk += radix;
964 	}
965 	tab -= 4;
966 
967 	printf(
968 	    "%*.*s}\n",
969 	    tab, tab, ""
970 	);
971 }
972 
973 #endif
974 
975 #ifdef BLIST_DEBUG
976 
977 int
978 main(int ac, char **av)
979 {
980 	int size = 1024;
981 	int i;
982 	blist_t bl;
983 
984 	for (i = 1; i < ac; ++i) {
985 		const char *ptr = av[i];
986 		if (*ptr != '-') {
987 			size = strtol(ptr, NULL, 0);
988 			continue;
989 		}
990 		ptr += 2;
991 		fprintf(stderr, "Bad option: %s\n", ptr - 2);
992 		exit(1);
993 	}
994 	bl = blist_create(size, M_WAITOK);
995 	blist_free(bl, 0, size);
996 
997 	for (;;) {
998 		char buf[1024];
999 		long long da = 0;
1000 		long long count = 0;
1001 
1002 		printf("%lld/%lld/%lld> ", (long long)blist_avail(bl),
1003 		    (long long)size, (long long)bl->bl_radix);
1004 		fflush(stdout);
1005 		if (fgets(buf, sizeof(buf), stdin) == NULL)
1006 			break;
1007 		switch(buf[0]) {
1008 		case 'r':
1009 			if (sscanf(buf + 1, "%lld", &count) == 1) {
1010 				blist_resize(&bl, count, 1, M_WAITOK);
1011 			} else {
1012 				printf("?\n");
1013 			}
1014 		case 'p':
1015 			blist_print(bl);
1016 			break;
1017 		case 'a':
1018 			if (sscanf(buf + 1, "%lld", &count) == 1) {
1019 				daddr_t blk = blist_alloc(bl, count);
1020 				printf("    R=%08llx\n", (long long)blk);
1021 			} else {
1022 				printf("?\n");
1023 			}
1024 			break;
1025 		case 'f':
1026 			if (sscanf(buf + 1, "%llx %lld", &da, &count) == 2) {
1027 				blist_free(bl, da, count);
1028 			} else {
1029 				printf("?\n");
1030 			}
1031 			break;
1032 		case 'l':
1033 			if (sscanf(buf + 1, "%llx %lld", &da, &count) == 2) {
1034 				printf("    n=%jd\n",
1035 				    (intmax_t)blist_fill(bl, da, count));
1036 			} else {
1037 				printf("?\n");
1038 			}
1039 			break;
1040 		case '?':
1041 		case 'h':
1042 			puts(
1043 			    "p          -print\n"
1044 			    "a %d       -allocate\n"
1045 			    "f %x %d    -free\n"
1046 			    "l %x %d    -fill\n"
1047 			    "r %d       -resize\n"
1048 			    "h/?        -help"
1049 			);
1050 			break;
1051 		default:
1052 			printf("?\n");
1053 			break;
1054 		}
1055 	}
1056 	return(0);
1057 }
1058 
1059 void
1060 panic(const char *ctl, ...)
1061 {
1062 	va_list va;
1063 
1064 	va_start(va, ctl);
1065 	vfprintf(stderr, ctl, va);
1066 	fprintf(stderr, "\n");
1067 	va_end(va);
1068 	exit(1);
1069 }
1070 
1071 #endif
1072