1 /*- 2 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 3 * Redistribution and use in source and binary forms, with or without 4 * modification, are permitted provided that the following conditions 5 * are met: 6 * 1. Redistributions of source code must retain the above copyright 7 * notice, this list of conditions and the following disclaimer. 8 * 2. Redistributions in binary form must reproduce the above copyright 9 * notice, this list of conditions and the following disclaimer in the 10 * documentation and/or other materials provided with the distribution. 11 * 3. Neither the name of the University nor the names of its contributors 12 * may be used to endorse or promote products derived from this software 13 * without specific prior written permission. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS 16 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 19 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 21 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 23 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 24 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 /* 28 * BLIST.C - Bitmap allocator/deallocator, using a radix tree with hinting 29 * 30 * This module implements a general bitmap allocator/deallocator. The 31 * allocator eats around 2 bits per 'block'. The module does not 32 * try to interpret the meaning of a 'block' other than to return 33 * SWAPBLK_NONE on an allocation failure. 34 * 35 * A radix tree is used to maintain the bitmap. Two radix constants are 36 * involved: One for the bitmaps contained in the leaf nodes (typically 37 * 64), and one for the meta nodes (typically 16). Both meta and leaf 38 * nodes have a hint field. This field gives us a hint as to the largest 39 * free contiguous range of blocks under the node. It may contain a 40 * value that is too high, but will never contain a value that is too 41 * low. When the radix tree is searched, allocation failures in subtrees 42 * update the hint. 43 * 44 * The radix tree also implements two collapsed states for meta nodes: 45 * the ALL-ALLOCATED state and the ALL-FREE state. If a meta node is 46 * in either of these two states, all information contained underneath 47 * the node is considered stale. These states are used to optimize 48 * allocation and freeing operations. 49 * 50 * The hinting greatly increases code efficiency for allocations while 51 * the general radix structure optimizes both allocations and frees. The 52 * radix tree should be able to operate well no matter how much 53 * fragmentation there is and no matter how large a bitmap is used. 54 * 55 * The blist code wires all necessary memory at creation time. Neither 56 * allocations nor frees require interaction with the memory subsystem. 57 * The non-blocking features of the blist code are used in the swap code 58 * (vm/swap_pager.c). 59 * 60 * LAYOUT: The radix tree is laid out recursively using a 61 * linear array. Each meta node is immediately followed (laid out 62 * sequentially in memory) by BLIST_META_RADIX lower level nodes. This 63 * is a recursive structure but one that can be easily scanned through 64 * a very simple 'skip' calculation. In order to support large radixes, 65 * portions of the tree may reside outside our memory allocation. We 66 * handle this with an early-termination optimization (when bighint is 67 * set to -1) on the scan. The memory allocation is only large enough 68 * to cover the number of blocks requested at creation time even if it 69 * must be encompassed in larger root-node radix. 70 * 71 * NOTE: the allocator cannot currently allocate more than 72 * BLIST_BMAP_RADIX blocks per call. It will panic with 'allocation too 73 * large' if you try. This is an area that could use improvement. The 74 * radix is large enough that this restriction does not effect the swap 75 * system, though. Currently only the allocation code is affected by 76 * this algorithmic unfeature. The freeing code can handle arbitrary 77 * ranges. 78 * 79 * This code can be compiled stand-alone for debugging. 80 */ 81 82 #include <sys/cdefs.h> 83 __FBSDID("$FreeBSD$"); 84 85 #ifdef _KERNEL 86 87 #include <sys/param.h> 88 #include <sys/systm.h> 89 #include <sys/lock.h> 90 #include <sys/kernel.h> 91 #include <sys/blist.h> 92 #include <sys/malloc.h> 93 #include <sys/proc.h> 94 #include <sys/mutex.h> 95 96 #else 97 98 #ifndef BLIST_NO_DEBUG 99 #define BLIST_DEBUG 100 #endif 101 102 #include <sys/types.h> 103 #include <sys/malloc.h> 104 #include <stdio.h> 105 #include <string.h> 106 #include <stdlib.h> 107 #include <stdarg.h> 108 #include <stdbool.h> 109 110 #define bitcount64(x) __bitcount64((uint64_t)(x)) 111 #define malloc(a,b,c) calloc(a, 1) 112 #define free(a,b) free(a) 113 #define CTASSERT(expr) 114 115 #include <sys/blist.h> 116 117 void panic(const char *ctl, ...); 118 119 #endif 120 121 /* 122 * static support functions 123 */ 124 static daddr_t blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count, 125 daddr_t cursor); 126 static daddr_t blst_meta_alloc(blmeta_t *scan, daddr_t cursor, daddr_t count, 127 u_daddr_t radix); 128 static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count); 129 static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count, 130 u_daddr_t radix); 131 static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix, 132 blist_t dest, daddr_t count); 133 static daddr_t blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count); 134 static daddr_t blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count, 135 u_daddr_t radix); 136 static daddr_t blst_radix_init(blmeta_t *scan, daddr_t radix, daddr_t count); 137 #ifndef _KERNEL 138 static void blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, 139 int tab); 140 #endif 141 142 #ifdef _KERNEL 143 static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space"); 144 #endif 145 146 CTASSERT(BLIST_BMAP_RADIX % BLIST_META_RADIX == 0); 147 148 /* 149 * For a subtree that can represent the state of up to 'radix' blocks, the 150 * number of leaf nodes of the subtree is L=radix/BLIST_BMAP_RADIX. If 'm' 151 * is short for BLIST_META_RADIX, then for a tree of height h with L=m**h 152 * leaf nodes, the total number of tree nodes is 1 + m + m**2 + ... + m**h, 153 * or, equivalently, (m**(h+1)-1)/(m-1). This quantity is called 'skip' 154 * in the 'meta' functions that process subtrees. Since integer division 155 * discards remainders, we can express this computation as 156 * skip = (m * m**h) / (m - 1) 157 * skip = (m * (radix / BLIST_BMAP_RADIX)) / (m - 1) 158 * and since m divides BLIST_BMAP_RADIX, we can simplify further to 159 * skip = (radix / (BLIST_BMAP_RADIX / m)) / (m - 1) 160 * skip = radix / ((BLIST_BMAP_RADIX / m) * (m - 1)) 161 * so that simple integer division by a constant can safely be used for the 162 * calculation. 163 */ 164 static inline daddr_t 165 radix_to_skip(daddr_t radix) 166 { 167 168 return (radix / 169 ((BLIST_BMAP_RADIX / BLIST_META_RADIX) * (BLIST_META_RADIX - 1))); 170 } 171 172 /* 173 * blist_create() - create a blist capable of handling up to the specified 174 * number of blocks 175 * 176 * blocks - must be greater than 0 177 * flags - malloc flags 178 * 179 * The smallest blist consists of a single leaf node capable of 180 * managing BLIST_BMAP_RADIX blocks. 181 */ 182 blist_t 183 blist_create(daddr_t blocks, int flags) 184 { 185 blist_t bl; 186 daddr_t nodes, radix; 187 188 /* 189 * Calculate the radix field used for scanning. 190 */ 191 radix = BLIST_BMAP_RADIX; 192 while (radix < blocks) { 193 radix *= BLIST_META_RADIX; 194 } 195 nodes = 1 + blst_radix_init(NULL, radix, blocks); 196 197 bl = malloc(sizeof(struct blist), M_SWAP, flags); 198 if (bl == NULL) 199 return (NULL); 200 201 bl->bl_blocks = blocks; 202 bl->bl_radix = radix; 203 bl->bl_cursor = 0; 204 bl->bl_root = malloc(nodes * sizeof(blmeta_t), M_SWAP, flags); 205 if (bl->bl_root == NULL) { 206 free(bl, M_SWAP); 207 return (NULL); 208 } 209 blst_radix_init(bl->bl_root, radix, blocks); 210 211 #if defined(BLIST_DEBUG) 212 printf( 213 "BLIST representing %lld blocks (%lld MB of swap)" 214 ", requiring %lldK of ram\n", 215 (long long)bl->bl_blocks, 216 (long long)bl->bl_blocks * 4 / 1024, 217 (long long)(nodes * sizeof(blmeta_t) + 1023) / 1024 218 ); 219 printf("BLIST raw radix tree contains %lld records\n", 220 (long long)nodes); 221 #endif 222 223 return (bl); 224 } 225 226 void 227 blist_destroy(blist_t bl) 228 { 229 free(bl->bl_root, M_SWAP); 230 free(bl, M_SWAP); 231 } 232 233 /* 234 * blist_alloc() - reserve space in the block bitmap. Return the base 235 * of a contiguous region or SWAPBLK_NONE if space could 236 * not be allocated. 237 */ 238 daddr_t 239 blist_alloc(blist_t bl, daddr_t count) 240 { 241 daddr_t blk; 242 243 /* 244 * This loop iterates at most twice. An allocation failure in the 245 * first iteration leads to a second iteration only if the cursor was 246 * non-zero. When the cursor is zero, an allocation failure will 247 * reduce the hint, stopping further iterations. 248 */ 249 while (count <= bl->bl_root->bm_bighint) { 250 blk = blst_meta_alloc(bl->bl_root, bl->bl_cursor, count, 251 bl->bl_radix); 252 if (blk != SWAPBLK_NONE) { 253 bl->bl_cursor = blk + count; 254 if (bl->bl_cursor == bl->bl_blocks) 255 bl->bl_cursor = 0; 256 return (blk); 257 } else if (bl->bl_cursor != 0) 258 bl->bl_cursor = 0; 259 } 260 return (SWAPBLK_NONE); 261 } 262 263 /* 264 * blist_avail() - return the number of free blocks. 265 */ 266 daddr_t 267 blist_avail(blist_t bl) 268 { 269 270 if (bl->bl_radix == BLIST_BMAP_RADIX) 271 return (bitcount64(bl->bl_root->u.bmu_bitmap)); 272 else 273 return (bl->bl_root->u.bmu_avail); 274 } 275 276 /* 277 * blist_free() - free up space in the block bitmap. Return the base 278 * of a contiguous region. Panic if an inconsistancy is 279 * found. 280 */ 281 void 282 blist_free(blist_t bl, daddr_t blkno, daddr_t count) 283 { 284 285 blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix); 286 } 287 288 /* 289 * blist_fill() - mark a region in the block bitmap as off-limits 290 * to the allocator (i.e. allocate it), ignoring any 291 * existing allocations. Return the number of blocks 292 * actually filled that were free before the call. 293 */ 294 daddr_t 295 blist_fill(blist_t bl, daddr_t blkno, daddr_t count) 296 { 297 298 return (blst_meta_fill(bl->bl_root, blkno, count, bl->bl_radix)); 299 } 300 301 /* 302 * blist_resize() - resize an existing radix tree to handle the 303 * specified number of blocks. This will reallocate 304 * the tree and transfer the previous bitmap to the new 305 * one. When extending the tree you can specify whether 306 * the new blocks are to left allocated or freed. 307 */ 308 void 309 blist_resize(blist_t *pbl, daddr_t count, int freenew, int flags) 310 { 311 blist_t newbl = blist_create(count, flags); 312 blist_t save = *pbl; 313 314 *pbl = newbl; 315 if (count > save->bl_blocks) 316 count = save->bl_blocks; 317 blst_copy(save->bl_root, 0, save->bl_radix, newbl, count); 318 319 /* 320 * If resizing upwards, should we free the new space or not? 321 */ 322 if (freenew && count < newbl->bl_blocks) { 323 blist_free(newbl, count, newbl->bl_blocks - count); 324 } 325 blist_destroy(save); 326 } 327 328 #ifdef BLIST_DEBUG 329 330 /* 331 * blist_print() - dump radix tree 332 */ 333 void 334 blist_print(blist_t bl) 335 { 336 printf("BLIST cursor = %08jx {\n", (uintmax_t)bl->bl_cursor); 337 blst_radix_print(bl->bl_root, 0, bl->bl_radix, 4); 338 printf("}\n"); 339 } 340 341 #endif 342 343 /************************************************************************ 344 * ALLOCATION SUPPORT FUNCTIONS * 345 ************************************************************************ 346 * 347 * These support functions do all the actual work. They may seem 348 * rather longish, but that's because I've commented them up. The 349 * actual code is straight forward. 350 * 351 */ 352 353 /* 354 * blist_leaf_alloc() - allocate at a leaf in the radix tree (a bitmap). 355 * 356 * This is the core of the allocator and is optimized for the 357 * BLIST_BMAP_RADIX block allocation case. Otherwise, execution 358 * time is proportional to log2(count) + log2(BLIST_BMAP_RADIX). 359 */ 360 static daddr_t 361 blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count, daddr_t cursor) 362 { 363 u_daddr_t mask; 364 int count1, hi, lo, mid, num_shifts, range1, range_ext; 365 366 if (count == BLIST_BMAP_RADIX) { 367 /* 368 * Optimize allocation of BLIST_BMAP_RADIX bits. If this wasn't 369 * a special case, then forming the final value of 'mask' below 370 * would require special handling to avoid an invalid left shift 371 * when count equals the number of bits in mask. 372 */ 373 if (~scan->u.bmu_bitmap != 0) { 374 scan->bm_bighint = BLIST_BMAP_RADIX - 1; 375 return (SWAPBLK_NONE); 376 } 377 if (cursor != blk) 378 return (SWAPBLK_NONE); 379 scan->u.bmu_bitmap = 0; 380 scan->bm_bighint = 0; 381 return (blk); 382 } 383 range1 = 0; 384 count1 = count - 1; 385 num_shifts = fls(count1); 386 mask = scan->u.bmu_bitmap; 387 while (mask != 0 && num_shifts > 0) { 388 /* 389 * If bit i is set in mask, then bits in [i, i+range1] are set 390 * in scan->u.bmu_bitmap. The value of range1 is equal to 391 * count1 >> num_shifts. Grow range and reduce num_shifts to 0, 392 * while preserving these invariants. The updates to mask leave 393 * fewer bits set, but each bit that remains set represents a 394 * longer string of consecutive bits set in scan->u.bmu_bitmap. 395 */ 396 num_shifts--; 397 range_ext = range1 + ((count1 >> num_shifts) & 1); 398 mask &= mask >> range_ext; 399 range1 += range_ext; 400 } 401 if (mask == 0) { 402 /* 403 * Update bighint. There is no allocation bigger than range1 404 * available in this leaf. 405 */ 406 scan->bm_bighint = range1; 407 return (SWAPBLK_NONE); 408 } 409 410 /* 411 * Discard any candidates that appear before the cursor. 412 */ 413 lo = cursor - blk; 414 mask &= ~(u_daddr_t)0 << lo; 415 416 if (mask == 0) 417 return (SWAPBLK_NONE); 418 419 /* 420 * The least significant set bit in mask marks the start of the first 421 * available range of sufficient size. Clear all the bits but that one, 422 * and then perform a binary search to find its position. 423 */ 424 mask &= -mask; 425 hi = BLIST_BMAP_RADIX - count1; 426 while (lo + 1 < hi) { 427 mid = (lo + hi) >> 1; 428 if ((mask >> mid) != 0) 429 lo = mid; 430 else 431 hi = mid; 432 } 433 434 /* 435 * Set in mask exactly the bits being allocated, and clear them from 436 * the set of available bits. 437 */ 438 mask = (mask << count) - mask; 439 scan->u.bmu_bitmap &= ~mask; 440 return (blk + lo); 441 } 442 443 /* 444 * blist_meta_alloc() - allocate at a meta in the radix tree. 445 * 446 * Attempt to allocate at a meta node. If we can't, we update 447 * bighint and return a failure. Updating bighint optimize future 448 * calls that hit this node. We have to check for our collapse cases 449 * and we have a few optimizations strewn in as well. 450 */ 451 static daddr_t 452 blst_meta_alloc(blmeta_t *scan, daddr_t cursor, daddr_t count, u_daddr_t radix) 453 { 454 daddr_t blk, i, next_skip, r, skip; 455 int child; 456 bool scan_from_start; 457 458 blk = cursor & -radix; 459 if (radix == BLIST_BMAP_RADIX) 460 return (blst_leaf_alloc(scan, blk, count, cursor)); 461 if (scan->u.bmu_avail < count) { 462 /* 463 * The meta node's hint must be too large if the allocation 464 * exceeds the number of free blocks. Reduce the hint, and 465 * return failure. 466 */ 467 scan->bm_bighint = scan->u.bmu_avail; 468 return (SWAPBLK_NONE); 469 } 470 skip = radix_to_skip(radix); 471 next_skip = skip / BLIST_META_RADIX; 472 473 /* 474 * An ALL-FREE meta node requires special handling before allocating 475 * any of its blocks. 476 */ 477 if (scan->u.bmu_avail == radix) { 478 radix /= BLIST_META_RADIX; 479 480 /* 481 * Reinitialize each of the meta node's children. An ALL-FREE 482 * meta node cannot have a terminator in any subtree. 483 */ 484 for (i = 1; i < skip; i += next_skip) { 485 if (next_skip == 1) 486 scan[i].u.bmu_bitmap = (u_daddr_t)-1; 487 else 488 scan[i].u.bmu_avail = radix; 489 scan[i].bm_bighint = radix; 490 } 491 } else { 492 radix /= BLIST_META_RADIX; 493 } 494 495 if (count > radix) { 496 /* 497 * The allocation exceeds the number of blocks that are 498 * managed by a subtree of this meta node. 499 */ 500 panic("allocation too large"); 501 } 502 scan_from_start = cursor == blk; 503 child = (cursor - blk) / radix; 504 blk += child * radix; 505 for (i = 1 + child * next_skip; i < skip; i += next_skip) { 506 if (count <= scan[i].bm_bighint) { 507 /* 508 * The allocation might fit in the i'th subtree. 509 */ 510 r = blst_meta_alloc(&scan[i], 511 cursor > blk ? cursor : blk, count, radix); 512 if (r != SWAPBLK_NONE) { 513 scan->u.bmu_avail -= count; 514 return (r); 515 } 516 } else if (scan[i].bm_bighint == (daddr_t)-1) { 517 /* 518 * Terminator 519 */ 520 break; 521 } 522 blk += radix; 523 } 524 525 /* 526 * We couldn't allocate count in this subtree, update bighint. 527 */ 528 if (scan_from_start && scan->bm_bighint >= count) 529 scan->bm_bighint = count - 1; 530 531 return (SWAPBLK_NONE); 532 } 533 534 /* 535 * BLST_LEAF_FREE() - free allocated block from leaf bitmap 536 * 537 */ 538 static void 539 blst_leaf_free(blmeta_t *scan, daddr_t blk, int count) 540 { 541 /* 542 * free some data in this bitmap 543 * 544 * e.g. 545 * 0000111111111110000 546 * \_________/\__/ 547 * v n 548 */ 549 int n = blk & (BLIST_BMAP_RADIX - 1); 550 u_daddr_t mask; 551 552 mask = ((u_daddr_t)-1 << n) & 553 ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n)); 554 555 if (scan->u.bmu_bitmap & mask) 556 panic("blst_radix_free: freeing free block"); 557 scan->u.bmu_bitmap |= mask; 558 559 /* 560 * We could probably do a better job here. We are required to make 561 * bighint at least as large as the biggest contiguous block of 562 * data. If we just shoehorn it, a little extra overhead will 563 * be incured on the next allocation (but only that one typically). 564 */ 565 scan->bm_bighint = BLIST_BMAP_RADIX; 566 } 567 568 /* 569 * BLST_META_FREE() - free allocated blocks from radix tree meta info 570 * 571 * This support routine frees a range of blocks from the bitmap. 572 * The range must be entirely enclosed by this radix node. If a 573 * meta node, we break the range down recursively to free blocks 574 * in subnodes (which means that this code can free an arbitrary 575 * range whereas the allocation code cannot allocate an arbitrary 576 * range). 577 */ 578 static void 579 blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count, u_daddr_t radix) 580 { 581 daddr_t blk, i, next_skip, skip, v; 582 int child; 583 584 if (scan->bm_bighint == (daddr_t)-1) 585 panic("freeing invalid range"); 586 if (radix == BLIST_BMAP_RADIX) 587 return (blst_leaf_free(scan, freeBlk, count)); 588 skip = radix_to_skip(radix); 589 next_skip = skip / BLIST_META_RADIX; 590 591 if (scan->u.bmu_avail == 0) { 592 /* 593 * ALL-ALLOCATED special case, with possible 594 * shortcut to ALL-FREE special case. 595 */ 596 scan->u.bmu_avail = count; 597 scan->bm_bighint = count; 598 599 if (count != radix) { 600 for (i = 1; i < skip; i += next_skip) { 601 if (scan[i].bm_bighint == (daddr_t)-1) 602 break; 603 scan[i].bm_bighint = 0; 604 if (next_skip == 1) { 605 scan[i].u.bmu_bitmap = 0; 606 } else { 607 scan[i].u.bmu_avail = 0; 608 } 609 } 610 /* fall through */ 611 } 612 } else { 613 scan->u.bmu_avail += count; 614 /* scan->bm_bighint = radix; */ 615 } 616 617 /* 618 * ALL-FREE special case. 619 */ 620 621 if (scan->u.bmu_avail == radix) 622 return; 623 if (scan->u.bmu_avail > radix) 624 panic("blst_meta_free: freeing already free blocks (%lld) %lld/%lld", 625 (long long)count, (long long)scan->u.bmu_avail, 626 (long long)radix); 627 628 /* 629 * Break the free down into its components 630 */ 631 632 blk = freeBlk & -radix; 633 radix /= BLIST_META_RADIX; 634 635 child = (freeBlk - blk) / radix; 636 blk += child * radix; 637 i = 1 + child * next_skip; 638 while (i < skip && blk < freeBlk + count) { 639 v = blk + radix - freeBlk; 640 if (v > count) 641 v = count; 642 blst_meta_free(&scan[i], freeBlk, v, radix); 643 if (scan->bm_bighint < scan[i].bm_bighint) 644 scan->bm_bighint = scan[i].bm_bighint; 645 count -= v; 646 freeBlk += v; 647 blk += radix; 648 i += next_skip; 649 } 650 } 651 652 /* 653 * BLIST_RADIX_COPY() - copy one radix tree to another 654 * 655 * Locates free space in the source tree and frees it in the destination 656 * tree. The space may not already be free in the destination. 657 */ 658 static void 659 blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix, blist_t dest, 660 daddr_t count) 661 { 662 daddr_t i, next_skip, skip; 663 664 /* 665 * Leaf node 666 */ 667 668 if (radix == BLIST_BMAP_RADIX) { 669 u_daddr_t v = scan->u.bmu_bitmap; 670 671 if (v == (u_daddr_t)-1) { 672 blist_free(dest, blk, count); 673 } else if (v != 0) { 674 int i; 675 676 for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) { 677 if (v & ((u_daddr_t)1 << i)) 678 blist_free(dest, blk + i, 1); 679 } 680 } 681 return; 682 } 683 684 /* 685 * Meta node 686 */ 687 688 if (scan->u.bmu_avail == 0) { 689 /* 690 * Source all allocated, leave dest allocated 691 */ 692 return; 693 } 694 if (scan->u.bmu_avail == radix) { 695 /* 696 * Source all free, free entire dest 697 */ 698 if (count < radix) 699 blist_free(dest, blk, count); 700 else 701 blist_free(dest, blk, radix); 702 return; 703 } 704 705 706 skip = radix_to_skip(radix); 707 next_skip = skip / BLIST_META_RADIX; 708 radix /= BLIST_META_RADIX; 709 710 for (i = 1; count && i < skip; i += next_skip) { 711 if (scan[i].bm_bighint == (daddr_t)-1) 712 break; 713 714 if (count >= radix) { 715 blst_copy(&scan[i], blk, radix, dest, radix); 716 count -= radix; 717 } else { 718 if (count) { 719 blst_copy(&scan[i], blk, radix, dest, count); 720 } 721 count = 0; 722 } 723 blk += radix; 724 } 725 } 726 727 /* 728 * BLST_LEAF_FILL() - allocate specific blocks in leaf bitmap 729 * 730 * This routine allocates all blocks in the specified range 731 * regardless of any existing allocations in that range. Returns 732 * the number of blocks allocated by the call. 733 */ 734 static daddr_t 735 blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count) 736 { 737 int n = blk & (BLIST_BMAP_RADIX - 1); 738 daddr_t nblks; 739 u_daddr_t mask; 740 741 mask = ((u_daddr_t)-1 << n) & 742 ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n)); 743 744 /* Count the number of blocks that we are allocating. */ 745 nblks = bitcount64(scan->u.bmu_bitmap & mask); 746 747 scan->u.bmu_bitmap &= ~mask; 748 return (nblks); 749 } 750 751 /* 752 * BLIST_META_FILL() - allocate specific blocks at a meta node 753 * 754 * This routine allocates the specified range of blocks, 755 * regardless of any existing allocations in the range. The 756 * range must be within the extent of this node. Returns the 757 * number of blocks allocated by the call. 758 */ 759 static daddr_t 760 blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count, u_daddr_t radix) 761 { 762 daddr_t blk, i, nblks, next_skip, skip, v; 763 int child; 764 765 if (scan->bm_bighint == (daddr_t)-1) 766 panic("filling invalid range"); 767 if (count > radix) { 768 /* 769 * The allocation exceeds the number of blocks that are 770 * managed by this node. 771 */ 772 panic("fill too large"); 773 } 774 if (radix == BLIST_BMAP_RADIX) 775 return (blst_leaf_fill(scan, allocBlk, count)); 776 if (count == radix || scan->u.bmu_avail == 0) { 777 /* 778 * ALL-ALLOCATED special case 779 */ 780 nblks = scan->u.bmu_avail; 781 scan->u.bmu_avail = 0; 782 scan->bm_bighint = 0; 783 return (nblks); 784 } 785 skip = radix_to_skip(radix); 786 next_skip = skip / BLIST_META_RADIX; 787 blk = allocBlk & -radix; 788 789 /* 790 * An ALL-FREE meta node requires special handling before allocating 791 * any of its blocks. 792 */ 793 if (scan->u.bmu_avail == radix) { 794 radix /= BLIST_META_RADIX; 795 796 /* 797 * Reinitialize each of the meta node's children. An ALL-FREE 798 * meta node cannot have a terminator in any subtree. 799 */ 800 for (i = 1; i < skip; i += next_skip) { 801 if (next_skip == 1) 802 scan[i].u.bmu_bitmap = (u_daddr_t)-1; 803 else 804 scan[i].u.bmu_avail = radix; 805 scan[i].bm_bighint = radix; 806 } 807 } else { 808 radix /= BLIST_META_RADIX; 809 } 810 811 nblks = 0; 812 child = (allocBlk - blk) / radix; 813 blk += child * radix; 814 i = 1 + child * next_skip; 815 while (i < skip && blk < allocBlk + count) { 816 v = blk + radix - allocBlk; 817 if (v > count) 818 v = count; 819 nblks += blst_meta_fill(&scan[i], allocBlk, v, radix); 820 count -= v; 821 allocBlk += v; 822 blk += radix; 823 i += next_skip; 824 } 825 scan->u.bmu_avail -= nblks; 826 return (nblks); 827 } 828 829 /* 830 * BLST_RADIX_INIT() - initialize radix tree 831 * 832 * Initialize our meta structures and bitmaps and calculate the exact 833 * amount of space required to manage 'count' blocks - this space may 834 * be considerably less than the calculated radix due to the large 835 * RADIX values we use. 836 */ 837 static daddr_t 838 blst_radix_init(blmeta_t *scan, daddr_t radix, daddr_t count) 839 { 840 daddr_t i, memindex, next_skip, skip; 841 842 memindex = 0; 843 844 /* 845 * Leaf node 846 */ 847 848 if (radix == BLIST_BMAP_RADIX) { 849 if (scan) { 850 scan->bm_bighint = 0; 851 scan->u.bmu_bitmap = 0; 852 } 853 return (memindex); 854 } 855 856 /* 857 * Meta node. If allocating the entire object we can special 858 * case it. However, we need to figure out how much memory 859 * is required to manage 'count' blocks, so we continue on anyway. 860 */ 861 862 if (scan) { 863 scan->bm_bighint = 0; 864 scan->u.bmu_avail = 0; 865 } 866 867 skip = radix_to_skip(radix); 868 next_skip = skip / BLIST_META_RADIX; 869 radix /= BLIST_META_RADIX; 870 871 for (i = 1; i < skip; i += next_skip) { 872 if (count >= radix) { 873 /* 874 * Allocate the entire object 875 */ 876 memindex = i + 877 blst_radix_init(((scan) ? &scan[i] : NULL), radix, 878 radix); 879 count -= radix; 880 } else if (count > 0) { 881 /* 882 * Allocate a partial object 883 */ 884 memindex = i + 885 blst_radix_init(((scan) ? &scan[i] : NULL), radix, 886 count); 887 count = 0; 888 } else { 889 /* 890 * Add terminator and break out 891 */ 892 if (scan) 893 scan[i].bm_bighint = (daddr_t)-1; 894 break; 895 } 896 } 897 if (memindex < i) 898 memindex = i; 899 return (memindex); 900 } 901 902 #ifdef BLIST_DEBUG 903 904 static void 905 blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int tab) 906 { 907 daddr_t i, next_skip, skip; 908 909 if (radix == BLIST_BMAP_RADIX) { 910 printf( 911 "%*.*s(%08llx,%lld): bitmap %016llx big=%lld\n", 912 tab, tab, "", 913 (long long)blk, (long long)radix, 914 (long long)scan->u.bmu_bitmap, 915 (long long)scan->bm_bighint 916 ); 917 return; 918 } 919 920 if (scan->u.bmu_avail == 0) { 921 printf( 922 "%*.*s(%08llx,%lld) ALL ALLOCATED\n", 923 tab, tab, "", 924 (long long)blk, 925 (long long)radix 926 ); 927 return; 928 } 929 if (scan->u.bmu_avail == radix) { 930 printf( 931 "%*.*s(%08llx,%lld) ALL FREE\n", 932 tab, tab, "", 933 (long long)blk, 934 (long long)radix 935 ); 936 return; 937 } 938 939 printf( 940 "%*.*s(%08llx,%lld): subtree (%lld/%lld) big=%lld {\n", 941 tab, tab, "", 942 (long long)blk, (long long)radix, 943 (long long)scan->u.bmu_avail, 944 (long long)radix, 945 (long long)scan->bm_bighint 946 ); 947 948 skip = radix_to_skip(radix); 949 next_skip = skip / BLIST_META_RADIX; 950 radix /= BLIST_META_RADIX; 951 tab += 4; 952 953 for (i = 1; i < skip; i += next_skip) { 954 if (scan[i].bm_bighint == (daddr_t)-1) { 955 printf( 956 "%*.*s(%08llx,%lld): Terminator\n", 957 tab, tab, "", 958 (long long)blk, (long long)radix 959 ); 960 break; 961 } 962 blst_radix_print(&scan[i], blk, radix, tab); 963 blk += radix; 964 } 965 tab -= 4; 966 967 printf( 968 "%*.*s}\n", 969 tab, tab, "" 970 ); 971 } 972 973 #endif 974 975 #ifdef BLIST_DEBUG 976 977 int 978 main(int ac, char **av) 979 { 980 int size = 1024; 981 int i; 982 blist_t bl; 983 984 for (i = 1; i < ac; ++i) { 985 const char *ptr = av[i]; 986 if (*ptr != '-') { 987 size = strtol(ptr, NULL, 0); 988 continue; 989 } 990 ptr += 2; 991 fprintf(stderr, "Bad option: %s\n", ptr - 2); 992 exit(1); 993 } 994 bl = blist_create(size, M_WAITOK); 995 blist_free(bl, 0, size); 996 997 for (;;) { 998 char buf[1024]; 999 long long da = 0; 1000 long long count = 0; 1001 1002 printf("%lld/%lld/%lld> ", (long long)blist_avail(bl), 1003 (long long)size, (long long)bl->bl_radix); 1004 fflush(stdout); 1005 if (fgets(buf, sizeof(buf), stdin) == NULL) 1006 break; 1007 switch(buf[0]) { 1008 case 'r': 1009 if (sscanf(buf + 1, "%lld", &count) == 1) { 1010 blist_resize(&bl, count, 1, M_WAITOK); 1011 } else { 1012 printf("?\n"); 1013 } 1014 case 'p': 1015 blist_print(bl); 1016 break; 1017 case 'a': 1018 if (sscanf(buf + 1, "%lld", &count) == 1) { 1019 daddr_t blk = blist_alloc(bl, count); 1020 printf(" R=%08llx\n", (long long)blk); 1021 } else { 1022 printf("?\n"); 1023 } 1024 break; 1025 case 'f': 1026 if (sscanf(buf + 1, "%llx %lld", &da, &count) == 2) { 1027 blist_free(bl, da, count); 1028 } else { 1029 printf("?\n"); 1030 } 1031 break; 1032 case 'l': 1033 if (sscanf(buf + 1, "%llx %lld", &da, &count) == 2) { 1034 printf(" n=%jd\n", 1035 (intmax_t)blist_fill(bl, da, count)); 1036 } else { 1037 printf("?\n"); 1038 } 1039 break; 1040 case '?': 1041 case 'h': 1042 puts( 1043 "p -print\n" 1044 "a %d -allocate\n" 1045 "f %x %d -free\n" 1046 "l %x %d -fill\n" 1047 "r %d -resize\n" 1048 "h/? -help" 1049 ); 1050 break; 1051 default: 1052 printf("?\n"); 1053 break; 1054 } 1055 } 1056 return(0); 1057 } 1058 1059 void 1060 panic(const char *ctl, ...) 1061 { 1062 va_list va; 1063 1064 va_start(va, ctl); 1065 vfprintf(stderr, ctl, va); 1066 fprintf(stderr, "\n"); 1067 va_end(va); 1068 exit(1); 1069 } 1070 1071 #endif 1072