xref: /freebsd/sys/kern/subr_blist.c (revision 7f9d26bd9d1b2754da8429257edbde0a8237f84f)
1 
2 /*
3  * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
4  *
5  *	(c)Copyright 1998, Matthew Dillon.  Terms for use and redistribution
6  *	are covered by the BSD Copyright as found in /usr/src/COPYRIGHT.
7  *
8  *	This module implements a general bitmap allocator/deallocator.  The
9  *	allocator eats around 2 bits per 'block'.  The module does not
10  *	try to interpret the meaning of a 'block' other then to return
11  *	SWAPBLK_NONE on an allocation failure.
12  *
13  *	A radix tree is used to maintain the bitmap.  Two radix constants are
14  *	involved:  One for the bitmaps contained in the leaf nodes (typically
15  *	32), and one for the meta nodes (typically 16).  Both meta and leaf
16  *	nodes have a hint field.  This field gives us a hint as to the largest
17  *	free contiguous range of blocks under the node.  It may contain a
18  *	value that is too high, but will never contain a value that is too
19  *	low.  When the radix tree is searched, allocation failures in subtrees
20  *	update the hint.
21  *
22  *	The radix tree also implements two collapsed states for meta nodes:
23  *	the ALL-ALLOCATED state and the ALL-FREE state.  If a meta node is
24  *	in either of these two states, all information contained underneath
25  *	the node is considered stale.  These states are used to optimize
26  *	allocation and freeing operations.
27  *
28  * 	The hinting greatly increases code efficiency for allocations while
29  *	the general radix structure optimizes both allocations and frees.  The
30  *	radix tree should be able to operate well no matter how much
31  *	fragmentation there is and no matter how large a bitmap is used.
32  *
33  *	Unlike the rlist code, the blist code wires all necessary memory at
34  *	creation time.  Neither allocations nor frees require interaction with
35  *	the memory subsystem.  In contrast, the rlist code may allocate memory
36  *	on an rlist_free() call.  The non-blocking features of the blist code
37  *	are used to great advantage in the swap code (vm/nswap_pager.c).  The
38  *	rlist code uses a little less overall memory then the blist code (but
39  *	due to swap interleaving not all that much less), but the blist code
40  *	scales much, much better.
41  *
42  *	LAYOUT: The radix tree is layed out recursively using a
43  *	linear array.  Each meta node is immediately followed (layed out
44  *	sequentially in memory) by BLIST_META_RADIX lower level nodes.  This
45  *	is a recursive structure but one that can be easily scanned through
46  *	a very simple 'skip' calculation.  In order to support large radixes,
47  *	portions of the tree may reside outside our memory allocation.  We
48  *	handle this with an early-termination optimization (when bighint is
49  *	set to -1) on the scan.  The memory allocation is only large enough
50  *	to cover the number of blocks requested at creation time even if it
51  *	must be encompassed in larger root-node radix.
52  *
53  *	NOTE: the allocator cannot currently allocate more then
54  *	BLIST_BMAP_RADIX blocks per call.  It will panic with 'allocation too
55  *	large' if you try.  This is an area that could use improvement.  The
56  *	radix is large enough that this restriction does not effect the swap
57  *	system, though.  Currently only the allocation code is effected by
58  *	this algorithmic unfeature.  The freeing code can handle arbitrary
59  *	ranges.
60  *
61  *	This code can be compiled stand-alone for debugging.
62  *
63  * $FreeBSD$
64  */
65 
66 #ifdef KERNEL
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/lock.h>
71 #include <sys/kernel.h>
72 #include <sys/blist.h>
73 #include <sys/malloc.h>
74 #include <vm/vm.h>
75 #include <vm/vm_object.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_extern.h>
78 #include <vm/vm_page.h>
79 
80 #else
81 
82 #ifndef BLIST_NO_DEBUG
83 #define BLIST_DEBUG
84 #endif
85 
86 #define SWAPBLK_NONE ((daddr_t)-1)
87 
88 #include <sys/types.h>
89 #include <stdio.h>
90 #include <string.h>
91 #include <stdlib.h>
92 #include <stdarg.h>
93 
94 #define malloc(a,b,c)	malloc(a)
95 #define free(a,b)	free(a)
96 
97 typedef unsigned int u_daddr_t;
98 
99 #include <sys/blist.h>
100 
101 void panic(const char *ctl, ...);
102 
103 #endif
104 
105 /*
106  * static support functions
107  */
108 
109 static daddr_t blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count);
110 static daddr_t blst_meta_alloc(blmeta_t *scan, daddr_t blk,
111 				daddr_t count, daddr_t radix, int skip);
112 static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count);
113 static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count,
114 					daddr_t radix, int skip, daddr_t blk);
115 static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
116 				daddr_t skip, blist_t dest, daddr_t count);
117 static daddr_t	blst_radix_init(blmeta_t *scan, daddr_t radix,
118 						int skip, daddr_t count);
119 #ifndef KERNEL
120 static void	blst_radix_print(blmeta_t *scan, daddr_t blk,
121 					daddr_t radix, int skip, int tab);
122 #endif
123 
124 #ifdef KERNEL
125 static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
126 #endif
127 
128 /*
129  * blist_create() - create a blist capable of handling up to the specified
130  *		    number of blocks
131  *
132  *	blocks must be greater then 0
133  *
134  *	The smallest blist consists of a single leaf node capable of
135  *	managing BLIST_BMAP_RADIX blocks.
136  */
137 
138 blist_t
139 blist_create(daddr_t blocks)
140 {
141 	blist_t bl;
142 	int radix;
143 	int skip = 0;
144 
145 	/*
146 	 * Calculate radix and skip field used for scanning.
147 	 */
148 	radix = BLIST_BMAP_RADIX;
149 
150 	while (radix < blocks) {
151 		radix <<= BLIST_META_RADIX_SHIFT;
152 		skip = (skip + 1) << BLIST_META_RADIX_SHIFT;
153 	}
154 
155 	bl = malloc(sizeof(struct blist), M_SWAP, M_WAITOK);
156 
157 	bzero(bl, sizeof(*bl));
158 
159 	bl->bl_blocks = blocks;
160 	bl->bl_radix = radix;
161 	bl->bl_skip = skip;
162 	bl->bl_rootblks = 1 +
163 	    blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
164 	bl->bl_root = malloc(sizeof(blmeta_t) * bl->bl_rootblks, M_SWAP, M_WAITOK);
165 
166 #if defined(BLIST_DEBUG)
167 	printf(
168 		"BLIST representing %d blocks (%d MB of swap)"
169 		", requiring %dK of ram\n",
170 		bl->bl_blocks,
171 		bl->bl_blocks * 4 / 1024,
172 		(bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
173 	);
174 	printf("BLIST raw radix tree contains %d records\n", bl->bl_rootblks);
175 #endif
176 	blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
177 
178 	return(bl);
179 }
180 
181 void
182 blist_destroy(blist_t bl)
183 {
184 	free(bl->bl_root, M_SWAP);
185 	free(bl, M_SWAP);
186 }
187 
188 /*
189  * blist_alloc() - reserve space in the block bitmap.  Return the base
190  *		     of a contiguous region or SWAPBLK_NONE if space could
191  *		     not be allocated.
192  */
193 
194 daddr_t
195 blist_alloc(blist_t bl, daddr_t count)
196 {
197 	daddr_t blk = SWAPBLK_NONE;
198 
199 	if (bl) {
200 		if (bl->bl_radix == BLIST_BMAP_RADIX)
201 			blk = blst_leaf_alloc(bl->bl_root, 0, count);
202 		else
203 			blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
204 		if (blk != SWAPBLK_NONE)
205 			bl->bl_free -= count;
206 	}
207 	return(blk);
208 }
209 
210 /*
211  * blist_free() -	free up space in the block bitmap.  Return the base
212  *		     	of a contiguous region.  Panic if an inconsistancy is
213  *			found.
214  */
215 
216 void
217 blist_free(blist_t bl, daddr_t blkno, daddr_t count)
218 {
219 	if (bl) {
220 		if (bl->bl_radix == BLIST_BMAP_RADIX)
221 			blst_leaf_free(bl->bl_root, blkno, count);
222 		else
223 			blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
224 		bl->bl_free += count;
225 	}
226 }
227 
228 /*
229  * blist_resize() -	resize an existing radix tree to handle the
230  *			specified number of blocks.  This will reallocate
231  *			the tree and transfer the previous bitmap to the new
232  *			one.  When extending the tree you can specify whether
233  *			the new blocks are to left allocated or freed.
234  */
235 
236 void
237 blist_resize(blist_t *pbl, daddr_t count, int freenew)
238 {
239     blist_t newbl = blist_create(count);
240     blist_t save = *pbl;
241 
242     *pbl = newbl;
243     if (count > save->bl_blocks)
244 	    count = save->bl_blocks;
245     blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
246 
247     /*
248      * If resizing upwards, should we free the new space or not?
249      */
250     if (freenew && count < newbl->bl_blocks) {
251 	    blist_free(newbl, count, newbl->bl_blocks - count);
252     }
253     blist_destroy(save);
254 }
255 
256 #ifdef BLIST_DEBUG
257 
258 /*
259  * blist_print()    - dump radix tree
260  */
261 
262 void
263 blist_print(blist_t bl)
264 {
265 	printf("BLIST {\n");
266 	blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
267 	printf("}\n");
268 }
269 
270 #endif
271 
272 /************************************************************************
273  *			  ALLOCATION SUPPORT FUNCTIONS			*
274  ************************************************************************
275  *
276  *	These support functions do all the actual work.  They may seem
277  *	rather longish, but that's because I've commented them up.  The
278  *	actual code is straight forward.
279  *
280  */
281 
282 /*
283  * blist_leaf_alloc() -	allocate at a leaf in the radix tree (a bitmap).
284  *
285  *	This is the core of the allocator and is optimized for the 1 block
286  *	and the BLIST_BMAP_RADIX block allocation cases.  Other cases are
287  *	somewhat slower.  The 1 block allocation case is log2 and extremely
288  *	quick.
289  */
290 
291 static daddr_t
292 blst_leaf_alloc(
293 	blmeta_t *scan,
294 	daddr_t blk,
295 	int count
296 ) {
297 	u_daddr_t orig = scan->u.bmu_bitmap;
298 
299 	if (orig == 0) {
300 		/*
301 		 * Optimize bitmap all-allocated case.  Also, count = 1
302 		 * case assumes at least 1 bit is free in the bitmap, so
303 		 * we have to take care of this case here.
304 		 */
305 		scan->bm_bighint = 0;
306 		return(SWAPBLK_NONE);
307 	}
308 	if (count == 1) {
309 		/*
310 		 * Optimized code to allocate one bit out of the bitmap
311 		 */
312 		u_daddr_t mask;
313 		int j = BLIST_BMAP_RADIX/2;
314 		int r = 0;
315 
316 		mask = (u_daddr_t)-1 >> (BLIST_BMAP_RADIX/2);
317 
318 		while (j) {
319 			if ((orig & mask) == 0) {
320 			    r += j;
321 			    orig >>= j;
322 			}
323 			j >>= 1;
324 			mask >>= j;
325 		}
326 		scan->u.bmu_bitmap &= ~(1 << r);
327 		return(blk + r);
328 	}
329 	if (count <= BLIST_BMAP_RADIX) {
330 		/*
331 		 * non-optimized code to allocate N bits out of the bitmap.
332 		 * The more bits, the faster the code runs.  It will run
333 		 * the slowest allocating 2 bits, but since there aren't any
334 		 * memory ops in the core loop (or shouldn't be, anyway),
335 		 * you probably won't notice the difference.
336 		 */
337 		int j;
338 		int n = BLIST_BMAP_RADIX - count;
339 		u_daddr_t mask;
340 
341 		mask = (u_daddr_t)-1 >> n;
342 
343 		for (j = 0; j <= n; ++j) {
344 			if ((orig & mask) == mask) {
345 				scan->u.bmu_bitmap &= ~mask;
346 				return(blk + j);
347 			}
348 			mask = (mask << 1);
349 		}
350 	}
351 	/*
352 	 * We couldn't allocate count in this subtree, update bighint.
353 	 */
354 	scan->bm_bighint = count - 1;
355 	return(SWAPBLK_NONE);
356 }
357 
358 /*
359  * blist_meta_alloc() -	allocate at a meta in the radix tree.
360  *
361  *	Attempt to allocate at a meta node.  If we can't, we update
362  *	bighint and return a failure.  Updating bighint optimize future
363  *	calls that hit this node.  We have to check for our collapse cases
364  *	and we have a few optimizations strewn in as well.
365  */
366 
367 static daddr_t
368 blst_meta_alloc(
369 	blmeta_t *scan,
370 	daddr_t blk,
371 	daddr_t count,
372 	daddr_t radix,
373 	int skip
374 ) {
375 	int i;
376 	int next_skip = (skip >> BLIST_META_RADIX_SHIFT);
377 
378 	if (scan->u.bmu_avail == 0)  {
379 		/*
380 		 * ALL-ALLOCATED special case
381 		 */
382 		scan->bm_bighint = count;
383 		return(SWAPBLK_NONE);
384 	}
385 
386 	if (scan->u.bmu_avail == radix) {
387 		radix >>= BLIST_META_RADIX_SHIFT;
388 
389 		/*
390 		 * ALL-FREE special case, initialize uninitialize
391 		 * sublevel.
392 		 */
393 		for (i = 1; i <= skip; i += next_skip) {
394 			if (scan[i].bm_bighint == (daddr_t)-1)
395 				break;
396 			if (next_skip == 1) {
397 				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
398 				scan[i].bm_bighint = BLIST_BMAP_RADIX;
399 			} else {
400 				scan[i].bm_bighint = radix;
401 				scan[i].u.bmu_avail = radix;
402 			}
403 		}
404 	} else {
405 		radix >>= BLIST_META_RADIX_SHIFT;
406 	}
407 
408 	for (i = 1; i <= skip; i += next_skip) {
409 		if (count <= scan[i].bm_bighint) {
410 			/*
411 			 * count fits in object
412 			 */
413 			daddr_t r;
414 			if (next_skip == 1) {
415 				r = blst_leaf_alloc(&scan[i], blk, count);
416 			} else {
417 				r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
418 			}
419 			if (r != SWAPBLK_NONE) {
420 				scan->u.bmu_avail -= count;
421 				if (scan->bm_bighint > scan->u.bmu_avail)
422 					scan->bm_bighint = scan->u.bmu_avail;
423 				return(r);
424 			}
425 		} else if (scan[i].bm_bighint == (daddr_t)-1) {
426 			/*
427 			 * Terminator
428 			 */
429 			break;
430 		} else if (count > radix) {
431 			/*
432 			 * count does not fit in object even if it were
433 			 * complete free.
434 			 */
435 			panic("blist_meta_alloc: allocation too large");
436 		}
437 		blk += radix;
438 	}
439 
440 	/*
441 	 * We couldn't allocate count in this subtree, update bighint.
442 	 */
443 	if (scan->bm_bighint >= count)
444 		scan->bm_bighint = count - 1;
445 	return(SWAPBLK_NONE);
446 }
447 
448 /*
449  * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
450  *
451  */
452 
453 static void
454 blst_leaf_free(
455 	blmeta_t *scan,
456 	daddr_t blk,
457 	int count
458 ) {
459 	/*
460 	 * free some data in this bitmap
461 	 *
462 	 * e.g.
463 	 *	0000111111111110000
464 	 *          \_________/\__/
465 	 *		v        n
466 	 */
467 	int n = blk & (BLIST_BMAP_RADIX - 1);
468 	u_daddr_t mask;
469 
470 	mask = ((u_daddr_t)-1 << n) &
471 	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
472 
473 	if (scan->u.bmu_bitmap & mask)
474 		panic("blst_radix_free: freeing free block");
475 	scan->u.bmu_bitmap |= mask;
476 
477 	/*
478 	 * We could probably do a better job here.  We are required to make
479 	 * bighint at least as large as the biggest contiguous block of
480 	 * data.  If we just shoehorn it, a little extra overhead will
481 	 * be incured on the next allocation (but only that one typically).
482 	 */
483 	scan->bm_bighint = BLIST_BMAP_RADIX;
484 }
485 
486 /*
487  * BLST_META_FREE() - free allocated blocks from radix tree meta info
488  *
489  *	This support routine frees a range of blocks from the bitmap.
490  *	The range must be entirely enclosed by this radix node.  If a
491  *	meta node, we break the range down recursively to free blocks
492  *	in subnodes (which means that this code can free an arbitrary
493  *	range whereas the allocation code cannot allocate an arbitrary
494  *	range).
495  */
496 
497 static void
498 blst_meta_free(
499 	blmeta_t *scan,
500 	daddr_t freeBlk,
501 	daddr_t count,
502 	daddr_t radix,
503 	int skip,
504 	daddr_t blk
505 ) {
506 	int i;
507 	int next_skip = (skip >> BLIST_META_RADIX_SHIFT);
508 
509 #if 0
510 	printf("FREE (%x,%d) FROM (%x,%d)\n",
511 	    freeBlk, count,
512 	    blk, radix
513 	);
514 #endif
515 
516 	if (scan->u.bmu_avail == 0) {
517 		/*
518 		 * ALL-ALLOCATED special case, with possible
519 		 * shortcut to ALL-FREE special case.
520 		 */
521 		scan->u.bmu_avail = count;
522 		scan->bm_bighint = count;
523 
524 		if (count != radix)  {
525 			for (i = 1; i <= skip; i += next_skip) {
526 				if (scan[i].bm_bighint == (daddr_t)-1)
527 					break;
528 				scan[i].bm_bighint = 0;
529 				if (next_skip == 1) {
530 					scan[i].u.bmu_bitmap = 0;
531 				} else {
532 					scan[i].u.bmu_avail = 0;
533 				}
534 			}
535 			/* fall through */
536 		}
537 	} else {
538 		scan->u.bmu_avail += count;
539 		/* scan->bm_bighint = radix; */
540 	}
541 
542 	/*
543 	 * ALL-FREE special case.
544 	 */
545 
546 	if (scan->u.bmu_avail == radix)
547 		return;
548 #if !defined(MAX_PERF)
549 	if (scan->u.bmu_avail > radix)
550 		panic("blst_meta_free: freeing already free blocks (%d) %d/%d", count, scan->u.bmu_avail, radix);
551 #endif
552 
553 	/*
554 	 * Break the free down into its components
555 	 */
556 
557 	radix >>= BLIST_META_RADIX_SHIFT;
558 
559 	i = (freeBlk - blk) / radix;
560 	blk += i * radix;
561 	i = i * next_skip + 1;
562 
563 	while (i <= skip && blk < freeBlk + count) {
564 		daddr_t v;
565 
566 		v = blk + radix - freeBlk;
567 		if (v > count)
568 			v = count;
569 
570 		if (scan->bm_bighint == (daddr_t)-1)
571 			panic("blst_meta_free: freeing unexpected range");
572 
573 		if (next_skip == 1) {
574 			blst_leaf_free(&scan[i], freeBlk, v);
575 		} else {
576 			blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
577 		}
578 		if (scan->bm_bighint < scan[i].bm_bighint)
579 		    scan->bm_bighint = scan[i].bm_bighint;
580 		count -= v;
581 		freeBlk += v;
582 		blk += radix;
583 		i += next_skip;
584 	}
585 }
586 
587 /*
588  * BLIST_RADIX_COPY() - copy one radix tree to another
589  *
590  *	Locates free space in the source tree and frees it in the destination
591  *	tree.  The space may not already be free in the destination.
592  */
593 
594 static void blst_copy(
595 	blmeta_t *scan,
596 	daddr_t blk,
597 	daddr_t radix,
598 	daddr_t skip,
599 	blist_t dest,
600 	daddr_t count
601 ) {
602 	int next_skip;
603 	int i;
604 
605 	/*
606 	 * Leaf node
607 	 */
608 
609 	if (radix == BLIST_BMAP_RADIX) {
610 		u_daddr_t v = scan->u.bmu_bitmap;
611 
612 		if (v == (u_daddr_t)-1) {
613 			blist_free(dest, blk, count);
614 		} else if (v != 0) {
615 			int i;
616 
617 			for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
618 				if (v & (1 << i))
619 					blist_free(dest, blk + i, 1);
620 			}
621 		}
622 		return;
623 	}
624 
625 	/*
626 	 * Meta node
627 	 */
628 
629 	if (scan->u.bmu_avail == 0) {
630 		/*
631 		 * Source all allocated, leave dest allocated
632 		 */
633 		return;
634 	}
635 	if (scan->u.bmu_avail == radix) {
636 		/*
637 		 * Source all free, free entire dest
638 		 */
639 		if (count < radix)
640 			blist_free(dest, blk, count);
641 		else
642 			blist_free(dest, blk, radix);
643 		return;
644 	}
645 
646 
647 	radix >>= BLIST_META_RADIX_SHIFT;
648 	next_skip = (skip >> BLIST_META_RADIX_SHIFT);
649 
650 	for (i = 1; count && i <= skip; i += next_skip) {
651 		if (scan[i].bm_bighint == (daddr_t)-1)
652 			break;
653 
654 		if (count >= radix) {
655 			blst_copy(
656 			    &scan[i],
657 			    blk,
658 			    radix,
659 			    next_skip - 1,
660 			    dest,
661 			    radix
662 			);
663 			count -= radix;
664 		} else {
665 			if (count) {
666 				blst_copy(
667 				    &scan[i],
668 				    blk,
669 				    radix,
670 				    next_skip - 1,
671 				    dest,
672 				    count
673 				);
674 			}
675 			count = 0;
676 		}
677 		blk += radix;
678 	}
679 }
680 
681 /*
682  * BLST_RADIX_INIT() - initialize radix tree
683  *
684  *	Initialize our meta structures and bitmaps and calculate the exact
685  *	amount of space required to manage 'count' blocks - this space may
686  *	be considerably less then the calculated radix due to the large
687  *	RADIX values we use.
688  */
689 
690 static daddr_t
691 blst_radix_init(blmeta_t *scan, daddr_t radix, int skip, daddr_t count)
692 {
693 	int i;
694 	int next_skip;
695 	daddr_t memindex = 0;
696 
697 	/*
698 	 * Leaf node
699 	 */
700 
701 	if (radix == BLIST_BMAP_RADIX) {
702 		if (scan) {
703 			scan->bm_bighint = 0;
704 			scan->u.bmu_bitmap = 0;
705 		}
706 		return(memindex);
707 	}
708 
709 	/*
710 	 * Meta node.  If allocating the entire object we can special
711 	 * case it.  However, we need to figure out how much memory
712 	 * is required to manage 'count' blocks, so we continue on anyway.
713 	 */
714 
715 	if (scan) {
716 		scan->bm_bighint = 0;
717 		scan->u.bmu_avail = 0;
718 	}
719 
720 	radix >>= BLIST_META_RADIX_SHIFT;
721 	next_skip = (skip >> BLIST_META_RADIX_SHIFT);
722 
723 	for (i = 1; i <= skip; i += next_skip) {
724 		if (count >= radix) {
725 			/*
726 			 * Allocate the entire object
727 			 */
728 			memindex = i + blst_radix_init(
729 			    ((scan) ? &scan[i] : NULL),
730 			    radix,
731 			    next_skip - 1,
732 			    radix
733 			);
734 			count -= radix;
735 		} else if (count > 0) {
736 			/*
737 			 * Allocate a partial object
738 			 */
739 			memindex = i + blst_radix_init(
740 			    ((scan) ? &scan[i] : NULL),
741 			    radix,
742 			    next_skip - 1,
743 			    count
744 			);
745 			count = 0;
746 		} else {
747 			/*
748 			 * Add terminator and break out
749 			 */
750 			if (scan)
751 				scan[i].bm_bighint = (daddr_t)-1;
752 			break;
753 		}
754 	}
755 	if (memindex < i)
756 		memindex = i;
757 	return(memindex);
758 }
759 
760 #ifdef BLIST_DEBUG
761 
762 static void
763 blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int skip, int tab)
764 {
765 	int i;
766 	int next_skip;
767 	int lastState = 0;
768 
769 	if (radix == BLIST_BMAP_RADIX) {
770 		printf(
771 		    "%*.*s(%04x,%d): bitmap %08x big=%d\n",
772 		    tab, tab, "",
773 		    blk, radix,
774 		    scan->u.bmu_bitmap,
775 		    scan->bm_bighint
776 		);
777 		return;
778 	}
779 
780 	if (scan->u.bmu_avail == 0) {
781 		printf(
782 		    "%*.*s(%04x,%d) ALL ALLOCATED\n",
783 		    tab, tab, "",
784 		    blk,
785 		    radix
786 		);
787 		return;
788 	}
789 	if (scan->u.bmu_avail == radix) {
790 		printf(
791 		    "%*.*s(%04x,%d) ALL FREE\n",
792 		    tab, tab, "",
793 		    blk,
794 		    radix
795 		);
796 		return;
797 	}
798 
799 	printf(
800 	    "%*.*s(%04x,%d): subtree (%d/%d) big=%d {\n",
801 	    tab, tab, "",
802 	    blk, radix,
803 	    scan->u.bmu_avail,
804 	    radix,
805 	    scan->bm_bighint
806 	);
807 
808 	radix >>= BLIST_META_RADIX_SHIFT;
809 	next_skip = (skip >> BLIST_META_RADIX_SHIFT);
810 	tab += 4;
811 
812 	for (i = 1; i <= skip; i += next_skip) {
813 		if (scan[i].bm_bighint == (daddr_t)-1) {
814 			printf(
815 			    "%*.*s(%04x,%d): Terminator\n",
816 			    tab, tab, "",
817 			    blk, radix
818 			);
819 			lastState = 0;
820 			break;
821 		}
822 		blst_radix_print(
823 		    &scan[i],
824 		    blk,
825 		    radix,
826 		    next_skip - 1,
827 		    tab
828 		);
829 		blk += radix;
830 	}
831 	tab -= 4;
832 
833 	printf(
834 	    "%*.*s}\n",
835 	    tab, tab, ""
836 	);
837 }
838 
839 #endif
840 
841 #ifdef BLIST_DEBUG
842 
843 int
844 main(int ac, char **av)
845 {
846 	int size = 1024;
847 	int i;
848 	blist_t bl;
849 
850 	for (i = 1; i < ac; ++i) {
851 		const char *ptr = av[i];
852 		if (*ptr != '-') {
853 			size = strtol(ptr, NULL, 0);
854 			continue;
855 		}
856 		ptr += 2;
857 		fprintf(stderr, "Bad option: %s\n", ptr - 2);
858 		exit(1);
859 	}
860 	bl = blist_create(size);
861 	blist_free(bl, 0, size);
862 
863 	for (;;) {
864 		char buf[1024];
865 		daddr_t da = 0;
866 		daddr_t count = 0;
867 
868 
869 		printf("%d/%d/%d> ", bl->bl_free, size, bl->bl_radix);
870 		fflush(stdout);
871 		if (fgets(buf, sizeof(buf), stdin) == NULL)
872 			break;
873 		switch(buf[0]) {
874 		case 'r':
875 			if (sscanf(buf + 1, "%d", &count) == 1) {
876 				blist_resize(&bl, count, 1);
877 			} else {
878 				printf("?\n");
879 			}
880 		case 'p':
881 			blist_print(bl);
882 			break;
883 		case 'a':
884 			if (sscanf(buf + 1, "%d", &count) == 1) {
885 				daddr_t blk = blist_alloc(bl, count);
886 				printf("    R=%04x\n", blk);
887 			} else {
888 				printf("?\n");
889 			}
890 			break;
891 		case 'f':
892 			if (sscanf(buf + 1, "%x %d", &da, &count) == 2) {
893 				blist_free(bl, da, count);
894 			} else {
895 				printf("?\n");
896 			}
897 			break;
898 		case '?':
899 		case 'h':
900 			puts(
901 			    "p          -print\n"
902 			    "a %d       -allocate\n"
903 			    "f %x %d    -free\n"
904 			    "r %d       -resize\n"
905 			    "h/?        -help"
906 			);
907 			break;
908 		default:
909 			printf("?\n");
910 			break;
911 		}
912 	}
913 	return(0);
914 }
915 
916 void
917 panic(const char *ctl, ...)
918 {
919 	va_list va;
920 
921 	va_start(va, ctl);
922 	vfprintf(stderr, ctl, va);
923 	fprintf(stderr, "\n");
924 	va_end(va);
925 	exit(1);
926 }
927 
928 #endif
929 
930